
Oracle Distributed Systems

Oracle Distributed Systems

Charles Dye
Publisher: O'Reilly
First Edition April 1999
ISBN: 1-56592-432-0, 548 pages

This book describes how you can use multiple databases
and both Oracle8 and Oracle7 distributed system features
to best advantage. It covers design, configuration of
SQL*Net/Net8, security, and Oracle's distributed options
(advanced replication, snapshots, multi-master replication,
updateable snapshots, procedural replication, and conflict
resolution). Includes a complete API reference for built-in
packages .

1

Oracle Distributed Systems

2

Oracle Distributed Systems

Oracle Distributed Systems

Preface
 Audience for This Book
 About Replication
 About Oracle Versions and Platforms
 Structure of This Book
 Conventions Used in This Book
 About the Scripts
 Comments and Questions
 Acknowledgments

I: The Distributed System

1. Introduction to Distributed Systems
 1.1 Terminology and Concepts
 1.2 What Is a Distributed Database System?
 1.3 Benefits of Distributed Databases
 1.4 Multiple Schema Versus Multiple Databases
 1.5 Options for Distributed Data
 1.6 Perils of Distributed Databases
 1.7 Differences Between Oracle7 and Oracle8

2. SQL*Net and Net8
 2.1 Protocol Overview
 2.2 Architecture
 2.3 SQL*Net/Net8 Tuning
 2.4 Load Balancing
 2.5 Oracle8 Scalability Options
 2.6 SQL*Net/Net8 Client Configuration
 2.7 SNMP Support
 2.8 Security

3. Configuration and Administration
 3.1 Initialization Parameters
 3.2 Database Links
 3.3 Distributed Queries and Transactions
 3.4 Distributed Backup and Recovery
 3.5 Multiversion Interoperability

4. Distributed Database Security
 4.1 Privilege Management
 4.2 Authentication Methods

5. Designing a Distributed System
 5.1 Characteristics of a Distributed System
 5.2 The Global Data Dictionary
 5.3 Replication-Specific Issues
 5.4 Data Partitioning Methodologies
 5.5 Application Partitioning Strategies
 5.6 Procedural Replication

3

Oracle Distributed Systems

6. Oracle's Distributed System Implementation
 6.1 Meeting the 12 Objectives with Oracle
 6.2 Oracle's Global Data Dictionary

7. Sample Configurations
 7.1 The High-Availability System
 7.2 Geographic Data Distribution
 7.3 Workflow Partitioning
 7.4 Data Collection and Consolidation
 7.5 Loosely Coupled Federation

8. Engineering Considerations
 8.1 Schema Design and Integration
 8.2 Application Tiering
 8.3 Designing a Replicated System

II: Replication

9. Oracle Replication Architecture
 9.1 What Is Oracle Replication?
 9.2 Types of Replication
 9.3 Architecture Components
 9.4 Replication of DDL
 9.5 Oracle8 Enhancements
 9.6 Oracle8i Enhancements
 9.7 Alternatives to Replication

10. Advanced Replication Installation
 10.1 Initialization Parameters
 10.2 Redo Logs and Rollback Segments
 10.3 Size and Placement of Data Dictionary Objects
 10.4 Administrative Accounts, Privileges, and Database Links

11. Basic Replication
 11.1 About Read-Only Snapshots
 11.2 Prerequisites and Restrictions
 11.3 Snapshot Creation Basics
 11.4 Simple Versus Complex Snapshots
 11.5 Snapshot Logs
 11.6 Subquery Subsetting
 11.7 Refresh Groups
 11.8 Management and Optimization
 11.9 Scripts

12. Multi-Master Replication
 12.1 Concepts and Terminology
 12.2 Getting Started
 12.3 Replication Groups
 12.4 Master Site Maintenance and Propagation
 12.5 Controlling Propagation
 12.6 The Replication Catalog
 12.7 Table Replication
 12.8 Replicating DDL

4

Oracle Distributed Systems

 12.9 Your Replicated Environment
 12.10 Advanced Replication Limitations

13. Updateable Snapshots
 13.1 About Updateable Snapshots
 13.2 Creating Updateable Snapshots
 13.3 Communication Flow
 13.4 Controlling Propagation and Refreshes
 13.5 Maintenance

14. Procedural Replication
 14.1 When to Use Procedural Replication
 14.2 How Procedural Replication Works
 14.3 Creating a Replicated Package Procedure
 14.4 Restrictions on Procedural Replication
 14.5 An Example

15. Conflict Avoidance and Resolution Techniques
 15.1 Data Integrity Versus Data Convergence
 15.2 Applications That Avoid Conflicts
 15.3 Types of Conflicts Detected
 15.4 How Oracle Detects and Resolves Conflicts
 15.5 Column Groups and Priority Groups
 15.6 The Built-in Methods
 15.7 Writing Your Own Conflict Resolution Handler

III: Appendixes

A. Built-in Packages for Distributed Systems
 A.1 DBMS_DEFER: Building Deferred Calls
 A.2 DBMS_DEFER_QUERY: Performing Diagnostics and Maintenance
 A.3 DBMS_DEFER_SYS: Managing Deferred Transactions
 A.4 DBMS_OFFLINE_OG: Performing Site Instantiation
 A.5 DBMS_OFFLINE_SNAPSHOT: Performing Offline Snapshot Instantiation
 A.6 DBMS_RECTIFIER_DIFF: Comparing Replicated Tables
 A.7 DBMS_REFRESH: Managing Snapshot Groups
 A.8 DBMS_REPCAT: Performing Replication Administration
 A.9 DBMS_REPCAT_ADMIN: Setting Up Administrative Accounts
 A.10 DBMS_REPCAT_AUTH: Setting Up More Administrative Accounts
 A.11 DBMS_REPUTIL: Enabling and Disabling Replication
 A.12 DBMS_SNAPSHOT: Managing Snapshots

B. Scripts and Utilities
 B.1 busycirc.sql
 B.2 busydisp.sql
 B.3 busyq.sql
 B.4 checklatency
 B.5 colgroups.sql
 B.6 confstats.sql
 B.7 cr_regions.sql
 B.8 defcall.sql
 B.9 defcalldest.sql
 B.10 defcallinfo.sql

5

Oracle Distributed Systems

 B.11 defdest.sql
 B.12 deferror.sql
 B.13 deferror8.sql
 B.14 deforigin.sql
 B.15 defschedule.sql
 B.16 deftran.sql
 B.17 deftrandest.sql
 B.18 disprate.sql
 B.19 errorinfo.sql
 B.20 fixdefer.sql
 B.21 gendelerrtran.sql
 B.22 gendeltran.sql
 B.23 gengensup.sql
 B.24 groupedcols.sql
 B.25 invalids.sql
 B.26 jobs.sql
 B.27 keycols.sql
 B.28 lastsnap.sql
 B.29 latent.sql
 B.30 links.sql
 B.31 mastersnapinfo.sql
 B.32 mlogs.sql
 B.33 needsgen.sql
 B.34 nonrepobjects.sql
 B.35 pk_regions.sql
 B.36 prioritygroups.sql
 B.37 prioritysites.sql
 B.38 propmode.sql
 B.39 refgroups.sql
 B.40 regsnaps.sql
 B.41 repcaterr.sql
 B.42 repcatlog.sql
 B.43 repconflict.sql
 B.44 repgroup.sql
 B.45 repobjects.sql
 B.46 repres.sql
 B.47 repsites.sql
 B.48 resconfs.sql
 B.49 snaps.sql
 B.50 snaps7.sql
 B.51 trg_regions.sql
 B.52 UserAdmin

Colophon

6

Oracle Distributed Systems

Preface

In my nearly 10 years of Oracle database administration experience, I've witnessed
the emergence of a distributed database technology whose sophistication level has
risen while the average user's understanding of that technology has not. With the
advent of Oracle's advanced replication facilities, relatively few DBAs are well versed
in all aspects of Oracle's distributed systems offerings, and few engineers fully
recognize the implications that distributed systems have for their code. As a result,
many hours are spent struggling to implement doomed solutions, and still more
hours are spent supporting hobbled architectures.

Oracle's exploding feature set is not to blame these lost hours. There is a vast gap
between the theoretical, or academic, knowledge base surrounding distributed
systems and the practical, or applied, knowledge base. In general, the people who
understand the principles and nuances of a distributed environment are not the same
people who are out there building systems. The publications on distributed systems
reflect this divide; most books are either very theoretical and contain little specific
advice or are rather simplistic cookbooks for those on the front lines (or in the
kitchen, as the case may be). Needless to say, it can be rather frustrating to find the
information you need when one book discusses set theory and another says "point
here, click there."

This book strives to close the gap between the theoretical and the applied by
explaining the objectives of the ideal distributed system in the context of Oracle's
technology. I examine the reasons why distributed systems should have certain
properties and discuss how Oracle is designed to deliver these properties. I also
provide design recommendations for various common requirements. And, finally, I
deliver programming examples and scripts and tricks for the DBA. I wish I had had
this book 10 years ago.

Audience for This Book

This book is intended primarily for Oracle database administrators, developers,
system administrators, network administrators, and others who need to build or
maintain distributed database systems.

About Replication

This book contains a substantial amount of detail about Oracle's advanced replication
facilities. Most of this information has been obtained through several real-world
implementations, and my advice is based on experiences and situations that are, for
the most part, not addressed in Oracle's documentation.

In addition to sharing the benefit of my experience, this book tries to convey a
fundamental understanding of how the advanced replication facilities actually work. I
describe its underpinnings, its limitations, and how to use it successfully to solve a
variety of problems.

One thing this book does not attempt to describe is Oracle's GUI tool—Replication
Manager. Although this tool may be useful for the administration of a pre-existing,

7

Oracle Distributed Systems

stable environment, using it does not give you any insight into how replication works
or into the viability of your environment. In addition, the tool is not very useful for
solving the inevitable problems that arise in a replicated environment. If you are
interested in using Oracle's Replication Manager, we refer you to the Oracle8 Server
Replication Guide.

About Oracle Versions and Platforms

At this point, I work with Oracle8 almost exclusively in both production and
development environments. Therefore, most of the specific examples and
recommendations in this book are proven on Oracle8. In cases in which I refer to
Oracle7, I mean Version 7.3.0 and later. When I am aware of how a feature will work
under the upcoming release, Oracle8i, I have noted that as well.

As a general observation, my experience with Oracle8 has been quite positive,
especially where replication is concerned. If you have not yet migrated to Oracle8,
my advice is to do so as soon as possible.

Most of the examples described in this book were developed on a Unix operating
system; however, SQL scripts are very portable, and most of them will run as is on
Windows NT and other operating systems.

Structure of This Book

This book is divided into three parts:

Part I

Chapter 1, is an overview of distributed systems—terminology, basic concepts,
benefits and perils, and the various options provided by Oracle.

Chapter 2, describes the underlying protocols Oracle supplies to support
communication with distributed Oracle databases over a network.

Chapter 3, explains how to set up a distributed database environment; it discusses
initialization parameters, database links, how distributed transactions work, and the
basics of distributed backup and recovery.

Chapter 4, describes special security concerns for distributed systems; it looks at
privilege management, various authentication methods, the encryption of network
traffic, and the use of the Oracle Security Server (OSS) and the Advanced
Networking Option (ANO).

Chapter 5, examines the design of a distributed system; it introduces C. J. Date's
fundamental principles of distributed databases, discusses the global data dictionary,
and recommends a particular approach to data partitioning.

Chapter 6, examines how Oracle's RDBMS and networking products meet Date's
objectives for distributed database systems.

8

Oracle Distri

Indicates a tip, suggestion, or general note. For example, we'll
tell you if you need to use a particular Oracle version or if an
operation requires certain privileges.

buted Systems

9

Chapter 7, focuses on the most common distributed architectures: the high-
availability system, systems illustrating geographic data distribution, workflow
partitioning, and data collection and consolidation, and the loosely coupled federation.

Chapter 8, examines the special requirements of distributed systems that must be
taken into account during the engineering process: schema design and integration,
application tiering, and the design of a replicated application.

Part II

Chapter 9, takes a deeper look at Oracle's replication architecture; it examines the
various types of replication available through Oracle, specific architectural
components, installation tips, and enhancements for Oracle8 and Oracle8i.

Chapter 10, describes how to set up an advanced replication environment, including
the setting of initialization parameters, the selection of redo logs and rollback
segments, the size and placement of data dictionary objects, and the use of
administrative accounts, privileges, and database links.

Chapter 11, is a detailed analysis of Oracle's basic replication (snapshot) facility.

Chapter 12, is a detailed analysis of Oracle's multi-master replication facility.

Chapter 13, is a detailed analysis of Oracle's updateable snapshot facility.

Chapter 14, is a detailed analysis of Oracle's procedural replication facility.

Chapter 15, describes a variety of techniques for avoiding conflicts among the
various distributed sites where data is replicated.

Part III

Appendix A, is the Application Programming Interface (API) reference; it contains
summaries of all specifications, parameters, exceptions, and restrictions for the
procedures and functions available through the Oracle built-in packages used with
distributed systems.

Appendix B, contains the code for a variety of scripts mentioned in this book.

Conventions Used in This Book

Indicates a warning or caution. For example, we'll tell you if
Oracle does not behave as you'd expect or if a particular
operation has a negative impact on performance.

Oracle Distributed Systems

Italic

Used for script names, filenames, directory names, and operating system
commands. Also used for replaceables in text, for emphasis, and to introduce
new terms.

Constant width

Used for code examples.

Constant width italic

Used in code examples to indicate elements (e.g., filenames) that you supply.

Constant width bold

Used occasionally to highlight particular items in code being discussed.

UPPERCASE

In code examples, generally indicates Oracle keywords.

lowercase

In code examples, generally indicates user-defined items such as variables,
parameters, and so forth.

punctuation

In code examples, enter exactly as shown.

* and */

In code examples, these characters delimit a comment, which can extend
from one line to another.

--/ or #

In code examples, these characters indicate the start of a comment line.

[]

In syntax descriptions, square brackets enclose optional items.

{}

In syntax descriptions, curly brackets enclose a set of items; you must choose
only one of them.

10

Oracle Distributed Systems

|

In syntax descriptions, a vertical bar separates the items enclosed in curly
brackets, as in {VARCHAR | DATE | NUMBER}.

About the Scripts

In addition, these scripts are available at the O'Reilly web site (see Section P.7).

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or
request a catalog, send email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For corrections and amplifications for the book, as well as for copies of the scripts
found in this book, check out http://www.oreilly.com/catalog/oradistsys. See the ads
at the end of the book for information about all of O'Reilly & Associates' online
services.

Acknowledgments

Fortunately many people have supported me in the writing of this book; trite as it
may sound, I definitely could not have done it by myself. While my name may
appear on the byline, there are numerous people whose contributions, technical and
otherwise, have been invaluable.

This is the second book I have written for O'Reilly & Associates, and my first solo
effort. Debby Russell, my editor, has provided guidance and encouragement, as well
as a measure of admonishment, all of which have led to a successful project. Debby
has two abilities which result in great books for O'Reilly: motivating writers and
envisioning a high-quality product. Many thanks as well to Steve Abrams, who
converted files, did lots of preproduction work on the text, and otherwise helped
move things along efficiently. And finally, thanks to the entire production staff; you
did a great job.

11

mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/oradistsys

Oracle Distributed Systems

My first line of support for solving intractable replication issues and one of the
primary reviewers of this book was Jenny Tsai of Oracle Corporation. Jenny has been
able to help me research issues with the utmost thoroughness and has devoted a
significant amount of time to validating the accuracy of the material presented here.
And most importantly, Jenny introduced me to Oracle's advanced replication several
years ago when she taught the symmetric replication class for Oracle Education.

Other folks at Oracle have been most generous with their time and have provided
significant assistance with various portions of this book. Harvey Eneman, the
architect of multi-threaded server (MTS), provided extensive consultation. Sue Jang,
who probably has more experience with implementing replication than anybody, has
provided valuable input into the replication chapters. Virtually all members of the
replication team have been very helpful, not only with the contents of this book but
also with the resolution of real-world issues. They include Al Demers, Alan Downing,
Pat McElroy, Maria Pratt, Benny Souder, Jim Stamos, Harry Sun, and Lik Wong.

Other reviewers who have provided insight from the consumer point of view include
Jeremy Brinkley, Peter Grendler, and Teresa Shaw. All of these people have been
working with Oracle for a number of years, and were able to provide commentary
from the point of view of DBAs and engineers.

Wittingly or not, my managers at Excite also have contributed to the quality of this
book. Dan Nater and Jon Prall have asked me to push Oracle's replication technology
to its limits, which I have. Their insatiable thirst for solutions has enhanced my
ability to optimize a replicated environment, and the knowledge I have gained
meeting their requests is all available here. Chances are, you will not ever need to
push Oracle replication as far as Dan and Jon have.

Finally, I thank my wife, Kathy, who has been incredibly patient and understanding
throughout the course of my writing this book. Nobody is looking forward to its
completion more than she is.

12

Oracle Distributed Systems

Part I: The Distributed System

Part I introduces distributed database systems and provides information on the
networking, configuration, security, and design of these systems. It contains the
following chapters:

• Chapter 1, is an overview of distributed systems—terminology, basic concepts,
benefits and perils, and the various options provided by Oracle.

• Chapter 2, describes the underlying protocols Oracle supplies to support
communication with distributed Oracle databases over a network.

• Chapter 3, explains how to set up a distributed database environment; it
discusses intitialization parameters, database links, how distributed
transactions work, and the basics of distributed backup and recovery.

• Chapter 4, describes special security concerns for distributed systems; it
looks at privilege management, various authentication methods, the
encryption of network traffic, and the use of the Oracle Security Server (OSS)
and the Advanced Networking Option (ANO).

• Chapter 5, examines the design of a distributed system; it introduces C. J.
Date's fundamental principles of distributed databases, discusses the global
data dictionary, and recommends a particular approach to data partitioning.

• Chapter 6, examines how Oracle's RDBMS and networking products meet
Date's objectives for distributed database systems.

• Chapter 7, focuses on the most common distributed architectures: the high-
availability system, systems illustrating geographic data distribution, workflow
partitioning, and data collection and consolidation, and the loosely coupled
federation.

• Chapter 8, examines the special requirements of distributed systems that
must be taken into account during the engineering process: schema design
and integration, application tiering, and the design of a replicated application.

13

Oracle Distributed Systems

14

Oracle Distributed Systems

Chapter 1. Introduction to Distributed
Systems

Any organization that uses the Oracle relational database management system
(RDBMS) probably has multiple databases. There are a variety of reasons why you
might use more than a single database in a distributed database system:

• Different databases may be associated with particular business functions,
such as manufacturing or human resources.

• Databases may be aligned with geographic boundaries, such as a behemoth
database at a headquarters site and smaller databases at regional offices.

• Two different databases may be required to access the same data in different
ways, such as an order entry database whose transactions are aggregated
and analyzed in a data warehouse.

• A busy Internet commerce site may create multiple copies of the same
database to attain horizontal scalability.

• A copy of a production database may be created to serve as a development
test bed.

Sometimes the relationship between multiple databases is part of a well-planned
architecture, in which distributed databases are designed and implemented as such
from the beginning. In other cases, though, the relationship is unforeseen; it is quite
common for distributed databases to evolve as businesses expand, requirements
grow, and applications spawn. But common to all cases is the need to copy or
reference data in one or more remote databases.

A distributed database system will meet one or more of the following objectives:

Availability

Data must be available at the local site even when a remote site is
unreachable.

Survivability

The failure of any single database instance must not impact the ongoing
business.

Data collection

Regional data such as sales receipts is consolidated and aggregated at a
single site.

Data extraction

A data warehouse extracts transaction records from an online transaction
processing (OLTP) system.

15

Oracle Distributed Systems

Decentralized data

Data may be updated in several databases.

Maintenance

There must be support for activities such as load testing with data from
production in a benchmarking database.

Oracle Corporation introduced interdatabase connectivity with SQL*Net in Oracle
Version 5 and simplified its usage considerably with the database links feature in
Oracle Version 6, opening up a world of distributed possibilities. Oracle now supplies
a variety of techniques that you can use to establish interdatabase connectivity and
data sharing. Each technique has its advantages and disadvantages, but in many
cases the best solution is not immediately obvious.

Before delving into Oracle's offerings in the distributed database systems area, I'll
clarify some terminology and concepts.

1.1 Terminology and Concepts

I have found thatthere is a great deal of confusion surrounding the various products
and terminology from Oracle. I think it's worthwhile to clarify some of these terms up
front so you'll get the most benefit from this book.

Database/ database instance

These terms are often used interchangeably, but they are not the same thing.
In Oracle parlance, a database is the set of physical files containing data.
These files comprise tablespaces, redo logs, and control files. A database
instance (or simply instance) is the set of processes and memory structures
that manipulate a database.

A database may be accessed by one or more database instances, and a
database instance may access exactly one database.

Oracle parallel server

Oracle parallel server(OPS) is a technology that allows two or more database
instances, generally on different machines, to open and manipulate one
database, as shown in Figure 1.1. In other words, the physical data files (and
therefore data) in a database can be seen, inserted, updated, and deleted by
users logging on to two or more different instances; the instances run on
different machines but access the same physical database.

16

Oracle Distributed Systems

Figure 1.1. Parallel server architecture

Oracle parallel server requires an operating system that supports clustering
and a distributed lock manager because the multiple database instances must
share information about the data that is updated, the lock resources, and so
on. For example, if a user on instance A updates a row, and a user on
instance B performs a query that would return that row, instance B must
instruct instance A to write the updated data to the physical database so that
the query will deliver the updated information.

Oracle parallel server is intended to provide failover capabilities —capabilities
that allow a second machine to take over the processing being performed by
the first in the event of machine failure (e.g., CPU or motherboard failure). It
does not provide any protection from disk failure. Occasionally, parallel server
technology is used to achieve horizontal scalability, a concept I'll discuss later
in this chapter.

Standby database

Oracle introduced the standby database in Version 7.2, although some sites
had created their own homegrown varieties earlier. A standby database is one
that shadows a normal database and is always in recovery mode. Whenever a
redo log is archived in the primary database, the archived redo log is applied
to the standby database, as shown in Figure 1.2. Generally, the standby
database resides on a separate machine and uses separate storage.

17

Oracle Distributed Systems

Figure 1.2. Standby database

If the primary database fails, the DBA can open the standby database and
point users to it instead of to the primary database. Once this occurs, what
had been the standby database becomes the primary database, and it cannot
be put back into standby mode again.

Advanced replication

A dvanced replication, also known as symmetric replication or multi-master
replication , refers to maintaining a table or tables in multiple databases such
that DML (Data Manipulation Language) can be issued in any of the databases
and applied to the others automatically. The DML may be propagated
synchronously (i.e., DML is committed locally and remotely as a single
transaction) or asynchronously (i.e., DML committed locally is placed in a
queue from which it is applied at the remote site later). Advanced replication
can be used to deliver high availability, in the sense that the unavailability of
any one site does not affect the others, or it may be used as part of a
survivability policy in which every database has a replicated copy that can be
used in the event of failure. Unlike parallel server, advanced replication
involves numerous databases and numerous database instances.

Parallel query

The parallel query option (PQO) is a technology that can divide complicated or
long-running queries into several independent queries and allocate separate
processes to execute the smaller queries. A coordinator process collects the
results of the smaller queries and constructs the final result set. Parallel
queries are effective only on machines that have multiple CPUs.

Parallel DML

18

Oracle Distributed Systems

Oracle introduced the parallel DML feature in Oracle8. Parallel DML is similar
to parallel query, except that the independent processes perform DML. For
example, an update of several hundred thousand rows can be doled out to
several processes that execute the update on separate ranges of the table.

1.2 What Is a Distributed Database System?

A distributed database system, illustrated in Figure 1.3, is an environment in which
data in two or more database instances is accessible as though this data were in a
single instance. This access may be read-only, or it may permit updates to one or
many instances. The referenced data may be real time, or it may be seconds, hours,
or days old. Generally, the different database instances are housed on different
server nodes, and communication between them is via SQL*Net (for Oracle7) or
Net8 (for Oracle8). Chapter 2, describes this communication.

In addition to database servers, a distributed database system usually includes
application servers and clients. The focus of this book is on the interaction among
database servers, but a brief review of the entire distributed environment will clarify
their raison d'être.

Figure 1.3. A distributed database system

Application servers , like database servers, typically are high-capacity machines that
run intensive utilities such as web applications, Oracle's application cartridges, report
generators, and so forth.

The clients in this environment are typically PCs or Macintoshes or other lightweight
computers running web browsers. The client's role is to provide an interface to the

19

Oracle Distributed Systems

user, such as Forms (in Oracle Developer 2000) and web browsers. Client machines
are characterized by low cost and the absence of a local database.

Implicit in this distributed system architecture is the network . It links database
servers, application servers, and clients. SQL*Net and Net8 are network interfaces
that are protocol-independent and that provide communication to networked
databases.

1.3 Benefits of Distributed Databases

The separation of the various system components, especially the separation of
application servers from database servers, yields tremendous benefits in terms of
cost, management, and performance.

1.3.1 Tunability

A machine's optimal configuration is a function of its workload. Machines that house
web servers, for example, need to service a high volume of small transactions,
whereas a database server with a data warehouse has to service a relatively low
volume of large transactions (i.e., complex queries). Separating the web server from
the database server in this example allows the system administrators to optimize
these machines without compromise. A machine configured as a web server will
differ from a machine configured as a data warehouse database server. If
performance problems arise in a distributed architecture, it is much easier not only
to identify problems but also to solve them without the risk of compromising other
components.

1.3.2 Platform Autonomy

Since applications and databases do not reside on the same machines, there is no
particular reason why they even need to reside on the same type of machine.
SQL*Net and Net8 provide a protocol-independent network interface allowing
connectivity among disparate platforms and even disparate database engines. This
openness allows DBAs, developers, and desktop users to choose their platforms
without being restricted by anybody else's preferences or requirements. Whether you
perform a major platform change such as moving from VMS to Unix or a minor
upgrade such as from Solaris 2.5 to Solaris 2.6, you can make these changes
without risking functionality changes in the Oracle database engine.

1.3.3 Fault Tolerance

The failure of a single component in a distributed architecture is much less drastic
than in an environment in which databases and applications are housed on the same
machine. Administrators can design failover methodologies that are appropriate to
each component's functionality. For example, database machines might implement
parallel server or synchronous replication to protect against failure of a database
machine, whereas application servers may have backup hardware available so that
the application can run on a new machine if an application server fails. Protecting
against failure of machines that house data is generally much more complicated than
protecting against failure of machines that simply run applications.

20

Oracle Distributed Systems

1.3.4 Scalability

A server that houses nothing other than an Oracle database scales very predictably;
sites taking advantage of the parallel query option (and/or parallel DML in Oracle8)
can expect performance to be a nearly linear function of the number of processors
(up to the point of at least 30 processors on Solaris). Other applications may or not
scale this way, but if the applications have their own host, system administrators can
understand their requirements and allocate hardware resources appropriately.

1.3.5 Location Transparency

Location transparency means that neither applications nor users need to be
concerned with the logistics of where data actually resides or how it is distributed.
Needless to say, being shielded from these specifics enhances the usability of a
database because developers and users do not need to consider such details as
connect strings. Moreover, data can be relocated from one database instance to
another with minimal impact on users and applications.

1.3.6 Site Autonomy

Distributed databases allow various locations to share their data without conceding
administrative control. If a database instance at headquarters contains particularly
sensitive information or has high availability requirements, it can still share data
without compromising its security or availability. In addition, any given site in a
distributed database environment can follow its own administrative procedures and
upgrade paths, within reason. Of course, we hope that administrators from various
sites are in communication with one another and that they coordinate their activities,
but they are in no way handcuffed to one another.

1.3.7 Enhanced Security

The components of the distributed architecture are completely independent of one
another, which means that every site can be maintained independently. You can
share data without sharing accounts and passwords. Each site can have its own
administrators and its own sets of accounts, and private data can be kept private.

As an example, you can implement a replicated environment with updateable
snapshots that would allow users at a branch office to update something as sensitive
as the salary table without having any access to the salary data for headquarters
(horizontal partitioning) . As another example, you can use workflow partitioning
(discussed in Chapter 15) in a multi-master replicated environment to limit the set of
rows that can be updated at any given site.

You also can configure a distributed environment to provide security in the sense of
survivability—that is, you can maintain two or more versions of entire schema by
replicating them to different machines at different locations.

There is no reason for developers or end users to have accounts on a database
server, because all database access is through network APIs (Application
Programming Interfaces). The database server's exposure to malicious intruders and

21

Oracle Distributed Systems

careless users is minimal. In fact, it is not uncommon for users to have no idea
whatsoever where the database resides!

1.4 Multiple Schema Versus Multiple Databases

Most designers and database administrators associate one schema with one
application. (By schema, I mean an Oracle database account that owns the database
objects that an application uses.) Whenever a new schema is introduced, the
designers and DBAs must choose between giving the schema its own database or
placing it with other schema in an existing database. A number of factors affect this
decision

1.4.1 The Single Database with Multiple Schema

Quite often,it makes sense to let schema and applications share a database instance.
The two primary advantages of this approach are lower administrative overhead and
lower hardware costs. Every Oracle database instance carries a certain amount of
overhead: disk space must be allocated to system, temporary, and rollback
tablespaces; and memory must be allocated to the SGA (System Global Area). In
addition, a DBA must manage users, SQL*Net configuration, database links, and so
on. If you can minimize this overhead, by all means do so.

If the schemas share data, then you may realize additional benefits. For example, an
inventory application that shares a VENDORS table with an accounts payable
application can access the table without depending on the availability of two
databases. The administrative work is simplified because no database links are
required, and application code is simplified because no error trapping need exist to
handle the unavailability of the VENDORS table.

Even if applications do not share data, you should consider placing different schema
in the same database if you can answer "Yes" to all questions in Table 1.1.

Table 1.1. Conditions for Locating Application Schema in the Same Database
Instance

Requirement Yes No
Are most users in the same location or using the same access path?
Do the applications have the same administrative support staff?
Do the applications have compatible availability requirements?
Do the applications have compatible database and OS version requirements
and upgrade paths?

Are the applications reasonably similar in functionality and load
characteristics?

Do the applications have the same usage level (e.g., QA, development,
production, maintenance, etc.)?

22

Oracle Distributed Systems

As a general rule, it is more economical to house schemas in a single database
instance than to devote an instance to every application that comes down the pike.
Don't create additional instances without good reason.

1.4.2 Database Instances Devoted to a Single
Application

If you answered "No" to any of the conditions in Table 1.1, then your schemas
probably belong in separate database instances, even if they share data.

1.5 Options for Distributed Data

Oracle provides several methods for accessing data that is distributed among two or
more database instances. All of these methods provide location transparency , which
means that users and applications can manipulate data as though it were all in one
single database instance. These various methods are summarized here and are
described in detail throughout this book.

1.5.1 Export/Import

The Oracle export and import utilities (illustrated in Figure 1.4) are the most
primitive method of sharing data among databases and are also used as part of a
backup and recovery strategy. Export (exp) creates a file that is essentially a set of
SQL statements that invoke the DDL (Data Description Language) and DML (Data
Manipulation Language) required to create objects and insert data. Import (imp) is
the utility that reads this file and executes the SQL statements to re-create the
objects and populate tables. A full database export creates a file that you can use to
re-create the entire database.

Figure 1.4. Export/import

Unlike any of the other options, export and import are static. An export file contains
the data from the time of the export and cannot be updated. In fact, an export file

23

Oracle Distributed Systems

could easily be out of date before the export job is finished. In addition, you must
specify the export option CONSISTENT=Y in order for all of the data in the export file
to be consistent as of a single point in time. Exports are only one part of a
comprehensive backup strategy.

1.5.2 Database Links

Database links are the invisible glue that makes location transparency possible. In
more technical terms, a database link defines a connection from one database
instance to another, and this definition is stored in the Oracle data dictionary. Since
database link connections log in to a normal account in the remote database instance,
you have complete control over its privileges and quotas.

Used in conjunction with synonyms, database links (shown in Figure 1.5) can make
remote objects appear to be local as far as applications and users are concerned.

Figure 1.5. Database links

If your inventory application at a manufacturing site needs to reference the
VENDORS table at headquarters, you could provide location transparency with the
following three SQL statements:

CREATE PUBLIC DATABASE LINK D8CA.BIGWHEEL.COM
 USING 'hqaccounting.bigwheel.com'

CREATE PUBLIC SYNONYM vendors FOR vendors@D8CA.BIGWHEEL.COM

GRANT SELECT ON vendors TO inventory_reader

Since the CREATE DATABASE LINK statement in this example creates a PUBLIC link
without specifying an account to connect to in the D8CA.BIGWHEEL.COM database,
this particular implementation assumes that every application user in the inventory
database has an account in the remote database with the same password and with

24

Oracle Distributed Systems

privileges to see the VENDORS table. If the remote database is unavailable, the
VENDORS table also will be unavailable.

Of course, there are several ways to provide location transparency; these are
described in greater detail later in this book.

1.5.3 Read-Only Snapshots

If you have an application that cannot risk a dependency on the availability of a
remote database, you could use a read-only snapshot (shown in Figure 1.6). A read-
only snapshot is essentially a local table whose data is refreshed at specified
intervals by performing a query against one or more remote tables. The inventory
application could create the same functionality as the database link described in the
previous section by following these steps:

CREATE PUBLIC DATABASE LINK D8CA.BIGWHEEL.COM
 USING 'hqaccounting.bigwheel.com'

CREATE SNAPSHOT vendors
 REFRESH COMPLETE
 START WITH SYSDATE
 NEXT TRUNC(sysdate + 1) + 10/1440
AS
SELECT vendor_id, company_name
FROM vendors@D8CA.BIGWHEEL.COM

CREATE PUBLIC SYNONYM vendors FOR vendors

GRANT SELECT ON vendors TO inventory_reader

This snapshot is populated when the CREATE SNAPSHOT statement executes, and is
then refreshed every day from that point on at 10 minutes after midnight. Again, this
is just one example of how the technique could be implemented; the details come
later. Snapshots use the Oracle built-in package DBMS_JOB to schedule refreshes
and require the INIT.ORA parameter JOB_QUEUE_PROCESSES to be greater than
zero.

25

Oracle Distri

Oracle introduced read-only snapshots with Oracle
Version 7.0. The infrastructure this feature required
has been expanded with each subsequent release,
with additional functionality such as updateable
snapshots and advanced replication. The base
components include the job queue and triggers. The
feature set is continuing to expand.

buted Systems

26

Figure 1.6. Read-only snapshot

The benefit of read-only snapshots over database links and public synonyms is that
the snapshot is available even when the remote site is not. The disadvantages are
that the data is neither real time nor updateable.

1.5.4 Updateable Snapshots

If your application needs to change data in a snapshot and send the changes back to
the master site, you can use updateable snapshots, shown in Figure 1.7. A trigger on
the snapshot table logs updates that are applied at the master site when the
snapshot refreshes. Updateable snapshots require the advanced replication facilities.
A common use of updateable snapshots is an application that consolidates data from

Oracle Distributed Systems

various sites into a single master site. For example, a bicycle company might collect
sales transactions from its distributors every night, or travelling salespeople might
enter customer leads on their laptops and upload this information to the
headquarters database when they return to the office.

Figure 1.7. Updateable snapshots

Two important characteristics of updateable snapshots, which distinguish them from
multi-master replicated tables, are:

• They update only the master site.
• They can be disconnected from the master site for extended periods.

You also can configure an updateable snapshot such that the updates are not sent
back to the master. You can use this configuration to perform "What if " analyses
against the local data without fear of overwriting the definitive values at the master
site.

1.5.5 Advanced Replication

Advanced (or multi-master) replication (shown in Figure 1.8) is the most powerful of
the replication options. You can use it to maintain a table at numerous sites, with

27

Oracle Distributed Systems

updates at any one location being applied at all the other locations. There is no
single "master" table, although there is a master definition site , from which schema
maintenance must be performed. Unlike the situation with snapshots, you can
configure a multi-master environment to provide real-time data; this technique is
known as synchronous replication . If you use asynchronous replication (by far the
more common implementation), updates to a table are placed in the deferred queue
and pushed to other participating sites at user-defined intervals.

Figure 1.8. Multi-master replication

Since updates can occur at several locations, these updates can conflict with one
another. Oracle provides a number of built-in methods to assist in resolving these
conflicts, such as Latest Timestamp and Site Priority, but these techniques must be
selected carefully to guarantee that data always converges. Conflict resolution,
described in detail in Chapter 15, is usually the biggest challenge to creating and
maintaining a successful implementation.

Advanced replication also has some significant limitations:

• No support for sequences
• No support for LONG or LONG RAW or HHCODE data, although Oracle8

supports replication of binary large objects (BLOBs) and character large
objects (CLOBs)

• Not recommended for applications performing massive updates (i.e., updates
to tens of thousands of rows per hour)

28

Oracle Distributed Systems

1.5.6 Procedural Replication

Procedural replication (shown in Figure 1.9) is the preferred way to perform the
massive updates that are not recommended with advanced replication. Instead of
queuing up row-level changes and sending them to the other database instances,
procedural replication queues calls to procedures and sends them to the other
participants. If, for example, you wanted to mark up the prices of all your products
by five percent, you could replicate the procedure call UPDATE_PRICES(pct_increase
=> 5). The procedure will execute at every site with the same parameters.

Figure 1.9. Procedural replication

Oracle does not provide any conflict handlers that work in conjunction with
procedural replication, so any routines that you want to use in this way must account
for conflicts. In the price increase example, suppose that a price for one item had
been changed at a remote site, and the change had not yet propagated to the site
initiating the UPDATE_PRICES call. The data would not converge to the same values
at both sites. Table 1.2 summarizes the kinds of conflicts that may occur with
procedural replication.

Table 1.2. Potential Conflicts with Procedural Replication
Time Activity CA Price NY Price

12:00 Sites agree $100 $100

12:05 CA calls UPDATE_PRICES(pct_increase => 5) $105 $100

29

Oracle Distributed Systems

12:10 NY site updates price to $120 before procedure replicates $105 $120

12:15 Procedure call replicates to NY site $105 $126

12:20 Update from NY at 12:10 arrives at CA site $120 $126

It is safest to perform procedural replication during periods of low or no activity.

1.6 Perils of Distributed Databases

Nobody ever said that the administration of distributed databases is easy; it's not.
For one thing, it can be difficult to keep track of who needs what sort of access to a
given database instance, and what access needs to be available from it to other
instances. If users are experiencing difficulties or applications are unable to perform,
how do you know which database is causing the problem? When you create a new
user, what database instances should have the account? What is USER_A really
seeing when he references the VENDORS table? None of these difficulties exist in a
standalone system. Some of the more significant perils are summarized here and are
discussed in detail in the chapters that follow.

1.6.1 Security

Didn't this topic appear under the "Benefits" section, too? Yes, because there are two
sides to the security story. Because it can be difficult to know and to control who is
coming into a database via a database link, the accounts to which database links
connect should be given no more access rights than absolutely necessary. Similarly,
the CREATE PUBLIC DATABASE LINK system privilege should be granted sparingly
because whoever has it can effectively create a public doorway into any system to
which she has access. If you use operating system validated (OPS$) accounts, be
extremely careful of using them in the CONNECT clause of database links. Be aware
that holes to exploit do exist.

In an advanced replication environment, security issues can become complicated
because the user community can be the sum of all users in all databases
participating in replication. The maintenance of accounts in and of itself can become
a full-time job. Oracle8 alleviates this chore somewhat, but you will need to decide if
replicated transactions should be performed at remote sites by the original user or
by a generic replication account.

It is possible to configure an extremely well controlled and robust distributed
environment, but it takes care and planning as I'll describe in Part II of this book.

1.6.2 Data Consistency

If you are using multi-master replication or procedural replication or if you have
written your own code to perform DML on remote tables, one of your most
formidable tasks will be to guarantee that data converges. This responsibility is
shared among designers, developers, and DBAs (who should be coordinating their
efforts). Designers must consider potential conflicts in their architecture; developers
must code so that conflicts are addressed; and DBAs must resolve the unresolved
conflicts. In general, the design and realization of a replicated system necessitates

30

Oracle Distributed Systems

the solution of far more problems than does a standalone system, and the bulk of
these problems concern data convergence.

1.6.3 Transaction Management

Do you want to update 15,000 records in the VENDORS table to reflect an area code
change? Well, if that transaction needs to be replicated to five other sites, you'd
better think twice about it because it's going to queue up 15,000 × 5 = 75,000
transactions across your replicated environment. Do you want to use procedural
replication to do it tonight at midnight California time? What about your site in Hong
Kong where users are at work and updating the table? The point is that any batch
updates in a replicated environment must be carefully coordinated with all sites in
order to avoid massive conflicts and logjams.

The initial load and distribution of data among sites also requires coordination. For
example, you might want to lock users out of all instances until you can guarantee
that the data is identical everywhere.

1.6.4 Monitoring

The additional workload a distributed environment demands of the DBA can be
considerable. In addition to the normal DBA responsibilities such as monitoring space
utilization and extent allocation, the DBA must monitor objects such as snapshot logs,
job queues, transaction queues, and error queues. If left unresolved, problems in a
distributed environment can become so difficult to solve that it is easier to reload
data from scratch than try to resolve specific errors.

For that reason, most people consider alert mechanisms to be essential in a
replicated environment. For example, if unresolved conflicts put entries into the error
queue (deferror), the DBA should be notified as soon as possible. You will find
utilities for this sort of automated notification in Appendix B, of this book .

1.6.5 Recovery

If a database that is part of a distributed environment fails, the recovery process
must ensure not only the complete restoration of the local data but also the
restoration of distributed data, such as snapshots and deferred transactions. It may
be necessary to refresh snapshots at remote sites, to requeue deferred transactions,
and so on. The point is that the recovery of the local system does not necessarily
mean that the overall distributed database is recovered.

1.6.6 Performance

Several factors can affect performance in a distributed database. If the application
references data over a database link, the performance of the network will have a
direct bearing on performance. Replication components that utilize store-and-forward
techniques, such as snapshots and multi-master replication, also exact their toll on
overall system performance. If, for example, a snapshot master has a snapshot log,
all DML on that table will cause a row-level trigger to fire that inserts records into the
snapshot log. Similarly, DML against a replicated table will either put entries into the

31

Oracle Distributed Systems

deftran queue (in the case of asynchronous replication) or require the successful
delivery of every transaction to remote sites before completing (in the case of
synchronous replication).

The storing and forwarding of transactions will impact overall system performance,
and you should take this impact into consideration when specifying hardware
requirements. In addition, activities such as snapshot refreshes and application of
pushed transactions at destination sites impact performance. Oracle has taken great
steps to minimize the impact of data distribution, but it still is a factor to consider.

1.7 Differences Between Oracle7 and Oracle8

Oracle has added a wide variety of capabilities into the Oracle8 server. Some of the
more significant enhancements relevant to distributed databases are highlighted
here.

Global users and global roles

Oracle8 provides a user management scheme that supports maintenance of
users and roles across multiple database instances. Instead of having to visit
every instance to grant privileges, create users, and so on, you can define
users and roles in such a way that changes from a central location take effect
everywhere.

System security model

The management of users in an advanced replication environment is
simplified tremendously in Oracle8, with the introduction of propagator and
receiver accounts. Instead of having to create a user in all instances
participating in the replication and having to create and verify private
database links for each user, you can designate one account to queue DML
and one account to apply DML.

Parallel propagation

Oracle8 is able to push replicated transactions either in parallel or serially.
The replication option can determine which transactions are independent of
one another so that transactional consistency is preserved. The net result is a
significant improvement in throughput.

Reduced data propagation

With Oracle8 you can omit columns in a table from replication. What this
means is that the replication facility does not check the before and after
values of the columns that you so designate. Since these columns are not
replicated, less data is transmitted, and less time is spent checking for
conflicts.

Snapshot registration at master sites

32

Oracle Distributed Systems

When you create a snapshot in Oracle8, it is automatically registered at the
master site, with relevant information stored in the
DBA_REGISTERED_SNAPSHOTS data dictionary view. This registration occurs
regardless of whether the master table has a snapshot log on it, but if there is
a snapshot log, you can query DBA_REGISTERED_SNAPSHOTS and
DBA_SNAPSHOTS to obtain information about the latest refreshes, and so on,
as shown in the following:

SELECT r.owner,
 r.name,
 r.snapshot_site,
 l.current_snapshots
 FROM dba_registered_snapshots r,
 dba_snapshot_logs l
 WHERE r.snapshot_id = l.snapshot_id(+)
Deferred constraint validation

Oracle8 supports deferred constraint checking, which means that you can now
create uniqueness and integrity constraints on snapshot tables. Oracle
enforces deferred constraints only after refreshes are complete, not during
the actual snapshot refresh, during which constraints are not necessarily
respected. You also can use deferred constraints during imports so that
records in parent tables can be imported after child tables without violating
foreign key constraints.

Fine-grained quiesce

Although Oracle7 provides an API to quiesce replication (i.e., suspend DML
activity against replicated objects) at the group level, it doesn't actually work,
even in the latest Version 7.3 releases. Oracle8 corrects this problem, making
it possible to administer multiple replication groups completely independently.

Internalized triggers

The triggers required to support replication are internalized in Oracle8, which
means that they are compiled C code as opposed to PL/SQL. The
enhancement results in improved performance and easier maintenance.

33

Oracle Distributed Systems

34

Oracle Distributed Systems

Chapter 2. SQL*Net and Net8

SQL*Net and Net8 are the network protocols Oracle supplies to support
communication with an Oracle database over a network. Net8 is the new moniker for
SQL*Net which Oracle has introduced with Oracle8.

2.1 Protocol Overview

Even if a process is running on the same machine as the database instance, it
requires SQL*Net or Net8 to establish its database connection and to perform
operations such as record fetching. SQL*Net or Net8 is required for communication
between servers and clients and between servers and other servers. This software
makes the entire networked database environment appear as a single machine even
though multiple machines and network protocols may be involved. Before delving
into the architecture and management of SQL*Net/Net8, I'll provide an introduction
to this software's role in a distributed database environment.

2.1.1 Distributed Processing

Although database transactions are performed on the database server, they are
usually not initiated there. A transaction may originate from a mouseclick on a web
page or a bar code scan at a grocery store or a button pushed on a Touch- Tone
phone—to name a few examples. SQL*Net/Net8 coordinates the communications
associated with distributed transactions by establishing connections between clients
and servers (or servers and servers), transmitting data back and forth, and
disconnecting cleanly. SQL*Net/Net8 is also responsible for translating any
differences in character sets or data representations that may exist at the operating
system level. SQL*Net/Net8 does not, however, perform tasks such as converting a
bar code or key tone into its respective ASCII representation; that is the application's
responsibility.

SQL*Net/Net8 establishes a connection from a client to a server or a server to a
server by passing the connection request to the Transparent Network Substrate
(TNS). TNS, in turn, determines which server should handle the request and sends
the request using the corresponding network protocol.

2.1.2 Network Transparency and Network
Independence

The details of the SQL*Net/Net8 configuration and network protocols are completely
invisible to database applications. Oracle provides network drivers (called protocol
adapters) that allow SQL*Net/Net8 to function with all network protocols. These
drivers function on any media or topology that supports the protocol. For example,
the TCP/IP SQL*Net/Net8 protocol adapter works on Ethernet, token ring, or any
other media and topology on which TCP/IP runs.

35

Oracle Distributed Systems

2.1.3 Multiple Network Protocol Interoperability

Besides facilitating communication between machines that are connected with the
same network protocol, SQL*Net/Net8 also supports communication between
machines running different network protocols. Oracle accomplishes this with the
MultiProtocol Interchange in Oracle7 and connection manager (CMAN) in Oracle8. A
computer that runs both network protocols provides the link between network
communities, and the MultiProtocol Interchange software runs on this machine to
translate TNS communications from one protocol to the other, as illustrated in Figure
2.1.

Figure 2.1. Disparate network communities linked with the
MultiProtocol Interchange

2.1.4 Oracle Names

Oracle Names is a product that stores connection information about all databases in
a distributed environment in a single location. Any time an application issues a
connection request, it consults the Oracle Names repository to determine the location
of the database server. Oracle Names is primarily an administrative aid that makes
the maintenance of this information easier. Its use is not required; the alternative is
to provide local tnsnames.ora files on every client machine.

2.2 Architecture

Oracle supplies three key components that interact to locate services, establish
connections, transport data, and handle exceptions. They are:

36

Oracle Distributed Systems

• SQL*Net/Net8
• Transparent Network Substrate (TNS)
• Oracle Listener

While the interaction among these products does not generally require intervention
beyond the initial installation, some customizations are often beneficial in an
environment that is making heavy use of snapshots, symmetric replication, or other
distributed functionality.

2.2.1 SQL*Net/Net8, TNS, and the OSI Reference
Model

Both TNS and the Oracle protocol adapters may be described by the seven-layer
Open Systems Interconnection (OSI) model, as seen in Table 2.1.

Table 2.1. TNS and Oracle Protocol Adapters in the OSI Model
Client-Side Stack Layer Server-Side Stack

Client application 7 (application) Oracle server

SQL*Net/Net8 6 (presentation) SQL*Net/Net8

TNS 5 (session) TNS

Oracle protocol adapter 4 (transport) Oracle protocol adapter

 3 (network)
 2 (data link)
 1 (physical)

The OSI model uses the concept of a stack to describe the interaction of networked
machines. Each layer of the stack communicates with its peer on a remote machine
and with adjacent layers on the local machine, where data is passed down from the
application through the various layers and finally passed to the remote machine at
the physical layer.

There are different Oracle networking components associated with layers 4, 5, 6, and
7. The lower layers of the stack are related to routing and physical characteristics of
the network; they are not specifically relevant to the data being transmitted.

2.2.1.1 Application layer

The application layer is what the user sees and interacts with. It is a user interface,
such as a web browser or a Forms application or even a bar code scanner. The
application initiates requests on behalf of the user, such as connection requests,
queries, and updates. All applications that interact with an Oracle database do so
through the OCI (Oracle Call Interface). This code contains API calls to do the
following:

• Connect and disconnect from the database server
• Parse SQL statements
• Open cursors

37

Oracle Distri

Applications that use stored PL/SQL procedures and
packages can significantly reduce the volume of data
that is sent over the network because there are fewer
network round trips between the client and the server
(i.e., the client does not need to ship SQL statements
to the server if the SQL statements reside in a stored
procedure).

buted Systems

38

• Bind variables from the application to server memory
• Describe fields in tables and views
• Execute SQL statements
• Fetch rows of data
• Close cursors
• Handle exceptions

Within the application layer, OCI calls are made at a layer known as the User
Programmatic Interface (UPI) on the client side and the Oracle Programmatic
Interface (OPI) on the server side.

2.2.1.2 Presentation layer

Two-Task Common is the SQL*Net/Net8 code that resides on the presentation layer
and is used by the OCI. If and when necessary, this code translates between
character sets and data representations on the client and the server.

2.2.1.3 Session layer

Thesession layer establishes and terminates database connections and carries data
and data requests. It also determines whether data can be transported
asynchronously or synchronously. The session layer is the realm of TNS, which is
layered within the session layer. TNS translates OCI messages from the application
layer (the messages have been translated if necessary at the presentation layer) into
SEND messages. Similarly, it passes RECEIVE messages up the stack in OCI format.
TNS exchanges data with the Oracle protocol adapter, which formats for the
transport layer using standards that are specific to the protocol in use. TNS also
provides error and interrupt handling.

2.2.1.4 Transport, network, data link, and physical layers

The activity that takes place at these lower levels of the OSI stack are specific to the
protocols and media in use. The Oracle software residing at the session layer shields
us from any involvement at this level.

Oracle Distributed Systems

SQL*Net and WANs

As you can imagine, the translations that occur between and within various
levels of the OSI stack have an impact on performance, and when a wide
area network (WAN) is involved, the impact can be significant. SQL*Net and
TNS are essentially layered protocols, which in turn are layered on a
network protocol. Every frame of every protocol layer has a header portion
and a data portion. The more layers, the more headers, and the more
headers, the less data.

Consider the overhead encountered translating a single 1514-byte Ethernet
frame from Ethernet to IP to TCP to TNS:

• Ethernet frame: 14 bytes header, 1500 bytes data. (This is an IP
frame.)

• IP frame: 20 bytes header, 1480 bytes data. (This is an IP frame.)
• TCP frame: 20 bytes header, 1460 bytes data. (This is an IP frame.)
• TNS frame: 10 bytes header, 1450 bytes data. Note that the TNS

frame size is configurable with the SDU parameter in the
configuration files listener.ora, tnsnames.ora, and, in the case of the
multi-threaded server (MTS) in Oracle8, INIT.ORA.

Here we see that 64 bytes (approximately four percent) of the Ethernet
frame was lost to overhead. In tests we ran with a Forms application on a
PC connected to a Unix database server, we saw an average of only 60
bytes of actual data per frame. And for each SQL*Net packet sent to a
destination, an acknowledgment SQL*Net packet must come back. The
acknowledgment messages can cause a severe performance degradation on
a WAN because of message latency and a potentially high number of
raindrop messages.

2.2.2 SQL*Net/Net8 Elements

SQL*Net/Net8 consists of three components:

The client

The client is the application or software that initiates the connection. It may
be an end user application, such as a web page, or it may be another Oracle
server.

The server

This is the software to which the client connects; it may be an Oracle server
or an external procedure.

The listener

The listener (also known as the TNS listener or the SQL*Net listener) creates
listen end points on the machine housing the Oracle server or external

39

Oracle Distributed Systems

procedure. The addresses of these end points are established in advance and
published in the tnsnames.ora file, stored in an Oracle Names server (the
location of which is published in the names.ora file) or stored in some other
name server.

2.2.3 Connection Scenarios

There are two scenarios for which SQL*Net establishes a connection to a database:

• When a user or program specifically initiates a connection (e.g., a Forms login
screen).

• When one server needs to communicate with another, as the result of either
an explicit or implicit request. An example of this type of connection is an
application that accesses a table over a database link in a distributed
database environment.

In both cases, the initiator sends a connection request to a predefined address on
which a listeneris accepting requests. The listener passes the request to the
appropriate server.

2.2.4 Bequeathed and Redirected Connections

The TNS listener establishes all connections by performing either a bequeath or a
redirect. A bequeathed connection is one that the listener passes to the Oracle server
directly. In the case of a redirect, the listener redirects the client to establish a
connection to a different address in order to connect to the targeted server. You
have control over whether the TNS listener performs bequeathed or redirected
connections. Table 2.2 compares the two types of connections.

Table 2.2. Bequeathed Versus Redirected Connections
Connection

Type Operating System and Protocol Requirements Examples

Bequeathed

Operating system can pass a connection end
point to another process during creation of
connection process. Protocol must allow
connection to be given to another process.

Most Oracle server
dedicated processes
are bequeathed.

Redirected
No operating system requirements. Protocol
must allow process to perform a wildcard listen
or else use configuration files.

All Oracle multi-
threaded server (MTS)
processes are
redirected.

If an operating system and network protocol are capable of handing a listener end
point from the listener to the server during the creation of an operating system
process, then a bequeathed connection may be used.

2.2.4.1 How a bequeathed connection is established on
Unix

40

Oracle Distributed Systems

If the TNS listener and the Oracle server have a parent-child relationship, then the
listener can establish bequeathed connections. The series of events is as follows:

1. The TNS listener is started, and it listens on an address it obtained from the
listener.ora file or an appropriate default.

2. The client sends a connection request to the TNS listener's address. The client
determines this address from the tnsnames.ora file, the Oracle Names server,
or another name server.

3. The client and TNS listener perform a handshake, during which the client
supplies the connect string. The TNS listener accepts or rejects the connection
request based on the information supplied. If the connection is rejected, it
sends a REFUSE to the client and continues waiting for more connection
requests.

4. If the TNS listener accepts the connection request, it spawns a new operating
system process which inherits the TNS listener's open connections.

5. The TNS listener closes its open connection, and continues waiting for more
connection requests.

6. The new operating system process created in Step 4 uses the connection it
inherited to communicate with the client.

2.2.4.2 How a redirected connection is established

If the TNS listener and the Oracle server do not have a parent-child relationship,
then the TNS listener will use redirected connections. This is the method used by the
multi-threaded server and from any configuration in which the TNS listener is on a
different machine from the Oracle server. The TNS listener also uses redirected
connections when the protocol and/or operating system in use cannot pass
connection end points between processes.

The first three steps of establishing a redirected connection are the same as for
establishing a bequeathed connection. If the TNS listener accepts the connection
request, the following events complete the request:

1. The TNS listener either creates a new operating system process or (in the
case of a multi-threaded server configuration) communicates with an existing
operating system process (the MTS dispatcher). This operating system
process establishes a listening end point of its own, and the TNS listener is
informed of the end point's address. This end point is usually a wildcard listen,
which means that the operating system process tells the underlying protocol
stack that it does not care what address is used. Most operating systems then
choose a listening address that is not in use and assign it to the process.

2. The TNS listener communicates the new listening address to the client. This
step is known as the REDIRECT.

3. The client disconnects from the TNS listener, issues a new connection request
to the address provided in the redirect message, and establishes a connection.

Because redirected connections generally do not have the overhead of starting a new
process, these connections are generally faster to establish, and the methodology is
portable across more operating systems and protocols.

41

Oracle Distributed Systems

42

Because the TNS listener's role is only to process new
connection requests, you can stop and start it at any
time without affecting connections that are already
established.

2.2.5 Example: Connecting to a Multi-Threaded Server

The multi-threaded server allows you to service many client connections with a
relatively small number of server processes, thereby reducing memory and
processing requirements. This technique is well suited for applications that must
support a high number of connections that do not transmit a high volume of data. A
Forms-based application would be a good candidate for MTS connections. Oracle
export/import utilities, on the other hand, are examples of applications that should
use dedicated server processes.

In order to use the multi-threaded server option with a database instance, you must
set parameters in the instance's INIT.ORA file, as outlined in Table 2.3.

Table 2.3. Multi-Threaded Server INIT.ORA Parameters
Parameter Name Description

MTS_DISPATCHERS
Used to configure a group of dispatchers. This is the
only required parameter in Oracle8i.

MTS_LISTENER_ADDRESS
The address on which the listener is to listen; specify at
least one address per protocol. Obsolete in Oracle8.

MTS_MAX_DISPATCHERS
The maximum number of dispatcher processes that can
run simultaneously. Optional.

MTS_MAX_SERVERS
The maximum number of shared server processes that
can run simultaneously. Optional.

MTS_MULTIPLE_LISTENERS
If TRUE, syntax of MTS_LISTENER_ADDRESS can
support multiple protocols. Obsolete in Oracle8.

MTS_RATE_LOG_SIZE
The sample size used to calculate dispatcher statistics.
Oracle8 only. Deprecated in Oracle8i.

MTS_RATE_SCALE
The scale, in hundredths of a second, with which
dispatcher statistics are calculated. Oracle8 only.
Deprecated in Oracle8i.

MTS_SERVERS
The initial number of server processes. Optional in
Oracle8i.

MTS_SERVICE
The name of the service to which the dispatcher
connects. Typically the ORACLE_SID defaults to
DB_NAME. Deprecated in Oracle8i.

When a multi-threaded server Oracle instance and listener start up, the following
events typically take place:

Oracle Distri

Although you can start the database before you start the TNS
listener, Oracle Corporation recommends that you start the
listener first. The reason is that if you start the Oracle instance
first, the dispatchers (Oracle7) or PMON (Oracle8) will not contact
the listener as described in Step 3. In this case, the dispatcher or
PMON processes loop and attempt to reconnect to the listener
every 60 seconds.

buted Systems

43

1. The TNS listener begins listening on the addresses configured in the
listener.ora file.

2. The Oracle multi-threaded server background processes (dispatchers and
servers) start with the database instance, using the configuration specified in
the INIT.ORA file. Each dispatcher listens on its protocol on the specified (or
dynamically generated) address.

3. Each dispatcher informs the TNS listener of the wildcard address it is listening
on. In Oracle7, each dispatcher connects to each listener. In Oracle8, the
PMON background process connects to each listener.

At this point, the multi-threaded server processes and TNS listener are ready to
accept connections. The command:

lsnrctl services listener_name

reports what dispatchers are registered with the TNS listener, as shown in the
following example:

oracle@socrates% lsnrctl services LISTENER

LSNRCTL for Solaris: Version 8.0.4.0.0 - Production on 23-NOV-98
23:26:08

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=prodsales.bigwheel.com))
Services Summary...
 PSLS has 9 service handler(s)
 DEDICATED SERVER established:1401 refused:0
 LOCAL SERVER
 DISPATCHER established:174381 refused:0 current:28 max:254
state:ready
 D000 <machine: socrates, pid: 3198>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63409))
 DISPATCHER established:211990 refused:0 current:28 max:254
state:ready
 D001 <machine: socrates, pid: 3222>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63415))
 DISPATCHER established:220539 refused:0 current:28 max:254
state:ready
 D004 <machine: socrates, pid: 3272>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63439))

Oracle Distri

A client can override the multi-threaded server and use a
dedicated server by specifying SERVER=DEDICATED in the
connect string. In addition, if all multi-threaded server
connections are exhausted, subsequent connection requests will
use dedicated servers.

buted Systems

44

 DISPATCHER established:179663 refused:0 current:28 max:254
state:ready
 D003 <machine: socrates, pid: 3256>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63436))
 DISPATCHER established:175661 refused:0 current:28 max:254
state:ready
 D002 <machine: socrates, pid: 3232>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63428))
 DISPATCHER established:184766 refused:0 current:28 max:254
state:ready
 D005 <machine: socrates, pid: 3279>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63446))
 DISPATCHER established:218292 refused:0 current:27 max:254
state:ready
 D006 <machine: socrates, pid: 3291>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63455))
 DISPATCHER established:204115 refused:0 current:27 max:254
state:ready
 D007 <machine: socrates, pid: 3307>
 (ADDRESS=(PROTOCOL=tcp)(DEV=21)(HOST=199.172.152.166)(PORT=63458))
The command completed successfully

The steps for handling connection requests with the multi-threaded server are as
follows:

1. The client sends a connection request to the TNS listener's address. The client
determines this address from the tnsnames.ora file, the Oracle Names server,
or another name server.

2. The TNS listener receives the request and performs the handshake to
determine whether the client can connect. If the connection is denied, the
TNS listener sends a REFUSE to the client and continues listening for other
requests.

3. If the client request is accepted, the TNS listener sends a REDIRECT to the
client, informing it of the address of the dispatcher that is listening on the
client's protocol.

4. The client terminates its connection with the TNS listener and establishes a
new connection with the dispatcher using the address the TNS listener
provided.

5. The TNS listener continues listening for connection requests.

2.2.6 Example: Connecting to a Prespawned Server
Process

As the name suggests, prespawned server processes are processes that the TNS
listener starts at startup time. These processes can be handed off to clients that are

Oracle Distributed Systems

requesting dedicated processes. Prespawned processes are typically not used in
conjunction with the multi-threaded server.

The listener.ora file contains configuration information required to use prespawned
servers. The relevant parameters are described in Table 2.4.

Table 2.4. listener.ora Parameters Governing Prespawned Servers
Parameter Name Description

POOL_SIZE
Number of unused prespawned processes to maintain for each
protocol. This number should be between 1 and PRESPAWN_MAX,
inclusive.

PRESPAWN_MAX Number of prespawned processes to create for each protocol.

TIMEOUT
Number of seconds an inactive server should wait for a new
connection before shutting down. Affects only processes that have
carried a client connection.

These parameters can be set individually for each ORACLE_SID the TNS listener
services.

The sequence of events for using prespawned server processes is as follows:

1. The TNS listener starts and listens on the addresses specified in listener.ora.
2. The TNS listener spawns POOL_SIZE server processes for each ORACLE_SID

defined in listener.ora.
3. Each prespawned server process performs a wildcard listen and informs the

TNS listener of the address it is using.
4. The client sends a connection request to the TNS listener's address. The client

determines this address from the tnsnames.ora file or from the Oracle Names
server.

5. The TNS listener receives the request, and performs the handshake to
determine whether the client can connect. If the connection is denied, the
TNS listener sends a REFUSE to the client and continues listening for other
requests.

6. If the client's request is accepted, the TNS listener sends the client a
REDIRECT message informing it of the address of one of the prespawned
processes. Then the TNS listener marks the prespawned process as ACTIVE.

7. The client terminates its connection with the TNS listener and establishes a
new connection with the prespawned process using the address the TNS
listener provided.

8. If PRESPAWN_MAX is less than the number of active and idle prespawned
processes, the TNS listener spawns a new process to replace the one that the
client took.

9. The TNS listener continues listening for new connections.

When PRESPAWN_MAX processes exist for the ORACLE_SID, the TNS listener stops
prespawning server processes. When a client disconnects from one of the
prespawned processes, it is marked as IDLE (i.e., available) and, if more than
POOL_SIZE servers are not ACTIVE, it remains alive for TIMEOUT seconds. If no

45

Oracle Distri

Prespawned connections are an aging technology that was
primarily intended for use with operating systems on which
process startup costs are high (most notably VMS). In this day
and age, the multi-threaded server technology is a preferable
choice.

buted Systems

46

connection has been established in that time, the idle prespawned process
terminates.

2.3 SQL*Net/Net8 Tuning

The most effective network tuning you can do for SQL*Net/Net8 is to reduce the
number of round-trip messages between the client machines and database server.
You can control this behavior in various ways, such as setting your application's
ARRAY_SIZE (the number of records that are processed with each fetch), the size of
the session data unit (SDU), and the use of stored procedures. In addition, scalability
issues can be improved by tuning your MTS configuration. Net8 introduces additional
multiplexing and connection pooling capabilities which scale to support tens of
thousands of users.

2.3.1 Do You Have a Problem?

The first step in addressing SQL*Net/Net8 scalability is to recognize whether your
system is experiencing a performance degradation and act accordingly. If you are
using multi-threaded server, your primary concerns are whether the dispatchers are
keeping up with the rate of requests and whether the server processes are able to
handle the volume of activity. If you are using prespawned servers, your concerns
are whether you have enough servers and whether the machine has the resources to
accommodate their memory and CPU usage. Methods of diagnosing all of these
situation are included here.

2.3.1.1 Tuning the multi-threaded server

Tuning the multi-threaded server amounts to configuring more dispatchers and
adding or reducing server processes. The book Oracle Performance Tuning, 2nd
edition, by Mark Gurry and Peter Corrigan (O'Reilly & Associates, 1996) includes SQL
scripts that help to diagnose multi-threaded usage. Slightly modified versions of
these scripts, which are useful primarily for Oracle7, follow.

To determine whether you have enough dispatcher processes to service the rate of
connection requests, you can query the V$DISPATCHER dynamic data dictionary
view:

-- Filename: busydisp.sql
-- Purpose: Provides stats indicating whether the dispatcher
processes
-- are overly taxed.
-- Author: Chas. Dye (cdye@excitecorp.com)

Oracle Distributed Systems

-- Date: 6-Aug-1998

column network heading "Protocol" format
a40
column rate heading "Total Busy Rate|>50%=>Add Dispatchers" format
99.99

SELECT network,
 100*(sum(busy)/(sum(busy)+sum(idle))) rate
FROM v$dispatcher
GROUP BY network
/
column protocol heading "Protocol" format
a40
column Wait heading "Average Wait|(hundredths of seconds)" format
a30

SELECT network Protocol,
 decode(sum(totalq), 0, 'No Responses',
 to_char(sum(wait)/sum(totalq), 'FM9999.90')) Wait
FROM v$queue q, v$dispatcher d
WHERE q.type = 'DISPATCHER'
AND q.paddr = d.paddr
GROUP BY network
/

Here is sample output from this script:

Total Busy Rate
Protocol >50%=>Add Dispatchers
---------------------------- ---------------------
ipc .00
tcp .48

2 rows selected.

 Average Wait
Protocol (hundredths of seconds)
---------------- ------------------------------
ipc No Responses
tcp .00

2 rows selected.

The metrics from the V$DISPATCHER are cumulative since the time that the
database instance was started. If the workload on your database varies over time,
you should examine the delta in values from V$DISPATCHER over a set interval. In
Oracle8, the data dictionary view V$DISPATCHER_RATE provides metrics that reflect
current utilization rates.

In this case, we see that the dispatchers are not overly taxed. Had we seen a Busy
Rate above approximately 50% or an appreciable value for Average Wait, we would

47

Oracle Distri

Changes in Oracle8 make this tuning advice somewhat
less relevant. In Oracle8, the BUSY and IDLE fields in
V$DISPATCHER are cumulative and therefore do not
reflect the current statistics. You must query
V$DISPATCHER at set intervals and observe the
change in BUSY/IDLE over time.

buted Systems

48

be advised to add more dispatchers dynamically (as follows) or by modifying the
INIT.ORA file.

Oracle7 syntax:

ALTER SYSTEM SET mts_dispatchers = 'tcp, 5';

Oracle8 syntax:

SQL> ALTER SYSTEM SET mts_dispatchers = '(PROTOCOL=TCP)(DISPATCHERS=5)';

Note that adding dispatcher processes can lead to excessive context switching, which
may degrade performance.

2.3.1.2 Tuning multi-threaded server dispatchers in
Oracle8

In Oracle8, the dynamic data dictionary view V$DISPATCHER_RATE provides
statistics that can help to determine whether you have an appropriate number of
dispatchers.

The following script reports on dispatchers in an Oracle8 database:

-- Filename: disprate.sql
-- Purpose: Queries v$dispatcher_rate.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 24-Nov-1998

col name format a8

col CUR_MSG_RATE format 999999
col MAX_MSG_RATE format 999999
col AVG_MSG_RATE format 999999

SELECT name,
 CUR_MSG_RATE,
 MAX_MSG_RATE,
 AVG_MSG_RATE

Oracle Distributed Systems

FROM v$dispatcher_rate
/

col CUR_SVR_BYTE_PER_BUF format 999999 heading "CUR|SVR|BYTE|PER|BUF"
col CUR_CLT_BYTE_PER_BUF format 999999 heading "CUR|CLT|BYTE|PER|BUF"
col MAX_SVR_BYTE_PER_BUF format 999999 heading "MAX|SVR|BYTE|PER|BUF"
col MAX_CLT_BYTE_PER_BUF format 999999 heading "MAX|CLT|BYTE|PER|BUF"
col AVG_SVR_BYTE_PER_BUF format 999999 heading "AVG|SVR|BYTE|PER|BUF"
col AVG_CLT_BYTE_PER_BUF format 999999 heading "AVG|CLT|BYTE|PER|BUF"

SELECT name,
 CUR_SVR_BYTE_PER_BUF,
 CUR_CLT_BYTE_PER_BUF,
 MAX_SVR_BYTE_PER_BUF,
 MAX_CLT_BYTE_PER_BUF,
 AVG_SVR_BYTE_PER_BUF,
 MAX_CLT_BYTE_PER_BUF
FROM v$dispatcher_rate
/

Here is sample output:

SQL> @disprate

NAME CUR_MSG_RATE MAX_MSG_RATE AVG_MSG_RATE
-------- ------------ ------------ ------------
D000 62 8000 1937
D001 233 8500 2099
D002 26 7300 1770
D003 269 7900 2836
D004 333 8100 2158
D005 274 9400 2968
D006 339 8600 2171
D007 212 8300 2372

8 rows selected.

 CUR CUR MAX MAX AVG MAX
 SVR CLT SVR CLT SVR CLT
 BYTE BYTE BYTE BYTE BYTE BYTE
 PER PER PER PER PER PER
NAME BUF BUF BUF BUF BUF BUF
------ ------ ------- ------- ------- ------- -------
D000 155 973 7446 40465 14 40465
D001 263 593 6169 49080 37 49080
D002 161 1380 7709 45152 83 45152
D003 319 980 9508 50433 9 50433
D004 254 337 19246 37949 41 37949
D005 228 753 5837 43968 8 43968
D006 374 1347 44276 36661 43 36661
D007 103 119 21710 56071 21 56071

8 rows selected.

2.3.1.3 Tuning multi-threaded server server processes

49

Oracle Distributed Systems

The other concern with multi-threaded servers is whether the server processes are
overly busy. If you see many requests on the COMMON queue (visible in the dynamic
data dictionary via V$QUEUE), you should consider adding more servers. The
following script provides useful statistics:

-- Filename: busyq.sql
-- Purpose: Provides stats indicating whether a given queue is
overly
-- taxed in a Multi-Threaded Server environment.
-- If the COMMON queue is overly taxed, consider adding
more
-- servers.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 6-Aug-1998

column type heading "Queue|Type" format a10
column circuit heading "Name" format a8
column queued heading "Items|Queued" format 999,999
column wait heading "Total|Time|Waited" format 999,999,999
column totalq heading "Total|Items|Processed" format
999,999,999,999
column avgwait heading "Average|Wait" format 9,999.90

set head off
set feedback off

SELECT sysdate
FROM dual
/
set head on
set feedback on

SELECT paddr,
 type,
 queued,
 wait,
 totalq,
 decode(totalq, 0, 0, wait)/decode(totalq, 0, 1, totalq) avgwait
FROM v$queue
/

Here is sample output:

system@live SQL> @busyq

24-Nov-1998 00:36:30

 Total Total
 Queue Items Time Items Average
PADDR Type Queued Waited Processed Wait
-------- ---------- -------- ------- ---------------- ---------
00 COMMON 0 0 484,422,948 .20

50

Oracle Distributed Systems

8C612E88 DISPATCHER 0 0 74,413,276 .04
8C60C1D8 DISPATCHER 0 0 81,077,489 .04
8C614BE8 DISPATCHER 0 0 68,060,821 .05
8C614028 DISPATCHER 0 0 98,532,257 .04
8C6151C8 DISPATCHER 0 0 83,142,628 .04
8C608A08 DISPATCHER 0 0 102,410,058 .04
8C60D958 DISPATCHER 0 0 83,688,178 .05
8C610B48 DISPATCHER 0 0 86,438,327 .06

9 rows selected.

Because the COMMON queue does not show any items queued and an average wait
time of zero, we can conclude that the server allocation for this system is adequate.
If you see a high number of items on the COMMON queue, and there are no
significant wait events occurring (such as latch waits) you should consider adding
more multi-threaded server processes (controlled with the INIT.ORA parameters
MTS_SERVERS and MTS_MAX_SERVERS).

2.3.1.4 Measuring m ulti-threaded server server activity

Finally, we also can check the volume of activity of the individual connections that
are associated with a given server. The query is as follows:

-- Filename: busycirc.sql
-- Purpose: Provides stats indicating whether a given circuit is
-- overly taxed in a Multi-Threaded Server environment.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 6-Aug-1998

column server heading "Server" format a8
column circuit heading "Name" format a8
column status heading "Status" format a8
column message0 heading "Bytes|in|First|Msg|Buf" format
9,999
column message1 heading "Bytes|in|Second|Msg|Buf" format
9,999
column messages heading "Messages|Processed" format
999,999
column queue heading "Queue" format a10
column bytes heading "Bytes" format
9,999,999
column breaks heading "Brks" format 999

SELECT server,
 circuit,
 status,
 queue,
 message0,
 message1,
 messages,
 bytes,
 breaks

51

Oracle Distributed Systems

FROM v$circuit
ORDER BY server
/

Here is sample output:

Bytes Bytes
 in in
 First Second
 Msg Msg Messages
Server Name Status Queue Buf Buf Processed Bytes
Brks
------ -------- ------- ------- ------ ------ ---------- ----------

00 D7009B30 NORMAL NONE 0 0 4,687 428,048
5
00 D7009F54 NORMAL NONE 0 0 4,217 469,556
0
00 D700A378 NORMAL NONE 0 0 8 273
0
00 D700A79C NORMAL NONE 0 0 4,405 500,308
0
00 D700ABC0 NORMAL NONE 0 0 2,328 246,359
0
00 D700AFE4 NORMAL NONE 0 0 2,328 246,352
0
00 D700B408 NORMAL NONE 0 0 4,432 471,695
0
00 D700B82C NORMAL NONE 0 0 4,013 449,682
0
00 D700BC50 NORMAL NONE 0 0 2,328 246,355
0
00 D700C074 NORMAL NONE 0 0 2,328 246,361
0
00 D700C498 NORMAL NONE 0 0 2,328 246,365
0
00 D700C8BC NORMAL NONE 0 0 5,357 559,594
11
00 D700CCE0 NORMAL NONE 0 0 5,260 537,766
11
00 D700D104 NORMAL NONE 0 0 5,499 582,824
12
00 D700D528 NORMAL NONE 0 0 5,195 535,113
9
00 D700D94C NORMAL NONE 0 0 5,546 584,801
14
00 D7011B8C NORMAL NONE 0 0 2,328 246,352
0
00 D7011768 NORMAL NONE 0 0 4,439 421,834
3
00 D7011344 NORMAL NONE 0 0 2,328 246,355
0
00 D7010F20 NORMAL NONE 0 0 2,340 248,940
0
00 D7010AFC NORMAL NONE 0 0 4,761 435,934
5

52

Oracle Distributed Systems

00 D70102B4 NORMAL NONE 0 0 40,402 8,519,935
0
00 D700FE90 NORMAL NONE 0 0 42,936 9,030,261
0
00 D700DD70 NORMAL NONE 0 0 2,328 246,352
0
00 D7012C1C NORMAL NONE 0 0 2,328 246,352
0
00 D70123D4 NORMAL NONE 0 0 8 283
0
00 D7011FB0 NORMAL NONE 0 0 2,328 246,352
0
00 D700E194 NORMAL NONE 0 0 45,406 9,534,634
0
00 D700E5B8 NORMAL NONE 0 0 4,569 425,801
4
00 D700E9DC NORMAL NONE 0 0 8 283
0
00 D700EE00 NORMAL NONE 0 0 4,337 409,904
0
00 D700F224 NORMAL NONE 0 0 41,002 8,628,613
0
00 D700F648 NORMAL NONE 0 0 3,926 439,282
0
D805482C D700FA6C NORMAL SERVER 0 235 521 68,737
1

34 rows selected.

Here we see that all but one of the circuits are idle and that there are no clogged
message buffers, indicating that the network is able to keep up with the traffic
volume. If you do see messages accumulating in the buffer, you can consider adding
more multi-threaded server processes over which to spread the load.

The possible values of the STATUS and QUEUE fields of V$CIRCUIT are listed in Table
2.5.

Table 2.5. V$CIRCUIT STATUS and QUEUE Fields
Field Values

STATUS
BREAK (circuit has been interrupted); EOF (circuit is about to exit); NORMAL
(normal circuit for the local database); OUTBOUND (waiting to establish an
outbound connection)

QUEUE

COMMON (circuit is on the common queue, available to be picked up by a
server process); DISPATCHER (waiting for a dispatcher); SERVER (currently
in user); OUTBOUND (waiting to establish an outbound connection); NONE
(circuit is idle)

53

Oracle Distributed Systems

2.3.2 Tuning Dedicated Processes and Prespawned
Processes

Unlike with a multi-threaded server configuration, a DBA usingdedicated or
prespawned processes does not have an arsenal of V$ tables to assist in diagnosing
connection-specific performance problems. Since dedicated processes (whether
prespawned or not) require an operating system process for each user connection,
one of the problems you are likely to encounter is a memory shortage. Memory
problems manifest themselves in different ways on different operating systems, and
it is not our intention to provide a primer on system administration. However, suffice
it to say that if you plan to support a large number of users with dedicated processes,
you should be prepared to configure your machine with a large amount of memory.

Apart from memory problems, you and your user community may find that it takes
them a long time to connect with a dedicated process configuration. If this is the
case, and you are not currently using prespawned processes, you should consider
doing so, particularly if your operating system is one that does not create processes
quickly (e.g., VMS).

2.3.3 Break Out the Sniffer

If you have exhausted the remedies indicated by the V$ tables and operating system
statistics, but performance is still slow, you may have to perform an analysis of your
network traffic with a sniffer in order to analyze the efficiency of your network traffic.

SQL*Net sends data in packets of session data unit (SDU) bytes. The default value
for SDU is 2048 bytes. That means that if you want to send 4097 bytes of data,
SQL*Net will actually send 2048 + 2048 + 2048 = 3 packets. You can experiment
with changing the value of SDU to see how it affects your performance, but there is
no magic formula to help you. However, you will benefit significantly by tuning the
SDU if your application does at least one of the following:

• Sends multiple packets of data
• Sends consistently sized packets
• Sends large amounts of data
• Runs over a WAN

If you elect to change SDU, bear in mind that it is negotiated to the lower of the
values configured for the client and the server. The server configuration file is
listener.ora (for dedicated connections) or INIT.ORA (for MTS). The client
configuration file is tnsnames.ora.

Here is a sample portion of tnsnames.ora :

D7CA.BIGWHEEL.COM =
 (DESCRIPTION =
 (SDU=8192)
 (ADDRESS =

Here is a sample portion of listener.ora :

54

Oracle Distributed Systems

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SDU = 8192)
 (SID_NAME = V7323)

You also have other tuning options that are not really specific to SQL*Net and whose
benefits can be confirmed only by analyzing your network traffic. Among these other
options are:

• Increase ARRAYSIZE. Most Oracle applications allow you to set the number of
records that are sent at one time. In SQL*Plus, the parameter is ARRAYSIZE.
Forms has an analogous setting. By increasing the value of this setting, you
often can improve the efficiency of your network transmissions dramatically
by reducing the number of round-trip messages.

• Set MTU (maximum transmission unit) on the WAN.

2.4 Load Balancing

If your applicationis one that must process a high volume of connection requests in a
short amount of time (e.g., a popular web site), you might consider TNS listenerload
balancing. You can configure multiple TNS listeners to process your connection
requests to a single database. Or, if you have a symmetric replication environment
that allows clients to connect to any of several masters, you can configure TNS
listeners that send connection requests to the masters with the least busy
dispatchers (assuming that you are also using a multi-threaded server).

2.4.1 Multiple TNS Listeners and Multi-Threaded
Server with a Single Database Instance

If you are usinga multi-threaded server, you can run TNS listeners on multiple nodes
for your database instance. The TNS listener does not need to run on the same node
as the database because dispatchers are able to register with listeners on whatever
node(s) you specify with the INIT.ORA parameter MTS_LISTENER_ADDRESS
(Oracle7). In Oracle8, use the LISTENER attribute of the MTS_DISPATCHERS
parameter. Figure 2.2 depicts a configuration with multiple listeners on multiple
machines for a single database.

Figure 2.2. Multiple listeners on multiple nodes for a single
database instance

55

Oracle Distributed Systems

The relevant multi-threaded server INIT.ORA parameters for this configuration are as
follows:

mts_multiple_listeners = TRUE
mts_listener_address =
"(ADDRESS=(PROTOCOL=TCP)(host=eggman)(port=1521))"
mts_listener_address =
"(ADDRESS=(PROTOCOL=TCP)(host=walrus)(port=1521))"

On the client side, the tnsnames.ora file must also reflect that the database instance
has two listeners by having two DESCRIPTION sections for the same
CONNECT_DATA section. The client will pick one of the two listeners at random.
However, if the connection fails, the client will reattempt the connection with the
second listener.

penguin = (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = eggman)
 (Port = 1521)
)
)
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = walrus)
 (Port = 1521)
)
)
 (CONNECT_DATA =
 (SID = D7CA)
)

56

Oracle Distributed Systems

)

Note that the listeners do not have to be listening on the same protocol.

2.4.2 Multiple TNS Listeners and Multi-Threaded
Server with Multiple Database Instances

If you are configuring a symmetric replication or Oracle parallel server environment
that allows clients to connect to any of several masters, you can configure your
listeners such that they hand off connections to the least busy dispatchers among all
your masters. You will recall that the dispatcher processes update the TNS listener
with information relevant to load balancing. Figure 2.3 depicts such a configuration.

Figure 2.3. Multiple listeners on multiple nodes for
multiple database instances

In this case, you must update the tnsnames.ora client configuration files to reflect
the fact that there are two separate database instances available for the alias
penguin :

penguin = (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = eggman)
 (Port = 1521)
)
 (CONNECT_DATA =
 (SID=D7NY)
)
)

57

Oracle Distributed Systems

 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = walrus)
 (Port = 1521)
)
 (CONNECT_DATA =
 (SID = D7CA)
)
)
)

In this case, there are two CONNECT_DATA sections, one for each
DESCRIPTION_LIST. As with the multiple TNS listeners for a single database
configuration, clients will randomly select a listener to process their connection
requests but will fail over to the other listener if the connection fails.

If you are using dedicated processes, all listeners must reside on the same machine
as the database instance. For a multi-threaded server configuration, you can run
multiple listeners on multiple machines because dispatchers are able to register with
listeners on different nodes.

2.4.3 Multiple TNS Listeners and Dedicated Processes

To configure multiple TNS listeners for dedicated process connections, either you can
create individual listener.ora files for each one and store them in different locations
or you can use one listener.ora file with multiple named listeners in it. The processes
that start the listeners must each have the appropriate environment variable set to
the location of listener.ora. In Unix, this environment variable is TNS_ADMIN.

If you are finding that your listener is not able to handle all of the connection
requests, you should consider setting the QUEUESIZE in your listener.ora file
(boldfaced in the following example). This parameter sets the number of connection
requests the listener can queue—that is, the number of requests that it will allow to
wait while it processes earlier requests. If your clients are experiencing timeouts
when trying to connect, setting this parameter can alleviate the problem, but only by
making the connection requests wait for the listener to process them. If you are still
experiencing timeouts, you should run additional listeners.

################
Filename......: listener.ora
Name..........: walrus
Date..........: 08-SEP-98 11:44:31
################
LISTENER =
 (ADDRESS_LIST =
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = walrus)
 (Port = 1521)
 (Queuesize = 20)
)
)

58

Oracle Distributed Systems

STARTUP_WAIT_TIME_LISTENER = 0
CONNECT_TIMEOUT_LISTENER = 10
TRACE_LEVEL_LISTENER = OFF
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = D7CA)
 (ORACLE_HOME = /usr/home/oracle/product/7.3.3)
)
)

2.5 Oracle8 Scalability Options

Oracle has introduced connection pooling and multiplexing with Net8, the network
component of Oracle8. Both of these features build on the functionality that exists
with the multi-threaded server that first shipped with Oracle7. With the added
benefits of connection pooling and multiplexing, Oracle has racked up some very
impressive benchmark results with tens of thousands of users. Your mileage may
vary.

2.5.1 Connection Pooling

Connection pooling maximizes the utilization of a dispatcher's existing network
connections by detecting clients that are connected but idle for a predetermined time
and reallocating their transport connection to an incoming client connection. The
default timeout value is determined by Net8 and may vary by platform. If the idle
client resumes activity, the connection is reestablished.

You enable connection pooling by specifying the POOL attribute of the
MTS_DISPATCHERS INIT.ORA parameter—for example:

mts_dispatchers="(PROTOCOL=TCP)(POOL=ON)"

This enables connection pooling for the dispatcher, using the default values.

Connection pooling applies to both incoming and outgoing connections, and you can
specify the timeout (in network ticks) for both types of connections:

mts_dispatchers="(PROTOCOL=TCP)(POOL=(IN=20)(OUT=100))"

You can also enable connection pooling for inbound (or outbound) connections only:

mts_dispatchers="(PROTOCOL=TCP)(POOL=(IN=20))"

Obviously, connection pooling works better with some types of applications than
others. In order to profit from it, your application should be characterized by a
relatively low ratio of active data requests to concurrent sessions. Examples include
decision support systems (DSS), online transaction processing (OLTP), and
messaging applications.

59

Oracle Distributed Systems

2.5.2 Session Multiplexing

Multiplexing is a solution for applications that must support a high number of active
users, for those that use connection manager already, or for those that have a high
reconnect cost (WAN or satellite). It uses the Oracle connection manager to service
multiple network sessions through a single transport connection. The connection
manager is essentially a concentrator for client sessions.

The connection manager has three components, each with a corresponding
executable, described in Table 2.6.

Table 2.6. Connection Manager Components
Executable Name (Unix

and VMS/Desktop) Description

cmgw/cmgw80

The gateway process. This process registers with the
connection manager administrative process, listens for
incoming SQL*Net/Net8 connection requests, initiates
connection request to Net8 listeners for clients, and answers
requests initiated by cmctl.

cmadm/cmadm80

The connection manager administrative process. Primarily
responsible for maintaining address information in the Oracle
Names server (if any). It also processes cmgw and listener
registration, locates the local name server (if any), identifies all
listeners that are serving one or more database instances,
updates the Oracle Names server (if any) with network
updates, and answers requests initiated by cmctl. Note that all
communication between cmgw and cmadm is via IPC.

cmctl/cmctl80

The connection manager utility program, analogous to lsnrctl.
This utility includes four basic commands:

START [cman | cm | adm] starts either or both the gateway
process and administrative process.
STOP [cm] stops the connection manager. Stopping the
gateway process also stops the administrative process.
STATUS [cman | cm | admin] provides status information
about the three components.
VERSION provides version information.

If you are using TCP/IP, you can enable the default behavior of the connection
manager simply by modifying the following INIT.ORA parameter:

mts_dispatchers="(PROTOCOL=TCP)(MULTIPLEX=ON)"

You can also enable multiplexing for incoming or outgoing connections individually:

mts_dispatchers="(PROTOCOL=TCP)(MULTIPLEX=IN)"
mts_dispatchers="(PROTOCOL=TCP)(MULTIPLEX=OUT)"

60

Oracle Distributed Systems

By default, the connection manager listens on port 1600, and you can start it by
issuing the commandcmctl start.

In order to customize the behavior of multiplexing and the connection manager, you
must create a configuration file, called cman.ora.

Connection Manager config file
cman.ora - The file is used by cman and cman_admin.

These are cman's listening addresses (one or more) for the purpose of
relaying TNS sessions.

CMAN=(ADDRESS=(PROTOCOL=TCP)(Host=walrus.bigwheel.com)(Port=1600)))

CMAN=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=walrus.bigwheel.com)
 (PORT=1600)
)
)

These parameters control the connection managers logging and capacity.
CMAN_PROFILE = (PARAMETER_LIST=
 (MAXIMUM_RELAYS=10240)
 (LOG_LEVEL=ADMIN)
 (TRACING=no)
 (RELAY_STATISTICS=no)
 (SHOW_TNS_INFO=no)
 (USE_ASYNC_CALL=yes)
 (AUTHENTICATION_LEVEL=0)
 (ANSWER_TIMEOUT=0)
)

CMAN_RULES defines where connections are accepted or rejected.
CMAN_RULES=(RULE=(SRC=x.x.x.x)(DST=189.221.84.120)(SRV=D8CA)(ACT=accept
))

The usage of the parameters CMAN, CMAN_PROFILE, and CMAN_RULES is
summarized in Table 2.7 through Table 2.9.

Table 2.7. cman.ora: CMAN Section
Parameter

Name Description

CMAN
CMAN contains one or more addresses for the ports on which the
connection manager is processing connection requests. You must specify
the address parameters PROTOCOL, HOST, and PORT.

Table 2.8. cman.ora: CMAN_PROFILE Section

61

Oracle Distributed Systems

Parameter Name Default Value
Range Description

ANSWER_TIMEOUT 0
0 -
unlimited

Number of seconds the connection
manager uses to instruct NS (Network
Services) to time out a connection
request. A value of 0 indicates that no
timeouts should occur.

AUTHENTICATION_LEVEL 0 0, 1

0 implies no authentication. 1 causes the
connection manager to reject connection
attempts that are not using SNS (Secure
Network Services) to perform client
authentication.

LOG_LEVEL 0 0 - 4 Level of logging performed.

MAXIMUM_RELAYS 8 1-10,240
The maximum number of hops that the
connection manager will support.

RELAY_STATISTICS no no, yes
If "yes," connection manager maintains
statistics about relay I/O.

SHOW_TNS_INFO no no, yes
If "yes," connection manager maintains
TNS information in its logging.

TRACING no no, yes
If "yes," connection manager will create
trace files.

USE_ASYNC_CALL no no, yes
If "yes," connection manager uses
asynchronous NS functions nsanwer,
nsaccept, and nscall.

The optional CMAN_RULES parameter provides a method of restricting access to the
database based on the origination of the connection request, its target host, and its
target ORACLE_SID. The parameter is included in the cman.ora file using this syntax:

CMAN_RULES = (RULE_LIST=<rule1><rule2>...<rulen>)

Table 2.9. cman.ora: CMAN_RULES Section
Parameter Description

ACT
The action to perform: "accept" to accept the connection request or
"reject" to reject it.

DST
The target (destination) hostname or IP address. The character "x" may be
used as a wildcard in IP addresses.

SRC
Name or IP address of the source of the connection request. The character
"x" may be used as a wildcard in IP addresses.

SRV The ORACLE_SID of the target database.

If the CMAN_RULES parameter is present, then the only connection requests that are
accepted are those that meet the rules defined. Note that CMAN_RULES is applicable
only in a TCP/IP network.

You must also modify the tnsnames.ora on the client side to "teach" it to use the
correct addressing to the connection manager. If you are running a single protocol,
you would modify the tnsnames.ora to look something like this:

62

Oracle Distributed Systems

d8ca.bigwheel.com =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=walrus.bigwheel.com)
 (PORT=1600)
)
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = eggman.bigwheel.com)
 (Port = 1521)
)
)
 (CONNECT_DATA =
 (SID = D8CA)
)
 (SOURCE_ROUTE=YES)
)

The ADDRESS section instructs the client to connect to WALRUS.BIGWHEEL.COM on
port 1600 (where it will find the connection manager waiting). Then, it tells the
connection manager to connect to the listener that is listening on port 1521.
Essentially, the ADDRESS section is the route that the client will use to connect to
the database.

The really nice thing about the connection manager is that you can specify a route
that has multiple protocols in it. In fact, Oracle's stated direction is to replace the
MultiProtocol Interchange with the connection manager. In the preceding example,
the protocol between the client and the connection manager could have been, for
example, SPX, and the tnsnames.ora entry would then look like this:

d8ca.bigwheel.com =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=
 (PROTOCOL=SPX)
 (HOST=walrus.bigwheel.com)
 (PORT=1600)
)
 (ADDRESS =
 (PROTOCOL = TCP)
 (Host = eggman.bigwheel.com)
 (Port = 1521)
)
)
 (CONNECT_DATA =
 (SID = D8CA)
)
 (SOURCE_ROUTE=YES)
)

You can even have a route to a connection manager that maps to another connection
manager on another node.

63

Oracle Distributed Systems

2.5.3 Scalability: Summary

Net8 provides additional network scalability capacity by offering connection pooling
and multiplexing. Connection pooling is well suited for applications that may service
a high number of connections with a high proportion of idle connections. Multiplexing
is intended for applications that must support a high volume of connections, all of
which are active. The dynamic performance tables V$DISPATCHER and
V$DISPATCHER_RATE provide statistics about the efficiency of both connection
pooling and multiplexing .

2.6 SQL*Net/Net8 Client Configuration

The sqlnet.ora file on a client machine contains parameters that govern the client's
behavior. The attributes that can be modified fall into five categories:

• Dead connection detection
• Tracing and logging
• Default domains
• Oracle Names parameters
• Other optional parameters

These attributes are described in the sections that follow.

2.6.1 Dead Connection Detection

SQL*Net/Net8 can automaticallydetect and terminate connections that are no longer
valid. This feature is particularly useful for environments in which the clients are PCs,
because users may reboot their PCs or otherwise terminate their sessions without
logging out of the database. Rebooting a PC does not in and of itself cause the
corresponding database session to terminate, because the underlying transport, such
as TCP/IP, does not recognize it as such. The worst-case scenario is that the user
reboots his PC while he has a lock on a table! Although you can assign a profile to
your users that limits connect time and idle time, you usually have to set these limits
high enough to accommodate users who want to go out to lunch without logging out
of the application (e.g., several hours).

You can use dead connection detection to search and destroy invalid connections
every 10 minutes or so. To do so, you must specify the optional parameter
SQLNET.EXPIRE_TIME in the sqlnet.ora file. The number you specify is the frequency
in minutes with which SQL*Net/Net8 probes connections to confirm their validity.
Sessions that are dead or invalid are terminated.

If dead connection detection is enabled, SQL*Net sends a probe periodically to
determine whether there is an invalid connection that should be terminated. If it
finds a dead connection, or a connection that returns an error, it causes the server to
terminate the connection.

Of course, there is a certain amount of overhead associated with using dead
connection detection:

64

Oracle Distributed Systems

• Additional network traffic for the dead connection probes every
SQLNET.EXPIRE_TIME minutes.

• Potential performance degradation on the Oracle server which must
distinguish between connection probing events and other events. You should
perform your own analysis to determine whether your platform is adversely
affected.

Some protocols have their own dead connection detection algorithms, which may
obviate the need to use SQL*Net/Net8's version.

2.6.2 Tracing and Logging

The sqlnet.ora file contains several optional parameters forlogging and tracing that
you can use to collect statistics on client/server activity. You can use the parameters
described in Table 2.10 to analyze network activity.

Table 2.10. sqlnet.ora: Tracing and Logging Parameters
Parameter Name Description

LOG_DIRECTORY_CLIENT
Directory in which to place output log file. Default
location is the current working directory.

LOG_FILE_CLIENT
Name of the output file for logging information. Default
filename is sqlnet.log.

TNSPING.TRACE_DIRECTORY
Directory in which to place TNSPING log files. Default
location is platform-specific.

TNSPING.TRACE_LEVEL

Determines level of tracing for TNSPING activity.
Possible values are OFF, USER, and ADMIN.

OFF indicates no tracing.
USER indicates end-user tracing (information includes
such diagnostics as invalid address).
ADMIN indicates full tracing is enabled, including
protocol and configuration errors.

TRACE_DIRECTORY_CLIENT
Location of trace file. Default value is current
directory.

TRACE_FILE_CLIENT Name of trace file. Default value is sqlnet.trc.

TRACE_LEVEL_CLIENT

Determines level of trace file details for client
activities. Possible values are OFF, USER, and ADMIN.

OFF indicates not tracing.
USER indicates tracing of errors such as addressing
errors and missing protocol stack errors.
ADMIN provides full tracing capabilities, including
third-party software inconsistencies.

65

Oracle Distributed Systems

2.6.3 Default Domains

The sqlnet.ora parameter DEFAULT_DOMAIN specifies the domain to use when the
client's connect string does not specify a fully qualified path. For example, if the
sqlnet.ora file contains the entry:

NAMES.DEFAULT_DOMAIN = BIGWHEEL.COM

then the connect string:

SCOTT@SALES

will resolve to:

SCOTT@SALES.BIGWHEEL.COM

This parameter may be present in sqlnet.ora regardless of whether you are using
Oracle Names.

2.6.4 Oracle Names Parameters

Theparameter NAMES.DIRECTORY_PATH determines the order in which name
resolution services are attempted. The default value is TNSNAMES, ONAMES. The
default setting

NAMES.DIRECTORY_PATH = (TNSNAMES, ONAMES)

indicates that the tnsnames.ora file is probed first to resolve the SQL*Net alias,
followed by the Oracle Names server.

If you are using Oracle Names, you must specify the parameter
NAMES.PREFERRED_SERVERS, which includes one or more addresses of the name
servers the client should use.

2.6.5 Additional Parameters

Table 2.11 describes additional,optional parameters you can include in the client
sqlnet.ora file.

Table 2.11. sqlnet.ora: Optional Parameters

Parameter Name Default Value
Range Description

AUTOMATIC_IPC ON
ON,
OFF

If OFF, client connections will not attempt to
use an IPC address to establish
connections.

DISABLE_OOB OF
ON,
OFF

Disables use of Out-of-Band Breaks. Note
that this may boost performance for

66

Oracle Distributed Systems

applications that return many rows of data
at a time because the server does not check
for breaks after each SEND.

USE_DEDICATED_SERVER OFF
ON,
OFF

Forces use of dedicated processes for client
connection.

2.7 SNMP Support

Beginning with Oracle Version 7.2 and SQL*Net Version 2.2, Oracle has included
SNMP (Simple Network Management Protocol) support in its products. This
functionality provides administrators with "hooks" they can use to gather
performance and diagnostic information from Oracle for analysis in a third-party tool
(such as Hewlett-Packard's OpenView). The SNMP hooks are integrated into the
Oracle product line; however, you must run an SNMP master agent in order to run
Oracle's subagent. Oracle does not provide the SNMP master agent; they provide
SNMP subagents that communicate with the master agent. Oracle's subagent is a
separate executable (dbsnmp on the Unix port).

The primary use of Oracle SNMP is that DBAs or data center operators can use a tool
such as OpenView to monitor the status of all Oracle databases and listeners on the
network. The range of information includes:

• Database instance status
• Performance problems
• Discovery of new databases
• Ability to set alerts for various events and configure automatic notification of

the appropriate personnel
• Ability to store and report on historical data

2.7.1 Configuring SNMP Support

Essentially, the only way to configure the Oracle SNMP subagents is with the Oracle
Network Manager product, which (as of this writing) exists only on the Windows NT
platform. The Network Manager provides an interface for setting parameters and
generating the SNMP.ORA configuration file, which is required for each managed
node. The SNMP.ORA file resides in the same directory as the other network
configuration files (tnsnames.ora, etc.). The parameters you can set are:

• SNMP VISIBLE
• SNMP INDEX
• SNMP CONTACT
• USERNAME (if subagent monitors an Oracle database server)
• PASSWORD (if subagent monitors an Oracle database server)

After creating the SNMP.ORA files, you must also run the CATSNMP.SQL script to
create the SNMPAGEN role and DBSNMP user, which are both required in databases
that are visible to SNMP.

67

Oracle Distributed Systems

2.7.2 Using SNMP

In addition to starting the master agent, encapsulator, and native SNMP agent for
your platform, you also must start the Oracle SNMP subagents for the Oracle
database and for the Oracle network services.

Use the lsnrctl utility to control the Oracle database subagent:

LSNRCTL> dbsnmp_start
starts the database subagent

LSNRCTL> dbsnmp_stop
stops the database subagent

LSNRCTL> dbsnmp_status
reports status information for the database subagent

The subagents for the TNS listener, MultiProtocol Interchange, and Oracle Names
server are started automatically with the respective service.

2.8 Security

Oracle has been bundling security products with SQL*Net and the RDBMS since
Version 7.1.4 of the database. They have moved the security software from Secure
Network Services into the Advanced Networking Option, which includes additional
naming services as well. But whatever the name, the product provides encryption
and authentication services for SQL*Net/Net8.

Table 2.12 depicts the matrix of RDBMS releases, bundled security software, and
functionality. The installation and configuration of these services is platform-specific.

Table 2.12. Security Products Provided with the RDBMS
RDBMS
Version Security Product Encryption

Services Authentication Services

7.1.4
Secure Network
Services 1.0.1

RSA RC4 40 NA

7.1.5
Secure Network
Services 1.0.2

RSA RC4 40 NA

7.1.6
Secure Network
Services 1.0.3

RSA RC4 40 NA

7.2.2
Secure Network
Services 1.1.x

RSA RC4 40,
56

DES 40, 56

NA

7.2.x
Secure Network
Services 2.0.x

RSA RC4 40,
56

DES 40, 56

Kerberos, CyberSAFE, SecurID

68

Oracle Distributed Systems

7.3.x
Advanced Networking
Option 2.3.x

RSA RC4 40,
56

DES 40, 56

Kerberos, CyberSAFE, SecurID

8.0.x Advanced Networking
Option 8.0.x

RSA RC4 40,
56, 128

DES 40, 56

Diffie-Hellman

Key Fold-In

MD5

Kerberos, CyberSAFE, SecurID,
Identix TouchNet II, DCE GSSAPI

69

Oracle Distributed Systems

70

Oracle Distributed Systems

Chapter 3. Configuration and
Administration

The ease with which you can administer a distributed database environment is, to a
large degree, a function of how well it is configured. With proper planning and
implementation, your distributed database environment can attain a very high
degree of location transparency, expandability, and security regardless of how many
individual database instances comprise it. These objectives are not the only goals;
systems must also be:

Maintainable

The DBA has the flexibility to move databases to different machines, change
ORACLE_SIDs, apply patches, relocate tables, and so on, without requiring
changes to application code or changes to client configurations. The inter-
operability and interdependencies of the various databases must be readily
understood.

Robust

The failure of one database instance does not render others inoperable.

Concurrent

Distributed transactions meet the ACID criteria (autonomous, consistent,
isolated, durable).

In this chapter, we examine the DBA's responsibilities and concerns for providing
such an environment. In Chapter 5, we consider the application designer's point of
view.

3.1 Initialization Parameters

Oracle provides a number of initialization parameters (summarized in Table 3.1) that
govern various aspects of your distributed environment. These parameters are
specified in the INIT.ORA file, the location of which is platform-specific. This section
describes how and when you should use these parameters.

Table 3.1. Initialization Parameters Relevant to Distributed Databases
Parameter Name Description

COMMIT_POINT_STRENGTH
Determines the commit point
site in distributed transactions

DB_DOMAIN
String identifying the domain
in which the database
instance resides

DBLINK_ENCRYPT_LOGIN (Oracle8)
Determines whether
connections over database

71

Oracle Distributed Systems

links should send encrypted
passwords

DISTRIBUTED_LOCK_TIMEOUT
Number of seconds a
distributed transaction will
wait to acquire a lock

DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME

Number of seconds to hold a
connection open in the event
that a distributed transaction
fails

DISTRIBUTED_TRANSACTIONS
Maximum number of
concurrent distributed
transactions

GLOBAL_NAMES
Enforces the use of global
naming

JOB_QUEUE_INTERVAL
Period (in seconds) of
dormancy for job queue
background processes

JOB_QUEUE_PROCESSES
Number of job queue
background processes

MAX_TRANSACTION_BRANCHES
Maximum number of database
instances that can participate
in a distributed transaction

OPEN_LINKS
Maximum number of open
database links per session

OPEN_LINKS_PER_INSTANCE (Oracle8)
Maximum number of open
database links for the
database instance

REMOTE_DEPENDENCIES_MODE

Specifies algorithm for
determining validity of stored
procedures (TIMESTAMP or
SIGNATURE)

REMOTE_LOGIN_PASSWORD_FILE
Determines method of
validating privileged accounts

REMOTE_OS_AUTHENT

Determines whether operating
system validated accounts are
allowed from remote
machines

REMOTE_OS_ROLES

Determines whether to use
operating system roles or
database roles for remote
clients

REPLICATION_DEPENDENCY_TRACKING (Oracle8)
Enables or disables
dependency tracking

SNAPSHOT_REFRESH_INTERVAL
Period (in seconds) of
dormancy for snapshot
background processes

SNAPSHOT_REFRESH_PROCESSES
Number of snapshot
background processes

72

Oracle Distributed Systems

3.1.1 COMMIT_POINT_STRENGTH

Datatype: Integer

Default: 10

Range: 0 through 255

The database instance with the highest COMMIT_POINT_STRENGTH is the commit
point site in a distributed transaction. The commit point site retains information
required for transactions that use a two-phase commit. In general, the higher a
database's availability, the higher its COMMIT_POINT_STRENGTH should be.

3.1.2 DB_DOMAIN

Datatype: Character string

Default: WORLD

Range: Any string starting with an alphanumeric character and consisting only of
alphanumeric characters and periods (.), underscores (_), and pound signs (#).

The global name of every Oracle database is of the form DB_NAME.DB_DOMAIN so
the name you select for DB_DOMAIN should match the domain name of your site, for
example, US.ORACLE.COM. The setting of the NAMES.DEFAULT_DOMAIN parameter
in your sqlnet.ora file should also have the same value. Following these conventions
simplifies the administration of your distributed environment.

3.1.3 DBLINK_ENCRYPT_LOGIN (Oracle8)

Datatype: Boolean

Default: FALSE

Range: TRUE or FALSE

By default, Oracle sends encrypted passwords over the network to establish
connections over database links. If the connection attempt fails, Oracle tries again
with an unencrypted password. Setting DBLINK_ENCRYPT_LOGIN to TRUE prevents
Oracle from reattempting the connection with the unencrypted password.

