

by Doug Lowe

ASP.NET 2.0
Everyday Apps

FOR

DUMmIES
‰

01_597760 ffirs.qxp 1/11/06 9:48 PM Page iii

by Doug Lowe

ASP.NET 2.0
Everyday Apps

FOR

DUMmIES
‰

01_597760 ffirs.qxp 1/11/06 9:48 PM Page iii

01_597760 ffirs.qxp 1/11/06 9:48 PM Page ii

ASP.NET 2.0
Everyday Apps

FOR

DUMmIES
‰

01_597760 ffirs.qxp 1/11/06 9:48 PM Page i

01_597760 ffirs.qxp 1/11/06 9:48 PM Page ii

by Doug Lowe

ASP.NET 2.0
Everyday Apps

FOR

DUMmIES
‰

01_597760 ffirs.qxp 1/11/06 9:48 PM Page iii

ASP.NET 2.0 Everyday Apps For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005937349

ISBN-13: 978-0-7645-9776-3

ISBN-10: 0-7645-9776-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/QS/QS/QW/IN

01_597760 ffirs.qxp 1/11/06 9:48 PM Page iv

www.wiley.com

About the Author
Doug Lowe has written a whole bunch of computer books, including more
than 35 For Dummies books, including the Java All-in-One Desk Reference
For Dummies, Networking For Dummies, 7th Edition, the Networking All-in-One
Desk Reference For Dummies, PowerPoint 2003 For Dummies, and the Word
2003 All-in-One Desk Reference For Dummies. He lives in sunny Fresno,
California, where the motto is, “We almost beat USC!” with his wife, the
youngest of his three daughters, and a couple of outrageously cute puppies.
He is the Information Technology Director for Blair, Church & Flynn, an
engineering firm in nearby Clovis, CA, and he is also one of those obsessive-
compulsive decorating nuts who used to put up tens of thousands of lights at
Christmas until his wife saw the electric bill, so now he creates energy-efficient
computer-controlled Halloween decorations that rival Disney’s Haunted
Mansion.

01_597760 ffirs.qxp 1/11/06 9:48 PM Page v

01_597760 ffirs.qxp 1/11/06 9:48 PM Page vi

Dedication
To Sarah and Hunter.

Author’s Acknowledgments
I’d like to thank everyone involved with making this book a reality, especially
project editor Paul Levesque, who did a great job following through on all the
little editorial details needed to put a book of this scope together on time,
and didn’t panic when the “on time” part of that equation was in question.
Thanks also to Ken Cox, who gave the manuscript a thorough review and
offered many excellent suggestions for improvements, and to copy editor
Barry Childs-Helton, who crossed all the i’s and dotted all the t’s, or some-
thing like that, and in the process somehow turned my strange prose into
readable English. And, as always, thanks to all the behind-the-scenes people
who chipped in with help I’m not even aware of.

01_597760 ffirs.qxp 1/11/06 9:48 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editor: Barry Childs-Helton

Technical Editor: Ken Cox

Editorial Manager: Leah Cameron

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Adrienne Martinez

Layout and Graphics: Carl Byers, Andrea Dahl,
Lauren Goddard, Denny Hager,
Joyce Haughey, Barbara Moore,
Lynsey Osborn, Heather Ryan

Proofreaders: Laura Albert, Leeann Harney,
Jessica Kramer, TECHBOOKS Production
Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_597760 ffirs.qxp 1/11/06 9:48 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Introducing ASP.NET 2.0
Application Development...7
Chapter 1: Designing ASP.NET 2.0 Applications ...9
Chapter 2: Using Visual Studio 2005 ..33

Part II: Building Secure Applications53
Chapter 3: Designing Secure ASP.NET Applications ..55
Chapter 4: Building a User Authentication Application ..79

Part III: Building E-Commerce Applications................105
Chapter 5: Building a Product Catalog Application ...107
Chapter 6: Building a Shopping Cart Application ..143

Part IV: Building Back-End Applications221
Chapter 7: Building a Product Maintenance Application..223
Chapter 8: Building a Report Application ...269

Part V: Building Community Applications...................287
Chapter 9: Building a Content Management System..289
Chapter 10: Building a Web Forum...329
Chapter 11: Building a Blog Application..375

Part VI: The Part of Tens ...423
Chapter 12: Ten New Features of ASP.NET 2.0..425
Chapter 13: Ten Rookie Mistakes ...445
Chapter 14: Ten Database Design Tips ..451

Appendix: About the CD ..455

Index ...459

02_597760 ftoc.qxp 1/11/06 9:49 PM Page ix

02_597760 ftoc.qxp 1/11/06 9:49 PM Page x

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...1
How This Book Is Organized...2

Part I: Introducing ASP.NET 2.0 Application Development3
Part II: Building Secure Applications ...3
Part III: Building E-Commerce Applications ..3
Part IV: Building Back-End Applications..3
Part V: Building Community Applications...4
Part VI: The Part of Tens ..4
About the CD...4

Icons Used in This Book..4
Where to Go from Here..5

Part I: Introducing ASP.NET 2.0
Application Development ...7

Chapter 1: Designing ASP.NET 2.0 Applications 9
The Development Treadmill ...10
Building Models..11
What Is an Application Design?..12
Using Layered Architectures ..12

How many layers? ..13
Model-View-Controller ...15
Designing the user interface ...16
Designing the Business Rules Layer ..17
Designing the Data Access Layer ...17

Designing Relational Databases ...18
Step 1: Create a charter for the database..18
Step 2: Make a list and check it twice ..19
Step 3: Add keys ...21
Step 4: Normalize the database ..23
Step 5: Denormalize the database ..27
Step 6: Pick legal SQL names...28
Step 7: Draw a picture..28

Designing Objects ..29
Diagramming Classes with UML...29

Drawing classes ..31
Drawing arrows...32

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xi

Chapter 2: Using Visual Studio 2005 .33
Creating a Basic Hello World Application ...34

Creating a new Web site ..35
Adding a label control..37
Running the application ..39

Adding a Code-Behind File ..40
Adding a Text Box and a Button...42
Working with Folders and Other Project Items..46
Debugging Web Applications..47

Creating a calculator page...47
Working in Break mode..49
Displaying data values ...50
Controlling execution and setting breakpoints51

Deploying ASP.NET Applications ...52

Part II: Building Secure Applications............................53

Chapter 3: Designing Secure ASP.NET Applications 55
Understanding ASP.NET User Authentication ..55

Examining three types of authentication ..56
Configuring forms-based authentication...57
Configuring authorization ...57
Understanding membership providers ...59

Using ASP.NET Login Controls..60
Using the Login control ...60
Using the CreateUserWizard control ...62
Using the PasswordRecovery control ...66
Using the ChangePassword control ...69
Using the LoginView control ...72
Using the LoginName control ...73
Using the LoginStatus control...74

Protecting Against Other Threats ..75
Avoid malicious scripts ...75
Preventing SQL-injection attacks ...77
Hiding error messages ...78

Chapter 4: Building a User Authentication Application79
The Application’s User Interface..80
Designing the User Authorization Application...88
The Application’s Folders ...88
The web.config Files ..89
Building Pages for the User Authentication Application91

Building the Master Page...91
Building the Content page...93
Building the Admin page ...94

ASP.NET 2.0 Everyday Apps For Dummies xii

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xii

Building the Login page ...95
Building the Register page ..97
Building the Recover Password page ..98
Building the Password Confirmation page......................................100
Building the Change Password page..101
Building the User List page ...102

Part III: Building E-Commerce Applications105

Chapter 5: Building a Product Catalog Application 107
The Application’s User Interface..107

The Product List page..108
The Product Detail page ..109
The Cart page..111

Designing the Product Catalog Application..111
Designing the Product Database ..113

The Categories table ..113
The Products table...114
The FeaturedProducts table ...115
Creating the database ..116
Adding some test data ...118
Querying the database ..119
Connecting to the database ..121

The Application’s Folders ...122
Building the Master Page ..122
Building the Product List Page ...123

The Default.aspx file ..124
The code-behind file for the Default.aspx page (C# version)132
The code-behind file for the Default.aspx page

(Visual Basic version) ..134
Building the Product Detail page ...136

The Product.aspx file ...136
The code-behind file for the Product.aspx page (C# version)140
The code-behind file for the Product.aspx page

(Visual Basic version) ..141
Building the Cart Page...142

Chapter 6: Building a Shopping Cart Application 143
Considering Some Basic Decisions ..144
The User Interface..145

The Product List page..146
The Product Detail page ..146
The Cart page..146
The Check Out page...148
The Completed page ..152

xiiiTable of Contents

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xiii

Designing the Cart Database ..153
The Customers table..154
The Orders table...155
The OrderItems table...156
Creating the database ..157
Adding some test data ...159
Querying the database ..159
Inserting order data into the database..159
Connecting to the database ..161

The Application’s Folders ...161
Designing the Classes ..162

The Customer class..162
The ShoppingCart class...163
The CartItem class ...164
The Order class ..164
The OrderDB class ...165

Building the Master page ..165
Modifying the Product Detail Page ..168
Building the Cart Page...171

The Cart.aspx file ...171
The code-behind file for the Cart page..173

Building the Check Out Page ..181
The CheckOut.aspx file..181
The code-behind file for the Check Out page189

Creating the Customer Class ..194
Creating the ShoppingCart Class ...199
Creating the CartItem Class ..203
Creating the Order Class ...207
Creating the OrderDB Class ..212

Part IV: Building Back-End Applications.....................221

Chapter 7: Building a Product Maintenance Application 223
The Application’s User Interface..224

The Menu page ...224
The Category Maintenance page..224
The Product Maintenance page..227

Designing the Application...229
Designing the Database ...231

The Categories table ..231
The Products table...232
Creating the database ..233
Adding some test data ...234
SQL statements for the Categories table...235
SQL statements for the Products table ...236
Connecting to the database ..237

The Application’s Folders ...238

ASP.NET 2.0 Everyday Apps For Dummies xiv

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xiv

Building the Master Page ..238
Building the Menu Page ..239
Building the Category Maintenance Page ...240

The CatMaint.aspx file ...240
The code-behind file for the Catalog Maintenance page...............245

Building the Product Maintenance Page ...249
The ProdMaint.aspx file...249
The code-behind file for the Product Maintenance page..............265

Chapter 8: Building a Report Application .269
The Application’s User Interface..270
Designing the Application...271
Building the Database..272

Designing the database..272
Creating the database ..274
Adding test data ...274
SQL statements to retrieve the order data275
Connecting to the database ..276

Building the Master Page ..276
Building the Order User Control ..277
Building the Default Page ..283

The Default.aspx file ..283
The code-behind file for the default page284

Building the Print Order page...286

Part V: Building Community Applications287

Chapter 9: Building a Content Management System 289
Making Some Basic Decisions ..289
The Content Management System’s User Interface.................................291

The Login page ...292
The Home page...292
The Department Home page ...293
The Content List page..294
The Content Detail page ..295

Designing the Database ...297
The Departments table..297
The ContentTypes table ..298
The ContentItems table ...298

Creating the Database ...299
Adding Test Data ..301

SQL statements for working with the database302
Connecting to the database ..303

Creating the User Accounts ..303
Building the Master Page ..304
Building the Login Page...307
Building the Home Page ..308

xvTable of Contents

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xv

Building the Department Home Page ..309
Building the Content List Page ...313

The List.aspx file ..314
The code-behind file for the Content List page..............................317

Building the Content Detail Page ...318
The Detail.aspx file...319
The code-behind file for the Content Detail page325

Chapter 10: Building a Web Forum .329
Designing the Forum Application...329
The User Interface for the Forum Application ...331

The Forum Home page ..331
The Threads page...332
The Messages page ..332
The New Thread page..334
The Post Reply page ..334

Designing the Database ...335
The Forums table ...335
The Topics table ...336
The Threads table ..337
The Messages table..338

Creating the Database ...338
Adding Test Data ..340

SQL statements for working with the database341
Connecting to the database ..342

Building the Master Page ..342
Building the Forum Home Page..343

The Default.aspx page ...344
The code-behind file for the Forum Home page.............................346

Building the Threads Page ..350
The Threads.aspx page..350
The code-behind file for the Threads page.....................................353

Building the Messages Page..355
The Messages.aspx page ...355
The code-behind file for the Messages page359

Building the New Thread Page ...360
The NewThread.aspx page..361
The code-behind file for the New Thread page363

Building the New Message Page...367
The NewMessage.aspx page ...368
The code-behind file for the New Message page............................371

Chapter 11: Building a Blog Application .375
Designing the Blog Application ..375
Designing the User Interface...376

The Blog Home page ..376
The Blog page ...378
The Comments page ..379
The Leave Comment page...379

ASP.NET 2.0 Everyday Apps For Dummies xvi

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xvi

The Login page ...380
The Register page...381
The My Blogs page ...381
The New Post page...383

Designing the Database ...383
The Blogs table ...384
The Posts table ...384
The Comments table..385

Creating the Database ...386
Adding test data ...388
SQL statements for working with the database389
Connecting to the database ..390

Building the Master Page ..390
Building the Blog Home Page ...392
Building the Blog Page...395

The Blog.aspx page ..395
The code-behind file for the Blog page..399

Building the Comments Page..402
The Comments.aspx page ...402
The code-behind file for the Comments page.................................405

Building the Leave Comment Page ..407
The Comment.aspx page ...407
The code-behind file for the Leave Comment page409

Building the Login Page...410
Building the Register Page ..411
Building the My Blogs Page ..412

The MyBlogs.aspx page...413
The code-behind file for the My Blogs page416

Building the New Post Page ..418
The NewPost.aspx page...418
The code-behind file for the New Post page...................................421

Part VI: The Part of Tens..423

Chapter 12: Ten New Features of ASP.NET 2.0 425
The New Code-Behind Model ...426
App_ Folders...427
Master Pages...428

Creating a Master Page ..429
Completing a Master Page...430
Creating a Content page ..431

New Data Controls ...432
The SqlDataSource control ...433
The GridView control...436
The DetailsView control ..438
The FormView Control...439

Login Controls ..440

xviiTable of Contents

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xvii

The Wizard Control..440
The Generics Feature...441
The Web Site Administration Tool ...443

Chapter 13: Ten Rookie Mistakes .445
Coding Too Soon ..445
Skimping On Documentation..446
Inadequate Testing...447
Abusing State Features..447
Not Validating Input Data ..448
Reinventing the Wheel...448
Not Asking for Help..449

Chapter 14: Ten Database Design Tips .451
Use the Right Number of Tables...451
Avoid Repeating Data ..452
Avoid Redundant Data...452
Use a Naming Convention ...452
Avoid nulls ..453
Avoid Secret Codes ..453
Use Constraints Wisely..454
Use Triggers When Appropriate...454
Use Stored Procedures ..454

Appendix: About the CD...455
System Requirements..455
Using the CD ...456
Using the Source Files ...456
Troubleshooting...457

Index..459

ASP.NET 2.0 Everyday Apps For Dummies xviii

02_597760 ftoc.qxp 1/11/06 9:49 PM Page xviii

Introduction

Welcome to ASP.NET 2.0 Everyday Apps For Dummies, the book that
teaches ASP.NET 2.0 Web programming by example. In this book,

you’ll find eight complete ASP.NET applications. We’re not talking trivial
Hello-World-type applications here. Instead, they’re real-world applications
like shopping carts and discussion forums. You can use any of them as-is, or
modify them as you see fit. So you’ve got workable stuff already included.
(What a concept.)

About This Book
This book is a practical introduction to ASP.NET 2.0 Web programming. It pro-
vides you with actual working code to build the most popular types of appli-
cations on the Web. These applications enable you to:

� Restrict access to registered users, for all or part of your Web site

� Sell products online via your Web site

� Provide back-end functions for your public Web site, such as file mainte-
nance and reporting

� Let users manage specific types of online content

� Create discussion forums and blogs

ASP.NET 2.0 Everyday Apps For Dummies doesn’t pretend to be a comprehen-
sive reference for every detail of ASP.NET programming. Instead, it takes a
learn-by-example approach, under the assumption that you are already a
pretty competent programmer who can best learn by seeing real-world exam-
ples. Designed using the easy-to-follow For Dummies format, this book helps
you get the information you need without laboring to find it.

Conventions Used in This Book
This book has a lot of code in it. You’ll find complete listing of every line of
code, both C# and Visual Basic, for each of the eight applications presented
in this book. You’ll also find listings for supporting files such as SQL scripts
to generate databases and web.config files that provide configuration infor-
mation for the applications.

03_597760 intro.qxp 1/11/06 9:49 PM Page 1

Most of these listings include reference numbers that correspond to num-
bered explanations in the text. In most cases, these explanations apply to
both the C# and the Visual Basic versions of the code. (For example, the code
explanation identified with reference number 3 applies to the line indicated
with reference number 3 in both the C# and the Visual Basic versions of the
listing.)

To keep page-flipping to a minimum, I always present the C# version of a list-
ing first, followed by the text that explains it, followed by the Visual Basic list-
ing. Thus, if you’re a C# programmer, you can flip forward from your listing to
the text that explains it. And if you’re a Visual Basic programmer, you can flip
backward from your listing to the corresponding blow-by-blow description.

On occasion, I’ll show a console prompt along with commands you need to
enter. In that case, the command is presented as follows:

sqlcmd -S localhost\SQLExpress -s createdb.sql

How This Book Is Organized
This book is divided into six parts, with two or three chapters in each part.
Chapters 4 through 11 present the applications themselves. In these particu-
lar chapters, you’re going to find the same basic structure, which (hopefully)
gets the following information across for each one:

� A discussion of design issues for the application.

� An overview of the application’s user interface, including a diagram that
shows the flow of the application’s pages, along with images of each
page.

� A description of the design for the database used by the application,
along with listings of the scripts used to create the database and popu-
late it with sample test data.

� Listings of the .aspx files for each of the application’s pages.

� Where appropriate, listings of the code-behind file in both C# and Visual
Basic.

� Explanations of the key parts of the listings.

If you’re up for a quick summary, the following sections offer a bird’s-eye
view of what you can find in each part of the book.

2 ASP.NET 2.0 Everyday Apps For Dummies

03_597760 intro.qxp 1/11/06 9:49 PM Page 2

Part I: Introducing ASP.NET 2.0
Application Development
Chapter 1 in this part is a general introduction to ASP.NET application devel-
opment. It explains bedrock concepts such as the system-development life
cycle, using layered architectures in ASP.NET applications, and designing
relational databases. Then Chapter 2 presents a quick introduction to build-
ing ASP.NET applications using Visual Studio 2005 or Visual Web Developer
2005 Express Edition.

Part II: Building Secure Applications
This part shows you how to build security into your applications. Chapter 3
is an introduction to ASP.NET 2.0 security. Then, behold: Chapter 4 presents
the first application in this book — a user-authentication application that
you can incorporate into any application that requires users to register and
log in.

Part III: Building E-Commerce
Applications
This part provides two complete e-commerce applications. The first is an
online product catalog that lets users view your products via a Web site. The
second is a shopping-cart application that lets users purchase products. In
fact, the shopping-cart application is an extension of the product-catalog
application: It lets users purchase products they’ve had a chance to view via
the online catalog.

Part IV: Building Back-End Applications
Just about all public Web applications have a back end that isn’t visible to the
general public. This part presents two applications you’ll often need in the
back end. The first is a file-maintenance application that lets you add, update,
or delete records in a products database. And the second is a report applica-
tion that generates reports based on data gathered from Web visitors.

3Introduction

03_597760 intro.qxp 1/11/06 9:49 PM Page 3

Part V: Building Community Applications
The three applications in this part let users create Web-based communities.
Chapter 9 presents a content-management system for users’ Web sites;
Chapter 10 presents a forum application for posting messages and replies.
And Chapter 11 presents a blog application that lets users create blog arti-
cles that visitors can then read and comment upon.

Part VI: The Part of Tens
No For Dummies book would be complete without a Part of Tens. In Chapter
12, you get an overview of the most important new features of ASP.NET 2.0. If
you’re an experienced ASP.NET programmer but haven’t worked with version
2.0 yet, you may want to read this chapter first to see what new features have
been added for this version.

Next Chapter 13 describes ten-or-so rookie mistakes that (with any luck) you
can avoid. And finally, Chapter 14 presents ten-or-so tips for designing your
databases.

About the CD
The CD that’s glued into the back of this book contains all the source code
for the applications presented in this book. You’ll find two versions of each
application: a C# version and a Visual Basic version. The CD lets you choose
which versions of the applications to install. If you want, you can install both
versions of the applications; C# and VB can easily coexist within the same
ASP.NET system. (Although it’s uncommon, C# and VB can even coexist
within the same ASP.NET application.)

Icons Used in This Book
Like any For Dummies book, this book is chock-full of helpful icons that draw
your attention to items of particular importance. You find the following icons
throughout this book:

Pay special attention to this icon; it lets you know that some particularly
useful tidbit is at hand.

4 ASP.NET 2.0 Everyday Apps For Dummies

03_597760 intro.qxp 1/11/06 9:49 PM Page 4

Did I tell you about the memory course I took?

Danger, Will Robinson! This icon highlights information that may help you
avert disaster.

Watch out! Some technical drivel is just around the corner. Read it only if you
have your pocket protector firmly attached.

Where to Go from Here
Yes, you can get there from here. With this book in hand, you’re ready to get
right to the task of creating ASP.NET 2.0 Web applications. Browse through
the table of contents and decide which type of application interests you
most. Then, jump in and hang on. Be bold! Be courageous! Be adventurous!
And above all, have fun!

5Introduction

03_597760 intro.qxp 1/11/06 9:49 PM Page 5

6 ASP.NET 2.0 Everyday Apps For Dummies

03_597760 intro.qxp 1/11/06 9:49 PM Page 6

Part I
Introducing
ASP.NET 2.0
Application

Development

04_597760 pt01.qxp 1/11/06 9:50 PM Page 7

In this part . . .

This part presents a basic introduction to building
applications with ASP.NET version 2.0. First, Chapter 1

provides an overall introduction to building Web applica-
tions, providing an overview of the typical development
cycle for ASP.NET applications — as well as some ideas
for designing them. This chapter also includes a helpful
tutorial on database design.

Then Chapter 2 takes you step by step through the
process of using Visual Studio to create a very simple
ASP.NET application. This walk-through helps you prepare
for developing more complex applications like the ones
presented later in this book.

04_597760 pt01.qxp 1/11/06 9:50 PM Page 8

Chapter 1

Designing ASP.NET 2.0
Applications

In This Chapter
� Tracing the application-development life cycle

� Getting a handle on systems analysis and design

� Looking at layered architectures

� Designing relational databases

� Designing objects

ASP.NET is Microsoft’s platform for developing Web applications. With
the new release of version 2.0, Microsoft has added powerful new fea-

tures such as Master Pages and automatic site navigation, which make it one
of the most powerful (yet easy-to-use) Web-development tools out there.

And it’s inexpensive. Although the professional versions of Visual Studio will
set you back some, Visual Web Developer Express Edition will cost you only
about $100 and can be used to develop sophisticated ASP.NET applications,
using your choice of programming languages — Visual Basic or C#.

One way to learn ASP.NET is to buy a beginning ASP.NET book. There are
plenty of good ones out there, including (in all due modesty) my own
ASP.NET 2.0 All-In-One Desk Reference For Dummies (published by Wiley, of
course). But this book takes a different approach. Instead of belaboring the
myriad of details that go into ASP.NET programming, this book presents a
series of complete popular applications, such as a shopping cart and a forum
host, and explains in detail how these applications work. You can study these
applications to see how real-world ASP.NET programming is done, and you
can even copy them to give your own applications a running start.

You’ll need to modify the applications, of course, to make them work for your
own situation. Still, the samples presented in this book should provide an
excellent starting point. Even so, before you base your app on any of the
applications presented in this book, take a step back: Carefully analyze the
problem the application is intended to solve — and design an appropriate

05_597760 ch01.qxp 1/11/06 9:50 PM Page 9

solution. This chapter presents a brief introduction to this process, known in
software development circles as analysis and design. Along the way, you get a
look at the basics of designing relational databases, as well as designing
objects to work with an ASP.NET application.

The Development Treadmill
Over the years, computer gurus have observed that computer projects have
a life of their own, which goes through natural stages. The life cycle of an
application-development project typically goes something like this:

1. Feasibility study: This is the conception phase, in which the decision to
undertake a new computer system is made based on the answers to
questions such as:

• What business problem will the new system solve?

• Will the new system actually be an improvement over the current
system?

• If so, can the value of this improvement be quantified?

• Is the new system possible?

• What will the new system cost to develop and run?

• How long will the system take to develop?

The result of the feasibility study is a charter for the new project that
defines the scope of the project, user requirements, budget constraints,
and so on.

2. Analysis: This is the process of deciding exactly what a computer
system is to do. The traditional approach to analysis is to thoroughly
document the existing system that the new system is intended to
replace, even if the existing system is entirely manual and rife with ineffi-
ciency and error. Then, a specification for a new system to replace the
old system is created. This specification defines exactly what the new
system will do, but not necessarily how it will do it.

3. Design: This process creates a plan for implementing the specification
for a new system that results from the analysis step. It focuses on how
the new system will work.

4. Implementation: Here’s where the programs that make up the new system
are coded and tested, the hardware required to support the system is pur-
chased and installed, and the databases required for the system are
defined and loaded.

5. Acceptance testing: In this phase, all pieces of the system are checked
out to make sure that the system works the way it should.

10 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 10

6. Production: This is another word for “put into action.” If the system
works acceptably, it’s put into production: Its users actually begin using it.

7. Maintenance: The moment the computer system goes into production, it
needs maintenance. In this dreaded phase, errors — hopefully minor —
that weren’t caught during the implementation and acceptance phases are
corrected. As the users work with the system, they invariably realize that
what they really need isn’t what they said they wanted, so they request
enhancements — which are gradually incorporated into the system.

The biggest challenge of this phase is making sure that corrections and
enhancements don’t create more problems than they solve.

8. Obsolescence: Eventually, the new system becomes obsolete. Of course,
this doesn’t mean the system dies; it probably remains in use for years,
perhaps even decades, after it becomes “obsolete.” Many obsolete
COBOL systems are still in production today, and Web applications being
built today will be in production long after ASP.NET becomes passé.

Only the most obsessive project managers actually lead projects through
these phases step by step. In the real world, the phases overlap to some
degree. In fact, modern development methods often overlap all phases of a
highly iterative process where the approach is “try, hit a snag, make changes,
try again with a new version.”

I omitted two important pieces of the computer-system-development puzzle
because they should be integrated throughout the entire process: quality
assurance and documentation. Quality needs to be built into each phase of
development, and shouldn’t be tacked on to the end as an afterthought.
Likewise, documentation of the system should be built constantly as the
system is developed, to minimize confusion.

Building Models
When it comes right down to it, computer system analysis and design is noth-
ing more than glorified model-building. (Minus the glue fumes.)

Most engineering disciplines involve model-building. In fact, that’s what engi-
neers do all day: sit around building fancy models of skyscrapers, bridges,
freeway overpasses, culverts, storm drains, whatever.

These models usually aren’t the kind made of molded plastic parts and held
together with cement (though sometimes they are). Instead, they’re concep-
tual models drawn on paper. Architects draw floor plans, electrical engineers
draw schematic circuit diagrams, structural engineers draw blueprints; these
are all nothing more than models.

11Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 11

The reason engineers build models is that they’re cheaper to build (and break)
than the real thing. It’s a lot easier to draw a picture of a bridge and examine it
to make sure it won’t collapse the first time the wind blows too fast or the river
is too full than it is to build an actual bridge and then find out.

The same holds true for computer-application design. Building a computer
system is an expensive proposition. It’s far cheaper to build a paper model of
the system first, and then test the model to make sure it works before build-
ing the actual system.

What Is an Application Design?
Glad you asked. An application design is a written model of a system that
can be used as a guide when you actually construct a working version of the
system. The components of an application design can vary, but the complete
design typically includes the following:

� A statement of the purpose and scope of the system: This statement
of purpose and scope is often written in the form of a use case, which
describes the actors and actions (users and uses) that make up the
system and shows what it’s for. Sometimes the use case is a graphic
diagram; most often it’s plain text.

� A data model: Normally this is an outline of the database structure, con-
sisting of a set of Entity-Relationship Diagrams (ERDs) or other diagrams.
These describe the details of how the application’s database will be put
together. Each application in this book uses a database and includes an
ERD, which describes how the database tables relate to each other.

� Data Flow Diagrams (DFDs): Some application designs include these dia-
grams, which show the major processes that make up the application
and how data flows among the processes. The data flow is pretty
straightforward for most of the applications presented in this book, so I
don’t include Data Flow Diagrams for them.

� User Interface Flow Diagrams: These are sometimes called storyboards
and are often used to plan the application’s user interface. I include a
User Interface Flow Diagram for each application in this book so you can
see how the application flows from one page to the next.

Using Layered Architectures
One approach to designing Web applications is to focus on clearly defined
layers of the application’s architecture. This approach is similar to the way

12 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 12

an architect designs a building. If you’ve ever seen detailed construction
plans for a skyscraper, you know what I’m talking about. The construction
plans include separate blueprints for the foundation, frame, roof, plumbing,
electrical, and other floors of the building.

With a layered architecture, specialists can design and develop the “floors” —
called layers — independently, provided that the connections between the
layers (the interfaces) are carefully thought out.

The layers should be independent of one another, as much as possible.
Among other things, that means heeding a few must-dos and shalt-nots:

� Each layer must have a clearly defined focus. To design the layers
properly, you must clearly spell out the tasks and responsibilities of
each layer.

� Layers should mind their own business. If one layer is responsible for
user interaction, only that layer is allowed to communicate with the
user. Other layers that need to get information from the user must do so
through the User Interface Layer.

� Clearly defined protocols must be set up for the layers to interact with
one another. Interaction between the layers occurs only through these
protocols.

Note that the layers are not tied directly to any particular application. For
example, an architecture might work equally well for an online ordering
system and for an online forum. As a result, layered architecture has nothing
to do with the ERDs that define a database or the Data Flow Diagrams that
define how the data flows within the application. It’s a separate structure.

How many layers?
There are several common approaches to application architecture that vary
depending on the number of layers used. One common scheme is to break
the application into two layers:

� Application Layer: The design of the user interface and the implementa-
tion of business policies are handled in this layer. This layer may also
handle transaction logic — the code that groups database updates into
transactions and ensures that all updates within a transaction are made
consistently.

� Data Access Layer: The underlying database engine that supports the
application. This layer is responsible for maintaining the integrity of
the database. Some or all the transaction logic may be implemented in
this layer.

13Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 13

In the two-layer model, the Application Layer is the ASP.NET Web pages that
define the pages presented to the user as well as the code-behind files that
implement the application’s logic. The Data Access Layer is the database
server that manages the database, such as Microsoft SQL Server or Oracle.

Note that ASP.NET 2.0 doesn’t require that you place the application’s logic
code in a separate code-behind file. Instead, you can intersperse the logic
code with the presentation code in the same file. However, it’s almost always
a good idea to use separate code-behind files to separate the application’s
logic from its presentation code. All of the applications presented in this
book use separate code-behind files.

14 Part I: Introducing ASP.NET 2.0 Application Development

Using objects in the Data Access Layer
One of the fundamental architecture decisions
you need to make when developing ASP.NET
applications is whether to create customized
data classes for the Data Access Layer. For
example, an application that accesses a
Products database might incorporate a class
named ProductDB that includes methods for
retrieving, inserting, updating, and deleting data
in the Products database. Then, the other layers
of the application can simply call these methods
to perform the application’s data access.

Creating custom data-access classes like this
has several advantages:

� The data-access code is isolated in a sepa-
rate class, so you can assign your best data-
base programmers to work on those classes.

� You can fine-tune the database perfor-
mance by spending extra time on the data-
access classes without affecting the rest of
the application.

� If you need to migrate the application from
one database server to another (for exam-
ple, from SQL Server to Oracle), you can do
so by changing just the data-access classes.

� You can design the data-access classes so
they work with a variety of databases. Then,

you can let the user configure which data-
base to use when the application is installed.

However, this flexibility isn’t without cost.
ASP.NET is designed to work with the data-
source controls embedded in your .aspxpages.
If you want to create your own data-access
classes, you have basically two choices:

� Don’t use the ASP.NET data sources, which
means you can’t use data binding. Then,
you must write all the code that connects
your user interface to your data-access
classes. That’s a lot of work.

� Use the new ASP.NET 2.0 object data
sources, which are designed to let you bind
ASP.NET controls to custom data-access
classes. Unfortunately, this adds a layer of
complexity to the application and often isn’t
worth the trouble.

The applications in this book don’t use custom
data-access classes. However, you should be
able to adapt them to use object data sources if
you want.

For more information about designing objects
for ASP.NET applications, see the “Designing
Objects” section, later in this chapter.

05_597760 ch01.qxp 1/11/06 9:50 PM Page 14

The division between the Application and Data Access layers isn’t always as
clear-cut as it could be. For performance reasons, transaction logic is often
shifted to the database server (in the form of stored procedures), and business
rules are often implemented on the database server with constraints and trig-
gers. Thus, the database server often handles some of the application logic.

If this messiness bothers you, you can use a three-layer architecture, which
adds an additional layer to handle business rules and policies:

� Presentation Layer: This layer handles the user interface.

� Business Rules Layer: This layer handles the application’s business
rules and policies. For example, if a sales application grants discounts to
certain users, the discount policy is implemented in this layer.

� Data Access Layer: The underlying database model that supports the
application.

Creating a separate layer for business rules enables you to separate the rules
from the database design and the presentation logic. Business rules are sub-
ject to change. By placing them in a separate layer, you have an easier task of
changing them later than if they’re incorporated into the user interface or
database design.

Model-View-Controller
Another common model for designing Web applications is called Model-View-
Controller (MVC). In this architecture, the application is broken into three parts:

� Model: The model is, in effect, the application’s business layer. It usually
consists of objects that represent the business entities that make up the
application, such as customers and products.

� View: The view is the application’s user interface. In a Web application,
this consists of one or more HTML pages that define the look and feel of
the application.

� Controller: The controller manages the events processed by the applica-
tion. The events are usually generated by user-interface actions, such as
the user clicking a button or selecting an item from a drop-down list.

In a typical ASP.NET application, the .aspx file implements the view; the model
and controller functions are combined and handled by the code-behind file.
Thus, the code-behind file can be thought of as the model-controller.

You can, of course, separate the model and controller functions by creating
separate classes for the business entities. For simplicity, the applications in
this book keep the model and controller functions combined in the code-
behind file.

15Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 15

Designing the user interface
Much of the success of any Web application depends on the quality of its user
interface. As far as end-users are concerned, the user interface is the applica-
tion: Users aren’t interested in the details of the data model or the design of
the data-access classes.

In an ASP.NET Web application, the user interface consists of a series of .aspx
pages that are rendered to the browser using standard HTML. Designing the
user interface is simply a matter of deciding which pages are required (and in
what sequence) — and populating those pages with the appropriate controls.

Standard HTML has a surprisingly limited set of user-input controls:

� Buttons

� Text boxes

� Drop-down lists

� Check boxes

� Radio buttons

However, ASP.NET offers many controls that build on these basic controls.
For example, you can use a GridView control to present data from a database
in a tabular format.

All ASP.NET controls are eventually rendered to the browser, using standard
HTML. As a result, even the most complicated ASP.NET controls are simply
composites made of standard HTML controls and HTML formatting elements
(such as tables).

Designing the user interface can quickly become the most complicated
aspect of a Web application. Although user interface design has no hard-and-
fast rules, here are a few guidelines you should keep in mind:

� Consider how frequently the user will use each page and how familiar he
or she will be with the application. If the user works with the same page
over and over again all day long, try to make the data entry as efficient
as possible. However, if the user will use the page only once in a while,
err on the side of making the page self-explanatory so the user doesn’t
have to struggle to figure out how to use the page.

� Remember that the user is in control of the application and users are
pretty unpredictable. Users might give up in the middle of a data-entry
sequence, or unexpectedly hit the browser’s Back button.

� Some users like the mouse, others like the keyboard. Don’t force your
preference on the user: make sure your interface works well for mouse
as well as keyboard users.

16 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 16

� Review prototypes of the user-interface design with actual users. Listen to
their suggestions seriously. They probably have a better idea than you do
of what the user interface should look like and how it should behave.

� Study Web sites that you consider to have good interfaces.

Designing the Business Rules Layer
Business rules are the portion of a program that implements the business poli-
cies dictated by the application. Here are some examples of business rules:

� Should a customer be granted a credit request?

� How much of a discount should be applied to a given order?

� How many copies of Form 10432/J need to be printed?

� How much shipping and handling should be tacked onto an invoice?

� When should an inventory item that is running low on stock be reordered?

� How much sick leave should an employee get before managers wonder
whether he or she has been skiing rather than staying home sick?

� When should an account payable be paid to take advantage of discounts
while maximizing float?

The key to designing the business-rules portion of an application is simply to
identify the business rules that must be implemented and separate them as
much as possible from other parts of the program. That way, if the rules
change, only the code that implements the rules needs to be changed.

For example, you might create a class to handle discount policies. Then, you
can call methods of this class whenever you need to calculate a customer’s
discount. If the discount policy changes, the discount class can be updated
to reflect the new policy.

Ideally, each business rule should be implemented only once, in a single class
that’s used by each program that needs it. All too often, business policies are
implemented over and over again in multiple programs — and if the policy
changes, dozens of programs need to be updated. (That even hurts to think
about, doesn’t it?)

Designing the Data Access Layer
Much of the job of designing the Data Access Layer involves designing the
database itself. Here are some pointers on designing the Data Access Layer:

� For starters, you must decide what database server to use (for example,
SQL Server or Oracle).

17Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 17

� You’ll need to design the tables that make up the database and determine
which columns each table will require. For more information about
designing the tables, refer to the section “Designing Relational Databases,”
later in this chapter.

� You must also decide what basic techniques you’ll use to access the
data. For example, will you write custom data-access classes that access
the database directly, or will you use ASP.NET’s SqlDataSource control
to access the database? And will you use stored procedures or code the
SQL statements used to access the data directly in the application code?

Designing Relational Databases
Most ASP.NET applications revolve around relational databases. As a result,
one of the keys to good application design is a good database design.

Database design is the type of process that invites authors to create step-by-
step procedures, and I certainly don’t want to be left out. So what follows is
an ordered list of steps you can use to create a good database design for your
ASP.NET application. (Keep in mind, however, that in real life most designers
manage to do many, if not all, of these steps at once.)

Step 1: Create a charter for the database
Every database has a reason for being, and you’ll be in a much better posi-
tion to create a good database design if you start by considering why the
database needs to exist and what will be expected of it.

Database designers sometimes fall into one of two traps: Assuming that the
data exists for its own sake, or assuming that the database exists for the sake
of the Information Technology (IT) department. Of course, the database
exists for its users. Before designing a database, you’d better find out why
the users need the database — and what they expect to accomplish with it.

You can think of this purpose statement as a mission statement or a charter
for the database. Here’s an example of a charter for a database for a store
that sells supplies for pirates:

The purpose of the Pirate Supply Store database is to keep track of all
the products sold at the Acme Pirate Supply store. The database should
include detailed information about each product and should enable us
to categorize the products into one of several categories. It should also
allow us to add new categories later on if we decide to sell additional
types of products. And it should provide a way to display a picture of
each product on our Web page. It should also keep track of our cus-
tomers and keep track of each sale.

18 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 18

For a more complicated application, the charter will probably be more detailed
than this. But the key point is that the charter should identify the unique capa-
bilities that the user expects from the database. In this case, the flexibility to
add new product categories down the road and the ability to show pictures on
the Web site are key features that the user wants.

An important part of this step is examining how the data is currently being
stored and to uncover the weaknesses in the status quo. If the data is cur-
rently stored in an Excel spreadsheet, carefully examine the spreadsheet. If
paper forms are used, study the forms to see what kind of data is included on
them. If the data is scribbled on the back of napkins, collect the napkins and
scrutinize them.

Step 2: Make a list and check it twice
Once you’re sure you understand the purpose of the database, sit down with
a yellow pad and a box of freshly sharpened #2 pencils and start writing. (You
can use a word processor if you prefer, but I like to have something I can
crumple up when I change my mind.) Start by listing the major tables that the
database includes.

When creating and fiddling with the lists of tables and data items, it helps to
think in terms of entities: tangible, real-world objects that the database needs
to keep track of, such as people and things. For the Pirate Supply Store
database mentioned in Step 1, you might list the following entities:

� Products

� Categories

� Customers

� Orders

After you identify the major tables in the database, list the data elements that
fall under each one. For example:

Products
Name
Category Name
Description
Vendor name
Vendor address
Vendor phone number
Price
Image file name

Category

19Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 19

Name

Customers
Last Name
First Name
Address
City
State
Zip Code
Phone Number
E-mail
Credit Card Number

Order
Order number
Date
Customer
Product
Quantity
Price
Subtotal
Shipping
Tax
Total

Don’t be afraid to crumple up the paper and start over a few times. In fact, if
you’re doing this step right, you’ll end up with wads of yellow paper on your
floor. You can clean up when you’re done.

For example, you may realize that the vendor information stored in the
Products table should actually be its own table. So you break the Products
table into two tables, Products and Vendors:

Products
Name
Category Name
Description
Price
Image file name

Vendor
Name
Address
City
State
Zip Code
Phone Number
E-mail

20 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 20

As you design the database, creating additional tables like this will become a
regular occurrence. You’ll discover tables that need to be split because they
have data for two distinct entities, or you’ll discover entities that you simply
forgot to include. The number of tables in a database rarely goes down as you
refine the design.

Note that the Orders table has several problems in its current form. For
example, how do you identify which customer is associated with an order?
And, more importantly, what if more than one product is ordered? We’ll solve
these problems in subsequent steps.

Step 3: Add keys
In an SQL database, every table should have a column or combination of
columns that uniquely identifies each row in the table. This column (or com-
bination of columns) is called the primary key. In this step, you revisit all the
entities in your design and make sure each one has a useful primary key.

Selecting the primary key for a table is sometimes a challenge. For example,
what field should you use as the primary key for the Customers table?
Several choices come to mind:

� Last Name: This works fine until you get your second customer named
Smith. It can also be a problem when you get a customer named
Zoldoske. Every time you type this name, you’ll probably spell it differ-
ently: Zoldosky, Soldoskie, Zaldosky, and so on. (Trust me on this one.
My wife’s maiden name is Zoldoske; she’s seen it spelled each of these
ways — and many more.)

� Last and First Name combined: This works better than Last Name alone,
but you still may have two Lucy McGillicuddys who want to buy your
stuff.

� Phone Number: Everyone has a unique phone number, but some phone
numbers are shared by several individuals (say, roommates or family
members). And when people move, they often change their phone
numbers.

� E-mail Address: This isn’t too bad a choice; people rarely share e-mail
addresses and don’t change them nearly as often as phone numbers.

If no field in the table jumps out as an obvious primary key, you may need to
create an otherwise meaningless key for the table. For example, you could
add a Customer Number to the Customers table. The Customer Number
would be a unique number that has no meaning other than as an identifier for
a specific customer. You can let the user enter a unique value for the key
field, or you can let the database automatically generate a unique value. In
the latter case, the key is known as an identity column.

21Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 21

In the Pirate Supply Store database, I decided to use the E-mail
Address field for the primary key of the Customers table. For the Products
table, I added a Product ID field that represents a unique product code
determined by the users. I did the same for the Categories table. For the
Orders table, I used the Order Number column and designated it as an
identify column so it will be automatically generated.

As you add primary keys to your tables, you can also add those primary keys
columns as foreign keys in related tables. For example, a Vendor ID column
could be added to the Products table so each product is related to a partic-
ular vendor.

After the key columns have been added, the list looks like this:

Products
Product ID (primary key)
Name
Category ID (foreign key)
Category Name
Description
Price
Image file name
Vendor ID (foreign key)

Vendor
Vendor ID (primary key)
Name
Address
City
State
Zip Code
Phone Number
E-mail

Category
Category ID (primary key)
Name

Customers
Last Name
First Name
Address
City
State
Zip Code
Phone Number
E-mail (primary key)
Credit Card Number

Order
Order number (primary key)
Date

22 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 22

Customer ID (foreign key)
Product ID (foreign key)
Quantity
Price
Subtotal
Shipping
Tax
Total

Step 4: Normalize the database
Normalization refers to the process of eliminating redundant information and
other problems in the database design. To normalize a database, you identify
problems in the design and correct them, often by creating additional tables.
After normalizing your design, you almost always have more tables than you
had when you started.

Five different levels of normalization exist, known as the five normal forms.
You’ll find a list of all five of these normal forms (which actually look sort of
monstrous) in the sidebar at the end of this chapter, “The Five Abby-Normal
Forms.”

To normalize the Pirate Supply Store database, I made several changes
to the design:

� I changed all the table names to plural. Before, I had a mixture of singu-
lar and plural names. (This is just a consistency issue.)

� I broke the Orders table into two tables: Orders and Line Items. When
a customer places an order, one row is created in the Orders table for the
entire order, and one row is created in the Line Items table for each
product ordered. This allows the customer to order more than one prod-
uct in a single order.

� I removed the Category Name field from the Products table because
this data is contained in the Categories table.

� I removed the Subtotal column from the Orders table. The Line
Items table contains an Item Total column, and the subtotal for an
order can be calculated by adding up the item totals for each line item
that belong to the order.

� I designated the Item Total column in the Line Items table as a calcu-
lated value. Rather than being stored in the table, this value is calculated
by multiplying the quantity times the price for the row being retrieved.

23Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 23

� While interviewing the users, I discovered that some of the products are
available from two or more vendors. Thus, the Products➪Vendors rela-
tionship isn’t many-to-one, but many-to-many. As a result, I added a new
table named Product Vendor to implement this relationship. Each row
in this table represents a vendor that supplies a particular product.

The resulting design now looks like this:

Products
Product ID
Name
Category ID
Description
Price
Image file name

Vendors
Vendor ID
Name
Address
City
State
Zip Code
Phone Number
E-mail

Categories
Category ID
Name

Customers
E-mail
Last Name
First Name
Address
City
State
Zip Code
Phone Number
Credit Card Number

Orders
Order number
Date
Customer E-mail
Shipping
Tax
Total

Line Items
Order number
Product ID

24 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 24

Quantity
Price
Item Total

Product Vendor
Product ID
Vendor ID

Even though I did mention at the beginning of this section that five degrees of
normality exist (It’s a good thing these apply to databases and not to people,
because some of us would be off the chart.), most database designers settle
for the first through third normal forms. That’s because the requirements of
the fourth and fifth normal forms are a bit picky. As a result, I don’t go into
the fourth and fifth normal forms here. However, the following sections
describe the first three normal forms.

First normal form (1NF)
A database is in 1NF when each table row is free of repeating data. For exam-
ple, you might be tempted to design the Orders table like this:

Orders
Order number
Date
Customer ID
Product ID 1
Quantity 1
Price 1
Product ID 2
Quantity 2
Price 2
Product ID 3
Quantity 3
Price 3
Subtotal
Shipping
Tax
Total

This design allows the customer to purchase as many as three different prod-
ucts on a single order. But what if the customer wants to purchase four prod-
ucts? The solution is to create a separate table for the line items. The Line
Items table uses a foreign key to relate each line item to an order.

Second normal form (2NF)
Second normal form applies only to tables that have composite keys — that
is, a primary key that’s made up of two or more table columns. When a table
has a composite key, every column in the table must depend on the entire
key, not just on part of the key, for the table to be in second normal form.

25Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 25

For example, consider the following table, in which the primary key is a com-
bination of the Order Number and Product ID columns:

Line Items
Order Number
Product ID
Name
Quantity
Price

This table breaks 2NF because the Name column depends solely on the
Product ID, not on the combination of Order Number and Product ID. The
solution is to remove the Name column from the Line Items table, and
retrieve the product name from the Products table whenever it’s required.

You might wonder whether the Price column also violates second normal
form. The answer depends on the application’s requirements. A product’s
price can change over time, but the price for a given order should be the
price that was effective when the order was created. So in a way, the price
does depend on the order number. Thus, including the Price column in the
Line Items table doesn’t violate 2NF.

Third normal form (3NF)
A table is in third normal form if every column in the table depends on the
entire primary key, and none of the non-key columns depend on each other.

26 Part I: Introducing ASP.NET 2.0 Application Development

The Five Abby-Normal Forms
No, this stuff didn’t come from an abnormal
brain in a jar; it only seems that way. In case
you’re interested (and just to point out how eso-
teric these things can be), here’s a list of the
original definitions of the five normal forms, in
the original Greek, as formulated by C. J. Date
in his classic book, An Introduction to Database
Systems (Addison-Wesley, 1974):

First Normal Form (1NF): A relation R is in first
normal form (1NF) if and only if all underlying
domains contain atomic values only.

Second Normal Form (2NF): A relation R is in
second normal form (2NF) if and only if it is in 1NF
and every nonkey attribute is fully dependent on
the primary key.

Third Normal Form (3NF): A relation R is in third
normal form (3NF) if and only if it is in 2NF and
every nonkey attribute is nontransitively depen-
dent on the primary key.

Fourth Normal Form (4NF): A relation R is in
fourth normal form (4NF) if and only if, whenever
there exists an MVD in R, say A➪➪B, then all
attributes of R are also functionally dependent
on A (that is, A➪X for all attributes X of R).

(An MVD is a multivalued dependence.)

Fifth Normal Form (5NF): A relation R is in fifth
normal form (5NF) — also called projection-join
normal form (PJ/NF) — if and only if every join
dependency in R is implied by the candidate
keys of R.

05_597760 ch01.qxp 1/11/06 9:50 PM Page 26

Suppose the store gives a different discount percentage for each category of
product, and the Products and Categories tables are designed like this:

Product
Product ID
Category ID
Name
Price
Image file
Discount Percent

Categories
Category ID
Name

Here, the Discount Percent column depends not on the Product ID
column, but on the Category ID column. Thus the table is not in 3NF. To
make it 3NF, you’d have to move the Discount Percent column to the
Categories table.

Step 5: Denormalize the database
What?! After all that fuss about normalizing the data, now I’m telling you to
de-normalize it? Yes — sometimes. Many cases occur in which a database will
operate more efficiently if you bend the normalization rules a bit. In particu-
lar, building a certain amount of redundancy into a database for performance
reasons is often wise. Intentionally adding redundancy back into a database
is called denormalization — and it’s perfectly normal. (Groan.)

Here are some examples of denormalization you might consider for the
Pirate Supply Store database:

� Restoring the Subtotal column to the Orders table so the program
doesn’t have to retrieve all the Line Items rows to calculate an order
total.

� Adding a Name field to the Line Items table so the program doesn’t
have to retrieve rows from the Products table to display or print an
order.

� Adding the customer’s name and address to the Orders table so that
the application doesn’t have to access the Customers table to print or
display an order.

� Adding the Category Name to the Products table so the application
doesn’t have to look it up in the Categories table each time.

27Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 27

In each case, deciding whether to denormalize the database should depend
on a specific performance tradeoff — updating the redundant data in several
places versus improving the access speed.

Step 6: Pick legal SQL names
All through the data-design process, I use names descriptive enough that I
can remember exactly what each table and column represents. However,
most SQL dialects don’t allow tables with names like Line Items or
columns with names like Product ID or Discount Percent, because of
the embedded spaces. At some point in the design, you’ll have to assign the
tables and columns actual names that SQL allows. When picking names, stick
to these rules:

� No special characters, other than $, #, and _.

� No spaces.

� No more than 128 characters.

Shorter names are better, as long as the meaning is preserved. Although you
can create names as long as 128 characters, I suggest you stick to names with
15 or fewer characters.

Step 7: Draw a picture
Computer professionals love to draw pictures, possibly because it’s more fun
than real work, but mostly because (as they say) a picture is worth 1,024
words. So they often draw a special type of diagram — an Entity-Relationship
Diagram (ERD) — when creating a data model. Figure 1-1 shows a typical
ERD. Visual Studio 2005 includes a handy feature that automatically creates
these diagrams for you.

The ERD shows each of the tables that make up a database and the relation-
ships among the tables. Usually you see the tables as rectangles and the rela-
tionships as arrows. Sometimes, the columns within each table are listed in the
rectangles; sometimes they aren’t. Arrowheads are used to indicate one-to-one,
one-to-many, many-to-one, and many-to-many relationships. Other notational
doodads may be attached to the diagram, depending on which drawing school
the database designers attended — and whether they’re using UML (more
about that shortly).

That’s it for the steps needed to design relational databases. In the next sec-
tion, I describe another important aspect of application design: designing the
various objects that will make up the application.

28 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 28

Designing Objects
The Microsoft .NET Framework is inherently object-oriented, so all ASP.NET
applications are object-oriented applications. At minimum, each Web page
that makes up the application is represented as two classes, as described by
the Model-View-Controller (MVC) pattern:

� The view defines the appearance of the page.

� The model-controller represents the methods called to handle events, such
as when the user clicks a button or selects an item from a drop-down list.

Many ASP.NET applications need additional classes to represent other types
of objects. As a result, you might find yourself defining objects that represent
business objects, or even some that implement business rules. Then you can
write C# or VB code to implement those objects.

The task of designing these objects boils down to deciding what classes the
application requires and what the public interface to each of those classes
must be. If you plan your classes well, implementing the application is easy;
plan your classes poorly, and you’ll have a hard time getting your application
to work.

Diagramming Classes with UML
Since the beginning of computer programming, programmers have loved to
create diagrams of their programs. Originally they drew flowcharts, graphic rep-
resentations of a program’s procedural logic (the steps it took to do its job).

ProductVendor
ProductID
VendorID

Categories
CategoryID
Name

Vendors
VendorID
Name
Address
City
State
ZipCode
PhoneNumber
Email

Customers
Email
LastName
FirstName
Address
City
State
ZipCode
PhoneNumber
CreditCardNumber

Products
ProductID
Name
CategoryID
Description
Price
ImageFile

Orders
OrderNumber
Date
CustomerEmail
Shipping
Tax
Total

LineItems
OrderNumber
ProductID
Price
Quantity
Item Total

Figure 1-1:
A typical

ERD.

29Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 29

Flowcharts were good at diagramming procedures, but they were way too
detailed. When the Structured Programming craze hit in the 1970s, program-
mers started thinking about the overall structure of their programs. Before
long, they switched from flowcharts to structure charts, which illustrate the
organizational relationships among the modules of a program or system.

Now that object-oriented programming is the thing, programmers draw class
diagrams to illustrate the relationships among the classes that make up an
application. For example, the simple class diagram shown in Figure 1-2 shows
a class diagram for a simple system that has four classes. The rectangles repre-
sent the classes themselves; the arrows represent relationships among classes.

You can draw class diagrams in many ways, but most programmers use a
standard diagramming approach called UML (which stands for Unified
Modeling Language) to keep theirs consistent. The class diagram in Figure 1-2
is a simple example of a UML diagram; they can get much more complicated.

The following sections describe the details of creating UML class diagrams.
Note that these sections don’t even come close to explaining all the features of
UML. I include just the basics of creating UML class diagrams so that you can
make some sense of UML diagrams when you see them, and so that you know
how to draw simple class diagrams to help you design the class structure for
your applications. If you’re interested in digging deeper into UML, check out
UML 2 For Dummies by Michael Jesse Chonoles and James A. Schardt (Wiley).

«abstract»
Person

Customer

Database

Employee
Figure 1-2:

A simple
class

diagram.

30 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 30

Drawing classes
The basic element in a class diagram is a class — drawn as a rectangle in
UML. At minimum, the rectangle must include the class name. However, you
can subdivide the rectangle into two or three compartments that can contain
additional information about the class, as shown in Figure 1-3.

The middle compartment of a class lists the class variables; the bottom com-
partment lists the class methods. You can precede the name of each variable
or method with a visibility indicator — one of the symbols listed in Table 1-1 —
although actual practice commonly omits the visibility indicator and lists only
those fields or methods that have public visibility. (Visibility refers to whether
or not a variable or method can be accessed from outside of the class.)

Table 1-1 Visibility Indicators for Class Variables and Methods
Indicator Description

+ Public

- Private

Protected

If you want, you can include type information in your class diagrams — not
only for variables, but for methods and parameters as well. A variable’s type
is indicated by adding a colon to the variable name and then adding the type,
as follows:

connectionString: String

A method’s return type is indicated in the same way:

getCustomer(): Customer

CustomerDB

+ConnectionString

+ConnectionStatus

+GetCustomer

+UpdateCustomer

+DeleteCustomer

+AddCustomer

+GetAllCustomers

Figure 1-3:
A class.

31Chapter 1: Designing ASP.NET 2.0 Applications

05_597760 ch01.qxp 1/11/06 9:50 PM Page 31

Parameters are specified within the parentheses; both the name and type are
listed, as in this example:

getCustomer(custno: int): Customer

Note: The type and parameter information are often omitted from UML dia-
grams to keep them simple.

Interfaces are drawn pretty much the same way as classes, except the class
name is preceded by the word interface, like this:

«interface»
ProductDB

Note: The word interface is enclosed within a set of double-left and double-
right arrows. These double arrows are often called chevrons and can be
accessed in Microsoft Word via the Insert Symbol command.

Drawing arrows
Besides rectangles to represent classes, class diagrams also include arrows
that represent relationships among classes. UML uses various types of
arrows; this section shows a basic set of them.

A solid line with a hollow, closed arrow at one end represents inheritance:

The arrow points to the base class.

A dashed line with a hollow, closed arrow at one end indicates that a class
implements an interface:

The arrow points to the interface.

A solid line with an open arrow indicates an association:

An association simply indicates that two classes work together. It may be that
one of the classes creates objects of the other class, or that one class
requires an object of the other class to perform its work. Or perhaps
instances of one class contain instances of the other class.

You can add a name to an association arrow to indicate its purpose. For
example, if an association arrow indicates that instances of one class create
objects of another class, you can place the word Creates next to the arrow.

32 Part I: Introducing ASP.NET 2.0 Application Development

05_597760 ch01.qxp 1/11/06 9:50 PM Page 32

Chapter 2

Using Visual Studio 2005
In This Chapter
� Using Visual Web Developer to create a basic Hello World application

� Adding additional features to the Hello World application

� Using the debugger to find and correct errors

� Deploying an ASP.NET application

Technically, everything you need to create ASP.NET 2.0 applications is free.
You can download the .NET Framework from Microsoft’s Web site for

free, most versions of Windows come with the IIS Web server, and the only
development environment you need is Notepad.

But building ASP.NET applications with Notepad is kind of like cutting down
your own trees and milling your own lumber to build a doghouse. Yes, you
can do it, but it’s much easier to go to Home Depot and buy the two-by-fours
already cut.

Likewise, ASP.NET applications are much easier to develop if you use Visual
Studio, Microsoft’s development environment for creating .NET applications.
The least expensive edition of Visual Studio you need if you’re going to create
an ASP.NET 2.0 application is Visual Web Developer 2005 Express Edition
(also known as VWDE). You can purchase it for about a hundred bucks —
even less if you’re a student. Although you can use one of the more expensive
versions of Visual Studio 2005, VWDE is sufficient for the applications pre-
sented in this book.

This chapter walks you step-by-step through the process of creating a simple
ASP.NET 2.0 application using VWDE. Before you get started, you should first
install VWDE according to the instructions that come with it. After you’ve
installed VWDE, you’re ready to go.

06_597760 ch02.qxp 1/11/06 9:51 PM Page 33

If you’re using one of the professional editions of Visual Studio, the steps for
creating Web applications are the same. However, you can’t create Web appli-
cations using one of the language-specific Express editions of Visual Studio
such as Visual Basic 2005 Express Edition or Visual C# 2005 Express Edition.
Those editions can only create Windows-based applications.

Creating a Basic Hello World Application
Many classic programming books begin with a simple Hello World application
that displays the text Hello, World! on the screen. Because I’d like this
book to become a classic, we start with a Hello World program and develop it
step by step, adding new features as we go.

To get started, fire up Visual Web Developer. The Start Page will appear, as
shown in Figure 2-1. As you can see, this page gives you fast access to the
projects you’ve been recently working on. You can click one of the links in the
Recent Projects section to open a project.

The Start Page also shows recent information from Microsoft’s MSDN site,
which contains useful information for developers. If any of these items inter-
ests you, click it to read more.

Figure 2-1:
Visual Web
Developer’s
Start page.

34 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 34

Creating a new Web site
To create a new Web site, follow these steps:

1. Choose File➪New Web Site.

This brings up the New Web Site dialog box, as shown in Figure 2-2.
This dialog box lists the templates available for creating Web sites. By
default, the ASP.NET Web Site template is selected. That’s the one you
want to use to create a basic Web site.

2. Choose File System from the Location drop-down menu.

The Location drop-down list enables you to choose one of three types of
Web sites you can create:

• File System: This option creates a Web site that’s run by Visual
Web Developer’s built-in Web server, which is called the ASP.NET
Development Server. For the applications in this book, file system
Web sites are adequate.

• HTTP: This option creates a Web site on an IIS server (IIS refers
to Internet Information Services, Microsoft’s Web server). The IIS
server can run on your own computer or another server computer
you have access to. This is the option used most often for profes-
sional Web site development.

Figure 2-2:
The New
Web Site

dialog box.

35Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 35

• FTP: This option creates a Web site on a remote IIS server to which
you don’t have HTTP access. It uses the File Transfer Protocol
(FTP) to upload your Web site files to the server.

FTP sites are used mostly when you’re working with a hosting ser-
vice to host your site.

3. Type the name and location for your Web site in the path text box.

By default, file system Web sites are created in My Documents\Visual
Studio 2005\WebSites. You’ll have to scroll to the end of this long path to
type the name of your Web site at the end of this path.

You can use the Browse button to bring up a dialog box that enables you
to browse to the location where you want to create the Web site.

4. Choose the language you want to use from the Language drop-down
menu.

The choices are Visual Basic, Visual C#, and Visual J#.

5. Click OK.

Visual Web Developer grinds and whirs for a moment as it creates your
Web site. When it’s finished, a screen similar to the one shown in Figure
2-3 appears. Here, the Default.aspx page is opened in Source view.

Figure 2-3:
A newly
created

Web site
(C#).

36 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 36

Note that if you selected Visual Basic as the language for the Web site, the
Default.aspx page is opened in Design view rather than in Source view. I
guess Microsoft figures that C# programmers like the hard-coding efficiency
of Source view, while Visual Basic programmers prefer the drag-and-drop
comfort of Design view. Either way, you can switch between Design and
Source view by clicking the Design and Source buttons located at the bottom
of the Designer window.

Adding a label control
To display the “Hello, World!” greeting, we’ll add a label control to the
Default.aspx page. Follow these steps:

1. If the page is currently displayed in Source view, click the Design
button at the bottom of the Designer window.

This switches the Designer to Design view.

2. Drag a Label control from the Toolbox onto the page.

The Toolbox is located to the left of the Designer. If the Label control
isn’t visible, click the + icon next to the word Standard in the Toolbox.