3.1.4 DISTRIBUTED_LOCK_TIMEOUT

Datatype: Integer

Default: 60 (seconds)

Range: Minimum value 1; no maximum limit

73

Oracle Distributed Systems

Although you can set DISTRIBUTED_LOCK_TIMEOUT to an arbitrarily high value, the
highest value Oracle uses is 2,808,348,671 (seconds). Since this value equates to
more than 88 years, it is not likely to be a limitation. If you are using the advanced
replication facilities, the default value of 60 seconds may not be adequate; a setting
of 300 is a reasonable starting point.

3.1.5
DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME

Datatype: Integer

Default: 200 (seconds)

Range: Minimum value 0; no maximum limit

The DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME parameter dictates how
long Oracle will keep a failed transaction's connection open. If the transaction is
reattempted, it will not have to spend time reestablishing the connection. Although
you can specify an arbitrarily high value for this parameter in the INIT.ORA file, the
highest value Oracle uses is 4,294,967,295. However, since the recoverer (RECO)
background process wakes up every 30 minutes to resolve failed distributed
transactions, any value above the following:

30 minutes × 60 seconds/minute = 1800 seconds

effectively specifies an infinite hold time. Maintaining a failed transaction's open
connection consumes system resources; this could be an issue if you have a large
number of distributed transactions.

3.1.6 DISTRIBUTED_TRANSACTIONS

Datatype: Integer

Default: Operating-system specific; derived from TRANSACTIONS

Range: 0 through TRANSACTIONS

The DISTRIBUTED_TRANSACTIONS parameter sets the maximum number of
distributed transactions in which the database can simultaneously participate. This
value must be less than or equal to the value of TRANACTIONS. By default, Oracle
sets DISTRIBUTED_TRANSACTIONS to TRANSACTIONS/4. (Unless otherwise
specified, TRANSACTIONS = 1.1 × PROCESSES.) Oracle does not start the recoverer
(RECO) background process if DISTRIBUTED_TRANSACTIONS is zero, which means
that no distributed transactions are permitted. The derived value for
DISTRIBUTED_TRANSACTIONS is suitably high for most applications; in fact, it may
be too high. If you experience a high number of failed distributed transactions, you
should consider reducing DISTRIBUTED_TRANSACTIONS to decrease the number of
concurrent distributed transactions and therefore the number of in-doubt
transactions.

74

Oracle Distributed Systems

3.1.7 GLOBAL_NAMES

Datatype: Boolean

Default: FALSE

Range: TRUE or FALSE

Setting GLOBAL_NAMES to TRUE enforces the global naming of database links. That
is, the name of a database link must be the same as the global name of the database
to which it connects. By default, a database's global name is DB_NAME.DB_DOMAIN
(e.g., D7NY.BIGWHEEL.COM). You must set GLOBAL_NAMES to TRUE in order to use
any components of advanced replication. Even if you are not using replication, it is a
good idea to enforce global naming because the resulting consistency eases database
administration.

3.1.8 JOB_QUEUE_INTERVAL

Datatype: Integer

Default: 60 (seconds)

Range: 1 through 3600 (seconds)

The JOB_QUEUE_INTERVAL parameter specifies how often the snapshot background
processes (SNPn) wake up to check for snapshots to fire or jobs to execute. (The
values for n range from 0-9 and A-Z.) Although use of the job queue is not restricted
to distributed environments, it plays a critical role in advanced replication, so we
include it here. In an environment using snapshots and/or multi-master replication,
JOB_QUEUE_INTERVAL should be less than the time it takes to perform all of the
snapshot refreshes and queue pushes and less than the interval at which your jobs
are scheduled. Jobs in the DBMS_JOB queue cannot run more often than every
JOB_QUEUE_INTERVAL seconds. This parameter replaces
SNAPSHOT_REFRESH_INTERVAL, which still exists in Oracle8 as an undocumented
parameter.

3.1.9 JOB_QUEUE_PROCESSES

Datatype: Integer

Default: 0

Range: 0 through 36

The JOB_QUEUE_PROCESSES parameter specifies how many snapshot background
processes (SNPn) the database instance should use. (The values for n range from 0-
9 and A-Z.) Since the default is zero, you must specify this parameter if you wish to
run these background processes. If you have numerous snapshots or scheduled jobs
that run simultaneously, you must have multiple SNPn background processes. A

75

Oracle Distributed Systems

single SNPn process performs snapshot refreshes and job executions serially. Oracle
recommends setting JOB_QUEUE_PROCESSES to at least two at sites using multi-
master replications. This parameter replaces SNAPSHOT_REFRESH_PROCESSES,
which still exists in Oracle8 as an undocumented parameter.

3.1.10 MAX_TRANSACTION_BRANCHES

Datatype: Integer

Default: 8

Range: 1 through 32

The MAX_TRANSACTION_BRANCHES parameter specifies the maximum number of
branches the session tree of a distributed transaction can have. Oracle introduced
this parameter with Version 7.1.6, presumably to alleviate restrictions that the kernel
had been imposing on certain transaction process monitoring software: Here is a
note from the 7.1.6 README.doc:

This parameter controls the number of branches in a distributed transaction. For
example, the TopEnd TP Monitor uses one branch per process involved in a
distributed transaction. The Tuxedo TP monitor uses one branch per process group
involved in a distributed transaction. The previously fixed maximum number of
branches limited the number of TopEnd servers involved in a distributed transaction
to 8 per Oracle instance. With the MAX_TRANSACTION_BRANCHES parameter, the
maximum number of branches can be increased to 32, allowing for 32 TopEnd
processes per Oracle instance to work on one distributed transaction. Setting
MAX_TRANSACTION_BRANCHES to a lower value will reduce shared pool memory
usage slightly (n × distributed_transactions × 72 bytes).

3.1.11 OPEN_LINKS

Datatype: Integer

Default: 4

Range: 0 through 255

The OPEN_LINKS parameter specifies the maximum number of open database links a
single session can have; it should be at least as large as the maximum number of
databases referenced in a single transaction.

3.1.12 OPEN_LINKS_PER_INSTANCE (Oracle8)

Datatype: Integer

Default: 4

Range: 0 through 255

76

Oracle Distributed Systems

The OPEN_LINKS_PER_INSTANCE parameter sets the maximum number of open
database links that can exist simultaneously in the entire database instance.

3.1.13 REMOTE_DEPENDENCIES_MODE

Datatype: Character string

Default: TIMESTAMP

Range: TIMESTAMP or SIGNATURE

The REMOTE_DEPENDENCIES_MODE parameter designates the method of validating
PL/SQL objects (packages, procedures, and triggers) that have remote dependencies.
If you specify the TIMESTAMP dependencies mode, objects require recompilation if
the remote object has a modification time that is later than the local object. In
SIGNATURE mode, no recompilation is required as long as the remote objects exist.

3.1.14 REMOTE_LOGIN_PASSWORD_FILE

Datatype: Character string

Default: None

Range: NONE, SHARED, or EXCLUSIVE

The REMOTE_LOGIN_PASSWORD_FILE parameter specifies whether users are to be
validated through a password file. A setting of NONE indicates that there is no
password file. SHARED indicates that the same password file is used by user SYS (or
INTERNAL) for multiple databases. EXCLUSIVE indicates that the password file is for
a single database, with all named users represented in the file.

3.1.15 REMOTE_OS_AUTHENT

Datatype: Boolean

Default: FALSE

Range: TRUE or FALSE

The REMOTE_OS_AUTHENT parameter enables or disables operating system
validated (OPS$) accounts from remote machines. If you specify TRUE, then these
accounts can log in regardless of the machine from which the process originates. If
you specify FALSE, then operating system validated accounts work only for processes
that are running on the same machine as the database instance. If you set this
parameter to TRUE, you should be very careful not to create privileged OPS$
accounts (such as OPS$ORACLE) because it is quite easy to masquerade as a
different user from, for example, a computer running Windows.

77

Oracle Distributed Systems

3.1.16 REMOTE_OS_ROLES

Datatype: Boolean

Default: FALSE

Range: TRUE or FALSE

The REMOTE_OS_ROLES parameter determines how Oracle enforces role privileges.
If you specify FALSE, Oracle uses the role definitions from the database, as seen in
DBA_ROLE_PRIVS. If you specify TRUE, Oracle uses operating system roles for
remote clients. This method is relevant only for roles using operating system
validation, that is, those that have been created with the following syntax:

CREATE ROLE {rolename} IDENTIFIED EXTERNALLY

which implies that the parameter REMOTE_OS_ROLES is also set to TRUE. Oracle
validates users of operating system validated roles differently for each operating
system. For example, under Unix, members of group ora_sid_role are members of
the OS validated group role in the database instance with ORACLE_SID sid.

3.1.17 REPLICATION_DEPENDENCY_TRACKING
(Oracle8)

Datatype: Boolean

Default: TRUE

Range: TRUE or FALSE

The REPLICATION_DEPENDENCY_TRACKING parameter determines whether Oracle
maintains information about transactional dependency which is required for parallel
propagation of replicated DML. Oracle recommends using the default value of TRUE
unless your replicated tables do not undergo DML.

3.1.18 SNAPSHOT_REFRESH_INTERVAL

Datatype: Integer

Default: 60

Range: 1 through 3600

The SNAPSHOT_REFRESH_INTERVAL parameter is obsolete. See the
JOB_QUEUE_INTERVAL parameter.

78

Oracle Distributed Systems

3.1.19 SNAPSHOT_REFRESH_PROCESSES

Datatype: Integer

Default: 0

Range: 0 through 36

The SNAPSHOT_REFRESH_PROCESSES parameter is obsolete. See the
JOB_QUEUE_INTERVAL parameter.

3.2 Database Links

Distributed Oracle databases are built on database links. In a nutshell, a database
link is a connection from one database to another that is available to users having
proper privileges any time both databases are available. The purpose of database
links is to make remote data available for queries and, in some cases, updates.
Because a database link is essentially a stored login to a remote database, the DBA
must take care to ensure that it does not compromise the security of either the local
or the remote database. This section discusses database link naming conventions,
the different types of database links, different methods of creating them, restrictions,
security concerns, and how to report on them.

3.2.1 Global Names and Database Links

If the GLOBAL_NAMES INIT.ORA parameter is set to its default value of FALSE, you
can use any name you want for a database link. I worked at one site where one
developer was partial to the name "Fred" for the links he created. Informality may be
acceptable in a small organization, but not where more than three or four databases
are in use.

The most intuitive approach is to use the naming convention DB_NAME .DB_DOMAIN
for all database links, for example, D7CA.BIGWHEEL.COM. Setting GLOBAL_NAMES
to TRUE enforces this convention of database links having the same name as the
database to which they connect. If you are using advanced replication, you must set
this parameter to TRUE.

Note that you can change the global name of any database instance with an ALTER
DATABASE statement:

ALTER DATABASE RENAME GLOBAL_NAME TO new_name

The global naming convention offers several advantages:

Consistency

Administrators and users know immediately to what database a given link
connects, whether they are reviewing trace files or source code or simply
browsing the database.

79

Oracle Distri

Oracle's Designer 2000 tool requires that
GLOBAL_NAMES be set to FALSE if you want to use it
to reverse-engineer a schema from a remote
database, because it creates database links named for
the schema. We have set the parameter to FALSE
during the reverse-engineering procedure and set it
back to TRUE when the procedure was complete.

buted Systems

80

Uniqueness

Setting GLOBAL_NAMES to TRUE guarantees that all databases in the network
community will have a unique name.

Compatibility with future releases

Oracle has hinted in various documents that global naming will be a
requirement in the future. For example, the release notes for Version 7.0.13
state: "You are encouraged to set this initialization parameter to TRUE as
future releases may depend on it."

In short, there is really no reason not to use global naming.

3.2.2 Public, Private, and Global Database Links

Database links can be either public or private. Public links are available to all
database users, while private links are available only to the creator. These levels of
visibility are analogous to public and private synonyms. Because public database
links provide a window into the remote database through which any user can peer,
they should not be used indiscriminately.

3.2.2.1 When to use public database links

A public database link is appropriate if many users of an application must access a
remote object and it is unreasonable or impossible to create individual accounts for
each of them in the remote database. In this situation, the DBA can create a single
account in the remote database to which the database link connects.

Remote Site Application Site
(D7NY.BIGWHEEL.COM):

CREATE USER fromd7ca
IDENTIFIED BY waxwings
/
GRANT CREATE SESSION TO fromd7ca
/
GRANT remote_browse TO fromd7ca
/

(D7CA.BIGWHEEL.COM):
CREATE PUBLIC DATABASE
 LINK D7NY.BIGWHEEL.COM
CONNECT TO fromd7ca
 IDENTIFIED BY waxwings
USING 'remotesite';

Oracle Distributed Systems

If you are the DBA at the remote site (D7NY.BIGWHEEL.COM), you might also
consider assigning a profile to "fromd7ca" which limits the account's connect time,
concurrent sessions, and so on.

Public database links are also required for certain configurations of advanced
replication. Refer to Chapter 10, for details.

3.2.2.2 When to use private database links

From a security standpoint, private database links are preferable to public links
because private links are available only to their creator. In general, you should opt
for a private database link whenever possible and view the public link as a special
case or last resort.

Specific scenarios that call for private links include:

• Links that are used for snapshot refreshes
• Links that are used in triggers
• Links that connect to a privileged account in the remote database
• Certain configurations of advanced replication (see Chapter 10)

In short, use private database links if you can, public database links if you must.

3.2.2.3 When to use global database links

The Oracle Names product automatically creates global database links between all
databases in your networked environment. Unlike public and private database links,
which Oracle stores in the data dictionary, global database links reside in the
network definition file. This feature offers the obvious advantage of eliminating the
need to create database links manually for all of your database instances.

By default, global database links do not use a CONNECT TO clause, which means that
a user account can view data over a global database link only if the same user
account exists in the remote database with the same password. These links provide
the same level of security as private database links and can be used according to the
same guidelines.

You can also override Oracle Names' default behavior and create global database
links that do use a CONNECT TO clause by supplying this information in the Network
Manager configuration tool. If you choose to create this type of global database link,
you should consider the link to be public and take precautions accordingly.

3.2.3 Creating Database Links

The CREATE DATABASE LINK statement has a number of components that determine
various properties of thedatabase link. These include:

• The PUBLIC qualifier
• The SHARED qualifier (Oracle8)
• The connection qualifier

81

Oracle Distributed Systems

• The CONNECT clause
• The CURRENT_USER qualifier (Oracle8)
• The USING clause
• The AUTHENTICATED clause (Oracle8)

The syntax for the CREATE DATABASE LINK statement has many options. The
creation of a database link can be as simple as

CREATE DATABASE LINK D7CA.BIGWHEEL.COM
/

or as complex as

CREATE SHARED PUBLIC DATABASE LINK D7CA.BIGWHEEL.COM@TCPIP
CONNECT TO cdye IDENTIFIED BY yankeeclip
AUTHENTICATED BY linkauth IDENTIFIED BY fingerprints
USING 'prodsales'
/

Getting It Right the First Time

Whenever you create a database link, it is well worth the effort
to confirm the validity of the link immediately. Doing so can
save hours of debugging and troubleshooting later on. For
example:

SQL> CREATE DATABASE LINK D7NY.BIGWHEEL.COM
 2 CONNECT TO cdye IDENTIFIED BY yankeeclip
 3 USING 'd7ny'
 4 /

Database link created.

SQL> SELECT * FROM global_name@D7NY.BIGWHEEL.COM
 2 /

GLOBAL_NAME

D7NY.BIGWHEEL.COM

1 row selected.

In the sections that follow, we'll examine the components of the CREATE DATABASE
LINK statement in detail.

3.2.3.1 Prerequisites for creating database links

82

Oracle Distributed Systems

To create a private database link, users must have the CREATE DATABASE LINK
system privilege. To create a public database link, users must have the CREATE
PUBLIC DATABASE LINK system privilege. In addition, the account to which the
database link connects must have CREATE SESSION privileges. Note that these
privileges may be granted through a role; direct grants of the system privileges are
not required.

3.2.3.2 The PUBLIC qualifier

The optional PUBLIC qualifier specifies a public database link. Guidelines for when
and why to use public database links are included earlier in Section 3.2.2.1.

3.2.3.3 The SHARED qualifier

The optional SHARED qualifier is a new feature of Oracle8. Shared database links can
potentially reduce the number of network connections between the local and remote
databases. Note that shared database links require that the local database be
running multi-threaded server (MTS) and that you supply an AUTHENTICATED clause.

Shared database links work by reusing an existing connection from a local MTS
server process to the remote database. A session can share the existing connection
to the remote database only if it uses the same database link. Thus, applications that
are good candidates for shared database links are those whose users utilize the
same public database link and those whose users log on to a single user account, as
is the case with several third-party Oracle applications.

Shared database links can actually increase the
number of network connections. This undesirable
situation can arise because repeated access to a
shared link can potentially establish as many
connections as you have multi-threaded server
processes. Thus, if the link has fewer users than you
have multi-threaded server processes, it should not be
a shared link.

3.2.3.4 The connection qualifier

Oracle8 allows you to specify multiple connection paths to the same database, which
is useful if you are running Oracle parallel server or multiple network protocols. For
example, a site that runs both TCP/IP and DECnet could create two database links to
the same database using each protocol:

CREATE DATABASE LINK D7CA.BIGWHEEL.COM@TCPIP
USING 'prodsales_tcpip'
/
CREATE DATABASE LINK D7CA.BIGWHEEL.COM@DECNET
USING 'prodsales_decnet'
/

83

Oracle Distributed Systems

The connection qualifier is the portion following the "@" sign in the database link
name.

In order for the preceding example to function as desired, the connect strings
"prodsales_tcpip" and "prodsales_decnet" would have to be configured to use the
appropriate protocol; the connection qualifier itself is merely a mnemonic. In this
case, the tnsnames.ora file contains the following entries:

prodsales_tcpip.bigwheel.com =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCPIP)
 (PROTOCOL = TCP)
 (Host = socrates.bigwheel.com)
 (Port = 1521)
)
)
 (CONNECT_DATA =
 (SID = D7CA)
 (GLOBAL_NAME = d7ca.bigwheel.com)
)
)
prodsales_decnet.bigwheel.com =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
 (PROTOCOL = DECNET)
 (NODE = socrates.bigwheel.com)
 (OBJECT = LSNR)
)
)
 (CONNECT_DATA =
 (SID = D7CA)
 (GLOBAL_NAME = d7ca.bigwheel.com)
)
)

3.2.3.5 The CONNECT clause

The CONNECT clause is the optional portion of the CREATE DATABASE LINK
statement which supplies a username and password; for example:

CONNECT TO cdye IDENTIFIED BY yankeeclip

The connect clause creates a fixed-user database link, which means that everybody
who accesses it will connect to the remote database with the same username and
password. Fixed-user database links can be appropriate for public database links for
which a specially designated account exists at the remote database or for private
links that connect to a different user at the remote database.

If you omit the CONNECT clause, the database link will attempt to connect to the
remote database using the same username and password as the user who created
the link.

84

Oracle Distributed Systems

3.2.3.6 The CURRENT_USER qualifier

The optional CURRENT_USER qualifier causes the database link to connect to the
remote database under the session's current security context. Thus, if the user is
executing a procedure, package, or trigger from another schema when it accesses
the database link, the link will connect to the remote database as the owner of the
object being executed. If the session is not executing an object from another schema,
the link will connect under the same account as the session.

This option is available only if you have configured the current user as a global user
with an enterprise authentication service such as Oracle Security Server (OSS).

3.2.3.7 The USING clause

The optional USING clause supplies the connect string that the database link is to
use:

USING 'prodsales'

Although this clause is optional, you must supply it unless there is already a public
database link to the destination database using the desired connect string. (See
Section 3.2.6 for more information.)

3.2.3.8 The AUTHENTICATED clause

The AUTHENTICATED clause is required if you are using shared database links:

AUTHENTICATED BY linkauth IDENTIFIED BY fingerprints

The account specified in the AUTHENTICATED clause must exist in the remote
database with CREATE SESSION privileges. This link does not connect as this user.
Rather, Oracle uses this clause as an added measure of security.

3.2.4 Dropping Database Links

The DROP DATABASE LINK statement has the syntax:

DROP [PUBLIC] DATABASE LINK dblink;

where dblink is the name of the link.

To drop a private database link, you must be connected as the owner of the
database link. You can neither create nor drop private database links outside of your
own schema. In order to drop a public database link, you must have the DROP
PUBLIC DATABASE LINK system privilege, either through a direct grant or through a
role.

85

Oracle Distributed Systems

3.2.5 Accessing Data over a Database Link

You can use a database link to access remote data essentially as though it were local.
Oracle does handle distributed queries and updates differently from local ones, but to
the end user these differences are irrelevant. (The DBA and developer, however,
should consult the upcoming Section 3.3.) Oracle establishes your security context in
the remote database based on the remote schema to which the link connects. This
schema is

• The user specified in the link's CONNECT TO clause, if this clause is used.
• The same as the current user in the local database if the link is created with

the CURRENT USER qualifier, and the local user is executing a PL/SQL object
(procedure, package, or trigger).

• The same as the local connected user if neither of the preceding is true.

To reference a remote object, append an "@" sign and the name of the database link
to the name of the object:

SQL> SELECT product_id, catalog_id, description, audit_date
 2 FROM products@D7NY.BIGWHEEL.COM
 3 /

PRODUCT_ID CATALOG_ID DESCRIPTION AUDIT_DATE
---------- ---------- ----------------------------- ---------------

1000001 BIKE-0002 Boys 5 Speed Touring 28-Oct-1997
11:16:53
1000002 BIKE-0003 Girls 5 Speed Touring 28-Oct-1997
11:16:53
1000003 BIKE-0004 Mens 10 Speed Touring 28-Oct-1997
11:16:53
1000004 BIKE-0005 Mens 18 Speed Touring 28-Oct-1997
11:16:54
1000005 BIKE-0006 Mixte 10 Speed Touring 28-Oct-1997
11:16:54
1000006 BIKE-0007 Mixte 18 Speed Touring 28-Oct-1997
11:16:54
1000007 BIKE-0008 Mens 12 Speed Mountain Bike 28-Oct-1997
11:16:54
1000008 BIKE-0009 Mens 18 Speed Mountain Bike 28-Oct-1997
11:16:54
1000010 BIKE-0011 Mens 10 Speed Alloy Touring 28-Oct-1997
11:16:54
1000011 BIKE-0013 Mens 12 Speed Racing 28-Oct-1997
11:16:54
1000012 BIKE-0014 Mens 18 Speed Racing 28-Oct-1997
11:16:54
1000013 BIKE-0015 Mens 12 Speed Alloy Racing 28-Oct-1997
11:16:54
1000014 BIKE-0016 Mens 18 Speed Alloy Racing 28-Oct-1997
11:16:54
1000015 BIKE-0017 Womens 18 Speed Alloy Racing 28-Oct-1997
11:16:54

86

Oracle Distributed Systems

14 rows selected.

3.2.6 How Database Links Are Resolved

A database can easily have multiple database links with the same name. For
example, several users may have private links to the same remote database, and
there may also be a public database link to this remote site. Oracle requires a
username and a connect string to establish a connection over a database link. Oracle
does not necessarily obtain these two pieces of information from a single database
link. So, when a user references an object at the remote site, how does Oracle
determine how to establish the remote connection?

3.2.6.1 The algorithm

When a user references a remote object, Oracle constructs the access path to the
object following these steps:

1. If the reference to the database link contains only the database name portion,
append the local domain name to the database name. For example, "d7ca"
becomes D7CA.BIGWHEEL.COM.

2. If the user has a private database link to the remote database:
a. If the private link contains both a CONNECT TO clause and a USING

clause, use this information to establish the connection.
b. If the private link contains a USING clause only, establish the

connection using the local user's username and password at the
remote database.

c. If the private link contains a CONNECT TO clause only, look for a public
database link to determine the USING clause.

d. If the private link contains neither a CONNECT TO clause nor a USING
clause, look for a public database link to determine the USING clause.

3. If there is a public database link to the remote database:
a. If a private database link also exists but without a USING clause,

obtain the USING clause from this link if possible.
b. If no private database link exists, and the public link contains a

CONNECT TO and a USING clause, use this information to establish the
connection.

c. If no private database link exists, and the public link contains a USING
clause only, establish the connection using the local user's username
and password at the remote database.

d. If no private database link exists, and the public link does not contain
a USING clause, look for a global database link to determine the
USING clause.

4. If a global database link to the remote database exists:
a. If neither a private nor a public database link exists, use this link to

determine the USING clause for the remote destination. If this link
contains a CONNECT clause, use the specified username and password;
otherwise, use the local user's username and password at the remote
site.

b. If a private and/or public database link exists, but the USING clause is
not specified, use this link to determine the USING clause.

87

Oracle Distri

This example works because the cdye account exists
in the local and remote databases with the same
password, and the local database has the INIT.ORA
parameter GLOBAL_NAMES set to TRUE.

buted Systems

88

3.2.6.2 Example of database link resolution

If we create a public database link specifying a USING clause only, we can then
create private database links without having to specify either a CONNECT clause or a
USING clause for all users who have accounts at the remote database, with the same
password:

SQL> connect system@d7ny
Enter password:
Connected.
SQL> CREATE PUBLIC DATABASE LINK D7CA.BIGWHEEL.COM
 2 USING 'd7ca'
 3 /

Database link created.

SQL> connect cdye
Enter password:
Connected.
system@d7ny SQL> CREATE DATABASE LINK D7CA.BIGWHEEL.COM
 2 /

Database link created.

system@d7ny SQL> SELECT * FROM global_name@D7CA.BIGWHEEL.COM
 2 /

GLOBAL_NAME

D7CA.BIGWHEEL.COM

1 row selected.

In this example, the statement

SELECT * FROM global_name@D7CA.BIGWHEEL.COM

uses cdye's private database link to determine the username and password to use at
the remote site, and uses the public database link to determine the connect string
for D7CA.BIGWHEEL.COM, that is, "d7ca".

3.2.7 Listing Information About Database Links

The data dictionary views for database link information are DBA_DB_LINKS, A
LL_DB_LINKS, and USER_DB_LINKS. Table 3.2 describes the fields in these views.

Oracle Distributed Systems

Table 3.2. DBA_DB_LINKS, ALL_DB_LINKS, and USER_DB_LINKS Field
Descriptions

Field Name Description
Owner (DBA_DB_LINKS and
ALL_DB_LINKS only)

The owner of the database link.

DB_LINK
The name of the database link. This is the remote
database name and the domain name.

Username
The username specified in the CONNECT TO clause.
NULL if the CONNECT TO clause is not supplied.

Password (USER_DB_LINKS
only)

The password specified in the CONNECT TO clause.
NULL if the CONNECT TO clause is not supplied.

Host
The SQL*Net connect string to the remote database.
This corresponds to the USING clause. NULL if the
USING clause is not supplied.

Created Date the database link was created.

The following script lists all database links that exist in the database .

-- Filename: links.sql
-- Purpose: Reports all database links in the database.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-May-1997

column owner heading "Owner" format a10
column db_link heading "DB Link" format a20
column username heading "Username" format a12
column host heading "Host" format a12
column created heading "Created" format a20

SELECT owner,
 db_link,
 username,
 host,
 TO_CHAR(created, 'DD-Mon-YYYY HH24:MI:SS') created
FROM dba_db_links
ORDER BY db_link, owner
/

Here is a sample of the output:

system@d7ny SQL> @links

Owner DB Link Username Host Created
-------- ------------------ ---------- ------ -----------------

CDYE D7CA.BIGWHEEL.COM 04-Dec-1997
12:19:53

89

Oracle Distributed Systems

PUBLIC D7CA.BIGWHEEL.COM d7ca 01-Oct-1997
22:24:35
REPADMIN D7CA.BIGWHEEL.COM REPADMIN 01-Oct-1997
22:32:05
SPROCKET D7CA.BIGWHEEL.COM SPROCKET 01-Oct-1997
22:42:24
SYS D7CA.BIGWHEEL.COM REPSYS 01-Oct-1997
22:27:21

5 rows selected.

Note that although the password field appears only in the USER_DB_LINKS data
dictionary view, the unencrypted password is visible in the SYS.LINK$ table. Anybody
with the DBA role or the SELECT ANY TABLE system privilege can see this table; for
example:

SQL> select userid, password
 2 from sys.link$
 3 where password is not null;

USERID PASSWORD
------------- ------------------------------
REPSYS ASHTABULA
SPROCKET PEPPERPIKE
REPSYS ORCHARDPARK
REPADMIN HAVERFORD
OCLASS NICHOLS

5 rows selected.

Similarly, the username and password supplied in the Oracle8 AUTHENTICATED
clause are visible in the SYS.LINK$ fields AUTHUSR and AUTHPWD, respectively. For
this reason, you should exercise extreme discretion when creating database links
that specify a CONNECT TO or AUTHENTICATED clause.

3.2.8 Data Relocation with Database Links

Moving data from one database to another is commonplace for DBAs and developers.
For example, DBAs may need to extract data from a production online transaction
processing (OLTP) system into a data warehouse, or developers may need to copy a
subset of data from a production database into a maintenance database to analyze a
problem or to test software against production data volumes. Although the export
and import utilities provide the functionality to move entire tables from one database
to another, they do not allow for the horizontal and/or vertical data partitioning that
is often required; the export and import utilities have only table-level granularity.

The database link is the answer when you need to copy a horizontal or vertical
subset of data from one database to another. For example, suppose we have a table
SALES_ITEMS that logs sales transactions, defined as follows:

SQL> desc sales_items
 Name Null? Type
---------------- --------- -----------------

90

Oracle Distri

You cannot use the INSERT INTO table_name ...
SELECT ... to load LONG, LONG RAW, or LOB data.
This restriction exists regardless of whether a
database link is involved; it is a restriction of SQL. You
can use the COPY command to relocate data, including

buted Systems

91

 SALES_ITEM_ID NOT NULL NUMBER(9)
 STORE_ID NOT NULL NUMBER(9)
 REGISTER_ID NOT NULL NUMBER(9)
 SALES_ASSOC_ID NOT NULL NUMBER(9)
 PRODUCT_ID NOT NULL NUMBER(9)
 PRICE NOT NULL NUMBER(10, 2),
 PAY_METHOD NOT NULL CHAR(1)
 CUST_POSTCODE VARCHAR2(12)
 AUDIT_DATE NOT NULL DATE
 AUDIT_USER NOT NULL VARCHAR2(30)
 GLOBAL_NAME NOT NULL VARCHAR2(20)

We wish to extract sales transactions from the normalized SALES_ITEMS table in the
OLTP database into the SALES_FACTS table in our data warehouse where the
marketing experts can generate their marketing segmentation reports.

SQL> desc sales_facts
 Name Null? Type
 --------------- -------- -----------------
 JULIAN_DAY NOT NULL NUMBER(9)
 PRODUCT_ID NOT NULL NUMBER(9)
 STORE_ID NOT NULL NUMBER(9)
 DOLLARS_SOLD NOT NULL NUMBER(10, 2)
 UNITS_SOLD NOT NULL NUMBER(6)

The following example loads summarized sales data from the SALES_ITEMS table at
the remote database D7CA.BIGWHEEL.COM into the SALES_FACTS table:

INSERT INTO sales_facts (
 julian_day,
 product_id,
 store_id,
 dollars_sold,
 units_sold)
(
SELECT TO_CHAR(audit_date, 'J'),
 product_id,
 store_id,
 sum(dollars_sold),
 count(*)
FROM sales_items@D7CA.BIGWHEEL.COM
GROUP BY audit_date, product_id, store_id
)
/

An extract of this type is simply not possible with the export/import utilities.

Oracle Distributed Systems

92

LONG and LONG RAW data (under 32K) from one
database to another. Although the COPY command
does not use a database link, it functions in a similar
way.

3.2.9 Restrictions on Distributed Operations over
Database Links

Note the following restrictions:

• Certain operations and constructs are not supported over database links; for
example, it is not possible to grant privileges on remote objects referenced
through a database link, and in Oarcle8 it is not possible to DESCRIBE remote
tables and views.

• Referential integrity cannot be defined or enforced over a database link.
• Database roles cannot be granted to users in a remote database.
• Queries using hash query joins cannot use multi-threaded server (MTS)

connections.

3.3 Distributed Queries and Transactions

The database link is the key to location transparency in Oracle; you can perform
operations on objects in multiple databases unfettered with details about where
objects reside, network protocols, database names, and so on. However, if you are a
DBA or a developer, you can create more efficient and robust systems by
understanding the mechanisms behinddistributed queries and transactions.

Table 3.3 lists the operations that Oracle supports in a distributed environment.

Table 3.3. Supported Distributed Operations
Supported DML Supported Transaction Control

SELECT COMMIT

SELECT FOR UPDATE ROLLBACK

INSERT

SAVEPOINT

UPDATE ROLLBACK TO SAVEPOINT

DELETE
LOCK TABLE

3.3.1 Behind the Scenes of a Distributed Transaction

As with local transactions, consistency is a fundamental requirement of distributed
transactions. A distributed transaction must either succeed at all participating nodes

Oracle Distributed Systems

or fail at all participating nodes. The classic example is the transfer of funds from one
institution to another, each with its own database. The transfer must debit the payer
in one database and credit the payee in the other. These updates must either
succeed in both databases or fail in both databases.

Oracle ensures this transactional consistency through a mechanism called the two-
phase commit, so named because transaction commits occur in two stages, the
prepare phase and the commit phase. I'll examine the activities associated with
these phases in the sections that follow.

3.3.1.1 Two-phase commit: The participants

Each participant in a distributed transaction fulfills one or more roles, each with
specific responsibilities during the two-phase commit. The roles are:

Client

A client is a machine that references data in one or more remote databases. A
client may or may not be a database server.

Local coordinator

A local coordinator is a database server that participates in a distributed
transaction that accesses data on remote database servers. The local
coordinator is responsible for the following tasks:

• Passing transaction status information among the database servers
whose data it accesses

• Initiating queries on the remote database servers, possibly on behalf
of other database servers (if necessary)

• Processing queries originating from remote database servers (if
necessary)

• Returning results of queries to the other database servers (if
necessary)

Commit point site

The commit point site effects commits or rollbacks at all participating nodes,
as instructed by the global coordinator. (The commit point site and the global
coordinator can be one and the same.) The site with the highest setting of the
INIT.ORA parameter COMMIT_POINT_STRENGTH is the commit point site,
with the following exceptions:

• A read-only node cannot be a commit point site.
• If two or more nodes have the same COMMIT_POINT_STRENGTH, the

determination of the commit point site is not specified.
• If the global coordinator is unable to initiate the prepare phase at all

participating nodes, no commit point site is designated and the global
coordinator initiates a rollback at all relevant sites.

Global coordinator

93

Oracle Distributed Systems

The global coordinator is the database server from which the distributed
transaction originates. It is responsible for the following:

• Passing SQL instructions to all directly referenced database servers
• Initiating the prepare phase of the two-phase commit on all

participating nodes except for the commit point site
• Upon successful completion of the prepare phase at all participating

sites, requesting the commit point site to commit the transaction
• Upon unsuccessful completion of the prepare phase at one or more

participating sites, initiating a rollback of the transaction at all nodes
• Ensuring that all participants conclude the transaction with the same

outcome as the commit point site—that is, the transaction either
succeeds everywhere or fails everywhere

The chain of connections from the global coordinator to the local coordinator(s) and
commit point site is known as the session tree. The global coordinator is always at
the top of the session tree.

3.3.1.2 Two-phase commit: Explained

As mentioned earlier, the two phases of the two-phase commit are the prepare
phase and the commit phase. During the prepare phase, the global coordinator
contacts all local coordinators and instructs them to perform whatever steps are
necessary to be in a position to commit their portion of the distributed transaction.
These steps include the following:

• Determining whether the transaction performs any local DML
• Requesting any other dependent nodes to prepare (this stage is called

"collecting"); the global coordinator must always perform the collecting step;
local coordinators perform it only if they have dependents perform it

• Obtaining requisite locks
• Writing the changes required by the transaction to the redo log

After completing (or attempting to complete) these tasks, the local coordinator
reports one of three possible statuses to the global coordinator:

Prepared

The site has made all changes required by the transaction and has written the
changes to the redo log. Any dependent sites have done the same.

Read-only

The site has determined that the transaction does not modify any local data,
so it need not prepare and does not participate in the commit phase of the
transaction.

Abort

94

Oracle Distributed Systems

The site is unable to prepare. The transaction will release any latches or locks
it may have obtained before failing. When the global coordinator receives an
abort status from a site, it rolls back the transaction at all other sites.

Note that the commit point site does not participate in the prepare phase. The
rationale is that the commit point site is the most reliable site and therefore is the
most likely to be able to commit its portion of the transaction. Since the commit
point site is the most reliable, it is the most critical as well, and therefore should not
be required to allocate resources for the prepare phase to a transaction that requires
success on several other less reliable nodes.

If all local coordinators report back to the global coordinator with a status of
prepared, the transaction is in a state of in-doubt until a commit or rollback is issued.
We are now ready for the commit phase, which consists of the transaction's actual
commit or rollback.

During the commit phase:

• The global coordinator instructs the commit point site to commit its portion of
the transaction.

• The commit point site performs its commit. At this point the entire distributed
transaction is considered to be committed because even if there is a
communication failure, all other sites will automatically commit their portion(s)
of the transaction when communication is reestablished.

• The commit point site informs the global coordinator that it has completed the
commit. The commit point site retains information about the transaction in
the data dictionary.

• The global coordinator instructs the local coordinators to commit, and
commits its portion of the transaction too. All non-commit point sites write an
additional entry to their redo logs indicating that the transaction is committed,
and release any locks that they may have acquired for the transaction. They
also inform any of their children on the session tree to perform commits.

• Local coordinators inform the global coordinator of their commits.
• The global coordinator informs the commit point site of the commit. At this

point, the commit point site "forgets" about the transaction; information
about it no longer exists in its data dictionary.

When Oracle commits a distributed transaction, the system change number (SCN)
for the transaction is the same at all participating sites. Oracle uses the highest SCN
of all the participating sites as the global SCN. The coordination of SCNs among
participants in the distributed transaction simplifies recovery procedures.

3.3.2 When Things Go Wrong

Of course, distributed transactions can fail at any point of the two-phase commit. For
example, a connection to a local coordinator could go down after the commit point
site commits but before the local coordinator is instructed to commit. For the most
part, Oracle is able to detect and resolve these kinds of problems, but in some cases
DBA intervention is warranted.

95

Oracle Distributed Systems

96

Error messages pertaining to distributed transactions
fall in the range ORA-02040 to ORA-02099.
Applications that use distributed transactions should
include exception handlers for all of these errors.
Applications that depend on the two-phase commit
protocol must have detailed strategies for dealing with
the unavailability of one or more commit sites.
Examples include having the application retry the
operation or logging information about the failure in
an error table that can be used to execute the
transactions when the underlying problems are
corrected.

3.3.2.1 Types of distributed transaction failures

How do you know that you have a problem in the first place? Abnormal conditions
that occur during the two-phase commit generally are caused by a network or server
failure that occurs between the prepare and commit phases. Since the length of time
between these phases is infinitesimal, these problems are rare. The errors that you
may see in the alert log are:

ORA-02050 transaction id rolled back, some remote DBs may be in-doubt

A communication error occurred during the two-phase commit.

ORA-02053 transaction id committed, some remote DBs may be in-doubt

The transaction was committed locally, but communication with one or more
local coordinators has been lost.

ORA-02054 transaction id in-doubt

The transaction is neither committed nor rolled back locally, and
communication with the global coordinator has been lost.

In all three cases, the RECO background process will resolve the error when
communications are reestablished, often before the user or DBA discovers the
problem. Oracle will not close these connections until
DISTRIBUTED_RECOVER_CONNECTION_HOLD_TIME seconds have elapsed.

In rare cases, an in-doubt transaction can continue to hold locks on objects if the
RECO process is not able to resolve the problem. If a user attempts to perform DML
on an object so locked, Oracle returns the error:

ORA-01591 lock held by in-doubt distributed transaction id

Oracle Distributed Systems

In this case, Oracle rolls back the user's attempted transaction. The DBA should now
manually commit or roll back the in-doubt transaction.

A less rare and more troublesome scenario arises when distributed transactions time
out waiting to acquire locks or hold locks themselves for an excessive amount of
time. If a distributed transaction cannot obtain a required lock after
DISTRIBUTED_LOCK_TIMEOUT seconds, Oracle returns an error:

ORA-02049 timeout: distributed transaction waiting for lock

Your only recourse is to retry the operation. Of course, you should determine what
other transaction is holding the lock and verify that no other problems exist.

3.3.2.2 Forcing commits and rollbacks of distributed
transactions

In cases in which in-doubt transactions hold locks, blocking access to data, the
DBA(s) of the sites involved in the distributed transaction can force a commit or
rollback, thereby releasing the locks. In-doubt transactions may also hold extents of
a rollback segment, preventing other transactions from using it. The data dictionary
views DBA_2PC_PENDING and DBA_2PC_NEIGHBORS provide information about
transactions in need of recovery so that the DBA can decide whether a commit or
rollback is appropriate.

Tables Table 3.4 and Table 3.5 summarize the columns in these views.

Table 3.4. DBA_ 2PC_PENDING Data Dictionary View
Column Name Description

LOCAL_TRAN_ID
Local ID of the transaction. The first portion of this value is the
ID of the rollback segment (as seen in DBA_ROLLBACK_SEGS)
for the local transaction.

GLOBAL_TRAN_ID Global transaction ID, unique to all sites.

STATE

One of the following:

Collecting
Prepared
Committed
Forced Commit
Forced Rollback

MIXED
D implies that portions of the transaction have been committed
and portions rolled back (forcibly).

ADVICE

C indicates Commit

R indicates Rollback.

This field is populated only if the application has issued one of

97

Oracle Distributed Systems

the statements:

ALTER SESSION ADVISE COMMIT

or

ALTER SESSION ADVISE ROLLBACK

before beginning the distributed transaction.

TRAN_COMMENT

Commit comment text. This field is populated only if the
application has issued a COMMIT USING with a comment:

COMMIT COMMENT "comment text here."
FAIL_TIME Time the record was inserted into the view.

FORCE_TIME
Time the transaction was forced. NULL if the transaction has not
been forced.

RETRY_TIME
Time the RECO background process last attempted to resolve the
transaction.

OS_USER
Operating system user ID of the local user who created the
transaction.

OS_TERMINAL
Terminal from which the local portion of the transaction
originated.

HOST
Name of the machine from which the local transaction
originated.

DB_USER
Oracle ID of the username originating the distributed
transaction.

GLOBAL_COMMIT# Global commit number of the transaction (if committed).

Table 3.5. DBA_2PC_NEIGHBORS Data Dictionary View
Column Name Description

LOCAL_TRAN_ID Local ID of the transaction.

IN_OUT

Connection type:

IN for incoming
OUT for outgoing

DATABASE
For incoming connections, the client database global name. For
outgoing connections, the database link.

DBUSER_OWNER
For incoming connections, the Oracle username. For outgoing
connections, the owner of the database link.

INTERFACE

Used to locate the commit point site.

For incoming links, C indicates that this site or one of the
descendants on an outgoing link is the commit point site.

For outgoing links, C indicates that the destination database DBID
is the commit point site.

98

Oracle Distributed Systems

If we are in-doubt, INTERFACE is N and then the top-level
database either is the commit point site or can locate the commit
point site.

DBID The global name of the remote database.

SESS#
Local session number for the connection. Sessions are numbered
consecutively, starting with 1.

BRANCH
Transaction branch. Branch IDs for incoming connections are two-
byte hexadecimal numbers; the first byte is the remote parent's
session ID, and the second byte is its branch ID.

The DBA can use these views to determine how the distributed transaction has been
resolved at other participating sites and act accordingly. First, query
DBA_2PC_NEIGHBORS to determine whether the commit point site is a parent
(INTERFACE = N). If so, query this data dictionary view in the DBID database;
continue this trace until you find the database where INTERFACE is C. At this
database, you can determine the state of the distributed transaction by querying the
DBA_2PC_PENDING data dictionary view. If STATE is Committed or Forced Commit,
you can commit the local transaction:

COMMIT FORCE 'local_tran_id'

If the GLOBAL_COMMIT# is available in DBA_2PC_PENDING for this transaction, you
should use it when you force the transaction:

COMMIT FORCE 'transaction_id', GLOBAL_COMMIT#

Otherwise, if the transaction has not been committed at the commit point site, you
can roll back the local transaction:

ROLLBACK FORCE 'transaction_id';

3.3.2.3 Testing recovery of failed distributed transactions

Oracle provides a means to force distributed transactions to fail manually so that you
can test your distributed transaction recovery procedures. If you issued a commit
with a comment ORA-2PC-CRASH-TEST-n, you can test a variety of scenarios,
according to the value of n, as shown in Table 3.6.

Table 3.6. V alues of n in ORA-2PC-CRASH-TEST-n
n Type of Failure Induced

1 Crash commit point site after collect.

2 Crash non-commit point site after collect.

3 Crash non-commit point site before prepare.

4 Crash non-commit point site after prepare.

5 Crash commit point site before commit.

6 Crash commit point site after commit.

7 Crash non-commit point site before commit.

99

Oracle Distri

We are limiting our discussion to media recovery only,
which is based on SCNs. Alternative methods, such as
the import/export utilities, are not based on SCNs, and
therefore you cannot coordinate them with distributed
transactions in other databases.

buted Systems

100

8 Crash non-commit point site after commit.

9 Crash commit point site before forget.

11 Crash commit point site after forget.

3.3.3 Restrictions on Distributed Transactions

Oracle imposes the following restrictions on distributed transactions:

• All referenced LONG and LONG RAW data must be on a single server.
• DDL over database links is not supported.
• ANALYZE TABLE LIST CHAINED ROWS is not supported over a database link.
• Queries that begin after the PREPARE phase of a distributed transaction

cannot access locked data until the transaction is committed or rolled back.

3.4 Distributed Backup and Recovery

If you arerecovering a database that participates in distributed transactions, you may
need to coordinate your recovery with the other database instances. The good news
is that if you perform complete recovery (the most common type of recovery), you
have nothing to worry about.

Table 3.7 lists the possible recovery scenarios.

Table 3.7. Distributed Recovery Scenarios
Recovery Method Impact on Databases Participating in Distributed Transactions

Restore from a cold
backup

All other databases must also be restored to the same
point in time.

Complete media
recovery

No action required.

Incomplete media
recovery

All other databases must also be restored to the same
point in time.

As Table 3.7 indicates, the only recovery scenarios that impact other databases in
the distributed environment are those in which the recovery is incomplete—that is,
up to some time in the past. The obvious issue is that an incomplete recovery may
result in data that is inconsistent globally because a distributed transaction may have
been committed some time after the time to which you restore. Of course, if you can
guarantee that no such transactions exist, you can recover to a time in the past
without involving the other distributed databases.

Oracle Distributed Systems

101

If you are using the advanced replication facilities, you
must always perform complete media recovery in
order to guarantee the integrity of the replicated
environment.

3.4.1 Distributed Recovery

If you cannot avoid the requirement to recover a database to a time in the past, you
must roll all other databases back to the same point in time. How do you perform
global transaction time-based recovery?

1. Determine the SCN to which you have recovered. This is available in the alert
log; look for an entry of the form:

RESETLOGS after incomplete recovery UNTIL CHANGE xxxxxx

2. Restore all other databases to the same SCN. (Recall that distributed
transactions coordinate SCNs.)

Obviously, such a recovery can potentially force you to discard data in a healthy
database just because of a failure in another. You can mitigate the impact if you
export the data that you know you want to keep beforehand.

Also, if you have applications that rely heavily on distributed transactions, you can
try to isolate the tables in these transactions to a single schema so that you can
maximize the use of export/import to save as much of the nondistributed data as
possible. Unfortunately, you cannot perform media recovery for a single schema.

3.4.2 Snapshots

If you perform partial recovery to a database that is the master for one or more
snapshots, the snapshots may contain data from the "future." All snapshot sites
should perform a complete refresh to ensure that they are consistent.

3.4.3 Backup Strategy Considerations

If it is conceivable that you will need to perform an incomplete backup of a database
involved in distributed transactions, it is important that you have valid backups of all
other participating databases from the same time. Although it is not often practical
or feasible to take backups of multiple databases at exactly the same time, you
should certainly have all of your systems on a similar backup schedule (e.g., weekly).
Your choices for the time for recovery are limited by your backup supply.

Oracle Distributed Systems

3.5 Multiversion Interoperability

Oracle permits database links between any two RDBMS versions between Version 6
and Version 8, inclusive. However, there are restrictions, particularly when a Version
6 database is involved.

For database links going from an Oracle Version 6 database to an Oracle7 database:

• Comparisons of fixed-length strings use blank-padded semantics in the
Oracle7 database, even though Oracle Version 6 itself does not.

• The link must be over a SQL*Net V2 connection if the Oracle Version is 7.3 or
higher.

From an Oracle7 or Oracle8 database to an Oracle Version 6 database:

• The database link must be over a SQL*Net V2 or Net8 connection.
• The link can update only a single Version 6 database in a given statement.
• The link cannot perform distributed transactions with an Oracle Version 6

database.

102

Oracle Distributed Systems

Chapter 4. Distributed Database Security

The manager of a distributed database environment has security considerations over
and above the typical user authentication and access level concerns of the single
database environment. The DBA is responsible for ensuring the privacy and integrity
of the data that travels the network and for implementing an appropriately secure
user authentication policy. At the same time, any single database in a distributed
environment must maintain a high degree of autonomy from the databases and
machines with which it interacts. Oracle provides security mechanisms at several
layers, including the levels of the database, operating system, and network. This
chapter discusses how to implement a secure environment with these various levels
and points out some situations that you should avoid.

4.1 Privilege Management

You have a variety o f choices for managing access to objects in remote databases;
these choices fall into one of the following categories:

The simplistic approach

Remote objects are accessed over a public database link, with a local public
synonym for each remote object.

The mirrored account approach

Remote objects are accessed over private database links for all user accounts,
with a local public synonym for each remote object.

The local view approach

A local view is created for remote tables. Access to remote objects is via
these local objects.

The local wrapper approach

Remote PL/SQL objects (procedures and packages) are called from local
procedures; the remote procedures themselves are not available to local
users.

The guidelines provided here will help you decide what is best for your applications.

4.1.1 The Simplistic Approach

The easiest way to provide users access to remote objects is to create a public
database link to the remote database and create public synonyms for the objects
there. For example, the DBA at the site D7NY.BIGWHEEL.COM could provide access
to the SPROCKET.PRODUCTS table in D7CA.BIGWHEEL.COM by following these steps:

1. Create apublic database link to D7CA.BIGWHEEL.COM:

103

Oracle Distributed Systems

2. CREATE PUBLIC DATABASE LINK D7CA.BIGWHEEL.COM
3. CONNECT TO d7nydba IDENTIFIED BY masquerade

USING 'prodcal';

We assume that the account "d7nydba" exists in D7CA.BIGWHEEL.COM, and
that it has sufficient privileges to SELECT from the SPROCKET.PRODUCTS
table.

4. Create a public synonym for the remote SPROCKET.PRODUCTS table:
5. CREATE PUBLIC SYNONYM products

FOR sprocket.products@D7CA.BIGWHEEL.COM;

Actually, the public synonym is not required for users to access the remote
object; they could also reference it by specifying the database link; for
example:

SELECT *
FROM sprocket.products@D7CA.BIGWHEEL.COM;

Now any user in the local database D7NY.BIGWHEEL.COM can access the remote
table SPROCKETS.PRODUCTS as though it were local and enjoy the privileges that
have been granted to d7nydba.

4.1.1.1 Advantages of the simplistic approach

The primary advantage of this means of remote access is that it is extremely easy to
implement, and it requires a minimal amount of coordination with the DBA at the
remote site. In other words, this is the quick and dirty method, but be advised that it
is dirty !

4.1.1.2 Disadvantages of the simplistic approach

What does it mean to say this method is dirty? Consider the following:

The simplistic approach opens the door to the remote database

Since we created a public database link to the remote database, which
connects to a specific user ID, we have potentially (and probably) built a
security hole. Any account in the local database can reference objects in the
remote database with the privilege level of the account to which the public
database link connects. Access is not restricted to the SPROCKET.PRODUCTS
table for which we created the public synonym; any table, view, procedure, or
package that d7nydba can access is available to all users in the local database.
For example, curious users might help themselves to sensitive data as follows:

SELECT last_name, first_name, salary
FROM payroll@D7CA.BIGWHEEL.COM;

Of course, the d7nydba account in D7CA.BIGWHEEL.COM could be created
with limited privileges, but it will always be able to see more than just the

104

Oracle Distributed Systems

SPROCKET.PRODUCTS table since any objects accessible to PUBLIC are also
accessible to d7nydba.

The simplistic approach provides no local control over access to remote objects

This issue is similar to that described in the previous item. Not only have we
provided more access than is necessary to the remote database, but also we
have no control over which local users can see the SPROCKET.PRODUCTS
table; they all can. In addition, all users enjoy the same level of privileges on
the table, as determined by d7nydba's privilege level in
D7CA.BIGWHEEL.COM. In other words, we cannot use database roles in the
local database to define access levels. One size fits all, whether you like it or
not.

4.1.2 The Mirrored Account Approach

Themirrored account approach entails creating user accounts in all databases in
which they require access to data and private database links for these accounts from
each database to all other databases they must reference. The private database links
need not be created with a CONNECT or USING clause if a public database link exists
to resolve link names. This is one of Oracle's recommended configurations for the
advanced replication facilities with Oracle7.

Suppose we wish to create accounts for users "cdye" and "jblow" in database
D7NY.BIGWHEEL.COM so that these accounts can reference remote objects in
database D7CA.BIGWHEEL.COM. Here are the steps we would take:

1. Create the user accounts in D7NY.BIGWHEEL.COM and in
D7CA.BIGWHEEL.COM. If the accounts have the same passwords in both
databases, we can create private database links without the CONNECT clause:

2. CREATE USER cdye IDENTIFIED BY yankeeclip
3. DEFAULT TABLESPACE users
4. TEMPORARY TABLESPACE temp;
5.
6. GRANT CREATE SESSION TO cdye;
7.
8. GRANT app_admin TO cdye;
9.
10. CREATE USER jblow IDENTIFIED BY aoldotcom
11. DEFAULT TABLESPACE users
12. TEMPORARY TABLESPACE temp;
13.
14. GRANT CREATE SESSION TO jblow;
15.

GRANT app_user to jblow;

Note that in this example we have granted different roles to the different
users (app_admin for cdye, and app_user for jblow); the mirrored account
method allows you to tailor privileges to specific users.

105

Oracle Distributed Systems

16. Create a public database link from D7NY.BIGWHEEL.COM to
D7CA.BIGWHEEL.COM so that the private database links can be created
without the USING clause:

17. CREATE PUBLIC DATABASE LINK D7CA.BIGWHEEL.COM
USING 'prodcal'

You can create this link from any account that has sufficient privileges to
create public database links.

18. Create private database links from the cdye and jblow accounts.

Connected as cdye:

CREATE DATABASE LINK D7CA.BIGWHEEL.COM

Connected as jblow:

CREATE DATABASE LINK D7CA.BIGWHEEL.COM

19. Create synonyms for the remote objects in D7CA.BIGWHEEL.COM:
20. CREATE PUBLIC SYNONYM products FOR

sprocket.products@D7CA.BIGWHEEL.COM

The synonyms can be either public or private. From a practical standpoint,
however, public synonyms make more sense since you only have to create
one per object. If you do not create the synonyms, users can still reference
the remote objects by specifying the database link, for example:

SELECT product_id, product_name
FROM products@D7CA.BIGWHEEL.COM;

Once you have created these accounts and links, the specified users can access
remote objects, each with the access level you have granted.

4.1.2.1 Advantages of the mirrored account approach

Mirrored accounts allow you to grant access to remote objects only for those users
who require it, and you can grant different privileges to different users according to
their job functions and responsibilities. In addition, since the public database link we
created does not include a CONNECT clause, there is no "open door" to the remote
database.

4.1.2.2 Disadvantages of the mirrored account approach

Although mirrored accounts offer significant advantages over the simplistic approach,
some troublesome issues persist:

• Users with remote accounts can see any objects that are available to PUBLIC,
in addition to the objects to which they have been granted access either
explicitly or through roles.

106

Oracle Distributed Systems

• Since users have accounts in the remote databases, they can log in to these
databases directly, which may or may not be an issue depending on the site's
security policy.

• The maintenance of user accounts, passwords, and roles in multiple
databases can quickly become an administrative nightmare if there are large
numbers of users or database instances. The administrators of remote
database instances must sacrifice a degree of autonomy to support these
users.

• There is no local control over access to remote objects. This is still an issue,
as with the simplistic approach.

4.1.3 The Local View Approach

The local view approach entails creating a single privileged account in the remote
database which has sufficient privileges on all application tables there. A local
account creates a private database link that connects to the privileged account and
then builds views that reference the remote objects. Since these views are local, we
can use roles to define access levels.

Consider the SPROCKET.PRODUCTS table described in the previous examples. This
table resides in the database instance D7CA.BIGWHEEL.COM, but users in
D7NY.BIGWHEEL.COM must access it. What if some users need read-only access
while other users must update it? Here is the solution:

1. Create a privileged account in D7CA.BIGWHEEL.COM that has SELECT,
INSERT, UPDATE, and DELETE privileges on SPROCKET.PRODUCTS. (Assume
these privileges are granted to the role product_admin.)

2. CREATE USER d7nydba IDENTIFIED BY masquerade
3. DEFAULT TABLESPACE USERS
4. TEMPORARY TABLESPACE temp;
5.
6. GRANT CREATE SESSION TO d7nydba;
7.

GRANT product_admin TO d7nydba;

8. In D7NY.BIGWHEEL.COM, create a private database link to
D7CA.BIGWHEEL.COM that connects to the account created in Step 1. For the
sake of clean design, this link should be created under the account that owns
the application schema, but it could be made under any account that has
sufficient privileges to create views. In our case, we create the link under the
SPROCKET account:

9. CREATE DATABASE LINK D7CA.BIGWHEEL.COM
10. CONNECT TO d7nydba IDENTIFIED BY masquerade

USING 'prodcal';

11. From the account that created the database link in Step 2, create a private
synonym for SPROCKET.PRODUCTS@D7CA.BIGWHEEL.COM:

CREATE SYNONYM hq_products FOR
SPROCKET.PRODUCTS@D7CA.BIGWHEEL.COM;

107

Oracle Distri

The local view approach would also work with private
database links from each of the user accounts that
need to reference the remote object. You could,
therefore, require that local users have accounts in the
remote database. This adds an additional level of
security.

buted Systems

108

Strictly speaking, this step is optional. However, it is advisable because it
eliminates the necessity to create a view that contains a database link name
in the query text. This makes administrative tasks simpler, as we shall see in
Chapter 6.

12. Create a view that selects from the remote table:
13. CREATE VIEW products AS
14. SELECT product_id,
15. product_type,
16. catalog_id,
17. description,
18. rev_level,
19. production_date,
20. production_status

 FROM hq_products;

21. Create roles and grant privileges on the view, as appropriate:
22. CREATE ROLE product_viewer;
23.
24. GRANT SELECT ON products TO product_viewer;
25.
26. CREATE ROLE product_admin;
27.

GRANT SELECT, INSERT, UPDATE, DELETE ON products TO product_admin

28. Optionally create a public synonym for the view:

CREATE PUBLIC SYNONYM products FOR sprocket.products;

4.1.3.1 Advantages of the local view approach

The local view approach solves the problem of controlling access to remote objects
with local roles. You can create as many roles as you need to provide appropriate
levels of access. In addition, there is no public database link involved and therefore
no open door to the remote database. In fact, in the implementation outlined here,
the local account that owns the database link and the view does not even need to
have CREATE SESSION privileges once the view is in place! Then nobody can use the
account to exploit the private link to the remote database. (I always revoke CREATE
SESSION from schema owner accounts once the schema objects are created.)

4.1.3.2 Disadvantages of the local view approach

Oracle Distributed Systems

Truly there are no disadvantages to this approach other than the fact that the initial
setup is slightly more involved than the other techniques because you must create
the local view and roles. However, this is a small price to pay for the flexibility and
security that you realize.

4.1.4 The Local Wrapper Approach

Just as you can create local views on remote tables to control privileges, you can
also write local PL/SQL procedures which execute remote procedures. By writing a
local procedure or package that calls a remote procedure or package, you can use
local roles to administer privileges to the remote objects. The alternative is to create
database links that provide access to the remote procedures and packages and
sacrifice all local control over who can execute them.

Consider the package ProductMaint, which allows users to add new products to the
product table:

CREATE OR REPLACE PACKAGE ProductMaint IS
 PROCEDURE AddProduct (product_type_IN IN NUMBER,
 catalog_id_IN IN VARCHAR2,
 description_IN IN VARCHAR2,
 rev_level_IN IN VARCHAR2,
 production_date_IN IN DATE,
 product_status_IN IN VARCHAR);
END ProductMaint;
/
CREATE OR REPLACE PACKAGE BODY ProductMaint IS

PROCEDURE AddProduct(product_type_IN IN NUMBER,
 catalog_id_IN IN VARCHAR2,
 description_IN IN VARCHAR2,
 rev_level_IN IN VARCHAR2,
 production_date_IN IN DATE,
 product_status_IN IN VARCHAR) IS
BEGIN
 INSERT INTO products (product_id,
 product_type,
 catalog_id,
 description,
 rev_level,
 production_date,
 production_status,
 audit_date,
 audit_user,
 global_name)
 VALUES (seq_products.nextval,
 product_type_IN,
 catalog_id_IN,
 description_IN,
 rev_level_IN,
 production_date_IN,
 product_status_IN,
 SYSDATE,
 USER,

109

Oracle Distributed Systems

 DBMS_REPUTIL.GLOBAL_NAME);
END AddProduct;

END ProductMaint;
/

If this package exists in the database D7CA.BIGWHEEL.COM, how can we give some
(but not all !) users in D7NY.BIGWHEEL.COM access to it? Specifically, we wish to
allow those users in D7NY.BIGWHEEL.COM with the product_admin role the ability to
execute ProductMaint.AddProduct.

The solution, of course, is to create a local procedure (or "wrapper") in
D7NY.BIGWHEEL.COM which calls the remote ProductMaint.AddProduct. Then we can
grant EXECUTE on the wrapper to the product_admin role. Here's how:

1. Create a privileged account in D7CA.BIGWHEEL.COM that has EXECUTE
privileges on ProductMaint. (Assume these privileges are granted to the role
product_admin.)

2. CREATE USER d7nydba IDENTIFIED BY masquerade
3. DEFAULT TABLESPACE USERS
4. TEMPORARY TABLESPACE temp;
5.
6. GRANT CREATE SESSION TO d7nydba;
7.

GRANT product_admin TO d7nydba;

8. In D7NY.BIGWHEEL.COM, create a private database link to
D7CA.BIGWHEEL.COM which connects to the account created in Step 1. For
the sake of clean design, this link should be created under the account that
owns the application schema, but it could be made under any account that
has sufficient privileges to create views. In our case, we create the link under
the SPROCKET account:

9. CREATE DATABASE LINK D7CA.BIGWHEEL.COM
10. CONNECT TO d7nydba IDENTIFIED BY masquerade

USING 'prodcal';

11. From the account that created the database link in Step 2, create a private
synonym for SPROCKET.PRODUCTMAINT@D7CA.BIGWHEEL.COM:

12. CREATE SYNONYM hq_productmaint
FOR SPROCKET.PRODUCTMAINT@D7CA.BIGWHEEL.COM;

Strictly speaking, this step is optional. However, it is advisable because it
eliminates the necessity to create a procedure that contains a database link
name. This makes administrative tasks simpler, as we shall see in Chapter 6.

13. Create the "wrapper" procedure:
14. CREATE OR REPLACE PACKAGE ProductMaint IS
15. PROCEDURE AddProduct(product_type_IN IN NUMBER,
16. catalog_id_IN IN VARCHAR2,
17. description_IN IN VARCHAR2,
18. rev_level_IN IN VARCHAR2,
19. production_date_IN IN DATE,
20. product_status_IN IN VARCHAR);

110

Oracle Distributed Systems

21. END ProductMaint;
22. /
23. CREATE OR REPLACE PACKAGE BODY ProductMaint IS
24.
25. PROCEDURE AddProduct (product_type_IN IN NUMBER,
26. catalog_id_IN IN VARCHAR2,
27. description_IN IN VARCHAR2,
28. rev_level_IN IN VARCHAR2,
29. production_date_IN IN DATE,
30. product_status_IN IN VARCHAR) IS
31. BEGIN
32. hq_ProductMaint.AddProduct(product_type_IN,
33. catalog_id_IN,
34. description_IN,
35. rev_level_IN,
36. production_date_IN,
37. product_status_IN);
38. END AddProduct;
39.
40. END ProductMaint;

/

41. Grant EXECUTE privileges on the local package as appropriate:

GRANT EXECUTE ON ProductMaint TO product_admin;

4.1.4.1 Advantages of the local wrapper approach

Just as a local view of a remote object facilitates local privilege administration over
remote tables, so a local wrapper facilitates local privilege administration over
remote procedures and packages. In addition, the wrapper can help to ensure data
consistency by performing edit checks, setting parameter values, and so on.

4.1.4.2 Disadvantages of the local wrapper approach

As with local views, the local wrapper requires a bit of extra work initially; you have
to write the local procedure or package and manage the role grants.

4.1.5 Conclusions on Privilege Management

It is a very simple matter to offer access to objects in a remote database: just create
a public database link. The challenge is to develop an access model that allows the
local administrator the ability to control privilege levels on the remote objects with
the same granularity that is possible with local objects. But database roles cannot
manage privileges on remote objects:

SQL> GRANT SELECT ON sprocket.products@D7CA.BIGWHEEL.COM TO
product_viewer;
GRANT SELECT ON sprocket.products@D7CA.BIGWHEEL.COM TO product_viewer
 *
ERROR at line 1:
ORA-02021: DDL operations are not allowed on a remote database

111

Oracle Distributed Systems

The recommended solution is to create local views for remote tables and local
wrapper functions for remote procedures and packages. You can grant privileges on
these local objects to local roles.

There are, however, occasions when the local objects may not be appropriate. For
example, if you are using the advanced replication facilities, the access model is
quite different (as we'll see in see Chapter 10).

4.2 Authentication Methods

One of the DBA'sobjectives in a distributed environment is to provide easy database
access to valid users, while thwarting (or at least discouraging) unauthorized access
to the database and network traffic to it (which may contain sensitive information
such as passwords). There are three distinct means of authenticating users of an
Oracle database, corresponding to three different types of accounts:

Database authentication

This method corresponds to accounts made with the CREATE USER command.
Users must provide a valid username/password, which the database validates
with information stored in the data dictionary.

Operating system authentication

These are Oracle accounts that correspond to operating system accounts. If a
user can log in to the operating system, she is permitted to log in to the
database. We often refer to these accounts as OPS$ (pronounced "ops dollar")
because the corresponding database usernames are in the form
OPS$os_username by default.

External authentication

These are accounts that are validated by some external means, such as a
fingerprint scanner or a network authentication mechanism such as Kerberos.

The sections that follow examine the considerations for each of these methods in a
distributed environment and discuss implementation options.

4.2.1 Database Authentication

Database authenticated accounts are the type with which we are most familiar.
Every Oracle database has at least two such accounts: SYS and SYSTEM. In an ideal
world, you can also create an account for each user, just as the administrators of
your operating system(s) do: one individual, one account in the database(s) he
needs to use. This seems reasonably straightforward, but some perils do exist, for
example, compromised passwords.

Most multiuser operating systems allow users to report on all of the processes
running on a machine; typically, this listing displays a process ID, username,
program name, and other information about CPU utilization and so on. Sometimes

112

Oracle Distributed Systems

the listing shows the arguments that a user passed to a program. If users passed
their username and password, that information may be available to one and all. The
SVR4 variant of the ps command, found on operating systems such as Solaris, is a
classic example. Here is how you can obtain passwords on a Solaris machine:

cdye@socrates% ps -ef | grep sql
cdye 12174 10822 0 16:03:23 pts/8 0:00 grep sql
cdye 12168 10901 0 16:01:00 pts/9 0:00 sqlplus
system/twinkletoes@hr_prod

So, the system password for hr_prod is "twinkletoes." This problem has fueled
considerable dialogue in Oracle user groups, and the consensus is that you can
choose one of three remedies for it, described the following sections.

4.2.1.1 Write a wrapper command around sqlplus

In this way, the arguments are not displayed. Oracle Support has written (but does
not support) a program called hide.c which masks arguments from the ps command.
The program is described in Oracle Bulletin 1009091.6, which is included here:

Oracle Corporate Support
 Problem Repository

 1. Prob# 1009091.6 HOW DO YOU HIDE USERNAME/PASSWORD IN PS?
 2. Soln# 2057042.6 USE THE HIDE.C PROGRAM

 1. Prob# 1009091.6 HOW DO YOU HIDE USERNAME/PASSWORD IN PS?

 Problem ID : 1009091.6
 Affected Platforms : NCR Unix SVR4
 Affected Products : SQL*Forms
 Affected Components : IAD V03.00.XX
 Affected Oracle Vsn : V07.00.13.XX

 Summary:
 HOW DO YOU HIDE USERNAME/PASSWORD IN PS?

 +=+

 Problem Description:
 ====================

 ps shows username/password. How can I keep this from happening?

 Search words:
 hide.c hide

 +==+

 Diagnostics and References:

 * {5038.6,Y,100} PS SHOWS USERID AND PASSWORD

 2. Soln# 2057042.6 USE THE HIDE.C PROGRAM

113

Oracle Distributed Systems

 Solution ID : 2057042.6
 For Problem : 1009091.6
 Affected Platforms : NCR Unix SVR4
 Affected Products : SQL*Forms
 Affected Components : IAD V03.00.XX
 Affected Oracle Vsn : V07.00.13.XX

 Summary:
 USE THE HIDE.C PROGRAM

 +=+

 Solution Description:
 ====================

 Use the program hide.c:
/*---
----+
| Can be used as a program prefix: hide program arguments
|
| or as a symbolic link. If this program is not invoked as hide,
it |
| will hide its arguments and invoke the program name.hide
|
| The best way to use this is to rename your critical programs to
|
| program.hide, and create a symbolic link program to hide.
|
| mv sqlplus sqlplus.hide; ln -s hide sqlplus
|
| Thus when sqlplus is invoked, its arguments will be hidden
|
|
|
| NOTES
|
|
|
| This program works by padding 3000 '/' chars in argv[0]. This
fools |
| all known ps's. This will reduce the argument capacity of your
|
| program by 3000 chars. A good enhancement would be to reduce the
|
| padding if needed so that no arguments are lost - would require a
|
| method of determining the max argument size on the system. Some
|
| system's provide the E2BIG error on exec.
|
| There is some performace penalty for using this program, but it is
|
| minimal because this program is so small - the biggest cost is the
|
| extra exec required to get this program started.
|

114

Oracle Distributed Systems

| HISTORY
|
| 09/17/92 D Beusee Fixed to compile on any system
|
+--
--*/
/*
* $Header: /work/oracle/distributed/xml/RCS/ch04.xml,v 1.9 2001/08/07
21:49:45 chodacki Exp $
*
* $Log: ch04.xml,v $
* Revision 1.9 2001/08/07 21:49:45 chodacki
* notes have role=ORA attribute
*
* Revision 1.8 2000/11/10 19:27:13 jliggett
* final prep for bvd
*
* Revision 1.7 2000/10/26 20:07:50 jliggett
* minor edits
*
* Revision 1.6 2000/09/05 21:06:55 jliggett
* renumbered
*
* Revision 1.5 2000/07/18 19:18:44 jliggett
* added number attribute
*
* Revision 1.4 2000/06/19 14:56:21 jliggett
* final checklist
*
* Revision 1.3 2000/05/11 17:57:53 jliggett
* entered proof edits
*
* Revision 1.2 2000/05/04 16:35:00 jliggett
* validation
*
* Revision 1.1 2000/04/26 19:14:02 bsalter
* Initial revision
*
* Revision 1.6 1992/09/22 22:37:17 dbeusee
* Added exit(1) when cannot execvp the program.
*
* Revision 1.5 1992/09/22 11:28:44 dbeusee
* Some BSD systems have memset(), so add a #define memset MEMSET to fix
* compilation errors (like on ultrix).
*
* Revision 1.4 1992/09/22 06:34:57 dbeusee
* BSD systems need memset routine.
*
* Revision 1.3 1992/09/22 06:05:13 dbeusee
* Set JUNK_CHAR to ' ' but force last junk char to '/'. This looks
prettier
* when doing 'ps'. Also do not show full path of the program. Also do
not
* show .hide if prog is a symlink to hide.
*
* Revision 1.2 1992/09/22 05:52:26 dbeusee
* If hide could not execvp the program, give an error message.

115

Oracle Distributed Systems

* if hide was invoked with a full path (e.g. /usr/local/bin/hide),
* do not try to invoke PATH/hide.hide.
*
*
*/
 #include <stdio.h>
 #ifdef SYS5
 #include <string.h>
 #else
 #include <strings.h>
 #define strrchr rindex
 #define memset MEMSET /* some BSD systems have a memset() */
 char *memset();
 #endif
 #define JUNK_SIZE 3000
 #define JUNK_CHAR ' '
 char arg0buf[4096];
 char progbuf[4096];
 char errbuf[4096];
 int main(argc, argv)
 int argc;
 char *argv[];
 {
 char *name, *base;
 int firstarg;
 if (!(name = strrchr(argv[0], '/')))
 name = argv[0];
 else
 name ++; /* get past '/' */
 firstarg = (!strcmp(name, "hide")) ? 1 : 0;
 if (firstarg && (argc == 1))
 {
 fprintf(stderr, "Usage: hide program arguments\n");
 fprintf(stderr, " ie: hide sqlplus
username/password\n");
 fprintf(stderr, "if hide is not named hide, \
 it will execute name.hide (useful as a symbolic link)\n");
 exit(1);
 }
 /* Build program name. If symbolic link mode, use argv[0]
|| .hide */
 strcpy(progbuf, argv[firstarg]);
 if (!(base = strrchr(argv[firstarg], '/')))
 base = argv[firstarg];
 else
 base ++; /* get past '/' */
 if (!firstarg) strcat(progbuf, ".hide");
 /* Build arg0 buffer. First, fill it with junk */
 memset((void *)arg0buf, JUNK_CHAR, JUNK_SIZE);
 arg0buf[JUNK_SIZE-1] = '/'; /* set last char to '/' */
 /* Prepend real program name - so ps can see what prog is
running */
 strncpy(arg0buf, base, strlen(base));
 /* Append real program name - so prog can see what prog is
running */
 strcpy(arg0buf + JUNK_SIZE, argv[firstarg]);
 /* Assign new arg0 buffer to the argv array */

116

Oracle Distributed Systems

 argv[firstarg] = arg0buf;
 /* Start the new program with the shifted arguments */
 execvp(progbuf, argv + firstarg);
 sprintf(errbuf, "Could not execvp '%s'", progbuf);
 perror(errbuf);
 exit(1);
 }
 #ifndef SYS5
 char *
 memset(s, c, n)
 register char *s;
 register c, n;
 {
 register char *p = s;
 while (n-- > 0)
 *s++ = c;
 return (p);
 }
 #endif /* ifndef SYS5 */

DISCLAIMER:
The hide.c code is not supported by Oracle. It is provided as a
courtesy,
as a workaround for SVR4 machines. BSD already hides the ps arguments.

4.2.1.2 Use operating system authenticated (OPS$)
accounts

These accounts do not require a username or password:

cdye@socrates% sqlplus /@hr_prod
SQL*Plus: Release 8.0.4.0.0 - Production on Mon Dec 28 21:43:57 1998

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to:
Oracle8 Enterprise Edition Release 8.0.4.1.0 - Production
With the Partitioning and Objects options
PL/SQL Release 8.0.4.1.0 - Production

SQL> show user
user is "OPS$CDYE"
SQL>

Those who attempt to obtain a password for these accounts will be disappointed, as
you can see here:

cdye@socrates% ps -ef | grep sqlp
 cdye 12214 10822 1 18:14:05 pts/8 0:00 sqlplus /@hr_prod
 cdye 12216 10901 0 18:14:22 pts/9 0:00 grep sqlp

4.2.1.3 Don't invoke programs with username and
password on command line

117

Oracle Distributed Systems

Instruct users not to enter their usernames and passwords on the command line. Let
the program prompt for the password instead:

cdye@socrates% sqlplus cdye@hr_prod

SQL*Plus: Release 8.0.4.0.0 - Production on Mon Dec 28 21:49:14 1998

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to:
Oracle8 Enterprise Edition Release 8.0.4.1.0 - Production
With the Partitioning and Objects options
PL/SQL Release 8.0.4.1.0 - Production

SQL> show user
user is "CDYE"
SQL>

Personally, I have not been overly successful with enforcing this approach.

Even if you use an operating system that does not display program arguments when
processes are listed (such as the VMS show system command), passwords may still
be available in network trace files.

4.2.2 Operating System Authentication

As mentioned earlier, you can use operating system authenticated accounts to avoid
the issues of compromised database passwords. In effect, OPS$ accounts do not
have passwords; their encrypted version, stored in the data dictionary view
DBA_USERS, is EXTERNAL:

system@dc18 SQL> SELECT username, password
 2 FROM dba_users
 3 WHERE username like 'OPS$%'
 4 /

Username Password
--------------- ------------------
OPS$AKALIDIN EXTERNAL
OPS$AKAPO EXTERNAL
OPS$BONO EXTERNAL
OPS$CDYE EXTERNAL
OPS$CHATSINT EXTERNAL
OPS$CHERNOVI EXTERNAL
OPS$CKER EXTERNAL
OPS$DEASLEY EXTERNAL
OPS$DWEB EXTERNAL
OPS$EDD EXTERNAL
OPS$GKRISHNA EXTERNAL
OPS$GWANG EXTERNAL
OPS$IASAAD EXTERNAL
OPS$IBALKHI EXTERNAL
OPS$IHAB EXTERNAL

118

Oracle Distributed Systems

119

You can set the password for OPS$ accounts to
whatever value you like, and they will still work.

One argument for using OPS$ accounts is that database passwords are no longer an
issue: they cannot be stolen or compromised. Another reason is that these accounts
are generally much more convenient for users—one less password to remember and,
of course, less typing. OPS$ accounts also allow a centralized approach to account
administration. Finally, auditing is simplified because trace files and audit trails
containing Oracle user IDs are easy to map to operating system accounts.

If you decide to use OPS$ accounts, you are in effect telling your database that if a
user can log in to the operating system successfully, then she should be able to log
in to the database, too, connecting to the Oracle account corresponding to her
operating system account. The Unix account cdye, for example, connects to the
Oracle account OPS$CDYE:

SQL> CREATE USER ops$cdye
2 IDENTIFIED EXTERNALLY;

User created.

SQL> SELECT username, password
 2 FROM dba_users
 3 WHERE username = 'OPS$CDYE';

Username PASSWORD
------------- ------------------------------
OPS$CDYE EXTERNAL

If you keep the default encrypted password EXTERNAL for these accounts, nobody
else will be able to use the OPS$ account because it is not possible to supply a
password that encrypts to the string EXTERNAL. Oracle identifies users, but the
operating system authenticates them.

4.2.2.1 Creating OPS$ accounts

Besides creating the database and operating system accounts themselves, there are
a couple of other steps required to configure OPS$ accounts. Table 4.1 describes the
relevant initialization parameters.

Table 4.1. Initialization Parameters Associated with OPS$ Logins

Parameter Name Default
Value Description

OS_AUTHENT_PREFIX OPS$
This is the string prepended to the name of the
operating system account to form the database
account.

REMOTE_OS_AUTHENT FALSE If TRUE, then the database will accept users who

Oracle Distri

Not all client tools can take advantage of OPS$ logins.
For example, the login screen for Designer 2000 does
not accept "/" as a username.

buted Systems

120

have been validated by a machine other than the
one on which the database is running.

You must restart the database in order for changes to these values to take effect.

There may be additional requirements depending on your database's platform, as
shown in Table 4.2.

Table 4.2. Operating-System Specific Requirements for Using OPS$ Logins
Operating

System Remarks

Unix No additional requirements.

Microsoft
NT

Operating system must exist on the NT server on which database resides;
it must either share a directory from NT server to clients or use named
pipes. NT clients must run 32-bit versions of Oracle client software (e.g.,
Forms), and the applications themselves must have been compiled with
the 32-bit versions.

NetWare

For a secure OPS$ account with SQL*Net 2, the NetWare user must also
be associated with an Oracle user by using the Oracle Snap-In for
NetWare Administrator utility. This requires NetWare 4.1 or higher and
the installation of Oracle's Novel Directory Service Authentication Adapter
at the server and client.

Once you have configured your system, users can connect to the database using a
connect string of the form:

/@sqlnet_alias

Note that there is no username or password.

4.2.2.2 The assumed risks of OPS$ accounts

If you set the initialization parameter REMOTE_OS_AUTHENT to TRUE, you are
instructing your database to trust the authentication methods of every client on your
network. As a general rule, your clients are not trustworthy. Why not? Because some
operating systems permit users to masquerade as whomever they wish. Clients
running Windows 3.x can set the CONFIG.ORA file parameter USERNAME to identify
themselves to a remote Oracle database, while Windows 95 users can set the
following registry subkey:

Oracle Distributed Systems

My
Computer\HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\CurrentUse
r

Because of these security weaknesses, you should consider OPS$ accounts to be
publicly available if PCs have access to your network and you have set
REMOTE_OS_AUTHENT to TRUE. And even if PCs are not on your network, if people
have physical access to a machine running most other operating systems, they can
become whomever they want on that machine. Remember that setting
REMOTE_OS_AUTHENT to TRUE means that you accept the authentication methods
of all clients.

Encrypting Network Traffic

The Oracle password protocol encrypts all passwords sent over
the network (Version 7.1 onward). With the advanced
networking option, the password is not transmitted; rather, it is
used as a key to encrypt information. Considering the wide
availability of network sniffer software, encryption of passwords
is essential.

4.2.3 External Authentication

Oracle's advanced networking option include interfaces (known as adapters) to a
variety of third-party security services for authenticating users. You can configure
these services so that users can use a single password to connect to any database
on your network. The single sign-on architecture works by storing username and
password information in a database or file system residing on a single server, called
the authentication server. Oracle currently includes adapters for the following
authentication services:

• Kerberos
• ICL Access Manager/SESAME
• CyberSAFE Challenger
• Bull ISM
• SecurID
• DCE Security Service (GSSAPI)
• Banyan
• Biometric (Identix)

The authentication server acts as an intermediary between client computers and
database servers, as depicted in Figure 4.1.

Figure 4.1. Authentication server

121

Oracle Distributed Systems

The sequence of events is as follows:

1. When a user on the client machine initiates a database connection, the client
requests authentication credentials from the authentication server. This
information is typically in the form of an encrypted key.

2. The authentication server verifies the client and sends the required
credentials back.

3. The client makes a connection request to the database server, using the
credentials obtained from the authentication server.

4. The database server sends the credentials to the authentication server for
validation.

5. The authentication server sends verification back to the database server,
which then accepts the connection request.

This architecture offers several advantages over conventional database
authentication or OPS$ accounts:

• The authentication server on which passwords reside is under centralized
administration, and access can (and should) be extremely limited. No
interactive logins should be permitted.

• Passwords never travel over the network; instead, they are used as a key to
encrypt and decrypt information during the login process.

• Users can use the same password for every database they access, with little
risk that this password can be compromised.

• Besides associating passwords with users, you can associate usernames with
client machines so that a given user can only connect from a given client.

122

Oracle Distributed Systems

Chapter 5. Designing a Distributed System

Application developers and DBAs face numerous challenges and choices as they
design a distributed application. Many, if not most, of these issues are not specific to
the particular RDBMS vendor they have selected but are a function of business
requirements and other constraints. This chapter takes a step back from Oracle
specifics and examines topics common to distributed applications in general,
including:

• The characteristics of a successful distributed system
• Data partitioning
• Application partitioning
• The client/server approach
• Common solutions to common problems

We introduced some of these topics in Chapter 1. Chapter 6, discusses these issues
in greater detail in the context of the Oracle RDBMS.

5.1 Characteristics of a Distributed System

Before designing a distributed system, you should have a clear understanding of
what a distributed system is and what requirements it must meet. In his book An
Introduction to Database Systems (Addison-Wesley, 1995), the relational database
deity C. J. (Chris) Date states his "fundamental principle of distributed database," as
follows:

To the user, a distributed system should look exactly like a nondistributed system.

Date goes on to enumerate 12 objectives that must be met in order to satisfy this
principle, as follows:

1. Local autonomy
2. No reliance on a single site
3. Continuous operation
4. Location transparency
5. Fragmentation independence
6. Replication independence
7. Distributed query processing
8. Distributed transaction management
9. Hardware independence
10. Operating system independence
11. Network independence
12. RDBMS independence

Some of these requirements are quite lofty, and Chris Date himself acknowledges
that these rules are not 100% achievable. Rather, they are useful primarily as
guidelines to observe in the design and development of a distributed system. You
can design a successful distributed database system that fails to meet every one of
these objectives. Also, several of these objectives are the RDBMS vendor's
responsibility, not the implementor's.

123

Oracle Distributed Systems

5.1.1 Distributed System Objectives

The following sections examine what these objectives mean, and Chapter 6 discusses
Oracle's strategies for addressing them.

5.1.1.1 Local autonomy

To satisfy thelocal autonomy rule, a database that participates in a distributed
system must be fully functional regardless of whether it is able to contact its
compatriots. In addition, the data that resides with each participating database
belongs to that database, in the sense that data integrity, security, and management
are independent of the other sites that may be accessing or supplying the data.

5.1.1.2 No reliance on a single site

This rule is the complement to the local autonomy rule. Just as each site is self-
sufficient, so there is no single master site on which others rely in the ideal
distributed environment. In other words, the failure of any one site should not cripple
the other sites (though it may hobble them), nor should the overall performance of
the system be dependent on a single site.

5.1.1.3 Continuous operation

One of the most common reasons for developing a distributed database system is to
provide redundancy and fault tolerance. By the same token, a distributed system
should not require scheduled outages to perform maintenance such as adding and
removing a site or upgrading software. Of course, in the ideal world we would have
zero downtime, scheduled or not, but even Chris Date is willing to concede that
"unplanned outages are difficult to avoid entirely."

5.1.1.4 Location transparency

Location transparency is the notion that data and data operations appear the same
to users (and developers) regardless of where data resides. Users should not have to
take any special measures to access data that is in multiple locations, nor should
developers need to write additional code to perform a distributed transaction. Data,
tables, and other objects can be viewed as logical entities, one step removed from
their physical implementation. The DBA should be able to relocate data without
requiring new user accounts or new code.

5.1.1.5 Fragmentation independence

The notion of fragmentation independence takes location transparency one step
further. Whereas location transparency refers to the ability to locate entire tables
and views transparently, fragmentation independence is the ability to partition data
within a table (or, more accurately, within a relation) transparently. (This division of
data is also known as data partitioning, especially in Oracle circles.) For example, an
organization may keep employees' telephone extensions in one table in the corporate
communications database and their department numbers in another table in the HR

124

Oracle Distributed Systems

database. However, a user (or application) can join this data together and view it as
though it were in a single table, as shown in Figure 5.1.

Figure 5.1. V ertical partitioning

Data can also be partitioned horizontally. For example, individual franchises in a
chain of bicycle stores track their own customers' addresses and purchases, but
analysts at the headquarters site are able to view all register sales as though the
records were in a single table, as shown in Figure 5.2.

Figure 5.2. H orizontal partitioning

125

Oracle Distributed Systems

The same restrictions apply to both updateable join views and fragmentation
independence. The fact that fragmentation independence is relatively simple with
relational database technology is one of the reasons why distributed databases are
invariably relational databases.

5.1.1.6 Replication independence

In order to meet the replication independence objective, a distributed system must
provide a means of maintaining copies of the same data (i.e., tables) at multiple
sites. As we shall see in Part II, reasons to replicate include performance gains and
failover capability, to name a few. The challenge with providing replication
independence is that when data is changed, the change must propagate to all
replicas, as soon as possible. Users and applications should not be concerned with
how their changes to a replicated table are propagated or whether their version of
the table is up to date. Technically, replication independence requires that changes
be propagated to all sites and committed as a single transaction using the two-phase
commit protocol. However, enforcement of this stipulation can defeat the purpose of
replicating in the first place since the additional communication required impacts
performance and since processing is halted if any site is unavailable.

5.1.1.7 Distributed query processing

The performance of a query should not depend on where the data resides. The
optimization of distributed queries is vital because a poor execution plan can take
orders of magnitude longer than the "correct" one. For example, if a query includes a
large intermediate result set, that data probably should not be shipped over the
network to the database with a small table that is to be joined with the result set.

5.1.1.8 Distributed transaction management

A distributed system must guarantee the concurrency of distributed transactions. In
other words, if a transaction is to update tables at two different sites, the transaction
must either succeed both places or fail both places. This, of course, is what the two-
phase commit protocol provides.

5.1.1.9 Hardware independence

The various participants in a distributed system should be able to run on whatever
hardware platform suits their needs. In effect, this means that the RDBMS should
run on all conceivable platforms and include the same functionality across all
platforms.

5.1.1.10 Operating system independence

The RDBMS should be able to run under any operating system or at least under any
of the popular operating systems. Do not allow your choice of RDBMS to tie you to a
particular operating system.

5.1.1.11 Network independence

126

Oracle Distributed Systems

Just as it is desirable for an RDBMS to work on any hardware and any operating
system, it is also desirable for it to be able to communicate with clients and other
databases regardless of network protocols and architectures.

5.1.1.12 RDBMS independence

Ideally, it should be possible to create a heterogeneous distributed system. For
example, we should be able to replicate data between an Oracle database and a
Sybase database. In actual fact though, it can be difficult just to distribute data
between two different versions of the same RDBMS!

5.1.2 Distributed System Classifications

The term distributed database system envelops several very different
implementations and architectures. It is worthwhile to identify these various
classifications before discussing design issues. The general categories are:

• Homogeneous distributed systems
• Heterogeneous distributed systems
• Federated database systems
• Redundant backup systems

These classifications are defined in the sections that follow.

5.1.2.1 Homogeneous distributed systems

The homogeneous distributed system is the classic and probably most common case.
It is homogeneous because all participating databases use the same RDBMS (though
not necessarily on the same platform). The second defining characteristic of a
homogeneous distributed system is that data is strategically partitioned along
functional and/or geographic boundaries and makes use of distributed queries and
transactions. Additionally, these systems share schema under a global data
dictionary. The entire database is truly the sum of its parts, yet each individual
database is self-reliant, as described by Date's 12 objectives.

As an example of a homogeneous distributed system, consider the fictitious Bigwheel
Bicycle company. Bigwheel's corporate headquarters is in California, and they have
several retail outlets throughout the country. Bigwheel also has manufacturing sites
and warehouses (see Figure 5.3). Together, these databases paint a complete
picture of Bigwheel Bicycle's production, inventory, and sales. At the same time,
each site can function independently from its peers (albeit in a somewhat diminished
capacity in some cases).

Figure 5.3. The Bigwheel Bicycle company's distributed
database empire

127

Oracle Distributed Systems

5.1.2.2 Heterogeneous distributed systems

A heterogeneous distributed system has all the characteristics of a homogeneous
system, including shared schema, except that the participating databases use two or
more RDBMS engines. Generally speaking, these systems share data but are less
likely to engage in distributed transactions. This restriction arises because it can be
difficult to use the full functionality of an RDBMS when interfacing with an alien.
Strictly speaking, different versions of RDBMS software from the same vendor can be
classified as a heterogeneous distributed system and can have limitations. For
example, Oracle Version 6 does not support the two-phase commit.

5.1.2.3 Federated database systems

Federated database systems differ from homogeneous and heterogeneous systems
because they do not share schema. Rather, they share subsets of their data to
facilitate operations at other sites, with which there is usually no functional
relationship. The data that a site is willing to share is known as exported schema,
and the remote data to which a site has access is known as imported schema.
Participants in a federated database system are completely independent of one
another and may or may not use the same RDBMS.

This independence is usually not by design. Organizations usually create federated
database systems in response to needs that arise after the original systems are in
production. This model is the most common type of distributed database system—
perhaps because a federated database is easy to create with a minimal amount of
planning.

128

Oracle Distributed Systems

An example of a federated database system is the fictitious Bigwheel Bicycle
company's customer and sales lead databases. The customer database is the
property of the customer administration group, which services the bicycle shops that
have contracted to carry Bigwheel's product line. Meanwhile, the sales lead database
belongs to the travelling sales force whose job is to enlist as many bicycle shops as
possible to carry Bigwheel's products. The customer administrators have granted the
sales force access to their database so that they can track how many of their sales
leads actually become customers.

5.1.2.4 Redundant backup systems

The redundant backup system is a special case of a homogeneous system and is a
popular application of replication technology. This strategy entails mirroring a
primary database with an exact copy, which may be at a separate location. Using
replication technology, all committed transactions in the primary database propagate
to the mirror. However, unlike a homogeneous system, the mirror site is not
available to users as long as the primary site is operational. If the primary site
becomes unavailable, users and applications can be redirected to the mirror site
where they can continue processing.

5.1.2.5 Distributed system classifications: Summary

To summarize, the factors that determine a given architecture's classification are:

• Same or different RDBMSs
• Presence or absence of shared schema and global data dictionary
• Site availability

Participants in homogeneous and heterogeneous systems share a global data
dictionary, and although each member should be self-sufficient, each is a key
contributor to the overall system. Federated databases, on the other hand, do not
share a global data dictionary and are not complementary components of an overall
system. Finally, the redundant backup system consists of a master site and its mirror.
These configurations are designed to address high availability requirements.

Table 5.1 summarizes the various characteristics of distributed databases.

Table 5.1. Distributed Database Classifications
Classification Same RDBMS Global Data Dictionary All Sites Available

Homogeneous Yes Yes Yes

Heterogeneous No Yes Yes

Federated Maybe No Yes

Redundant backup Yes Yes No

5.2 The Global Data Dictionary

In Table 5.1 we see that the notion of a global data dictionary is common to all but
the federated model of distributed database systems. The data dictionary catalogs all

129

Oracle Distributed Systems

objects in the distributed schema, is available at every site, and is accessed
identically no matter where it is viewed. It defines the distributed database and
shields users, including application developers, from the details of where data resides
and how it is accessed.

Obviously, there are a number of challenges in concealing the seams of the
distributed database from the users while respecting the objectives of a distributed
system. Issues that must be addressed include:

• Placement of the global data dictionary
• Object naming
• The local data dictionary
• Management of interdatabase integrity constraints
• Management of user accounts and privileges

These issues are discussed in the sections that follow.

5.2.1 Placement of the Global Data Dictionary

The challenge here is how to make the dictionary available and identical to all sites
and respect the 12 objectives of a successful distributed database. A centralized
catalog violates the "No reliance on a single site" objective. Yet storing a complete
copy of the dictionary at all sites violates the local autonomy objective since local
changes must be propagated to all participating sites. Another option is to make
each site responsible for its portion of the catalog only; although this meets the
objectives of a distributed database, it is generally not practical since resolving the
location of remote objects would launch a blind and potentially lengthy hunting
expedition to the remote sites in search of the referenced object.

Clearly then, RDBMS vendors must strike some happy medium in order to support a
distributed database devoid of seams and not prone to hunting expeditions or other
extravagances when trying to resolve object names. The solution that Oracle and
other vendors have arrived at is to store information about the location of remote
objects in each local data dictionary. That is, there is no such thing as a global data
dictionary in the purest sense. At first glance, this approach appears to violate the
location transparency objective. Remember, though, that location transparency is in
the eye of the user. As long as there is a way to shield users from the details about
an object's location, which Oracle does with synonyms, location transparency is
achieved. It is the DBA who has to worry about the objects' actual locations and
about concealing the details of the location. We'll explore the specifics of the Oracle
implementation in Chapter 6.

5.2.2 Object Naming

The way that Oracle and other RDBMS vendors incorporate an object's location into
the data dictionary is to design object naming so that the location is a component of
an object's fully qualified name. For example, table PRODUCTS is in the SPROCKET
schema in the database named D7CA.BIGWHEEL.COM. Its fully qualified name is
SPROCKET.PRODUCTS@D7CA.BIGWHEEL.COM. In every database in the distributed
environment, this name equates to the same physical table. Unfortunately, the fully

130

Oracle Distri

Some RDBMSs (most notably IBM's R*) refer to an
object's birth site rather than its location. An object's
location can change, but its birth site cannot.
Identifying an object by birth site reduces the data
dictionary maintenance that is required when an
object relocates.

buted Systems

131

qualified name violates the location transparency objective. The solution is to create
asynonym for the object so that users can reference it by the name PRODUCTS:

CREATE PUBLIC SYNONYM products FOR sprocket.products@D7CA.BIGWHEEL.COM;

Note that public synonyms do not span all databases in the distributed system. There
is no guarantee that PRODUCTS in the headquarters database evaluates to the same
thing as PRODUCTS in the warehouse database. Similarly, since users may be able to
create private synonyms, there is not even a guarantee that PRODUCTS for user
cdye refers to the same table as PRODUCTS for user jblow. All that can be
guaranteed is that a fully specified name evaluates to the same thing for every user
in every database. It is up to the DBA and the application developer to ensure that
the proper synonyms are set up and to update these synonyms if an object (or
fragment thereof) moves to another database.

From an application development perspective, object names must be selected with
care so that they do not conflict with other names from other schema. Table names
like USERS, CUSTOMERS, and ADDRESSES are examples of common names to avoid
because they are likely to conflict with names from other application schema.

5.2.3 The Local Data Dictionary

In a well-designed distributed database system, the majority of data accesses will be
to local data. Similarly, many, if not most, objects in the database are not accessible
or known to remote sites. Therefore, it is reasonable to optimize the data dictionary
for local use, while providing the extensibility needed to catalog remote objects as
well. The amount of information available about remote objects varies from one
RDBMS to the next, but at the very least, the physical location of remote objects
must be recorded. Beyond that, it is also desirable to include statistics about the
volume and distribution of the remote data so that the RDBMS can optimize queries
effectively.

5.2.4 Management of Interdatabase Integrity
Constraints

The notion of a distributed database invites the desire to enforce business rules
across multiple databases. These business rules may be simple referential integrity
constraints, such as "the customer ID in the ORDERS table must correspond to a
customer ID in the HQ_CUSTOMERS table." Or the business rule may be a
formulated one, such as "corporate shipping costs cannot exceed $10,000 per

Oracle Distributed Systems

month." In a single database, these rules are simple to enforce with foreign keys and
programmed logic, both of which may reside in the local data dictionary.

A distributed database, on the other hand, poses formidable challenges. To support
referential integrity constraints to a parent table in a remote database, we could rely
on connectivity to the remote database when updating the local child table so that
we could confirm the validity of the update. Unfortunately, we would have to write
our own logic to perform this validation because today's RDBMS data dictionaries do
not support foreign keys defined against remote master tables, nor are they likely to
in the future. Alternatively, we could maintain a copy of the master table in the local
database and define foreign keys against it. The only problem is that we would have
to keep that table updated as the "real" table changes. Although neither of these
solutions is flawless, they are, at least, logically sound.

Enforcing formulated business rules is a much trickier task. Take the case of the
$10,000 monthly shipping limit. If the corporation's cumulative shipping costs for the
current month are currently $9,000, and the warehouse site needs to ship an item
for $2,000, what are we to do? To reject the warehouse site's shipping order violates
the database's autonomy, yet allowing the order violates the global business rule.
Perhaps we should permit the shipment but send some sort of exception notification
to the headquarters site. Regrettably, there is no definitive solution to this
conundrum. The final solution depends on the nature of the organization—that is, the
solution is specific to the application. The data dictionary cannot enforce formulated
rules in a distributed system.

In short, the issues of data integrity and adherence to business rules that can be
automated to a large degree in a single database are much more difficult to
implement in a distributed database. You will not find a simple solution, and the
solutions you choose may vary widely from one application to the next.

5.2.5 Management of User Accounts and Privileges

Just as data integrity is much more complex in a distributed system, so is the
management ofaccounts and privileges.We cannot rely on the data dictionary to
enforce access levels to local objects once we share data with remote sites. Yet the
objective of local autonomy dictates that the local site take responsibility for the
security of its data. Another conundrum? Maybe.

One solution is the concept of global users. Under this model, every user has an
account in every database to which he requires access, even if the user doesn't even
realize it. For example, if a user in the headquarters database requires access to the
warehouse and manufacturing databases in order to view inventory, the DBAs create
the requisite accounts with the requisite privileges. Since access to the data is via a
synonym that masks the location of the data, the user does not even know that the
other accounts exist. This situation is shown in Figure 5.4.

Figure 5.4. Transparent access to remote data using a
private database link

132

Oracle Distributed Systems

The attraction of this approach is that the DBA can control data access with a high
degree of granularity and can administer privileges through conventional methods
such as database roles. In addition, each site is solely responsible for the security of
its data. The disadvantage is that the DBA could end up doing nothing but
maintaining user accounts!

One alternative, as discussed in Chapter 4, is to create one or more accounts that
are used as global doorways into the local database. These accounts have all the
privileges necessary for the operations that might be performed on the local data.
Presumably, a member of a distributed database can trust the remote administrators
of the remote databases to restrict access to appropriate levels.

We have seen that a distributed database system requires a global data dictionary
that can catalog objects, constraints, and privileges just as a local data dictionary
does. However, it is not reasonable to impose objectives such as location
transparency on the global data dictionary itself, nor is it feasible to rely on a global
data dictionary to enforce integrity constraints and user privileges on remote objects.
These requirements become the responsibility of the DBAs and application
developers.

5.3 Replication-Specific Issues

Building a system for replication means addressing a variety of design and
configuration issues that are irrelevant in a standalone environment. As a general
rule, it is not possible to "turn on" replication for an existing, standalone system,
though some have tried. Items requiring attention include replication architecture,
data consistency, data extraction, schema differences, primary key constraints, and
confliction avoidance—to name a few. The sections that follow highlight these
concerns.

133

Oracle Distributed Systems

5.3.1 Replication Architecture

There are two broad categories of replication architecture: log-based replication and
transactional replication. Log-based replication works by examining the database's
transaction logs (redo logs in the case of Oracle) and forwards committed changes to
other participating databases as needed. (Quest Software's Shareplex product is an
example.) Transactional replication, on the other hand, works by either querying the
remote database (in the case of read-only snapshots) and adding triggers to
replicated tables that effect the forwarding of changes to remote sites. Oracle's
advanced replication facilities are an example of this technology. One of your first
choices is which of these two mechanisms to use.

5.3.1.1 Log-based replication

Log-based replication has various advantages and disadvantages.

5.3.1.1.1 Advantages

The primary benefits of log-based replication are speed and ease of configuration.
Since this technology simply forwards changes from the database transaction log to
remote destinations, there is no need for a two-phase commit protocol or even
interdatabase communication. That means that you can use an FTP protocol to move
data, which is generally faster and simpler than, say, SQL*Net. Log-based replication
can be a viable solution when you want to forward changes over the Internet.

Log-based replication is also relatively simple to configure; you do not need to
generate triggers on replicated tables or design conflict resolution techniques or set
up interdatabase communication.

5.3.1.1.2 Disadvantages

Alas, there is no free lunch. Log-based replication includes some restrictions. For
example, distributed transactions become much more complex or impossible. That
limits your data partitioning options. In addition, database recovery can be difficult in
an environment with a high transaction rate. You must apply not only the database's
transaction logs, but also the logs applied from the remote databases. Recovering
multiple databases to the same point in time can be complex. Finally, adding or
removing tables from the replication set can be difficult, depending on the vendor's
implementation. Finally, synchronous replication is not possible.

5.3.1.2 Transactional replication

Transactional replication also has various advantages and disadvantages.

5.3.1.2.1 Advantages

Transactional replication technology, such as Oracle's advanced replication facilities,
offers the flexibility to distribute data in a variety of ways, such as read-only
snapshots, updateable snapshots, multi-master replication, and synchronous or

134

Oracle Distri

Oracle addresses this eventuality by allowing you to
create a snapshot group, in which you include tables
that must be refreshed as a single transaction in order
to respect referential integrity constraints.

buted Systems

135

asynchronous operation. You can mix and match your replication method to suit your
needs. Because the functionality is built with the database's native programming
constructs, it is readily configured and guaranteed to be supported by the RDBMS
vendor. You can also partition data so that each site maintains only the data relevant
to it. You also have a variety of options for resolving conflicts, as discussed in
Chapter 15.

5.3.1.2.2 Disadvantages

The biggest drawback to transactional replication is that large applications require a
significant amount of design effort to replicate successfully. Conflict avoidance and
resolution must be planned from the start; tables may need additional columns to
record timestamps and site names; and database connectivity must be established
with proper privileges. Another drawback is that the amount of data that must travel
among sites is increased; for example, Oracle's advanced replication facilities send
the new and old values of each changed column when an update occurs.
Transactional replication can also be time consuming to administer. Finally, not all
datatypes and objects can be replicated; Oracle does not replicate sequences or
LONG or LONG RAW data (although CLOBs and BLOBs do replicate in Oracle8).

5.3.2 Software Compatibility

Software versions are more significant in a replicated environment because vendors
often introduce new functionality and fix bugs. It is best to keep all participating
databases on the exact same version of the RDBMS, despite vendor claims of
interversion compatibility. This means that database upgrades must be managed
more carefully; unless the vendor supports rolling upgrades, you must upgrade all
databases at the same time, thus incurring downtime.

5.3.3 Data Consistency

Depending on the vendor's implementation, you may have to schedule data
refreshes in a certain order if the source tables have referential integrity constraints
defined. For example, if a snapshot site has replicas of the CUSTOMERS table and
the ORDERS table, which has a foreign key to the CUSTOMERS table, you will have
to refresh the CUSTOMERS table before you refresh the ORDERS table. This
requirement arises because the data refresh may commit changes after each table is
refreshed; if you refresh the ORDERS table first, you could insert a record that has
no parent in the CUSTOMERS table.

Oracle Distri

Many technical writings use the term data
fragmentation instead of data partitioning. These
terms are interchangeable. Oracle's documentation
and literature prefer the latter term, possibly because
data "fragmentation" in Oracle parlance has come to
mean a segment that is stored in many noncontiguous
extents.

buted Systems

136

5.3.4 Data Extraction

Sometimes it is desirable for a site to store data in a schema that is different from
the data source. For example, a data warehouse site may wish to denormalize the
replicated ORDERS table so that it has a CUSTOMER_NAME field, whereas the order
entry site has only CUSTOMER_ID in the table. Whenever data extractions occur
against replicated tables, the designers must verify that the work required can be
accomplished without interfering with the replication itself. Must the source tables be
locked while the data is extracted? Can the refreshes occur while transactions are
being performed, or must they be done during off-hours?

5.3.5 Primary Keys

Every replicated table must have either a primary key or, equivalently, a unique
index. The replication mechanism uses the primary key (or unique index) to identify
which rows need to be modified when changes are propagated from one site to
another. Although primary keys are a sound design practice in and of themselves,
you must ensure their presence on all replicated tables.

5.3.6 Conflict Avoidance

Any asynchronously replicated environment has the potential for update conflicts.
Such a conflict arises when two sites perform DML on the same record at the same
time (or at least before the changes propagate). To a large extent, you can design
an application in such a way that such conflicts are rare (conflict avoidance). Beyond
design considerations, most RDBMS vendors include various built-in measures for
resolving conflicts when they do arise. Conflict avoidance, detection, and resolution
are discussed in detail in Chapter 15.

5.4 Data Partitioning Methodologies

Partitioned data is the fundamental characteristic of a distributed database system.
How that partitioning is done can make the difference between a system that can
thrive and adapt and one that requires constant triage. In this section we describe a
process you can use to ensure that your distributed database falls into the former
category.

The obvious approach to data partitioning is to locate data where it is used most.
While this is certainly a reasonable objective, it is not always simple to realize. For

Oracle Distributed Systems

example, there may be multiple sites that emerge as good candidates, owners of
existing data may not be willing to relocate it, or other applications may have
conflicting requirements—to name a few issues. One way to uncover these issues is
to follow a step-by-step methodology that addresses potential problems and that
results in a shared knowledge base of who uses data and how changes impact the
distributed database.

The methodology we recommend is derived from one that Marie Buretta proposes in
her book Data Replication (John Wiley & Sons, 1997). The process consists of the
following steps:

1. Identify users, locations, and activities
2. Assess existing infrastructure
3. Identify coordinated recovery requirements
4. Map processes to data
5. Assess global requirements
6. Propose data locations
7. Validate data placement against existing constraints and capacities
8. Validate placement with service-level agreements
9. Implement

Some of these steps are actually part of the design process for every application but,
in the interest of thoroughness, are restated as part of the partitioning process. What
follows is an explanation of the activities associated with each of these steps.

5.4.1 Identify Users, Locations, and Activities

The purpose of this first step is to identify who does what where. The people to
include in this step are the DBAs of all participating sites, a representative from the
application development team, and a representative from each affected user
community. In many cases, the distributed database being implemented must meld
into an existing family of databases. And even if the implementation is completely
new, it is valuable to document this information to confirm that all interested parties
are in agreement and as a basis for planning the system. One cannot locate data
with the sites that use it most without going through this exercise.

Table 5.2 is a sample of the information that should be collected in this step.

Table 5.2. Distributed Database Usage Matrix

Site Category Geographic
Location Type/Number of Users Business Processes and

Transactions/Queries per Day

Headquarters Los Altos, CA

Sales managers/12

Sales analysts/5

Product
developers/20

Sales forecasting/10

Sales reporting/20

R & D/200

Technical support/150

137

Oracle Distributed Systems

Support staff/4

AP staff/4

AR staff/5

Accounts payable/12

Accounts receivable/75

Manufacturing Gilroy, CA

Plant managers/3

Procurement
manager/1

Resource planning/20

Procurement/5

 King of
Prussia, PA

Plant managers/2

Procurement
manager/1

Resource planning/5

Procurement/1

Warehouses Oakland, CA Shipping admins/10 Order fulfillment/150

 Tulsa, OK Shipping admins/5 Order fulfillment/10

 Chicago, IL Shipping admins/3 Order fulfillment/30

 Anacostia, MD Shipping admins/5 Order fulfillment/50

Regional sales
San Francisco,
CA

Sales managers/2

Customer reps/4

Order entry
clerks/15

Webmaster/1

Sales data collection/200

Customer service/10

Order entry/150

Web marketing/2000

 New York, NY

Sales manager/1

Customer reps/2

Catalog sales
clerks/10

Sales data collection/300

Customer service/100

Order entry/250

 Tokyo, Japan Sales staff/5 Sales data collection/100

 Paris, France Sales staff/3 Sales data collection/50

This matrix provides a sound starting point for the remaining tasks at hand. It
provides an overview of the locations, location types, and user types, as well as an
approximation of the workload at each site. Note that we can expect similar activities
and data at locations of the same type (e.g., all warehouse sites in the above
example perform order fulfillment).

5.4.2 Assess Existing Network and Hardware
Infrastructure

Now that we know what processes occur where and have an rough estimate of
workload, we can verify that the organization's physical infrastructure is sufficient
and appropriately deployed. To that end, we should compile an inventory of the
following:

138

Oracle Distributed Systems

• Network topologies
• Computer equipment (servers)
• Operating system and database revision levels
• Security requirements
• System availability and support

Collecting this information will bring to light any inconsistencies, conflicts, or
misallocations that may exist in the current environment. In addition, the inventory
can help to justify additional equipment purchases.

The compiled data can be presented in a matrix similar to the one shown in Table 5.3.

Table 5.3. Infrastructure Summary

Location and
Type Connectivity Servers

OS Version

RDBMS
Security Availability and Support

Los Altos

Headquarters

T1—Gilroy

T1—San
Francisco

FR[1] —New
York

FR[1]—Tokyo

FR[1]—Paris

256KB—K of P

256KB—
Oakland

128KB—Tulsa

ISDN—
Chicago

ISDN—
Anacostia

Sun
e6000

Sun
e3000

Solaris
2.6

Oracle
7.3.4

High
7x24

Full support

Gilroy

Manufacturing

T1—Oakland

ISDN—Tulsa

256KB—
Chicago

Sun
e3000

Solaris
2.6

Oracle
7.3.4

Medium

7x24

On-site support during
business hours

King of Prussia
T1—Anacostia

Sun
Ultra2

Solaris Medium
7x24

139

Oracle Distributed Systems

Manufacturing 2.6

Oracle
7.3.4

On-site support during
business hours

Oakland

Warehouse

T1—Gilroy

128KB—Los
Altos

Sun
Ultra2

Solaris
2.6

Oracle
7.3.4

Low

5x8

On-site support during
business hours

Tulsa

Warehouse

ISDN—Gilroy

128KB—Los
Altos

Sun
Ultra1

Solaris
2.6

Oracle
7.3.4

Low

5x8

Remote admin from Los
Altos

Chicago

Warehouse

ISDN—Los
Altos

256KB—Gilroy

Sun
e3000

Solaris
2.6

Oracle
7.3.4

Low

5x8

Contracted support
services

Anacostia

Warehouse

T1—K of P

ISDN—Los
Altos

Sun
Ultra1

Solaris
2.6

Oracle
7.3.4

Low

5x8

Remote admin from New
York

San Francisco

Sales
T1—Los Altos

Sun
Ultra2

Sun
Ultra1

Solaris
2.6

Oracle
7.3.4

Medium
7x24

Full support

New York

Sales

FR[1]—Los
Altos

Sun
e3000

Solaris
2.6

Oracle
7.3.4

Medium
7x24

Full support

Tokyo

Sales

FR[1]—Los
Altos

Sun
Ultra2

Solaris
2.6

Oracle
7.3.4

High

5x8

Remote admin from San
Francisco

Paris

Sales

FR[1]—Los
Altos

Sun
Ultra1

Solaris
2.6

Oracle
7.3.4

Medium
7x24

Full support

[1] Frame relay

140

Oracle Distributed Systems

5.4.3 Identify Coordinated Recovery Requirements

It is often the case that some sites in a distributed system are coupled more tightly
than others. For example, an order entry system must have close integration with an
inventory system, although it need not be closely linked with the procurement
system. Tightly coupled systems must observe integrity constraints at all times and
must support a coordinated recovery strategy, which means that all systems
involved must be recoverable to a consistent state. Analyzing the strength of
intersite relationships ensures the survivability of the distributed database and lends
insight into how data should be partitioned.

The first step in this process is to catalog all tables, relationships, and attributes that
exist in the distributed database. (This catalog provides benefits in and of itself,
beyond its use in data recovery.) The catalog reveals where objects are used, how
critical they are, and the responsible business units. Table 5.4 outlines the
information to be captured.

Table 5.4. Information for the Catalog of Tables, Relationships, and Attributes
Component Property Comments

Table Name Table name

 Description Description of table's contents

 Primary key Name of primary key column(s)

 Foreign keys Columns that reference other tables

 Triggers Description of table's triggers

 Business guardian
Organizational entity responsible for specifying
requirements and business rules on the table

 Estimated size Number of rows and bytes per row

 Estimated growth Rate of growth (inserts) and volatility (updates)

 Confidentiality
level

Indication of data sensitivity

 Criticality level Indication of data importance

 Users
List of who accesses the table and the type of
activity they perform

 Retention
requirements

How long data must remain online

 Purge conditions When and how data is deleted

Relationship Name Relationship name

 Table 1 name Name of first table in the relationship

 Table 1 cardinality For example, one-to-many

 Table 1 optionality
Whether each row must have a correspondence in
Table 2

 Table 2 name Name of second table in the relationship

 Table 2 cardinality For example, one-to-many

 Table 2 optionality
Whether each row must have a correspondence in
Table 1

141

Oracle Distri

Denormalization of a distributed schema must be done
with care because the task of preventing anomalies is
significantly more difficult. Do not denormalize without

buted Systems

142

Attribute Name Name of the attribute

 Description Description of what the attribute depicts

 Business name Business entity to which the attribute corresponds

 Data type Datatype of the attribute

 Confidentiality
level

Indication of data sensitivity

 Where used List of processes that access the attribute

 Where present List of tables containing the attribute

The next step is to distinguish primary data sources (i.e., those with online
transactions) from sites where data is copied or replicated. Start with an entity
relationship diagram (ERD) so that it is easy to determine logical groupings of
objects and relationships. The goal is to place every entity with a logical group.
These groupings generally correspond to business activities such as order entry or
procurement. These activities, in turn, generally correspond to sites. You should
minimize intersite referential integrity constraints since they can be troublesome to
enforce (as we discussed in the previous section). Maintaining intersite referential
integrity constraints during recovery is even more challenging and generally requires
that the sites involved have a coordinated backup strategy.

You will probably notice that four different types of relationships emerge among the
entities in your distributed database:

Objects with strong referential links within a single data grouping

These are objects that reside in the same database and that must be
recovered to a state of transactional consistency. Examples include tables
with a master-child relationship such as invoices and line items.

Objects with medium referential links and high volatility within a single data grouping

These are objects that probably reside in the same database and that should
be recovered to a state of transactional consistency. Examples include tables
with semantic referential integrity constraints such as orders and products.
The high volatility refers to a high volume of updates.

Objects with medium referential links and low or medium volatility

Objects meeting these criteria are not often updated and need not be stored
or recovered together. An example of this type of relationship might be a
purchase order master table and a customer table. Relationships of this kind
are candidates for denormalization or replication. It may also be possible to
partition these objects horizontally; for example, the West Coast order entry
site might also maintain customers located in that region.

Oracle Distributed Systems

143

providing processes that avoid update and delete
anomalies.

Objects with weak referential links

Transaction tables whose columns are validated against lookup tables are an
example of a weak referential link. For example, an address table may
validate the postal code against a table of postal codes, but the postal code
table itself seldom changes and can be replicated to the sites that use it for
validation.

The terms strong, weak, high, medium, and low in the preceding discussion are all
relative and must be assessed within the context of your environment.

The process of identifying coordinated recovery requirements should not be
considered an extremely rigorous exercise; rather, it should provide an
understanding of how data is used. Of course, the exercise should reveal the
relationships that must be consistent at all times, but there are additional benefits as
well. In particular, if you follow these recommendations you will have:

• Identified your coordinated recovery requirements
• Copied inventory of all lookup tables, which are candidates for snapshot

replication
• Identified candidates for partitioning

5.4.4 Map Processes to Data

The next phase of the process is to determine the application processes in which
each data group participates and to identify the most significant processes.
Significant means the processes that execute frequently, that are vital to the
business, that require rapid response times, or that manipulate large amounts of
data.

The objective is to create a matrix depicting how processes access data. The matrix
should capture the type of access each process has to the tables (i.e., SELECT,
INSERT, UPDATE, and DELETE access), similar to the example in Table 5.5.

Table 5.5. Process-to-Data Mapping
Process Customer Table Orders Table Product Table Invoice Table Sales Table

Sales data collection

(high data volume)
SELECT SELECT SELECT No access

SELECT

INSERT

UPDATE

Customer service
SELECT

SELECT SELECT SELECT SELECT

Oracle Distributed Systems

INSERT

UPDATE

Order entry

(business critical)
SELECT

SELECT

INSERT

UPDATE

SELECT No access No access

Order fulfillment

(high transaction rate)
SELECT

SELECT

UPDATE
SELECT

SELECT

INSERT
No access

Billing

(business critical)
SELECT SELECT SELECT

SELECT

INSERT

UPDATE

No access

Product

development
No access No access

SELECT

INSERT

UPDATE

No access No access

5.4.5 Assess Global Requirements

Distributed database systems, by their very nature, service a variety of processes
and applications and have a diverse user community. The preceding steps have been
"application-centric"; we have not yet accounted for the requirements of other
business processes and users. Even if this is a brand new system, confirming that
the requirements of each business unit are understood and met means avoiding
unexpected consequences later.

For data that is input for your application, you should identify the primary data
source, the potential secondary sources, and the volatility of the data. This
information yields insight into how you might access the data. For example, a nightly
snapshot might work for data that is relatively static, whereas real-time access over
a database link might be required for data that changes rapidly.

You also should establish a service-level agreement for the data that is input to your
application. This entails defining the requirements for a variety of metrics, such as
response time, availability, data freshness, and security. If the input data should fall
outside the agreed-upon bounds, the data owners must notify you or your
application, either through an automated alert or possibly through a more human
form of communication. By setting these expectations prior to implementation, you
can be sure that your application is able to obtain the input it needs in a timely
manner, and the suppliers of the data will be prepared for the impact your
application has on their infrastructure.

The process for validating your application's output data with other members of the
organization is similar; you establish a service-level agreement with the data

144

Oracle Distributed Systems

recipients in which you provide metrics about the data and arrange for automatic or
manual notification of the interested parties if these metrics cannot be met.

The service-level agreements that result from this process are not the only valuable
outcome. By coming to consensus, you will also verify who the organization's data
caretakers are. These are the people responsible for:

• Defining and enforcing the business rules for the data
• Defining administrative procedures and administrative support
• Defining and implementing security requirements

Depending on the size and complexity of the organization, these people may all be in
the same department or may be in offices in several geographic locations.

5.4.6 Propose and Validate Data Locations

At this point, you havesufficient information to make an educated recommendation
of how data should be distributed. This information includes:

• Database usage matrix
• Infrastructure summary
• Data catalog
• Process-to-data mapping
• Service level agreements

Clearly, you are in a much better position to "put data where it is used most" than
you were before going through these exercises.

Nevertheless, it is desirable to put the data where it is used most. Data used in
active transaction processing stands to benefit the most from proper placement and
to suffer the most from poor placement. Reference data (i.e., lookup tables) also
needs to be deployed with care. Therefore, begin by focusing on processes with the
most intensive activity (from the database usage matrix) and on the existing
infrastructure to select potential data locations. If some of the databases already
exist, confirm that they are deployed on hardware commensurate with their
throughput requirements. Identify all viable sites, regardless of their current use.

You also should give consideration to which data distribution techniques suit your
application. The options include:

Real-time access to remote data (i.e., over a database link)

This model is appropriate when the application must see the current version
of the primary data source, with no latency whatsoever. For example, an
order fulfillment application must have a real-time view of the organization's
inventory.

Locally stored, read-only replica (i.e., a simple snapshot)

145

Oracle Distributed Systems

Read-only snapshots are appropriate when a certain amount of latency is
acceptable, and, of course, when there is no requirement to insert or update
data. For example, an order entry application can use a snapshot of the
company's products that is updated every morning.

Locally stored, updateable replica (i.e., an updateable snapshot)

Updateable snapshots are an effective way to partition data horizontally. For
example, the headquarters site may capture all sales data from all sales sites.
All sales sites have a replica of the SALES table into which they insert records,
but they neither keep nor need the sales transactions from other sales sites.

Asynchronous multi-master replication

Asynchronous multi-master replication is appropriate when a table must be
shared among multiple sites, each requiring access to all records in the table,
with the ability to manipulate records. For example, an ORDERS table must
be accessible from the order entry site (which enters records), the shipping
site (which fulfills the orders), and the billing site (which turns the orders into
invoices). Generally, a certain amount of latency among peer sites is
acceptable. And if it is not acceptable, many RDBMS vendors, including Oracle,
support synchronous multi-master replication.

Synchronous multi-master replication

Synchronous replication ensures that transactions are committed
simultaneously at all participating sites. This architecture can be used to
provide a hot failover site. Since synchronous replication depends on the
availability of all sites, it is not an advisable solution unless the participating
hosts have very simple network connections—that is, on the same subnet
with no dependency on routers. Ideally, the machines are directly connected.

Once you have determined placements and distribution methods for the application's
data, you perform a "sanity check" on the emerging topology. You can estimate your
network requirements by measuring the data flows generated by transaction
processing and data flows generated by replication activity. Transactional data flow
can be approximated as:

(bytes/trnsaction) × (peak transaction count/second)

The bandwidth required for replication activity is a function of the replication method,
but you can make a rough estimate of the change rate for the replicated data. Finally,
it never hurts to multiply your estimates by a fudge factor of 2 or three; operational
behavior and load characteristics will inevitably change when the new system
becomes available. At the end of this exercise, you will be able to sketch all sites in
the distributed environment and the data flow required among them.

You are now in a position to validate the proposed architecture against your
infrastructure's capacity as well as against other constraints such as your security
requirements, service-level agreements, and availability requirements. Specific items
to confirm include:

146

Oracle Distributed Systems

• Sufficient hardware resources for anticipated user volume and transaction
rate.

• Sufficient network bandwidth.
• Support for two-phase commit protocol where required. (This is an issue

primarily in heterogeneous distributed RDBMS environments.)
• Sufficient functionality and capacity of data replication technology.
• Adherence to service-level agreements reached earlier.
• Adherence to the identified security requirements.

Of course, you may need to make some adjustments to the proposed location
scheme, but equipped with the information gathered during this process, you will
know the consequences. In addition, the documentation this process creates is
valuable not only for positioning your data but also for understanding the application
as a whole.

5.5 Application Partitioning Strategies

Application partitioning refers to deploying different components of an application at
various locations. For example, an order entry application may consist of:

• Data entry screens on order entry clerks' PCs
• Bar code scanners collecting shipping information at the fulfillment center
• A web server hosting management reporting
• Business rule enforcement via stored procedures in the database

The order entry application is the sum of all of these parts. The components of a
partitioned, or tiered, application always fall into one of three broad categories: user
interface, business logic, or data access logic.

As you design a distributed database, you must make decisions about where to
locate different types of processing. Some of the choices are obvious: bar code data
collection has to occur where the bar codes are. But in other cases, the decision is
not so obvious. Where should we enforce the requirement that customers cannot
place new orders if their accounts are more than 90 days in arrears? What factors
should you consider when you make these choices?

Actually, application partitioning entails both a hardware level and a software (or
logical) level. At the hardware level, we decide what equipment is best suited for
various portions of the application. And at the logical level, we decide where business
rules will be enforced, how the user interface will work, and what data access
methods we will provide. The logical application partitioning always precedes the
hardware partitioning. Table 5.6 presents these two levels in the context of the order
entry application described before.

Table 5.6. Hardware and Logical Application Partitioning Considerations
Hardware Partitioning Choices Logical Partitioning Choices

PC clients will host software
for data entry.

The application's presentation layer will be written
with Oracle's Developer 2000 tool set, and all textual
data will be converted to uppercase before sending it

147

Oracle Distributed Systems

to the database.

All business rules will be enforced in the database with
triggers and stored procedures.

Scanners from Intermec and
Symbol will be used for bar
code data collection.

All shipping transactions will be tracked with bar code
scanners at the fulfillment center.

The web server for
management reporting will
run on a Sun Ultra2.

Management reporting will be provided over the
intranet using a Netscape web server and CGI scripts.

The database at the order
entry site will run on a Sun
Enterprise 6000.

All order entry transactions will be performed in a
database at the order entry site.

The database at the
fulfillment site will run on a
Sun Enterprise 3000.

All shipping transactions will be performed in a
database at the fulfillment center.

Business rule enforcement is a pivotal issue in every application partitioning scheme.
You can do it within the database, in the client portion of the application or in some
intermediate tier. What are the pros and cons of these approaches?

5.5.1 Enforcing Business Rules in the Database Tier

One could make the argument that the database is the only sensible place to enforce
business rules. By placing these requirements in the database, we can be certain
that any application, current or planned, will always obey the rules that we have
defined, because there is no fooling the database. For example, suppose we have a
requirement that we manufacture 1000 more racing bicycles when the inventory falls
below 50. We could enforce this rule by placing a trigger on the INVENTORY table
which creates a record in the MANUFACTURE_QUEUE table when we hit the reorder
point.

If we codify this rule in the database, we can be sure that every application will
respect it, even if the developers are unaware of the rule. We can also be sure that
the rule will be enforced in exactly the same way by every application; there is no
room for interpretation or misinterpretation. And application code is substantially
simplified. One could even make the case that performance is better because we do
not need to ship the transactions related to the rule enforcement over the network.
These are the compelling reasons that lead most RDBMS vendors to introduce
triggers and stored procedures.

With such a convincing case for business rule enforcement in the database, why
would one ever decide to do otherwise? The problem is that some applications simply
are not suited to this architecture. Those that rely on message passing between
application tiers or asynchronous processing cannot readily benefit from database
business rule enforcement. Moreover, the fact that all rules are absolute may not be
appropriate for all applications.

148

Oracle Distri

Although the application layer can include logic to
enforce business rules, it is not a requirement of the
three-tier approach; Oracle's Network Computing
Architecture (NCA) advocates the database tier as the
home for business rule logic.

buted Systems

149

5.5.2 Enforcing Business Rules in the Presentation
Tier

The dawning ofpowerful client development tools, coupled with the advent of
powerful desktop hardware, brought about the trend to perform as much work as
possible on the client. When business rules as well as a presentation layer are
deployed on the client, we have a fat client.

Originally, the appeal of the fat client was that it could relieve the server of some of
its duties, thereby improving overall performance. Although this load balancing may
still be a case for the fat client, that doesn't mean we should rely on desktop
machines to take up the slack for an inadequate server. But there are situations in
which server-based business rule enforcement simply cannot outperform client-
based logic. We have found, for example, that intensive transaction processing (i.e.,
hundreds of transactions per second) does better when the SQL statements come
from the client as opposed to stored procedures.

The obvious disadvantage of client-based business rule enforcement is that the same
logic must be coded in every interface. If you allow data entry via applications
written in HTML, Power Builder, and Developer 2000, you will have to write and
maintain the logic in three places.

You will also have to ensure that the logic is consistent and that there is no other
access path to the database that would allow the logic to be inadvertently bypassed.

5.5.3 Creating a Third Tier

The emerging trend is to place a middle tier—called the application layer —between
the client and the server. This layer may be implemented with a CORBA, DCOM, or
similar object-based architecture. The advent of the Web has been a driving force
behind the three-tier architecture because organizations find that they can
inexpensively deploy applications that are accessible from any client that can run a
browser. The client is responsible only for messaging the application tier.

Regardless of where the business rules are enforced, there are several advantages to
moving application logic off both the client and the database server:

Use of "thin" clients

Oracle Distributed Systems

As we have already stated, any machine that can run a browser can use a
three-tier application. Thus, the cost of putting the application in the user's
hands can be as low as the cost of a set-top box or other inexpensive device.

Implementation in a heterogeneous environment

By storing database APIs in the application tier, clients and application
modules access all databases using a single set of API calls. The database
interface is the same regardless of the RDBMS. Of course, this transparency
assumes that developers have designed and coded the API calls.

Scalability and load balancing

The three-tier architecture lends itself to scalability because application
components are easy to isolate and can run on equipment that is specifically
sized and tuned to suit the application. Load balancing can often be realized
by deploying TP monitors.

Code reuse

Once a library of database APIs is developed, it can be used for future
applications. If APIs are well documented, future development efforts should
be able to pick and choose components they need and write only those pieces
that are specific to the new application.

Flexibility

If application-layer APIs are designed properly, they mask the specifics of the
database interface from both the clients and other components. This
transparency simplifies endeavors such as RDBMS software upgrades or even
a migration to a new RDBMS engine.

Standards-based APIs

The application-tier components should be built with languages and tools that
are not specific to any particular RDBMS vendor. Most notably, using C, C++,
Java, and HTML ensures that no dependencies on a proprietary language or
interface sneak into the code.

Of course, there is a price exacted for all of these benefits. The principal drawback is
that a multitiered environment is more complex to manage in both the development
and production environments. In order to realize code reuse, for example all APIs
must be thoroughly documented and must work exactly as advertised. Otherwise,
duplicate functionality will creep into the API library, leading to confusion about how
the APIs should be used. Version-control logistics also become more complex. New
API versions must be tested and certified as being compatible with other library
components. Finally, the additional tier means additional decisions about how the
application can and should be partitioned. In short, the three-tier approach offers
fantastic flexibility, but the additional complexity may outweigh the benefits for all
but the largest systems.

150

Oracle Distributed Systems

5.5.4 How Many Tiers Are Right for You?

Now that I've explained the fundamental differences between two-tier (client/server)
and three-tier architectures, how can you one decide which approach is appropriate
for the application at hand? Obviously, there are no hard and fast rules, but Table
5.7 offers some guidelines.

Table 5.7. Guidelines for an Application Architecture

Situations Calling for a Two-Tier Architecture Situations Calling for a Three-Tier
Architecture

The application consists of fewer than 50 logical
components. (In a typical client/server
application, a logical component roughly equates
to a data entry form.)

The application consists of 50 or
more logical components.

The database tiers use the same RDBMS.
There is a heterogeneous
database tier.

The application performs fewer than 10
transactions per second.

The application has a sustained
transaction rate in excess of 10
transactions per second.

The application supports 500 or fewer concurrent
users.

The application supports more
than 500 concurrent users.

The application is likely to be replaced or rewritten
within five years.

The application's life expectancy
is more than five years.

Regardless of how many tiers will house the application, you will have to perform
some partitioning. In Data Replication, Marie Buretta proposes a step-by-step
approach to decomposing an application for partitioning, summarized here:

1. Distinguish user interface components from "the rest." User interface
components generally consist of data entry screens, predefined reports, and
data collection equipment such as bar code scanners and cash registers.

2. That which is not a user interface component is either business logic or data
access logic. Identify and separate the two.

3. Associate the business logic from Step 2 with specific business transactions,
such as order entry, customer account creation, and so on.

4. Map the business transactions from Step 3 with specific database transactions.
For example, taking a new order for a product would equate to something like
this:

5. INSERT INTO ORDERS (order_id, customer_id, order_date)
6. ...
7.
8. INSERT INTO ORDER_ITEMS(order_id, product_id, units, uom,

unit_cost)
...

Note that the preceding example includes two transactions that must be
completed as a unit to create an order. The mapping of business transactions
to database transactions must include an account of such interdependencies.

151

Oracle Distributed Systems

9. Identify decision points and constraints that occur in the business transactions.
An example of a decision point is the requirement to replenish stock of an
item when the reorder point is reached. An example of a constraint is the
refusal to accept orders from customers whose accounts are more than 90
days in arrears.

10. Identify dependencies among business transactions. For example, an order
must be shipped before it can be billed. In a complex application, it may be
desirable to perform operations in parallel. By identifying transactional
dependencies, you will know which transactions can and cannot occur
simultaneously and which transactions can be deferred.

Having determined these details about the application's transactions, you can make
informed decisions about where to place its components. If you are using a
client/server model, the client should host nothing more than the user interface logic;
business logic belongs in the database. In the case of a three-tier architecture,
business logic may be deployed in the application tier. If so, it is important that the
machines that host this business logic or require a high volume of data access reside
in close proximity to the RDBMS servers. In particular, these machines should not
make a WAN connection to the database if it can be avoided.

5.6 Procedural Replication

Procedural replication refers to manipulating remote data indirectly by making
procedure calls. For example, if you want to make a 5% price hike for all products in
the remote PRODUCT_PRICES table, you might make a call like this:

BEGIN
 PriceMaint.PercentageIncrease(pct_in => 5);
END;

This procedure goes to the remote database and executes the statement:

UPDATE PRODUCT_PRICES
SET price = price * 1.05;

Since the stored procedure itself resides in the target database(s), no data travels
over the network, just the name of the stored procedure and the passed parameters.
Nor does the calling database need to maintain a connection to the remote database
while the procedure is executed. Once the calling database delivers the call to the
target locations, its work is finished.

Procedural replication is appropriate for operations that manipulate a significant
amount of data on a replicated table. For example, the price increase just described
changes every row in the PRODUCT_PRICES table. If you were to perform the update
locally and let the row-level replication mechanism propagate all of the updated rows,
the network traffic could be crippling. In general, you should not attempt to use row-
level replication for any transaction that affects more than 20% of a table's records.

When using procedural replication, you must take care that procedure calls that have
transactional dependencies are made in the correct order at the remote sites. For
example, a call to HR_APP.HireEmployee would have to precede a call to

152

Oracle Distributed Systems

HR_APP.PayEmployee. The replication technology that you use should ensure that
the order of procedure calls is preserved.

Procedural replication is described in greater detail in Chapter 14.

153

Oracle Distributed Systems

Chapter 6. Oracle's Distributed System
Implementation

Oracle has gone to some lengths to ensure that their RDBMS product meets Chris
Date's objectives for a distributed database system, which we described in Chapter 5.
This chapter examines how Oracle networking and RDBMS products have addressed
each of these objectives and discusses techniques you can utilize to achieve these
goals in your own environment. I'll also look at the inherent limitations and even
contradictions in realizing these goals.

6.1 Meeting the 12 Objectives with Oracle

To review, the 12 objectives for a successful distributed database system, which we
discussed in Chapter 5, are:

1. Local autonomy
2. No reliance on a single site
3. Continuous operation
4. Location transparency
5. Fragmentation independence
6. Replication independence
7. Distributed query processing
8. Distributed transaction management
9. Hardware independence
10. Operating system independence
11. Network independence
12. RDBMS independence

As I said in Chapter 5, these are goals, not requirements. We cannot, for example,
reasonably expect a distributed database system to provide continuous operation in
perpetuity. Nevertheless, the architects of the Oracle RDBMS have answered each of
these goals, as described in the following sections.

6.1.1 Local Autonomy

Local autonomy requires that an individual database be fully functional even if it
cannot contact other systems in the distributed environment and that each site be
responsible for its own data integrity, security, and management. Unfortunately, it is
not possible to attain both local autonomy and location transparency, because the
latter goal requires 100% availability of data at a remote location. Location
transparency implies reliance on a network connection and the availability of a
remote database.

Oracle introduced snapshots in Oracle7 as a way to make remote data accessible in
the local database. A snapshot is essentially a local copy of a remote table, which (in
theory) can be refreshed as often as once per second. (This frequency is only in
theory because, for one thing, it may take more than one second to refresh the
snapshot.) As an example, the database administrator at the sales site of the

154

Oracle Distributed Systems

fictitious Bigwheel Bicycle company could make a snapshot of the PRODUCTS table
from the headquarters site as follows:

CREATE SNAPSHOT products
REFRESH FAST
START WITH SYSDATE
NEXT TRUNC(sysdate+1)
AS
 SELECT product_id, product_name
 FROM products@PHQS.BIGWHEEL.COM;

This snapshot stores the contents of the headquarters PRODUCTS table in the local
sales database and refreshes the contents of the table every day at midnight. The
details of snapshot creation and management are described in Chapter 11.

Snapshots are a way to view (and update with some restrictions) remote data
without actually connecting to the remote site. The obvious advantage of this
technique is that data is always accessible to the local site—hence local autonomy.
The price for this convenience is data latency, because the data in a snapshot is only
as current as the last refresh.

The second aspect of local autonomy is management independence. Oracle achieves
this independence in a variety of ways. First, there is no such thing as a "child"
database. Every Oracle database has its own data dictionary, its own user accounts,
and its own control processes. Although a database may be logically subservient to
another, Oracle does not require or include any functional dependencies. Second,
Oracle guarantees interoperability among all of its supported versions on all
platforms. Thus, any site in a distributed system should be able to follow its own
upgrade path. Of course there are some limitations to this interoperability. In
particular, if you are using the advanced replication facilities, Oracle generally
recommends that all participating databases be on the same version of the RDBMS.

6.1.2 No Reliance on a Single Site

The functionality and performance of a distributed system should not depend on any
single site. This is certainly a noble ambition, but there is nothing within the Oracle
RDBMS that guarantees its realization. However, Oracle does provide the
functionality required to design a system that meets, or nearly meets, this
requirement.

The two predominant strategies for ensuring high availability are advanced
replication and Oracle parallel server. These are two very different approaches, each
with its inherent advantages and disadvantages. The advanced replication approach
entails creating two or more separate databases that mirror specified data, as shown
in Figure 6.1.

Figure 6.1. Oracle parallel server versus advanced
replication

155

Oracle Distributed Systems

The replication can take place synchronously or asynchronously, and there is no hard
limit on the number of sites that can participate. If any particular database fails or
becomes unavailable, processing can be directed to a different one.

Oracle parallel server is a high-availability model in which two or more computers
run Oracle instances that access the same physical database. This model protects
against the loss of a computer, but the physical storage is still a single point of
failure. Oracle parallel server generally requires clustering software from the
operating system vendor.

To ensure that a distributed system's performance is not dictated by any single site,
developers and database administrators have to examine carefully the application's
distributed queries and transactions. Although Oracle can execute distributed
operations without any special coding, it is often well worth the effort to tune SQL
statements. In addition, the DBA should take care to configure the INIT.ORA
parameters relevant to distributed transactions, such as COMMIT_POINT_STRENGTH.

In short, Oracle provides the tools to design a distributed system that is free from
reliance on a single site, but it is your responsibility to design it.

6.1.3 Continuous Operation

Continuous operation of a distributed system means that no maintenance tasks
should require an outage of the entire system. Maintenance tasks may include
upgrades to the operating system or RDBMS or the addition and deletion of
participating sites.

156

Oracle Distri

The public database link in the previous example is a
private link, which means that the Oracle account that
created the link is the only account that can utilize it.
See Chapter 4, for details about different strategies for
accessing remote objects and managing privileges on
remote objects specifically.

buted Systems

157

If the Oracle distributed system is built on database links and simple replication (i.e.,
read-only snapshots), then there are no maintenance activities that would require an
outage of the entire distributed environment. Sites can be added or removed at any
time, and upgrades can be executed without impacting participating sites.

However, if you are using the advanced replication facilities, Oracle imposes certain
limitations. Most significantly, if you wish to add a new master or snapshot site to a
replicated environment, you must coordinate the addition so that the data at the new
site includes data changes that may have occurred while the new site is being
instantiated. Refer to the descriptions of the built-in packages
DBMS_OFFLINE_SNAPSHOT and DBMS_OFFLINE_OG in Appendix A.

6.1.4 Location Transparency

Location transparency, or location independence, means that neither applications nor
users need to know the actual location of the tables, views, or stored procedures
they are accessing. Oracle provides support for location transparency via database
links and synonyms.

Suppose that the fictitious Bigwheel Bicycle company wants to make its PRODUCTS
table visible to its sales site, while the actual table resides at the headquarters site.
We can configure the sales sites so that a reference to PRODUCTS maps to the table
in the headquarters site by creating a database link from PSLS.BIGWHEEL.COM to
PHQS.BIGWHEEL.COM and creating a synonym for the remote object:

CREATE DATABASE LINK PHQS.BIGWHEEL.COM
USING 'prodhq';

CREATE SYNONYM products
FOR products@PHQS.BIGWHEEL.COM;

Of course, this solution is not without its limitations. For example, if the network
connection between PSLS.BIGWHEEL.COM and PHQS.BIGWHEEL.COM fails, users at
the sales site will become painfully aware of the fact that the PRODUCTS table
resides in a remote database:

SQL> SELECT product_id, product_name
 2 FROM products;

ERROR at line 2:
ORA-12203: TNS:unable to connect to destination

Oracle Distributed Systems

Dependency on a network connection, as well as the availability of the remote
database, are unavoidable side effects of providing location transparency.

6.1.5 Fragmentation Independence

Fragmentation refers to the partitioning of data across multiple sites. The data may
be partitioned horizontally (i.e., by record) or vertically (i.e., by field). Oracle uses
snapshots and/or views to support both partitioning methods.

You might want to perform horizontal partitioning if your data has a regional
component. For example, if your company's sales force accesses the CUSTOMERS
table, it might make sense to store only data associated with a particular region in
the corresponding database.

You could implement this partitioning scheme in at least three different ways:

• Create a read-only snapshot of the headquarters-site CUSTOMERS table in
each regional database. For example, in California's sales database we would
create the following snapshot:

• CREATE SNAPSHOT customers
• REFRESH FAST
• START WITH SYSDATE
• NEXT TRUNC(sysdate+1)
• AS
• SELECT customer_id, address, state, telephone, sales_rep_id
• FROM customers@PHQS.BIGWHEEL.COM

 WHERE state = 'CA';

• If the California site requires UPDATE and INSERT privileges on the
CUSTOMERS table, we could create an updateable snapshot:

• CREATE SNAPSHOT customers
• REFRESH FAST
• START WITH SYSDATE
• NEXT TRUNC(sysdate+1)
• FOR UPDATE
• AS
• SELECT customer_id, address, state, telephone, sales_rep_id
• FROM customers@PHQS.BIGWHEEL.COM

 WHERE state = 'CA';

The creation of the updateable snapshot assumes that the appropriate
replication configuration steps have been completed. Refer to Chapter 11 for
details on how to create updateable snapshots.

• We could simply create a view at the California site that references the
appropriate customers in the headquarters database:

• CREATE VIEW customers AS
• SELECT customer_id, address, state, telephone, sales_rep_id

 FROM customers@PHQS.BIGWHEEL.COM;

158

Oracle Distributed Systems

Of course, this view depends on the headquarters site's availability.

Vertical partitioning makes sense when you want to view data from two or more
tables at two or more sites as a single relationship or when you want to exclude
columns in a table from a particular site or group of users. For example, you might
want to join the CUSTOMERS table from the headquarters site (where all customer
records are stored) with the ORDERS table at the catalog order site to link sales
volume with regions.

We can use a view to create this relationship:

CREATE VIEW regional_sales_volume AS
 SELECT c.customer_id,
 c.address,
 c.state,
 c.telephone,
 c.sales_rep_id,
 o.total_amount
 FROM customers@PHQS.BIGWHEEL.COM c,
 orders@PCOE.BIGWHEEL.COM o
 WHERE c.customer_id = o.customer_id;

Note that this relationship requires the availability of the headquarters site
(PHQS.BIGWHEEL.COM) and the catalog order entry site (PCOE.BIGWHEEL.COM).

6.1.6 Replication Independence

Oracle introduced the symmetric replication feature in Version 7.1. Subsequent
releases up to and including Version 8.1 have included substantial improvements to
its functionality and performance. Oracle has also changed its name to the less
picturesque advanced replication facilities. But by any name, Oraclereplication offers
a diverse and robust product set, including:

• Read-only and updateable snapshots
• Multi-master replication
• Built-in conflict resolution methods
• Support for BLOB and CLOB datatypes
• Synchronous or asynchronous propagation

Part II of this book is devoted to Oracle's replication products; refer to the chapters
in that part for details.

6.1.7 Distributed Query Processing

Support for distributed query processing is a corollary of location transparency. And
Oracle does allow you to issue queries against remote data, even queries that join
data in multiple databases. Users and application developers need not include any
special commands or incantations just because the tables being queried are in
diverse locations.

159

Oracle Distributed Systems

However, it is worth pointing out that the optimization of these queries is something
of a concern, at least for application developers and database administrators. The
performance of a query against the same tables can vary wildly, depending on where
the tables are located. Judicious use of the EXPLAIN PLAN utility and/or AUTOTRACE
will help to determine whether a query is suffering because of its distributed nature.
In particular, queries that join with all records in a remote table tend to perform
poorly.

6.1.8 Distributed Transaction Management

Just as location transparency implies support for distributed query processing, it also
implies support for distributed transactions. A distributed transaction is one that
applies DML at multiple locations. The classic example is the credit/debit transaction:
when a bank wires funds from one branch to another, it must guarantee that the
account receiving the funds is credited if and only if the account sending the funds is
debited. The mechanism that guarantees this integrity is the two-phase commit
protocol. Oracle introduced support of the two-phase commit with Version 7.0.

As with distributed query processing, distributed transactions will work without
requiring any special coding or commands, but application developers and database
administrators are well advised to make accommodations for the distributed work.
Specifically, the application should include logic to trap errors relating to distributed
transactions; these are errors in the range ORA-02040 to ORA-02099. Similarly,
database administrators should ensure that the INIT.ORA configuration parameters
are set appropriately for all participating databases. These parameters include:

COMMIT_POINT_STRENGTH
COMPATIBILITY
DISTRIBUTED_LOCK_TIMEOUT
DISTRIBUTED_TRANSACTIONS
GLOBAL_NAMES
OPEN_LINKS

The DBA should also be prepared to monitor the data dictionary views
DBA_2PC_NEIGHBORS and DBA_2PC_PENDING.

6.1.9 Hardware Independence

A distributed system should be able to run on any hardware platform. Since its
earliest days, Oracle has prided itself as being the only database that runs on
anything, even your palmtop. Although you cannot currently run an Oracle database
on your pager or cell phone, it is shipping on dozens of platforms.

6.1.10 Operating System Independence

Oracle is certified on at least as many operating systems as hardware platforms.
However, be warned that the more popular operating systems monopolize the
attention of most of Oracle's development and support staff. So, if you are running
on HP-UX, Sun Solaris, or Windows NT, you will not have any problems acquiring the

160

Oracle Distributed Systems

latest versions of Oracle's RDBMS. However, those of you on operating systems that
are less popular and/or nearing extinction, such as VM or VMS, will have to wait.

6.1.11 Network Independence

Oracle's SQL*Net and Net8 products ship with the most popular protocol adapters.
Currently, these include:

TCP/IP
DECnet
SPX/IPX
LU6.2

6.1.12 RDBMS Independence.

Speaking ofRDBMS independence may seem ironic when describing how Oracle
adheres to C. J. Date's 12 requirements for an ideal distributed system. Yet Oracle
can interact with other RDBMS vendors. Oracle's "Gateway" products include the
following:

Transparent Gateways

Transparent Gateways provide SQL access to non-Oracle RDBMSs including
DB2, SQL/400, Teradata, Rdb, RMS, Non-Stop SQL, and Bull GCOS6. These
Gateway products typically run on the machine with the non-Oracle RDBMS as
opposed to where the Oracle database server resides.

Procedural Gateway for APPC

This product provides remote procedure call (RPC) support via PL/SQL to
execute CICS, IMS/TM, and IDMS/DC transactions accessing mainframe data
sources such as Adabas, CA-IDMS, IMS, VSAM, DB2, and DatacomDB. This
technology is best for accessing data sources that support OLTP applications.
It's currently available on the IBM RS/6000 with porting underway to both
HP-UX and Sun Solaris. Procedural Gateway for APPC does not require any
Oracle software on the mainframe system.

Transparent Gateway for DRDA

Transparent Gateway for DRDA provides SQL access to DRDA-enabled
databases including DB2, SQL/DS, and SQL/400. This technology is best used
by sites (typically very large IBM mainframe shops) requiring IBM protocol
compliance or for an application that connects to multiple DRDA-enabled
databases. This product is currently available on the IBM RS/6000.
Transparent Gateway for DRDA does not require Oracle software on the target
system.

Open Gateway Toolkits

161

Oracle Distri

You should make a habit of setting the
GLOBAL_NAMES parameter to TRUE even if you are
not in a distributed environment. If you ever have to
switch the parameter to TRUE after it has been FALSE,
you may encounter conflicts with other database
names in your environment. In addition, Oracle has
stated that they may require the GLOBAL_NAMES
parameter to be TRUE in future versions.

buted Systems

162

Open Gateway Toolkits allow you to build customized gateways to data
sources that are not supported by the other Oracle gateway products. For
example, you could use the Transparent Gateway Toolkit to build SQL access
to a Sybase database.

6.1.13 Conclusions

To the extent that Chris Date's 12 objectives are attainable, Oracle has attained
them. There are certain implied contradictions, such as the requirement that a
distributed system supply location transparency and be immune from site outages.
But even these challenges can be addressed with such Oracle products as the
advanced replication facilities.

6.2 Oracle's Global Data Dictionary

Chapter 5 introduced the concept of a global data dictionary, which is a repository
that uniquely identifies all objects in a distributed database system. The challenge is
to implement a global data dictionary without creating a single master site in the
process and without sacrificing the notion of location transparency.

6.2.1 Global Naming

Oracle's solution to this challenge hinges on the concept of global naming. In Oracle7,
Oracle introduced an INIT.ORA parameter GLOBAL_NAMES, which, when set to TRUE,
ensures that every database participating in a distributed environment has a unique
name.

You can determine the name of any given database by querying the GLOBAL_NAME
data dictionary view:

SQL> SELECT global_name FROM global_name;

GLOBAL_NAME
--
PHQS.BIGWHEEL.COM

Oracle Distributed Systems

The database's global name defaults to the concatenation of the INIT.ORA
parameters DB_NAME and DB_DOMAIN. However, you can also change the global
name to any value with an ALTER DATABASE statement:

ALTER DATABASE RENAME GLOBAL_NAME TO NEWNAME.BIGWHEEL.COM;

Why do you care about a database's global name? Because if the GLOBAL_NAMES
parameter is set to TRUE, then any database link created in this database must have
the same name as the global name of the database to which it connects:

The following is valid:

CREATE DATABASE LINK PSLS.BIGWHEEL.COM
USING 'production_sales';

The following is invalid:

CREATE DATABASE LINK prodsales
USING 'production_sales';

With GLOBAL_NAMES enabled, every database link with the same name connects to
the same database, and every link into a given database has the same name. Thus,
every object in the distributed environment is guaranteed to be uniquely identified if
it is specified with a schema name and a link name; for example,
SPROCKET.PRODUCTS@PHQS.BIGWHEEL.COM refers to the same object for every
database in the Bigwheel Bicycle environment.

6.2.2 Data Dictionary Views and Location
Transparency

The connection between global naming and the global data dictionary is in the Oracle
data dictionary view DBA_SYNONYMS, summarized in Table 6.1.

Table 6.1. DBA_SYNONYMS Data Dictionary View
Field Name Description

owner The owner of the view

synonym_name The synonym

table_owner
The owner of the object (may be a table, view, procedure, or
package)

table_name The object name

db_link
For remote objects, the name of the database link to the database
in which the object resides

Obviously, if GLOBAL_NAMES is enabled, then the db_link field in this data dictionary
view is not only the name of the link to the remote database but also the name of
the remote database. So the same values for synonym_name, table_owner,
table_name, and db_link will refer to the same object for all participants in the
distributed system.

163

Oracle Distributed Systems

Oracle's synonyms are the key to providing location transparency because, as we
have seen, a synonym can shield local users from having to know about the location
of a given object. At the same time, the DBA_SYNONYMS data dictionary view
contains the details about remote objects for those who need to know. Thus,
synonyms solve the problem of creating a global data dictionary that uniquely
identifies all objects in the distributed environment while ensuring location
transparency.

164

Oracle Distributed Systems

Chapter 7. Sample Configurations

There are probably as many distributed database configurations as there are
distributed databases. This chapter provides an overview of the most common
problems that distributed database systems can solve and discusses the choices and
trade-offs associated with each. I hope that one or more of these sample
architectures corresponds to yours.

7.1 The High-Availability System

The generally accepted definition of a high-availability system is one that is
operational 99.9% of the time, which translates to no more than 8 hours and 45
minutes of downtime per year. Most hardware vendors have products that are
designed to ensure the high availability of servers, disk drives, and other
components. In the case of servers, the recommended solution is usually a clustering
technology. In some cases, high-availability systems deliver the added benefit of
scalability because they require redundant computers that can share the workload.

Designing high availability into a database system, however, takes more than just
buying high-availability hardware. Oracle gives you three choices for creating a high-
availability system:

• A hot standby database
• Oracle parallel server (OPS)
• Advanced replication

Of these three, the only one that is really a distributed database is the advanced
replication solution.

7.1.1 The Hot Standby Database

Oracle's hot standby database solution can best be described as a database that is in
a state of perpetual media recovery. The strategy is to create a backup of your
database on a second machine and to ship your archived redo logs to the backup
machine, where they are applied to the backup database.

In the event that your primary database fails, you can conclude the recovery process
on the standby database, open it, and direct your users to it.

The steps to create a hot standby database are as follows:

1. Perform a backup (hot or cold) of your primary database. Note that your
primary database must be in ARCHIVELOG mode.

2. Create a control file for the standby database by issuing the ALTER DATABASE
CREATE STANDBY CONTROLFILE command from your primary database:

3. Oracle Server Manager Release 3.0.4.0.0 - Production
4.
5. (c) Copyright 1997, Oracle Corporation. All Rights Reserved.
6.
7. Oracle8 Enterprise Edition Release 8.0.4.1.0 - Production

165

Oracle Distri

Your life will be much easier if you use an identical
directory structure for your data, configuration, and
archived redo log files on the backup machine. Oracle
assumes that the structure is identical, but if you must
use a different directory structure, you must set the
INIT.ORA parameters DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT in the standby database.
For example:

FILE_NAME_CONVERT = '"/vol01/oradata/PHQS"
"/vol01/
 oradata/STANDBY/PHQS"'

buted Systems

166

8. With the Partitioning and Objects options
9. PL/SQL Release 8.0.4.1.0 - Production
10.
11. SVRMGR> connect internal
12. Connected.
13. SVRMGR> ALTER DATABASE CREATE STANDBY CONTROLFILE
14. 2> AS '/u/oracle/admin/PHQS/bdump/standbyPHQS.ctl'
15. 3> /

Statement processed.

16. Archive the current redo logs of the primary database:
17. SVRMGR> ALTER DATABASE ARCHIVELOG CURRENT
18. 2> /

Statement processed.

19. Transfer the files from the backup performed in Step 1, the standby control
file created in Step 2, and the archived redo log from Step 3 to the backup
machine.

20.
21. Start the standby database on the backup machine:
22. SVRMGR> CONNECT INTERNAL
23. Connected.
24. SVRMGR> STARTUP NOMOUNT
25. 2> /
26. Statement processed.
27. SVRMGR> ALTER DATABASE MOUNT STANDBY DATABASE
28. 2> /
29. Statement processed.
30. SVRMGR> ALTER DATABASE
31. 2> RECOVER FROM '/u/oracle/admin/PHQS/arch'
32. 3> STANDBY DATABASE

 4> /

The standby database is now mounted and has begun media recovery, applying
archived redo logs from the directory specified in the INIT.ORA parameter
LOG_ARCHIVE_DEST. In order to keep the standby database up to date, you must

Oracle Distri

In Oracle8i, the hot standby database can be opened
in read-only mode and can then go back to being a
standby without requiring a complete rebuild.

buted Systems

167

copy archived redo logs from the primary machine to the backup machine and apply
them with the ALTER DATABASE RECOVER FROM command.

7.1.1.1 Advantages and disadvantages of the hot standby
database

The chief advantage of the standby database (and in my opinion, its only redeeming
virtue) is that it is very easy to set up and operate. Scripting the job to copy
archived redo logs to the backup machine is trivial, and switching to the standby in
the event of failure can be done in a matter of minutes.

However, the standby database does have some undesirable properties. First, the
standby machine itself essentially goes to waste; it must be held in reserve for the
event of failure, doing nothing but applying archived redo logs. Although you could
use its processing power for miscellaneous jobs, they must accept the fact that they
may be halted at any time. This restriction is especially frustrating because the
backup machine should be of the same capacity as the machine it is mirroring—
generally an expensive one!

Another downside of the standby database solution is that once the standby is
activated, it completely replaces the primary database; there is no going back. Thus,
once the problem on the primary machine is corrected, the only way to put it back
into service is to create a hot standby database on it and activate it. This switch back
to the primary machine takes at least as long as a full database backup.

7.1.2 Oracle Parallel Server

Oracle parallel server is a technology that allows one physical database to be
accessed by database instances running on two or more computers. This architecture
affords high availability because if one of the machines fails, processing can continue
on the remaining node(s).

Oracle8 has advanced the technology so that, in some cases, users' connections are
remapped to a different node transparently. And, unlike the standby database
architecture, each of the nodes in an OPS configuration can be used for processing.
In this sense, OPS is a high-availability architecture that also provides scalability.

7.1.2.1 Advantages and disadvantages of Oracle parallel
server

The theory of OPS is fantastic: it offers high availability by virtue of multiple nodes,
and it can scale since nodes can be added to the configuration. Alas, the theory of
OPS differs somewhat from the reality. The most significant issue that prevents OPS

Oracle Distributed Systems

from being a perfect solution is that of pinging. A ping occurs when a user on one
node of a parallel server requests data that has been modified by a user on another
node. When this happens, the data must be written from the modifying node back to
the database, from which the requesting node reads it (see Figure 7.1).

Figure 7.1. Oracle parallel server pinging

As you would imagine, pinging is extremely expensive, and an excessive amount of it
can make OPS performance worse than the performance of a single machine! You
can assume that any application that is not designed with OPS in mind will
experience performance degradation with OPS.

You can design an application that minimizes pinging. The trick is to ensure that any
given set of data is modified on only one node and that users on other nodes do not
access data that another node modifies. For example, if the database serves multiple
applications, you can designate individual nodes for specific applications. Another
solution, for databases that house only one application, is to use partition tables,
available with Oracle8. For example, a CUSTOMER table might be partitioned on
CUSTOMER_ID, and Server A would handle activity for customers 0through 10,000,
Server B would handle customers 10,001 thorugh 20,000, and so on. Figure 7.2
shows this situation.

Figure 7.2. Using table partitioning to minimize pings with
Oracle parallel server

168

Oracle Distributed Systems

In order to direct activity to the appropriate node, you would have to include a
transaction monitor, or your application itself would have to have the intelligence to
send transactions to the appropriate node. Of course, data partitioning is generally
not this simple, and it often requires schema denormalization to be effective.

Other issues with OPS include the fact that most popular hardware vendors are still
perfecting their clustering technologies. Sun, for example, has only recently shipped
cluster support for more than two nodes. In addition, because of the overhead of the
operating system's clustering software and the distributed lock manager, each
additional node added to a cluster does not add one machine's worth of processing
power, as shown in Figure 7.3.

Figure 7.3. Processing power versus number of processors

169

Oracle Distributed Systems

In short, OPS can be an ideal solution for both high availability and scalability, but
the benefits are not automatic.

7.1.3 Advanced Replication

One of the intended uses of advanced replication is to provide a high-availability
solution. As described in Chapter 12, data changes can be propagated synchronously
among the nodes participating in a replicated environment. In effect, you can have a
system in which data is guaranteed to be identical at multiple locations. Such an
architecture delivers not only high availability but also horizontal scalability, because
application users can be directed to any node, as shown in Figure 7.4.

Figure 7.4. Using advanced replication to achieve
horizontal scalability

7.1.3.1 Advantages and disadvantages of advanced
replication

Unlike the hot standby database, the advanced replication architecture allows you to
utilize all machines in your environment. Unlike OPS, with advanced replication there
is no issue with pinging. In addition, advanced replication provides a built-in
redundancy since data is replicated at all sites. Also, there is no potential for conflicts
with synchronous propagation.

Unfortunately, there is no free lunch; advanced replication in general has its costs,
andsynchronous propagation in particular exacts its toll. Synchronous propagation
utilizes the two-phase commit protocol to ensure that every transaction is applied at
every site. The two-phase commit incurs the overhead of having to coordinate every
transaction: each site must go through the prepare phase and notify the global
coordinator, which then instructs all sites to commit or roll back their work. The more
sites involved, the more communication necessary for each transaction. And, if any

170

Oracle Distributed Systems

of the sites is unable to commit for any reason, such as a network problem or a
database crash, all insert, update, and delete activity will cease, and the application
will hang. Therefore, it is critical to provide as much redundancy as possible in terms
of disk mirroring and network connectivity. Alternatively, you can use asynchronous
propagation and accept the corresponding latency and potential for conflicts. Figure
7.5 shows a sample configuration.

Figure 7.5. Using mirrored disks and redundant network
connections in an advanced replication environment

Another issue with advanced replication is its overhead. By Oracle's account,
advanced replication requires six times as much shared pool usage, and
asynchronous propagation generates four times as much undo activity. As with OPS,
regardless of the propagation method, the addition of a machine does not yield a
corresponding increase in capacity.

Furthermore, as with OPS, it is a good idea to partition your application in such a
way that the activity on any particular node accesses unique data. This is especially
beneficial if you are using asynchronous propagation because partitioning will
minimize the chance of conflicts. If you are using asynchronous replication with a
high propagation frequency, you should include conflict resolution techniques such as
Site Priority and Latest Timestamp on your replicated tables.

Finally, an advanced replication solution that is intended to deliver high availability
locally as well as geographic data distribution can be difficult to deliver, at least in
the case of systems with high volumes of activity (i.e., tens of DML actions per
second). The problem is that it is not possible to have separate propagation
frequencies for replication groups propagating to the same remote site, nor is it
possible to create a multi-master environment in which not all masters communicate
with the remote site. If you are using asynchronous propagation, the frequency of
updates is the same for all replication groups to a particular site, and every site in a
multi-master environment must communicate with every other site.

It would be desirable to design a system (see Figure 7.6) in which local propagation
occurs at a high frequency, while propagation to a remote site is only from a single
site.

171

Oracle Distributed Systems

Figure 7.6. A single transcontinental link

Though this example may be extreme, the concept is not entirely unreasonable. The
advanced replication technology, as it exists now, would require a topology like the
one shown in Figure 7.7.

Figure 7.7. Current advanced replication communication
requirements

You can achieve different update frequencies only by using synchronous propagation
among the local sites and asynchronous propagation to the remote site.

Advanced replication can provide high availability and scalability, but it also includes
overhead and may not deliver the desired flexibility in cases in which local high
availability is to be coupled withgeographic data distribution.

172

Oracle Distributed Systems

7.2 Geographic Data Distribution

As hinted in the previous section, many organizations have a requirement for global
data distribution. In other words, it may be necessary to maintain the same data in
separate data centers on machines that are probably not even on the same network.
For example, a web site that tracks user data about news preferences may deploy
databases in California, Chicago, and New York so that it can direct user traffic to a
site that is nearby. Or a large corporation may replicate data about its products and
prices to numerous regional headquarters.

Oracle's advanced replication is the clear choice for meeting these requirements. It
can provide read/write access to data in multiple locations. In addition, if
asynchronous propagation is being used, data is always fully accessible locally
regardless of the availability of the remote sites. Sites also can be added or deleted
as requirements change.

The most significant issues with using advanced replication for geographic data
distribution are data latency and conflicts. Since synchronous propagation is not a
viable option for machines that are in different locations, every site will be out of
sync with its peers by at least one second (the shortest propagation frequency
possible). If your application is one that allows the same tables to be updated
frequently from multiple locations, this latency may be detrimental. Consider, for
example, a user of a web site who changes her news preferences while she is
connected to the database in Chicago. If she then leaves the site and comes back a
couple of seconds later, connecting to the California database, she might not see the
changes she has made. She will probably change the news preferences again, which
will result in a conflict when the data from the Chicago and California sites finally do
propagate.

This scenario brings us to the second caveat: conflicts. If data is propagating
asynchronously, it is possible and even likely that conflicts will arise. Any replicated
application must plan for and provide automatic resolution of conflicts. Please refer
to Chapter 15, for advice.

7.3 Workflow Partitioning

Workflow partitioning refers to applications that are distributed across multiple
databases, each of which is associated with a particular business function. The
traditional example is the distributed system that has different sites allocated to
order entry, shipping, and billing. These databases may or may not be at the same
geographic location and may or may not be on the same network. As a general rule,
the propagation mode for these applications is asynchronous. Figure 7.8 shows
partitioning among three sites.

Figure 7.8. Workflow partitioning among three sites

173

Oracle Distributed Systems

An application that lends itself to workflow partitioning is an ideal candidate for
multi-master table replication. Since the data updates that occur at each site are
distinct, it is highly unlikely that conflicts will arise. And the probability of conflicts
can be reduced significantly by incorporating business rules into the application. For
example, in the previous example, an order cannot be billed until it has shipped. Also,
Oracle provides built-in conflict resolution methods that are specifically designed for
workflow partitioning, such as priority groups. Refer to Chapter 15 for details about
implementing priority groups and other conflict resolution techniques.

As with other advanced replication architectures, workflow partitioning must cope
with the latency inherent in asynchronous propagation.

7.4 Data Collection and Consolidation

Manyorganizations gather data from several locations and consolidate it into a single
database. The single database is often a centralized, company-wide repository.
Examples include retail chains that upload sales data from their sales outlets every
night (see Figure 7.9) or a sales force armed with laptops into which they enter data
about customer leads (see Figure 7.10). The distinguishing feature of these scenarios
is that the databases are not expected to be in constant contact with one another;
data latency can be quite high, while bandwidth can be quite low.

174

Oracle Distributed Systems

Figure 7.9. Retail stores communicate with headquarters
nightly

Figure 7.10. Sales personnel synchronize laptops with
headquarters

Both of these scenarios are perfect candidates for Oracle's updateable snapshots, a
feature of advanced replication. Updateable snapshots work well in these
environments because data can be horizontally partitioned and because updates to
the data can be pushed to the master site on demand. The retail outlets can upload
daily sales transactions after the store closes, and the traveling salespeople can send

175

Oracle Distributed Systems

updates to headquarters when they check into their hotels and potentially receive
updates that their colleagues have made.

As with multi-master replication, updateable snapshots may result in conflicts, and
unfortunately the resolution methods are not as comprehensive as they are for
multi-master replication. In effect, you must make the choice of accepting one
update or the other. If possible, the application should not allow multiple snapshot
sites to update the same data. Sales personnel, for example, should be allowed to
update data pertaining only to customers for whom they are responsible.
Furthermore, the enforcement of data integrity becomes more troublesome in an
environment in which participants connect intermittently. It may not be practical to
deploy all data required to validate transactions at the snapshot sites, so applications
may have to include logic to perform data validation when the snapshot site connects.
For example, a salesperson might book an order, only to find that the client is over
his credit limit when the order is sent to headquarters.

Other issues to consider in an updateable snapshot configuration are security and the
fact that the local personnel responsible for the administration of each snapshot site
may lack the skills typically available at the data center that houses the master
database.

7.5 Loosely Coupled Federation

If nothing else, you probably have a distributed system configuration that can best
be described as aloosely coupled federation. Are you sending sales transactions from
an Oracle database to a mainframe for billing? Are you extracting audit trails from
your web server into a data warehouse? Are you reconciling the phone company's
electronic invoices with your voice mail system? Each of these scenarios could be
classified as a database federation. The data may be in disparate forms, and there
are no real-time transactions taking place.

If one or more of the databases in your federation is Oracle based, you can use a
variety of techniques to move data from one database to another, including:

Database links

If both sites are Oracle based, data can be selected, inserted, or updated over
a database link.

SQL*Loader

This tool loads non-Oracle data from a formatted text file into an Oracle table.

Pro*C/C++, Pro*COBOL, Pro*FORTAN, Pro*Ada

Oracle precompilers allow you to embed SQL statements into programs,
allowing you to migrate data from a file or other external source into Oracle.

Oracle Gateway products

176

Oracle Distributed Systems

These products provide SQL access from an Oracle database to a foreign data
source.

The key to success with a federated database system is a written specification and
robustness. Because these systems are often cobbled together over time and often
viewed as informal stopgaps, their quality often suffers. It is not uncommon for such
a system to come completely unraveled immediately after its chief caretaker leaves
the organization.

177

Oracle Distributed Systems

178

Oracle Distributed Systems

Chapter 8. Engineering Considerations

Any application that runs in a distributed environment must take its distributed
nature into account if it is to be successful. Considerations such as data consistency,
transactional integrity, conflict avoidance, and error handling are only a few of the
issues to contend with. This chapter visits some of these issues and suggests best
practices for addressing them.

8.1 Schema Design and Integration

As with most systems, you are fortunate if you are able to design a distributed
database system from the ground up. In these cases, you have the flexibility to
locate data optimally and to avoid anomalies in naming and constraint enforcement.
But whether your system is prenatal or legacy, you face the challenges of data
placement and schema integration for systems. Since I'm assuming in this book that
all participating databases in the system are Oracle based, I won't address the
additional complications associated with a heterogeneous distributed system.

The process for designing a distributed database schema is not much different from
that for designing a local schema in the initial stages; entities are identified,
relationships are defined, processes are mapped, and so on. The step that is unique
to distributed systems is data placement, otherwise known asdata partitioning or
data fragmenting. Chapter 5, discussed methodologies for determining how to
partition data; this chapter discusses additional considerations the application
developer must take into account.

8.1.1 Interdatabase Referential Integrity

When you partition data among multiple databases, you may end up separating
entities that have a parent-child relationship. However, Oracle does not provide
declarative referential integrity constraints between databases. So, if you place your
ORDERS table in one database and your ORDER_ITEMS table in another, you cannot
rely on Oracle to ensure that every line item in the ORDER_ITEMS table corresponds
to an order in the ORDERS table:

SQL> ALTER TABLE order_items ADD (
 2 CONSTRAINT fk_order_item_order_num
 3 FOREIGN KEY (order_number)
 4 REFERENCES orders@PHQS.BIGWHEEL.COM (order_number)
 5);

REFERENCES user_profile@PHQS.EXCITE.COM (userid)
 *
ERROR at line 4:
ORA-02021: DDL operations are not allowed on a remote database

So, how do we establish interdatabase referential integrity? The short answer is that
you shouldn't be in a position to require it! It makes no sense, for example, to
separate tables with parent-child relationships into two separate databases.

179

Oracle Distributed Systems

Yet sometimes such separations are inevitable. Consider an organization that has its
primary CUSTOMERS table in the headquarters database, but the ORDERS table for
the order entry system is located in a different database at the regional sales site.

One way to handle this situation is to write a BEFORE ROW trigger on the ORDERS
table that checks for the existence of a corresponding CUSTOMER_ID record in the
remote CUSTOMERS table whenever a record is inserted:

CREATE OR REPLACE TRIGGER t_i_orders
BEFORE INSERT
ON orders
FOR EACH ROW
v_count NUMBER;
BEGIN
 SELECT count(*)
 INTO v_count
 FROM customers@PHQS.BIGWHEEL.COM c
 WHERE c.customer_id = :new.customer_id;

 IF v_count = 1
 THEN
 :new.username := USER;
 :new.rectime := SYSDATE;
 :new.site := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;

The downside to this solution is that it introduces a dependency on the remote
database; if the remote database is unavailable, no new orders can be created. This
dependency can be alleviated somewhat by including an ORDER_STATUS column in
the ORDERS table which can flag orders as UNVALIDATED. Records could then be
inserted into the ORDERS table even when the remote database is unavailable, and
their CUSTOMER_IDs can be verified later when the remote database is available.

A simpler alternative to enforcing interdatabase referential integrity, and one which
does not rely on the accessibility of the remote database, is to create a local
snapshot of the master table using the WITH PRIMARY KEY clause available in
Oracle8:

CREATE SNAPSHOT customers
TABLESPACE oe_data STORAGE (INITIAL 10M NEXT 10M PCTINCREASE 0)
REFRESH FAST
START WITH sysdate
NEXT trunc(sysdate) + 1
WITH PRIMARY KEY
AS
 SELECT customer_id, customer_name
 FROM customers@PHQS.BIGWHEEL.COM;

ALTER TABLE orders ADD (
CONSTRAINT fk_orders_customer_id
FOREIGN KEY (customer_id) REFERENCES snap$_customers(customer_id)
);

180

Oracle Distributed Systems

The WITH PRIMARY KEY clause actually creates a primary key on the
SNAP$_CUSTOMERS table, which is the table underlying the CUSTOMERS snapshot.
This approach, in effect, allows a declarative referential integrity constraint on a
remote object. However, snapshots by design have a certain amount of latency. The
snapshot table is only as current as the most recent refresh.

8.1.2 Naming Conventions

Although there areno restrictions per se on object names in a distributed
environment, some names are better than others. First, to the extent possible, you
should try to keep names unique across all schema in the distributed environment.
This is not a requirement, but it makes administration less confusing. An example of
a poor choice for a table name is COUNTRY or COUNTRIES. Why? Because this name
is likely to be common to more than one application and therefore several schema.
When tables are replicated, either as master tables or snapshots, it may not be
possible to create identical public synonyms in all databases. You can avoid name
space collisions by prefixing table names with two or three characters that associate
them with a given application. For example, the COUNTRIES table that the order
entry system uses would become OE_COUNTRIES.

Another potential issue in a distributed database is the length of table names.
Various replication-related objects have generated names that are based on a table
name such as the SNAP$_CUSTOMERS of the previous example. If the generated
name ends up being more than 30 characters (the maximum length of a table name
in Oracle), then the name is truncated, which may result in naming conflicts. Since
the longest prefix in use is seven characters (the updateable snapshot log USLOG$_),
keep your table names short—never more than 23 characters.

8.1.3 Distributed Queries and Transactions

Oracle performs distributed queries and transactions transparently and automatically.
Strictly speaking, the application need not have any knowledge of where data is
actually located. However, from a practical point of view, it is in your best interest to
take the location of your data into account.

Distributed queries fall into two broad categories: queries whose target tables are all
located at a single remote site (also known as "remote queries") and queries whose
target tables are located at multiple sites.

When an application initiates a remote query, the optimizer recognizes that the
tables involved are in a single database, and it passes the entire query to the remote
database, which executes it with the same efficiency as a local query. The remote
database then sends that data back.

There are really no optimizations that you can make on a remote query, although if
you find that your application is performing a high number of remote queries, you
might consider relocating the data to the local database either in its entirety or as
snapshots, thereby reducing the network traffic.

Queries that gather data from multiple sources can benefit from some optimizations
as we shall see. For purposes of illustration, consider the following query:

181

Oracle Distributed Systems

SELECT customer_name,
 TO_CHAR(order_date, 'Month') month,
 SUM(order_total) monthly_sales
FROM customer@PHQS.BIGWHEEL.COM c,
 orders@PSLS.BIGWHEEL.COM o
WHERE c.customer_id = o.customer_id
GROUP BY customer_name,
 TO_CHAR(order_date, 'Month'),
 TO_CHAR(order_date, 'MM')
ORDER BY customer_name, to_char(order_date, 'MM');

CUSTOMER_NAME MONTH MONTHLY_SALES
-------------- ------ -------------
Chain Reaction June 505
Missing Link April 345
Missing Link May 398
Spoken Word May 475
Spoken Word June 305

To decompose this query, Oracle must first determine which columns are in which
tables by querying the data dictionaries at PHQS.BIGWHEEL.COM and
PSLS.BIGWHEEL.COM. Then it retrieves the data from these two remote databases.
These queries return all records from the remote tables.

In PHQS.BIGWHEEL.COM:

Statement
--
SELECT "CUSTOMER_ID","CUSTOMER_NAME" FROM "CUSTOMERS" "C"

In PSLS.BIGWHEEL.COM:

Statement
--
SELECT "CUSTOMER_ID","ORDER_TOTAL","ORDER_DATE" FROM "ORDERS" "O"

Oracle performs joins and aggregations of this data at the site at which the query
originated, also known as the driving site. Here we see several opportunities for
optimization, described in the following sections.

8.1.3.1 Control the driving site

Be mindful of how much data is being shipped to the driving site. Whenever possible,
originatedistributed queries from the database that holds the most target data, or
use the DRIVING_SITE hint to force a specific site to be the driving site.

In our sample query, we could force the driving site to be PSLS.BIGWHEEL.COM
since the ORDERS table is bigger than the CUSTOMERS table:

SELECT /*+DRIVING_SITE(orders)*/
 customer_name,
 TO_CHAR(order_date, 'Month') month,
 SUM(order_total) monthly_sales

182

Oracle Distributed Systems

FROM customer@PHQS.BIGWHEEL.COM c,
 orders@PSLS.BIGWHEEL.COM o
 . . .

This hint forces the site with the ORDERS table to perform the joins and aggregation
operations the query requires. Note that the query results are still sent over the
network to the site that originated the query.

Another way to force a specific site to be the driving site is to create views of remote
data at the desired site. The view tricks the optimizer into thinking that the table is
at the site. Again, referring to our example, we could force PSLS.BIGWHEEL.COM to
be the driving site by creating a view on the CUSTOMERS table there, and rewriting
the query to select from that view.

At PSLS.BIGWHEEL.COM:

CREATE VIEW customer_view AS
SELECT customer_id, customer_name
FROM customers@PSLS.BIGWHEEL.COM;

At the site originating the query:

SELECT customer_name,
 TO_CHAR(order_date, 'Month') month,
 SUM(order_total) monthly_sales
FROM customer_view@PSLS.BIGWHEEL.COM c,
 orders@PSLS.BIGWHEEL.COM o

This query accesses the data on PHQS.BIGWHEEL.COM only indirectly. To Oracle's
optimizer, it appears to be a simple remote query.

Just as important as controlling the driving site in distributed queries is controlling
the use of indexes. This brings us to the next tip.

8.1.3.2 Control index usage

Regrettably, the only way that Oracle will even consider the use of indexes in
distributed queries is if the database uses the cost-based optimizer. If your
databases are configured to use the rule-based optimizer, your distributed queries
are performing full table scans.

8.1.4 Maintenance of Database Link Connections

Whenever a user issues a remote procedure call or executes a SQL statement that
references remote data and the user does not already have a connection to the
remote database, Oracle automatically connects using the database link available to
the user. Oracle maintains this connection either until the user logs off or until the
connection is explicitly closed. In other words, connections persist even after they
may no longer be necessary. This can cause undue strain on resources such as
network bandwidth, machine memory, and database throughput. It can even cause
unneeded expense if the connectivity is over a third-party vendor's network.

183

Oracle Distributed Systems

Your application can avoid all of these problems by explicitly closing database links
when they are no longer necessary. To do so, all transactions that utilize the link
must be completed (either committed or rolled back), and any cursors that were
opened at the remote site must be closed. When these requirements are met, your
application can issue this command:

ALTER SESSION CLOSE DATABASE LINK linkname;

Note that the ALTER SESSION system privilege must be granted to all users of the
application. ALTER SESSION is included in the CONNECT role, but this role is not
necessarily granted to all users.

8.1.5 Error Handling

There are a number of Oracle errors that are specific to distributed databases. An
application that performs any remote or distributed operations must trap these
exceptions in addition to the normal error handling of a single-database application.
The following lists these Oracle errors:

ORA-00160: global transaction length num is greater than maximum num

Cause: An external global transaction ID with a field length too large was
passed in.

Action: Report the problem to your external transaction coordinator vendor.

ORA-00161: transaction branch length num is illegal (maximum allowed num)

Cause: An external transaction branch ID with either a length too large or
was passed in.

Action: Report the problem to your external transaction coordinator vendor.

ORA-00162: external dbid length num is greater than maximum (num)

Cause: An external database name with a field length too large was passed in.

Action: Report the problem to your external transaction coordinator vendor.

ORA-00163: internal database name length num is greater than maximum (num)

Cause: An internal database name with a field length too large was passed in.

Action: Report the problem to your external transaction coordinator vendor.

The following lists messages generated during distributed transactions:

ORA-02040: remote database name does not support two-phase commit

184

Oracle Distributed Systems

Cause: A distributed update of more than one database was attempted, but
the named database does not support the prepare phase of the two-phase
commit, as determined by its logon transaction traits. The transaction was
rolled back.

Action: Do not attempt to update the named database, unless it is the only
database updated in the transaction. Distributed updates of more than one
database in a single transaction can be performed only if all databases
support the two-phase commit mechanism.

ORA-02041: client database did not begin a transaction

Cause: An update occurred at a coordinated database without the coordinator
beginning a distributed transaction. This may happen if a stored procedure
commits and then performs updates and the stored procedure is invoked
remotely. It also could happen if an external transaction monitor violates the
XA protocol.

Action: If the cause is the former, check that no commit is followed by an
update.

ORA-02042: too many distributed transactions

Cause: The distributed transaction table is full because too many distributed
transactions are active.

Action: Increase the DISTRIBUTED_TRANSACTIONS parameter in the
initialization parameter file, shut down and restart Oracle, or run fewer
transactions. If it is certain there are not too many concurrent distributed
transactions, this may be an internal error. In this case, contact customer
support. Shutting down and restarting the instance could be a workaround.

ORA-02043: must end current transaction before executing command

Cause: A transaction is in progress and one of the following commands is
issued: COMMIT FORCE, ROLLBACK FORCE, or ALTER SYSTEM ENABLE
DISTRIBUTED RECOVERY in single process mode.

Action: Commit or roll back the current transaction and retry the command.

ORA-02044: transaction manager login denied: transaction in progress

Cause: A remote transaction manager tried to log in while a distributed
transaction is in progress. A protocol error occurred in the remote transaction
manager.

Action: End the current transaction.

ORA-02045: too many local sessions participating in global transactions

185

Oracle Distributed Systems

Cause: There are too many sessions at this site to accommodate this
transaction.

Action: Use an existing database link so that another session need not be
created at the remote site.

ORA-02046: distributed transaction already begun

Cause: Internal error or error in external transaction manager. A server
session received a begin_tran RPC before finishing with a previous distributed
transaction.

Action: Report the problem to your external transaction coordinator vendor.

8.2 Application Tiering

Application tiering refers to separating various components of an application into
layers that can be managed independently. A classic example is an Internet
application that must scale to support thousands or millions of users. For example,
consider the case of a web site that allows users to trade stocks online via their
browsers. Such an application would run on web servers, application servers, and
database servers. Web servers are the "frontend" of the application, responsible for
accepting requests from users and directing them to application servers. The
application servers house the application's logic and interact with the database.

Scaling the web server and application server layers of a tiered application is
relatively easy; just add more machines! However, it is not so easy to add databases
since the data must be consistent across all databases in the environment. For
example, a user who buys 100 shares of XYZ should see the trade recorded no
matter what database she connects to when visiting the site. Later chapters will
examine data replication, which is a means of achieving horizontal scalability of
database servers.

8.3 Designing a Replicated System

There are a variety of issues that are unique to sites utilizing Oracle's advanced
replication facilities. Areplicated system succeeds only if the designers are aware of
these idiosyncrasies and make the right implementation decisions. Again, the sooner
in the process these design choices are made, the better the chances for success.

8.3.1 Transactional Consistency

Oracle's multi-master replication preserves the order of transactions when it
replicates them to participating sites, and it also guarantees the consistency of data
at all sites. So, if you have a replicated order entry system that creates an entry in
the ORDERS table in one transaction and entries in the ORDER_ITEMS table as a
second transaction, Oracle will apply the transactions in the same order at all remote
sites.

186

Oracle Distri

Oracle8 includes a feature called parallel propagation,
which is a means to replicate multiple transactions
simultaneously. Thus, it is possible, and even likely,
that transactions will not be delivered to participating
master sites in the same sequence in which they
occurred at the originating sites. However, Oracle
guarantees that parallel streams of transactions are
orthogonal—that is, they are independent of one
another.

buted Systems

187

This is a crucial property of replication; without it, transactions could fail because of
violated integrity constraints, and data would not be consistent. Since Oracle
respects the order of transactions, row-level transactions do not require any special
handling in a replicated environment.

Batch activity, on the other hand, is not quite as simple. Suppose, for example, that
the ORDERS and ORDER_ITEMS tables were implemented as snapshots at a remote
site that refreshes the snapshots once per day. We want this site to have a
consistent representation of the data at all times; that means that we cannot simply
refresh the ORDERS table and then the ORDER_ITEMS table, because during the
time the ORDER_ITEMS table refreshes, the ORDERS table will have numerous item-
less orders. And, of course, the ORDER_ITEMS table cannot be refreshed first
because we would then have orphaned items.

Oracle's solution to this dilemma is the snapshot group. A snapshot group is a
collection of two or more tables that must be refreshed as a single transaction. All
tables are refreshed with a representation of the master data at a single point in
time. Refer to Chapter 11, for specifics about creating and using snapshot groups.

8.3.2 Schema Differences and Partitioning

In a nonreplicated distributed database, data may be fragmented vertically, and
tables may be defined slightly differently at different sites. In a replicated
environment, you sacrifice a certain amount of flexibility. A table that participates in
peer-to-peer replication must have the same shape (i.e., columns) at all locations.
Whenever you add or drop a column, you must quiesce the replication group and use
the Oracle built-in package procedure DBMS_REPCAT.ALTER_MASTER_REPOBJECT to
change the table at all master sites.

The DBMS_REPCAT.ALTER_MASTER_REPOBJECT
procedure can perform only standard DDL such as
widening or adding fields. If you want to drop a
column, you must create a new table without the
column you are dropping, populate the new table, and
add it to the replication group.

Oracle Distributed Systems

Unlike vertical partitioning, horizontal partitioning is fairly straightforward in a
replicated environment. If you wish to divide a table so that a WHERE clause dictates
whether records appear at specific sites, you can use updateable snapshots to bring
about this partitioning. For example, a retailer may use updateable snapshots to
track sales transactions at its various locations.

Horizontal partitioning can also be of tremendous use in an application that is
designed to balance workload for the purpose of scalability. Consider an Internet
"portal" site that allows users to personalize their view of the web page by specifying
stocks in their portfolio, sports teams they track, weather reports they want, and so
on. If the schema is designed so that the tables containing this personalized data can
be partitioned by username, for example, then the application can direct users to
specific databases in the replicated environment based on their user ID.

In order to take advantage of scalability through horizontal partitioning, the
application should be able to direct users, or traffic, to a particular database based
on an identifying key. Horizontal partitioning is highly desirable because it helps to
avoid conflicts. It also gives you the option to use updateable snapshots or multi-
master replication; updateable snapshots can take advantage of partitioning, but
master tables must be replicated in their entirety. Obviously, all tables that are to be
horizontally partitioned must contain the partition key.

The latter requirement generally implies denormalization of the schema. Since every
table in the replicated schema must contain the partition key, normalizations that
would be highly desirable under normal circumstances are not reasonable. For
example, consider what would be involved in partitioning an order entry application.
If we partition tables based on CUSTOMER_ID, then this field would have to be in not
only the CUSTOMERS and ORDERS tables but also the ORDER_ITEMS table, which is
highly unnatural.

If you find yourself having to denormalize your schema in absurd ways, you are
probably better off either choosing a different partition key or simply using multi-
master replication (and placing all data at all sites) instead. If you elect to use multi-
master replication, you should still direct your application to use different databases
for different subsets of data.

8.3.3 Row-Level Replication or Procedural Replication?

Oracle's advanced replication facility supportsrow-level replication and procedural
replication. Row-level replication is transaction based; DML that is applied against a
table is forwarded to other sites and applied. Every transaction creates a deferred
call. Procedural replication, on the other hand, replicates calls to PL/SQL packaged
procedures and functions.

For OLTP workloads, row-level replication makes the most sense; there is no real
need or benefit to writing PL/SQL packages to perform all of an application's DML.
Furthermore, row-level replication offers conflict resolution, whereas procedural
replication does not.

188

Oracle Distributed Systems

So why would one ever want to use procedural replication? Operations that update
large numbers of records do not replicate well with transaction-based replication, for
a variety of reasons:

• Field values must be sent to all participating master sites. In Oracle7, both
old and new column values must be sent for every column in the table, not
just the changed columns. This can lead to quite a strain on the network.

• Large replicated transactions require tremendously large rollback segments.
Rollback segments are required not only for the table being modified but also
for the data dictionary tables that control replication.

• Conflict resolution is extremely expensive for large transactions. If a conflict
arises, and you have resolution methods defined to handle it, the time
required to process the conflict can easily exceed the time required to simply
re-create the table.

None of these considerations is an issue with procedural replication. The only data
that propagates to the participating sites is the PL/SQL call itself. Oracle executes the
call at each database, requiring little more overhead than a nonreplicated procedure
call uses. Since procedural replication does not utilize conflict resolution methods, no
additional time or resources are required to process conflicts. Of course, the
application developers have the responsibility of ensuring that the replicated
procedures do not introduce conflicts and that they can handle data anomalies.

Another advantage that procedural replication has over row-level replication is that
procedures can be localized. That is, they can be slightly different at different
locations. This flexibility can be useful if business rules differ at various sites. For
example, a price increase may trigger different customer discounts in different
regions. (Again, developers and designers must ensure that any regional differences
do not result in inconsistent data.) Procedural replication is described in greater
detail in Chapter 14.

8.3.4 Primary Keys and Unique Indexes

Every replicated table must have either a primary key or a unique index. A primary
key is preferable. The reason for this requirement should be clear; every record must
be uniquely identifiable so that changes to the record can be propagated to the
corresponding record in the remote databases. ROWIDs are not an option for
uniquely identifying records because they contain information about the physical
location of a record and are not identical across multiple databases.

As I've said, primary keys are preferable to unique indexes; in addition, a single-field
key is preferable to a multivalued key. The problem with unique indexes is that the
replication facility does not automatically recognize them. If you have a table with a
unique index but not a primary key, you have to use the
DBMS_REPCAT.SET_COLUMNS procedure to coerce Oracle into using the index to
identify records. Also, if you wish to use primary key snapshots (available in Oracle8),
the master table must have a primary key. The replication software assumes that
master tables have primary keys.

Primary keys should consist of a single column, preferably a numeric column.
Whenever Oracle has to locate a row, which occurs quite frequently with row-level

189

Oracle Distri

Although foreign key constraints are safe to use in a
replicated environment, it is not practical to use the
ON DELETE CASCADE form. Foreign keys defined with
cascading deletes automatically delete child records
whenever a record is deleted from the parent table. If
both the parent and child tables are replicated and if
the constraint is defined as a cascading delete at all
master sites, then deletes will be attempted twice
against child tables: once because of the integrity
constraint and once because of the replicated delete
from the originating site.

buted Systems

190

replication, the task should be as fast as possible; using a single-field primary key
helps the overall performance of the replication functions. The primary advantage to
using numeric fields over VARCHARs for primary keys is that indexes on numeric
columns are generally much smaller than those on VARCHARs.

8.3.5 Foreign Keys and Referential Integrity

As stated elsewhere, Oracle's advanced replication facility preserves the order of
transactions, so if a transaction creates records that respect a master-child
relationship at the originating site, the relationship will be preserved at the sites to
which the transaction propagates. For example, if an order entry application creates
a record in the ORDERS table and multiple line items in the ORDER_ITEMS table
either in a single transaction or in a series of transactions, Oracle will propagate the
inserts in the same order.

Therefore, foreign key constraints are supportable and even advisable in a replicated
environment. Also, unlike Oracle7, which did not allow primary keys or unique
indexes on snapshot base tables, Oracle8 does support these constraints. In fact,
Oracle8 can even create a primary key on snapshot base tables automatically, as
described earlier in Section 8.1.1.

8.3.6 Triggers on Replicated Tables

If your application uses triggers, make sure that the triggers do not interfere with
replication functionality. For example, if you use auditing triggers that populate
username and timestamp fields when a record is created or deleted, the trigger
should fire at the site where the DML originated but not at the sites to which the DML
is propagated. Oracle provides a built-in function called
DBMS_REPUTIL.FROM_REMOTE, which you can use in your trigger body to determine
whether to do anything.

CREATE OR REPLACE TRIGGER t_iu_orders
BEFORE INSERT OR UPDATE
ON orders
FOR EACH ROW

Oracle Distributed Systems

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 :new.username := USER;
 :new.rectime := SYSDATE;
 :new.site := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

Note that this is a before-row trigger. All of Oracle's replication triggers are after-row
triggers. Since it is not possible to control the firing order of triggers of the same
type, it is best to guarantee that your own triggers fire before the replication triggers
by making them before-row triggers. This way, your triggers will not interfere with
replication functionality. Make sure that triggers that modify data fire only for the
original transaction, not for propagated transactions.

8.3.7 Datatypes

Oracle doesnot replicate LONG or LONG RAW datatypes. You can still replicate a
table that has LONG or LONG RAW columns, but changes to the values in such
columns are not propagated. Oracle8 addresses this limitation by supporting
replication of CLOB (character large object) and BLOB (binary large object) datatypes.
Nevertheless, applications should perform minimal updates to these datatypes in a
replicated environment because of the impact this can have on the network. In fact,
Oracle8 also includes a feature called minimum communication, which allows you to
specify the columns whose values are to be sent to remote sites when updates are
propagated. If you know that the application never updates CLOB or BLOB columns,
you do not need to send their values when updates propagate. See Chapter 12, for
details on how to take advantage of minimum communication. If your application
does allow for updates to CLOB and BLOB data, you should try to partition data
vertically so that these fields are in tables that contain only the CLOB or BLOB data
and a primary key:

SQL> desc catalog_photos
 Name Null? Type
 ------------------------- -------- ----
 catalog_photo_id NOT NULL NUMBER(12)
 photo NOT NULL BLOB

Oracle8 also introduced user-defined datatypes. Regrettably, user-defined datatypes
do not replicate. The current recommendation is to create tables with the objects'
underlying datatypes.

8.3.8 Time

Among the most common and easy to use methods of conflict resolution are Latest
Timestamp and Earliest Timestamp. To utilize these fields, replicated tables should
have a timestamp field and a before-row trigger to populate it on every insert and
update. For this field to be effective, the system clocks on the machines hosting the
replicated databases must be synchronized. Synchronization is particularly important

191

Oracle Distributed Systems

for applications that perform a high rate of transactions, especially if these
transactions are not partitioned to avoid conflicts.

The time zone of each database server machine may also be an issue. For example,
if you have machines in New York and California and have defined Latest Timestamp
conflict resolution, then the transactions originating at the New York site will prevail
in most conflicts since New York is three hours ahead of California. To avoid time
zone biases, you can either standardize your machines to a single time zone, such as
Greenwich Mean Time (GMT), or adjust the value of the timestamp when you
populate the field. The former strategy is much simpler but may cause confusion and
complications if the application presents time-sensitive data to the user, such as a
time and attendance system or a stock quote server. Future versions of Oracle are
expected to include a timestamp component in the DATE datatype, which will
simplify time zone anomalies significantly. Currently, Oracle references the
computer's system clock to determine the time but does not consider the time zone.

8.3.9 Sequences

Oracle's advanced replication facility does not replicate sequences, which are often
used to generate primary key values and other numeric keys. Because of this
limitation, applications that use sequences can reference a single sequence which is
located at a master site, can use their own local sequence, or can use a multicolumn
primary key. Each of these strategies has its advantages and disadvantages.

8.3.9.1 Using a single sequence at a master site

If you elect to allow all databases to reference a single sequence in a remote site,
you are ensured that the ordering of the numeric key in the databases represents
the order in which transactions occurred. As an example, a single master sequence
could be created for an order entry application that is replicated across multiple sites:

CREATE PUBLIC SYNONYM seq_order_num
FOR seq_order_num@PHQS.BIGWHEEL.COM

The ORDERS table would then have a before-row trigger to populate the
ORDER_NUMBER field (as well as the other fields used for auditing and conflict
avoidance).

CREATE OR REPLACE TRIGGER t_iu_orders
BEFORE INSERT OR UPDATE
ON orders
FOR EACH ROW

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 :new.order_numbers := seq_order_num.next_val;
 :new.username := USER;
 :new.rectime := SYSDATE;
 :new.site := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;

192

Oracle Distributed Systems

Thus, the ordering of ORDER_NUMBERs will be sequential for all orders entered at all
sites.

The glaring disadvantage of this approach is the dependency on a single site. Not
only must the remote database be available in order for new orders to be generated,
but it must also have the capacity to support the connections and sequence requests
from all users of the application. These risks are too high for most production
applications.

8.3.9.2 Allocating sequence ranges to sites

An alternative is to use a local sequence in all databases in which the application
runs. With a local sequence, the application can function independently from all other
master sites. However, the sequences must be created so that they never collide—
that is, distinct ranges of sequence numbers must be allocated to each site. You can
accomplish this sequence partitioning simply by creating the sequences with different
starting numbers, as follows:

Headquarters:

CREATE SEQUENCE seq_order_num
START WITH 1;

New York site:

CREATE SEQUENCE seq_order_num
START WITH 100000000000;

California site:

CREATE SEQUENCE seq_order_num
START WITH 200000000000;

It is a good idea to leave room for plenty of entries at each site; the preceding
example allocates one hundred billion sequence numbers per site, which can support
more than 300 new orders per second for 10 years. Running out of numbers is to be
avoided at all costs; calculate your peak rate of record insertion and allocate enough
sequence numbers to support 100 times that rate continuously for 30 years. (By
then you probably won't care if it runs out of sequence numbers!)

The only disadvantages to allocated sequence ranges to sites is the loss of continuity
in key values across the participating databases. Aggregate reports that sort by the
key value will not be sorted by the order in which records were created. Of course,
some people would find it advantageous to be able to identify where records were
created just by referencing the primary key.

8.3.9.3 Using a multicolumn primary key

Finally, if neither of the previously described strategies is acceptable, the application
may use two fields as the primary key for replicated tables. Typically, one of these
fields would be the sequence number, as in the previous examples, and the second

193

Oracle Distributed Systems

field would be a site identifier. For example, the ORDERS table would have its
primary key defined as follows:

ALTER TABLE orders ADD (
CONSTRAINT pk_orders
PRIMARY KET (order_num, site_num)
);

The application would still use local sequences, but the sequence numbers could all
start with the same value.

The advantage of this method is that its primary key values are not artificially
associated with sites, and there is no danger of running out of sequence numbers at
any site. In addition, new sites are simple to add. The disadvantage is that multi-
columned primary keys incur additional overhead in the replication internals, and
performance will be affected.

8.3.10 Multiple Character Sets

If your application supports multiple character sets, you must ensure that each
database participating in the replicated environment is created with a compatible
character set. If multiple character sets are involved, Oracle recommends the use of
the UNICODE character set: AL24UTFFSS for Oracle7 databases and AL24UTFFSS or
UTF8 for Oracle8 databases, because these support all mappings.

SQL*Net and Net8 perform character set conversions; there is nothing specific to
replication that must be done.

194

Oracle Distributed Systems

Part II: Replication

Part II describes the details of Oracle's various distributed system products; it
contains the following chapters:

• Chapter 9, takes a deeper look at Oracle's replication architecture; it
examines the various types of replication available through Oracle,
specific architectural components, installation tips, and enhancements
for Oracle8 and Oracle8i.

• Chapter 10, describes how to set up an advanced replication
environment, including the setting of initialization parameters, the
selection of redo logs and rollback segments, the size and placement
of data dictionary objects, and the use of administrative accounts,
privileges, and database links.

• Chapter 11, is a detailed analysis of Oracle's basic replication
(snapshot) facility.

• Chapter 12, is a detailed analysis of Oracle's multi-master replication
facility.

• Chapter 13, is a detailed analysis of Oracle's updateable snapshot
facility.

• Chapter 14, is a detailed analysis of Oracle's procedural replication
facility.

• Chapter 15, describes a variety of techniques for avoiding conflicts
among the various distributed sites where data is replicated.

195

Oracle Distributed Systems

196

Oracle Distributed Systems

Chapter 9. Oracle Replication Architecture

If you're going to realize the full potential of Oracle's advanced replication facilities
and simultaneously avoid the pitfalls, you need to understand the architecture on
which they are based. If you are new to replication or a bit unclear about how the
components work together, this chapter is for you. The following chapters assume an
understanding of the concepts discussed here.

9.1 What Is Oracle Replication?

Let's begin with a few simple concepts. Oracle's replication facility is a collection of
tables, PL/SQL packages, and background processes that can automatically replicate
data or procedure calls from one database to one or more other databases. Oracle's
replication is built in to the database itself; it is not a separate application or utility
like export and import. Depending on the configuration, data can be modified at all
sites, or one site can be the sole writer while other sites receive read-only copies of
the data. The functionality can accommodate a wide variety of business
requirements. These include:

• High availability
• Scalability
• Remote data deployment
• Data extraction and consolidation

We'll examine the details of implementing these solutions in later chapters.

Note that replicating data is fundamentally different from distributing data. When
data is distributed, it may be accessed transparently from multiple locations, but a
given table exists in only one location, and that location is responsible for its security
and integrity. Replicated data, on the other hand, resides at multiple locations, each
of which shares in its maintenance. Data replication implies an increased level of
complexity because it introduces issues such as data synchronization and latency.
This complexity is the price to pay for continuous operations when a remote data
source is unavailable.

9.2 Types of Replication

No single replication methodology can meet all of the various business requirements
listed earlier. Oracle's four basic types of replication are described in Table 9.1.

Table 9.1. Types of Replication
Replication

Type Description Example

Read-only
snapshots

A master table is copied to one or
more databases. Changes in the
master table are reflected in the
snapshot tables whenever the
snapshot refreshes. The snapshot

A company may maintain its master
product price list in a table at
headquarters; regional sales offices
or retail sites each have a snapshot
of the price list in their local

197

Oracle Distributed Systems

site determines the frequency of
the refreshes; data is pulled.

databases.

Updateable
snapshots

Similar to read-only snapshots,
except that the snapshot sites are
able to modify the data and send
their changes back to the master.
The snapshot site determines the
frequency of the refreshes and
the frequency with which updates
are sent back to the master.

A table of customer leads resides at
headquarters. Sales staff with laptop
computers visit prospective clients
and enter notes about their
meetings. When the sales staff dials
in to the headquarters database
every evening, their notes are
uploaded, and they receive any
updates that may have occurred
since their last data refresh.

Multi-
master
replication

A table is copied to one or more
databases, and each database
has the ability to insert, update,
or delete records from it.
Modifications are pushed to the
other database at an interval that
the DBA sets for each replication
group. The highest theoretical
frequency is once per second.

A company achieves scalability and
high availability by running its order
entry system on two database
instances; orders and inventory are
modified on both machines.

Procedural
replication

A call to a packaged procedure or
function is replicated to one or
more databases.

A procedure call applies a discount of
10% to all orders over US$500 by
updating the ORDERS table in a
replicated order entry system.

As you can see, these modes of replication are quite different, and each is suited for
specific kinds of uses. A single environment can utilize all of these methods; they are
not mutually exclusive.

9.3 Architecture Components

Oracle has built the replication facility on a variety of triggers, packages, background
processes, jobs, and tables, all working in concert to deliver data to multiple sites as
if by magic. If you are the DBA for a replicated environment, you must understand
the secrets behind this magic. Read on.

9.3.1 The Queues

Queues are the foundation of the replication architecture. DML and DDL changes are
entered into these queues, from which they are propagated to remote sites. Table
9.2 summarizes the queues.

Table 9.2. Replication Queues
Relevant Data Dictionary

Views Description

Deferred
transaction

Primary: Local transactions that are to be replicated to
remote sites are enqueued in to deftrans. A

Queue Name

198

Oracle Distri

In the case of synchronous multi-master replication,
DML activity is not queued. Changes are delivered to
all sites simultaneously using a two-phase commit
protocol.

buted Systems

199

(a.k.a.
deftrans)

DEFTRAN

Other:

DEFTRANDEST
DEFERRCOUNT
DEFERROR

trigger on the replicated table table_name $RT
inserts these entries. Note that in Oracle8 this
trigger is internalized and is therefore not
visible in the data dictionary.

Replication
call (a.k.a.
defcall)

Primary:

DEFCALL

Other:

DEFCALLDEST

Remote procedure calls are enqueued into the
DEFCALL view. In the case of a replicated
table, there is one entry for each row that is
changed.

Replication
catalog
(a.k.a.
repcatlog)

DBA_REPCAT

DDL modifications to replicated objects as well
as administrative tasks such as changing to the
propagation mode are tracked in DBA_REPCAT.
This view also contains information about
errors that may have occurred when
performing these tasks.

Job

Primary:

DBA_JOBS

Other:

DEFSCHEDULE
DBA_JOBS_RUNNING

The job queue controls scheduled jobs that run
at user-defined intervals. For replication, these
are recurring calls to the DBMS_REPCAT
procedures that process entries in deftrans,
defcall, and repcatlog and that refresh
snapshots. Note that the job queue can
schedule calls to any package procedure; its
use is not restricted to replication-related
activity.

The next step to understanding the replication architecture is understanding the
mechanisms Oracle uses to add and remove entries from these queues. As you
would probably guess, it's done with triggers and packaged procedures.

9.3.2 The Triggers and Packages

Whether you are using snapshots, asynchronous row-level replication, or procedural
replication, you are using some combination of queues, triggers, and packages. This
section examines the precise mechanisms behind all of the preceding replication
methods. In each case, we use an example table, called ISO_COUNTRIES, to
illustrate the sequence of events that replicates an update to the table. The
ISO_COUNTRIES table is defined as follows:

Oracle Distri

The preceding CREATE SNAPSHOT LOG statement
uses the WITH PRIMARY KEY option, which is new with
Oracle8. In Oracle7, changed records are tracked in
the snapshot log by their ROWID. Oracle8 gives you
the choice of building the snapshot log-based on
primary key or ROWID.

buted Systems

200

SQL> desc iso_countries
 Name Null? Type
 ------------ -------- --------------
 COUNTRY_ID NOT NULL NUMBER(6)
 ISO_CODE NOT NULL VARCHAR2(2)
 ISO_NAME NOT NULL VARCHAR2(50)
 AUDIT_DATE NOT NULL DATE
 AUDIT_USER NOT NULL VARCHAR2(30)
 GLOBAL_NAME NOT NULL VARCHAR2(20)

The primary key of the ISO_COUNTRIES table is COUNTRY_ID.

9.3.2.1 The read-only snapshot mechanism

The simplest means of replication is the read-only snapshot, which is essentially a
table at the snapshot site that holds the results of a remote query. This table is
refreshed at an interval that is determined when the snapshot is created and that
can be modified without re-creating the snapshot.

Read-only snapshots can be created in such a way that the refreshes have to update
only records that have been modified since the last refresh. This optimization is
called a fast refresh. In order to use a fast refresh, the master table must keep track
of which records have changed since the last refresh. This bookkeeping happens
automatically if you create a snapshot log on the master table. If you do not create a
snapshot log on the master table, then every snapshot will be a complete refresh,
which means that the snapshot table is completely repopulated. Obviously this is
undesirable, particularly for large snapshots.

To create a snapshot log on the ISO_COUNTRIES table, we issue the following
statement:

CREATE SNAPSHOT LOG ON iso_countries
WITH PRIMARY KEY
TABLESPACE sprocket_data STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0)

The snapshot log on the ISO_COUNTRIES table looks like this:

SQL> desc SPROCKET.mlog$_iso_countries
 Name Null? Type
 ---------------- ----- -------
 COUNTRY_ID NUMBER(6)
 SNAPTIME$$ DATE
 DMLTYPE$$ VARCHAR2(1)
 OLD_NEW$$ VARCHAR2(1)

Oracle Distri

The Oracle7 version of the MLOG$_ISO_COUNTRIES
table identifies rows by their ROWID instead of by
primary key and does not have the fields OLD_NEW$$
or CHANGE_VECTOR$$.

buted Systems

201

 CHANGE_VECTOR$$ RAW(255)

Oracle also creates an after-row trigger on the ISO_COUNTRIES table that populates
the snapshot log after every insert, update, and delete. In Oracle8, the trigger is
internalized, so it is not visible in the data dictionary. In an Oracle7 database,
however, we can see the text of the trigger, named TLOG$_ISO_COUNTRIES:

DECLARE dmltype CHAR;
BEGIN
 IF inserting then dmltype := 'I';
 ELSIF updating then dmltype := 'U';
 ELSIF deleting then dmltype := 'D';
 END IF;

 INSERT INTO "SPROCKET"."MLOG$_ISO_COUNTRIES" (m_row$$, dmltype$$)
 VALUES (:old.rowid, dmltype);
END;

So far, we have only described the master site's architecture. What happens at the
snapshot site when we create a snapshot?

CREATE SNAPSHOT iso_countries
REFRESH FAST
START WITH SYSDATE
NEXT SYSDATE+10/1440
WITH PRIMARY KEY
AS
SELECT country_id,
 iso_code,
 iso_name,
 audit_date,
 audit_user,
 global_name
FROM iso_countries@PHQS.BIGWHEEL.COM;

This CREATE SNAPSHOT statement creates a table at the snapshot site named
SNAP$_ISO_COUNTRIES, which contains all columns of the master ISO_COUNTRIES
table. If we use the Oracle8 WITH PRIMARY KEY syntax, the snapshot table has
exactly the same columns as the master table. In Oracle7, or if we use the WITH
ROWID syntax in Oracle8, the snapshot will have an extra column, M_ROW$$, which
contains the ROWID corresponding to the record in the master database.

The CREATE SNAPSHOT statement also creates a view, named ISO_COUNTRIES.
This view is defined as a query on the SNAP$_ISO_COUNTRIES table, which returns
exactly the fields in the master table.

Oracle Distributed Systems

Finally, the CREATE SNAPSHOT statement also schedules a job in the job queue to
refresh the snapshot. This job is a call to DBMS_REFRESH, and it is scheduled to
recur at the frequency specified by the NEXT clause in the CREATE SNAPSHOT
statement.

Table 9.3 summarizes the objects Oracle creates to support read-only snapshots.

Table 9.3. Objects Created to Support Read-Only Snapshots
Site DDL Statement Objects Created

Master site
CREATE
SNAPSHOT LOG

Table MLOG$_master_table_name

Trigger TLOG$_master_table_name

(Note that the TLOG$ trigger is internalized in Oracle8
and not visible in the data dictionary.)

Snapshot
site

CREATE
SNAPSHOT

Table SNAP$_master_table_name

View MLOG$_master_table_name (Oracle7 only)

Index PK_master_table_name (Oracle8 only)

View master_table_name

Scheduled job to call DBMS_REFRESH

Figure 9.1 illustrates how these components work together.

Figure 9.1. How read-only snapshots work

202

Oracle Distri

Unlike read-only snapshots, updatebable snapshots
require that advanced replication be installed and
configured.

buted Systems

203

At the master site, we see the TLOG$ trigger firing to populate the MLOG$ table
when DML is applied to the master table. At the snapshot site, we see the SNAP$
table, and the call to DBMS_REFRESH which reexecutes the snapshot's defining
query at a specified interval.

9.3.2.2 The updateable snapshot mechanism

Updateable snapshots permit DML at the snapshot sites and propagate DML changes
from the snapshot table back to the master table. The architecture of updateable
snapshots is quite similar to that of read-only snapshots. The primary architectural
differences are the following:

• Updateable snapshot sites maintain a table analogous to the master site's
MLOG$ table, populated by a trigger analogous to the master sites TLOG$
trigger. The updateable snapshot log table is named
USLOG$_master_table_name and the trigger is named
USTRG$_master_table_name. As with the TLOG$ trigger, the USTRG$ trigger
is internalized in Oracle8 and therefore is not visible in the data dictionary.

• Updateable snapshot sites use a trigger to post deferred RPCs that send DML
changes to the master site.

Oracle Distributed Systems

How do these additional objects propagate updates at the snapshot site to the
master site? Let us again consider our ISO_COUNTRIES table. We can create an
updateable snapshot of this table as follows:

CREATE SNAPSHOT iso_countries
REFRESH FAST
START WITH SYSDATE
NEXT SYSDATE+10/1440
WITH PRIMARY KEY
FOR UPDATE
AS
SELECT country_id,
 iso_code,
 iso_name,
 audit_date,
 audit_user,
 global_name
FROM iso_countries@PHQS.BIGWHEEL.COM;

Again, the WITH PRIMARY KEY syntax is unique to Oracle8. When you create a
snapshot with the FOR UPDATE clause and make the appropriate calls to the
replication packages that create the supporting objects for the updateable snapshot,
you end up with the following objects. Unless otherwise noted, these objects reside
at the snapshot site:

Table SNAP$_ISO_COUNTRIES

Contains the results of the query that defines the snapshot, plus a field
M_ROW$$ if the snapshot site is an Oracle7 database or if the WITH ROWID
syntax is used in an Oracle8 database.

Table USLOG$_ISO_COUNTRIES

Captures information about rows that have been changed; Oracle uses this
information to update the master table.

Trigger USTRG$_ISO_COUNTRIES on table SNAP$_ISO_COUNTRIES

Populates the USLOG$_ISO_COUNTRIES table; visible in Oracle7 only;
internalized in Oracle8.

Trigger ISO_COUNTRIES$RT on table SNAP$_ISO_COUNTRIES

Makes calls to ISO_COUNTRIES$TP; visible in Oracle7 only; internalized in
Oracle8.

Package ISO_COUNTRIES$TP

Builds deferred RPCs, which call ISO_COUNTRIES$RP at the master site;
visible in Oracle7 only; internalized in Oracle8.

204

Oracle Distributed Systems

Package ISO_COUNTRIES$RP

Performs DML on the master table.