Figure 2-4 shows how the label should appear.

Figure 2-4:
The

Default.
aspx page
with a Label

control.

37Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 37

3. In the Properties window, set the Text property of the label to Hello,
World!.

You can set the Text property by using the Properties window, which
is usually located at the bottom-right edge of the Visual Web Designer
window. First, select the label. Then, locate the Text property in the
Properties window and change its value to “Hello, World!” by clicking
the Text property and typing the new value. (If the Properties window
isn’t visible, press F4 to display it.)

4. Expand the Font property in the Properties window, and then set the
Size property to X-Large.

To expand the Font property, click the + icon next to the word Font.

Figure 2-5 shows what the page looks like after you’ve set the properties
for the label.

Note that when you add a control in Design view, Visual Web Developer auto-
matically adds code to the Default.aspx file to declare the control. You can
switch back to Source view to see this code. Here’s the code that’s generated
for the label in the Hello World application:

<asp:Label ID=”Label1” runat=”server” Font-Size=”X-Large”
Text=”Hello, World!”></asp:Label>

Figure 2-5:
The label

after its
properties
have been

set.

38 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 38

Here, the <asp:Label> element defines the label control. The ID attribute
identifies the label’s name as Label1. The runat attribute is required for all
ASP.NET controls; it simply indicates that the control runs on the server
rather than on the client. Next, the Font-Size attribute specifies the size of
the font used to display the label’s text, and the Text attribute provides the
text displayed in the label.

Running the application
The Hello World application is now ready to run. There are several ways to
run an application from Visual Web Developer; the easiest is simply to click
the Start button (pictured in the margin). Here are a few other alternatives:

� Choose Debug➪Start Debugging

� Press F5

� Right-click the Default.aspx page in the Solution Explorer window
and choose View In Browser.

The first time you run an ASP.NET application, Visual Web Developer displays
the dialog box shown in Figure 2-6. This dialog box appears because in order to
debug an ASP.NET application, debugging must be enabled in the web.config
file. Unfortunately, the default template for new ASP.NET applications doesn’t
include a web.config file. So, this dialog box offers to create a web.config
file for you so that the application can be run in debugging mode.

To run the application, click OK. Visual Web Developer then compiles the appli-
cation. Assuming there are no compiler errors, the built-in development Web
server starts and the application runs. After a few moments, a Browser window
appears and shows the application’s start page (usually Default.aspx), as
shown in Figure 2-7.

Figure 2-6:
The dialog
box that’s
displayed

the first time
you run an

ASP.NET
application.

39Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 39

When you’re satisfied that the application has run correctly, you can stop
the application by closing the Browser window. Alternatively, you can return
to the Visual Web Developer window and click the Stop Debugging button
(shown in the margin).

Adding a Code-Behind File
So far, the Hello World application doesn’t do anything other than display a
static message on a Web page. To make the application a little more interest-
ing, in this section we add a code-behind file — a separate file that contains
the program logic for the application — to display the time as well as the
“Hello, World!” greeting. Here are the steps:

1. If the Default.aspx page isn’t already on-screen in Design view,
switch to Design view now.

To switch to Design view, click the Design button at the bottom of the
Designer window.

2. Double-click anywhere on the background of the page.

This opens the code-behind file for the Default.aspx page and creates
a Page_Load method that’s executed each time the page is loaded.
Figure 2-8 shows how this appears when C# is the selected language.
(For VB, the code-behind file is similar, but naturally is coded in Visual
Basic rather than C#.)

Figure 2-7:
The Hello

World
application

in action.

40 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 40

3. Add code to the Page_Load method.

If you’re working in C#, add this code:

Label1.Text = “Hello, World!

”
+ DateTime.Now.ToLongDateString() + “
”
+ DateTime.Now.ToLongTimeString();

If you’re working in Visual Basic, add this code instead:

Label1.Text = “Hello, World!

” _
+ DateTime.Now.ToLongDateString() + “
” _
+ DateTime.Now.ToLongTimeString()

4. Run the application again.

This time the date and time should appear on the page, as shown in
Figure 2-9.

Note that the Page_Load method is executed each time the page is
loaded. As a result, you can update the date and time by clicking the
browser’s Refresh button.

Figure 2-8:
The code-
behind file

for the
Default.
aspx page.

41Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 41

Adding a Text Box and a Button
To show how you can accept user input in an ASP.NET application, in this
section we modify the Hello World application so it includes a text box and a
button. The user can enter his or her name in the text box. Then, when the
user clicks the button, a personalized greeting is added to the page. Figure
2-10 shows the revised Hello World application in action.

To add the text box and button to the page, switch to Design view and follow
these steps:

1. Place the insertion point right after the existing label, hit the Enter
key a couple of times, and type Your Name:.

Type it as text string, not as your name. (But you knew that.) Doing so
creates the descriptive text that will identify the text box.

2. Double-click the TextBox icon in the toolbox.

This adds a text box to the page.

3. Press the right-arrow key to move the cursor to the end of the line,
then press Enter twice.

This adds a blank line after the text box.

4. Double-click the Button icon in the toolbox.

This adds a button to the page.

Figure 2-9:
The Hello

World
program
displays
the date

and time.

42 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 42

5. Click the text box to select it, and then use the Properties window to
change the ID property from TextBox1 to txtName.

This gives the text box a more meaningful name than TextBox1.

6. Click the button to select it, and then use the Properties window to
change the Text property to Submit.

This changes the button text to Submit.

If you want, you can switch to Source view to see the ASPX code that’s
generated for the text box and the button.

7. Double-click the button.

The code-behind file appears and a skeleton method is created to handle
the Click event for the button. In C#, this skeleton method looks like this:

protected void Button1_Click(object sender, EventArgs e)
{
}

If you’re working in Visual Basic, the skeleton method looks more like this:

Protected Sub Button1_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles
Button1.Click

End Sub

Figure 2-10:
The Hello

World
program

displays a
personalized

greeting.

43Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 43

8. Add code to the Click Event handler.

For C#, you should add the following code:

Label1.Text += “
Hello, “
+ txtName.Text;

For Visual Basic, use this code instead:

Label1.Text += “
Hello, “ _
+ txtName.Text

9. Run the application.

This time, the text box and button should appear. When you enter a name
and click the button, a greeting will be added to text displayed in the label.

For your reference, Listing 2-1 shows the complete Default.aspx file,
Listing 2-2 shows the C# version of the code-behind file, and Listing 2-3 shows
the Visual Basic version of the code-behind file.

To use the Visual Basic code-behind file, you must change the Language
attribute of the Page directive from C# to VB, and you should change the
CodeFile attribute from Default.aspx.cs to Default.aspx.vb.

Listing 2-1: The Default.aspx page

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” runat=”server”
Font-Size=”X-Large”
Text=”Hello, World!”></asp:Label>

Your name:
<asp:TextBox ID=”txtName”

runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server”

Text=”Submit” OnClick=”Button1_Click” />
</div>
</form>

</body>
</html>

44 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 44

Listing 2-2: The C# code-behind file

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender,
EventArgs e)

{
Label1.Text = “Hello, World!

”
+ DateTime.Now.ToLongDateString() + “
”
+ DateTime.Now.ToLongTimeString();

}

protected void Button1_Click(object sender,
EventArgs e)

{
Label1.Text += “
Hello, “
+ txtName.Text;

}
}

Listing 2-3: The Visual Basic code-behind file

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
Label1.Text = “Hello, World!

” _
+ DateTime.Now.ToLongDateString() + “
” _
+ DateTime.Now.ToLongTimeString()

End Sub

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click
Label1.Text += “
Hello, “ _
+ txtName.Text

End Sub

End Class

45Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 45

Working with Folders and
Other Project Items

By default, a new ASP.NET Web project includes just one subfolder, named
App_Data. This folder is designed to hold databases used by the application,
but in practice it sees action only if the application uses Access databases or
text files. If the application uses a SQL Server database or a database man-
aged by some other database server, the actual database is usually stored in
a location that’s independent of the Web application.

You can add other folders to a Web project by right-clicking the project node in
the Solution Explorer and choosing the Add New Item command. This brings
up a dialog box that enables you to add a variety of items to the project —
including Web forms, HTML files, text files, Master Pages, and so on.

When you add a Web form to a project, you must supply the name and lan-
guage to use for the page. In addition, check boxes let you indicate whether
you want to use a Master Page and place the code in a separate code-behind
file. You should almost always select both of these options. You can also add
additional folders to a project by right-clicking the project in the Solution
Explorer and selecting the Add Folder command. This brings up a submenu,
from which you can choose to add any of the following types of folders:

� Regular folder: Adds a regular Windows folder to the project. Use regu-
lar folders to organize the application’s Web pages into groups or to
store related items such as images.

� Bin folder: Adds a folder to store pre-compiled class libraries.

� App_GlobalResources: Adds a folder that contains global resources that
can be accessed by any page in the application.

Consider carefully which resources you want to place in this folder.

� App_LocalResources: Adds a folder that contains local resources, which are
available only to pages in the same folder as the App_LocalResources
folder. App_LocalResources folders are sometimes used along with regu-
lar folders that contain logically related pages to hold resources available
only to those pages.

� App_WebReferences: Adds a folder that holds references to Web
services.

� App_Browsers: Adds a folder that can hold browser-definition files.
ASP.NET uses these files to identify the capabilities of individual browsers.

� Themes: Adds a folder that holds files related to themes — a new ASP.NET
feature that helps ensure a consistent appearance throughout a Web site
and makes it easier to change the Web site’s appearance when necessary.

46 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 46

Note that none of the applications in this book use the App_
GlobalResources, App_LocalResources, App_WebReferences,
App_Browsers, or Themes folders. As a result, you can safely ignore
these folders until you’re ready to dig deeper.

Debugging Web Applications
Visual Web Developer includes a variety of built-in debugging features that
can help you track down the nasty bugs that are sure to creep into your
application. With the application we’ve presented so far, it’s hard for
anything to go wrong because the application doesn’t really do any signifi-
cant work. So, this section starts by presenting a simple calculator applica-
tion that we can use to explore Visual Web Developer’s debugging features.

Creating a calculator page
Figure 2-11 shows a simple Web page that accepts two numbers as input
and displays the sum of the numbers when the user clicks the button. The
.aspx file for this page is shown in Listing 2-4. Listing 2-5 shows the C# ver-
sion of the code-behind file for this page, and Listing 2-6 shows the Visual
Basic version.

Note that for the Visual Basic version of the code-behind file to work, you
must change the language reference in the .aspx file, the CodeFile attribute
to Default.aspx.vb, and the AutoEventWireup attribute to “false”. Thus,
the Page directive for the VB version should look like this:

<%@ Page Language=”VB”
AutoEventWireup=”false”
CodeFile=”Default.aspx.vb”
Inherits=”_Default” %>

In addition, you should remove the OnClick attribute for the Button control.

You can see right away the problem waiting to happen with this application.
It parses whatever the user enters into the two text boxes to decimal types,
and then adds the numbers and displays the result. The application will work
fine as long as the user enters valid numbers in both text boxes. But if the
user leaves one or both boxes blank, or enters something other than a valid
number, the program will fail.

In this case, the problem is easy enough to find. However, this simple pro-
gram is adequate to demonstrate most of Visual Web Developer’s debugging
features.

47Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 47

Listing 2-4: The Default.aspx page for the Calculator application

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

First number:
<asp:TextBox ID=”txtFirst” runat=”server”>
</asp:TextBox>

Second number:
<asp:TextBox ID=”txtSecond” runat=”server”>
</asp:TextBox>

<asp:Button ID=”btnAdd” runat=”server”

OnClick=”btnAdd_Click” Text=”Add” />

The answer is:
<asp:Label ID=”lblAnswer” runat=”server”>
</asp:Label>

</div>
</form>

</body>
</html>

Figure 2-11:
A simple

calculator
program in

action.

48 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 48

Listing 2-5: The C# code-behind file for the Calculator application
(Default.aspx.cs)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void btnAdd_Click(object sender, EventArgs
e)

{
decimal a = decimal.Parse(txtFirst.Text);
decimal b = decimal.Parse(txtSecond.Text);
decimal c = a + b;
lblAnswer.Text = c.ToString();

}
}

Listing 2-6: The Visual Basic code-behind file for the Calculator
application (Default.aspx.vb)

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub btnAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click
Dim a, b, c As Decimal
a = Decimal.Parse(txtFirst.Text)
b = Decimal.Parse(txtSecond.Text)
c = a + b
lblAnswer.Text = c.ToString()

End Sub

End Class

Working in Break mode
Run the Calculator application by pressing F5, which starts the application in
debugging mode. Just to make sure it works, enter a number in each of the
text boxes and click Add. The program should add the numbers together and

49Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 49

display the result. Now enter 5 for the first number and abc for the second
and click Add again. This causes the program to throw an uncaught excep-
tion, which in turn throws Visual Web Developer into Break mode, as shown
in Figure 2-12.

As you can see, Visual Web Developer highlights the statement that threw the
exception and displays the details of the exception. In this case, the message
FormatException was unhandled by user code indicates that a
FormatException was thrown and wasn’t handled.

Displaying data values
One of the most useful debugging features in Visual Web Developer is the
DataTips feature, which displays the value of a variable when you point at it
while the system is in Break mode. For example, if you point at the Text
property for the txtSecond text box, a tip balloon will appear showing the
current value of this property, as shown in Figure 2-13.

You can even use a data tip to change the actual value of a variable while the
program is running. Just click the value in the data tip, and then type a new
value.

Figure 2-12:
Debugging

an uncaught
exception.

50 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 50

Another way to determine the values of variables is to use the Locals
window. Looking back at, Figure 2-12, you’ll find the Locals window in the
lower-left corner of the screen. As you can see, the value of the a variable has
been properly parsed to the value 5, but the b and c variables remain at their
default values: 0 (zero).

To find the value of the Text property in the Locals window, first expand the
this node. (If you’re working in Visual Basic, use the Me node instead.) This
lists all the controls on the current page. Locate and expand the txtSecond
node, and then locate the Text property.

Controlling execution and
setting breakpoints
You can control the execution of the application by stepping through the
application one or more lines at a time. In addition, you can set breakpoints,
which cause the debugger to interrupt the program when they are encoun-
tered. The following buttons appear on the Debug toolbar to help you control
the program’s execution:

� Continue: Continues execution with the next statement.

� Break: Interrupts the application and places Visual Web Developer into
Break mode.

� Stop Debugging: Stops the application.

� Restart: Restarts the application.

� Show Next Statement: Highlights the next statement to be executed.

� Step Into: Executes the next statement and then breaks. If the statement
calls a method, execution stops with the first statement in the method.

� Step Over: Executes the next statement, and then breaks. If the state-
ment calls a method, the entire method is executed without breaking.

� Step Out: Finishes the current method and then breaks.

Figure 2-13:
Displaying a

data tip.

51Chapter 2: Using Visual Studio 2005

06_597760 ch02.qxp 1/11/06 9:51 PM Page 51

You can set a breakpoint at any statement in your program by clicking in the
gray border on the left edge of the Designer window, next to the statement
where you want the program to break. A large dot appears in the gray border
to mark the breakpoint.

Deploying ASP.NET Applications
Eventually, the Big Day comes: You’ve finished the application, tracked down
and removed all the bugs, and you’re ready for the application to go live.
That’s when Visual Web Developer’s deployment features come in handy.

In general, there are three ways to deploy an ASP.NET application:

� Xcopy deployment: This is the simplest type of deployment. You simply
copy the files from your development server to the production server.
You can use this deployment method by choosing the Web Site➪Copy
Web Site command.

One problem with Xcopy deployment is that the application isn’t compiled
on the production server until the first time the application is accessed. To
solve that problem, you can use precompiled deployment instead.

� Precompiled deployment: In this type of deployment, the entire applica-
tion is compiled. Then the compiled assemblies are copied to the pro-
duction server. To use precompiled deployment, choose the Build➪
Publish Web Site command. Or use the aspnet_compiler command
from a command prompt. (Note that the Publish Web Site command isn’t
available in Visual Web Developer 2005 Express Edition.)

� Setup project: A third way to deploy a Web application is to create a
Setup project for the Web site. Then you can deploy the application by
running the Setup program on the target server. This is the most compli-
cated (and least used) form of deployment for ASP.NET applications.
(Setup projects are only available if you use Visual Studio 2005; VWDE
doesn’t provide Setup projects.)

Before you deploy an ASP.NET application, be sure to nail down a few final
changes to make the application ready for production — in particular, these:

� Turn off debugging in the web.config file:

<compilation defaultLanguage=”C#” debug=”false” />

� Check the Page directive for all pages; make sure tracing is not turned
on by removing any trace=”True” attributes.

� Make sure the web.config file contains this line:

<customErrors mode=”RemoteOnly” />

That way detailed error pages won’t be displayed for production users.

52 Part I: Introducing ASP.NET 2.0 Application Development

06_597760 ch02.qxp 1/11/06 9:51 PM Page 52

Part II
Building Secure

Applications

07_597760 pt02.qxp 1/11/06 9:51 PM Page 53

In this part . . .

This part covers one of the most important aspects of
building ASP.NET applications: security. Chapter 3

begins with an overview of security issues for ASP.NET
application developers. Then Chapter 4 shows you how to
develop a complete user-registration-and-authentication
application.

Many of the other applications in this book can be inte-
grated with the application presented in Chapter 4. For
example, you may want to require users to register before
they can use the Shopping Cart application (presented in
Chapter 6). And for the back-end applications shown in
Part IV, you may want to limit access to users who have
been registered as administrative personnel.

07_597760 pt02.qxp 1/11/06 9:51 PM Page 54

Chapter 3

Designing Secure ASP.NET
Applications

In This Chapter
� Understanding user authentication and authorization

� Looking at membership providers

� Using ASP.NET 2.0 login controls

� Examining other security issues

In the 1960s television series Get Smart, they had a top-secret security
device known as the Cone of Silence. Whenever Max (Agent 86) and The

Chief were about to discuss matters of importance, Max would insist that they
use the Cone of Silence. The Chief would protest, but Max would eventually
win out and they’d lower the Cone over themselves.

Of course, the gag was that the Cone of Silence was so effective they couldn’t
even hear themselves talk. Computer security is sometimes like that. The key
is designing an application secure enough that sensitive data is protected,
but not so secure that the application becomes unusable.

This chapter describes some of the most important techniques for creating
secure Web applications using ASP.NET 2.0. Most of this chapter explores
ASP.NET’s built-in features for user authentication, including the new login
controls. You’ll also find tips for creating applications that are safe from vari-
ous types of security threats such as cross-site scripting and SQL injections
(more about those shortly).

Understanding ASP.NET User
Authentication

Many Web applications require that the user register with the system and log
in before using the application. For example, a shopping-cart application

08_597760 ch03.qxp 1/11/06 9:53 PM Page 55

requires that the user log in before completing a purchase. That way, the
application knows who is purchasing the items, who to ship the items to, and
who to send the bill to. Similarly, community applications such as forums and
blogs require users to log in before posting content to the application.

Some applications require the user to log in before he or she can view any
page in the application. Other applications have some pages that can be
viewed anonymously and others that require a log in. For example, an online
store might allow users to view a catalog and add items to a shopping cart
without logging in, but require a login to complete a purchase. And a forum
or blog might allow anyone to view other users’ posts without logging in, but
the user must log in to make a post of his or her own.

In addition, some applications have more than one kind of user. For example,
most of the users of a shopping-cart application can view the company’s
products, add items to a shopping cart, and make purchases, but can’t make
changes to the items in the Products database. To do that, the user must be
an administrator. Similarly, forums typically distinguish between normal
users (who are allowed to post information) and moderators (who can delete
questionable posts or ban abusive users).

There are two aspects of user registration and login security in ASP.NET:

� Authentication, which refers to the process of determining who a user
is, and whether the user really is who he or she claims to be.

� Authorization, which refers to the process of determining whether a par-
ticular user, once authenticated, can access a particular Web site page.

The following sections describe the authentication and authorization features
available in ASP.NET.

Examining three types of authentication
ASP.NET provides three basic methods for authenticating users:

� Forms-based authentication: Uses a membership database to store the
names and passwords of valid users. Whenever a user attempts to access
a restricted page, ASP.NET automatically redirects the user to a login page
(normally named Login.aspx), which prompts the user for a name and
password and attempts to authenticate the user. The originally requested
page is then displayed if the user is valid. This is the most common type
of authentication for Web sites that allow public access but require that
users create login accounts to access the application.

� Windows-based authentication: Uses existing Windows accounts to
authenticate users. This type of authentication is used mostly for intranet
applications, where the users already have valid Windows accounts.

56 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 56

� Passport authentication: Uses Microsoft’s Passport service to authenti-
cate users. When you use Passport authentication, a user must have a
valid Passport account to access the application. Of the three authenti-
cation modes, this one is the least used.

The rest of this chapter (and the rest of this book) assumes you will use
forms-based authentication when you need to restrict access to your Web
applications.

Configuring forms-based authentication
To configure an ASP.NET application to use forms-based authentication, add
an <authentication> element to the <system.web> section of the applica-
tion’s root web.config file. In its simplest form, this element looks like this:

<system.web>
<authentication mode=”Forms” />

</system.web>

That’s all you need do to enable the authentication of forms, if you’re okay
with using the default settings. If you want, you can customize the settings
by adding a <forms> subelement beneath the <authentication> element.
Here’s an example:

<system.web>
<authentication mode=”Forms” >

<forms loginUrl=”Login.aspx” />
</authentication>

</system.web>

Here, forms-based authentication is configured so that the login page is
named Signin.aspx rather than the default Login.aspx.

You can also add a <Credentials> element that lists the names and pass-
words of the users. However, it’s considered bad form (groan) to list the
passwords directly in the web.config file because of security risks. So a
separate database is usually used instead.

Configuring authorization
Authorization — that is, the process of determining which users are allowed
to access what resources in a Web application — is another capability you
configure via the web.config file. The key to configuring authorization is
realizing two vital aspects of how it works:

57Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 57

� Each folder within a Web application can have its own web.config file.

� The authorization settings in a given web.config file apply only to the
files in the folder where a web.config file appears, plus any subfolders.
(Note, however, that a subfolder can have its own web.config file, which
overrides the settings it gets from the parent folder’s web.config file.)

To configure access restrictions for the files in a folder, add a web.config file
to the folder, then add an <authorization> element to the web.config file’s
<system.web> element. Then, add one or more <allow> or <deny> ele-
ments. Here’s an example:

<system.web>
<authorization>

<deny users=”?” />
</authorization>

</system.web>

In this example, the ? wildcard prohibits anonymous users. As a result, only
authenticated users will be allowed to access the pages in the folder where
this web.config file appears.

You can also allow or deny access to specific users. Here’s an example:

<system.web>
<authorization>

<allow users=”Tom, Dick, Harry” />
<deny users=”*” />

</authorization>
</system.web>

Here, the <allow> element grants access to users named Tom, Dick, and
Harry, and the <deny> element uses a wildcard to deny access to all
other users.

Here are a few additional points regarding these elements:

� The ? wildcard refers only to users who haven’t logged in. The * wild-
card refers to all users, whether they’ve logged in or not.

� If you list more than one user name in an <allow> or <deny> element,
separate the names with commas.

� The order in which you list the <allow> and <deny> elements is impor-
tant. As soon as ASP.NET finds an <allow> or <deny> rule that applies
to the current user, the rule is applied and any remaining elements are
ignored. Thus, you should list rules that list specific users first, followed
by rules that use the ? wildcard, followed by rules that use the * wildcard.

58 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 58

If you don’t want to mess with coding the authorization elements yourself,
you can use the new browser-based configuration tool instead. From
Visual Studio, choose Web Site➪ASP.NET Configuration to access this tool.

Understanding membership providers
Prior to ASP.NET 2.0, you had to develop custom programming to store and
retrieve user data from a database. Now, ASP.NET 2.0 uses a provider model
that provides a standardized interface to the objects that maintain the user-
account information. In addition, ASP.NET 2.0 comes with a standard member-
ship provider, an application that stores basic user-account information in a
SQL Server database. The Login controls are designed to work with this
membership provider.

If the standard provider isn’t adequate to your needs, you can write your own
membership provider to use instead. As long as your custom provider con-
forms to the ASP.NET membership provider interface, the Login controls can
work with it.

To create a custom provider, you simply create a class that inherits the
abstract class System.Web.Security.MembershipProvider. This class
requires that you implement about two dozen properties and methods. (For
example, you must implement a CreateUser method that creates a user
account and a ValidateUser method that validates a user based on a name
and password. For openers.) For more information about creating your own
membership provider, refer to the Help.

After you’ve created a custom membership provider, you can use settings in
the web.config file to indicate that you want to use it instead of the stan-
dard membership provider. Here’s an example:

<system.web>
<membership defaultProvider=”MyMemberProvider” >

<providers>
<add name=”MyMemberProvider”

type=”MyNameSpace.MyMemberProvider”
connectionStringName=”MyProviderConn”
enablePasswordRetrieval=”false”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”true”

/>
</providers>

</membership>
</system.web>

Here, a custom membership provider named MyMemberProvider is created
using the class MyNameSpace.MyMemberProvider. This provider is desig-
nated as the default provider, used throughout the application unless you
specify otherwise.

59Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 59

Fortunately, the standard membership provider is suitable for most applica-
tions. So you don’t have to create your own membership provider unless
your application has unusual requirements.

Using ASP.NET Login Controls
One of the most useful new features in ASP.NET 2.0 is a suite of seven con-
trols designed to simplify applications that authenticate users. In Visual
Studio 2005, these controls are located in the toolbox under the Login tab.
The seven controls are as follows:

� Login: Lets the user log in by entering a user name and password.

� CreateUserWizard: Lets the user create a new user account.

� PasswordRecovery: Lets the user retrieve a forgotten password.

� ChangePassword: Lets the user change his or her password.

� LoginView: Displays the contents of a template based on the user’s
login status.

� LoginStatus: If the user is logged in, displays a link that logs the user
out. If the user isn’t logged in, displays a link that leads to the applica-
tion’s login page.

� LoginName: Displays the user’s login name if the user is logged in.

The following sections describe the basics of using each of these controls.

Using the Login control
The Login control provides a convenient way to let users log in to an appli-
cation. You should use the Login control on a page named Login.aspx.
That way, the Login control will be displayed automatically whenever a user
tries to access a page that requires the user to be logged in.

In its simplest form, the Login control looks like this:

<asp:Login id=”Login1” runat=”Server” />

The Login control displays text boxes that let the user enter a user name
and password. When those are filled in, the Login control uses the member-
ship provider to look up the user name and password in the membership
database. If the user name and password are valid, the user is logged in and
the page that was originally requested is displayed. If not, an error message is
displayed and the user is not logged in.

60 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 60

You can customize the Login control by using any of the optional attributes
listed in Table 3-1. For example, here’s a Login control that uses custom
titles and displays links to a new user-registration page and a password-
recovery page:

<asp:Login id=”Login1” runat=”Server”
TitleText=”Please enter your user name and password:”
UserNameLabelText=”Your user name:”
PasswordLabelText=”Your password:”
CreateUserText=”Register as a new user”
CreateUserUrl=”~/Login/Register.aspx”
PasswordRecoveryText=”Forgot your password?”
PasswordRecoveryUrl=”~/Login/Recover.aspx” />

Table 3-1 Attributes for the Login control
Attribute Explanation

id The ID associated with the Login control.

runat Runat=”Server” is required for all ASP.NET
server controls.

CreateUserIconUrl The URL of an image used as a link to a page that
registers a new user.

CreateUserText Text that’s displayed as a link to a page that registers
a new user.

CreateUserUrl The URL of a page that registers a new user.

DestinationPageUrl Sets the URL of the page that’s displayed when the
user successfully logs in. If this attribute is omitted,
the page that was originally requested is displayed.

DisplayRememberMe A Boolean that indicates whether the Login control
should display a check box that lets the user choose
to leave a cookie so the user can automatically be
logged in in the future.

FailureText The text message that’s displayed if the user name or
password is incorrect. The default reads: Your
login attempt has failed. Please
try again.

InstructionText A text value displayed immediately beneath the title
text, intended to provide login instructions for the
user. The default is an empty string.

LoginButtonText The text that’s displayed on the Login button.

(continued)

61Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 61

Table 3-1 (continued)
Attribute Explanation

LoginButtonType The button type for the Login button. You can
specify Button, Link, or Image. (If you
specify Image, then you should also specify
the LoginButtonImageUrl attribute.)

Orientation Specifies the layout of the login controls. You
can specify Horizontal or Vertical.
The default is Vertical.

PasswordLabelText The text that’s displayed in the label that
identifies the Password field.

PasswordRecoveryIconUrl The URL of an image used as a link to a page
that recovers a lost password.

PasswordRecoveryText Text that’s displayed as a link to a page that
recovers a lost password.

PasswordRecoveryUrl The URL of a page that recovers a lost
password.

RememberMeText The text displayed for the Remember Me
check box.

TextLayout Specifies the position of the labels relative to
the user name and password text boxes. If
you specify TextOnLeft, the labels
appear to the left of the text boxes. If you
specify TextOnTop, the labels appear
above the text boxes.

TitleText The text that’s displayed at the top of the
Login control.

UserNameLabelText The text that’s displayed in the label that
identifies the User Name field.

Using the CreateUserWizard control
The CreateUserWizard control automates the task of entering the informa-
tion for a new user and creating a record for the user in the membership
database. It displays text boxes that let the user enter a user name, a pass-
word, an e-mail address, a security question, and the answer to the security
question. Note that there are actually two text boxes for the password; the
user must enter the same password in both text boxes.

62 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 62

When the user clicks the New User button, the CreateUserWizard control
attempts to create a new user account, basing it on the information entered by
the user. If the account is successfully created, the user is logged in to the new
account. If the account can’t be created (for example, because an account
with the same user name already exists), an error message is displayed.

In its simplest form, the CreateUserWizard control looks like this:

<asp:CreateUserWizard id=”CreateUserWizard1”
runat=”Server” />

You can customize the CreateUserWizard control with the attributes listed
in Table 3-2. Here’s an example:

<asp:CreateUserWizard id=”CreateUserWizard1”
runat=”Server”

HeaderText=”New User Registration”
InstructionText=”Please enter your user information:”
UserNameLabelText=”Your user name:”
PasswordLabelText=”Your password:”
ConfirmPasswordLabelText=”Confirm password:”
EmailLabelText=”Your e-mail address:”
QuestionLabelText=”Your secret question:”
AnswerLabelText=”The answer:” />

In this example, attributes are used to set the text values displayed by the
labels that identify the data-entry text boxes.

Table 3-2 Attributes for the CreateUserWizard control
Attribute Explanation

id The ID associated with the
CreateUserWizard control.

runat Runat=”Server” is required for all
ASP.NET server controls.

AnswerLabelText The text that’s displayed in the label for the
Answer field.

CancelButtonImageUrl The URL of an image used on the Cancel
button.

CancelButtonText The text displayed on the Cancel button.

CancelButtonType The button type for the Cancel button. You can
specify Button, Link, or Image.

CancelDestinationPageUrl The URL of the page that’s displayed if the
user clicks the Cancel button.

(continued)

63Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 63

Table 3-2 (continued)
Attribute Explanation

CompleteStepText The text displayed when the user suc-
cessfully creates an account. (Note that
the Complete step isn’t shown unless
LoginCreatedUser is set to False.)

ContinueButtonImageUrl The URL of an image used on the Continue
button on the Success page.

ContinueButtonText The text displayed on the Continue button
on the Success page.

ContinueButtonType The button type for the Continue button on
the Success page. You can specify
Button, Link, or Image.

ContinueDestinationPageUrl The URL of the page that’s displayed if
the user clicks the Continue button on the
Success page.

ConfirmPasswordLabelText The text that’s displayed in the label that
identifies the Password
Confirmation field.

CreateUserButtonImageUrl The URL of an image used on the Create
User button.

CreateUserButtonText The text displayed on the Create User
button.

CreateUserButtonType The button type for the Create User button.
You can specify Button, Link, or Image.

DisableCreatedUser A Boolean that indicates whether the new
user should be allowed to log in. The default
is False. You can set this to True if you
require an administrator to approve a new
account before allowing the user to log in.

DisplayCancelButton A Boolean that indicates whether to display
the Cancel button. The default is False.

EmailLabelText The text that’s displayed in the label for
the Email field.

HeaderText The text that’s displayed in the header
area of the control.

InstructionText The text that’s displayed in the instruction
area, immediately below the header text.

64 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 64

Attribute Explanation

LoginCreatedUser A Boolean that indicates whether the new user should
automatically be logged in. The default is True.

PasswordLabelText The text that’s displayed in the label for the
Password field.

QuestionLabelText The text that’s displayed in the label for the
Security Question field.

UserNameLabelText The text that’s displayed in the label for the User
Name field.

Here are a few other things you should know about the CreateUserWizard
control:

� You can apply an AutoFormat to the CreateUserWizard control. Or
you can use style attributes (not listed in Table 3-2) to customize the
appearance of the wizard. For more information, refer to the Help.

� By default, the user is logged in the moment an account is created. You
can prevent this by specifying LoginCreatedUser=”False”.

� You can disable a new user account by specifying
DisableCreatedUser=”True”. This capability is especially handy
when you want to require an administrator’s approval before you allow
new users to access the site.

� The CreateUserWizard control inherits the new Wizard control. As a
result (you guessed it), many of the CreateUserWizard control’s basic
features are derived from the Wizard control. For more information
about the Wizard control, refer to Chapter 6.

� By default, the wizard has two steps, named CreateUserWizardStep
and CompleteWizardStep. You can add additional steps if you want. You
can also add a sidebar that displays a link to each of the wizard’s steps.
Each wizard step is represented by a template in a <WizardSteps> child
element. For example, when you create a CreateUserWizard control in
Visual Studio, the default steps are defined with code similar to this:

<asp:CreateUserWizard runat=”server”
ID=”CreateUserWizard1” >
<WizardSteps>

<asp:CreateUserWizardStep runat=”server”
ID=”CreateUserWizardStep1”>

</asp:CreateUserWizardStep>
<asp:CompleteWizardStep runat=”server”

ID=”CompleteWizardStep1”>
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

65Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 65

For more information about defining your own wizard steps, see the Help.

� The CreateUserWizard control can send a confirmation e-mail to the
new user. For that to work, you can add a <MailDefinition> child ele-
ment, like this:

<MailDefinition
From=”name@domain.com”
Subject=”Subject Line”
BodyFileName=”BodyFile.txt” />

If you prefer, you can use MailDefinition attributes directly in the
<CreateUserWizard> element, like this:

<asp:CreateUserWizard runat=”server”
ID=”CreateUserWizard1” >
MailDefinition-From=”name@domain.com”
MailDefintion-Subject=”Subject Line”
MailDefinition-BodyFileName=”BodyFile.txt” >

Either method is an acceptable way to specify mail-definition settings.

The body of the e-mail message will be taken from the file indicated by
the BodyFileName attribute. Note that this text file can include the
special variables <%UserName%> and <%Password%> to include the
user’s account name and password in the message.

� Besides the <MailDefinition> child element, you must also provide a
<MailSettings> element in the application’s web.config file. Here’s
a simple example:

<system.net>
<mailSettings>
<smtp>
<network host=”smtp.somewhere.com”
from=”Admin@MyDomain.com” />

</smtp>
</mailSettings>

</system.net>

Here the network host is smtp.somewhere.com and the from address
for the e-mail is Admin@MyDomain.com. Naturally, you’ll need to change
these settings to reflect the host name of the SMTP server that delivers
the mail, as well as the from address you want to use.

Using the PasswordRecovery control
The PasswordRecovery control lets a user retrieve a forgotten password.
The user must correctly answer the secret question on file for the user. Then
the password is reset to a random value, and the new password is e-mailed to
the e-mail address on file with the user.

66 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 66

E-mail is inherently insecure, and the password sent to the user is not encrypted.
As a result, you should carefully evaluate your application’s security require-
ments before you use this control.

In its simplest form, the PasswordRecovery control looks like this:

<asp:PasswordRecovery id=”PasswordRecovery1”
runat=”Server” >
<MailDefinition

From=”name@domain.com”
Subject=”Subject Line”
BodyFileName=”BodyFile.txt” />

</asp:PasswordRecovery>

If you prefer, you can code the mail-definition settings directly into the
<PasswordRecovery> element, like this:

<asp:PasswordRecovery id=”PasswordRecovery1”
runat=”Server”
MailDefinition-From=”name@domain.com”
MailDefinition-Subject=”Subject Line”
MailDefinition-BodyFileName=”BodyFile.txt” />

</asp:PasswordRecovery>

As you can see, the <MailDefinition> child element is required to provide
the information necessary to send an e-mail message with the user’s name
and password. As with the CreateUserWizard control, the body of the
e-mail message is supplied by a text file that can include the variables
<%UserName%> and <%Password%>, which are replaced by the user’s name
and password when the mail is sent.

The attributes listed in Table 3-3 let you customize the appearance of the
PasswordRecovery control. Here’s an example that changes the text labels
displayed by the control:

<asp:PasswordRecovery id=”PasswordRecovery1” runat=”Server”
UserNameTitleText=

“Forgot Your Password Again, Eh?

”
UserNameInstructionText=

“Enter your user name.

”
UserNameLabelText=”User name:”
QuestionTitleText=

“Forgot Your Password Again, Eh?

”
QuestionInstructionText=

“Answer the secret question.

”
QuestionLabelText=”
Secret question:”
AnswerLabelText=”
Your answer:”
SuccessText=”Your new password has been e-mailed to

you.”
/>

67Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 67

Table 3-3 Attributes for the PasswordRecovery control
Attribute Explanation

id The ID associated with the
PasswordRecovery control.

runat Runat=Server is required for all ASP.NET
server controls.

AnswerLabelText The text that’s displayed in the label for the
Answer field.

GeneralFailureText The text that’s displayed if the password
can’t be recovered.

QuestionFailureText The text that’s displayed if the user provides
the wrong answer for the secret question.

QuestionInstructionText The text that’s displayed in the label that
instructs the user to answer the secret
question.

QuestionLabelText The text that’s displayed in the label that
identifies the secret question.

QuestionTitleText The text that’s displayed in the title area
when the secret question is asked.

SubmitButtonImageUrl The URL of an image used on the Submit
button.

SubmitButtonText The text displayed on the Submit button.

SubmitButtonType The button type for the Submit button. You
can specify Button, Link, or Image.

SuccessPageUrl The URL of the page to be displayed when the
password has been successfully recovered.

SuccessText The text to display when the password has
been successfully recovered. Note that this
text is not displayed if the
SuccessPageUrl is provided.

TextLayout Specifies the position of the labels relative to
the user name and password text boxes. If
you specify TextOnLeft, the labels
appear to the left of the text boxes. If you
specify TextOnTop, the labels appear
above the text boxes.

68 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 68

Attribute Explanation

UserNameFailureText The text that’s displayed if the user provides
an incorrect user name.

UserNameInstructionText The text that’s displayed in the instruction
area when the user name is requested.

UserNameLabelText The text that’s displayed in the label that
identifies the User Name field.

UserNameTitleText The text that’s displayed in the title area
when the user name is requested.

Using the ChangePassword control
The ChangePassword control lets a user change his or her password. The
ChangePassword control can be configured to accept the user name of the
account whose password you want to change. If the control isn’t configured
to accept the user name, then the actual user must be logged in to change the
password.

The ChangePassword control can also be configured to e-mail the new pass-
word to the user. Note that because e-mail is inherently insecure, you should
carefully evaluate your application’s security requirements before you use
this feature.

In its simplest form, the ChangePassword control looks like this:

<asp:ChangePassword id=”ChangePassword1”
runat=”Server” />

If you want to e-mail the changed password to the user, you should add a
<MailDefinition> child element, like this:

<asp:ChangePassword id=”ChangePassword1”
runat=”Server” >
<MailDefinition

From=”name@domain.com”
Subject=”Subject Line”
BodyFileName=”BodyFile.txt” />

</asp:ChangePassword>

Here, the body of the e-mail message is supplied by a text file that can
include the variables <%UserName%> and <%Password%>. When the mes-
sage is sent, these variables are replaced by the user’s name and password.
(You can see an example of how this works in Chapter 4.)

69Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 69

You can customize the appearance and behavior of the ChangePassword
using the attributes listed in Table 3-4. Here’s an example:

<asp:ChangePassword id=”ChangePassword1” runat=”Server”
ChangePasswordTitleText=

“Change Your Password

”
PasswordLabelText=”Enter your current password:”
NewPasswordLabelText=”Enter the new password:”
ConfirmNewPasswordLabelText=”Confirm the new

password:”
/>

Table 3-4 Attributes for the ChangePassword control
Attribute Explanation

id The ID associated with the
ChangePassword control.

runat Runat=”Server” is required for all
ASP.NET server controls.

CancelButtonImageUrl The URL of an image used on the
Cancel button.

CancelButtonText The text displayed on the Cancel
button.

CancelButtonType The button type for the Cancel button.
You can specify Button, Link, or
Image.

CancelDestinationPageUrl The URL of the page that’s displayed if
the user clicks the Cancel button.

ChangePasswordButtonImageUrl The URL of an image used on the
Change Password button.

ChangePasswordButtonText The text displayed on the Change
Password button.

ChangePasswordButtonType The button type for the Change
Password button. You can specify
Button, Link, or Image.

ChangePasswordFailureText The text that’s displayed if the pass-
word can’t be changed.

ChangePasswordTitleText The text that’s displayed as the title for
the Change Password control.

70 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 70

Attribute Explanation

ConfirmNewPasswordLabelText The text that’s displayed in the label
that identifies the Confirm
Password field.

ContinueButtonImageUrl The URL of an image used on the
Continue button.

ContinueButtonText The text displayed on the Continue
button.

ContinueButtonType The button type for the Continue
button. You can specify Button,
Link, or Image.

ContinueDestinationPageUrl The URL of the page that’s displayed if
the user clicks the Continue button.

CreateUserText The text displayed as a link to the
application’s Create User page.

CreateUserUrl The URL of the application’s Create
User page.

DisplayUserName A Boolean that indicates whether the
user will be asked to enter a user
name. If True, the
ChangePassword control can be
used to change the password of an
account other than the one to which
the user is currently logged in.

InstructionText The text that’s displayed in the instruc-
tion area of the ChangePassword
control.

NewPasswordLabelText The text that’s displayed in the label that
identifies the New Password field.

NewPasswordRegularExpression A regular expression used to validate
the new password.

PasswordHintText The text that’s displayed to inform the
user of any password requirements,
such as minimum length or required
use of special characters.

PasswordLabelText The text that’s displayed by the label
that identifies the Current Password
field.

(continued)

71Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 71

Table 3-4 (continued)
Attribute Explanation

PasswordRecoveryText The text displayed as a link to the appli-
cation’s Password Recovery page.

PasswordRecoveryUrl The URL of the application’s Password
Recovery page.

SuccessPageUrl The URL of the page to be displayed
when the password has been suc-
cessfully changed.

SuccessText The text to display when the password
has been successfully changed. Note
that this text is not displayed if the
SuccessPageUrl is provided.

UserNameLabelText The text that’s displayed in the label
that identifies the User Name field.

Here are a couple of additional details you need to know about the
ChangePassword control:

� By default, the ChangePassword control requires that the
user be logged in already. However, that changes if you specify
DisplayUserName=”True”. Then, the ChangePassword control
displays a user name text box. The ChangePassword control then lets
the user change the password for any user, provided the user enters a
valid user name and password.

� The ChangePassword control has two views. The initial view — the
Change Password view — includes the text boxes that let the user enter
a new password. The Success view is displayed only if the password is
successfully changed. It displays a confirmation message. Note that if
you specify the SuccessPageUrl attribute, Success view is never dis-
played. Instead, the page at the specified URL is displayed.

Using the LoginView control
The LoginView control is a templated control that displays the contents of
one of its templates, depending on the login status of the user. This enables
you to customize the content of your Web site for different types of users. For
example, the User Authentication application presented later in this chapter
uses a LoginView control to display a link to the administration page that’s
visible only to members of the Admin role.

72 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 72

Unlike the other login controls presented so far in this chapter, the
LoginView control doesn’t rely much on the use of attributes to customize
its appearance or behavior. Instead, you customize the LoginView control
by using three types of templates, each of which is coded as a child element:

� Anonymous template: Displayed if the user isn’t logged in.

� LoggedIn template: Displayed if the user is logged in.

� RoleGroup template: Displayed if the user is logged in and is a member
of a particular role group.

The first two template types are simply specified as child elements of the
LoginView control. Consider this example:

<asp:LoginView runat=”Server” id=”LoginView1”>
<AnonymousTemplate>

This template is displayed for anonymous users.
</AnonymousTemplate>
<LoggedInTemplate>

This template is displayed for logged in users.
</LoggedInTemplate>

</asp:LoginView>

The role group templates are a little more complicated. They’re coded like this:

<asp:LoginView runat=”Server” id=”LoginView1”>
<RoleGroups>

<asp:RoleGroup Roles=”Admin”>
<ContentTemplate>
This template is displayed for

administrators.
</ContentTemplate>

</asp:RoleGroup>
</RoleGroups>

</asp:LoginView>

Note that the <RoleGroups> element can contain more than one
<RoleGroup> element. In addition, <RoleGroup> elements can be used
along with Anonymous and LoggedIn templates.

Using the LoginName control
The LoginName control is straightforward: It simply displays the user’s
name, assuming the user is logged in. If the user is not logged in, the
LoginName control displays nothing.

In its simplest form, the LoginName control looks like this:

<asp:LoginName runat=”server” id=”LoginName1” />

73Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 73

You might be tempted to precede the LoginName control with text, like this:

Hello, <asp:LoginName runat=”server” id=”LoginName1” />

Unfortunately, this technique won’t work right if the user isn’t logged in —
the text literal (Hello,) will be displayed but the name won’t be. Instead,
you can specify a format string, like this:

<asp:LoginName runat=”server” ID=”LoginName1”
FormatString=”Hello, {0}” />

That way, Hello, will be added as a prefix to the name if the user is logged
in. If the user isn’t logged in, nothing is displayed.

Using the LoginStatus control
The LoginStatus control displays a link that lets the user log in to — or log
out of — a Web site. If the user is already logged in, the link lets the user log
out. If the user isn’t logged in, the link lets the user log in.

The simple form of the LoginStatus control looks like this:

<asp:LoginStatus runat=”server” id=”LoginStatus1” />

You can customize the control by using the attributes listed in Table 3-5.

Table 3-5 Attributes for the LoginStatus control
Attribute Explanation

id The ID associated with the LoginStatus control.

runat Runat=”Server” is required for all ASP.NET server
controls.

LoginImageUrl The URL of an image used for the Login link.

LoginText The text displayed by the Login link.

LogoutAction Specifies what happens when the user logs out. You
can specify Redirect to redirect the user to the
page specified in the LogoutPageUrl attribute,
RedirectToLoginPage to redirect the user to
the application’s login page, or Refresh to refresh the
current page.

74 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 74

Attribute Explanation

LogoutImageUrl The URL of an image used for the Logout link.

LogoutPageUrl The URL of the page to redirect to when the user logs out
if the LogoutAction attribute specifies Redirect.

LogoutText The text displayed by the Logout link.

Protecting Against Other Threats
Although the main security technique for ASP.NET applications is user
authentication and authorization, not all security threats are related to unau-
thorized users accessing Web pages. The following sections describe some of
the more common types of threats besides unauthorized access — and offer
pointers to protect your ASP.NET applications against those threats.

Avoid malicious scripts
Cross-site scripting (also known as XSS) is a hacking technique in which a mali-
cious user enters a short snippet of JavaScript into a text box, hoping that
the application will save the JavaScript in the database and redisplay it later.
Then, when the script gets displayed, the browser will execute the script.

For example, suppose your application asks the user to enter his or her name
into a text box — and instead of entering a legitimate name, the user enters
the following:

<script>alert(“Gotcha!”);</script>

Then this string gets saved in the user’s Name column in the application’s
database. Later on, when the application retrieves the name to display it on a
Web page, the browser sees the <script> element and executes the script.
In this case, the script simply displays an alert dialog box with the message
Gotcha! But the script could easily be up to more malicious business — for
example, stealing values from cookies stored on the user’s computer.

Fortunately, ASP.NET includes built-in protection against this type of script
attack. By default, every input value is checked; if the value is potentially
dangerous input, the server refuses to accept it. ASP.NET throws an excep-
tion and displays an unattractive error page, as shown in Figure 3-1.

75Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 75

You can manually disable this process that checks for dangerous input —
page by page — if you add ValidateRequest=”False” to the Page direc-
tive for each page. Or you can disable the check for an entire site by adding
the following code to the web.config file:

<system.web>
<pages validateRequest=”False” />

</system.web>

If you do this, however, you must be careful to manually validate any input to
make sure it doesn’t contain suspicious content. The easiest way to do that is
to call the HtmlEncode method of the Server class before you save any
text-input data to a database. Here’s an example:

string Name = Server.HtmlEncode(txtName.Text);

This method replaces any HTML special characters (such as < and >) with
codes such as < and >, which a browser will display but not execute.

By default, bound controls (that is, controls that automatically display data
derived from a database) automatically encode data before they display it. As
a result, XSS protection is automatic for data displayed by the GridView and
other bound controls. Sure, you can disable this protection (by specifying
HtmlEncode=”False” for any bound fields you don’t want encoded) — but
I wouldn’t recommend it. Doing so leaves your application vulnerable to
script attacks.

Figure 3-1:
The error

page
displayed

when a user
enters

potentially
dangerous

input.

76 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 76

Preventing SQL-injection attacks
The typical SQL-injection attack happens when a hacker enters data that
includes a SQL command into a data-entry text box. To understand how this
can pose a threat, suppose your application uses the data entered into a text
box to construct a command in SQL, like this:

string cmd = “SELECT * FROM Cust WHERE CustID =’”
+ txtCustID.Text + “‘“;

Then, the program proceeds to execute the command contained in the cmd
string variable. For example, if the user enters 12345 in the CustID text box,
the following SQL command will be entered:

SELECT * FROM Cust WHERE CustID =’12345’

The SQL-injection attack isn’t all that hard to do: The hacker enters text that
tricks the program into executing a batch of statements. This requires knowl-
edge of both the database structure and the statement that’s supposed to be
executed, but the hacker can often gain that knowledge by trial and error.

For example, suppose that instead of entering 12345, the hacker enters this:

12345’; Delete * From Customers; Select * from Cust where
CustID=’.

Then the cmd string variable will contain the following text:

SELECT * FROM Cust WHERE CustID =’12345’; Delete * From
Cust; Select * from Cust where CustID=’’

Here, three SQL commands will be executed. The first retrieves a customer,
the second deletes all customers from the Cust table, and the third (again)
tries to retrieve a customer. In effect, the hacker has discovered how to
delete all of your customers!

Note that the only purpose of the third SQL command is to provide a match-
ing quotation mark for the final quotation mark that’s appended by the
assignment statement in the program. Without a matching quotation mark,
the SQL statement would contain a syntax error — and wouldn’t execute.

The moral of the story is this: never build SQL statements using literals
obtained from data-entry fields. Instead, put any data entered by the user
into parameters, and write your SQL statements so they use those parameter
values instead of the literals. For example, the program’s SQL statement
could be written like this:

string cmd = “SELECT * FROM Cust WHERE CustID = @CustID;

77Chapter 3: Designing Secure ASP.NET Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 77

Then, the program could create a SQL parameter named @CustID to hold the
value entered by the user.

Hiding error messages
ASP.NET provides a wealth of information that’s useful while you’re testing
and debugging an application. For example, when an unhandled exception is
thrown, a detailed error page appears, showing the exact cause of the error —
as well as several source statements immediately before and after the state-
ment that threw the exception.

This information is useful during testing and debugging, but can lead to seri-
ous security breaches once the program is in production. For example, con-
sider a hacker attempting to break into your application using the type of
SQL-injection attack described in the previous section. His or her nefarious
efforts will be much easier if the application displays error pages that include
the text of the actual SQL statements being submitted to the server!

To prevent these detailed error pages from being displayed, you’ll need to
provide custom error pages and configure the application’s web.config file
to use them. To do that, add a <customErrors> element to the web.config
file, like this:

<customErrors mode=”RemoteOnly”
defaultRedirect=”ErrorDefault.aspx”>
<error statusCode=”404”

redirect=”Error404.aspx” />
</customErrors>

Here, any 404 errors (Page Not Found) will be redirected to Error404.aspx,
and all other errors will be redirected to ErrorDefault.aspx. You can
include whatever error information you want your users to see on these pages.

The mode attribute of the <customErrors> element can have one of three
settings:

� Off: No custom error pages are displayed. Use this setting while you’re
testing and debugging your application.

� On: Custom error pages are displayed whenever an unhandled excep-
tion is thrown. This setting is useful while you’re testing and debugging
the error pages themselves.

� RemoteOnly: Custom error pages are shown for remote users, but not
for local users. This is the ideal setting to use after the application is in
production; it lets you see the default error pages so you can diagnose
any problems the application encounters, but it still shows the custom
error pages to the end-users.

78 Part II: Building Secure Applications

08_597760 ch03.qxp 1/11/06 9:53 PM Page 78

Chapter 4

Building a User Authentication
Application

In This Chapter
� Automating user authentication — without writing (much) code

� Designing the login Web pages

� Coding the application’s web.config files

� Building the login Web pages

I’m a big fan of the TV series M*A*S*H. In one of its best episodes (“Officer
of the Day”), Hawkeye reluctantly assumes the role of Officer of the Day

and must deal with local residents who come in to request medical assistance.
To prove they are friendly, the residents must present identification. The first
person to come in shows an identification card with the name Kim Luck. A few
minutes later, a second person comes in and also presents an identification
card with the name Kim Luck. Hawkeye asks, “Can you identify yourself?” and
the man points to himself and says emphatically “This is me!”

Many Web applications require a similar type of identification before the user
is allowed to access the Web site — user authentication: The user must pro-
vide a name as well as a password, and the name and password combination
must be on file before the user is allowed to enter the application. No sur-
prise, however, that most Web applications have more stringent security
requirements than the 4077. In particular, user names must be unique (they
can’t all be “Kim Luck”), and the password must be more complicated than
“This is me!”

Because logging in is such a common requirement for Web applications,
ASP.NET 2.0 provides a sophisticated set of login controls that can handle
almost all aspects of user-account management with little, if any, programming.
This chapter presents an application that uses these controls to implement

09_597760 ch04.qxp 1/11/06 9:54 PM Page 79

basic user authentication. In particular, the application requires users to log in
to gain access to the application’s content pages (which don’t actually contain
any content). If the user hasn’t registered, the application allows the user to
create an account. And if the user forgets his or her password, a password
recovery feature can send the user’s password via e-mail. The application also
includes a page that lists the name of each user that’s currently logged in. And
finally, the application distinguishes between ordinary users and administra-
tors, who can access a special administrator’s page.

The Application’s User Interface
Figure 4-1 shows the user interface flow for the User Authentication
Application. As you can see, the user interface consists of seven distinct
pages. The diagram indicates how the user’s interaction with the interface
flows from page to page.

New user

Logged
on

Logged
on

Forgot
password

User is
administrator

User requests
page

Registration
page

Register.asp

Admin.aspx

Default.aspx

Login.aspx

Content
page

ChangePW.aspx

Change
Password
page

UserList.aspx

User List page

Recovered.aspx

Password
recovered

Recovery
Confirmation
page

Recover.aspx

Recover
Password
pageLogin page

Admin pageFigure 4-1:
The user

interface for
the User

Authenti-
cation

application.

80 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 80

� The Login page: The Login page, shown in Figure 4-2, is the first page a
user sees when he or she tries to access the Content page. The Login
page requires the user to enter his or her user name and password.
Then, assuming the user name and password are valid, the application
displays the Content page. If the user name and password aren’t valid,
the Login page is redisplayed so the user has another chance to enter a
correct user name and password.

This page also has links to the Register page and the Recover Password
page.

� The Content page: This page, shown in Figure 4-3, is the page that the
user is trying to gain access to. This page is displayed only if the user
enters a valid user name and password in the Login page. For this appli-
cation, the content page will be named Default.aspx and won’t actu-
ally contain any useful information. Instead, it just displays a message
that says (in effect), “Congratulations, you have reached the content
page.” Of course, in an actual application, this page would have to be
more interesting. Otherwise why would users go to the trouble to regis-
ter and log in just to see an essentially blank page?

Figure 4-2:
The Login

page.

81Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 81

If the user has logged in with an administrator account, this page will
also contain a link to the Administration page. Then the user can click
this link to perform administrative functions. Note that this link doesn’t
appear if the user is not an administrator.

� The Admin page: The Admin page, shown in Figure 4-4, can only be
reached by those users who have logged in with an administrator
account. For this application, the Admin page doesn’t do anything
other than display a message indicating that the Admin page has been
reached. In a real application, this page would contain links to adminis-
trative functions, such as updating databases or managing Web site
content. (The Admin page also includes a button that leads back to the
Main Content page.)

� The Registration page: Figure 4-5 shows the Registration page, which
lets the user create a new user account. More specifically, it lets the
user enter the required account information — which includes a user
name, a password (the password must be entered twice), an e-mail
address, a secret question, and the answer to the secret question.
Assuming the user enters correct information, the account is created,
the user is automatically logged in using the new account, and the
Content page is displayed.

Figure 4-3:
The Content

page.

82 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 82

Figure 4-5:
The

Registration
page.

Figure 4-4:
The Admin

page.

83Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 83

If the registration is successful, the Registration page sends an e-mail
message to the address entered by the user. (Figure 4-6 gives you an idea
what this kind of e-mail message looks like.)

� The Recover Password page: The user can use the Recover Password
page, shown in Figure 4-7, to retrieve a forgotten password.

This page first asks for the user name. Then, if the user name is valid, it
displays the secret question and allows the user to enter the answer.
Finally, if the answer is correct, the user’s password is changed to a
random value and the new password is e-mailed to the e-mail address
on file for the user.

� The Recovery Confirmation page: The page shown in Figure 4-8 is dis-
played when the Recover Password page successfully e-mails the user’s
password. It displays a confirmation message indicating that the pass-
word has been e-mailed and a button the user can click to return to the
Login page.

Figure 4-9 shows the e-mail message that’s sent when the password has
been recovered. Note that the Recover Password page actually changes
the user’s password, assigning a random combination of alphanumeric
characters and symbols. The resulting password is not likely to be very
friendly.

Figure 4-6:
The e-mail

sent to
confirm a

registration.

84 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 84

Figure 4-7:
The

Recover
Password

pages.

85Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 85

� The Change Password page: The Change Password page, shown in
Figure 4-10, lets the user change his or her password. The user can
access this page from any content page once the user has logged in.

� The User List page: The User List page, shown in Figure 4-11, displays
the name of each user currently logged in to the system. Any registered
user can access this page from the Content page. As a result, the user
must be logged in to the application to view the User List page.

Figure 4-9:
The e-mail
sent when

the
password is

recovered.

Figure 4-8:
The

Recovery
Confirmation

page.

86 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 86

Figure 4-11:
The User
List page.

Figure 4-10:
The Change

Password
page.

87Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 87

Designing the User Authorization
Application

To keep the User Authorization application simple to use, it takes advantage
of built-in ASP.NET authorization features — as many as possible, especially
these:

� It uses the supplied SQL membership provider to manage the user data-
base. If you want to extend the application so that it tracks additional
data besides the user name, password, and the secret question and
answer, or if you want to use your own database to store the member
information, you can code your own provider. For most applications,
however, the supplied provider should be adequate.

� It relies on the new login controls as much as possible and uses as little
C# or Visual Basic code as possible. In fact, the only page that requires a
code-behind file is the User List page. The other pages rely entirely on
the declarative features of the new login controls.

� The application uses a Master Page (MasterPage.master) to provide
a consistent layout for each page of the application. Even so, I refrained
from using fancy formatting features; the resulting pages may be plain-
looking, but they’re easier to modify and adapt to your application’s
unique needs. You can easily add formatting to the pages by applying
AutoFormats or themes.

The Application’s Folders
As with most ASP.NET applications, the User Authorization application
includes several folders. These folders are used to determine which pages
can be viewed by users who haven’t yet logged in, which ones are visible to
normal users who have logged in, and which ones can only be seen by admin-
istrators who have logged in. The application uses the following folders:

� Root: The application’s root folder (though the Solution Explorer doesn’t
call it that) contains the pages that can be viewed by a user once he
or she has logged in. These include the application’s main content
page (Default.aspx), the user list page (UserList.aspx), the
Change Password page (ChangePW.aspx), and the Master Page
(MasterPage.master). In addition, this folder contains the Login
page itself (Login.aspx).

� App_Data: This folder contains the membership database (ASPNETDB.
MDF). The membership database is generated automatically, so you
don’t have to create it yourself.

88 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 88

� Images: This folder contains the banner graphic that’s displayed by the
Master Page. This folder also contains a web.config file that allows
anonymous users to access its files. That’s required so the banner can be
displayed by the Login.aspx, Register.aspx, and Recover.aspx
pages that appear on-screen before a user has logged in.

� Login: This folder contains the files necessary to display the Register and
Recover Password pages. In addition, this folder contains a web.config
file that allows anonymous users to access the files it contains. That
way, users who haven’t logged in can display the Register and Recover
Password pages.

� Admin: This folder contains the Administration page (Admin.aspx) and
a web.config file that restricts access to administrative users (that is,
users who are assigned to the Admin role).

The root and App_Data folders are created automatically when you create a
new Web site in Visual Studio. You’ll have to create the Images, Login, and
Admin folders manually, using the Solution Explorer. (To create a folder in the
Solution Explorer, right-click the root folder and choose the New➪Folder
command.)

The web.config Files
The User Authentication application relies on web.config files to configure
its authentication features. Listing 4-1 shows the web.config file that
appears in the application’s root folder. The following paragraphs point out
the highlights of this web.config file:

➝ 1 The <authorization> section contains a <deny> element that
denies access to anonymous users, as indicated by the question
mark in the users attribute.

➝ 2 The <roleManager> element is required to enable roles. The
roles themselves are defined in the membership database.

➝ 3 The <authentication> element specifies that the application
will use forms-based authentication. As a result, the application will
automatically redirect to the Login.aspx page whenever necessary.

➝ 4 The <mailSettings> section provides the information neces-
sary to access a mail server to send e-mail when the user registers
or requests a password recovery. The host attribute specifies
the name of the mail host, and the from attribute specifies the
address listed in the from field for any e-mail messages sent.
Depending on how your mail server is configured, you may also
need to supply a user name and password via the user and
password attributes.

89Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 89

Listing 4-1: The main web.config file

<?xml version=”1.0”?>
<configuration xmlns=

“http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings />
<connectionStrings/>

<system.web>
<compilation debug=”true”/>
<authorization> ➝1
<deny users=”?” />

</authorization>
<roleManager enabled=”true” /> ➝2
<authentication mode=”Forms” /> ➝3

</system.web>

<system.net>
<mailSettings> ➝4
<smtp>
<network host=”my.mail.server” />

</smtp>
</mailSettings>

</system.net>

</configuration>

In addition to the main web.config file, the User Authentication application
has three other web.config files that specify access to the Login, Admin,
and Images folders. The web.config files for the Login and Images folders
are the same:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=
“http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<authorization>
<allow users=”?” />

</authorization>
</system.web>

</configuration>

As you can see, this web.config file specifically allows access for anony-
mous users (the ? wildcard refers to anonymous users).

90 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 90

The web.config file for the Admin folder is a little different:

<?xml version=”1.0” encoding=”utf-8”?>
<configuration xmlns=
“http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<authorization>
<allow roles=”Admin” />
<deny users=”*” />

</authorization>
</system.web>

</configuration>

Here, the <allow> element allows users who are assigned to the Admin role
to access files in the folder. Then the <deny> element denies access to all
other users.

The order is important here. If you listed the <deny> element before the
<allow> element, no one would be able to access pages in the Admin folder.

Building Pages for the User
Authentication Application

The following sections present the .aspx file for each of the User
Authentication application’s pages and, where appropriate, both C# and
Visual Basic versions of the code-behind files. Note that .aspx files assume
that C# is for the code-behind files.

To make these pages work with the Visual Basic code-behind files, you must
change the Language attribute in the Page directive from C# to VB, and the
CodeFile attribute will need to specify the Visual Basic version of the code-
behind file, using .vb as the extension instead of .cs.

Building the Master Page
Before we look at the individual Content pages that make up the User
Authentication application, Listing 4-2 presents the Master Page that’s used
by the Content pages. This Master Page displays four elements on every page
of the application:

� A banner.

� A link that lets the user log in or out.

91Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 91

� If the user is logged in, a greeting such as Hello, Hawkeye.

� If the user is a member of the Admin role, a link to the Admin.aspx
page. (To assign a member to the Admin role, use the Web-based admin-
istration tool.)

Listing 4-2: The Master Page (MasterPage.master)

<%@ Master Language=”C#” AutoEventWireup=”true” ➝1
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>
<title>User Authentication Application</title>

</head>

<body>
<form id=”form1” runat=”server”>
<div>

<asp:Image ID=”Image1” runat=”server” ➝2
ImageUrl=”~/Images/Banner.jpg”/>

<asp:LoginStatus ID=”LoginStatus1” ➝3
runat=”server” />

<asp:LoginView ID=”LoginView1” runat=”server”> ➝4
<RoleGroups>
<asp:RoleGroup Roles=”Admin”>
<ContentTemplate>
Admin Page

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>
</asp:LoginView>

<asp:LoginName ID=”LoginName1” runat=”server” ➝5
FormatString=”Hello, {0}” />

<asp:contentplaceholder runat=”server” ➝6
id=”ContentPlaceHolder1” >

</asp:contentplaceholder>

</div>
</form>

</body>
</html>

92 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 92

The following paragraphs describe the key lines of the Master Page:

➝ 1 The Master directive identifies the file as a Master Page.

➝ 2 The Image control displays a banner image at the top of each
page. The Banner.jpg file is stored in the Images folder.

Notice the tilde used in the ImageUrl attribute (“~/Images/
Banner.jpg”). The tilde signifies the application’s root folder
and can be used in URLs in any ASP.NET control.

➝ 3 The LoginStatus control is a new ASP.NET 2.0 control that dis-
plays one of two links, depending on whether the user is logged
in or not. If the user is not logged in, a Login link is displayed to
allow the user to log in. If the user is logged in, a Logout link is
displayed to allow the user to log out. The Login or Logout link
appears immediately beneath the banner image.

➝ 4 The LoginView control is another new ASP.NET 2.0 control. It
displays the contents of a template depending on the user’s
login status. As this LoginView control shows, you can use the
<RoleGroups> element to create content that’s rendered if the
user is logged in and is assigned to the specified role. In this
case, the LoginView control renders a link to the Admin.aspx
page if the user is logged in and belongs to the Admin role.
Although this example doesn’t show it, you can also use an
<AnonymousTemplate> or a <LoggedInTemplate> element
to create content that’s rendered if the user is anonymous or
logged in.

➝ 5 The LoginName control displays the user’s name if the user is
logged in. If the user isn’t logged in, the LoginName control doesn’t
display anything. Notice that the LoginName control in this listing
uses a format string to format the name by adding “Hello, “ before
the name. You might be tempted to just specify “Hello, “ as a text lit-
eral immediately before the LoginName control. But if you do that,
the text will be displayed even if the user isn’t logged in. By using a
format string, the text won’t be displayed if the user isn’t logged in.

➝ 6 The ContentPlaceHolder control provides an area in which the
content from the individual pages can be displayed. Each content
page includes a Content control that refers to the ID of this
ContentPlaceHolder control.

Building the Content page
The content page (Default.aspx) is pretty simple, as it merely displays a
label indicating that the user has reached the page along with a link to the
UserList page. The code is shown in Listing 4-3. (Refer back to Figure 4-3 to
catch a glimpse of this page displayed in a browser window.)

93Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 93

Listing 4-3: The Content Page (Default.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Default.aspx.cs”
Inherits=”_Default” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

Congratulations! You have reached the content page.

List online users

</asp:Content>

The following paragraphs describe the high points of this listing:

➝ 1 The Page directive for a content page uses the MasterPageFile
attribute to specify the name of the Master Page, ~/MasterPage.
master.

If you haven’t worked with Master Pages before, you might be
wondering where the HTML <Head>, <Body>, and <Form> ele-
ments are. Those elements aren’t required here because this is a
content page that references a Master Page. As a result, those ele-
ments appear in the Master Page.

➝ 2 The <Content> element holds the content that’s displayed when
the page is rendered. The ContentPlaceHolderID attribute pro-
vides the name of the content placeholder defined in the Master
Page. In this case, the content is displayed in the placeholder
named ContentPlaceHolder1.

Building the Admin page
Like the Content page, the Admin page (Admin.aspx) is simpler. It displays a
label indicating that the user has reached the page and a button that returns
the user to the main content page. In an actual application, this page would
contain links to administrative functions such as database maintenance
pages. The code for the Admin page is shown in Listing 4-4. You can refer
back to Figure 4-4 to see this page displayed in a browser window.

This page is stored in the Admin folder, which contains a web.config file
that restricts access to users who are logged in and are assigned to the
Admin role. As a result, the page can be viewed only by administrative users.

94 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 94

Listing 4-4: The Admin Page (Admin.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Admin.aspx.cs”
Inherits=”Admin_Admin”
Title=”Administration Page” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

Congratulations, you have reached the
Administration Page.

<asp:Button ID=”Button1” runat=”server” ➝3

PostBackUrl=”~/Default.aspx”
Text=”Return to Main Page” />

</asp:Content>

The following paragraphs describe the key lines in this listing:

➝ 1 The Page directive uses the MasterPageFile attribute to specify
the name of the Master Page, ~/MasterPage.master.

➝ 2 The <Content> element displays a message that lets the user
know the Admin page has been reached.

➝ 3 The Button control that defines the “Return to Main Page” button
includes a new ASP.NET 2.0 feature: the PostBackUrl attribute.
PostBackUrl specifies the URL of the page that is posted when
the user clicks the button. This effectively allows the button to act
as a link to another page. With previous versions of ASP.NET,
you’d have to write an event handler for the button and use
Server.Transfer or Response.Redirect to return to the
Admin page — or use a hyperlink rather than a button.

Building the Login page
ASP.NET displays the Login page (Login.aspx) automatically whenever an
anonymous user tries to access a protected page. Other than designating
which pages are denied access via the web.config file, you don’t have to do
anything special to make the Login page appear. All you have to do is create a
page named Login.aspx in the application’s root folder and provide a login
control on the page. ASP.NET will then take care of the details for you.

95Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 95

Listing 4-5 shows the Login page for the User Authentication application. To
see how this page looks in a browser window, you can refer back to Figure 4-2.

Listing 4-5: The Login Page (Login.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Login.aspx.cs”
Inherits=”Login_Login”
Title=”Untitled Page” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:Login ID=”Login1” runat=”Server” ➝3
DestinationPageUrl=”~/Default.aspx” ➝4
TitleText=
“Please enter your account information:

”
CreateUserText=”New user?” ➝5
CreateUserUrl=”~/Login/Register.aspx”
PasswordRecoveryText=”Forgot password?” ➝6
PasswordRecoveryUrl=”~/Login/Recover.aspx” />

</asp:Content>

The following paragraphs describe the high points of this listing:

➝ 1 The Page directive specifies that ~/MasterPage.master is the
Master Page for this content page.

➝ 2 The <Content> element provides the content that’s displayed for
the Login page.

➝ 3 The Login control allows the user to log in. It displays text boxes
that let the user enter his or her user name and password and a
Log In button the user can click to log in.

➝ 4 The DestinationPageUrl attribute specifies the page that
should be displayed when the user successfully logs in. In this
case, the Default.aspx page is displayed.

➝ 5 The CreateUserText attribute specifies the text that’s displayed
in a link the user can click to create a new user account. Then the
CreateUserUrl attribute provides the URL of the page that han-
dles the user registration. In this case, the text is New user? and
the registration page is ~/Login/Register.aspx.

➝ 6 The PasswordRecoveryText attribute specifies the text that’s
displayed in a link the user can click if he or she forgets his or her
password. Then the PasswordRecoveryUrl attribute supplies
the URL of the page that handles password recovery. In this case,
the text is Forgot password? and the password-recovery page
is ~/Login/Recover.aspx.

96 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 96

Building the Register page
The Register page (Register.aspx) is displayed when the user clicks the
Not Registered? link on the Login page. This page should be created in the
Login directory.

Listing 4-6 shows the listing for the Register page. To see how this page looks
in a browser window, you can refer back to Figure 4-5. Note that this page
doesn’t require a code-behind file. That’s because the CreateUserWizard
control handles all functions required to register a user — automatically —
including the updating of the user-account database and reporting errors if
someone enters a duplicate user name or other invalid data.

Listing 4-6: The Register Page (Register.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Register.aspx.cs”
Inherits=”Login_Register”

Title=”User Registration” %>
<asp:Content ID=”Content1” Runat=”Server” ➝2

ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:CreateUserWizard ID=”CreateUserWizard1” ➝3

runat=”server”
ContinueDestinationPageUrl=”~/Default.aspx”
CreateUserButtonText=”Create Account”>

<WizardSteps> ➝4
<asp:CreateUserWizardStep

ID=”CreateUserWizardStep1” runat=”server”>
</asp:CreateUserWizardStep>
<asp:CompleteWizardStep

ID=”CompleteWizardStep1” runat=”server”>
</asp:CompleteWizardStep>

</WizardSteps>
<MailDefinition ➝5

From=”Admin@AcmePirate.com”
Subject=”Your New Acme Pirate Account”
BodyFileName=”~/Login/NewUser.txt” />

</asp:CreateUserWizard>
</asp:Content>

The following paragraphs elucidate the salient aspects of this listing:

➝ 1 The Page directive specifies that ~/MasterPage.master is the
Master Page for this content page.

➝ 2 The <Content> element provides the content that’s displayed for
the Register page.

97Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 97

➝ 3 The CreateUserWizard control lets the user create a new user
account. It displays labels and text boxes that allow the user to
enter the user’s account name, password (the password must be
entered twice), e-mail address, a secret question, and the answer
to the question.

The ContinueDestinationPageUrl attribute provides the
name of the page displayed when the user successfully creates
an account. In this case, the default page (~/Default.aspx)
is specified. Note that the user is automatically logged in after
the account is created, so the user is not redirected to the Login
page.

The CreateUserButtonText attribute changes the text dis-
played on the Create User button from the default (Create
User) to Create Account.

➝ 4 The <WizardSteps> element defines the two steps for the
CreateUserWizard control. This <WizardSteps> element
indicates that the default settings for the two steps of the Wizard
(<CreateUserWizardStep> and <CompleteWizardStep>)
will be used.

➝ 5 The <MailDefinition> element provides the information needed
to e-mail a confirmation message when the user creates an account.
As you can see, this element specifies that the From address for the
message will be Admin@AcmePirate.com, the subject will be Your
New Acme Pirate Account, and the body of the message will be
taken from the text file named NewUser.txt.

The NewUser.txt file is a simple text file that contains the
following:

Thank you for creating an account at the Acme Pirate
Supply Web site.

Your user name is: <%UserName%>
Your password is: <%Password%>

Here, the user’s name is substituted for the <%UserName%> vari-
able and the password is substituted for the <%Password%>
variable.

Building the Recover Password page
The Recover Password page (Recover.aspx) is displayed when the user
clicks the Forgot Password? link on the Login page. This page lets the user

98 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 98

recover a forgotten account password. For security’s sake, the user must first
answer a question that was provided when the account was created. Then
the password is e-mailed to the account on file for the user.

Note that the password is automatically changed when it is recovered. So the
previous password on file for the account will no longer work once the pass-
word has been recovered.

This Recover Password page is stored in the Login folder so it can be
accessed by users who have not successfully logged in.

Listing 4-7 shows the Recover Password page. To see how this page looks in a
browser window, you can refer back to Figure 4-7.

Listing 4-7: The Recover Password Page (Recover.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Recover.aspx.cs”
Inherits=”Login_Recover”
Title=”Password Recovery” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:PasswordRecovery ID=”PasswordRecovery1” ➝3

runat=”server”
SuccessPageUrl=”~/Login/Recovered.aspx” > ➝4
<MailDefinition ➝5

From=”admin@LoweWriter.com”
Subject=”Password Recovery”
BodyFileName=”~/Login/PasswordMessage.txt”>

</MailDefinition>
</asp:PasswordRecovery>

</asp:Content>

The following paragraphs elucidate the salient aspects of this listing:

➝ 1 The Page directive specifies that ~/MasterPage.master is the
Master Page for this content page.

➝ 2 The <Content> element provides the content that’s displayed for
the Recover Password page.

➝ 3 The PasswordRecover control lets the user recover a lost pass-
word. This control uses a wizard to walk the user through the steps
necessary to recover the password. First, the user is prompted for
the user name. If the user name is valid, the user is prompted with
the secret question. Then, if the user answers the question cor-
rectly, the user’s password is changed to a random value, an e-mail

99Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 99

revealing the new password is sent to the address on file for the
user, and a success message is displayed. (Note, however, that this
application overrides the success message as described in the next
paragraph.)

➝ 4 The success message displayed by default when the user recovers
a forgotten password doesn’t include a link or button that lets the
user return to the login page. As a result, the user must use the
browser’s Back button to return to the Login page. To avoid that
inconvenience, the User Authentication application uses a sepa-
rate page to confirm that the password e-mail has been sent. This
page is identified by the SuccessPageUrl attribute. As a result,
the PasswordRecovery control’s default success message is
never displayed in this application.

➝ 5 The <MailDefinition> element for the PasswordRecover con-
trol works just like it does for the CreateUserWizard control. As
you can see, the From address is set to Admin@AcmePirate.com,
the subject is Password Recovery, and the body of the message
is provided by the text file named PasswordMessage.txt.

The PasswordMessage.txt file contains the following:

Thank you for visiting the Acme Pirate Supply Web
site.

Your user name is: <%UserName%>
Your password is: <%Password%>

Once again, the user’s name is substituted for the <%UserName%>
variable and the password is substituted for the <%Password%>
variable.

Building the Password Confirmation page
The Password Confirmation page displays a message that indicates that the
user’s password has been e-mailed along with a button that lets the user
return to the Login page. The only reason I included this page in the applica-
tion is to get around a default behavior of the PasswordRecovery control: it
displays a message indicating success but leaves the user stranded on the
page, with no easy way to get back to the Login page. As a result, rather than
display the default success message, the PasswordRecovery control dis-
plays the Password Confirmation page, which includes a link back to the
Login page.

100 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 100

The code for the Password Confirmation page (Recovered.aspx) is shown
in Listing 4-8. Refer back to Figure 4-8 to see this page displayed in a browser
window.

Listing 4-8: The Password Confirmation Page (Recovered.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”Recovered.aspx.cs”
Inherits=”Login_Recovered”
Title=”Password Recovered” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
Your password has been e-mailed to you.
Please check your inbox.

<asp:Button ID=”Button1” runat=”server” ➝3

PostBackUrl=”~/Default.aspx”
Text=”Continue” />

</asp:Content>

The following paragraphs describe the key lines in this listing:

➝ 1 The Page directive uses the MasterPageFile attribute to spec-
ify the name of the Master Page, ~/MasterPage.master.

➝ 2 The <Content> element displays a message that lets the user
know that the password has been sent via e-mail.

➝ 3 The Button control that defines the “Continue” button uses the
new PostBackUrl attribute to return to the main content page.
Of course, the user hasn’t logged in; the user will automatically
be redirected to the Login page instead.

Building the Change Password page
The Change Password page (ChangePW.aspx) is displayed when the user
clicks the Change Password link that appears beneath the banner image
on any of the application’s content pages. This link is displayed by a
LoginView control in the Master Page, so it only appears when the user
is logged in.

Listing 4-9 shows the Change Password page. To see how this page appears
when it’s displayed in a browser window, you can refer back to Figure 4-10.

101Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 101

Listing 4-9: The Change Password Page (ChangePW.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”ChangePW.aspx.cs”
Inherits=”ChangePW”
Title=”Change Password” %>

<asp:Content ID=”Content1” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
<asp:ChangePassword ID=”ChangePassword1” ➝3

runat=”server”
ChangePasswordTitleText=

“Change Your Password

”
PasswordLabelText=”Enter your current password:”
NewPasswordLabelText=”Enter the new password:”
ConfirmNewPasswordLabelText=

“Confirm the new password:”
/>

</asp:Content>

The following paragraphs (ahem) elucidate the salient aspects of this listing:

➝ 1 The Page directive specifies that ~/MasterPage.master is the
Master Page for this content page.

➝ 2 The <Content> element provides the content that’s displayed for
the Recover Password page.

➝ 3 The ChangePassword control lets the user change his or her
password. The attributes on this control simply customize the
labels displayed for the password, new password, and confirm
new password fields.

Building the User List page
The User List page is the only page of the User Authentication application
that uses a code-behind file. It displays a list of all the users who are cur-
rently logged in to the application. The list itself is created by retrieving the
user names from the .NET Membership class. The list is assigned to a single
label, with break tags (
) used to separate the names. As a result, all
the users are displayed on a single page.

If you expect the application to have more than a few dozen users logged in
at once, you may want to provide a way to page the list. I suggest using a
DataGridView control to do that.

102 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 102

Listing 4-10 shows the .aspx file for the User List page.

Listing 4-10: The User List Page (UserList.aspx)

<%@ Page Language=”C#” AutoEventWireup=”true” ➝1
MasterPageFile=”~/MasterPage.master”
CodeFile=”UserList.aspx.cs”
Inherits=”UserList” Title=”User List” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

Users currently online:

<asp:Label ID=”lblUsers” runat=”server” /> ➝3

<asp:Button ID=”Button1” runat=”server” ➝4

Text=”Continue”
PostBackUrl=”~/Default.aspx”/>

</asp:Content>

The following paragraphs describe the key lines in this listing:

➝ 1 The Page directive specifies ~/MasterPage.master as the
Master Page.

➝ 2 The <Content> element displays the user list and a button that
links back to the main content page.

➝ 3 The Label control is used by the code-behind file to display the
list of logged in users. The ID attribute specifies lblUsers as
the ID for this label.

➝ 4 The Continue button uses the PostBackUrl attribute to return
to the main content page.

Listing 4-11 shows the C# version of the code-behind file for the User List
page. As you can see, the user list is generated during the Page Load event
for the page. The static GetAllUsers method of the Membership class
returns a collection of all the members in the membership database. This
collection is defined by the MembershipUserCollection class. Then a
foreach statement serves to examine each item in the collection of users.
If a user is currently online (as indicated by the IsOnline property), that
user’s name is added to the Text value of the label, along with a
 tag
so that each user is listed on a separate line.

103Chapter 4: Building a User Authentication Application

09_597760 ch04.qxp 1/11/06 9:54 PM Page 103

Listing 4-11: The code-behind file for the User List Page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class UserList : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

MembershipUserCollection users;
users = Membership.GetAllUsers();
foreach (MembershipUser user in users)
{

if (user.IsOnline)
lblUsers.Text += user.UserName + “
”;

}
}

}

Listing 4-12 shows the Visual Basic version of the code-behind file. It works
the same as the C# version.

Listing 4-12: The code-behind file for the User List page (VB version)

Partial Class UserListVB
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
Dim users As MembershipUserCollection
users = Membership.GetAllUsers()
For Each user As MembershipUser In users

If user.IsOnline Then
lblUsers.Text += user.UserName + “
”

End If
Next

End Sub
End Class

104 Part II: Building Secure Applications

09_597760 ch04.qxp 1/11/06 9:54 PM Page 104

Part III
Building

E-Commerce
Applications

10_597760 pt03.qxp 1/11/06 9:54 PM Page 105

In this part . . .

In this part, I show you two ASP.NET 2.0 applications
that help you sell products in an online store. The first

is a product catalog that lets Web users see what products
you have for sale; the second is a shopping-cart applica-
tion that lets users purchase items from your catalog. It’s
a fairly standard practice to combine these applications
so users can both browse through the product catalog
and (ideally) buy your products.

10_597760 pt03.qxp 1/11/06 9:54 PM Page 106

Chapter 5

Building a Product Catalog
Application

In This Chapter
� Designing the Product Catalog application

� Creating the database for the Product Catalog application

� Looking at the new SqlDataSource, GridView, and DetailsView controls

� Building the Product Catalog application’s Web pages

Product catalogs used to be phone-book-size tomes; now they’re
applications — among the most common found on the Web. That’s

because most companies want to show off their products. Small companies
sometimes create Web sites that have just a few products. Other companies,
such as Amazon.com, have online catalogs with hundreds of thousands of
products. Still, the idea is the same: online product catalogs exist because
they drive sales.

Many Web sites not only let users browse the product catalog, but also let
users purchase products directly from the Web site. You’ll see an example of
an online purchasing application in the next chapter. The application presented
in this chapter focuses on presenting product information that’s stored in a
database in an interesting and useful way.

The Application’s User Interface
Figure 5-1 shows the user-interface flow for the Product Catalog application
that’s built in this chapter. This application’s user interface has just three pages:

� default.aspx displays a list of products for a category selected by
the user.

� product.aspx displays details about a specific product selected by
the user.

� cart.aspx is displayed when the user chooses to purchase a product.

11_597760 ch05.qxp 1/11/06 9:55 PM Page 107

For this application, the cart.aspx page simply displays a message indicat-
ing that the shopping cart isn’t implemented. (You’ll find an implementation
of the Shopping Cart page in the next chapter.)

The Product List page
Figure 5-2 shows the Product List page (default.aspx) displayed in a browser
window. This page displays a list of products for a category selected by the user.
This is the default start page for the application.

The following paragraphs describe the more interesting aspects of the
Product List page:

� The page uses a Master Page named default.master. The Master Page
simply displays the banner image that appears at the top of the page.

� The application’s database includes a separate table for featured prod-
ucts that includes a sale price and space for a promotional message.

View
detail

User requests
page

Product.aspx

Default.aspx

Product
Detail
page

Cart.aspx

Cart page

Product List
page

Figure 5-1:
The user

interface for
the Product

Catalog
application.

108 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 108

Any products in this table are listed at the top of the Product List page.
Then the user can click the Details link to go to the Product page for the
featured product.

� A drop-down list is used to select a product category. When the user
selects a category from this list, the page is updated to list the products
for the selected category. Note that the category values aren’t hard-
coded into the program. Instead, they’re retrieved from the application’s
database.

� The product list shows the products for the selected category. The user
can click the View link to go to the Product page for a particular product.
Note that if the product is currently on sale, the sale price is shown in
the Product List.

The Product Detail page
Figure 5-3 shows the Product Detail page (product.aspx) displayed in a
browser window. As you can see, this page displays the details for a particu-
lar product. The user can reach this page by clicking the View or Details link
for a product on the Product List page.

Figure 5-2:
The Product

List page.

109Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 109

The following paragraphs describe some of the more interesting details about
this page:

� Like the Product List page, this page also uses the default.Master Page
as its Master Page. However, I scrolled down a bit to show the entire
contents of the page. As a result, the banner that appears at the top of
the page isn’t visible in the figure.

� Because this product is listed as one of the featured products, its sale
price is shown.

� The buttons at the bottom of the page let the user add the current prod-
uct to the shopping cart or return to the Product List page.

� Notice that the URL that appears in the browser’s address bar includes
two query string fields: prod=sword01 and cat=weap. The first field
indicates which product the user selected in the Product List page. The
Product Detail page uses this field to retrieve the correct product from
the database. The second field saves the category selected by the user
on the Product List page (the Product Detail page doesn’t use this field).
However, if the user clicks the Back to List button to return to the Product
List page, the cat field is passed back to the Product List page. Then the
Product List page uses it to select the category that the user had previ-
ously selected.

Figure 5-3:
The Product
Detail page.

110 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 110

The Cart page
This application provides a dummy Cart page, as shown in Figure 5-4. As you
can see, this page simply indicates that the shopping cart function hasn’t yet
been implemented. For an implementation of the shopping-cart page, refer to
the next chapter.

Notice that the URL in this figure includes a query string that indicates which
product the user wants to add to the cart. The dummy Cart page used in
this application doesn’t do anything with this query string — but the actual
Shopping Cart application (presented in Chapter 6) has plenty of use for it.

Designing the Product
Catalog Application

The Product Catalog Application is designed to be simple enough to present
in this book, yet complicated enough to realistically address some of the
design considerations that go into this type of application. There are several
important decisions that need to be made for any application of this sort.

Figure 5-4:
The Cart

page.

111Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 111

For example, how will the database be designed to store the product informa-
tion? In particular, how will the database represent products and categories,
and how will the products featured on sale be represented? In addition, the
database design must address how images of the product will be accessed.
For more details on the database design for this application, refer to the sec-
tion “Designing the Product Database” later in this chapter.

Another important aspect of the design is how the application keeps track of
the state information, such as which product the user is viewing. For exam-
ple, when the user chooses to see more detail for a specific product, how will
the application pass the selected product from the Product List page to the
Product Detail page so the Product Detail page knows which product to display?
And how will the application remember which product category was being
viewed, so the same category can be redisplayed when the user returns to
the Product List page?

Although there are several alternatives for storing this type of state informa-
tion in ASP.NET, this application saves the product and category information
in query strings appended to the end of the URLs used to request the applica-
tion’s pages. Two query-string fields are used:

� prod: Passes the ID of the product to be displayed by the Product
Detail page.

� cat: Passes the ID of the category that’s selected on the Product List page.

For example, suppose the user selects the Weapons category and clicks the
View link for the first sword. Then the URL used to display the Product.aspx
page will look like this:

~\Product.aspx?prod=sword01&cat=weap

Here, the ID of the product to be displayed is sword01 and the ID of the
selected category is weap.

If the user clicks the Back to List button, the application returns to the
Default.aspx page via the following URL:

~\Default.aspx?cat=weap

That way, the Default.aspx page will know to set the category drop-down
list to Weapons.

If, on the other hand, the user clicks the Add to Cart button to order the
product, this URL will be used to display the Cart.aspx page:

~\Product.aspx?prod=sword01&cat=weap

112 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 112

Thus, the product and category ID values are passed from the Product.aspx
page to the Cart.aspx page. (For more information about what the actual
Cart page does with these values, refer to Chapter 6.)

Note that when the application is first started, the URL used to display
the Default.aspx page doesn’t include any query strings. As a result, the
Default.aspx page is designed so that if it isn’t passed a cat query-string
field, it defaults to the first category.

Designing the Product Database
The Product Catalog application requires a database to store the information
about the products to be displayed. Figure 5-5 shows a diagram of the database.
As you can see, it consists of three tables:

� Categories

� Products

� FeaturedProducts

The following sections describe the details of each of these tables.

The Categories table
The Categories table contains one row for each category of product repre-
sented in the database. Table 5-1 lists the columns defined for this table.

Categories
catid
name
[desc]

Products
productid
catid
name
shorttext
longtext
price
thumbnail
image

FeaturedProducts
productid
featuretext
saleprice

Figure 5-5:
The Product

Catalog
application’s

database.

113Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 113

Table 5-1 The Categories Table
Column name Type Description

catid VARCHAR(10) An alphanumeric code (up to 10 characters)
that uniquely identifies each category. This is
the primary key for the Categories table.

name VARCHAR(50) A text field that provides the name of the
category.

desc VARCHAR(MAX) A text field that provides a description of the
category.

The Products table
The Products table contains one row for each product represented in the
database. Table 5-2 lists the columns used by the Products table.

Table 5-2 The Products Table
Column name Type Description

productid VARCHAR(10) An alphanumeric code (up to 10 characters)
that uniquely identifies each product. This is
the primary key for the Products table.

catid VARCHAR(10) A code that identifies the product’s category.
A foreign-key constraint ensures that only
values present in the Categories table
can be used for this column.

name VARCHAR(50) A text field that provides the name of the
product.

shorttext VARCHAR(MAX) A text field that provides a short description
of the product.

longtext VARCHAR(MAX) A text field that provides a longer description
of the product.

price MONEY The price for a single unit of the product.

thumbnail VARCHAR(40) The name of the thumbnail image file.

image VARCHAR(40) The name of the main image file.

114 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 114

Note that the thumbnail and image fields contain just the filename of
the image files, not the complete path to the images. The application adds
~\Images\ to the filenames to locate the files. (For example, sword01.jpg
will become ~\Images\sword01.jpg.)

The FeaturedProducts table
The FeaturedProducts table contains one row for each product that’s
currently on sale or being featured. Note that each row in this table corre-
sponds to a row in the Products table. Table 5-3 lists the columns used by
the FeaturedProducts table.

Table 5-3 The FeaturedProducts Table
Column name Type Description

productid VARCHAR(10) An alphanumeric code (up to 10 characters)
that uniquely identifies the product fea-
tured. This is the primary key for the
FeaturedProducts table, and a
foreign-key constraint ensures that the
value must match a value present in the
Products table.

featuretext VARCHAR(MAX) Promotional text that describes the item
being featured.

saleprice MONEY The sale price for the item.

Note that each row in the FeaturedProducts table corresponds to a
row in the Products table, and the relationship is one-to-one. Each row
in the Products table can have only one corresponding row in the
FeaturedProducts table. However, not every row in the Products
table has a corresponding row in the FeaturedProducts table, which is
(by definition) only for those products currently being featured.

I could just as easily combined these tables by including the saleprice
and featuretext columns in the Products table. I chose to implement
FeaturedProducts as a separate table to simplify the query that retrieves
the list of featured products.

115Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 115

However, most design decisions involve trade-offs, and this one is no exception.
Although using a separate table for the featured products list simplifies the
query that retrieves the featured products, it complicates the queries that
retrieve product rows. That’s because whenever you retrieve a product row,
you must also check to see if that product is on sale. Otherwise the user won’t
know the actual price of the product. As a result, the query that retrieves prod-
ucts for the Default.aspx and Product.aspx pages must use an outer
join to retrieve data from both tables.

For more information about the queries used to access this database, see the
section “Querying the database,” later in this chapter.

Creating the database
You can create the Products database manually from within Visual Studio by
using the Database Explorer. Alternatively, you can run the CreateProducts.
sql script that’s shown in Listing 5-1. To run this script, open a command-
prompt window and change to the directory that contains the script. Then
enter this command:

sqlcmd -S localhost\SQLExpress -i CreateProducts.sql

Note that this command assumes you’re running SQL Server Express on your
own computer. If you’re using SQL Server on a different server, you’ll need to
change localhost\SQLExpress to the correct name. If you’re not sure what
name to use, ask your database administrator.

Listing 5-1: The CreateProducts.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Products’)

DROP DATABASE Products
GO

CREATE DATABASE Products ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Products.mdf’,
SIZE=10)

GO

116 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 116

USE Products ➝4
GO

CREATE TABLE Categories (➝5
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
[desc] VARCHAR(MAX) NOT NULL, ➝6
PRIMARY KEY(catid))

GO

CREATE TABLE Products (➝7
productid VARCHAR(10) NOT NULL,
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
shorttext VARCHAR(MAX) NOT NULL,
longtext VARCHAR(MAX) NOT NULL,
price MONEY NOT NULL,
thumbnail VARCHAR(40) NOT NULL,
image VARCHAR(40) NOT NULL,
PRIMARY KEY(productid),
FOREIGN KEY(catid) REFERENCES Categories(catid))

GO

CREATE TABLE FeaturedProducts (➝7
productid VARCHAR(10) NOT NULL,
featuretext VARCHAR(MAX) NOT NULL,
saleprice MONEY NOT NULL,
PRIMARY KEY(productid),
FOREIGN KEY(productid) REFERENCES Products(productid))

GO

The following paragraphs describe the highlights of this script:

➝ 1 Sets the database context to master. This is usually the default
context, but it’s a good idea to set it just in case.

➝ 2 Deletes the existing Products database if it exists.

➝ 3 Creates a database named Products. The database file will be
created in the C:\Apps directory. You should change this location
if you want to place the database file in a different folder.

➝ 4 Creates the Categories table.

➝ 5 Note that the column name desc is a SQL keyword, so it must be
enclosed in brackets.

➝ 6 Creates the Products table.

➝ 7 Creates the FeaturedProducts table.

117Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 117

Adding some test data
When you run the CreateProduct script, the database will be created, but
it will be empty. Your online store will look pretty bare! To add some test data,
run the InsertProducts.sql script that’s included on this book’s CD along
with the CreateProduct.sql script. It creates the sample data shown in
Tables 5-4, 5-5, and 5-6. (Note that to keep Table 5-5 presentable, I omitted the
shorttext and longtext columns. Don’t worry — the script does create
data for these columns.)

To run the script, open a command window, change to the directory that con-
tains the script, and then run this command:

sqlcmd -S localhost\SQLExpress -i InsertProducts.sql

Once again, you’ll need to change the server name if you’re not running SQL
Server Express on your own computer.

You’ll know the script works if you see a series of messages like this one:

(1 rows affected)

Table 5-4 Test data for the Categories Table
catid name desc

booty Booty Treasure for the Scallywags.

equip Equipment Equipment and gear for yer ship.

weap Weapons Proper weapons for a scurvy pirate.

Table 5-5 Test data for the Products
Productid catid name price thumbnail image

chain01 equip Anchor Chain 6.95 chainT.jpg chain.jpg

crown1 booty Royal Crown 14.95 crown1T.jpg crown1.jpg

flag01 equip Pirate Flag 15.95 flag01T.jpg flag01.jpg

flag02 equip Pirate Flag 12.95 flag02T.jpg flag02.jpg

gold01 booty Gold Coins 8.95 gold01T.jpg gold01.jpg

118 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 118

Productid catid name price thumbnail image

polly equip Polly the Parrot 15.95 pollyT.jpg polly.jpg

rat01 equip Bilge Rat 9.95 rat01T.jpg rat01.jpg

scope1 equip Pirate Telescope 15.95 scope1T.jpg scope1.jpg

sign01 equip Pirate Sign 25.95 sign01T.jpg sign01.jpg

sword01 weap Pirate Sword 29.95 sword01T.jpg sword01.jpg

sword02 weap Broad Sword 9.95 sword02T.jpg sword02.jpg

Table 5-6 Test data for the Table
productid featuretext saleprice

flag01 While supplies last! 9.95

sword01 Two days only! 14.95

Querying the database
The Product Catalog application uses several queries to retrieve data from the
Products database. In particular, the application must perform the following
queries:

� Retrieve all rows from the Categories table to fill the drop-down list
on the Default.aspx page so the user can select a product.

� Retrieve all rows from the FeaturedProducts table to display at the
top of the Default.aspx page. Note that some data is also required
from the Products table, so this query requires a join.

� Retrieve all products for a given category, including the sale price indi-
cated in the FeaturedProducts table.

� Retrieve all data for a specified product to display on the Product.aspx
page. Note that this query must also retrieve the sale price from the
FeaturedProducts table.

These queries will appear in the SqlDataSource controls defined in the appli-
cation’s .aspx files.

119Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 119

The query to retrieve all rows from the Categories table uses this SQL
statement:

SELECT catid,
name,
[desc]

FROM Categories
ORDER BY name

Note that because desc is a SQL keyword, it must be enclosed in brackets.
(Some SQL programmers like to enclose all column names in brackets just to
be safe.)

The query to retrieve the featured product rows requires a join to retrieve
data from the FeaturedProducts table as well as the Products table:

SELECT FeaturedProducts.productid,
FeaturedProducts.featuretext,
FeaturedProducts.saleprice,
Products.name,
Products.price

FROM FeaturedProducts
INNER JOIN Products

ON FeaturedProducts.productid = Products.productid

This query retrieves all rows from the FeaturedProducts table, and joins
the corresponding rows from the Products table to get the name and price
columns.

The query to retrieve the products for a given category also requires a join:

SELECT Products.productid,
Products.catid,
Products.name,
Products.shorttext,
Products.longtext,
Products.price,
Products.image,
Products.thumbnail,
FeaturedProducts.saleprice

FROM Products
LEFT OUTER JOIN FeaturedProducts

ON Products.productid = FeaturedProducts.productid
WHERE (Products.catid = @catid)

120 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 120

Here, the outer join retrieves data from the FeaturedProducts table and pro-
vides nulls for the saleprice column of any product that doesn’t have a row
in the FeaturedProducts table. Notice also that the WHERE clause specifies
a parameter. As you’ll see later in this chapter, the @catid parameter will be
set to the category ID value selected by the user via the drop-down list.

The last query used by the program retrieves the data for a specific product:

SELECT Products.productid,
Products.catid,
Products.name,
Products.shorttext,
Products.longtext,
Products.price,
Products.image,
FeaturedProducts.saleprice,
FeaturedProducts.featuretext

FROM Products
LEFT OUTER JOIN FeaturedProducts

ON Products.productid = FeaturedProducts.productid
WHERE (Products.productid = @productid)”

Here, a parameter named @productid indicates which product to retrieve.
This parameter’s value will be obtained from the prod query string field that’s
passed to the Product.aspx page.

Notice also that an outer join is used to retrieve the saleprice and
featuretext columns from the FeaturedProducts table. If there is no
corresponding product in the FeaturedProducts table, these columns will
be set to null.

Connecting to the database
The connection string used to access the Products database is stored in the
application’s web.config file, like this:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Products;Integrated Security=True”/>
</connectionStrings>

121Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 121

These lines should go right after the opening <system.web> tag in the web.
config file. Note that the connection string is the only place in the application
that references the database name and the server information. As a result,
you can move the database to a different server or use a different database
simply by changing the connection string specified in the web.config file.

The Application’s Folders
Like most ASP.NET applications, the Product Catalog application includes
several folders. The following folders are particularly important:

� (Root): The application’s root folder contains the application’s three
pages (Default.aspx, Product.aspx, and Cart.aspx) as well as
the Master Page (Default.master).

� App_Data: This folder is created by default by Visual Studio when the
application is created. However, because the database may be used by
other applications, it’s stored in a folder that isn’t part of the applica-
tion’s folder hierarchy.

� Images: This folder contains the banner graphic that’s displayed by the
Master Page as well as image files that picture the various products. For
each product, the Images folder contains two image files: one is a larger
image that’s approximately 200 pixels square; the other is a thumbnail
image that’s about 30 pixels square. Note that not all the images are per-
fectly square. For the rectangular images, the height is held at 200 pixels
(or less) for the large image and 30 pixels for the thumbnail images.

Building the Master Page
Listing 5-2 shows the code for the master page (MasterPage.master),
which is used by both the Default.aspx and the Product.aspx pages.
It simply displays a banner at the top of each page. In an actual application,
you’d probably want to provide a more developed Master Page. But for this
application, the simple Master Page shown here will do.

Listing 5-2: The Master Page (MasterPage.master)

<%@ Master Language=”C#”
AutoEventWireup=”true” ➝1
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

122 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 122

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Acme Pirate Supply</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

 ➝2

<asp:contentplaceholder ➝3

id=”ContentPlaceHolder1” runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

The following paragraphs describe the key lines of the Master Page:

➝ 1 The Master directive identifies the file as a Master Page.

➝ 2 The Image control displays a banner image at the top of each
page. The Banner.jpg file is stored in the Images folder.

➝ 3 The ContentPlaceHolder control provides the area where the
content for the application’s content pages will be displayed.

Building the Product List Page
The Product List page (Default.aspx) is the default page for the Product
Catalog application. It displays a drop-down list that lets the user select a
product category as well as a list of all products for the category selected by
the user. In addition, this page displays a list of all featured products.

The Product List page includes the following controls:

� DataList1: A DataList control that lists the products in the
FeaturedProducts table. The DataList control is a templated control
that renders an instance of its ItemTempate for each row in the data
source. The controls in the ItemTemplate can use special binding
expressions to bind to data in the data source. The ItemTemplate for
this DataList control contains the following bound controls:

123Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 123

• NameLabel: Displays the name column from the data source.

• FeatureTextLabel: Displays the featuretext column from the
data source.

• PriceLabel: Displays the price column from the data source.

• SalePriceLabel: Displays the saleprice column from the data
source.

• btnFeature: Displays a link button that lets the user display more
information about one of the featured products.

� SqlDataSource1: A SqlDataSource control that’s used as the
data source used by the DataList1 control. This data source
queries the FeaturedProducts and Products tables to return the name,
featuretext, price, and saleprice for each featured product. Note
that SqlDataSource controls aren’t visible to the user when the page
is rendered.

� ddlCategory: A drop-down list that displays each row of the
Categories table. This drop-down list is bound to the SqlDataSource
control named SqlDataSource2.

� SqlDataSource2: A SqlDataSource control that’s used as the data
source for the ddlCategories drop-down list. This data source simply
retrieves all the rows from the Categories table.

� GridView1: A GridView control that lists all the products for the cate-
gory selected by the ddlCategory drop-down list. The GridView con-
trol is a new control for ASP.NET 2.0. It serves the same purpose as the
old DataGrid control, but provides many more options. This GridView
control is bound to a data source named SqlDataSource3 and defines
following columns to display the thumbnail image, name, short text,
price, and sale price fields from the data source. In addition, a command
field column displays a Select button.

� SqlDataSource3: A SqlDataSource control that’s used as the data
source for the GridView control. This data source retrieves rows from
the Products and FeaturedProducts tables. A parameter limits the rows
to those whose catid column matches the catid of the category
selected in the drop-down list.

The Default.aspx file
Listing 5-3 shows the Default.aspx file, which defines the Product List
page. You can refer back to Figure 5-2 to see how this page appears in a
browser window.

124 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 124

Listing 5-3: The Product List Page (Default.aspx)

<%@ Page Language=”C#”
MasterPageFile=”~/MasterPage.master” ➝1
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Acme Pirate Supply” %>

(continued)

125Chapter 5: Building a Product Catalog Application

The SqlDataSource Control
The SqlDataSource control is one of the new
data controls provided with ASP.NET 2.0. It lets
controls such as DataList, GridView,
and DetailsView bind to SQL data retrieved
from SQL databases such as Microsoft’s own
SQL Server and Access. The SqlDataSource
control doesn’t render on the page, so it’s not
visible to the user.

The following list describes the most important
attributes used with the SqlDataSource
control:

� ID: Provides a name used to identify the
SqlDataSource control.

� Runat: As with all ASP.NET controls, you
must specify runat=server.

� ConnectionString: Provides the con-
nection string used to connect to the
database. You can store the connection
string in the web.config file, then use an
expression such as <%$ Connection
Strings:ConnectionString %> to
retrieve the connection string from the
web.config file.

� SelectStatement: Provides the
SELECT statement used to retrieve the data.

� DataSourceMode: DataReader or
DataSet to specify whether the data
should be retrieved via a data reader or a
dataset. If you specify DataSourceMode=
DataSet, you can also specify Enable

Caching=True to place the dataset in
cache memory.

� InsertCommand: An INSERT command
that inserts rows into the database.

� UpdateCommand: An UPDATE command
that updates rows in the database.

� DeleteCommand: A DELETE command
that deletes rows.

If the SQL commands used by the data source
require parameters, you must use a <Select
Parameters>, <InsertParameters>,
<UpdateParameters>, or <Delete
Parameters> element to define the parame-
ters. You can define the parameters using any
of the following elements:

� <ControlParameter>: A parameter
whose value is taken from another ASP.NET
control.

� <CookieParameter>: A parameter
whose value is taken from a cookie.

� <FormParameter>: A parameter whose
value is taken from a form field.

� <QueryStringParameter>: A para-
meter whose value is taken from a query
string.

� <SessionParameter>: A parameter
whose value is taken from a session
variable.

11_597760 ch05.qxp 1/11/06 9:55 PM Page 125

Listing 5-3 (continued)

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
Todays specials:

<asp:DataList ID=”DataList1” runat=”server” ➝3
DataKeyField=”ProductID”
DataSourceID=”SqlDataSource1”
OnSelectedIndexChanged=
“DataList1_SelectedIndexChanged”>

<ItemTemplate> ➝4

<asp:Label ID=”NameLabel” runat=”server” ➝5

Text=’<%# Eval(“name”) %>’>
</asp:Label>

<asp:Label ID=”FeatureTextLabel” ➝6

runat=”server”
Text=’<%# Eval(“FeatureText”) %>’>

</asp:Label>
<asp:Label ID=”PriceLabel” runat=”server” ➝7

Text=
‘<%# Eval(“price”, “ Regularly {0:c}. “) %>’>

</asp:Label>

<asp:Label ID=”SalePriceLabel” runat=”server” ➝8

Text=
‘<%# Eval(“SalePrice”, “Now only {0:c}! “) %>’>

</asp:Label>

<asp:LinkButton ID=”btnFeature” runat=”server” ➝9

CommandName=”Select” Text=”Details” >
</asp:LinkButton>

</ItemTemplate>
</asp:DataList>
<asp:SqlDataSource ID=”SqlDataSource1” ➝10
runat=”server”
ConnectionString=

“<%$ ConnectionStrings:ConnectionString %>”
SelectCommand=”SELECT FeaturedProducts.productid,

FeaturedProducts.featuretext,
FeaturedProducts.saleprice,
Products.name,
Products.price

FROM FeaturedProducts
INNER JOIN Products
ON FeaturedProducts.productid =

Products.productid”>

126 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 126

</asp:SqlDataSource>

Please select a category:
<asp:DropDownList ID=”ddlCategory” runat=”server” ➝11

AutoPostBack=”True”
DataSourceID=”SqlDataSource2”
DataTextField=”name”
DataValueField=”catid”
Width=”127px”>

</asp:DropDownList>

<asp:SqlDataSource ID=”SqlDataSource2” ➝12

runat=”server”
ConnectionString=

“<%$ ConnectionStrings:ConnectionString %>”
SelectCommand=”SELECT catid,

name,
[desc]
FROM Categories ORDER BY name”>

</asp:SqlDataSource>

<asp:GridView ID=”GridView1” runat=”server” ➝13

AutoGenerateColumns=”False”
BorderStyle=”None”
DataKeyNames=”productid”
DataSourceID=”SqlDataSource3”
OnSelectedIndexChanged=

“GridView1_SelectedIndexChanged”
AllowPaging=”True”>
<Columns>
<asp:ImageField ➝14

DataImageUrlField=”thumbnail”
DataImageUrlFormatString=”~\Images\{0}”>

</asp:ImageField>
<asp:BoundField DataField=”name” ➝15

HeaderText=”Product” />
<asp:BoundField DataField=”shorttext” ➝16

HeaderText=”Description” />
<asp:BoundField DataField=”price” ➝17

DataFormatString=”{0:c}”
HeaderText=”Price” />

<asp:CommandField SelectText=”View” ➝18
ShowSelectButton=”True” />

<asp:BoundField DataField=”SalePrice” ➝19
DataFormatString=”On sale {0:c}!”
SortExpression=”SalePrice”>
<HeaderStyle BorderStyle=”None” />
<ItemStyle BorderStyle=”None”

Font-Bold=”True” />
</asp:BoundField>

(continued)

127Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 127

Listing 5-3 (continued)

</Columns>
<PagerSettings Mode=”NextPrevious” /> ➝20

</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource3” ➝21

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString %>”

SelectCommand=”SELECT Products.productid,
Products.catid,
Products.name,
Products.shorttext,
Products.longtext,
Products.price,
Products.image,
Products.thumbnail,
FeaturedProducts.saleprice

FROM Products
LEFT OUTER JOIN FeaturedProducts
ON Products.productid =

FeaturedProducts.productid
WHERE (Products.catid = @catid)”>

<SelectParameters> ➝22
<asp:ControlParameter Name=”catid”

ControlID=”ddlCategory”
PropertyName=”SelectedValue”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>

The following paragraphs describe the key parts of the Product List page:

➝ 1 The Page directive uses the MasterPageFile attribute to spec-
ify the name of the Master Page, ~/MasterPage.master.

➝ 2 The <Content> element identifies the content for the Product
List page.

➝ 3 The DataList control displays the featured products. As you can
see, its data source is SqlDataSource1. In addition, a method
named DataList1_SelectedIndexChanged is called if the user
selects one of the items in this DataList.

➝ 4 The DataList control renders one instance of the ItemTemplate
for each row in the data source.

➝ 5 The NameLabel label displays the name from the data source. It
uses ASP.NET 2.0’s simplified binding syntax, which uses the Eval
method to specify the data source column you want to display.

➝ 6 The FeatureTextLabel label uses the simplified binding syntax
to display the featuretext column from the data source.

128 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 128

➝ 7 The PriceLabel label uses the simplified binding syntax to dis-
play the price column from the data source. Note that in this case,
I used a version of the Eval method that accepts a format string
as a second parameter. Here the format string formats the price as
currency and adds the word Regularly before the price value.

➝ 8 Similarly, the SalePriceLabel uses a format string to format the
sale price as currency and adds some peppy text to highlight the
sale price. Note also that this label is bracketed by and
tags to display the sale price in boldface.

➝ 9 The LinkButton control provides a link button the user can
click to display additional information about a featured product.
Here, the CommandName attribute specifies Select as the
button’s command name. As a result, the row will be selected
when the user clicks this button. Selecting the row causes the
SelectedIndexChanged event to fire, which then causes the
DataList1_SelectedIndexChanged method to be called.

➝ 10 The first SqlDataSource control provides the data source for
the DataList. Notice how the connection string is specified:

<%$ ConnectionStrings:ConnectionString %>

This refers to the connection string identified by the name
ConnectionString in the ConnectionStrings section of
the web.config file. As a result, the actual connection string is
determined at run time by reading the web.config file.

The SelectCommand attribute specifies the SELECT statement
used to retrieve data for this data source. In this case, the SELECT
statement uses an inner join to retrieve information from both the
FeaturedProducts and Products tables.

➝ 11 The drop-down list control lets the user choose which cate-
gory of products to display. AutoPostBack is set to true so that
the page will be posted when the user selects a product. The data
source is set to SqlDataSource2. The DataTextField attribute
specifies that the name field should be displayed in the drop-down
list, and the DataValueField specifies that the catid field should
be used as the value for the selected item.

➝ 12 The second SqlDataSource control provides the data for the
drop-down list. It uses a simple SELECT statement to retrieve all
rows from the Categories table.

➝ 13 The GridView control displays the product rows that match the
category selected by the user via the drop-down list. As you can
see, it specifies SqlDataSource3 as its data source. In addition,
the GridView1_SelectedIndexChanged method is called
when the user selects a row. Finally, the AllowPaging attribute
enables the GridView control’s built-in paging features, which by
default display only ten rows at a time.

129Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 129

➝ 14 The first column defined for the GridView control is an
ImageField that displays the thumbnail image for each product.
The DataImageUrlField attribute identifies the name of the data
source field that contains the URL of the images to be displayed,
and the DataImageUrlFormatString attribute provides a format
string that’s applied to the URL. In this case, the data source field
contains just the filename of the image file. Then the format string
completes the path by adding ~\Images\ to the filename. For exam-
ple, if the thumbnail field contains the value sword01T.jpg,
the complete URL will be ~\Images\sword01T.jpg.

➝ 15 This BoundField column displays the name column from the
data source. The header text for the column is set to Product.

➝ 16 This BoundField column displays the shorttext column
from the data source. The header text for the column is set to
Description.

➝ 17 This BoundField column displays the price column from the
data source. A format string displays the price in currency
format, and the header text is set to Price.

➝ 18 A CommandField column displays a Select button with the text
View. When the user clicks this button, the row is selected and
the SelectedIndexChanged event is raised for the GridView
control. As a result, the GridView1_SelectedIndexChanged
method in the code-behind file is executed.

➝ 19 The last column in the GridView control is a BoundField
column that displays the saleprice column from the data
source. A format string is used to add the text On sale and to
apply the currency format. Note that nothing is displayed if the
saleprice column is null. Notice also that <HeaderStyle>
and <ItemStyle> elements are used to display this column with-
out a border.

➝ 20 The <PagerSettings> element indicates what type of
paging controls you want to appear on the GridView control.
In this example, the Mode attribute specifies NextPrevious,
so Next and Previous buttons are displayed. Other options for
this attribute are NextPreviousFirstLast, Numeric,
and NumericFirstLast. Besides the Mode attribute, the
<PagerSettings> element enables you to use other attributes
that affect various aspects of the paging controls — such as the
text or image displayed for each pager button.

➝ 21 The third SqlDataSource control provides the data that’s
displayed by the GridView control. Notice that the SELECT
statement refers to a parameter named catid to indicate which
products to select.

130 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 130

➝ 22 The <SelectParameters> element defines the parameters
used by a data source. In this example, only one parameter,
named catid, is required. To define the catid parame-
ter, a <ControlParameter> element is used. The
<ControlParameter> element defines a parameter whose value
is taken from another control on the page. In this case, the control
is the drop-down list (ddlCategory), and the parameter value
will be taken from the SelectedValue property of the control.

131Chapter 5: Building a Product Catalog Application

The GridView Control
The GridView control, new with ASP.NET
2.0, is designed to replace the old DataGrid
control. Like the DataGrid control, the
GridView control is designed to present data
from a data source in a tabular format. However,
the GridView control has several features
that weren’t available in the DataGrid con-
trol, such as automatic paging and sorting. And
it’s designed to work with the new ASP.NET 2.0
data sources.

Here are the attributes you’ll use most often on the
<GridView> element to define a GridView
control:

� ID: Provides a name used to identify the
GridView control.

� Runat: As with all ASP.NET controls, you
must specify runat=server.

� DataSourceID: The ID of the data source.

� DataKeyNames: The names of the key
fields. If the data source has more than one
key field, the names should be separated by
commas.

� AutoGenerateColumns: You’ll usually
specify False for this attribute to prevent
the GridView control from automatically
generating columns for each field in the data
source. Then you can use a <Columns>
child element to manually define the columns.

� AllowPaging: Specify True to enable
paging for the GridView control.

� AllowSorting: Specify True to enable
sorting for the GridView control.

The columns are defined by creating a
<Columns> child element, and then adding
one of the following child elements for each
column you want to create:

� BoundField: Creates a column that’s
bound to a field in the data source.

� ButtonField: Creates a column that
contains a button.

� CheckBoxField: Creates a column with
a check box that’s bound to a Boolean
value.

� CommandField: Creates a column with
one or more command buttons (command
buttons include Select, Edit, and Delete).

� HyperLinkField: Creates a column
that displays a field from the data source as
a hyperlink.

� ImageField: Creates a column that dis-
plays an image. The URL for the image is
obtained from a field in the data source.

� TemplateField: Creates a field that uses
a template to specify the field’s contents.

11_597760 ch05.qxp 1/11/06 9:55 PM Page 131

The code-behind file for the Default.aspx
page (C# version)
The Default.aspx page requires a code-behind file to handle the PageLoad
event and the SelectedIndexChanged event for the DataList and the
GridView controls. The C# version of this code-behind file is shown in
Listing 5-4. If you’re working in Visual Basic, you can skip this section and use
the VB version of the code-behind file presented in the next section instead.

Listing 5-4: The code-behind file for the Default.aspx page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, ➝1
EventArgs e)

{
if (!IsPostBack)
{

string CatID = Request.QueryString[“cat”];
if (CatID != null)
{

ddlCategory.SelectedValue = CatID;
}

}
}

protected void DataList1_ SelectedIndexChanged ➝2
(object sender, EventArgs e)

{
string ProductID =

DataList1.SelectedValue.ToString().Trim();
string CatID = ddlCategory.SelectedValue;
Response.Redirect(“Product.aspx?prod=”

+ ProductID
+ “&cat=”
+ CatID);

}

132 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 132

protected void GridView1_ SelectedIndexChanged ➝3
(object sender, EventArgs e)

{
string ProductID =

GridView1.SelectedValue.ToString().Trim();
string CatID = ddlCategory.SelectedValue;
Response.Redirect(“Product.aspx?prod=”

+ ProductID
+ “&cat=”
+ CatID);

}
}

Here’s a closer look at each of the methods in this code-behind file:

➝ 1 Page_Load: This method is called each time the page is loaded.
Its purpose is to set the drop-down list’s selection to the cate-
gory indicated by the cat query string field. Note that the query
string field is used only when IsPostBack is false. That’s
because the query string field should be used only when the
Default.aspx page is posted from another page, such as the
Product.aspx page. If the query string field were used when the
Default.aspx page posts back from itself, then any selection
made by the user would be replaced by the query string field’s
value — which isn’t what you want. Note also that the code
checks to make sure that the cat field exists before using its
value.

➝ 2 DataList1_SelectedIndexChanged: This method is called
whenever the user selects an item in the DataList control, which
lists the currently featured products. It uses the SelectedValue
property of the DataList control to extract the ID of the
selected product and the SelectedValue property of the
drop-down list to extract the ID of the selected category. Then
it calls the Response.Redirect method to redirect to the
Product.aspx page, with the prod and cat query strings set
to the appropriate values.

➝ 3 GridView1_SelectedIndexChanged: This method is called when-
ever the user selects an item in the GridView control, which lists
the products for the currently selected category. It works pretty
much the same as the DataList1_SelectedIndexChanged
method, but the product ID is extracted from the GridView con-
trol instead of the DataList control.

133Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 133

The code-behind file for the Default.aspx
page (Visual Basic version)
The Visual Basic version of this code-behind file is shown in Listing 5-5. If you’re
working in C#, you can skip this section and use the C# version (presented in
the previous section) instead.

To use the Visual Basic version, you must change the Language specifica-
tion in the Page directive of the Default.aspx file from C# to VB — and
change the name of the code-behind file from Default.aspx.cs to
Default.aspx.vb.

Listing 5-5: The code-behind file for the Default.aspx page (VB)

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load
If Not IsPostBack Then

Dim CatID As String
CatID = Request.QueryString(“cat”)
If Not CatID = Nothing Then

ddlCategory.SelectedValue = CatID
End If

End If
End Sub

Protected Sub DataList1_SelectedIndexChanged(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles DataList1.SelectedIndexChanged
Dim ProductID As String
Dim CatID As String
ProductID =

DataList1.SelectedValue.ToString().Trim()
CatID = ddlCategory.SelectedValue
Response.Redirect(“Product.aspx?prod=” _

+ ProductID + “&cat=” + CatID)
End Sub

134 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 134

Protected Sub GridView1_SelectedIndexChanged(_ ➝3
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles GridView1.SelectedIndexChanged
Dim ProductID As String
Dim CatID As String
ProductID =

GridView1.SelectedValue.ToString().Trim()
CatID = ddlCategory.SelectedValue
Response.Redirect(“Product.aspx?prod=” _

+ ProductID + “&cat=” + CatID)
End Sub

End Class

The following paragraphs describe each of the methods in this code-behind file:

➝ 1 Page_Load: This method is called each time the page is loaded.
Its purpose is to set the drop-down list’s selection to the category
indicated by the cat query string field. Note that the query string
field is used only when IsPostBack is false. That’s because the
query string field should be used only when the Default.aspx
page is posted from another page, such as the Product.aspx
page. If the query-string field were used when the Default.aspx
page posts back from itself, then any selection made by the user
would be replaced by the query-string field’s value — which isn’t
what you want. Also, the code checks to make sure the cat field
exists before using it.

➝ 2 DataList1_SelectedIndexChanged: This method is called when-
ever the user selects an item in the DataList control, which lists
the currently featured products. It uses the SelectedValue prop-
erty of the DataList control to extract the ID of the selected
product and the SelectedValue property of the drop-down list to
extract the ID of the selected category. Then it calls the Response.
Redirect method to redirect to the Product.aspx page, with
the prod and cat query strings set to the appropriate values.

➝ 3 GridView1_SelectedIndexChanged: This method is called when-
ever the user selects an item in the GridView control, which lists
the products for the currently selected category. It works pretty
much the same as the DataList1_SelectedIndexChanged
method, but the product ID is extracted from the GridView con-
trol instead of the DataList control.

135Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 135

Building the Product Detail page
The Product Detail page (Product.aspx) displays the data for a specific prod-
uct selected by the user. This page is displayed when the user selects a product
from either the DataList or the GridView control in the Default.aspx
page. It uses a DetailsView control (one of the new data controls provided
by ASP.NET 2.0) to display the product details.

The Product.aspx file
The Product Details page is defined by the Product.aspx file, which is
shown in Listing 5-6.

Listing 5-6: The Product Details Page (Product.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Product.aspx.cs”
Inherits=”Product”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server”
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:DetailsView ID=”DetailsView1” ➝2

runat=”server”
AutoGenerateRows=”False”
BorderStyle=”None”
BorderWidth=”0px”
DataKeyNames=”productid”
DataSourceID=”SqlDataSource1”
Height=”50px”
Width=”125px”>
<Fields>

<asp:BoundField DataField=”name” ➝3
ShowHeader=”False” >
<ItemStyle Font-Size=”Large” />

</asp:BoundField>
<asp:ImageField ➝4

DataImageUrlField=”image”
DataImageUrlFormatString=”~\Images\{0}”
ShowHeader=”False”>

</asp:ImageField>
<asp:BoundField DataField=”shorttext” ➝5

ShowHeader=”False” >
<ItemStyle Font-Size=”Medium” />

</asp:BoundField>
<asp:BoundField DataField=”longtext” ➝6

DataFormatString=”
{0}”

136 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 136

ShowHeader=”False” >
<ItemStyle Font-Size=”Small” />

</asp:BoundField>
<asp:BoundField DataField=”price” ➝7

DataFormatString=”
{0:c}”
ShowHeader=”False” >
<ItemStyle Font-Size=”Large” />

</asp:BoundField>
<asp:BoundField DataField=”SalePrice” ➝8

DataFormatString=”
Sale Price {0:c}!”
ShowHeader=”False” >
<ItemStyle Font-Size=”Large” />

</asp:BoundField>
<asp:BoundField DataField=”productid” ➝9

DataFormatString=
“
Product code: {0}”

ReadOnly=”True”
ShowHeader=”False” />

</Fields>
</asp:DetailsView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝10

runat=”server”
ConnectionString=

“<%$ ConnectionStrings:ConnectionString %>”
SelectCommand=”SELECT Products.productid,

Products.catid,
Products.name,
Products.shorttext,
Products.longtext,
Products.price,
Products.image,
FeaturedProducts.saleprice,
FeaturedProducts.featuretext
FROM Products
LEFT OUTER JOIN FeaturedProducts
ON Products.productid =

FeaturedProducts.productid
WHERE (Products.productid = @productid)”>

<SelectParameters> ➝11
<asp:QueryStringParameter

Name=”productid”
QueryStringField=”prod”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

<asp:Button ID=”btnAdd” runat=”server” ➝12

OnClick=”btnAdd_Click”
Text=”Add to Cart” />

<asp:Button ID=”btnBack” runat=”server” ➝13
OnClick=”btnBack_Click”
Text=”Back to List” />

</asp:Content>

137Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 137

The following paragraphs describe the key points of this listing:

➝ 1 The Page directive specifies that the page will use MasterPage.
master as its Master Page.