Package ISO_COUNTRIES$RR

Defined only at the master site. This package contains routines used for
conflict resolution. Oracle creates only the package at the snapshot site; at
the master site Oracle creates both the package and the package body.

View ISO_COUNTRIES

View defined on the SNAP$_ISO_COUNTRIES table, which contains all
columns except for the M_ROW$$ column.

Entry in job queue that calls DBMS_REFRESH

DBMS_REFRESH refreshes the snapshot and pushes DML changes back to the
master.

The USLOG$_ISO_COUNTRIES table looks like the following:

Oracle7:

SQL> desc uslog$_iso_countries
 Name Null? Type
 ----------- ----- --------------
 M_ROW$$ VARCHAR2(255)
 SNAPTIME$$ DATE
 DMLTYPE$$ VARCHAR2(1)

Oracle8:

SQL> desc uslog$_iso_countries
 Name Null? Type
 ----------- ----- --------------
 COUNTRY_ID NUMBER(6)
 SNAPTIME$$ DATE
 DMLTYPE$$ VARCHAR2(1)
 OLD_NEW$$ VARCHAR2(1)

As is the case with the MLOG$ tables at the master site, the primary difference
between the Oracle7 and Oracle8 versions of the USLOG$ table is that Oracle8
identifies rows by primary key value, whereas Oracle7 identifies them by ROWID.

The triggers USTRG$_ISO_COUNTRIES and ISO_COUNTRIES$RT are visible only in
the Oracle7 data dictionary because the Oracle8 version of the trigger is internalized
but logically similar. The Oracle7 triggers are defined as follows.

Trigger USTRG$_ISO_COUNTRIES:

205

Oracle Distributed Systems

declare dmltype char;

begin
 if not dbms_snapshot.I_am_a_refresh then
 if updatingthen dmltype := 'U';
 elsif deletingthen dmltype := 'D';
 end if;

 insert into "SPROCKET"."USLOG$_ISO_COUNTRIES"
 (m_row$$, dmltype$$, snaptime$$)
 values (:old.m_row$$,
 dmltype,
 to_date('4000-01-01:00:00:00','YYYY-MM-DD:HH24:MI:SS'));
 end if;
end;

The purpose of the USLOG$_ISO_COUNTRIES table is to capture information about
DML that occurs at the snapshot site.

Trigger ISO_COUNTRIES$RT:

declare
 flag char;
begin
 if "ISO_COUNTRIES$TP".active then
 if inserting then
 flag := 'I';
 elsif updating then
 flag := 'U';
 elsif deleting then
 flag := 'D';
 end if;
 "ISO_COUNTRIES$TP".replicate(
 :old."AUDIT_DATE",:new."AUDIT_DATE",
 :old."AUDIT_USER",:new."AUDIT_USER",
 :old."COUNTRY_ID",:new."COUNTRY_ID",
 :old."GLOBAL_NAME",:new."GLOBAL_NAME",
 :old."ISO_CODE",:new."ISO_CODE",
 :old."ISO_NAME",:new."ISO_NAME",
 flag);
 end if;
end;

This trigger calls ISO_COUNTRIES$TP.REPLICATE, which builds a deferred RPC to
propagate changes to the snapshot back to the master site.

The ISO_COUNTRIES$TP.REPLICATE procedure is defined in Example 9.1.

Example 9.1. ISO_COUNTRIES$TP Package
package body "ISO_COUNTRIES$TP" as
 I_am_a_snapshot CHAR;
 is_snapshot BOOLEAN;
 function active return boolean
 is

206

Oracle Distributed Systems

 begin
 return (not((is_snapshot and dbms_snapshot.I_am_a_refresh) or
 not dbms_reputil.replication_is_on));
 end active;
 procedure replicate(
 "AUDIT_DATE1_o" IN DATE, /*-- The _o and _n parameters
--*/
 "AUDIT_DATE1_n" IN DATE, /*-- correspond to the old and new
--*/
 "AUDIT_USER2_o" IN VARCHAR2, /*-- values of the data.
--*/
 "AUDIT_USER2_n" IN VARCHAR2, /*-- This information is used to
--*/
 "COUNTRY_ID3_o" IN NUMBER, /*-- check that existing row at the
--*/
 "COUNTRY_ID3_n" IN NUMBER, /*-- destination site is the same
--*/
 "GLOBAL_NAME4_o" IN VARCHAR2, /*-- old row at the origin.
--*/
 "GLOBAL_NAME4_n" IN VARCHAR2, /*-- If there are discrepancies,
--*/
 "ISO_CODE5_o" IN VARCHAR2, /*-- the conflict resolution method
--*/
 "ISO_CODE5_n" IN VARCHAR2, /*-- (if defined for the table) is
--*/
 "ISO_NAME6_o" IN VARCHAR2, /*-- invoked.
--*/
 "ISO_NAME6_n" IN VARCHAR2,
 flag IN CHAR)
 is
 begin
 if flag = 'U' then /*-- If updating... --*/

 'REP_UPDATE',14,'RG_SPROCKET');

dbms_defer.call('SPROCKET','ISO_COUNTRIES$RP',

 dbms_defer.date_arg("AUDIT_DATE1_o");
 dbms_defer.date_arg("AUDIT_DATE1_n");
 dbms_defer.varchar2_arg("AUDIT_USER2_o");
 dbms_defer.varchar2_arg("AUDIT_USER2_n");
 dbms_defer.number_arg("COUNTRY_ID3_o");
 dbms_defer.number_arg("COUNTRY_ID3_n");
 dbms_defer.varchar2_arg("GLOBAL_NAME4_o");
 dbms_defer.varchar2_arg("GLOBAL_NAME4_n");
 dbms_defer.varchar2_arg("ISO_CODE5_o");
 dbms_defer.varchar2_arg("ISO_CODE5_n");
 dbms_defer.varchar2_arg("ISO_NAME6_o");
 dbms_defer.varchar2_arg("ISO_NAME6_n");
 elsif flag = 'I' then /*-- If inserting... --*/
 dbms_defer.call('SPROCKET','ISO_COUNTRIES$RP',
 'REP_INSERT',8,'RG_SPROCKET');
 dbms_defer.date_arg("AUDIT_DATE1_n");
 dbms_defer.varchar2_arg("AUDIT_USER2_n");
 dbms_defer.number_arg("COUNTRY_ID3_n");
 dbms_defer.varchar2_arg("GLOBAL_NAME4_n");
 dbms_defer.varchar2_arg("ISO_CODE5_n");
 dbms_defer.varchar2_arg("ISO_NAME6_n");
 elsif flag = 'D' then /*-- If deleting... */
 dbms_defer.call('SPROCKET','ISO_COUNTRIES$RP',

207

Oracle Distributed Systems

 'REP_DELETE',8,'RG_SPROCKET');
 dbms_defer.date_arg("AUDIT_DATE1_o");
 dbms_defer.varchar2_arg("AUDIT_USER2_o");
 dbms_defer.number_arg("COUNTRY_ID3_o");
 dbms_defer.varchar2_arg("GLOBAL_NAME4_o");
 dbms_defer.varchar2_arg("ISO_CODE5_o");
 dbms_defer.varchar2_arg("ISO_NAME6_o");
 end if;
 dbms_defer.varchar2_arg(dbms_reputil.global_name);
 dbms_defer.char_arg(I_am_a_snapshot);
 end replicate;
begin
 select decode(master, 'N', 'Y', 'N')
 into I_am_a_snapshot
 from all_repcat where gname = 'RG_SPROCKET';
 is_snapshot := (I_am_a_snapshot = 'Y');
end "ISO_COUNTRIES$TP";

Note that the calls to ISO_COUNTRIES$RP in this package are RPCs; the
ISO_COUNTRIES$RP package executes at the master site. It applies the DML from
the snapshot site to the master table. It is defined as shown in Example 9.2:

Example 9.2. ISO_COUNTRIES$RP Package
package body "ISO_COUNTRIES$RP" as
 procedure rep_delete(
 "AUDIT_DATE1_o" IN DATE,
 "AUDIT_USER2_o" IN VARCHAR2,
 "COUNTRY_ID3_o" IN NUMBER,
 "GLOBAL_NAME4_o" IN VARCHAR2,
 "ISO_CODE5_o" IN VARCHAR2,
 "ISO_NAME6_o" IN VARCHAR2,
 site_name IN VARCHAR2,
 propagation_flag IN CHAR) is
 begin
 rep_delete(
 NULL,
 "AUDIT_DATE1_o",
 "AUDIT_USER2_o",
 "COUNTRY_ID3_o",
 "GLOBAL_NAME4_o",
 "ISO_CODE5_o",
 "ISO_NAME6_o",
 site_name,
 propagation_flag);
 end rep_delete;
 procedure rep_delete(
 column_changed$ IN RAW,
 "AUDIT_DATE1_o" IN DATE,
 "AUDIT_USER2_o" IN VARCHAR2,
 "COUNTRY_ID3_o" IN NUMBER,
 "GLOBAL_NAME4_o" IN VARCHAR2,
 "ISO_CODE5_o" IN VARCHAR2,
 "ISO_NAME6_o" IN VARCHAR2,
 site_name IN VARCHAR2,
 propagation_flag IN CHAR) is

208

Oracle Distributed Systems

 column_sent$_varchar2 VARCHAR2(6);
 begin
 column_changed$$:= column_changed$;
 if column_changed$ is not null then
 dbms_reputil.raw_to_varchar2(column_changed$,
 2,
 column_sent$_varchar2);
 end if;
 if propagation_flag = 'N' then
 dbms_reputil.replication_off;
 end if;
 dbms_reputil.rep_begin(site_name);
 dbms_reputil.global_name := site_name;
 delete from "ISO_COUNTRIES"
 where (/*-- make sure the current row matches the origin's row
--*/
 decode(substr(column_sent$_varchar2, 1, 1),
 'N', 'Y',
 decode("AUDIT_DATE1_o", "AUDIT_DATE", 'Y', 'N')) = 'Y'
 and
 decode(substr(column_sent$_varchar2, 2, 1),
 'N', 'Y',
 decode("AUDIT_USER2_o", "AUDIT_USER", 'Y', 'N')) = 'Y'
 and
 decode(substr(column_sent$_varchar2, 3, 1),
 'N', 'Y',
 decode("COUNTRY_ID3_o", "COUNTRY_ID", 'Y', 'N')) = 'Y'
 and
 decode(substr(column_sent$_varchar2, 4, 1),
 'N', 'Y',
 decode("GLOBAL_NAME4_o", "GLOBAL_NAME", 'Y', 'N')) = 'Y'
 and
 decode(substr(column_sent$_varchar2, 5, 1),
 'N', 'Y',
 decode("ISO_CODE5_o", "ISO_CODE", 'Y', 'N')) = 'Y'
 and
 decode(substr(column_sent$_varchar2, 6, 1),
 'N', 'Y',
 decode("ISO_NAME6_o", "ISO_NAME", 'Y', 'N')) = 'Y'
);
 if sql%rowcount = 0 then
 raise no_data_found; /*-- no records match --*/
 elsif sql%rowcount > 1 then
 raise too_many_rows; /*-- more than one record matches -
-*/
 end if;
 dbms_reputil.rep_end;
 exception
 when no_data_found then
 begin
 if not "ISO_COUNTRIES$RR".delete_conflict_handler(
 "AUDIT_DATE1_o",
 "AUDIT_USER2_o",
 "COUNTRY_ID3_o",
 "GLOBAL_NAME4_o",
 "ISO_CODE5_o",
 "ISO_NAME6_o",

209

Oracle Distributed Systems

 site_name,
 propagation_flag,
 column_changed$,
 column_sent$_varchar2) then
 dbms_reputil.rep_end;
 raise;
 end if;
 dbms_reputil.rep_end;
 exception
 when others then
 dbms_reputil.rep_end;
 raise;
 end;
 when others then
 dbms_reputil.rep_end;
 raise;
 end rep_delete;
 procedure rep_insert(
 "AUDIT_DATE1_n" IN DATE,
 "AUDIT_USER2_n" IN VARCHAR2,
 "COUNTRY_ID3_n" IN NUMBER,
 "GLOBAL_NAME4_n" IN VARCHAR2,
 "ISO_CODE5_n" IN VARCHAR2,
 "ISO_NAME6_n" IN VARCHAR2,
 site_name IN VARCHAR2,
 propagation_flag IN CHAR) is
 begin
 if propagation_flag = 'N' then
 dbms_reputil.replication_off;
 end if;
 dbms_reputil.rep_begin(site_name);
 dbms_reputil.global_name := site_name;
 insert into "ISO_COUNTRIES" (
 "AUDIT_DATE",
 "AUDIT_USER",
 "COUNTRY_ID",
 "GLOBAL_NAME",
 "ISO_CODE",
 "ISO_NAME")
 values (
 "AUDIT_DATE1_n",
 "AUDIT_USER2_n",
 "COUNTRY_ID3_n",
 "GLOBAL_NAME4_n",
 "ISO_CODE5_n",
 "ISO_NAME6_n");
 dbms_reputil.rep_end;
 exception
 when dup_val_on_index then
 begin
 if not "ISO_COUNTRIES$RR".unique_conflict_insert_handler(
 "AUDIT_DATE1_n",
 "AUDIT_USER2_n",
 "COUNTRY_ID3_n",
 "GLOBAL_NAME4_n",
 "ISO_CODE5_n",
 "ISO_NAME6_n",

210

Oracle Distributed Systems

 site_name,
 propagation_flag,
 SQLERRM) then
 dbms_reputil.rep_end;
 raise;
 end if;
 dbms_reputil.rep_end;
 exception
 when others then
 dbms_reputil.rep_end;
 raise;
 end;
 when others then
 dbms_reputil.rep_end;
 raise;
 end rep_insert;
 procedure rep_update(
 "AUDIT_DATE1_o" IN DATE,
 "AUDIT_DATE1_n" IN DATE,
 "AUDIT_USER2_o" IN VARCHAR2,
 "AUDIT_USER2_n" IN VARCHAR2,
 "COUNTRY_ID3_o" IN NUMBER,
 "COUNTRY_ID3_n" IN NUMBER,
 "GLOBAL_NAME4_o" IN VARCHAR2,
 "GLOBAL_NAME4_n" IN VARCHAR2,
 "ISO_CODE5_o" IN VARCHAR2,
 "ISO_CODE5_n" IN VARCHAR2,
 "ISO_NAME6_o" IN VARCHAR2,
 "ISO_NAME6_n" IN VARCHAR2,
 site_name IN VARCHAR2,
 propagation_flag IN CHAR) is
 begin
 rep_update(
 NULL,
 "AUDIT_DATE1_o",
 "AUDIT_DATE1_n",
 "AUDIT_USER2_o",
 "AUDIT_USER2_n",
 "COUNTRY_ID3_o",
 "COUNTRY_ID3_n",
 "GLOBAL_NAME4_o",
 "GLOBAL_NAME4_n",
 "ISO_CODE5_o",
 "ISO_CODE5_n",
 "ISO_NAME6_o",
 "ISO_NAME6_n",
 site_name,
 propagation_flag);
 end rep_update;
 procedure rep_update(
 column_changed$ IN RAW,
 "AUDIT_DATE1_o" IN DATE,
 "AUDIT_DATE1_n" IN DATE,
 "AUDIT_USER2_o" IN VARCHAR2,
 "AUDIT_USER2_n" IN VARCHAR2,
 "COUNTRY_ID3_o" IN NUMBER,
 "COUNTRY_ID3_n" IN NUMBER,

211

Oracle Distributed Systems

 "GLOBAL_NAME4_o" IN VARCHAR2,
 "GLOBAL_NAME4_n" IN VARCHAR2,
 "ISO_CODE5_o" IN VARCHAR2,
 "ISO_CODE5_n" IN VARCHAR2,
 "ISO_NAME6_o" IN VARCHAR2,
 "ISO_NAME6_n" IN VARCHAR2,
 site_name IN VARCHAR2,
 propagation_flag IN CHAR) is
 column_changed$_varchar2 VARCHAR2(6);
 column_sent$_varchar2 VARCHAR2(6);
 begin
 column_changed$$:= column_changed$;
 if column_changed$ is not null then
 dbms_reputil.raw_to_varchar2(column_changed$,
 1,
 column_changed$_varchar2);
 dbms_reputil.raw_to_varchar2(column_changed$,
 2,
 column_sent$_varchar2);
 end if;
 if propagation_flag = 'N' then
 dbms_reputil.replication_off;
 end if;
 dbms_reputil.rep_begin(site_name);
 dbms_reputil.global_name := site_name;
 update "ISO_COUNTRIES" set
 "AUDIT_DATE" =
 decode(substr(column_changed$_varchar2, 1, 1),
 'N', "AUDIT_DATE",
 'Y', "AUDIT_DATE1_n",
 NULL, decode("AUDIT_DATE1_o",
 AUDIT_DATE1_n","AUDIT_DATE",
 AUDIT_DATE1_n")),
 "AUDIT_USER" =
 decode(substr(column_changed$_varchar2, 2, 1),
 'N', "AUDIT_USER",
 'Y', "AUDIT_USER2_n",
 NULL, decode("AUDIT_USER2_o",
 AUDIT_USER2_n","AUDIT_USER",
 AUDIT_USER2_n")),
 "COUNTRY_ID" =
 decode(substr(column_changed$_varchar2, 3, 1),
 'N', "COUNTRY_ID",
 'Y', "COUNTRY_ID3_n",
 NULL, decode("COUNTRY_ID3_o",
 "COUNTRY_ID3_n","COUNTRY_ID",
 "COUNTRY_ID3_n")),
 "GLOBAL_NAME" =
 decode(substr(column_changed$_varchar2, 4, 1),
 'N', "GLOBAL_NAME",
 'Y', "GLOBAL_NAME4_n",
 NULL, decode("GLOBAL_NAME4_o",
 "GLOBAL_NAME4_n","GLOBAL_NAME",
 "GLOBAL_NAME4_n")),
 "ISO_CODE" =
 decode(substr(column_changed$_varchar2, 5, 1),
 'N', "ISO_CODE",

212

Oracle Distributed Systems

 'Y', "ISO_CODE5_n",
 NULL, decode("ISO_CODE5_o",
 "ISO_CODE5_n","ISO_CODE",
 "ISO_CODE5_n")),
 "ISO_NAME" =
 decode(substr(column_changed$_varchar2, 6, 1),
 'N', "ISO_NAME",
 'Y', "ISO_NAME6_n",
 NULL, decode("ISO_NAME6_o",
 "ISO_NAME6_n","ISO_NAME",
 "ISO_NAME6_n"))
 where (((decode(substr(column_changed$_varchar2, 1, 1),
 'N', 'Y',
 'Y', 'N',
 decode("AUDIT_DATE1_o", "AUDIT_DATE1_n", 'Y', 'N')) = 'Y'
and

 decode(substr(column_changed$_varchar2, 2, 1),
 'N', 'Y',
 'Y', 'N',
 decode("AUDIT_USER2_o","AUDIT_USER2_n", 'Y', 'N')) = 'Y'
and

 1 = 1 and
 decode(substr(column_changed$_varchar2, 4, 1),
 'N', 'Y',
 'Y', 'N',
 decode("GLOBAL_NAME4_o", "GLOBAL_NAME4_n", 'Y', 'N')) =
'Y'and

 decode(substr(column_changed$_varchar2, 5, 1),
 'N', 'Y',
 'Y', 'N',
 decode("ISO_CODE5_o", "ISO_CODE5_n", 'Y', 'N')) = 'Y' and
 decode(substr(column_changed$_varchar2, 6, 1),
 'N', 'Y',
 'Y', 'N',
 decode("ISO_NAME6_o", "ISO_NAME6_n", 'Y', 'N')) = 'Y')) or
 (decode(substr(column_sent$_varchar2, 1, 1),
 'N', 'Y',
 decode("AUDIT_DATE1_o", "AUDIT_DATE", 'Y', 'N')) = 'Y' and
 decode(substr(column_sent$_varchar2, 2, 1),
 'N', 'Y',
 decode("AUDIT_USER2_o", "AUDIT_USER", 'Y', 'N')) = 'Y' and
 1 = 1 and
 decode(substr(column_sent$_varchar2, 4, 1),
 'N', 'Y',
 decode("GLOBAL_NAME4_o", "GLOBAL_NAME", 'Y', 'N')) = 'Y'
and
 decode(substr(column_sent$_varchar2, 5, 1),
 'N', 'Y',
 decode("ISO_CODE5_o", "ISO_CODE", 'Y', 'N')) = 'Y' and
 decode(substr(column_sent$_varchar2, 6, 1),
 'N', 'Y',
 decode("ISO_NAME6_o", "ISO_NAME", 'Y', 'N')) = 'Y'))
 and "COUNTRY_ID3_o" = "COUNTRY_ID";
 if sql%rowcount = 0 then

213

Oracle Distributed Systems

 raise no_data_found;
 elsif sql%rowcount > 1 then
 raise too_many_rows;
 end if;
 dbms_reputil.rep_end;
 exception
 when no_data_found then
 begin
 if not "ISO_COUNTRIES$RR".update_conflict_handler(
 "AUDIT_DATE1_o",
 dbms_reputil2.choose_date(
 "AUDIT_DATE1_o",
 "AUDIT_DATE1_n",
 column_changed$_varchar2, 1),
 "AUDIT_USER2_o",
 dbms_reputil2.choose_varchar2(
 "AUDIT_USER2_o",
 "AUDIT_USER2_n",
 column_changed$_varchar2, 2),
 "COUNTRY_ID3_o",
 dbms_reputil2.choose_number(
 "COUNTRY_ID3_o",
 "COUNTRY_ID3_n",
 column_changed$_varchar2, 3),
 "GLOBAL_NAME4_o",
 dbms_reputil2.choose_varchar2(
 "GLOBAL_NAME4_o",
 "GLOBAL_NAME4_n",
 column_changed$_varchar2, 4),
 "ISO_CODE5_o",
 dbms_reputil2.choose_varchar2(
 "ISO_CODE5_o",
 "ISO_CODE5_n",
 column_changed$_varchar2, 5),
 "ISO_NAME6_o",
 dbms_reputil2.choose_varchar2(
 "ISO_NAME6_o",
 "ISO_NAME6_n",
 column_changed$_varchar2, 6),
 site_name,
 propagation_flag,
 column_changed$,
 column_sent$_varchar2,
 null) then
 dbms_reputil.rep_end;
 raise;
 end if;
 dbms_reputil.rep_end;
 exception
 when others then
 dbms_reputil.rep_end;
 raise;
 end;
 when dup_val_on_index then
 begin
 if not "ISO_COUNTRIES$RR".unique_conflict_update_handler(
 "AUDIT_DATE1_o",

214

Oracle Distributed Systems

 dbms_reputil2.choose_date(
 "AUDIT_DATE1_o",
 "AUDIT_DATE1_n",
 column_changed$_varchar2, 1),
 "AUDIT_USER2_o",
 dbms_reputil2.choose_varchar2(
 "AUDIT_USER2_o",
 "AUDIT_USER2_n",
 column_changed$_varchar2, 2),
 "COUNTRY_ID3_o",
 dbms_reputil2.choose_number(
 "COUNTRY_ID3_o",
 "COUNTRY_ID3_n",
 column_changed$_varchar2, 3),
 "GLOBAL_NAME4_o",
 dbms_reputil2.choose_varchar2(
 "GLOBAL_NAME4_o",
 "GLOBAL_NAME4_n",
 column_changed$_varchar2, 4),
 "ISO_CODE5_o",
 dbms_reputil2.choose_varchar2(
 "ISO_CODE5_o",
 "ISO_CODE5_n",
 column_changed$_varchar2, 5),
 "ISO_NAME6_o",
 dbms_reputil2.choose_varchar2(
 "ISO_NAME6_o",
 "ISO_NAME6_n",
 column_changed$_varchar2, 6),
 site_name,
 propagation_flag,
 column_changed$,
 column_sent$_varchar2,
 null,
 SQLERRM) then
 dbms_reputil.rep_end;
 raise;
 end if;
 dbms_reputil.rep_end;
 exception
 when others then
 dbms_reputil.rep_end;
 raise;
 end;
 when others then
 dbms_reputil.rep_end;
 raise;
 end rep_update;
end "ISO_COUNTRIES$RP";

Note that the ISO_COUNTRIES$RP package has several references to
ISO_COUNTRIES$RR. The $RR package contains logic to resolve conflicts.

Figure 9.2 illustrates the interaction among all of these objects.

215

Oracle Distributed Systems

Figure 9.2. How updateable snapshots work

9.3.2.3 The multi-master replication mechanism

In some respects, the multi-master replication architecture is simpler than the
updateable snapshot architecture. Because there is no distinction between master
sites and snapshot sites, DML propagation is handled identically at all sites; local
DML changes are queued as soon as they occur and dispatched at an interval
specified in DBMS_DEFER_SYS.SCHEDULE_EXECUTION (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8).

The mechanism behind multi-master replication consists of triggers on the replicated
tables that call package procedures, which queue deferred RPCs to the remote
master databases. The call to DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT
support generates these triggers and packages. Table 9.4 lists the objects that
Oracle creates to support multi-master replication of the ISO_COUNTRIES table.

Table 9.4. Objects to Support Multi-Master Replication of Table
ISO_COUNTRIES

216

Oracle Distributed Systems

Object Name Object
Type Function

ISO_COUNTRIES$RT Trigger
Trigger on ISO_COUNTRIES; makes calls to
ISO_COUNTRIES$TP. Note that this trigger is
internalized in Oracle8.

ISO_COUNTRIES$TP Package
Builds deferred RPCs, which queue DML for
propagation to other master sites. The deferred RPCs
are to the ISO_COUNTRIES$RP package.

ISO_COUNTRIES$RP Package
Applies DML from remote masters to the local table.
Invokes ISO_COUNTRIES$RR in the event that
conflicts are detected.

ISO_COUNTRIES$RR Package Invoked conflict resolution methods, if defined.

Figure 9.3 illustrates the interaction of these objects.

Figure 9.3. How multi-master replication works

9.3.3 The Background Processes

The automation of data propagation in a replicated environment depends on the job
queue. Oracle's job queue is analogous to a VMS batch queue or to Unix cron jobs;
you use it to schedule activities that occur without user interaction. Just as operating
system processes drive a VMS batch queue or Unix cron jobs, Oracle uses
background processes to drive its job queue. In a Solaris environment, these

217

Oracle Distri

Oracle Version 7.1 has a parameter,
JOB_QUEUE_KEEP_CONNECTIONS, which can be used
to keep open remote database connections that the
job queue background process creates. Although this
parameter also exists in Oracle Versions 7.2, 7.3, and
8.0, it is included for backward compatibility only and
does not have any effect. In Version 7.2 and later,
Oracle closes remote database connections after jobs
execute.

buted Systems

218

processes have a name in the form ora_snpn_ORACLE_SID. For example, the PHQS
instance has allocated five background processes to control its job queue:

socrates% ps -ef | grep snp | grep -v grep | sort
 oracle 27409 1 0 Jun 23 ? 26:10 ora_snp0_PHQS
 oracle 27411 1 0 Jun 23 ? 26:30 ora_snp1_PHQS
 oracle 27413 1 0 Jun 23 ? 26:21 ora_snp2_PHQS
 oracle 27415 1 0 Jun 23 ? 27:19 ora_snp3_PHQS
 oracle 27419 1 0 Jun 23 ? 26:10 ora_snp4_PHQS

As their name implies, these background processes also handle snapshot refreshes.
In fact, the job queue itself is an extension of technology that was developed to
support snapshots.

You can control how many background processes are allocated to the job queue and
their behavior with two INIT.ORA parameters:

JOB_QUEUE_PROCESSES

Determines how many background processes to launch. Each background
process can service at most one job queue entry at a time; make sure that
you have enough to keep your jobs running on schedule. The maximum
number allowable is 36 (snp0 through snp9 and snpA through snpZ).

JOB_QUEUE_INTERVAL

Determines how often the job queue processes "wake up" to see if there are
jobs that are due to run. The range of values is 1 to 3600; the units are
seconds.

If you are using the parallel propagation feature of Oracle8, then you also need to be
sure to allocate the query server background processes. Although these processes
generally are associated with the Parallel Query Option, Oracle also uses them to
propagate DML changes in parallel. These processes are named
ora_pnnn_ORACLE_SID. The PHQS database has eight of them:

socrates% ps -ef | grep ora_p0 | grep -v grep | sort
 oracle 27427 1 0 Jun 23 ? 0:00 ora_p000_PHQS

Oracle Distributed Systems

 oracle 27429 1 0 Jun 23 ? 0:00 ora_p001_PHQS
 oracle 27431 1 0 Jun 23 ? 0:00 ora_p002_PHQS
 oracle 27433 1 0 Jun 23 ? 0:00 ora_p003_PHQS
 oracle 27435 1 0 Jun 23 ? 0:00 ora_p004_PHQS
 oracle 27437 1 0 Jun 23 ? 0:00 ora_p005_PHQS
 oracle 27439 1 0 Jun 23 ? 0:00 ora_p006_PHQS
 oracle 27441 1 0 Jun 23 ? 0:00 ora_p007_PHQS

The following initialization parameters control the number and behavior of these
background processes:

PARALLEL_MAX_SERVERS

The maximum number of background processes to create. Must be greater
than or equal to PARALLEL_MIN_SERVERS. This parameter allows you to put
a cap on the number of background processes Oracle spawns so that they do
not consume excessive resources. However, note that you need one
background process for every stream of parallel propagation. The range of
values is through 256.

PARALLEL_MIN_SERVERS

The minimum number of background processes to spawn.

PARALLEL_SERVER_IDLE_TIME

The amount of time a query server background process can remain idle
before it is terminated.

You must set the JOB_QUEUE_PROCESSES if you want to use the job queue; the
default value is 0. Similarly, if you want to utilize parallel propagation, you must set
the PARALLEL_MIN_SERVERS initialization parameter.

9.4 Replication of DDL

Oracle allows you to replicate DDL as well as DML. In other words, if you want to
alter a table or create a new object such as an index or synonym, you can do so at
the master definition site and automatically propagate the changes to the other
master sites. The procedure DBMS_REPCAT.EXECUTE_DDL provides this functionality.

The DBMS_REPCAT.EXECUTE_DDL procedure queues changes in the replication
catalog queue (repcatlog), and the scheduled job
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN pushes the changes to the other
masters. Entries in the repcatlog are visible in the DBA_REPCATLOG data dictionary
view; a STATUS field contains the value ERROR when errors occur; the MESSAGE
field contains the error text.

Not only does the repcatlog queue DDL to other master sites, it also queues
replication administrative tasks such as quiescing the environment or adding new
master sites. Chapter 12, describes these other activities in detail.

219

Oracle Distributed Systems

9.5 Oracle8 Enhancements

The functionality of the advanced replication facility is greatly enhanced in Oracle8—
so much so that you should make every effort to upgrade to Oracle8 (if you haven't
already) before creating a replicated environment. The following is a summary of the
new functionality:

Parallel propagation

Oracle8 can deliver deferred transactions to remote databases in multiple
streams, thereby significantly improving throughput.

Internalized triggers

The table_name $RT triggers are internalized in Oracle8, which improves
performance and reduces administrative chores.

Reduced data propagation

Unlike Oracle7, Oracle8 sends modified column values to remote databases
only when a record is updated.

Subquery snapshots

Snapshots containing subqueries can be fast-refreshed provided that they
meet certain restrictions.

LOB support

Oracle8 supports the replication of LOB, CLOB, and NCLOB datatypes (which
are new to Oracle8). The Oracle7 predecessors of these datatypes, LONG and
LONG RAW, could not be replicated.

Fine-grained quiesce

Oracle8 can quiesce one replication group at a time. In Oracle7, quiescing one
group effectively quiesces all other groups.

Primary key snapshots

Oracle8 snapshots are based on the primary key, rather than on ROWID.
Thus, master tables can be reorganized without having to perform complete
refreshes on all snapshot tables.

Master site snapshot registration

When you create a snapshot from an Oracle8 snapshot site to an Oracle8
master site, Oracle records the existence of the snapshot in the master site's
data dictionary view DBA_REGISTERED_SNAPSHOTS.

220

Oracle Distributed Systems

Support for offline instantiation

The procedure for adding new master and snapshot sites requires less
downtime and is more automatic.

Deferred constraint checking for updateable snapshots

Uniqueness and referential integrity constraints on updateable snapshots can
be checked and enforced after a refresh is complete instead of during the
refresh.

Validation procedure

Oracle8 provides the DBMS_REPCAT.VALIDATE procedure which can help to
verify the correct configuration of a replicated environment.

Partitioned tables and indexes

Oracle8 supports the replication of partitioned tables and tables with
partitioned indexes.

9.6 Oracle8i Enhancements

Oracle8i enhancements to replication focus primarily on improved performance,
simpler administration, and mass deployment (e.g., hundreds of updateable
snapshots from a single master table):

• The generated replication apply packages (table_name $RP and table_name
$RR) are internalized instead of PL/SQL packages—that is, they are written in
C and compiled directly into the database engine. This results in faster
execution and generation of replication support. In addition, the packages are
more secure.

• Snapshot refreshes have been optimized to support refresh groups with up to
400 snapshots per group. In addition, the refresh algorithm has been
modified to significantly reduce the number of round-trips required to perform
a refresh.

• Snapshot deployment templates allow the DBA to control the contents of
snapshot sites. The templates are defined at the master site and deployed to
snapshot sites, as opposed to snapshot sites defining their own snapshots.
This ensures a uniform configuration of all snapshot sites.

• Vertical partitioning of updateable snapshots. Note that vertical partitions
must include all columns that comprise the master table's primary key, and
the columns that are not included must either be nullable in the master table
or have default values assigned.

9.7 Alternatives to Replication

Before moving on, I want to point out that there are alternatives to advanced
replication. Like advanced replication, these alternatives can create replicas of table

221

Oracle Distributed Systems

and data at remote sites. However, unlike advanced replication, they are not
automatic.

9.7.1 A pplication- and Trigger-Based Replication

If you have a relatively simple replication requirement, you might consider
replicating DML yourself, either by having your application perform writes to multiple
databases or by including triggers on tables that perform remote DML. This is a
"quick and dirty" solution and is practical only if very few objects are being replicated.

If you choose to create your own replication functionality, you will have to be sure to
address issues such as failed writes to the remote databases and degraded
performance if writes to many locations are required.

9.7.2 Export/Import

You can use Oracle's export and import utilities to move data from one location to
another. This is particularly useful if a large amount of data needs to be relocated,
especially if the remote site(s) are available over a WAN or otherwise expensive
network connection.

Of course, the disadvantages of the export/import utilities are that they are far from
automated and are only point-in-time pictures of the database. In addition, changes
you make to imported tables are not propagated back to the tables that were
originally imported.

9.7.3 COPY/CREATE TABLE AS SELECT

You can use the SQL commands COPY or CREATE TABLE AS SELECT to make a
replica of a remote table over a database link. These command are easy to use but,
like the export/import utilities, do not propagate data changes back to the original
tables.

In short, although there are a variety of ways to process replicated data, the
advanced replication facility provides the most sophisticated and robust architecture.

222

Oracle Distributed Systems

Chapter 10. Advanced Replication
Installation

Many of the difficulties people experience with using advanced replication stem from
incorrect or incomplete installations. Unfortunately, installation errors may go
undetected until you have created and instantiated replication groups. But
fortunately, it is possible to validate an installation before creating objects. If you
carefully follow the instructions provided here, your installations should be successful.

10.1 Initialization Parameters

Several initializationparameters have a strong bearing on the performance and
reliability of advanced replication. Table 10.1 summarizes these parameters.

Table 10.1. Initialization Parameters for Advanced Replication
Parameter Name Default Value Value Range Remarks

DISTRIBUTED_LOCK_TIMEOUT 60 (seconds) 60 ndash; 300

The number of
seconds that
distributed
transactions
will wait for
locked objects.
The default
may not be
adequate for
remote
transactions to
complete,
particularly if
you are on a
slow network
or a WAN.

DISTRIBUTED_TRANSACTIONS

OS dependent;

approximately
TRANSACTIONS/4

0 ndash; TRANSACTIONS

The number of
distributed
transactions in
which the
database can
participate at
one time. If set
to 0, no
distributed
transactions
are allowed.
Make sure it is
set high
enough to
support your
site's activity.

223

Oracle Distributed Systems

G LOBAL_NAMES FALSE TRUE or FALSE

Enforces global
naming. It
must be set to
TRUE to use
advanced
replication.
Even if you are
not using
advanced
replication,
TRUE is the
recommended
setting and
may be
required in
future Oracle
releases.

JOB_QUEUE_INTERVAL 60 (seconds) 1 ndash; 3600

Sets the
frequency with
which job
queue
background
processes
wake up. It
should be at
least as
frequent as
your most
frequent
scheduled job.

JOB_QUEUE_PROCESSES 0 0 ndash; 36

This parameter
dictates the
number of
background
processes
Oracle will start
for the job
queue. Must be
at least 1.
Should be at
least as high as
the maximum
number of jobs
you need to
run
simultaneously.

OPEN_LINKS 4 0 ndash; 255

The maximum
number of
database links
that can be
open
simultaneously.

224

Oracle Distributed Systems

PARALLEL_MAX_SERVERS

(Oracle8 only)

OS dependent;

5 on Solaris

5 on NT

0 ndash; 256

Sets the
maximum
number of
query server
background
processes. If
you are using
parallel
propagation,
make sure it is
set high
enough for
your workload.

PARALLEL_MIN_SERVERS

(Oracle8 only)
0

0 ndash;
PARALLEL_MAX_SERVERS

Sets the
number of
query server
background
processes
Oracle starts
up. If you are
using parallel
propagation,
you need a
parallel query
background
process for
each stream.

PARALLEL_SERVER_IDLE_TIME

(Oracle8 only)

OS dependent;

5 on Solaris

5 on NT

(minutes)

0 ndash; OS-dependent
maximum

The number of
minutes a
query server
background
process is idle
before Oracle
terminates the
process.

REPLICATION_DEPENDENCY_TRACKING

(Oracle8 only)
TRUE TRUE or FALSE

Enables
Oracle's
dependency
tracking, which
parallel
propagation
uses. Must be
set to TRUE.

RESOURCE_LIMIT FALSE TRUE or FALSE

Leave this
setting at
FALSE; a bug
causes
propagation to
remote sites to
fail with
"session limit

225

Oracle Distributed Systems

exceeded"
even if the
propagator's
profile has no
limits set.

SHARED_POOL_SIZE 3.5MB
300K ndash; OS-
dependent limit

Advanced
replication uses
a significant
amount of
shared pool
resources.
Oracle
Corporation
has stated that
the shared pool
utilization for
replicated DML
is at least six
times that of
nonreplicated
DML.

Of the parameters listed in Table 10.1, SHARED_POOL_SIZE is the most crucial for a
successful installation. In fact, the catrep.sql script, which creates the data dictionary
objects for replication, will fail if the shared pool is less than 11MB. As a practical
matter, 32MB should be considered the absolute minimum for a replicated database.

10.2 Redo Logs and Rollback Segments

The database activity that drives the replication system generates a tremendous
amount of redo and rollback activity—at least five times that of a nonreplicated
environment by Oracle Corporation's own estimates. Most of this overhead is
associated with internal transactions that modify data dictionary tables:

• Enqueuing and dequeueing deferred transactions update the tables
SYSTEM.DEF$_AQCALL and SYSTEM.DEF$_AQERROR in Oracle8, and
SYSTEM.DEF$_CALL in Oracle7.

• The scheduled jobs that propagate DML and DDL update SYS.JOB$ every time
they run. These updates alone can account for many megabytes of redo logs
per hour depending on the frequency with which these jobs run.

• Collecting statistics about resolved conflicts updates
SYSTEM.REPCAT$_RESOLUTION_STATISTICS.

• Snapshot refreshes update the tables SYSTEM.SNAP$, SYSTEM.RGCHILD$,
and (in Oracle8) SYSTEM.SNAP_REFTIME$.

Because of this additional activity, you should use more and larger redo logs and
rollback segments than you would for a nonreplicated environment. A good starting
point is to have five redo groups using 32MB redo logs and at least five rollback
segments, with an optimal size of 64MB. This configuration is easiest to do at the
time you create the database.

226

Oracle Distributed Systems

10.3 Size and Placement of Data Dictionary Objects

The properties of advanced replication's underpinning tables and indexes are such
that they warrant their own tablespace. A default installation, however, places these
objects in the SYSTEM tablespace with its default values for INITIAL and NEXT
extents. The default installation quickly fragments the SYSTEM tablespace and often
requires the addition of several data files to support the growth of the replication
data dictionary. Fortunately, these problems are avoidable if you follow these steps
when you create your database or at least before you run catproc.sql :

1. Create a separate tablespace for the replication data dictionary objects, and
specify default storage parameters for INITIAL, NEXT, and PCTINCREASE:

2. CREATE TABLESPACE symrep_data
3. DATAFILE '/export/vol01/oradata/PHQS/symrep_data01.dbf' SIZE

500M
DEFAULT STORAGE (INITIAL 512K NEXT 1M PCTINCREASE 1);

4. Make the new tablespace the default tablespace for user SYSTEM:

ALTER USER system DEFAULT TABLESPACE symrep_data;

5. Run the catproc.sql script from server manager, connected as user SYS:
6. socrates% svrmgrl
7.
8. Oracle Server Manager Release 3.0.4.0.0 - Production
9.
10. (c) Copyright 1997, Oracle Corporation. All Rights Reserved.
11.
12. Oracle8 Enterprise Edition Release 8.0.4.1.0 - Production
13. With the Partitioning and Objects options
14. PL/SQL Release 8.0.4.1.0 - Production
15.
16. SVRMGR> connect internal
17. Connected.
18. SVRMGR> @catproc

...

catproc.sql creates, among other things, the objects that support deferred
transactions, as well as the Advanced Queueing facility in Oracle8.

19. Run the replication catalog scripts catrep.sql and catrepad.sql. You must be
connected as SYS to run these scripts:

20. SVRMGR> connect internal
21. Connected.
22. SVRMGR> @catrep
23. ...
24. SVRMGR> @catrepad

...

It is a good idea to confirm that all database objects have a status of VALID
after you run the scripts catproc.sql, catrep.sql, and catrepad.sql. Query the
data dictionary view DBA_OBJECTS to confirm the status, and repair any

227

Oracle Distri

In all cases, the creation of administrative accounts
and database links requires that you have already run
the catalog scripts catproc.sql, catrep.sql, and
optionally catrepad.sql.

buted Systems

228

objects that are invalid either by compiling them or by increasing the shared
pool and rerunning the scripts.

25. The triggers and packages that Oracle creates when you generate replication
support can potentially amount to a tremendous volume of PL/SQL source in
the database. If you expect to replicate more than about 20 tables, you
should change the setting for the NEXT extent on the table SYS.SOURCE$ and
index SYS.I_SOURCE$:

26. ALTER TABLE sys.source$ STORAGE (NEXT 1M);
ALTER INDEX sys.i_source$ STORAGE (NEXT 1M);

Alternatively, you can edit the catalog script which creates these objects,
sql.bsq. This script contains the bootstrap.sql code that Oracle uses to build a
database.

Do not modify the sql.bsq file unless you are certain
that you understand the consequences of your
modifications. Also, be aware that Oracle may not
support databases that are created with a modified
version of this file. We can only hope that future
releases of Oracle include a variety of sql.bsq files so
that we can create a data dictionary whose storage
parameters suit specific types of databases.

10.4 Administrative Accounts, Privileges, and Database
Links

Depending on whether you are running Oracle7 or Oracle8 and which security model
you choose to follow, the account-creation process can be simple or tedious. In
Oracle7, you have the choice of either mirrored user access or global access. In
Oracle8, the management of user accounts is substantially easier; you need only to
create propagator and receiver accounts. Regardless of which model you choose or
which Oracle version you are using, the proper configuration of accounts, privileges,
and database links is crucial. In this section we provide step-by-step procedures you
can follow.

10.4.1 Configuring Oracle7 for the Mirrored User
Access Model

As its name implies, the mirrored user access model requires that every database
have an account for every user who is allowed to perform DML against replicated

Oracle Distributed Systems

tables. The onus of creating accounts for all of these users in multiple databases lies
with the DBA, who must also ensure that these accounts have the same passwords
in each database. In addition, these user accounts require EXECUTE privileges on the
generated replication support packages for each replicated object they can
manipulate. These privileges must be directly granted, not inherited through a
database role. Each of these accounts also requires a private database link to each
master database.

See Chapter 14, for a package that can create user accounts in remote databases.

Here are the steps for configuring advanced replication for mirrored user access:

1. Create public database links from every master site to every other master site.
Create these links as user SYS, and do not use the CONNECT TO clause:

2. CREATE PUBLIC DATABASE LINK PHQS.BIGWHEEL.COM
USING 'prodhq';

Oracle uses this database link to resolve private database links, which must
be created without a USING clause (see Step 2). This public database link
tells Oracle that private links named PHQS.BIGWHEEL.COM should connect to
the database identified by the SQL*Net alias prodhq.

3. Create a REPSYS user in all master databases, with the same password in
each database; grant this user surrogate SYS privileges:

4. CREATE USER REPSYS
5. IDENTIFIED BY surrogate
6. DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;
7.

EXECUTE dbms_repcat_auth.grant_surrogate_repcat (' REPSYS');

The REPSYS account is the one to which private database links from user SYS
in remote master databases connect. Database links that connect from SYS to
SYS in the remote database compromise security because the private
database links required for replication use the CONNECT TO clause, which
means that usernames and unencrypted passwords are visible in the
SYS.LINK$ table. The DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT
procedure grants the account CREATE SESSION privileges, as well as the
object privileges displayed by the following query:

SQL> SELECT owner, table_name, grantee, grantor, privilege
 2 FROM dba_tab_privs
 3 WHERE grantee = ' REPSYS'
 4* ORDER BY owner, table_name, grantee, grantor, privilege;

Table
Granted
Owner Table Name Grantee Grantor
Privilege
---- ----------------------- --------- --------- --------
--
SYS DBA_CONSTRAINTS REPSYS SYS
SELECT

229

Oracle Distributed Systems

SYS DBA_CONS_COLUMNS REPSYS SYS
SELECT
SYS DBA_SOURCE REPSYS SYS
SELECT
SYS DBA_TABLESPACES REPSYS SYS
SELECT
SYS DBA_TAB_COLUMNS REPSYS SYS
SELECT
SYS DBA_TRIGGERS REPSYS SYS
SELECT
SYS DBA_USERS REPSYS SYS
SELECT
SYS DBA_VIEWS REPSYS SYS
SELECT
SYS DBMSOBJGWRAPPER REPSYS SYS
EXECUTE
SYS DBMS_DEFER REPSYS SYS
EXECUTE
SYS DBMS_DEFERGEN REPSYS SYS
EXECUTE
SYS DBMS_DEFER_INTERNAL_SYS REPSYS SYS
EXECUTE
SYS DBMS_REPCAT REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_CONF REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_MAS REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_SNA REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_SNA_UTL REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_UTL REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_UTL2 REPSYS SYS
EXECUTE
SYS DBMS_REPCAT_UTL3 REPSYS SYS
EXECUTE
SYSTEM REPCAT$_AUDIT_ATTRIBUTE REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_AUDIT_ATTRIBUTE REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_AUDIT_ATTRIBUTE REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_AUDIT_COLUMN REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_AUDIT_COLUMN REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_AUDIT_COLUMN REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_AUDIT_COLUMN REPSYS SYSTEM
UPDATE
SYSTEM REPCAT$_COLUMN_GROUP REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_COLUMN_GROUP REPSYS SYSTEM
INSERT

230

Oracle Distributed Systems

SYSTEM REPCAT$_COLUMN_GROUP REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_CONFLICT REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_CONFLICT REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_CONFLICT REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_DDL REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_DDL REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_GENERATED REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_GROUPED_COLUMN REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_GROUPED_COLUMN REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_GROUPED_COLUMN REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_KEY_COLUMNS REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_PARAMETER_COLUMN REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_PARAMETER_COLUMN REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_PARAMETER_COLUMN REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_PARAMETER_COLUMN REPSYS SYSTEM
UPDATE
SYSTEM REPCAT$_PRIORITY REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_PRIORITY REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_PRIORITY REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_PRIORITY_GROUP REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_PRIORITY_GROUP REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_PRIORITY_GROUP REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPCAT REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_REPCAT REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPCAT REPSYS SYSTEM
UPDATE
SYSTEM REPCAT$_REPCATLOG REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_REPCATLOG REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_REPCATLOG REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPCATLOG REPSYS SYSTEM
UPDATE

231

Oracle Distributed Systems

SYSTEM REPCAT$_REPOBJECT REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPOBJECT REPSYS SYSTEM
UPDATE
SYSTEM REPCAT$_REPPROP REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_REPPROP REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPSCHEMA REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_REPSCHEMA REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_REPSCHEMA REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_REPSCHEMA REPSYS SYSTEM
UPDATE
SYSTEM REPCAT$_RESOLUTION REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_RESOLUTION REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_RESOLUTION REPSYS SYSTEM
SELECT
SYSTEM REPCAT$_RESOLUTION_METHOD REPSYS SYSTEM
DELETE
SYSTEM REPCAT$_RESOLUTION_METHOD REPSYS SYSTEM
INSERT
SYSTEM REPCAT$_RESOLUTION_METHOD REPSYS SYSTEM
SELECT

71 rows selected.

8. Create private database links from user SYS to user REPSYS from each
master database to every other master database.

As user SYS:

CREATE DATABASE LINK PHQS.BIGWHEEL.COM
CONNECT TO repsys IDENTIFIED BY surrogate;

Note that these private database links do not include a USING clause.

9. Create replication administration accounts in each master database and grant
this account privileges to administer any replication group and EXECUTE
privileges on DBMS_DEFER. Typically, the name for this account is REPADMIN.

As user SYS:

CREATE USER repadmin
IDENTIFIED BY replicator
DEFAULT TABLESPACE USERS TEMPORARY TABLESPACE TEMP;

EXECUTE dbms_repcat_admin.grant_admin_any_repgroup('REPADMIN');

GRANT EXECUTE ON dbms_defer TO repadmin WITH GRANT OPTION;

232

Oracle Distributed Systems

If you intend to have multiple replication groups and you wish to administer
them under separate accounts, you may do so by granting administrative
privileges at the replication group level. These privileges must granted to the
owner of the replicated schema, and the replication group must have the
same name as the schema owner:

CREATE USER sprocket
IDENTIFIED BY spokes
DEFAULT TABLESPACE sprocket_data TEMPORARY TABLESPACE temp;

EXECUTE dbms_repcat.grant_admin_repgroup('SPROCKET');

GRANT EXECUTE ON dbms_defer TO sprocket WITH GRANT OPTION;

10. Create private database links from REPADMIN in each master database to
REPADMIN in every other master database.

As user REPADMIN:

CREATE DATABASE LINK PHQS.BIGWHEEL.COM
CONNECT TO repadmin IDENTIFIED BY replicator;

Again, note that these links must be created without the USING clause.

11. Create private database links from the account owning the replicated tables to
its peer account in every other master database. For example, if the Oracle
user SPROCKET owns the replicated schema, we would create links as follows:

12. CREATE DATABASE LINK PHQS.BIGWHEEL.COM
CONNECT TO sprocket IDENTIFIED BY repschema;

13. Create private database links for end users of the replicated application:
14. CREATE DATABASE LINK PHQS.BIGWHEEL.COM

CONNECT TO scott IDENTIFIED BY tiger;

Note that the end users should have identical privileges on the replicated
schema in all databases. If a user changes his password in a database, then
his private database links into that database must be dropped and re-created.

15. Grant EXECUTE privileges on the DBMS_DEFER package to schema owner
accounts and user accounts in each database.

As user SYS in each master database:

GRANT EXECUTE ON dbms_defer TO repadmin;
GRANT EXECUTE ON dbms_defer TO scott;
...

At this point you are ready to create replicated objects on which users can perform
DML. Chapter 12, describes the procedures for creating replicated objects. Note that
the execute_as_user parameter must be set to FALSE, the default, in calls to the
following procedures:

233

Oracle Distri

If you are using synchronous replication, DML is
applied simultaneously to the remote sites; it is not
queued. If the end user has a private database link,
the user specified in the link's CONNECT TO clause
must have EXECUTE privileges on the table_name$RP
package or EXECUTE ANY PROCEDURE system
privileges.

buted Systems

234

DBMS_DEFER_SYS.EXECUTE
DBMS_DEFER_SYS.SCHEDULE_EXECUTE
DBMS_SNAPSHOT.REFRESH
DBMS_REPCAT.RESUME_MASTER_ACTIVITY
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

When an end user performs DML against a table, the table_name$RT trigger on the
table fires, queueing the DML to remote sites. Because the owner of the table owns
this trigger, the table owner queues the deferred RPC. When Oracle pushes the
deferred RPC to remote sites, it makes a remote connection via a database link.
Oracle first attempts to use a private link belonging to the ID that queued the
transaction (i.e., the table owner). If no such private database link exists, Oracle
attempts to use a private database link belonging to the connected user. The
connected user is the user that is pushing the deferred RPC queue, typically
REPADMIN.

The ID to which Oracle connects at the remote database must have EXECUTE
privileges on the table_name$RP package at the remote site because the deferred
RPC is, in fact, a call to the table_name$RP package. Both the table owner and the
REPADMIN account have sufficient privileges to execute this package—the former
because it owns the package and the latter because it has EXECUTE ANY
PROCEDURE system privileges.

10.4.2 Configuring Oracle7 for the Global Access
Model

If your database has tens or hundreds of user accounts, the administration of
database links and passwords becomes quite daunting, even impractical. Therefore,
Oracle allows you to use a single account in the master databases to replicate DML
on behalf of all users. Note that this approach is simpler and closely resembles the
access method used in Oracle8.

The first six steps of the procedure for configuring the global access model are the
same as the mirrored access model. What you do not have to do is to create private
database links for end users. To force the deferred transactions, use the REPADMIN
account's private database link. The execute_as_user parameter must be set to
TRUE in calls to the following procedures:

DBMS_DEFER_SYS.EXECUTE
DBMS_DEFER_SYS.SCHEDULE_EXECUTE

Oracle Distributed Systems

DBMS_SNAPSHOT.REFRESH
DBMS_REPCAT.RESUME_MASTER_ACTIVITY
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

10.4.3 Configuring Oracle8 for Advanced Replication

The configuration of Oracle8 master sites is a hybrid mix of the Oracle7 mirrored
access and global access models. Oracle8 designates special propagator and receiver
accounts, which process deferred RPCs. Gone are the immense database link
administrative chores and the execute_as_user parameter. In general, an Oracle8
installation is much simpler than an Oracle7 installation. After you have run
catrep.sql and catrepad.sql , follow these steps:

1. Create anonymous public database links in every master database to every
other master database:

2. CREATE PUBLIC DATABASE LINK PHQS.BIGWHEEL.COM
using 'prodhq';

3. Create a replication administrator account in each master database. Typically,
this account is named REPADMIN.

As user SYS:

CREATE USER repadmin
IDENTIFIED BY replicator
DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;

EXECUTE dbms_repcat_admin.grant_admin_any_schema('REPADMIN');

If you plan to have multiple replication groups and wish to administer them
separately, you can grant administrative privileges to a specific schema:

EXECUTE dbms_repcat_admin.grant_admin_schema('SPROCKET')

This call grants the SPROCKET account privileges to perform administrative
tasks on replicated objects in the SPROCKET schema. Note that the use of
separate administrative accounts works only if the replication group does not
span multiple schema.

4. Create private database links from the replication administrator account(s)
created in Step 2 from each master database to every other master database.
Note that these links must be created without specifying a USING clause:

5. CREATE DATABASE LINK PHQS.BIGWHEEL.COM
CONNECT TO repadmin IDENTIFIED BY replicator;

6. Create propagator and receiver accounts in each master database, and grant
the accounts privileges to perform replicated DML:

7. CREATE USER proprep IDENTIFIED BY pusher
8. DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;
9.

EXECUTE dbms_defer_sys.register_propagator('PROPREP');

235

Oracle Distributed Systems

The DBMS_DEFER_SYS.REGISTER_PROPAGATOR procedure grants the
following privileges to the grantee:

CREATE SESSION
CREATE DATABASE LINK
CREATE PROCEDURE
EXECUTE ANY PROCEDURE

Usually we use the propagator account to both propagate and receive
replicated DML, but you can also create a separate receiver account if you
desire a more granular security policy:

CREATE USER recvrep IDENTIFIED BY receiver
DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp;

GRANT CREATE SESSION TO recvrep;

GRANT EXECUTE ANY PROCEDURE TO recvrep;

You can designate only one propagator account per database instance,
regardless of the number of replication groups.

10. Create private database links from the propagator account in each master
database to the designated receiver account in every other master database.

11. CREATE DATABASE LINK PHQS.BIGWHEEL.COM
CONNECT TO proprep IDENTIFIED BY pusher;

You are now ready to create replication groups and objects. See Chapter 12 for
details.

236

Oracle Distributed Systems

Chapter 11. Basic Replication

The origin of Oracle's replication technology is the read-only snapshot feature, which
shipped with the first Oracle7 release. Read-only snapshots, also known as basic
replication, are essentially tables that hold the result set of a query on a remote
database. We usually configure the snapshot to refresh the result set at a
predetermined interval so that the data is current.

11.1 About Read-Only Snapshots

Read-only snapshots provide a means to access remote data without requiring a
constant network connection. They are intended to maintain local instances of data
that the remote master site maintains.

Examples of the appropriate use of read-only snapshots include the following:

• A regional sales office has a snapshot of the PRODUCT_PRICES table which
the headquarters site maintains. The snapshot is refreshed once a month,
when prices change.

• A retailer's data warehouse performs a snapshot of the
DAILY_REGISTER_RECEIPTS table as part of the nightly data extraction
process.

• A billing system performs a snapshot of the CUSTOMER_ADDRESS table prior
to each invoice run so that the bills are mailed to the correct addresses.

• A salesperson with a laptop connects to the master sales database and
refreshes a snapshot of the subset of the CUSTOMER_LEAD table
corresponding to her sales region.

Notice that in each case the snapshot is refreshed at an interval that ensures
accurate business processing and that the master site "owns" the data—that is, only
the master site can modify the data.

The basic procedure for creating read-only snapshots is as follows:

1. Identify the table(s) at the master site(s) that you want to replicate to the
snapshot site and the schema that will own the snapshots. Generally, the
schema that owns the snapshots should have the same name as the schema
that owns the master table; although this is not a requirement, it simplifies
administration.

2. Create database link(s) from the snapshot site to the master sites. These
should be private database links owned by the snapshot owner. The database
links must connect to an account in the master database that has sufficient
privileges to issue the snapshot query.

3. Create snapshot logs in the master database for every master table. Snapshot
logs are required for FAST refreshes. Snapshot logs are not required for
COMPLETE refreshes.

4. Use the CREATE SNAPSHOT statement to create the snapshot(s).
5. Create one or more refresh groups at the snapshot site and assign each

snapshot to a group. This step is optional but recommended.
6. Grant privileges as appropriate to other roles or accounts in the snapshot

database so that they can query the snapshot.

237

Oracle Distributed Systems

11.2 Prerequisites and Restrictions

Read-only snapshots do not require the advanced replication facilities. You must,
however, have the Procedural Option installed (i.e., the catalog script catproc.sql
must have been run), and the scripts dbmssnap.sql and prvtsnap.plb must have
been run. (Oracle runs these scripts automatically when you install the Procedural
Option by running catproc.sql.) You also must set initialization parameters and grant
appropriate system privileges to accounts that create snapshots.

11.2.1 Initialization Parameters

In order for snapshots to be capable ofrefreshing automatically, you must set the
following initialization parameters:

This parameter should be set to at least 1. The default is 0.

This parameter should be set to a value that is less than or equal to your
most frequent snapshot interval. The default is 60; the units are seconds.

11.2.2 System Privileges

The following system privileges are associated with snapshot administration:

The grantee can change various properties of snapshots in any schema. You
should reserve this privilege for DBA accounts; it is granted to the DBA role
when the database is created.

The grantee can create a snapshot in any schema. You should reserve this
privilege for DBA accounts; it is granted to the roles DBA and
IMP_FULL_DATABASE when the database is created.

The grantee can create and drop private database links. Technically, this
privilege is not required to create a snapshot because the connection to the
master site could be over a public database link. However, for security's sake,
snapshots should always use private database links. Of course, the account to
which the database link connects must have adequate privileges on the
master table(s) to execute the snapshot's defining query.

JOB_QUEUE_PROCESSES

JOB_QUEUE_INTERVAL

ALTER ANY SNAPSHOT

CREATE ANY SNAPSHOT

CREATE DATABASE LINK

CREATE SNAPSHOT

238

Oracle Distributed Systems

The grantee can create, alter, and drop snapshots under its own schema—
that is, the account owns and can administer whatever snapshots it creates.
This is the appropriate privilege for schema owner accounts.

The grantee can create views. This privilege is required because snapshots
consist of an underlying table that may contain the ROWID of the master
table and a view on the underlying table that contains only the fields actually
queried.

The grantee can drop snapshots from any schema. You should reserve this
privilege for DBA accounts; it is granted to the roles DBA and
IMP_FULL_DATABASE when the database is created.

In addition to these system privileges, the snapshot creator must also have a
sufficient space quota in the tablespace(s) that will contain the snapshot base table
and any indexes on this table.

11.2.3 Restrictions

Snapshot queries can select from SYS-owned tables or views, and they cannot
contain columns of type LONG, LONG RAW, BFILE, or any user-defined datatypes.
Oracle8 creates primary key snapshots by default. The master table of primary key
snapshots must have a primary key defined and enabled, and the snapshot's defining
query must contain all fields of the primary key.

11.3 Snapshot Creation Basics

The CREATESNAPSHOT syntax contains several components, allowing the creator to
manipulate the snapshot's physical storage, its refresh interval, and even what
rollback segments to use when it refreshes if you are using Oracle8.

Let's examine the components of this statement one at a time, using the following
snapshot creation statement as a sample (line numbers are included for reference):

1 CREATE SNAPSHOT product_prices
 2 PCTFREE 0 PCTUSED 99
 3 TABLESPACE sprocket_data
 4 STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0)
 5 USING INDEX TABLESPACE sprocket_indx
 6 STORAGE (INITIAL 128K NEXT 128K PCTINCREASE 0)
 7 REFRESH FAST
 8 START WITH sysdate
 9 NEXT sysdate + 1
10 WITH PRIMARY KEY
11 USING LOCAL ROLLBACK SEGMENT rb_large
12 AS
13 SELECT product_id,

CREATE VIEW

DROP ANY SNAPSHOT

239

Oracle Distributed Systems

240

14 catalog_number,
15 price,
16 effective_date
17 FROM product_prices@PHQS.BIGWHEEL.COM;

This statement creates a snapshot of the PRODUCT_PRICES table, mastered in
database PHQS.BIGWHEEL.COM.

11.3.1 The Snapshot STORAGE Clause

Lines 1 through 6 specify the name of the snapshot, PRODUCT_PRICES, and specify
storage parameters for the snapshot's base table and the primary key index:

1 CREATE SNAPSHOT product_prices
 2 PCTFREE 0 PCTUSED 99
 3 TABLESPACE sprocket_data
 4 STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0)
 5 USING INDEX TABLESPACE sprocket_indx
 6 STORAGE (INITIAL 128K NEXT 128K PCTINCREASE 0)

The primary key index is an Oracle8 feature; the
USING INDEX syntax does not exist in Oracle7.

You will notice that we chose extreme values for PCTFREE and PCTUSED, and 99,
respectively. Recall that these storage parameters govern the minimum amount of
free space Oracle reserves in each block. This free space provides growing room for
records that are updated. If more than PCTFREE percent of a block is empty, the
block will be on the free list, which means that more records can be added to the
block. Similarly, PCTUSED is the maximum amount of space that data can consume
in a block.

Setting PCTFREE to and PCTUSED to 99 tells Oracle to pack each block as full of data
as possible; do not leave any free space for updates. We need not be concerned with
updates because data in read-only snapshots is never updated, not even by the
refresh procedure. (Snapshot refreshes perform updates by deleting the old record
and reinserting it with its new values.) Packing the data as tightly as possible
minimizes the amount of space required for a snapshot's storage, and we can expect
some gains in query performance against the snapshot.

In addition to the PCTFREE and PCTUSED parameters, the tablespace in which to put
the snapshot base table is specified (SNAP$_PRODUCT_PRICES in this case), as well
as the size of its initial and next extents and the percent by which subsequent
extents should grow. Ideally, the table will fit into a single extent.

Oracle Distributed Systems

241

Measure the storage allocated to the master table so
that you can set the snapshot's storage parameters
appropriately. Remember that the snapshot will most
likely occupy less space than the master table if you
use PCTFREE and PCTUSED 99.

The last portion of the STORAGE clause controls the storage of the primary key index,
a feature available in Oracle8. In general, it is a wise practice to place indexes in
separate tablespaces from their data. Every schema owner should utilize at least two
tablespaces, one for data and one for indexes. This example uses tablespace
SPROCKET_DATA and SPROCKET_INDX.

11.3.2 The REFRESH Clause

The REFRESH clause controls the time of the initial refresh, as well as the method
and frequency of subsequent refreshes:

7 REFRESH FAST
 8 START WITH sysdate
 9 NEXT sysdate + 1
10 WITH PRIMARY KEY
11 USING LOCAL ROLLBACK SEGMENT rb_large

If you are using Oracle8, you can also specify the snapshot type, PRIMARY KEY (the
default) or ROWID. Oracle8 also allows you to specify a rollback segment to use
during the snapshot refresh.

If you plan to add the snapshot to a snapshot refresh
group, then you should not specify a value for the
NEXT refresh. If you do, the snapshot will refresh at
the interval defined in the CREATE SNAPSHOT
statement instead of the interval defined for the
refresh group.

You can specify one of three refresh methods in the REFRESH clause:

A FAST snapshot refresh queries the snapshot log on the master table to
determine what records are new or have been modified since the previous
refresh. Only these records are brought over to the snapshot site. FAST
refreshes are possible only with simple snapshots (i.e., snapshots that query
a single master table and that do not perform aggregation functions). FAST
refreshes also require a snapshot log on the master table that predates the
snapshot.

FAST

Oracle Distributed Systems

COMPLETE

FORCE

A complete refresh reinstantiates the snapshot from scratch. Oracle must use
the COMPLETE method for complex snapshots and snapshots whose master
table does not have a preexisting snapshot log (or any snapshot log at all).

You can specify REFRESH FORCE in the REFRESH clause to direct Oracle to
perform a FAST refresh if possible and a COMPLETE refresh if necessary. The
FORCE method avoids errors that occur when the FAST method is specified
but not possible.

11.3.3 The Defining Query

The last element of the CREATE SNAPSHOT statement is the defining query:

12 AS
13 SELECT product_id,
14 catalog_number,
15 price,
16 effective_date
17 FROM product_prices@PHQS.BIGWHEEL.COM;

The result set of the query is stored in the snapshot base table. Any query that does
not select fields of type LONG, LONG RAW, or user-defined datatypes and that does
not contain an ORDER BY clause is valid as a snapshot's defining query. However,
not all queries can be refreshed with the FAST REFRESH method.

Referencing Remote Tables

Oracle's documentation recommends that the defining query
reference table names in the form owner.table_name. This
way, you can be sure of what the master table is and not
mistakenly point to the wrong table because a synonym
changed.

We discourage this practice because it comes at the expense of
flexibility. Of course, you do need to be mindful of what tables
are visible over the database link that you use to create and to
refresh snapshots, but these are details over which the DBA
has control, particularly in a production environment.

11.4 Simple Versus Complex Snapshots

Simple snapshots are the only type that can use the FAST REFRESH method. A
snapshot is considered simple if the defining query meets the following criteria:

242

Oracle Distributed Systems

243

• It does not contain any DISTINCT or aggregation functions.
• It does not contain a GROUP BY or CONNECT BY clause.
• It does not perform set operations (UNION, UNION ALL, INTERSECT, etc.).
• It does not perform joins other than those used for subquery subsetting.

Essentially, a simple snapshot is one that selects from a single table and that may or
may not use a WHERE clause.

Oracle8 extends the universe of simple snapshots with
a feature known as subquery subsetting, described in
the later section entitled "Subquery Subsetting."

Not surprisingly, any snapshot that is not a simple snapshot is a complex snapshot.
Complex snapshots can only use COMPLETE refreshes, which are not always practical.
For tables of more than about 100,000 rows, COMPLETE refreshes can be quite
unwieldy.

You can often avoid this situation by creating simple snapshots of individual tables at
the master site and performing the offending query against the local snapshots. For
example, avoid creating a complex snapshot such as the following:

CREATE SNAPSHOT sales_by_region
REFRESH COMPLETE
START WITH sysdate
NEXT sysdate + 1
AS
SELECT r.region_name,
 r.sales_rep,
 p.product_id,
 count(*) num_sold,
 sum(sales_price)
FROM product_sales@PHQS.BIGWHEEL.COM p,
 regions@PHQS.BIGWHEEL.COM r
WHERE p.region_id = r.region_id

which must reinstantiate the snapshot completely with every refresh. Instead, simply
create two simple snapshots, one on the PRODUCT_SALES table and the other on the
REGIONS table. Both snapshots can use a FAST refresh, and you can issue the
desired query locally.

11.5 Snapshot Logs

Asnapshot log is a table that resides at the master site and that keeps track of
changes to a master table. The name of the snapshot log table is
MLOG$_master_table_name. Snapshot logs make FAST refreshes possible because
the refresh process can consult the snapshot log to determine which rows have
changed since the previous refresh; it then applies only these changes instead of
replacing every record in the snapshot. In other words, snapshot logs enable the use
of FAST refreshes. For tables with more than 100,000 records, a FAST refresh is the
only viable means of maintaining a snapshot.

Oracle Distributed Systems

244

In order for Oracle to utilize the FAST refresh
mechanism, the snapshot log must be created at the
master site before the snapshot itself.

11.5.1 Restrictions on Snapshot Logs

Pleasenote that in Oracle8, which uses primary keys to identify records in the master
table, the master table must have a primary key defined and enabled in order to
create a snapshot log.

11.5.2 Creation Tips

Records in a snapshot log are never updated, so you should create them with
storage parameters that pack records as tightly as possible so you will realize the
best performance and most efficient use of space.

11.5.3 Snapshot Logs for ROWID Snapshots

If your master table is in an Oracle8 database and the snapshot either is in an
Oracle7 database or was created using the WITH ROWID option, then you must also
create the snapshot log using the WITH ROWID option. Try to use primary key
snapshots whenever possible because of the flexibility they impart to routine tasks
such as reorganizing the master table or the snapshot base table. Note that
snapshots logs can contain both ROWIDs and primary keys in order to support both
Oracle7 and Oracle8 snapshots.

11.6 Subquery Subsetting

Subquery subsetting is one of the most significant feature additions to replication in
Oracle8. This is a method that allows you to create snapshot sites containing only
the data that is locally relevant without having to have a distinguishing key in every
table for which you create a snapshot. For example, an order fulfillment center might
process orders only from customers in California, yet it needs data from tables
CUSTOMERS, ORDERS, and ORDER_ITEMS.

The challenge is to create snapshots of the ORDERS and ORDER_ITEMS tables that
contain data for the California customers only. However, the ORDERS table has a
customer_id field and no state field, while the ORDER_ITEMS table doesn't even
have a customer_id field. In other words, the schema is normalized. Clearly adding
and maintaining a state field in the ORDERS and ORDER_ITEMS table would be
awkward at best.

Rather than denormalize the schema by putting the state field in all of the tables for
which you created a snapshot, we can use a subquery subset snapshot, which takes
advantage of foreign keys defined on the tables to determine which records of the
ORDERS and ORDER_ITEMS tables the snapshot site needs to see. We can create the
snapshots as follows:

Oracle Distributed Systems

245

48. FROM order_items@PHQS.BIGWHEEL.COM i
49. WHERE EXISTS (SELECT order_id

1. Create a snapshot on the CUSTOMERS table containing only the records
where state = CA:

2. CREATE SNAPSHOT customers
3. REFRESH FAST
4. START WITH sysdate
5. NEXT sysdate + 1
6. AS
7. SELECT customer_id,
8. sales_rep_id,
9. first_name,
10. last_name,
11. addr_line_1,
12. addr_line_2,
13. city,
14. state,
15. zip
16. FROM customers@PHQS.BIGWHEEL.COM

WHERE state = 'CA';

17. Create a subquery subset snapshot on ORDERS containing only the orders
associated with customers from California:

18. CREATE SNAPSHOT orders
19. REFRESH FAST
20. START WITH sysdate
21. NEXT sysdate + 1
22. AS
23. SELECT order_id,
24. customer_id,
25. purchase_order_id,
26. order_date,
27. order_taker,
28. status
29. FROM orders@PHQS.BIGWHEEL.COM o
30. WHERE EXISTS (SELECT customer_id
31. FROM customers@PHQS.BIGWHEEL.COM c
32. WHERE c.customer_id = o.customer_id

 AND c.state = 'CA');

33. Create a subquery subset snapshot on the ORDER_ITEMS table containing
only the records associated with the orders for California customers:

34. CREATE SNAPSHOT order_items
35. REFRESH FAST
36. START WITH sysdate
37. NEXT sysdate + 1
38. AS
39. SELECT order_line_id,
40. order_id,
41. item_number,
42. product_id,
43. quantity,
44. unit_of_measure,
45. unit_price,
46. extended_price,
47. status

Oracle Distributed Systems

246

50. FROM orders@PHQS.BIGWHEEL.COM o
51. WHERE i.order_id = o.order_id
52. AND EXISTS (SELECT customer_id
53. FROM customers@PHQS.BIGWHEEL.COM

c
54. WHERE c.customer_id =

o.customer_id
 AND c.state = 'CA'));

Thus, we have created three separate snapshots that obtain the subset of data the
snapshot site requires without having to denormalize the schema or modify the
application code in any way. In other words, we can create a snapshot for records
associated with the filter column state even though the master tables ORDERS and
ORDER_ITEMS do not contain the filter column. Notice that these snapshots can all
use the FAST refresh (assuming that the master tables have snapshot logs defined).

Updates to the filer column, though permitted, should
be avoided.

11.6.1 Restrictions on Subquery Subsets

Of course, not all operations or relationships can benefit from subquery snapshots.
Specifically,subquery subsetting works only if the following restrictions are met:

• The defining query does not include explicit joins, aggregation operations, set
operations, GROUP BY, HAVING, or CONNECT BY.

• Each master table referenced in the defining query must have a primary key.
• All master tables must reside in the same database instance.
• All subqueries must be positive and formulated with the EXISTS clause—that

is, explicit joins and NOT EXISTS are not permitted.
• The subqueries must use equijoins on columns that have a many-to-one

relationship.
• All master tables referenced in the defining query must have a snapshot log,

even if you are using a COMPLETE refresh.
• Snapshot logs must contain primary key values.
• Snapshot logs must contain all filter columns.

11.6.2 Subquery Subset Snapshot Base Tables

You will notice that the base table of subquery subset snapshots contains fields in
addition to those of the master table. For example, the ORDER_ITEMS snapshot base
table, SNAP$_ORDER_ITEMS, contains a customer_id field. Snapshot base tables
must contain the primary key values of each table referenced in the subquery. Oracle
automatically adds these fields if and only if they are not part of the SELECT list in
the snapshot's defining query. In addition, Oracle automatically creates indexes on
these hidden columns when the snapshot is created.

Oracle Distributed Systems

11.6.3 A Special Case

In the previous example, ORDERS and ORDER_ITEMS records were filtered to those
associated with customers in California. Suppose we wish to further restrict the
query to California customers whose sales representative is John Smith. Assume a
many-to-many relationship between the CUSTOMERS table and the SALES_REPS
table. In other words, a sales representative can handle many customers, and a
given customer may have more than one representative. The
CUSTOMER_REP_INTERSECT table resolves the many-to-many relationship between
CUSTOMERS and SALES_REPS.

Oracle's subquery subsetting allows us to snapshot data associated with customers
meeting two restrictions: they are from California, and their sales rep is John Smith.
The snapshot on the ORDER_ITEMS table would be defined as follows:

CREATE SNAPSHOT order_items
REFRESH FAST
START WITH sysdate
NEXT sysdate + 1
AS
SELECT order_line_id,
 order_id,
 item_number,
 product_id,
 quantity,
 unit_of_measure,
 unit_price,
 extended_price,
 status
FROM order_items@PHQS.BIGWHEEL.COM i
WHERE EXISTS (SELECT order_id
 FROM orders@PHQS.BIGWHEEL.COM o
 WHERE i.order_id = o.order_id
 AND EXISTS (SELECT customer_id
 FROM customers@PHQS.BIGWHEEL.COM c
 WHERE c.customer_id = o.customer_id
 AND c.state = 'CA'
 AND EXISTS (SELECT sales_rep_id
 FROM customer_rep_intersect i
 WHERE i.customer_id = c.customer_id
 AND EXISTS (SELECT sales_rep_id
 FROM sales_reps r
 WHERE r.sales_rep_id = i.sales_rep_id
 AND r.rep_name = 'John Smith'))))

While subquery subset snapshots of this complexity are possible, there does come a
point where the performance of the subquery snapshot lags behind that of snapshots
containing all records from a master table. You will have to experiment to determine
which approach works better for you.

247

Oracle Distributed Systems

248

11.7 Refresh Groups

As in the previous example, often you need snapshots on a group of related tables,
which may have interdependencies. If you refresh snapshots individually, the
resulting data is not guaranteed to have a point-in-time consistency; in fact, it
probably will not. For example, if we were to refresh the ORDER_ITEMS snapshot
followed by the ORDERS table, we could end up with entries in ORDERS that have no
corresponding entries in ORDER_ITEMS if users create orders while the
ORDER_ITEMS table refreshes. Obviously, this is not an acceptable state of affairs.

Oracle uses theconcept of a refresh group to encapsulate snapshots that must have
point-in-time consistency. You are guaranteed that all snapshots in a single refresh
group will be refreshed with data from the master tables as of a single point in time.
In addition, refresh groups provide ease of management because Oracle includes a
variety of built-in procedures in the package DBMS_REFRESH for their maintenance.
The following procedures manipulate refresh groups at the snapshot site:

Adds a snapshot to an existing group.

Modifies properties of a refresh group, such as refresh interval, next refresh
time, and so on.

Drops a refresh group.

Creates a refresh group.

Removes a snapshot from an existing refresh group.

The following sections provide brief examples of using these procedures; refer to
Appendix A

DBMS_REFRESH.ADD

DBMS_REFRESH. CHANGE

DBMS_REFRESH.DESTROY

DBMS_REFRESH. MAKE

DBMS_REFRESH. SUBTRACT

, for the complete API reference to these procedures.

Refresh groups are applicable to updateable snapshots
as well as to read-only snapshots.

Oracle Distributed Systems

11.7.1 Creating and Destroying Refresh Groups

Use the built-in package procedure DBMS_REFRESH.MAKE to create a refresh group
and DBMS_REFRESH.DESTROY to drop it; execute both of these procedures from the
snapshot site. The following examples illustrate their use.

11.7.1.1 Creating a snapshot refresh group of read-only
snapshots

This example shows the simplest invocation of DBMS_REFRESH.MAKE; defaults are
used for all parameters possible. This call creates a refresh group on four related
tables and schedules them to be refreshed every day at midnight:

DECLARE
vSnapshotList dbms_utility.uncl_array;
BEGIN
 vSnapshotList(1) := 'CUSTOMERS';
 vSnapshotList(2) := 'ORDERS';
 vSnapshotList(3) := 'ORDER_ITEMS';
 vSnapshotList(4) := 'CUSTOMER_REP_INTERSECT';

 DBMS_REFRESH.MAKE(name => 'SG_CUST_ORDERS',
 tab => vSnapShotList,
 next_date => TRUNC(sysdate) + 1,
 interval => 'SYSDATE + 1');
END;

11.7.1.2 Creating a snapshot refresh group of read-only
snapshots with specialized parameters
DECLARE
vSnapshotList dbms_utility.uncl_array
BEGIN
 vSnapshotList(1) = 'CUSTOMERS'
 vSnapshotList(2) = 'ORDERS'
 vSnapshotList(3) = 'ORDER_ITEMS'
 vSnapshotList(4) = 'CUSTOMER_REP_INTERSECT'

 DBMS_REFRESH.MAKE(name => 'SG_CUST_ORDERS',
 tab => vSnapShotList,
 next_date => TRUNC(sysdate) + 1,
 interval => 'SYSDATE + 1',
 implicit_destroy => TRUE,
 lax => TRUE,
 rollback_segment 'RB1');
END;

This example creates the same refresh group as in the first example but with the
following additional properties:

implicit_destroy => TRUE

249

Oracle Distributed Systems

250

This setting causes the refresh group SG_CUST_ORDERS to be destroyed if all
of the snapshots in the group are dropped. The default behavior is to preserve
the refresh group, even if it has no members.

If any of the snapshots being added to SG_CUST_ORDERS exist in another
refresh group, this setting instructs Oracle to remove them from the other
group before adding them to the new group. A snapshot cannot be a member
of more than one refresh group.

This setting causes Oracle to use rollback segment RB1 whenever it refreshes
refresh group SG_CUST_ORDERS. You should consider specifying rollback
segments if your snapshot refreshes result in long transactions requiring a
large rollback segment.

11.7.1.3 Creating a snapshot r efresh group that uses
parallel propagation (Oracle8 only)

This example sets parallelism to 4, so that Oracle uses four processes to perform the
refresh:

DECLARE
vSnapshotList dbms_utility.uncl_array
BEGIN
 vSnapshotList(1) = 'CUSTOMERS'
 vSnapshotList(2) = 'ORDERS'
 vSnapshotList(3) = 'ORDER_ITEMS'
 vSnapshotList(4) = 'CUSTOMER_REP_INTERSECT'

 DBMS_REFRESH.MAKE(name => 'SG_CUST_ORDERS',
 tab => vSnapShotList,
 next_date => TRUNC(sysdate) + 1,
 interval => 'SYSDATE + 1',
 parallelism => 4,);
END;

lax => TRUE

rollback_segment => 'RB1'

In order to take advantage of parallel propagation,
you must have parallel query slave background
processes running. The number of processes is
controlled by the initialization parameters
PARALLEL_MIN_SERVERS and
PARALLEL_MAX_SERVERS.

11.7.1.4 Dropping a refresh group

This example destroys the snapshot group SG_CUST_ORDERS. It does not drop the
member snapshots themselves; however, they will not be refreshed again unless you

Oracle Distributed Systems

either add them to another snapshot group or refresh them manually with
DBMS_SNAPSHOT.REFRESH:

BEGIN
 DBMS_REFRESH.DESTROY(name => 'SG_CUST_ORDERS');
END;

11.8 Management and Optimization

Snapshots require a certain amount of DBA attention in order to keep them running
optimally. In addition, Oracle provides packaged procedures to render the DBA's
responsibilities less taxing. This section discusses your options for squeezing optimal
performance out of snapshots and offers some common solutions to common
problems.

11.8.1 Tuning Snapshots

Section 11.3 recommended that you select PCTFREE and PCTUSED settings that will
pack the data in your read-only snapshot base tables as tightly as possible, thus
preserving disk space and reducing the expense of scanning the table. You can also
take the following steps to enhance the performance of queries against the snapshot
base tables and the snapshot refresh itself:

You can place indexes on the columns of the snapshot base table to enhance
the performance of your application's queries. Note, however, that you cannot
use unique indexes if you are using Oracle7; if you are using Oracle8, unique
constraints must be deferrable. This restriction exists because uniqueness is
not guaranteed during the period of the actual snapshot refresh.

If you snapshot several tables that share common keys, consider using a
cluster index for the key as was done in the CUSTOMERS, ORDERS,
ORDER_ITEMS example.

When you create subquery subset snapshots, be sure that the defining query
is optimized. You can create the appropriate indexes on the master tables
and/or use EXPLAIN PLAN, TKPROF, or another utility to tune the statements
themselves.

If you are using the cost-based optimizer, be sure to ANALYZE the snapshot
log tables at the master site. Oracle recommends analyzing the snapshot log
when it is empty or nearly so.

Index the snapshot base table

Cluster read-only snapshot base tables

Tune the defining query

Analyze the snapshot log

251

Oracle Distributed Systems

11.8.2 Administrative Tasks

The DBMS_REFRESH and DBMS_SNAPSHOT built-in packages include a variety of
routines the DBA can use to manage snapshots and snapshot logs. In addition to the
procedures mentioned for maintaining snapshot logs and refresh groups, the
following procedures are available:

Refreshes a snapshot refresh group.

Produces the SQL statement required to create a given refresh group (Oracle8
only).

Produces the SQL statement required to create a given snapshot within a
refresh group (Oracle8 only).

Refreshes a specific snapshot.

Refreshes all snapshots that are due to be refreshed.

Queries a state variable for a session to determine whether it is acting on
behalf of a snapshot refresh.

Sets a session state variable to indicate that the session is acting on behalf of
a snapshot refresh.

Called prior to reorganizing a master table in order to preserve snapshot log
information (Oracle8 only).

Called at the conclusion of a master table reorganization to resume normal
logging of DML (Oracle8 only).

DBMS_REFRESH.REFRESH

DBMS_REFRESH.USER_EXPORT

DBMS_REFRESH.USER_EXPORT_CHILD

DBMS_SNAPSHOT.REFRESH

DBMS_SNAPSHOT.REFRESH_ALL

DBMS_SNAPSHOT.I_AM_A_REFRESH

DBMS_SNAPSHOT.SET_ I_AM_A_REFRESH

DBMS_SNAPSHOT. BEGIN_TABLE_REORGANIZATION

DBMS_SNAPSHOT. END_TABLE_REORGANIZATION

252

Oracle Distributed Systems

DBMS_SNAPSHOT.REGISTER_SNAPSHOT

DBMS_SNAPSHOT. UNREGISTER_SNAPSHOT

Creates an entry for a snapshot in the data dictionary view
DBA_REGISTERED_SNAPSHOTS at the master site.

Removes the entry for a snapshot in the data dictionary view
DBA_REGISTERED_SNAPSHOTS at the master site.

The full specification of these procedures is provided in Appendix A.

11.8.3 Reorganizing a Master Table in Oracle8

Occasionally, a DBA must reorganize a table—that is, coalesce its extents and reduce
row chaining. These two new modules in Oracle8 allow you to reorganize a master
table without invalidating its snapshot log. Therefore, you do not have to perform
complete refreshes of the table's snapshots after it is reorganized. To take advantage
of this new feature, you must be using primary key snapshots. The procedure is to
call DBMS_SNAPSHOT.BEGIN_REORGANIZATION before reorganizing the table and
DBMS_SNAPSHOT.END_REORGANIZATION when you are finished.

The following sections illustrate how to use these procedures as part of a table
reorganization.

11.8.3.1 Steps for reorganizing a master table using
truncation

1. Call DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION:
2. EXECUTE DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION (
3. tabowner => 'SPROCKET',

 tabname => 'COUNTRIES');

4. Back up the table by exporting it or spooling it to a flat file.
5. Truncate the master table, preserving the snapshot log:

TRUNCATE TABLE countries PRESERVE SNAPSHOT LOG;

6. Restore the table from the export file or flat file.
7. Call DBMS_SNAPSHOT.END_TABLE_REORGANIZATION:
8. EXECUTE DBMS_SNAPSHOT.END_TABLE_REORGANIZATION (
9. tabowner => 'SPROCKET',

 tabname => 'COUNTRIES');

11.8.3.2 Steps for reorganizing a master table by
renaming

1. Call DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION:
2. EXECUTE DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION (
3. tabowner => 'SPROCKET',

253

Oracle Distributed Systems

254

6. Use DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP at the snapshot sites to
create a new snapshot replication object group. The name of this object group

 tabname => 'COUNTRIES');

4. Rename the table:

RENAME TABLE countries TO countries_pre_reorg;

5. Create a new version of the table:

CREATE TABLE countries AS SELECT * FROM countries_pre_reorg;

6. Call DBMS_SNAPSHOT.END_TABLE_REORGANIZATION:
7. EXECUTE DBMS_SNAPSHOT.END_TABLE_REORGANIZATION (
8. tabowner => 'SPROCKET',

 tabname => 'COUNTRIES');

9. Re-create any triggers that were defined on the table.

In both of these examples, snapshots will be able to use the snapshot log for FAST
refreshes after the table reorganization is complete.

11.8.4 Offline Instantiation of Snapshots

In cases in which you wish to instantiate a snapshot site with a large amount of data
in an advanced replication environment, offline instantiation may be more convenient
than using the DBMS_REPCAT methods. Offline instantiation refers to the population
of snapshots with the import and export utilities as opposed to using the
DBMS_SNAPSHOT.REFRESH procedure. This technique is less time consuming and
less taxing on your network, and it minimizes the time your environment must be
quiesced. The DBMS_OFFLINE_SNAPSHOT package provides the bulk of the
functionality of offline instantiation. You must also call
DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP to create a new replicated snapshot
group.

The procedure for performing offline instantiation of snapshots in an advanced
replication environment is as follows:

1. Create a snapshot log for each master table if one does not already exist.
2. Create a snapshot of each master table in the master database and in the

same schema as the master table. Of course, the name of the snapshot will
have to be different from the name of the master table. The CREATE
SNAPSHOT statement must also include a loopback database link qualifier:

3. CREATE SNAPSHOT snp_countries
AS SELECT * FROM countries@D7CA.BIGWHEEL.COM

4. Perform user exports of all schemas that own master tables. You should be
logged on to the schema owner account for these exports. The only tables
that you need to export are the snapshot base tables (i.e., those whose
names begin with SNAP$_).

5. Copy the export dump file(s) to the new snapshot site(s).

Oracle Distributed Systems

255

should be the same as the name of the replication group of which the master
tables are members:

7. EXECUTE DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP(
8. gname => 'SPROCKET',
9. master => 'D7CA.BIGWHEEL.COM',
10. comment => 'Group created on '||sysdate|| ' by

'||user,
 propagation_mode => 'ASYNCHRONOUS');

11. Call DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD to begin loading the data from
the export file(s). You must call the procedure for every snapshot you plan to
import:

12. EXECUTE DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD(
13. gname => 'SPROCKET',
14. sname => 'SPROCKET',
15. master_site => 'D7CA.BIGWHEEL.COM'
16. snapshot_oname => 'SNP_COUNTRIES'
17. storage_c => 'TABLESPACE sprocket_data STORAGE

(INITIAL 64K)'
 comment => 'Load of COUNTRIES snapshot begun at
'||sysdate);

18. Import the snapshot base table(s) from the export file(s) created in Step 4.
19. Call DBMS_OFFLINE_SNAPSHOT.END_LOAD for each snapshot when the load

is complete:
20. EXECUTE DBMS_OFFLINE_SNAPSHOT.END_LOAD(
21. gname => 'SPROCKET'
22. sname => 'SPROCKET'

 snapshot_oname => 'SNP_COUNTRIES');

11.8.5 Troubleshooting

The following sections describe solutions to some common problems that arise when
using snapshots.

11.8.5.1 Snapshots are not refreshing

When snapshots fail to refresh, it is generally because of either a connectivity
problem (i.e., the snapshot site cannot connect to the master site) or a privilege
problem. When a snapshot first fails to refresh, Oracle retries the operation one
minute later. If the refresh continues to fail, Oracle reattempts two minutes later,
then four minutes later, and so on. If the retry interval exceeds the snapshot refresh
interval, then Oracle retries at the refresh interval. If the refresh fails 16 times, then
Oracle marks the snapshot as BROKEN in the DBA_REFRESH and
DBA_REFRESH_CHILDREN data dictionary views.

This behavior is the same as for jobs in the job queue
precisely because snapshot refresh jobs are jobs in the
job queue.

Oracle Distributed Systems

When you notice that a snapshot is not refreshing, you can almost always determine
the problem by looking for a trace file in the directory specified by the initialization
parameter BACKGROUND_DUMP_DEST. The trace file will have information about
whatever errors the snapshot background process has encountered. For example, if
the database link from the snapshot site to the master site attempts to connect with
an invalid username or password, the trace file contains entries like this:

*** SESSION ID:(10.9446) 1998.06.21.21.19.47.000
ORA-12012: error on auto execute of job 29
ORA-01017: invalid username/password; logon denied
ORA-06512: at "SYS.DBMS_SNAPSHOT", line 380
ORA-06512: at "SYS.DBMS_IREFRESH", line 450
ORA-06512: at "SYS.DBMS_REFRESH", line 182
ORA-06512: at line 1
Sun Jun 21 21:19:47 1998

Usually, the problem is reasonably easy to diagnose by looking in the trace file.

11.8.5.2 Snapshots refreshing continuously

At the other end of the spectrum is a situation in which snapshots refresh constantly.
This can occur if the interval specified for the refresh is less than the time it takes to
actually refresh the snapshot. In other words, the snapshot is overdue for a refresh
after it completes each refresh. The solution to this problem is to modify the
snapshot's refresh interval accordingly, either with the package procedure
DBMS_REFRESH.CHANGE (if the snapshot is a member of a refresh group) or with
the ALTER SNAPSHOT command (for snapshots that are not members of refresh
groups).

11.8.5.3 Snapshot logs are growing uncontrollably

One of the most commonly reported problems with snapshot logs is a log that
continues growing seemingly without bounds. This can occur if the master site thinks
that there are unrefreshed snapshot sites that still need to reference the log. Oracle
does not remove entries from the snapshot log until all snapshots have "seen" it. So,
if a site becomes unavailable for an extended period of time, or if a snapshot is
dropped, the snapshot log can continue to queue records for the non-existent
snapshot.

Oracle provides several package procedures that allow you to rid the snapshot log of
irrelevant records or to purge the log entirely:

Finds the age of the oldest record in the snapshot log (Oracle8 only).

Deletes some or all records from a snapshot log.

DBMS_SNAPSHOT. GET_LOG_AGE

DBMS_SNAPSHOT. PURGE_LOG

DBMS_SNAPSHOT. PURGE_SNAPSHOT_FROM_LOG

256

Oracle Distributed Systems

Removes log entries associated with a particular snapshot from the snapshot
log.

Refer to Appendix A for the complete API reference for these procedures.

11.9 Scripts

Several scripts provided in Appendix B, are particularly useful for providing
information about snapshots in your environment. See snaps.sql, reqsnaps.sql, and
mastersnapinfo.sql. .

257

Oracle Distributed Systems

258

Oracle Distributed Systems

Chapter 12. Multi-Master Replication

Multi-master replication, also known as advanced replication orsymmetric replication,
allows you to maintain multiple sets of identical data at various sites; Oracle can
automatically synchronize all DDL and DML changes. Obviously, this functionality
comes at the expense of additional planning and administrative tasks and introduces
a new level of sophistication to the environment. This chapter describes how to
create and maintain a replicated environment and how to assess its health.

12.1 Concepts and Terminology

As you embark down the road ofreplication, you will encounter several phrases
repeatedly; these include:

• Deferred transaction
• Replication group
• Quiescence
• Master definition site
• Master site
• Replication support
• Conflict
• Propagation latency
• Instantiation

The following sections briefly describe what these phrases mean.

12.1.1 Deferred Transaction

A deferred transaction is a transaction that is queued for delivery to one or more
remote databases. If you use multi-master replication with asynchronous
propagation, Oracle creates deferred transactions for all local DML activity against
the replicated tables.

12.1.2 Replication Group

A replication group is a collection of one or more replicated objects (typically tables)
that are administrated together. Very generally speaking, the objects in a given
replication group are logically related; for example, they are often the set of objects
that a given application uses. Prior to Oracle Version 7.3, the concept of a replication
group did not exist; instead, objects had to be replicated on a schema-by-schema
basis. Beginning with Version 7.3, Oracle organized replicated objects into replication
groups. A given replication group can contain objects from multiple schema, and a
given schema can have objects in more than one replication group. However, any
given object can be in only one replication group.

The most significant property of replication groups is that all objects in a given group
are quiesced together. That is, DML activity is enabled and disabled for all group

259

members simultaneously.

Oracle Distributed Systems

260

12.1.3 Quiescence

Quiescence is the act of suspending DML activity for all tables in a given replication
group. This is required in order to perform certain administrative tasks on objects in
a replication group, such as altering a table. The Oracle built-in package procedure
call that quiesces a replication group is DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY.

Prior to Oracle8, quiescing a single replication group
actually caused all groups to be quiesced, even though
the DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY call
requires that you specify a single group. Oracle refers
to the ability to quiesce a single replication group as a
fine-grained quiesce.

12.1.4 Master Definition Site

The master definition site of a replication group is the database instance from which
the group is administered. This site is usually, but not necessarily, the site at which
the replication group was originally created. (You can use the built-in package
procedure DMBS_REPCAT.RELOCATE_MASTERDEF to change a replication group's
master definition site.) Activities such as quiescence and DDL on replicated objects
must be performed at the master definition site. There is exactly one master
definition site for each replication group.

It is worth noting that the behavior of DML is the same at the master definition site
as at any other site. In other words, DML performed at the master definition site
does not have any precedence over DML performed at other master sites.

12.1.5 Master Site

A master site is a site that is participating in one or more replication groups but is
not the master definition site.

12.1.6 Replication Support

Replication support refers to the packages and triggers that Oracle creates in order
to propagate changes to replicated objects, to detect and resolve conflicts, and so on.
See Chapter 9, for a description of these objects.

12.1.7 Conflict

When Oracle propagates an update to destination tables, it expects the current data
for the row at the destination to match the data at the originating site prior to the
update. If the data is not the same, an update conflict results. Similarly, if an insert
fails because of a primary key violation (i.e., a unique constraint violation) the result
is a uniqueness conflict or violation. And, if the target row of a delete does not exist

Oracle Distributed Systems

at the destination site, a delete conflict results. Chapter 15, discusses advanced
techniques for detecting and resolving conflicts automatically.

12.1.8 Propagation Latency

Unless you are propagating changes among master sites synchronously, there is a
delay between the time a DML change is applied at the originating database and the
time the transaction reaches the destination databases. This lag is known as
propagation latency.

12.1.9 Instantiation

Instantiation is the act of creating and populating a table so that it has identical
structure and data as its replica in other master databases.

12.2 Getting Started

Before setting up tables for replication, you must complete the preliminary tasks
described in Chapter 10. These tasks include the following:

• Determining and setting initialization parameters appropriately
• Sizing rollback segments and redo logs
• Running catproc.sql and catrep.sql (and optionally catrepad.sql)
• Creating administrative accounts with appropriate privileges
• Creating necessary database links

If you have accomplished these tasks, you are ready to create replication groups,
configure tables, and other objects for replication and add master databases.

12.2.1 The Quick-and-Dirty Setup

Many people want to configure objects for replication as quickly and simply as
possible so that they can get a sense of the administration and performance
considerations and to learn about how replication works firsthand. To speed these
people on their way, the steps required to set up a bare-bones replicated
environment are included here. The main distinction between thisminimal
configuration and one that is appropriate for production is that it does not include
any conflict resolution logic.

Although these steps will indeed create a replicated
environment, it is not suitable for a production
installation because it does not take conflicts into
account, rendering it anything but robust.

This procedure assumes that you have set the proper initialization parameters, run
the required catalog scripts, and created necessary database links and administrative

261

accounts. Now, with no further ado, the minimal procedure for replicating an object
is to follow these steps:

Oracle Distributed Systems

262

1. Create the object in all master databases; if it is a table, you can populate it
with identical data at all locations before configuring it for replication, or you
can let Oracle's replication packages populate the table.

2. Create one or more replication groups using the package procedure
DBMS_REPCAT.CREATE_MASTER_REPGROUP.

3. Add objects to the replication groups using the package procedure
DBMS_REPCAT.CREATE_MASTER_REPOBJECT.

4. Generate replication support for each object using the package procedure
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT.

5. Add one or more master sites to the replication group using the package
procedure DBMS_REPCAT.ADD_MASTER_DATABASE.

6. Schedule the propagation of DML changes and replicated procedure calls to
each master site using DBMS_DEFER_SYS.SCHEDULE_PUSH (for Oracle8
databases) or DBMS_DEFER_SYS.SCHEDULE_EXECUTION (for Oracle7
databases).

Although Oracle8 includes the
DBMS_DEFER_SYS.SCHEDULE_EXECUTION package
procedure, it is intended for backward compatibility
only. Always use
DBMS_DEFER_SYS.SCHEDULE_PUSH.

7.
8. (Oracle8 only) Schedule the purging of the deftran queue using the

DBMS_DEFER_SYS.SCHEDULE_PURGE.

12.2.2 A Quick-and-Dirty Example

Here arethe steps to go through to replicate a single table named
SPROCKET.REGIONS at sites PHQS.BIGWHEEL.COM and PSLS.BIGWHEEL.COM.
Suppose this table looks like this:

SQL> describe regions
 Name Null? Type
--------------- -------- ---------
 REGION_ID NOT NULL NUMBER(6)
 COUNTRY_ID NOT NULL NUMBER(6)
 REGION_NAME NOT NULL VARCHAR2(15)
 AUDIT_DATE NOT NULL DATE
 AUDIT_USER NOT NULL VARCHAR2(30)
 GLOBAL_NAME NOT NULL VARCHAR2(20)

For the purposes of this example, assume that PHQS.BIGWHEEL.COM is the master
definition site and that the REGIONS table has already been created and populated
at both sites. Perform all of the following steps connected to the master definition
site under the replication administrator account, typically REPADMIN.

1. Create a replication group, in this case named RG_SALES:
2. EXECUTE dbms_repcat.create_master_repgroup(-
3. gname => 'RG_SALES', -

Oracle Distributed Systems

263

4. group_comment => 'Created by ' ||user|| ' on ' || sysdate, -
master_comment => 'Created by ' ||user|| ' on ' || sysdate)

5. Add REGIONS to the RG_SALES replication group:
6. EXECUTE dbms_repcat.create_master_repobject(-
7. sname => 'SPROCKET',-
8. oname => 'REGIONS',-
9. type => 'TABLE',-
10. use_existing_object => TRUE,-
11. comment => 'Added by '||lower(user)||' on

'||sysdate,-
12. copy_rows => FALSE,-

gname => 'RG_SALES');

13. Generate replication support for the REGIONS table:
14. EXECUTE dbms_repcat.generate_replication_support(-
15. sname => 'SPROCKET',-
16. oname => 'REGIONS',-
17. type => 'TABLE',-

distributed => TRUE);

18. Add the master site PSLS.BIGWHEEL.COM to the replication group:
19. EXECUTE dbms_repcat.add_master_database(-
20. gname => 'RG_THROW', -
21. master => 'PHQS.BIGWHEEL.COM', -
22. use_existing_objects => TRUE, -
23. copy_rows => FALSE, -
24. comment => 'PSLS.BIGWHEEL.COM added on '||sysdate,

-
propagation_mode => 'ASYNCHRONOUS');

Actually, you can add master databases to a
replication group as soon as you create the group.
However, it is faster to generate replication support
for all replicated objects before adding masters.
Whenever possible, generate replication support for
objects first.

25. Schedule propagation between the databases PHQS.BIGWHEEL.COM and
PSLS.BIGWHEEL.COM. In this case, the propagation interval is once per
minute (there are 1440 minutes in a day).

In PHQS.BIGWHEEL.COM (master definition site):

Oracle8 syntax:

EXECUTE dbms_defer_sys.schedule_push(-
destination => 'PSLS.BIGWHEEL.COM', -
interval => 'SYSDATE+1/1440', -
next_date => SYSDATE+1/1440);

Oracle Distributed Systems

Oracle7 syntax:

EXECUTE dbms_defer_sys.schedule_execution(-
destination => 'PSLS.BIGWHEEL.COM', -
interval => 'SYSDATE+1/1440', -
next_date => SYSDATE+1/1440);

In PSLS.BIGWHEEL.COM (master site):

Oracle8 syntax:

EXECUTE dbms_defer_sys.schedule_push(-
destination => 'PHQS.BIGWHEEL.COM', -
interval => 'SYSDATE+1/1440', -
next_date => SYSDATE+1/1440);

Oracle7 syntax:

EXECUTE dbms_defer_sys.schedule_execution(-
destination => 'PHQS.BIGWHEEL.COM', -
interval => 'SYSDATE+1/1440', -
next_date => SYSDATE+1/1440);

26. For Oracle8 databases, you must also schedule a periodic purge of the deftran
queue. Here the purge is scheduled to run every 10 minutes in both
databases (Oracle8 only).

In PHQS.BIGWHEEL.COM (master definition site):

EXECUTE dbms_defer_sys.schedule_purge(-
interval => 'SYSDATE+10/1440', -
next_date => SYSDATE+10/1440);

In PSLS.BIGWHEEL.COM (master site):

EXECUTE dbms_defer_sys.schedule_purge(-
interval => 'SYSDATE+10/1440', -
next_date => SYSDATE+10/1440);

27. Enable replication. From the master definition site, PHQS.BIGWHEEL.COM,
call DBMS_REPCAT.RESUME_MASTER_ACTIVITY:

EXECUTE dbms_repcat.resume_master_activity(gname => 'RG_SALES');

At this point, you should be able to perform inserts, updates, and deletes on the
REGIONS table from either site and see the transaction applied at the other site
within approximately 1 minute.

Now, if you want to create a robust replicated environment that will stand up to real-
world production usage, read on.

264

Oracle Distributed Systems

265

12.3 Replication Groups

As described earlier, a replication group is a collection of one or more objects,
generally tables, that are logically related and that can or should be administered
together. As a very general guideline, you can place all replicated objects associated
with a given application into a single group. A common practice is to create all of an
application's objects under a single schema (i.e., Oracle user account); in such cases,
it often makes sense to use a one-to-one correspondence between schema and
replication groups. In fact, prior to Oracle 7.3, that was not only the assumption but
also the requirement.

12.3.1 API Calls

Oracle furnishes the following built-in package procedures to create and drop
replication groups:

Creates a replication group. The group is initially quiesced and contains no
objects.

Drops a replication group.

Creates or replaces a comment on a replication group, visible in the
DBA_REPGROUP data dictionary view.

Refer to Appendix A

DBMS_REPCAT. CREATE_MASTER_REPGROUP

DBMS_REPCAT. DROP_MASTER_REPGROUP

DBMS_REPCAT. COMMENT_ON_REPGROUP

, for the complete API reference to these procedures.

The data dictionary view DBA_REPGROUP contains information about all replication
groups at the current site.

The call to
DBMS_REPCAT.CREATE_MASTER_REPGROUP
automatically creates an entry in the job queue to
process tasks in the repcatlog queue. This scheduled
job calls
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN every
10 minutes.

Oracle Distributed Systems

12.3.2 Naming Conventions

Oracle replication has many different entities associated with it: replication groups,
column groups, site priorities, and so on. We find that administration is simplified
immensely if such objects are named according to a uniform convention. With this
end in mind, we recommend naming replication groups in the form RG_name. If you
are creating a replication group that will include all replicated objects for a single
schema, then name should be the name of the schema. You can use the following
script to report on all replication groups:

-- Filename: repgroup.sql
-- Purpose: Lists status of all replication groups.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column MASTER heading "Mast|Site" format a4
column MASTERDEF heading "Mast|Def|Site" format a4
column STATUS heading "Status" format a9
column GNAME heading "Group" format a12
column SCHEMA_COMMENT heading "Comment" format a45

SELECT g.gname,
 decode(g.master, 'N', 'No', 'Y', 'Yes') master,
 decode(s.masterdef, 'Y', 'Yes', 'N', 'No') masterdef,
 g.status,
 g.schema_comment
FROM dba_repgroup g,
 dba_repsites s
WHERE g.gname = s.gname
AND s.my_dblink = 'Y'
/

12.3.3 Which Tables Belong in the Same Replication
Group?

In the majority of cases, the easiest strategy is to associate a single replication
group with a single schema. However, this advice comes with the caveats listed here:

• Do not allow transactions to cross replication group boundaries.

If you have transactions that manipulate multiple tables, make sure that all
affected tables are in the same replication group. This approach ensures that
DML is either enabled for all tables in the transaction or disabled for all tables
in the transaction. In other words, either all or none of the tables in the
transaction will be quiesced at any given time.

266

• Do not allow referential integrity constraints to cross replication group
boundaries.

Oracle Distributed Systems

267

Common sense and experience have shown that a table with foreign keys
should be in the same replication group as the table that parents the keys.
Although DML is not necessarily prevented when one or the other table is
quiesced, applications often modify such tables together, albeit not always in
a single transaction. For example, an order entry application may insert a
record into the ORDERS table in one transaction and the ORDER_ITEMS table
in the next. Of course this is not a hard-and-fast rule, but unless you have a
good reason to separate tables that are bound by integrity constraints, keep
them in the same replication group.

• Identify and isolate "problem" tables into separate replication groups.

Does your application include a few tables that are substantially larger or
hotter than the others? It is often worthwhile to put such tables in their own
replication groups so that you can perform maintenance on them without
having to quiesce the rest of the schema.

Oracle introduced the concept of a replication group in
Oracle 7.3. Prior to Oracle 7.3, you had to replicate
objects on a schema-by-schema basis; in other words,
objects belonging to a given schema had to be
managed together.

12.3.4 How to Drop a Replication Group

You can drop a replication group with a call to
DBMS_REPCAT.DROP_MASTER_REPGROUP, which can also drop the underlying
objects in the replication group if you wish. The procedure is defined as follows:

PROCEDURE drop_master_repgroup(
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := FALSE,
 all_sites IN BOOLEAN := FALSE);

You are not required to quiesce the replication group before dropping it, but the call
will fail if there are transactions associated with the group in the deftran queue.

Table 12.1 describes the behavior of the drop_contents and all_sites parameters.

Table 12.1. Effect of drop_contents and all_sites in
DROP_MASTER_REPGROUP

Calling Site drop_contents all_sites Effect
Master
definition site

TRUE TRUE
Replication group gname and its underlying
objects are dropped from all sites.

Master
definition site

FALSE TRUE
Replication group gname is dropped from all
master sites.

Oracle Distributed Systems

268

Master
definition site

TRUE FALSE
Replication group gname and underlying contents
are dropped from the master definition site only.

Master
definition site

FALSE FALSE
Replication group gname is dropped from the
master definition site only. Underlying objects
remain at all sites.

Master site TRUE FALSE
Replication group gname and all underlying
objects are dropped at the calling site.

Master site FALSE FALSE
Replication group gname is dropped; underlying
objects are unaffected.

The all_sites parameter must be set to FALSE if the
calling site is not the master definition site.

When Oracle drops the replication group, that means that all replication support
packages and triggers associated with the replication group are dropped, and the
replication group is removed from all relevant data dictionary views.

12.4 Master Site Maintenance and Propagation

Thesite at which you create a replication group is automatically the master definition
site for that replication group. Of course, for replication to have any meaning, you
will need to add at least one master site. The DBMS_REPCAT package includes
procedures for adding and removing master sites. You also need to control how DML
changes propagate between sites; the DBMS_DEFER_SYS package contains the
procedures for configuring the properties of propagation.

12.4.1 API Calls

The following procedures manipulate master sites:

Adds a master database to the specified replication group. The call can create
the objects if they do not already exist at the master site, populate replicated
tables if they do not contain any data, or utilize the tables and data that are
already at the new master site.

Changes the location of a replication group's master definition site. This
procedure is useful if the existing master definition site becomes unavailable
or otherwise irrelevant.

Removes a master site from a replication group.

DBMS_REPCAT. ADD_MASTER_DATABASE

DBMS_REPCAT. RELOCATE_MASTERDEF

DBMS_REPCAT. REMOVE_MASTER_DATABASES

Oracle Distributed Systems

Refer to Appendix A for the complete API reference to these procedures.

12.4.2 Adding a Master Site

If you are creating a brand new replication group, your primary tasks are to
instantiate the data at all master sites, generate replication support for all objects,
and add all sites to the environment. There are a number of ways to accomplish
these tasks, and some are more effective than others. Experience has taught that,
given a choice, you should add master sites after you have added objects to the
replication group at the master definition site and that you should pre-create and
instantiate replicated tables at all master sites.

You will notice that the DBMS_REPCAT.ADD_MASTER_DATABASE procedure includes
parameters for creating and instantiating objects at the new master:

PROCEDURE add_master_database(
 gname IN VARCHAR2,
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := TRUE,
 copy_rows IN BOOLEAN := TRUE,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 :=
'ASYNCHRONOUS');

I strongly advise you to not rely on this procedure to create or instantiate objects.
Although this procedure may work adequately for small and simple tables, you
effectively relinquish control of the instantiation process and may end up waiting a
very long time before learning of problems.

Instead, follow these steps at each intended master site:

1. Create the tables and procedures that are in the replication group.
2. Populate tables with identical data, using utilities such as import/export or

SQL*Loader.
3. Create primary keys and other indexes on all replicated tables.
4. Create any user-defined triggers on replicated tables. User-defined triggers

are particularly useful for populating columns that are used for conflict
resolution.

5. Add the site by calling DBMS_REPCAT.ADD_MASTER_DATABASEat the master
definition site, with the parameters:

6. use_existing_objects => TRUE
copy_rows => FALSE

It is quite easy to follow this methodology if you maintain appropriate scripts to
create your schema objects. For example, maintaining the REGIONS table used in
the earlier quick-and-dirty example are the scripts cr_regions.sql (which creates the
table and synonyms), pk_regions.sql (which creates the constraints and indexes on
the table), and trg_regions.sql (which creates the user-defined triggers). The
contents of these scripts follow.

269

Admittedly, creating these scripts can be a chore, but it is well worth the effort if you
are attempting to maintain replicated schema at multiple master sites.

Oracle Distributed Systems

270

/

12.4.2.1 Creating the REGIONS table

-- Filename: cr_regions.sql
-- Purpose: Creates the REGIONS table and its public synonym.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

set echo on
set termout on
spool regions.log

DROP PUBLIC SYNONYM regions
/
DROP TABLE regions CASCADE CONSTRAINTS
/
CREATE TABLE regions (
region_id NUMBER(6) NOT NULL,
country_id NUMBER(6) NOT NULL,
region_name VARCHAR2(15) NOT NULL,
audit_date DATE NOT NULL,
audit_user VARCHAR2(30) NOT NULL,
global_name VARCHAR2(20) NOT NULL
)
TABLESPACE sprocket_data STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
/

CREATE PUBLIC SYNONYM regions FOR regions
/

spool off

12.4.2.2 Creating constraints and indexes on REGIONS
table

-- Filename: pk_regions.sql
-- Purpose: Creates the constraints and indexes on table REGIONS.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

set echo on
set termout on
spool pk_regions.log

ALTER TABLE regions ADD (
CONSTRAINT pk_regions
PRIMARY KEY (region_id)
USING INDEX TABLESPACE sprocket_indx
STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
)

Oracle Distributed Systems

ALTER TABLE regions ADD (
CONSTRAINT fk_regions_country_id
FOREIGN KEY (country_id)
REFERENCES countries (country_id)
)
/

CREATE INDEX i_region_country_id ON regions(country_id)
TABLESPACE sprocket_indx STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
/

spool off

12.4.2.3 Creating user-defined triggers on the REGIONS
table

-- Filename: trg_regions.sql
-- Purpose: Creates trigger(s) on table REGIONS.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

set echo on
set termout on
spool trg_regions.log

CREATE OR REPLACE TRIGGER t_br_iu_regions
BEFORE INSERT OR UPDATE
ON regions
FOR EACH ROW

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 :new.audit_date := SYSDATE;
 :new.audit_user := USER;
 :new.global_name := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

spool off

12.4.3 Dropping a Master Site

If you need to drop a master site from a replication group, you can do so by calling
the built-in package procedure DBMS_REPCAT.REMOVE_MASTER_DATABASES. You
may use this procedure even if the master sites referenced in the call are not
accessible; however, the remaining master sites do need to be accessible. In
addition, you must call REMOVE_MASTER_DATABASES from the replication group's

271

master definition site.

Oracle Distributed Systems

272

REMOVE_MASTER_DATABASES is overloaded—that is, the list of master sites may be
passed either as a comma-separated string of database names or as a PL/SQL table
of database names:

PROCEDURE remove_master_databases(
 gname IN VARCHAR2,
 master_list IN VARCHAR2);

PROCEDURE remove_master_databases(
1492
 gname IN VARCHAR2,
 master_table IN dbms_utility.dblink_array);

The following examples illustrate how to call the procedure in either of its
incarnations. In both cases, we drop the master sites PSLS.BIGWHEEL.COM and
PMFG.BIGWHEEL.COM from the replication group RG_SALES:

• Calling REMOVE_MASTER_DATABASE with the master_list parameter:
• EXECUTE dbms_repcat.remove_master_database(-
• gname => 'RG_SALES', -

 master_list => 'PSLS.BIGHWHEEL.COM,PMFG.BIGWHEEL.COM');

Calling REMOVE_MASTER_DATABASES with the master_table parameter:

DECLARE
 vMasterTable dbms_utility.dblink_array;
BEGIN
 vMasterTable(1) := 'PSLS.BIGWHEEL.COM';
 vMasterTable(2) := 'PMFG.BIGWHEEL.COM';

 dbms_repcat.remove_master_database(
 gname => 'RG_SALES',
 master_table => vMasterTable);
END;

After removing the master database, you should call
DBMS_REPCAT.DROP_MASTER_REPGROUP at each of
the master sites you removed. This procedure
removes all replication support objects and associated
data dictionary entries. Although you do not need to
quiesce the replication group to remove one or more
master database(s), you are strongly encouraged to
do so. Otherwise, you will have to clear the RPC queue
manually and resolve any inconsistencies.

12.4.4 Relocating a Master Definition Site

If your master definition site becomes unusable or if you simply want to replace it
with another site, you can use the DBMS_REPCAT.RELOCATE_MASTERDEF procedure
to effect the change. The specification of this procedure is as follows:

Oracle Distributed Systems

273

PROCEDURE relocate_masterdef(
 gname IN VARCHAR2,
 old_masterdef IN VARCHAR2,
 new_masterdef IN VARCHAR2,
 notify_masters IN BOOLEAN := TRUE,
 include_old_masterdef IN BOOLEAN := TRUE);

We recommend following these guidelines when relocating a master definition site:

• If your relocation is planned (i.e., all sites are up and reachable), set the
notify_masters and include_old_masterdef parameters to TRUE.

• It the current master definition site is not available, set the notify_masters
parameter to TRUE and include_old_masterdef to FALSE.

• If the master definition site as well as some master sites are unavailable,
invoke the RELOCATE_MASTERDEF procedure from each functioning master
site with the parameters notify_masters and include_old_masterdef set to
FALSE.

Advanced replication will continue to function even
without a master definition site. The master definition
site is only required for administrative tasks such as
performing DDL or quiescing a replication group.

12.5 Controlling Propagation

We can measure the success of a replicated environment by determining how quickly
and efficiently DML changes and RPCs are delivered to their destinations. In order to
deliver changes to remote sites as quickly as possible, most people succumb to the
temptation to propagate changes as frequently as Oracle will allow, which is once per
second. In some cases, such an aggressive schedule is warranted, but in most it is
not.

Consider the analogy of grocery shopping. Perhaps you maintain a list (or queue) of
items that you need to pick up during your next shopping expedition. Do you run to
the grocery store every time an item is added to the list, or do you wait until the list
is sufficiently long to merit a shopping expedition? Most likely, you wait until the trip
is worthwhile.

So it is with propagating DML among master sites. The problem with the one-second
propagation strategy is that it generally takes longer than one second to perform a
push! Therefore, you may actually end up falling behind if you opt for such a
frequent schedule. On the other hand, if you opt for infrequent propagation, the
likelihood of conflicts increases. The optimal situation is to schedule pushes in such a
way that they deliver a fairly constant number of transactions with each push and
the average latency of transactions does not exceed the push interval.

Scheduled jobs cause updates to data dictionary
tables such as SYS.JOB$ every time they run.
Therefore, the more frequent a job is pushed, the

Oracle Distributed Systems

274

greater the volume of redo log activity. Beware that
frequent pushes will result in a significant volume of
redo, which you will have to accommodate if your
database is in ARCHIVELOG mode.

12.5.1 API Calls

The following built-in package procedures maintain propagation properties:

Switches the propagation mode between SYNCHRONOUS and
ASYNCHRONOUS.

Schedules automatic push of the deftran queue to the specified master
database. In Oracle8 this procedure is replaced with SCHEDULE_PUSH,
though Oracle8 includes this procedure for backward compatibility.

Removes the scheduled DBMS_DEFER_SYS.EXECUTE job from the job queue.
Oracle8 includes this procedure for backward compatibility only.

Oracle8 does not rely on the two-phase commit protocol to deliver
transactions to remote master databases. The scheduled purge operation
confirms the delivery of transactions to remote databases and removes
delivered transactions from the deftran queue.

Removes the scheduled DBMS_DEFER_SYS.PURGE job from the job queue for
the specified master database.

Schedules an automatic push of the deftran queue to the specified master
database.

Removes the scheduled DBMS_DEFER_SYS.PUSH job from the job queue.

Refer to Appendix A

DBMS_REPCAT. ALTER_MASTER_PROPAGATION

DBMS_DEFER_SYS.SCHEDULE_EXECUTION (Oracle7)

DBMS_DEFER_SYS.UNSCHEDULE_EXECUTION

DBMS_DEFER_SYS.SCHEDULE_PURGE (Oracle8 only)

DBMS_DEFER_SYS. UNSCHEDULE_PURGE (Oracle8 only)

DBMS_DEFER_SYS. SCHEDULE_PUSH (Oracle8 only)

DBMS_DEFER_SYS. UNSCHEDULE_PUSH (Oracle8 only)

 for the complete API reference to these procedures.

Oracle Distributed Systems

As you can see, Oracle8 has introduced significant changes in the way that replicated
actions propagate. One fundamental difference between propagation in Oracle7 and
Oracle8 is that Oracle7 relies on a two-phase commit to deliver transactions to the
destination site, while Oracle8 does not. Oracle8 delivers entries in the deftran queue
to other master sites but does not wait for the receiving site to confirm receipt (the
reason for the two-phase commit). Instead, Oracle8 visits the destination sites later
to confirm the delivery of defran entries—hence the need for SCHEDULE_PURGE and
its complement UNSCHEDULE_PURGE. These procedures schedule a delivery
confirmation at all destination sites.

Another fundamental difference between Oracle7 and Oracle8 is support for parallel
propagation. Parallel propagation means that Oracle will invoke multiple connections
to databases receiving DML changes and apply multiple transactions in deftran
simultaneously. Of course, Oracle ensures that these transactions are independent of
each other, so transactional consistency is preserved. In order to support parallel
propagation in Oracle8, the Oracle7 procedure SCHEDULE_EXECUTION is replaced
with SCHEDULE_PUSH in Oracle8. And UNSCHEDULE_EXECUTION gives way to
UNSCHEDULE_PUSH.

The specification for the procedures SCHEDULE_EXECUTION and SCHEDULE_PUSH is
as follows:

PROCEDURE schedule_execution(
 dblink IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN default FALSE,
 stop_on_error IN BOOLEAN := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 execute_as_user IN BOOLEAN,
 delay_seconds IN NATURAL := NULL,
 batch_size IN NATURAL := NULL);

PROCEDURE schedule_push(
 destination IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := FALSE,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL,
 stop_on_error IN BOOLEAN := NULL,
 write_trace IN BOOLEAN := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL);

12.5.2 About the Parameters

Some of the parameters in SCHEDULE_EXECUTION and SCHEDULE_PUSH are not
intuitive. Here we discuss the nonobvious parameters:

275

Oracle Distributed Systems

stop_on_error

transaction_count and execution_seconds

execute_as_user (obsolete in Oracle8)

delay_seconds

batch_size

Setting the Boolean parameter stop_on_error to FALSE (the default) causes
Oracle to continue propagating and executing deferred RPCs at dblink
(Oracle7) or destination (Oracle8) even if one or more of the calls encounters
an error. Setting this parameter to TRUE causes execution of deferred RPCs to
stop if an error occurs at the destination site.

These two parameters are usually used in tandem. They cause propagation of
RPCs to destination to cease after execution_seconds seconds or
transaction_count transactions, whichever comes first. These parameters
provide a method of throttling the time and resources that are consumed
during any one call to DBMS_DEFER_SYS.EXECUTE (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8). Since these settings may cause the
propagation to stop before all deferred RPCs are sent, it is your responsibility
to monitor the DEFTRANDEST data dictionary view and/or schedule automatic
propagation at intervals. The default for both of these parameters is 0, which
means that no such limits are set.

This parameter determines the privilege domain under which the procedure
call executes at the destination. Setting execute_as_user to FALSE (the
default) causes the call to execute under the privilege domain of the user who
queued the call originally, as seen in the ORIGIN_USER column of the
DEFTRAN data dictionary view. Setting it to TRUE executes the call under the
privilege domain of the session that calls DBMS_DEFER_SYS.EXECUTE
(Oracle7) or DBMS_DEFER_SYS.PUSH (Oracle8). The user in execute_as_user
refers to the user calling DBMS_DEFER_SYS.EXECUTE (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8), not to the user who queued the call.

This parameter causes DBMS_DEFER_SYS.EXECUTE (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8) to sleep for delay_seconds seconds before
returning when it finishes propagating the queued transactions to destination.
The primary purpose of this parameter is to delay the next call to
DBMS_DEFER_SYS.EXECUTE (Oracle7) or DBMS_DEFER_SYS.PUSH (Oracle8),
the idea being that more transactions will have a chance to accumulate and
be pushed by the same call to DBMS_DEFER_SYS.EXECUTE (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8). It is more efficient to propagate five
deferred RPCs with one call to DBMS_DEFER_SYS.EXECUTE (Oracle7) or
DBMS_DEFER_SYS.PUSH (Oracle8) than with five calls. This parameter is
relevant only if you have scheduled automatic propagation. You can simulate
synchronous propagation by setting delay_seconds to a very high value.

276

Oracle Distributed Systems

277

batch_size is the number of deferred calls to execute between commits. The
default is 0, which means that a commit should occur for each deferred
transaction that is propagated.

If you are queuing a relatively low volume of deferred RPCs, these additional
parameters controlling the volume and timing of deliveries are not extremely
relevant. They are really provided for fine-tuning the behavior and performance of
automatically scheduled RPCs, such as those associated with the advanced
replication facilities.

12.5.3 Parallel Propagation

In Oracle7, the database pushes the deftran queue to each master site serially, so
transactions are applied in the same order at the destination database as they were
at the originating database. This methodology is adequate for applications that do
not generate a tremendous volume of DML activity, but for high throughput
applications such as OLTP or many web-based applications, the serial push can have
a hard time keeping up with the transaction flow.

Even if you set parallelism to 1, you will notice
improved throughput over serial propagation of DML
pushes because serial propagation uses a two-phase
commit protocol, while parallel propagation does not.

The engineers at Oracle recognized that transactions do not necessarily need to be
applied in the same chronological order at both the origin and the destination. For
example, transactions against tables that have no relationship with one another can
be applied simultaneously. The actual algorithm that Oracle uses to determine
transaction dependencies is based on the SCN (system change number) in the blocks
that the transaction modifies. So, updates to the same table may be candidates for
parallel propagation. There are a number of factors that can influence the
performance gain you realize by using parallel propagation, such as how densely
your data is packed; the more records a table stores in a single block, the less likely
that transactions against the table can be parallelized because of the increased
likelihood that multiple transactions touch the same block. (You can control data
density with the storage parameters PCTFREE and PCTUSED.)

Another behavior of parallel propagation is that transactions originating from the
same database session are not parallelized. So, applications that run with one (or
very few) database connections are not likely to notice a tremendous boost.
Applications that have numerous connections performing DML and those with a mix
of independent transactions will notice a significant benefit.

It is actually possible to enable parallel propagation of
a single session's transactios by issuing this
command:

Oracle Distributed Systems

278

ALTER SESSION SET EVENTS '26567 TRACE NAME
CONNECT FOREVER, LEVEL'

12.5.3.1 Managing parallel propagation

To enable parallel propagation, you must set the parallelism parameter in the call to
DBMS_DEFER_SYS.SCHEDULE_PUSH. For example:

execute dbms_defer_sys.schedule_push(-
destination => 'PMFG.BIGWHEEL.COM', -
interval => 'SYSDATE+5/86400', -
next_date => SYSDATE+5/86400, -
transaction_count => 10000, -
parallelism => 8);

This call enables parallel propagation for all replication groups' deftran pushes to the
database PMFG.BIGWHEEL.COM.

Parallel propagation relies on the parallel query background processes to do its
bidding. To ensure that the propagations have the resources they need, do the
following:

• Note the settings of the initialization parameters PARALLEL_MIN_SERVERS
and PARALLEL_MAX_SERVERS. The default value for
PARALLEL_MIN_SERVERS is 0. You should set this value at least as high as
the highest degree of parallelism you have specified in your calls to
DBMS_DEFER_SYS.SCHEDULE_PUSH, preferably higher. The
PARALLEL_MAX_SERVERS value should be set high enough to support
simultaneous parallel pushes to all master databases.

• Be aware that the server background processes that service parallel
propagation are the same background processes that support parallel queries.
Therefore, if your application utilized the parallel query option (i.e., DEGREE
is greater than 1 for any tables in DBA_TABLES) make sure that your
PARALLEL_MAX_SERVERS can support the replication propagation and the
parallel query activity. I recommend against using the parallel query option
on replicated tables if you are also using parallel propagation.

When using parallel propagation, Oracle must be able
to use the same number of parallel query background
processes as the value of parallelism in the call to
DBMS_DEFER_SYS.PUSH. This behavior differs from
parallel queries, which can function even if the query
cannot allocate the number of parallel query
background processes required to support the
requested degree of parallelism.

Oracle Distributed Systems

If a parallel push fails because it could not acquire enough parallel query background
processes, the push will fail; Oracle does not reattempt the push using serial
propagation.

12.5.3.2 Checking parallel pushes

When a parallel push executes successfully, you will see multiple connections to the
destination database:

SELECT sid,
 serial#,
 username,
 osuser,
 process,
 substr(program,
 decode (instr(program,':'),0,1,
 (instr(program,':')+1)),32) program
FROM v$session
WHERE username = 'PROPREP'
ORDER BY username

 SID S# Username OS User PROCESS PROGRAM
----- ------ --------- --------- --------- ------------------------
 18 17700 PROPREP oracle 4014 oracle@walrus (P004)
 20 41600 PROPREP oracle 4012 oracle@walrus (P003)
 22 62490 PROPREP oracle 4016 oracle@walrus (P005)
 38 7124 PROPREP oracle 4010 oracle@walrus (P002)
 63 58713 PROPREP oracle 4020 oracle@walrus (P007)
 72 42205 PROPREP oracle 4006 oracle@walrus (P000)
 64 50893 PROPREP oracle 4018 oracle@walrus (P006)
 58 41460 PROPREP oracle 4008 oracle@walrus (P001)
8 rows selected.

These sessions exist in the destination database only during the actual deftran push.
If things are working smoothly, they should not stay connected for very long—
typically less than a minute. If the connections remain for longer, it often indicates
that Oracle has detected and is resolving a conflict.

12.5.3.3 Parallel push errors

Under certain circumstances, it is possible for parallel propagation to "seize up" by
encountering an error from which it cannot recover. These errors are usually related
to resource issues rather then propagation conflicts. The symptoms are usually
alarmingly obvious; transactions are queueing up at the origin site(s), and there is
no propagation activity at the destination sites. You also may see errors like this in
trace files or at the SQL*Plus prompt if you attempt to push the queue manually:

ORA-12012: error on auto execute of job 501
ORA-23388: replication parallel push watermark error
ORA-06512: at "SYS.DBMS_DEFER_SYS", line 1448
ORA-06512: at line 1

279

Oracle Distributed Systems

280

5. /
6.

The root of the problem is a record in the table SYSTEM.DEF$_DESTINATION at the
originating site. This table contains one record for every database that is receiving
pushes. The value of the last_seq column is normally either NULL or 0. If it holds
another value, then the last parallel push failed; the last_error_number and
last_error_message fields should contain details.

For example, suppose that propagation from our headquarters site
(PHQS.BIGWHEEL.COM) to our manufacturing site (PMFG.BIGWHEEL.COM) has
ceased. We can query SYSTEM.DEF$_DESTINATION at the headquarters site to get
an idea of the problem:

SELECT dblink,
 last_delivered,
 last_enq_tid,
 last_seq,
 disabled,
 job,
 last_txn_count,
 last_error_number,
 last_error_message
FROM system.def$_destination
/
 D
 i
 s
 a
 b
 Last l Last Last
Last
 Last Enq Last e Txn Error
Error
DB Link Delivered TID Seq d Job Count Number
Message
----------------- --------- ---- ---- - ---- ------ ------- -------

PSLS.BIGWHEEL.COM 525424 0 271 262
PMFG.BIGWHEEL.COM 525424 1 382 1301 -2395
Exceeded call
 limit
on io

usage

Here we see that the propagation to PMFG.BIGWHEEL.COM failed because the
propagator process in the remote database exceeded a resource limit. We can
remedy the situation by following these steps:

1. Query the table SYSTEM.DEF$_ORIGIN at the destination site
(PMFG.BIGWHEEL.COM in this case) to determine what transactions have
already been delivered from PHQS.BIGWHEEL.COM:

2. SELECT enq_tid, origin_dblink
3. FROM system.def$_origin
4. WHERE enq_tid = 'PHQS.BIGWHEEL.COM'

Oracle Distributed Systems

281

7. ENQ_TID ORIGIN_DBLINK
8. ------------- -------------------
9. 3.6.436763 PHQS.BIGWHEEL.COM
10. 6.2.4574 PHQS.BIGWHEEL.COM

5.8.53272 PHQS.BIGWHEEL.COM

11. Delete these transactions from the deftran queue at the origin site
(PHQS.BIGWHEEL.COM):

12. EXECUTE dbms_defer_sys.delete_tran('3.6.436763',
'PHQS.BIGWHEEL.COM');

13. PL/SQL procedure successfully completed.
14.
15. EXECUTE dbms_defer_sys.delete_tran('6.2.4574',

'PHQS.BIGWHEEL.COM');
16. PL/SQL procedure successfully completed.
17.
18. EXECUTE dbms_defer_sys.delete_tran('5.8.53272',

'PHQS.BIGWHEEL.COM');
19. PL/SQL procedure successfully completed.
20.

COMMIT;

21. Update the table SYSTEM.DEF$_DESTINATION at the origin site
(PHQS.BIGWHEEL.COM):

22. UPDATE SYSTEM.DEF$_DESTINATION
23. SET last_seq = 0
24. WHERE dblink = 'PMFG.BIGHWEEL.COM
25. /

1 row updated.

26. At this point, you should be able to resume propagation from
PHQS.BIGWHEEL.COM to PMFG.BIGWHEEL.COM. It is best to attempt a
manual serial push first, followed by a manual parallel push. If these pushes
are successful, you can safely reschedule automatic propagation.

Do not use this procedure unless you are sure that
propagation has ceased. Symptoms include
propagators logged in to the destination accounts that
are not doing anything and a lack of network traffic
between the originating database server and the
destination database server.

Bug Update

Oracle has identified two bugs (numbers 737918 and 734902)
that can cause dscn to be greater than cscn in the table
SYSTEM.DEF$_AQCALL. When this corruption occurs, parallel
propagation hangs.

Oracle Distributed Systems

282

 comment IN VARCHAR2 := '');

With Oracle's blessing, using a BEFORE UPDATE trigger on the
table avoids the corruption as follows:

CREATE OR REPLACE TRIGGER t_bu_def$_aqcall
BEFORE UPDATE
ON def$_aqcall
FOR EACH ROW

BEGIN
 IF (:new.dscn > :new.cscn)
 THEN
 :new.dscn := :new.cscn;
 END IF;
END;
/

These bugs are slated to be fixed in version 8.0.4.4. We
recommend contacting Oracle Worldwide Support for a status
update if you intend to use parallel propagation.

12.5.3.4 Synchronous versus asynchronous propagation

Synchronouspropagation uses a two-phase commit protocol to guarantee that
transactions are committed locally if and only if they are also applied at the
destination database(s). Therefore, if a remote database cannot be reached or if a
transaction cannot be committed for any reason, then all DML activity will hang.
Because synchronous replication has such stringent requirements and because a
failure has such dramatic consequences, most sites do not use it. Instead of adding a
level of redundancy, synchronous replication effectively adds an additional
dependency.

We recommend the use of asynchronous propagation unless your business case
clearly calls for the synchronous approach. That being said, if you wish to switch
between propagation modes, you can do so using the package procedure
DBMS_REPCAT.ALTER_MASTER_PROPAGATION:

PROCEDURE alter_master_propagation(
 gname IN VARCHAR2,
 master IN VARCHAR2,
 dblink_table IN dbms_utility.dblink_array,
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 comment IN VARCHAR2 := '');

PROCEDURE alter_master_propagation(
 gname IN VARCHAR2,
 master IN VARCHAR2,
 dblink_list IN VARCHAR2,
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',

Oracle Distributed Systems

283

The replication group gname must be quiesced in
order to use the ALTER_MASTER_PROPAGATION
procedure. In addition, you must regenerate
replication support for all objects in the group before
resuming normal activity.

12.5.3.5 Scheduling multiple push intervals for the same
database

One of the limitations of advanced replication is that you cannot schedule different
propagation intervals for different replication groups. The propagation interval
between master sites is the same for all replication groups at those sites. It might be
convenient, for example, to push changes to inventory more frequently than changes
in prices.

Of course, there is a workaround, which is, in effect, to give the same destination
database multiple names and schedule different propagation intervals to the different
names. How do you give a database two names? By using connection qualifiers. For
example, you could create two names for the PMFG site by creating database links as
follows:

CREATE PUBLIC DATABASE LINK PMFG.BIGWHEEL.COM
USING 'prodmanufacturing';

and

CREATE PUBLIC DATABASE LINK PMFG.BIGWHEEL.COM@TCP
USING 'prodmanufacturing';

Then you can use different propagation intervals to these two "different" sites and
add our replication groups to one site or the other based on how frequently the
group's data is updated.

Beware that this solution is not without cost. Maintenance tasks become more
complicated. For example, if you want to take the manufacturing site out of service,
you must issue two calls to DBMS_DEFER_SYS.UNSCHEDULE_EXECUTION—one for
each name. You must also create additional database links using each name for
accounts such as REPADMIN and the replication propagator account. Finally, you
should avoid configurations that lead to transactions that involve multiple replication
groups.

12.6 The Replication Catalog

The replication catalog is the subset of the data dictionary that contains information
about replicated objects at all master sites and, to a certain extent, snapshot sites.
Operations that modify the data in the replication catalog, such as adding or
removing master objects, must be propagated from the master definition site to
other master sites. In general, changes to the replication catalog require that the

Oracle Distributed Systems

affected replication group be quiesced. Just as Oracle maintains a deferred
transaction queue (deftran) for queued transactions, it also maintains a queue for
replication catalog changes, known as the repcatlog.

The 10 DBMS_REPCAT calls which create entries in the repcatlog queue are:

DBMS_REPCAT.ADD_MASTER_DATABASE
DBMS_REPCAT.ALTER_MASTER_PROPAGATION
DBMS_REPCAT.ALTER_MASTER_REPOBJECT
DBMS_REPCAT.CREATE_MASTER_REPOBJECT
DBMS_REPCAT.DROP_MASTER_REPGROUP
DBMS_REPCAT.DROP_MASTER_REPOBJECT
DBMS_REPCAT.EXECUTE_DDL
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT
DBMS_REPCAT.RESUME_MASTER_ACTIVITY
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

12.6.1 Replication Catalog Data Dictionary Views

The data dictionary views that make up the replication catalog are the following:

Name, status, and comment for every replication group. (Same as
DBA_REPGROUP.)

Lists all items in the repcatlog queue.

Lists all DDL calls in the repcatlog queue.

Lists all replication support objects.

Name, status, and comment for every replication group. (Same as
DBA_REPCAT.)

Lists key columns for all replicated tables. These columns are either primary
key columns or columns that have been identified with
DBMS_REPCAT.SET_COLUMNS.

DBA_REPCAT

DBA_REPCATLOG

DBA_REPDDL

DBA_REPGENERATED

DBA_REPGROUP

DBA_REPKEY_COLUMNS

DBA_REPOBJECT

284

Oracle Distributed Systems

Lists all replicated objects.

Lists propagation mode for all replicated objects to all sites.

Lists sites that are members of each replication group.

Appendix B

DBA_REPPROP

DBA_REPSITES

, includes scripts to generate useful reports from these data dictionary
views.

12.6.2 Pushing repcatlog Entries

Youmay have noticed that whenever you create a replication group, Oracle
automatically makes an entry in the job queue that looks something like this:

system@live SQL> SELECT job, what
 2 FROM dba_jobs
 3 WHERE what like '%do_deferred_repcat_admin%'
 4 /

 Job What
---- --

 241 dbms_repcat.do_deferred_repcat_admin('"RG_SPROCKET"', FALSE);

DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN is the procedure that processes
repcatlog entries in the local database. If the procedure is called with all_sites set to
TRUE, the procedure will also perform the administrative tasks at remote masters.
By default, Oracle schedules this job at every master database to run once every 10
minutes, with all_sites set to FALSE. The most common chores for entries in the
repcatlog queue are suspending or resuming master activity, adding and dropping
replicated objects, and generating replication support.

The default frequency of 10 minutes is adequate for most situations, but if you wish
to expedite the repcatlog queue executes, you can call
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN manually when logged in to the
replication administrator (REPADMIN) account.

12.6.3 Monitoring Progress

Once you create entries in the repcatlog queue with calls to procedures such as
DBMS_REPCAT.ADD_MASTER_DATABASE, you can query the data dictionary view
DBA_REPCATLOG at all master sites to determine the status of your operations.
Table 12.2 describes the meanings of all possible status values.

Table 12.2. Explanation of Status Column in DBA_REPCATLOG

285

Oracle Distributed Systems

286

Status Meaning

READY
The site is ready to execute the request. The next call to
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN will execute the
pending request.

DO_CALLBACK
Oracle is updating the status of a request from a remote
database.

AWAIT_CALLBACK
Oracle is awaiting feedback from a remote database about the
completion of a task, such as generating replication support.

ERROR
The request has failed. Information about the failure is available
in the DBA_REPCATLOG fields ERRNUM and MESSAGE.

Similarly, the REQUEST field tells what the current repcatlog request is. Table 12.3
describes the requests that can be queued.

Table 12.3. Explanation of REQUEST Column in DBA_REPCATLOG
Request Meaning

CREATE_MASTER_REPOBJECT Add new replicated object.

DROP_MASTER_REPSCHEMA Drop replication group.

ADD_MASTER_DATABASE Add master database to replication group.

ALTER_MASTER_REPOBJECT Perform DDL on an existing replicated object.

DROP_MASTER_REPOBJECT Drop a master replicated object.

SUSPEND_MASTER_ACTIVITY Quiesce a replication group.

RESUME_MASTER_ACTIVITY Resume normal activity for a replication group.

EXECUTE_DDL Perform DDL.

GENERATE_REPLICATION_SUPPORT
Begin generation of replication support for a
replicated object.

GENERATE_SUPPORT_PHASE_1 Generate replication support; phase 1.

GENERATE_SUPPORT_PHASE_2 Generate replication support; phase 2

ALTER_MASTER_PROPAGATION
Alter propagation mode (between
SYNCHRONOUS and ASYNCHRONOUS).

END_PHASE_2 End of replication support generation.

It is usually best not to submit numerous (as in
scores) of requests to the repcatlog all at once,
because an error in any one request can delay
subsequent requests.

The following script reports the relevant details about requests in the repcatlog
queue:

-- Filename: repcatlog.sql
-- Purpose: Lists all tasks pending in dba_repcatlog queue.

Oracle Distributed Systems

287

WHERE status = 'ERROR'
ORDER BY id

-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column SOURCE heading "Source" format a6
column MASTER heading "Master" format a6
column SNAME heading "Group" format a10
column STATUS heading "Status" format a14
column REQUEST heading "Request" format a28
column TIMESTAMP heading "Time" format a8

SELECT substr(source, 1, instr(source, '.', 1) -1) source,
 substr(master, 1, instr(master, '.', 1) -1) master
 sname,
 status,
 request, to_char(timestamp, 'HH24:MI:SS') timestamp
FROM dba_repcatlog
ORDER BY master
/

12.6.4 Correcting Errors

Errors that occur during repcatlog executions log diagnostics in the ERRNUM and
MESSAGE fields of DBA_REPCATLOG. You can either correct the cause of the error
(such as a privilege shortage) or remove the request from the repcatlog queue.

The following script reports on errors and generates the text of the required call to
DBMS_REPCAT.PURGE_MASTER_LOG to delete the repcatlog queue entry:

-- Filename: repcaterr.sql
-- Purpose: Lists entries in dba_repcatlog with error status.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column ID heading "Id" format 9999
column SOURCE heading "Source" format a20
column SNAME heading "Schema" format a8
column REQUEST heading "Request" format a22
column ONAME heading "Object" format a20
column ERRNUM heading "Error" format 99999
column MESSAGE heading "Message" format a74

SELECT id, status, sname, request, oname, errnum
FROM dba_repcatlog
WHERE status = 'ERROR'
ORDER BY id
/

SELECT id, message
FROM dba_repcatlog

Oracle Distributed Systems

288

/

set head off
SELECT 'Run these commands to purge...'
FROM dual
/
set head on

SELECT
 'EXECUTE dbms_repcat.purge_master_log('||
 id ||', '
 ||chr(39)||rtrim(source)||chr(39)||', '
 ||chr(39)||gname||chr(39)||');' command
FROM dba_repcatlog
WHERE status = 'ERROR'
/

Sample output:

SQL> @repcaterr

 Id Status Schema Request Object Error
----- --------- -------- ---------------------- -------------- ------
 664 ERROR SPROCKET DROP_MASTER_REPOBJECT PRODUCTS -1013

1 row selected.

 Id Message
----- ---

 664 ORA-01013: user requested cancel of current operation

1 row selected.

Run these commands to purge...

1 row selected.

COMMAND

EXECUTE dbms_repcat.purge_master_log(664, 'LIVE.WORLD', 'RG_LIVESTK');

1 row selected.

The DBMS_REPCAT package does not include a procedure to retry failed repcatlog
requests, so you must always delete the failed entry and retry the request after the
underlying problem is corrected.

You must issue a COMMIT after calling
DMBS_REPCAT.PURGE_MASTER_LOG.

Oracle Distributed Systems

12.7 Table Replication

Certainly the most versatile and intriguing component of Oracle's advanced
replication facility is multi-master table replication. Any replicated table can be
updated anywhere, and the changes will appear in all participating master sites.
However, as with any sophisticated technology, you must configure multi-master
replication with great care in order to avoid perils and pitfalls.

This section describes the API calls used to create and to maintain replicated tables,
points out techniques to make the administration job easier, and describes some
practices that will help you to avoid trouble.

12.7.1 API Calls

The fundamental DBMS_REPCAT procedures for administering replicated tables are
as follows:

Adds a uniqueness conflict resolution handler to the table.

Adds an update conflict resolution handler to the table.

Creates an empty column group.

Drops a column group.

Drops a uniqueness conflict handler.

Drops an update conflict handler.

Creates a column group and assigns columns to the group.

Specifies which columns should send their previous values to remote sites for
comparison during updates and deletes.

DBMS_REPCAT. ADD_UNIQUE_RESOLUTION

DBMS_REPCAT .ADD_UPDATE_RESOLUTION

DBMS_REPCAT. DEFINE_COLUMN_GROUP

DBMS_REPCAT. DROP_COLUMN_GROUP

DBMS_REPCAT. DROP_UNIQUE_RESOLUTION

DBMS_REPCAT. DROP_UPDATE_RESOLUTION

DBMS_REPCAT. MAKE_COLUMN_GROUP

DBMS_REPCAT. SEND_AND_COMPARE_OLD_VALUES

289

Oracle Distributed Systems

DBMS_REPCAT. SET_COLUMNS

Specifies the column(s) to use to uniquely identify records in the table.

You may notice that many of these procedures are associated with configuring
conflict resolution methods, which is a testament to the fact that conflict detection
and resolution is a crucial component of a multi-master replicated environment.
Chapter 15 is devoted to conflict resolution techniques.

12.7.2 Column Groups

I recommend that you specifically define column groups for every replicated table, as
opposed to allowing columns to be assigned to the "shadow" column group that
Oracle creates by default. This way, it is easier to administer conflict resolution for
the table.

For tables whose conflict resolution methods are not dictated by specific business
rules or other requirements, I suggest including a timestamp and site_name field so
that you can easily assign both a time-based and site-priority-based resolution
method to the table, as follows.

Consider the table REGIONS:

system@d8ca SQL> desc regions
 Name Null? Type
------------- -------- ------------
 REGION_ID NOT NULL NUMBER(6)
 COUNTRY_ID NOT NULL NUMBER(6)
 REGION_NAME NOT NULL VARCHAR2(15)
 AUDIT_DATE NOT NULL DATE
 AUDIT_USER NOT NULL VARCHAR2(30)
 GLOBAL_NAME NOT NULL VARCHAR2(20)

The following procedure calls create a column group CG_REGIONS and assign time-
based and site-priority-based conflict resolution methods:

-- Create the column group; include all columns.
EXECUTE dbms_repcat.make_column_group(-
sname => 'SPROCKET',-
oname => 'REGIONS',-
column_group => 'CG_REGIONS',-
list_of_column_names => '*');

-- Add a site-priority-based resolution method. (This assumes the site
-- priority group SP_SPROCKET_SITE has already been created.)
EXECUTE dbms_repcat.add_update_resolution(-
sname => 'SPROCKET', -
oname => 'REGIONS', -
column_group => 'CG_REGIONS', -
sequence_no => 20, -
method => 'SITE PRIORITY', -
parameter_column_name => 'GLOBAL_NAME', -
priority_group => 'SP_SPROCKET_SITE', -

290

Oracle Distributed Systems

comment => 'Added by '||user||' on '||sysdate);

-- Add a timestamp-based resolution method.
EXECUTE dbms_repcat.add_update_resolution(-
sname => 'SPROCKET', -
oname => 'REGIONS', -
column_group => 'CG_REGIONS', -
sequence_no => 10, -
method => 'LATEST TIMESTAMP', -
parameter_column_name => 'AUDIT_DATE', -
comment => 'Added by '||user||' on '||sysdate);

The overhead of processing unresolved conflicts, while
reduced in Oracle8, is still expensive, especially in an
environment with a high transaction volume. It is
imperative that every replicated table have at least
one, and preferably two, conflict resolution methods
defined. You will find that conflicts will arise no matter
how carefully you design the application.

Chapter 15 contains information about more advanced usages of column groups. For
tables that don't require advanced techniques, you can use the method just
described.

12.7.3 Minimum Communication and
SEND_AND_COMPARE_OLD_VALUES

When Oracle replicates an update or delete operation, it ensures that the row it
updates or deletes in the remote database(s) is the same as the record that it
updated or deleted in the local database. The default behavior is to compare the
current data in every field of the remote database with the prechange data in the
local database.

Needless to say, this comparison can lead to a great deal of network traffic and
substantial processing overhead, particularly for large VARCHAR fields.

Enter Oracle8 and the minimum communication option. This feature allows you to
specify that updates compare the values of changed column groups only. The
min_communication parameter in the
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT procedure dictates whether the
minimum communication feature is activated. The parameter is set to TRUE by
default.

The DBMS_REPCAT.SEND_AND_COMPARE_OLD_VALUES procedure, also new to
Oracle8, allows you to take minimum communication to an extreme by letting you
define what columns to compare on updates and deletes. If you want to, you can
restrict the comparison of old and new values to the primary key columns only.
Although drastic, this minimization can be appropriate for certain OLTP applications
and/or for databases that are connected by an expensive and/or inefficient interface,

291

such as a satellite relay or the Internet. As a practical matter, the most minimization

Oracle Distributed Systems

that you should consider would include primary key columns and all columns used in
conflict resolution methods.

Indiscriminate use of
SEND_AND_COMPARE_OLD_VALUES can effectively
disable all conflict resolution techniques, resulting in
divergent data.

The specification for DBMS_REPCAT.SEND_AND_COMPARE_OLD_VALUES is as
follows:

PROCEDURE send_and_compare_old_values(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_list IN VARCHAR2,
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := TRUE);

PROCEDURE send_and_compare_old_values(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_table IN dbms_repcat.varchar2s,
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := TRUE);

Table 12.4 describes the usage of these parameters in the
SEND_AND_COMPARE_OLD_VALUES procedure.

Table 12.4. Parameter Usage for SEND_AND_COMPARE_OLD_VALUES
Parameter

Name Comments

sname The owner of the replicated table.

oname The name of the replicated table

column_list
A comma-separated string of columns to operate on. An asterisk (*)
indicates all nonkey columns. Use either column_list or column_table.

column_table
A PL/SQL table of columns to operate on. Use either column_list or
column_table.

operation
One of UPDATE, DELETE, or *, with * meaning both UPDATE and
DELETE.

send
If send is TRUE, the specified columns are sent. If FALSE, the
specified columns are not sent. Unspecified columns are not affected.

Changes specified in calls to SEND_AND_COMPARE_OLD_VALUES take effect the
next time you generate replication support for the table.

Returning to the REGIONS table, you could make the following call to restrict the old

292

values that Oracle sends to remote databases to REGION_ID (the primary key),
AUDIT_DATE, and GLOBAL_NAME:

Oracle Distributed Systems

EXECUTE dbms_repcat.send_and_compare_old_values(-
sname => 'SPROCKET', -
oname => 'REGIONS', -
column_list => 'COUNTRY_ID,REGION_NAME,AUDIT_USER', -
operation => '*', -
send => FALSE);

EXECUTE dbms_repcat.generate_replication_support(-
sname => 'SPROCKET', -
oname => 'REGIONS', -
type => 'TABLE', -
distributed => TRUE, -
min_communication => TRUE);

12.7.4 Triggers on Replicated Tables

Triggers on replicated tables must take into account that DML activity may be the
result of Oracle's replicating a remote transaction. For example, if you have an
INSERT trigger that populates a timestamp field, you would probably want the
trigger to fire when the INSERT occurs at the original site, but not at all of the other
replicated master sites. You may also wish to use triggers to populate fields that
Oracle uses for conflict resolution, such as the AUDIT_DATE and GLOBAL_NAME
fields. The examples in the following sections demonstrate how to write triggers on
replicated tables.

12.7.4.1 A trigger to populate fields at the originating site
only

Because of the condition—IF (dbms_reputil.from_remote != TRUE)—this trigger
updates the AUDIT_DATE and GLOBAL_NAME fields only if the DML is local, as
opposed to a deferred transaction from a remote database:

CREATE OR REPLACE TRIGGER t_br_iu_regions
BEFORE INSERT OR UPDATE
ON regions
FOR EACH ROW

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 :new.audit_date := SYSDATE;
 :new.global_name := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

12.7.4.2 A trigger to populate a field from a sequence on
inserts and fields used for conflict resolution

This trigger illustrates how to populate primary key fields from sequences for

293

replicated tables:

Oracle Distributed Systems

294

CREATE OR REPLACE TRIGGER t_br_iu_regions
BEFORE INSERT OR UPDATE
ON regions
FOR EACH ROW

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 IF INSERTING
 THEN
 SELECT seq_regions.nextval
 INTO :new.region_id
 FROM dual;
 END IF;
 :new.rectime := SYSDATE;
 :new.site := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

All of the triggers that Oracle creates to support the
replication of a table are after-row triggers. It is best
for applications to use before-row triggers so that they
are guaranteed to fire before the replication triggers.

12.7.4.3 Replicating triggers themselves

You can use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure if you wish,
or you can simply build the triggers individually in each database. I have found the
latte r method to be more efficient.

12.7.5 Using Offline Instantiation

Suppose you want to create replicated tables at a new master site. One way to do so
is to quiesce the replication group, export the tables, import them at the new site,
generate replication support for them at the new site, and finally resume normal
activity for the replication group. Although this methodology ensures that the new
tables will be in sync with the original ones, the duration of the quiescence may be
unacceptably long. Offline instantiation is a technique you can use to deploy
replicated tables at new sites without having to quiesce the table's replication group
at the master site during the entire data loading process. Table 12.5 describes how
to use DBMS_OFFLINE_OG.

Table 12.5. Instantiating a Table at a New Site with DBMS_OFFLINE_OG
Step Where Performed Activity
1 Master definition site DBMS_REPCAT.ADD_MASTER_DATABASE

2 Master definition site DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

3 Master definition site DBMS_OFFLINE_OG.BEGIN_INSTANTIATION

Oracle Distributed Systems

4 Any existing master site Export replicated schema

5 Master definition site DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS

6 New site DBMS_OFFLINE_OG.BEGIN_LOAD

7 New site Import data from Step 4

8 New Site DBMS_OFFLINE_OG.END_LOAD

9 Master definition site DBMS_OFFLINE_OG.END_INSTANTIATION

The following scenario shows how you would instantiate a new site. Here, the site
PFIN.BIGWHEEL.COM is added to the replication group RG_SPROCKET using
DBMS_OFFLINE_OG. Assume that the master definition site is PHQS.BIGWHEEL.COM.

1. From master definition site PHQS.BIGWHEEL.COM, add the new master site,
quiesce the replication group, and call
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION:

2. EXECUTE DBMS_REPCAT.ADD_MASTER_DATABASE(-
3. gname => 'RG_SPROCKET', -
4. master => 'PFIN.BIGWHEEL.COM');
5.
6. EXECUTE DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY(gname =>

'RG_SPROCKET');
7.
8. EXECUTE DBMS_OFFLINE_OG.BEGIN_INSTANTIATION(-
9. gname => 'RG_SPROCKET', -

 new_site => 'PFIN.BIGWHEEL.COM');

10. Perform export of schema SPROCKET from any existing master site.
11. Call RESUME_SUBSET_OF_MASTERS at the master definition site.
12. Call BEGIN_LOAD from the new master site PFIN.BIGWHEEL.COM:
13. EXECUTE DBMS_OFFLINE_OG.BEGIN_LOAD(-
14. gname => 'RG_SPROCKET', -

 new_site => 'PFIN.BIGWHEEL.COM');

15. Import the RG_SPROCKET schema into PFIN.BIGWHEEL.COM using the export
file created in Step 2.

16. Call END_LOAD from the new master site, PFIN.BIGWHEEL.COM:
17. EXECUTE DBMS_OFFLINE_OG.END_LOAD(-
18. gname => 'RG_SPROCKET', -

 new_site => 'PFIN.BIGWHEEL.COM');

19. Call END_INSTANTIATION from the master definition site:
20. EXECUTE DBMS_OFFLINE_OG.END_INSTANTIATION(-
21. gname => 'RG_SPROCKET', -

 new_site => 'PFIN.BIGWHEEL.COM');

12.7.5.1 Offline instantiation caveats

Offline instantiation has one noticeable drawback, which is that Oracle queues all
transactions destined for new_site. Therefore, if you use this technique to add a
table to a master site that is already participating in the replication of other tables,

295

transactions against those other tables will not be delivered until the call to

Oracle Distributed Systems

296

19. oname => 'PRODUCTS', -
 type => 'TABLE');

DBMS_OFFLINE_OG.END_INSTANTIATION. In other words, the
DBMS_OFFLINE.BEGIN_INSTANTIATION call disables all pushes to new_site.

This behavior is generally not an issue if you are adding a brand new master site, but
if you're trying to roll out a new table to an existing site, you should be prepared to
queue transactions to that new site for as long as it takes to perform your export and
import.

As of this writing, DBMS_OFFLINE_OG does not
support connection qualifiers (bugs 659595 and
729672); see Bug Update, earlier in this chapter.

12.7.5.2 An alternative to DBMS_OFFLINE_OG

If you need to add a replicated table to an existing master database with a minimal
amount of transaction queueing to the master, you might consider this procedure.
The basic idea is to create a temporary replication group that uses a connection
qualifier to identify the master. For purposes of illustration, assume that we wish to
add the table SPROCKET.PRODUCTS to the existing master site PFIN.BIGWHEEL.COM.

1. Create a new database link to PFIN.BIGWHEEL.COM using connection
qualifiers:

2. CREATE PUBLIC DATABASE LINK PFIN.BIGWHEEL.COM@TCP
USING 'prodfinance'

Note that in addition to the public database link, you also need to create
private links for your REPADMIN and PROGAGATOR accounts.

3. Create a temporary replication group RG_SPROCKET_TEMP:
4. EXECUTE DBMS_REPCAT.CREATE_MASTER_REPGROUP(-
5. gname => 'RG_SPROCKET_TEMP', -

 qualifier => '@TCP');

6. Add the PFIN.BIGWHEEL.COM database to the temporary group:
7. EXECUTE DBMS_REPCAT.ADD_MASTER_DATABASE(-
8. gname => 'RG_SPROCKET_TEMP', -

 master => 'PFIN.BIGWHEEL.COM@TCP'

9. Add table SPROCKET.PRODUCTS to the replication group
RG_SPROCKET_TEMP and generate replication support:

10. EXECUTE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(-
11. sname => 'SPROCKET', -
12. oname => 'PRODUCTS', -
13. type => 'TABLE', -
14. copy_rows => FALSE, -
15. gname => 'RG_SPROCKET_TEMP');
16.
17. EXECUTE DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT(-
18. sname => 'SPROCKET', -

Oracle Distributed Systems

You should also add conflict resolution to the table at this time.

20. Export table SPROCKET.PRODUCTS.
21. Resume master activity for the replication group RG_SPROCKET_TEMP:
22. EXECUTE DBMS_REPCAT.RESUME_MASTER_ACTIVITY(-

gname => 'RG_SPROCKET_TEMP');

23. Import SPROCKET.PRODUCTS at the new master site without firing any of the
replication triggers (disable all triggers on the table first).

24. When the import is finished, push the queued transactions to
PFIN.BIGWHEEL.COM@TCP:

25. VARIABLE rc NUMBER
26. BEGIN
27. rc := EXECUTE DBMS_DEFER_SYS.PUSH(
28. destination := 'PFIN.BIGWHEEL.COM@TCP');
29. END;

/

30. Quiesce the temporary group RG_SPROCKET_TEMP:
31. EXECUTE DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY(-

 gname => 'RG_SPROCKET_TEMP');

At this point, the PRODUCTS table should be in sync at all sites.

32. Remove SPROCKET.PRODUCTS from the temporary replication group:
33. EXECUTE DBMS_REPCAT.DROP_MASTER_REPOBJECT(-
34. sname => 'SPROCKET'
35. oname => 'PRODUCTS', -
36. type => 'TABLE', -

 drop_objects => FALSE);

37. Quiesce the replication group RG_SPROCKET and add the table
SPROCKET.PRODUCTS to it:

38. EXECUTE DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY(-
39. gname => 'RG_SPROCKET');
40.
41. EXECUTE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(-
42. sname => 'SPROCKET', -
43. oname => 'PRODUCTS', -
44. type => 'TABLE', -
45. gname => 'RG_SPROCKET');
46.
47. EXECUTE DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT(-
48. sname => 'SPROCKET', -
49. oname => 'PRODUCTS', -
50. type => 'TABLE', -

 distributed => TRUE);

51. Resume master activity, with the SPROCKET.PRODUCTS table in replication
group RG_SPROCKET, instantiated at the site PFIN.BIGWHEEL.COM:

EXECUTE DBMS_REPCAT.RESUME_MASTER_ACTIVITY('RG_SPROCKET');

297

Oracle Distributed Systems

298

type => 'TABLE' -
ddl_text => 'CREATE TABLE sprocket.states (state_id VARCHAR2(2),

12.7.6 Adding and Removing Tables

Use the built-in package procedures DBMS_REPCAT.CREATE_MASTER_REPOBJECT
and DBMS_REPCAT.REMOVE_MASTER_REPOBJECT to add and remove tables (and
any other replicated objects) from a replication group. The specifications for these
packages are as follows:

PROCEDURE create_master_repobject(
sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
use_existing_object IN BOOLEAN := TRUE,
ddl_text IN VARCHAR2 := NULL,
comment IN VARCHAR2 := '',
retry IN BOOLEAN := FALSE,
copy_rows IN BOOLEAN := TRUE,
gname IN VARCHAR2 := '');

PROCEDURE drop_master_repobject(
sname IN VARCHAR2,
oname IN VARCHAR2,
type IN VARCHAR2,
drop_objects IN BOOLEAN := FALSE);

Note that CREATE_MASTER_REPOBJECT requires the quiescence of the replication
group to which the table belongs, while DROP_MASTER_REPOBJECT does not. Both
procedures must be called from the master definition site.

12.7.6.1 Adding replicated tables.

The following examples illustrate various strategies for adding a table to a replication
group.

This call adds table SPROCKET.PRODUCTS to the replication group SPROCKET:

EXECUTE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(-
sname => 'SPROCKET', -
oname => 'PRODUCTS', -
type => 'TABLE', -
gname => 'RG_SPROCKET');

Since we have not specified the ddl_text parameter in this example, the table must
already exist.

In the next example, CREATE_MASTER_REPOBJECT is used to create an object at the
master definition site and simultaneously add it to the replication group:

EXECUTE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(-
sname => 'SPROCKET', -
oname => 'STATES', -

Oracle Distributed Systems

299

 state_name VARCHAR2(20))',
gname => 'RG_SPROCKET');

Notice that the CREATE TABLE statement in this example specifies the owner of the
table. Typically, the replication administrator account uses DBMS_REPCAT, not the
schema owner account. Therefore, when the REPADMIN account is calling the
procedure, you must be sure to specify the schema in which to create objects. One
of the privileges granted through
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_REPGROUP is CREATE ANY TABLE.

In all likelihood, you will not create objects with theCREATE_MASTER_REPOBJECT
procedure very often because doing so is rather clumsy for all but the most simple
objects. But, it's there if you want it.

By setting the retry and use_existing_object parameters to TRUE in the following
example, Oracle creates the table PRODUCTS at all master sites where it does not
already exist and, by setting copy_rows to TRUE, copies the data from the master
definition site to the master sites:

EXECUTE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(-
sname => 'SPROCKET', -
oname => 'PRODUCTS', -
type => 'TABLE', -
use_existing_object => TRUE, -
retry => TRUE, -
copy_rows => TRUE, -
gname => 'SPROCKET');

If tables exist at master sites, but do not have the same shape as at the master
definition site, Oracle returns an error.

I strongly recommend pre-creating and populating
tables at master sites as opposed to relying on the
CREATE_MASTER_REPOBJECT procedure to do it for
you, especially if the objects have interdependencies.
At our sites, we always run a catalog script to create
all schema objects, including triggers, primary and
foreign key definitions, check constraints, and so on.
We then let Oracle generate the replication support
objects. This methodology gives us complete control
over how the schema is created, and all environments
are easily reproduced.

12.7.6.2 Removing replicated tables

The DBMS_REPCAT.DROP_MASTER_REPOBJECT procedure removes a table (or other
replicated object) from a replication group and optionally drops the table itself if the

Oracle Distributed Systems

300

EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('19.75.145358', NULL);

DROP_OBJECTS parameter is set to TRUE. Executing this package is very
straightforward, as the following example shows.

In this example, we remove the table SPROCKET.PRODUCTS from its replication
group while leaving the table and its data intact:

EXECUTE DBMS_REPCAT.DROP_MASTER_REPOBJECT(-
sname => 'SPROCKET',
oname => 'PRODUCTS',
type => 'TABLE',
drop_objects => FALSE);

Notice that this procedure does not have a gname parameter for specifying the
replication group; since an object can be a member of exactly one replication group,
identifying the table name and owner is sufficient.

12.7.6.3 Dropping replicated tables: caveats

Before dropping a replicated table, you should make every effort to delete all
deferred transactions that affect the table. Oracle makes no effort to check for or to
delete these transactions. Although deferred transactions against nonexistent
replicated tables will not break or corrupt the replicated environment, they will incur
the overhead of being logged as errors.

To clear the deferred transactions associated with a table, you need to delete them
from the originating site. To find these transactions, you can query the DEFTRAN and
DEFCALL data dictionary views, as illustrated in the following example.

The query in this example generates the calls to DBMS_DEFER_SYS.DELETE_TRAN
required to delete all transactions against the PRODUCTS table that originated at this
site:

SELECT
'EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('||chr(39)||
deferred_tran_id||chr(39)||', NULL);'||chr(10)||'COMMIT;'
delete_command
FROM deftran t
WHERE EXISTS (
 SELECT deferred_tran_id
 FROM defcall c
 WHERE c.deferred_tran_id = t.deferred_tran_id
 AND c.packagename = 'PRODUCTS$RP')
/
DELETE_COMMAND

--
EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('16.67.151601', NULL);
COMMIT;

EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('19.0.145356', NULL);
COMMIT;

Oracle Distributed Systems

301

7. EXECUTE dbms_repcat_utl.remove_object(-
8. canon_sname => 'SPROCKET', -
9. canon_oname => 'PRODUCTS', -

COMMIT;

EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('21.14.146003', NULL);
COMMIT;

EXECUTE DBMS_DEFER_SYS.DELETE_TRAN('21.35.146000', NULL);
COMMIT;

12.7.6.4 Partially dropped tables (Oracle8 only)

Another caveat to consider when dropping replicated tables is that the call to
DBMS_REPCAT.DROP_MASTER_REPOBJECT may fail to drop all of the replication
support triggers and packages associated with the target table. This partial drop
situation is a distinct possibility if the table is an active one. The symptoms of an
incomplete execution of DBMS_REPCAT.DROP_MASTER_REPOBJECT include
returning a lock timeout error and the continued queuing of transactions against the
table even though it no longer appears in the DBA_REPOBJECT data dictionary view.
This scenario is particularly vexing since replication support triggers are internalized
and therefore invisible in Oracle8. To recover from this, you must call the
undocumented package procedures:

DBMS_REPCAT_CACHE.PURGE_OBJECT_GROUP
DBMS_REPCAT_UTL.DESTROY_INTERNAL_TRIGGER
DBMS_REPCAT_UTL.REMOVE_REPOBJECT

The specifications for these procedures are as follows:

PROCEDURE destroy_internal_trigger(
canon_sname IN VARCHAR2, /*--- the owner of the table ---*/
canon_oname IN VARCHAR2, /*--- the table name ---*/
type_id IN NUMBER); /*--- use 2 ---*/

PROCEDURE remove_repobject(
canon_sname IN VARCHAR2, /*--- the owner of the table ---*/
canon_oname IN VARCHAR2, /*--- the table name ---*/
type_id IN NUMBER); /*--- use 2 ---*/

PROCEDURE purge_object_group(
cannon_gname IN VARCHAR2 /*--- the replication group name ---*/
);

To use these procedures, follow these steps:

1. In each master database, log in to the SYS account and execute the
procedures DBMS_REPCAT_UTL.DESTROY_INTERNAL_TRIGGER and
DBMS_REPCAT_UTL.REMOVE_REPOBJECT. For example:

2. EXECUTE dbms_repcat_utl.destroy_internal_trigger(-
3. canon_sname => 'SPROCKET', -
4. canon_oname => 'PRODUCTS', -
5. type_id => 2);
6.

Oracle Distributed Systems

302

10. type_id => 2);
11.

COMMIT;

Note that these calls may result in lock timeout errors. Continue attempting
them until they complete successfully.

12. In each master database, log in to the SYS account and execute
DBMS_REPCAT_CACHE.PURGE_OBJECT_GROUP. For example:

13. EXECUTE dbms_repcat_cache.purge_object_group(-
14. canon_gname => 'RG_SPROCKET'
15.

COMMIT;

You should contact Oracle Support before attempting
these procedures. Since the procedures are
undocumented, they may change in future releases of
the database. The procedure shown here works for
Oracle 8.0.4.

12.8 Replicating DDL

The advanced replication facilities include support for replicating DDL commands to
all master databases in a replication group. The DBMS_REPCAT procedures that
provide this support are DBMS_REPCAT.ALTER_MASTER_REPOBJECT and
DBMS_REPCAT.EXECUTE_DDL; their specifications follow:

PROCEDURE alter_master_repobject(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := FALSE);

PROCEDURE execute_DDL(
 gname IN VARCHAR2,
 master_list IN VARCHAR2 := NULL,
 ddl_text IN VARCHAR2);

PROCEDURE execute_DDL(
 gname IN VARCHAR2,
 master_table IN dbms_utility.dblink_array,
 ddl_text IN VARCHAR2);

Notice that ALTER_MASTER_REPOBJECT does not
allow you to specify master sites, whereas
EXECUTE_DDL does. ALTER_MASTER_REPOBJECT
operates only on existing replicated objects and
therefore executes at all master sites, whereas
EXECUTE_DDL allows you to perform DDL operations

Oracle Distributed Systems

303

independent of replicated objects. For example, you
can use EXECUTE_DDL to create users at a remote
site.

12.8.1 Restrictions

Note the following restrictions on DDL replication:

• Both DBMS_REPCAT.ALTER_MASTER_REPOBJECT and
DBMS_REPCAT.EXECUTE_DDL must be called from the master definition site.

• DBMS_REPCAT.ALTER_MASTER_REPOBJECT requires the replication group to
be quiesced.

• You must call regenerate replication support for tables that you alter with a
call to DBMS_REPCAT.ALTER_MASTER_REPOBJECT.

12.8.2 Examples

The following examples demonstrate how to use theDDL replication procedures.

12.8.2.1 Creating an index

This example uses the DBMS_REPCAT.EXECUTE_DDL procedure to create an index
on the SPROCKET.STATES table at sites PFIN.BIGWHEEL.COM and
PMFG.BIGWHEEL.COM. Note that, as with CREATE_MASTER_REPOBJECT, we must
specify the schema in which to create the index.

DECLARE vMasters VARCHAR2(30);
BEGIN
 vMasters := 'PFIN.BIGWHEEL.COM,PMFG.BIGWHEEL.COM';
 DBMS_REPCAT.EXECUTE_DDL(
 gname => 'SPROCKET',
 master_list => vMasters,
 ddl_text => 'CREATE INDEX sprocket.i_state_id
 ON sprocket.tstates(state_id)',
 sname =>'SPROCKET');
END;

12.8.2.2 Compiling a replicated package body

In this example, we use the DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure
to set the retry parameter to TRUE so that ALTER_MASTER_REPOBJECT applies the
DDL only at sites at which the package body's status is INVALID.

DBMS_REPCAT.ALTER_MASTER_REPOBJECT(-
 sname => 'SPROCKET', -
 oname => 'PRODUCTMAINT', -
 type => 'PACKAGE BODY', -
 ddl_text => 'ALTER PACKAGE SPROCKET.PRODUCTMAINT COMPILE
BODY', -

Oracle Distributed Systems

304

 comment => 'Recompiled on '||sysdate|| ' by '||user, -
 retry => TRUE);

Notice that the schema is specified for the object being altered. As with
DBMS_REPCAT.EXECUTE_DDL, the ALTER_MASTER_REPOBJECT procedure operates
on objects in the caller's schema by default, and the caller is generally the replication
administrator account, not the schema account.

12.8.2.3 Altering a column in a replicated table

This example uses the DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure to
alter the width of the state_id column in table SPROCKET.STATES at all sites:

DBMS_REPCAT.ALTER_MASTER_REPOBJECT(-
 sname => 'SPROCKET', -
 oname => 'STATES', -
 type => 'TABLE', -
 ddl_text=> 'ALTER TABLE SPROCKET.STATES MODIFY (STATE_ID
NUMBER(10))' , -
 comment => 'state_id widened on '||sysdate|| ' by '||user);

You may find it convenient to create a special
replication group, RG_DBA, to which you can use
DBMS_REPCAT.EXCECUTE_DDL to "broadcast"
administrative tasks such as creating users or
coalescing tablespaces to all master databases.

12.8.3 Manually Executing Entries in the repcatlog

The procedures DBMS_REPCAT.ALTER_MASTER_REPOBJECT and
DBMS_REPCAT.EXECUTE_DDL both put entries in the local repcatlog. These entries
cause the commands to be executed at remote sites. By default, Oracle executes
entries in the repcatlog every 10 minutes. However, if you wish, you can execute
repcatlog entries manually by calling DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN.
For example, the following call executes repcatlog entries associated with the
replication group RG_SPROCKET:

EXECUTE DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN(gname => 'RG_SPROCKET');

12.8.4 Deleting Errors from the repcatlog

Use the procedure D BMS_REPCAT.PURGE_MASTER_LOG to delete errors from the
repcatlog. The DBA_REPCATLOG data dictionary view retains entries for DDL
propagations that have failed, and these entries are not removed when you resolve
the problem that caused the failure. You may notice entries such as these:

SELECT source, status, request, to_char(timestamp, 'HH24:MI:SS')
timestamp
FROM dba_repcatlog
ORDER BY id

Oracle Distributed Systems

305

/

Source Status Request Time
----------------- ------ ----------------------- ------------
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:13:07
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:13:07
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:25:20
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:25:20
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:26:53
D7CA.BIGWHEEL.COM ERROR CREATE_MASTER_REPOBJECT 23:26:53
D7CA.BIGWHEEL.COM ERROR DROP_MASTER_REPOBJECT 14:03:27
D7CA.BIGWHEEL.COM ERROR DROP_MASTER_REPOBJECT 14:03:27

8 rows selected.

The PURGE_MASTER_LOG procedure removes these entries from DBA_REPCATLOG.
You can specify records to delete by ID, originating master, replication group, and
schema. If any of the parameters is NULL, it is treated as a wildcard. Specifications
differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.PURGE_MASTER_LOG(
 id IN NATURAL,
 source IN VARCHAR2,
 gname IN VARCHAR2 := '',
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.PURGE_MASTER_LOG(
 id IN NATURAL,
 source IN VARCHAR2,
 gname IN VARCHAR2);

The following call removes all entries associated with replication group SPROCKET
from the DBA_REPCATLOG data dictionary view:

DBMS_REPCAT.PURGE_MASTER_LOG (gname => 'SPROCKET');

To clear all entries from the DBA_REPCATLOG data
dictionary view, set all parameters to NULL.

12.9 Your Replicated Environment

Once you have a replicated system up and running, you need to monitor it to ensure
that you detect problems early. The most important things to monitor are:

• The number of transactions queued at each originating site
• The number of unresolved errors at each destination site
• The number of entries in each snapshot log

Oracle Distributed Systems

306

spool off
EOF

If any of these three counts becomes too high, it can be very time-consuming to
recover. By the same token, all are usually easy to correct if you catch them early.

12.9.1 Monitoring Queued Transactions

The following SQL query returns the number of deferred transactions that are
currently queued:

SELECT count(*)
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order;

This query has been incorporated into a Unix shell script, checklatency , shown here,
which sends email to the DBA when the number of deferred transactions exceeds
150:

#! /bin/ksh
#--

Filename: checklatency
Purpose: Notifies the dba when more than 150 replicated transactions
are queued.
Author: Chas. Dye (cdye@excitecorp.com)
Date: 21-Oct-1998
Remarks: Requires OPS$ account for whichever OS user crons this
script.
#--

HOST=`/bin/uname -n`
MAIL=/bin/mailx
DISTLIST="beepdba@yoursite.com"
export HOST MAIL DISTLIST

ORACLE_HOME=/u/oracle/product/8.0.4.2 ; export ORACLE_HOME
ORACLE_SID=PHQS ; export ORACLE_SID
PATH=$ORACLE_HOME/bin:/bin:{PATH} ; export PATH
LD_LIBRARY_PATH=$ORACLE_HOME/lib:${LD_LIBRARY_PATH}; export
LD_LIBRARY_PATH

cd ${HOME}/bin

sqlplus -s / << EOF
set echo off
set head off
set feedback on
spool /u/oracle/admin/PHQS/logbook/latent.log
SELECT count(*)
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order
HAVING count(*) > 150;

Oracle Distributed Systems

307

 count(*) out,

grep 1 latent.log > latent.err
if [-s latent.err]
then
 $MAIL -s"${ORACLE_SID}@${HOST} latency alert" $DISTLIST <
latent.log
fi

rm -f latent.err
rm -f latent.log

You may also be interested in the age and count of transactions to specific
destinations. This script, latent.sql, provides precisely that information. This is
possibly the single most valuable script for checking the health of a replicated
environment:

-- Filename: latent.sql
-- Purpose: Lists outstanding transactions by destination.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 09-Jul-1996

col dblink heading "Destination" format
a16
col earliest heading "Least Recently|Queued Transaction" format
a20
col latest heading "Most Recently|Queued Transaction" format
a20
col out heading "Total|Txns|Queued" format
999,999
col timenow heading "Current|Time" format a8
col latency heading "Maximum|Latency|dd:hh:mi:ss" format
a12

clear breaks
clear computes

set head off
set feedback off
select 'Propagation Latency Instance: '||name||'. Time: ' ||
 to_char(sysdate, 'DD-Mon-YY HH24:mi:ss')
from v$database
/
set head on
set feedback on

compute sum of out on report
break on report skip 1

SELECT d.dblink,
 min(t.start_time) earliest,
 max(t.start_time) latest,

Oracle Distributed Systems

308

 ltrim(to_char(trunc(sysdate-(min(start_time))), '09')) || ':'
||
 ltrim(to_char(trunc(24*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), '09'))||':' ||
 ltrim(to_char(mod(trunc(1440*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), 60), '09')) ||':' ||
 ltrim(to_char(mod(trunc(86400*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), 60), '09')) latency
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order
GROUP BY d.dblink
/

Sample output follows:

Propagation Latency Instance: PMFG. Time: 22-Nov-98 10:06:09

 Total
Maximum
 Least Recently Most Recently Txns
Latency
Destination Queued Transaction Queued Transaction Qud
dd:hh:mi:ss
--------------- -------------------- ------------------- ---- -----

PMFG.EXCITE.COM 22-Nov-1998 10:06:05 22-Nov-1998 10:06:09 20
00:00:00:04
PSLS.EXCITE.COM 22-Nov-1998 10:04:52 22-Nov-1998 10:06:22 72
00:00:01:33

sum 92

1 row selected.

12.9.2 Monitoring Deferred Transaction Errors

If you allow errors to accumulate at destination sites, it can be very difficult to clear
them. In an ideal world, your conflict resolution techniques will detect and resolve
errors. However, experience has shown that it is best to expect the unexpected. The
utilities in this section will help you to keep tabs on deferred transaction errors so
that you can respond in a timely fashion.

The first script, deferror.sql (deferror8.sql for Oracle8) lists unresolved errors and
generates the calls to DBMS_DEFER_SYS.DELETE_ERROR to delete the errors and
DBMS_DEFER_SYS.EXECUTE_ERROR to retry the transaction.

Due to differences in the Oracle7 and Oracle8 data
dictionaries, the scripts deferror.sql (for Oracle7) and
deferror8.sql (for Oracle8) are slightly different. We
show only the Oracle8 version of the script here .

Oracle Distributed Systems

309

Error#

-- Filename: deferror8.sql
-- Purpose: Reports on deferred transactions with errors and
generates
-- call to dbms_defer_sys.execute_error to clear them.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996
--
-- Modification History
-- --------------------
-- 13-Aug-1998 : Chas. : Updated for Oracle8; added commands to delete
error.
-- 09-Oct-1998 : Chas. : Added ORDER BY start_time

column ORIGIN_TRAN_DB heading "Origin|Tran|DB" format a15
column DEFERRED_TRAN_ID heading "Deferred|Tran|ID" format a15
column DESTINATION heading "Destination" format a15
column ERROR_TIME heading "Error Time" format a22
column ERROR_NUMBER heading "Error#" format 999999
column FIX heading "Run This to Clear" format a80
column DITCH heading "Run This to Delete" format a80

SELECT deferred_tran_id,
 origin_tran_db,
 destination,
 to_char(start_time, 'DD-Mon-YYYY hh24:mi:ss') error_time,
 error_number
FROM deferror
ORDER BY start_time
/

SELECT 'EXECUTE dbms_defer_sys.execute_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 destination || chr(39) || ')' fix
FROM deferror
ORDER BY start_time
/

SELECT 'EXECUTE dbms_defer_sys.delete_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 destination || chr(39) || ')' ditch
FROM deferror
ORDER BY start_time
/

Sample output follows:

Deferred Origin
Tran Tran
ID DB Destination Error Time

Oracle Distributed Systems

310

 c.argcount,
 e.origin_tran_db

---------- --------------- --------------- ---------------------- ----

6.19.63683 LIVE.WORLD PLV2.EXCITE.COM 06-Nov-1998 15:33:50 1403

1 row selected.

Run This to Clear

EXECUTE dbms_defer_sys.execute_error('6.19.63683', 'PLV2.EXCITE.COM')

1 row selected.

Run This to Delete

EXECUTE dbms_defer_sys.delete_error('6.19.63683', 'PLV2.EXCITE.COM')

1 row selected.

Before you delete or reexecute a transaction that has resulted in an error, you will
probably want to know what operation the transaction was attempting against what
table. However, that information is not available in the DEFERROR data dictionary
view. The script errorinfo.sql culls the relevant information from DEFERROR and
DEFCALL.

-- Filename: errorinfo.sql
-- Purpose: Reports on all errors.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996
--
-- Modification History
-- -------------------
-- 03-Jun-1998 : Chas. : Removed deferred_tran_db field (not in Oracle8)
-- 09-Oct-1998 : Chas. : Added ORDER BY e.start_time

col callno heading "Call|No" format 9999
col deferred_tran_id heading "Deferred|Tran|ID" format a12
col schemaname heading "Schema|Name" format a8
col packagename heading "Package|Name" format a25
col procname heading "Procedure|Name" format a10
col argcount heading "Arg|Count" format 999
col origin_tran_db heading "Origin" format a17

SELECT c.callno,
 c.deferred_tran_id,
 c.packagename,
 c.procname,

Oracle Distributed Systems

311

 FOR indx IN 1..&&argcnt LOOP

FROM defcall c, deferror e
WHERE c.deferred_tran_id = e.deferred_tran_id
AND c.callno = e.callno
ORDER BY e.start_time
/

Sample output follows:

Deferred
 Call Tran Package Procedure Arg
 No ID Name Name Count Origin
----- ------------ -------------------- ---------- ----- --------------

 0 4.38.5528 COMM$RP REP_INSERT 14
PTHA.EXCITE.COM
 0 7.97.5526 COMMPROPSWELCOME$RP REP_UPDATE 33
PTHA.EXCITE.COM
 12 6.68.7736 CONTACT$RP REP_DELETE 22
PTHA.EXCITE.COM

Finally, if you want to find out exactly what parameters have been used in a given
call, you can use the script defcallinfo.sql to find out:

-- Filename: defcallinfo.sql
-- Purpose: Lists information about deferred calls.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 10-Jul-1998

set serveroutput on size 100000
set verify off
undef callno
undef argcnt
undef tran_db
undef tran_id

DECLARE
 vTypes dbms_defer_query.type_ary;
 vVals dbms_defer_query.val_ary;
 indx NUMBER;
BEGIN
 dbms_defer_query.get_call_args(
 callno => '&&callno',
 startarg => 1,
 argcnt => &&argcnt,
 argsize => 128,
 tran_db => '&&tran_db',
 tran_id => '&&tran_id',
 date_fmt => 'DD-Mon-YYYY HH24:MI:SS',
 types => vTypes,
 vals => vVals);

Oracle Distributed Systems

 dbms_output.put_line('Arg '|| indx || ' Value '||
vVals(indx));
 END LOOP;
END;
/

Sample output follows:

SQL> @defcallinfo
Enter value for callno: 0
Enter value for argcnt: 14
Enter value for tran_db: PTHA.EXCITE.COM
Enter value for tran_id: 4.38.5528
Arg 1 Value 42397
Arg 2 Value 16-Oct-1998 13:00:06
Arg 3 Value 79EA878A35EB4002
Arg 4 Value Cadillac Voodoo Choir
Arg 5 Value 0
Arg 6 Value 16-Oct-1998 13:00:06
Arg 7 Value PTHA.EXCITE.COM
Arg 8 Value NULL
Arg 9 Value NULL
Arg 10 Value NULL
Arg 11 Value NULL
Arg 12 Value 0
Arg 13 Value PTHA.EXCITE.COM
Arg 14 Value N

The arguments here refer to the old and new column values that Oracle sends to the
destination site when it propagates the transaction.

Automatic Notification Mechanism

I have developed a tool to send email to appropriate people
and pagers when it detects errors in the DEFERROR view. The
tool uses a PL/SQL package that checks the view at destination
databases and the DBMS_PIPE utility to send the email request.
Please refer to Appendix B for the installation instructions .

12.9.3 Monitoring Snapshot Logs

If you have created snapshot logs on master tables, you should check the size of the
snapshot logs periodically to ensure that they are not growing too large. If you notice
that a snapshot log has many entries (i.e., thousands), it may be because either not
all snapshots that are mastered to the master table are firing or because their
refresh interval is too long.

The script mlogs.sql generates the SQL statements to select the record count for all
snapshot logs in the database:

312

Oracle Distributed Systems

-- Filename: mlogs.sql
-- Purpose: Generates SELECT statements to find the count of
entries in
-- all snapshot logs.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

SELECT
 'SELECT count(*) FROM
'||lower(owner)||'.'||lower(table_name)||';'
FROM dba_tables
WHERE table_name like 'MLOG$_%'
AND owner not like 'SYS%'
ORDER BY owner, table_name
/

12.9.4 Monitoring: Summary

I have found the scripts described in the preceding section to be invaluable in helping
to maintain a replicated environment. If you are responsible for more than two or
three replicated applications, I strongly encourage you to automate as much of the
monitoring as possible. As mentioned, most problems are easy to resolve if you spot
them early but become exponentially more difficult to correct if they are allowed to
persist unchecked.

12.10 Advanced Replication Limitations

Finally, note that there are some restrictions on what you can and cannot do in a
replicated environment:

• There is no support for cascading deletes. As an alternative, you may consider
writing a trigger on the master table to delete child records.

• Sequences do not replicate. If you use sequences to populate key fields, be
sure to designate a range of sequence values in each master database that is
large enough to avoid key collisions for the life of the application.

• There is no support for local customization of replicated tables. In other words,
replicated tables must have an identical shape in each master database.

• The datatypes LONG, LONG RAW, and HHCODE do not replicate. You may
replicate tables containing columns of these datatypes, but DML to these
columns will not propagate to other master sites. I recommend using the
CLOB and LOB datatypes available in Oracle8.

313

Oracle Distributed Systems

Chapter 13. Updateable Snapshots

Updateable snapshots offer a means of deploying updateable copies of data at
multiple sites. Unlike multi-master replication, which maintains copies of all records
in a table at multiple sites, updateable snapshots may be partitioned horizontally.
Another key difference between updateable snapshots and multi-master table
replication is that updateable snapshot sites need not be in constant communication
with the master site. Common usages of updateable snapshots include sales lead
data on a salesperson's laptop computer or grocery register receipt data. In both
cases, the master data would reside at a headquarters site, and the updateable
snapshot might push data back to the headquarters site at the end of the business
day.

13.1 About Updateable Snapshots

As described in Chapter 11, updateable snapshots function by placing triggers on the
master and snapshot tables. Thetrigger on the master table (TLOG$_table_name)
populates the snapshot log table (MLOG$_table_name) at the master site. Similarly,
the trigger on the snapshot base table (USTRG$_master_table_name) populates the
snapshot log table (USLOG$_table_name) at the snapshot site.

Like their read-only counterparts, updateable snapshots must be refreshed in order
to reflect changes that have occurred to the master table. In addition, updateable
snapshots must propagate changes from the snapshot site back to the master table.
This propagation can happen either at the same time as the snapshot refresh or at a
different scheduled interval. My recommendation is to propagate changes from the
snapshot site to the master site during the same "conversation" as the snapshot
refresh. This recommendation is particularly relevant if the snapshot site is not in
constant contact with the master site.

13.1.1 Restrictions

As with read-only snapshots, Oracle imposes certain restrictions on updateable
snapshots:

• Updateable snapshots must be simple snapshots. That is, they must be
snapshots against a single table without DISTINCT, GROUP BY, or CONNECT
BY operators or any subqueries.

• Columns of type LONG and LONG RAW cannot be used.
• Updateable snapshots must include all columns of the master table. Therefore,

vertical partitioning is not possible.
• In Oracle7, updateable snapshots must have the same name as the master

table.

13.2 Creating Updateable Snapshots

Updateable snapshots require components at both the master site and the snapshot
site. To illustrate the procedure, I'll trace the steps required to create an updateable

314

snapshot on the table SPROCKET.DAILY_SALES defined as follows:

Oracle Distributed Systems

315

3. gname=>'RG_SPROCKET', -
4. group_comment=>'Created by '||user||' on '||sysdate);

SQL> desc daily_sales
 Name Null? Type
 ---------------- -------- ----
 SALES_ID NOT NULL NUMBER(9)
 DISTRIBUTOR_ID NOT NULL NUMBER(6)
 PRODUCT_ID NOT NULL NUMBER(9)
 UNITS NOT NULL NUMBER(9,2)
 REGION NOT NULL VARCHAR2(3)
 AUDIT_DATE NOT NULL DATE
 AUDIT_USER NOT NULL VARCHAR2(30)
 GLOBAL_NAME NOT NULL VARCHAR2(20)

Each retail outlet of the fictitious Bigwheel Bicycle company updates a local snapshot
of this table with each customer purchase. The outlet stores send their data back to
the headquarters database each evening. For the purposes of our example, suppose
that the headquarters database is named PHQS.BIGWHEEL.COM and that the retail
store's database is named PSFO.BIGWHEEL.COM.

13.2.1 Preliminary Steps

Before creatingupdateable snapshots, the master and snapshot databases must be
configured for replication as described in Chapter 12. In addition to running the
catproc.sql and catrep.sql scripts at both sites, you must ensure the following:

• Replication administrator accounts exist with proper privileges at the master
and all snapshot sites. (Typically, the replication administrator account is
REPADMIN.)

• Database links must be in place. The links from the snapshot site to the
master site must connect to an account that either is the owner of the master
table or has replication administrator privileges. In addition, the account at
the master site must have EXECUTE privileges on the package
SYS.DBMSOBJGWRAPPER.

• The table to be replicated exists at the master site and has a primary key
defined.

• The account that creates the updateable snapshot must have the privileges
CREATE SNAPSHOT, CREATE TABLE, CREATE TRIGGER, and CREATE VIEW.

• If the snapshot is to be created in a different schema (i.e., owned by a
different Oracle account from the one issuing the CREATE SNAPSHOT
statement), then the account must have the CREATE ANY SNAPSHOT
privilege.

13.2.2 Preparing the Master Table

An important difference between read-only snapshots andupdateable snapshots is
that the master table for the latter must be defined as a replicated object. The
master table also must have a snapshot log. Follow these steps:

1. Make the table a replicated object; run the following from the replication
administrator account:

2. EXECUTE dbms_repcat.create_master_repgroup(-

Oracle Distributed Systems

316

5.
6. EXECUTE dbms_repcat.create_master_repobject(-
7. sname => 'SPROCKET', -
8. oname => 'DAILY_SALES', -
9. type => 'TABLE', -
10. use_existing_object => TRUE, -
11. comment => 'Added by '||lower(user)||' on

'||sysdate, -
12. copy_rows => FALSE, -
13. gname => 'RG_SPROCKET');
14.
15. EXECUTE dbms_repcat.generate_replication_support(-
16. sname => 'SPROCKET', -
17. oname => 'DAILY_SALES', -
18. type => 'TABLE', -
19. distributed => TRUE);
20.

EXECUTE dbms_repcat.resume_master_activity('RG_SPROCKET');

21. Create a snapshot log on the master table; run the following from the account
that owns the master table:

22. CREATE SNAPSHOT LOG ON daily_sales
23. PCTFREE 5 PCTUSED 90
24. TABLESPACE sprocket_data STORAGE (INITIAL 1M NEXT 1M PCTINCREASE

0)
WITH PRIMARY KEY
Oracle8 only

/

Prior to Oracle8, Oracle recorded a row's ROWID in
the snapshot log to identify it as having been changed.
Since ROWIDs can change if a table is moved, or
exported and imported, this meant that tables with
snapshot logs could not be rebuilt without rebuilding
the snapshot log and therefore requiring a complete
refresh of all snapshots. Oracle8, on the other hand,
allows you to identify changed records in the snapshot
log by their primary key, affording you the flexibility of
rebuilding a master table without being forced to
perform a complete refresh of all of its snapshots.

13.2.3 Preparing the Snapshot Site

At thesnapshot site, we must first create the actual snapshot, either with the CREATE
SNAPSHOT statement or by supplying the DDL in the call to
DBMS_REPCAT.CREATE_SNAPSHOT_REPOBJECT.

Also, note that in the CREATE SNAPSHOT statement, we do not specify a NEXT time
for the refreshes. We omit this component because we will put the updateable
snapshot into a refresh group which controls the refresh schedule. By default, Oracle

Oracle Distributed Systems

creates a refresh group with the same name as the snapshot itself when you issue a
CREATE SNAPSHOT statement.

Finally, notice that the defining query of the CREATE SNAPSHOT statement uses
"SELECT *" instead of specifying field names. Updateable snapshots must contain
every field in the table, and the SELECT * syntax is the only method Oracle supports.

Follow these steps:

1. Create the snapshot using the FOR UPDATE clause in the CREATE SNAPSHOT
statement. Create the snapshot when logged in to the schema owner account,
preferably with the same account name as the owner of the master table.

Oracle8 syntax:

CREATE SNAPSHOT daily_sales
TABLESPACE sprocket_data
 STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0)
USING INDEX TABLESPACE sprocket_indx
 STORAGE (INITIAL 128K NEXT 128K PCTINCREASE 0)
REFRESH FAST
START WITH sysdate
WITH PRIMARY KEY
FOR UPDATE
AS
 SELECT *
 FROM product_prices@PHQS.BIGWHEEL.COM
 WHERE region = 'SFO';

Oracle7 syntax:

CREATE SNAPSHOT daily_sales
TABLESPACE sprocket_data
 STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0)
REFRESH FAST
START WITH sysdate
FOR UPDATE
AS
 SELECT *
 FROM product_prices@PHQS.BIGWHEEL.COM;

2. Create a snapshot replication group. Run these commands under the
replication administrator account:

3. EXECUTE dbms_repcat.create_snapshot_repgroup(-
4. gname => 'RG_SPROCKET', -
5. master => 'PHQS.BIGWHEEL.COM', -
6. comment => 'Created on '||sysdate||' by '||user, -

 propagation_mode=> 'ASYNCHRONOUS');

The name of the snapshot replication group must be the same as the name of
the master replication group to which the master table belongs.

317

Oracle Distributed Systems

318

 THEN
 :new.audit_date := SYSDATE;

7. Add the snapshot to the snapshot group from the replication administrator
account:

8. EXECUTE dbms_repcat.create_snapshot_repobject(-
9. sname => 'SPROCKET', -
10. oname => 'DAILY_SALES', -
11. type => 'SNAPSHOT', -
12. comment => 'Created on '||sysdate||' by '||user, -

 gen_objs_owner => 'REPADMIN');

13. Create a snapshot refresh group, and add the snapshot to the group (optional,
but recommended):

14. EXECUTE dbms_refresh.make(-
15. name => 'RG_SPROCKET', -
16. list =>'SPROCKET.DAILY_SALES', -
17. next_date => SYSDATE, -
18. interval => 'TRUNC(SYSDATE+1)+23/24', -
19. push_deferred_rpc => TRUE, -

 purge_option => 1, -
Oracle8 only
parallelism => 4, -
Oracle8 only
lax => TRUE);

EXECUTE dbms_refresh.add(-
 name => 'RG_SPROCKET', -
 list => 'SPROCKET.DAILY_SALES', -
 lax => TRUE);

At this point, we have created an updateable snapshot on SPROCKET.DAILY_SALES,
which refreshes once a day at 11:00 P.M.

13.2.4 User-Defined Triggers on Updateable
Snapshots

You mayhave noticed the fields audit_date, audit_user, and global_name in the table
SPROCKET.DAILY_SALES. These fields are intended to track the time that records
are inserted or deleted, who performed the operation, and in which database. You
can use triggers to populate these fields, but you must make sure that they fire for
local DML only; they must not fire because of the DML associated with a snapshot
refresh. Use the Oracle built-in package function
DBMS_SNAPSHOT.I_AM_A_REFRESH to determine whether the trigger should fire.
The following code creates the audit trigger on the SPROCKET.DAILY_SALES
updateable snapshot:

CREATE OR REPLACE TRIGGER t_iu_snap$_daily_sales
BEFORE INSERT OR UPDATE
ON snap$_daily_sales
FOR EACH ROW

BEGIN
 IF (dbms_snapshot.i_am_a_refresh != TRUE)

Oracle Distributed Systems

 :new.audit_user := USER;
 :new.global_name := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

Notice that the trigger is defined on the snapshot base table SNAP$_DAILY_SALES.

13.3 Communication Flow

Yourreplicated environment is probably not as simple as a master site and a
snapshot site. Oracle allows you to mix and match endless permutations of masters
and snapshots. A site can even be a snapshot site for one set of tables and a master
site for another. Somehow, all of the data gets to its destination.

The most complex configuration for updateable snapshots is one in which two or
more multi-master sites have their own snapshot sites, as shown in Figure 13.1.

Figure 13.1. Updateable snapshots where multi-masters
have their own snapshot sites

Suppose that a user at the snapshot site PSLS.BIGWHEEL.COM makes an update to
the SALES_LEADS table. How does that change propagate to the updateable
snapshot of the same name at site PSFO.BIGWHEEL.COM? The process is as follows:

319

Oracle Distributed Systems

1. The user updates the snapshot SALES_LEADS.
2. The trigger USTRG$_SALES_LEADS creates an entry in the snapshot log

USLOG$_SALES_LEADS. (In Oracle8, this trigger is internalized and therefore
not visible in the data dictionary.)

3. The snapshot refresh updates master table in PHQS.BIGWHEEL.COM.
4. The replication trigger SALES_LEADS$RT in PHQS.BIGWHEEL.COM queues the

update for propagation to its companion master, PCAL.BIGWHEEL.COM. (In
Oracle8, this trigger is internalized and therefore not visible in the data
dictionary.)

5. When the update is applied at PCAL.BIGWHEEL.COM, the trigger
TLOG$_SALES_LEADS creates an entry in the snapshot log
MLOG$_SALES_LEADS. (In Oracle8, this trigger is internalized and therefore
not visible in the data dictionary.)

6. The refresh from PSFO.BIGWHEEL.COM to PCAL.BIGWHEEL.COM reads the
snapshot log and applies the change.

Figure 13.2 depicts this chain of events.

Figure 13.2. Propagating a snapshot to another site

320

Oracle Distributed Systems

321

13.4 Controlling Propagation and Refreshes

As with multi-master table replication,updateable snapshots can propagate their
changes back to the master table either synchronously or asynchronously. Unlike
multi-master table replication, you can control asynchronous propagation so that
DML is sent back to the master table either at the time of snapshot refreshes or at
some other scheduled interval. You should evaluate your data flow requirements to
determine what best suits your needs. This section presents recommendations for
some common scenarios.

Although updateable snapshots can propagate
changes back to the master table synchronously,
snapshot refreshes (propagation of changes from the
master table to the snapshot) are always
asynchronous; the snapshot site always polls the
master site for refreshes.

13.4.1 Real-Time (Synchronous) Propagation

You can specify synchronous propagation either by specifying propagation_mode
=>'SYNCHRONOUS' in the call to DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP or
by using DBMS_REPCAT.ALTER_SNAPSHOT_PROPAGATION to change the
propagation mode if the snapshot replication group already exists.

If you elect to use synchronous propagation, Oracle follows these steps to forward
updateable snapshot DML back to the master site:

1. Oracle locks the record in the snapshot base table and performs the update.
2. Oracle fires the USTRG$_snapshot_name trigger which invokes the

table_name$RP package at the master site.
3. The table_name$RP package at the master site locks and updates the record

in the master table.
4. If an unresolvable conflict arises at the master site, the table_name$RP

package raises an exception.
5. Oracle commits the transaction (or rolls back in the event of an error) using

the two-phase commit protocol. All locks are then released.

You should not use synchronous propagation unless
you are certain that the network connection between
the two databases will not go down, or you can
tolerate interruptions in service if the connection is
unavailable.

Oracle Distributed Systems

13.4.2 Once-a-Day Propagation

Applications that accumulate data through the course of the day and feed it to the
master database are candidates for a once-per-day propagation scenario. Typically,
the only time when the snapshot and master database are in contact is during this
data upload period. Therefore, the snapshot site should not only upload the local
changes but also refresh snapshots with new data from the master. We can force
Oracle to push queued DML from the updateable snapshot in the course of
performing refreshes by setting the parameter push_deferred_rpc to TRUE in the call
to DBMS_REFRESH.MAKE:

EXECUTE dbms_refresh.make(-
 name => 'RG_SPROCKET', -
 list => 'SPROCKET.DAILY_SALES', -
 next_date => TRUNC(SYSDATE+1) + 1/24, -
 interval => 'TRUNC(SYSDATE+1)+23/24', -
 push_deferred_rpc => TRUE, -
 lax => TRUE);

This call adds the snapshot to the RG_SPROCKET snapshot refresh group and
schedules it for its initial refresh tomorrow at 1:00 A.M.:

next_date => TRUNC(SYSDATE+1) + 1/24, -

The call also schedules a job queue entry which performs all future refreshes for
11:00 P.M. nightly (by a call to DBMS_REFRESH.REFRESH):

interval => 'TRUNC(SYSDATE+1)+23/24', -

13.4.3 Propagation on Demand

Another scenario calling for an updateable snapshot involves the traveling
salesperson who enters sales leads and customer information into a laptop computer
and who dials in to the headquarters site at unpredictable times. This person needs
to upload the information from the laptop to the headquarters site and refresh
snapshots on demand. It does not really make sense to schedule a job on the laptop
machine because there is no guarantee that the master database will be reachable
when the job runs.

Instead, we create the snapshot refresh group without specifying a refresh interval.
We do, however, specify next_date to be SYSDATE because we want to populate the
snapshots when the refresh group is originally created:

EXECUTE dbms_refresh.make(-
 name => 'RG_SPROCKET', -
 list => 'SPROCKET.DAILY_SALES', -
 next_date => SYSDATE, -
 push_deferred_rpc => TRUE, -
 lax => TRUE);

322

To perform the data upload and snapshot refresh on demand, the salesperson simply
calls DBMS_REFRESH.REFRESH:

Oracle Distributed Systems

EXECUTE dbms_refresh.refresh('RG_SPROCKET')

Of course, you may wish to create a script that allows the salesperson to perform the
refresh by clicking on an icon rather than having to use SQL*Plus!

DBMS_SNAPSHOT.REFRESH

You may have noticed that Oracle provides two different
REFRESH procedures, one in DBMS_REFRESH and the other in
DBMS_SNAPSHOT. Why? The DBMS_REFRESH version of
REFRESH operates on all snapshots in a single refresh group,
and this methodology is the direction in which the replication
technology is moving. The DBMS_SNAPSHOT version of
REFRESH allows you do refresh snapshots that are not
members of a refresh group or a set of snapshots that are
members of different refresh groups. The DBMS_SNAPSHOT
version also allows you to specify various parameters, such as
rollback_segs, whereas snapshot refresh groups have these
settings defined in the call to DBMS_REFRESH.MAKE.

Snapshot refresh groups are generally much easier to maintain
than multiple ungrouped snapshots. Our recommendation is to
group all snapshots so you will be able to use
DBMS_REFRESH.REFRESH.

13.5 Maintenance

In addition to the administrative tasks associated with read-only snapshots,
updateable snapshots require the database administrator to perform a number of
maintenance tasks.

13.5.1 Altering the Master Table

If the structure of theupdateable snapshot's master table changes, the updateable
snapshot must reflect the modification. Since updateable snapshots are registered as
replicated objects, a change to a master table will generate appropriate DDL calls for
all snapshot sites. However, unlike DDL changes in a multi-master replicated
environment that Oracle propagates when you call
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT, the snapshot site must request
the DDL changes from the master. The built-in package procedure
DBMS_REPCAT.REFRESH_SNAPSHOT_REPGROUP makes this request.

Suppose you wish to make the distributor_id column nullable in the table
SPROCKET.DAILY_SALES. You would follow these steps:

323

Oracle Distributed Systems

324

1. Alter the table at the master site, connected to the replication administrator
account at the master site:

2. EXECUTE dbms_repcat.suspend_master_activity('RG_SPROCKET');
3.
4. EXECUTE dbms_repcat.alter_master_repobject(-
5. sname => 'SPROCKET', -
6. oname => 'DAILY_SALES', -
7. type => 'TABLE', -
8. ddl_text => 'ALTER TABLE SPROCKET.DAILY_SALES
9. MODIFY (DISTRIBUTOR_ID NULL)');
10.
11. EXECUTE dbms_repcat.generate_replication_support(-
12. sname => 'SPROCKET', -
13. oname => 'DAILY_SALES', -
14. type => 'TABLE');
15.

EXECUTE dbms_repcat.resume_master_activity('RG_SPROCKET');

16. At the snapshot site, request the changes. Connect to the replication
administrator account at the snapshot site:

17. EXECUTE dbms_repcat.refresh_snapshot_repgroup(-
18. gname => 'RG_SPROCKET'

 refresh_snapshots => TRUE);

Refer to Appendix A, for a complete description of the parameters in the
DBMS_REPCAT.REFRESH_SNAPSHOT_REPGROUP procedure.

If you change the shape of a master table by adding
columns or changing the size of columns, you are
required to drop and re-create the snapshot.

13.5.2 Dropping a Replicated Snapshot Object

You may wish to drop a snapshot, either because it is no longer required at the
snapshot site or because the master table no longer exists. Here we describe how to
approach both scenarios.

13.5.2.1 Master table still exists

Use DBMS_REPCAT.DROP_SNAPSHOT_REPOBJECT to drop a specific snapshot from a
snapshot refresh group or DBMS_REPCAT.DROP_SNAPSHOT_REPGROUP to drop the
entire group. The first example drops an updateable snapshot from a snapshot
refresh group:

EXECUTE dbms_repcat.drop_snapshot_repobject(-
 sname => 'RG_SPROCKET', -
 oname => 'DAILY_SALES', -
 type => 'SNAPSHOT'
 drop_objects => TRUE);

Oracle Distributed Systems

The next example drops the snapshot replication group:

EXCUTE dbms_repcat.drop_snapshot_repgroup(-
 gname => 'RG_SPROCKET', -
 drop_contents => TRUE)'

Refer to Appendix A for a complete description of the parameters to these
procedures.

13.5.2.2 Remastering a snapshot

If a snapshot's master table is part of a multi-master replicated environment, you
can "remaster" your snapshot to any of the other master sites if the original master
becomes unavailable or otherwise irrelevant. The built-in package procedure to use
is DBMS_REPCAT.SWITCH_SNAPSHOT_MASTER:

EXECUTE dbms_repcat.switch_snapshot_master(
 gname => 'RG_SPROCKET' -
 master => 'PHKG.BIGWHEEL.COM);

Note the following when using this procedure:

• You must call this procedure from the snapshot site.
• At the time of the switch, Oracle will perform a complete refresh of the

snapshots in the refresh group using master tables at the new master table.
• You are encouraged to build snapshot logs on the master tables at the new

site if they do not already exist.
• If the original master site is not available when SWITCH_SNAPSHOT_MASTER

is called, the original master site does not receive notification that it is no
longer the master. Therefore, you should purge or drop the master log, if one
exists; if you are using Oracle8, you should call
DBMS_REPCAT.UNREGISTER_SNAPSHOT_REPGROUP at the original master
site.

325

Oracle Distributed Systems

Chapter 14. Procedural Replication

The row-level, or multi-master, component of Oracle's advanced replication facilities
were never intended to support transactions that modify numerous records. Instead,
using procedural replication you can write PL/SQL procedures around such operations
and replicate calls to the procedures instead of to the row-level transactions.

14.1 When to Use Procedural Replication

There is no hard limit on how many records a single transaction can modify in a table
that is undergoing row-level replication, but as a general rule, modifying more than
about 100 records in a single transaction is not advisable, at least not on a regular
basis. Bear in mind that even though you may use a single transaction to modify
multiple records, Oracle queues an RPC for each modified record. Before you know it,
the deferred transaction queue may have thousands of entries.

Typical operations that are ideal candidates for procedural replication include the
following:

For example, a transaction that adjusts the price of all items in a catalog

For example, deleting all records that are older than a certain date

For example, moving sales records from the previous quarter into an archive
table

For example, creating or dropping a user in multiple databases (see the
example in this chapter)

This list is by no means exhaustive. Row-level replication is best suited for
transactions that modify a single record. Consider procedural replication for
everything else.

14.2 How Procedural Replication Works

Procedural replication executes your procedure call in the local database and queues
a call to the procedure in all other master databases in the replication group, using
whatever parameters you pass. This mechanism requires a "wrapper" procedure that
calls the procedure that locally does the queueing. It also requires that the procedure
be registered as a replicated object in all databases in the replication group.

Batch updates

Data purging

Data archiving

Specialty operations

326

Oracle Distributed Systems

327

As an example, suppose that we have a package procedure
USER_ADMIN.CREATE_USER and a replicated wrapper package DEFER_USER_ADMIN.
A call to the wrapper package results in the following chain of events:

1. Call to DEFER_USER_ADMIN.CREATE_USER('SCOTT', 'TIGER').
2. DEFER_USER_ADMIN calls USER_ADMIN.CREATE_USER('SCOTT', 'TIGER').
3. Procedure USER_ADMIN.CREATE_USER executes locally.
4. DEFER_USER_ADMIN builds a remote call to USER_ADMIN.CREATE_USER in

other master databases in the same replication group. The remote call is
placed in the deferred transaction queue.

5. Procedure USER_ADMIN.CREATE_USER executes at remote databases.

Figure 14.1 depicts these events.

Figure 14.1. How procedural replication works

14.3 Creating a Replicated Package Procedure

Creating a replicated package procedure is easy. Simply register an existing package
as a replicated object with DBMS_REPCAT.CREATE_MASTER_REPOBJECT and then
generate replication support for it. I recommend that you pre-create your packages
in all master databases before registering them for replication.

If your replicated procedure modifies a table that is
undergoing row-level replication, you should disable
replication within the procedure by calling
DBMS_REPUTIL.REPLICATION_OFF before any SQL
statements that perform DML on the table. Be sure to
call DBMS_REPUTIL.REPLICATION_ON after these SQL
statements.

Oracle Distributed Systems

328

 call_remote IN char := 'Y');
 procedure CREATEUSER(

To enable replicated calls to the package USERADMIN, we would make these
DBMS_REPCAT calls:

EXECUTE dbms_repcat.create_master_repobject(-
sname => 'SYSTEM', -
oname => 'USER_ADMIN', -
type => 'PACKAGE', -
use_existing_object => TRUE, -
retry => FALSE, -
gname => 'RG_SPROCKET');

EXECUTE dbms_repcat.create_master_repobject(-
sname => 'SYSTEM', -
oname => 'USER_ADMIN', -
type => 'PACKAGE BODY', -
use_existing_object => TRUE, -
retry => FALSE, -
gname => 'RG_SPROCKET');

EXECUTE dbms_repcat.generate_replication_support(-
name => 'SYSTEM', -
oname => 'USER_ADMIN', -
type => 'PACKAGE', -
package_prefix => 'DEFER_');

EXECUTE dbms_repcat.generate_replication_support(-
sname => 'SYSTEM', -
oname => 'USER_ADMIN', -
type => 'PACKAGE BODY', -
package_prefix => 'DEFER_');

Note that we must call the CREATE_MASTER_REPOBJECT and
GENERATE_REPLICATION_SUPPORT packages for the package as well as the
package body.