➝ 2 The DetailsView control displays the details for a single row
in its data source, identified by the DataSourceID field as
SqlDataSource1. The AutoGenerateRows attribute is set to
False so the control won’t automatically generate a row for each
field in the data source. Instead, this DetailsView control uses
a <Fields> element to define the data to be displayed.

138 Part III: Building E-Commerce Applications

The DetailsView Control
The DetailsView control is a new data con-
trol introduced with ASP.NET 2.0. It’s designed
to display one row from a data source at a time.
The DetailsView control is rendered as an
HTML table, with one table row for each field in
the data source.

Here are the attributes you’ll use most often on
the DetailsView control:

� ID: Provides a name used to identify the
DetailsView control.

� Runat: As with all ASP.NET controls, you
must specify runat=server.

� DataSourceID: The ID of the data source.

� DataKeyNames: The names of the key
fields. If the data source has more than one
key field, the names should be separated by
commas.

� AutoGenerateRows: You’ll usually spec-
ify False for this attribute to prevent the
DetailsView control from automatically
generating a row for each field in the data
source. Then you can use a <Fields>
child element to manually define the fields
displayed by the DetailsView control.

� AllowPaging: Specify True to enable
paging for the DetailsView control.

Next, to define the fields displayed by a
DetailsView control, you add a <Fields>
child element. Add one following child element
for each field you want to create:

� BoundField: Creates a field that’s bound
to a field in the data source.

� ButtonField: Creates a field that con-
tains a button.

� CheckBoxField: Creates a field with a
check box that’s bound to a Boolean value.

� CommandField: Creates a field with one
or more command buttons (command but-
tons include Select, Edit, and Delete).

� HyperLinkField: Creates a field that
displays a field from the data source as a
hyperlink.

� ImageField: Creates a field that displays
an image. The URL for the image is obtained
from a field in the data source.

� TemplateField: Creates a field that uses
a template to specify the field’s contents.

11_597760 ch05.qxp 1/11/06 9:55 PM Page 138

➝ 3 The first field displayed by the DetailsView control displays
the name field from the data source.

➝ 4 The second field displays the full-size image, identified by the
image field. Note that the DataImageUrlFormatString
attribute adds ~\Images\ to the URL. Thus, if the image field
specifies that the image file is named sword01.jpg, the com-
plete URL for the image will be ~\Images\sword01.jpg.

➝ 5 This field displays the shorttext field. The <ItemStyle>
element specifies that the font size should be medium.

➝ 6 This field displays the longtext field. The DataFormatString
attribute adds a line break (
) before the text. The
<ItemStyle> element specifies that the font size should be
small.

➝ 7 This field displays the price field. The DataFormatString
attribute formats the price as currency, and the <ItemStyle>
element specifies that the font size should be Large.

➝ 8 The sales price is displayed with a format string that display the
words Sale Price and formats the sales price as currency.

➝ 9 The last field in the DetailsView control displays the product
ID. A format string adds the text Product code: before the
product ID.

➝ 10 This SqlDataSource control defines the data source used by the
DetailsView control. The connection string is retrieved from
the web.config file, and the SELECT statement retrieves the
product data for the product selected by the user. A join is used
because data must be retrieved from both the Products and the
FeaturedProducts tables, and the WHERE clause uses a parameter
named productid.

➝ 11 The <SelectParameters> element defines the parameter used by
the SELECT statement in the data source. The parameter is defined
by the <QueryStringParameter> element, which retrieves the
parameter value from a query string. In this case, the parameter
is named productid and the value is retrieved from a query
string named prod.

➝ 12 The Add button lets the user add the current product to the shop-
ping cart.

➝ 13 The Back button lets the user return to the Product List page to
continue shopping.

139Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 139

The code-behind file for the Product.aspx
page (C# version)
Listing 5-7 shows the C# version of the code-behind file for the Product.aspx
page. If you’re working in Visual Basic, you may want to skip this section and
go instead to the VB version of the code-behind file (presented in the next
section).

Listing 5-7: The code-behind file for the Product.aspx page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Product : System.Web.UI.Page
{

protected void btnAdd_Click(object sender, ➝1
EventArgs e)

{
string ProductID = Request.QueryString[“prod”];
string CatID = Request.QueryString[“cat”];
Response.Redirect(“Cart.aspx?prod=”

+ ProductID + “&cat=” + CatID);
}
protected void btnBack_Click(object sender, ➝2

EventArgs e)
{

string CatID = Request.QueryString[“cat”];
Response.Redirect(“Default.aspx?cat=” + CatID);

}
}

The following paragraphs describe the two methods in this code-behind file:

➝ 1 btnAdd_Click: This method is called when the user clicks the
Add to Cart button. It simply redirects to the Cart.aspx page,
passing the product and category information via query-string
fields.

➝ 2 btnBack_Click: This method is called when the user clicks the
Back to List button. It redirects to the Default.aspx page. The
category ID is passed via a query string.

140 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 140

The code-behind file for the Product.aspx
page (Visual Basic version)
The Visual Basic version of the Product.aspx code-behind file is shown
in Listing 5-8. To use this code-behind file, you must change the Language
specification in the Page directive of the Product.aspx file from C# to VB.

If you’re working in C#, you should use the C# version of the code-behind file
(presented in the previous section) instead of the version in Listing 5-8.

Listing 5-8: The code-behind file for the Default.aspx page (VB)

Partial Class Product
Inherits System.Web.UI.Page

Protected Sub btnAdd_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click
Dim ProductID As String
Dim CatID As String
ProductID = Request.QueryString(“prod”)
CatID = Request.QueryString(“cat”)
Response.Redirect(“Cart.aspx?prod=” _

+ ProductID + “&cat=” + CatID)
End Sub

Protected Sub btnBack_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnBack.Click
Dim CatID As String
CatID = Request.QueryString(“cat”)
Response.Redirect(“Default.aspx?cat=” + CatID)

End Sub

End Class

The following paragraphs describe the two methods in this code-behind file:

➝ 1 btnAdd_Click: This method is called when the user clicks the
Add to Cart button. It simply redirects to the Cart.aspx page,
passing the product and category information via query-string
fields.

➝ 2 btnBack_Click: This method is called when the user clicks
the Back to List button. It redirects to the Default.aspx page.
The category ID is passed via a query string.

141Chapter 5: Building a Product Catalog Application

11_597760 ch05.qxp 1/11/06 9:55 PM Page 141

Building the Cart Page
This application doesn’t support a shopping cart. However, to make this
application compatible with the Shopping Cart application presented in the
next chapter, the Product.aspx page includes an Add to Cart button that
redirects to a page named Cart.aspx. Listing 5-9 shows a dummy version
of the Cart page that simply displays a message indicating that the shopping
cart function isn’t implemented. For a working version of this page, refer to
Chapter 6.

Listing 5-9: The Cart page (Cart.aspx)

<%@ Page Language=”C#”
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Cart.aspx.cs”
Inherits=”Cart”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server”
ContentPlaceHolderID=”ContentPlaceHolder1” >

Sorry, that function hasn’t been implemented yet.

</asp:Content>

142 Part III: Building E-Commerce Applications

11_597760 ch05.qxp 1/11/06 9:55 PM Page 142

Chapter 6

Building a Shopping
Cart Application

In This Chapter
� Designing the Shopping Cart application

� Creating the database for the Shopping Cart application

� Looking at the new Generics feature and the Wizard control

� Building the Shopping Cart application’s Web pages and classes

This chapter presents a simple online Shopping Cart application that lets
your customer purchase products directly from your Web site by adding

products to a list for purchase. It’s integrated with the Product Catalog appli-
cation shown in Chapter 5. When the user is ready to purchase the items, a
Check Out page gathers the user’s shipping and payment information so the
order can be processed.

Of all the applications in this book, this one is the most code-intensive. That’s
because it doesn’t use ASP.NET data binding or data sources for the Shopping
Cart and Check Out pages. Instead, they use code to directly manage the data
displayed for the shopping cart and to write the order data to the database.
It’s common for large applications to use separate classes to handle database
access so that the database access code can be separated from the presenta-
tion and business logic code. As with the other applications in this book, you’ll
find both C# and Visual Basic versions of this code in this chapter.

Because the application is an extension of the Product Catalog application
shown in Chapter 5, you may want to refer to that chapter to remind yourself
how the Product List and Product Detail pages work.

12_597760 ch06.qxp 1/11/06 9:55 PM Page 143

Considering Some Basic Decisions
Before we get into the specifics of the Shopping Cart application’s design,
consider some basic decisions that will affect both the application and its
design:

� Will customers be required to log in? One of the first decisions you’ll
need to make is whether you want to require users to log in before they
can purchase items. Requiring users to log in has several advantages.
For example, you can store the customer information in a database and
retrieve it when the user logs in, eliminating the need for the user to re-
enter his or her name and address. On the other hand, some users avoid
sites where they have to register precisely for that reason: They don’t
like the idea that you’re keeping their information on file.

ASP.NET makes it easy to require customers to log in to a Web site before
they can access certain pages, and Chapter 4 presents a basic user regis-
tration and login application that uses those features. The Shopping Cart
application in this chapter doesn’t require the user to log in, but you can
easily incorporate the features from the User Authentication application
(see Chapter 4) with this Shopping Cart application.

� How will you handle international shipments? For simplicity, the appli-
cation in this figure accepts orders only within the 50 states of the United
States. You’ll have to modify it somewhat to accept orders from outside
of the U.S.

� How will you store the shopping cart data? There are two common
options for how you will store the contents of the user’s shopping cart.
One is to keep the shopping cart in a database table. Then the shopping
cart data will continue to exist apart from the application. The other is
to use one of ASP.NET’s temporary state features — most likely session
state — to hold the shopping cart.

The advantage of putting the shopping cart in a database is that the user
can leave the application and come back later and find the items still in
his or her shopping cart. But there are several disadvantages. One is that
you’ll have to devise a way to associate the data for a particular user’s
shopping cart with that user. The easiest way to do that is to require the
user to register and log in. Another disadvantage is that the Shopping
Cart table can quickly become filled with abandoned data. You’ll need
to clean up the table periodically, removing the data from old shopping
carts that users have abandoned.

The main advantage of using a feature such as session state to store
shopping cart data is the ease of programming. ASP.NET takes care of
associating the data with the user and deleting the cart when the user
ends the session.

144 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 144

An alternative to session state is the new ASP.NET 2.0 Profile feature.
Profile is similar to session state but automatically saves data to a data-
base when the session ends. Then, if the user visits the Web site again
later, that user’s profile data is automatically retrieved.

The application shown in this chapter uses session state to store the
shopping cart.

� How will you handle credit cards? Most Web sites allow the user to pay
for the purchase with a credit card. Then the application must be careful
to provide adequate security to protect the customer’s credit card informa-
tion. At the least, the application should use SSL (Secure Socket Layers) to
secure the connection so the user’s credit card information is transmitted
securely (although you must also take precautions to store it securely if
you save it in your database).

The application in this chapter accepts the user’s credit card information,
but doesn’t save it in the database. In addition, the credit card information
isn’t properly validated and the credit card account isn’t charged for the
purchase. The exact procedures for doing that vary depending on the
credit card processing company you use. As a result, the application
presented in this chapter doesn’t actually charge the customer’s credit
card for the order. You’ll have to develop the code to do that yourself.

As an alternative to credit cards, you may want to let your customers
pay for their orders using PayPal. See www.paypal.com for information
about how to incorporate PayPal into your Web site.

� How will you calculate shipping charges? The easiest way to charge
customers for shipping is to charge a simple flat rate for each item sold.
Alternatively, you can calculate the order’s exact shipping costs by using
a combination of the order’s total weight and the destination Zip code.
The application presented in this chapter simply charges $2.00 for each
item ordered. You may want to develop a routine that calculates the
shipping charges more accurately.

The User Interface
Figure 6-1 shows the user interface flow for the Shopping Cart application.
This application’s user interface has just five pages. The first two, default.
aspx and product.aspx, are almost identical to the pages of the Product
Catalog application presented in Chapter 5. The cart.aspx page displays
the user’s shopping cart, and the CheckOut.aspx page lets the user enter the
information required to complete the order, including the shipping and credit
card information. Finally, when the user submits the order, the completed.
aspx page is displayed to confirm that the order has been submitted.

145Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 145

The Product List page
Figure 6-2 shows the Product List page (default.aspx). It’s almost identical
to the default.aspx page from Chapter 5, with one subtle difference:
there’s a line just beneath the banner that displays information about the
user’s shopping cart as well as a link that goes to the cart page. This line is
part of the Master Page, so it’s displayed on every page of the application.

The Product Detail page
Figure 6-3 shows the Product Detail page (product.aspx), which displays
the details for the product selected by the user. The Add to Cart button at the
bottom of the page adds the item to the user’s shopping cart, and then takes
the user to the Shopping Cart page.

The Cart page
Figure 6-4 shows the Shopping Cart page, which displays the contents of the
user’s shopping cart.

View
detail

Continue
shopping

Continue

Submit
order

Check out

Add to
cart

User requests
page

Product.aspx

Default.aspx

Product
Detail
page

Cart.aspx

Cart page

Checkout.aspx

Check out
page

Completed.aspx

Order
Completed
page

Product
List page

Figure 6-1:
The user
interface

for the
Shopping

Cart
application.

146 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 146

Figure 6-3:
The Product
Detail page.

Figure 6-2:
The Product

List page.

147Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 147

Following are some of the salient points to notice about this page:

� The shopping cart shown here contains two items. Notice that the mes-
sage in the Master Page indicates the number of items in the cart.

� When the user clicks the Add to Cart button in the Product Detail page,
the item is added to the cart and the quantity field is set to 1. If the user
has previously added the same item to the cart, the quantity for that
item is increased by one. (In other words, if the user were to click the
Continue Shopping button to return to the Product Detail page for the
Pirate Flag, then click the Add to Cart button again, the quantity field for
the Pirate Flag line in the shopping cart would be changed to 2.)

� The user can click the Delete link to remove an item from the cart.

� The user can click the Change link to change the quantity for an item in
the cart. Then the Quantity field for that item changes from a label to a
text box, and the Change and Delete links are replaced by Update and
Cancel links. The user can then change the quantity and click Update, or
click Cancel to keep the existing quantity unchanged.

� If the shopping cart is empty, the following message is displayed in place
of the cart:

Your shopping cart is empty.

In addition, the Check Out button is disabled.

� The user can click the Continue Shopping button to return to the product
pages. If the user came to the Cart page by clicking Add to Cart from the
page for a specific product, the user is returned to that page. Otherwise,
the user is returned to the Product List page.

� When the user is ready to purchase the items in the cart, he or she can
click the Check Out button. This redirects the user to the Check Out page,
which is described in the next section.

The Check Out page
The Check Out page uses the new ASP.NET 2.0 Wizard control to walk the
user through the process of completing an order. The Wizard control does
this by displaying separate steps that the user can navigate through using
Next and Previous buttons that appear at the bottom of the wizard. The user
can also go directly to one of the steps by using navigation links to the left of
the wizard.

The three steps for the Check Out process are: Shipping, Billing, and
Confirmation. The pages displayed for each of these steps are described
in the following sections.

148 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 148

The Shipping step
Figure 6-5 shows the page displayed for the first step of the check-out wizard,
which gathers the customer’s contact information.

The following paragraphs describe the operation of this page:

� The links at the left side of the page let the user go directly to any of the
three steps of the Wizard.

� The text boxes let the user enter his or her name, address, zip code,
phone number, and email address.

� The drop-down list is filled with the names of all 50 states in the United
States. If you want to accept orders from outside of the U.S., you’ll need
to modify this step, perhaps by adding a drop-down list or text box for
the country.

� All of the text boxes have validators that require the user to enter data.
However, any data is accepted. You may want to modify this step to pro-
vide more comprehensive validation. For example, you may want to use
a Regular Expression validator to validate the phone number and e-mail
address. (I’ll leave it to you to figure out how to do that.)

� When the user clicks the Next button, the Payment step of the wizard is
displayed, as described in the next section.

Figure 6-4:
The Cart

page.

149Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 149

The Payment step
Figure 6-6 shows the Payment step of the check-out wizard, which lets the
user enter credit card information to pay for the order.

Here are the important details:

� Again, the links at the left side of the page let the user go directly to any
of the three wizard steps.

� The first drop-down list lets the user select which type of credit card to
use. The options are Visa, MasterCard, and American Express. You can
easily modify the application to accept other types of cards.

� The first text box accepts the credit card number. A required-field valida-
tor forces the user to enter a value, but other than requiring an entry, no
further validation is done. The validation requirements for credit card
numbers are different for each type of card, and the validation checks
can get pretty complicated. I’ll leave it to you to add validation checking
for this field once you determine what credit cards you want to accept.

� The second drop-down list lets the user indicate the credit card’s expira-
tion month. This drop-down list is filled with the names of the months of
the year.

Figure 6-5:
The Shipping

Step of the
Check Out

page.

150 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 150

� The second text box lets the user enter the expiration year for the
credit card. Validators are used to ensure the user enters an integer
that’s between 2005 and 2099.

� The user can click the Next button to go to the Confirmation step or the
Previous button to return to the Shipping step.

The Confirmation step
Figure 6-7 shows the Confirmation step of the check-out wizard, which displays
the final total for the order (including sales tax and shipping) and allows the
user to submit the order for processing.

Here are the details of how this page works:

� As with the other two steps, the links to the left of the wizard let the
user go directly to either of the other two steps.

� The labels display the subtotal calculated by adding up prices of the
items ordered, the sales tax, the shipping charges, and the order total.

� Sales tax is calculated at 7.75 percent for California orders only.

Figure 6-6:
The

Payment
step of the
Check Out

page.

151Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 151

� Shipping charges are $2.00 per item.

� The user can click the Submit Order button to submit the order or the
Previous button to return to the Payment step. If the user submits the
order, the Completed page is displayed, as described in the next section.

The Completed page
Figure 6-8 shows the Completed page, which is displayed when the user submits
the order. As you can see, this page simply displays a message indicating that
the order has been processed. The user can then click the Continue button to
return to the Default.aspx page.

Note that if an error occurs while processing the order, the following message
is displayed instead of the one shown in Figure 6-8:

There was a problem with your order. Please try again
later.

Figure 6-7:
The

Confirmation
step of the
Check Out

page.

152 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 152

Designing the Cart Database
The Shopping Cart application uses a SQL Server database to store informa-
tion about the products, customers, and orders. Figure 6-9 shows an Entity-
Relationship Diagram of the database. As you can see, it consists of six tables:

� Categories

� Products

� FeaturedProducts

� Customers

� Orders

� OrderItems

The first three of these tables are the same as in the Products database
used for the application that was presented in Chapter 5. So I refer you to
that chapter for more information about those tables. The following sections
describe the three new tables.

Figure 6-8:
The

Completion
page.

153Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 153

The Customers table
The Customers table contains one row for each customer who has pur-
chased a product. Table 6-1 lists the columns defined for this table.

Table 6-1 The Customers Table
Column name Type Description

email VARCHAR(50) The customer’s e-mail address. This column also
serves as the table’s primary key.

lastname VARCHAR(50) The customer’s last name.

firstname VARCHAR(50) The customer’s first name.

Customers
email
lastname
firstname
address
city
state
zipcode
phone

Order
ordernum
orderdate
custemail
subtotal
salestax
shipping
total

Products
productid
catid
name
shorttext
longtext
price
thumbnail
image

Categories
catid
name
[desc]

FeaturedProducts
productid
featuretext
saleprice

OrderItems
ordernum
productid
name
price
quantity
total

Figure 6-9:
A diagram

of the
Shopping

Cart
application’s

database.

154 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 154

Column name Type Description

address VARCHAR(50) The customer’s street address.

city VARCHAR(50) The customer’s city.

state VARCHAR(2) The customer’s two-character state code.

zipcode VARCHAR(9) The customer’s Zip code, up to nine characters.

phone VARCHAR(20) The customer’s phone number.

The Orders table
The Orders table contains one row for each order that has been submitted.
Table 6-2 lists the columns used by the Orders table.

Table 6-2 The Orders Table
Column name Type Description

ordernum INT An identity column that uniquely identifies
each order. This column is the primary key
for the table.

orderdate SMALLDATETIME The date the order was placed.

custemail VARCHAR(50) The customer’s e-mail address. This serves
as a foreign key that relates the order to a
particular row in the Customers table.

subtotal MONEY The sum of the totals for each item associ-
ated with the order.

salestax MONEY The sales tax for the order.

shipping MONEY The shipping charges for the order.

total n/a The order total. This field is calculated by
adding the subtotal, salestax, and shipping
fields.

Note that the total column doesn’t actually store the order total. Instead, it’s
a calculated field that adds the subtotal, sales tax, and shipping charges to
determine the total for the order.

155Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 155

The OrderItems table
The OrderItems table contains one row for each line item associated with
an order. Table 6-3 lists the columns used by the OrderItems table.

Table 6-3 The OrderItems Table
Column name Type Description

ordernum INT The order number for the order this item is asso-
ciated with.

productid VARCHAR(10) The ID for the product represented by this item.
Note that this column and the ordernum column
comprise the primary key for this table.

name VARCHAR(50) The product’s name.

price MONEY The product’s price.

quantity SMALLINT The quantity ordered.

total n/a The total for the item, calculated by multiplying
the price by the quantity.

Note that this table uses a primary key composed of the ordernum and
productid columns. As a result, although there can be duplicate order
numbers and product IDs in the table, each combination of order number
and product ID must be unique. That makes sense when you think about it:
Each order can have more than one order item, and each product can appear
on many different orders, but a particular order can have only one line item
for each product.

Note also that the name column is included in the OrderItems table as a
convenience so the application doesn’t have to retrieve it from the Products
table. You could omit the name from the OrderItems table, but that would
complicate the database access required to display the line items for an order.
This is an example of denormalization (as described in Chapter 1).

You might suspect that the price could also be omitted, but the price is a bit
different than the name. Product prices are likely to change. Suppose a cus-
tomer places an order for a product that’s priced at $9.95 at the time the order
is submitted, but within moments of when the user submits the order, the
price is increased to $11.95. If you then charge the customer $11.95 for the
product, the customer will be justifiably upset. To prevent that from happen-
ing, the price at the time of the order should be stored in the OrderItems
table when the order is submitted.

156 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 156

Creating the database
You can create the Cart database manually from within Visual Studio by
using the Server Explorer. Or you can run the CreateCartDB.sql script
that’s shown in Listing 6-1. The easiest way to run this script is to open a
command-prompt window, change to the directory that contains the script,
and enter this command:

sqlcmd -S localhost\SQLExpress -i CreateCartDB.sql

This command assumes you’re running SQL Server Express on your own
computer. If you’re using SQL Server on a different server, you’ll need to
change localhost\SQLExpress to the correct name. If you’re not sure
what name to use, ask your database administrator.

Listing 6-1: The CreateCartDB.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Cart’)

DROP DATABASE Cart
GO

CREATE DATABASE Cart ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Cart.mdf’,
SIZE=10)

GO

USE Cart

CREATE TABLE Categories (➝4
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
[desc] VARCHAR(MAX) NOT NULL,
PRIMARY KEY(catid))
GO

CREATE TABLE Products (➝5
productid VARCHAR(10) NOT NULL,
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
shorttext VARCHAR(MAX) NOT NULL,
longtext VARCHAR(MAX) NOT NULL,
price MONEY NOT NULL,
thumbnail VARCHAR(40) NOT NULL,

(continued)

157Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 157

Listing 6-1 (continued)

image VARCHAR(40) NOT NULL,
PRIMARY KEY(productid),
FOREIGN KEY(catid) REFERENCES Categories(catid))
GO

CREATE TABLE FeaturedProducts (➝6
productid VARCHAR(10) NOT NULL,
featuretext VARCHAR(MAX) NOT NULL,
saleprice MONEY NOT NULL,
PRIMARY KEY(productid),
FOREIGN KEY(productid) REFERENCES Products(productid))
GO

CREATE TABLE Customers (➝7
email VARCHAR(50) NOT NULL,
lastname VARCHAR(50) NOT NULL,
firstname VARCHAR(50) NOT NULL,
address VARCHAR(50) NOT NULL,
city VARCHAR(50) NOT NULL,
state VARCHAR(2) NOT NULL,
zipcode VARCHAR(9) NOT NULL,
phone VARCHAR(20) NOT NULL,
PRIMARY KEY(email))
GO

CREATE TABLE Orders (➝8
ordernum INT IDENTITY,
orderdate SMALLDATETIME NOT NULL,
custemail VARCHAR(50) NOT NULL,
subtotal MONEY NOT NULL,
salestax MONEY NOT NULL,
shipping MONEY NOT NULL,
total AS (subtotal + salestax + shipping),
PRIMARY KEY(ordernum),
FOREIGN KEY(custemail) REFERENCES Customers(email))
GO

CREATE TABLE OrderItems (➝9
ordernum INT NOT NULL,
productid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
price MONEY NOT NULL,
quantity SMALLINT NOT NULL,
total AS (price * quantity),
PRIMARY KEY(ordernum, productid),
FOREIGN KEY(ordernum) REFERENCES Orders(ordernum),
FOREIGN KEY(productid) REFERENCES Products(productid))
GO

158 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 158

Here are some of the more interesting details about this script:

➝ 1 This line sets the database context to master. Although that’s
usually the default, it’s a good idea to set it just in case.

➝ 2 Deletes the existing Cart database if it exists.

➝ 3 Creates a database named Cart, placing the database file in the
C:\Apps directory. You can change this location if you want to
store the database in a different location.

➝ 4 Creates the Categories table.

➝ 5 Creates the Products table.

➝ 6 Creates the FeaturedProducts table.

➝ 7 Creates the Customers table.

➝ 8 Creates the Orders table.

➝ 9 Creates the OrderItems table.

Adding some test data
The CD that comes with this book includes a script named InsertData.sql
that inserts test data into the Cart database. You can run this script from a
command prompt like this:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

(You may need to change the server name if you’re not using a local instance
of SQL Server Express.)

Querying the database
The Shopping Cart application uses the same queries as the Product Catalog
application to retrieve product information from the database. For more infor-
mation about those queries, refer to Chapter 5.

Inserting order data into the database
To insert the data for an order into the database, several SQL statements must
be used. Here’s a brief outline of what must be done to successfully process
an order:

159Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 159

start a transaction
if the customer already exists in the Customers table

update the Customers row with the new data
else

insert a new row in the Customers table
insert a new row in the Orders table
get the order number generated for the inserted row
for each item in the shopping cart

insert a new row in the OrderItems table
if any SQL errors occur

roll back the transaction
else

commit the transaction

Note that the entire process is contained within a transaction. That way, if
any SQL errors occur during the processing of the order, any updates made
prior to the error will be rolled back. The updates to the Customers, Orders,
and OrderItems tables aren’t committed until all of the updates are success-
fully completed.

There are several ways to handle the logic necessary to insert or update the
customer data. One way is to run a query to determine whether the customer
exists, then execute an INSERT or UPDATE statement depending on the results
of the query. This application uses a simpler technique: It assumes that the
customer doesn’t already exist, so it executes an INSERT statement to insert
the customer data. If this statement fails because of a duplicate primary key,
the program executes an UPDATE statement to update the existing customer
row with the new data.

The only other challenging bit of SQL code is determining what order number
is generated when a row is inserted into the Orders table. This is necessary
because the order number must be included in the OrderItems rows for
the order. Fortunately, you can determine the order number by issuing this
statement:

SELECT @@IDENTITY

The @@IDENTITY function returns the value of the last identity column gen-
erated for the database.

In some cases, the @@IDENTITY function doesn’t return the value you might
expect. For example, if you insert a row into a table that contains an identity
column, you’d expect @@IDENTITY to return the value generated for that
identity column. But that’s not what happens if the table has a trigger associ-
ated with it, and that trigger executes another INSERT statement that inserts

160 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 160

data into another table that also has an identity column. In that case, the
@@IDENTITY function returns the identity value for the second table. Fortu-
nately, the Cart database doesn’t use triggers, so the @@IDENTITY function
will correctly return the identity value generated by the Orders table.

Connecting to the database
The connection string used to access the Cart database is stored in the
application’s web.config file, like this:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Cart;Integrated Security=True”/>
</connectionStrings>

The only place in the application that references this connection string is
here in the web.config file. This makes it easy to relocate the database
when you put the application into production.

The Application’s Folders
The Shopping Cart application includes the following folders:

� (Root): The application’s root folder contains the application’s six pages
(Default.aspx, Product.aspx, Cart.aspx, CheckOut.aspx, and
Completed.aspx) as well as the Master Page (Default.master).

� App_Data: This folder is designed to store databases used by the applica-
tion. However, this particular application uses a database that’s stored
in a location that’s determined by SQL Server. So the database for our
Cart isn’t actually stored in this folder. (If you use the script presented in
Listing 6-1 to create the database, the database file is stored in C:\Apps.)

� App_Code: This folder contains the C# or Visual Basic code files that
define the classes used by the application. For more information about
these classes, see the section “Designing the Classes” later in this chapter.

� Images: Here, you’ll find the banner image displayed by the Master Page
and the image files that show pictures of the store’s products.

161Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 161

Designing the Classes
Unlike most of the other applications presented in this book, the Shopping
Cart application depends on several classes that both define the business
objects used by the program as well as provide the database access. In par-
ticular, the application uses the following classes:

� Customer: Represents a single customer.

� ShoppingCart: Represents the user’s shopping cart.

� CartItem: Represents an item in the user’s shopping cart.

� Order: Represents an order.

� OrderDB: Handles the details of writing an order to the database.

The following sections describe each of these classes in detail.

The Customer class
The Customer class represents a single customer. Its constructors and prop-
erties are spelled out in Table 6-4.

Table 6-4 The Customer Class
Constructor Description

Customer() Creates an instance of the Customer
class with default property values.

Customer(string lastName, Creates an instance of the Customer
string firstName, string class with the specified property values.
address, string city,
string state, string
zipCode, string
phoneNumber, string email)

Property Description

string LastName The customer’s last name.

string FirstName The customer’s first name.

162 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 162

Property Description

string Address The customer’s street address.

string City The customer’s city.

string State The customer’s state.

string zipCode The customer’s Zip code.

string phoneNumber The customer’s phone number.

string email The customer’s e-mail address.

The ShoppingCart class
The ShoppingCart class represents a user’s shopping cart. Its constructors,
properties, and methods are listed in Table 6-5.

Table 6-5 The ShoppingCart class
Constructor Description

ShoppingCart() Creates a new shopping cart with no
items.

Property Description

int Count The number of items in the shopping cart.

Method Description

List<CartItem> GetItems() Returns a List object that contains one
CartItem object for each item in the
shopping cart.

void AddItem(string id, Adds a new item with the specified
string name, decimal price) product ID, name, and price.

void UpdateQuantity Updates the quantity at the specified
(int index, int quantity) index.

void DeleteItem(int index) Deletes the item at the specified index.

string PhoneNumber The customer’s phone number.

163Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 163

The CartItem class
The CartItem class represents an item in the user’s shopping cart. Its con-
structors and properties are listed in Table 6-6.

Table 6-6 The CartItem class
Constructor Description

CartItem() Creates a new CartItem object with
default property values.

CartItem(string ID, Creates a new CartItem object with
string name, decimal the specified ID, name, price, and
price, int quantity) quantity.

Property Description

string ID The Product ID for the product repre-
sented by the item.

string Name The product name.

decimal Price The price per unit.

int Quantity The quantity.

decimal Total The total for the item (read-only).

The Order class
The Order class represents an order submitted by the user. Its constructors
and properties are listed in Table 6-7.

Table 6-7 The Order class
Constructor Description

Order () Creates a new Order object with
default property values.

Order (date OrderDate, Creates a new CartItem object with
Customer cust, the specified order date, customer, and
ShoppingCart cart) shopping cart.

Property Description

DateTime OrderDate The date the order was submitted.

Customer Cust The customer who submitted the order.

164 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 164

Property Description

ShoppingCart Cart The shopping cart that specifies the items
being ordered.

decimal SubTotal The subtotal, calculated by adding up the
total for each item in the order’s shopping
cart.

decimal SalesTax The sales tax for the order (read-only). The
sales tax is calculated as 7.75% of the
subtotal if the Customer resides in
California. Otherwise, the sales tax is zero.

decimal Shipping The shipping charges for the order (read-
only). The shipping charge is calculated as
$2.00 per item.

decimal Total The total for the order (read-only). The total
is calculated by adding up the subtotal,
sales tax, and shipping charges.

The OrderDB class
The OrderDB class handles the task of writing an order to the database. It
consists of just a single static method (Shared for all you Visual Basic pro-
grammers out there), as described in Table 6-8.

Table 6-8 The OrderDB class
Method Description

static bool Writes the order to the Cart database.
WriteOrder(Order o) Returns true if the order is successfully

written; otherwise, returns false. The
connection string for the database is
obtained from the application’s
web.config file.

Building the Master page
The Master Page (MasterPage.master) for the Shopping Cart application is
shown in Listing 6-2. It’s similar to the Master Page that was used in the
Product Listing application shown in Chapter 5. However, it includes an addi-
tional label that displays information about the user’s shopping cart and a
link that leads to the Cart page.

165Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 165

Listing 6-2: The Master Page (MasterPage.master)

<%@ Master Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Acme Pirate Supply</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

 ➝2

<asp:Label ID=”lblCart” runat=”server” ➝3

Font-Size=”Small”/>

<a href=”Cart.aspx” ➝4

style=”font-size: small”>
Go To Cart

<asp:contentplaceholder ➝5

id=”ContentPlaceHolder1” runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

The following paragraphs describe the key lines of the Master Page:

➝ 1 The Master directive identifies the file as a Master Page.

➝ 2 The Image control displays a banner image at the top of each
page. The Banner.jpg file is stored in the Images folder.

➝ 3 The label that displays the number of items currently in the shop-
ping cart. The text for this label is set in the Page_Load method.

➝ 4 The link that leads to the Cart page.

➝ 5 The ContentPlaceHolder control provides the area where the
content for the application’s content pages will be displayed.

The Master Page requires a code-behind file to set the Text property of the
label. The C# version of this code-behind file is shown in Listing 6-3, and the
Visual Basic version is shown in Listing 6-4.

166 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 166

Listing 6-3: The code-behind file for the Master Page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class MasterPage : System.Web.UI.MasterPage
{

protected void Page_Load(object sender, EventArgs e)
{

ShoppingCart cart = (ShoppingCart)Session[“cart”];
if (cart == null)

lblCart.Text = “Your shopping cart is empty.”;
else if (cart.Count == 0)

lblCart.Text = “Your shopping cart is empty.”;
else if (cart.Count == 1)

lblCart.Text =
“You have 1 item in your shopping cart.”;

else
lblCart.Text = “You have “

+ cart.Count.ToString()
+ “ items in your shopping cart.”;

}
}

Listing 6-4: The code-behind file for the Master Page (VB)

Partial Class MasterPage
Inherits System.Web.UI.MasterPage

Protected Sub Page_Load(_
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

Dim cart As ShoppingCart
cart = Session(“cart”)
If cart Is Nothing Then

lblCart.Text = “Your shopping cart is empty.”
ElseIf cart.Count = 0 Then

lblCart.Text = “Your shopping cart is empty.”
ElseIf cart.Count = 1 Then

lblCart.Text =
“You have 1 item in your shopping cart.”

Else

(continued)

167Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 167

Listing 6-4 (continued)

lblCart.Text = “You have “ _
+ cart.Count.ToString() _
+ “ items in your shopping cart.”

End If
End Sub

End Class

As you can see, the code-behind file has just one method, named Page_Load,
which is executed when the page is loaded. It retrieves the shopping cart
from session state, casts it as a ShoppingCart object, then sets the label
accordingly. If the cart doesn’t exist or is empty, the label is set to “Your
shopping cart is empty.” If the cart contains exactly one item, the label is set
to “You have 1 item in your shopping cart.” And if the cart has more than one
item, the label is set to “You have n items in your shopping cart.”

Modifying the Product Detail Page
The Product Detail page (Product.aspx) is almost identical to the Product
Detail page for the Product Catalog application shown in Chapter 5. However,
there’s one crucial difference. In the Chapter 5 application, clicking the Add to
Cart button simply led the user to a page that indicates that the shopping cart
feature hasn’t yet been implemented. But in this application, clicking the Add
to Cart button must actually add the product to the shopping cart, then redi-
rect the user to the Cart.aspx page to see the contents of the shopping cart.

To add this feature to the Product Detail page, you must modify the method
that’s called when the user clicks the Add to Cart button, btnAdd_Click.
The rest of the page is unchanged from the Chapter 5 application.

Listing 6-5 shows the C# version of the btnAdd_Click method, the method
that’s called when the user clicks the Add to Cart button. Listing 6-6 shows
the Visual Basic version of this method. (To see the .aspx file for the
Product Detail page, please refer back to Chapter 5.)

Listing 6-5: The btnAdd_Click method (C#)

protected void btnAdd_Click(object sender, EventArgs e)
{

// get values from data source ➝1
DataView dv = (DataView)SqlDataSource1.Select(

DataSourceSelectArguments.Empty);
DataRowView dr = dv[0];
string ID = (String)dr[“ProductID”];
string Name = (string)dr[“Name”];

168 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 168

decimal Price;
if (dr[“SalePrice”] is DBNull)

Price = (decimal)dr[“Price”];
else

Price = (decimal)dr[“SalePrice”];

// get or create shopping cart ➝2
ShoppingCart cart;
if (Session[“cart”] == null)
{

cart = new ShoppingCart();
Session[“cart”] = cart;

}
else
{

cart = (ShoppingCart)Session[“cart”];
}

// add item to cart ➝3
cart.AddItem(ID, Name, Price);

// redirect to cart page ➝4
string ProductID = Request.QueryString[“prod”];
string CatID = Request.QueryString[“cat”];
Response.Redirect(“Cart.aspx?prod=” + ProductID

+ “&cat=” + CatID);
}

The following paragraphs describe the key points of this method:

➝ 1 The btnAdd_Click method begins by retrieving the ID, name,
and price information for the current product from the data
source. You’d think that it would be pretty easy to retrieve the
product data displayed by the form, but it turns out to be a little
tricky. The easiest technique is to use the Select method of the
data source to retrieve a data view object that contains the data
retrieved by the data source’s SELECT statement. Because the
SELECT statement for this data source retrieves the data for a
single product, the resulting data view will have just one row. The
indexer for the DataView object lets you retrieve the individual
rows of the data view. Thus, index 0 is used to retrieve a
DataRowView object for the data view’s only row. Then the indi-
vidual columns are retrieved from the DataRowView object using
the column names as indexes.

Note that if a SalePrice column is present, it is used instead of
the Price column for the product’s price.

➝ 2 Once the product information has been retrieved from the data
source, session state is checked to see if a shopping cart already
exists. If so, the shopping cart is retrieved from session state. If
not, the application creates a new shopping cart by calling the

169Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 169

ShoppingCart class constructor. Then the new shopping cart is
added to session state under the name “cart.”

➝ 3 The AddItem method of the shopping cart is called to add the
product to the shopping cart.

➝ 4 The user is redirected to the Cart.aspx page, with the product
and category IDs passed on as query string fields.

Listing 6-6: The btnAdd_Click method (VB)

Protected Sub btnAdd_Click(_
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

‘ get values from data source ➝1
Dim dv As DataView
dv = SqlDataSource1.Select(_

DataSourceSelectArguments.Empty)
Dim dr As DataRowView = dv(0)
Dim ID As String = dr(“ProductID”)
Dim name As String = dr(“Name”)
Dim Price As Decimal
If TypeOf (dr(“SalePrice”)) Is DBNull Then

Price = dr(“Price”)
Else

Price = dr(“SalePrice”)
End If

‘ get or create shopping cart ➝2
Dim cart As ShoppingCart
If Session(“cart”) Is Nothing Then

cart = New ShoppingCart()
Session(“cart”) = cart

Else
cart = Session(“cart”)

End If

‘ add item to cart ➝3
cart.AddItem(ID, name, Price)

‘ redirect to cart page ➝4
Dim ProductID As String
ProductID = Request.QueryString(“prod”)
Dim CatID As String
CatID = Request.QueryString(“cat”)
Response.Redirect(_

“Cart.aspx?prod=” + ProductID _
+ “&cat=” + CatID)

End Sub

170 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:55 PM Page 170

Building the Cart Page
The Cart page (Cart.aspx) displays the user’s shopping cart and lets the
user modify the shopping cart by changing the quantity ordered or by delet-
ing items. There are two ways the user can display this page. One is to click
the Add to Cart button on the Product Detail page. The other is to click the
Go To Cart link that appears beneath the banner at the top of each page of
the application. To see what this page looks like, refer to Figure 6-4.

The following sections present the .aspx code for the cart page and the C#
and Visual Basic versions of the code-behind file.

The Cart.aspx file
The Cart page is defined by the Cart.aspx file, which is shown in Listing 6-7.

Listing 6-7: The Cart Page (Cart.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Cart.aspx.cs”
Inherits=”Cart”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server”
ContentPlaceHolderID=”ContentPlaceHolder1” >

<asp:GridView ID=”GridView1” runat=”server” ➝2

AutoGenerateColumns=”False”
EmptyDataText=”Your shopping cart is empty.”
OnRowDeleting=”GridView1_RowDeleting”
OnRowEditing=”GridView1_RowEditing”
OnRowUpdating=”GridView1_RowUpdating”
OnRowCancelingEdit=”GridView1_RowCancelingEdit”>
<Columns>

<asp:BoundField DataField=”ID” ➝3
HeaderText=”Product” ReadOnly=”True” >
<HeaderStyle HorizontalAlign=”Left” />

</asp:BoundField>
<asp:BoundField DataField=”Name” ➝4

HeaderText=”Name” ReadOnly=”True” >
<HeaderStyle HorizontalAlign=”Left” />

</asp:BoundField>
<asp:BoundField DataField=”Price” ➝5

HeaderText=”Price” ReadOnly=”True”
DataFormatString=”{0:c}” >
<HeaderStyle HorizontalAlign=”Left” />

(continued)

171Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:55 PM Page 171

Listing 6-7 (continued)

</asp:BoundField>
<asp:BoundField DataField=”Quantity” ➝6

HeaderText=”Quantity” >
<HeaderStyle HorizontalAlign=”Left” />

</asp:BoundField>
<asp:BoundField DataField=”Total” ➝7

HeaderText=”Total” ReadOnly=”True”
DataFormatString=”{0:c}” >
<HeaderStyle HorizontalAlign=”Left” />

</asp:BoundField>
<asp:CommandField EditText=”Change” ➝8

ShowDeleteButton=”True”
ShowEditButton=”True” >
<ItemStyle BorderStyle=”None” />
<HeaderStyle BorderStyle=”None” />

</asp:CommandField>
</Columns>

</asp:GridView>

<asp:Button ID=”btnContinue” runat=”server” ➝9

OnClick=”btnContinue_Click”
Text=”Continue Shopping” />

<asp:Button ID=”btnCheckOut” runat=”server” ➝10
PostBackUrl=”~/CheckOut.aspx”
Text=”Check Out” />

</asp:Content>

The following paragraphs describe the important elements of this listing:

➝ 1 The Page directive specifies that the page will use MasterPage.
master as its Master Page.

For the Visual Basic version of this application, be sure to change
the AutoEventWireup attribute of the Page directive to false.
That enables the Handles clause of the Sub procedures. (If you
don’t change this setting, the events for the GridView control
included on this page won’t be processed correctly.)

➝ 2 The GridView control displays the user’s shopping cart. Notice
that unlike the GridView controls used on the Default.aspx
page, this GridView control doesn’t specify a data source.
Instead, the data source will be specified at run time, when the
Page_Load method is executed.

For the Visual Basic version of this application, you need to remove
the four attributes that specify the event handling for this control.
Specifically, you need to remove the following four attributes:

• OnRowDeleting

• OnRowEditing

172 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 172

• OnRowUpdating

• OnRowCancelingEdit

If you don’t remove these attributes, the corresponding events in
the Visual Basic code-behind file will be executed twice each time
the event is raised.

Notice that AutoGenerateColumns is set to false. Then the
GridView control doesn’t automatically create a column for each
field in the data source. Instead, you must manually configure the
columns by using the <Columns> element.

➝ 3 The first column in the GridView control is bound to the data
source field named ID. The heading for this column is set to
“Product,” and the column is defined as read-only to prevent the
user from modifying it.

➝ 4 The second column in the GridView control is bound to the Name
field. This column is also defined as read-only to prevent the user
from modifying it.

➝ 5 The next column is bound to the Price field. It uses a format
string to display the price in currency format. It too is read-only.

➝ 6 Unlike the other columns in the GridView control, the Quantity
column isn’t read-only. As a result, the user can modify its con-
tents when the row is placed into Edit mode.

➝ 7 The Total column displays the item total (the price times the
quantity) in currency format. It is read-only.

➝ 8 The last column in the shopping cart GridView control is a com-
mand column that lets the user edit or delete a shopping cart
row. The ShowEditButton and ShowDeleteButton attributes
are required to display the Edit and Delete buttons, and the
EditButtonText attribute changes the text displayed in the
edit button from the default (“Edit”) to “Change.”

➝ 9 The Continue button lets the user continue shopping by returning
to the product pages.

➝10 The Check Out button lets the user proceed to the checkout page.

For the Visual Basic version of this application, you should
remove the OnClick attribute for this control.

The code-behind file for the Cart page
Listing 6-8 shows the C# version of the code-behind file for the Cart page, and
Listing 6-9 shows the Visual Basic version.

173Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 173

Listing 6-8: The code-behind file for the Cart page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Generic;

public partial class Cart : System.Web.UI.Page
{

ShoppingCart cart;

protected void Page_Load(object sender, ➝1
EventArgs e)

{
CheckTimeStamps();

if (Session[“cart”] == null)
{

cart = new ShoppingCart();
Session[“cart”] = cart;

}
else
{

cart = (ShoppingCart)Session[“cart”];
}

GridView1.DataSource = cart.GetItems();
if (!IsPostBack)

GridView1.DataBind();

btnCheckOut.Enabled = (cart.Count > 0);
}

protected void GridView1_RowDeleting(➝2
object sender, GridViewDeleteEventArgs e)

{
cart.DeleteItem(e.RowIndex);
GridView1.DataBind();

}

protected void GridView1_RowEditing(➝3
object sender, GridViewEditEventArgs e)

{
GridView1.EditIndex = e.NewEditIndex;
GridView1.DataBind();

174 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 174

}

protected void GridView1_RowUpdating(➝4
object sender, GridViewUpdateEventArgs e)

{
DataControlFieldCell cell =

(DataControlFieldCell)GridView1
.Rows[e.RowIndex].Controls[3];

TextBox t = (TextBox)cell.Controls[0];
try
{

int q = int.Parse(t.Text);
cart.UpdateQuantity(e.RowIndex, q);

}
catch (FormatException)
{

e.Cancel = true;
}
GridView1.EditIndex = -1;
GridView1.DataBind();

}

protected void GridView1_RowCancelingEdit(➝5
object sender, GridViewCancelEditEventArgs e)

{
e.Cancel = true;
GridView1.EditIndex = -1;
GridView1.DataBind();

}

protected void btnContinue_Click(➝6
object sender, EventArgs e)

{
string ProductID = Request.QueryString[“prod”];
string CatID = Request.QueryString[“cat”];
if (ProductID == null)

if (CatID == null)
Response.Redirect(“Default.aspx”);

else
Response.Redirect(“Default.aspx?cat=”

+ CatID);
else

Response.Redirect(“Product.aspx?prod=”
+ ProductID
+ “&cat=” + CatID);

}

private void CheckTimeStamps() ➝7
{

if (IsExpired())
Response.Redirect(Request.Url.OriginalString);

(continued)

175Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 175

Listing 6-8 (continued)

else
{

DateTime t = DateTime.Now;
ViewState.Add(“$$TimeStamp”, t);
String page = Request.Url.AbsoluteUri;
Session.Add(page + “_TimeStamp”, t);

}
}

private bool IsExpired() ➝8
{

String page = Request.Url.AbsoluteUri;
if (Session[page + “_TimeStamp”] == null)

return false;
else if (ViewState[“$$TimeStamp”] == null)

return false;
else if (Session[page + “_TimeStamp”].ToString()

== ViewState[“$$TimeStamp”].ToString())
return false;

else
return true;

}

}

The following paragraphs describe the methods in this code-behind file. Note
that these comments apply to both the C# and the VB versions.

➝ 1 Page_Load: This method is called when the page loads. It begins
by calling a method named CheckTimeStamps. I’ll explain how
this method works later in this section. For now, just realize that
this method forces the page to refresh if the user has come to the
page by using the browser’s back button. This approach prevents
problems that can occur when the user backs up to a version of
the page that shows a shopping cart with contents that differ from
the shopping cart that’s stored in session state.

Assuming that the CheckTimeStamps method didn’t force the
page to refresh, the Page_Load method next checks to see if
session state contains an item named cart. If not, a new
shopping cart is created and saved in session state. But if an
item named cart does exist, the cart item is retrieved, cast to
a ShoppingCart object, and assigned to the cart variable.

Next, the shopping cart’s GetItems method is called. This
returns a List object that holds a CartItem object for each item
in the shopping cart. This List object is used as the data source
for the GridView control. And if this is the first time the page has
been posted, the DataBind method of the GridView control is
called so it displays the contents of the shopping cart.

176 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 176

The last line of this method checks to see if the number of items in
the cart is greater than zero. If so, the Check Out button is enabled.
But if the cart is empty, the Check Out button is disabled. That pre-
vents the user from checking out with an empty shopping cart.

➝ 2 GridView1_RowDeleting: This method is called whenever
the user clicks the Delete button for a shopping cart row. The
e argument has a property named RowIndex which indicates the
row to be deleted. This property is passed to the shopping cart’s
DeleteItem method, which removes the item from the cart.
Then the GridView control’s DataBind method is called to
update the GridView control so the deleted row isn’t displayed.

➝ 3 GridView1_RowEditing: This method is called when the user
clicks the Edit button to edit a row. Its e argument includes a prop-
erty named NewEditIndex, which indicates the index of the row to
be edited. What this method actually does is to set the EditIndex
property of the GridView control to this index value. Then it calls
the DataBind method to update the GridView control. This, in
turn, causes the Quantity column (the only column in the GridView
control that isn’t read-only) to display as a text box instead of a
label. That way, the user can enter a new value for the quantity.

➝ 4 Here the GridView1_RowUpdating method is executed when the
user clicks the Update button after modifying the quantity field for
the row being edited. The code in this method is a little tricky
because, surprisingly, there’s no easy way to get the value entered
by the user into the text box. So the first statement uses the Rows
and Controls collections of the GridView control to get to the
fourth cell (index 3) in the row being edited. This returns an object
of type DataControlFieldCell, which has its own Controls
collection. The text box that contains the quantity is the first con-
trol in this collection. As a result, the second statement in this
method retrieves this text box and assigns it to the variable t.

Next, the int.Parse method attempts to parse the text entered
by the user as an integer. If the text can be parsed to an integer,
the result is passed to the shopping cart’s UpdateQuantity
method to update the quantity. If not, a FormatException excep-
tion is thrown. When this exception is caught, the Cancel prop-
erty of the e argument is set to true, which tells the GridView
control to cancel the update.

Finally, the EditIndex property of the GridView control is set
to –1 to indicate that no row is being edited, and the DataBind
method is called to update the GridView control with the
updated contents of the shopping cart.

➝ 5 GridView1_RowCancelingEdit: This method is called if the
user clicks the Edit button to edit a row, then clicks the Cancel
button to cancel the edit. It sets the Cancel property of the e
argument to true to cancel the edit. Then it sets the EditIndex

177Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 177

property of the GridView control to -1 to indicate that no row is
being edited and calls DataBind to refresh the GridView control
from the data source.

➝ 6 btnContinue_Click: This method is called if the user clicks the
Continue Shopping button. It examines the prod and cat query
strings to determine which page the user should be redirected to. If
there is no prod or cat query string, the user is redirected to the
Default.aspx page. If there is a cat string but no prod string, the
user is redirected to the Default.aspx page and the cat string is
passed on so that the drop-down list will show the category that was
previously selected by the user. And if both a prod and a cat query
string are present, the user is redirected to the Product.aspx page.
In that case, both query strings are passed on so the product that
was previously displayed will be shown.

➝ 7 CheckTimeStamps: This method is called at the start of the
Page_Load method to determine if the user has reached this
page by clicking the browser’s Back button. To determine this, a
timestamp is generated and saved in two places: in the page’s
view state and in the application’s session state. If the user posts a
page that was reached by using the browser’s Back button, the
timestamp saved in view state for that page won’t match the time-
stamp stored in session state. In that case, the application forces
the page to refresh so it will display the shopping cart accurately.

The CheckTimeStamps method begins with an if statement that
calls the IsExpired method. This method compares the time-
stamps to determine if the page is outdated. If so, the user is
redirected to Request.Url.OriginalString, which contains
the URL of the page that was posted. This forces the page to be
refreshed.

If the IsExpired method indicates that the page is not outdated,
a new timestamp is generated by calling DateTime.Now. Then
this timestamp is stored in the page’s view state under the name
$$TimeStamp and in session state using the absolute URL of
the page.

➝ 8 IsExpired: This method is called to determine if a page should
be refreshed because it has expired. Here are the rules it uses to
determine whether the page has expired:

• If there is no timestamp item in session state for the page, the
page is not expired.

• If there is no timestamp item in view state for the page, the
page is not expired.

• If there is a timestamp in both view state and session state and
the timestamps are the same, the page is not expired.

• If there is a timestamp in both view state and session state and
the timestamps are different, the page is expired.

178 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 178

Listing 6-9: The code-behind file for the Cart page (VB version)

Partial Class Cart
Inherits System.Web.UI.Page

Private cart As ShoppingCart

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

CheckTimeStamps()
If Session(“cart”) Is Nothing Then

cart = New ShoppingCart()
Session(“cart”) = cart

Else
cart = Session(“cart”)

End If
GridView1.DataSource = cart.GetItems()
If Not IsPostBack Then

GridView1.DataBind()
End If
btnCheckOut.Enabled = (cart.Count > 0)

End Sub

Protected Sub GridView1_RowDeleting(_ ➝2
ByVal sender As Object, _
ByVal e As

System.Web.UI.WebControls.GridViewDeleteEventAr
gs) _
Handles GridView1.RowDeleting

cart.DeleteItem(e.RowIndex)
GridView1.DataBind()

End Sub

Protected Sub GridView1_RowEditing(_ ➝3
ByVal sender As Object, _
ByVal e As

System.Web.UI.WebControls.GridViewEditEventArgs
) _
Handles GridView1.RowEditing

GridView1.EditIndex = e.NewEditIndex
GridView1.DataBind()

End Sub

Protected Sub GridView1_RowUpdating(_ ➝4
ByVal sender As Object, _
ByVal e As

System.Web.UI.WebControls.GridViewUpdateEventAr
gs) _

Handles GridView1.RowUpdating
Dim cell As DataControlFieldCell

(continued)

179Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 179

Listing 6-9 (continued)

cell = GridView1.Rows(e.RowIndex) _
.Controls(3)

Dim t As TextBox = cell.Controls(0)
Try

Dim q As Integer
q = Integer.Parse(t.Text)
cart.UpdateQuantity(e.RowIndex, q)

Catch ex As FormatException
e.Cancel = True

End Try
GridView1.EditIndex = -1
GridView1.DataBind()

End Sub

Protected Sub GridView1_RowCancelingEdit(_ ➝5
ByVal sender As Object, _
ByVal e As

System.Web.UI.WebControls.GridViewCancelEditEve
ntArgs) _
Handles GridView1.RowCancelingEdit

e.Cancel = True
GridView1.EditIndex = -1
GridView1.DataBind()

End Sub

Protected Sub btnContinue_Click(_ ➝6
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnContinue.Click

Dim ProductID As String
ProductID = Request.QueryString(“prod”)
Dim CatID As String
CatID = Request.QueryString(“cat”)
If ProductID Is Nothing Then

If CatID Is Nothing Then
Response.Redirect(“Default.aspx”)

Else
Response.Redirect(_
“Default.aspx?cat=” + CatID)

End If
Else

Response.Redirect(_
“Product.aspx?prod=” + ProductID _
+ “&cat=” + CatID)

End If
End Sub

Private Sub CheckTimeStamps() ➝7
If IsExpired() Then

Response.Redirect(Request.Url.OriginalString)

180 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 180

Else
Dim t As DateTime
t = DateTime.Now
ViewState.Add(“$$TimeStamp”, t)
Dim page As String
page = Request.Url.AbsoluteUri
Session.Add(page + “_TimeStamp”, t)

End If
End Sub

Private Function IsExpired() As Boolean ➝8
Dim page As String
page = Request.Url.AbsoluteUri
If Session(page + “_TimeStamp”) Is Nothing Then

Return False
ElseIf ViewState(“$$TimeStamp”) Is Nothing Then

Return False
ElseIf Session(page + “_TimeStamp”).ToString() _

= ViewState(“$$TimeStamp”).ToString() Then
Return False

Else
Return True

End If
End Function

End Class

Building the Check Out Page
The Check Out page uses a Wizard control to walk the user through the
three-step process of completing an order. In the first step, the user enters
his or her name, address, e-mail address, and phone number. In the second
step, the user enters credit card payment information. And in the third step,
the user confirms the order. Once the order is confirmed, the Check Out page
calls the InsertOrder method of the OrderDB class to actually write the
order to the database.

The following sections present the .aspx code for the Check Out page and
the C# and VB code-behind files.

The CheckOut.aspx file
Listing 6-10 shows the .aspx code for the Check Out page.

181Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 181

Listing 6-10: The Check Out Page (CheckOut.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”CheckOut.aspx.cs”
Inherits=”CheckOut”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server”
ContentPlaceHolderID=”ContentPlaceHolder1”>

<asp:Wizard ID=”Wizard1” runat=”server” ➝2
Width=”425px”
ActiveStepIndex=”0”
FinishCompleteButtonText=”Submit Order”
OnFinishButtonClick=”Wizard1_FinishButtonClick”>

<WizardSteps>
<asp:WizardStep runat=”server” ➝3

Title=”Shipping”>
Where do you want this order shipped?

<asp:Label ID=”Label1” runat=”server” ➝4
BorderStyle=”None” Text=”Last Name:”
Width=”100px” />

<asp:TextBox ID=”txtLastName” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1” runat=”server”
ControlToValidate=”txtLastName”
ErrorMessage=”Required.”
Display=”Dynamic” />

<asp:Label ID=”Label2” runat=”server” ➝5
BorderStyle=”None” Text=”First Name:”
Width=”100px” />

<asp:TextBox ID=”txtFirstName” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator2” runat=”server”
ControlToValidate=”txtFirstName”
ErrorMessage=”Required.”
Display=”Dynamic” />

<asp:Label ID=”Label3” runat=”server” ➝6
BorderStyle=”None” Text=”Address:”
Width=”100px” />

<asp:TextBox ID=”txtAddress” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator3” runat=”server”
ControlToValidate=”txtAddress”
ErrorMessage=”Required.”
Display=”Dynamic” />

182 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 182

<asp:Label ID=”Label4” runat=”server” ➝7
BorderStyle=”None” Text=”City:”
Width=”100px” />

<asp:TextBox ID=”txtCity” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator4” runat=”server”
ControlToValidate=”txtCity”
ErrorMessage=”Required.”
Display=”Dynamic” />

<asp:Label ID=”Label5” runat=”server” ➝8
BorderStyle=”None” Text=”State:”
Width=”100px” />

<asp:DropDownList ID=”ddlState” runat=”server”>
<asp:ListItem Value=”AL”>Alabama</asp:ListItem>
<asp:ListItem Value=”AK”>Alaska</asp:ListItem>
<asp:ListItem Value=”AZ”>Arizona</asp:ListItem>
<asp:ListItem Value=”AR”>Arkansas</asp:ListItem>
<asp:ListItem Value=”CA”>California

</asp:ListItem>
<asp:ListItem Value=”CO”>Colorado</asp:ListItem>
<asp:ListItem Value=”CT”>Connecticut

</asp:ListItem>
<asp:ListItem Value=”DE”>Deleware</asp:ListItem>
<asp:ListItem Value=”DC”>District of Columbia

</asp:ListItem>
<asp:ListItem Value=”FL”>Florida</asp:ListItem>
<asp:ListItem Value=”GA”>Georgia</asp:ListItem>
<asp:ListItem Value=”HI”>Hawaii</asp:ListItem>
<asp:ListItem Value=”ID”>Idaho</asp:ListItem>
<asp:ListItem Value=”IL”>Illinois</asp:ListItem>
<asp:ListItem Value=”IN”>Indiana</asp:ListItem>
<asp:ListItem Value=”IA”>Iowa</asp:ListItem>
<asp:ListItem Value=”KS”>Kansas</asp:ListItem>
<asp:ListItem Value=”KY”>Kentucky</asp:ListItem>
<asp:ListItem Value=”LA”>Louisianna

</asp:ListItem>
<asp:ListItem Value=”ME”>Maine</asp:ListItem>
<asp:ListItem Value=”MD”>Maryland</asp:ListItem>
<asp:ListItem Value=”MA”>Massachusetts

</asp:ListItem>
<asp:ListItem Value=”MI”>Michigan</asp:ListItem>
<asp:ListItem
Value=”MN”>Minnesota</asp:ListItem>
<asp:ListItem Value=”MS”>Mississippi

</asp:ListItem>
<asp:ListItem Value=”MO”>Missouri</asp:ListItem>
<asp:ListItem Value=”MT”>Montana</asp:ListItem>

(continued)

183Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 183

Listing 6-10 (continued)

<asp:ListItem Value=”NE”>Nebraska</asp:ListItem>
<asp:ListItem Value=”NV”>Nevada</asp:ListItem>
<asp:ListItem Value=”NH”>New Hampshire

</asp:ListItem>
<asp:ListItem Value=”NJ”>New Jersey

</asp:ListItem>
<asp:ListItem Value=”NM”>New Mexico

</asp:ListItem>
<asp:ListItem Value=”NY”>New York</asp:ListItem>
<asp:ListItem Value=”NC”>North Carolina

</asp:ListItem>
<asp:ListItem Value=”ND”>North Dakota

</asp:ListItem>
<asp:ListItem Value=”OH”>Ohio</asp:ListItem>
<asp:ListItem Value=”OK”>Oklahoma</asp:ListItem>
<asp:ListItem Value=”OR”>Oregon</asp:ListItem>
<asp:ListItem Value=”PA”>Pennsylvania

</asp:ListItem>
<asp:ListItem Value=”RI”>Rhode Island

</asp:ListItem>
<asp:ListItem Value=”SC”>South Carolina

</asp:ListItem>
<asp:ListItem Value=”SD”>South Dakota

</asp:ListItem>
<asp:ListItem
Value=”TN”>Tennessee</asp:ListItem>
<asp:ListItem Value=”TX”>Texas</asp:ListItem>
<asp:ListItem Value=”UT”>Utah</asp:ListItem>
<asp:ListItem Value=”VT”>Vermont</asp:ListItem>
<asp:ListItem Value=”VA”>Virginia</asp:ListItem>
<asp:ListItem Value=”WA”>Washington

</asp:ListItem>
<asp:ListItem Value=”WV”>West Virginia

</asp:ListItem>
<asp:ListItem
Value=”WI”>Wisconsin</asp:ListItem>
<asp:ListItem Value=”WY”>Wyoming</asp:ListItem>

</asp:DropDownList>

<asp:Label ID=”Label6” runat=”server” ➝9
BorderStyle=”None” Text=”Zip Code:”
Width=”100px” />

<asp:TextBox ID=”txtZipCode” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator5” runat=”server”
ControlToValidate=”txtZipCode”
ErrorMessage=”Required.”
Display=”Dynamic” />

<asp:Label ID=”Label7” runat=”server” ➝10

184 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 184

BorderStyle=”None” Text=”Phone Number:”
Width=”100px” />

<asp:TextBox ID=”txtPhoneNumber” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator6” runat=”server”
ControlToValidate=”txtPhoneNumber”
ErrorMessage=”Required.”
Display=”Dynamic” />

<asp:Label ID=”Label8” runat=”server” ➝11
BorderStyle=”None” Text=”Email address:”
Width=”100px” />

<asp:TextBox ID=”txtEmail” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator7” runat=”server”
ControlToValidate=”txtEmail”
ErrorMessage=”Required.”
Display=”Dynamic” />

</asp:WizardStep>

<asp:WizardStep runat=”server” ➝12
Title=”Billing”>

How do you want to pay for this order?