The net result of these calls is the creation of a wrapper package called
DEFER_USER_ADMIN. This package is the one to invoke if you want calls to
USER_ADMIN to be replicated; it builds the RPCs required to replicate the call. You
can also use the wrapper to execute USER_ADMIN at remote sites only or at the
local site only, because it adds the parameters CALL_LOCAL and CALL_REMOTE to
each procedure within the original package.

The specification for the generated package DEFER_USER_ADMIN is as follows:

package DEFER_USER_ADMIN as
 I_am_a_snapshot CHAR;
 procedure CHANGEPASS(
 IN_USERNAME IN varchar2,
 IN_PASSWORD IN varchar2,
 call_local IN char := 'N',

Oracle Distributed Systems

 IN_USERNAME IN varchar2,
 IN_PASSWORD IN varchar2,
 call_local IN char := 'N',
 call_remote IN char := 'Y');
 procedure DROPUSER(
 IN_USERNAME IN varchar2,
 call_local IN char := 'N',
 call_remote IN char := 'Y');
 procedure GRANTROLE(
 IN_USERNAME IN varchar2,
 IN_ROLE IN varchar2,
 IN_DEFAULTYN IN varchar2,
 call_local IN char := 'N',
 call_remote IN char := 'Y');
 procedure REVOKEROLE(
 IN_USERNAME IN varchar2,
 IN_ROLE IN varchar2,
 call_local IN char := 'N',
 call_remote IN char := 'Y');
end DEFER_USER_ADMIN;

In Oracle8 the wrapper package is owned by the
replication propagator account (typically PROPREP). If
you unregister the propagator account, all wrapper
procedures will be dropped.1

Each of the procedures in DEFER_USER_ADMIN builds a deferred call to the
corresponding call in USER_ADMIN if the call_remote parameter is set to 'Y'. For
example, the procedure DEFER_USER_ADMIN.CREATE_USER builds a deferred call to
USER_ADMIN.CREATE_USER:

procedure "CREATE_USER"(
 "IN_USERNAME" IN VARCHAR2,
 "IN_PASSWORD" IN VARCHAR2,
 call_local IN char := 'N',
 call_remote IN char := 'Y') is
 begin
 select decode(master, 'N', 'Y', 'N')
 into I_am_a_snapshot
 from all_repcat where gname = 'RG_SPROCKET';
 if call_local = 'Y' then
 "SYSTEM"."USER_ADMIN"."CREATE_USER"(
 "IN_USERNAME",
 "IN_PASSWORD");
 end if;
 if call_remote = 'Y' then
 dbms_defer.call('SYSTEM', 'USER_ADMIN', 'CREATE_USER', 2,
'RG_LIVE');
 dbms_defer.varchar2_arg("IN_USERNAME");
 dbms_defer.varchar2_arg("IN_PASSWORD");
 end if;
 end "CRE
ATE_USER";

329

Oracle Distributed Systems

14.4 Restrictions on Procedural Replication

Oracle imposes various restrictions on replicated procedures, as follows:

• All replicated procedures must be package procedures.
• Replication of functions is not supported.
• All procedure parameters must be IN parameters; OUT and IN OUT

parameters are not supported.
• Parameters of type BOOLEAN are not supported.
• Oracle supplies no conflict resolution techniques for procedural replication.
• Replicated procedures should not manipulate remote data.
• All replication groups must be in NORMAL mode when making a replicated

procedure call (i.e., no replication groups can be quiesced).

14.5 An Example

Since data dictionary tables cannot be replicated, the DBA must perform various
administrative tasks in multiple sites. One particular task that I have found to be a
needless nuisance is user administration, so I have created the package USERADMIN
to replicate calls to create and drop users and to grant and revoke roles. The scripts
to create the package are:

Creates the sequence SEQ_AUDIT_ADMIN which is used to populate the ID
field in the table AUDIT_ADMIN.

Creates the table AUDIT_ADMIN, which logs usage of the USERADMIN
package.

Calls the scripts cr_seq_audit_admin.sql and cr_audit_admin.sql and creates
the package USERADMIN. This script should be run by user SYSTEM.

These scripts are included here .

14.5.1 cr_seq_audit_admin.sql

-- Filename: cr_seq_audit_admin.sql
-- Purpose: Creates SEQ_AUDIT_ADMIN used by USER_ADMIN procedure
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 5-Mar-1998

set echo on

cr_seq_audit_admin.sql

cr_audit_admin.sql

pl_useradmin.sql

330

Oracle Distributed Systems

331

ON audit_admin
FOR EACH ROW

set termout on
spool seq_audit_admin.log

DROP PUBLIC SYNONYM seq_audit_admin
/
DROP SEQUENCE seq_audit_admin
/
CREATE SEQUENCE seq_audit_admin
START WITH 1
/
CREATE PUBLIC SYNONYM seq_audit_admin FOR seq_audit_admin
/

spool off

14.5.2 cr_audit_admin.sql

-- Filename: cr_audit_admin.sql
-- Purpose: Creates table to be used by USER_ADMIN procedure.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 5-Mar-1998

set echo on
set termout on
spool audit_admin.log

DROP PUBLIC SYNONYM audit_admin
/
DROP TABLE audit_admin CASCADE CONSTRAINTS
/
CREATE TABLE audit_admin (
audit_id NUMBER(10) NOT NULL,
procname VARCHAR2(12),
info VARCHAR2(40),
errornum NUMBER(6),
audit_user VARCHAR2(30),
audit_date DATE
)
/

CREATE PUBLIC SYNONYM audit_admin FOR audit_admin
/

ALTER TABLE audit_admin ADD (
CONSTRAINT pk_audit_admin
PRIMARY KEY (audit_id)
)
/

CREATE OR REPLACE TRIGGER t_brr_iu_audit_admin
BEFORE INSERT OR UPDATE

Oracle Distributed Systems

332

should
-- NOT).

BEGIN
 :new.audit_user := USER;
 :new.audit_date := SYSDATE;
END;
/

spool off

14.5.3 pl_useradmin.sql

-- Filename: pl_useradmin.sql
-- Purpose: Utility to perform user administration on multiple
databases.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 5-Mar-1998

set echo on
set termout on

@@cr_seq_audit_admin
@@cr_audit_admin

spool useradmin.log

DROP PUBLIC SYNONYM UserAdmin
/

14.5.4 rep_useradmin.sql
CREATE OR REPLACE PACKAGE UserAdmin IS
 PROCEDURE CreateUser(IN_Username VARCHAR2,
 IN_Password VARCHAR2);
 PROCEDURE DropUser(IN_Username VARCHAR2);
 PROCEDURE ChangePass(IN_Username VARCHAR2,
 IN_Password VARCHAR2);
 PROCEDURE GrantRole(IN_Username VARCHAR2,
 IN_Role VARCHAR2,
 IN_DefaultYN VARCHAR2 DEFAULT 'N');
 PROCEDURE RevokeRole(IN_Username VARCHAR2,
 IN_Role VARCHAR2);
END UserAdmin;
/

CREATE OR REPLACE PACKAGE BODY UserAdmin IS

-- Note: This package should be owned by SYSTEM because it must be
owned
-- by an id that has CREATE SESSION privileges (schema IDs

Oracle Distributed Systems

333

 END IF;

-- Also, SYS must make the following explicit grants to SYSTEM:
-- GRANT ALTER USER TO system
-- GRANT CREATE USER TO system
-- GRANT CREATE SESSION TO system WITH ADMIN OPTION
-- GRANT DROP USER TO system
-- GRANT GRANT ANY ROLE TO system
-- GRANT SELECT ON DBA_ROLE_PRIVS TO system
-- GRANT SELECT ON DBA_SEGMENTS TO system
-- Optional Grants:
-- GRANT SELECT ON dba_role_privs TO access_admin
-- GRANT SELECT ON dba_roles TO access_admin

PROCEDURE AuditUserAdmin (IN_Proc VARCHAR2,
 IN_Info VARCHAR2 DEFAULT NULL,
 IN_Error NUMBER DEFAULT NULL) IS
BEGIN
 INSERT INTO audit_admin
 (audit_id,
 procname,
 info,
 errornum,
 audit_user,
 audit_date
)
 VALUES (seq_audit_admin.nextval,
 IN_Proc,
 IN_info,
 IN_Error,
 user,
 sysdate
);

 COMMIT;
END AuditUserAdmin;

-- PROCEDURE CreateUser creates a user and grants CREATE SESSION to
him/her

PROCEDURE CreateUser(IN_Username VARCHAR2, IN_Password VARCHAR2) IS
hCursor NUMBER;
vProcName audit_admin.procname%TYPE := 'CreateUser';
vInfo audit_admin.info%TYPE := NULL;
BadPassword EXCEPTION;
UserExists EXCEPTION;
NameTooLong EXCEPTION;

BEGIN
 IF UPPER(IN_Username) = UPPER(IN_Password)
 THEN
 RAISE BadPassword;

Oracle Distributed Systems

334

 RAISE UserIsDBA;
 END IF;

 IF length(IN_Username) > 8
 THEN
 RAISE NameTooLong;
 END IF;

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'CREATE USER ' || IN_Username ||
 ' IDENTIFIED BY ' || IN_Password ||
 ' DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp',
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'GRANT CREATE SESSION TO ' || IN_Username,
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 vInfo := 'Created ' || IN_Username || ' Password ' || IN_Password;
 AuditUserAdmin(vProcName, vInfo);

EXCEPTION
 WHEN NameTooLong THEN
 vInfo := '!Bad Username: ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Username must be 8 chars or less.');
 RAISE_APPLICATION_ERROR(-20010, 'CreateUser:Username too long');
 WHEN BadPassword THEN
 vInfo := '!Bad Password for ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Username and Password must differ.');
 RAISE_APPLICATION_ERROR(-20020, 'CreateUser:Username=Password');
 WHEN OTHERS THEN
 vInfo := '!Create User ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo , sqlcode);
 dbms_output.put_line('error ' || sqlerrm);
 RAISE_APPLICATION_ERROR(-20030, 'CreateUser:Error ' || sqlerrm);
END CreateUser;

-- PROCEDURE DropUser drops a user.

PROCEDURE DropUser(IN_Username VARCHAR2) IS
hCursor NUMBER;
vProcName audit_admin.procname%TYPE := 'DropUser';
vInfo audit_admin.info%TYPE := NULL;
vSegCount NUMBER;
UserHasObjects EXCEPTION;
UserIsDBA EXCEPTION;
BEGIN
 IF upper(IN_Username) IN ('SYS', 'SYSTEM')
 THEN

Oracle Distributed Systems

335

 IF UPPER(IN_Username) = UPPER(IN_Password)
 THEN

 SELECT count(*)
 INTO vSegCount
 FROM dba_segments
 WHERE owner = UPPER(IN_Username);

 IF vSegCount > 0
 THEN
 RAISE UserHasObjects;
 END IF;

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'DROP USER ' || IN_Username || ' CASCADE',
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 vInfo := 'Dropped ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);

EXCEPTION
 WHEN UserIsDBA THEN
 vInfo := '!DROP ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Cannot drop SYS or SYSTEM accounts.');
 RAISE_APPLICATION_ERROR(-2110, 'DropUser: User is DBA');
 WHEN UserHasObjects THEN
 vInfo := '!DROP ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 RAISE_APPLICATION_ERROR(-20120, 'DropUser: User owns objects');
 WHEN OTHERS THEN
 vInfo := '!DROP ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo, sqlcode);
 dbms_output.put_line('error ' || sqlerrm);
 RAISE_APPLICATION_ERROR(-20130, 'DropUser: Error ' || sqlerrm);
END DropUser;

-- PROCEDURE ChangePass changes a user's password.

PROCEDURE ChangePass(IN_Username VARCHAR2, IN_Password VARCHAR2) IS
hCursor NUMBER;
vProcName audit_admin.procname%TYPE := 'ChangePass';
vInfo audit_admin.info%TYPE := NULL;
BadPassword EXCEPTION;
PassTooLong EXCEPTION;
UserIsDBA EXCEPTION;
BEGIN
 IF upper(IN_Username) IN ('SYS', 'SYSTEM')
 THEN
 RAISE UserIsDBA;
 END IF;

Oracle Distributed Systems

336

vProcName audit_admin.procname%TYPE := 'GrantRole';
vInfo audit_admin.info%TYPE := NULL;

 RAISE BadPassword;
 END IF;

 IF length(IN_Password) > 30
 THEN
 RAISE PassTooLong;
 END IF;

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'ALTER USER ' || IN_Username ||
 ' IDENTIFIED BY ' || IN_Password,
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 vInfo := 'Changed ' || IN_Username || ' Password ' || IN_Password;
 AuditUserAdmin(vProcName, vInfo);

EXCEPTION
 WHEN UserIsDBA THEN
 vInfo := '!DROP ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Cannot change SYS or SYSTEM passwords.');
 RAISE_APPLICATION_ERROR(-20210, 'ChangePass:Cannot change DBA');
 WHEN PassTooLong THEN
 vInfo := '!Bad Username: ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Password must be 30 chars or less.');
 RAISE_APPLICATION_ERROR(-20220, 'ChangePass:password>30 chars');
 WHEN BadPassword THEN
 vInfo := '!Bad Password for ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Username and Password must differ.');
 RAISE_APPLICATION_ERROR(-20230, 'ChangePass:username=password');
 WHEN OTHERS THEN
 vInfo := '!Create User ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo , sqlcode);
 RAISE_APPLICATION_ERROR(-20240, 'ChangePass:Error ' || sqlerrm);
END ChangePass;

-- PROCEDURE GrantRole grants roles.

PROCEDURE GrantRole(IN_Username VARCHAR2,
 IN_Role VARCHAR2,
 IN_DefaultYN VARCHAR2 DEFAULT 'N') IS
CURSOR cDefRole IS
 SELECT granted_role
 FROM dba_role_privs
 WHERE grantee = UPPER(IN_Username)
 AND default_role = 'YES';

hCursor NUMBER;

Oracle Distributed Systems

337

 'GRANT ' || IN_Role || ' TO '|| IN_Username,
 dbms_sql.v7);

vRoleStr VARCHAR2(2000) := NULL;
vDefRoleCount NUMBER := 0;
vHasDefRoles BOOLEAN := FALSE;
vRoleCheck NUMBER := 0;
UserIsDBA EXCEPTION;
NoPrivRoles EXCEPTION;
RoleAlready EXCEPTION;
BEGIN
 vInfo := 'Grant ' || IN_Role || ' to ' || IN_Username;

 IF UPPER(IN_Username) IN ('SYS', 'SYSTEM')
 THEN
 RAISE UserIsDBA;
 END IF;

 IF UPPER(IN_Role) IN ('DBA', 'CONNECT', 'RESOURCE')
 THEN
 RAISE NoPrivRoles;
 END IF;

 SELECT count(*)
 INTO vRoleCheck
 FROM dba_role_privs
 WHERE grantee = UPPER(IN_Username)
 AND granted_role = UPPER(IN_Role);

 IF vRoleCheck > 0
 THEN
 RAISE RoleAlready;
 END IF;

 FOR rDefRole IN cDefRole LOOP
 vRoleStr := vRoleStr || rDefRole.granted_role || ',';
 vDefRoleCount := vDefRoleCount + 1;
 END LOOP;

 IF (vDefRoleCount > 0) OR (IN_DefaultYN = 'Y')
 THEN
 vHasDefRoles := TRUE;
 IF (vDefRoleCount > 0) AND (IN_DefaultYN = 'N')
 THEN
 vRoleStr := substr(vRoleStr, 1, length(vRoleStr) - 1);
 ELSIF (vDefRoleCount > 0) AND (IN_DefaultYN = 'Y')
 THEN
 vRoleStr := vRoleStr || ' ' || IN_Role;
 ELSIF (vDefRoleCount = 0) AND (IN_DefaultYN = 'Y')
 THEN
 vRoleStr := IN_Role;
 END IF;
 END IF;

-- First grant the new role --

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse (hCursor,

Oracle Distributed Systems

338

PROCEDURE RevokeRole(IN_Username VARCHAR2, IN_Role VARCHAR2) IS
hCursor NUMBER;

 dbms_sql.close_cursor(hCursor);

-- Now set user to no default roles --

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse (hCursor,
 'ALTER USER ' || IN_Username || ' DEFAULT ROLE NONE',
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

-- Now grant any default roles --

 IF vHasDefRoles = TRUE
 THEN
 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'ALTER USER ' ||IN_Username||' DEFAULT ROLE '||vRoleStr,
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 END IF;

 AuditUserAdmin(vProcName, vInfo);

EXCEPTION
 WHEN UserIsDBA THEN
 vInfo := '!' || vInfo;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Cannot grant to SYS or SYSTEM accounts.');
 RAISE_APPLICATION_ERROR(-2410, 'GrantRole: Cannot grant SYS');
 WHEN RoleAlready THEN
 vInfo := '!' || vInfo;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line(IN_Username ||' already has ' || IN_Role);
 RAISE_APPLICATION_ERROR(-20420, 'GrantRole:Role already grntd');
 WHEN NoPrivRoles THEN
 vInfo := '!' || vInfo;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Not authorized to grant ' || IN_Role);
 RAISE_APPLICATION_ERROR(-20430, 'GrantRole: Cannot grant DBA');
 WHEN OTHERS THEN
 vInfo := '!' || vInfo;
 AuditUserAdmin(vProcName, vInfo, sqlcode);
 dbms_output.put_line('error ' || sqlerrm);
 RAISE_APPLICATION_ERROR(-20440, 'GrantRole: Error ' || sqlerrm);

END GrantRole;

-- PROCEDURE RevokeRole revokes roles.

Oracle Distributed Systems

vProcName audit_admin.procname%TYPE := 'RevokeRole';
vInfo audit_admin.info%TYPE := NULL;
UserIsDBA EXCEPTION;

BEGIN
 IF UPPER(IN_Username) IN ('SYS', 'SYSTEM')
 THEN
 RAISE UserIsDBA;
 END IF;

 hCursor := dbms_sql.open_cursor;
 dbms_sql.parse(hCursor,
 'REVOKE ' || IN_Role || ' FROM ' || IN_Username,
 dbms_sql.v7);
 dbms_sql.close_cursor(hCursor);

 vInfo := 'Revoke ' || IN_Role || ' from ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);

EXCEPTION
 WHEN UserIsDBA THEN
 vInfo := '!Revoke ' || IN_Role || ' FROM ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo);
 dbms_output.put_line('Cannot revoke from SYS or SYSTEM.');
 RAISE_APPLICATION_ERROR(-20510, 'RevokeRole:Cannot revoke SYS');
 WHEN OTHERS THEN
 vInfo := '!Revoke ' || IN_Role || ' FROM ' || IN_Username;
 AuditUserAdmin(vProcName, vInfo, sqlcode);
 dbms_output.put_line('error ' || sqlerrm);
 RAISE_APPLICATION_ERROR(-20520, 'RevokeRole:Error ' || sqlerrm);

END RevokeRole;

END UserAdmin;
/

CREATE PUBLIC SYNONYM UserAdmin FOR UserAdmin
/
CREATE ROLE access_admin
/
GRANT EXECUTE ON useradmin TO access_admin
/

spool off

339

Oracle Distributed Systems

340

Oracle Distributed Systems

Chapter 15. Conflict Avoidance and
Resolution Techniques

Data integrity and consistency are perhaps the most significant challenges for the
administrator of an advanced replication environment. Since users can perform DML
on a given table in multiple Oracle instances, the administrator's responsibility
expands from guaranteeing data integrity locally to ensuring data convergence
globally. For example, if two users at two sites update an employee's salary to two
different values, how do we determine which value to accept and how do we ensure
that the correct value is propagated to all sites that have the replicated table? It can
be done, and Oracle provides a variety of built-in conflict resolution handlers, but to
use these techniques successfully, developers and administrators must understand
and anticipate all likely scenarios that would result in conflicts. They also must
understand how Oracle replicates DML and consider the limitations of the conflict
handlers.

15.1 Data Integrity Versus Data Convergence

Data integrity refers to data that is consistent with the constraints that are defined
for it. These constraints may be referential integrity constraints. For example, the
value of the Po_Num field for records in table LINE_ITEMS might be restricted to
values of Po_Num that exist in the PURCHASE_ORDERS table. Data also may be
restricted to ranges that are independent of other tables; a gender field may be
restricted to the values M and F. Other examples of integrity constraints include NOT
NULL fields and UNIQUE constraints.

If you design a schema using the constraint-checking functionality that is built into
the database (primary keys, foreign keys, check constraints, etc.), you are
guaranteed that the data within that schema will always adhere to the rules you
have defined. If your schema exists in only one database instance, your concerns
about data integrity should be few, and your concerns about data convergence
should be none.

However, if you are responsible for a replicated environment, you must ensure that
data is consistent within and among database instances. Data convergence refers to
the scenario in which all replicated tables contain identical data that is consistent
with the constraints defined in each database. Oracle does not provide a means to
enforce referential integrity among databases, nor should it; the model of advanced
replication is that local transactions succeed regardless of problems that may occur
at other sites. Therefore, DML that results in a conflict at the destination site must be
resolved at the destination site. Since the objective is for data to converge, the
conflict resolution could ultimately result in overwriting the change at the originating
site. For example, an optimistic user of an order entry system may process an order
and update its status to SHIPPED in her database, which is replicated to the order
fulfillment database. The user at the order fulfillment site sees that the item is out of
stock and updates the status to BACKORDERED. Ultimately, the order should have a
status of BACKORDERED in both databases.

341

Oracle Distributed Systems

15.2 Applications That Avoid Conflicts

Ideally, applications never have conflicts, certainly never any unresolved conflicts.
Although it is highly unlikely that any significant application can avoid conflicts
entirely, such conflicts can certainly be kept to a minimum by observing some
common sense and by taking advantage of the techniques that are available with the
advanced replication facilities. The time you spend during the design phase to make
your application "replication ready" will save considerable frustration later.

15.2.1 Normalize

Yes, once again, somebody is telling you to normalize your schema. In addition to
the benefits of normalization that are extolled elsewhere, a normalized schema is far
easier to replicate. Why? Consider a schema that is in first normal form (1NF)—that
is, its tables contain redundant data. For example, a CUSTOMER table might have a
column company_name. If this table contains 1000 records for customers who work
for Acme Tire and Rubber, then 1000 records will have to be updated when Acme
Tire and Rubber changes its name to Acme Tire and Rubber and Lawn Furniture.
Since every update is a potential conflict, updates should be kept to a minimum. In
addition, if a field such as company_name appears in numerous tables, you will have
to devote significant effort to devising methods to ensure that an update to the field
in one table affects the appropriate updates in the other tables not only locally, but
also globally.

A more practical concern with a denormalized schema is that such schemas are
typically characterized by tables with many (i.e., tens of) columns. Since replicated
DML must compare the old and new values of every column of every changed row,
performance will suffer.

An unfortunate myth among database designers is that normalization reduces
performance. The thinking is that since a denormalization can lead to a performance
gain, any steps in the opposite direction must lead to performance losses. This
conclusion is far from accurate; do not denormalize for performance without the
metrics to justify it.

15.2.2 Designate a Governing Column for Column
Groups

Replicated applications invariably use built-in resolution techniques based on column
groups. To make column groups work most efficiently, you should design tables in
such a way that one column is the "governing" column for each group. For example,
in a table with two column groups, the timestamp field might govern a Latest
Timestamp resolution method that is associated with one group, while a global_name
field governs the second group whose resolution method is Site Priority. It is quite
conceivable that a table could have two column groups which both use Latest
Timestamp as a resolution method, which would mean having two timestamp fields
in the table (with different names, of course).

342

The main point to remember is that you must have a governing field for each column
group that uses any of the following resolution methods:

Oracle Distributed Systems

• Earliest/Latest Timestamp
• Priority Group
• Site Priority

15.2.3 Standardize on a Time Zone

If you plan to use timestamps to resolve conflicts, it is vital that the timestamps from
the various sites participating in replication are based on the same time zone;
timestamps in the Oracle RDBMS do not include a time zone component. Therefore,
you are strongly encouraged to put your database servers on Greenwich Mean Time
(GMT) or some other mutually acceptable time zone, preferably one that does not
observe daylight savings time. This is the only way to guarantee that timestamps are
performed correctly.

Of course, there is some inconvenience if your application contains data that is time
critical, such as a time and attendance system. However, it is far simpler to have the
application perform time arithmetic for display and reporting purposes than to
rewrite the timestamp conflict resolution routines to calculate the time differences
among your sites.

15.2.4 Identify Workflow

The workflow of a replicated application should be well defined and well understood.
The more often a row is updated during its lifetime, the more challenging it is for
multiple sites to converge on the "correct" values for that row, especially if multiple
sites are able to perform updates simultaneously.

To the greatest extent possible, the application should associate certain types of
activities with certain sites. For example, updates associated with credit card
information should occur at the billing location, and updates associated with
shipments should happen at the shipping location. Such restrictions are known as
workflow partitioning or dynamic ownership.

Workflow partitioning is possible only if it is designed into the application from the
beginning; imposing it later is generally not an option. This approach avoids conflicts
by associating data with a certain site when it is in a certain state (i.e., when a
specific WHERE clause is true). In the preceding example, the billing location owns
rows WHERE location = 'BILLING'. The application does not allow sites to update
rows unless they own them.

Ownership of the row can change but only if the site that currently owns the row
changes it or "pushes" it to the next site. The classic example is the manufacturing
application in which orders with a status of ORDERED can be modified only at the
order entry site, which updates records to SHIP. Then ownership transfers to the
order fulfillment site, which updates the status to BILL, thereby transferring
ownership to the accounts receivable site.

You must designate a column to hold status values that determine row ownership.
Any conflicts that arise in such an application can be resolved with the Priority Group

343

method, as we shall see later.

Oracle Distributed Systems

15.2.5 Consider Token Passing

If the dynamic data ownership model does not match your application's business
rules, you can achieve similar results by using the technique known as token passing.
As with the workflow partitioning method, token passing associates row ownership
with a single site at any one time. But unlike workflow partitioning, token passing
allows any site to take ownership of the row.

You must add two columns to any table that is to use token passing: epoch and
global_name. The epoch field holds a number that is increased whenever ownership
of the row changes, and the global_name field holds the global name of the database
that owns the row for that value of epoch. The current owner of the row is the site
associated with the highest value of the epoch field. To obtain ownership of a row,
your application must:

1. Find the highest value in the epoch column and the associated global_name
for that row.

2. Lock the row.
3. Update the global_name of the row to the local global name and perform the

same update at the previous owner site. Turn replication off when updating
the previous owner site by calling the DBMS_REPUTIL.REPLICATION_OFF
procedure.

4. Turn replication off at the local site and update the row with data from the
previous owner site.

5. Turn replication back on (DBMS_REPUTIL.REPLICATION_ON), increment the
epoch field at the local site, and perform the rest of the intended update.

In order for token passing to work, you must include a Maximum Value resolution
handler so that updates with the highest epoch value always take precedence.

15.2.6 Perform Strategic Administration

Other techniques for avoiding conflicts include the judicious timing of RPC pushes
and the consistent use of secondary resolution methods to handle unusual or
unforeseen situations. Every replicated table should have at least two conflict
handlers. Although it is generally not advisable to push transactions more than once
every five minutes or so, the longer you wait, the more likely it is that conflicts will
arise when you finally perform the push, since users at the destination sites have
been performing their own updates for a longer time.

You also should implement automated notification mechanisms so that you receive a
page or email to alert you to conflicts that have managed to escape resolution, as
well as any other exceptions.

15.3 Types of Conflicts Detected

Oracle detects conflicts based on PL/SQL exceptions, as summarized in Table 15.1,
only at the destination site. Note that conflict detection does not imply conflict

344

resolution.

Oracle Distributed Systems

Table 15.1. Detectable PL/SQL Exceptions
Type of DML Potential Conflicts

INSERT DUP_VAL_ON_INDEX

UPDATE

SQL%ROWCOUNT = 0 (NO_DATA_FOUND)

SQL%ROWCOUNT > 1 (TOO_MANY_ROWS)

DUP_VAL_ON_INDEX

DELETE
SQL%ROWCOUNT = 0 (NO_DATA_FOUND)

SQL%ROWCOUNT > 1 (TOO_MANY_ROWS)

The situations for which Oracle does not resolve conflicts include:

• Deletes that raise NO_DATA_FOUND errors (even though they are detected)
• Deletes that raise TOO_MANY_ROWS errors
• Use of NULL values in columns used for conflict resolution
• DML that violates referential integrity constraints
• Conflicts arising from procedural replication

Why not? A brief analysis of Oracle's implementation reveals why these restrictions
must exist.

15.3.1 Limitations of Delete Conflict Resolution

Because of the difficulties of processing delete conflicts, Oracle's recommendation is
to design replicated applications to flag records as deleted. Include a STATUS column
in the table and update it to D, for example, instead of actually deleting the row. This
way, you can avoid all potential delete conflicts and avoid the task of writing your
own delete conflict handling procedure. You can perform the actual delete at
scheduled intervals using procedural replication. If this is not an option for your
application, then consider the following alternatives.

If a row deleted at one site maps to more than one row at the destination site (i.e.,
the delete raises TOO_MANY_ROWS at the destination site), there is no general
algorithm that can determine which of the rows should really be deleted at the
destination site. Although Oracle detects the condition, it is not possible to pass it to
an exception handler without modifying the code generated from the
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT procedure. Remember, though,
that all replicated tables must have primary keys. Therefore, if such a conflict ever
did arise, it would indicate that the primary key on the table has been dropped or
disabled, which is certainly an avoidable scenario.

The scenario of a delete that cannot find the matching row at the destination site,
however, is quite plausible and should be anticipated. The
DBMS_REPCAT.ADD_DELETE_RESOLUTION procedure associates a user-defined

345

conflict handler package with deletes that raise NO_DATA_FOUND. Again, there is no
general algorithm to determine what to do if the row to be deleted does not exist at

Oracle Distributed Systems

346

 INTO vRowCount
 FROM dept

the destination site. This could happen if the row were deleted or updated at the
destination site. Should it be deleted from the originating site? Perhaps, but that is a
decision for you to make during the design phase. But no matter what, any
application that allows deletes from replicated tables must include a conflict handler
package that resolves deletes that raise a NO_DATA_FOUND exception because
Oracle will attempt to invoke it.

15.3.1.1 Defining a delete conflict handler

You should define a conflict handler for every table for which your application allows
deletes. Remember, this conflict handler will be invoked only if the delete raises the
NO_DATA_FOUND exception—that is, the row to be deleted does not exist at the
destination site. A reasonable course of action under these circumstances is to insert
the row into a log table, which the DBA can review.

Suppose you are replicating the table DEPT, as defined in the following table:

Column Name Type
deptno NUMBER(2)

dname VARCHAR2(13)

loc VARCHAR2(14)

You would write a function that inserts the record into table DEPT_DEL_ERR, as
defined in the next table:

Column Name Type
deptno NUMBER(2)

dname VARCHAR2(13)

loc VARCHAR2(14)

timestamp DATE

username VARCHAR2(30)

The function is defined as follows:

CREATE OR REPLACE FUNCTION resolve_dept_delete(
 io_deptno IN OUT dept.deptno%TYPE,
 io_dname IN OUT dept.dname%TYPE,
 io_loc IN OUT dept.loc%TYPE,
 io_ignore_discard_flag IN OUT BOOLEAN)
RETURN BOOLEAN IS
vRowCount NUMBER := 0;

BEGIN

-- See if the row exists based on the primary key (deptno).
-- This finds rows that have been updated at this site.

 SELECT count(*)

Oracle Distributed Systems

347

EXECUTE dbms_repcat.add_delete_resolution(-
 sname => 'CDYE', -

 WHERE deptno = io_deptno;

-- If the record exists, delete it, and return success; otherwise, put
-- the info from the passed parameters row in the DEPT_DEL_ERR table.

 IF vRowCount = 1 THEN
 DELETE FROM dept
 WHERE deptno = io_deptno;
 ELSE
 INSERT INTO dept_del_err(deptno,
 dname,
 loc,
 timestamp,
 username)

 VALUES (io_deptno,
 io_dname,
 io_loc,
 sysdate,
 user);
 END IF;

 COMMIT;

 RETURN (TRUE);
END resolve_dept_delete;
/

Note that the parameters to this function call are the columns of the DEPT table and
that they are all IN OUT parameters; delete handlers must accept all columns as
parameters, and they all must be in IN OUT mode. You will also notice that this
function always returns TRUE. There is no way that deletes on this table will fail to
replicate, but the DBA still has to monitor the DEPT_DEL_ERR table for errors.
Obviously, your application's requirements may dictate different behavior.

To designate RESOLVE_DEPT_DELETE as the handler for the DEPT table, you must
quiesce the replication group:

EXECUTE dbms_repcat.suspend_master_activity('MOSS')

The required procedure calls to make RESOLVE_DEPT_DELETE the delete conflict
handler for the DEPT table are as follows:

-- Make RESOLVE_DEPT_DELETE a replicated object.
EXECUTE dbms_repcat.create_master_repobject(-
 sname => 'CDYE', -
 oname => 'RESOLVE_DEPT_DELETE',-
 type => 'FUNCTION', -
 use_existing_object => FALSE, -
 gname => 'CDYE')

-- Designate RESOLVE_DEPT_DELETE as the DELETE handler for DEPT.

Oracle Distributed Systems

 oname => 'DEPT', -
 sequence_no => 1, -
 parameter_column_name => 'DEPTNO, DNAME, LOC', -
 function_name => 'RESOLVE_DEPT_DELETE', -
 comment => 'Added on '|| sysdate)

-- Generate replication support for the function.
EXECUTE dbms_repcat.generate_replication_package(-
 sname => 'CDYE', -
 oname => 'RESOLVE_DEPT_DELETE')

Because of the complications of avoiding and resolving delete conflicts, the best
policy is not to perform deletes at all. Instead, include a STATUS field in your
replicated tables that designates a row as deleted. This way, your application only
inserts and updates records. Conflict avoidance and resolution for inserts and
updates are significantly easier to implement.

15.3.2 Limitations of NULL Values in Conflict
Resolution

When you designate one of the built-in conflict resolution methods with your table,
such as Site Priority, Oracle depends on the values in the relevant columns and
assumes that these columns are NOT NULL. If, for example, the global_name field
used for Site Priority is NULL when the conflict handler executes, the conflict will go
unresolved and Oracle will make an entry in the DEFERROR data dictionary view. The
reason for this restriction should be rather obvious: NULL values cannot be used in
comparisons!

The moral is that you should design your replicated tables so that columns used in
conflict resolution always have the NOT NULL attribute.

15.3.3 Referential Integrity Violations and Conflict
Resolution

As discussed earlier, there is a distinction between data integrity and data
convergence, and the means of ensuring both are also distinct. Data integrity is
enforced by mechanisms that are built into the RDBMS, such as referential integrity
constraints. Unlike data integrity, which Oracle guarantees if you use these
mechanisms, there is no mechanism to guarantee data convergence.

Integrity constraints are neither designed for nor intended to enforce data integrity
between databases. And it is possible that a replicated transaction may violate an
integrity constraint at the destination database, even though it was permitted locally.

The best policy is to maintain identical integrity constraints among all sites
participating in replication and to replicate tables whose primary keys are foreign
keys of any replicated table. For example, if you have a COUNTRY table whose
primary key (e.g., country_code) is a foreign key to the country_code in your
replicated ADDRESS table, then you should also replicate the COUNTRY table. Do not

348

be fooled by claims such as "The COUNTRY table never changes; we don't need to

Oracle Distributed Systems

349

 10 dbms_reputil.replication_off;
 11 end if;

worry about replicating it." Such assumptions invariably lead to conflicts, which are
quite easy to avoid.

15.3.4 Conflicts Arising from Procedural Replication

Oracle does not provide any means of resolving conflicts that arise from procedural
replication. All resolution methods are for row-level replication. Therefore, any
replicated procedures you write must include logic to detect and resolve conflicts.

To avoid conflicts in your replicated procedures, Oracle Corporation recommends
these guidelines:

• Disable row-level replication in the procedure by calling the
DBMS_REPUTIL.REPLICATION_OFF procedure. Be sure to re-enable
replication by calling DBMS_REPUTIL.REPLICATION_ON before the procedure
exits.

• Do not call more than one replicated procedure at a time.
• Replicated procedures must be within a package that does not contain any

functions.
• Do not reference remote objects in a replicated procedure.
• Avoid references to values determined locally, such as SYSDATE.
• If you are using token passing, do not change the ownership of rows.

15.4 How Oracle Detects and Resolves Conflicts

The package procedure table_name$RP is the package that detects conflicts as it
applies DML at the destination site. Generating replication support for a table creates
this package. As an example, generating replication support for the table DEPT
produces the package DEPT$RP (shown in Example 15.1), which contains a
procedure for each of the three types of DML: REP_DELETE, REP_INSERT, and
REP_UPDATE. Each of these procedures passes exceptions on to the appropriate
conflict resolution handler.

The boldfaced areas show how exceptions are passed to conflict handlers. As you can
see, relatively few exceptions have a chance to be resolved: NO_DATA_FOUND for
deletes (line 25) and updates (line 135) and DUP_VAL_ON_INDEX for inserts (line 68)
and updates (line 155). Any other exceptions, such as VALUE_ERROR, result in
entries in the DEFERROR data dictionary view.

Example 15.1. Detecting Conflicts with DEPT$RP
1 package body "DEPT$RP" as
 2 procedure rep_delete(
 3 "DEPTNO1_o" IN NUMBER,
 4 "DNAME2_o" IN VARCHAR2,
 5 "LOC3_o" IN VARCHAR2,
 6 site_name IN VARCHAR2,
 7 propagation_flag IN CHAR) is
 8 begin
 9 if propagation_flag = 'N' then

Oracle Distributed Systems

350

 65 "LOC3_n");
 66 dbms_reputil.rep_end;

 12 dbms_reputil.rep_begin;
 13 dbms_reputil.global_name := site_name;
 14 delete from "DEPT"
 15 where ("DEPTNO1_o" = "DEPTNO"
 16 and (("DNAME2_o" = "DNAME") or ("DNAME2_o" is NULL and "DNAME"
is NULL))
 17 and (("LOC3_o" = "LOC") or ("LOC3_o" is NULL and "LOC" is
NULL)));
 18 if sql%rowcount = 0 then
 19 raise no_data_found;
 20 elsif sql%rowcount > 1 then
 21 raise too_many_rows;
 22 end if;
 23 dbms_reputil.rep_end;
 24 exception
 25 when no_data_found then
 26 begin
 27 if not "DEPT$RR".delete_conflict_handler(
 28 "DEPTNO1_o",
 29 "DNAME2_o",
 30 "LOC3_o",
 31 site_name,
 32 propagation_flag) then
 33 dbms_reputil.rep_end;
 34 raise;
 35 end if;
 36 dbms_reputil.rep_end;
 37 exception
 38 when others then
 39 dbms_reputil.rep_end;
 40 raise;
 41 end;
 42 when others then
 43 dbms_reputil.rep_end;
 44 raise;
 45 end rep_delete;
 46 procedure rep_insert(
 47 "DEPTNO1_n" IN NUMBER,
 48 "DNAME2_n" IN VARCHAR2,
 49 "LOC3_n" IN VARCHAR2,
 50 site_name IN VARCHAR2,
 51 propagation_flag IN CHAR) is
 52 begin
 53 if propagation_flag = 'N' then
 54 dbms_reputil.replication_off;
 55 end if;
 56 dbms_reputil.rep_begin;
 57 dbms_reputil.global_name := site_name;
 58 insert into "DEPT" (
 59 "DEPTNO",
 60 "DNAME",
 61 "LOC")
 62 values (
 63 "DEPTNO1_n",
 64 "DNAME2_n",

Oracle Distributed Systems

351

122 (1 = 1 and
123 ("DNAME2_o" = "DNAME" or

 67 exception
 68 when dup_val_on_index then
 69 begin
 70 if not "DEPT$RR".unique_conflict_insert_handler(
 71 "DEPTNO1_n",
 72 "DNAME2_n",
 73 "LOC3_n",
 74 site_name,
 75 propagation_flag,
 76 SQLERRM) then
 77 dbms_reputil.rep_end;
 78 raise;
 79 end if;
 80 dbms_reputil.rep_end;
 81 exception
 82 when others then
 83 dbms_reputil.rep_end;
 84 raise;
 85 end;
 86 when others then
 87 dbms_reputil.rep_end;
 88 raise;
 89 end rep_insert;
 90 procedure rep_update(
 91 "DEPTNO1_o" IN NUMBER,
 92 "DEPTNO1_n" IN NUMBER,
 93 "DNAME2_o" IN VARCHAR2,
 94 "DNAME2_n" IN VARCHAR2,
 95 "LOC3_o" IN VARCHAR2,
 96 "LOC3_n" IN VARCHAR2,
 97 site_name IN VARCHAR2,
 98 propagation_flag IN CHAR) is
 99 begin
100 if propagation_flag = 'N' then
101 dbms_reputil.replication_off;
102 end if;
103 dbms_reputil.rep_begin;
104 dbms_reputil.global_name := site_name;
105 update "DEPT" set
106 "DEPTNO" = "DEPTNO1_n",
107 "DNAME" =
108 decode("DNAME2_o",
109 "DNAME2_n", "DNAME",
110 null, nvl("DNAME2_n", "DNAME"),
111 "DNAME2_n"),
112 "LOC" =
113 decode("LOC3_o",
114 "LOC3_n", "LOC",
115 null, nvl("LOC3_n", "LOC"),
116 "LOC3_n")
117 where (((1 = 1 and
118 ("DNAME2_o" = "DNAME2_n" or
119 ("DNAME2_o" is null and "DNAME2_n" is null)) and
120 ("LOC3_o" = "LOC3_n" or
121 ("LOC3_o" is null and "LOC3_n" is null)))) or

Oracle Distributed Systems

352

179 end rep_update;
180 end "DEPT$RP";

124 ("DNAME2_o" is null and "DNAME" is null)) and
125 ("LOC3_o" = "LOC" or
126 ("LOC3_o" is null and "LOC" is null))))
127 and "DEPTNO1_o" = "DEPTNO";
128 if sql%rowcount = 0 then
129 raise no_data_found;
130 elsif sql%rowcount > 1 then
131 raise too_many_rows;
132 end if;
133 dbms_reputil.rep_end;
134 exception
135 when no_data_found then
136 begin
137 if not "DEPT$RR".update_conflict_handler(
138 "DEPTNO1_o",
139 "DEPTNO1_n",
140 "DNAME2_o",
141 "DNAME2_n",
142 "LOC3_o",
143 "LOC3_n",
144 site_name,
145 propagation_flag) then
146 dbms_reputil.rep_end;
147 raise;
148 end if;
149 dbms_reputil.rep_end;
150 exception
151 when others then
152 dbms_reputil.rep_end;
153 raise;
154 end;
155 when dup_val_on_index then
156 begin
157 if not "DEPT$RR".unique_conflict_update_handler(
158 "DEPTNO1_o",
159 "DEPTNO1_n",
160 "DNAME2_o",
161 "DNAME2_n",
162 "LOC3_o",
163 "LOC3_n",
164 site_name,
165 propagation_flag,
166 SQLERRM) then
167 dbms_reputil.rep_end;
168 raise;
169 end if;
170 dbms_reputil.rep_end;
171 exception
172 when others then
173 dbms_reputil.rep_end;
174 raise;
175 end;
176 when others then
177 dbms_reputil.rep_end;
178 raise;

Oracle Distributed Systems

15.5 Column Groups and Priority Groups

Column groups and priority groups provide interfaces to a variety of built-in conflict
resolution techniques and the easiest way to configure your application to resolve
conflicts automatically. Let's look at them one at a time.

15.5.1 Column Groups

A column group is a set of one or more columns associated with a single conflict
resolution method. A column cannot belong to more than one column group, and
columns that are not explicitly assigned to a column group are members of a shadow
column group, which Oracle creates by default and which uses the default conflict
resolution methods.

For example, suppose that you want to define a column group for the EMPLOYEES
table described in the following table:

Column Name Type
EMPLOYEE_ID NUMBER(10)

LAST_NAME VARCHAR2(30)

FIRST_NAME VARCHAR2(20)

SOCIAL_SECURITY_NO VARCHAR2(11)

MARITAL_STATUS VARCHAR2(1)

HOME_PHONE VARCHAR2(12)

PERS_GLOBAL_NAME VARCHAR2(30)

PERS_TIMESTAMP DATE

MANAGER NUMBER(3)

DEPT NUMBER(3)

SAL_GRADE NUMBER(3)

SENIORITY VARCHAR2(10)

PAYROLL_GLOBAL_NAME VARCHAR2(30)

PAYROLL_TIMESTAMP DATE

Use the procedure DBMS_REPCAT.MAKE_COLUMN_GROUP to define a column group
for fields that the personnel site maintains (i.e., LAST_NAME, FIRST_NAME,
SOCIAL_SECURITY_NO, MARITAL_STATUS, HOME_PHONE). The application records
information about changes to these fields in PERS_GLOBAL_NAME and
PERS_TIMESTAMP.

EXECUTE dbms_repcat.make_column_group(-
 gname => 'HR', -
 oname => 'EMPLOYEES', -
 column_group => 'CG_EMP_PERSONNEL', -
 list_of_column_names => -
 'LAST_NAME, FIRST_NAME, SOCIAL_SECURITY_NUM, MARITAL_STATUS, -
 HOME_PHONE, PERS_GLOBAL_NAME, PERS_TIMESTAMP')

353

Oracle Distributed Systems

To add update conflict resolution to this column group based on the Latest
Timestamp technique and a backup resolution method based on the Overwrite
technique, make these calls:

EXECUTE dbms_repcat.add_update_resolution(-
 sname => 'HR', -
 oname => 'EMPLOYEES', -
 column_group => 'CG_EMP_PERSONNEL', -
 sequence_no => 1, -
 method => 'LATEST TIMESTAMP', -
 parameter_column_name => 'PERS_TIMESTAMP', -
 comment => 'Method 1 added on ' || sysdate);

EXECUTE dbms_repcat.add_update_resolution(-
 sname => 'HR', -
 oname => 'EMPLOYEES', -
 column_group => 'CG_EMP_PERSONNEL', -
 sequence_no => 2, -
 method => 'OVERWRITE', -
 parameter_column_name => '*', -
 comment => 'Method 2 added on ' || sysdate);

As with any other modifications to replicated objects, you must add column groups
from the master definition site when the environment is quiesced. You must also
regenerate replication support for any table for which you modify a column group:

EXECUTE dbms_repcat.generate_replication_support(-
 sname => 'HR', -
 oname => 'EMPLOYEES', -
 type => 'TABLE')

Column groups provide a means to assign different resolution techniques to different
types of data; numeric techniques for numeric data, timestamp techniques for date
fields, and so on. It also allows you to group related fields, such as the components
of an address.

Dividing the fields of a table into column groups raises the possibility that the
"resolved" data for a single row may contain values from different sites. In the
EMPLOYEES table example, we could define a second column group containing the
fields MANAGER, DEPT, SALGRADE, SENIORITY, PERS_GLOBAL_NAME, and
PERS_TIMESTAMP. One site could update MARITAL_STATUS, and another could
update SAL_GRADE, and the resulting row would be the combination of the two
updates. Since data can be merged this way, it is vital to keep related columns in the
same column group; you would not want to put FIRST_NAME in one column group
and LAST_NAME in another.

15.5.1.1 How the column group resolution mechanism
works

Oracle detects conflicts by scanning every field in every column group, comparing
the old value from the origination site with the current value at the destination site.

354

If Oracle detects a difference (because, for example, a change at the destination site
had not yet been propagated), it invokes the conflict resolution technique(s) for the

Oracle Distributed Systems

corresponding column group. If the column group has more than one resolution
technique (as it should), they are called in descending priority order until the conflict
is resolved. The shadow column group that contains columns that have not been
explicitly assigned to any group is scanned last.

If all conflicts are resolved, the resolved data is committed. Otherwise, the
transaction is written to the DEFERROR data dictionary view.

15.5.1.2 APIs for column groups

The following lists the APIs that manipulate column groups:

Creates a column group with no member columns.

Drops a column group.

Adds a column to an existing column group.

Removes a column from a column group.

Creates a column group and adds columns to it.

Appendix A

DBMS_REPCAT.DEFINE_COLUMN_GROUP

DBMS_REPCAT.DROP_COLUMN_GROUP

DBMS_REPCAT.ADD_GROUPED_COLUMN

DBMS_REPCAT.DROP_GROUPED_COLUMN

DBMS_REPCAT.MAKE_COLUMN_GROUP

, contains a complete reference to these APIs.

15.5.2 Priority Groups

Priority groups rank a finite list of possible values for a column so that, in the event
of a conflict, Oracle updates the destination table if and only if the new value from
the originating site has a higher priority. This method is designed to work with
applications that use workflow partitioning. Unlike column groups, which are defined
at the table level, priority groups can be used by multiple tables. A site priority is a
priority group in which the range of values for a column is the list of global names of
databases participating in the replication.

If you choose to implement priority groups, you must select a priority column, and
you must rank all potential values of that column. Consider the SENIORITY column of
the EMPLOYEES table. Suppose that its range of possible values is PROBATION,
REGULAR, and TENURED. Assuming that this organization never demotes an
employee's seniority, you could define a priority group to enforce the workflow of
orders from PROBATION to REGULAR to TENURED:

355

Oracle Distributed Systems

-- Create a column group which includes the SENIORITY column.
EXECUTE dbms_repcat.make_column_group(-
 sname => 'HR', -
 oname => 'EMPLOYEES', -
 column_group => 'CG_HR', -
 list_of_column_names => -
 'MANAGER, DEPT, SALGRADE, SENIORITY, PERS_GLOBAL_NAME,
PERS_TIMESTAMP')

-- Define a priority group using the SENIORITY column.
EXECUTE dbms_repcat.define_priority_group(-
 gname => 'HR', -
 pgroup => 'SENIORITY', -
 datatype => 'VARCHAR2', -
 fixed_length => NULL, -
 comment => 'SENIORITY created on ' || sysdate)

-- Associate priorities with the various possible values. The higher
the
-- priority, the higher the precedence.
EXECUTE dbms_repcat.add_priority_varchar2(-
 gname => 'HR', -
 pgroup => 'SENIORITY', -
 value => 'PROBATION', -
 priority => 1)

EXECUTE dbms_repcat.add_priority_varchar2(-
 gname => 'HR', -
 pgroup => 'SENIORITY', -
 value => 'REGULAR', -
 priority => 2)

EXECUTE dbms_repcat.add_priority_varchar2(-
 gname => 'HR', -
 pgroup => 'SENIORITY', -
 value => 'TENURED', -
 priority => 3)

EXECUTE dbms_repcat.generate_replication_support(-
 sname => 'HR', -
 oname => 'EMPLOYEES', -
 type => 'TABLE')

As usual, you must perform these steps from the master definition site while the
environment is quiesced. A priority group is a very powerful resolution method
because it guarantees data convergence if the priority of the column is always
increasing, which is why it is perfect for applications that can use workflow
partitioning.

15.5.3 Site Priority

A site priority is essentially a priority group in which the priority column holds the
global name of the database that updates the data. The following procedure calls set

356

up site priorities for three locations participating in a replicated environment:
ALBANY.COM, BUFFALO.COM, and CLEVELAND.COM:

Oracle Distributed Systems

-- Define the site priority.
EXECUTE dbms_repcat.define_site_priority(-
 gname => 'HR', -
 name => 'HR_SITES', -
 comment => 'Site Priority define on ' || sysdate)

-- Add the sites.
-- ALBANY.COM has highest priority, CLEVELAND.COM has lowest.
EXECUTE dbms_repcat.add_priority_site(-
 gname => 'HR', -
 name => 'HR_SITES', -
 site => 'ALBANY.COM', -
 priority => 3)

EXECUTE dbms_repcat.add_priority_site(-
 gname => 'HR', -
 name => 'HR_SITES', -
 site => 'BUFFALO.COM', -
 priority => 2)

EXECUTE dbms_repcat.add_priority_site(-
 gname => 'HR', -
 name => 'HR_SITES', -
 site => 'CLEVELAND.COM', -
 priority => 1)

You would typically use site priority as a backup resolution method to act as a final
tiebreaker that is invoked when other methods fail to resolve the conflict. If each of
your sites is associated with an event or status in the workflow model, then you
should use priority groups instead of site priority to effect data convergence. As
Table 15.2 illustrates, site priority does not guarantee data convergence with more
than two master sites.

Table 15.2. How Site Priority Can Fail with More Than Two Sites

Time
ALBANY.COM

Priority = 3

BUFFALO.COM

Priority = 2

CLEVELAND.COM

Priority = 1
12:00 signal = GREEN signal = GREEN signal = GREEN

12:05 signal = GREEN signal = GREEN site down

12:10 signal = YELLOW signal = GREEN site down

12:15 signal = YELLOW signal = YELLOW site down

12:20 signal = YELLOW signal = RED signal = GREEN

12:25 signal = YELLOW signal = RED signal = RED

12:30 signal = YELLOW signal = RED signal = YELLOW

12:35 signal = RED signal = RED signal = YELLOW

Consider the time line:

357

• 12:00: All sites are in agreement.
• 12:05: CLEVELAND.COM goes down; all sites are still in agreement.

Oracle Distributed Systems

• 12:10: ALBANY.COM updates signal to YELLOW; CLEVELAND.COM is still
down.

• 12:15: BUFFALO.COM receives and applies update from ALBANY.COM;
CLEVELAND.COM is still down.

• 12:20: BUFFALO.COM updates signal to RED; CLEVELAND.COM comes back
online.

• 12:25: CLEVELAND.COM receives the update from BUFFALO.COM. Site
Priority conflict resolution gives precedence to BUFFALO.COM's update, so
CLEVELAND.COM sets signal to RED.

• 12:30: CLEVELAND.COM receives an update from ALBANY.COM (from 12:10).
The site priority conflict gives precedence to ALBANY.COM's update, so
CLEVELAND.COM sets signal to YELLOW.

• 12:35 ALBANY.COM receives update from BUFFALO.COM and applies it
without any conflict.

So, after all transactions have been replicated, there are no unresolved conflicts, but
the data does not agree! Of course, if ALBANY.COM or BUFFALO.COM updates this
particular row at some later date, the data could converge once again. Unfortunately
for CLEVELAND.COM, no such update is imminent; you certainly cannot depend on
additional updates to attain data convergence. Similar risks of data divergence exist
for the Earliest Timestamp resolution method and for priority groups that do not
follow a workflow model. This example would have resulted in data convergence if
we had used priority groups, assuming that the column values always progress from
GREEN to YELLOW to RED.

15.5.3.1 APIs for priority groups and site priority

The DBMS_REPCAT APIs for priority groups and site priority are summarized here.
Possible values for datatype are CHAR, VARCHAR2, NUMBER, DATE, and RAW.

Creates a priority group.

Drops a priority group.

Adds a new value of type datatype to an existing priority group.

Changes the priority of an existing column value.

Drops a member of a priority group with a specified priority.

DBMS_REPCAT.DEFINE_PRIORITY_GROUP

DBMS_REPCAT.DROP_PRIORITY_GROUP

DBMS_REPCAT.ADD_PRIORITY_datatype

DBMS_REPCAT.ALTER_PRIORITY_datatype

DBMS_REPCAT.DROP_PRIORITY

358

Oracle Distributed Systems

DBMS_REPCAT.DROP_PRIORITY_datatype

DBMS_REPCAT.DROP_SITE_PRIORITY

DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE

DMBS_REPCAT.ALTER_SITE_PRIORITY

DMBS_REPCAT.DROP_SITE_PRIORITY_SITE

Drops a member of a priority group for a specific column.

Drops an existing site priority group.

Changes the site associated with a specific priority value.

Changes the priority of a specific site.

Drops a site from the site priority group.

Appendix A contains a complete reference to these APIs.

15.6 The Built-in Methods

Oracle supplies 11 built-in conflict resolution methods (see Table 15.3), which you
can designate for column groups and priority groups. You will notice that data
convergence for replicated environments of three or more sites is very challenging to
obtain.

Table 15.3. Built-in Conflict Resolution Methods

Method DML
Supported

> 1
Master? Convergence Requirements

Minimum Value UPDATE Yes
Always decreasing or < 3
masters

Maximum Value UPDATE Yes
Always increasing or < 3
masters

Earliest Timestamp UPDATE Yes < 3 masters

Latest Timestamp UPDATE Yes
Always increasing or < 3
masters

Overwrite Update UPDATE No < 2 masters

Discard Update UPDATE No < 2 masters

Average UPDATE No < 2 masters

Additive UPDATE Yes Always converges

Append Site Name INSERT Yes Never guaranteed to converge

Append Sequence INSERT Yes Never guaranteed to converge

Ignore Insert/Discard INSERT Yes Never guaranteed to converge

359

Oracle Distributed Systems

Insert

For the most part, these techniques are self-explanatory, but certain peculiarities of
their usage warrant further explanation.

15.6.1 Minimum Value/Maximum Value

The Minimum Value and Maximum Value methods are appropriate for sites with any
number of masters and can be used with any replicatable datatype. Data is always
guaranteed to converge with two masters and with three masters if values are
always decreasing (for Minimum Value) or always increasing (for Maximum Value). If
the data from the originating site and destination site are the same, these resolution
techniques will fail. Therefore, you should always provide a backup method, such as
site priority to handle this situation.

15.6.2 Earliest Timestamp/Latest Timestamp

The Earliest Timestamp and Latest Timestamp techniques are basically the same as
the Minimum and Maximum Value techniques, except that they only apply to DATE
columns. However, they do introduce the issue of differing time zones. As I
mentioned earlier, Oracle strongly recommends putting systems in multiple time
zones on Greenwich Mean Time (GMT) if you plan to use timestamp-based conflict
resolution, since Oracle's DATE datatype does not have a time zone component. The
Latest Timestamp method is guaranteed to converge for any number of master sites,
although Earliest Timestamp is not. Earliest Timestamp does not necessarily
converge because such values are not necessarily always decreasing, whereas Latest
Timestamps must always be increasing.

As with the Minimum and Maximum Value techniques, you are strongly encouraged
to supply a backup resolution method to break ties that occur when the timestamps
are equal. Note that the Earliest and Latest Timestamp methods may not be
appropriate for data that can be updated at multiple sites, since the "correct" value
may not necessarily be associated with the earliest (or latest) timestamp.

15.6.3 Overwrite Update/Discard Update

The Overwrite Update and Discard Update methods of conflict resolution are
primarily intended for environments with a single master site and several snapshot
sites. These methods either overwrite or discard data at either the origination or the
destination and do not guarantee convergence in a multi-master environment.
Specifically, the Overwrite Update method simply replaces the data at the destination
with the new originating site's data, and the Discard Update method does nothing at
all with the update. If you choose to use the Overwrite Update or Discard Update
conflict resolution techniques in a multi-master environment, you should do so in
conjunction with a notification facility to alert the DBA.

360

Oracle Distributed Systems

361

• Do not perform session control (e.g., ALTER SESSION...).
• Do not perform system control (e.g. ALTER SYSTEM...).

15.6.4 Average/Additive

The Additive and Average methods work with numeric data only. The Additive
method adds the delta at the originating site to the destination site, while the
Average method averages the new value from the originating site with the current
value at the destination site. The Additive method always converges, and the
Average method converges with two or fewer master sites.

15.6.5 Append Site Name/Append Sequence

The Append Site Name and Append Sequence techniques are intended to resolve
inserts that result in unique constraint violations. Although appending a global name
or sequence number to the violated key may circumvent the conflict, it does not
guarantee data convergence. These methods may be appropriate for situations in
which data availability is more important than data accuracy. These techniques
should also be used in conjunction with a notification facility.

15.6.6 Ignore Insert/Discard Insert

The Ignore Insert and Discard Insert techniques are also used to resolve unique
constraint violations on inserts. The Ignore Insert method does nothing with the
update, and the Discard Insert method deletes the row from the originating site.
Again, these methods do not guarantee data convergence and should be used only in
conjunction with a notification facility.

15.7 Writing Your Own Conflict Resolution Handler

If the conflict resolution techniques that Oracle supplies do not meet your
requirements, you are free to write your own routine. An example of such a routine
is the one with the delete conflict handler shown earlier in this chapter. When you sit
down to write your conflict resolution function, it is probably easiest to begin with the
code that Oracle generates for the corresponding built-in resolution technique, which
you can extract from the DBA_SOURCE data dictionary view. You should also
consider building a notification method.

Oracle's requirements for user-defined conflict resolution techniques are as follows:

• Use PL/SQL.
• Return Boolean TRUE if successful, FALSE otherwise.
• Update handlers require Old, New, and Current column values for columns

specified in the parameter_column_name parameter of
DBMS_REPCAT.ADD_UPDATE_RESOLUTION.

• Delete handlers require Old column values for the entire row.
• Uniqueness handlers require New values for columns specified in the

parameter_column_name parameter of
DBMS_REPCAT.ADD_UPDATE_RESOLUTION.

• Do not perform DDL (i.e., through dynamic SQL).
• Do not perform transaction control (e.g., ROLLBACK).

Oracle Distributed Systems

When you are ready to add your conflict resolution function to the table, follow these
steps:

1. Quiesce the replication group.
2. Call DBMS_REPCAT.CREATE_MASTER_REPOBJECT to make your function a

replicated object.
3. Call DBMS_REPCAT.ADD_conflicttype_RESOLUTION (where type may be

UPDATE, DELETE, or UNIQUE) to associate your function with the table.
4. Call DBMS_REPCAT.GENERATE_REPLICATION_PACKAGE to generate

replication support for your function.
5. Call DBMS_REPCAT.RESUME_MASTER_ACTIVITY to resume replication.

362

Oracle Distributed Systems

Part III: Appendixes

This part of the book contains the following appendixes:

• Appendix A, is the API reference; it contains summaries of all
specifications, parameters, exceptions, and restrictions for the
procedures and functions available through the Oracle built-in
packages used with distributed systems.

• Appendix B, contains the code for a variety of scripts mentioned in this
book.

363

Oracle Distributed Systems

364

Oracle Distributed Systems

365

Appendix A. Built-in Packages for
Distributed Systems

This appendix summarizes the Application Programming Interface (API) calls to the
procedures and functions in the various Oracle built-in packages that support
distributed systems. It covers the packages listed in Table A.

For each package, I’ll describe briefly how to find the package and how to call each
of its programs. I’ll also show exceptions and other nonprogram elements. For each
procedure and function provided in the package, I’ll show, in a quick-reference
format, the specifications, parameters, exceptions, and any restrictions.

In addition to the distributed system packages
described here, Oracle provides many other built-in
packages (e.g., DBMS_SQL and DBMS_UTILITY). For a
full discussion of all of the packages, see Oracle Built-
in Packages by Steven Feuerstein, Charles Dye, and
John Beresniewicz (O’Reilly & Associates, 1998).

Table A. Built-in Packages for Distributed Systems
Package Description

DBMS_DEFER Builds deferred calls.

DBMS_DEFER_QUERY
Provides access to parameters passed to deferred calls,
primarily for diagnostic purposes.

DBMS_DEFER_SYS
Performs administrative tasks such as scheduling,
executing, and deleting queued transactions.

DBMS_OFFLINE_OG
Instantiates sites—that is, lets you export data from an
existing master site and import it into the new master
site.

DBMS_OFFLINE_SNAPSHOT

Allows you to instantiate snapshots without having to
run the CREATE SNAPSHOT command over the network.
This package is particularly useful if you need to
instantiate extremely large snapshots.

DBMS_RECTIFIER_DIFF
Compares the replicated tables at two master sites and
allows you to synchronize them if they are different.

DBMS_REFRESH Administers snapshot groups at a snapshot site.

DBMS_REPCAT
Performs a number of replication, administration,
snapshot, and conflict resolution operations.

DBMS_REPCAT_ADMIN Creates administrator accounts for replication.

DBMS_REPCAT_AUTH
Grants and revokes “surrogate SYS” privileges for an
administrator account.

DBMS_REPUTIL Enables and disables replication at the session level.

DBMS_SNAPSHOT Lets you maintain snapshots and snapshot logs.

Oracle Distributed Systems

366

deferred_rpc_quiesce
23326

Database is quiescing.

executiondisabled – Deferred RPC execution is disabled.

A.1 DBMS_DEFER: Building Deferred Calls

The DBMS_DEFER package queues deferred transactions. These transactions are
typically remote procedure calls (RPCs), but you can also defer procedure calls
locally. The advanced replication facilities use this package transparently and
extensively, but you can also access it directly for other purposes.

A.1.1 How the Package Is Used

You queue procedure calls by calling the TRANSACTION or CALL procedure. A call to
TRANSACTION is followed by one or more deferred RPCs, which are followed by a
COMMIT.

DBMS_DEFER can execute procedures at remote sites under a highly privileged
account, such as the replication administrator account. Therefore, EXECUTE
privileges on DBMS_DEFER should not be widely granted. As a general rule, you
should restrict it to DBA accounts. If you want to provide end users with the ability to
create their own deferred calls, you should create a cover package and grant
EXECUTE on it to end users or end user roles.

A.1.2 Installation and Access

The DBMS_DEFER package is created when the Oracle database is installed. The
dbmsdefr.sql script (found in the built-in packages source directory), contains the
source code for this package’s specification. This script is called by catrep.sql, which
must be run to install the advanced replication packages. The script creates the
public synonym DBMS_DEFER. EXECUTE privileges on DBMS_DEFER are not granted.

A.1.3 DBMS_DEFER Procedures
Procedure Name Description

CALL Defines a remote procedure call.

COMMIT_WORK Commits deferred RPC transaction.

datatype_ARG
Adds parameter of specified datatype to a deferred call; datatype
may be CHAR, DATE, NUMBER, RAW, ROWID, or VARCHAR2.

TRANSACTION Marks a transaction as deferred.

A.1.4 DBMS_DEFER Exceptions
Exception Name Number Description

bad_param_type
–
23325

Parameter type does not match actual type.

commfailure
–
23302

Remote update failed due to communication failure.

dbms_defererror
–
23305

Generic internal errors.

–

Oracle Distributed Systems

367

CONSTANT arg_type_raw
Used in arg_type column of def$_args table. Value
= 23.

23354

malformedcall
–
23304

Argument count mismatches, etc.

mixeddest
–
23301

Destinations for transaction not specified consistently.

parameterlength
–
23323

Parameter length exceeds limits (2000 for
CHAR/VARCHAR, 255 for RAW).

updateconflict
–
23303

Remote update failed due to conflict.

A.1.5 DBMS_DEFER Nonprogram Elements

In the following list, the node_list_t element is a PL/SQL table whose first entry is
always placed in row 1. It is filled sequentially, with each subsequent entry placed in
row node_list_t.last + 1.

Element Type and Name Description
CONSTANT arg_csetid_none
(Oracle8 only)

Internal character set ID. Value = 0. Includes types
DATE, NUMBER, ROWID, RAW, and BLOB.

CONSTANT arg_form_any
(Oracle8 only)

Internal character set ID. Value = 4.

CONSTANT arg_form_implicit
(Oracle8 only)

Internal character set ID. Value = 1. Includes types
CHAR, VARCHAR2, and CLOB.

CONSTANT arg_form_nchar
(Oracle8 only)

Internal character set ID. Value = 2. Includes types
NCHAR, NVARCHAR2, and NCLOB.

CONSTANT arg_form_none
(Oracle8 only)

Internal character set ID. Value = 0. Includes types
DATE, NUMBER, ROWID, RAW, and BLOB.

CONSTANT arg_type_blob
(Oracle8 only)

Used in arg_type column of def$_args table. Value
= 113.

CONSTANT arg_type_clob
(Oracle8 only)

Used in arg_type column of def$_args table. Value
= 112.

CONSTANT arg_type_bfil
(Oracle8 only)

Used in arg_type column of def$_args table. Value
= 114.

CONSTANT arg_type_cfil
(Oracle8 only)

Used in arg_type column of def$_args table. Value
= 115.

CONSTANT arg_type_num
Used in arg_type column of def$_args table. Value
= 2.

CONSTANT arg_type_char
Used in arg_type column of def$_args table. Value
= 96.

CONSTANT arg_type_varchar2
Used in arg_type column of def$_args table. Value
= 1.

CONSTANT arg_type_date
Used in arg_type column of def$_args table. Value
= 12.

CONSTANT arg_type_rowid
Used in arg_type column of def$_args table. Value
= 11.

Oracle Distributed Systems

CONSTANT
repcat_status_normal

Signals normal successful completion. Value = 0.0.

TYPE node_list_t Table of VARCHAR2(128).

DBMS_DEFER.CALL

The CALL procedure queues an RPC to the destination specified in the
DEFDEFAULTDEST data dictionary view. It calls TRANSACTION automatically if it is
the first call of a transaction. If you do not specify a value for the nodes parameter,
the destination of the RPC will be the locations in the data dictionary view
DEFDEFAULTDEST.

PROCEDURE DBMS_DEFER.CALL
 (schema_name IN VARCHAR2,
 package_name IN VARCHAR2,
 proc_name IN VARCHAR2,
 arg_count IN NATURAL,
 {group_name IN VARCHAR2 := ''|
 nodes IN node_list_t});

Parameters
Parameter Name Description
schema_name Name of the schema queuing the call.

package_name Name of the package containing the procedure that is being queued.

proc_name Name of the procedure being queued.

arg_count
Number of parameters being passed to the procedure. You must have
one call to DBMS_DEFER.datatype_ARG for each parameter.

group_name Optional. Reserved for internal use.

nodes
Optional. List of destination nodes (global_names) where the
procedure is to be executed. If nodes are not specified, destinations
are determined by the list passed to TRANSACTION.

Exceptions
Exception Name Number Description

malformedcall
–
23304

Number of arguments in the call does not match value of
arg_count.

ORA-23319
–
23319

The parameter is NULL, misspelled, or not allowed.

ORA-23352
–
23352

The nodes list contains a duplicate.

368

Oracle Distributed Systems

Restrictions

The procedures used in deferred RPCs must be part of a package; it is not possible to
queue standalone procedures.

DBMS_DEFER.COMMIT_WORK

The COMMIT_WORK procedure issues a COMMIT command to commit the transaction
constructed by the preceding TRANSACTION and CALL procedures.

PROCEDURE DBMS_DEFER.COMMIT_WORK
 (commit_work_comment IN VARCHAR2);

commit_work_comment is a description of the transaction. The comment may be up
to 50 characters.

Exceptions
Exception Name Number Description

malformedcall
–
23304

Number of arguments in the CALL procedure does not match
value arg_count, there are missing calls to the datatype_ARG
procedure, or the TRANSACTION procedure was not called for
this transaction.

Restrictions

If the destination nodes are not specified in DBMS_REPCAT, they are determined by
one of the following, in order of procedure:

• List of nodes in parameter passed to CALL
• List of nodes in parameter passed to TRANSACTION
• Entries in DEFTRANDEST

DBMS_DEFER.datatype _ARG

This datatype_ARG procedure specifies an argument for a procedure being built for a
remote procedure call. The argument is of the datatype specified in datatype.

PROCEDURE DBMS_DEFER.datatype_ARG (arg IN datatype)

369

Oracle Distributed Systems

370

Parameters

Specifications differ for different datatypes, depending on whether you are using
Oracle7 or Oracle8. datatype can be any type in the following table.

Oracle7 and Oracle8 Oracle8 Only
NUMBER NVARCHAR2

DATE ANY_VARCHAR2

VARCHAR2 NCHAR

CHAR ANY_VARCHAR

ROWID BLOB

RAW CLOB

 ANY_CLOB

 NCLOB

The arg parameter is the value to pass to the parameter of the same datatype in the
procedure previously queued via CALL; it may not exceed the following:

• 2000 for CHAR and VARCHAR2
• 255 for RAW

The various alternatives are listed here.

These specifications apply to both Oracle7 and Oracle8:

PROCEDURE NUMBER_ARG (arg IN NUMBER);
PROCEDURE DATE_ARG (arg IN DATE);
PROCEDURE VARCHAR2_ARG (arg IN VARCHAR2);
PROCEDURE CHAR_ARG (arg IN CHAR);
PROCEDURE ROWID_ARG (arg IN ROWID);
PROCEDURE RAW_ARG (arg IN RAW);

These specifications apply only to Oracle8:

PROCEDURE NVARCHAR2_ARG (arg IN NVARCHAR2);
PROCEDURE ANY_VARCHAR2_ARG (arg IN VARCHAR2 CHARACTER SET ANY_CS);
PROCEDURE NCHAR_ARG (arg IN NCHAR);
PROCEDURE ANY_CHAR_ARG (arg IN CHAR CHARACTER SET ANY_CS);
PROCEDURE BLOB_ARG (arg IN BLOB);
PROCEDURE CLOB_ARG (arg IN CLOB);
PROCEDURE ANY_CLOB_ARG (arg IN CLOB CHARACTER SET ANY_CS);
PROCEDURE NCLOB_ARG (arg IN NCLOB);

Exceptions
Exception Name Number Description

paramlen_num –23323 Parameter is too long.

Oracle Distributed Systems

Restrictions

• This procedure is used only in conjunction with CALL.
• ROWID parameters can only be used for RPCs queued for the local node.

DBMS_DEFER.TRANSACTION

The TRANSACTION procedure allows you to specify destination sites for the ensuing
call(s) to the CALL procedure. It marks a transaction as “deferred”—that is, the
transaction contains RPCs. This call is optional because CALL also calls it. There are
two main reasons why you might wish to identify destinations this way:

• You might wish to override the destinations in the DBA_REPSITES data
dictionary view.

• You might be making several calls to CALL and not wish to specify the
destinations in the nodes parameter individually each time.

The TRANSACTION procedure is overloaded in such a way that the nodes parameter
is optional. You can specify either:

PROCEDURE DBMS_DEFER.TRANSACTION;

or:

PROCEDURE DBMS_DEFER.TRANSACTION
 (nodes IN node_list_t);

If specified, nodes is a PL/SQL table containing the list of nodes that should receive
the RPC. If you do not specify the nodes parameter, the ensuing call(s) to CALL will
queue the calls to destinations in DEFDEFAULTDEST. If you do specify the nodes
parameter, you must populate it with the global name of target destinations.

Exceptions
Exception Name Number Description
malformedcall –23304 Transaction is not properly formed, or transaction terminated.

ORA-23319 –23319 Parameter value is not appropriate.

ORA-23352 –23352 node_list_t contains duplicates.

Restrictions

You can call the TRANSACTION procedure only in conjunction with CALL.

371

Oracle Distributed Systems

372

BLOB (Oracle8 only) 113

CFIL (Oracle8 only) 115

A.2 DBMS_DEFER_QUERY: Performing Diagnostics and
Maintenance

Occasionally, you may want to see details about deferred RPCs in the queue, such as
what procedure and parameters are used. The DBMS_DEFER_QUERY package
contains procedures to display this data.

A.2.1 How the Package Is Used

Typically, this package is used to assist in debugging errors and conflicts that have
occurred during the execution of an RPC.

A.2.2 Installation and Access

The DBMS_REPCAT_QUERY package is created when the Oracle database is installed.
The dbmsdefr.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catrep.sql, which
must be run to install the advanced replication packages. The wrapped SQL script
prvtrctf.sql creates the public synonym DBMS_REPCAT_QUERY. No EXECUTE
privileges are granted on DBMS_REPCAT_QUERY; only the owner (SYS) and those
with the EXECUTE ANY PROCEDURE system privilege may execute the package.

There are no exceptions defined for this package.

A.2.3 DBMS_DEFER_QUERY Procedures
Procedure Name Description

GET_ARG_TYPE Returns the type of a parameter in a deferred call

GET_CALL_ARGS Returns information about parameters in text form

GET_datatype_ARG
Returns the value of a parameter whose type is datatype ;
values can be CHAR, DATE, NUMBER, RAW, ROWID, or
VARCHAR2

A.2.4 DBMS_DEFER_QUERY Nonprogram Elements
Type and Name Description

TYPE type_ary Table of NUMBER

TYPE val_ary Table of VARCHAR2(2000)

The PL/SQL tables type_ary and val_ary are both used in parameters to the
procedure GET_CALL_ARGS; type_ary is an output array for RPC parameter
datatypes, and val_ary is an output array of the parameter values. The following
table shows the mapping of numbers to datatypes in type_ary:

Datatype Numeric Value in type_ary
BFILE (Oracle8 only) 114

Oracle Distributed Systems

CHAR 96

CLOB (Oracle8 only) 112

DATE 12

NUMBER 2

RAW 23

ROWID 11

VARCHAR2 1

DBMS_DEFER_QUERY.GET_ARG_TYPE

You can use this function in conjunction with GET_datatype_ARG or GET_CALL_ARGS
to determine information about the deferred RPCs in the queue. GET_ARG_TYPE
returns a number corresponding to the argument’s datatype.

FUNCTION DBMS_DEFER_QUEUE.GET_ARG_TYPE
 (callno IN NUMBER,
 deferred_tran_db IN VARCHAR2,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
RETURN NUMBER;

The following table shows the mapping of datatypes to return values:

Argument Datatype GET_ARG_TYPE Return Code
BFILE (Oracle8 only) 114

BLOB (Oracle8 only) 113

CFIL (Oracle8 only) 115

CHAR 96

CLOB (Oracle8 only) 112

DATE 12

NUMBER 2

RAW 23

ROWID 11

VARCHAR2 1

Notice that the datatypes here are limited to the Oracle-supplied datatypes; you
cannot, for example, defer a call to a procedure that accepts a PL/SQL table as a
parameter.

There are no restrictions on calling GET_ARG_TYPE.

Parameters

373

Parameter Name Description

Oracle Distributed Systems

callno
The CALLNO of the RPC, as stored in the DEFCALL data dictionary
view

deferred_tran_db
Global name of the database deferring the call (also stored in
DEFCALL)

arg_no The position of the argument in the RPC

deferred_tran_id The deferred_tran_id for the call (also stored in DEFCALL)

Exceptions
Exception Name Number Description

NO_DATA_FOUND –00100 Specified argument does not exist for specified RPC.

DBMS_DEFER_QUERY.GET_CALL_ARGS

The GET_CALL_ARGS procedure allows you to obtain the datatypes and values for all
arguments passed to a procedure in a single call. This is the easiest way to obtain
information about the datatypes and values of all passed parameters.

PROCEDURE DBMS_DEFER_QUERY.GET_CALL_ARGS
 (callno IN NUMBER,
 startarg IN NUMBER := 1,
 argcnt IN NUMBER,
 argsize IN NUMBER,
 tran_db IN VARCHAR2,
 tran_id IN VARCHAR2,
 date_fmt IN VARCHAR2,
 types OUT TYPE_ARY,
 vals OUT VAL_ARY);

There are no restrictions on calling the GET_CALL_ARGS procedure.

Parameters
Parameter Name Description
callno The CALLNO of the RPC as stored in the DEFCALL data dictionary view

startarg First argument to fetch

argcnt Number of arguments to fetch

argsize Largest size of a returned argument

tran_db Global name of database deferring the call (also stored in DEFCALL)

tran_id The deferred_tran_id parameter for the call (also stored in DEFCALL)

date_fmt Date format mask

types Output array for argument types

vals Output array for argument values

374

Oracle Distributed Systems

Exceptions
Exception Name Number Description

NO_DATA_FOUND –00100 Specified argument does not exist for specified RPC.

DBMS_DEFER_QUERY.GET_datatype _ARG

The GET_datatype_ARG function returns a value of a certain type (specified by
datatype). The type of the returned value corresponds to the value of the argument
specified by arg_no in the deferred RPC corresponding to callno.

There is one variant of the GET_datatype_ARG function for each of the Oracle-
supplied datatypes.

FUNCTION DBMS_DEFER_QUERY.GET_datatype_ARG
 (callno IN NUMBER,
 deferred_tran_db IN VARCHAR2
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2 DEFAULT NULL)
RETURN arg;

datatype can be any type in the following table.

Oracle7 and Oracle8 Oracle8 Only
CHAR NCHAR

DATE NVARCHAR2

NUMBER BLOB

RAW CLOB

ROWID NCLOB

VARCHAR2

Therefore, any of the following are valid:

FUNCTION DBMS_DEFER_QUERY.GET_CHAR_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_DATE_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_NUMBER_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_RAW_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_ROWID_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_VARCHAR2_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_NCHAR_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_NVARCHAR2_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_BLOB_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_CLOB_ARG...
FUNCTION DBMS_DEFER_QUERY.GET_NCLOB_ARG...

375

Parameters have the same meanings described for the GET_ARG_TYPE procedure.

Oracle Distributed Systems

376

deferred transaction queue

PUSH Pushes a queued transaction to a destination node

Exceptions
Exception Name Number Description

NO_DATA_FOUND –00100 Specified argument does not exist for specified RPC.

WRONG_TYPE –26564 Specified argument is not of type datatype.

A.3 DBMS_DEFER_SYS: Managing Deferred Transactions

The DBMS_DEFER_SYS package provides a number of programs for administrative
tasks associated with deferred transactions.

A.3.1 How the Package Is Used

This package is used primarily to administer an advanced replication environment.
DBAs can use the procedures to execute deferred transactions, to control what nodes
are available for them, and to schedule their execution.

A.3.2 Installation and Access

The DBMS_DEFER_SYS package is created when the Oracle database is installed.
The dbmsdefr.sql script (found in the built-in packages source directory), contains
the source code for this package’s specification. This script is called by catrep.sql ,
which must be run to install the advanced replication packages. The wrapped SQL
script prvtrctf.sql creates the public synonym DBMS_DEFER_SYS. No EXECUTE
privileges are granted on DBMS_DEFER_SYS; only the owner (SYS) and those with
the EXECUTE ANY PROCEDURE system privilege may execute the package.

A.3.3 DBMS_DEFER_SYS Procedures
Procedure Name Description

ADD_DEFAULT_DEST
Adds a destination to the DEFDEFAULTDEST data
dictionary view

COPY Creates a copy of an RPC with a different destination

DELETE_DEFAULT_DEST
Deletes a destination from the DEFDEFAULTDEST data
dictionary view

DELETE_ERROR
Deletes an error from the DEFERROR data dictionary
view

DELETE_TRAN
Deletes a transaction from the DEFTRANDEST data
dictionary view

DISABLED
Returns a Boolean indicating whether deferred
transactions from the current site to the destination site
are disabled

EXCLUDE_PUSH Acquires a lock to disable deferred pushes

EXECUTE Executes an RPC immediately

EXECUTE_ERROR Reexecutes an RPC that failed previously

PURGE
Purges transactions that have been propagated from the

Oracle Distributed Systems

377

 (dblink IN VARCHAR2);

REGISTER_PROPAGATOR
Makes the designated user the propagator for the local
database

SCHEDULE_EXECUTION
Schedules automatic RPC pushes between a master or
snapshot site and another master site

SCHEDULE_PURGE
Schedules the automatic purge of transactions that have
been propagated from the queue

SCHEDULE_PUSH Schedules automatic pushes to destination node

SET_DISABLED
Disables deferred transactions between the current site
and a destination site

UNREGISTER_PROPAGATOR
Complement to REGISTER_PROPAGATOR; revokes
privileges granted to make user the local database’s
propagator

UNSCHEDULE_EXECUTION
Stops automatic RPC pushes between a master or
snapshot site and another master site

UNSCHEDULE_PURGE
Complement to SCHEDULE_PURGE; unschedules the
automatic purge of transactions that have been
propagated to the queue

UNSCHEDULE_PUSH
Complement to SCHEDULE_PUSH; unschedules
automatic pushes to destination node

A.3.4 DBMS_DEFER_SYS Exceptions
Exception Name Number Description

crt_err_err –23324 Parameter type does not match actual type.

A.3.5 DBMS_DEFER_SYS Nonprogram Elements

The following constants defined in the DBMS_DEFER_SYS are used internally in the
package:

Type and Name Description

CONSTANT parm_buffer_size
Size of long buffer used for packing parameters
(=4096)

CONSTANT
default_alert_name

VARCHAR2(30) := ORA$DEFER_ALERT

DBMS_DEFER_SYS.ADD_DEFAULT_DEST

The ADD_DEFAULT_DEST procedure adds records in the DEFDEFAULTDEST data
dictionary view. Adding a record to this view effectively specifies a default
destination for deferred RPCs.

PROCEDURE DBMS_DEFER_SYS.ADD_DEFAULT_DEST

Oracle Distributed Systems

dblink is the global name of the destination site being added.

There are no restrictions on calling ADD_DEFAULT.DEST. Changes you make to
DEFDEFAULTDEST affect future calls only, not calls that may already be queued.

Exceptions
Exception

Name Number Description

ORA-23352
–
23352

Specified destination is already in the DEFDEFAULTDEST data
dictionary view.

DBMS_DEFER_SYS.COPY (Oracle7 only)

The COPY procedure copies a specified deferred transaction. Oracle queues the
copied transaction to the new destinations that you specify.

PROCEDURE DBMS_DEFER_SYS.COPY
 (deferred_tran_id IN VARCHAR2,
 deferred_tran_db IN VARCHAR2,
 destination_list IN dbms_defer.node_list_t,
 destination_count IN BINARY_INTEGER);

There are no restrictions on calling COPY.

Parameters
Parameter Name Description

deferred_tran_id ID from the DEFTRAN data dictionary view to be copied

deferred_tran_db Global name of the originating database

destination_list
PL/SQL table listing global names of databases to which the
transaction is to be sent

destination_count Number of entries in destination_list

Exceptions
Exception Name Number Description

NO_DATA_FOUND –01403 Specified deferred_tran_id does not exist.

DBMS_DEFER.SYS.DELETE_DEFAULT_DEST

The DELETE_DEFAULT_DEST procedure deletes records in the DEFDEFAULTDEST

378

data dictionary view. Deleting a record effectively removes a default destination for
deferred RPCs.

Oracle Distributed Systems

PROCEDURE DBMS_DEFER_SYS.DELETE_DEFAULT_DEST
 (dblink IN VARCHAR2);

dblink is the global name of the destination site being deleted.

There are no restrictions on calling DELETE_DEFAULT_DEST, and the procedure
raises no exceptions.

DBMS_DEFER_SYS.DELETE_ERROR

The DELETE_ERROR procedure allows you to delete transactions from the DEFERROR
data dictionary view. The procedure also deletes the related entries from DEFCALL,
DEFTRAN, and DEFTRANDEST. Use DELETE_ERROR if you have manually resolved a
transaction that initially failed.

PROCEDURE DBMS_DEFER_SYS.DELETE_ERROR
 (deferred_tran_id IN VARCHAR2,
 deferred_tran_db IN VARCHAR2,
 destination IN VARCHAR2);

There are no restrictions on calling DELETE_ERROR.

Parameters
Parameter Name Description

deferred_tran_id
ID from the DEFTRAN data dictionary view of the transaction to be
deleted from DEFERROR. If NULL, all entries for the specified
deferred_tran_db and destination are deleted.

deferred_tran_db
Global name of the originating database. If NULL, all entries for the
specified deferred_tran_id and destination are deleted.

destination
Global name of the destination database. If NULL, all entries for
the specified deferred_tran_id and deferred_tran_db are deleted.

Exceptions
Exception Name Number Description

NO_DATA_FOUND
–
01403

Specified deferred_tran_id does not exist, specified
deferred_tran_db does not exist, or specified destination
does not exist.

DBMS_DEFER_SYS.DELETE_TRAN

379

The DELETE_TRAN procedure deletes deferred transactions. You might want to do
this if you have applied the call manually or if you remove a node from your

Oracle Distributed Systems

380

NO_DATA_FOUND
–
01403

Specified destination is not in the DEFSCHEDULE data
dictionary view.

environment. The procedure deletes the call from the DEFTRANDEST data dictionary
view and also from DEFCALLDEST (if it is an RPC). If the original call has been
applied to all other destinations, then the procedure also removes the entries from
DEFCALL and DEFTRAN.

PROCEDURE DBMS_DEFER_SYS.DELETE_TRAN
 (deferred_tran_id IN VARCHAR2,
 deferred_tran_db IN VARCHAR2,
 destination IN VARCHAR2);

There are no restrictions on calling DELETE_TRAN.

Parameters
Parameter Name Description

deferred_tran_id
ID from the DEFTRAN data dictionary view of the transaction to be
deleted from DEFERROR. If NULL, all entries for the specified
deferred_tran_db and destination are deleted.

deferred_tran_db
Global name of the originating database. If NULL, all entries for the
specified deferred_tran_id and destination are deleted.

destination
Global name of the destination database. If NULL, all entries for
the specified deferred_tran_id and deferred_tran_db are deleted.

Exceptions
Exception Name Number Description

NO_DATA_FOUND
–
01403

Specified deferred_tran_id does not exist, specified
deferred_tran_db does not exist, or specified destination
does not exist.

DBMS_DEFER_SYS.DISABLED

The DISABLED function returns the Boolean value TRUE if the deferred RPCs to the
specified destination have been disabled (with SET_DISABLED) and returns FALSE
otherwise.

FUNCTION DBMS_DEFER_SYS.DISABLED
 (destination IN VARCHAR2) RETURN BOOLEAN;

destination is the global name of the destination database.

There are no restrictions on calling the DISABLED function.

Exceptions
Exception Name Number Description

Oracle Distributed Systems

DBMS_DEFER_SYS.EXCLUDE_PUSH (Oracle8
Only)

Oracle8 uses a slightly different mechanism to propagate transactions to remote
databases. Instead of deleting transactions from the local queue as soon as they are
delivered to a remote site, Oracle purges the queue as a separate process. This
strategy enhances performance because there is no need for a two-phase commit
when transactions are propagated. In addition, Oracle8 includes support for parallel
propagation, which means that multiple transactions can be delivered to the
destinations simultaneously if they are not dependent on each other.

FUNCTION DBMS_DEFER_SYS.EXCLUDE_PUSH
 (timeout IN INTEGER) RETURN INTEGER;

timeout is the time to wait to acquire a lock that disables pushes. Specify
DBMS_LOCK.MAXWAIT to wait indefinitely.

The EXCLUDE_PUSH function may return the values shown in the following table:

Value Meaning
0 Normal successful completion

1 Timed out waiting for lock

2 Unsuccessful due to deadlock

4 Lock is already owned

DBMS_DEFER_SYS.EXECUTE

The DBMS_DEFER.CALL procedure, discussed earlier, neither executes nor pushes
transactions to the destination databases; it simply queues them. In order to
propagate the deferred call to the destinations and to execute it there, you must use
the DBMS_DEFER_SYS package’s EXECUTE procedure. EXECUTE forces immediate
execution of a deferred transaction from the current master or snapshot site.

PROCEDURE DBMS_DEFER_SYS.EXECUTE
 (destination IN VARCHAR2,
 stop_on_error IN BOOLEAN := FALSE,
 transaction_count IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := 0,
 execute_as_user IN BOOLEAN := FALSE,
 delay_seconds IN NATURAL := 0,
 batch_size IN NATURAL := 0);

381

There are no restrictions on calling EXECUTE.

Oracle Distributed Systems

Parameters
Parameter Name Description

destination Global name of the destination database.

stop_on_error
If TRUE, execution of queued transactions stops if an error is
encountered. If FALSE (the default), execution continues unless
destination is unavailable.

transaction_count If > 0, maximum number of transactions to execute.

execution_seconds
If > 0, maximum number of seconds to spend executing
transactions.

execute_as_user

If TRUE, the execution of deferred transactions is authenticated
at the remote system using the authentication context of the
session user. If FALSE (the default), the execution is
authenticated at the remote system using the authentication
contexts of the users that originally queued the deferred
transactions (indicated in the origin_user column of the DEFTRAN
data dictionary view). This parameter is obsolete in Oracle8,
which executes transactions under the context of the propagator.

delay_seconds
If > 0, routine sleeps for this many seconds before resuming
when there are no more transactions to push to destination.

batch_size

The number of deferred transactions executed before committing.
If batch_size = 0, a commit occurs after each deferred
transaction. If batch_size > 0, a commit occurs when the total
number of deferred calls executed exceeds batch_size and a
complete transaction has been executed.

Exceptions

If execution stops because of an exception, the EXECUTE procedure raises the last
exception encountered.

DBMS_DEFER_SYS.EXECUTE_ERROR

The EXECUTE_ERROR procedure executes transactions in the DEFERROR data
dictionary view after the cause of the error has been resolved. As with the
DELETE_ERROR and DELETE_TRAN procedures, you may pass NULLs to indicate
wildcards.

PROCEDURE DBMS_DEFER_SYS.EXECUTE_ERROR
 (deferred_tran_id IN VARCHAR2,
 deferred_tran_db IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

382

Parameter Name Description

Oracle Distributed Systems

383

startup_seconds
Maximum number of seconds to wait for the completion of a
previous push to the same destination.

deferred_tran_id ID of transaction in the DEFERROR data dictionary view

deferred_tran_db
Global name of database that originated or copied the transaction
originally

destination Global name of destination database

Exceptions
Exception

Name Number Description

ORA-
24275

–
24275

destination is NULL, or deferred_tran_id and deferred_tran_db
are neither both NULL nor both NOT NULL.

If execution stops because of an exception, the EXECUTE_ERROR procedure raises
the last exception encountered.

Restrictions

• The destination parameter may not be NULL.
• The deferred_tran_id and deferred_tran_db parameters must either both be

NULL or both be NOT NULL. If they are NULL, all transactions in DEFERROR
destined for destination are applied.

DBMS_DEFER_SYS.PURGE (Oracle8 Only)

The PURGE procedure purges transactions that have been propagated from the
deferred transaction queue.

FUNCTION DBMS_DEFER_SYS.PURGE(
 purge_method IN BINARY_INTEGER := purge_method_quick,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 write_trace IN BOOLEAN := FALSE)
RETURN BINARY_INTEGER;

Parameters
Parameter Name Description

purge_method
1 = purge_method_quick (not necessarily complete, but faster).

2 = purge_method_precise (complete purge).

rollback_segment Which rollback segment should be used.

Oracle Distributed Systems

384

destination Global name of the destination database.

execution_seconds
If > 0, maximum number of seconds to spend executing
transactions.

delay_seconds
If > 0, routine sleeps for this many seconds before resuming
when there are no more transactions to push to destination.

transaction_count Maximum number of transactions to push per execution.

write_trace If TRUE, record result in a trace file.

The return values for PURGE are listed in the following table:

Value Meaning
0 Normal completion after delay_seconds expired

1 Terminated by lock timeout while starting

2 Terminated by exceeding execution_seconds

3 Terminated by exceeding transaction_count

4 Terminated at delivery_order_limit

5 Terminated after errors

Exceptions
Exception Name Number Description

argoutofrange –23427 A parameter value is out of range.

executiondisabled –23354 Execution is disabled at destination.

dbms_defererror –23305 An internal error occurred.

DBMS_DEFER_SYS.PUSH

The PUSH function pushes a queued transaction to a destination node.

FUNCTION DBMS_DEFER_SYS.PUSH(
 destination IN VARCHAR2,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 stop_on_error IN BOOLEAN := FALSE,
 write_trace IN BOOLEAN := FALSE,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 delivery_order_limit IN NUMBER := delivery_order_infinity)
 RETURN BINARY_INTEGER;

Parameters
Parameter Name Description

Oracle Distributed Systems

parallelism

Degree of parallelism:

0 = serial (no parallelism)
1 = parallel propagation with one slave
n = parallel propagation with n slaves

heap_size

If > 0, maximum number of transactions to examine
simultaneously for parallel scheduling computation.

If 0, compute this number based on parallelism parameter.

stop_on_error If TRUE, then stop on the first error, even if not fatal.

write_trace If TRUE, record result in a trace file.

startup_seconds
Maximum number of seconds to wait for the completion of a
previous push to the same destination.

execution_seconds
Maximum number of seconds to spend on the push before
shutting down; defaults to seconds_infinity (i.e., unlimited).

delay_seconds
Shut down push cleanly if queue is empty for this many
seconds.

transaction_count Maximum number of transactions to push per execution.

delivery_order_limit delivery_order > delivery_order_limit.

Return values for PUSH are listed in the following table:

Value Meaning
0 Normal completion after delay_seconds expired

1 Terminated by lock timeout while starting

2 Terminated by exceeding execution_seconds

3 Terminated by exceeding transaction_count

4 Terminated at delivery_order_limit

5 Terminated after errors

Exceptions
Exception Name Number Description

commfailure –23302 Communication failure.

crt_err_err –23324 Error creating DEFERROR entry.

deferred_rpc_quiesce –23326 The system is being quiesced.

executiondisabled –23354 Execution is disabled at destination.

incompleteparallelpush –23388 Internal error.

missingpropagator –23357 A propagator does not exist.

DBMS_DEFER_SYS.REGISTER_PROPAGATOR
(Oracle8 Only)

385

Oracle Distributed Systems

386

next_date First time to execute transactions queued for dblink.

reset If TRUE, then last_txn_count, last_error, and last_msg are nulled

The REGISTER_PROPAGATOR procedure makes a designated user the propagator for
the local database.

PROCEDURE DBMS_DEFER_SYS.REGISTER_PROPAGATOR
 (username IN VARCHAR2);

username is the name of the account to which privileges are to be granted.

Exceptions
Exception Name Number Description

alreadypropagator
–
23393

User username is already the propagator for this
database.

duplicatepropagator
–
23394

Database already has a propagator account.

missinguser
–
23362

User username does not exist.

DBMS_DEFER_SYS.SCHEDULE_EXECUTION

If you are using the advanced replication facilities or if your application queues
deferred RPCs on a continual basis, then you should schedule the calls to the
EXECUTE procedure at prescribed intervals for each destination. The
SCHEDULE_EXECUTION procedure does just that by placing calls to the EXECUTE
procedure in the job queue.

PROCEDURE DBMS_DEFER_SYS.SCHEDULE_EXECUTION
 (dblink IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN default FALSE,
 stop_on_error IN BOOLEAN := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 execute_as_user IN BOOLEAN := NULL,
 delay_seconds IN NATURAL := NULL,
 batch_size IN NATURAL := NULL);

The SCHEDULE_EXECUTION procedure does not raise any exceptions nor are there
any restrictions on calling this procedure.

Parameters
Parameter Name Description

dblink Global name of the destination database.

interval Frequency with which to execute the RPC.

Oracle Distributed Systems

387

rollback_segment Which rollback segment should be used.

in DEFSCHEDULE data dictionary view for this dblink.

stop_on_error If not NULL, value is used by the call to EXECUTE.

transaction_count If not NULL, value is used by the call to EXECUTE.

execution_seconds If not NULL, value is used by the call to EXECUTE.

execute_as_user
If not NULL, value is used by the call to
DBMS_DEFER_SYS.EXECUTE (obsolete in Oracle8).

delay_seconds If not NULL, value is used by the call to EXECUTE.

batch_size If not NULL, value is used by the call to EXECUTE.

If an entry for dblink already exists in the DEFSCHEDULE data dictionary view with
non-NULL values for next_date and interval, you do not need to specify these values
in the call to SCHEDULE_EXECUTION. If you do specify interval and/or next_date,
then any previous values in DEFSCHEDULE will be overwritten. If there is no entry
for dblink in DEFSCHEDULE, then you must supply a value for interval and/or
next_date.

DBMS_DEFER_SYS.SCHEDULE_PURGE (Oracle8
Only)

The SCHEDULE_PURGE procedure schedules the automatic purge of transactions that
have been propagated from the queue.

PROCEDURE DBMS_DEFER_SYS.SCHEDULE_PURGE(
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := FALSE,
 purge_method IN BINARY_INTEGER := NULL,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 write_trace IN BOOLEAN := NULL);

Parameters
Parameter Name Description

interval Frequency with which to execute the call.

next_date First time to execute the purge.

reset
If TRUE, last_txn_count, last_error, and last_msg are nulled in
DEFSCHEDULE data dictionary view.

purge_method
1 = purge_method_quick (not necessarily complete, but faster).

2 = purge_method_precise (complete purge).

Oracle Distributed Systems

388

write_trace If TRUE, record the result in a trace file.

startup_seconds
Maximum number of seconds to wait for the completion of a
previous push to the same destination.

execution_seconds
Maximum number of seconds to spend on the push before
shutting down; defaults to seconds_infinity (i.e., unlimited).

delay_seconds
If > 0, routine sleeps for this many seconds before resuming
when there are no more transactions to push to destination.

transaction_count Maximum number of transactions to push per execution.

write_trace If TRUE, record the result in a trace file.

DBMS_DEFER_SYS.SCHEDULE_PUSH (Oracle8
Only)

The SCHEDULE_PUSH procedure schedules automatic pushes to the destination node.

PROCEDURE DBMS_DEFER_SYS.SCHEDULE_PUSH(
 destination IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := FALSE,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL,
 stop_on_error IN BOOLEAN := NULL,
 write_trace IN BOOLEAN := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL);

Parameters
Parameter Name Description

destination Global name of the destination database.

interval Frequency with which to execute the call.

next_date First time to push transactions queued for destination.

reset
If TRUE, last_txn_count, last_error, and last_msg are nulled in
DEFSCHEDULE data dictionary view for this destination.

parallelism

Degree of parallelism:

0 = serial (no parallelism)
1 = parallel propagation with one slave
n = parallel propagation with n slaves

heap_size
If > 0, maximum number of transactions to examine
simultaneously for parallel scheduling computation. If 0, compute
this number based on parallelism parameter.

stop_on_error If TRUE, stop on the first error, even if not fatal.

Oracle Distributed Systems

389

(Oracle8 Only)

startup_seconds
Maximum number of seconds to wait for the completion of a
previous push to the same destination.

execution_seconds
Maximum number of seconds to spend on the push before
shutting down; defaults to seconds_infinity (i.e., unlimited).

delay_seconds
If > 0, routine sleeps for this many seconds before resuming
when there are no more transactions to push to destination.

transaction_count Maximum number of transactions to push per execution.

DBMS_DEFER_SYS.SET_DISABLED

The SET_DISABLED procedure disables or enables propagation to the specified
destination. If you are managing a replicated environment, you might want to
disable propagation to a given site while you perform maintenance. If you disable
propagation while RPCs are being delivered to the destination database, the delivery
will be allowed to complete.

PROCEDURE DBMS_DEFER_SYS.SET_DISABLED
 (destination IN VARCHAR2,
 disabled IN BOOLEAN := TRUE);

Parameters
Parameter

Name Description

destination Global name of the destination database

disabled
Flag indicating whether calls are to be disabled (TRUE) or enabled
(FALSE)

If disabled is set to TRUE, propagation to the destination is disabled, although any
transactions in progress are allowed to complete. If disabled is set to FALSE,
propagation to the destination is enabled, although this does not call EXECUTE.

Exceptions
Exception Name Number Description

NO_DATA_FOUND
–
01403

Specified destination is not in the DEFSCHEDULE data
dictionary view.

Restrictions

You must execute a COMMIT after a call to the SET_DISABLED procedure for the
changes to take effect.

DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR

Oracle Distributed Systems

The UNREGISTER_PROPAGATOR procedure revokes the privileges granted to make a
particular user the local database propagator.

PROCEDURE DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR
 (username IN VARCHAR2,
 timeout IN INTEGER DEFAULT dbms_lock.maxwait);

I recommend using the same username as the propagator at all database sites. Also,
make sure that the account is the same as the replication administrator (REPADMIN)
account.

Parameters
Parameter

Name Description

username Name of the account for which privileges are to be revoked

timeout
Number of seconds to wait if the propagator account is in use when the
call to UNREGISTER_PROPAGATOR is made

Exceptions
Exception Name Number Description

missingpropagator
–
23357

User username is not a propagator.

propagator_inuse
–
23418

The propagator account is in use, and timeout seconds
have elapsed.

DBMS_DEFER_SYS.UNSCHEDULE_EXECUTION

When you need to stop the propagation of deferred calls to a given destination, you
can do so with the UNSCHEDULE_EXECUTION procedure.

PROCEDURE DBMS_DEFER_SYS.UNSCHEDULE_EXECUTION
 (dblink IN VARCHAR2);

dblink is the global name of the destination database.

Calling this procedure is analogous to calling DBMS_JOB.REMOVE to remove the job
that SCHEDULE_EXECUTION scheduled. The job is removed from the queue, and
automatic propagation to the database specified by dblink ceases. Whenever you
remove a master definition site, call UNCHEDULE_EXECUTION for the site.

390

There are no restrictions on calling UNSCHEDULE_EXECUTION.

Oracle Distributed Systems

Exceptions
Exception Name Number Description

NO_DATA_FOUND –01403
Specified destination is not in the DEFSCHEDULE data

dictionary view.

DBMS_DEFER_SYS.UNSCHEDULE_PURGE
(Oracle8 Only)

The UNSCHEDULE_PURGE procedure is the complement to the SCHEDULE_PURGE
procedure. This procedure unschedules the automatic purge of transactions that
have been propagated to the queue.

PROCEDURE DBMS_DEFER_SYS.UNSCHEDULE_PURGE;

DBMS_DEFER_SYS.UNSCHEDULE_PUSH
(Oracle8 Only)

The UNSCHEDULE_PUSH procedure is the complement to the SCHEDULE_PUSH
procedure. This procedure unschedules automatic pushes to the destination node.

PROCEDURE DBMS_DEFER_SYS.UNSCHEDULE_PUSH(dblink IN VARCHAR2);

dblink is the global name of the database to which pushes are to be unscheduled.

Exceptions
Exception Name Number Description

NO_DATA_FOUND –00100 No pushes to dblink exist.

A.4 DBMS_OFFLINE_OG: Performing Site Instantiation

When you add a new site to your replicated environment, you must not only create
the replicated objects but also populate snapshots and replicated tables with a copy
of the current data. Although you can set the copy_rows parameter to TRUE in your
call to the DBMS_REPCAT package’s CREATE_MASTER_REPOBJECT or
ADD_MASTER_DATABASE procedure, this option is not practical for schemas that are
large or complex.

The DBMS_OFFLINE_OG package provides a more feasible method of site
instantiation. The general idea is that you export data from an existing master site

391

and import it into the new master site. While the import is taking place, the existing
master site’s queue data updates to the new site, but the updates are not actually

Oracle Distributed Systems

392

sitealreadyexists – new_site already exists.

sent until the load is complete. This package lets you perform much of the
instantiation without quiescing the entire replication group.

A.4.1 How the Package Is Used

The following table summarizes the steps you follow when using DBMS_OFFLINE_OG.

Step Where Performed Activity
1 Master definition site DBMS_REPCAT.ADD_MASTER_DATABASE

2 Master definition site DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

3 Master definition site DBMS_OFFLINE_OG.BEGIN_INSTANTIATION

4 Any master site Export replicated schema

5 Master definition site DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS

6 New site DBMS_OFFLINE_OG.BEGIN_LOAD

7 New site Import data from Step 4

8 New site DBMS_OFFLINE_OG.END_LOAD

9 Master definition site DBMS_OFFLINE_OG.END_INSTANTIATION

A.4.2 Installation and Access

The DBMS_OFFLINE_OG package is created when the Oracle database is installed.
The dbmsofln.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catrep.sql, which
must be run to install the advanced replication packages. The wrapped SQL script
prvtofln.plb creates the public synonym DBMS_OFFLINE_OG. No EXECUTE privileges
are granted on DBMS_OFFLINE_OG; only the owner (SYS) and those with the
EXECUTE ANY PROCEDURE system privilege may execute the package.

A.4.3 DBMS_OFFLINE_OG Procedures
Procedure Name Description

BEGIN_INSTANTIATION
Call from master definition site to flag beginning of
offline instantiation

BEGIN_LOAD Call from new master site prior to importing data

END_INSTANTIATION
Call from master definition site to flag end of offline
instantiation

END_LOAD Call from new master site after importing data

RESUME_SUBSET_OF_MASTERS
Call from master definition site to resume
replication activity for existing sites while new site is
instantiated

A.4.4 DBMS_OFFLINE_OG Exceptions
Name Number Description

badargument
–
23430

gname, sname, master_site, or snapshot_oname is NULL or
' '.

Oracle Distributed Systems

393

23432

unknownsite
–
23434

new_site is not known at the master definition site (i.e., not
in the DBA_REPSITES data dictionary view).

wrongsite
–
23433

BEGIN_LOAD is executed at a site other than new_site.

wrongstate
–
23431

The site is not in the appropriate state (normal or quiesced)
for the attempted activity.

A.4.5 DBMS_OFFLINE_OG Nonprogram Elements
Type and Name Description

TYPE SetOfSiteType Table of VARCHAR2(256)

SetOfSiteType is a PL/SQL table that is used internally.

DBMS_OFFLINE_OG.BEGIN_INSTANTIATION

The BEGIN_INSTANTIATION procedure is called from the master definition site to
flag the beginning of offline instantiation.

PROCEDURE DBMS_OFFLINE_OG.BEGIN_INSTANTIATION
 (gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters
Parameter Name Description

gname The replication group to which the site is being added

new_site The global name of the new site

Exceptions
Exception Name Number Description

badargument
–
23430

Group gname is NULL or ' '.

missingrepgroup
–
23373

Group gname does not exist.

nonmasterdef
–
23312

Routine is not being called from the master definition site.

sitealreadyexists
–
23432

new_site already exists.

wrongstate
–
23431

Group gname is not in NORMAL state at the master
definition site.

Oracle Distributed Systems

Restrictions

• This procedure must be run from the master definition site.
• Group gname must be quiesced.

DBMS_OFFLINE_OG.BEGIN_LOAD

Call the BEGIN_LOAD procedure from the new master site before you begin
importing data. The effect is to disable triggers so that data cannot be modified
during the import and to disable the propagation of changes to other master sites.

PROCEDURE DBMS_OFFLINE_OG.BEGIN_LOAD
 (gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters are identical to those given for the BEGIN_INSTANTIATION procedure.

Exceptions
Exception Name Number Description

badargument
–
23430

Group gname is NULL or ' ' .

missingrepgroup
–
23373

Group gname does not exist.

wrongsite
–
23433

BEGIN_LOAD or END_LOAD is executed at a site other than
new_site.

wrongstate
–
23431

Group gname is not in NORMAL state at the master
definition site.

Restrictions

This procedure must be run from the new site prior to importing the replicated
schema. The effect is to add the new site to the set of masters in a normal state—
that is, all propagation is enabled among all sites.

DBMS_OFFLINE_OG.END_INSTANTIATION

You call the END_INSTANTIATION procedure from the master definition site to flag
the end of offline instantiation.

394

PROCEDURE DBMS_OFFLINE_OG.END_INSTANTIATION

Oracle Distributed Systems

395

wrongsite – BEGIN_LOAD or END_LOAD is executed at a site other than

 (gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters are identical to those described for the BEGIN_INSTANTIATION
procedure.

Exceptions
Exception Name Number Description

badargument
–
23430

Group gname is NULL or ' '.

missingrepgroup
–
23373

Group gname does not exist.

nonmasterdef
–
23312

Routine is not being called from the master definition site.

sitealreadyexists
–
23432

new_site already exists.

wrongstate
–
23431

Group gname is not in NORMAL state at the master
definition site.

Restrictions

• This procedure must be run from the master definition site.
• Group gname must be in the NORMAL state at the master definition site.

DBMS_OFFLINE_OG.END_LOAD

Call the END_LOAD procedure from the new master site when you are finished
importing data. The effect is to enable propagation to all other sites participating in
the replication.

PROCEDURE DBMS_OFFLINE_OG.END_LOAD
 (gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters are identical to those given for the BEGIN_INSTANTIATION procedure.

Exceptions
Exception Name Number Description

badargument
–
23430

Group gname is NULL or ' '.

missingrepgroup
–
23373

Group gname does not exist.

Oracle Distributed Systems

23433 new_site.

wrongstate
–
23431

Group gname is not in NORMAL state at the master
definition site.

Restrictions

This procedure must be run from the new site after the data is imported.

DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS

Call this procedure from the master definition site to allow propagation of replication
activity among all master sites except the site indicated by the new_site parameter.
Upon successful completion, the status of gname is NORMAL in all master sites
except for new_site, where the group is still quiesced.

PROCEDURE DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS
 (gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters are identical to those given for the BEGIN_INSTANTIATION procedure.

Exceptions
Exception Name Number Description

badargument
–
23430

Group gname is NULL or ' '.

missingrepgroup
–
23373

Group gname does not exist.

nonmasterdef
–
23312

Routine is not being called from master definition site.

sitealreadyexists
–
23432

new_site already exists.

wrongstate
–
23431

Group gname is not in NORMAL state at the master
definition site.

Restrictions

• This procedure must be run from the master definition site.
• Group gname must be in the quiesced state at the master definition site.

396

Oracle Distributed Systems

A.5 DBMS_OFFLINE_SNAPSHOT: Performing Offline
Snapshot Instantiation

The DBMS_OFFLINE_SNAPSHOT package allows you to instantiate snapshots without
having to run the CREATE SNAPSHOT command or the
DBMS_REPEAT.SNAPSHOT_REPOBJECT procedure over the network. Doing offline
instantiation in this way is particularly useful in cases in which you wish to instantiate
a snapshot site with a large amount of data in an advanced replication environment.
Offline instantiation refers to the population of snapshots with the import and export
utilities, as opposed to using the DBMS_SNAPSHOT.REFRESH procedure. This
technique is less time consuming and less taxing on your network, and it minimizes
the time your environment must be quiesced.

A.5.1 How the Package Is Used

The following table summarizes the steps you follow when using
DBMS_OFFLINE_SNAPSHOT:

Step Where
Performed Activity

1 Master site
Create snapshot log on table(s) to be snapshotted (optional, but
recommended).

2 Master site Create a snapshot locally on the table(s) to be snapshotted.

3 Master site
Export SNAP$_table_name table(s) created in Step 2 as the
schema owner.

4
New snapshot
site

DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP.

5
New snapshot
site

DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD.

6
New snapshot
site

Import SNAP$_table_name tables from export file created in Step
3.

7
New snapshot
site

DBMS_OFFLINE_SNAPSHOT.END_LOAD.

8 Master site Drop snapshot(s) created in Step 2.

A.5.2 Installation and Access

The DBMS_OFFLINE_SNAPSHOT package is created when the Oracle database is
installed. The dbmsofln.sql script (found in the built-in packages source directory)
contains the source code for this package’s specification. This script is called by
catrep.sql, which must be run to install the advanced replication packages. The
wrapped SQL script prvtofln.plb creates the public synonym
DBMS_OFFLINE_SNAPSHOT. No EXECUTE privileges are granted on
DBMS_OFFLINE_SNAPSHOT; only the owner (SYS) and those with the EXECUTE ANY
PROCEDURE system privilege may execute the package.

397

Oracle Distributed Systems

A.5.3 DBMS_OFFLINE_SNAPSHOT Procedures
Name Description

BEGIN_LOAD Call before beginning to load data from an export file

END_LOAD Call after the load is complete

A.5.4 DBMS_OFFLINE_SNAPSHOT Exceptions
Name Number Description

badargument
–
23430

The gname, sname, master_site, or snapshot_oname
parameter is NULL or ' '.

missingremotesnap
–
23361

The snapshot_oname parameter does not exist at the
remote master site (master_site parameter).

snaptabmismatch
–
23363

The base table name of the snapshot at the master site
and snapshot site do not match.

DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD

Call the BEGIN_LOAD procedure from the new snapshot site prior to importing the
SNA P$table_name tables that were exported from the master site. This call creates
empty snapshots and supporting objects. The specifications for the Oracle7 and
Oracle8 versions differ as follows.

Oracle7 specification:

PROCEDURE DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD
 (gname IN VARCHAR2,
 sname IN VARCHAR2,
 master_site IN VARCHAR2,
 snapshot_oname IN VARCHAR2,
 storage_c IN VARCHAR2 := '',
 comment IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD
 (gname IN VARCHAR2,
 sname IN VARCHAR2,
 master_site IN VARCHAR2,
 snapshot_oname IN VARCHAR2,
 storage_c IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 min_communication IN BOOLEAN := TRUE);

The BEGIN_LOAD procedure does not raise any exceptions.

398

Oracle Distributed Systems

Parameters
Parameter Name Description

gname The replication group to which the new snapshot belongs.

sname The schema that owns the new snapshot.

master_site The global name of the snapshot master site.

snapshot_oname The name of the temporary snapshot created at the master site.

storage_c Optional storage clause for the new snapshot.

comment
Optional comment for the snapshot; stored with entry in
DBA_SNAPSHOTS if supplied.

min_communication

(Oracle8 only)

The min_communication parameter controls how the update
trigger on updateable snapshot queues changes back to the
master site. If this parameter is set to TRUE (the default), then
old column values are sent only if the update changes their
value. New column values are sent only if the column is part of
the primary key or if the column is in a column group that has
been modified.

Restrictions

This procedure must be run from the new snapshot site prior to importing the
replicated schema.

DBMS_OFFLINE_SNAPSHOT.END_LOAD

Call the END_LOAD procedure after the data import (initiated by the BEGIN_LOAD
procedure) is complete. Upon successful completion, the new snapshot is
instantiated and operational. The specification is the same for Oracle7 and Oracle8:

PROCEDURE DBMS_OFFLINE_SNAPSHOT.END_LOAD
 (gname IN VARCHAR2,
 sname IN VARCHAR2,
 snapshot_oname IN VARCHAR2);

Parameters have the same meanings as for the BEGIN_LOAD procedure. The
END_LOAD procedure does not raise any exceptions.

Restrictions

This procedure must be run from the new snapshot site after importing the replicated
schema.

399

Oracle Distributed Systems

400

do not exist.

dbms_repcat.norepoption – Replication option is not linked to kernel.

A.6 DBMS_RECTIFIER_DIFF: Comparing Replicated Tables

If you are not sure whether the data at two sites are identical, you can use the
DBMS_RECTIFIER_DIFF package to find out.

A.6.1 How the Package Is Used

The DBMS_RECTIFIER_DIFF’s DIFFERENCES procedure compares two instantiations
of a table. The table at one of two sites is considered the reference, or “truth” table,
and the other is the “comparison” table. The procedure stores discrepancies between
the truth table and comparison table in a “missing rows” table, which the user must
create. If differences exist, the DBA can use the RECTIFY procedure to synchronize
the comparison table with the truth table. The truth table is not modified.

A.6.2 Installation and Access

The DBMS_RECTIFIER_DIFF package is created when the Oracle database is installed.
The dbmsrepc.sql script (found in the built-in packages source directory) contains
the source code for this package’s specification. This script is called by catrep.sql,
which must be run to install the advanced replication packages. The wrapped SQL
script prvtrctf.sql creates the public synonym DBMS_RECTIFIER_DIFF. No EXECUTE
privileges are granted on DBMS_RECTIFIER_DIFF; only the owner (SYS) and those
with the EXECUTE ANY PROCEDURE system privilege may execute the package.

A.6.3 DBMS_RECTIFIER_DIFF Procedures
Procedure

Name Description

DIFFERENCES
Determines differences between the truth table and the comparison
table

RECTIFY Synchronizes the comparison table with the truth table

A.6.4 DBMS_RECTIFIER_DIFF Exceptions
Exception Name Number Description

badmrname
–
23377

Truth table and missing rows table are the same.

badname
–
23368

sname, oname, missing_rows_sname, or
missing_rows_oname is NULL or ''.

badnumber
–
23366

max_missing is less than 1 or NULL.

cannotbenull
–
23369

max_missing is NULL.

dbms_repcat.commfailure
–
23302

Remote site is not accessible.

dbms_repcat.missingobject
–
23308

One or more of the tables oname1, oname2,
missing_rows_oname1, or missing_rows_oname2

Oracle Distributed Systems

02094

missingprimarykey
–
23367

column_list does not contain the table’s primary
keys. If multiple columns constitute the primary
key, then all columns must be specified in
column_list.

nosuchsite
–
23365

reference_site, comparison_site, or
missing_rows_site does not name a site.

notshapeequivalent
–
23370

Columns specified in column_list are not the
same for sname1.oname1 at site reference_site
and sname2.oname2 at site comparison_site.

unknowncolumn
–
23371

Columns specified in column_list do not exist in
sname1.oname1 and/or sname2.oname2.

unsupportedtype
–
23372

column_list contains columns of type LONG,
LONG RAW, or MLSLABEL.

DBMS_RECTIFIER_DIFF.DIFFERENCES

The DIFFERENCES procedure compares the data in a table at a master site with the
same table at a reference site. The reference site need not be the master definition
site.

The procedure stores discrepancies between the reference table and comparison
table in a “missing rows” table, which the user must create. It populates the table
specified by the missing_rows_oname1 parameter with rows that exist in the
reference table but not the comparison table and rows that exist in the comparison
table but not the reference table. The table identified by the missing_rows_oname2
parameter has one record for every record in missing_rows_oname1, which identifies
which site has the record.

PROCEDURE DBMS_RECTIFIER_DIFF.DIFFERENCES
 (sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 where_clause IN VARCHAR2 := '',
 {column_list IN VARCHAR2 := '' |
 array_columns IN dbms_utility.name_array,},
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 max_missing IN INTEGER,
 commit_rows IN INTEGER := 500);

401

This procedure can take a long time to run and only identifies differences, which then
need to be processed with DBMS_RECTIFIER_DIFF.RECTIFY. If the volume of data is

Oracle Distributed Systems

402

dbms_repcat.commfailure
–
23302

Remote site is not accessible.

significant, it will probably be easier for you to simply reinstantiate the comparison
table by importing an export of the reference table.

Parameters
Parameter Name Description

sname1 Name of the schema that owns oname1.

oname1 Table at the reference site (truth table).

reference_site
The global name of site withthe truth table. If NULL or ''
(default), the truth table is assumed to be local.

sname2 Name of the schema that owns oname2.

oname2 The comparison table.

comparison_site
The global name of the site with comparison table. If NULL or
' ', table is assumed to be local.

where_clause
Optional predicate that can be used to limit set of rows
compared (e.g.,WHERE STATE = 'CA').

column_list

Comma-separated list of one or more columns whose values
are to be compared. If NULL or ' ' (default), then all columns
are used. There should not be any whitespace after the
commas.

array_columns
PL/SQL table of column names; either column_list or
array_columns can be passed, not both.

missing_rows_sname Name of schema that owns missing_rows_oname1.

missing_rows_oname1
Name of table containing records that do not exist in both the
truth table and the comparison table.

missing_rows_oname2
Table that holds information telling which table owns each
record in missing_rows_oname1.

missing_rows_site
The global name of site where tables missing_rows_oname1
and missing_rows_oname2 exist; if NULL or ' ' (default),
tables are assumed to be local.

max_missing
The maximum number of rows to insert into
missing_rows_oname1 before exiting; it can be any value >
1.

commit_rows
Commit rows inserted into missing_rows_oname1 after this
many records.

Exceptions
Exception Name Number Description

badmrname
–
23377

oname1 is the same as missing_rows_oname1.

badname
–
23368

sname, oname, missing_rows_sname,

or missing_rows_oname is NULL or ' '.

badnumber
–
23366

max_missing is less than 1 or NULL.

Oracle Distributed Systems

403

oname1 Table at the reference_site (truth table).

dbms_repcat.missingobject
–
23308

One or more of the tables oname1, oname2,
missing_rows_oname1, or missing_rows_oname2
does not exist.

nosuchsite
–
23365

reference_site, comparison_site, or
missing_rows_site does not name a site.

Restrictions

• You must create tables named in the form
missing_rows_sname.missing_rows_oname1 and
missing_rows_sname.missing_rows_oname2 before running this procedure.

• The columns in table missing_rows_oname1 must match the columns passed
to column_list or array_columns exactly.

• The replication group to which the tables belong must be quiesced.

DBMS_RECTIFIER_DIFF.RECTIFY

The DIFFERENCES procedure paves the way for its companion procedure, RECTIFY,
which synchronizes the reference table (oname1). Before running the RECTIFY
procedure, always make sure that the updates to the comparison table (oname2) will
not violate any integrity, check, or NOT NULL constraints. Note that this procedure
does not modify the reference table.

The DIFFERENCES and RECTIFY procedures can take a long time to run. If the
volume of data is significant, it will probably be easier for you to simply reinstantiate
the comparison table by importing an export of the reference table.

PROCEDURE DBMS_RECTIFIER_DIFF.RECTIFY
 (sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 {column_list IN VARCHAR2 := '' |
 array_columns IN dbms_utility.name_array},
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 commit_rows IN INTEGER := 500);

Parameters
Parameter Name Description

sname1 Name of the schema that owns oname1.

Oracle Distributed Systems

404

they will be deleted from the comparison table.

reference_site
The global name of the site with truth table; if NULL or ' '
(default), the truth table is assumed to be local.

sname2 Name of the schema that owns oname2.

oname2 The comparison table.

comparison_site
The global name of the site with comparison table. If NULL or
' ', table is assumed to be local.

column_list

A comma-separated list of one or more columns whose
values are to be compared; if NULL or ' ' (default), then all
columns are used. There should not be any whitespace after
the commas.

array_columns
PL/SQL table of column names; either column_list or
array_columns can be passed, not both.

missing_rows_sname Name of the schema that owns missing_rows_oname1.

missing_rows_oname1
The name of the table containing records that do not exist in
both the truth table and the comparison table.

missing_rows_oname2
The table that holds information telling which table owns each
record in missing_rows_oname1.

missing_rows_site
The global name of the site where tables
missing_rows_oname1 and missing_rows_oname2 exist; if
NULL or ' ' (default), tables are assumed to be local.

commit_rows
Commit rows inserted into missing_row_oname1 after this
many records.

Exceptions
Exception Name Number Description

badname
–
23368

sname, oname, missing_rows_sname, or
missing_rows_oname is NULL or ' '.

badnumber
–
23366

max_missing is less than 1 or NULL.

dbms_repcat.commfailure
–
23302

Remote site is not accessible.

dbms_repcat.missingobject
–
23308

The table oname1, oname2,
missing_rows_oname1, or missing_rows_oname2
does not exist.

dbms_repcat.norepoption –2094 Replication option is not linked to kernel.

nosuchsite
–
23365

reference_site, comparison_site, or
missing_rows_site does not name a site.

Restrictions

• The DIFFERENCES procedure must have been run prior to running RECTIFY.
• The replication group to which the tables belong should still be quiesced.
• If duplicate rows exist in the reference table but not the comparison table,

they will be inserted into the comparison table.
• If duplicate rows exist in the comparison table but not the reference table,

Oracle Distributed Systems

405

 {list IN VARCHAR2,| tab IN dbms_utility.uncl_array,}
 lax IN BOOLEAN DEFAULT FALSE);

A.7 DBMS_REFRESH: Managing Snapshot Groups

The DBMS_REFRESH package contains procedures for administering snapshot groups.

A.7.1 How the Package Is Used

A snapshot group is a collection of one or more snapshots that Oracle refreshes in an
atomic transaction, guaranteeing that relationships among the master tables are
preserved in the snapshot tables.

A.7.2 Installation and Access

The DBMS_REFRESH package is created when the Oracle database is installed. The
dbmssnap.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catproc.sql, which
is normally run immediately after database creation. The script creates the public
synonym DBMS_REFRESH for the package and grants the EXECUTE privilege on the
package to public. All Oracle users can reference and make use of this package.

A.7.3 DBMS_REFRESH Procedures
Procedure Name Description

ADD Adds one or more snapshots to an existing refresh group

CHANGE Changes parameters associated with a refresh group

DESTROY Removes a refresh group

MAKE Creates a refresh group

REFRESH Forces a refresh of a refresh group

SUBTRACT Removes one or more snapshots from a refresh group

DBMS_REFRESH does not define any exceptions.

A.7.4 DBMS_REFRESH Nonprogram Elements
Element Name/Type Description

aaspriv/BINARY
INTEGER

Privilege number for ALTER ANY SNAPSHOT system
privilege (107)

DBMS_REFRESH.ADD

Call the ADD procedure to add one or more snapshots to all existing snapshot groups
or move a snapshot from one group to another.

PROCEDURE DBMS_REFRESH.ADD
 (name IN VARCHAR2,

Oracle Distributed Systems

406

 (name IN VARCHAR2,
 next_date IN DATE DEFAULT NULL,

A snapshot group cannot have more than 100 members.

In both Oracle7 and Oracle8, the ADD procedure is overloaded; you can supply the
list of snapshots either as a comma-separated string with the list parameter, or as a
PL/SQL table with the tab parameter. You must select either the list or tab parameter,
but not both.

Parameters
Parameter

Name Description

name Name of the refresh group to create.

list
A comma-delimited string of snapshots to include in the new refresh
group. Use either list or tab to specify the snapshot(s) you want to add.

tab
A PL/SQL table of snapshots to include in the new refresh group. Use
either list or tab to specify the snapshot(s) you want to add.

lax
If set to TRUE and the snapshots already exist in a refresh group other
than name, the snapshots are first removed from the other group.

Exceptions
Exception Name/Type Description

aaspriv/BINARY
INTEGER

Privilege number for ALTER ANY SNAPSHOT system
privilege

Restrictions

• This procedure must be run from the snapshot site.
• A snapshot cannot belong to more than one refresh group.
• If you want to move a snapshot from one refresh group to another, the lax

parameter must be set to TRUE, which is not the default.

DBMS_REFRESH.CHANGE

The CHANGE procedure allows you to modify settings associated with a snapshot
group. You can change most of the parameters that are available in ADD.

The specifications for CHANGE differ for Oracle7 and Oracle8 as follows. Note that
the difference between the Oracle7 and Oracle8 CHANGE specifications is the
inclusion of support for parallel propagation and purging in the Oracle8 version.

Oracle7 specification:

PROCEDURE DBMS_REFRESH.CHANGE

Oracle Distributed Systems

 interval IN VARCHAR2 DEFAULT NULL,
 implicit_destroy IN BOOLEAN DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT NULL,
 refresh_after_errors IN BOOLEAN DEFAULT NULL);

Oracle8 specification:

PROCEDURE DBMS_REFRESH.CHANGE
 (name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Refer to the ADD section for an explanation of these parameters.

Exceptions
Exception Name Number Description

ORA-23404 –23404 Refresh group name does not exist.

Restrictions

This procedure must be run from the snapshot site.

DBMS_REFRESH.DESTROY

Call the DESTROY procedure to destroy a snapshot group. For both Oracle7 and
Oracle8, you call DESTROY as follows:

PROCEDURE DBMS_REFRESH.DESTROY (name IN VARCHAR2);

name is the name of the snapshot group to be destroyed.

Exceptions
Exception Name Number Description

ORA-23404 –23404 Refresh group name does not exist.

407

Oracle Distributed Systems

408

list
A comma-delimited string of snapshots to include in the new
refresh group. Use either list or tab to specify the snapshot(s)

Restrictions

This procedure must be run from the snapshot site.

DBMS_REFRESH.MAKE

Call the MAKE procedure to create a snapshot group. The specifications for the
Oracle7 and Oracle8 versions differ as follows.

Oracle7 specification:

PROCEDURE DBMS_REFRESH.MAKE
 (name IN VARCHAR2,
 {list IN VARCHAR2, | tab IN dbms_utility.uncl_array,}
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN DEFAULT FALSE,
 lax IN BOOLEAN DEFAULT FALSE,
 job IN BINARY_INTEGER DEFAULT 0,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE);

Oracle8 specification:

PROCEDURE DBMS_REFRESH.MAKE
 (name IN VARCHAR2,
 {list IN VARCHAR2, | tab IN dmbs_utility.uncl_array,}
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := FALSE,
 lax IN BOOLEAN := FALSE,
 job IN BINARY_INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0);

The MAKE procedure does not raise any exceptions.

Parameters
Parameter Name Description

name Name of the refresh group to create.

Oracle Distributed Systems

you want to add.

tab
A PL/SQL table of snapshots to include in the new refresh group.
Use either list or tab to specify the snapshot(s) you want to add.

next_date The time of the next refresh.

interval
A DATE expression indicating the snapshot group’s refresh
interval.

implicit_destroy
If set to TRUE, the snapshot group is destroyed if all snapshots
are removed from it.

lax
If set to TRUE and the snapshot(s) already exist in a refresh
group other than name, the snapshot(s) are first removed from
the other group.

job Used by import utility. Always use default value of 0.

rollback_seg
Specifies the rollback segment to use during snapshot refreshes.
If set to NULL, the default rollback segment is used.

push_deferred_rpc

For updateable snapshots only. Setting this parameter to TRUE
indicates that local updates will be pushed back to the master
site (otherwise, local updates will not be visible during the
refresh).

refresh_after_errors
For updateable snapshots only. Setting this parameter to TRUE
indicates that refreshes should occur even if errors exist in the
DEFERROR data dictionary view.

purge_option

(Oracle8 only)

If push_deferred_rpc is TRUE, this designates the purge
method; default is 1.

0 = no purge
1 = lazy purge (optimized for time)
2 = aggressive purge (complete)

parallelism

(Oracle8 only)

If push_deferred_rpc is TRUE, this determines the maximum
degree of parallelism; default is 1.

0 = serial
1 = parallel with 1 slave
n = parallel with n slaves (n > 1)

heap_size

(Oracle8 only)

Used only if parallelism > 0. Sets the maximum number of
transactions to be examined simultaneously for determining
parallel scheduling. Oracle determines this value internally; you
are advised not to use it.

Restrictions

This procedure must be run from the snapshot site.

DBMS_REFRESH.REFRESH

409

Oracle Distributed Systems

Call REFRESH to refresh a snapshot group. A call to REFRESH causes all members of
snapshot group name to be refreshed with the settings that you have designated in
MAKE and/or CHANGE.

PROCEDURE DBMS_REFRESH.REFRESH (name IN VARCHAR2);

name identifies the snapshot group.

Exceptions
Exception Name Number Description

ORA-23404 –23404 Refresh group name does not exist.

Restrictions

This procedure must be run from the snapshot site.

DBMS_REFRESH.SUBTRACT

Call the SUBTRACT procedure to subtract a snapshot group.

PROCEDURE DBMS_REFRESH.SUBTRACT
 (name IN VARCHAR2,
 {list IN VARCHAR2,| tab IN dbms_utility.uncl_array,}
 lax IN BOOLEAN DEFAULT FALSE);

The parameters for theSUBTRACT procedure have the same meaning as in the ADD
procedure; refer to the parameter table in that section. Note that you must select
the list or tab parameter, but not both.

Exceptions
Exception Name Number Description

ORA-23404 –23404 Refresh group name does not exist.

Restrictions

This procedure must be run from the snapshot site.

A.8 DBMS_REPCAT: Performing Replication Administration

The DBMS_REPCAT package is the foundation of the replication API. It allows you to
perform a wide variety of operations in several categories: advanced replication
administration, snapshots, and conflict resolution.

410

Oracle Distributed Systems

411

CANCEL_STATISTICS Cancels collection of statistics about conflict

A.8.1 How the Package Is Used

DBMS_REPCAT contains the procedures required to maintain the following aspects of
a replicated environment:

• Site priority information
• Column group configuration
• Priority group configuration
• Conflict resolution techniques
• Snapshot propagation
• Object replication support
• Statistics
• Master site configuration

A.8.2 Installation and Access

The DBMS_REPCAT package is created when the Oracle database is installed. The
dbmsrepc.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catrep.sql, which
must be run to install the advanced replication packages. The script creates the
public synonym DBMS_REPCAT. The package procedure
DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT grants EXECUTE privileges on
the package to the specified grantee. In addition, the package owner (SYS) and
users with the EXECUTE ANY PROCEDURE system privilege may execute it.

A.8.3 DBMS_REPCAT Procedures
Procedure Name Description

ADD_conflicttype_RESOLUTION
Adds a custom conflict resolution handler for
update, delete, or uniqueness conflicts.

ADD_GROUPED_COLUMN
Adds table column(s) to an existing column
group.

ADD_MASTER_DATABASE Adds a master database to a replication group.

ADD_PRIORITY_datatype Adds a member to an existing priority group.

ADD_SITE_PRIORITY_SITE Adds a site to an existing site priority group.

ALTER_MASTER_PROPAGATION
Alters the propagation method for a replication
group at a given site. Options are
SYNCHRONOUS or ASYNCHRONOUS.

ALTER_MASTER_REPOBJECT Performs DDL on a replicated object.

ALTER_PRIORITY
Changes priority level for a member of a
priority group.

ALTER_PRIORITY_datatype
Alters the value of a member of a priority
group.

ALTER_SITE_PRIORITY Alters priority level of a site.

ALTER_SITE_PRIORITY_SITE Designates a site to a given priority level.

ALTER_SNAPSHOT_PROPAGATION
Alters the propagation method for a replication
group at a snapshot site.

Oracle Distributed Systems

412

DROP_PRIORITY_GROUP
Drops a priority group from a replication
group.

resolution for a table.

COMMENT_ON_conflicttype_
RESOLUTION

Creates a comment on a conflict resolution
method, visible in DBA_REPRESOLUTION data
dictionary view.

COMMENT_ON_COLUMN_GROUP
Creates or updates a comment on a column
group, visible in DBA_REPCOLUMN_GROUP
data dictionary view.

COMMENT_ON_PRIORITY_GROUP
Creates or updates comment on a priority
group, visible in DBA_REPPRIORITY_GROUP.

COMMENT_ON_REPGROUP
Creates or updates a comment on a replication
group, visible in DBA_REPGROUP data
dictionary view.

COMMENT_ON_REPOBJECT
Creates or updates a comment on a replicated
object, visible in DBA_REPOBJECT data
dictionary view.

COMMENT_ON_REPSITES
Creates or updates a comment on a replication
site, visible in DBA_REPSITES data dictionary
view.

COMMENT_ON_SITE_PRIORITY
Creates or updates a comment on a site
priority, visible in DBA_REPRIORITY_GROUP
data dictionary view.

CREATE_MASTER_REPGROUP Creates a master replication group.

CREATE_MASTER_REPOBJECT Adds an object to a replication group.

CREATE_SNAPSHOT_REPGROUP Creates a snapshot replication group.

CREATE_SNAPSHOT_REPOBJECT Adds an object to a snapshot replication group.

DEFINE_COLUMN_GROUP
Creates an empty column group for a
replication group.

DEFINE_PRIORITY_GROUP
Creates a priority group for a replication
group.

DEFINE_SITE_PRIORITY
Creates a site priority group for a replication
group.

DO_DEFERRED_REPCAT_ADMIN
Performs outstanding administrative tasks at
local master site.

DROP_conflicttype_RESOLUTION
Drops an update, delete, or uniqueness conflict
resolution handling technique from a
replication group.

DROP_COLUMN_GROUP
Drops a column group from a replication
group.

DROP_GROUPED_COLUMN Drops a column from a column group.

DROP_MASTER_REPGROUP Drops a replication group.

DROP_MASTER_REPOBJECT Drops an object from a replication group.

DROP_PRIORITY
Drops a member of a priority group, selected
by priority level.

DROP_PRIORITY_datatype
Drops a member of a priority group, selected
by value.

Oracle Distributed Systems

413

been applied at a master site.

DROP_SITE_PRIORITY
Drops a site priority group from a replication
group.

DROP_SITE_PRIORITY_SITE
Drops a site from a site priority group,
selected by site name.

DROP_SNAPSHOT_REPGROUP Drops a snapshot replication group.

DROP_SNAPSHOT_REPOBJECT
Drops an object from a snapshot replication
group.

EXECUTE_DDL Specifies DDL to execute at master sites.

GENERATE_REPLICATION_PACKAGE
Generates packages required to replicate a
given table.

GENERATE_REPLICATION_SUPPORT
Generates triggers, packages, and procedures
required to replicate a given table.

GENERATE_REPLICATION_TRIGGER
Generates triggers and packages required to
replicate a given table.

MAKE_COLUMN_GROUP
Creates a column group and adds one or more
columns.

PURGE_MASTER_LOG
Deletes entries from the local repcatlog
(DBA_REPCATLOG).

PURGE_STATISTICS
Deletes entries from the
DBA_REPRESOLUTION_STATISTICS data
dictionary view.

REFRESH_SNAPSHOT_REPGROUP Refreshes a snapshot replication group.

REGISTER_STATISTICS
Starts collection of statistics for the resolution
of update, delete, and uniqueness conflicts for
a given table.

RELOCATE_MASTERDEF
Changes the master definition site for a
replication group.

REMOVE_MASTER_DATABASES
Drops one or more master databases from a
replication group.

REPCAT_IMPORT_CHECK
Confirms a replicated object’s validity after an
import.

RESUME_MASTER_ACTIVITY
Enables propagation of a replication group that
had been quiesced.

SEND_AND_COMPARE_OLD_VALUES
Avoids sending unchanged values when
propagation updates to participating master
sites.

SET_COLUMNS
Designates alternative column(s) to use
instead of a primary to uniquely identify rows
of a replicated table.

SUSPEND_MASTER_ACTIVITY Quiesces a replication group.

SWITCH_SNAPSHOT_MASTER
Remasters a snapshot site to another master
site.

VALIDATE
Diagnoses the status of your replicated
environment.

WAIT_MASTER_LOG
Determines whether asynchronous DML has

Oracle Distributed Systems

414

missingfunction
23341

User function does not exist.

A.8.4 DBMS_REPCAT Exceptions
Exception Name Number Description

badsnapname
–
23328

Invalid snapshot name (used internally).

commfailure
–
23317

Unable to communicate with remote site.

corrupt
–
23320

Corruption occurred (used internally during generation
of replication support objects).

dbnotcompatible
–
23375

Operation not available for current version of RDBMS.

ddlfailure
–
23318

DDL failed during object creation or maintenance
activity.

duplicatecolumn
–
23333

Attempt to add duplicate column to column group.

duplicategroup
–
23330

Attempt to add duplicate column group to a replicated
table.

duplicateobject
–
23309

Replicated object already exists.

duplicateprioritygroup
–
23335

Attempt to create duplicate priority group.

duplicaterepgroup
–
23374

Attempt to create duplicate snapshot replication
group.

duplicateresolution
–
23339

Attempt to create duplicate resolution method.

duplicateschema
–
23307

Attempt to create duplicate replication group.

duplicatevalue
–
23338

Attempt to create duplicate value in a priority group.

fullqueue
–
23353

Attempt to drop replication group or schema for which
RPC entries are queued.

invalidmethod
–
23340

Attempt to use nonexistent conflict resolution method.

invalidparameter
–
23342

Invalid number of columns in call to
ADD_UNIQUE_RESOLUTION.

invalidpropmode
–
23380

Invalid propagation mode (used internally).

invalidqualifier
–
23378

Invalid qualifier (used internally).

masternotremoved
–
23356

Master site not removed (used internally).

missingcolumn
–
23334

Reference to nonexistent column.

missingconstraint
–
23344

Missing constraint (used internally).

–

Oracle Distributed Systems

415

23319

version – Replication versions not compatible (used internally).

missinggroup
–
23331

Column group does not exist.

missingobject
–
23308

Object does not exist as a table.

missingprioritygroup
–
23336

Priority group does not exist.

missingremoteobject
–
23381

Master object has not had replication support
generated.

missingrepgroup
–
23373

Replication group does not exist.

missingresolution
–
23343

Referenced conflict resolution method does not exist.

missingschema
–
23306

Schema does not exist.

missingvalue
–
23337

Missing value (used internally).

misssnapobject
–
23355

Snapshot object does not exist.

nonmaster
–
23313

Site is not a master site.

nonmasterdef
–
23312

Site is not a master definition site.

nonsnapshot
–
23314

Site is not a snapshot site.

norepoption
–
23364

Replication option not installed.

notnormal
–
23311

Replication group is not in normal propagation mode.

notquiesced
–
23310

Replication group is not quiesced.

onlyonesnap
–
23360

Only one snapshot (used internally).

paramtype
–
23325

Invalid parameter type (used internally).

qualifiertoolong
–
23379

Qualifier parameter too long (used internally).

reconfigerror
–
23316

Attempt to drop master definition site with
REMOVE_MASTER_DATABASES.

referenced
–
23332

Attempt to drop column group used for conflict
resolution.

repnotcompatible
–
23376

Replication versions not compatible (used internally).

statnotreg
–
23345

Conflict resolution statistics not registered (used
internally).

typefailure
–

Attempt to replicate nonsupported datatype.

Oracle Distributed Systems

416

 {parameter_column_name IN dbms_repcat.varchar2s,|
 parameter_column_name IN VARCHAR2,}

23315

A.8.5 DBMS_REPCAT Nonprogram Elements

In addition to programs and exceptions, the DBMS_REPCAT package defines the
VARCHAR2S constant. This is a PL/SQL table of VARCHAR2(60) indexed by BINARY
INTEGER. This type can be used to supply a list of column names to the following
procedures:

ADD_GROUPED_COLUMN ADD_UPDATE_RESOLUTION

MAKE_COLUMN_GROUP ADD_DELETE_RESOLUTION

DROP_COLUMN_GROUP ADD_UNIQUE_RESOLUTION

A.8.6 DBMS_REPCAT.ADD_conflicttype_RESOLUTION

The ADD_conflicttype_RESOLUTION procedure adds a built-in or user-defined conflict
resolution type to a table. The value of conflicttype can be UPDATE, UNIQUE, or
DELETE.

The built-in conflict resolution types for update conflicts are the following:

• Minimum Value
• Maximum Value
• Latest Timestamp
• Earliest Timestamp
• Additive
• Average
• Priority Group
• Site Priority
• Overwrite
• Discard

The built-in conflict resolution methods for uniqueness conflicts are as follows:

• Append Site Name
• Append Sequence Number
• Discard

Oracle does not provide any conflict resolution techniques for delete conflicts.

Here are the specifications:

PROCEDURE DBMS_REPCAT.ADD_UPDATE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,

Oracle Distributed Systems

417

If column_group is passed, the column(s) passed to

 priority_group IN VARCHAR2 := NULL,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

PROCEDURE DBMS_REPCAT.ADD_UNIQUE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 {parameter_column_name IN dbms_repcat.varchar2s, |
 parameter_column_name IN VARCHAR2,}
 comment IN VARCHAR2 := NULL);

PROCEDURE DBMS_REPCAT.ADD_DELETE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 {parameter_column_name IN dbms_repcat.varchar2s, |
 parameter_column_name IN VARCHAR2,}
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

Always define more than one conflict resolution method for a given column or priority
group. No single resolution method is completely foolproof.

A.8.6.1 Parameters
Parameter Name Description

sname
Name of the schema containing the replicated schema.
Defaults to current user.

oname Name of the replicated table.

column_group
ADD_UPDATE_RESOLUTION only. Column group for which
the conflict resolution method is being defined.

constraint_name
ADD_UNIQUE_RESOLUTION only. Name of the constraint
name or unique index for which the conflict resolution
method is being added.

sequence_no
Number indicating when this conflict resolution method
should be applied relative to other methods defined for the
same column group or priority group.

method

The conflict resolution method. Valid values are:

Priority Group
Site Priority
User Function

or one of the built-in types listed earlier.

parameter_column_name

Comma-separated list of columns to be used to resolve the
conflict (if VARCHAR2) or a PL/SQL table of column names.

Oracle Distributed Systems

parameter_column_name must be in the group.

An asterisk (*) indicates that all columns in the table or
column group should be passed to the conflict resolution
function, in alphabetical order.

priority_group
ADD_UPDATE_RESOLUTION only. If using a priority group
or site priority group, the name of the group.

function_name
If designating a user-defined conflict resolution method,
the name of the user function.

comment
Comment on the conflict resolution method, visible in the
DBA_REPRESOLUTION data dictionary view.

A.8.6.2 Exceptions

Exception Name Number Description

duplicatesequence
–
00001

Resolution method already exists with sequence number
sequence_no for this column or priority group.

invalidmethod
–
23340

Resolution method does not exist.

invalidparameter
–
23342

Column(s) specified in parameter_column_name invalid.

missingcolumn
–
23334

Specified column(s) do not exist in table oname.

missingconstraint
–
23344

Constraint constraint_name specified in
ADD_UNIQUE_RESOLUTION does not exist.

missingfunction
–
23341

User-defined function function_name does not exist.

missinggroup
–
23331

column_group does not exist.

missingobject
–
23308

Table oname does not exist in the replication group.

missingprioritygroup
–
23336

priority_group does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

typefailure
–
23319

Datatype of one of the columns specified in
parameter_column_name is not appropriate for the
resolution method.

A.8.6.3 Restrictions

• You must call this procedure from the master definition site.
• After this call, you must generate replication support for the table passed to

oname .

DBMS_REPCAT.ADD_GROUPED_COLUMN

418

Oracle Distributed Systems

The ADD_GROUPED_COLUMN procedure adds a member column to a column group.
You can call this procedure after you have created a new, empty column group with
DEFINE_COLUMN_GROUP or if your schema or conflict resolution requirements
change.

PROCEDURE DBMS_REPCAT.ADD_GROUPED_COLUMN
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 {list_of_column_names IN VARCHAR2 |
 list_of_column_names IN dbms_repcat.varchar2s});

Note that you must specify only one of the list_of_column_names parameters.

Parameters
Parameter Name Description

sname Name of the schema that owns the replicated table.

oname Name of the table with the column_group.

column_group Name of the column_group to which column(s) will be added.

list_of_column_names
A comma-delimited list of column names, or a PL/SQL table of
column names. Use an asterisk (*) to add all columns in the
table to the column group.

Exceptions
Exception Name Number Description

duplicatecolumn –23333 Column(s) specified already exist in column_group.

missingcolumn –23334 Column(s) specified do not exist in table oname.

missinggroup –23331 Column group column_group does not exist.

missingobject –23308 Table oname does not exist.

missingschema –23306 Schema sname does not exist.

nonmasterdef –23312 Invoking site is not master definition site.

Restrictions

• You must call this procedure from the quiesced master definition site.
• You must regenerate replication support for the table after defining the

column group with the GENERATE_REPLICATION_SUPPORT procedure.

DBMS_REPCAT.ADD_MASTER_DATABASE

419

Oracle Distributed Systems

420

23317

duplicateschema – Replication group gname already exists at site master.

The ADD_MASTER_DATABASE procedure adds a master site to an existing replication
group and initializes all objects at the new site. The specifications differ for Oracle7
and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ADD_MASTER_DATABASE
 (gname IN VARCHAR2 := '',
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := TRUE,
 copy_rows IN BOOLEAN := TRUE,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ADD_MASTER_DATABASE
 (gname IN VARCHAR2 := '',
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := TRUE,
 copy_rows IN BOOLEAN := TRUE,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS');

It is generally easier to instantiate all objects at the new master site first. That way,
the call to ADD_MASTER_DATABASE does not have to perform DDL to create the
schema or send all of the data across a network link. If you instantiate the objects
first, the call to ADD_MASTER_DATABASE only has to generate replication support
for the objects and update other master sites with the new master’s existence.

Parameters
Parameter Name Description

gname
Name of the replication group to which master site is being
added.

master Global name of the new master site.

use_existing_objects Reuse existing objects at the new site.

copy_rows Copy rows from the invoking site to the new master site.

comment
Comment on new master site, visible in DBA_REPSITES data
dictionary view.

propagation_mode Propagation mode (SYNCHRONOUS or ASYNCHRONOUS).

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception Name Number Description

commfailure
–

Site master is not reachable.

Oracle Distributed Systems

421

23307

invalidpropmode
–
23380

Propagation_mode is not SYNCHRONOUS or
ASYNCHRONOUS.

missingrepgroup
–
23373

Replication group gname does not exist at the calling site.

nonmasterdef
–
23312

Calling site is not the master definition site.

notquiesced
–
23310

Replication group gname is not quiesced.

repnotcompatible
–
23376

Replication group gname does not exist at master, and
master is a pre-7.3 release.

Restrictions

• This procedure must be run from the master definition site.
• The replication group must be quiesced.

DBMS_REPCAT.ADD_PRIORITY_datatype

Each of the procedures containing the datatype suffix
actually has five different versions in Oracle7, one for
each of the datatypes CHAR, VARCHAR2, NUMBER,
RAW, and DATE. Oracle8 adds support for two more
datatypes: NCHAR and NVARCHAR2. The usage of
each of these packages is identical.

The ADD_PRIORITY_datatype procedure adds a member (of the specified datatype)
to an existing priority group. The addition of the new priority and value takes effect
immediately. Values with higher numeric priorities take precedence—that is, the
value with priority 1 has the lowest priority. The specifications differ for Oracle7 and
Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ADD_PRIORITY_datatype
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 value IN {CHAR|VARCHAR2|NUMBER|DATE|RAW,
 priority IN NUMBER,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ADD_PRIORITY_datatype

Oracle Distributed Systems

 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 value IN {CHAR|NCHAR|VARCHAR2|NUMBER|DATE|RAW,
 priority IN NUMBER)

In these specifications, datatype can be any of the following, and value can be any of
these types:

Oracle7 and Oracle8 Oracle8 Only
CHAR NCHAR

VARCHAR2 NVARCHAR2

NUMBER
DATE
RAW

Parameters
Parameter

Name Description

gname Name of the replication group to which priority group pgroup belongs

pgroup Priority group to which new value and priority are being added

value Literal value that is being assigned added to pgroup

priority
Priority designated to value; it is a good idea to number priorities in
multiples of 10 or more so that you can easily add new priority values
later as requirements change.

sname
(Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

duplicatepriority
–
23335

Another value is already designated with the specified
priority.

duplicatevalue
–
23338

Value is already in the priority group pgroup.

missingprioritygroup
–
23336

Priority group pgroup does not exist.

missingrepgroup
–
23373

Replication group gname does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

typefailure
–
23319

Datatype of value is not the same as the datatype for
priority group pgroup.

Restrictions

422

• The new value must be unique within the priority group.

Oracle Distributed Systems

423

23335 by the priority parameter.

duplicatesite – Site is already in the site priority group name.

• The new priority must be unique within the priority group.
• ADD_PRIORITY_datatype must be called from the master definition site.

DBMS_REPCAT.ADD_SITE_PRIORITY_SITE

The ADD_SITE_PRIORITY_SITE procedure adds a new site to an existing site priority
group. The addition of the new site takes effect immediately. Specifications for
Oracle7 and Oracle8 differ as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ADD_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 site IN VARCHAR2,
 priority IN NUMBER,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ADD_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 site IN VARCHAR2,
 priority IN NUMBER);

Parameters
Parameter

Name Description

gname
Name of the replication group to which site priority group name
belongs

name Name of the site priority group

site Global name of the new site

priority
Priority designated to site; it is a good idea to number priorities in
multiples of 10 or more so that you can easily add new priority values
later as requirements change.

sname
(Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

duplicatepriority
– Another site is already designated with the priority specified

Oracle Distributed Systems

23338

missingpriority –1403 Site does not exist.

missingrepgroup
–
23373

Replication group gname does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

Restrictions

• You must call the ADD_SITE_PRIORITY_SITE procedure from the master
definition site.

• The new priority must be unique within the site priority group.

DBMS_REPCAT.ALTER_MASTER_PROPAGATION

The ALTER_MASTER_PROPAGATION procedure changes the propagation mode
between specified master sites (from synchronous to asynchronous, or vice versa).

PROCEDURE DBMS_REPCAT.ALTER_MASTER_PROPAGATION
 (gname IN VARCHAR2,
 master IN VARCHAR2,
 {dblink_table IN dbms_utility.dblink_array | dblink_list IN
VARCHAR2},
 propagation_modee IN VARCHAR2 := 'ASYNCHRONOUS',
 comment IN VARCHAR2 := '');

ALTER_MASTER_PROPAGATION does not automatically generate replication support
triggers. After altering the propagation method, you must call
GENERATE_REPLICATION_TRIGGER for replicated table in the replication group.

Parameters
Parameter Name Description

gname
Name of the replication group whose propagation mode is being
altered

master
Global name of the master site having its propagation mode
altered

dblink_list
List of database links for which the master’s propagation mode is
being altered

propagation_mode New propagation mode (SYNCHRONOUS or ASYNCHRONOUS)

comment Comment visible in DBA_REPPROP data dictionary view

Exceptions

424

Exception
Name Number Description

Oracle Distributed Systems

425

Name
sname Name of the schema to which object oname belongs.

nonmaster
–
23312

One of the sites in dblink_list is not a master site.

nonmasterdef
–
23312

Calling site is not the master definition site.

notquiesced
–
23310

Replication group gname is not quiesced.

typefailure
–
23319

The propagation_mode is not SYNCHRONOUS or
ASYNCHRONOUS.

Restrictions

• You must run this procedure from the master definition site.
• The replication group must be quiesced.

DBMS_REPCAT.ALTER_MASTER_REPOBJECT

Just as you can propagate DDL to create objects with the EXECUTE_DDL procedure,
you can also propagate DDL to alter objects with ALTER_MASTER_REPOBJECT. Unlike
EXECUTE_DDL, ALTER_MASTER_REPOBJECT does not allow you to specify a list of
master sites; the call affects all masters. In other words, Oracle does not support
site-specific customizations of replicated objects.

You can perform DDL on any of these objects:

Function Synonym

Index Table

Package Trigger

Package body View

Procedure

Here is the specification:

PROCEDURE DBMS_REPCAT.ALTER_MASTER_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := FALSE);

Parameters
Parameter Description

Oracle Distributed Systems

426

 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,

oname Name of the object to alter.

type
The oname object type. Supported types: FUNCTION, INDEX, PACKAGE,
PACKAGE BODY, SYNONYM, TABLE, TRIGGER, and VIEW.

ddl_text Text of DDL statement to apply.

comment Comment visible in DBA_REPOBJECT data dictionary view.

retry
If set to TRUE, procedure alters only objects whose status is not VALID
at master sites.

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

ddlfailure –23318 DDL at master definition site failed.

missingobject –23308 Object oname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

notquiesced –23310 Replication group gname is not quiesced.

typefailure –23319 DDL on objects of the specified type is not supported.

Restrictions

• This procedure must be run from the master definition site.
• The replication group must be quiesced.
• You must call GENERATE_REPLICATION_SUPPORT for the altered object

before resuming replication.

DBMS_REPCAT.ALTER_PRIORITY

The ALTER_PRIORITY procedure lets you change the priority associated with a
specific value in a priority group. The change takes place immediately. The
specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ALTER_PRIORITY
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ALTER_PRIORITY

Oracle Distributed Systems

427

 old_value IN {CHAR|VARCHAR2|NUMBER|DATE|RAW},
 new_value IN {CHAR|VARCHAR2|NUMBER|DATE|RAW},

 old_priority IN NUMBER,
 new_priority IN NUMBER)

Parameters
Parameter Name Description

gname
Name of the replication group to which priority group pgroup
belongs

pgroup Name of the priority group whose priority is being altered

old_priority pgroup’s previous priority value

new_priority pgroup’s new priority value

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

duplicatepriority
–
23335

Priority new_priority already exists in priority group
pgroup.

missingprioritygroup
–
23336

Priority group pgroup does not exist.

missingvalue
–
23337

Value was not registered with a call to
ADD_PRIORITY_datatype.

nonmasterdef
–
23312

Calling site is not the master definition site.

Restrictions

• You must call the ALTER_PRIORITY procedure from the master definition site.
• The new priority must be unique within the priority group.

DBMS_REPCAT.ALTER_PRIORITY_datatype

The ALTER_PRIORITY_datatype procedures let you alter the data value associated
with a specific priority for a priority group. For example, in the priority group
PG_MFG_STAT, the value associated with priority 1 could be changed from CONCEPT
to PLANNED. The change takes effect immediately. The specifications differ for
Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ALTER_PRIORITY_datatype
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,

Oracle Distributed Systems

 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ALTER_PRIORITY_datatype
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 old_value IN {CHAR|NCHAR|VARCHAR2|NUMBER|DATE|RAW},
 new_value IN {CHAR|NCHAR|VARCHAR2|NUMBER|DATE|RAW});

datatype, value, and old_value can be any of the types in the following table.

Oracle7 and Oracle8 Oracle8 Only
CHAR NCHAR

VARCHAR2 NVARCHAR2

NUMBER
DATE
RAW

Parameters
Parameter Name Description

gname
Name of the replication group to which priority group pgroup
belongs

pgroup Name of the priority group whose priority is being altered

old_value Current value of the priority group member

new_value New value of the priority group member

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

duplicatevalue
–
23338

Value new_value is already designated a priority in
priority group pgroup.

missingprioritygroup
–
23336

Priority group pgroup does not exist.

missingvalue
–
23337

Value was not registered with a call to
ADD_PRIORITY_datatype.

nonmasterdef
–
23312

Calling site is not the master definition site.

Restrictions

• You must call the ALTER_PRIORITY_datatype procedure from the master
definition site.

428

• The new priority must be unique within the priority group.

Oracle Distributed Systems

429

missingvalue – Value old_value does not already exist.

DBMS_REPCAT.ALTER_SITE_PRIORITY

Just as you can change the priority of a value in a priority group, you can change the
priority of a site in a site priority group. Use the ALTER_SITE_PRIORITY procedure to
do this. The specifications for Oracle7 and Oracle8 differ as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ALTER_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ALTER_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);
 site IN VARCHAR2);

Parameters
Parameter Name Description

gname
Name of the replication group to which the site priority group
name belongs

name Name of the site priority group

old_priority Site’s current priority

new_priority Site’s new priority

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

site Global name of the site

Exceptions
Exception Name Number Description

duplicatepriority
–
00001

Priority new_priority already exists for the site priority
group name.

missingpriority
–
01403

Priority old_priority is not associated with any sites.

missingrepgroup
–
23373

Replication group gname does not exist.

Oracle Distributed Systems

430

priority level

sname (Oracle7 Schema name (provided for pre-Oracle 7.3 compatibility)

23337

nonmasterdef
–
23312

Calling site is not the master definition site.

paramtype
–
23325

Parameter new_value is incorrect datatype.

Restrictions

• You must run this procedure from the master definition site.
• The new priority must be unique within the site priority group.

DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE

The ALTER_SITE_PRIORITY_SITE procedure is analogous to the
ADD_PRIORITY_datatype procedure; use it to change the site name for an existing
named site in a site priority group. The specifications for Oracle7 and Oracle8 differ
as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 old_site IN VARCHAR2,
 new_site IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 old_site IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters
Parameter Name Description

gname
Name of the replication group to which the site priority group
name belongs

name Name of the site priority group

old_site
Global name of the site currently associated with the priority
level

new_site
Global name of the site that is to replace old_site at old_site’s

Oracle Distributed Systems

431

execute_as_user FALSE (default) indicates that remote system will authenticate
calls using authentication context user who originally queued the

only)

Exceptions
Exception Name Number Description

duplicatesite –00001 new_site is already in the site priority group.

missingpriority –01403 Site priority group name does not exist.

missingrepgroup –23373 Replication group gname does not exist.

missingvalue –23337 old_site is not in the site priority group.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

• You must call this procedure from the master definition site.
• The new site must be unique in the site priority group.

DBMS_REPCAT.ALTER_SNAPSHOT_PROPAGATION

Call the ALTER_SNAPSHOT_PROPAGATION procedure to change the propagation
mode of a particular snapshot. Specifications for Oracle7 and Oracle8 differ.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.ALTER_SNAPSHOT_PROPAGATION
 (gname IN VARCHAR2,
 propagation_mode IN VARCHAR2,
 comment IN VARCHAR2 := '',
 execute_as_user IN BOOLEAN := FALSE);

Oracle8 specification:

PROCEDURE DBMS_REPCAT.ALTER_SNAPSHOT_PROPAGATION
 (gname IN VARCHAR2,
 propagation_mode IN VARCHAR2,
 comment IN VARCHAR2 := '');

Parameters
Parameter Name Description

gname Name of the replication group to be altered.

propagation_mode
The new propagation mode to use (SYNCHRONOUS or
ASYNCHRONOUS).

comment Comment visible in DBA_REPPROP data dictionary view.

Oracle Distributed Systems

(Oracle7 only) RPC; TRUE indicates that remote system will use authentication
context of the session user.

Exceptions
Exception Name Number Description

dbnotcompatible –23375 Database version is not 7.3 or later.

missingrepgroup –23373 Replication group gname does not exist.

typefailure –23319 Invalid propagation_mode.

Restrictions

This procedure must be called from a snapshot site.

DBMS_REPCAT.CANCEL_STATISTICS

The CANCEL_STATISTICS procedure disables the gathering of conflict resolution
statistics.

PROCEDURE DBMS_REPCAT.CANCEL_STATISTICS
 (sname IN VARCHAR2,
 oname IN VARCHAR2);

There are no restrictions on calling CANCEL_STATISTICS.

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs

oname Name of the replicated table

Exceptions
Exception Name Number Description

missingobject –23308 Table oname does not exist.

missingschema –23306 Schema sname does not exist.

statnotreg –23345 Statistics have not been registered for object oname.

DBMS_REPCAT.COMMENT_ON_conflicttype
_RESOLUTION

432

Oracle Distributed Systems

You can use the COMMENT_ON_conflicttype_RESOLUTION procedure to add or
replace a comment for a given conflict resolution type. You can see this comment in
the DBA_REPRESOLUTION data dictionary view. Following are the specifications for
the three values of conflicttype (UPDATE, UNIQUE, DELETE):

PROCEDURE DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

PROCEDURE DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION
 (sname IN VARCHAR2,
 oname in VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2) ;

PROCEDURE DBMS_REPCAT.
COMMENT_ON_DELETE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2) ;

Parameters
Parameter Name Description

sname Name of the schema to which object oname belongs

oname Name of the object

column_group
Name of column group for which conflict resolution method is
defined

constraint_name
Name of unique constraint the method resolves
(COMMENT_ON_UNIQUE_RESOLUTION only)

sequence_no Sequence number associated with the resolution method

comment Comment

Exceptions
Exception Name Number Description

missingobject
–
23308

Object oname does not exist.

missingresolution
–
23343

No resolution method exists for column_group and
sequence_no.

nonmasterdef
–
23312

Calling site is not the master definition site.

Restrictions

433

• You must call this procedure from the master definition site.

Oracle Distributed Systems

• After this call, you must generate replication support for the table passed to
oname.

• Comments do not take effect until there is a call to
GENERATE_REPLICATION_SUPPORT.

DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP

The COMMENT_ON_COLUMN_GROUP procedure adds or changes the comment
associated with a column group. This comment is visible in the
DBA_REPCOLUMN_GROUP data dictionary view.

PROCEDURE DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2);

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs

oname Name of the replicated table containing the column group

column_group Name of the column group

comment Comment

Exceptions
Exception Name Number Description

missinggroup –23331 column_group does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

The COMMENT_ON_COLUMN_GROUP procedure must be called from the master
definition site.

DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP

The COMMENT_ON_PRIORITY_GROUP procedure allows you to add or replace the
comment for a priority group (as seen in the DBA_REPPRIORITY_GROUP data

434

dictionary view). The specifications for Oracle7 and Oracle8 differ as follows.

Oracle Distributed Systems

435

 comment IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle7 specification:

PROCEDURE DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 comment IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 comment IN VARCHAR2);

Parameters
Parameter Name Description

gname Name of the replication group containing the priority group

pgroup Name of the priority group

comment Comment

sname (Oracle7only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingprioritygroup –23336 Priority group pgroup does not exist.

missingrepgroup –23373 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

You must call COMMENT_ON_PRIORITY_GROUP from the master definition site.

DBMS_REPCAT.COMMENT_ON_REPGROUP

This procedure adds a new schema comment field to the DBA_REPCAT data
dictionary view or changes an existing one. The specifications differ for Oracle7 and
Oracle8 as follows.

Oracle7 specification:

PROCEDURE DMBS_REPCAT.COMMENT_ON_REPGROUP
 (gname IN VARCHAR2 := '',

Oracle Distributed Systems

436

type Object type

comment Comment

Oracle8 specification:

PROCEDURE DMBS_REPCAT.COMMENT_ON_REPGROUP
 (gname IN VARCHAR2,
 comment IN VARCHAR2);

Parameters
Parameter Name Description

gname Replication group to which comment is added

comment Comment

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

missinggroup –23331 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not master definition site.

Restrictions

The COMMENT_ON_REPGROUP procedure must be called from the master definition
site.

DBMS_REPCAT.COMMENT_ON_REPOBJECT

As you have seen, you can associate comments with a replicated object when you
create or alter it by passing a VARCHAR2 string to the comment parameter. You can
see these comments in the object_comment field of DBA_REPOBJECTS. Also, you
can create comments without creating or altering the object with DBMS_REPCAT’s
COMMENT_ON_REPOBJECT procedure.

PROCEDURE DBMS_REPCAT.COMMENT_ON_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2);

Parameters
Parameter Name Description

sname Name of schema to which object belongs

oname Name of the object

Oracle Distributed Systems

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

missingobject –23308 Object oname does not exist.

nonmasterdef –23312 Calling site is not master definition site.

typefailure –23319 Object type is not supported.

Restrictions

The COMMENT_ON_REPOBJECT procedure must be called from the master definition
site.

DBMS_REPCAT.COMMENT_ON_REPSITES

The COMMENT_ON_REPSITES procedure allows you to add or change a comment
associated with a master site, which is visible in the DBA_REPSITES data dictionary
view.

PROCEDURE DBMS_REPCAT.COMMENT_ON_REPSITES
 (gname IN VARCHAR2,
 master IN VARCHAR,
 comment IN VARCHAR2);

Parameters
Parameter Name Description

gname Name of the replication group to which master belongs

master Global name of master site

comment Comment

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

nonmaster –23313 The master is not a master site.

nonmasterdef –23312 Calling site is not master definition site.

Restrictions

You must call the COMMENT_ON_REPSITES procedure from the master definition site.

437

DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY

Oracle Distributed Systems

The COMMENT_ON_SITE_PRIORITY procedure adds or replaces the comment field in
the DBA_REPPRIORITY_GROUP data dictionary view for the specified site priority
group. Specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 comment IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 comment IN VARCHAR2)

Parameters
Parameter Name Description

gname Name of the replication group containing the priority group

name Name of the site priority group

comment Comment

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingpriority –1403 Site priority group name does not exist.

missingrepgroup –23373 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not master definition site.

Restrictions

You must call COMMENT_ON_SITE_PRIORITY from the master definition site.

DBMS_REPCAT.CREATE_MASTER_REPGROUP

The CREATE_MASTER_REPGROUP procedure creates a new, empty, quiesced

438

replication group at the master definition site. The calling site is the master definition
site for the new group.

Oracle Distributed Systems

439

 oname IN VARCHAR2,
 type IN VARCHAR2,

PROCEDURE DBMS_REPCAT.CREATE_MASTER_REPGROUP
 (gname IN VARCHAR2,
 group_comment IN VARCHAR2 := '',
 master_comment IN VARCHAR2 := '',
 qualifier IN VARCHAR2 := '');

Parameters
Parameter Name Description

gname Name of the new replication group

group_comment
Comment for new replication group, visible in DBA_REPGROUP
data dictionary view

master_comment
Comment for the calling site, visible in DBA_REPSITES data
dictionary view

qualifier For internal use

Exceptions
Exception Name Number Description

ddlfailure
–
23318

Unable to create REP$WHAT_AM_I package or package
body.

duplicaterepgroup
–
23374

Replication group gname already exists.

duplicateschema
–
23307

Schema gname is already a replication group.

missingrepgroup
–
23373

The gname was not specified correctly.

norepoption
–
23364

Replication option not installed.

dbnotcompatible
–
23375

The gname is not a schema name, and RDBMS is a pre-
7.3 release.

Restrictions

You must be connected to the replication administrator account (typically REPADMIN)
to call CREATE_MASTER_REPGROUP.

DBMS_REPCAT.CREATE_MASTER_REPOBJECT

The CREATE_MASTER_REPOBJECT procedure adds a new replicated object to an
existing replication group.

PROCEDURE DBMS_REPCAT.CREATE_MASTER_REPOBJECT(
 sname IN VARCHAR2,

Oracle Distributed Systems

440

typefailure
–
23319

The type is not supported.

 use_existing_object IN BOOLEAN := TRUE,
 ddl_text IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := FALSE,
 copy_rows IN BOOLEAN := TRUE,
 gname IN VARCHAR2 := '');

It is generally easier to instantiate objects that you intend to replicate at all
participating master sites before calling CREATE_MASTER_REPOBJECT. This avoids
the additional time and complexity of having the procedure create and populate the
replicated objects itself.

Parameters
Parameter Name Description

sname Name of the schema to which oname belongs.

oname Name of the object to be added.

type
Object type. Valid types: TABLE, INDEX, SYNONYM, TRIGGER,
VIEW, PROCEDURE, FUNCTION, PACKAGE, and PACKAGE BODY.

use_existing_object
Set to TRUE to reuse existing objects with the same name and
structure at master sites.

ddl_text
Text of DDL statement to create object oname (use this
parameter if and only if object does not already exist).

comment
Comment on replicated object, visible in DBA_REPOBJECT data
dictionary view.

retry
Flag indicating that this call is a reattempt of an earlier call. An
attempt is made to create object only at master sites where it
does not exist with a status of VALID.

copy_rows
Populate tables and other master sites with data from master
definition site.

gname Name of the replication group to which oname should be added.

Exceptions
Exception Name Number Description

commfailure
–
23317

Not all master sites are reachable.

ddlfailure
–
23309

Object oname already exists in replication group gname, and
retry is not set to TRUE.

duplicateobject
–
23374

Replication group gname already exists.

missingobject
–
23308

Object oname does not exist.

nonmasterdef
–
23373

Calling site is not the master definition site for replication
group gname.

notquiesced
–
23310

Replication group gname is not quiesced.

Oracle Distributed Systems

441

Restrictions

• This procedure must be called from the master definition site.
• The replication group must already exist and be quiesced.

DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP

This procedure creates a new, empty snapshot replication group. If you will be
creating the snapshot group at multiple sites, it is advisable to create a script to
perform this call because there is no analogy to ADD_MASTER_DATABASE for
snapshot groups.

PROCEDURE DBMS_REPCAT.CREATE_SNAPSHOT_REPGROUP

 (gname IN VARCHAR2,
 master IN VARCHAR2,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS');

Parameters
Parameter Name Description

gname Name of the new snapshot group

master Global name of master site

comment
Comment for the snapshot group, visible in DBA_REPSITES data
dictionary view

propagation_mode
Snapshot propagation mode (SYNCHRONOUS or
ASYNCHRONOUS)

Exceptions
Exception Name Number Description

commfailure
–
23317

Unable to communicate with master.

dbnotcompatible
–
23375

Attempt to use SYNCHRONOUS propagation in pre-7.3
database.

duplicaterepgroup
–
23374

Replication group gname already exists.

nonmaster
–
23312

The master parameter is not a master site.

norepoption
–
23364

Replication option not installed.

typefailure
–
23319

propagation_mode not specified correctly.

Oracle Distributed Systems

442

ddl_text DDL used to create object (for type SNAPSHOT only).

Restrictions

• You must be connected to the replication administrator account (typically
REPADMIN) to call the CREATE_SNAPSHOT_REPGROUP procedure.

• The snapshot group name must match the name of the master replication
group.

• You must invoke this procedure from the snapshot site.

DBMS_REPCAT.CREATE_SNAPSHOT_REPOBJECT

The CREATE_SNAPSHOT_REPOBJECT procedure adds an object to a specified
snapshot replication group at a snapshot site. For new snapshot objects, this
procedure generates row-level replication triggers for snapshots if the master table
uses row-level replication. The specifications differ for Oracle7 and Oracle8 as follows.
(Note the addition of the min_communication parameter in Oracle8.)

Oracle7 specification:

PROCEDURE DBMS_REPCAT. CREATE_SNAPSHOT_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 gname IN VARCHAR2 := '',
 gen_objs_owner IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.CREATE_SNAPSHOT_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 gname IN VARCHAR2 := '',
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := TRUE);

Parameters
Parameter Name Description

sname Name of schema to which oname belongs.

oname Name of object to be added.

type
Object type. Supported types are PACKAGE, PACKAGE BODY,
PROCEDURE, SNAPSHOT, SYNONYM, and VIEW.

Oracle Distributed Systems

comment
Comment on object, visible in DBA_REPOBJECT data dictionary
view.

gname
Name of snapshot group to which object is being added.
Defaults to sname if not specified.

gen_objs_owner
Name of the schema in which to create the generated trigger
and trigger package or procedure wrapper for the object.
Defaults to sname.

drop_objects
If set to TRUE, object is dropped too. If FALSE (the default),
object is removed only from the snapshot group.

min_communication

(Oracle8 only)

Must be FALSE if any master site is running Oracle7. TRUE, the
default setting, uses the minimum communication algorithm.

Exceptions
Exception Name Number Description

commfailure
–
23317

Unable to communicate with master site.

ddlfailure
–
23318

Unable to perform DDL.

duplicateobject
–
23309

Object oname already exists.

missingobject
–
23308

Object oname does not exist in master’s replication
group gname.

missingremoteobject
–
23381

Master site has not generated replication support for
oname.

missingschema
–
23306

Schema sname does not exist.

misssnapobject
–
23355

Object oname does not exist at master.

nonmaster
–
23312

Master site associated with snapshot group is no longer
a master site.

nonsnapshot
–
23314

Calling site is not a snapshot site.

typefailure
–
23319

Invalid value for type.

Restrictions

• You must be connected to the replication administrator account (typically
REPADMIN).

• If you are creating an snapshot with ddl_text, be sure to specify the schema
in which it should be created (if other than the replication administrator).

DBMS_REPCAT.DEFINE_COLUMN_GROUP

443

Oracle Distributed Systems

444

 fixed_length IN INTEGER := NULL,
 comment IN VARCHAR2 := NULL,

The DEFINE_COLUMN_GROUP procedure creates a column group with no member
columns. The new column group does not take effect until you call
GENERATE_REPLICATION_SUPPORT for the table.

PROCEDURE DBMS_REPCAT.DEFINE_COLUMN_GROUP
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR@ := NULL);

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs

oname Name of the replicated table containing the column group

column_group Name of the column group

comment Comment

Exceptions
Exception Name Number Description

duplicategroup –23330 Column_group already exists.

missingobject –23308 Object oname does not exist.

nonmasterdef –23312 Calling site is not master definition site.

Restrictions

You must call this procedure from the quiesced master definition site.

DBMS_REPCAT.DEFINE_PRIORITY_GROUP

The DEFINE_PRIORITY_GROUP procedure creates a new priority group. The new
group does not take effect until you call GENERATE_REPLICATION_SUPPORT for the
table. The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DEFINE_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 datatype IN VARCHAR2,

Oracle Distributed Systems

 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DEFINE_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 datatype IN VARCHAR2,
 fixed_length IN INTEGER := NULL,
 comment IN VARCHAR2 := NULL);

Parameters
Parameter Name Description

gname Name of the replication group containing the priority group.

pgroup Name of the priority group.

datatype

Datatype for the value used in the priority group. Supported
datatypes:

CHAR
NCHAR (Oracle8 only)
VARCHAR2
NUMBER
DATE
RAW

fixed_length Fixed length for values. Used only for datatype CHAR.

comment Comment.

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception Name Number Description

duplicateprioritygroup –23335 Priority group pgroup already exists.

missingschema –23306 Schema does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

typefailure –23319 Datatype not supported.

Restrictions

You must call the DEFINE_PRIORITY_GROUP procedure from the master definition
site.

DBMS_REPCAT.DEFINE_SITE_PRIORITY

445

Oracle Distributed Systems

The DEFINE_SITE_PRIORITY procedure creates a site priority group. You can add
sites to this group later. The new site priority does not take effect until you call
GENERATE_REPLICATION_SUPPORT for the table. Specifications differ for Oracle7
and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DEFINE_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 comment IN VARCHAR2 := NULL,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DEFINE_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 comment IN VARCHAR2 := NULL)

Parameters
Parameter Name Description

gname Name of the replication group containing the site priority group

name Name of the site priority group

comment
Comment, visible in DBA_REPPRIORITY_GROUP data dictionary
view

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

duplicateprioritygroup –23335 Site priority group name already exists.

missingrepgroup –23373 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

You must call DEFINE_SITE_PRIORITY from the master definition site.

DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN

Whenever you create or alter replicated objects—for example, with the

446

GENERATE_REPLICATION_SUPPORT or ALTER_MASTER_REPOBJECT procedure—
Oracle queues the changes in the repcatlog queue; the entries in this queue

Oracle Distributed Systems

correspond to entries in the DBA_REPCATLOG data dictionary view. All DDL changes
must originate at the master definition site, but the repcatlog queue exists at every
master site.

The DO_DEFERRED_REPCAT_ADMIN procedure performs administrative tasks
queued in DBA_REPCAT for the specific replication group at the master site from
which the call is made. If the all_sites parameter is set to TRUE, the tasks are
applied at all masters. The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN
 (gname IN VARCHAR2 := '',
 all_sites IN BOOLEAN := FALSE,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN
 (gname IN VARCHAR2,
 all_sites IN BOOLEAN := FALSE);

Parameters
Parameter Name Description

gname
Name of the replication group for which to push the repcatlog
queue

all_sites If TRUE, execute queued procedures at every master site

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception

Name Number Description

commfailure
–
23317

Unable to communicate with master site.

nonmaster
–
23312

Master site associated with snapshot group is no longer a
master site.

Restrictions

The DO_DEFERRED_REPCAT_ADMIN procedure performs only the procedures that
have been queued by the invoking user. Note that the job queue is used to perform
the queued procedures automatically.

DBMS_REPCAT.DROP_conflicttype
_RESOLUTION

447

Oracle Distributed Systems

448

oname.

The DROP_conflicttype_RESOLUTION procedure removes a conflict resolution type
from a replicated table. The value of conflicttype can be UPDATE, UNIQUE, or
DELETE.

PROCEDURE DBMS_REPCAT.DROP_UPDATE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER) ;

PROCEDURE DBMS_REPCAT.DROP_UNIQUE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER) ;

PROCEDURE DBMS_REPCAT.DROP_DELETE_RESOLUTION
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER) ;

Parameters
Parameter Name Description

sname
Name of the schema containing the replicated schema. Defaults to
current user.

oname Name of the replicated table.

column_group Column group for which the conflict resolution method is defined.

constraint_name
For procedure DROP_UNIQUE_RESOLUTION only. Name of the
constraint name or unique index for which the conflict resolution
method is defined.

sequence_no
Number indicating when this conflict resolution method is applied
relative to other conflict resolution methods defined for the same
column group or priority group.

Exceptions
Exception Name Number Description

missingobject –23308 Table oname does not exist in the replication group.

missingschema –23306 Schema sname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

• You must call this procedure from the master definition site.
• After this call, you must generate replication support for the table passed to

Oracle Distributed Systems

DBMS_REPCAT.DROP_COLUMN_GROUP

The DROP_COLUMN_GROUP procedure drops a column group that you’ve previously
created. The change does not take effect until you call
GENERATE_REPLICATION_SUPPORT for the table for which the column group is
defined.

PROCEDURE DBMS_REPCAT.DROP_COLUMN_GROUP
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2);

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs

oname Name of the replicated table containing the column group

column_group Name of the column group

Exceptions
Exception Name Number Description

missinggroup
–
23331

The column_group does not exist.

missingobject
–
23308

The object oname does not exist.

missingschema
–
23306

The schema sname does not exist.

nonmasterdef
–
23312

Calling site is not master definition site.

referenced
–
23332

The column_group is used by existing conflict resolution
methods.

Restrictions

You must call this procedure from the quiesced master definition site.

DBMS_REPCAT.DROP_GROUPED_COLUMN

The DROP_GROUPED_COLUMN procedure allows you to drop one or more columns

449

from a column group. Dropping a column from a column group is quite similar to
adding one. Make sure, however, that none of your conflict resolution methods

Oracle Distributed Systems

reference the column(s) that you are dropping. Changes do not take effect until
GENERATE_REPLICATION_SUPPORT is called.

As with the other procedures with a list_of_column_names parameter, you can pass
an asterisk (*) to the parameter to indicate all fields in table oname.

PROCEDURE DBMS_REPCAT.DROP_GROUPED_COLUMN
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 {list_of_column_names IN VARCHAR2 |
 list_of_column_names IN dbms_repcat.varchar2s});

Note that you must specify only one of the list_of_column_names parameters.

Parameters
Parameter Name Description

sname Name of the schema that owns the replicated table

oname Name of the table with the column_group

column_group
Name of the column_group from which column(s) will be
dropped

list_of_column_names
A comma-delimited list of column names or a PL/SQL table of
column names

Exceptions
Exception Name Number Description

missinggroup –23331 Column group column_group does not exist.

missingobject –23308 Table oname does not exist.

missingschema –23306 Schema sname does not exist.

nonmasterdef –23312 Invoking site is not the master definition site.

Restrictions

You must not call this procedure from the quiesced master definition site.

DBMS_REPCAT.DROP_MASTER_REPGROUP

The DROP_MASTER_REPGROUP procedure drops one or more replication groups (and
optionally all of its contents) at the master definition site. Changes do not take effect
until GENERATE_REPLICATION_SUPPORT is called.

450

Before calling DROP_MASTER_REPGROUP, call REMOVE_MASTER_DATABASES from
the master definition site to remove all masters for which you plan to drop the group

Oracle Distributed Systems

and that do not contain any other replication groups. In addition, you can avoid the
fullqueue error by quiescing the replication group before attempting to drop the
replication group.

PROCEDURE DBMS_REPCAT.DROP_MASTER_REPGROUP
 (gname IN VARCHAR2,
 drop_contents IN BOOLEAN := FALSE,
 all_sites IN BOOLEAN := FALSE);

Parameters
Parameter

Name Description

all_sites
If TRUE and call is the master definition site, then drop the replication
group from all sites in the environment.

drop_contents
If TRUE, drop the objects in the replication group as well as the group
itself.

gname Name of the new replication group.

Exceptions
Exception Name Number Description

commfailure
–
23317

Unable to communicate with all masters, and all_sites is
TRUE.

fullqueue
–
23353

Outstanding transactions queued for replication group
gname.

missingrepgroup
–
23373

gname is not specified correctly.

nonmaster
–
23313

Calling site is not a master site.

nonmasterdef
–
23312

Calling site is not a master definition site, and all_sites is
TRUE.

Restrictions

• You must be connected to the replication administrator account (typically
REPADMIN) to call DROP_MASTER_REPGROUP.

• DROP_MASTER_REPGROUP does not drop all snapshots if the gname
parameter is the master of any snapshot groups. Dropping a master site does
not necessarily remove it from the DBA_REPSITES at other masters.

DBMS_REPCAT.DROP_MASTER_REPOBJECT

The DROP_MASTER_REPOBJECT procedure drops a replicated object in an existing

451

replication group at the master site and optionally drops the object from all sites. Do
not drop tables to which snapshots are mastered.

Oracle Distributed Systems

452

 priority_num IN NUMBER,
 sname IN VARCHAR2 := '');

PROCEDURE DBMS_REPOBJECT.DROP_MASTER_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := FALSE);

Parameters
Parameter

Name Description

sname Name of the schema to which oname belongs.

oname Name of the object to be added.

type
Object type. Valid types: TABLE, INDEX, SYNONYM, TRIGGER, VIEW,
PROCEDURE, FUNCTION, PACKAGE, and PACKAGE BODY.

drop_objects If TRUE, drop the object at all master sites; default is FALSE.

Exceptions
Exception

Name Number Description

commfailure
–
23317

Not all master sites are reachable.

missingobject
–
23308

Object oname does not exist.

nonmasterdef
–
23373

Calling site is not the master definition site for replication
group gname.

typefailure
–
23319

The type is not supported.

Restrictions

• This procedure must be called from the master definition site.
• The replication group must already exist and be quiesced.

DBMS_REPCAT.DROP_PRIORITY

The DROP_PRIORITY procedure removes a value from a priority group. The change
takes effect immediately. The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DROP_PRIORITY
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,

Oracle Distributed Systems

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DROP_PRIORITY
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 priority_num IN NUMBER);

Parameters
Parameter Name Description

gname
Name of the replication group to which priority group pgroup
belongs

pgroup Name of the priority group whose priority is being altered

priority_num Priority for the value to be dropped

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingprioritygroup –23336 Priority group pgroup does not exist.

missingrepgroup –23373 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

You must call the DROP_PRIORITY procedure from the master definition site.

DBMS_REPCAT.DROP_PRIORITY_datatype

The DROP_PRIORITY_datatype procedure removes a value from a priority group. In
this version of the procedure, you can specify the value by data value. The removal
of a priority and value takes effect immediately.

The specifications differ for Oracle7 and Oracle 8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DROP_PRIORITY_datatype
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 value IN {CHAR|VARCHAR2|NUMBER|DATE|RAW},
 sname IN VARCHAR2 := '');

453

Oracle8 specification:

Oracle Distributed Systems

PROCEDURE DBMS_REPCAT.DROP_PRIORITY_datatype
 (name IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 value IN {CHAR|NCHAR|VARCHAR2|NUMBER|DATE|RAW},
 sname IN VARCHAR2 := '');

datatype and value can be any of the types in the following table.

Oracle7 and Oracle8 Oracle8 Only
CHAR NCHAR

VARCHAR2 NVARCHAR2

NUMBER
DATE
RAW

Parameters
Parameter Name Description

gname
Name of the replication group to which priority group pgroup
belongs

pgroup Priority group to which new value and priority are being added

value Literal value that is being assigned to pgroup

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingprioritygroup
–
23336

Priority group pgroup does not exist.

missingrepgroup
–
23373

Replication group gname does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

paramtype
–
23325

Datatype of value is not the same as the datatype for
priority group pgroup.

Restrictions

You must call DROP_PRIORITY_datatype from the master definition site.

DBMS_REPCAT.DROP_PRIORITY_GROUP

454

Oracle Distributed Systems

The DROP_PRIORITY_GROUP procedure lets you drop a priority group that you have
defined. The change does not go into effect until the next call to
GENERATE_REPLICATION_SUPPORT. Do not drop a priority group that you have
designated as an UPDATE conflict resolution method for a column group. You must
first use DROP_UPDATE_RESOLUTION for the column group. Records in the data
dictionary view DBA_REPRESOLUTION indicate if and where the priority group is
used. Attempting to drop a priority group that is in use raises the referenced
exception.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DROP_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DROP_PRIORITY_GROUP
 (gname IN VARCHAR2 := '',
 pgroup IN VARCHAR2);

Parameters
Parameter Name Description

gname Name of the replication group containing the priority group

pgroup Name of the priority group to drop

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingrepgroup
–
23373

Replication group gname does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

referenced
–
23332

Priority group pgroup is used by existing conflict resolution
methods.

Restrictions

You must call DROP_PRIORITY_GROUP from the master definition site.

DBMS_REPCAT.DROP_SITE_PRIORITY

455

Oracle Distributed Systems

The DROP_SITE_PRIORITY procedure drops an existing site priority group that is no
longer in use. The change does not go into effect until the next call to
GENERATE_REPLICATION_SUPPORT. As with the DROP_PRIORITY_GROUP procedure,
do not attempt to drop a site priority group that is acting as an UPDATE conflict
resolution handler for a column group. First, use DROP_UPDATE_RESOLUTION to
drop the conflict handler for the column group.

Specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DROP_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DROP_SITE_PRIORITY
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2)

Parameters
Parameter Name Description

gname Name of the replication group containing the site priority group

name Name of the site priority group

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingrepgroup
–
23373

Replication group gname does not exist.

nonmasterdef
–
23312

Calling site is not the master definition site.

referenced
–
23332

Site priority group is used by existing conflict resolution
method.

Restrictions

You must call DROP_SITE_PRIORITY from the master definition site.

DBMS_REPCAT.DROP_SITE_PRIORITY_SITE

456

Oracle Distributed Systems

The DROP_SITE_PRIORITY_SITE procedure removes a site from a site priority. The
change takes effect immediately. Specifications for Oracle7 and Oracle8 differ as
follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.DROP_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 site IN VARCHAR2,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.DROP_SITE_PRIORITY_SITE
 (gname IN VARCHAR2 := '',
 name IN VARCHAR2,
 site IN VARCHAR2);

Parameters
Parameter Name Description

gname
Name of the replication group to which site priority group name
belongs

name Name of the site priority group

site Global name of the new site

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingpriority –1403 Site priority does not exist.

missingrepgroup –23373 Replication group gname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

Restrictions

You must call DROP_SITE_PRIORITY_SITE from the master definition site.

DBMS_REPCAT.DROP_SNAPSHOT_REPGROUP

The DBMS_REPCAT package’s DROP_SNAPSHOT_REPGROUP procedure is the
counterpart to the CREATE_SNAPSHOT_REPGROUP procedure. This procedure drops

457

an existing snapshot replication group and, optionally, all of its contents.

Oracle Distributed Systems

458

typefailure – Invalid value for type.

PROCEDURE DBMS_REPCAT>DROP_SNAPSHOT_REPGROUP
 (gname IN VARCHAR2,
 drop_contents IN BOOLEAN := FALSE);

Parameters
Parameter

Name Description

gname Name of the snapshot group.

drop_contents
If TRUE, objects in gname are dropped. If FALSE (the default) they
are simply no longer replicated.

Exceptions
Exception Name Number Description

missingrepgroup –23373 Replication group gname does not exist.

nonmaster –23313 Calling site is not a snapshot site.

Restrictions

If drop_contents is set to FALSE, the triggers created to support snapshot
modifications remain.

DBMS_REPCAT.DROP_SNAPSHOT_REPOBJECT

The DROP_SNAPSHOT_REPOBJECT procedure drops an object from a snapshot
replication group at the snapshot site and, optionally, drops the object and its
dependents as well.

PROCEDURE DBMS_REPCAT.DROP_SNAPSHOT_REPOBJECT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := FALSE);.

For parameter descriptions, see the CREATE_SNAPSHOT_REPOBJECT procedure.

Exceptions
Exception

Name Number Description

missingobject
–
23308

Object oname does not exist in master’s replication group
gname.

nonsnapshot
–
23314

Calling site is not a snapshot site.

Oracle Distributed Systems

459

ddlfailure
–
23318

Unable to perform DDL.

23319

Restrictions

If the type parameter is SNAPSHOT and you do not set the drop_objects parameter
to TRUE, replication triggers and associated packages remain in the schema, and
deferred transactions (if any) remain in the deftran queue.

DBMS_REPCAT.EXECUTE_DDL

CREATE_MASTER_REPOBJECT and DROP_MASTER_REPOBJECT do not support every
type of object. For example, you cannot use these procedures to drop and create
constraints. Enter the EXECUTE_DDL procedure. EXECUTE_DDL allows you to
perform DDL at one or more master sites. The replication group may or may not be
quiesced. You can monitor the progress of the DDL call by monitoring the
REPCATLOG data dictionary view (DBA_REPCATLOG).

PROCEDURE DBMS_DEFER_SYS.EXECUTE_DDL
 (gname IN VARCHAR2 := '',
 {master_list IN VARCHAR2 := NULL, |
 master_table IN dbms_utility.dblink_array,}
 ddl_text IN VARCHAR2,
 sname IN VARCHAR2 := '');

Parameters
Parameter Name Description
gname Name of the replicated object group.

master_list

Comma-separated string of master site global names at which DDL is
to be performed. If NULL (the default), DDL is applied at all master
sites in the replication group. Use either parameter master_list or
master_table.

master_table
PL/SQL table of master site global names at which DDL is to be
performed. Use either parameter master_list or master_table.

ddl_text DDL statement to apply.

sname
(Oracle7 only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception

Name Number Description

commfailure
–
23317

Unable to communicate with the master site.

Oracle Distributed Systems

nonmaster
–
23312

At least one site in master_list or master_table is not a master
site.

nonmasterdef
–
23312

Calling site is not a master definition site.

Restrictions

• This procedure must be called from the master definition site.
• The replication group must already exist.

DBMS_REPCAT.GENERATE_REPLICATION_PACKAGE

In some situations, you may wish to generate only replication support packages.
GENERATE_REPLICATION_PACKAGE generates the table_name$RP package for the
specified object at all master sites. The package is required for all tables participating
in low-level replication.

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION__PACKAGE
 (sname IN VARCHAR2,
 oname IN VARCHAR2);

Parameters
Parameter Name Description

sname Name of the schema to which table oname belongs

oname Name of table for which package is being generated

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with all masters.

dbnotcompatible –23375 One or more masters is a pre-7.3 release.

missingobject –23308 Table oname does not exist in schema sname.

nonmasterdef –23312 Calling site is not a master definition site.

notquiesced –23310 Replication group to which object belongs is not quiesced.

Restrictions

• You must call this procedure from the master definition site.
• The replication group must be quiesced.
• The Oracle version must be 7.3 or later.

460

DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT

Oracle Distributed Systems

The GENERATE_REPLICATION_SUPPORT procedure generates support for replicated
tables, packages, and package bodies required to support replication of the specified
object, which can be a table, procedure, package, or package body. The typical use
of GENERATE_REPLICATION_SUPPORT is to regenerate the replication support
triggers and procedures after changing a replication group’s mode of propagation.

If the object is a table, GENERATE_REPLICATION_SUPPORT creates the
table_name$RT triggers on the table, as well as the table_name$RP and
table_name$RR packages at all master sites.

If the object is a procedure, package or package body,
GENERATE_REPLICATION_SUPPORT generates the requisite procedure wrappers for
it. The name of the wrapper procedure is in the format package_prefixoname for
packages and package bodies, and procedure_prefixoname for procedures. If the
parameters package_prefix or procedure_prefix are not supplied, the default prefix
DEFER_ is used.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 package_prefix IN VARCHAR2 := NULL,
 procedure_prefix IN VARCHAR2 := NULL,
 distributed IN BOOLEAN := TRUE,
 gen_objs_owner IN VARCHAR2 := NULL,
 gen_rep2_trigger IN BOOLEAN := FALSE);

Oracle8 specification:

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 package_prefix IN VARCHAR2 := NULL,
 procedure_prefix IN VARCHAR2 := NULL,
 distributed IN BOOLEAN := TRUE,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := TRUE);

Although it can take time for each call to GENERATE_REPLICATION_SUPPORT to
generate all required packages at all master sites, you can call it numerous times
(for all objects you are replicating) without waiting for each call to finish its work.

461

Oracle Distributed Systems

Parameters
Parameter Name Description

sname Name of the schema to which table oname belongs.

oname Name of table for which package is being generated.

type
Object type. Supported types: TABLE, PROCEDURE,
PACKAGE, and PACKAGE BODY.

package_prefix
Prefix used to name generated wrapper package for
packages and package bodies.

procedure_prefix
Prefix used to name generated wrapper package for
procedures.

distributed
If TRUE (the default), generate replication support for the
object at each master; if FALSE, copy the replication
support objects generated at the master definition site.

gen_objs_owner
Specifies schema in which to generate replication support
objects; if NULL (the default), objects are generated under
schema sname.

gen_rep2_trigger
(Oracle7 only)

Provided for backward compatibility; if any masters are pre-
7.3 releases, this must be set to TRUE. The default is
FALSE.

min_communication
(Oracle8 only)

If TRUE (the default), Oracle propagates changes with the
minimum communication parameter, which avoids sending
the old and new column values of unmodified fields.

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with all masters.

dbnotcompatible –23375 One or more masters is a pre-7.3 release.

missingobject –23308 Table oname does not exist in schema sname.

missingschema –23306 Schema sname does not exist.

nonmasterdef –23312 Calling site is not a master definition site.

notquiesced –23310 Replication group to which object belongs is not quiesced.

typefailure –23319 Specified type is not a supported type.

Restrictions

• You must call this procedure from the master definition site for each object in
the replication group.

• The replication group must be quiesced.
• If the object is not owned by the replication administrator account, the owner

must have explicit EXECUTE privileges on the DBMS_DEFER package.
• If the INIT.ORA parameter COMPATIBLE is 7.3 or higher, the distributed

parameter must be set to TRUE.
• If the INIT.ORA parameter COMPATIBLE is less than 7.3 in any snapshot sites,

the gen_rep2_trigger parameter must be set to TRUE, and the COMPATIBLE

462

parameter at the master definition site must be set to 7.3.0.0 or greater.

Oracle Distributed Systems

463

support objects are to be generated.

master_table PL/SQL table of global names for masters in which support

DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER

The GENERATE_REPLICATION_TRIGGER procedure allows you to generate replication
support triggers. The procedure generates the table_name$TP trigger and associated
packages for the specified object. The specifications differ for Oracle7 and Oracle8 as
follows. The first form of the procedure shown here generates the objects at all
masters. Either form can be used to generate support at specific master sites.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := NULL,
 gen_rep2_trigger IN BOOLEAN := FALSE);

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER
 (gname IN VARCHAR2,
 {master_list IN VARCHAR2 := NULL |
 master_table IN dbms_utility.dblink_array},
 gen_objs_owner IN VARCHAR2 := NULL);

Oracle8 specification:

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := TRUE);

PROCEDURE DBMS_REPCAT.GENERATE_REPLICATION_TRIGGER
 (gname IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := NULL);

Parameters
Parameter Name Description

sname Name of the schema to which table oname belongs.

oname
Name of object for which support objects are being
generated.

gen_rep2_trigger

(Oracle7 only)

Provided for backward compatibility; if any master sites are
pre-7.3 releases, this parameter must be set to TRUE
(default is FALSE).

gname The replication group to which oname belongs.

master_list
Comma-delimited string of global names for masters in which

Oracle Distributed Systems

464

 {list_of_column_names IN VARCHAR2 |
 list_of_column_names IN dbms_repcat.varchar2s});

objects are to be generated.

gen_objs_owner
Specifies schema in which to generate replication support
objects; if NULL (the default), objects are generated under
schema in which they currently reside.

min_communication
(Oracle8 only)

If TRUE (the default), the generated trigger sends the new
value of a column only if the value has changed. Old field
values are sent only if the field is part of the primary key or
part of a column group for which member columns have
changed.

Exceptions
Exception Name Number Description

commfailure
–
23317

Unable to communicate with all masters.

dbnotcompatible
–
23375

One or more masters is a pre-7.3 release and
gen_rep2_trigger is not set to TRUE.

missingobject
–
23308

Table oname does not exist in schema sname.

missingschema
–
23306

Schema sname does not exist.

nonmasterdef
–
23312

Calling site is not a master definition site.

notquiesced
–
23310

Replication group to which object belongs is not quiesced.

Restrictions

• You must call this procedure from the master definition site.
• The replication group must be quiesced.
• The GENERATE_REPLICATION_SUPPORT or

GENERATE_REPLICATION_PACKAGE must previously have been called for the
object specified in the oname parameter.

DBMS_REPCAT.MAKE_COLUMN_GROUP

The MAKE_COLUMN_GROUP procedure creates a new column group and designates
columns to it. It provides the functional equivalent of calling
DEFINE_COLUMN_GROUP followed by ADD_GROUPED_COLUMN.

PROCEDURE DBMS_REPCAT.MAKE_COLUMN_GROUP
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,

Oracle Distributed Systems

Note that you must specify only one of the list_of_column_names parameters.

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs.

oname Name of the replicated table containing the column group.

column_group Name of the column group.

list_of_column_names
A comma-delimited list of column names or a PL/SQL table of
column names. Use an asterisk (*) to add all columns in the
table.

Exceptions
Exception Name Number Description

duplicatecolumn –23333 Column(s) already a member of a different column group.

duplicategroup –23330 column_group already exists.

missingcolumn –23334 Column(s) specified do not exist in table oname.

missingobject –23308 Object oname does not exist.

nonmasterdef –23312 Calling site is not master definition site.

Restrictions

• You must call this procedure from the quiesced master definition site.
• You must regenerate replication support for the table after defining the

column group with the GENERATE_REPLICATION_SUPPORT procedure.

DBMS_REPCAT.PURGE_MASTER_LOG

The PURGE_MASTER_LOG procedure removes records from the DBA_REPCATLOG
data dictionary view. Records may be removed by ID, originating master, replication
group, or schema. If any of the parameters is NULL, it is treated as a wildcard.
Specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.PURGE_MASTER_LOG
 (id IN NATURAL,
 source IN VARCHAR2,
 gname IN VARCHAR2 := '',
 sname IN VARCHAR2 := '');

Oracle8 specification:

465

PROCEDURE DBMS_REPCAT.PURGE_MASTER_LOG

Oracle Distributed Systems

 (id IN NATURAL,
 source IN VARCHAR2,
 gname IN VARCHAR2);

To clear all entries from the DBA_REPCATLOG data dictionary view, set all
parameters to NULL.

Parameters
Parameter Name Description

id
Identification of the request (i.e., the ID field in DBA_REPCATLOG
data dictionary view)

source Global name of originating master

gname Name of the replication group for which request was made

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description
nonmaster –23312 The gname is NULL, and calling site is not a master site.

Restrictions

The calling site must be a master site.

DBMS_REPCAT.PURGE_STATISTICS

If you are collecting conflict resolution statistics, you can purge this information
periodically using the PURGE_STATISTICS procedure. This procedure removes
records from the DBA_REPRESOLUTION.STATISTICS data dictionary view. Records
may be specified by data range.

PROCEDURE DBMS_REPCAT.PURGE_STATISTICS
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 start_date IN DATE,
 end_date IN DATE);

To clear all entries in DBA_REPRESOLUTION_STATISTICS, set the start_date and
end_date parameters to NULL.

There are no restrictions on calling PURGE_STATISTICS.

466

Oracle Distributed Systems

Parameters
Parameter

Name Description

sname Name of the schema that owns oname.

oname Table whose conflict resolution statistics are to be deleted.

start_date
Beginning of date range for which statistics are to be deleted. If NULL,
all entries less than end_date are deleted.

end_date
End of date range for which statistics are to be deleted. If NULL, all
entries greater than end_date are deleted.

Exceptions
Exception Name Number Description

missingobject –23308 Object oname does not exist.

missingschema –23306 Schema sname does not exist.

DBMS_REPCAT.REFRESH_SNAPSHOT_REPGROUP

The REFRESH_SNAPSHOT_REPGROUP procedure refreshes the snapshot replication
group manually. Specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.REFRESH_SNAPSHOT_REPGROUP
 (gname IN VARCHAR2,
 drop_missing_contents IN BOOLEAN := FALSE,
 refresh_snapshots IN BOOLEAN := FALSE,
 refresh_other_objects IN BOOLEAN := FALSE,
 execute_as_user IN BOOLEAN:= FALSE);

Oracle8 specification:

PROCEDURE DBMS_REPCAT.REFRESH_SNAPSHOT_REPGROUP
 (gname IN VARCHAR2,
 drop_missing_contents IN BOOLEAN := FALSE,
 refresh_other_objects IN BOOLEAN := FALSE)

The procedure can optionally drop objects that are no longer in the group and/or
refresh the snapshots and other objects.

The REFRESH_SNAPSHOT_REPGROUP procedure replaces the
REFRESH_SNAPSHOT_REPSCHEMA procedure. Although
REFRESH_SNAPSHOT_REPSCHEMA still exists (as of Oracle 7.3.3), do not use it; it
does not exist in Oracle 8.0.3.

467

Oracle Distributed Systems

468

oname Name of the replicated table

Parameters
Parameter Name Description

gname Name of the replication group.

drop_missing_contents
If TRUE, drop schema objects that are no longer in the
snapshot group. If FALSE (the default), objects are simply
no longer replicated.

refresh_snapshots
If TRUE, force a refresh of snapshots in gname. Default is
FALSE.

refresh_other_objects
If TRUE, refresh nonsnapshot objects in gname, such as
views and procedures. Nonsnapshot objects are refreshed
by dropping and re-creating them. Default is FALSE.

execute_as_user
(Oracle7 only)

FALSE (default) indicates that the remote system will
authenticate calls using the authentication context user
who originally queued the RPC; TRUE indicates that remote
system will use authentication context of the session user.

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with the master site.

nonmaster –23313 Master is no longer a master database.

nonsnapshot –23314 Calling site is not a snapshot site.

Restrictions

REFRESH_SNAPSHOT_REPGROUP must be called from a snapshot site.

DBMS_REPCAT.REGISTER_STATISTICS

The REGISTER_STATISTICS procedure enables the collection of data about the
successful resolution of update, uniqueness, and delete conflicts. This information is
visible in the DBA_REPRESOLUTION_STATISTICS data dictionary view.

PROCEDURE DBMS_REPCAT.REGISTER_STATISTICS
 (sname IN VARCHAR2,
 oname IN VARCHAR2);

These are no restrictions on calling REGISTER_STATISTICS.

Parameters
Parameter Name Description

sname Name of the schema to which the replicated table belongs

Oracle Distributed Systems

Exceptions
Exception Name Number Description

missingobject –23308 Table oname does not exist.

missingschema –23306 Schema sname does not exist.

DBMS_REPCAT.RELOCATE_MASTERDEF

If your master definition site becomes unusable or if you simply want another site to
serve that role, you can configure a different master site as the master definition site
with the RELOCATE_MASTERDEF procedure. Follow these guidelines:

• If your relocation is planned (i.e., all sites are up and reachable), set the
notify_masters and include_old_masterdef parameters to TRUE.

• If the current master definition site is not available, set the notify_masters
parameter to TRUE, and set include_old_masterdef to FALSE.

• If the master definition site as well as some master sites are unavailable,
invoke the RELOCATE_MASTERDEF procedure from each functioning master
site with both the notify_masters and the include_old_masterdef parameters
set to FALSE.

Neither the current master definition site nor the new master definition site need be
reachable to run this procedure successfully from any given master site.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.RELOCATE_MASTERDEF
 (gname IN VARCHAR2 := '',
 old_masterdef IN VARCHAR2,
 new_masterdef IN VARCHAR2,
 notify_masters IN BOOLEAN := TRUE,
 include_old_masterdef IN BOOLEAN := TRUE,
 sname IN VARCHAR2 := '')

Oracle8 specification:

PROCEDURE DBMS_REPCAT.RELOCATE_MASTERDEF
 (gname IN VARCHAR2,
 old_masterdef IN VARCHAR2,
 new_masterdef IN VARCHAR2,
 notify_masters IN BOOLEAN := TRUE,
 include_old_masterdef IN BOOLEAN := TRUE);

Parameters

469

Parameter Name Description
gname Name of the replication group.

Oracle Distributed Systems

old_masterdef Global name of the current master definition site.

new_masterdef Global name of the new master definition site.

notify_masters
If TRUE (the default), synchronously multicast information
about the change to all masters; if FALSE, do not inform
masters.

include_old_masterdef
If TRUE (the default), notify current master definition site of
the change.

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception

Name Number Description

commfailure
–
23317

Unable to communicate with master site(s) and
notify_masters is TRUE.

nonmaster
–
23313

The new_masterdef is not a master site.

nonmasterdef
–
23312

The old_masterdef is not the master definition site.

Restrictions

You must call RELOCATE_MASTERDEF from a master or master definition site.

DBMS_REPCAT.REMOVE_MASTER_DATABASES

The REMOVE_MASTER_DATABASES procedure complements the
ADD_MASTER_DATABASE procedure by removing one or more master databases
from a replication group. The master sites being removed do not need to be
accessible, but all other masters do. After removing master sites with
REMOVE_MASTER_DATABASES, you should call DROP_MASTER_REPGROUP at each
of the master sites you removed. Although you do not need to quiesce the replication
group to remove one or more master database(s), you are strongly encouraged to
do so. Otherwise, you will manually have to clear the RPC queue and resolve any
inconsistencies.

Specification differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.REMOVE_MASTER_DATABASES
 (gname IN VARCHAR2 := '',
 master_list IN VARCHAR2,
 sname IN VARCHAR2 := '');

470

Oracle Distributed Systems

Oracle8 specification:

PROCEDURE DBMS_REPCAT.REMOVE_MASTER_DATABASES
 (gname IN VARCHAR2 := '',
 master_list IN VARCHAR2);,

Parameters
Parameter Name Description

gname
Name of the replication group from which the master site(s) will be
removed.

master_list
A comma-delimited list of global_names of master sites to be
removed; use either master_list or master_table.

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception

Name Number Description

commfailure –23317 One or more remaining master sites is not reachable.

nonmaster –23313
One or more of the specified masters is not a master
database.

nonmasterdef –23312 Calling site is not the master definition site.

reconfigerror –23316 One of the specified masters is the master definition site.

Restrictions

The REMOVE_MASTER_DATABASES procedure must be run from the master
definition site.

DBMS_REPCAT.REPCAT_IMPORT_CHECK

From time to time, you may need to rebuild a master site from an export dump file
as either a recovery or maintenance procedure. Because object ID numbers (as seen
in SYS.OBJ$.OBJ# and DBA_OBJECTS.OBJECT_ID) change during these rebuilds,
Oracle supplies a procedure (REPCAT_IMPORT_CHECK) that you must run
immediately after an import of any master site to synchronize the new ID numbers
with the data stored in the table SYSTEM.REPCAT$_REPOBJECT. Objects with a
status of VALID in REPCAT$_REPOBJECT are not affected.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

471

PROCEDURE DBMS_REPCAT.REPCAT_IMPORT_CHECK

Oracle Distributed Systems

472

 sname IN VARCHAR2 := '');

 (gname IN VARCHAR2 := '',
 master IN BOOLEAN,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.REPCAT_IMPORT_CHECK
 (gname IN VARCHAR2 := '',
 master IN BOOLEAN);

There are no restrictions on calling REPCAT_IMPORT_CHECK.

Call REPCAT_IMPORT_CHECK with sname and master set to NULL (or with no
parameters) to validate all replication groups at the site.

Parameters
Parameter Name Description

gname Name of the replication group being revalidated

master Set to TRUE if site is a master, FALSE if it is a snapshot site

sname (Oracle7 only) Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

missingobject
–
23308

Object with a status of VALID in REPCAT$_REPOBJECT does
not exist.

missingschema
–
23306

Schema sname does not exist.

nonmaster
–
23312

Master is set to TRUE, but the calling site is not a master or
not the expected database.

nonsnapshot
–
23314

Master is set to FALSE but the calling site is not a snapshot
site.

DBMS_REPCAT.RESUME_MASTER_ACTIVITY

The RESUME_MASTER_ACTIVITY procedure starts up an environment that has been
or is in the process of being quiesced. The specifications differ for Oracle7 and
Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.RESUME_MASTER_ACTIVITY
 (gname IN VARCHAR2 := '',
 override IN BOOLEAN := FALSE,

Oracle Distributed Systems

473

 (sname IN VARCHAR2
 oname IN VARCHAR2,

Oracle8 specification:

PROCEDURE DBMS_REPCAT.RESUME_MASTER_ACTIVITY
 (gname IN VARCHAR2,
 override IN BOOLEAN := FALSE);

Parameters
Parameter

Name Description

gname
Name of the replication group for which replication activity is to be
resumed.

override
If FALSE (the default), activity is resumed only after all deferred
REPCAT activity is completed; if set to TRUE, activity is resumed as
soon as possible.

sname
(Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

nonmasterdef –23312 Calling site is not the master definition site.

notquiesced –23310 Replication group gname is not quiesced.

Restrictions

• You must run this procedure from the master definition site.
• The replication group must be quiesced or quiescing.

DBMS_REPCAT.SEND_AND_COMPARE_OLD_VALUES
(Oracle8 Only)

The default behavior of advanced replication is to send the old and new values of
every column to participating master sites whenever you update a row in a replicated
table. At the destination sites, Oracle uses this information to ensure that the version
of the row that you updated matches the version of the row currently at the
destination. However, if you know that certain columns in a table will never change,
you can avoid sending the data in these columns when you propagate updates to
participating master sites. Using the SEND_AND_COMPARE_OLD_VALUES procedure
(available only in Oracle8) in this way, you’ll reduce propagation overhead.

PROCEDURE DBMS_REPCAT.SEND_AND_COMPARE_OLD_VALUES

Oracle Distributed Systems

 {column_list IN VARCHAR2 | column_table IN dbms_repcat.varchar2s},
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := TRUE);

The configuration changes you specify with this procedure do not take effect unless
the min_communication parameter is TRUE for the table in question. That is, you
must have executed GENERATE_REPLICATION_SUPPORT for the table with
min_communication = TRUE.

If you change the propagation mode in Oracle8, you must also regenerate the
SEND_AND_COMPARE_OLD_VALUES procedure.