<asp:Label ID=”Label11” runat=”server” ➝13
BorderStyle=”None” Text=”Card type:”
Width=”100px” />

<asp:DropDownList ID=”ddlCardType”
runat=”server”>

<asp:ListItem Value=”VISA”>Visa</asp:ListItem>
<asp:ListItem Value=”MC”>MasterCard

</asp:ListItem>
<asp:ListItem Value=”AMEX”>American Express

</asp:ListItem>
</asp:DropDownList>

<asp:Label ID=”Label13” runat=”server” ➝14
BorderStyle=”None” Text=”Card number:”
Width=”100px” />

<asp:TextBox ID=”txtCardNumber” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator8” runat=”server”
ControlToValidate=”txtCardNumber”
ErrorMessage=”Required.” Display=”Dynamic” />

<asp:Label ID=”Label15” runat=”server” ➝15
BorderStyle=”None” Text=”Exp. Month:”

(continued)

185Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 185

Listing 6-10 (continued)

Width=”100px” />
<asp:DropDownList ID=”ddlExpirationMonth”

runat=”server”>
<asp:ListItem Value=”1”>January</asp:ListItem>
<asp:ListItem Value=”2”>February</asp:ListItem>
<asp:ListItem Value=”3”>March</asp:ListItem>
<asp:ListItem Value=”4”>April</asp:ListItem>
<asp:ListItem Value=”5”>May</asp:ListItem>
<asp:ListItem Value=”6”>June</asp:ListItem>
<asp:ListItem Value=”7”>July</asp:ListItem>
<asp:ListItem Value=”8”>August</asp:ListItem>
<asp:ListItem Value=”9”>September</asp:ListItem>
<asp:ListItem Value=”10”>October</asp:ListItem>
<asp:ListItem Value=”11”>November</asp:ListItem>
<asp:ListItem Value=”12”>December</asp:ListItem>

</asp:DropDownList>

<asp:Label ID=”Label16” runat=”server” ➝16
BorderStyle=”None” Text=”Exp. Year:”
Width=”100px” />

<asp:TextBox ID=”txtExpirationYear” runat=”server”
Width=”82px” />

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator9” runat=”server”
ControlToValidate=”txtExpirationYear”
ErrorMessage=”Required.” Display=”Dynamic” />

<asp:RangeValidator ID=”RangeValidator1”
runat=”server”
ControlToValidate=”txtExpirationYear”
Display=”Dynamic”
ErrorMessage=”Incorrect date.”
MaximumValue=”2099”
MinimumValue=”2005”
Type=”Integer” />

</asp:WizardStep>

<asp:WizardStep runat=”server” ➝17
Title=”Confirmation”>

Your order is ready to be processed.

<asp:Label ID=”Label9” runat=”server”

BorderStyle=”None” Text=”Subtotal:”
Width=”80px” />

<asp:Label ID=”lblSubtotal” ➝18
runat=”server” />

<asp:Label ID=”Label10” runat=”server”

BorderStyle=”None” Text=”Sales Tax:”
Width=”80px” />

<asp:Label ID=”lblSalesTax” ➝19
runat=”server” />

186 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 186

<asp:Label ID=”Label12” runat=”server”

BorderStyle=”None” Text=”Shipping:”
Width=”80px” />

<asp:Label ID=”lblShipping” ➝20
runat=”server” />

<asp:Label ID=”Label14” runat=”server”

BorderStyle=”None” Text=”Total:”
Width=”80px” />

<asp:Label ID=”lblTotal” ➝21
runat=”server” />

Click Submit Order to complete your order.

</asp:WizardStep>

</WizardSteps>
<SideBarStyle VerticalAlign=”Top” /> ➝22

</asp:Wizard>
</asp:Content>

This is a long listing because the Wizard control has three steps, each of
which is like an entire Web page unto itself. The following list describes each
of the controls defined for this page:

➝ 1 In the Page directive, remember to change the Language
attribute to VB and the AutoEventWireup attribute to false if
you’re working with Visual Basic.

➝ 2 The Wizard control defines the wizard displayed by the Check Out
page. The ActiveStepIndex attribute specifies the index of the
step the wizard should start with when the page is first displayed,
and the FinishCompleteButtonText attribute specifies the text
displayed on the Finish button in the final step of the wizard.

Whenever you run the application from Visual Studio, this attribute
is changed to match the step that is currently displayed in the
design window. As a result, you should always switch to the first
Wizard step before running the application from Visual Studio.

If you’re working in Visual Basic instead of C#, you should remove
the OnFinishButtonClick attribute.

➝ 3 The <WizardSteps> element defines the steps used by the wizard.
Each of these steps is then defined by an <asp:WizardStep> ele-
ment. This one defines the first step in the Wizard, titled “Shipping.”
The content for this step begins with the text “Where do you want
this order shipped?” Then items ➝4 through ➝11 define the con-
trols that allow the user to enter the shipping information.

➝ 4 A label, text box, and required-field validator let the user enter his
or her last name.

187Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 187

➝ 5 A label, text box, and required-field validator let the user enter his
or her first name.

➝ 6 A label, text box, and required-field validator let the user enter his
or her address.

➝ 7 A label, text box, and required-field validator let the user enter
the city.

➝ 8 A label and a drop-down list let the user select the state. As you
can see, 51 <ListItem> elements are used to populate the drop-
down list with the names and abbreviations of the 50 states plus
the District of Columbia.

➝ 9 A label, text box, and required-field validator let the user enter his
or her Zip code.

➝ 10 A label, text box, and required-field validator let the user enter his
or her phone number.

➝ 11 A label, text box, and required-field validator let the user enter his
or her e-mail address. This is the last set of controls for the first
wizard step.

➝ 12 The second wizard step defines the controls that let the user enter
his or her credit card information. This step is titled “Billing.”

➝ 13 A label and a drop-down list let the user choose the credit card
type. <ListItem> elements are used to fill the drop-down list
with three popular credit card types: Visa, MasterCard, and
American Express. If you want to accept additional credit card
types, you can add additional <ListItem> elements.

➝ 14 A label, text box, and required-field validator let the user enter the
credit card number. For an actual application, you’ll want to do
more validation than a simple required-field validator provides. In
particular, you’ll want to make sure that the number entered con-
forms to the requirements for each credit card type. (The require-
ments vary depending on card type; I’ll leave it to you to provide
this validation.)

➝ 15 A label and drop-down list let the user select the credit card’s
expiration month. Twelve <ListItem> elements fill the list with
the months of the year.

➝ 16 A label, text box, and two validators let the user enter the year the
credit card expires. The required-field validator ensures that the
user enters a value, and the range validator requires that the
entry be an integer between 2005 and 2099.

Note that this validation logic doesn’t prevent the user from enter-
ing data based on a card that’s already expired. You may want to
provide more extensive validation here to ensure that the year is
greater than or equal to the current year — and (if the year is
equal to the current year) that the month is greater than or equal
to the current month.

188 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 188

➝ 17 The third wizard step defines the final step of the check-out
process, which simply displays a summary of the order and allows
the user to submit the order for final processing. The title of this
step is “Confirmation.”

➝ 18 This label displays the order subtotal, obtained by adding the
total for each item in the shopping cart.

➝ 19 This label displays the sales tax for the order.

➝ 20 This label displays the shipping charges for the order.

➝ 21 This label displays the order total. This is the last control in the
third wizard step.

➝ 22 The Wizard control ends with a <SideBarStyle> element that
defines how the sidebar navigation links will be aligned. In this case,
VerticalAlign=”Top” indicates that the links will appear at the
top of the sidebar area. By default, they are centered vertically.

The code-behind file for the Check Out page
Mercifully, the code-behind file for the Check Out page is not nearly as long
as the .aspx file (or as long as the code-behind for the Cart page, for that
matter). Listing 6-11 shows the C# version, and the Visual Basic version is
shown in Listing 6-12.

Listing 6-11: The code-behind file for the Check Out page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class CheckOut : System.Web.UI.Page
{

private Order order; ➝1
private Customer cust;
private ShoppingCart cart;

protected void Page_Load(object sender, ➝2
EventArgs e)

{

(continued)

189Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 189

Listing 6-11 (continued)

cart = (ShoppingCart)Session[“cart”];

if (Session[“order”] == null) ➝3
{

order = new Order(DateTime.Now,
null, (ShoppingCart)Session[“cart”]);

Session[“order”] = order;
}
else
{

order = (Order)Session[“order”];
cart = order.Cart;

}

cust = new Customer(txtLastName.Text, ➝4
txtFirstName.Text,
txtAddress.Text,
txtCity.Text,
ddlState.SelectedValue,
txtZipCode.Text,
txtPhoneNumber.Text,
txtEmail.Text);

order.Cust = cust;

lblSubtotal.Text ➝5
= order.SubTotal.ToString(“c”);

lblSalesTax.Text
= order.SalesTax.ToString(“c”);

lblShipping.Text
= order.Shipping.ToString(“c”);

lblTotal.Text
= order.Total.ToString(“c”);

}

protected void Wizard1_FinishButtonClick(➝6
object sender, WizardNavigationEventArgs e)

{
// process credit card information here

bool success = OrderDB.WriteOrder(order);
Session[“cart”] = null;
Session[“order”] = null;
if (success)

Response.Redirect(“Completed.aspx”);
else

Response.Redirect(“Completed.aspx?Error=1”);
}

}

190 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 190

191Chapter 6: Building a Shopping Cart Application

The Wizard Control
The Wizard control is a new feature in
ASP.NET 2.0 that makes it easy to create wiz-
ards that walk the user through a series of
steps. A wizard consists of one or more steps
and navigation buttons that let the user move
from step to step. Only the content defined for
the current step is displayed when the page
containing a Wizard control is rendered.

The steps for the Wizard control are defined by
the <WizardSteps> element, which can
contain one or more <WizardStep> child
elements. There are five different types of steps
you can create:

� Start: The first step. This step includes a
Next button but not a Previous button.

� Step: An intermediate step. This step
includes both a Next and a Previous button.

� Finish: The final step that collects data from
the user. Instead of a Next button, this step
includes a Finish button.

� Complete: The last step displayed by the
wizard, after the user clicks the Finish
button. No navigation buttons are included
on this step.

� Auto: A step whose type is determined by
its position in the <WizardSteps> ele-
ment. (For example, the first step declared
is the start step.)

Here’s a basic skeleton of a simple Wizard con-
trol with three steps:

<asp:Wizard id=”Wizard1” runat=”server”>
<WizardSteps>

<asp:WizardStep steptype=”Start” title=”Step One”>
Content for step one goes here.

</asp:WizardStep>
<asp:WizardStep steptype=”Step” title=”Step Two”>

Content for step two goes here.
</asp:WizardStep>
<asp:WizardStep steptype=”Finish” title=”Step

Three”>
Content for step three goes here.

</asp:WizardStep>
</WizardSteps>

</asp:Wizard>

Note that you can edit the steps individually in
Visual Studio using the Smart Tag menu, which
you can summon by clicking the small arrow
that appears in the upper-right corner of the
Wizard when you’re working in Design view.

You can select the step you want to edit from a
drop-down list that appears in the Smart Tag
menu. And you can add or remove steps by
choosing Add/Remove WizardSteps from the
Smart Tag menu.

12_597760 ch06.qxp 1/11/06 9:56 PM Page 191

The following paragraphs explain the key points of this code-behind file:

➝ 1 Three variables are defined so they can be accessed throughout the
class. The first, order, references the Order object for the order to
be processed. The second, cust, references the Customer object.
And the third, cart, references the user’s shopping cart.

➝ 2 The Page_Load method is executed each time the page loads. It
begins by retrieving the shopping cart from session state and
assigning it to the cart variable.

➝ 3 This if statement retrieves the order item from session state if it
exists. If there is no order item already in session state, a new
Order object is created using the current time for the order date,
null (C#) or Nothing (VB) for the customer, and the cart item
from session state for the shopping cart. Then the new Order
object is added to session state.

➝ 4 Next, a new Customer object is created, using values entered by
the user in the first wizard step. Note that if the user hasn’t yet com-
pleted this step, these values will be blank. The new Customer
object is then assigned to the Cust property of the order object.

➝ 5 These four assignment statements assign formatted values to the
labels in the Confirmation step of the wizard, using properties of
the Order object.

➝ 6 The Wizard1_FinishButtonClick method is called when the
user clicks the Submit Order button in the third wizard step. It
begins with a comment that indicates where you should place the
code that processes the customer’s credit card. Then it calls the
WriteOrder method of the OrderDB class to write the order to the
database. The result of this call is saved in the Boolean variable
success. Next, the cart and order items in session state are
cleared. Finally, the user is redirected to the Completed.aspx page.
A query string field named Error is passed if the WriteOrder
method returned false.

Listing 6-12: The code-behind file for the Check Out page (VB)

Partial Class CheckOut
Inherits System.Web.UI.Page

Private order As Order ➝1
Private cust As Customer
Private cart As ShoppingCart

Protected Sub Page_Load(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

192 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 192

cart = Session(“cart”)

If Session(“order”) Is Nothing Then ➝3
order = New Order(DateTime.Now, _

Nothing, Session(“cart”))
Session(“order”) = order

Else
order = Session(“order”)
cart = order.Cart

End If

cust = New Customer(txtLastName.Text, _ ➝4
txtFirstName.Text, _
txtAddress.Text, _
txtCity.Text, _
ddlState.SelectedValue, _
txtZipCode.Text, _
txtPhoneNumber.Text, _
txtEmail.Text)

order.Cust = cust

lblSubtotal.Text _ ➝5
= order.SubTotal.ToString(“c”)

lblSalesTax.Text _
= order.SalesTax.ToString(“c”)

lblShipping.Text _
= order.Shipping.ToString(“c”)

lblTotal.Text _
= order.Total.ToString(“c”)

End Sub

Protected Sub Wizard1_FinishButtonClick(_ ➝6
ByVal sender As Object, _
ByVal e As

System.Web.UI.WebControls.WizardNavigationEvent
Args) _

Handles Wizard1.FinishButtonClick

‘ process credit card information here

Dim success As Boolean
success = OrderDB.WriteOrder(order)
Session(“cart”) = Nothing
Session(“order”) = Nothing
If success Then

Response.Redirect(“Completed.aspx”)
Else

Response.Redirect(“Completed.aspx?Error=1”)
End If

End Sub

End Class

193Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 193

Creating the Customer Class
The Customer class provides the customer information required to process
an order. Its constructors and properties are spelled out earlier in this chap-
ter (refer to Table 6-4). Listing 6-13 shows the C# version of this class. The
Visual Basic version is shown in Listing 6-14.

Listing 6-13: The Customer class (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public class Customer
{

private string _lastName; ➝1
private string _firstName;
private string _address;
private string _city;
private string _state;
private string _zipCode;
private string _phoneNumber;
private string _email;

public Customer() ➝2
{
}

public Customer(string lastName, ➝3
string firstName, string address,
string city, string state,
string zipCode, string phoneNumber,
string email)

{
this.LastName = lastName;
this.FirstName = firstName;
this.Address = address;
this.City = city;
this.State = state;
this.ZipCode = zipCode;
this.PhoneNumber = phoneNumber;
this.Email = email;

}

public string LastName ➝4

194 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 194

{
get
{

return _lastName;
}
set
{

_lastName = value;
}

}

public string FirstName ➝5
{

get
{

return _firstName;
}
set
{

_firstName = value;
}

}

public string Address ➝6
{

get
{

return _address;
}
set
{

_address = value;
}

}

public string City ➝7
{

get
{

return _city;
}
set
{

_city= value;
}

}

public string State ➝8
{

get
{

(continued)

195Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 195

Listing 6-13 (continued)

return _state;
}
set
{

_state = value;
}

}

public string ZipCode ➝9
{

get
{

return _zipCode;
}
set
{

_zipCode = value;
}

}

public string Email ➝10
{

get
{

return _email;
}
set
{

_email = value;
}

}

public string PhoneNumber ➝11
{

get
{

return _phoneNumber;
}
set
{

_phoneNumber = value;
}

}

}

The following paragraphs define each component of this class:

➝ 1 The class begins by defining private instance variables that are
used to hold the values associated with the class properties.
By convention, each of these variable names begins with an

196 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 196

underscore to indicate that it corresponds to a property with the
same name.

➝ 2 The default constructor creates a Customer object with default
values for each of its properties.

➝ 3 This constructor accepts arguments that initialize the customer
data. Notice that the assignment statements don’t directly assign
values to the instance variables of the class. Instead, they use the
properties to assign these values. That way, any validation rou-
tines written in the property setters will be used. (In this example,
none of the property setters have validation routines. Still, it’s a
good practice to follow just in case.)

➝ 4 The LastName property represents the customer’s last name. Its
get routine simply returns the value of the _lastName instance
variable, and its set routine simply sets the _lastName variable
to the value passed via the value argument.

➝ 5 The FirstName property represents the customer’s first name,
which is stored in the _firstName instance variable.

➝ 6 The Address property represents the customer’s address, stored
in the _address instance variable.

➝ 7 The City property represents the customer’s city, stored in the
_city instance variable.

➝ 8 The State property represents the customer’s state, stored in the
_state instance variable.

➝ 9 The ZipCode property represents the customer’s Zip code, stored
in the _zipCode instance variable.

➝ 10 The Email property represents the customer’s e-mail address,
stored in the _email instance variable.

➝ 11 The PhoneNumber property represents the customer’s phone
number, stored in the _phoneNumber instance variable.

Listing 6-14: The Customer class (VB version)

Imports Microsoft.VisualBasic

Public Class Customer
Private _lastName As String ➝1
Private _firstName As String
Private _address As String
Private _city As String
Private _state As String
Private _zipCode As String
Private _phoneNumber As String

(continued)

197Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 197

Listing 6-14 (continued)

Private _email As String

Public Sub New() ➝2
End Sub

Public Sub New(ByVal lastName As String, _ ➝3
ByVal firstName As String, _
ByVal address As String, _
ByVal city As String, _
ByVal state As String, _
ByVal zipCode As String, _
ByVal phoneNumber As String, _
ByVal email As String)

Me.LastName = lastName
Me.FirstName = firstName
Me.Address = address
Me.City = city
Me.State = state
Me.ZipCode = zipCode
Me.PhoneNumber = phoneNumber
Me.Email = email

End Sub

Public Property LastName() As String ➝4
Get

Return _lastName
End Get
Set(ByVal value As String)

_lastName = value
End Set

End Property

Public Property FirstName() As String ➝5
Get

Return _firstName
End Get
Set(ByVal value As String)

_firstName = value
End Set

End Property

Public Property Address() As String ➝6
Get

Return _address
End Get
Set(ByVal value As String)

_address = value
End Set

End Property

Public Property City() As String ➝7
Get

198 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 198

Return _city
End Get
Set(ByVal value As String)

_city = value
End Set

End Property

Public Property State() As String ➝8
Get

Return _state
End Get
Set(ByVal value As String)

_state = value
End Set

End Property

Public Property ZipCode() As String ➝9
Get

Return _zipCode
End Get
Set(ByVal value As String)

_zipCode = value
End Set

End Property

Public Property Email() As String ➝10
Get

Return _email
End Get
Set(ByVal value As String)

_email = value
End Set

End Property

Public Property PhoneNumber() As String ➝11
Get

Return _phoneNumber
End Get
Set(ByVal value As String)

_phoneNumber = value
End Set

End Property

End Class

Creating the ShoppingCart Class
The ShoppingCart class represents the user’s virtual shopping cart, as
described in detail earlier in this chapter (see Table 6-5). Now, Listing 6-15
presents the C# version of the ShoppingCart class, and the Visual Basic ver-
sion is shown in Listing 6-16.

199Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 199

Listing 6-15: The ShoppingCart class (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Generic;

public class ShoppingCart
{

private List<CartItem> _cart; ➝1

public ShoppingCart() ➝2
{

_cart = new List<CartItem>();
}

public List<CartItem> GetItems() ➝3
{

return _cart;
}

public void AddItem(string id, string name, ➝4
decimal price)

{
bool itemFound = false;
foreach (CartItem item in _cart)
{

if (item.ID == id)
{

item.Quantity += 1;
itemFound = true;

}
}
if (!itemFound)
{

CartItem item =
new CartItem(id, name, price, 1);

_cart.Add(item);
}

}

public void UpdateQuantity(int index, ➝5
int quantity)

{
CartItem item = _cart[index];
item.Quantity = quantity;

200 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 200

}

public void DeleteItem(int index) ➝6
{

_cart.RemoveAt(index);
}

public int Count ➝7
{

get
{

return _cart.Count;
}

}
}

The following paragraphs describe the important details of this class:

➝ 1 A private instance variable named _cart holds the contents of
the shopping cart. This variable uses the new Generics feature to
create a list object that can only hold objects of type CartItem.
(For more information about generics, see the sidebar “Using
Generics” later in this section.)

To use the List class, you must provide an imports (C#) or
Using (VB) statement that specifies the namespace System.
Collections.Generic.

➝ 2 The constructor for this class creates an instance of the List
class and assigns it to the _cart variable.

➝ 3 The GetItems method returns a List that contains CartItem
objects. It simply returns the _cart variable.

➝ 4 The AddItem method adds an item to the shopping cart, using the
product ID, name, and price values passed as parameters. It uses a
for each loop to search the items in the cart. If one of the items
already in the cart has a product ID that matches the ID passed as
a parameter, that item’s quantity is incremented and a local vari-
able named itemFound is set to true. If a matching item is not
found by the for each loop, a new CartItem object is created
with a quantity of 1. Then the new cart item is added to the list.

➝ 5 The UpdateQuantity method changes the quantity for a speci-
fied product. It uses the index value passed as a parameter to
access the cart item, then sets the item’s Quantity property to
the value passed via the quantity parameter.

➝ 6 The DeleteItem method uses the RemoveAt method of the List
class to remove the item at the index passed via the parameter.

➝ 7 The Count property simply returns the Count property of the
_cart list. Notice that since this is a read-only property, no set
routine is provided.

201Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 201

Listing 6-16: The ShoppingCart class (VB version)

Imports Microsoft.VisualBasic
Imports System.Collections.Generic

Public Class ShoppingCart

Private _cart As List(Of CartItem) ➝1

Public Sub New() ➝2
_cart = New List(Of CartItem)()

End Sub

Public Function GetItems() As List(Of CartItem) ➝3
Return _cart

End Function

Public Sub AddItem(ByVal id As String, _ ➝4
ByVal name As String, _
ByVal price As Decimal)

Dim itemFound As Boolean = False
For Each item As CartItem In _cart

If item.ID = id Then
item.Quantity += 1
itemFound = True

End If
Next
If Not itemFound Then

Dim item As CartItem
item = New CartItem(id, name, price, 1)
cart.Add(item)

End If
End Sub

Public Sub UpdateQuantity(_ ➝5
ByVal index As Integer,
ByVal quantity As Integer)

Dim item As CartItem
item = _cart(index)
item.Quantity = quantity

End Sub

Public Sub DeleteItem(ByVal index As Integer) ➝6
_cart.RemoveAt(index)

End Sub

Public ReadOnly Property Count() As Integer ➝7
Get

Return _cart.Count
End Get

End Property

End Class

202 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 202

Creating the CartItem Class
The CartItem class defines an item in the user’s shopping cart. The
ShoppingCart class itself (presented in the previous section) is basically a
list of CartItem objects. For a list of properties provided by the CartItem
class, refer to Table 6-6. Listings 6-17 and 6-18 present the C# and Visual Basic
versions of this class.

203Chapter 6: Building a Shopping Cart Application

Using Generics
Generics is a new feature of both the C# and the
Visual Basic programming languages. The pur-
pose of the Generics feature is to prevent a
common problem when dealing with .NET col-
lection classes. Suppose you want to store a
collection of Customer objects. You can do
that by declaring an ArrayList object, then
adding Customer objects to the array list.
However, nothing prevents you from adding
other types of objects to the array list. If you
were careless, you could also add a
ShoppingCart object to the array list.

With the new Generics feature, you can create
collections that are designed to hold only objects
of a specified type. For example, you can create
a list that can hold only Customer objects.
Then, if you try to add a ShoppingCart object
to the list by accident, an exception will be
thrown.

Along with the Generics feature comes a
new namespace (System.Collections.
Generic) with a set of collection classes that
are designed to work with the Generics feature.
Here are the classes you’ll probably use most:

� List: A generic array list.

� SortedList: A generic list that’s kept in sorted
order.

� LinkedList: A generic linked list.

� Stack: A generic last-in, first-out stack.

� Queue: A generic first-in, first-out queue.

� Dictionary: A generic collection of key/value
pairs.

� SortedDictionary: A generic collection of
key/value pairs kept in sorted order.

The syntax for using the Generics feature takes
a little getting used to. Here’s a C# example that
defines a variable of type List whose objects
are Customer types, then creates an instance
of the list and assigns it to the variable:

List<Customer> custlist;
custlist = new
List<Customer>();

Notice how the generic type is enclosed in
greater-than and less-than symbols.

Here’s the same example in Visual Basic:

Dim custlist As List(Of
Customer)
custlist = New List(Of
Customer)()

As you can see, Visual Basic uses the Of key-
word to indicate the generic type.

12_597760 ch06.qxp 1/11/06 9:56 PM Page 203

Listing 6-17: The CartItem class (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public class CartItem
{

private string _id; ➝1
private string _name;
private decimal _price;
private int _quantity;

public CartItem() ➝2
{

this.ID = “”;
this.Name = “”;
this.Price = 0.0m;
this.Quantity = 0;

}

public CartItem(string id, string name, ➝3
decimal price, int quantity)

{
this.ID = id;
this.Name = name;
this.Price = price;
this.Quantity = quantity;

}

public string ID ➝4
{

get
{

return _id;
}
set
{

_id = value;
}

}

public string Name ➝5
{

get
{

return _name;

204 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 204

}
set
{

_name = value;
}

}

public decimal Price ➝6
{

get
{

return _price;
}
set
{

_price = value;
}

}

public int Quantity ➝7
{

get
{

return _quantity;
}
set
{

_quantity = value;
}

}

public decimal Total ➝8
{

get
{

return _price * _quantity;
}

}

}

Here are the key points to take note of in these listings:

➝ 1 The private instance variables _id, _name, _price, and
_quantity hold the values for the cart item’s properties.

➝ 2 The first constructor, which has no parameters, simply initializes
the class properties to default values.

➝ 3 The second constructor lets you create a CartItem object and set
the ID, Name, Price, and Quantity properties at the same time.

➝ 4 The ID property provides the ID of the product referred to by the
cart item. It uses the private instance variable id to store its value.

205Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 205

➝ 5 The Name property represents the name of the product referred to
by the cart item. It uses the private instance variable name.

➝ 6 The Price property represents the price of the product. It uses
the _price variable to store its value.

➝ 7 The Quantity property records the quantity for the cart item. It
stores its value in the _quantity variable.

➝ 8 The Total property returns the value Price property multiplied
by the Quantity property. Notice that this property’s value isn’t
stored in an instance variable. Instead, the value is recalculated
each time it is accessed.

Listing 6-18: The CartItem class (VB version)

Imports Microsoft.VisualBasic

Public Class CartItem
Private _id As String ➝1
Private _name As String
Private _price As Decimal
Private _quantity As Integer

Public Sub New() ➝2
Me.ID = “”
Me.Name = “”
Me.Price = 0.0
Me.Quantity = 0

End Sub

Public Sub New(ByVal id As String, _ ➝3
ByVal name As String, _
ByVal price As Decimal, _
ByVal quantity As Integer)

Me.ID = id
Me.Name = name
Me.Price = price
Me.Quantity = quantity

End Sub

Public Property ID() As String ➝4
Get

Return _id
End Get
Set(ByVal value As String)

_id = value
End Set

End Property

Public Property Name() As String ➝5
Get

Return _name

206 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 206

End Get
Set(ByVal value As String)

_name = value
End Set

End Property

Public Property Price() As Decimal ➝6
Get

Return _price
End Get
Set(ByVal value As Decimal)

_price = value
End Set

End Property

Public Property Quantity() As Integer ➝7
Get

Return _quantity
End Get
Set(ByVal value As Integer)

_quantity = value
End Set

End Property

Public ReadOnly Property Total() As Decimal ➝8
Get

Return _price * _quantity
End Get

End Property

End Class

Creating the Order Class
The Order class represents the order placed by the user. Its main purpose in
life is to serve as the parameter passed to the WriteOrder method of the
OrderDB class. The constructors and properties of this class appear back in
Table 6-7; Listings 6-19 and 6-20 provide the C# and Visual Basic versions of
this class.

Listing 6-19: The Order class (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;

(continued)

207Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 207

Listing 6-19 (continued)

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public class Order
{

private DateTime _orderDate; ➝1
private Customer _cust;
private ShoppingCart _cart;

public Order() ➝2
{

_cust = new Customer();
_cart = new ShoppingCart();

}

public Order(DateTime orderDate, ➝3
Customer Cust, ShoppingCart Cart)

{
this.OrderDate = orderDate;
this.Cust = Cust;
this.Cart = Cart;

}

public DateTime OrderDate ➝4
{

get
{

return _orderDate;
}
set
{

_orderDate = value;
}

}

public Customer Cust ➝5
{

get
{

return _cust;
}
set
{

_cust = value;
}

}

public ShoppingCart Cart ➝6
{

get

208 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 208

{
return _cart;

}
set
{

_cart = value;
}

}

public decimal SubTotal ➝7
{

get
{

decimal subTotal = 0;
foreach (CartItem item in _cart.GetItems())

subTotal += item.Total;
return subTotal;

}
}

public decimal SalesTax ➝8
{

get
{

if (this.Cust.State.Equals(“CA”))
return this.SubTotal * 0.0775m;

else
return 0.0m;

}
}

public decimal Shipping ➝9
{

get
{

int count = 0;
foreach (CartItem item in _cart.GetItems())

count += item.Quantity;
return count * 2.00m;

}
}

public decimal Total ➝10
{

get
{

return this.SubTotal + this.Shipping
+ this.SalesTax;

}
}

}

209Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 209

The following paragraphs draw your attention to the highlights of this class:

➝ 1 Private instance variables hold the data for the order. The
_orderDate variable holds the order’s date, while the _cust
and _cart variables hold the Customer and ShoppingCart
objects associated with the order.

➝ 2 The parameterless constructor creates new Customer and
ShoppingCart objects for the order.

➝ 3 The second constructor lets you create an Order object by passing
the order date, customer, and shopping cart data as parameters.

➝ 4 The OrderDate property lets you set or retrieve the order date.

➝ 5 The Cust property lets you set or retrieve the order’s Customer
object.

➝ 6 The Cart property lets you set or retrieve the order’s shopping
cart.

➝ 7 The SubTotal property is a read-only property that returns the
total for the items in the order’s shopping cart. It uses a for
each loop to calculate this value by adding up the Total prop-
erty for each item in the shopping cart. Notice that the cart’s
GetItems method is called to retrieve the items.

➝ 8 The SalesTax property is a read-only property that calculates
the sales tax. If the customer lives in California, the tax is calcu-
lated at 7.75 percent. Otherwise no tax is charged.

In a real application, you wouldn’t hard-code the tax rate into the
program. Instead, you’d store the tax rate in a file, a database, or
perhaps in the application’s web.config file. That way you
wouldn’t have to recompile the application when the governor
reneges on that campaign promise about not raising taxes.

➝ 9 The Shipping property calculates the shipping charges by
adding up the quantities for each item in the shopping cart, then
multiplying the total number of items ordered by $2.00.

Of course, hard-coding the shipping charges into the program is
an even worse idea than hard-coding the tax rate. In an actual
application, you’ll almost certainly want to choose a more flexible
way to store the shipping charges, such as in a file, a database, or
in the web.config file.

➝ 10 The Total property is calculated by adding the values of the
SubTotal, Shipping, and SalesTax properties.

210 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 210

Listing 6-20: The Order class (VB version)

Imports Microsoft.VisualBasic
Imports System.Data

Public Class Order
Private _orderDate As DateTime ➝1
Private _cust As Customer
Private _cart As ShoppingCart

Public Sub New() ➝2
_cust = New Customer()
_cart = New ShoppingCart()

End Sub

Public Sub New(ByVal orderDate As DateTime, _ ➝3
ByVal Cust As Customer, _
ByVal Cart As ShoppingCart)

Me.OrderDate = orderDate
Me.Cust = Cust
Me.Cart = Cart

End Sub

Public Property OrderDate() As DateTime ➝4
Get

Return _orderDate
End Get
Set(ByVal value As DateTime)

_orderDate = value
End Set

End Property

Public Property Cust() As Customer ➝5
Get

Return _cust
End Get
Set(ByVal value As Customer)

_cust = value
End Set

End Property

Public Property Cart() As ShoppingCart ➝6
Get

Return _cart
End Get
Set(ByVal value As ShoppingCart)

_cart = value
End Set

End Property

Public ReadOnly Property SubTotal() As Decimal ➝7
Get

(continued)

211Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 211

Listing 6-20 (continued)

Dim d As Decimal = 0D
For Each item As CartItem In _cart.GetItems()

d += item.Total
Next
Return d

End Get
End Property

Public ReadOnly Property SalesTax() As Decimal ➝8
Get

If Me.Cust.State = (“CA”) Then
Return Me.SubTotal * 0.0775D

Else
Return 0D

End If
End Get

End Property

Public ReadOnly Property Shipping() As Decimal ➝9
Get

Dim count As Integer = 0
For Each item As CartItem In _cart.GetItems()

count += item.Quantity
Next
Return count * 2D

End Get
End Property

Public ReadOnly Property Total() As Decimal ➝10
Get

Return Me.SubTotal + Me.Shipping _
+ Me.SalesTax

End Get
End Property

End Class

Creating the OrderDB Class
The last class for this application, OrderDB, contains just a single public
method to write an order to the database. However, several private methods
are required to support this method. The C# version of this class is shown in
Listing 6-21, and Listing 6-22 shows the Visual Basic version.

212 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 212

Listing 6-21: The OrderDB class (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.Configuration;
using System.Data.SqlClient;

public static class OrderDB ➝1
{

static SqlTransaction tran; ➝2
static SqlConnection con;

public static bool WriteOrder(Order o) ➝3
{

string cs = WebConfigurationManager
.ConnectionStrings[“ConnectionString”]

.ConnectionString;
con = new SqlConnection(cs);
con.Open();
tran = con.BeginTransaction();
try
{

InsertCustomer(o.Cust);
int oNum = InsertOrder(o);
foreach (CartItem item in o.Cart.GetItems())

InsertItem(item, oNum);
tran.Commit();
con.Close();
return true;

}
catch (Exception ex)
{

tran.Rollback();
return false;

}
}

private static void InsertCustomer(Customer cust) ➝4
{

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.Transaction = tran;
try
{

cmd.CommandText = “INSERT INTO Customers “

(continued)

213Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 213

Listing 6-21 (continued)

+ “(lastname, firstname, “
+ “address, city, state, zipcode,”
+ “phone, email) “
+ “VALUES (@LastName, @FirstName, “
+ “@Address, @City, @State, @ZipCode,”
+ “@PhoneNumber, @Email)”;

cmd.Parameters.AddWithValue(
“@LastName”, cust.LastName);

cmd.Parameters.AddWithValue(
“@FirstName”, cust.FirstName);

cmd.Parameters.AddWithValue(
“@Address”, cust.Address);

cmd.Parameters.AddWithValue(
“@City”, cust.City);

cmd.Parameters.AddWithValue(
“@State”, cust.State);

cmd.Parameters.AddWithValue(
“@ZipCode”, cust.ZipCode);

cmd.Parameters.AddWithValue(
“@PhoneNumber”, cust.PhoneNumber);

cmd.Parameters.AddWithValue(
“@Email”, cust.Email);

cmd.ExecuteNonQuery();
}
catch (SqlException ex)
{

if (ex.Number == 2627) // Duplicate key
{

cmd.CommandText = “UPDATE Customers “
+ “SET lastname = @LastName, “
+ “firstname = @FirstName, “
+ “address = @Address, “
+ “city = @City, “
+ “state = @State, “
+ “zipcode = @ZipCode, “
+ “phone = @PhoneNumber “
+ “WHERE email = @Email “;

cmd.ExecuteNonQuery();
}
else

throw ex;
}

}

private static int InsertOrder(Order o) ➝5
{

SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.Transaction = tran;
cmd.CommandText = “INSERT INTO Orders “

+ “(orderdate, custemail, “
+ “subtotal, salestax, “

214 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 214

+ “shipping) “
+ “VALUES (@OrderDate, @Custemail, “
+ “@subtotal, @salestax, “
+ “@shipping)”;

cmd.Parameters.AddWithValue(
“@OrderDate”, DateTime.Now);

cmd.Parameters.AddWithValue(
“@Custemail”, o.Cust.Email);

cmd.Parameters.AddWithValue(
“@subtotal”, o.SubTotal);

cmd.Parameters.AddWithValue(
“@salestax”, o.SalesTax);

cmd.Parameters.AddWithValue(
“@shipping”, o.Shipping);

cmd.ExecuteNonQuery();
cmd.CommandText = “SELECT @@IDENTITY”;
return Convert.ToInt32(cmd.ExecuteScalar());

}

private static void InsertItem(CartItem item, ➝6
int oNum)

{
SqlCommand cmd = new SqlCommand();
cmd.Connection = con;
cmd.Transaction = tran;
cmd.CommandText = “INSERT INTO OrderItems “

+ “(ordernum, productid, “
+ “name, price, quantity) “
+ “VALUES (@OrderNum, @ProductID, “
+ “@Name, @Price, @Quantity)”;

cmd.Parameters.AddWithValue(
“@OrderNum”, oNum);

cmd.Parameters.AddWithValue(
“@ProductID”, item.ID);

cmd.Parameters.AddWithValue(
“@Name”, item.Name);

cmd.Parameters.AddWithValue(
“@Price”, item.Price);

cmd.Parameters.AddWithValue(
“@Quantity”, item.Quantity);

cmd.ExecuteNonQuery();
}

}

The following list spells out the most important details of this class:

➝ 1 The C# version of the OrderDB class is defined with the static
keyword. That simply means that the class can’t contain any
instance properties or members. Instead, all methods and proper-
ties must be declared as static. That’s a new feature of C# for
ASP.NET 2.0. Visual Basic doesn’t have this feature, which is why
the Shared keyword doesn’t appear on the class declaration for

215Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 215

the VB version of the OrderDB class. (This class uses static meth-
ods so that the application doesn’t have to create an instance of
the class to use its methods for database access.)

➝ 2 A pair of static (Shared in VB) variables are used to store the
SqlTransaction and SqlConnection objects used by the
WriteOrder method. The SqlTransaction object is used to
place all of the updates performed by the WriteOrder method in
a safety net so that if any of the updates fail, any updates per-
formed up to that point are reversed. And the SqlConnection
object provides a connection to the database.

➝ 3 The WriteOrder method is the only public method provided by the
OrderDB class. It begins by using the WebConfigurationManager
class to retrieve the database connection string from web.config.
Then it creates and opens a connection and obtains a transaction
that can be used to coordinate the updates.

Next, it calls the InsertCustomer method to insert the customer
data into the Customers table, calls the InsertOrder method to
insert a row into the Orders table, and uses a for each loop to
call the InsertItem method once for each item in the order’s
shopping cart. Notice that the InsertOrder method returns the
order number generated for the order. This value is then passed
to the InsertItem method so the order items will be associated
with the correct order.

After all of the data has been inserted, the Commit method is
called on the transaction object to commit the updates, the con-
nection is closed, and the method returns with a return value of
true to indicate that the data was written successfully.

If an exception occurs during any of the database updates, how-
ever, the exception will be caught by the Catch statement. Then
the Rollback method of the transaction is called to reverse any
updates that were previously made. Then the WriteOrder
method returns false so the caller knows the order was not suc-
cessfully written.

➝ 4 The InsertCustomer method inserts or updates the customer
data in the Customers table. It begins by issuing the following
SQL statement to attempt to insert the customer data:

INSERT INTO Customers
(lastname, firstname,
address, city, state, zipcode,
phone, email)

VALUES(@LastName, @FirstName,
@Address, @City, @State, @ZipCode,
@PhoneNumber, @Email)

216 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 216

After defining the INSERT statement, the InsertCustomer method
uses the cmd.Parameters collection to set the parameters required
by the INSERT statement. Then, it calls the ExecuteNonQuery
method to execute the INSERT statement. If a customer with the
specified e-mail address already exists in the Customers table,
this statement will fail, throwing a specific SqlException whose
Number property is 2627. In that case, the InsertCustomer
method issues the following SQL statement to update the customer
with the new data:

UPDATE Customers
SET lastname = @LastName,

firstname = @FirstName,
address = @Address,
city = @City,
state = @State,
zipcode = @ZipCode,
phone = @PhoneNumber

WHERE email = @Email

➝ 5 The InsertOrder method inserts data into the Orders table by
executing this SQL statement:

INSERT INTO Orders
(orderdate, custemail,
subtotal, salestax,
shipping)

VALUES (@OrderDate, @Custemail,
@subtotal, @salestax,
@shipping)

After the order has been inserted, the ExecuteScalar method is
called to execute this SQL statement:

SELECT @@IDENTITY

This statement returns the identity value generated by the
INSERT statement. The ExecuteScalar method returns this
value as an object, so it must be converted to an integer by using
Convert.ToInt32.

➝ 6 The InsertItem method inserts a single item into the
OrderItems table. It does so by calling ExecuteNonQuery to
execute the following SQL command:

INSERT INTO OrderItems
(ordernum, productid,
name, price, quantity)

VALUES (@OrderNum, @ProductID,
@Name, @Price, @Quantity)

217Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 217

Listing 6-22: The OrderDB class (VB version)

Imports Microsoft.VisualBasic
Imports System.Data.SqlClient
Imports System.Web.Configuration

Public Class OrderDB ➝1

Shared tran As SqlTransaction ➝2
Shared con As SqlConnection

Public Shared Function WriteOrder(_ ➝3
ByVal o As Order) As Boolean

Dim cs As String
cs = WebConfigurationManager _

.ConnectionStrings(“ConnectionString”) _
.ConnectionString

con = New SqlConnection(cs)
con.Open()
tran = con.BeginTransaction()
Try

InsertCustomer(o.Cust)
Dim oNum As Integer
oNum = InsertOrder(o)
For Each item As CartItem _

In o.Cart.GetItems()
InsertItem(item, oNum)

Next
tran.Commit()
con.Close()
Return True

Catch ex As Exception
tran.Rollback()
Return False

End Try
End Function

Private Shared Sub InsertCustomer(_ ➝4
ByVal cust As Customer)

Dim cmd As New SqlCommand()
cmd.Connection = con
cmd.Transaction = tran
Try

cmd.CommandText = “INSERT INTO Customers “ _
+ “(lastname, firstname, “ _
+ “address, city, state, zipcode,” _
+ “phone, email) “ _
+ “VALUES (@LastName, @FirstName, “ _
+ “@Address, @City, @State, @ZipCode,” _
+ “@PhoneNumber, @Email)”

cmd.Parameters.AddWithValue(_
“@LastName”, cust.LastName)

cmd.Parameters.AddWithValue(_
“@FirstName”, cust.FirstName)

218 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 218

cmd.Parameters.AddWithValue(_
“@Address”, cust.Address)

cmd.Parameters.AddWithValue(_
“@City”, cust.City)

cmd.Parameters.AddWithValue(_
“@State”, cust.State)

cmd.Parameters.AddWithValue(_
“@ZipCode”, cust.ZipCode)

cmd.Parameters.AddWithValue(_
“@PhoneNumber”, cust.PhoneNumber)

cmd.Parameters.AddWithValue(_
“@Email”, cust.Email)

cmd.ExecuteNonQuery()
Catch ex As SqlException

If ex.Number = 2627 Then ‘Duplicate Key
cmd.CommandText = “UPDATE Customers “ _

+ “SET lastname = @LastName, “ _
+ “firstname = @FirstName, “ _
+ “address = @Address, “ _
+ “city = @City, “ _
+ “state = @State, “ _
+ “zipcode = @ZipCode, “ _
+ “phone = @PhoneNumber “ _
+ “WHERE email = @Email “

cmd.ExecuteNonQuery()
Else

Throw ex
End If

End Try
End Sub

Private Shared Function InsertOrder(_ ➝5
ByVal o As Order) As Integer

Dim cmd As New SqlCommand()
cmd.Connection = con
cmd.Transaction = tran
cmd.CommandText = “INSERT INTO Orders “ _

+ “(orderdate, custemail, “ _
+ “subtotal, salestax, “ _
+ “shipping) “ _
+ “VALUES (@OrderDate, @Custemail, “ _
+ “@subtotal, @salestax, “ _
+ “@shipping)”

cmd.Parameters.AddWithValue(_
“@OrderDate”, DateTime.Now)

cmd.Parameters.AddWithValue(_
“@Custemail”, o.Cust.Email)

cmd.Parameters.AddWithValue(_
“@subtotal”, o.SubTotal)

cmd.Parameters.AddWithValue(_
“@salestax”, o.SalesTax)

(continued)

219Chapter 6: Building a Shopping Cart Application

12_597760 ch06.qxp 1/11/06 9:56 PM Page 219

Listing 6-22 (continued)

cmd.Parameters.AddWithValue(_
“@shipping”, o.Shipping)

cmd.ExecuteNonQuery()
cmd.CommandText = “SELECT @@IDENTITY”
Return Convert.ToInt32(cmd.ExecuteScalar())

End Function

Private Shared Sub InsertItem(_ ➝6
ByVal item As CartItem, _
ByVal oNum As Integer)

Dim cmd As New SqlCommand()
cmd.Connection = con
cmd.Transaction = tran
cmd.CommandText = “INSERT INTO OrderItems “ _

+ “(ordernum, productid, “ _
+ “name, price, quantity) “ _
+ “VALUES (@OrderNum, @ProductID, “ _
+ “@Name, @Price, @Quantity)”

cmd.Parameters.AddWithValue(_
“@OrderNum”, oNum)

cmd.Parameters.AddWithValue(_
“@ProductID”, item.ID)

cmd.Parameters.AddWithValue(_
“@Name”, item.Name)

cmd.Parameters.AddWithValue(_
“@Price”, item.Price)

cmd.Parameters.AddWithValue(_
“@Quantity”, item.Quantity)

cmd.ExecuteNonQuery()
End Sub

End Class

220 Part III: Building E-Commerce Applications

12_597760 ch06.qxp 1/11/06 9:56 PM Page 220

Part IV
Building Back-End

Applications

13_597760 pt04.qxp 1/11/06 9:56 PM Page 221

In this part . . .

Many Web applications have two faces: a public
face that’s available to anyone who wanders by,

and a back-end interface that only certain users — those
responsible for maintaining the application — can access.
In this part, I present two typical back-end applications.
The first, a database-maintenance application, lets quali-
fied users add, modify, and delete information in a data-
base. The second is a reporting application that generates
a report from a database (strictly to those who need to
see it, of course).

13_597760 pt04.qxp 1/11/06 9:56 PM Page 222

Chapter 7

Building a Product
Maintenance
Application

In This Chapter
� Designing the Product Maintenance application

� Creating the database for the Product Maintenance application

� Looking at the new FormView control

� Building the Product Maintenance application’s Web pages

Not all Web applications are intended for use by a company’s customers.
Just as important are those “behind the scenes” applications that the

company’s employees use to keep the Web site and its related databases up
to date. Some of the most important behind-the-scenes applications are those
that do database maintenance — in particular, those that let users update the
contents of individual database tables.

In this chapter, I present a simple Product Maintenance application that lets the
user update, delete, or insert data into the Product and Category tables
of the database used by the Product Catalog and Shopping Cart applications
(Chapters 5 and 6).

To keep this application simple, the database it uses doesn’t include the
FeaturedProducts table used by the applications in Chapters 5 and 6.

14_597760 ch07.qxp 1/11/06 9:57 PM Page 223

The Application’s User Interface
Figure 7-1 shows how the pages of the Product Maintenance application work
together. This application’s user interface has just three pages. Default.aspx
is simply a menu page with links to the other two pages. CatMaint.aspx lets
the user add, delete, or modify existing category records. And ProdMaint.
aspx lets the user maintain product records.

The Menu page
Figure 7-2 shows the Menu page (default.aspx), which displays links to the
Category Maintenance and Product Maintenance pages. This is the default
start page for the application.

The Category Maintenance page
The Category Maintenance page (CatMaint.aspx) is shown in Figure 7-3. As
you can see, this page lets the user maintain the data in the Categories data-
base table. The user can reach this page by clicking the Maintain Categories
link on the Menu page.

User starts
application

CatMaint.aspx

Maintain
Categories

Finished

Finished

Maintain
Products

Default.aspx

Category
Maintenance
page

ProdMaint.aspx

Product
Maintenance
page

Menu page

Figure 7-1:
The user

interface for
the Product

Mainte-
nance

application.

224 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 224

Figure 7-3:
The

Category
Mainte-

nance page.

Figure 7-2:
The Menu

page.

225Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 225

Here are some interesting things to note about the Category Maintenance page:

� A GridView control is used to list all categories in the Categories table.
Although it isn’t apparent from this figure, the GridView control’s built-
in paging feature is used to display no more than 10 categories at a time.

� The GridView control includes links that let the user edit or delete a
category. If the user clicks the Edit link, the GridView control is placed
in Edit mode, as shown in Figure 7-4. Then the user can change the infor-
mation for the category and click Update to update the database. Or, the
user can click Cancel to skip the update. (Note that the CategoryID
column can’t be updated.)

� The text boxes at the bottom of the page let the user enter the data for a
new category. Then the user can click the Add Category button to add
the new category to the database. This separate data-entry area is
required because although the GridView control supports edits and
deletions, it doesn’t allow insertions.

� Each of the text boxes at the bottom of the page is followed by a
RequiredFieldValidator to ensure that the user enters data for
all three fields.

� The link at the bottom of the page lets the user return to the Menu page.

Figure 7-4:
The

Category
Mainte-

nance page
with the

GridView
control in

Edit mode.

226 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 226

The Product Maintenance page
The Product Maintenance page (ProdMaint.aspx), which lets the user add,
change, or delete data from the Products table, is shown in Figure 7-5. The user
can reach this page by clicking the Maintain Products link on the Menu page.

Here are some key points to notice about this page:

� A GridView control on the left side of the page displays the products
in the Products table. This GridView control uses paging to display
ten products on each page. Also, a Select link is shown for each product.

� To the right of the GridView control is a FormsView control that dis-
plays the data for the selected product. The FormsView control — a
new control introduced with ASP.NET 2.0 — makes it easy to display and
update data for a single row of a data source.

� When the Product Maintenance page is first displayed — and no product
has yet been selected — the FormsView control simply displays the text
Please select a product. The product data isn’t displayed until the user
clicks the Select link for one of the products displayed by the GridView
control.

Figure 7-5:
The Product

Mainte-
nance page.

227Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 227

� The user can edit the data for the selected product by clicking the Edit
link at the bottom of the FormView control. This places the FormView
control into Edit mode, as shown in Figure 7-6. Then the user can change
the data for the product and click Update. Or, the user can click Cancel
to leave Edit mode without updating the data.

� Notice that in Edit mode, the Category ID field is displayed by a drop-
down list rather than a text box. This drop-down list shows all cate-
gories from the Categories table.

� Although you can’t tell from the figure, each of the text boxes in the
FormView control is followed by a RequiredFieldValidator. That
way, the user must enter data for each field.

� Unlike the GridView control, the FormView control does allow for inser-
tions. If the user clicks New, the FormView control enters Insert mode,
as shown in Figure 7-7. Then the user can enter the data for a new prod-
uct and click Insert to insert the row.

Figure 7-6:
The Product

Mainte-
nance page

with the
FormView

control in
Edit mode.

228 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 228

Designing the Application
The Product Maintenance application uses a very simple design. The Menu
page uses simple links that post back to the Category Maintenance or Product
Maintenance pages. Then these pages use ASP.NET data binding and data
sources to connect to and update the databases. This simple design avoids
the need for query strings, session states, or other similar features.

There are a few additional considerations to think about whenever you create a
maintenance application such as this one. For example, try these on for size:

� How will the user look up the data to be updated? In this application, a
GridView control is used to display the Categories and Products tables.
That’s feasible for this application because there are only a few cate-
gories and products. However, what if the database has thousands, or
tens of thousands, of products? In that case, you’ll want to let the user
enter the product ID of the product into a text box to call up a specific
product. (Better yet, you can add a search feature to the application.)

Figure 7-7:
The Product

Mainte-
nance page

with the
FormView

control in
Insert mode.

229Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 229

� Will you let the user change the primary key fields? If you do, you must
ensure that foreign key constraints are properly handled. For example,
if you allow a user to change the category ID for a category, how will
you handle products assigned to that category? You have three possible
approaches:

• Cascade the update, so the category IDs change automatically for
any related products.

• Don’t allow the category ID to be changed if it appears in any prod-
uct rows.

• Don’t allow the user to change the category ID. That’s the
approach taken for this application.

� How will you handle concurrency conflicts that result when two users
attempt to update the same data at the same time? For example, sup-
pose two users simultaneously display the Category Maintenance page
and the first user changes the description of the treasure category,
while the second user deletes it. If the second user’s deletion is posted
before the first user’s update, the update fails because the row no longer
exists in the database.

The most common way to handle this situation is to use optimistic con-
currency checking, a technique in which the original values of each column
are saved when the data is initially retrieved. Then the WHEN clauses of
the UPDATE or DELETE statements use these values to make sure some
other user hasn’t changed the data before applying an update or delet-
ing a row. This is the technique used for the Categories table in this
application.

The alternative to optimistic concurrency checking is to not do any con-
currency checking at all. In that case, the last update posted is the one
that’s applied. This is the technique used for the Products table in this
application.

� How will you handle security? You don’t want to let just anyone
modify the data in your database. So you’ll certainly want to provide
security to authenticate users of your maintenance application.
Although the application presented in this chapter doesn’t provide
for user authentication, you can easily integrate this application with
the Login application that was presented in Chapter 4 by simply moving
this application’s pages to the Admin folder of the Login application.
(In addition, you may want to change the name of menu page from
Default.aspx to Admin.aspx.)

230 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 230

Designing the Database
The Product Maintenance application obviously uses a database to store the
products and categories that the application maintains. Figure 7-8 shows a dia-
gram of this database, named Maint. The Maint database uses just two tables:

� Categories

� Products

These tables are described in detail in the following sections.

In a real-world application, this maintenance application would maintain the
same database used by the front-end applications, such as the Shopping Cart
application presented in Chapters 5 and 6. In fact, you can use the Maintenance
application presented here with the Cart database you created in Chapter 6.
If you want to do that, you can skip the sections in this chapter that show
you how to create the Maint database and insert data into it. Then, in the
web.config file, you simply connect to the Cart database rather than the
Maint database. I’ll show you how to do that in the section “Connecting to
the database” later in this chapter.

The Categories table
The Categories table stores the information about the categories of products
offered by the store. Table 7-1 lists the columns defined for the Categories
table.

Categories
catid
name
[desc]

Products
productid
catid
name
shorttext
longtext
price
thumbnail
imageFigure 7-8:

The Maint
database.

231Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 231

Table 7-1 The Categories Table
Column name Type Description

catid VARCHAR(10) An alphanumeric code (up to 10 characters)
that uniquely identifies each category. This is
the primary key for the Categories table.

name VARCHAR(50) A text field that provides the name of the
category.

desc VARCHAR(MAX) A text field that provides a description of the
category.

The Products table
The Products table holds one row for each product. The columns required
for this table are listed in Table 7-2.

Table 7-2 The Products Table
Column name Type Description

productid VARCHAR(10) An alphanumeric code (up to 10 characters)
that uniquely identifies each product. This is
the primary key for the Products table.

catid VARCHAR(10) A code that identifies the product’s category.
A foreign key constraint ensures that only
values present in the Categories table
can be used for this column.

name VARCHAR(50) A text field that provides the name of the
product.

shorttext VARCHAR(MAX) A text field that provides a short description
of the product.

longtext VARCHAR(MAX) A text field that provides a longer description
of the product.

price MONEY The price for a single unit of the product.

thumbnail VARCHAR(40) The name of the thumbnail image file.

image VARCHAR(40) The name of the main image file.

232 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 232

Creating the database
Although you can use Visual Studio to create the Maint database, it’s better
to create it from a script. Then, as you test the application, you can run the
script to recreate the database, restoring it to its original state. The SQL script
that does these tasks appears in Listing 7-1.

To run this script, open a command-prompt window and change to the direc-
tory that contains the script. Then enter this command:

sqlcmd -S localhost\SQLExpress -i CreateDB.sql

Note that this command assumes you’re running SQL Server Express on your
own computer. If you’re using SQL Server on a different server, you’ll need to
change localhost\SQLExpress to the correct name. If you’re not sure what
name to use, ask your database administrator.

Listing 7-1: The CreateDB.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Cart’)

DROP DATABASE Maint
GO

CREATE DATABASE Maint ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Maint.mdf’,
SIZE=10)

GO

USE Maint ➝4

CREATE TABLE Categories (➝5
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
[desc] VARCHAR(MAX) NOT NULL,
PRIMARY KEY(catid))
GO

CREATE TABLE Products (➝6
productid VARCHAR(10) NOT NULL,
catid VARCHAR(10) NOT NULL,
name VARCHAR(50) NOT NULL,
shorttext VARCHAR(MAX) NOT NULL,

(continued)

233Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 233

Listing 7-1 (continued)

longtext VARCHAR(MAX) NOT NULL,
price MONEY NOT NULL,
thumbnail VARCHAR(40) NOT NULL,
image VARCHAR(40) NOT NULL,
PRIMARY KEY(productid),
FOREIGN KEY(catid) REFERENCES Categories(catid))
GO

Here’s an explanation of the key lines of this script:

➝ 1 Sets the database context to master.

➝ 2 Deletes the existing Maint database if it exists.

➝ 3 Creates a database named Maint, placing the database file in
C:\Apps.

➝ 4 Sets the database context to Maint.

➝ 5 Creates the Categories table.

➝ 6 Creates the Products table.

Adding some test data
The CreateDB script creates the Maint database, but doesn’t add any data
to it. To add data, you can run the InsertData.sql script that’s included
on the CD that comes with this book. This script creates the sample data
shown in Table 7-3 and Table 7-4. (Note that the shorttext and longtext
columns aren’t listed in Table 7-4.)

You can run the InsertData.sql script by opening a command window,
changing to the directory that contains the script, and running this command:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

Be sure to change the server name if you’re not running SQL Server Express
on your own computer.

Table 7-3 Test Data for the Categories Table
catid name desc

booty Booty Treasure for the Scallywags.

equip Equipment Equipment and gear for yer ship.

weap Weapons Proper weapons for a scurvy pirate.

234 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 234

Table 7-4 Test Data for the Products Table
productid catid name price thumbnail Image

chain01 equip Anchor Chain 6.95 chainT.jpg chain.jpg

crown1 booty Royal Crown 14.95 crown1T.jpg crown1.jpg

flag01 equip Pirate Flag 15.95 flag01T.jpg flag01.jpg

flag02 equip Pirate Flag 12.95 flag02T.jpg flag02.jpg

gold01 booty Gold Coins 8.95 gold01T.jpg gold01.jpg

polly equip Polly the Parrot 15.95 pollyT.jpg polly.jpg

rat01 equip Bilge Rat 9.95 rat01T.jpg rat01.jpg

scope1 equip Pirate Telescope 15.95 scope1T.jpg scope1.jpg

sign01 equip Pirate Sign 25.95 sign01T.jpg sign01.jpg

sword01 weap Pirate Sword 29.95 sword01T.jpg sword01.jpg

sword02 weap Broad Sword 9.95 sword02T.jpg sword02.jpg

SQL statements for the Categories table
The Product Maintenance application uses several SQL statements to
retrieve, update, delete, and insert data from the Categories table. These SQL
statements have distinct purposes, described in the following paragraphs:

� To retrieve all rows from the Categories table, the following SELECT
statement is used:

SELECT [catid], [name], [desc]
FROM [Categories] ORDER BY [catid]

� To delete a row, the following DELETE statement is used:

DELETE FROM [Categories]
WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc

As you can see, this statement — as well as the UPDATE statement pre-
sented next — lists all three of the Categories columns in the WHERE
clause. That way, if any other user has changed any of the columns in the
database row since the row was originally retrieved, the delete (or update)
will fail. This technique is called optimistic concurrency checking.

235Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 235

� To update a row, the following UPDATE statement is used:

UPDATE [Categories]
SET [name] = @name,

[desc] = @desc
WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc

Again, the original values for all three columns of the table are listed in the
WHERE clause to provide optimistic concurrency checking. Notice also
that the catid column is not listed in the SET clause. That’s because the
application doesn’t let the user change the category ID.

� To insert a row, the following INSERT statement is used:

INSERT INTO [Categories]
([catid], [name], [desc])

VALUES (@catid, @name, @desc)

SQL statements for the Products table
The Product Maintenance application also uses several SQL statements to
retrieve, update, delete, and insert data from the Products table. Note that
the UPDATE and DELETE statements for the Products table — unlike those
for the Categories table — don’t use optimistic concurrency. (I’ll leave it to
you to modify the application to provide optimistic concurrency checking for
the Products table.)

The following paragraphs describe the SQL statements used for the
Products table:

� This SELECT statement selects the products to display in the GridView
control:

SELECT [productid], [name]
FROM [Products] ORDER BY [productid]

� This SELECT statement retrieves the product selected by the user in the
GridView control so it can be displayed in the FormView control:

SELECT [productid], [catid],
[name], [shorttext], [longtext],
[price], [thumbnail], [image]

FROM [Products]
WHERE ([productid] = @productid)

236 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 236

� This INSERT statement inserts a new product:

INSERT INTO [Products]
([productid], [catid], [name], [shorttext],
[longtext], [price], [thumbnail], [image])

VALUES (@productid, @catid, @name, @shorttext,
@longtext, @price, @thumbnail, @image)

� This UPDATE statement updates a product row:

UPDATE [Products]
SET [catid] = @catid,

[name] = @name,
[shorttext] = @shorttext,
[longtext] = @longtext,
[price] = @price,
[thumbnail] = @thumbnail,
[image] = @image

WHERE [productid] = @original_productid

� This DELETE statement deletes a row from the Products table:

DELETE FROM [Products]
WHERE [productid] = @original_productid

Connecting to the database
The Maint database uses a connection string that’s stored in the applica-
tion’s Web.config file, like this:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Maint;Integrated Security=True”/>
</connectionStrings>

Because the connection string is the only place that specifies the database
and server name, you can move the database to a different server — or use
a different database — by changing the connection string specified in the
Web.config file.

If you want to use the database for the Chapter 6 Shopping Cart application
rather than the separate Maint database, just change the Initial Catalog
setting from Maint to Cart.

237Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 237

The Application’s Folders
Like most ASP.NET applications, the Product Catalog application includes
several folders. In particular:

� (Root): The application’s root folder contains the application’s three
pages (Default.aspx, Product.aspx, and Cart.aspx) as well as
the Master Page (Default.master).

� App_Data: This folder is created by default by Visual Studio when
the application is created. However, the actual database (managed
by SQL Server) is stored in a folder that’s not part of the application’s
folder hierarchy.

� Images: This folder contains the banner graphic that’s displayed by
the Master Page. The images referred to in the Thumbnail and Image
columns of the Products table aren’t used by this application, so they
aren’t included in the Images folder.

Building the Master Page
Listing 7-2 shows the Master Page (MasterPage.master). As with the
Master Pages shown in previous chapters, this one simply displays a
banner at the top of each page.

Listing 7-2: The Master page (MasterPage.master)

<%@ Master Language=”C#” %> ➝1

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<script runat=”server”>

</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Acme Pirate Supply</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Image ID=”Image1” runat=”server” ➝2
ImageUrl=”~/Images/Banner.jpg”/>

238 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 238

<asp:contentplaceholder runat=”server” ➝3
id=”ContentPlaceHolder1” >

</asp:contentplaceholder>
</div>
</form>

</body>
</html>

Here are the key points of this listing:

➝ 1 The Master directive indicates that the file is a Master Page.

➝ 2 The Image control displays the banner image that appears at the
top of each page.

➝ 3 The ContentPlaceHolder control indicates where the content
for each page that uses this master will appear.

Building the Menu Page
The Menu page (Default.aspx) is the default page for the Product Catalog
application. It simply displays a pair of links that let the user go to the Category
Maintenance page or the Product Maintenance page. Listing 7-3 shows the
code for this page.

Listing 7-3: The Menu page (Default.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

Welcome to the Maintenance Application.

<asp:LinkButton ID=”LinkButton1” runat=”server” ➝3

PostBackUrl=”CatMaint.aspx”>
Maintain Categories

</asp:LinkButton>

<asp:LinkButton ID=”LinkButton2” runat=”server” ➝4

PostBackUrl=”ProdMaint.aspx”>
Maintain Products

</asp:LinkButton>
</asp:Content>

239Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 239

Here are some of the key points to note about the code for this page:

➝ 1 The Page directive uses the MasterPageFile attribute to spec-
ify the name of the Master Page.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 The first <LinkButton> element provides a link to the CatMaint.
aspx page. The PostBackUrl attribute is used to post to that
page when the user clicks the link.

➝ 4 The second <LinkButton> element provides a link that posts
back to the ProdMaint.aspx page.

Building the Category Maintenance Page
The Category Maintenance page (CatMaint.aspx) lets the user update or
delete existing categories or create new categories. It uses a GridView control
to let the user modify or delete existing categories. In addition, it uses three
text boxes that let the user enter data to define a new category. The text boxes
are required because the GridView control doesn’t provide a way for users
to insert rows.

The CatMaint.aspx file
Listing 7-4 shows the .aspx code for the Category Maintenance page. You
may want to refer back to Figure 7-3 to see how this page looks on-screen.

Listing 7-4: The Category Maintenance page (CatMaint.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”CatMaint.aspx.cs”
Inherits=”CatMaint”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
Category Maintenance

<asp:GridView ID=”GridView1” runat=”server” ➝3

AutoGenerateColumns=”False”
DataKeyNames=”catid”
DataSourceID=”SqlDataSource1”
OnRowDeleted=”GridView1_RowDeleted”
OnRowUpdated=”GridView1_RowUpdated”>

240 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 240

<Columns>
<asp:BoundField DataField=”catid” ➝4

HeaderText=”ID” ReadOnly=”True”>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”80px” />

</asp:BoundField>
<asp:BoundField DataField=”name” ➝5

HeaderText=”Name”>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”100px” />

</asp:BoundField>
<asp:BoundField DataField=”desc” ➝6

HeaderText=”Description”>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”400px” />

</asp:BoundField>
<asp:CommandField ➝7

CausesValidation=”False”
ShowEditButton=”True” />

<asp:CommandField ➝8
CausesValidation=”False”
ShowDeleteButton=”True” />

</Columns>
</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝9

runat=”server”
ConflictDetection=”CompareAllValues”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString %>”
OldValuesParameterFormatString=”original_{0}”
DeleteCommand=”DELETE FROM [Categories] ➝10

WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc”

InsertCommand=”INSERT INTO [Categories] ➝11
([catid], [name], [desc])

VALUES (@catid, @name, @desc)”
SelectCommand=”SELECT [catid], ➝12

[name], [desc]
FROM [Categories] ORDER BY [catid]”

UpdateCommand=”UPDATE [Categories] ➝13
SET [name] = @name, [desc] = @desc
WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc”>

<DeleteParameters> ➝14
<asp:Parameter Name=”original_catid”

Type=”String” />
<asp:Parameter Name=”original_name”

Type=”String” />
<asp:Parameter Name=”original_desc”

Type=”String” />

(continued)

241Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 241

Listing 7-4 (continued)

</DeleteParameters>
<UpdateParameters> ➝15

<asp:Parameter Name=”name”
Type=”String” />

<asp:Parameter Name=”desc”
Type=”String” />

<asp:Parameter Name=”original_catid”
Type=”String” />

<asp:Parameter Name=”original_name”
Type=”String” />

<asp:Parameter Name=”original_desc”
Type=”String” />

</UpdateParameters>
<InsertParameters> ➝16

<asp:Parameter Name=”catid”
Type=”String” />

<asp:Parameter Name=”name”
Type=”String” />

<asp:Parameter Name=”desc”
Type=”String” />

</InsertParameters>
</asp:SqlDataSource>

<asp:Label ID=”lblMessage” runat=”server” ➝17

EnableViewState=”False”
ForeColor=”Red” />

Enter the category information below
to create a new category:

<asp:Label ID=”Label1” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”ID:” />

<asp:TextBox ID=”txtID” runat=”server” /> ➝18

<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1” runat=”server”
ControlToValidate=”txtID”
ErrorMessage=”Required.” />

<asp:Label ID=”Label2” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Name:” />

<asp:TextBox ID=”txtName” runat=”server” /> ➝19

<asp:RequiredFieldValidator

ID=”RequiredFieldValidator2” runat=”server”
ControlToValidate=”txtName”
ErrorMessage=”Required.” />

242 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 242

<asp:Label ID=”Label3” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Description:” />

<asp:TextBox ID=”txtDesc” runat=”server” /> ➝20

<asp:RequiredFieldValidator

ID=”RequiredFieldValidator3” runat=”server”
ControlToValidate=”txtDesc”
ErrorMessage=”Required.” />

<asp:Button ID=”btnAdd” runat=”server” ➝21

OnClick=”btnAdd_Click”
Text=”Add Category” />

<asp:LinkButton ID=”LinkButton1” ➝22
runat=”server”
PostBackUrl=”~/Default.aspx”
CausesValidation=”false” >
Return to Home Page

</asp:LinkButton>
</asp:Content>

Here’s a detailed look at each of the numbered lines in this listing:

➝ 1 The Page directive specifies the Master Page and other informa-
tion for the page.

To use the Visual Basic version of the code-behind file — shown in
Listing 7-6 — you must change the AutoEventWireup attribute
to false.

➝ 2 The <Content> element provides the content that’s displayed
in the <ContentPlaceHolder> element of the Master Page.

➝ 3 The GridView control displays the rows from the Categories
table. It’s bound to the data source named SqlDataSource1,
which is defined in line 9. Notice also that it specifies methods to
handle the RowDeleted and RowUpdated events.

To use the Visual Basic version of the code-behind file for this
page, you should remove the OnRowDeleted and OnRowUpdated
attributes.

➝ 4 The elements under the <Columns> element define the columns
displayed by the GridView control. This one defines the first
column in the grid, which displays the category ID. Notice that
this column is read-only. That prevents the user from changing the
category ID for a category.

➝ 5 The column defined by this <BoundField> element displays the
category name.

243Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 243

➝ 6 This column displays the category description.

➝ 7 This line defines a command field that displays an Edit link, which
the user can click to edit the row. When the user clicks the Edit link,
the labels in the name and desc columns for the row are replaced
by text boxes, and the Edit link is replaced by Update and Cancel
links.

➝ 8 This line defines a command field that displays a Delete link,
which lets the user delete a row.

➝ 9 This <SqlDataSource> element defines the data source used
for the GridView control. The ConflictDetection attribute
specifies CompareAllValues, which enables optimistic concur-
rency checking for the data source. Then the ConnectionString
attribute specifies that the connection string for the data source
should be retrieved from the Web.config file. Finally, the
OldParameterValuesFormatString attribute specifies
the format string that’s used to create the parameter names
used to supply the original parameter values. In this case, the
word original_ is simply added to the beginning of each para-
meter name.

➝ 10 The <DeleteCommand> element provides the DELETE statement
used to delete rows from the table. Notice that the original values
of the catid, name, and desc columns are listed in the WHERE
clause. The values @original_catid, @original_name, and
@original_desc parameters are automatically provided by the
GridView control when the user deletes a row.

➝ 11 The InsertCommand attribute provides the INSERT statement
used to insert a row in the Categories table. Note that the
GridView control doesn’t use this INSERT statement, as the
GridView control doesn’t provide a way for the user to insert
rows. Instead, the code that’s executed when the user clicks the
Add Category button (defined in line 21) calls this statement.

➝ 12 This SELECT statement is used to retrieve the categories from the
Categories table.

➝ 13 The UPDATE statement updates a row in the Categories table.
Notice that the original values are used in the WHERE clause to
provide optimistic concurrency checking.

➝ 14 The <DeleteParameters> element defines the parameters used
by the DELETE statement.

➝ 15 The <UpdateParameters> element defines the parameters used
by the UPDATE statement.

➝ 16 The <InsertParameters> element defines the parameters used
by the INSERT statement.

244 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 244

➝ 17 This label is used by the code-behind file to display messages.
For example, if an error occurs while trying to update or delete
a category, a suitable error message is displayed in this label.

➝ 18 This text box lets the user enter the category ID for a new cate-
gory. Note that a RequiredFieldValidator ensures that the
user enters a value into this field.

➝ 19 This text box lets the user enter the name for a new category.
A RequiredFieldValidator is used to force the user to enter
a name.

➝ 20 This text box is where the user enters the description for a new
category. Once again, a RequiredFieldValidator is present
to require an entry for this text box.

➝ 21 The Add Category button lets the user add a new category using
the ID, name, and description entered into the text boxes.

If you’re using the Visual Basic version of the code-behind file, you
should remove the OnClick attribute.

➝ 22 This link button provides a link back to the menu page. Note that
CausesValidation is set to false for this button. That way the
RequiredFieldValidator isn’t enforced for any of the three
text boxes when the user clicks the link.

The code-behind file for the
Catalog Maintenance page
The CatMaint.aspx page requires a code-behind file to handle the button-
click event for the Add Category button, as well as the RowUpdated and
RowDeleted events for the GridView control. Listing 7-5 shows the C# ver-
sion of this code-behind file, and Listing 7-6 shows the Visual Basic version.

Listing 7-5: The code-behind file for the Catalog Maintenance page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

(continued)

245Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 245

Listing 7-5 (continued)

public partial class CatMaint : System.Web.UI.Page
{

protected void btnAdd_Click(➝1
object sender, EventArgs e)

{
setParameter(“catid”, txtID.Text);
setParameter(“name”, txtName.Text);
setParameter(“desc”, txtDesc.Text);
try
{

SqlDataSource1.Insert();
txtID.Text = “”;
txtName.Text = “”;
txtDesc.Text = “”;

}
catch (Exception)
{

lblMessage.Text =
“There is already a category “

+ “with that ID. Please try another.”;
}

}

private void setParameter(string name, ➝2
string value)

{
SqlDataSource1.InsertParameters[name]

.DefaultValue = value;
}

protected void GridView1_RowUpdated(➝3
object sender,
GridViewUpdatedEventArgs e)

{
if (e.Exception != null)
{

lblMessage.Text = “Incorrect data. “
+ “Please try again.”;

e.ExceptionHandled = true;
e.KeepInEditMode = true;

}
else if (e.AffectedRows == 0)
{

lblMessage.Text = “That category could not “
+ “be updated. Please try again.”;

}
}

protected void GridView1_RowDeleted(➝4
object sender,
GridViewDeletedEventArgs e)

246 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 246

{
if (e.Exception != null)
{

lblMessage.Text = “That category could not “
+ “be deleted.”;

e.ExceptionHandled = true;
}
else if (e.AffectedRows == 0)
{

lblMessage.Text = “That category could not “
+ “be deleted. Please try again.”;

}
}

}

Here’s a list that offers a description for every method in this code-behind file:

➝ 1 The btnAdd_Click method is called when the user clicks the Add
Category button to add a new row to the Categories table. The
method begins by calling a helper method (named setParameter,
shown in line 2) to set the value of the catid, name, and desc para-
meters, and then calls the Insert method of the data source to
execute the INSERT statement. Assuming the INSERT statement
is successful, it then clears the three text input fields. However, if
the INSERT statement fails, an exception will be thrown. Then the
assignment in the catch statement displays an appropriate error
message.

➝ 2 The setParameter method provides a simple shorthand for
setting the value of one of the data source’s Insert parameters.
To set a parameter value, you use the parameter name as an index
for the InsertParameters property of the data source, then use
the DefaultValue property to set the value. Because this is a bit
cumbersome, I created this helper method to make it easier to set
a parameter value.

➝ 3 The GridView1_RowUpdated method is called whenever a row of
the GridView control has been updated — regardless of whether
the update was successful. You can use two properties of the e
argument to determine whether the update was successful. If the
update results in an exception (as when the database is unavail-
able), the Exception property refers to an Exception object;
otherwise the Exception property is null. And if the UPDATE
statement did not actually update any data, the AffectedRows
property will be zero. As you can see, this method tests both prop-
erties, displaying an appropriate message in the lblMessage label
if an error has occurred.

➝ 4 The GridView1_RowDeleted method is similar to the
GridView1_RowUpdated method. It also tests the Exception
and AffectedRows properties of the e parameter to see whether
an error has occurred.

247Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 247

Listing 7-6: The code-behind file for the Catalog Maintenance page (VB)

Partial Class CatMaint
Inherits System.Web.UI.Page

Protected Sub btnAdd_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

setParameter(“catid”, txtID.Text)
setParameter(“name”, txtName.Text)
setParameter(“desc”, txtDesc.Text)
Try

SqlDataSource1.Insert()
txtID.Text = “”
txtName.Text = “”
txtDesc.Text = “”

Catch ex As Exception
lblMessage.Text = “There is already a “ _

+ “category with that ID. “ _
+ “Please try another.”

End Try
End Sub

Private Sub setParameter(_ ➝2
ByVal name As String, _
ByVal value As String)

SqlDataSource1.InsertParameters(name) _
.DefaultValue = value

End Sub

Protected Sub GridView1_RowUpdated(_ ➝3
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls. _

GridViewUpdatedEventArgs) _
Handles GridView1.RowUpdated

If Not e.Exception Is Nothing Then
lblMessage.Text = “Incorrect data. “ _

+ “Please try again.”
e.ExceptionHandled = True
e.KeepInEditMode = True

ElseIf e.AffectedRows = 0 Then
lblMessage.Text = “That category could not “ _

+ “be updated. Please try again.”
End If

End Sub

Protected Sub GridView1_RowDeleted(_ ➝4
ByVal sender As Object, _
ByVal e As System.Web.UI. _

WebControls.GridViewDeletedEventArgs) _
Handles GridView1.RowDeleted

248 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 248

If Not e.Exception Is Nothing Then
lblMessage.Text = “That category could not “ _

+ “be deleted.”
e.ExceptionHandled = True

ElseIf e.AffectedRows = 0 Then
lblMessage.Text = “That category could not “ _

+ “be deleted. Please try again.”
End If

End Sub
End Class

Building the Product Maintenance Page
The Product Maintenance page (ProdMaint.aspx) lets the user insert,
update, and delete rows in the Products table. It provides a GridView con-
trol so the user can select a product, and a FormView control to display the
information for the selected product. The FormView control also lets the
user edit, delete, or insert product data.

The following sections present the .aspx code that defines this page as well
as the code-behind file that handles events raised by the page.

The ProdMaint.aspx file
Listing 7-7 (drum roll, please) shows the complete .aspx code for the Product
Maintenance page. Refer to Figure 7-5 to see how this page appears when the
application is run.

Listing 7-7: The Product Maintenance page (ProdMaint.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”ProdMaint.aspx.cs”
Inherits=”ProdMaint”
Title=”Acme Pirate Supply” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

Product Maintenance

(continued)

249Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 249

Listing 7-7 (continued)

<table border=”0” width=”750”> ➝3
<tr>
<td valign=”top” width=”300”>

<asp:GridView ID=”GridView1” ➝4
runat=”server”
AllowPaging=”True”
AutoGenerateColumns=”False”
DataKeyNames=”productid”
DataSourceID=”SqlDataSource1” Width=”300px”>
<Columns>
<asp:BoundField ➝5
DataField=”productid”
HeaderText=”ID” >
<HeaderStyle HorizontalAlign=”Left” >

</asp:BoundField>
<asp:BoundField ➝6
DataField=”name”
HeaderText=”Name”
SortExpression=”name” >
<HeaderStyle HorizontalAlign=”Left” />

</asp:BoundField>
<asp:CommandField ➝7

ShowSelectButton=”True” >
<ItemStyle Width=”50px” />

</asp:CommandField>
</Columns>

</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝8

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString

%>”
SelectCommand=”SELECT [productid], [name]

FROM [Products] ORDER BY [productid]”>
</asp:SqlDataSource>

</td>
<td valign=”top” width=”450”>

<asp:FormView ID=”FormView1” ➝9
runat=”server”
DataSourceID=”SqlDataSource2”
DataKeyNames=”productid”
Width=”400px” >
<EmptyDataTemplate> ➝10

Please select a product.

<asp:LinkButton ID=”LinkButton2”

runat=”server”
CommandName=”New”
Text=”New Product” />

</EmptyDataTemplate>

250 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 250

<ItemTemplate> ➝11
<asp:Label ID=”Label1” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Product ID:” />

<asp:TextBox ID=”txtProductID” ➝12
runat=”server”
ReadOnly=”True” Width=”100px”
Text=’<%# Eval(“productid”) %>’/>

<asp:Label ID=”Label2” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Category ID:” />

<asp:TextBox ID=”txtCatID” ➝13
runat=”server”
ReadOnly=”True” Width=”100px”
Text=’<%# Bind(“catid”) %>’/>

<asp:Label ID=”Label3” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Name:” />

<asp:TextBox ID=”txtName” ➝14
runat=”server”
ReadOnly=”True” Width=”200px”
Text=’<%# Bind(“name”) %>’/>

<asp:Label ID=”Label4” runat=”server”
BorderStyle=”None”
Width=”80px” Height=”45px”
Text=”Short Text:” />

<asp:TextBox ID=”txtShortText” ➝15
runat=”server”
ReadOnly=”True” TextMode=”MultiLine”
Height=”40px” Width=”200px”
Text=’<%# Bind(“shorttext”) %>’/>

<asp:Label ID=”Label5” runat=”server”

BorderStyle=”None”
Width=”80px” Height=”65px”
Text=”Long Text:” />

<asp:TextBox ID=”txtLongText” ➝16
runat=”server”
ReadOnly=”True” TextMode=”MultiLine”
Height=”60px” Width=”200px”
Text=’<%# Bind(“longtext”) %>’/>

<asp:Label ID=”Label6” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Price:” />

<asp:TextBox ID=”txtPrice” ➝17
runat=”server”
ReadOnly=”True” Width=”100px”
Text=’<%# Bind(“price”, “{0:c}”) %>’/>

(continued)

251Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 251

Listing 7-7 (continued)

<asp:Label ID=”Label7” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Thumb URL:” />

<asp:TextBox ➝18
ID=”txtThumbnail” runat=”server”
ReadOnly=”True” Width=”200px”
Text=’<%# Bind(“thumbnail”) %>’/>

<asp:Label ID=”Label8” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Image URL:” />

<asp:TextBox ➝19
ID=”txtImage” runat=”server”
ReadOnly=”True” Width=”200px”
Text=’<%# Bind(“image”) %>’/>

<asp:LinkButton ID=”LinkButton1” ➝20

runat=”server”
CommandName=”Edit” Text=”Edit” />

<asp:LinkButton ID=”LinkButton2” ➝21

runat=”server”
CommandName=”New” Text=”New” />

<asp:LinkButton ID=”LinkButton3” ➝22
runat=”server”
CommandName=”Delete” Text=”Delete”

/>
</ItemTemplate>
<EditItemTemplate> ➝23

<asp:Label ID=”Label1” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Product ID:” />

<asp:TextBox ID=”txtProductID” ➝24
runat=”server”
ReadOnly=”True” Width=”100px”
BackColor=”LightBlue”
Text=’<%# Eval(“productid”) %>’/>

<asp:Label ID=”Label2” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Category ID:” />

<asp:DropDownList ➝25
ID=”DropDownList1”
runat=”server”
BackColor=”LightBlue”
DataSourceID=”SqlDataSource3”
DataTextField=”catid”
DataValueField=”catid”
SelectedValue=’<%# Bind(“catid”)

%>’>

252 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 252

</asp:DropDownList>

<asp:Label ID=”Label3” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Name:” />

<asp:TextBox ID=”txtName” ➝26
runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“name”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator2”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtName”
ErrorMessage=”Required.” />

<asp:Label ID=”Label4” runat=”server”
BorderStyle=”None” Width=”80px”
Height=”45px”
Text=”Short Text:” />

<asp:TextBox ID=”txtShortText” ➝27
runat=”server”
ReadOnly=”False”

TextMode=”MultiLine”
Height=”40px” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“shorttext”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator3”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtShortText”
ErrorMessage=”Required.” />

<asp:Label ID=”Label5” runat=”server”
BorderStyle=”None” Width=”80px”
Height=”65px”
Text=”Long Text:” />

<asp:TextBox ID=”txtLongText” ➝28
runat=”server”
ReadOnly=”False”

TextMode=”MultiLine”
Height=”60px” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“longtext”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator4”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtLongText”
ErrorMessage=”Required.” />

<asp:Label ID=”Label6” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Price:” />

(continued)

253Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 253

Listing 7-7 (continued)

<asp:TextBox ID=”txtPrice” ➝29
runat=”server”
ReadOnly=”False” Width=”100px”
BackColor=”LightBlue”
Text=’<%# Bind(“price”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator5”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtPrice”
ErrorMessage=”Required.” />

<asp:CompareValidator
ID=”CompareValidator1”

runat=”server”
Display=”Dynamic”
ControlToValidate=”txtPrice”
ErrorMessage=”Must be numeric.”
Operator=”DataTypeCheck”
Type=”Double” />

<asp:Label ID=”Label7” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Thumb URL:” />

<asp:TextBox ID=”txtThumbnail” ➝30
runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“thumbnail”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator7”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtThumbnail”
ErrorMessage=”Required.” />

<asp:Label ID=”Label8” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Image URL:” />

<asp:TextBox ID=”txtImage” ➝31
runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“image”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator8”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtImage”
ErrorMessage=”Required.” />

<asp:LinkButton ID=”LinkButton1” ➝32

runat=”server”
CommandName=”Update” Text=”Update”

/>

254 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 254

<asp:LinkButton ID=”LinkButton3” ➝33

runat=”server”
CommandName=”Cancel” Text=”Cancel”
CausesValidation=”False” />

</EditItemTemplate>
<InsertItemTemplate> ➝34

<asp:Label ID=”Label1” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Product ID:” />

<asp:TextBox ID=”txtProductID”
runat=”server”
ReadOnly=”False” Width=”100px”
BackColor=”LightBlue”
Text=’<%# Bind(“productid”) %>’/>

<asp:Label ID=”Label2” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Category ID:” />
<asp:DropDownList ID=”DropDownList2”

runat=”server”
BackColor=”LightBlue”
DataSourceID=”SqlDataSource3”
DataTextField=”catid”
DataValueField=”catid”
SelectedValue=

‘<%# Bind(“catid”) %>’>
</asp:DropDownList>

<asp:Label ID=”Label3” runat=”server”

BorderStyle=”None” Width=”80px”
Text=”Name:” />

<asp:TextBox ID=”txtName” runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“name”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator2”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtName”
ErrorMessage=”Required.” />

<asp:Label ID=”Label4” runat=”server”
BorderStyle=”None” Width=”80px”
Height=”45px”
Text=”Short Text:” />

<asp:TextBox ID=”txtShortText”
runat=”server”
ReadOnly=”False”

TextMode=”MultiLine”
Height=”40px” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“shorttext”) %>’/>

(continued)

255Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 255

Listing 7-7 (continued)
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator3”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtShortText”
ErrorMessage=”Required.” />

<asp:Label ID=”Label5” runat=”server”
BorderStyle=”None” Width=”80px”
Height=”65px”
Text=”Long Text:” />

<asp:TextBox ID=”txtLongText”
runat=”server”
ReadOnly=”False”

TextMode=”MultiLine”
Height=”60px” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“longtext”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator4”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtLongText”
ErrorMessage=”Required.” />

<asp:Label ID=”Label6” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Price:” />

<asp:TextBox ID=”txtPrice”
runat=”server”

ReadOnly=”False” Width=”100px”
BackColor=”LightBlue”
Text=’<%# Bind(“price”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator5”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtPrice”
ErrorMessage=”Required.” />

<asp:CompareValidator
ID=”CompareValidator1”

runat=”server”
Display=”Dynamic”
ControlToValidate=”txtPrice”
ErrorMessage=”Must be numeric.”
Operator=”DataTypeCheck”
Type=”Double” />

<asp:Label ID=”Label7” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Thumb URL:” />

<asp:TextBox
ID=”txtThumbnail” runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“thumbnail”) %>’/>

256 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 256

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator7”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtThumbnail”
ErrorMessage=”Required.” />

<asp:Label ID=”Label8” runat=”server”
BorderStyle=”None” Width=”80px”
Text=”Image URL:” />

<asp:TextBox
ID=”txtImage” runat=”server”
ReadOnly=”False” Width=”200px”
BackColor=”LightBlue”
Text=’<%# Bind(“image”) %>’/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator8”
runat=”server” Display=”Dynamic”
ControlToValidate=”txtImage”
ErrorMessage=”Required.” />

<asp:LinkButton ID=”LinkButton1”

runat=”server”
CommandName=”Insert” Text=”Insert”

/>

<asp:LinkButton ID=”LinkButton2”

runat=”server”
CommandName=”Cancel” Text=”Cancel”
CausesValidation=”False”/>

</InsertItemTemplate>
</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource2” ➝35

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString

%>”
ConflictDetection=”CompareAllValues”

OldValuesParameterFormatString=”original_{0}”
OnDeleted=”SqlDataSource2_Deleted”
OnUpdated=”SqlDataSource2_Updated”
OnInserted=”SqlDataSource2_Inserted”
SelectCommand= ➝36
“SELECT [productid], [catid],

[name], [shorttext], [longtext],
[price], [thumbnail], [image]

FROM [Products]
WHERE ([productid] = @productid)”

InsertCommand=”INSERT ➝37
INTO [Products]

([productid], [catid], [name],
[shorttext], [longtext], [price],
[thumbnail], [image])

(continued)

257Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 257

Listing 7-7 (continued)
VALUES (@productid, @catid, @name,

@shorttext, @longtext, @price,
@thumbnail, @image)”

UpdateCommand=”UPDATE [Products] ➝38
SET [catid] = @catid, [name] = @name,

[shorttext] = @shorttext,
[longtext] = @longtext,
[price] = @price,
[thumbnail] = @thumbnail,
[image] = @image

WHERE [productid] = @original_productid”
DeleteCommand=”DELETE ➝39
FROM [Products]
WHERE [productid] = @original_productid” >

<SelectParameters> ➝40
<asp:ControlParameter

ControlID=”GridView1”
Name=”productid”
PropertyName=”SelectedValue”
Type=”String” />

</SelectParameters>
<InsertParameters> ➝41

<asp:Parameter Name=”productid”
Type=”String” />

<asp:Parameter Name=”catid”
Type=”String” />

<asp:Parameter Name=”name”
Type=”String” />

<asp:Parameter Name=”shorttext”
Type=”String” />

<asp:Parameter Name=”longtext”
Type=”String” />

<asp:Parameter Name=”price”
Type=”Decimal” />

<asp:Parameter Name=”thumbnail”
Type=”String” />

<asp:Parameter Name=”image”
Type=”String” />

</InsertParameters>
<UpdateParameters> ➝42

<asp:Parameter Name=”catid”
Type=”String” />

<asp:Parameter Name=”name”
Type=”String” />

<asp:Parameter Name=”shorttext”
Type=”String” />

<asp:Parameter Name=”longtext”
Type=”String” />

258 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 258

<asp:Parameter Name=”price”
Type=”Decimal” />

<asp:Parameter Name=”thumbnail”
Type=”String” />

<asp:Parameter Name=”image”
Type=”String” />

<asp:Parameter Name=”original_productid”
Type=”String” />

</UpdateParameters>
<DeleteParameters> ➝43

<asp:Parameter Name=”original_productid”
Type=”String” />

</DeleteParameters>
</asp:SqlDataSource>
<asp:SqlDataSource ID=”SqlDataSource3” ➝44

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString

%>”
SelectCommand=”SELECT [catid]

FROM [Categories]
ORDER BY [catid]”>

</asp:SqlDataSource>
<asp:Label ID=”lblMessage” ➝45

runat=”server”
EnableViewState=”False” ForeColor=”Red” />

</td>
</tr>

</table>
<asp:LinkButton ID=”LinkButton1” ➝46

runat=”server”
PostBackUrl=”~/Default.aspx”
CausesValidation=”false” >
Return to Home Page

</asp:LinkButton>
</asp:Content>

Whew! That was a long listing. Any listing that long deserves a correspond-
ingly long list of explanations (might as well kick back for a read):

➝ 1 The Page directive specifies the Master Page and other informa-
tion for the page. Note that to use the Visual Basic version of the
code-behind file (shown in Listing 7-9), you must change the
AutoEventWireup attribute to false.

➝ 2 The <Content> element provides the content that’s displayed in
the <ContentPlaceHolder> element of the Master Page.

259Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 259

➝ 3 An HTML table displays the GridView and FormView controls
side by side. The table consists of a single row with two columns,
one for the GridView, the other for the FormView.

➝ 4 The GridView control displays the products from the Products
table so the user can select a product to update or delete. The data
source is SqlDataSource1, and paging is enabled. As a result,
only ten product rows are displayed at a time.

➝ 5 The first column defined for the GridView control displays the
productid field from the data source.

➝ 6 The second column displays the name field.

➝ 7 The third column is a command field that displays a Select link.
When the user clicks this link, the indicated product is selected —
which (in turn) displays the detail data for the selected product in
the FormView control.

➝ 8 The first data source, named SqlDataSource1, provides the data
displayed by the GridView control. Its Select statement simply
selects all rows from the Products table.

➝ 9 The FormView control displays the detail data for the product
selected by the GridView1 control. Note that the connection to
the GridView1 control isn’t specified in the FormView control
itself. Instead, the data source that the FormView control is
bound to (SqlDataSource2) handles this relationship.

➝ 10 The FormView control uses templates to specify how its data is to
be displayed. The first of these is the EmptyDataTemplate —
used when the data source has no data — in which case, the
FormView control displays this instruction: Please select a
product. In addition, a link lets the user place the FormView
control in Insert mode by specifying New for the CommandName
attribute.

➝ 11 The ItemTemplate displays the data for the row selected
by the data source. This template consists of several labels
and text fields that display product data; the text boxes are
all marked read-only so the user can’t change their contents.
(Note that I could have used labels instead of text boxes to
display the data in the item template. Then I wouldn’t have to
use the ReadOnly attribute. I chose to use read-only text fields
instead because I wanted the bordered look provided by the
TextBox control.)

260 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 260

➝ 12 The first text box in the item template displays the product ID.
Note how an ASP.NET 2.0 binding expression is used to bind the
Text property of the text box to the productid field of the data
source. The new Eval method provides a simple way to provide
one-way binding for display-only fields.

➝ 13 The next TextBox control displays the category ID. Here, the
Bind method is used instead of the Eval method to provide
two-way (input and output) data binding.

➝ 14 This text box displays the product name.

➝ 15 This text box displays the shorttext field of the data source.
Note that the MultiLine attribute is specified for the text box so
the user can enter more than one line of text.

➝ 16 This text box displays the longtext field — again, using the
MultiLine attribute so the user can enter more than one line
of text.

➝ 17 This text box binds to the price field of the data source. In this
case, a format string is used along with the Bind method to apply
currency formatting to the price.

➝ 18 This text box displays the thumbnail field.

➝ 19 This text box displays the image field.

➝ 20 This link button, which appears at the bottom of the item tem-
plate, allows the user to edit the product data. Note that the
CommandName attribute specifies Edit as the command name.
The FormView control displays the EditItemTemplate, defined
in line 23, when the user clicks this button.

➝ 21 This link button lets the user delete the product. Its
CommandName attribute specifies Delete as the command name.
As a result, the product row is automatically deleted when the
user clicks this button.

➝ 22 The New link button displays the InsertItem template, defined
starting at line 34. Then the user can enter the data for a new
product.

➝ 23 The EditItemTemplate defines the data that’s displayed when
the user clicks the Edit link, placing the FormView control in Edit
mode. As you can see, the contents of this template are very simi-
lar to the contents of the item template.

261Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 261

➝ 24 The text box for the product ID is read-only to prevent the user
from modifying the product ID column of the Products table.

➝ 25 Instead of typing into a text box, the user chooses a product cate-
gory from a drop-down list bound to SqlDataSource3 (which is
defined in line 44).

➝ 26 The next text box is bound to the name field. Note that it is fol-
lowed by a RequiredFieldValidator control so the user must
enter a name for the product.

➝ 27 This text box is bound to the shorttext field. A
RequiredFieldValidator control requires the user to enter
a value for this field.

➝ 28 The text box for the longtext field is also followed by a
RequiredFieldValidator.

➝ 29 The text box for the price field does not use a format string to
apply the currency format to the price. That’s to avoid the dollar
sign (or other currency symbol), which can complicate the pars-
ing required to convert the string value of the Text property
to a decimal value when the data is entered. Notice also that in
addition to a RequiredFieldValidator, this field also uses a
CompareValidator to ensure that the user enters a valid number.

➝ 30 The text box for the thumbnail field uses a
RequiredFieldValidator to ensure the user enters a value.

➝ 31 The text box for the image field is also associated with a
RequiredFieldValidator.

➝ 32 This link button’s CommandName attribute is set to Update. As a
result, the database is updated with new information when the
user clicks this link.

➝ 33 The CommandName attribute of this link button is set to Cancel.
As a result, whatever data the user enters is discarded when this
link is clicked, and the database is not updated.
CausesValidation = “False” is specified so the page’s val-
idators are ignored when the user clicks this link.

➝ 34 The InsertItemTemplate template is displayed when the
FormView control is placed in Insert mode. The controls
defined for this template are the same ones defined for the
EditItemTemplate template.

➝ 35 This SqlDataSource control, named SqlDataSource2, pro-
vides the data for the FormView control. The OnDeleted,
OnUpdated, and OnInserted attributes specify the methods

262 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 262

called to handle the Deleted, Updated, and Inserted events
for the data source.

If you’re using the Visual Basic version of the code-behind file for
this page, you should omit these attributes.

➝ 36 The SelectCommand attribute provides the SELECT statement that
retrieves a specific product from the Products table. Notice that
the WHERE clause uses the @productid parameter. As you can see
in line 40, this parameter comes from the SelectedValue property
of the GridView control. As a result, this data source retrieves
the Product row selected by the user via the GridView control.

➝ 37 The InsertCommand attribute specifies the INSERT statement
that inserts a new row into the Products table.

➝ 38 The UpdateCommand attribute specifies the UPDATE statement
that updates product rows.

➝ 39 The DeleteCommand attribute specifies the DELETE statement
that deletes products.

➝ 40 The <SelectParameters> element defines the parameters used
by the SELECT statement. In this case, only one parameter is
used: a Control parameter that’s bound to the SelectedValue
property of the GridView1 control. Thus the value of this para-
meter is automatically set to the product ID selected by the user
(via the GridView control).

➝ 41 The <InsertParameters> element provides the parameters
used by the INSERT statement.

➝ 42 The <UpdateParameters> element provides the parameters
used by the UPDATE statement.

➝ 43 The <DeleteParameters> element provides the parameters
used by the DELETE statement.

➝ 44 The third data source used by this page, SqlDataSource3,
retrieves all rows from the Categories table and uses them to
populate the Categories drop-down list in the EditItemTemplate
and InsertItemTemplate templates of the FormView1 control.

➝ 45 A label control named lblMessage appears beneath the
FormView control. This label displays messages about the suc-
cess or failure of database updates.

➝ 46 Finally, a link button provides a convenient way for the user to get
back to the menu page.

263Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 263

264 Part IV: Building Back-End Applications

The FormView Control
The new FormView control is similar to the
DetailsView control used in the Product
Catalog application (shown in Chapter 5). The
main difference is that the DetailsView
control renders its data using an HTML table —
with one row for each field in the data source.
In contrast, the FormView control is based
on templates that you supply. Then it’s up to
you to specify exactly how you want to render
the data.

The FormView control lets you create one or
more of the following templates:

� EmptyItemTemplate: This template is
rendered if the data source is empty.

� ItemTemplate: Used to display data in
Read-Only mode.

� EditItemTemplate: Used to render
data when the FormView control is in
Edit mode.

� InsertItemTemplate: Used to render
data when the FormView control is in
Insert mode.

� HeaderTemplate: Displayed at the top
of the control.

� FooterTemplate: Displayed at the
bottom of the control.

� PagerTemplate: Displayed when paging
is enabled.

You can use the Eval or Bind methods in
binding expressions to display data from the
data source in a template. For example, here’s
a label that’s bound to a data-source field
named lastname:

<asp:Label ID=”lblLastName”
runat=”server”

Text=’<%#
Eval(“lastname”) %>’/>

And here’s a text box bound to the same field:

<asp:TextBox ID=”txtProductID”
runat=”server”
Width=”100px”
Text=’<%# Bind(“lastname”)
%>’/>

Notice that you have to use Bind instead of
Eval when you want the binding to be two-
way — that is, for input as well as for output.

A template can include a link that specifies a com-
mand name via the CommandName attribute.
Then when the user clicks the link, the specified
command will be sent to the FormView con-
trol. The following commands are allowed:

� Edit: Places the FormView control
in Edit mode and displays the
EditItemTemplate template.

� New: Places the FormView control
in Insert mode and uses the
InsertItemTemplate.

� Update: Accepts changes made while in
Edit mode and updates the data source.

� Insert: Inserts a row using data entered
while in Insert mode.

� Cancel: Cancels Edit or Insert mode and
ignores any changes.

� Delete: Deletes a row.

� Page: Used to support paging operations.

14_597760 ch07.qxp 1/11/06 9:57 PM Page 264

The code-behind file for the Product
Maintenance page
Like the CatMaint.aspx page, the ProdMaint.aspx page requires a code-
behind file. The C# version of this code-behind file is shown in Listing 7-8,
and Listing 7-9 shows the Visual Basic version.

Listing 7-8: The code-behind file for the Product Maintenance page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class ProdMaint : System.Web.UI.Page
{

protected void SqlDataSource2_Deleted(➝1
object sender,
SqlDataSourceStatusEventArgs e)

{
if (e.AffectedRows == 0 | e.Exception != null)
{

lblMessage.Text = “
Product could not “
+ “be deleted. Please try again.”;

e.ExceptionHandled = true;
}
else
{

lblMessage.Text = “
Product deleted.”;
GridView1.SelectedIndex = -1;
this.DataBind();

}

}

(continued)

265Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 265

Listing 7-8 (continued)

protected void SqlDataSource2_Updated(➝2
object sender,
SqlDataSourceStatusEventArgs e)

{
if (e.AffectedRows == 0 | e.Exception != null)
{

lblMessage.Text = “Product could not “
+ “be updated. Please try again.”;

e.ExceptionHandled = true;
}
else

lblMessage.Text = “Product updated.”;

}

protected void SqlDataSource2_Inserted(➝3
object sender,
SqlDataSourceStatusEventArgs e)

{
if (e.AffectedRows == 0 | e.Exception != null)
{

lblMessage.Text = “Product could not “
+ “be inserted. Please try again.”;

e.ExceptionHandled = true;
}
else
{

lblMessage.Text = “Product inserted.”;
this.DataBind();

}
}

}

As you can see, the code-behind file consists of just three methods:

➝ 1 SqlDataSource2_Deleted: This method is called when a row
has been deleted from the Products table — whether or not the
row was successfully deleted. As a result, both the AffectedRows
and the Exception properties are checked to see whether an
error occurred. If so, an appropriate error message is displayed in
the lblMessage label. If the deletion was successful, what shows
up is a message indicating that the product was deleted. Then the
SelectedIndex property of the GridView control is set to -1
automatically to deselect the row, and the DataBind method is
called to re-bind the controls.

266 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 266

➝ 2 SqlDataSource2_Updated: This method is similar to the
SqlDataSource2_Deleted method. It’s called when a row has
been updated. Again, both the AffectedRows and the Exception
properties are checked to see whether an error occurred.

➝ 3 SqlDataSource2_Inserted: This method is called when a row
has been inserted. If the AffectedRows or Exception properties
indicate that an error has occurred, an appropriate error message
is displayed. Otherwise what shows up is a message indicating
that the product has been inserted; then the page is re-bound.

Listing 7-9: The code-behind file for the Catalog Maintenance page (VB)

Partial Class ProdMaint
Inherits System.Web.UI.Page

Protected Sub SqlDataSource2_Deleted(_ ➝1
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls. _

SqlDataSourceStatusEventArgs) _
Handles SqlDataSource2.Deleted

If e.AffectedRows = 0 _
Or Not e.Exception Is Nothing Then

lblMessage.Text = “
Product could not “ _
+ “be deleted. Please try again.”

e.ExceptionHandled = True
Else

lblMessage.Text = “
Product deleted.”
GridView1.SelectedIndex = -1
Me.DataBind()

End If
End Sub

Protected Sub SqlDataSource2_Updated(_ ➝2
ByVal sender As Object, _
ByVal e As System.Web.UI. _
WebControls.SqlDataSourceStatusEventArgs) _
Handles SqlDataSource2.Updated

If e.AffectedRows = 0 _
Or Not e.Exception Is Nothing Then

lblMessage.Text = “Product could not “ _
+ “be updated. Please try again.”

e.ExceptionHandled = True
Else

lblMessage.Text = “
Product updated.”
GridView1.SelectedIndex = -1
Me.DataBind()

End If
End Sub

(continued)

267Chapter 7: Building a Product Maintenance Application

14_597760 ch07.qxp 1/11/06 9:57 PM Page 267

Listing 7-9 (continued)

Protected Sub SqlDataSource2_Inserted(_ ➝3
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls. _
SqlDataSourceStatusEventArgs) _
Handles SqlDataSource2.Inserted

If e.AffectedRows = 0 _
Or Not e.Exception Is Nothing Then

lblMessage.Text = “
Product could not “ _
+ “be inserted. Please try again.”

e.ExceptionHandled = True
Else

lblMessage.Text = “
Product inserted.”
GridView1.SelectedIndex = -1
Me.DataBind()

End If
End Sub

End Class

268 Part IV: Building Back-End Applications

14_597760 ch07.qxp 1/11/06 9:57 PM Page 268

Chapter 8

Building a Report Application
In This Chapter
� Designing the Order Listing application

� Creating the database for the Order Listing application

� Building the Order Listing application’s Web pages

Report applications are an important part of almost all but the most trivial
Web applications. Report applications extract data from a database and

present it in a meaningful form for the users. In some cases, the Report page
includes a link to a printable version of the page that doesn’t have banner
graphics or other distractions.

This chapter presents a simple report application — called the Order Listing
application — that lists orders entered by users. The Order Listing applica-
tion works in a way that’s consistent with the other applications in this book:

� It uses the same database as the Shopping Cart application in Chapter 6.

� It lets the user select an order in the Orders table, and then displays an
invoice for the order.

� It includes a link to a printable version of the invoice.

15_597760 ch08.qxp 1/11/06 9:57 PM Page 269

The Application’s User Interface
This application has a simple user interface that consists of just two pages:
the main page and the Master Page. The main page (Default.aspx), shown
in Figure 8-1, is the equivalent of a home page for the application. After the
banner image that’s displayed by the Master Page, a drop-down list lets the
user choose the order to be displayed. Then the details for the selected order
are displayed in nicely formatted tables.

Notice the Print this page link near the top of the page. If the user clicks this
link, the PrintOrder.aspx page shown in Figure 8-2 is displayed. This page
is almost identical to the page shown in Figure 8-1, with two differences: (1)
the banner image isn’t displayed and (2) the Print this page link is omitted.
Then the user can use the browser’s File➪Print command to print a copy of
the page.

Figure 8-1:
The Orders
application

displays
information

for the
selected

order.

270 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 270

Designing the Application
Even though this application is simple, there are several important design
decisions that should be made before you begin writing the application’s
code. These decisions are described in the following paragraphs:

� You’ll need to decide the details of how the database will store the data
to be shown in the report. Because this application uses the same data-
base as the Shopping Cart application presented in Chapter 6, the data-
base design decisions have already been made. For more information,
refer to Chapter 6.

� There are several ways to create reports in ASP.NET. If you have a profes-
sional edition of Visual Studio, you can use Crystal Reports to create the
reports. Visual Web Developer Express Edition doesn’t include Crystal
Reports, however, so the application that’s the subject of this chapter
uses standard ASP.NET controls to build its report.

� The invoice report shown in the main application page and the Print
Order page should be identical. You could simply duplicate the code
used to create the report in both pages, but that would be inefficient. A
better way is to create a user control that displays the printable data for
an order. Then you simply include the user control in both the

Figure 8-2:
The Print

Order page.

271Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 271

Default.aspx page and the PrintOrder.aspx page. That’s the tech-
nique used in this application.

� You’ll need a way to tell the user control which order to display. There are,
of course, several ways you can do that. For this application, a session
variable named ordernum is used. When the user uses the drop-down list
to select an order in the Default.aspx page, the application saves the
order number in the ordernum session variable. Then the user control
retrieves this session state variable to determine which order to display.

Building the Database
First things first: Before you can use the Order Listing application, you must
create the database it uses. The following sections explain how to do that.

Designing the database
The Order Listing application uses the same database design that was used
in the Shopping Cart application presented in Chapter 6. I won’t review all the
details of this database design here. (If necessary, refer to Chapter 6 to catch
up on those details.)

To save you some page-flipping, though, Tables 8-1 through 8-3 list the
columns defined for the three database tables used by the Order Listing
application: Customers, Orders, and OrderItems.

Although the design of the database is the same, this application doesn’t use
the same physical database as the one presented in Chapter 6. That database
was named Cart. This application uses a database named Orders.

Table 8-1 The Customers Table
Column name Type Description

email VARCHAR(50) The customer’s e-mail address. This
column also serves as the table’s pri-
mary key.

lastname VARCHAR(50) The customer’s last name.

firstname VARCHAR(50) The customer’s first name.

address VARCHAR(50) The customer’s street address.

city VARCHAR(50) The customer’s city.

272 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 272

Column name Type Description

state VARCHAR(2) The customer’s two-character state
code.

zipcode VARCHAR(9) The customer’s Zip code, up to nine
characters.

phone VARCHAR(20) The customer’s phone number.

Table 8-2 The Orders Table
Column name Type Description

ordernum INT This column uniquely identifies each
order and serves as the the table’s
primary key.

orderdate SMALLDATETIME The date the order was placed.

custemail VARCHAR(50) The customer’s e-mail address. This
serves as a foreign key that relates
the order to a particular row in the
Customers table.

subtotal MONEY The sum of the totals for each item
associated with the order.

salestax MONEY The sales tax for the order.

shipping MONEY The shipping charges for the order.

total n/a The order total. This field is calcu-
lated by adding the subtotal,
salestax, and shipping fields.

Table 8-3 The OrderItems Table
Column name Type Description

ordernum INT The order number for the order this
item is associated with.

productid VARCHAR(10) The ID for the product represented
by this item. Note that this column
along with the ordernum columns
comprise the primary key for this
table.

273Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 273

Table 8-3 (continued)
Column name Type Description

name VARCHAR(50) The product’s name.

price MONEY The product’s price.

quantity SMALLINT The quantity ordered.

total n/a The total for the item, calculated by
multiplying the price by the quantity.

Creating the database
The CD that comes with this book includes a script named CreateOrdersDB.
sql that you can use to create this database. To run this script, open a
command-prompt window and change to the directory that contains the
script. Then enter this command:

sqlcmd -S localhost\SQLExpress -i CreateOrdersDB.sql

Note that this command assumes you’re running SQL Server Express on your
own computer. If you’re using SQL Server on a different server, you’ll need to
change localhost\SQLExpress to the correct name.

If you’re curious about the contents of this script, refer to Listing 6-1 in Chap-
ter 6. The only difference between that script and the CreateOrdersDB.sql
script is the name of the database that’s created. Otherwise the scripts are
identical.

Adding test data
You can add some useful test data to the Orders database by running the
InsertOrdersData.sql script that’s included on this book’s companion
CD. In addition to adding category and product data to the database, it also
creates two customers (Willy Gilligan and Jonas Grumby), each with
an order in the Orders table. The test data is simple, but enough to test the
application.

To run the InsertData.sql script, open a command window, change to the
directory that contains the script, and run this command:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

274 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 274

Again, you’ll need to change the server instance name if it is other than
SQLExpress.

SQL statements to retrieve the order data
The Order Listing application uses three SQL SELECT statements to retrieve
data from the Customers, Orders, and OrderItems tables. These SQL
statements are described in the following paragraphs:

� The following SELECT statement fills the drop-down list with order
numbers:

SELECT [ordernum]
FROM [orders] ORDER BY [ordernum]

� The SELECT statement used to retrieve a specific order requires a join
to retrieve data from both the Orders table and the Customers table:

SELECT Orders.ordernum,
Orders.orderdate,
Orders.custemail,
Orders.subtotal,
Orders.salestax,
Orders.shipping,
Orders.total,
Customers.lastname,
Customers.firstname,
Customers.address,
Customers.city,
Customers.state,
Customers.zipcode,
Customers.phone

FROM Orders
INNER JOIN Customers

ON Orders.custemail = Customers.email
WHERE Orders.ordernum = @ordernum
ORDER BY Orders.ordernum”

� The following statement retrieves the items for a given order:

SELECT [productid],
[name],
[price],
[quantity],
[total],
[ordernum]

FROM [OrderItems]
WHERE ([ordernum] = @ordernum)
ORDER BY [productid]”

275Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 275

Connecting to the database
The connection string for the Order Listing application is stored in the
web.config file, like this:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Orders;Integrated Security=True”/>
</connectionStrings>

You’ll need to change this connection string if your server isn’t named
localhost\SQLExpress or if you want to run the application against a dif-
ferent database.

Building the Master Page
Listing 8-1 shows the Master Page (MasterPage.master), which displays a
banner at the top of each page.

Listing 8-1: The Master Page (MasterPage.master)

<%@ Master Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Acme Pirate Store</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

 ➝2
<asp:contentplaceholder ➝3

id=”ContentPlaceHolder1”
runat=”server”>

</asp:contentplaceholder>

</div>
</form>

</body>
</html>

276 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 276

Three key points stand out in this listing:

➝ 1 The Master directive indicates that the file is a Master Page. Note
that if you want to use Visual Basic rather than C# for the applica-
tion’s code-behind files, you should change the AutoEventWireup
attribute to false.

➝ 2 The Image control displays the banner image that appears at the
top of each page.

➝ 3 The ContentPlaceHolder control indicates where the content
for each page will appear.

Building the Order User Control
The Order user control (Orders.aspx) displays the details for a particular
order. The order to be displayed is specified via a session variable named
ordernum. Then the order details are formatted using simple HTML tables.

Remarkably, the code-behind file for this user control is empty. The order
number — a corresponding SQL parameter created for this purpose by the
<SessionParameter> element — is automatically retrieved from the ses-
sion state.

Listing 8-2 shows the code for the Order user control.

Listing 8-2: The Order user control (Order.aspx)

<%@ Control Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”Order.ascx.cs”
Inherits=”Order” %>

<asp:FormView ID=”FormView1” runat=”server” ➝2
DataSourceID=”SqlDataSource1”
DataKeyNames=”ordernum” >

<ItemTemplate> ➝3
<table border=”1”> ➝4
<tr><td>
Order Number:
</td><td>
<asp:Label ID=”ordernumLabel” runat=”server” ➝5

Text=’<%# Eval(“ordernum”) %>’ />
</td></tr>
<tr><td>
Order Date:
</td><td>
<asp:Label ID=”orderdateLabel” runat=”server” ➝6

Text=’<%# Eval(“orderdate”, “{0:d}”) %>’ />

(continued)

277Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 277

Listing 8-2 (continued)
</td></tr>
<tr><td>
Customer email:
</td><td>
<asp:Label ID=”custemailLabel” runat=”server” ➝7

Text=’<%# Eval(“custemail”) %>’ />
</td></tr>
<tr><td>
Phone Number:
</td><td>
<asp:Label ID=”Label10” runat=”server” ➝8

Text=’<%# Eval(“phone”) %>’ />
</td></tr>
</table> ➝9

Bill to:

<table border=”1” cellpadding=”5” > ➝10
<tr><td>
<asp:Label ID=”lblFirstName” runat=”server” ➝11

Text=’<%# Eval(“firstname”) %>’ />
<asp:Label ID=”lblLastName” runat=”server” ➝12

Text=’<%# Eval(“lastname”) %>’ />

<asp:Label ID=”lblAddress” runat=”server” ➝13

Text=’<%# Eval(“address”) %>’ />

<asp:Label ID=”lblCity” runat=”server” ➝14

Text=’<%# Eval(“city”) %>’ />,
<asp:Label ID=”lblState” runat=”server” ➝15

Text=’<%# Eval(“state”) %>’ />
<asp:Label ID=”lblZipCode” runat=”server” ➝16

Text=’<%# Eval(“zipcode”) %>’ />

</td></tr>
</table> ➝17

<table border=”1”> ➝18
<asp:Repeater ID=”Repeater1” runat=”server” ➝19

DataSourceID=”SqlDataSource2”>
<HeaderTemplate> ➝20
<tr>
<td>Product ID</td>
<td>Name</td>
<td>Price</td>
<td>Quantity</td>
<td>Total</td>

</tr>
</HeaderTemplate>
<ItemTemplate> ➝21
<tr>
<td>
<asp:Label ID=”Label1” runat=”server” ➝22

Text=’<%# Eval(“productid”) %>’ />
</td>
<td>

278 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 278

<asp:Label ID=”Label2” runat=”server” ➝23
Text=’<%# Eval(“name”) %>’ />

</td>
<td>
<asp:Label ID=”Label3” runat=”server” ➝24

Text=’<%# Eval(“price”, “{0:c}”) %>’ />
</td>
<td align=”right”>
<asp:Label ID=”Label4” runat=”server” ➝25

Text=’<%# Eval(“quantity”) %>’ />
</td>
<td align=”right”>
<asp:Label ID=”Label5” runat=”server” ➝26

Text=’<%# Eval(“total”, “{0:c}”) %>’ />
</td>

</tr>
</ItemTemplate> ➝27

</asp:Repeater> ➝28
<tr>
<td></td><td></td><td></td>
<td>Subtotal:</td>
<td align=”right”>
<asp:Label ID=”Label5” runat=”server” ➝29

Text=’<%# Eval(“subtotal”, “{0:c}”) %>’ />
</td>

</tr>
<tr>
<td></td><td></td><td></td>
<td>Sales tax:</td>
<td align=”right”>
<asp:Label ID=”Label6” runat=”server” ➝30

Text=’<%# Eval(“salestax”, “{0:c}”) %>’ />
</td>

</tr>
<tr>
<td></td><td></td><td></td>
<td>Shipping:</td>
<td align=”right”>
<asp:Label ID=”Label7” runat=”server” ➝31

Text=’<%# Eval(“shipping”, “{0:c}”) %>’ />
</td>

</tr>
<tr>
<td></td><td></td><td></td>
<td>Total</td>
<td align=”right”>
<asp:Label ID=”Label8” runat=”server” ➝32

Text=’<%# Eval(“total”, “{0:c}”) %>’ />
</td>

</tr>
</table> ➝33

</ItemTemplate> ➝34

(continued)

279Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 279

Listing 8-2 (continued)
</asp:FormView> ➝35
<asp:SqlDataSource ID=”SqlDataSource1” ›36

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:CartConnectionString %>”
SelectCommand=”SELECT Orders.ordernum,

Orders.orderdate,
Orders.custemail,
Orders.subtotal,
Orders.salestax,
Orders.shipping,
Orders.total,
Customers.lastname,
Customers.firstname,
Customers.address,
Customers.city,
Customers.state,
Customers.zipcode,
Customers.phone

FROM Orders
INNER JOIN Customers

ON Orders.custemail = Customers.email
WHERE Orders.ordernum = @ordernum
ORDER BY Orders.ordernum” >

<SelectParameters>
<asp:SessionParameter ➝37

Name=”ordernum”
SessionField=”ordernum”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>
<asp:SqlDataSource ID=”SqlDataSource2” ➝38

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:ConnectionString %>”
SelectCommand=”SELECT [productid],

[name],
[price],
[quantity],
[total],
[ordernum]

FROM [OrderItems]
WHERE ([ordernum] = @ordernum)
ORDER BY [productid]” >

<SelectParameters>
<asp:ControlParameter ➝39

Name=”ordernum”
ControlID=”FormView1”
PropertyName=”SelectedValue”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

280 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 280

Lots going on here — so here are explanations of key lines in this user control:

➝ 1 The Control directive marks the start of the user control. Note
that although the Control directive specifies the AutoEvent
Wireup, CodeFile, and Inherits attributes, the code-behind
file is empty. (You could delete it, but then you’d have to remove
the CodeFile and Inherits attributes.)

➝ 2 This line marks the start of the code for the FormView control
that displays the order data. This FormView control is bound to
the data source named SqlDataSource1, which retrieves data
from the Orders table. The end tag completes this FormView
control in line 35.

➝ 3 The <ItemTemplate> element defines the content that’s displayed
for the order. The end tag for this element is found in line 34.

➝ 4 The<ItemTemplate> uses three separate HTML tables to display
the order data. This line marks the start of the first of these tables,
which displays the order number and date as well as the customer’s
e-mail address and phone number.

➝ 5 This label displays the order number. It uses the Eval method to
bind to the data source’s ordernum field.

➝ 6 This label displays the order date. The Eval method binds this
label to the orderdate field and formats it using the short date
format.

➝ 7 This label displays the customer’s e-mail address.

➝ 8 This label displays the customer’s phone number.

➝ 9 The </table> tag marks the end of the first table.

➝ 10 The second table will display the customer’s bill-to information.

➝ 11 This label displays the customer’s first name.

➝ 12 This label displays the customer’s last name.

➝ 13 This label displays the customer’s street address.

➝ 14 This label displays the customer’s city.

➝ 15 This label displays the customer’s state.

➝ 16 This label displays the customer’s Zip code.

➝ 17 This line marks the end of the second table.

➝ 18 The third table displays the line items and totals for the order.

➝ 19 A Repeater control is used to display the table rows that show
the order’s line items. This Repeater control is bound to the

281Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 281

SqlDataSource2 data source, which retrieves data from the
Orders table. The <Repeater> element ends at line 28.

➝ 20 The header template provides the column headers for the table. It
consists of a single row with cells for the Name, Price, Quantity,
and Total columns.

➝ 21 The <ItemTemplate> defines the table row that’s rendered for
each of the order’s line items. This <ItemTemplate> for the
Repeater control (not to be confused with the <ItemTemplate>
for the FormView control) ends in line 27.

➝ 22 This label displays the product ID.

➝ 23 This label displays the product name.

➝ 24 This label displays the price, formatted as currency.

➝ 25 This label displays the quantity.

➝ 26 This label displays the line item total, formatted as currency.