Parameters
Parameter

Name Description

sname
Name of the replication group whose propagation mode is being
altered.

oname Table being altered.

column_list
Comma-separated list of columns whose propagation mode is being
altered; an asterisk (*) indicates all nonkey columns.

column_table
PL/SQL table of containing columns whose propagation is being
altered.

operation
Operation for which this change applies; this may be UPDATE,
DELETE, or an asterisk (*) (indicating both updates and deletes).

send
If TRUE (the default), then the old values for the columns are sent; if
FALSE, then old values are not sent.

Exceptions
Exception Name Number Description

missingcolumn –23334 Column(s) specified do not exist in table oname.

missingobject –23308 Object oname does not exist.

nonmasterdef –23312 Calling site is not the master definition site.

notquiesced –23310 Replication group gname is not quiesced.

typefailure –23319 The oname is not a table.

Restrictions

• You must call this procedure from the master definition site.
• The replication group sname must be quiesced.

DBMS_REPCAT.SET_COLUMNS

474

Oracle Distributed Systems

475

sites.

When you replicate a table, Oracle must be able to uniquely identify each record in
the table so that it can propagate changes to the correct row or rows. By default, the
advanced replication facilities use the primary key to identify rows. However, if your
table does not have a primary key or if you wish to use a different criterion to
uniquely identify records, you can use SET_COLUMNS to designate a pseudo primary
key. Columns designated with this procedure may contain NULL values.

PROCEDURE DBMS_REPCAT.SET_COLUMNS
 (sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_list IN VARCHAR2 | column_table IN dbms_utility.name_array);

Parameters
Parameter

Name Description

sname Name of the schema that owns the replicated table.

oname Name of the table with the column_group.

column_list
A comma-delimited list of column names to use as the pseudo primary
key. Use either column_list or column_table.

column_table
A PL/SQL table of column names. Use either column_list or
column_table.

Exceptions
Exception Name Number Description

missingcolumn –23334 Column(s) specified do not exist in table oname.

missingobject –23308 Table oname does not exist.

nonmasterdef –23312 Invoking site is not the master definition site.

Restrictions

• SET_COLUMNS must be run from the master definition site.
• The changes do not take effect until the next call to

GENERATE_REPLICATION_SUPPORT.

DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY

You may have noticed that many of the DBMS_REPCAT procedures require you to
quiesce the environment before using them. Quiescence, as it is called, accomplishes
two things:

• It applies all outstanding DML for the replication group at all master sites.
• It prevents any additional DML on any of the replicated objects at all master

Oracle Distributed Systems

476

In other words, quiescence ensures that all sites are up to date and forces the
replicated environment to stand still.

Do not attempt to quiesce an environment that has unresolved errors or any other
serious problems. If you cannot complete outstanding transactions, you will not be
able to quiesce the environment.

The SUSPEND_MASTER_ACTIVITY procedure quiesces an environment. It propagates
all deferred transactions and RPCs and then disables all replication activity. Although
this procedure allows you to specify a replication group in Version 7.x databases, all
replication groups whose master definition site is the invoking site are quiesced.
Group-level quiescence is available with Oracle8. This call can take some time to
complete if you have many master sites or many outstanding transactions. You can
monitor the progress by querying the status field in the DBA_REPCATLOG data
dictionary view.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY
 (gname IN VARCHAR2 := '',
 execute_as_user IN BOOLEAN := FALSE,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY
 (gname IN VARCHAR2,
 override IN BOOLEAN := FALSE);

Parameters
Parameter Name Description

gname
Name of the replication group for which replication activity is to be
suspended.

execute_as_user

FALSE (the default) indicates that the remote system will
authenticate calls using the authentication context user who
originally queued the RPC; TRUE indicates that the remote system
will use authentication context of the session user.

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions
Exception Name Number Description

commfailure –23317 Unable to communicate with one or more master sites.

nonmasterdef –23312 Calling site is not the master definition site.

notnormal –23311 Replication group gname is not in NORMAL state.

Oracle Distributed Systems

Restrictions

• You must run this procedure from the master definition site.
• Prior to Oracle8, this procedure quiesces all replication groups at the master

definition site, not just the group specified by the gname parameter.

DBMS_REPCAT.SWITCH_SNAPSHOT_MASTER

The SWITCH_SNAPSHOT_MASTER procedure lets you switch a snapshot replication
group to a different master site. This procedure changes the master site for the
specified snapshot group. The new master site must contain a replica of the
replication group gname. The next time the snapshot group refreshes, Oracle
performs a full refresh. Put snapshot logs on the master tables at the new master
site so that you can use fast refreshes.

The specifications differ for Oracle7 and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.SWITCH_SNAPSHOT_MASTER
 (gname IN VARCHAR2 := '',
 master IN VARCHAR2,
 execute_as_user IN BOOLEAN := FALSE,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDURE DBMS_REPCAT.SWITCH_SNAPSHOT_MASTER
 (gname IN VARCHAR2 := '',
 master IN VARCHAR2)

Parameters
Parameter Name Description

gname Name of the snapshot group.

master Name of the new master site.

execute_as_user

(Oracle7 only)

FALSE (the default) indicates that the remote system will
authenticate calls using the authentication context user who
originally queued the RPC; TRUE indicates that the remote system
will use authentication context of the session user.

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility).

Exceptions

477

Exception Name Number Description

Oracle Distributed Systems

478

check_links Boolean flag which checks if the user invoking the procedure has

commfailure –23317 Unable to communicate with the master site.

nonmaster –23312 The master parameter is not a master site.

nonsnapshot –23314 Calling site is not a snapshot site.

Restrictions

• The new master site must contain a replica of the replication group gname.
• Snapshots whose query is greater than 32K cannot be remastered.

DBMS_REPCAT.VALIDATE

The VALIDATE function diagnoses the status of your replicated environment and
returns any errors in either a PL/SQL array of records (error_table) or a pair of
arrays with error text (error_msg_table) and error numbers (error_num_table).

FUNCTION validate(gname IN VARCHAR2,
 check_genflags IN BOOLEAN := FALSE,
 check_valid_objs IN BOOLEAN := FALSE,
 check_links_sched IN BOOLEAN := FALSE,
 check_links IN BOOLEAN := FALSE,
 error_table OUT dbms_repcat.validate_err_table)

FUNCTION validate(gname IN VARCHAR2,
 check_genflags IN BOOLEAN := FALSE,
 check_valid_objs IN BOOLEAN := FALSE,
 check_links_sched IN BOOLEAN := FALSE,
 check_links IN BOOLEAN := FALSE,
 error_msg_table OUT dbms_utility.uncl_array,
 error_num_table OUT dbms_utility.number_array)
 RETURN BINARY_INTEGER;

The return value of these functions is the number of errors detected.

There are no restrictions on calling this function.

Parameters
Parameter Name Description

gname Name of the replication group.

check_genflags
Boolean flag indicating whether to check that all replicated objects
have replication support generated.

check_valid_objs
Boolean flag which checks whether or not all replicated objects
are valid. This check is performed at all master sites.

check_links_sched
Boolean flag to check if pushes are scheduled to all master
databases.

Oracle Distributed Systems

valid database links to all master databases.

error_table PL/SQL table of errors found.

error_msg_table Error message text of any errors found.

error_num_table Oracle error number for any errors found.

Exceptions
Exception Name Number Description

missingdblink
–
23396

The database link does not exist for the replication
propagator account, or pushes are not scheduled.

dblinkmismatch
–
23397

The database link name at the local site does not match
the global name of the database to which it connects.

dblinkuidmismatch
–
23398

The replication propagator accounts are not the same at
all sites.

objectnotgenerated
–
23399

Replication support has not been generated for the
object at all master sites.

opnotsupported
–
23408

Not all sites are Oracle8.

DBMS_REPCAT.WAIT_MASTER_LOG

You can use the WAIT_MASTER_LOG procedure to ascertain whether the changes in
the repcatlog queue have reached the master sites. However, you might find it more
convenient to query the DBA_REPCATLOG data dictionary view directly. This
procedure has an OUT parameter, true_count, which the procedure populates with
the number of outstanding (incomplete) tasks. The specifications differ for Oracle7
and Oracle8 as follows.

Oracle7 specification:

PROCEDURE DBMS_REPCAT.WAIT_MASTER_LOG
 (gname IN VARCHAR2 := '',
 record_count IN NATURAL,
 timeout IN NATURAL,
 true_count OUT NATURAL,
 sname IN VARCHAR2 := '');

Oracle8 specification:

PROCEDUREDBMS_REPCAT.WAIT_MASTER_LOG
 (gname IN VARCHAR2,
 record_count IN NATURAL,
 timeout IN NATURAL,
 true_count OUT NATURAL);

479

There are no restrictions on calling WAIT_MASTER_LOG.

Oracle Distributed Systems

480

Parameters
Parameter Name Description

gname Name of the replication group

record_count
Number of records to allow to be entered in the DBA_REPCATLOG
data dictionary view before returning

timeout Number of seconds to wait before returning

true_count
Output variable containing the actual number of incomplete
activities queued in the DBA_REPCATLOG data dictionary view

sname (Oracle7
only)

Schema name (provided for pre-Oracle 7.3 compatibility)

Exceptions
Exception Name Number Description

nonmaster –23312 Calling site is not a master site.

A.9 DBMS_REPCAT_ADMIN: Setting Up Administrative
Accounts

The first step in creating an advanced replication environment is to create
administrative and end user accounts. The DBMS_REPCAT_AUTH and
DBMS_REPCAT_ADMIN packages contain programs that grant and revoke the
privileges required in such an environment.

A.9.1 How the Package Is Used

The replication administration account or a DBA account uses the procedures in
DBMS_REPCAT_ADMIN to grant or revoke the specified privileges.

A.9.2 Installation and Access

The DBMS_REPCAT_ADMIN package is created when the Oracle database is installed.
The dbmsrepc.sql script (found in the built-in packages source directory) contains
the source code for this package’s specification. This script is called by catrep.sql,
which must be run to install the advanced replication packages. The wrapped SQL
script prvtrepc.sql creates the public synonym DBMS_REPCAT_ADMIN. No EXECUTE
privileges are granted on DBMS_REPCAT_ADMIN; only the owner (SYS) and those
with the EXECUTE ANY PROCEDURE system privilege may execute the package.

A.9.3 DBMS_REPCAT_ADMIN Procedures

Oracle8 documents only the REPGROUP procedures
listed here, although the REPSCHEMA procedures also
exist. The functionality is identical.

Procedure Name Description

Oracle Distributed Systems

481

ALTER ANY SNAPSHOT ALTER ANY TABLE

GRANT_ADMIN_ANY_REPGROUP
(Oracle8)

Grants privileges required to administer any
replication group at the current site

GRANT_ADMIN_ANY_REPSCHEMA
Grants privileges required to administer any
replication schema at the current site

GRANT_ADMIN_REPGROUP (Oracle8)
Grants privileges required to administer the
replication group for which the user is the
schema owner

GRANT_ADMIN_REPSCHEMA
Grants privileges required to administer the
replication schema for which the user is the
schema owner

REVOKE_ADMIN_ANY_REPGROUP
(Oracle8)

Revokes privileges required to administer all
replication groups

REVOKE_ADMIN_ANY_REPSCHEMA
Revokes privileges required to administer all
replication schemas

REVOKE_ADMIN_REPGROUP
(Oracle8)

Revokes privileges required to administer the
replication group for which the user is the
schema owner

REVOKE_ADMIN_REPSCHEMA
Revokes privileges required to administer the
replication schema for which the user is the
schema owner

A.9.4 DBMS_REPCAT_ADMIN Exceptions

The DBMS_REPCAT_ADMIN package may raise exception ORA-01917 if the specified
user does not exist.

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_REPGROUP

The GRANT_ADMIN_ANY_REPGROUP procedure grants the privileges required to
administer any replication group at the current site.

PROCEDURE DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_REPGROUP
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are granting privileges.

There are no restrictions on calling GRANT_ADMIN_ANY_REPGROUP.

This procedure replaces GRANT_ADMIN_ANY_REPSCHEMA. The specific privileges
granted are:

ALTER ANY CLUSTER ALTER ANY INDEX

ALTER ANY PROCEDURE ALTER ANY SEQUENCE

Oracle Distributed Systems

482

CREATE DATABASE LINK CREATE PROCEDURE

ALTER ANY TRIGGER ALTER SESSION

CREATE ANY CLUSTER CREATE ANY INDEX

CREATE ANY PROCEDURE CREATE ANY SEQUENCE

CREATE ANY SNAPSHOT CREATE ANY SYNONYM

CREATE ANY TABLE CREATE ANY TRIGGER

CREATE ANY VIEW CREATE DATABASE LINK

CREATE SESSION DELETE ANY TABLE

DROP ANY CLUSTER DROP ANY INDEX

DROP ANY PROCEDURE DROP ANY SEQUENCE

DROP ANY SNAPSHOT DROP ANY SYNONYM

DROP ANY TABLE DROP ANY TRIGGER

DROP ANY VIEW EXECUTE ANY PROCEDURE

INSERT ANY TABLE SELECT ANY TABLE

UNLIMITED TABLESPACE

Because the privileges granted to userid are relatively powerful, recipients of these
grants should be kept to an absolute minimum.

Be sure to set up a replication administrator account at every master site of a multi-
master replication environment. In addition, administration will be easiest if you use
the same account name in all locations.

Exceptions

GRANT_ADMIN _ANY_REPGROUP may raise exception ORA-01917 if the specified
user does not exist.

DBMS_REPCAT_ADMIN.GRANT_ADMIN_REPGROUP

The GRANT_ADMIN_REPGROUP procedure grants the privileges required to
administer a replication group for which the user is the schema owner.

PROCEDURE DBMS_REPCAT_ADMIN.GRANT_ADMIN_REPGROUP
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are granting privileges.

This procedure replaces GRANT_ADMIN_REPSCHEMA. The specific privileges granted
are:

ALTER SESSION CREATE CLUSTER

Oracle Distributed Systems

CREATE SEQUENCE CREATE SESSION

CREATE SNAPSHOT CREATE SYNONYM

CREATE TABLE CREATE TRIGGER

CREATE VIEW EXECUTE ON SYS.DBMS_DEFER

EXECUTE ON SYS.DBMS_DEFER_SYS EXECUTE ON SYS.DBMS_REPCAT

EXECUTE ON SYS.DBMSOBJGWRAPPER UNLIMITED TABLESPACE

GRANT_ADMIN_REPGROUP is not useful if your replication group contains objects
belonging to multiple schemas. Such a replication group has to be administered by a
user who has been granted privileges via GRANT_ADMIN_ANY_REPGROUP.

There are no restrictions on calling GRANT_ADMIN_REPGROUP.

Exceptions

GRANT_ADMIN.REPGROUP may raise exception ORA-01917 if the specified user does
not exist.

DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_REPGROUP

The REVOKE_ADMIN_ANY_REPGROUP procedure revokes the privileges required to
administer any replication group at the current site (see
GRANT_ADMIN_ANY_REPGROUP for a list of these privileges). Note that
REVOKE_ADMIN_ANY_REPGROUP revokes privileges regardless of whether or not
they were obtained via GRANT_ADMIN_ANY_REPGROUP. This procedure replaces
REVOKE_ADMIN_ANY_SCHEMA, which is now obsolete.

PROCEDURE DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_REPGROUP
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are revoking privileges.

There are no restrictions on calling REVOKE_ADMIN_ANY_REPGROUP.

Exceptions

REVOKE_ADMIN_REPGROUP may raise exception ORA-01917 if the specified user
does not exist.

DBMS_REPCAT_ADMIN.REVOKE_ADMIN_REPGROUP

483

Oracle Distributed Systems

REVOKE_ADMIN_REPGROUP revokes from userid all privileges required to administer
a replication group with the same name as userid (see GRANT_ADMIN_REPGROUP
for a list of these privileges). Note that REVOKE_ADMIN_REPGROUP revokes
privileges regardless of whether they were obtained via GRANT_ADMIN_REPGROUP.
This procedure replaces REVOKE_ADMIN_REPSCHEMA, which is now obsolete.

PROCEDURE DBMS_REPCAT_ADMIN.REVOKE_ADMIN_REPGROUP
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are revoking privileges.

There are no restrictions on calling REVOKE_ADMIN_REPGROUP.

Exceptions

REVOKE_ADMIN_REPGROUP may raise exception ORA-01917 if the specified user
does not exist.

A.10 DBMS_REPCAT_AUTH: Setting Up More
Administrative Accounts

DBMS_REPCAT_AUTH grants and revokes privileges to a user ID that is designated
at each master site to perform replication activities on behalf of other remote
masters. In effect, the existence of such a user ID eliminates the need for SYS-
owned database links between master sites.

A.10.1 How the Package Is Used

The replication administration account and/or a DBA account uses the two
procedures in DBMS_REPCAT_AUTH to grant or revoke the specified privileges.

A.10.2 Installation and Access

The DBMS_REPCAT_AUTH package is created when the Oracle database is installed.
The dbmsrepc.sql script (found in the built-in packages source directory) contains
the source code for this package’s specification. This script is called by catrep.sql,
which must be run to install the advanced replication packages. The wrapped SQL
script prvtrepc.sql creates the public synonym DBMS_REPCAT_AUTH. No EXECUTE
privileges are granted on DBMS_REPCAT_AUTH; only the owner (SYS) and those
with the EXECUTE ANY PROCEDURE system privilege may execute the package.

A.10.3 DBMS_REPCAT_AUTH Procedures

Procedure Name Description
GRANT_SURROGATE_REPCAT Grants required privileges to a specified user

REVOKE_SURROGATE_REPCAT Revokes required privileges from a specified user

484

A.10.4 DBMS_REPCAT_AUTH Exceptions

Oracle Distributed Systems

The DBMS_REPCAT_AUTH package may raise exception ORA-01917 if the specified
user does not exist.

DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT

GRANT_SURROGATE_REPCAT grants userid all privileges required to perform
required replication activities on behalf of the SYS user at remote masters. Because
the privileges granted to userid are relatively powerful, recipients of these grants
should be limited to a single account that is used solely for this purpose (i.e., this
account is never used interactively). It is most convenient to use the same account
name for the surrogate SYS user in all master databases.

PROCEDURE DBMS_REPCAT_AUTH.GRANT_SURROGATE_REPCAT
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are granting privileges.

There are no restrictions on calling GRANT_SURROGATE_REPCAT.

Exceptions

The GRANT_SURROGATE_REPCAT procedure may raise the exception ORA-01917 if
the specified user does not exist.

DBMS_REPCAT_AUTH.REVOKE_SURROGATE_REPCAT

REVOKE_SURROGATE_REPCAT revokes from userid all privileges required to perform
required replication activities on behalf of the SYS user at remote masters. Note that
these privileges will be revoked regardless of whether they were obtained via
GRANT_SURROGATE_REPCAT. In addition, any private synonyms with the same
name as those created by REVOKE_SURROGATE_REPCAT will also be dropped.

PROCEDURE DBMS_REPCAT_AUTH.REVOKE_SURROGATE_REPCAT
 (userid IN VARCHAR2);

userid is the Oracle user ID for whom you are revoking privileges.

There are no restrictions on calling REVOKE_SURROGATE_REPCAT.

Exceptions

485

Oracle Distributed Systems

The REVOKE_SURROGATE_REPCAT procedure may raise exception ORA-01917 if the
specified user does not exist.

A.11 DBMS_REPUTIL: Enabling and Disabling Replication

Situations will arise in which you need to perform DML on a replicated table without
propagating the changes to other master sites. For example, if you have resolved a
conflict and wish to update a row manually, you would not want to propagate your
change. Or you might have a trigger on a replicated table that you want to fire only
for updates that originate locally. The DBMS_REPUTIL package allows you to control
whether updates propagate for the current session. It does this by setting the global
variable replication_is_on, which the replication triggers and packages reference.

A.11.1 How the Package Is Used

The procedures REPLICATION_ON and REPLICATION_OFF are useful for controlling
the replication of DML. A typical example is DML that is performed to get a local table
synchronized with other masters.

A.11.2 Installation and Access

The DBMS_REPUTIL package is created when the Oracle database is installed. The
dbmsgen.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catrep.sql, which
must be run to install the advanced replication packages. The script creates the
public synonym DBMS_REPUTIL for the package and grants EXECUTE privileges on
the package to public. All Oracle users can reference and make use of this package.

A.11.3 DBMS_REPUTIL Procedures

Procedure Name Description
REPLICATION_OFF Turns replication off for the current session

REPLICATION_ON Turns replication on for the current session

A.11.4 DBMS_REPUTIL Nonprogram Elements

Element Name/Type Description

replication_is_on/BOOLEAN
Flag indicating whether DML should be queued for
replication

from_remote/BOOLEAN
Flag indicating whether DML was initiated at another
master site

global_name/VARCHAR2(128) Global name of the current database

DBMS_REPUTIL.REPLICATION_OFF

486

Oracle Distributed Systems

487

END_TABLE_REORGANIZATION Called after reorganizing a master table (e.g.,

The REPLICATION_OFF procedure works by setting the package variable
replication_is_on to FALSE. The replication triggers and procedures can subsequently
query this variable. This procedure is as simple as it can be: no parameters, no
exceptions, and no restrictions.

PROCEDURE DBMS_REPUTIL.REPLICATION_OFF;

DBMS_REPUTIL.REPLICATION_ON

The REPLICATION_ON procedure reverses the effect of the REPLICATION_OFF
procedure. It sets the package variable replication_is_on to TRUE.

PROCEDURE DBMS_REPUTIL.REPLICATION_ON;

There are no exceptions or restrictions for this procedure.

A.12 DBMS_SNAPSHOT: Managing Snapshots

The DBMS_SNAPSHOT package contains programs that allow you to maintain
snapshots and snapshot logs and to set and query package state variables
associated with the advanced replication facilities.

A.12.1 How the Package Is Used

The procedures I_AM_A_REFRESH and SET_I_AM_A_REFRESH are used to check and
set the package variable REP$WHAT_AM_I.I_AM_A_SNAPSHOT, which numerous
replication triggers and procedures reference. The procedures PURGE_LOG and
REFRESH are typically run by the DBA and/or scheduled in the job queue.

A.12.2 Installation and Access

The DBMS_SNAPSHOT package is created when the Oracle database is installed. The
dbmssnap.sql script (found in the built-in packages source directory) contains the
source code for this package’s specification. This script is called by catproc.sql, which
is normally run immediately after database creation. The script creates the public
synonym DBMS_SNAPSHOT for the package and grants the EXECUTE privilege on
the package to public. All Oracle users can reference and make use of this package.

A.12.3 DBMS_SNAPSHOT Procedures

Name Description

BEGIN_TABLE_REORGANIZATION
(Oracle8 only)

Called prior to reorganizing a master table (e.g.,
through export/import); saves data required to
refresh snapshots

Oracle Distributed Systems

488

(Oracle8 Only)

(Oracle8 only) through export/import); validates data required
to refresh snapshots

I_AM_A_REFRESH
Returns value of
REP$WHAT_AM_I.I_AM_A_SNAPSHOT

PURGE_LOG Purges snapshot log

REFRESH Refreshes a snapshot

REFRESH_ALL Refreshes all snapshots due to be executed.

REGISTER_SNAPSHOT

(Oracle8 only)

Records information about snapshots at the
master site in the
DBA_REGISTERED_SNAPSHOTS data dictionary
view

SET_I_AM_A_REFRESH
Sets REP$WHAT_AM_I.I_AM_A_SNAPSHOT to
specified value

UNREGISTER_SNAPSHOT

(Oracle8 only)

Removes information about snapshots at the
master site from the
DBA_REGISTERED_SNAPSHOTS data dictionary
view

All of the programs in DBMS_SNAPSHOT are available regardless of whether you are
using snapshot groups or the advanced replication facilities.

DBMS_SNAPSHOT does not define any exceptions.

DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION
(Oracle8 Only)

If you are reorganizing a table, call the BEGIN_TABLE_REORGANIZATION procedure
before reorganizing the table and the END_TABLE_REORGANIZATION procedure
when you are finished.

PROCEDURE DBMS_SNAPSHOT.BEGIN_TABLE_REORGANIZATION
 (tabowner IN VARCHAR2,
 tabname IN VARCHAR2);

There are no exceptions or restrictions for this procedure.

Parameters

Parameter Name Description
tabowner Owner of the master table

tabname Name of the master table being reorganized

DBMS_SNAPSHOT.END_TABLE_REORGANIZATION

Oracle Distributed Systems

489

 flag VARCHAR2 DEFAULT 'NOP');

Call the END_TABLE_REORGANIZATION procedure when you are finished
reorganizing a table.

PROCEDURE DBMS_SNAPSHOT.END_TABLE_REORGANIZATION
 (tabowner IN VARCHAR2
 tablename IN VARCHAR2);

Parameters are the same as those for BEGIN_TABLE_REORGANIZATION. This
procedure does not raise any exceptions, and there are no restrictions on calling it.

DBMS_SNAPSHOT.I_AM_A_REFRESH

The I_AM_A_REFRESH function queries the REP$I_AM_A_REFRESH package variable.
If this variable is TRUE, then the session is refreshing a snapshot or applying
propagated DML to a replicated table. This DML is performed on behalf of a
replicated transaction that was initiated at another master—that is, the DML
performed by this session will not be replicated because it is the local application of
remote DML. I_AM_A_REFRESH is used by numerous replication triggers and
procedures to determine whether DML should be replicated.

FUNCTION DBMS_SNAPSHOT.I_AM_A_REFRESH RETURN BOOLEAN;

All row-level replication triggers are after-row triggers. Although a table can have
multiple triggers of the same type, you cannot control the order in which they are
fired. Therefore, it is safest to use before-row triggers to perform auditing on
replicated tables; in this way, you are guaranteed that before-row triggers fire before
after-row triggers.

The function does not raise any exceptions, and there are no restrictions on calling it.

DBMS_SNAPSHOT.PURGE_LOG

Call the PURGE_LOG procedure to delete snapshot log records.

PROCEDURE DBMS_SNAPSHOT.PURGE_LOG
 (master VARCHAR2,
 num BINARY_INTEGER DEFAULT 1,

Oracle Distributed Systems

To delete all records from a snapshot log, set the num parameter to a high value
(greater than the number of snapshots mastered to the master table, specified in the
master parameter).

The PURGE_LOG procedure does not raise any exceptions, and there are no
restrictions on calling it.

Parameters

Parameter
Name Description

master Name of the master table.

num
Delete records required to refresh the oldest number of unrefreshed
snapshot; default is 1.

flag
Set to DELETE to guarantee that records are deleted for at least one
snapshot regardless of the setting of num.

DBMS_SNAPSHOT.REFRESH

Call the REFRESH procedure to force a snapshot refresh. The specifications for the
Oracle7 and Oracle8 versions of the REFRESH procedure differ. Note that the Version
8.0 implementation adds parameters that support parallelism and drops the
execute_as_user parameter. Both versions are overloaded, allowing you to specify
the list of snapshots as a comma-delimited string in the list parameter or as a
PL/SQL table in the tab parameter. The other parameters are identical for the two
versions.

Oracle7 specification:

PROCEDURE DBMS_SNAPSHOT.REFRESH
 (list IN VARCHAR2,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 execute_as_user IN BOOLEAN DEFAULT FALSE);

PROCEDURE DBMS_SNAPSHOT.REFRESH
 (tab IN OUT dbms_utility.uncl_array,
 method IN VARCHAR2 DEFAULT NULL,
 rollback_seg IN VARCHAR2 DEFAULT NULL,
 push_deferred_rpc IN BOOLEAN DEFAULT TRUE,
 refresh_after_errors IN BOOLEAN DEFAULT FALSE,
 execute_as_user IN BOOLEAN DEFAULT FALSE);

Oracle8 specification:

490

PROCEDURE DBMS_SNAPSHOT.REFRESH

Oracle Distributed Systems

491

the DEFERROR data dictionary view at the master site. Default
is FALSE.

 (list IN VARCHAR2,
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0);

 PROCEDURE DBMS_SNAPSHOT.REFRESH
 (tab IN OUT dbms_utility.uncl_array,
 method IN VARCHAR2 := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE,
 purge_option IN BINARY_INTEGER := 1,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0);

The REFRESH procedure does not raise any exceptions.

Parameters

Parameter Name Description

list
Comma-separated list of snapshots to be refreshed. Use list or
tab.

tab PL/SQL table of snapshots to be refreshed. Use list or tab.

method

Refresh method:

“?” uses the default refresh method. If you specified a refresh
method when you created the snapshot, that is the default
method. Otherwise, Oracle uses a fast refresh if possible and a
complete refresh if not.

“F” or “f” uses fast refresh if possible and returns ORA-12004 if
not.

“C” or “c” uses a complete refresh. This parameter should
include a single character for each snapshot specified in list or
tab, in the same order as the snapshot names appear. If list or
tab contains more snapshots than the method list, the additional
snapshots are refreshed with their default method.

rollback_seg Optional; specifies the rollback segment to use for the refresh.

push_deferred_rpc

Optional; for updateable snapshots only. If TRUE (the default),
then local updates are sent back to the master site before the
snapshot is refreshed (otherwise, local updates will be
temporarily overwritten).

refresh_after_errors

Optional; for updateable snapshots only. If TRUE, proceed with
the refresh even if outstanding errors (conflicts) are logged in

Oracle Distributed Systems

execute_as_user

(Oracle7 only)

If FALSE (the default), then the call to the remote system is
performed under the privilege domain of the user that created
the snapshot. If TRUE, the call is performed as the user calling
the refresh procedure.

purge_option

(Oracle8 only)

If push_deferred_rpc is TRUE, this designates the purge
method; default is 1.

0 = no purge
1 = lazy purge (optimized for time)
2 = aggressive purge (complete)

parallelism

(Oracle8 only)

If push_deferred_rpc is TRUE, this determines the maximum
degree of parallelism; default is 1.

0 = serial
1 = parallel with one slave
n = parallel with n slaves (n > 1)

heap_size

(Oracle8 only)

Used only if parallelism > 0. Sets the maximum number of
transactions to be examined simultaneously for determining
parallel scheduling. Oracle determines this value internally; you
are advised not to use it.

The purge_option parameter controls how Oracle purges the snapshot site’s deferred
transaction queue; Oracle8 does not purge the queue automatically when the
transactions propagate, so you must use DBMS_DEFER_SYS.SCHEDULE_PURGE to
schedule a job to purge the queue, lest it become large and unmanageable. The
purge_option parameter in REFRESH provides an opportunity to purge the queue of
transactions associated with the updateable snapshots you are refreshing.

Restrictions

You can call REFRESH only from a snapshot site.

DBMS_SNAPSHOT.REFRESH_ALL

The DBMS_SNAPSHOT. REFRESH_ALL refreshes all snapshots that are due to be
executed.

PROCEDURE DBMS_REFRESH.REFRESH_ALL

This procedure has no parameters, exceptions, or restrictions.

DBMS_SNAPSHOT.REGISTER_SNAPSHOT
(Oracle8 Only)

492

Oracle Distributed Systems

Generally, the registration and unregistration of snapshots is automatic if both the
master and snapshot databases are Oracle8. However, in case the snapshot site is
running Oracle7 or if the automatic registration fails, you can use the Oracle8
procedure, REGISTER_SNAPSHOT, to register the snapshot manually.

One of the most significant improvements in Oracle8 is the automatic registration of
snapshots at the master site. In Oracle7, there was no easy way to determine the
location—or even the existence—of snapshots with master table(s) in your instance.
But when you create a snapshot in Oracle8, Oracle puts a record in the
DBA_REGISTERED_SNAPSHOTS data dictionary view. Similarly, when you drop a
snapshot, Oracle deletes the record from DBA_REGISTERED_SNAPSHOTS.

The REGISTER and UNREGISTER procedures let you manually maintain the
DBS_REGISTERED_SNAPSHOTS data dictionary view, shown here:

Column Name Description
OWNER Snapshot owner.

NAME Snapshot name.

SNAPSHOT_SITE Global name of database where snapshot resides.

CAN_USE_LOG If YES, then snapshot refreshes can use snapshot log.

UPDATABLE If YES, then snapshot is an updateable snapshot.

REFRESH_METHOD Refresh method; either ROWID or PRIMARY KEY.

SNAPSHOT_ID Unique ID of snapshot used for fast refreshes.

VERSION
Version of the snapshot. Possible values are REG_UNKNOWN,
REG_V7_GROUP, REG_V8_GROUP, and REG_REPAPI_GROUP.

QUERY_TXT Text of the snapshot’s query.

The registration of snapshots is not mandatory; it records data in
DBA_REGISTERED_SNAPSHOTS that is for informational use only. You should not
rely on the contents of this data dictionary view. The REGISTER_SNAPSHOT
procedure is overloaded; snapshot_id is a DATE type if the snapshot site is an
Oracle7 database and BINARY_INTEGER if it is an Oracle8 database.

PROCEDURE DBMS_SNAPSHOT.REGISTER_SNAPSHOT
 (snapowner IN VARCHAR2,
 snapname IN VARCHAR2,
 snapsite IN VARCHAR2,
 snapshot_id IN DATE | BINARY_INTEGER,
 flag IN BINARY_INTEGER,
 qry_txt IN VARCHAR2,
 rep_type IN BINARY_INTEGER := dbms_snapshot.reg_unknown);

REGISTER_SNAPSHOT does not raise any exceptions, and there are no restrictions
on calling it.

493

Parameters

Oracle Distributed Systems

Parameter
Name Description

snapowner Owner of the snapshot.

snapname Name of the snapshot.

snapsite Global name of snapshot site database instance.

snapshot_id
ID of the snapshot. Use DATE datatype for Oracle7 snapshot sites,
BINARY_INTEGER for Oracle8 snapshot sites. The snapshot_id and flag
parameters are mutually exclusive.

flag
PL/SQL variable dictating whether future moves and creates are
registered in the qry_text parameter; this flag does not appear to be
used.

qry_txt Up to 32,000 characters of the text of the snapshot query.

rep_type

Binary integer indicating the version of the snapshot. Possible values
are:

REG_UNKNOWN = 0 (the default)
REG_V7_GROUP = 1
REG_V8_GROUP = 2
REG_REPAPI_GROUP = 3

DBMS_SNAPSHOT.SET_I_AM_A_REFRESH

The SET_I_AM_A_REFRESH procedure sets the
REP$WHAT_AM_I.I_AM_A_SNAPSHOT package variable to a specified value. If this
variable is TRUE, then the session making the call is performing local DML on behalf
of a replicated transaction that was initiated at another master. That is, the DML
performed by this session will not be replicated because it is the local application of
remote DML. Use this package carefully, because disabling replication triggers
effectively disables any conflict resolution mechanisms you may have defined.

PROCEDURE DBMS_SNAPSHOT.SET_I_AM_A_REFRESH (value IN BOOLEAN);

value is the value (Y or N) being set.

This procedure does not raise any exceptions.

DBMS_SNAPSHOT.UNREGISTER_SNAPSHOT
(Oracle8 Only)

The UNREGISTER_SNAPSHOT procedure is the flip side of the REGISTER_SNAPSHOT

494

procedure. You use UNREGISTER_SNAPSHOT when you need to manually unregister

Oracle Distributed Systems

a snapshot. This procedure unregisters snapshots at the master site, regardless of
whether they were registered manually or automatically.

PROCEDURE DBMS_SNAPSHOT.UNREGISTER_SNAPSHOT
 (snapowner IN VARCHAR,
 snapname IN VARCHAR2,
 snapsite IN VARCHAR2)

See the description of parameters under the REGISTER_SNAPSHOT procedure.

UNREGISTER_SNAPSHOT does not raise any exceptions and there are no restrictions
on calling it. Unre gistering a snapshot has no effect on the snapshot itself.

495

Oracle Distributed Systems

496

Oracle Distributed Systems

497

-- Purpose: Provides stats indicating whether the dispatcher
processes

Appendix B. Scripts and Utilities

This appendix contains a collection of scripts and utilities that I find useful when
administering distributed systems. Many of the scripts are described, or at least
mentioned, in this book. Each contains a brief description of its function. Although I
have tested these scripts and utilities and use them on a regular basis, platforms and
configurations differ, so be sure to test them in your own environment. These scripts
and utilities are also available at the O'Reilly web site; see the Preface for details.

B.1 busycirc.sql

-- Filename: busycirc.sql
-- Purpose: Provides stats indicating whether or not a given
circuit
-- is overly taxed in a Multi-Threaded Server environment.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 6-Aug-1998

column server heading "Server" format a8
column circuit heading "Name" format a8
column status heading "Status" format a8
column message0 heading "Bytes|in|First|Msg|Buf" format
9,999
column message1 heading "Bytes|in|Second|Msg|Buf" format
9,999
column messages heading "Messages|Processed" format
999,999
column queue heading "Queue" format a10
column bytes heading "Bytes" format
9,999,999
column breaks heading "Brks" format 999

SELECT server,
 circuit,
 status,
 queue,
 message0,
 message1,
 messages,
 bytes,
 breaks
FROM v$circuit
ORDER BY server
/

B.2 busydisp.sql

-- Filename: busydisp.sql

Oracle Distributed Systems

498

SELECT sysdate
FROM dual

-- are overly taxed.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 6-Aug-1998

column network heading "Protocol" format
a40
column rate heading "Total Busy Rate|>50%=>Add Dispatchers" format
99.99

SELECT network,
 100*(sum(busy)/(sum(busy)+sum(idle))) rate
FROM v$dispatcher
GROUP BY network
/
column protocol heading "Protocol" format
a40
column Wait heading "Average Wait|(hundredths of seconds)" format
a30

SELECT network Protocol,
 decode(sum(totalq), 0, 'No Responses',
 to_char(sum(wait)/sum(totalq), 'FM9999.90')) Wait
FROM v$queue q, v$dispatcher d
WHERE q.type = 'DISPATCHER'
AND q.paddr = d.paddr
GROUP BY network
/

B.3 busyq.sql

-- Filename: busyq.sql
-- Purpose: Provides stats indicating whether a given queue is
overly
-- taxed in a Multi-Threaded Server environment.
-- If the COMMON queue is overly taxed, consider adding
more
-- servers.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 6-Aug-1998

column type heading "Queue|Type" format a10
column circuit heading "Name" format a8
column queued heading "Items|Queued" format 999,999
column wait heading "Total|Time|Waited" format 999,999,999
column totalq heading "Total|Items|Processed" format
999,999,999,999
column avgwait heading "Average|Wait" format 9,999.90

set head off
set feedback off

Oracle Distributed Systems

499

then

/
set head on
set feedback on

SELECT paddr,
 type,
 queued,
 wait,
 totalq,
 decode(totalq, 0, 0, wait)/decode(totalq, 0, 1, totalq) avgwait
FROM v$queue
/

B.4 checklatency
#! /bin/ksh
#--

Filename: checklatency
Purpose: Notifies dba when more than 150 replicated transactions are
queued.
Author: Chas. Dye (cdye@excitecorp.com)
Date: 21-Oct-1998
Remarks: Requires OPS$ account for whichever OS user crons this
script.
#--

HOST=`/bin/uname -n`
MAIL=/bin/mailx
DISTLIST="beepdba@yoursite.com"
export HOST MAIL DISTLIST

ORACLE_HOME=/u/oracle/product/8.0.4.2 ; export ORACLE_HOME
ORACLE_SID=PHQS ; export ORACLE_SID
PATH=$ORACLE_HOME/bin:/bin:{PATH} ; export PATH
LD_LIBRARY_PATH=$ORACLE_HOME/lib:${LD_LIBRARY_PATH} ; export
LD_LIBRARY_PATH

cd ${HOME}/bin

sqlplus -s / << EOF
set echo off
set head off
set feedback on
spool /u/oracle/admin/PHQS/logbook/latent.log
SELECT count(*)
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order
HAVING count(*) > 150;
spool off
EOF

grep 1 latent.log > latent.err
if [-s latent.err]

Oracle Distributed Systems

 $MAIL -s"${ORACLE_SID}@${HOST} latency alert" $DISTLIST <
latent.log
fi

rm -f latent.err
rm -f latent.log

B.5 colgroups.sql

-- Filename: colgroups.sql
-- Purpose: Lists all defined column groups.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column sname heading "Schema|Name" format a8
column oname heading "Table|Name" format a30
column group_name heading "Column|Group" format a30
column group_comment heading "Comment" format a19

SELECT sname,
 oname,
 group_name
FROM dba_repcolumn_group
ORDER BY sname, oname, group_name
/

B.6 confstats.sql

-- Filename: confstats.sql
-- Purpose: Lists conflicts for which statistics are being gathered.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 11-Jun-1998
--
-- Modification History
-- -------------------
-- 11-Jun-1998 : Chas. : Creation

col primary_key_value form a10
col oname form a25
col conflict_type form a10
col method_name form a20

SELECT oname,
 created,
 status_update_date
FROM dba_represol_stats_control
/

B.7 cr_regions.sql

500

Oracle Distributed Systems

501

 c.procname,
 c.argcount,

-- Filename: cr_regions.sql
-- Purpose: Creates the REGIONS table and its public synonym.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

set echo on
set termout on
spool regions.log

DROP PUBLIC SYNONYM regions
/
DROP TABLE regions CASCADE CONSTRAINTS
/
CREATE TABLE regions (
region_id NUMBER(6) NOT NULL,
country_id NUMBER(6) NOT NULL,
region_name VARCHAR2(15) NOT NULL,
audit_date DATE NOT NULL,
audit_user VARCHAR2(30) NOT NULL,
global_name VARCHAR2(20) NOT NULL
)
TABLESPACE sprocket_data STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
/

CREATE PUBLIC SYNONYM regions FOR regions
/

spool off

B.8 defcall.sql

-- Filename: defcall.sql
-- Purpose: Reports on all queued calls in defcall.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996
--
-- Modification History
-- -------------------
-- 03-Jun-1998 : Chas. : Removed deferred_tran_db field (not in Oracle8)

col callno heading "Call|No" format 9999
col deferred_tran_id heading "Deferred|Tran|ID" format a12
col schemaname heading "Schema|Name" format a8
col packagename heading "Package|Name" format a25
col procname heading "Procedure|Name" format a10
col argcount heading "Arg|Count" format 999
col dblink heading "Destination" format a17

SELECT c.callno,
 c.deferred_tran_id,
 c.packagename,

Oracle Distributed Systems

502

 startarg => 1,
 argcnt => &&argcnt,

 d.dblink
FROM defcall c, defcalldest d
WHERE c.callno = d.callno
AND c.deferred_tran_id = d.deferred_tran_id
/

B.9 defcalldest.sql

-- Filename: defcalldest.sql
-- Purpose: Lists all calls in defcalldest.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

col callno heading "Call No" format
9999999999999
col deferred_tran_db heading "Deferred|Tran|DB" format a19
col deferred_tran_id heading "Deferred|Tran|ID" format a15
col dblink heading "DB Link" format a20
col start_time heading "Start|Time" format a20

SELECT c.callno,
 c.deferred_tran_id,
 c.dblink,
 t.start_time
FROM defcalldest c, deftran t
WHERE c.deferred_tran_id = t.deferred_tran_id
/

B.10 defcallinfo.sql

-- Filename: defcallinfo.sql
-- Purpose: Lists information about deferred calls.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 10-Jul-1998

set serveroutput on size 100000
set verify off
undef callno
undef argcnt
undef tran_db
undef tran_id

DECLARE
 vTypes dbms_defer_query.type_ary;
 vVals dbms_defer_query.val_ary;
 indx NUMBER;
BEGIN
 dbms_defer_query.get_call_args(
 callno => '&&callno',

Oracle Distributed Systems

503

-- call to dbms_defer_sys.execute_error to clear them.
-- Author: Chas. Dye (cdye@excitecorp.com)

 argsize => 128,
 tran_db => '&&tran_db',
 tran_id => '&&tran_id',
 date_fmt => 'DD-Mon-YYYY HH24:MI:SS',
 types => vTypes,
 vals => vVals);

 FOR indx IN 1..&&argcnt LOOP
 dbms_output.put_line('Arg '|| indx || ' Value '||
vVals(indx));
 END LOOP;
END;
/

B.11 defdest.sql

-- Filename: defdest.sql
-- Purpose: Lists data from system.def$_destination.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column dblink heading "DB Link" format a15
column last_delivered heading "Last|Delivered" format
9999999999
column last_enq_tid heading "Last|Enq|TID" format a5
column last_seq heading "Last|Seq" format 999
column disabled heading "D|i|s|a|b|l|e|d" format a1
column job heading "Job" format 9999
column last_txn_count heading "Last|Txn|Count" format 9999
column last_error_number heading "Last|Error|Number" format
999999
column last_error_Message heading "Last|Error|Message" format a19

SELECT dblink,
 last_delivered,
 last_enq_tid,
 last_seq,
 disabled,
 job,
 last_txn_count,
 last_error_number,
 last_error_message
FROM system.def$_destination
/

B.12 deferror.sql

-- Filename: deferror.sql
-- Purpose: Reports on deferred transaction with errors and
generates

Oracle Distributed Systems

504

 destination,
 to_char(start_time, 'DD-Mon-YYYY hh24:mi:ss') error_time,

-- Date: 28-Jun-1996

column ORIGIN_TRAN_DB heading "Origin|Tran|DB" format a15
column DEFERRED_TRAN_ID heading "Deferred|Tran|ID" format a15
column DESTINATION heading "Destination" format a15
column ERROR_TIME heading "Error Time" format a22
column ERROR_NUMBER heading "Error#" format
999999
column FIX heading "Run This to Clear" format a80

SELECT deferred_tran_id,
 origin_tran_db,
 destination,
 to_char(start_time, 'DD-Mon-YYYY hh24:mi:ss') error_time,
 error_number
FROM deferror
/

SELECT 'EXECUTE dbms_defer_sys.execute_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 origin_tran_db || chr(39) || ', - '|| chr(10) ||chr(39) ||
 destination || chr(39) || ')' fix
FROM deferror
/

B.13 deferror8.sql

-- Filename: deferror8.sql
-- Purpose: Reports on deferred transaction with errors and
generates
-- call to dbms_defer_sys.execute_error to clear them.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996
--
-- Modification History
-- --------------------
-- 13-Aug-1998 : Chas. : Updated for Oracle8; added commands to delete
error.
-- 09-Oct-1998 : Chas. : Added ORDER BY start_time

column ORIGIN_TRAN_DB heading "Origin|Tran|DB" format a15
column DEFERRED_TRAN_ID heading "Deferred|Tran|ID" format a15
column DESTINATION heading "Destination" format a15
column ERROR_TIME heading "Error Time" format a22
column ERROR_NUMBER heading "Error#" format
999999
column FIX heading "Run This to Clear" format a80
column DITCH heading "Run This to Delete" format a80

SELECT deferred_tran_id,
 origin_tran_db,

Oracle Distributed Systems

505

column dblink heading "DB Link" format a20

 error_number
FROM deferror
ORDER BY start_time
/

SELECT 'EXECUTE dbms_defer_sys.execute_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 destination || chr(39) || ')' fix
FROM deferror
ORDER BY start_time
/

SELECT 'EXECUTE dbms_defer_sys.delete_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 destination || chr(39) || ')' ditch
FROM deferror
ORDER BY start_time
/

B.14 deforigin.sql

-- Filename: deforigin.sql
-- Purpose: Lists data from system.def$_origin.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column origin_db heading "Origin|DB" format a15
column origin_dblink heading "Origin|DB Link" format a15
column inusr heading "INUSR" format 99999
column cscn heading "CSCN" format
999999999
column eng_tid heading "Enqueue|Txn ID" format a15
column reco_seq_no heading "Reco|Seq|No" format 99999

SELECT origin_db,
 origin_dblink,
 inusr,
 cscn,
 enq_tid,
 reco_seq_no
FROM system.def$_origin
/

B.15 defschedule.sql

-- Filename: defschedule.sql
-- Purpose: Returns information about scheduled transactions.
-- Author: Chas.Dye (cdye@excitecorp.com)
-- Date: 31-Jul-1996

Oracle Distributed Systems

506

col deferred_tran_db heading "Deferred|Tran|DB" format a20
col deferred_tran_id heading "Deferred|Tran|ID" format a20

column JOB heading "Job" format 999
column LAST_DATE heading "Last Date" format a20
column NEXT_DATE heading "Next Date" format a20
column BROKEN heading "B|r|o|k|e|n" format a3
column INTERVAL heading "Interval" format a22
column FAILURES heading "F|a|i|l" format 999
column WHAT heading "What" format a75
column last_txn_count heading "Last|Txn|Count" format 999

SELECT dblink,
 job,
 to_char(next_date, 'DD-Mon-YYYY HH24:mi:ss') next_date,
 to_char(last_date, 'DD-Mon-YYYY HH24:mi:ss') last_date,
 disabled,
 last_txn_count
FROM defschedule
/

B.16 deftran.sql

-- Filename: deftran.sql
-- Purpose: Reports on all deferred transactions in deftran.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 11-Jun-1998
--
-- Modification History
-- -------------------
-- 11-Jun-1998 : Chas. : Creation

col deferred_tran_id heading "Deferred|Tran|ID" format a15

SELECT deferred_tran_id,
 delivery_order,
 destination_list,
 start_time
FROM deftran
ORDER BY start_time
/

B.17 deftrandest.sql

-- Filename: deftrandest.sql
-- Purpose: Lists all databases in deftrandest.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

col callno heading "Call No" format
9999999999999

Oracle Distributed Systems

col dblink heading "DB Link" format a20
col start_time heading "Start Time" format a20

SELECT d.deferred_tran_id,
 d.delivery_order,
 d.dblink,
 t.start_time
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order
/

B.18 disprate.sql

-- Filename: disprate.sql
-- Purpose: Queries v$dispatcher_rate.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 24-Nov-1998

col name format a8

col CUR_MSG_RATE format 999999
col MAX_MSG_RATE format 999999
col AVG_MSG_RATE format 999999

SELECT name,
 CUR_MSG_RATE,
 MAX_MSG_RATE,
 AVG_MSG_RATE
FROM v$dispatcher_rate
/

col CUR_SVR_BYTE_PER_BUF format 999999 heading "CUR|SVR|BYTE|PER|BUF"
col CUR_CLT_BYTE_PER_BUF format 999999 heading "CUR|CLT|BYTE|PER|BUF"
col MAX_SVR_BYTE_PER_BUF format 999999 heading "MAX|SVR|BYTE|PER|BUF"
col MAX_CLT_BYTE_PER_BUF format 999999 heading "MAX|CLT|BYTE|PER|BUF"
col AVG_SVR_BYTE_PER_BUF format 999999 heading "AVG|SVR|BYTE|PER|BUF"
col AVG_CLT_BYTE_PER_BUF format 999999 heading "AVG|CLT|BYTE|PER|BUF"

SELECT name,
 CUR_SVR_BYTE_PER_BUF,
 CUR_CLT_BYTE_PER_BUF,
 MAX_SVR_BYTE_PER_BUF,
 MAX_CLT_BYTE_PER_BUF,
 AVG_SVR_BYTE_PER_BUF,
 MAX_CLT_BYTE_PER_BUF
FROM v$dispatcher_rate
/

B.19 errorinfo.sql

507

Oracle Distributed Systems

508

 to_char(error_time, 'DD-Mon-YYYY hh24:mi:ss') error_time,
 error_number

-- Filename: errorinfo.sql
-- Purpose: Reports on all errors.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996
--
-- Modification History
-- -------------------
-- 03-Jun-1998 : Chas. : Removed deferred_tran_db field (not in Oracle8)
-- 09-Oct-1998 : Chas. : Added ORDER BY e.start_time

col callno heading "Call|No" format 9999
col deferred_tran_id heading "Deferred|Tran|ID" format a12
col schemaname heading "Schema|Name" format a8
col packagename heading "Package|Name" format a25
col procname heading "Procedure|Name" format a10
col argcount heading "Arg|Count" format 999
col origin_tran_db heading "Origin" format a17

SELECT c.callno,
 c.deferred_tran_id,
 c.packagename,
 c.procname,
 c.argcount,
 e.origin_tran_db
FROM defcall c, deferror e
WHERE c.deferred_tran_id = e.deferred_tran_id
AND c.callno = e.callno
ORDER BY e.start_time
/

B.20 fixdefer.sql

-- Filename: fixdefer.sql
-- Purpose: Reports on deferred transaction with errors and
generates
-- call to dbms_defer_sys.execute_error to clear them.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column DEFERRED_TRAN_DB heading "Deferred|Tran|DB" format a15
column DEFERRED_TRAN_ID heading "Deffered|Tran|ID" format a15
column DESTINATION heading "Destination" format a15
column ERROR_TIME heading "Error Time" format a22
column ERROR_NUMBER heading "Error#" format
999999
column FIX heading "Run This to Clear" format a80

SELECT deferred_tran_id,
 deferred_tran_db,
 destination,

Oracle Distributed Systems

FROM deferror
/

SELECT 'EXECUTE dbms_defer_sys.execute_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 deferred_tran_db || chr(39) || ', - '|| chr(10) ||chr(39) ||
 destination || chr(39) || ')' fix
FROM deferror
/

B.21 gendelerrtran.sql

-- Filename: gendelerrtran.sql
-- Purpose: Generates calls to dbms_defer_sys to delete
transactions
-- that have resulted in errors for a particular table.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

SELECT 'EXECUTE dbms_defer_sys.delete_error(' || chr(39) ||
 deferred_tran_id || chr(39) || ', '|| chr(39) ||
 destination || chr(39) || ');', 'COMMIT;'
FROM deferror e
WHERE EXISTS (
 SELECT deferred_tran_id
 FROM defcall c
 WHERE c.deferred_tran_id = e.deferred_tran_id
 AND c.packagename like upper('%&target_table%'))
/

B.22 gendeltran.sql

-- Filename: gendeltran.sql
-- Purpose: Generates calls to dbms_defer_sys to delete
transactions
-- for a particular table.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

select
'exec
dbms_defer_sys.delete_tran('||chr(39)||deferred_tran_id||chr(39)||','||
chr(39)||'PLV2.EXCITE.COM'||chr(39)||');'||chr(10)||'commit;'
from deftran t
where exists
(select DEFERRED_TRAN_ID from defcall c
where c.DEFERRED_TRAN_ID = t.DEFERRED_TRAN_ID
and c.packagename like upper('&target_table$%'))
/

509

Oracle Distributed Systems

B.23 gengensup.sql

-- Filename: gengensup.sql
-- Purpose: Generates calls to generate_replication_support.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

undef schema_name

SELECT
 'EXECUTE dbms_repcat.generate_replication_support(-
'||chr(10)||
 'sname=>'||chr(39)||upper('&&schema_name')||chr(39)||', -
'||chr(10)||
 'oname=>'||chr(39)||oname||chr(39)||', -'||chr(10)||
 'type=>'||chr(39)||type||chr(39)||', -'||chr(10)||
 'distributed=>TRUE);'
FROM dba_repobject
WHERE oname NOT LIKE '%$R%'
AND sname = upper('&&schema_name')
ORDER BY sname, type, oname
/

undef schema_name

B.24 groupedcols.sql

-- Filename: groupedcols.sql
-- Purpose: Lists all grouped columns.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column sname heading "Schema|Name" format a8
column oname heading "Table|Name" format a25
column group_name heading "Column|Group" format a25
column column_name heading "Column|Name" format a19

clear breaks
break on sname on oname skip 1

SELECT sname,
 substr(oname, 1, 25) oname,
 substr(group_name, 1, 25) group_name,
 substr(column_name, 1, 19) column_name
FROM dba_repgrouped_column
ORDER BY sname, oname, group_name, column_name
/

clear breaks

510

Oracle Distributed Systems

511

column LAST_DATE heading "Last Date" format a20
column NEXT_DATE heading "Next Date" format a20

B.25 invalids.sql

-- Filename: invalids.sql
-- Purpose: Lists all invalid objects and provides SQL to (attempt
to)
-- repair them.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column object_name format a25 heading "Object Name"
column status format a7 heading "Status"
column owner format a12 heading "Owner"
column object_type format a12 heading "Object Type"
column created format a20 heading "Date Created"
column fix format a70 heading "Run these statements to
repair"

SELECT object_name, status, object_type, owner, created
FROM dba_objects
WHERE status != 'VALID'
/

SELECT
 'ALTER ' ||
 DECODE(object_type, 'PACKAGE BODY', 'PACKAGE', object_type) || '
' ||
 lower(owner)||'.'|| lower(object_name) ||
 DECODE(object_type, 'PACKAGE BODY', ' COMPILE BODY;', '
COMPILE;') fix
FROM dba_objects
WHERE object_type IN ('FUNCTION',
 'PACKAGE',
 'PACKAGE BODY',
 'PROCEDURE',
 'TYPE',
 'TRIGGER',
 'VIEW'
)
AND status = 'INVALID'
/

B.26 jobs.sql
rem ---

rem Filename: jobs.sql
rem Purpose: Returns information about jobs in the job queue.
rem Author: cdye@excitecorp.com
rem Date: 31-Jul-1996
rem ---

column JOB heading "Job" format 9999

Oracle Distributed Systems

512

a8

column BROKEN heading "B|r|o|k|e|n" format a3
column INTERVAL heading "Interval" format a24
column FAILURES heading "F|a|i|l" format 99
column WHAT heading "What" format a74

SELECT job,
 to_char(last_date, 'DD-Mon-YYYY HH24:mi:ss') last_date,
 to_char(next_date, 'DD-Mon-YYYY HH24:mi:ss') next_date,
 decode(broken, 'Y', 'Yes', 'No') broken,
 interval,
 failures
FROM dba_jobs
/

SELECT job,
 what
FROM dba_jobs
/

B.27 keycols.sql

-- Filename: keycols.sql
-- Purpose: Lists columns identified by DBMS_REPCAT.SET_COLUMNS.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

col sname heading "Schema" format a12
col oname heading "Table Name" format a30
col col heading "Column Name" format a30

clear breaks

break on sname on oname skip 1

SELECT sname, oname, col
FROM dba_repkey_columns
ORDER BY sname, oname
/

clear breaks

B.28 lastsnap.sql

-- Filename: lastsnap.sql
-- Purpose: Lists registered snapshots (run from master site).
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 29-Aug-1998

column owner heading "Owner" format

Oracle Distributed Systems

513

SELECT d.dblink,

column name heading "Name" format
a22
column snapshot_site heading "Snapshot|Site" format
a15
column refresh_method heading "Refresh|Method" format
a11
column version heading "Version" format
a10
column current_snapshots heading "Last|Refresh" format
a20

SELECT r.owner,
 r.name,
 r.snapshot_site,
 r.refresh_method,
 nvl(to_char(l.current_snapshots, 'DD-Mon-YYYY HH24:MI:SS'),
 ' -- Unknown --') current_snapshots
FROM dba_registered_snapshots r,
 dba_snapshot_logs l
WHERE l.log_owner(+) = r.owner
AND l.master(+) = r.name
/

B.29 latent.sql

-- Filename: latent.sql
-- Purpose: Lists outstanding transactions by destination.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 09-Jul-1996

col dblink heading "Destination" format a16
col earliest heading "Least Recently|Queued Transaction" format a20
col latest heading "Most Recently|Queued Transaction" format a20
col out heading "Total|Txns|Queued" format
999,999
col timenow heading "Current|Time" format a8
col latency heading "Maximum|Latency|dd:hh:mi:ss" format a12

clear breaks
clear computes

set head off
set feedback off
select 'Propagation Latency Instance: '||name||'. Time: ' ||
 to_char(sysdate, 'DD-Mon-YY HH24:mi:ss')
from v$database
/
set head on
set feedback on

compute sum of out on report
break on report skip 1

Oracle Distributed Systems

514

-- Purpose: Lists info about all registered snapshots.
-- Requires Oracle8.

 min(t.start_time) earliest,
 max(t.start_time) latest,
 count(*) out,
 ltrim(to_char(trunc(sysdate - (min(start_time))), '09')) ||
':' ||
 ltrim(to_char(trunc(24*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), '09'))||':' ||
 ltrim(to_char(mod(trunc(1440*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), 60), '09')) ||':' ||
 ltrim(to_char(mod(trunc(86400*((sysdate-min(start_time)) -
 trunc(sysdate-min(start_time)))), 60), '09')) latency
FROM deftrandest d, deftran t
WHERE d.deferred_tran_id = t.deferred_tran_id
AND d.delivery_order = t.delivery_order
GROUP BY d.dblink
/

clear breaks
clear computes

B.30 links.sql

-- Filename: links.sql
-- Purpose: Reports all database links in the database.
-- Author Chas. Dye (cdye@excitecorp.com)
-- Date: 28-May-1997

column owner heading "Owner" format a10
column db_link heading "DB Link" format a20
column username heading "Username" format a12
column host heading "Host" format a12
column created heading "Created" format a20

clear breaks
break on db_link skip 1

SELECT db_link,
 owner,
 nvl(username, '--------') username,
 host,
 TO_CHAR(created, 'DD-Mon-YYYY HH24:MI:SS') created
FROM dba_db_links
ORDER BY db_link, host, owner
/

clear breaks

B.31 mastersnapinfo.sql

-- Filename: mastersnapinfo.sql

Oracle Distributed Systems

515

-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1997

column owner format a10
column name format a20
column snapshot_site format a15
column current_snapshot format a22

SELECT r.owner,
 r.name,
 r.snapshot_site,
 l.current_snapshots
FROM dba_registered_snapshots r,
 dba_snapshot_logs l
WHERE r.snapshot_id = l.snapshot_id(+)
/

B.32 mlogs.sql

-- Filename: mlogs.sql
-- Purpose: Generates SELECT statements to find count of entries in
all
-- snapshot logs.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

SELECT
 'SELECT count(*) FROM
'||lower(owner)||'.'||lower(table_name)||';'
FROM dba_tables
WHERE table_name like 'MLOG$_%'
AND owner not like 'SYS%'
ORDER BY owner, table_name
/

B.33 needsgen.sql

-- Filename: needsgen.sql
-- Purpose: Lists all replicated objects.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column SNAME heading "Schema" format a8
column ONAME heading "Object" format a30
column TYPE heading "Type" format a15
column STATUS heading "Status" format a9
column ID heading "ID" format 9999
column GNAME heading "Group" format a8

Oracle Distributed Systems

516

-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

SELECT id, gname, sname, oname, type, status
FROM dba_repobject
WHERE generation_status = 'NEEDSGEN'
ORDER BY gname, sname, type, oname
/

B.34 nonrepobjects.sql

-- Filename: nonrepobjects.sql
-- Purpose: Lists objects in a schema that are NOT replicated.
-- Oracle8 only.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 29-Aug-1998

undef table_owner
set verify off

column owner heading "Owner" format
a10
column name heading "Name" format
a30
column table_name heading "Table Name" format
a30
column tablespace_name heading "Tablespace" format
a20

SELECT t.owner,
 t.table_name,
 t.tablespace_name
FROM dba_tables t
WHERE owner = upper('&&table_owner')
AND table_name NOT LIKE 'MLOG$_%'
AND table_name NOT LIKE 'SNAP$_%'
AND table_name NOT LIKE 'ULOG$_%'
AND table_name NOT IN (
 SELECT oname
 FROM dba_repobject
 WHERE sname = upper('&&table_owner'))
AND table_name NOT IN (
 SELECT name
 FROM dba_registered_snapshots)
ORDER BY table_name
/

undef table_owner

B.35 pk_regions.sql

-- Filename: pk_regions.sql
-- Purpose: Creates the constraints and indexes on table REGIONS.

Oracle Distributed Systems

517

-- Purpose: Lists all defined priority sites.
-- Author: Chas. Dye (cdye@excitecorp.com)

set echo on
set termout on
spool pk_regions.log

ALTER TABLE regions ADD (
CONSTRAINT pk_regions
PRIMARY KEY (region_id)
USING INDEX TABLESPACE sprocket_indx
STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
)
/

ALTER TABLE regions ADD (
CONSTRAINT fk_regions_country_id
FOREIGN KEY (country_id)
REFERENCES countries (country_id)
)
/

CREATE INDEX i_region_country_id ON regions(country_id)
TABLESPACE sprocket_indx STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0)
/

spool off

B.36 prioritygroups.sql

-- Filename: prioritygroups.sql
-- Purpose: Lists all defined priority groups.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column sname heading "Rep|Group" format a15
column priority_group heading "Priority|Group" format a15
column data_type heading "Data|Type" format a9
column priority_comment heading "Comment" format a35

SELECT sname,
 priority_group,
 data_type,
 substr(priority_comment, 1, 35) priority_comment
FROM dba_reppriority_group
ORDER BY sname, priority_group
/

B.37 prioritysites.sql

-- Filename: prioritysites.sql

Oracle Distributed Systems

518

column name heading "Table Name" format a25
column next_date heading "Next Refresh" format a20

-- Date: 27-May-1998

column sname heading "Rep|Group" format a15
column priority_group heading "Site|Priority|Name" format a15
column priority heading "Priority" format 9999
column varchar2_value heading "Site|Name" format a20
column priority_comment heading "Comment" format a35

SELECT sname,
 priority_group,
 varchar2_value,
 priority
FROM dba_reppriority
ORDER BY sname, priority_group
/

B.38 propmode.sql

-- Filename: propmode.sql
-- Purpose: Lists all replication sites and propagation modes.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column SNAME heading "Group" format a8
column DBLINK heading "DB-Link" format a20
column HOW heading "Prop|Mode" format
999,999,999

clear breaks
break on dblink skip 1

SELECT distinct(l1.dblink) dblink, l2.sname, l2.how
FROM dba_repprop l1, dba_repprop l2
WHERE l1.dblink = l2.dblink
AND l2.how != 'NONE'
/

clear breaks

B.39 refgroups.sql

-- Filename: refgroups.sql
-- Purpose: Lists all refresh groups in the database.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 17-Jan-1997

column rname heading "Refresh|Group" format a15
column owner heading "Snapshot|Owner" format a10

Oracle Distributed Systems

519

column REQUEST heading "Request" format a22
column ONAME heading "Object" format a20

column parallelism heading "P|a|r|a|l|l|e|l" format 99999

clear breaks
break on rname skip 1

SELECT rname,
 owner,
 name,
 next_date,
 parallelism
FROM dba_refresh_children
ORDER BY rname, owner, name
/

B.40 regsnaps.sql

-- Filename: regsnaps.sql
-- Purpose: Lists registered snapshots (run from master site).
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 24-Jun-1998

column owner heading "Owner" format a8
column name heading "Name" format a20
column snapshot_site heading "Snapshot|Site" format a15
column can_use_log heading "Can|Use|Log" format a3
column updatable heading "Upd" format a3
column refresh_method heading "Refresh|Method" format a11
column version heading "Version" format a10

SELECT owner,
 name,
 snapshot_site,
 can_use_log,
 updatable,
 refresh_method,
 substr(version, 1, 8) version
FROM dba_registered_snapshots
/

B.41 repcaterr.sql

-- Filename: repcaterr.sql
-- Purpose: Lists entries in dba_repcatlog with error status.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column ID heading "Id" format 9999
column SOURCE heading "Source" format a20
column SNAME heading "Schema" format a8

Oracle Distributed Systems

520

/

column ERRNUM heading "Error" format 99999
column MESSAGE heading "Message" format a74

SELECT id, status, sname, request, oname, errnum
FROM dba_repcatlog
WHERE status = 'ERROR'
ORDER BY id
/

SELECT id, message
FROM dba_repcatlog
WHERE status = 'ERROR'
ORDER BY id
/

set head off
SELECT 'Run these commands to purge...'
FROM dual
/
set head on

SELECT
 'EXECUTE dbms_repcat.purge_master_log('||
 id ||', '
 ||chr(39)||rtrim(source)||chr(39)||', '
 ||chr(39)||gname||chr(39)||');' command
FROM dba_repcatlog
WHERE status = 'ERROR'
/

B.42 repcatlog.sql

-- Filename: repcatlog.sql
-- Purpose: Lists all tasks pending in dba_repcatlog queue.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column SOURCE heading "Source" format a6
column MASTER heading "Master" format a6
column SNAME heading "Group" format a10
column STATUS heading "Status" format a14
column REQUEST heading "Request" format a28
column TIMESTAMP heading "Time" format a8

SELECT substr(source, 1, instr(source, '.', 1) -1) source,
 substr(master, 1, instr(master, '.', 1) -1) master,
 sname,
 status,
 request, to_char(timestamp, 'HH24:MI:SS') timestamp
FROM dba_repcatlog
ORDER BY master

Oracle Distributed Systems

521

column SNAME heading "Schema" format a8

B.43 repconflict.sql

-- Filename: repconflict.sql
-- Purpose: Lists all defined conflict resolution methods.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column sname heading "Schema|Name" format a10
column oname heading "Table|Name" format a25
column conflict_type heading "Conf|Type" format a10
column reference_name heading "Reference|Name" format a30

SELECT sname, oname, conflict_type, reference_name
FROM dba_repconflict
ORDER BY sname, oname
/

B.44 repgroup.sql

-- Filename: repgroup.sql
-- Purpose: Lists status of all replication groups.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column MASTER heading "Mast|Site" format a4
column MASTERDEF heading "Mast|Def|Site" format a4
column STATUS heading "Status" format a9
column GNAME heading "Group" format a12
column SCHEMA_COMMENT heading "Comment" format a45

SELECT g.gname,
 decode(g.master, 'N', 'No', 'Y', 'Yes') master,
 decode(s.masterdef, 'Y', 'Yes', 'N', 'No') masterdef,
 g.status,
 g.schema_comment
FROM dba_repgroup g,
 dba_repsites s
WHERE g.gname = s.gname
AND s.my_dblink = 'Y'
/

B.45 repobjects.sql

-- Filename: repobjects.sql
-- Purpose: Lists all replicated objects.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

Oracle Distributed Systems

522

column PROP_UPDATES heading "Update|Requests" format
999,999,999

column ONAME heading "Object" format a30
column TYPE heading "Type" format a15
column STATUS heading "Status" format a7
column ID heading "ID" format 9999
column GNAME heading "Group" format a10

SELECT id, gname, sname, oname, type, status
FROM dba_repobject
ORDER BY gname, sname, type, oname
/

B.46 repres.sql

-- Filename: repres.sql
-- Purpose: Lists all conflict resolution techniques.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 27-May-1998

column sname heading "Schema|Name" format a8
column oname heading "Table|Name" format a25
column conflict_type heading "Conflict|Type" format a10
column method_name heading "Method" format a18
column sequence_no heading "Seq" format 99

clear breaks
break on sname on oname skip 1

SELECT sname,
 substr(oname, 1, 25) oname,
 conflict_type,
 method_name,
 sequence_no
FROM dba_represolution
ORDER BY sname, oname
/

clear breaks

B.47 repsites.sql

-- Filename: repsites.sql
-- Purpose: Lists all replication sites.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 28-Jun-1996

column GNAME heading "Group" format a15
column DBLINK heading "DB-Link" format a20
column MASTERDEF heading "Master|Def|Site?" format a6
column MASTER heading "Master|Site?" format a6

Oracle Distributed Systems

523

SELECT d.owner,

column MY_DBLINK heading "Is|This|Database?" format a9

SELECT gname,
 dblink,
 decode(masterdef, 'Y', 'Yes', 'No') masterdef,
 decode(master, 'Y', 'Yes', 'No') master,
 prop_updates,
 decode(my_dblink, 'Y', 'Yes', 'No') my_dblink
FROM dba_repsites
ORDER BY gname ASC, masterdef DESC
/

B.48 resconfs.sql

-- Filename: resconfs.sql
-- Purpose: Reports on all resolved conflicts.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 11-Jun-1998
--
-- Modification History
-- -------------------
-- 11-Jun-1998 : Chas. : Creation

col primary_key_value form a10 heading "Primary|Key"
col oname form a25 heading "Object Name"
col conflict_type form a8 heading "Conflict|Type"
col method_name form a18 heading "Resolution|Method"
col resolved_date form a15 heading "Resolution|Date"

SELECT oname,
 primary_key_value,
 conflict_type,
 method_name,
 to_char(resolved_date, 'DD-Mon HH24:MI:SS') resolved_date
FROM dba_represolution_statistics
/

B.49 snaps.sql

-- Filename: snaps.sql
-- Purpose: Lists all snapshots in the database.
-- Author Chas. Dye (cdye@excitecorp.com)
-- Date: 17-Jan-1997

column owner format a9
column name format a15
column table_name format a27
column link format a5 heading "Link"
column last_refresh format a20

Oracle Distributed Systems

524

ON regions
FOR EACH ROW

 d.name,
 d.table_name,
 substr(d.master_link, 1, 5) link,
 s.snaptime last_refresh
/*--
 to_char(last_refresh, 'DD-Mon-YYYY hh24:mi:ss') last_refresh
--*/
FROM dba_snapshots d,
 sys.snap_reftime$ s
WHERE d.owner = s.sowner
AND d.name = s.vname
ORDER BY d.owner, d.name
/

B.50 snaps7.sql

-- Filename: snaps7.sql
-- Purpose: Lists all snapshots in the database.
-- Author Chas. Dye (cdye@excitecorp.com)
-- Date: 17-Jan-1997

column owner format a9
column name format a15
column table_name format a27
column link format a5 heading "Link"
column last_refresh format a20

SELECT owner,
 name,
 table_name,
 substr(master_link, 1, 5) link,
 to_char(last_refresh, 'DD-Mon-YYYY hh24:mi:ss') last_refresh
FROM dba_snapshots
ORDER BY owner, name
/

B.51 trg_regions.sql

-- Filename: trg_regions.sql
-- Purpose: Creates trigger(s) on table REGIONS.
-- Author: Chas. Dye (cdye@excitecorp.com)
-- Date: 12-Jan-1998

set echo on
set termout on
spool trg_regions.log

CREATE OR REPLACE TRIGGER t_br_iu_regions
BEFORE INSERT OR UPDATE

Oracle Distributed Systems

BEGIN
 IF (dbms_reputil.from_remote != TRUE)
 THEN
 :new.audit_date := SYSDATE;
 :new.audit_user := USER;
 :new.global_name := DBMS_REPUTIL.GLOBAL_NAME;
 END IF;
END;
/

spool off

B.52 UserAdmin

The UserAdmin package allows you to create and drop users and grant and revoke
privileges. Using procedural replication, this package provides a means to maintain
user accounts in multiple databases without having to actually log into each database
to perform the administrative tasks. The package is quite lengthy and is already
included in Chapter 14 (see Section 14.5.1, Section 14.5.2, and Section 14.5.3), so I
have not duplicated the code here. However, you will find it at the O'Reilly web site.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

Butterflies are featured on the cover of Oracle Distributed Systems. These are three
of the thousands of species of butterfly. Butterflies, along with moths and skippers,
make up the order Lepidoptera. The word "Lepidoptera" is derived from the Greek
words lepic, meaning "scale," and pteron, meaning "wing." And, in fact, butterfly and
moth wings are covered entirely in tiny, overlapping scales. The coloration of these
fragile scales is what creates the spectacular, shimmering colors of the butterfly. The
wing membrane itself is transparent and without color. Butterfly scales and hairs are
covered in a thin layer of wax, making these insects water-repellent.

Most butterflies fly by fluttering their wings at a relatively slow rate, sometimes as
slowly as 10 beats per second, approximately four miles per hour. Unlike many other
insects, who beat their wings so fast that they become just a blur in flight, the
butterfly's wings are clearly visible during its fluttering flight.

Butterflies are as well known for their four-stage metamorphosis as they are for their
colorful wings and graceful fluttering. An adult female butterfly lays a large number
of eggs, usually on or near food plants. The larva, better known as the caterpillar,
develops within the egg and eats its way out. It then continues to eat almost
constantly for a period ranging from one month to two years, depending on the
butterfly species, periodically molting its skin during the process. The caterpillar then
produces a pupa, or chrysalis, a mummylike structure. When the adult butterfly is
fully formed, it breaks out of the pupa, its body and wings harden, and it takes off in

525

search of food.

Oracle Distributed Systems

Melanie Wang was the production editor, and Norma Emory was the copy editor for
Oracle Distributed Systems. Sheryl Avruch was the production manager, and Jane
Ellin and Ellie Maden provided quality control reviews. Betty Hugh and Sebastian
Banker provided production support. Chris Reilley created the illustrations using
Adobe Photoshop 5 and Macromedia FreeHand 8. Mike Sierra provided FrameMaker
technical support. Ruth Rautenberg wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. The cover layout was produced by Kathleen Wilson with
QuarkXPress 3.32 using the ITC Garamond font. Kathleen Wilson designed the
diskette label.

The inside layout was designed by Nancy Priest and Alicia Cech and implemented in
FrameMaker 5.5 by Mike Sierra. The text and heading fonts are ITC Garamond Light
and Garamond Book. This colophon was written by Clairemarie Fisher O'Leary.

526

	Preface
	Audience for This Book
	About Replication
	About Oracle Versions and Platforms
	Structure of This Book
	Part I
	Part II
	Part III

	Conventions Used in This Book
	About the Scripts
	Comments and Questions
	Acknowledgments

	Part I: The Distributed System
	Chapter 1. Introduction to Distributed Systems
	1.1 Terminology and Concepts
	
	Figure 1.1. Parallel server architecture
	Figure 1.2. Standby database

	1.2 What Is a Distributed Database System?
	
	Figure 1.3. A distributed database system

	1.3 Benefits of Distributed Databases
	1.3.1 Tunability
	1.3.2 Platform Autonomy
	1.3.3 Fault Tolerance
	1.3.4 Scalability
	1.3.5 Location Transparency
	1.3.6 Site Autonomy
	1.3.7 Enhanced Security

	1.4 Multiple Schema Versus Multiple Databases
	1.4.1 The Single Database with Multiple Schema
	Table?1.1. Conditions for Locating Application Schema in the Same Database Instance

	1.4.2 Database Instances Devoted to a Single Application

	1.5 Options for Distributed Data
	1.5.1 Export/Import
	Figure 1.4. Export/import

	1.5.2 Database Links
	Figure 1.5. Database links

	1.5.3 Read-Only Snapshots
	Figure 1.6. Read-only snapshot

	1.5.4 Updateable Snapshots
	Figure 1.7. Updateable snapshots

	1.5.5 Advanced Replication
	Figure 1.8. Multi-master replication

	1.5.6 Procedural Replication
	Figure 1.9. Procedural replication
	Table?1.2. Potential Conflicts with Procedural Replication

	1.6 Perils of Distributed Databases
	1.6.1 Security
	1.6.2 Data Consistency
	1.6.3 Transaction Management
	1.6.4 Monitoring
	1.6.5 Recovery
	1.6.6 Performance

	1.7 Differences Between Oracle7 and Oracle8

	Chapter 2. SQL*Net and Net8
	2.1 Protocol Overview
	2.1.1 Distributed Processing
	2.1.2 Network Transparency and Network Independence
	2.1.3 Multiple Network Protocol Interoperability
	Figure 2.1. Disparate network communities linked with the MultiProtocol Interchange

	2.1.4 Oracle Names

	2.2 Architecture
	2.2.1 SQL*Net/Net8, TNS, and the OSI Reference Model
	Table?2.1. TNS and Oracle Protocol Adapters in the OSI Model
	2.2.1.1 Application layer
	2.2.1.2 Presentation layer
	2.2.1.3 Session layer
	2.2.1.4 Transport, network, data link, and physical layers

	SQL*Net and WANs
	
	2.2.2 SQL*Net/Net8 Elements
	2.2.3 Connection Scenarios
	2.2.4 Bequeathed and Redirected Connections
	Table?2.2. Bequeathed Versus Redirected Connections
	2.2.4.1 How a bequeathed connection is established on Unix
	2.2.4.2 How a redirected connection is established

	2.2.5 Example: Connecting to a Multi-Threaded Server
	Table?2.3. Multi-Threaded Server INIT.ORA Parameters

	2.2.6 Example: Connecting to a Prespawned Server Process
	Table?2.4. listener.ora Parameters Governing Prespawned Servers

	2.3 SQL*Net/Net8 Tuning
	2.3.1 Do You Have a Problem?
	2.3.1.1 Tuning the multi-threaded server
	2.3.1.2 Tuning multi-threaded server dispatchers in Oracle8
	2.3.1.3 Tuning multi-threaded server server processes
	2.3.1.4 Measuring m ulti-threaded server server activity
	Table?2.5. V$CIRCUIT STATUS and QUEUE Fields

	2.3.2 Tuning Dedicated Processes and Prespawned Processes
	2.3.3 Break Out the Sniffer

	2.4 Load Balancing
	2.4.1 Multiple TNS Listeners and Multi-Threaded Server with a Single Database Instance
	Figure 2.2. Multiple listeners on multiple nodes for a single database instance

	2.4.2 Multiple TNS Listeners and Multi-Threaded Server with Multiple Database Instances
	Figure 2.3. Multiple listeners on multiple nodes for multiple database instances

	2.4.3 Multiple TNS Listeners and Dedicated Processes

	2.5 Oracle8 Scalability Options
	2.5.1 Connection Pooling
	2.5.2 Session Multiplexing
	Table?2.6. Connection Manager Components
	Table?2.7. cman.ora: CMAN Section
	Table?2.8. cman.ora: CMAN_PROFILE Section
	Table?2.9. cman.ora: CMAN_RULES Section

	2.5.3 Scalability: Summary

	2.6 SQL*Net/Net8 Client Configuration
	2.6.1 Dead Connection Detection
	2.6.2 Tracing and Logging
	Table?2.10. sqlnet.ora: Tracing and Logging Parameters

	2.6.3 Default Domains
	2.6.4 Oracle Names Parameters
	2.6.5 Additional Parameters
	Table?2.11. sqlnet.ora: Optional Parameters

	2.7 SNMP Support
	2.7.1 Configuring SNMP Support
	2.7.2 Using SNMP

	2.8 Security
	
	Table?2.12. Security Products Provided with the RDBMS

	3.1 Initialization Parameters
	
	Table?3.1. Initialization Parameters Relevant to Distributed Databases

	3.1.1 COMMIT_POINT_STRENGTH
	3.1.2 DB_DOMAIN
	3.1.3 DBLINK_ENCRYPT_LOGIN (Oracle8)
	3.1.4 DISTRIBUTED_LOCK_TIMEOUT
	3.1.5 DISTRIBUTED_RECOVERY_CONNECTION_HOLD_TIME
	3.1.6 DISTRIBUTED_TRANSACTIONS
	3.1.7 GLOBAL_NAMES
	3.1.8 JOB_QUEUE_INTERVAL
	3.1.9 JOB_QUEUE_PROCESSES
	3.1.10 MAX_TRANSACTION_BRANCHES
	3.1.11 OPEN_LINKS
	3.1.12 OPEN_LINKS_PER_INSTANCE (Oracle8)
	3.1.13 REMOTE_DEPENDENCIES_MODE
	3.1.14 REMOTE_LOGIN_PASSWORD_FILE
	3.1.15 REMOTE_OS_AUTHENT
	3.1.16 REMOTE_OS_ROLES
	3.1.17 REPLICATION_DEPENDENCY_TRACKING (Oracle8)
	3.1.18 SNAPSHOT_REFRESH_INTERVAL
	3.1.19 SNAPSHOT_REFRESH_PROCESSES

	3.2 Database Links
	3.2.1 Global Names and Database Links
	3.2.2 Public, Private, and Global Database Links
	3.2.2.1 When to use public database links
	3.2.2.2 When to use private database links
	3.2.2.3 When to use global database links

	3.2.3 Creating Database Links

	Getting It Right the First Time
	
	
	3.2.3.1 Prerequisites for creating database links
	3.2.3.2 The PUBLIC qualifier
	3.2.3.3 The SHARED qualifier
	3.2.3.4 The connection qualifier
	3.2.3.5 The CONNECT clause
	3.2.3.6 The CURRENT_USER qualifier
	3.2.3.7 The USING clause
	3.2.3.8 The AUTHENTICATED clause

	3.2.4 Dropping Database Links
	3.2.5 Accessing Data over a Database Link
	3.2.6 How Database Links Are Resolved
	3.2.6.1 The algorithm
	3.2.6.2 Example of database link resolution

	3.2.7 Listing Information About Database Links
	Table?3.2. DBA_DB_LINKS, ALL_DB_LINKS, and USER_DB_LINKS Field Descriptions

	3.2.8 Data Relocation with Database Links
	3.2.9 Restrictions on Distributed Operations over Database Links

	3.3 Distributed Queries and Transactions
	
	Table?3.3. Supported Distributed Operations

	3.3.1 Behind the Scenes of a Distributed Transaction
	3.3.1.1 Two-phase commit: The participants
	3.3.1.2 Two-phase commit: Explained

	3.3.2 When Things Go Wrong
	3.3.2.1 Types of distributed transaction failures
	3.3.2.2 Forcing commits and rollbacks of distributed transactions
	Table?3.4. DBA_ 2PC_PENDING Data Dictionary View
	Table?3.5. DBA_2PC_NEIGHBORS Data Dictionary View
	3.3.2.3 Testing recovery of failed distributed transactions
	Table?3.6. V alues of n in ORA-2PC-CRASH-TEST-n

	3.3.3 Restrictions on Distributed Transactions

	3.4 Distributed Backup and Recovery
	
	Table?3.7. Distributed Recovery Scenarios

	3.4.1 Distributed Recovery
	3.4.2 Snapshots
	3.4.3 Backup Strategy Considerations

	3.5 Multiversion Interoperability

	Chapter 4. Distributed Database Security
	4.1 Privilege Management
	4.1.1 The Simplistic Approach
	4.1.1.1 Advantages of the simplistic approach
	4.1.1.2 Disadvantages of the simplistic approach

	4.1.2 The Mirrored Account Approach
	4.1.2.1 Advantages of the mirrored account approach
	4.1.2.2 Disadvantages of the mirrored account approach

	4.1.3 The Local View Approach
	4.1.3.1 Advantages of the local view approach
	4.1.3.2 Disadvantages of the local view approach

	4.1.4 The Local Wrapper Approach
	4.1.4.1 Advantages of the local wrapper approach
	4.1.4.2 Disadvantages of the local wrapper approach

	4.1.5 Conclusions on Privilege Management

	4.2 Authentication Methods
	4.2.1 Database Authentication
	4.2.1.1 Write a wrapper command around sqlplus
	4.2.1.2 Use operating system authenticated (OPS$) accounts
	4.2.1.3 Don't invoke programs with username and password on command line

	4.2.2 Operating System Authentication
	4.2.2.1 Creating OPS$ accounts
	Table?4.1. Initialization Parameters Associated with OPS$ Logins
	Table?4.2. Operating-System Specific Requirements for Using OPS$ Logins
	4.2.2.2 The assumed risks of OPS$ accounts

	Encrypting Network Traffic
	
	4.2.3 External Authentication
	Figure 4.1. Authentication server

	Chapter 5. Designing a Distributed System
	5.1 Characteristics of a Distributed System
	5.1.1 Distributed System Objectives
	5.1.1.1 Local autonomy
	5.1.1.2 No reliance on a single site
	5.1.1.3 Continuous operation
	5.1.1.4 Location transparency
	5.1.1.5 Fragmentation independence
	Figure 5.1. V ertical partitioning
	Figure 5.2. H orizontal partitioning
	5.1.1.6 Replication independence
	5.1.1.7 Distributed query processing
	5.1.1.8 Distributed transaction management
	5.1.1.9 Hardware independence
	5.1.1.10 Operating system independence
	5.1.1.11 Network independence
	5.1.1.12 RDBMS independence

	5.1.2 Distributed System Classifications
	5.1.2.1 Homogeneous distributed systems
	Figure 5.3. The Bigwheel Bicycle company's distributed database empire
	5.1.2.2 Heterogeneous distributed systems
	5.1.2.3 Federated database systems
	5.1.2.4 Redundant backup systems
	5.1.2.5 Distributed system classifications: Summary
	Table?5.1. Distributed Database Classifications

	5.2 The Global Data Dictionary
	5.2.1 Placement of the Global Data Dictionary
	5.2.2 Object Naming
	5.2.3 The Local Data Dictionary
	5.2.4 Management of Interdatabase Integrity Constraints
	5.2.5 Management of User Accounts and Privileges
	Figure 5.4. Transparent access to remote data using a private database link

	5.3 Replication-Specific Issues
	5.3.1 Replication Architecture
	5.3.1.1 Log-based replication
	5.3.1.1.1 Advantages
	5.3.1.1.2 Disadvantages
	5.3.1.2 Transactional replication
	5.3.1.2.1 Advantages
	5.3.1.2.2 Disadvantages

	5.3.2 Software Compatibility
	5.3.3 Data Consistency
	5.3.4 Data Extraction
	5.3.5 Primary Keys
	5.3.6 Conflict Avoidance

	5.4 Data Partitioning Methodologies
	5.4.1 Identify Users, Locations, and Activities
	Table?5.2. Distributed Database Usage Matrix

	5.4.2 Assess Existing Network and Hardware Infrastructure
	Table?5.3. Infrastructure Summary

	5.4.3 Identify Coordinated Recovery Requirements
	Table?5.4. Information for the Catalog of Tables, Relationships, and Attributes

	5.4.4 Map Processes to Data
	Table?5.5. Process-to-Data Mapping

	5.4.5 Assess Global Requirements
	5.4.6 Propose and Validate Data Locations

	5.5 Application Partitioning Strategies
	
	Table?5.6. Hardware and Logical Application Partitioning Considerations

	5.5.1 Enforcing Business Rules in the Database Tier
	5.5.2 Enforcing Business Rules in the Presentation Tier
	5.5.3 Creating a Third Tier
	5.5.4 How Many Tiers Are Right for You?
	Table?5.7. Guidelines for an Application Architecture

	5.6 Procedural Replication

	Chapter 6. Oracle's Distributed System Implementation
	6.1 Meeting the 12 Objectives with Oracle
	6.1.1 Local Autonomy
	6.1.2 No Reliance on a Single Site
	Figure 6.1. Oracle parallel server versus advanced replication

	6.1.3 Continuous Operation
	6.1.4 Location Transparency
	6.1.5 Fragmentation Independence
	6.1.6 Replication Independence
	6.1.7 Distributed Query Processing
	6.1.8 Distributed Transaction Management
	6.1.9 Hardware Independence
	6.1.10 Operating System Independence
	6.1.11 Network Independence
	6.1.12 RDBMS Independence.
	6.1.13 Conclusions

	6.2 Oracle's Global Data Dictionary
	6.2.1 Global Naming
	6.2.2 Data Dictionary Views and Location Transparency
	Table?6.1. DBA_SYNONYMS Data Dictionary View

	Chapter 7. Sample Configurations
	7.1 The High-Availability System
	7.1.1 The Hot Standby Database
	7.1.1.1 Advantages and disadvantages of the hot standby database

	7.1.2 Oracle Parallel Server
	7.1.2.1 Advantages and disadvantages of Oracle parallel server
	Figure 7.1. Oracle parallel server pinging
	Figure 7.2. Using table partitioning to minimize pings with Oracle parallel server
	Figure 7.3. Processing power versus number of processors

	7.1.3 Advanced Replication
	Figure 7.4. Using advanced replication to achieve horizontal scalability
	7.1.3.1 Advantages and disadvantages of advanced replication
	Figure 7.5. Using mirrored disks and redundant network connections in an advanced replication environment
	Figure 7.6. A single transcontinental link
	Figure 7.7. Current advanced replication communication requirements

	7.2 Geographic Data Distribution
	7.3 Workflow Partitioning
	
	Figure 7.8. Workflow partitioning among three sites

	7.4 Data Collection and Consolidation
	
	Figure 7.9. Retail stores communicate with headquarters nightly
	Figure 7.10. Sales personnel synchronize laptops with headquarters

	7.5 Loosely Coupled Federation

	Chapter 8. Engineering Considerations
	8.1 Schema Design and Integration
	8.1.1 Interdatabase Referential Integrity
	8.1.2 Naming Conventions
	8.1.3 Distributed Queries and Transactions
	8.1.3.1 Control the driving site
	8.1.3.2 Control index usage

	8.1.4 Maintenance of Database Link Connections
	8.1.5 Error Handling

	8.2 Application Tiering
	8.3 Designing a Replicated System
	8.3.1 Transactional Consistency
	8.3.2 Schema Differences and Partitioning
	8.3.3 Row-Level Replication or Procedural Replication?
	8.3.4 Primary Keys and Unique Indexes
	8.3.5 Foreign Keys and Referential Integrity
	8.3.6 Triggers on Replicated Tables
	8.3.7 Datatypes
	8.3.8 Time
	8.3.9 Sequences
	8.3.9.1 Using a single sequence at a master site
	8.3.9.2 Allocating sequence ranges to sites
	8.3.9.3 Using a multicolumn primary key

	8.3.10 Multiple Character Sets

	Part II: Replication
	Chapter 9. Oracle Replication Architecture
	9.1 What Is Oracle Replication?
	9.2 Types of Replication
	
	Table?9.1. Types of Replication

	9.3 Architecture Components
	9.3.1 The Queues
	Table?9.2. Replication Queues

	9.3.2 The Triggers and Packages
	9.3.2.1 The read-only snapshot mechanism
	Table?9.3. Objects Created to Support Read-Only Snapshots
	Figure 9.1. How read-only snapshots work
	9.3.2.2 The updateable snapshot mechanism
	Example 9.1. ISO_COUNTRIES$TP Package
	Example 9.2. ISO_COUNTRIES$RP Package
	Figure 9.2. How updateable snapshots work
	9.3.2.3 The multi-master replication mechanism
	Table?9.4. Objects to Support Multi-Master Replication of Table ISO_COUNTRIES
	Figure 9.3. How multi-master replication works

	9.3.3 The Background Processes

	9.4 Replication of DDL
	9.5 Oracle8 Enhancements
	9.6 Oracle8i Enhancements
	9.7 Alternatives to Replication
	9.7.1 A pplication- and Trigger-Based Replication
	9.7.2 Export/Import
	9.7.3 COPY/CREATE TABLE AS SELECT

	Chapter 10. Advanced Replication Installation
	10.1 Initialization Parameters
	
	Table?10.1. Initialization Parameters for Advanced Replication

	10.2 Redo Logs and Rollback Segments
	10.3 Size and Placement of Data Dictionary Objects
	10.4 Administrative Accounts, Privileges, and Database Links
	10.4.1 Configuring Oracle7 for the Mirrored User Access Model
	10.4.2 Configuring Oracle7 for the Global Access Model
	10.4.3 Configuring Oracle8 for Advanced Replication

	Chapter 11. Basic Replication
	11.1 About Read-Only Snapshots
	11.2 Prerequisites and Restrictions
	11.2.1 Initialization Parameters
	11.2.2 System Privileges
	11.2.3 Restrictions

	11.3 Snapshot Creation Basics
	11.3.1 The Snapshot STORAGE Clause
	11.3.2 The REFRESH Clause
	11.3.3 The Defining Query

	Referencing Remote Tables
	11.4 Simple Versus Complex Snapshots
	11.5 Snapshot Logs
	11.5.1 Restrictions on Snapshot Logs
	11.5.2 Creation Tips
	11.5.3 Snapshot Logs for ROWID Snapshots

	11.6 Subquery Subsetting
	11.6.1 Restrictions on Subquery Subsets
	11.6.2 Subquery Subset Snapshot Base Tables
	11.6.3 A Special Case

	11.7 Refresh Groups
	11.7.1 Creating and Destroying Refresh Groups
	11.7.1.1 Creating a snapshot refresh group of read-only snapshots
	11.7.1.2 Creating a snapshot refresh group of read-only snapshots with specialized parameters
	11.7.1.3 Creating a snapshot r efresh group that uses parallel propagation (Oracle8 only)
	11.7.1.4 Dropping a refresh group

	11.8 Management and Optimization
	11.8.1 Tuning Snapshots
	11.8.2 Administrative Tasks
	11.8.3 Reorganizing a Master Table in Oracle8
	11.8.3.1 Steps for reorganizing a master table using truncation
	11.8.3.2 Steps for reorganizing a master table by renaming

	11.8.4 Offline Instantiation of Snapshots
	11.8.5 Troubleshooting
	11.8.5.1 Snapshots are not refreshing
	11.8.5.2 Snapshots refreshing continuously
	11.8.5.3 Snapshot logs are growing uncontrollably

	11.9 Scripts

	Chapter 12. Multi-Master Replication
	12.1 Concepts and Terminology
	12.1.1 Deferred Transaction
	12.1.2 Replication Group
	12.1.3 Quiescence
	12.1.4 Master Definition Site
	12.1.5 Master Site
	12.1.6 Replication Support
	12.1.7 Conflict
	12.1.8 Propagation Latency
	12.1.9 Instantiation

	12.2 Getting Started
	12.2.1 The Quick-and-Dirty Setup
	12.2.2 A Quick-and-Dirty Example

	12.3 Replication Groups
	12.3.1 API Calls
	12.3.2 Naming Conventions
	12.3.3 Which Tables Belong in the Same Replication Group?
	12.3.4 How to Drop a Replication Group
	Table?12.1. Effect of drop_contents and all_sites in DROP_MASTER_REPGROUP

	12.4 Master Site Maintenance and Propagation
	12.4.1 API Calls
	12.4.2 Adding a Master Site
	12.4.2.1 Creating the REGIONS table
	12.4.2.2 Creating constraints and indexes on REGIONS table
	12.4.2.3 Creating user-defined triggers on the REGIONS table

	12.4.3 Dropping a Master Site
	12.4.4 Relocating a Master Definition Site

	12.5 Controlling Propagation
	12.5.1 API Calls
	12.5.2 About the Parameters
	12.5.3 Parallel Propagation
	12.5.3.1 Managing parallel propagation
	12.5.3.2 Checking parallel pushes
	12.5.3.3 Parallel push errors

	Bug Update
	
	
	12.5.3.4 Synchronous versus asynchronous propagation
	12.5.3.5 Scheduling multiple push intervals for the same database

	12.6 The Replication Catalog
	12.6.1 Replication Catalog Data Dictionary Views
	12.6.2 Pushing repcatlog Entries
	12.6.3 Monitoring Progress
	Table?12.2. Explanation of Status Column in DBA_REPCATLOG
	Table?12.3. Explanation of REQUEST Column in DBA_REPCATLOG

	12.6.4 Correcting Errors

	12.7 Table Replication
	12.7.1 API Calls
	12.7.2 Column Groups
	12.7.3 Minimum Communication and SEND_AND_COMPARE_OLD_VALUES
	Table?12.4. Parameter Usage for SEND_AND_COMPARE_OLD_VALUES

	12.7.4 Triggers on Replicated Tables
	12.7.4.1 A trigger to populate fields at the originating site only
	12.7.4.2 A trigger to populate a field from a sequence on inserts and fields used for conflict resolution
	12.7.4.3 Replicating triggers themselves

	12.7.5 Using Offline Instantiation
	Table?12.5. Instantiating a Table at a New Site with DBMS_OFFLINE_OG
	12.7.5.1 Offline instantiation caveats
	12.7.5.2 An alternative to DBMS_OFFLINE_OG

	12.7.6 Adding and Removing Tables
	12.7.6.1 Adding replicated tables.
	12.7.6.2 Removing replicated tables
	12.7.6.3 Dropping replicated tables: caveats
	12.7.6.4 Partially dropped tables (Oracle8 only)

	12.8 Replicating DDL
	12.8.1 Restrictions
	12.8.2 Examples
	12.8.2.1 Creating an index
	12.8.2.2 Compiling a replicated package body
	12.8.2.3 Altering a column in a replicated table

	12.8.3 Manually Executing Entries in the repcatlog
	12.8.4 Deleting Errors from the repcatlog

	12.9 Your Replicated Environment
	12.9.1 Monitoring Queued Transactions
	12.9.2 Monitoring Deferred Transaction Errors

	Automatic Notification Mechanism
	
	12.9.3 Monitoring Snapshot Logs
	12.9.4 Monitoring: Summary

	12.10 Advanced Replication Limitations

	Chapter 13. Updateable Snapshots
	13.1 About Updateable Snapshots
	13.1.1 Restrictions

	13.2 Creating Updateable Snapshots
	13.2.1 Preliminary Steps
	13.2.2 Preparing the Master Table
	13.2.3 Preparing the Snapshot Site
	13.2.4 User-Defined Triggers on Updateable Snapshots

	13.3 Communication Flow
	
	Figure 13.1. Updateable snapshots where multi-masters have their own snapshot sites
	Figure 13.2. Propagating a snapshot to another site

	13.4 Controlling Propagation and Refreshes
	13.4.1 Real-Time (Synchronous) Propagation
	13.4.2 Once-a-Day Propagation
	13.4.3 Propagation on Demand

	DBMS_SNAPSHOT.REFRESH
	13.5 Maintenance
	13.5.1 Altering the Master Table
	13.5.2 Dropping a Replicated Snapshot Object
	13.5.2.1 Master table still exists
	13.5.2.2 Remastering a snapshot

	Chapter 14. Procedural Replication
	14.1 When to Use Procedural Replication
	14.2 How Procedural Replication Works
	
	Figure 14.1. How procedural replication works

	14.3 Creating a Replicated Package Procedure
	14.4 Restrictions on Procedural Replication
	14.5 An Example
	14.5.1 cr_seq_audit_admin.sql
	14.5.2 cr_audit_admin.sql
	14.5.3 pl_useradmin.sql
	14.5.4 rep_useradmin.sql

	Chapter 15. Conflict Avoidance and Resolution Techniques
	15.1 Data Integrity Versus Data Convergence
	15.2 Applications That Avoid Conflicts
	15.2.1 Normalize
	15.2.2 Designate a Governing Column for Column Groups
	15.2.3 Standardize on a Time Zone
	15.2.4 Identify Workflow
	15.2.5 Consider Token Passing
	15.2.6 Perform Strategic Administration

	15.3 Types of Conflicts Detected
	
	Table?15.1. Detectable PL/SQL Exceptions

	15.3.1 Limitations of Delete Conflict Resolution
	15.3.1.1 Defining a delete conflict handler

	15.3.2 Limitations of NULL Values in Conflict Resolution
	15.3.3 Referential Integrity Violations and Conflict Resolution
	15.3.4 Conflicts Arising from Procedural Replication

	15.4 How Oracle Detects and Resolves Conflicts
	
	Example 15.1. Detecting Conflicts with DEPT$RP

	15.5 Column Groups and Priority Groups
	15.5.1 Column Groups
	15.5.1.1 How the column group resolution mechanism works
	15.5.1.2 APIs for column groups

	15.5.2 Priority Groups
	15.5.3 Site Priority
	Table?15.2. How Site Priority Can Fail with More Than Two Sites
	15.5.3.1 APIs for priority groups and site priority

	15.6 The Built-in Methods
	
	Table?15.3. Built-in Conflict Resolution Methods

	15.6.1 Minimum Value/Maximum Value
	15.6.2 Earliest Timestamp/Latest Timestamp
	15.6.3 Overwrite Update/Discard Update
	15.6.4 Average/Additive
	15.6.5 Append Site Name/Append Sequence
	15.6.6 Ignore Insert/Discard Insert

	15.7 Writing Your Own Conflict Resolution Handler

	Part III: Appendixes
	Appendix A. Built-in Packages for Distributed Systems
	
	
	Table?A. Built-in Packages for Distributed Systems

	A.1 DBMS_DEFER: Building Deferred Calls
	A.1.1 How the Package Is Used
	A.1.2 Installation and Access
	A.1.3 DBMS_DEFER Procedures
	A.1.4 DBMS_DEFER Exceptions
	A.1.5 DBMS_DEFER Nonprogram Elements
	Parameters
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Exceptions
	Restrictions

	A.2 DBMS_DEFER_QUERY: Performing Diagnostics and Maintenance
	A.2.1 How the Package Is Used
	A.2.2 Installation and Access
	A.2.3 DBMS_DEFER_QUERY Procedures
	A.2.4 DBMS_DEFER_QUERY Nonprogram Elements
	Parameters
	Exceptions
	Parameters
	Exceptions
	Exceptions

	A.3 DBMS_DEFER_SYS: Managing Deferred Transactions
	A.3.1 How the Package Is Used
	A.3.2 Installation and Access
	A.3.3 DBMS_DEFER_SYS Procedures
	A.3.4 DBMS_DEFER_SYS Exceptions
	A.3.5 DBMS_DEFER_SYS Nonprogram Elements
	Exceptions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Exceptions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Exceptions
	Parameters
	Parameters
	Parameters
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Exceptions
	Exceptions

	A.4 DBMS_OFFLINE_OG: Performing Site Instantiation
	A.4.1 How the Package Is Used
	A.4.2 Installation and Access
	A.4.3 DBMS_OFFLINE_OG Procedures
	A.4.4 DBMS_OFFLINE_OG Exceptions
	A.4.5 DBMS_OFFLINE_OG Nonprogram Elements
	Parameters
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Exceptions
	Restrictions

	A.5 DBMS_OFFLINE_SNAPSHOT: Performing Offline Snapshot Instantiation
	A.5.1 How the Package Is Used
	A.5.2 Installation and Access
	A.5.3 DBMS_OFFLINE_SNAPSHOT Procedures
	A.5.4 DBMS_OFFLINE_SNAPSHOT Exceptions
	Parameters
	Restrictions
	Restrictions

	A.6 DBMS_RECTIFIER_DIFF: Comparing Replicated Tables
	A.6.1 How the Package Is Used
	A.6.2 Installation and Access
	A.6.3 DBMS_RECTIFIER_DIFF Procedures
	A.6.4 DBMS_RECTIFIER_DIFF Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions

	A.7 DBMS_REFRESH: Managing Snapshot Groups
	A.7.1 How the Package Is Used
	A.7.2 Installation and Access
	A.7.3 DBMS_REFRESH Procedures
	A.7.4 DBMS_REFRESH Nonprogram Elements
	Parameters
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Parameters
	Restrictions
	Exceptions
	Restrictions
	Exceptions
	Restrictions

	A.8 DBMS_REPCAT: Performing Replication Administration
	A.8.1 How the Package Is Used
	A.8.2 Installation and Access
	A.8.3 DBMS_REPCAT Procedures
	A.8.4 DBMS_REPCAT Exceptions
	A.8.5 DBMS_REPCAT Nonprogram Elements
	A.8.6 DBMS_REPCAT.ADD_conflicttype_RESOLUTION
	A.8.6.1 Parameters
	A.8.6.2 Exceptions
	A.8.6.3 Restrictions

	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Restrictions
	Parameters
	Exceptions
	Parameters
	Exceptions

	Appendix B. Scripts and Utilities
	B.1 busycirc.sql
	B.2 busydisp.sql
	B.3 busyq.sql
	B.4 checklatency
	B.5 colgroups.sql
	B.6 confstats.sql
	B.7 cr_regions.sql
	B.8 defcall.sql
	B.9 defcalldest.sql
	B.10 defcallinfo.sql
	B.11 defdest.sql
	B.12 deferror.sql
	B.13 deferror8.sql
	B.14 deforigin.sql
	B.15 defschedule.sql
	B.16 deftran.sql
	B.17 deftrandest.sql
	B.18 disprate.sql
	B.19 errorinfo.sql
	B.20 fixdefer.sql
	B.21 gendelerrtran.sql
	B.22 gendeltran.sql
	B.23 gengensup.sql
	B.24 groupedcols.sql
	B.25 invalids.sql
	B.26 jobs.sql
	B.27 keycols.sql
	B.28 lastsnap.sql
	B.29 latent.sql
	B.30 links.sql
	B.31 mastersnapinfo.sql
	B.32 mlogs.sql
	B.33 needsgen.sql
	B.34 nonrepobjects.sql
	B.35 pk_regions.sql
	B.36 prioritygroups.sql
	B.37 prioritysites.sql
	B.38 propmode.sql
	B.39 refgroups.sql
	B.40 regsnaps.sql
	B.41 repcaterr.sql
	B.42 repcatlog.sql
	B.43 repconflict.sql
	B.44 repgroup.sql
	B.45 repobjects.sql
	B.46 repres.sql
	B.47 repsites.sql
	B.48 resconfs.sql
	B.49 snaps.sql
	B.50 snaps7.sql
	B.51 trg_regions.sql
	B.52 UserAdmin

	Colophon