➝ 27 This line marks the end of the Repeater control’s
<ItemTemplate>.

➝ 28 This line marks the end of the Repeater control.

➝ 29 This label displays the order subtotal, formatted as currency.

➝ 30 This label displays the sales tax for the order, formatted as currency.

➝ 31 This label displays the shipping charges for the order, formatted
as currency.

➝ 32 This label displays the order total, formatted as currency.

➝ 33 This line marks the end of the third table, which was started in
line 18.

➝ 34 This line marks the end of the FormView control’s
<ItemTemplate>.

➝ 35 This line marks the end of the FormView control.

➝ 36 The first SQL data source retrieves data for an order from the
Customers and Orders tables.

➝ 37 The <asp:SessionParameter> element defines a parameter
whose value is automatically retrieved from session state. In this
case, the @ordernum parameter’s value is retrieved from the ses-
sion state variable named ordernum.

➝ 38 The second SQL data source retrieves the line items from the
OrderItems table. It uses a parameter named @ordernum to indi-
cate the order whose items are to be retrieved.

➝ 39 The @ordernum parameter is defined using an
<asp:ControlParameter> element. Here the ControlID
attribute is set to FormView1 and the PropertyName attribute

282 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 282

specifies SelectedValue. By default, the SelectedValue
attribute of a FormView control returns the primary key of the
item currently displayed by the FormView control. As a result,
this parameter’s value will be the order number of the order cur-
rently displayed by the FormView control.

Building the Default Page
The Default.aspx displays a link to the OrderPrint.aspx page, a drop-
down list that lets the user pick an order, and the Order user control that
displays the order. This page requires a small code-behind file, whose only
function is to create the ordernum session variable required by the Order
user control. The value for this variable is taken from the drop-down list.

The Default.aspx file
Listing 8-3 shows the .aspx code for the default page. Refer to Figure 8-1 to
see how this page looks on-screen.

Listing 8-3: The Default page (Default.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Acme Pirate Supply” %>

<%@ Register Src=”Order.ascx” ➝2
TagName=”Order”
TagPrefix=”uc1” %>

<asp:Content ID=”Content1” ➝3
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
Choose an order to display:
<asp:DropDownList ID=”ddlOrder” runat=”server” ➝4

DataSourceID=”SqlDataSource1”
DataTextField=”ordernum”
DataValueField=”ordernum”
AutoPostBack=”True” />

<asp:LinkButton ID=”LinkButton1” ➝5

runat=”server”
PostBackUrl=”~/PrintOrder.aspx”>

Print this page</asp:LinkButton>
<asp:SqlDataSource ID=”SqlDataSource1” ➝6

(continued)

283Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 283

Listing 8-3 (continued)
runat=”server”
ConnectionString=
“<%$ ConnectionStrings:CartConnectionString %>”
SelectCommand=”SELECT ordernum

FROM Orders ORDER BY ordernum” >
</asp:SqlDataSource>

<uc1:Order ID=”Order1” runat=”server” /> ➝7

</asp:Content>

The following list explains the numbered lines in this listing:

➝ 1 The Page directive specifies the Master Page and other informa-
tion for the page.

To use the Visual Basic version of the code-behind file (shown in
Listing 8-5), you’ll have to change the AutoEventWireup attribute
to false and the CodeFile attribute to Default.aspx.vb.

➝ 2 The Register directive is required to register the Order user
control. It specifies that the source file for the user control is
Order.ascx. Then the TagName and TagPrefix attributes indi-
cate that you can include the user control on the page by using
the tag uc1:Order.

➝ 3 The <Content> element provides the content that’s displayed in
the <ContentPlaceHolder> element of the Master Page.

➝ 4 The drop-down list control displays a list of all order numbers cur-
rently in the Orders table. This drop-down list is bound to the data
source named SqlDataSource1; auto post-back is enabled so the
page is posted back to the server when the user selects an order.

➝ 5 The link button posts back to the PrintOrder.aspx page.

➝ 6 The SQL data source retrieves the order numbers from the
Orders table, using them to populate the drop-down list.

➝ 7 The uc1:Order tag places the Order user control on the page.
This user control is responsible for displaying the data for the
selected order.

The code-behind file for the default page
The Default.aspx page requires a simple code-behind file to create the
session state variable that stores the selected order number. Listing 8-4
shows the C# version of this code-behind file, and Listing 8-5 shows the
Visual Basic version.

284 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 284

Listing 8-4: The code-behind file for the default page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!IsPostBack)
ddlOrder.DataBind();

Session[“ordernum”] = ddlOrder.SelectedValue;
}

}

The Page_Load method is called when the Default.aspx page is loaded. It
starts by calling the DataBind method for the drop-down list if the page is
being posted for the first time. This statement is required — without it, no data
binding occurs for the drop-down list, so the order number for the first order in
the Orders file won’t be set. On subsequent posts of the page (that is, when
IsPostBack is True), the drop-down list will retain its values because of the
view state. Then, the DataBind method doesn’t need to be called.

The second statement in this method creates the ordernum session variable if
it doesn’t already exist and assigns the order number selected by the user to it.

Listing 8-5: The code-behind file for the default page (VB)

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(_
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

If Not IsPostBack Then
ddlOrder.DataBind()

End If
Session(“ordernum”) = ddlOrder.SelectedValue

End Sub

End Class

285Chapter 8: Building a Report Application

15_597760 ch08.qxp 1/11/06 9:57 PM Page 285

Building the Print Order page
The Print Order page is about as simple as it could be: It simply includes the
Order user control, with no other extraneous information to clutter up the
page. The Print Order page is shown in Listing 8-6. The code-behind file for
this page is empty.

Listing 8-6: The Print Order page (PrintOrder.aspx)

<%@ Page Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”PrintOrder.aspx.cs”
Inherits=”PrintOrder” %>

<%@ Register Src=”Order.ascx” ➝2
TagName=”Order”
TagPrefix=”uc1” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Acme Pirate Supply</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<uc1:Order ID=”Order1” runat=”server” /> ➝3
</div>
</form>

</body>
</html>

Here’s a short-but-sweet list of important elements in the code for this page:

➝ 1 Unlike nearly all the other pages I describe in this book, this Page
directive does not specify a Master Page. That way the banner
image doesn’t appear at the top of the page.

➝ 2 The Register directive is required to register the Order user
control.

➝ 3 The uc1:Order tag places the Order user control on the page.
Then the user control handles the details of formatting the
order data.

286 Part IV: Building Back-End Applications

15_597760 ch08.qxp 1/11/06 9:57 PM Page 286

Part V
Building

Community
Applications

16_597760 pt05.qxp 1/11/06 9:58 PM Page 287

In this part . . .

Among the most popular types of Web applications
today are those used to build online communities.

This part presents three such applications. Chapter 9
presents a basic content-management system that makes
it easy to create a Web site whose content changes on a
regular basis. Then Chapter 10 presents a discussion-
forum application, which gives users a way to post mes-
sages and reply to messages from other users. And finally,
Chapter 11 presents a simple blog application that lets
users create their own online journal (weblog) pages.

16_597760 pt05.qxp 1/11/06 9:58 PM Page 288

Chapter 9

Building a Content
Management System

In This Chapter
� Designing the Content Management System

� Creating the database for the Content Management System

� Building the Content Management System’s pages

A Content Management System is a Web site that lets users manage the
content displayed by the site without requiring a detailed knowledge of

HTML. In short, the Content Management System provides an administrative
interface that lets the user add, delete, or edit content items that are dis-
played on the Web site. Of course, you can limit access to the administrative
pages so only those users who are authorized to administer the Web site can
add, edit, or delete content items.

In this chapter, I present a simple Content Management System written in
ASP.NET. The content displayed by this system is stored in a SQL database,
and the system provides an easy way for authorized users to add, edit, and
delete content.

Making Some Basic Decisions
Before we get into the specifics of how the Content Management System in
this chapter works, consider some basic decisions that you should make
early on when you create a Content Management System:

� Will the content itself be stored in a database or as separate HTML
files? There are two basic options for how you can store the actual con-
tent that’s managed by the Content Management System. One approach
is to build a database that contains the text content that’s managed by
the system. Then, the Content Management System’s main job is extract-
ing information from this database to display. Building this type of

17_597760 ch09.qxp 1/11/06 9:58 PM Page 289

Content Management System is the easiest, but it also limits the type of
content that can be managed by the system to text with simple formatting.

The alternative is to let users create the actual HTML files that provide
the content for the system. Then, the Content Management System’s job
is to manage these files. You’ll usually use a database to track the files,
and you’ll need to provide a way for users to upload files to the server.

The Content Management System presented in this chapter stores all of
the content data in a database. To keep things simple, the content is lim-
ited to simple text.

� How will the content be organized? The Content Management System
in this chapter provides two levels of organization for its content items:
by department and by type. Both the departments and the types are
stored in SQL tables, so users can easily add or remove departments or
types. Depending on your organization’s needs, you may need to provide
a different way to organize or categorize content items.

� Will users be required to log in? You’ll almost certainly require that
users log in before you let them modify the Web site’s content. That way,
you can grant administration privileges to just certain users. However,
you may also want to allow all users to log in. Then, you can restrict
access to some or all of the content based on the user’s identity.

In addition, you’ll need to decide how you’ll handle the registration of
new users. For tight control over the user list, you’ll want to allow only
certain users to create new user accounts. For a more open Web site,
you can let users register themselves.

For more information about adding login capabilities to a Web site, see
Chapter 4. The Content Management System presented in this chapter
requires the user to log in. To do that, it borrows the login.aspx page
from the User Authentication application that was presented in Chapter 4.

The application shown in this chapter doesn’t provide for user registra-
tion, password changes, or password recovery — but those features
should be easy enough to add if you use the application presented in
Chapter 4 as a guide.

The Content Management System uses the ASP.NET roles feature to
assign each registered user to one or more departments. Any user can
view content from any department, but only users assigned to a depart-
ment can add, update, or delete content for the department.

� How will you handle expired content? For simplicity, the application in
this chapter displays all of the content in the database. Users can add,
modify, or delete content items any time they wish, but the system
doesn’t provide an automatic way to limit how long an item should be
displayed or to automatically remove items that are expired. (You
shouldn’t have much trouble adding such a feature on your own,
though.)

290 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 290

The Content Management
System’s User Interface

The Content Management System is designed to create an intranet Web site
for a company so that each department within the company can provide its
own content items. For example, the Human Resources department might
want to provide information about company policies, while the Information
Technology department may be interested in providing information about the
computer network. The department names are stored in a database table so
the company can create any department it wishes for the Content
Management System.

Besides organizing its content by department, the Content Management
System also categorizes content by type. As with departments, the Content
Management System stores the type names in a database table. That way you
can create as many different content types as you want.

One of the interesting things about the Content Management System is that it
lets you create the illusion of a Web site with many different pages, while in
reality getting by with only five distinct pages. Figure 9-1 shows how these
pages work together to create the Content Management System, and the fol-
lowing sections describe each page in greater detail.

Login.aspx

Login page

Default.aspx

Home page

DeptHome.aspx

Department
Home page

List.aspx

Content List
page

Detail.aspx

Content Detail
page

Figure 9-1:
The Content

Manage-
ment

System
requires

these five
pages.

291Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 291

The Login page
The Login page (shown in Figure 9-2) appears whenever the user tries to
access any page of the Content Management System without first logging in.
As you can see, this page simply prompts the user to enter his or her user
name and password. A checkbox lets the user store the name and password
in a cookie — which then allows the user to automatically log in whenever he
or she returns to the site.

The Home page
The Home page is shown in Figure 9-3. Note that the user must get through
the Login page to reach this or any other page in the Content Management
System. The Home page displays a brief text introduction, followed by a list
of links to the various departments of the company.

Notice that the departments also appear in a list at the left side of the page.
This sidebar list is actually a part of the Master Page used throughout the
application. As a result, the user can quickly jump to the Home page for any
department by clicking the department in the sidebar list.

Figure 9-2:
The Login

page.

292 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 292

An enhancement you may want to make to the Content Management System
is to store the text displayed on the Home page in a database table. (I’ll leave
you to your own devices to figure out how to do that. It shouldn’t be too hard.)

The Department Home page
When the user clicks one of the department names in the Home page (or in
the sidebar menu that appears at the left side of each page), the Home page
for that department appears, as shown in Figure 9-4. As you can see, this
page displays the name of the department, followed by a catchy description
that’s retrieved from the database. Then it displays links for each type of con-
tent managed by the system. (For example, the user can click the FAQ link to
display a list of all the FAQ items for the selected department.)

Note that there is only one Department Home page for the entire Web site;
each department doesn’t have its own home page. Instead, the content for
the selected department is retrieved from the database and displayed on the
Department Home page.

Figure 9-3:
The Home

page.

293Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 293

The Content List page
The Content List page is shown in Figure 9-5. This page lists all content items
for the department and type selected by the user. For example, if the user
clicks Human Resources on the Home page, and then clicks FAQ on the
Department Home Page, what shows up on-screen is a list of all FAQ items for
the Human Resources department.

Notice the Add link beneath the list of content items. This link allows the user
to add a new content item to the database. The Add link appears only if the
user is assigned to the administrative role for the department. The Content
List page includes code that checks whether the user is a member of the
department’s administrative role. If not, the Add link is hidden.

Figure 9-4:
The

Department
Home page.

294 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 294

The Content Detail page
Figure 9-6 shows the Content Detail page, which is displayed when the user
selects one of the content items from the Content List page. As you can see,
each content item has just two elements: a title and text. The Content Detail
page simply displays the title and text for the item selected by the user.

Beneath the text are Edit and Delete links that let the user edit or delete the con-
tent item. Like the Add link on the Content List page, these links are displayed
only if the user has been assigned to the administrative role for the department.
The code-behind file for this page includes code that checks the user’s role(s) —
and hides these links if the user is in a role that shouldn’t see them.

If the user clicks the Delete link, the content item is summarily deleted and
the Content List page is redisplayed. But if the user clicks the Edit link, the
page goes into Edit mode, as shown in Figure 9-7. Then the user can change
the title or text to match the content item.

Figure 9-5:
The Content

List page.

295Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 295

Figure 9-7:
The Content
Detail page

in Edit
mode.

Figure 9-6:
The Content
Detail page.

296 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 296

Designing the Database
The Content Management System stores its content in a database named,
appropriately enough, Content. The Content database consists of just
three tables:

� Departments

� ContentTypes

� ContentItems

Figure 9-8 shows a diagram of this database, and the following sections
describe each table individually.

The Departments table
The Departments table stores the information about the departments repre-
sented in the Content Management System. Table 9-1 lists the columns
defined for this table.

ContentItems
contentid
deptid
typeid
title
[content]

Departments
deptid
name
description

ContentTypes
typeid
name

Figure 9-8:
A diagram

of the
Content

database.

297Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 297

Table 9-1 The Departments Table
Column name Type Description

deptid VARCHAR(10) An alphanumeric code (up to
10 characters) that uniquely
identifies each department.
This is the primary key for the
Departments table.

name VARCHAR(255) The department name.

description VARCHAR(255) A short description of the
department. This text is dis-
played next to the department
name on the Home page.

The ContentTypes table
The ContentTypes table stores information about the different types of con-
tent that can be managed by the Content Management System. Table 9-2 lists
the columns defined for this table.

Table 9-2 The ContentTypes Table
Column name Type Description

typeid VARCHAR(10) An alphanumeric code (up to 10
characters) that uniquely identi-
fies each content type. This is
the primary key for the
ContentTypes table.

name VARCHAR(255) The name of the content type.

The ContentItems table
The ContentItems table stores the actual content that’s managed by the
Content Management System. Its columns are listed in Table 9-3.

298 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 298

Table 9-3 The ContentItems Table
Column name Type Description

contentid INT IDENTITY A column that uniquely identifies
each content item. This identity
column is the primary key for the
ContentItems table.

deptid VARCHAR(10) An alphanumeric code (up to 10
characters) that indicates which
department this content item
belongs to. This is a foreign key.

typeid VARCHAR(10) An alphanumeric code (up to
10 characters) that indicates
the content type. This is a for-
eign key.

title VARCHAR(255) The title for this content item.

content TEXT The text displayed for the
content.

Creating the Database
On the CD that comes with this book, you’ll find the script shown in Listing
9-1, which creates the Content database. To run this script, open a command-
prompt window and change to the directory that contains the script. Then
enter this command:

sqlcmd -S localhost\SQLExpress -i CreateContentDB.sql

(I assume you’re running SQL Server Express on your own computer. If not,
you’ll need to change localhost\SQLExpress to the correct name.)

Listing 9-1: The CreateContentsDB.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Content’)

DROP DATABASE Content

(continued)

299Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 299

Listing 9-1 (continued)
GO

CREATE DATABASE Content ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Content.mdf’,
SIZE=10)

GO

USE Content ➝4

CREATE TABLE Departments (➝5
deptid VARCHAR(10) NOT NULL,
name VARCHAR(255) NOT NULL,
description VARCHAR(255) NOT NULL,
PRIMARY KEY(deptid)
)

GO

CREATE TABLE ContentTypes (➝6
typeid VARCHAR(10) NOT NULL,
name VARCHAR(255) NOT NULL,
PRIMARY KEY(typeid)
)

GO

CREATE TABLE ContentItems (➝7
contentid INT IDENTITY,
deptid VARCHAR(10) NOT NULL,
typeid VARCHAR(10) NOT NULL,
title VARCHAR(255) NOT NULL,
content TEXT NOT NULL,
PRIMARY KEY(contentid),
FOREIGN KEY(deptid) REFERENCES Departments(deptid),
FOREIGN KEY(typeid) REFERENCES ContentTypes(typeid)
)

GO

The following comments draw out the pertinent details of this listing:

➝ 1 Sets the database context to master.

➝ 2 Deletes the existing Content database if it exists.

➝ 3 Creates a database named Content, placing the database file
C:\Apps.

➝ 4 Sets the database context to Content.

➝ 5 Creates the Departments table.

➝ 6 Creates the ContentTypes table.

➝ 7 Creates the ContentItems table.

300 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 300

Adding Test Data
The InsertData.sql script, also found on the companion CD, has a series
of INSERT statements that insert some test data for you to work with. First it
creates the following four departments:

deptid name description

hr Human Resources We put people first!

sales Sales These guys could sell water to a
dead fish.

distr Distribution The masters of shipping and
handling.

it Information Garbage In, Garbage Out.
Technology

Then it creates some content types:

typeid name

news News

events Events

faq FAQ

meeting Meeting Materials

Finally, it adds three FAQ items for the Human Resources department:

Title: How many breaks do we get each day?

Text: There’s a five-minute break, and that’s all you take, for a cup of
cold coffee and a piece of cake.

Title: What time does the workday start?

Text: Up at eight, you can’t be late, for Matthew and Son, he won’t wait.

Title: When does the workday end?

Text: The files in your head, you take them to bed, you’re never ever
through.

To run the InsertData.sql script, open a command window, change to the
directory that contains the script, and run this command:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

Note that you’ll need to change the server name if it is other than localhost\
SQLExpress.

301Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 301

SQL statements for working
with the database
The Content Management system uses a variety of SQL statements to retrieve
and update data in the Content database. Here’s a closer look at what these
SQL statements do:

� The query that lists the departments on the Home page is simple:

SELECT [deptid],
[name],
[description]

FROM [Departments]
ORDER BY [name]

� The Department Home page uses the following query to retrieve name
and description for the selected department:

SELECT [deptid],
[name]

FROM [Departments]
WHERE [deptid] = @deptid
ORDER BY [name]

� A similar query retrieves the description, as well as the department ID
and name:

SELECT [deptid],
[name]

FROM [Departments]
WHERE [deptid] = @deptid
ORDER BY [name]

� The following query is used to list the content types on the Department
Home page:

SELECT [typeid], [name]
FROM [ContentTypes]
ORDER BY [name]

� This next query is for use on the Content List page to get content items
for a given department and content type:

SELECT [contentid], [title]
FROM [ContentItems]
WHERE [deptid] = @deptid
AND [typeid] = @typeid

302 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 302

� Finally, the Content Detail page uses the following SQL statements to
select, update, delete, and insert content items:

SELECT [contentid],
[title],
[content]

FROM [ContentItems]
WHERE ([contentid] = @contentid)

UPDATE [ContentItems]
SET [title] = @title,

[content] = @content
WHERE [contentid] = @original_contentid

DELETE FROM [ContentItems]
WHERE [contentid] = @original_contentid

INSERT INTO [ContentItems]
([title], [content], [typeid], [deptid])

VALUES (@title, @content, @typeid, @deptid)

Connecting to the database
The connection string for the Content Management System is stored in the
<connectionStrings> section of the web.config file, like this:

<connectionStrings>
<add name=”ConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Content;Integrated Security=True”/>
</connectionStrings>

You may have to modify the connection strings to match your server and
database names.

Creating the User Accounts
The Content Management System relies on ASP.NET 2.0’s built-in authentica-
tion database to store information about users and roles. First, you must
modify the web.config file to configure the application to use forms-based
security, to deny access to users who haven’t logged on, and to enable roles.
To do that, add the following lines to the <system.web> section of the
web.config file:

303Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 303

<authorization>
<deny users=”?” />

</authorization>
<roleManager enabled=”true” />
<authentication mode=”Forms” />

When you’ve configured the application to use forms-based security, you can
create roles and user accounts by using the Web Site Administration Tool. If
you want to get right into that, choose Web Site➪ASP.NET Configuration from
within Visual Studio, and then follow these steps:

1. From the main page of the Web Site Administration Tool, click Security.

This brings up a page with security-configuration options.

2. Click the Create or Manage Roles link.

This brings up the page that lets you manage roles.

3. Create a role for each department.

If you’re using the sample data provided on the CD, you should create
roles named hr, sales, distr, and it.

4. Click the Back button to return to the main Security page, and then
choose Create User.

This brings up a page that lets you create user accounts.

5. Create one or more user accounts using any names and passwords
you wish.

Note that the password must include at least one non-alphanumeric
character, such as a dollar sign ($) or ampersand (&). Otherwise the
Create User page won’t accept your password.

Note also that you can using the check boxes in the Roles list to select
which department(s) the user is a member of.

6. Close the browser window to close the Web Site Administration Tool.

Building the Master Page
Listing 9-2 shows the .aspx code for Master Page, MasterPage.master. This
Master Page provides two content areas, one for a heading and one for content
information, as well as a sidebar navigation area that contains a link for each
department. An HTML table is used to control the basic layout of the page.

304 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 304

Listing 9-2: The Master Page (MasterPage.master)

<%@ Master Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Company Intranet</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<table width=”800” border=0>
<tr height=”50px”>
<td width=”150px” valign=”Bottom”>

<asp:LoginStatus ID=”LoginStatus1” ➝2
runat=”server” />

</td>
<td width=”650px”>
<asp:contentplaceholder ➝3

id=”ContentPlaceHolder1”
runat=”server” />

</td>
</tr>
<tr height=”550px”>
<td width=”150px” valign=”top”>
<asp:Repeater ID=”Repeater1” ➝4

runat=”Server”
DataSourceID=”SqlDataSource1” >

<ItemTemplate>
<asp:LinkButton ➝5

ID=”LinkButton1”
runat=”server”
Text=’<% #Eval(“name”) %>’
PostBackUrl=’<% #Eval(“deptid”,

“DeptHome.aspx?dept={0}”) %>’ />

</ItemTemplate>
</asp:Repeater>
<asp:SqlDataSource ➝6
ID=”SqlDataSource1”
runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [deptid], [name]

(continued)

305Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 305

Listing 9-2 (continued)
FROM [Departments] ORDER BY [name]”>

</asp:SqlDataSource>
</td>
<td width=”650px” valign=”top”>

<asp:contentplaceholder ➝7
id=”ContentPlaceHolder2”
runat=”server” />

</td>
</tr>

</table>
</div>
</form>

</body>
</html>

Okay, heads up for the key points of this listing:

➝ 1 The Master directive indicates that the file is a Master Page. Note
that if you want to use Visual Basic rather than C# for the applica-
tion’s code-behind files, you should change the AutoEventWireup
attribute to false. That won’t matter for this application, though,
since the Master Page doesn’t require a code-behind file.

➝ 2 A LoginStatus control is used to let the user log out of the appli-
cation. When the user clicks the Logout link, the user will be redi-
rected to the Login page and will have to log in again (perhaps
with a different account) to continue using the application.

➝ 3 The first ContentPlaceHolder control provides a heading
area that displays the department name or some other heading
information.

➝ 4 This Repeater control provides the sidebar menu that lists
the departments. It’s bound to the data source named
SqlDataSource1.

➝ 5 The LinkButton control is a bit tricky because it uses the Eval
method two times. The first call binds the Text property of the
link to the name field in the data source. As a result, the link dis-
plays the department name. The second call to Eval uses a
format string to create a PostBack URL that includes the deptid
field from the data source in a query string. For example, if the
department ID is sales, the PostBack URL for the link will be
DeptHome.aspx?dept=sales.

Note that in the actual source file for the Master Page, the expres-
sion in the PostBackUrl attribute is contained on one line, not
broken into two lines as shown here. I kept it on one line in the
source file so the expression will be acceptable for both C# and
Visual Basic, which requires continuation characters when you
use line breaks within an expression.

306 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 306

➝ 6 This SQL data source is bound to the Repeater control. Its
SELECT statement retrieves the deptid and name columns from
the Departments table.

➝ 7 The second ContentPlaceHolder control provides the main dis-
play area for the content of each page.

Building the Login Page
The Login page, shown back in Figure 9-2, is automatically displayed when
the user tries to access any other page of the Content Management System
without first logging in. Thus, the user must log in before accessing the appli-
cation. The .aspx code for the Login page is shown in Listing 9-3.

Listing 9-3: The Login page (Login.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Login.aspx.cs”
Inherits=”Login”
Title=”Company Intranet” %>

<asp:Content ID=”Content1” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
<h1>
Welcome to the Company Intranet
</h1>

</asp:Content>
<asp:Content ID=”Content2” Runat=”Server” ➝3

ContentPlaceHolderID=”ContentPlaceHolder2” >
<asp:Login ID=”Login1” runat=”Server” ➝4

DestinationPageUrl=”~/Default.aspx”
TitleText=”Please enter your account information:

” />
</asp:Content>

Here’s a more detailed rundown on the numbered parts of this listing:

➝ 1 The Page directive indicates that MasterPage.master is used
as the master file. If you’re using Visual Basic instead of C#, this
directive will indicate VB instead of C# as the language and
AutoEventWireup will be set to false.

➝ 2 The first <Content> element defines the content displayed at the
top of the page. In this case, the simple heading “Welcome to the
Company Intranet” is displayed.

307Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 307

➝ 3 The second <Content> element provides the content displayed
in the main portion of the page. For the Login page, the only item
here is the Login control, described in the next paragraph.

➝ 4 The Login control displays the labels, text boxes, and buttons
necessary to let the user log in. For more information about using
the Login control, refer to Chapter 4.

Building the Home Page
The Home page (Default.aspx) displays a greeting and a list of the depart-
ments. The department list is a little redundant, since the sidebar in the
Master Page also displays a list of the departments. However, the list dis-
played in the main area of the Home page includes the department descrip-
tions in addition to the names. Listing 9-4 shows the .aspx code for this
page. A code-behind file isn’t required. Refer to Figure 9-3 for a refresher of
what this page looks like.

Listing 9-4: The Home page (Default.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Company Intranet” %>

<asp:Content ID=”Content1” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>

<h1>
Welcome to the Company Intranet
</h1>

</asp:Content>
<asp:Content ID=”Content2” ➝3

ContentPlaceHolderID=”ContentPlaceHolder2”
Runat=”Server”>

Welcome to our fabulous new company Intranet, where

each department of our growing company can customize

its own page.

Which department would you like to visit?

<asp:Repeater ID=”Repeater1” runat=”Server” ➝4
DataSourceID=”SqlDataSource1” >
<ItemTemplate>

<asp:LinkButton ID=”LinkButton1” ➝5
runat=”server”
Text=’<% #Eval(“name”) %>’
PostBackUrl=’<% #Eval(“deptid”,

308 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 308

“DeptHome.aspx?dept={0}”) %>’ />
 -- ➝6
<asp:Label ID=”Label1” runat=”server” ➝7

Text=’<% #Eval(“description”) %>’ />

</ItemTemplate>
</asp:Repeater>
<asp:SqlDataSource ID=”SqlDataSource1” ➝8

runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [deptid], [name],

[description]
FROM [Departments] ORDER BY [name]”>

</asp:SqlDataSource>
</asp:Content>

Here are the secrets to understanding this listing:

➝ 1 As usual, the Page directive has to be changed if you’re working
in VB. Specifically, you should change the Language,
AutoEventWireup, and CodeFile attributes.

➝ 2 The first <Content> element provides the heading Welcome to
the Company Intranet at the top of the page.

➝ 3 The second <Content> element begins with several lines of text.

➝ 4 The Repeater control displays the list of departments. It’s bound
to the data source named SqlDataSource1.

➝ 5 The LinkButton control displays the name field and uses the
deptid field as the value of the dept query string in the
PostBack URL. For example, if the user clicks the link for the
Human Resources department, the PostBack URL will be
DeptHome.aspx?dept=hr.

➝ 6 This odd-looking construction displays a space, two hyphens,
and another space to separate the department name from the
description.

➝ 7 This Label control displays the description field from the data
source.

➝ 8 The data source uses a simple SELECT statement to retrieve the
deptid, name, and description columns for each row in the
Departments table.

Building the Department Home Page
The Department Home page (DeptHome.aspx) is the home page for the
department, as chosen by the user. It displays the department’s description

309Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 309

and a list of the content types. This page was illustrated back in Figure 9-4,
and Listing 9-5 shows the .aspx code. No code-behind file is required for this
page — but the page does contain an expression that must be coded differ-
ently depending on the language you’re using.

This page is displayed when the user clicks one of the department links that
appear in the Master Page or on the Home page (Default.aspx). Either
way, the PostBack URL for the Department link passes the ID of the selected
department as a query string with the name dept.

Listing 9-5: The Department Home page (DeptHome.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”DeptHome.aspx.cs”
Inherits=”DeptHome”
Title=”Company Intranet” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<asp:FormView ID=”FormView1” runat=”server” ➝3
DataKeyNames=”deptid”
DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h1>
<asp:Label ID=”nameLabel” runat=”server” ➝4

Text=’<%# Eval(“name”) %>’></asp:Label>
</h1>

</ItemTemplate>
</asp:FormView>

<asp:SqlDataSource ID=”SqlDataSource1” ➝5
runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [deptid], [name]

FROM [Departments]
WHERE [deptid] = @deptid
ORDER BY [name]”>

<SelectParameters>
<asp:QueryStringParameter ➝6

Name=”deptid”
QueryStringField=”dept”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>

<asp:Content ID=”Content2” Runat=”Server” ➝7

310 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 310

ContentPlaceHolderID=”ContentPlaceHolder2” >

<asp:FormView ID=”FormView2” runat=”server” ➝8
DataSourceID=”SqlDataSource2”>
<ItemTemplate>

<asp:Label ID=”nameLabel” runat=”server” ➝9
Text=’<%# Eval(“name”) %>’ />

 --
<asp:Label ID=”Label1” runat=”server” ➝10

Text=’<%# Eval(“description”) %>’ />
</ItemTemplate>

</asp:FormView>

Please choose one of the following options:

<asp:Repeater ID=”Repeater1” runat=”server” ➝11
DataSourceID=”SqlDataSource3” >

<ItemTemplate>
<asp:LinkButton ID=”linkContent” ➝12

runat=”server”
Text=’<% #Eval(“name”) %>’
PostBackUrl=’<% #Eval(“typeid”,

“List.aspx?type={0}”)
+ “&dept=”
+ Request.QueryString[“dept”] %>’ />

</ItemTemplate>

</asp:Repeater>

<asp:SqlDataSource ID=”SqlDataSource2” ➝13
runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [deptid],

[name],
[description]

FROM [Departments]
WHERE [deptid] = @deptid
ORDER BY [name]” >

<SelectParameters>
<asp:QueryStringParameter

Name=”deptid”
QueryStringField=”dept”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

<asp:SqlDataSource ID=”SqlDataSource3” ➝14
runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”

(continued)

311Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 311

Listing 9-5 (continued)
SelectCommand=”SELECT [typeid], [name]

FROM [ContentTypes]
ORDER BY [name]”>

</asp:SqlDataSource>

</asp:Content>

And now, here comes the play-by-play commentary for this listing:

➝ 1 The Page directive does its normal job of identifying the Master
Page and other details. Some of these details are dependent on
the language being used, so you’ll need to change them if you’re
working with VB instead of C#.

➝ 2 The first <Content> element defines the information that will
be displayed at the top of the page. This <Content> element
includes a FormView control and a DataView control so it can
retrieve the department name from the database and display it in
the heading area.

➝ 3 This FormView control is bound to a specific SQL data source
named SqlDataSource1. It might seem a little strange to use a
FormView control to display just one field, but the FormView con-
trol is needed to provide a binding context for the Eval method
described in Line 4.

➝ 4 This Label control displays the name field retrieved by the data
source. Notice that this label is sandwiched between <h1> and
</h1> tags, so the department name is formatted as a level-1
heading.

➝ 5 The first SQL data source for this form retrieves the department
information from the Departments table. The WHERE clause in the
SELECT statement uses a parameter named deptid to indicate
which department to retrieve.

➝ 6 The deptid parameter is defined by this <QueryParameter> ele-
ment, which specifies that the parameter’s value is taken from the
query string field named dept. As a result, this data source retrieves
the department row indicated by the dept query string field.

➝ 7 The second <Content> element provides the main content for
the page: the department description and a list of links to the
available content types.

➝ 8 A FormView control (similar to the one defined in Line 3) displays
the name and description fields retrieved by the
SqlDataSource2 data source.

➝ 9 This label displays the name field from the data source.

➝ 10 Then, another label displays the description field.

312 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 312

➝ 11 A Repeater control displays a list of links for the content
types. The Repeater control is bound to a third data source,
SqlDataSource3.

➝ 12 The LinkButton control includes a complicated expression that
builds the PostBack URL with two query string fields, one named
type, the other named dept. For example, if the user has chosen
the faq type for the hr department, the PostBack URL will
be List.aspx?type=faq&dept=hr. Notice that Request.
QueryString is used to retrieve the value for the dept query
string field.

If you’re working in Visual Basic, you’ll need to make two changes
to this expression. First, Visual Basic requires continuation char-
acters to break the expression across lines. And second, you’ll
need to replace the brackets on the QueryString parameter with
parentheses. Thus, the Visual Basic version of this <LinkButton>
element should look like this:

<asp:LinkButton ID=”linkContent”
runat=”server”
Text=”<% #Eval(“name”) %>’
PostBackUrl=’<% #Eval(“typeid”, _

“List.aspx?type={0}”) _
+ “&dept=” _
+ Request.QueryString(“dept”) %>’ />

➝ 13 This data source retrieves the name and description fields dis-
played by the FormView control that was defined in Line 8.

➝ 14 This data source retrieves all rows from the Types table so they
can be displayed by the Repeater control defined in Line 11.

Building the Content List Page
The Content List page, which was pictured back in Figure 9-5, displays a list
of the content items for the selected department. Two query string fields are
passed to this page — one for the department ID and the other for the type
ID. For example, a typical request string for this page would look like this:

List.aspx?type=faq&dept=hr

Here, the FAQ items for the Human Resources department are being
requested.

Unlike the other pages of this application presented so far, this page requires
a code-behind file. The following sections present the List.aspx file and
both the C# and Visual Basic versions of the code-behind file.

313Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 313

The List.aspx file
Listing 9-6 shows the .aspx code that defines the Content List page. For a
refresher on how this page looks when the application is run, please refer to
Figure 9-5.

Listing 9-6: The Content List page (List.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”List.aspx.cs”
Inherits=”List”
Title=”Company Intranet” %>

<asp:Content ID=”Content1” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
<asp:FormView ID=”FormView1” runat=”server” ➝3

DataKeyNames=”deptid”
DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h1>
<asp:Label ID=”nameLabel” ➝4

runat=”server”
Text=’<%# Eval(“name”) %>’ />

</h1>
</ItemTemplate>

</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝5

runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [deptid], [name]

FROM [Departments]
WHERE ([deptid] = @deptid)
ORDER BY [name]”>

<SelectParameters>
<asp:QueryStringParameter ➝6

Name=”deptid”
QueryStringField=”dept”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>
<asp:Content ID=”Content2” ➝7

ContentPlaceHolderID=”ContentPlaceHolder2”
Runat=”Server”>
<asp:Repeater ID=”Repeater1” runat=”server” ➝8

DataSourceID=”SqlDataSource2”>
<ItemTemplate>

<asp:LinkButton ID=”Link1” runat=”server” ➝9
Text=’<%# Eval(“title”) %>’

314 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 314

PostBackUrl=’<%# Eval(“contentid”,
“Detail.aspx?item={0}”) +
“&dept=” + Request.QueryString[“dept”] +
“&type=” + Request.QueryString[“type”] %>’

/>

</ItemTemplate>
</asp:Repeater>
<asp:SqlDataSource ID=”SqlDataSource2” ➝10

runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [contentid], [title]

FROM [ContentItems]
WHERE [deptid] = @deptid
AND [typeid] = @typeid”>

<SelectParameters>
<asp:QueryStringParameter ➝11

Name=”deptid”
QueryStringField=”dept”
Type=”String” />

<asp:QueryStringParameter ➝12
Name=”typeid”
QueryStringField=”type”
Type=”String” />

</SelectParameters>
</asp:SqlDataSource>

<asp:LinkButton ID=”btnAdd” runat=”server” ➝13

Text=”Add”
OnClick=”btnAdd_Click” />

</asp:Content>

For your reading pleasure, the following paragraphs summarize the key
points that are necessary to understand this page:

➝ 1 As usual, you’ll need to modify the Page directive if you want to
use the VB version of the code-behind file. In particular, you’ll need
to change the Language attribute to VB, the AutoEventWireup
attribute to false, and the CodeFile attribute to List.aspx.vb.

➝ 2 The first <Content> element displays the department name at
the top of the page.

➝ 3 This FormView control displays the department name. It’s bound
to a SQL data source named SqlDataSource1.

➝ 4 This is the Label control that displays the name field, formatted
by the <h1> and </h1> tags.

➝ 5 The SqlDataSource1 data source retrieves the department
name. The deptid parameter indicates which department should
be retrieved.

315Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 315

➝ 6 The <QueryParameter> element defines the deptid parameter.
Its value is taken from the dept query string.

➝ 7 The second <Content> element provides the main content for
the page.

➝ 8 A Repeater control is used to display the content types. This
control is bound to SqlDataSource2, which is defined in Line 10.

➝ 9 The LinkButton control in the Repeater’s item template dis-
plays the links to the content types. As you can see, it uses a
simple Eval expression to bind the Text attribute to the title
field. However, a more complicated expression specifies the
PostBack URL. This URL includes three query strings, named
item, dept, and type. The item query string’s value comes from
the contented field of the data source; the other two query strings
are simply carried forward from the request query string. If (for
example) the user selects the content item whose ID is 2 while view-
ing the FAQ items for the Human Resources department, then the
PostBack URL is Detail.aspx?item=2&dept=hr&type=faq.

If you’re working in Visual Basic, you’ll need to modify this expres-
sion so it uses VB continuation characters and parentheses
instead of brackets. In that case, the entire <LinkButton> ele-
ment looks like this:

<asp:LinkButton ID=”Link1” runat=”server” ➝9
Text=’<%# Eval(“title”) %>’
PostBackUrl=’<%# Eval(“contentid”, _

“Detail.aspx?item={0}”) + _
“&dept=” + Request.QueryString(“dept”) + _
“&type=” + Request.QueryString(“type”) %>’ />

➝ 10 The SqlDataSource2 data source retrieves the list of content
items for the selected department and type. As you can see, the
SELECT statement requires two parameters, deptid and typeid.

➝ 11 The deptid parameter is defined with a <QueryString> ele-
ment, taking its value from the dept query string.

➝ 12 The deptid parameter is defined with a <QueryString> ele-
ment. It takes its value from the dept query string.

➝ 13 This LinkButton control displays the Add link, which lets the
user add a new content item. Note that the code-behind file hides
this link if the user is not an administrator for the department.

If you’re working in Visual Basic, you should remove the
<OnClick> element.

316 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 316

The code-behind file for
the Content List page
The List.aspx page requires a code-behind file to show or hide the Add
link — depending on the user’s departmental role(s) — and to handle the
Click event for the Add link. The C# version of this code-behind file is
shown in Listing 9-7, and Listing 9-8 shows the Visual Basic version.

Listing 9-7: The code-behind file for the Content List page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class List : System.Web.UI.Page
{

protected void Page_Load(➝1
object sender, EventArgs e)

{
string deptid =

(String)Request.QueryString[“dept”];
if (User.IsInRole(deptid))

btnAdd.Visible = true;
else

btnAdd.Visible = false;
}

protected void btnAdd_Click(➝2
object sender, EventArgs e)

{
Response.Redirect(“Detail.aspx?item=-1&type=”

+ Request.QueryString[“type”]
+ “&dept=” + Request.QueryString[“dept”]);

}
}

317Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 317

Here’s how the two methods work in this code-behind file:

➝ 1 Page_Load: This method begins by retrieving the department ID
from the dept query string. Then, it calls User.IsInRole to find
out if the user is an administrator for the department. If so, the
Add link is made visible; if not, it’s hidden.

➝ 2 btnAdd_Click: This method is called when the user clicks the
Add link. It redirects to the Detail.aspx page, setting the item
query string to -1 to indicate that a new row should be inserted.
The redirect URL also includes query strings that pass the con-
tent-type ID and the department ID.

Listing 9-8: The code-behind file for the Content List page (VB)

Partial Class List
Inherits System.Web.UI.Page

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

Dim deptid As String
deptid = Request.QueryString(“dept”)
If User.IsInRole(deptid) Then

btnAdd.Visible = True
Else

btnAdd.Visible = False
End If

End Sub

Protected Sub btnAdd_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

Response.Redirect(“Detail.aspx?item=-1&type=” _
+ Request.QueryString(“type”) _
+ “&dept=” + Request.QueryString(“dept”))

End Sub
End Class

Building the Content Detail Page
The last page for this application is the Content Detail page, pictured way
back in Figure 9-6. This page displays the content item selected by the user; if
the user is an administrator for the current department, the page lets the
user edit or delete the item — or insert a new content item.

This page uses three query string fields. A typical request looks like this:

318 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 318

Detail.aspx?item=3&type=faq&dept=hr

Here, content item 3 is requested. The Content Detail page itself doesn’t need
the type and dept values, but passing them as query string fields makes it
easier for the detail page to display the department name in the heading area —
and these values are required to insert a content item.

Speaking of inserting rows, the special value -1 is used in the item query
string field to indicate that a new content item should be inserted. For exam-
ple, to create a new FAQ for the Human Resources department, the request
string looks like this:

Detail.aspx?item=-1&type=faq&dept=hr

The following sections present the .aspx code for the Content Details page,
as well as both the C# and VB versions of the required code-behind file.

The Detail.aspx file
Listing 9-9 shows the .aspx code for the Content Details page.

Listing 9-9: The Content Details page (Detail.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Detail.aspx.cs”
Inherits=”Detail”
Title=”Company Intranet” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:FormView ID=”FormView2” runat=”server” ➝3

DataSourceID=”SqlDataSource1”>
<ItemTemplate>
<h1>
<asp:Label ID=”nameLabel” ➝4

runat=”server”
Text=’<%# Eval(“name”) %>’ />

</h1>
</ItemTemplate>

</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝5

runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
SelectCommand=”SELECT [name] FROM Departments

WHERE deptid = @deptid” >

(continued)

319Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 319

Listing 9-9 (continued)
<SelectParameters>

<asp:QueryStringParameter ➝6
Name=”deptid”
QueryStringField=”dept” />

</SelectParameters>
</asp:SqlDataSource>

</asp:Content>
<asp:Content ID=”Content2” Runat=”Server” ➝7

ContentPlaceHolderID=”ContentPlaceHolder2” >
<asp:DetailsView ID=”DetailsView1” ➝8

runat=”server”
AutoGenerateRows=”False”
DataSourceID=”SqlDataSource2”
DataKeyNames=”contentid”
BorderStyle=”None”
Height=”50px” Width=”350px”
OnItemDeleted=”DetailsView1_ItemDeleted”
OnItemInserted=”DetailsView1_ItemInserted”
OnItemCommand=”DetailsView1_ItemCommand” >

<Fields>
<asp:TemplateField ShowHeader=”True” ➝9

HeaderText=”Title:”
HeaderStyle-Width=”80px”
HeaderStyle-VerticalAlign=”Top” >

<ItemTemplate> ➝10
<asp:TextBox ID=”txtItemTitle”

runat=”server”
Text=’<%# Eval(“title”) %>’
ReadOnly=”True”
Width=”250px” />

</ItemTemplate>
<EditItemTemplate> ➝11

<asp:TextBox ID=”txtEditTitle”
runat=”server”
Text=’<%# Bind(“title”) %>’
Width=”250px”
BackColor=”LightBlue” />

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator1”
runat=”server”
ControlToValidate=”txtEditTitle”
ErrorMessage=”Title is required.”
Display=”Dynamic” />

</EditItemTemplate>
<InsertItemTemplate> ➝12

<asp:TextBox ID=”txtInsertTitle”
runat=”server”
Text=’<%# Bind(“title”) %>’
Width=”250px”
BackColor=”LightBlue” />

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator2”
runat=”server”

320 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 320

ControlToValidate=”txtInsertTitle”
ErrorMessage=”Title is required.”
Display=”Dynamic” />

</InsertItemTemplate>
</asp:TemplateField>
<asp:TemplateField ShowHeader=”True” ➝13

HeaderText=”Text:”
HeaderStyle-Width=”80px”
HeaderStyle-VerticalAlign=”Top” >

<ItemTemplate> ➝14
<asp:TextBox ID=”txtItemContent”

runat=”server”
Text=’<%# Eval(“content”) %>’
ReadOnly=”True”
TextMode=”MultiLine”
Width=”250px” Height=”200px” />

</ItemTemplate>
<EditItemTemplate> ➝15

<asp:TextBox ID=”txtEditContent”
runat=”server”
Text=’<%# Bind(“content”) %>’
TextMode=”MultiLine”
Width=”250px” Height=”200px”
BackColor=”LightBlue” />

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator3”
runat=”server”
ControlToValidate=”txtEditContent”
ErrorMessage=”Text is required.”
Display=”Dynamic” />

</EditItemTemplate>
<InsertItemTemplate> ➝16

<asp:TextBox ID=”txtInsertContent”
runat=”server”
Text=’<%# Bind(“content”) %>’
TextMode=”MultiLine”
Width=”250px” Height=”200px”
BackColor=”LightBlue” />

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator4”
runat=”server”
ControlToValidate=”txtInsertContent”
ErrorMessage=”Text is required.”
Display=”Dynamic” />

</InsertItemTemplate>
</asp:TemplateField>

</Fields>
</asp:DetailsView>
<asp:SqlDataSource ID=”SqlDataSource2” ➝17

runat=”server”
ConnectionString=”<%$ ConnectionStrings:

ConnectionString %>”
OldValuesParameterFormatString=”original_{0}”

(continued)

321Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 321

Listing 9-9 (continued)
SelectCommand=”SELECT ➝18

[contentid],
[title],
[content]

FROM [ContentItems]
WHERE ([contentid] = @contentid)”

UpdateCommand=”UPDATE [ContentItems] ➝19
SET [title] = @title,

[content] = @content
WHERE [contentid] = @original_contentid”

DeleteCommand=”DELETE ➝20
FROM [ContentItems]
WHERE [contentid] = @original_contentid”

InsertCommand=”INSERT ➝21
INTO [ContentItems]
([title], [content], [typeid], [deptid])
VALUES (@title, @content, @typeid, @deptid)” >

<SelectParameters> ➝22
<asp:QueryStringParameter

Name=”contentid”
QueryStringField=”item”
Type=”Int32” />

</SelectParameters>
<UpdateParameters> ➝23

<asp:Parameter Name=”title”
Type=”String” />

<asp:Parameter Name=”content”
Type=”String” />

<asp:Parameter Name=”original_contentid”
Type=”Int32” />

</UpdateParameters>
<DeleteParameters> ➝24

<asp:Parameter Name=”original_contentid”
Type=”Int32” />

</DeleteParameters>
<InsertParameters> ➝25

<asp:Parameter Name=”title”
Type=”String” />

<asp:Parameter Name=”content”
Type=”String” />

<asp:QueryStringParameter Name=”deptid”
QueryStringField=”dept” Type=”String” />

<asp:QueryStringParameter Name=”typeid”
QueryStringField=”type” Type=”String” />

</InsertParameters>
</asp:SqlDataSource>

<asp:LinkButton ID=”btnReturn” ➝26

runat=”server”
Text=”Return to list”
OnClick=”btnReturn_Click” />

</asp:Content>

322 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 322

Brace yourself — the following paragraphs describe the 26 essential tenets of
this listing:

➝ 1 You will need to change this Page directive if you use the VB ver-
sion of the code-behind file. Specifically, you’ll need to change the
Language, AutoEventWireup, and CodeFile attributes to VB,
False, and Detail.aspx.vb.

➝ 2 The first <Content> element displays the department name at
the top of the page.

➝ 3 This FormView is bound to the SqlDataSource1 data source
and displays the department name.

➝ 4 This Label control displays the name field.

➝ 5 The first SQL data source (SqlDataSource1) retrieves the
department name, using a parameter named deptid to specify
the department to retrieve.

➝ 6 The deptid parameter is a query parameter, taking its value from
the dept query string.

➝ 7 The second <Content> element provides the main content for
the page.

➝ 8 The DetailsView control displays the title and text for the
selected content item, which is retrieved by the SqlDataSource2
data source.

If you’re working in Visual Basic, you should drop the
OnItemDeleted, OnItemInserted, or OnItemCommand
attributes.

➝ 9 This <TemplateField> element is the first of two fields con-
tained in the <Fields> element for the DetailsView control.

➝ 10 The Item template is used to display the content item’s title when
the DetailsView control is displayed in Read-Only mode. It con-
sists of a single read-only text box that uses the Eval method to
bind to the title field of the data source.

➝ 11 The EditItem template is displayed when the user clicks the
Edit link to edit a content item. It includes two controls: a text
box that uses the Bind method to bind to the title field, and a
RequiredFieldValidator that ensures that the user enters a
value for the title. (Notice that the background color for the text
box is set to blue to provide a visual clue that the page is in Edit
mode.)

➝ 12 The InsertItem template is displayed when the DetailsView con-
trol enters Insert mode. That happens when the Details.aspx
page is called with -1 as the value of the item query string. This

323Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 323

template contains the same text box and RequiredField
Validator controls as the EditItem template.

➝ 13 This <TemplateField> field is the second field contained in the
<Fields> element for the DetailsView control. It displays the
content item’s text.

➝ 14 The item template displays the text in Read-Only mode. It uses a
read-only text box that (in turn) uses the Eval method to bind to
the text field. Notice that the text box allows multiple lines and is
200 pixels high.

➝ 15 The EditItem template provides a text box that binds to the text
field and to a RequiredFieldValidator.

➝ 16 The InsertItem template contains the same text box and
RequiredFieldValidator controls as the EditItem template.

➝ 17 The SqlDataSource2 data source provides the SQL statements
necessary to retrieve, update, delete, and insert rows in the
ContentItems table.

➝ 18 The SELECT statement retrieves the contentid, title, and
content fields for the content item specified by the contentid
parameter.

➝ 19 The UPDATE statement updates the title and content fields
with values provided by the title and content parameters.

➝ 20 The DELETE statement deletes the content item indicated by the
contentid parameter.

➝ 21 The INSERT statement inserts a new item into the ContentItems
table.

➝ 22 The <SelectParameters> element specifies that the contentid
parameter gets its value from the item query string.

➝ 23 The <UpdateParameters> element provides the parameters
necessary to execute the UPDATE statement.

➝ 24 The <DeleteParameters> element provides the parameters
necessary to execute the DELETE statement.

➝ 25 The <InsertParameters> element provides the parameters
necessary to execute the INSERT statement.

➝ 26 The LinkButton control returns the user to the Content List page.

If you’re working in Visual Basic, you’ll want to remove the
OnClick attribute.

324 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 324

The code-behind file for
the Content Detail page
Like the List.aspx page, the Detail.aspx page requires a code-behind
file. The C# version of this code-behind file is shown in Listing 9-10, and
Listing 9-11 shows the Visual Basic version.

Listing 9-10: The code-behind file for the Content Detail page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Detail : System.Web.UI.Page
{

string deptid;
string typeid;

protected void Page_Load(➝1
object sender, EventArgs e)

{
deptid = (String)Request.QueryString[“dept”];
typeid = (string)Request.QueryString[“type”];
if (User.IsInRole(deptid))
{

DetailsView1.AutoGenerateDeleteButton = true;
DetailsView1.AutoGenerateEditButton = true;
if (Request.QueryString[“item”] == “-1”)
{
DetailsView1.DefaultMode

= DetailsViewMode.Insert;
DetailsView1.AutoGenerateInsertButton =

true;
}

}
else
{

DetailsView1.AutoGenerateDeleteButton = false;
DetailsView1.AutoGenerateEditButton = false;

(continued)

325Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 325

Listing 9-10 (continued)
}

}

protected void DetailsView1_ItemDeleted(➝2
object sender, DetailsViewDeletedEventArgs e)

{
Response.Redirect(“List.aspx?type=” + typeid

+ “&dept=” + deptid);
}

protected void DetailsView1_ItemInserted(➝3
object sender, DetailsViewInsertedEventArgs e)

{
Response.Redirect(“List.aspx?type=” + typeid

+ “&dept=” + deptid);
}

protected void DetailsView1_ItemCommand(➝4
object sender, DetailsViewCommandEventArgs e)

{
if (e.CommandName==”Cancel”)

if (DetailsView1.DefaultMode
== DetailsViewMode.Insert)

Response.Redirect(
“List.aspx?type=” + typeid

+ “&dept=” + deptid);
}

protected void btnReturn_Click(➝5
object sender, EventArgs e)

{
Response.Redirect(“List.aspx?type=” + typeid

+ “&dept=” + deptid);
}

}

To end the suspense, the following paragraphs explain the purpose of each
method in this code-behind file:

➝ 1 Page_Load: This method is called each time the page is loaded. It
starts by extracting the values of the dept and type query string
fields and saving them in class instance variables named deptid
and typeid.

Next, it calls User.IsInRole to determine if the user is an
administrator for the current department. If so, the DetailsView
control is configured to automatically generate Update and Delete
links. Otherwise the DetailsView control is configured to sup-
press the Update and Delete links.

326 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 326

Finally, the value of the item query string is tested. If it is -1, the
DetailsView control is placed in Insert mode to allow the user
to create a new content item.

➝ 2 DetailsView1_ItemDeleted: This method is called when an
item has been successfully deleted from the DetailsView con-
trol. It simply redirects the user back to the List page, passing on
the dept query string that it received.

➝ 3 DetailsView1_ItemInserted: This method is called when an
item has been successfully inserted into the DetailsView con-
trol. It redirects the user back to the List page, passing on the
dept query string that it received.

➝ 4 DetailsView1_ItemCommand: This method is called whenever
the DetailsView control receives a command, such as Update,
Edit, Insert, and Cancel. You can determine which command
caused the method to be invoked by checking the CommandName
property of the e argument.

The purpose of this method is to return to the List page if the user
clicks Cancel while inserting a new content item. As a result, it
calls Response.Redirect if e.Command is Cancel and if the
DetailsView control is in Insert mode. Otherwise, this method
doesn’t do anything.

➝ 5 LinkButton_Click: This method returns to the List page when
the user clicks the Return link.

Listing 9-11: The code-behind file for the Content Detail page (VB)

Partial Class Detail
Inherits System.Web.UI.Page

Private deptid As String
Private typeid As String

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

deptid = Request.QueryString(“dept”)
typeid = Request.QueryString(“type”)
If User.IsInRole(deptid) Then

DetailsView1.AutoGenerateDeleteButton = True
DetailsView1.AutoGenerateEditButton = True
If Request.QueryString(“item”) = “-1” Then
DetailsView1.DefaultMode _

= DetailsViewMode.Insert

(continued)

327Chapter 9: Building a Content Management System

17_597760 ch09.qxp 1/11/06 9:58 PM Page 327

Listing 9-11 (continued)
DetailsView1.AutoGenerateInsertButton = True

End If
Else

DetailsView1.AutoGenerateDeleteButton = False
DetailsView1.AutoGenerateEditButton = False

End If
End Sub

Protected Sub DetailsView1_ItemDeleted(_ ➝2
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls _

.DetailsViewDeletedEventArgs) _
Handles DetailsView1.ItemDeleted

Response.Redirect(“List.aspx?type=” + typeid _
+ “&dept=” + deptid)

End Sub

Protected Sub DetailsView1_ItemInserted(_ ➝3
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls _

.DetailsViewInsertedEventArgs) _
Handles DetailsView1.ItemInserted

Response.Redirect(“List.aspx?type=” + typeid _
+ “&dept=” + deptid)

End Sub

Protected Sub DetailsView1_ItemCommand(_ ➝4
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls _

.DetailsViewCommandEventArgs) _
Handles DetailsView1.ItemCommand

Response.Redirect(“List.aspx?type=” + typeid _
+ “&dept=” + deptid)

End Sub

Protected Sub btnReturn_Click(_ 5
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnReturn.Click

Response.Redirect(“List.aspx?type=” + typeid _
+ “&dept=” + deptid)

End Sub
End Class

328 Part V: Building Community Applications

17_597760 ch09.qxp 1/11/06 9:58 PM Page 328

Chapter 10

Building a Web Forum
In This Chapter
� Designing the Forum application

� Creating the database for the Forum application

� Building the Forum application’s pages

AWeb forum is, essentially, a form of online communication — a Web
application that lets users post messages as well as reply to messages

left by other users. Forums are sort of like the back fences of the Internet,
where people gather to talk about the important topics of the day.

Most forums are devoted to a particular subject so people with similar
interests can gather to discuss topics that are important to them. For exam-
ple, a forum might be devoted to music, politics, religion, or even (yes, it’s
true) computer programming. And because these subjects tend to be broad,
most forums are further organized into more focused discussion topics. For
example, a forum on computer programming might have topics on program-
ming languages, database programming, Web programming, and Windows
programming.

Because forums are so popular as Web applications, many prebuilt forum
applications are available to save you the trouble of creating your own —
though you may still want to do so for a variety of reasons. If so, this chapter
is for you. Here you’ll find a simple forum application written in ASP.NET.

Designing the Forum Application
The basic function of the Forum application is to let users post messages,
which others can then display later and reply to. But within this basic
requirement, there are many design decisions to be made along the way.
Here’s a quick review of some of these basic decisions:

18_597760 ch10.qxp 1/11/06 9:59 PM Page 329

� How will your forum messages be organized? A popular forum can
receive hundreds, thousands, or even tens of thousands of posts per
day. Clearly, you’ll need a way to keep all that information reasonably
organized. The most common way to organize forum messages is to
divide them into related topics. Then, when a user posts a message, he
or she can specify the appropriate topic for the message. The Forum
application presented in this chapter lets you organize your forum into
any number of topics.

To provide an additional layer of organization, the Forum application
lets you group the topics together into forums. For example, if you’re
hosting discussions about holiday decorating, you might have a forum
for each holiday. Then you might create topics for more specific sub-
jects such as decorating, party tips, costumes, and so on.

Besides breaking down the site into forums and topics, each topic con-
sists of one or more threads. A thread consists of an initial message posted
by a user and additional messages posted in response to the initial mes-
sage. Typically, the first message in a thread will be a question, and the
follow-up messages will be answers to the initial question. There are two
ways to organize replies within a thread:

• Associate each reply with a specific message in the thread. Then
threads take on a tree-like structure.

• Associate each reply with the thread itself. Then the threads have
a simple list structure.

For simplicity, the Forum application presented in this chapter associ-
ates replies with threads, not with other messages.

� Will users be required to log in? If you want your forum’s membership
to be limited, you should require that your users log in before they can
post messages. To keep the code for this chapter’s application simple, it
doesn’t require users to log in. Instead, each user must supply an e-mail
address whenever he or she posts a message.

For more information about requiring users to log in, see Chapter 4.

� Will the discussions be moderated? In an unmoderated forum, any user
can post messages, and those messages are immediately viewable by
other users. Unmoderated threads tend to be lively and free-flowing, but
can also become unfocused and sometimes offensive.

The alternative to such potential chaos is to offer a moderated forum, in
which a moderator must approve all messages posted to the forum.
Moderated forums tend to stay closer to the topic at hand. Plus, the
moderator can ban offensive posts. However, moderated forums require
ongoing work from the moderator, and the time required for the modera-
tor to approve new posts can stifle discussion.

For the sake of simplicity, the Forum application presented in this chap-
ter is not moderated.

330 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 330

The User Interface for the
Forum Application

The Forum application uses the five pages shown in Figure 10-1. These pages
are described in detail in the following sections.

The Forum Home page
The home page for the Forum application, Default.aspx, is shown in Figure
10-2. As you can see, this page lists the forums and topics that are available
at the forum site. In this case, there are two forums and a total of five topics.
To view the threads in one of the topics, the user clicks the link for the topic.

In case you’re wondering how the forums and topics are displayed, nested
Repeater controls do the trick. The outer Repeater control displays the
forums; then, for each forum, the inner Repeater control displays the avail-
able topics. (More about how to pull off this bit of programming trickery later
in this chapter.)

Threads.apx

Threads page

Messages.aspx

Messages
page

NewMessage.asp

Post Reply
page

NewThread.aspx

Start New
Thread page

Default.aspx

Forum
Home page

Figure 10-1:
The page

flow for the
Forum

application.

331Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 331

The Threads page
The Threads page, shown in Figure 10-3, displays the threads in a given topic.
For each thread, the page lists the thread’s subject, the e-mail address of the
person who initiated the thread, the number of replies to the thread, and the
date the thread was last replied to. A GridView control is used to display
this list.

Note that the thread subjects are links. If the user clicks one of these links,
the Forum application displays the messages for that thread, as described
in the next section.

Notice also that beneath the list of threads are two links. The first takes the
user to the New Thread page to create a new thread. The second link takes
the user back to the forum’s Home page.

The Messages page
When the user clicks one of the threads in the Threads page, the messages
for that thread are displayed, as shown in Figure 10-4. This page displays the
topic name and the thread subject, followed by the thread’s original message
and any replies. Note that each message is preceded by a header that identi-
fies who posted the message and when.

Figure 10-2:
The Forum

Home page.

332 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 332

Figure 10-4:
The

Messages
page.

Figure 10-3:
The Threads

page.

333Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 333

The New Thread page
If the user clicks the Start a New Thread link from the Threads page, the
New Thread page is displayed, as shown in Figure 10-5. This page simply lets
the user enter his or her e-mail address, a subject line, and the text for the
thread’s initial message. Then, when the user clicks the Post Message button,
the new thread is written to the Forum application’s database.

The Post Reply page
Figure 10-6 shows the Post Reply page, where you can add a message to an
existing thread. To post a reply, you must enter your e-mail address and the
text of your reply, then click the Post Reply button. This updates the data-
base, then returns the user to the Messages page.

Figure 10-5:
The New

Thread
page.

334 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 334

Designing the Database
The database for the Forum application requires the following four tables:

� Forums

� Topics

� Threads

� Messages

Figure 10-7 presents a diagram that shows how these tables are related, and
the following sections describe each table individually.

The Forums table
The Forums table stores information about each forum supported by the
Web site. Table 10-1 lists the columns defined for this table.

Figure 10-6:
The Post

Reply page.

335Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 335

Table 10-1 The Forums Table
Column name Type Description

forumid INT IDENTITY An identity column that provides a
unique ID number for each forum
supported by the site. This is the
primary key for the Forums
table.

name VARCHAR(255) The forum’s name.

description VARCHAR(255) A short description of the forum.

The Topics table
The Topics table stores information for each of the topic areas available to
users. Table 10-2 lists the columns defined for this table.

Table 10-2 The Topics Table
Column name Type Description

topicid INT IDENTITY An identity column that pro-
vides a unique ID number for
each topic area supported by
the site. This is the primary
key for the Topics table.

Topics
topicid
formid
name
description

Forums
forumid
name
description

Threads
threadid
topicid
subject
replies
author
lastpostdate

Messages
msgid
threadid
author
date
message

Figure 10-7:
A diagram

of the Forum
database.

336 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 336

Column name Type Description

forumid INT Indicates the Forum that this
topic is associated with. This
column is a foreign key to the
forumid column in the
Forums table.

name VARCHAR(255) The topic name.

description VARCHAR(255) A short description of the
topic.

The Threads table
The Threads table stores information about the discussion threads that are
active on the system. Its columns are listed in Table 10-3.

Table 10-3 The Threads Table
Column name Type Description

threadid INT IDENTITY An identity column that uniquely
identifies each thread. This is the
primary key for the Threads
table.

topicid INT The topic ID of the topic the
thread belongs to. This is a for-
eign key to the topicid
column of the Topics table.

subject VARCHAR(100) The subject line for the thread.

replies INT A count of the number of replies
that have been made to the
thread. This number will be one
less than the total number of
rows in the Messages table for
the thread.

author VARCHAR(100) The e-mail address of the user
who created the thread.

lastpostdate DATETIME The date of the last message
posted to the thread.

337Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 337

The Messages table
The Messages table stores the actual messages that have been posted to the
Forum Web site. Its columns are listed in Table 10-4.

Table 10-4 The Messages Table
Column name Type Description

msgid INT IDENTITY An identity column that uniquely
identifies each message. This is
the primary key for the
Messages table.

threadid INT The ID of the thread this mes-
sage belongs to. This is a foreign
key to the threadid column of
the Threads table.

author VARCHAR(100) The e-mail address of the user
who created the message.

date DATETIME The date the message was
posted.

message VARCHAR(MAX) The text of the message.

Creating the Database
Listing 10-1 shows a SQL script named CreateForumDB.sql which creates
the Forum database. To run this script, open a command prompt window and
change to the directory that contains the script. Then enter this command:

sqlcmd -S localhost\SQLExpress -i CreateForumsDB.sql

Change the host name if you’re not using SQL Server Express on your own
computer.

Listing 10-1: The CreateForumDB.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Forum’)

DROP DATABASE Forum

338 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 338

GO

CREATE DATABASE Forum ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Forum.mdf’,
SIZE=10)

GO

USE Forum ➝4

CREATE TABLE Forums (➝5
forumid INT IDENTITY,
name VARCHAR(255) NOT NULL,
description VARCHAR(255) NOT NULL,
PRIMARY KEY(forumid)
)

GO

CREATE TABLE Topics (➝6
topicid INT IDENTITY,
forumid INT,
name VARCHAR(255) NOT NULL,
description VARCHAR(255),
PRIMARY KEY(topicid),
FOREIGN KEY(forumid) REFERENCES Forums(forumid)
)

GO

CREATE TABLE Threads (➝7
threadid INT IDENTITY,
topicid INT NOT NULL,
subject VARCHAR(100) NOT NULL,
replies INT NOT NULL,
author VARCHAR(100) NOT NULL,
lastpostdate DATETIME,
PRIMARY KEY(threadid),
FOREIGN KEY(topicid) REFERENCES Topics(topicid)
)

GO

CREATE TABLE Messages (➝8
msgid INT IDENTITY,
threadid INT NOT NULL,
author VARCHAR(100) NOT NULL,
date DATETIME,
message VARCHAR(MAX) NOT NULL,
PRIMARY KEY(msgid),
FOREIGN KEY(threadid) REFERENCES Threads(threadid)
)

GO

339Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 339

Eight quick comments draw out the pertinent details of this listing:

➝ 1 Sets the database context to master.

➝ 2 Deletes the existing Forum database if it exists.

➝ 3 Creates a database named Forum, placing the database in the
folder C:\Apps.

➝ 4 Sets the database context to Forum.

➝ 5 Creates the Forums table.

➝ 6 Creates the Topics table.

➝ 7 Creates the Threads table.

➝ 8 Creates the Messages table.

Adding Test Data
The companion CD also includes a script named InsertData.sql script,
which creates test data for the database. It creates the forums and topics —
for example, these:

forum topic

Christmas Decorating

Light Displays

Halloween Costumes

Decorations

Party Ideas

After the forums and topics are set up, you can create threads and messages
yourself by running the Forum application.

To run the InsertData.sql script, open a command window, change to the
directory that contains the script, and run this command:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

Note that you’ll need to change the server name if it is other than local-
host\SQLExpress.

340 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 340

SQL statements for working
with the database
The Forum application uses several SQL statements to retrieve and update
data in the Forum. Here’s a rundown on what the various SQL statements do:

� These SELECT statements list the forums and topics on the home page:

SELECT [forumid], [name]
FROM Forums
ORDER BY [name]

SELECT [forumid], [topicid], [name], [description]
FROM Topics
ORDER BY [name]

� Several pages use the following SELECT statements to retrieve names
for the topic and thread being displayed:

SELECT [name], [description]
FROM [Topics]
WHERE ([topicid] = @topicid)

SELECT [subject]
FROM [Threads]
WHERE ([threadid] = @threadid)

� The following query retrieves all threads for a given topic:

SELECT [threadid], [topicid], [subject],
[replies], [author], [lastpostdate]

FROM [Threads]
WHERE ([topicid] = @topicid)
ORDER BY [lastpostdate]

� The following query retrieves all messages for a given thread:

SELECT [author], [date], [message]
FROM [Messages]
WHERE ([threadid] = @threadid)
ORDER BY [date]

� The following statements insert rows into the Threads and Messages
tables when the user creates a new thread:

INSERT Threads
(topicid, subject, replies,
author, lastpostdate)”

VALUES(@topicid, @subject, @replies,
➝uthor, @lastpostdate)

INSERT Messages
(threadid, author, date, message)

VALUES(@threadid, ➝uthor, @date, @message)

341Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 341

� Finally, the following statements post a reply to a thread:

INSERT Messages
(threadid, author, date, message)

VALUES(@threadid, ➝uthor, @date, @message)

UPDATE Threads
SET replies = replies + 1
WHERE threadid = @threadid

Here, the UPDATE statement is required to update the replies column in the
Threads table.

Connecting to the database
The connection string for the Forum Application is stored in the
<connectionStrings> section of the web.config file, like this:

<connectionStrings>
<add name=”ForumConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Forum;Integrated Security=True”/>
</connectionStrings>

You may have to modify the connection string to match your server and data-
base name.

Building the Master Page
The Forum application uses the simple Master Page that’s shown in Listing
10-2. As you can see, this Master Page includes a content placeholder — and
nothing else. (When you develop your own Forum application, you’ll proba-
bly want to put additional information in the Master Page.)

Listing 10-2: The Master Page (MasterPage.master)
<%@ Master Language=”C#” ➝1

AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

342 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 342

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:contentplaceholder ➝2
id=”ContentPlaceHolder1”
runat=”server”>

</asp:contentplaceholder>
</div>
</form>

</body>
</html>

Just two key points for this listing:

➝ 1 The Master directive indicates that the file is a Master Page.

Note that if you want to use Visual Basic rather than C# for the
application’s code-behind files, you should change the
AutoEventWireup attribute to false. (That won’t matter for
this application; the Master Page doesn’t require a code-behind
file.)

➝ 2 The ContentPlaceHolder control marks where to display the
content for each page of the application.

Building the Forum Home Page
The Forum Home page (Default.aspx) displays a list of the forums and
topics that are available on the Forum Web site. You can refer back to Figure
10-2 to see how this page appears when the application is run.

You might think a page that displays a list like this would be relatively
simple — in fact, the forum and topics list are pretty tricky to create. To
create this list, I used a pair of nested Repeater controls. The outer
Repeater control displays the forums. For each forum, a second Repeater
control lists the topics associated with that forum.

The following sections present the .aspx and code-behind files for this page.

343Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 343

The Default.aspx page
Listing 10-3 presents the .aspx code for the Forum Home page, which uses
nested Repeater controls to display the topics for each forum provided by
the application.

Listing 10-3: The Forum Home page (Default.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Forum Listing” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<h3>Which forum would you like to visit?</h3>
<table border=0> ➝3
<asp:Repeater ID=”ForumRepeater” runat=”Server” ➝4

OnItemDataBound=”ForumRepeater_ItemDataBound” >
<ItemTemplate> ➝5
<tr bgcolor=”Gainsboro”>
<td>
<asp:Label ID=”lblForumName”
runat=”Server”
Text=’<% #Eval(“name”) %>’ />

</td>
</tr>
<asp:Repeater ID=”TopicRepeater” ➝6

runat=”Server” >
<ItemTemplate> ➝7
<tr><td>
<asp:LinkButton ID=”linkTopicName” ➝8

runat=”Server”
Text=’<% #Eval(“name”)%>’
PostBackUrl=’<% #Eval(“topicid”,

“Threads.aspx?topic={0}”)%>’/>
--
<asp:Label ID=”lblTopicDescr” ➝9

runat=”Server”
Text=’<% #Eval(“description”)%>’ />

</td></tr>
</ItemTemplate> ➝10

</asp:Repeater> ➝11
</ItemTemplate> ➝12

</asp:Repeater> ➝13
</table> ➝14
</asp:Content>

344 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 344

And here’s another set of 14 key points for this listing:

➝ 1 You’ll need to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you’re working with
Visual Basic rather than C#.

➝ 2 The <Content> element provides the content displayed for the
page.

➝ 3 This <table> element marks the start of the HTML table used to
display the list of forums and topics.

➝ 4 This is the first of the two Repeater controls on this page. Note
that although this application uses data binding to provide the
data for the Repeater controls, the data binding is done procedu-
rally in code provided by the code-behind file. As a result, the
.aspx file provides no data source and the Repeater control
does not specify the DataSourceID attribute.

The OnItemDataBound attribute specifies that the
ForumRepeater_DataBound method should be called for each
item in the Repeater control’s data source. If you’re working in
Visual Basic, omit this attribute; the Handles clause is used
instead to specify the method called when the ItemDataBound
event occurs.

➝ 5 The <ItemTemplate> element for the first Repeater control
begins with an HTML table row (<tr>) that includes a Label con-
trol. The Text attribute for the label uses the Eval method to dis-
play the name field from the data source.

The code-behind file specifies the data source at run time.

➝ 6 Next, the item template includes a Repeater control that displays
the topics for the current forum. Like the first Repeater control,
the data binding for this Repeater control is handled in the code-
behind file.

➝ 7 The item template for the second Repeater control displays an
HTML table row for each topic associated with the current forum.

➝ 8 A LinkButton control is used to display the topic name. The
PostBackUrl address for the link button uses the Eval method
to pass the ID for the selected topic to the Threads.aspx page as
a query string. For example, if the user clicks the link button for a
topic whose topicid is 4, the PostBackUrl will be
Threads.aspx?topic=4.

➝ 9 This label displays the topic description.

345Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 345

➝ 10 This </ItemTemplate> tag marks the end of the item template
for the inner Repeater control, which was started in Line 7.

➝ 11 This </asp:Repeater> tag marks the end of the inner Repeater
control. It pairs with the <Repeater> tag in Line 6.

➝ 12 This </ItemTemplate> tag marks the end of the item template
for the outer Repeater control, started in Line 5.

➝ 13 This </asp:Repeater> tag marks the end of the outer Repeater
control. It matches up with the <Repeater> tag in Line 4.

➝ 14 This line marks the end of the HTML table started in Line 3.

The code-behind file for
the Forum Home page
The code-behind file for the Forum Home page handles the details of retriev-
ing the forum and topic information from the database. Then it binds the
outer Repeater control to the list of forums. Finally, each time an item is
bound for the outer Repeater control, this process binds the inner
Repeater control and displays topics for the current forum.

Listings 10-4 and 10-5 show the C# and Visual Basic versions of this code-
behind file.

Listing 10-4: The code-behind file for the home page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.Configuration; ➝1
using System.Data.SqlClient; ➝2

public partial class _Default : System.Web.UI.Page
{

DataSet ds; ➝3

protected void Page_Load(object sender, ➝4

346 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 346

EventArgs e)
{

string con = WebConfigurationManager ➝5
.ConnectionStrings[“ForumConnectionString”]
.ConnectionString;

ds = new DataSet(); ➝6

// fill the Forums table ➝7
string sel = “SELECT [forumid], [name] “

+ “FROM Forums “
+ “ORDER BY [name]”;

SqlDataAdapter da = new SqlDataAdapter(sel, con);
da.Fill(ds, “Forums”);

// fill the Topics table ➝8
sel = “SELECT [forumid], [topicid], “

+ “[name], [description] “
+ “FROM Topics “
+ “ORDER BY [name]”;

da = new SqlDataAdapter(sel, con);
da.Fill(ds, “Topics”);

// bind the Forum repeater ➝9
ForumRepeater.DataSource = ds.Tables[“Forums”]

.DefaultView;
ForumRepeater.DataBind();

}

public void ForumRepeater_ItemDataBound(➝10
Object sender, RepeaterItemEventArgs e)

{
Repeater r = ((Repeater)e.Item ➝11

.FindControl(“TopicRepeater”));

DataRowView drv ➝12
= (DataRowView)e.Item.DataItem;

string forumid = drv[“forumid”].ToString();

DataView dv ➝13
= ds.Tables[“Topics”].DefaultView;

dv.RowFilter = “forumid=” + forumid;

r.DataSource = dv; ➝14
r.DataBind();

}
}

347Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 347

Here’s a set of 14 explanations, matched to the 14 key lines of this listing:

➝ 1 The code-behind file needs access to the System.Web.
Configuration namespace because it uses the
WebConfigurationManager class to retrieve the database
connection string from the web.config file.

➝ 2 The System.Data.SqlClient namespace is required to use
ADO.NET classes such as DataSet, SqlConnection, and
SqlCommand.

➝ 3 This line defines a class instance variable of type DataSet. That
way, the dataset will be available to both of the methods in the
code-behind file.

➝ 4 The Page_Load method executes when the page loads. It fills the
dataset with data retrieved from the Forums and Topics tables; it
also sets up data binding for the ForumRepeater control and calls
that control’s DataBind method, which completes the binding.

➝ 5 This line retrieves the connection string from the web.config
file.

➝ 6 This statement creates an empty dataset object and assigns it to
the ds variable.

➝ 7 These lines create a table in the ds dataset named Forums by a)
creating a data adapter that retrieves rows from the Forums table
and b) calling the data adapter’s Fill method.

➝ 8 These lines create a second table in the dataset (named Topics)
by creating a data adapter (which retrieves data from this new
Topics table) and calling the data adapter’s Fill method.

➝ 9 These lines set the data source for the ForumRepeater control
to the Forums table in the dataset, and then call the DataBind
method to bind the Repeater control to its data.

➝ 10 This method is called each time an item is bound to the outer
Repeater. It binds the inner Repeater control to the topics
that are associated with the forum represented by the item.

➝ 11 The e argument includes a property named Item that represents the
item being bound. This statement calls that item’s FindControl
method to find the Repeater control named TopicRepeater.
That particular Repeater is then assigned to the variable named
r so it can be used later.

➝ 12 These lines retrieve the id of the forum represented by the cur-
rent Repeater item. First, e.Item.DataItem is used to retrieve
a DataRowView object that lets you access the individual data
fields for the Repeater item. Then the forumid field is retrieved
and saved in a local variable named forumid.

348 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 348

➝ 13 These lines retrieve a DataView object for the Topics table of
the data set and set its row filter so it views only those rows
whose forumid field matches the value of the forumid variable.

➝ 14 These lines bind the Repeater control to the data view. This
causes the Repeater control to create a line for each topic that’s
associated with the forum.

Listing 10-5: The code-behind file for the home page (VB version)

Imports System.Web.Configuration ➝1
Imports System.Data.SqlClient ➝2
Imports System.Data

Partial Class _Default
Inherits System.Web.UI.Page

Private ds As DataSet ➝3

Protected Sub Page_Load(_ ➝4
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

Dim con As String _ ➝5
= WebConfigurationManager _
.ConnectionStrings(“ForumConnectionString”) _
.ConnectionString

ds = New DataSet() ➝6

‘fill the Forums table ➝7
Dim sel As String _

= “SELECT [forumid], [name] “ _
+ “FROM Forums “ _
+ “ORDER BY [name]”

Dim da As SqlDataAdapter _
= New SqlDataAdapter(sel, con)

da.Fill(ds, “Forums”)

‘fill the Topics table ➝8
sel = “SELECT [forumid], [topicid], “ _

+ “[name], [description] “ _
+ “FROM Topics “ _
+ “ORDER BY [name]”

da = New SqlDataAdapter(sel, con)
da.Fill(ds, “Topics”)

‘bind the Forum repeater ➝9
ForumRepeater.DataSource = ds.Tables(“Forums”) _

.DefaultView
ForumRepeater.DataBind()

End Sub

(continued)

349Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 349

Listing 10-5 (continued)
Protected Sub ForumRepeater_ItemDataBound(_ ➝10

ByVal sender As Object, _
ByVal e As RepeaterItemEventArgs) _
Handles ForumRepeater.ItemDataBound

Dim r As Repeater ➝11
r = e.Item.FindControl(“TopicRepeater”)

Dim drv As DataRowView ➝12
drv = e.Item.DataItem
Dim forumid As String = drv(“forumid”)

Dim dv As DataView ➝13
dv = ds.Tables(“Topics”).DefaultView
dv.RowFilter = “forumid=” + forumid

r.DataSource = dv ➝14
r.DataBind()

End Sub
End Class

Building the Threads Page
The Threads page displays all threads for the topic selected by the user. The
Threads page knows which topic to display because the topic is passed as a
query string field from the Default.aspx page. Then the Threads page uses
a simple GridView control bound to a SqlDataSource to retrieve and dis-
play the threads.

A code-behind file is required to handle the Click event raised by the Start
a New Thread link or the SelectedItemChanged event raised by the
GridView control.

The Threads.aspx page
Listing 10-6 presents the .aspx code for the Threads page. There’s nothing
unusual about the code for this page, so you shouldn’t have much trouble
following it.

Listing 10-6: The Threads.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Threads.aspx.cs”
Inherits=”Threads”

350 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 350

Title=”Topic Threads” %>
<asp:Content ID=”Content1” Runat=”Server” ➝2

ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:FormView ID=”FormView1” runat=”server” ➝3

DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h2>
<asp:Label ID=”nameLabel” runat=”server”

Text=’<%# Bind(“name”) %>’ />
</h2>
<h3>

<asp:Label ID=”descriptionLabel”
runat=”server”
Text=’<%# Bind(“description”) %>’ />

</h3>
</ItemTemplate>

</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝4

runat=”server”
ConnectionString=”<%$ ConnectionStrings

:ForumConnectionString %>”
SelectCommand=”SELECT [name], [description]

FROM [Topics] WHERE ([topicid] = @topicid)”>
<SelectParameters>

<asp:QueryStringParameter ➝5
Name=”topicid”
QueryStringField=”topic”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:GridView ID=”GridView1” runat=”server” ➝6

AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource2”
DataKeyNames=”threadid”
AllowPaging=”True”
PageSize=”15”
PagerSettings-Mode=”NumericFirstLast”
OnSelectedIndexChanged

=”GridView1_SelectedIndexChanged”>
<Columns>

<asp:ButtonField ➝7
CommandName=”Select”
DataTextField=”subject”
HeaderText=”Subject”
Text=”Button”>
<ItemStyle HorizontalAlign=”Left”

Width=”250px” />
<HeaderStyle HorizontalAlign=”Left” />

</asp:ButtonField>
<asp:BoundField ➝8

DataField=”author”
HeaderText=”Author” >

(continued)

351Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 351

Listing 10-6 (continued)

<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”100px” />

</asp:BoundField>
<asp:BoundField ➝9

DataField=”replies”
HeaderText=”Replies” >
<HeaderStyle HorizontalAlign=”Center” />
<ItemStyle HorizontalAlign=”Center”

Width=”70px” />
</asp:BoundField>
<asp:BoundField ➝10

DataField=”lastpostdate”
HeaderText=”Last Post”
DataFormatString=”{0:d}” >
<HeaderStyle HorizontalAlign=”Center” />
<ItemStyle Width=”70px” />

</asp:BoundField>
</Columns>

</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource2” ➝11

runat=”server”
ConnectionString=”<%$ ConnectionStrings

:ForumConnectionString %>”
SelectCommand=”SELECT [threadid], [topicid],

[subject], [replies], [author], [lastpostdate]
FROM [Threads]
WHERE ([topicid] = @topicid)
ORDER BY [lastpostdate]”>

<SelectParameters>
<asp:QueryStringParameter ➝12
Name=”topicid”
QueryStringField=”topic”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:LinkButton ID=”LinkButton1” ➝13

runat=”server”
Text=”Start a New Thread”
OnClick=”LinkButton1_Click” />

<asp:LinkButton ID=”btnReturn” ➝14

runat=”server”
PostBackUrl=”~/Default.aspx”
Text=”Return to Forum Page” />

</asp:Content>

This listing has 14 key points to explain:

➝ 1 If you use the Visual Basic version of the code-behind file, be sure
to change the Language, AutoEventWireup, and CodeFile
attributes in the Page directive.

352 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 352

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This FormView control displays the topic name and description.
It’s bound to the data source named SqlDataSource1.

➝ 4 The SqlDataSource1 data source retrieves the topic information
from the Topics row, using the topicid parameter to specify the
topic to be retrieved.

➝ 5 The value of the topicid parameter is bound to the query string
named topic.

➝ 6 The GridView control displays the threads for the selected topic.
It’s bound to the SqlDataSource2 data source, and paging is
enabled. Note that the GridView1_SelectedIndexChanged
method is called if the user selects a thread.

If you’re working with Visual Basic, remove the
OnSelectedIndexChanged attribute.

➝ 7 The first column for the GridView control is a button field that
displays the thread subject. The CommandName attribute specifies
Select, so the row is selected when the user clicks this link.

➝ 8 The next column displays the e-mail address of the user that ini-
tially started the thread.

➝ 9 This column displays the number of replies to the thread.

➝ 10 This column displays the date of the last message posted to the
thread.

➝ 11 The SqlDataSource2 data source provides the data for the
GridView control. Its SelectCommand attribute specifies a
SELECT statement that retrieves threads for the topic specified by
the topicid parameter.

➝ 12 The topicid parameter is bound to the topic query string field.

➝ 13 This LinkButton control lets the user start a new thread.

If you’re using Visual Basic, you should omit the OnClick
attribute.

➝ 14 This LinkButton sends the user back to the Forum Home page.

The code-behind file for the Threads page
The code-behind file for the Threads page handles the Click event for the
Start a New Thread link and the SelectedIndexChanged event for the
GridView control. Listings 10-7 and 10-8 show the C# and Visual Basic
versions of this code-behind file.

353Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 353

Listing 10-7: The code-behind file for the Threads page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Threads : System.Web.UI.Page
{

protected void LinkButton1_Click(object sender, ➝1
EventArgs e)

{
Response.Redirect(“NewThread.aspx?topic=”

+ Request.QueryString[“topic”]);
}

protected void GridView1_SelectedIndexChanged(➝2
object sender, EventArgs e)

{
string threadid

= GridView1.SelectedValue.ToString();
string topicid = Request.QueryString[“topic”];
Response.Redirect(“Messages.aspx?topic=” + topicid

+ “&thread=” + threadid);
}

}

The two methods in this code-behind file are the heart of how it works:

➝ 1 The LinkButton1_Click method is called when the user clicks
the Start a New Thread link. It simply redirects to the
NewThread.aspx page, passing the topic query string so the
New Thread page knows which topic to create the thread in.

➝ 2 The GridView1_SelectedIndexChanged method is called
when the user selects a thread in the GridView control. It
retrieves the thread ID from the GridView control’s
SelectedValue property and the topic ID from the topic query
string field, then redirects to the Messages.aspx page, passing
the thread and topic IDs as query string fields.

354 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 354

Listing 10-8: The code-behind file for the Threads page (VB version)

Partial Class Threads
Inherits System.Web.UI.Page

Protected Sub LinkButton1_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles LinkButton1.Click

Response.Redirect(“NewThread.aspx?topic=” _
+ Request.QueryString(“topic”))

End Sub

Protected Sub GridView1_SelectedIndexChanged(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles GridView1.SelectedIndexChanged

Dim threadid As String
Dim topicid As String
threadid = GridView1.SelectedValue.ToString()
topicid = Request.QueryString(“topic”)
Response.Redirect(“Messages.aspx?topic=” _

+ topicid _
+ “&thread=” + threadid)

End Sub
End Class

Building the Messages Page
The Messages page displays all messages for the thread selected by the user.
The thread to be displayed is passed to the Messages page as a query string
named thread. In response, the Messages page uses a GridView control to
display the messages.

The Messages.aspx page
Listing 10-9 presents the Messages.apsx file. As you can see, this page uses
three SQL data sources, two FormView controls, and a GridView control to
display the messages for the selected topic.

355Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 355

Listing 10-9: The Messages.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Messages.aspx.cs”
Inherits=”Messages”
Title=”Messages” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<asp:FormView ID=”FormView1” runat=”server” ➝3
DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h3>
Topic:
<asp:Label ID=”topicNameLabel”

runat=”server”
Text=’<%# Bind(“name”) %>’ />

</h3>
</ItemTemplate>

</asp:FormView>

<asp:SqlDataSource ID=”SqlDataSource1” ➝4
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [name], [description]
FROM [Topics]
WHERE ([topicid] = @topicid)”>

<SelectParameters> ➝5
<asp:QueryStringParameter
Name=”topicid”
QueryStringField=”topic”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:FormView ID=”FormView2” runat=”server” ➝6
DataSourceID=”SqlDataSource2”>
<ItemTemplate>

<h3>
Thread:
<asp:Label ID=”threadNameLabel”

runat=”server”
Text=’<%# Bind(“subject”) %>’ />

</h3>
</ItemTemplate>

</asp:FormView>

<asp:SqlDataSource ID=”SqlDataSource2” ➝7
runat=”server”
ConnectionString

356 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 356

=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [subject]
FROM [Threads]
WHERE ([threadid] = @threadid)”>

<SelectParameters>
<asp:QueryStringParameter ➝8
Name=”threadid”
QueryStringField=”thread”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:GridView ID=”GridView1” runat=”server” ➝9
AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource3”
ShowHeader=”False”
AllowPaging=”True” >

<Columns>
<asp:TemplateField> ➝10
<ItemTemplate>
At
<asp:Label ID=”Label1” runat=”server”
Text=’<% #Eval(“date”) %>’ />

<asp:Label ID=”Label2” runat=”server”
Text=’<% #Eval(“author”) %>’ />
wrote:

<table border=0>
<tr><td width=300>

<asp:Label ID=”Label3” runat=”server”
Text=’<% #Eval(“message”) %>’ />

</td></tr></table>
</ItemTemplate>

</asp:TemplateField>
</Columns>

</asp:GridView>

<asp:SqlDataSource ID=”SqlDataSource3” ➝11
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [author], [date], [message]
FROM [Messages]
WHERE ([threadid] = @threadid)
ORDER BY [date]”>

<SelectParameters>
<asp:QueryStringParameter ➝12

Name=”threadid”
QueryStringField=”thread” Type=”Int32” />

</SelectParameters>

(continued)

357Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 357

Listing 10-9 (continued)
</asp:SqlDataSource>

<asp:Button ID=”btnAdd” runat=”server” ➝13
Text=”Add a Reply to this Thread”
OnClick=”btnAdd_Click” />

<asp:LinkButton ID=”btnReturn” ➝14
runat=”server”
Text=”Return to Threads page”
OnClick=”btnReturn_Click” />

</asp:Content>

This page has 14 key points:

➝ 1 You’ll need to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This FormView control displays the topic name and description.
It’s bound to the data source named SqlDataSource1.

➝ 4 The SqlDataSource1 data source retrieves the topic information
from the Topics table, using the topicid parameter to specify
the topic to be retrieved.

➝ 5 The value of the topicid parameter is bound to the query string
named topic.

➝ 6 This FormView control displays the thread subject. It’s bound to
the data source named SqlDataSource2.

➝ 7 The SqlDataSource2 data source retrieves the thread subject
from the Threads table.

➝ 8 The value of the threadid parameter is bound to the query
string named thread.

➝ 9 The GridView control displays the messages for the selected
thread. Paging is enabled, and the data source is
SqlDataSource3.

➝ 10 The <Columns> element consists of a single template field that
displays the date of the post, the e-mail address of the poster, and
the text of the message.

➝ 11 The SqlDataSource3 data source retrieves all messages for the
selected thread.

358 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 358

➝ 12 The value of the threadid parameter is taken from the thread
query string.

➝ 13 The btnAdd button lets the user add a reply to the thread. (If
you’re working with Visual Basic, you should omit the OnClick
attribute.)

➝ 14 The btnReturn button returns the user to the Threads page.

The code-behind file for
the Messages page
Listings 10-10 and 10-11 show the C# and Visual Basic versions of the code-
behind file for the Messages page, which handles the Click events for the
two buttons on this page.

Listing 10-10: The code-behind file for the Messages page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Messages : System.Web.UI.Page
{

protected void btnAdd_Click(object sender, ➝1
EventArgs e)

{
string topicid = Request.QueryString[“topic”];
string threadid = Request.QueryString[“thread”];
Response.Redirect(“NewMessage.aspx?topic=”

+ topicid + “&thread=” + threadid);
}

protected void btnReturn_Click(object sender, ➝2
EventArgs e)

{
Response.Redirect(“Threads.aspx?topic=”

+ Request.QueryString[“topic”]);
}

}

359Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 359

The two methods in this code-behind file merit a closer look:

➝ 1 The btnAdd_Click method is called when the user clicks the
Add a Reply to this Thread button. It simply redirects the user to
the NewMessage.aspx page, passing the topic and thread
query strings so the New Thread page knows which topic and
thread to create the message for.

➝ 2 The btnReturn_Click method is called when the user clicks the
Return link. It redirects to the Threads.aspx page, passing the
topic-query string so the Threads page will know which topic to
display.

Listing 10-11: The code-behind file for the Messages page (VB version)

Partial Class Messages
Inherits System.Web.UI.Page

Protected Sub btnAdd_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnAdd.Click

Dim topicid As String
Dim threadid As String
topicid = Request.QueryString(“topic”)
threadid = Request.QueryString(“thread”)
Response.Redirect(“NewMessage.aspx?topic=” _

+ topicid + “&thread=” + threadid)
End Sub

Protected Sub btnReturn_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnReturn.Click

Response.Redirect(“Threads.aspx?topic=” _
+ Request.QueryString(“topic”))

End Sub
End Class

Building the New Thread Page
The New Thread page lets the user start a new thread. The topic in which the
thread should be created is passed to the page via a query string named
topic.

360 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 360

The NewThread.aspx page
The .aspx file for the New Thread page is shown in Listing 10-12. This page
displays the topic name in a FormView control at the top of the page. Text
boxes are displayed to get the user’s e-mail address, the thread subject, and
the text for the first message in the thread.

Listing 10-12: The NewThread.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”NewThread.aspx.cs”
Inherits=”NewThread”
Title=”New Thread” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:FormView ID=”FormView1” runat=”server” ➝3

DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h3>
New Thread for Topic:
<asp:Label ID=”nameLabel” runat=”server”

Text=’<%# Bind(“name”) %>’ />
</h3>

</ItemTemplate>
</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝4

runat=”server”
ConnectionString
=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [name], [description]
FROM [Topics]
WHERE ([topicid] = @topicid)”>

<SelectParameters>
<asp:QueryStringParameter ➝5

Name=”topicid”
QueryStringField=”topic”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>
<table border=0>
<tr><td Width=”125”>

Your email address:
</td><td width=”300” valign=”top”>
<asp:TextBox ID=”txtEmail” runat=”server” ➝6

Width=”300px” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1”
runat=”server”

(continued)

361Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 361

Listing 10-12 (continued)
ControlToValidate=”txtEmail”
ErrorMessage=”Required.” />

</td></tr>
<tr><td Width=”125”>

Subject:
</td><td width=”300” valign=”top”>
<asp:TextBox ID=”txtSubject” runat=”server” ➝7

Width=”300px” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator2”
runat=”server”
ControlToValidate=”txtMessage”
ErrorMessage=”Required.” />

</td></tr>
<tr><td width=”125” valign=”top”>

Message:
</td><td width=”300”>
<asp:TextBox ID=”txtMessage” runat=”server” ➝8

TextMode=”MultiLine”
Width=”300px” Height=”300px”/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator3”
runat=”server”
ControlToValidate=”txtSubject”
ErrorMessage=”Required.” />

</td></tr>
</table>
<asp:Button ID=”btnPost” runat=”server” ➝9

OnClick=”btnPost_Click”
Text=”Post Message” />

<asp:Button ID=”btnCancel” runat=”server” ➝10
OnClick=”btnCancel_Click” Text=”Cancel” />

</asp:Content>

Here are details of the ten most important lines of this file:

➝ 1 You’ll need to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This FormView control displays the topic name and description.
It’s bound to the data source named SqlDataSource1.

➝ 4 The SqlDataSource1 data source retrieves the topic information
from the Topics row, using the topicid parameter to specify the
topic to be retrieved.

➝ 5 The value of the topicid parameter is bound to the query string
named topic.

362 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 362

➝ 6 This text box accepts the user’s e-mail address. A
RequiredFieldValidator is used to make sure the user enters
an address.

➝ 7 This text box accepts the thread subject. Again, a
RequiredFieldValidator makes sure the user enters a
subject.

➝ 8 This multi-line text box accepts the message. A
RequiredFieldValidator is used to make sure the user enters
a message.

➝ 9 The btnPost button creates the new thread.

If you’re working in Visual Basic, omit the OnClick attribute.

➝ 10 The btnCancel button cancels the new thread.

Omit the OnClick attribute if you’re working in Visual Basic.

The code-behind file for
the New Thread page
The C# and Visual Basic versions of the code-behind file for the New Thread
page are shown in Listings 10-13 and 10-14, respectively. As you can see,
these code-behind files contain just two methods, which handle the Click
event for the buttons that appear at the bottom of the New Thread page.

Listing 10-13: The code-behind file for the New Thread page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.Configuration; ➝1
using System.Data.SqlClient; ➝2

public partial class NewThread : System.Web.UI.Page
{

protected void btnPost_Click(➝3
object sender, EventArgs e)

{
// set up the data objects ➝4

(continued)

363Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 363

Listing 10-13 (continued)

string cs = WebConfigurationManager
.ConnectionStrings[“ForumConnectionString”]
.ConnectionString;

string insertThread = “INSERT Threads “
+ “(topicid, subject, replies, “
+ “author, lastpostdate)”
+ “VALUES(@topicid, @subject, @replies, “
+ “➝uthor, @lastpostdate)”;

string getThreadID = “SELECT @@IDENTITY”;
string insertMessage = “INSERT Messages “
+ “(threadid, author, date, message) “
+ “VALUES(@threadid, ➝uthor, @date, @message)”;

SqlConnection con = new SqlConnection(cs);
SqlCommand cmd = new SqlCommand(insertThread,

con);

// insert the thread ➝5
cmd.Parameters.AddWithValue(“topicid”,

Request.QueryString[“topic”]);
cmd.Parameters.AddWithValue(“subject”,

txtSubject.Text);
cmd.Parameters.AddWithValue(“replies”, 0);
cmd.Parameters.AddWithValue(“author”,

txtEmail.Text);
cmd.Parameters.AddWithValue(“lastpostdate”,

DateTime.Now);
con.Open();
cmd.ExecuteNonQuery();

// get the thread ID ➝6
cmd.CommandText = getThreadID;
string threadid = cmd.ExecuteScalar().ToString();

// insert the message ➝7
cmd.CommandText = insertMessage;
cmd.Parameters.Clear();
cmd.Parameters.AddWithValue(“threadid”,

threadid);
cmd.Parameters.AddWithValue(“author”,

txtEmail.Text);
cmd.Parameters.AddWithValue(“date”,

DateTime.Now);
cmd.Parameters.AddWithValue(“message”,

txtMessage.Text);
cmd.ExecuteNonQuery();
con.Close();

Response.Redirect(“Messages.aspx?topic=” ➝8
+ Request.QueryString[“topic”]
+ “&thread=” + threadid);

364 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 364

}

protected void btnCancel_Click(➝9
object sender, EventArgs e)

{
Response.Redirect(“Threads.aspx?topic=”

+ Request.QueryString[“topic”]);
}

}

Here are the highlights of this code-behind file:

➝ 1 Because the code-behind file uses the
WebConfigurationManager class to retrieve the database con-
nection string from the web.config file, the code-behind file
requires the System.Web.Configuration namespace.

➝ 2 Similarly, the System.Data.SqlClient namespace is required
because the code-behind file uses ADO.NET classes.

➝ 3 The btnPost_Click method executes when the user clicks the
Post Message button, writing a row to both the Threads table and
the Messages table.

➝ 4 These lines create the ADO.NET database objects used by the
btnPost_Click method, in a specific sequence:

1. The connection string is retrieved from web.config.

2. Three string variables are created and initialized to the INSERT
statements needed to insert data into the Threads and
Messages tables.

3. The SELECT statement used to determine the threadid cre-
ated for the new thread.

4. SqlConnection and SqlCommand objects are created.

➝ 5 These lines insert the thread data into the Threads table. First the
parameters used by the INSERT statement for the Threads table
are created. Then the connection opens and the INSERT state-
ment executes.

➝ 6 These lines use the SQL statement SELECT @@IDENTITY to
retrieve the threadid value that was assigned to the newly cre-
ated thread. The threadid value is saved in a local variable
named threadid.

➝ 7 These lines insert the message for the thread into the Messages
table. First, the parameters used by the INSERT statement are cre-
ated. Then, the INSERT statement executes and the connection is
closed.

365Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 365

➝ 8 This line redirects the user to the Messages.aspx page, which
shows the newly created thread.

➝ 9 This method executes when the user clicks the Cancel button. It
simply redirects the user back to the Threads.aspx page.

Listing 10-14: The code-behind file for the New Thread page (VB version)

Imports System.Web.Configuration ➝1
Imports System.Data.SqlClient ➝2

Partial Class NewThread
Inherits System.Web.UI.Page

Protected Sub btnPost_Click(_ ➝3
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnPost.Click

‘set up the data objects ➝4
Dim cs As String
cs = WebConfigurationManager _

.ConnectionStrings(“ForumConnectionString”) _

.ConnectionString
Dim insertThread As String
insertThread = “INSERT Threads “ _

+ “(topicid, subject, replies, “ _
+ “author, lastpostdate)” _
+ “VALUES(@topicid, @subject, @replies, “ _
+ “➝uthor, @lastpostdate)”

Dim getThreadID As String
getThreadID = “SELECT @@IDENTITY”
Dim insertMessage As String
insertMessage = “INSERT Messages “ _

+ “(threadid, author, date, message) “ _
+ “VALUES(@threadid, ➝uthor, @date,

@message)”
Dim con As SqlConnection
con = New SqlConnection(cs)
Dim cmd As SqlCommand
cmd = New SqlCommand(insertThread, con)

‘insert the thread ➝5
cmd.Parameters.AddWithValue(“topicid”, _

Request.QueryString(“topic”))
cmd.Parameters.AddWithValue(“subject”, _

txtSubject.Text)
cmd.Parameters.AddWithValue(“replies”, 0)

366 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 366

cmd.Parameters.AddWithValue(“author”, _
txtEmail.Text)

cmd.Parameters.AddWithValue(“lastpostdate”, _
DateTime.Now)

con.Open()
cmd.ExecuteNonQuery()

‘get the thread ID ➝6
cmd.CommandText = getThreadID
Dim threadid As String
threadid = cmd.ExecuteScalar().ToString()

‘insert the message ➝7
cmd.CommandText = insertMessage
cmd.Parameters.Clear()
cmd.Parameters.AddWithValue(“threadid”, _

threadid)
cmd.Parameters.AddWithValue(“author”, _

txtEmail.Text)
cmd.Parameters.AddWithValue(“date”, _

DateTime.Now)
cmd.Parameters.AddWithValue(“message”, _

txtMessage.Text)
cmd.ExecuteNonQuery()
con.Close()

Response.Redirect(“Messages.aspx?topic=” _ ➝8
+ Request.QueryString(“topic”) _
+ “&thread=” + threadid)

End Sub

Protected Sub btnCancel_Click(_ ➝9
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnCancel.Click

Response.Redirect(“Threads.aspx?topic=” _
+ Request.QueryString(“topic”))

End Sub

End Class

Building the New Message Page
The last page of the Forum application is the New Message page, which lets
the user post a reply to an existing thread. The following sections lay out the
details of the .aspx and code-behind files for this page.

367Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 367

The NewMessage.aspx page
The .aspx file for the New Message page is shown in Listing 10-15. This page
displays the topic name in a FormView control at the top of the page. Then
text boxes are used to get the user’s e-mail address and the message text.
Note that there is no text box for the subject. That’s because the thread —
not the individual messages that make it up — provides the subject.

Listing 10-15: The NewMessage.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”NewMessage.aspx.cs”
Inherits=”NewMessage”
Title=”Post Reply” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<asp:FormView ID=”FormView1” runat=”server” ➝3
DataSourceID=”SqlDataSource1”>
<ItemTemplate>

<h3>
Reply To Topic:
<asp:Label ID=”nameLabel”

runat=”server”
Text=’<%# Bind(“name”) %>’ />

</h3>
</ItemTemplate>

</asp:FormView>

<asp:SqlDataSource ID=”SqlDataSource1” ➝4
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [name], [description]
FROM [Topics]
WHERE ([topicid] = @topicid)”>

<SelectParameters> ➝5
<asp:QueryStringParameter
Name=”topicid”
QueryStringField=”topic”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:FormView ID=”FormView2” runat=”server” ➝6
DataSourceID=”SqlDataSource2”>
<ItemTemplate>

<h3>
Thread:

368 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 368

<asp:Label ID=”subjectLabel”
runat=”server”
Text=’<%# Bind(“subject”) %>’ />

</h3>
</ItemTemplate>

</asp:FormView>

<asp:SqlDataSource ID=”SqlDataSource2” ➝7
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:ForumConnectionString
%>”

SelectCommand=”SELECT [subject]
FROM [Threads]
WHERE ([threadid] = @threadid)”>

<SelectParameters> ➝8
<asp:QueryStringParameter

Name=”threadid”
QueryStringField=”thread”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<table border=0>

<tr><td Width=”125” valign=”top”>
Your email address:

</td><td width=”300”>
<asp:TextBox ID=”txtEmail” runat=”server” ➝9

Width=”300px” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1”
runat=”Server”
ControlToValidate=”txtEmail”
ErrorMessage=”Required.” />

</td></tr>

<tr><td width=”125” valign=”top”>
Message:

</td><td width=”300”>
<asp:TextBox ID=”txtMessage” ➝10

runat=”server”
TextMode=”MultiLine”
Width=”300px” Height=”300px”/>

<asp:RequiredFieldValidator
ID=”RequiredFieldValidator2”
runat=”Server”
ControlToValidate=”txtMessage”
ErrorMessage=”Required.” />

</td></tr>

(continued)

369Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 369

Listing 10-15 (continued)
</table>

<asp:Button ID=”btnPost” runat=”server” ➝11
OnClick=”btnPost_Click”
Text=”Post Reply” />

<asp:Button ID=”btnCancel” runat=”server” ➝12
OnClick=”btnCancel_Click”
Text=”Cancel” />

</asp:Content>

Here’s a closer look at 12 key elements of this file:

➝ 1 If you use Visual Basic instead of C#, you’ll need to change the
Language, AutoEventWireup, and CodeFile attributes.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This FormView control, which is bound to the SqlDataSource1
data source, displays the topic name and description.

➝ 4 The SqlDataSource1 data source retrieves the topic information
from the Topics table.

➝ 5 The value of the topicid parameter is bound to the query string
named topic.

➝ 6 This FormView control displays the thread subject, which is
bound to SqlDataSource2.

➝ 7 The SqlDataSource2 data source retrieves the thread subject
from the Threads table.

➝ 8 The threadid parameter is bound to the thread query string.

➝ 9 This text box accepts the user’s e-mail address. A
RequiredFieldValidator is used to make sure the user enters
an address.

➝ 10 This multi-line text box accepts the message. A
RequiredFieldValidator is used to make sure the user enters
a message.

➝ 11 The btnPost button creates the new thread. If you’re working in
Visual Basic, you’ll need to omit the OnClick attribute.

➝ 12 The btnCancel button cancels the new thread. Again, you’ll need
to omit the OnClick attribute if you’re working in Visual Basic.

370 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 370

The code-behind file for
the New Message page
Listings 10-16 and 10-17 show the C# and Visual Basic versions of the code-
behind file required by the New Message page. These code-behind files con-
tain methods that handle the Click event for the Post Message and Cancel
buttons.

Listing 10-16: The code-behind file for the New Message page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.Configuration; ➝1
using System.Data.SqlClient; ➝2
public partial class NewMessage : System.Web.UI.Page
{

protected void btnPost_Click(➝3
object sender, EventArgs e)

{
// set up the data objects ➝4
string cs = WebConfigurationManager

.ConnectionStrings[“ForumConnectionString”]

.ConnectionString;
string insertMessage = “INSERT Messages “
+ “(threadid, author, date, message) “
+ “VALUES(@threadid, ➝uthor, @date, @message);”
+ “UPDATE Threads “
+ “SET replies = replies + 1”
+ “WHERE threadid = @threadid”;

SqlConnection con = new SqlConnection(cs);
SqlCommand cmd

= new SqlCommand(insertMessage, con);

// get the query strings ➝5
string threadid = Request.QueryString[“thread”];
string topicid = Request.QueryString[“topic”];

// insert the message ➝6
cmd.CommandText = insertMessage;

(continued)

371Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 371

Listing 10-16 (continued)
cmd.Parameters.Clear();
cmd.Parameters.AddWithValue(“threadid”,

threadid);
cmd.Parameters.AddWithValue(“author”,

txtEmail.Text);
cmd.Parameters.AddWithValue(“date”,

DateTime.Now);
cmd.Parameters.AddWithValue(“message”,

txtMessage.Text);
con.Open();
cmd.ExecuteNonQuery();
con.Close();

Response.Redirect(“Messages.aspx?topic=” ➝7
+ topicid + “&thread=” + threadid);

}

protected void btnCancel_Click(➝8
object sender, EventArgs e)

{
Response.Redirect(“Messages.aspx?topic=”

+ Request.QueryString[“topic”]
+ “&thread=”
+ Request.QueryString[“thread”]);

}
}

The following paragraphs guide you through the most important lines of
these listings:

➝ 1 This line is required because the code-behind file uses the
WebConfigurationManager class to retrieve the database-
connection string from the web.config file.

➝ 2 This line is required so the code-behind file can use ADO.NET
classes to access SQL databases.

➝ 3 The btnPost_Click method executes when the user clicks the
Post Message button. This method writes a row to the Messages
table and updates the reply count in the Threads table.

➝ 4 These lines set up the ADO.NET database objects used by the
btnPost_Click method, one at a time, in a specific sequence:

1. The connection string is retrieved.

2. A string variable is created and initialized with the INSERT and
UPDATE statement that writes the new message row and
updates the thread reply count.

3. A database connection object is created.

4. A new SqlCommand object is created.

372 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 372

➝ 5 These lines retrieve the thread and topic query strings and
assign them to local variables named (respectively) threadid
and topicid.

➝ 6 These lines set up the parameters required by the INSERT and
UPDATE statement, open the connection, execute the INSERT and
UPDATE commands, and close the connection.

➝ 7 This line redirects the user to the Messages.aspx page, which
shows the new message added to the end of the thread.

➝ 8 This method executes when the user clicks the Cancel button. It
simply redirects the user back to the Messages.aspx page.

Listing 10-17: The code-behind file for the New Message page (VB)

Imports System.Web.Configuration ➝1
Imports System.Data.SqlClient ➝2

Partial Class NewMessage
Inherits System.Web.UI.Page

Protected Sub btnPost_Click(_ ➝3
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnPost.Click

‘set up the data objects ➝4
Dim cs As String
cs = WebConfigurationManager _

.ConnectionStrings(“ForumConnectionString”) _

.ConnectionString
Dim insertMessage As String
insertMessage = “INSERT Messages “ _
+ “(threadid, author, date, message) “ _
+ “VALUES(@threadid, ➝uthor, @date, @message);”
_

+ “UPDATE Threads “ _
+ “SET replies = replies + 1” _
+ “WHERE threadid = @threadid”
Dim con As SqlConnection
con = New SqlConnection(cs)
Dim cmd As SqlCommand
cmd = New SqlCommand(insertMessage, con)

‘get the query strings ➝5
Dim threadid As String
Dim topicid As String
threadid = Request.QueryString(“thread”)
topicid = Request.QueryString(“topic”)

‘insert the message ➝6
cmd.CommandText = insertMessage

(continued)

373Chapter 10: Building a Web Forum

18_597760 ch10.qxp 1/11/06 9:59 PM Page 373

Listing 10-17 (continued)
cmd.Parameters.Clear()
cmd.Parameters.AddWithValue(“threadid”, _

threadid)
cmd.Parameters.AddWithValue(“author”, _

txtEmail.Text)
cmd.Parameters.AddWithValue(“date”, _

DateTime.Now)
cmd.Parameters.AddWithValue(“message”, _

txtMessage.Text)
con.Open()
cmd.ExecuteNonQuery()
con.Close()

Response.Redirect(“Messages.aspx?topic=” ➝7
+ topicid + “&thread=” + threadid)

End Sub

Protected Sub btnCancel_Click(_ ➝8
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnCancel.Click

Response.Redirect(“Messages.aspx?topic=” _
+ Request.QueryString(“topic”) _
+ “&thread=” _
+ Request.QueryString(“thread”))

End Sub

End Class

374 Part V: Building Community Applications

18_597760 ch10.qxp 1/11/06 9:59 PM Page 374

Chapter 11

Building a Blog Application
In This Chapter
� Designing the Blog application

� Creating the database for the Blog application

� Building the Blog application’s pages

A blog (short for weblog) is a Web application that lets users create their
own Web pages where they can post their thoughts. Other users can visit

the blog, read the blog owner’s posts, and leave comments of their own. These
days, blogging is one of the most popular activities — and applications — on
the Internet.

There are many Web sites that let you create blogs, and free or inexpensive
applications are available to host your own blogs. Still, you may want to create
your own blogging application. If so, this chapter is for you. It presents a
simple blog application written in ASP.NET 2.0.

The Blog application presented in this chapter requires that users register
and log in to create a blog. Each registered user can create as many different
blogs as he or she wants. Any visitor can read a blog and post comments
without having to register or log in. The application relies on the built-in
user registration features of ASP.NET 2.0. (You may want to refer to the
User Authentication application presented in Chapter 3 for further details
of how the user-registration and login pages work.)

Designing the Blog Application
Because blogs are so popular on the Web, you can find plenty of examples of
blog applications to provide inspiration for your design. The blog application
in this chapter is relatively simple. It provides the following features:

� Any visitor to the Web site can register to create an account. Once regis-
tered, a user can create one or more blogs.

19_597760 ch11.qxp 1/11/06 10:00 PM Page 375

� When a registered user logs in, a My Blogs page is displayed to list the
blogs that user has created. This page includes a link that lets the user
create a new post for any of his or her blogs.

� Blog posts consist of simple text with no embedded HTML or images.

� Unregistered visitors can view blogs and leave comments but can’t
create blogs. Comments consist of simple text with no HTML or images.

� To keep things simple, this Blog application doesn’t provide for editing
the blog title, description, posts, or comments once they’ve been cre-
ated. In the real blogosphere, those features are desirable to include.

� The Home page for the Blog application lists all blogs that have been
created on the site. The title displayed for each blog is a link that takes
the user to that blog.

� When the visitor first displays a blog, the most recently created post is
displayed, along with a list of previous posts. The visitor can use this list
to display previous posts.

� The Blog page also includes links that display comments for the current
post and lets the visitor leave a comment.

Designing the User Interface
The Blog application uses a total of seven pages, as shown in Figure 11-1. Two
of them are for logging in and registering; two of them are accessible only to
registered users who have logged in. The other three are for viewing blogs
and leaving comments.

The Blog Home page
The Home page for the Blog application (Default.aspx) is shown in Figure
11-2. As you can see, this page lists the blogs that are available on the site. In
this example, two users have created blogs. (In a popular blog site, of course,
there would be many more than two blogs to choose from.)

The “Blog-O-Rama” title and the links beneath it are provided by the Master
Page, so they’re available throughout the site. They let the user return to the
Home page, log in (or log out if the user is already logged in), register a new
user account, and go to the My Blogs page. (The My Blogs page, as you’ll
soon see, lists the blogs created by the currently logged-in user, lets the user
add a new post to one of his or her blogs, and lets the user create a new
blog.)

376 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 376

Figure 11-2:
The Blog

Home page.

Default.aspx

Blog Home
page

Login.aspx

Login page

MyBlogs.aspx

My Blogs
page

Comments.aspx

Comments
page

Comment.aspx

Leave
Comment
page

Blog.aspx

Blog page

Register.aspx

Registration
pageFigure 11-1:

The page
flow for

the Blog
application.

377Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 377

The Blog page
When the user selects a blog from the application’s Home page (or from the
My Blogs page, as you’ll see in a moment), the Blog page is displayed, as
shown in Figure 11-3. This page displays the most recent post for the blog as
well as a list of older posts; the user can click and view the posts in this list as
well. Beneath the post, a count of comments made for the post is displayed,
along with a link to view the comments and a link to leave a new comment.

This page uses a FormView control to display the post itself and a GridView
control to display the list of posts. The SELECT statement for the FormView
control’s data source is tied to the SelectedValue property of the GridView
control. As a result, the FormView control displays the post selected by the
user. When the page is first displayed, the most recent post is automatically
selected.

Notice that the URL in the address bar includes a query string named blog.
This query string is set to the ID of the blog selected by the user in the Blog
Home page. The Blog page uses this query string to determine which blog to
display.

Figure 11-3:
The Blog

page.

378 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 378

The Comments page
When the user clicks the View Comments link in the Blog page, the Comments
page is displayed, as shown in Figure 11-4. This page displays any comments
left by other users. The comments are listed in descending date sequence, so
the most recent comment is displayed first. A query string field named postid
is used to determine the post whose comments are to be displayed. (The other
query string fields shown in the URL for this page, post and blogid, are used
so to remember which blog and post to display when the user returns to the
Blog page. (There’s more to know about these query string fields; you can see
it in the source code for the Blog.aspx page.)

This page also includes a Return link that returns to the Blog page and a
Leave Comment link that lets the user add a new comment.

The Leave Comment page
If the user clicks the Leave a Comment link on the Blog page or the Comments
page, the Leave Comment page is displayed (as shown in Figure 11-5). Here
the user can leave a comment that’s associated with a particular post. The
Leave Comment page has text boxes for the user to enter his or her name and
comment. Note that the user doesn’t have to register or log in to leave a com-
ment. As a result, the user can enter any name he or she pleases in the Name
text box.

Figure 11-4:
The

Comments
page.

379Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 379

This page also includes two buttons. To post a comment, the user clicks the
Post button. To return to the previous page without posting a comment, the
user clicks the Cancel button.

The Login page
If the user clicks the Log In link that appears in the Master page (and thus on
each page in the site) or attempts to access the My Blogs page without first
logging in, the Login page shown in Figure 11-6 is displayed. This page simply
uses a standard ASP.NET Login control to prompt the user for a username
and password.

In Chapter 4, you can find information about enhancing this login page by
providing links that let the user change his or her password or retrieve a for-
gotten password.

Figure 11-5:
The Leave
Comment

page.

380 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 380

The Register page
To create a new user account, the user can click the Register link that appears
in the Master Page. Then the Register page appears, as shown in Figure 11-7.
This page uses an ASP.NET CreateUserWizard control to create a new user
account. (For more information about this control, refer to Chapter 4.)

The My Blogs page
Figure 11-8 shows the My Blogs page, which is displayed when the user clicks
the My Blogs link that appears in the Master Page and has logged in. This
page displays the blogs the user has created, lets the user post a new article
to one of his or her blogs, and lets the user create a new blog. To post a new
article to a blog, the user simply clicks the New Post link for the blog. To
create a new blog, the user enters the blog’s name and description and clicks
the Create Blog button.

Figure 11-6:
The Login

page.

381Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 381

Figure 11-8:
The My

Blogs page.

Figure 11-7:
The Register

page.

382 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 382

The New Post page
The New Post page is shown in Figure 11-9. This page is displayed when the
user clicks the New Post link on the My Blogs page. It lets the user enter the
subject and text for a new article to be posted to the user’s blog. Note that
the blog the article should be posted to is passed to the New Post page as a
query string field.

Designing the Database
The database for the Blog application uses just three tables:

� Blogs

� Posts

� Comments

Figure 11-10 shows a diagram for the database, and the following sections
describe each table individually.

Figure 11-9:
The New

Post page.

383Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 383

The Blogs table
The Blogs table records vital information about the blogs that have been
created by users of the Web site. The columns for the Blogs table are listed
in Table 11-1.

Table 11-1 The Blogs Table
Column name Type Description

blogid INT IDENTITY This column provides a unique ID
number for each blog created by
the site’s users, and serves as the
primary key for the Blogs table.

username VARCHAR(100) The name of the user that created
the blog.

name VARCHAR(255) The blog’s name.

description VARCHAR(255) A short description of the blog.

posts INT The number of posts that have been
made to this blog. A trigger updates
this field automatically whenever a
row is inserted into the Posts
table.

The Posts table
The Posts table stores the posts that users have made to their blogs. Table
11-2 lists the columns defined for this table.

Blogs
blogid
username
name
description
posts

Posts
postid
blogid
postdate
subject
post
comments

Comments
commentid
postid
commentdate
username
comment

Figure 11-10:
A diagram
of the Blog
database.

384 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 384

Table 11-2 The Posts Table
Column name Type Description

postid INT IDENTITY This column provides a unique ID
number for each post, and serves as
the primary key for the Posts table.

blogid INT This column specifies the blog that the
post is associated with, and serves as
a foreign key to the blogid column
in the Blogs table.

postdate DATETIME The date and time the post was made.
The default value for this column is the
current date and time.

subject VARCHAR(255) The subject title for the post.

post VARCHAR(MAX) The text of the post.

comments INT The number of comments that have
been made to this blog. A trigger
updates this field automatically
whenever a row is inserted into the
Comments table.

The Comments table
The Comments table records comments made by visitors to the blog site.
The columns of the Comments table are listed in Table 11-3.

Table 11-3 The Comments Table
Column name Type Description

commentid INT IDENTITY This column uniquely identifies each
comment and serves as the primary
key for the Comments table.

postid INT The ID of the post the comment
belongs to. This is a foreign key to
the postid column of the Posts
table.

(continued)

385Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 385

Table 11-3 (continued)
Column name Type Description

commentdate DATETIME The date and time the comment was
recorded. The default value for this
column is the current date and time.

username VARCHAR(100) The name of the person who left the
comment.

comment VARCHAR(MAX) The text of the comment.

Creating the Database
You can create the Blog database by running the script that’s shown in
Listing 11-1. To run this script, open a command prompt window and change
to the directory that contains the script. Then enter this command:

sqlcmd -S localhost\SQLExpress -i CreateBlogDB.sql

As usual, you’ll need to change the host name from localhost if you’re not
using SQL Server Express on your own computer.

Listing 11-1: The CreateBlogDB.sql script

USE master ➝1
GO

IF EXISTS(SELECT * FROM sysdatabases ➝2
WHERE name=’Forum’)

DROP DATABASE Blog
GO

CREATE DATABASE Blog ➝3
ON (NAME=Product,

FILENAME = ‘C:\APPS\Blog.mdf’,
SIZE=10)

GO

USE Blog ➝4
GO

CREATE TABLE Blogs (➝5
blogid INT IDENTITY,
username VARCHAR(100) NOT NULL,
name VARCHAR(255) NOT NULL,

386 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 386

description VARCHAR(255) NOT NULL,
posts INT NOT NULL

DEFAULT 0,
PRIMARY KEY(blogid)
)

GO

CREATE TABLE Posts (➝6
postid INT IDENTITY,
blogid INT NOT NULL,
postdate DATETIME NOT NULL

DEFAULT CURRENT_TIMESTAMP,
subject VARCHAR(255) NOT NULL,
post VARCHAR(MAX) NOT NULL,
comments INT NOT NULL

DEFAULT 0,
PRIMARY KEY(postid),
FOREIGN KEY(blogid) REFERENCES Blogs(blogid)
)

GO

CREATE TABLE Comments (➝7
commentid INT IDENTITY,
postid INT NOT NULL,
commentdate DATETIME NOT NULL

DEFAULT CURRENT_TIMESTAMP,
username VARCHAR(100) NOT NULL,
comment VARCHAR(MAX) NOT NULL,
PRIMARY KEY(commentid),
FOREIGN KEY(postid) REFERENCES Posts(postid)
)

GO

CREATE TRIGGER tr_PostCount ➝8
ON Posts
AFTER INSERT

AS
DECLARE @blogid INT

SELECT @blogid = blogid
FROM inserted

UPDATE blogs
SET posts = posts + 1
WHERE blogid = @blogid

RETURN
GO

CREATE TRIGGER tr_CommentCount ➝9
ON Comments
AFTER INSERT

(continued)

387Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 387

Listing 11-1 (continued)ˇ

AS
DECLARE @postid INT

SELECT @postid = postid
FROM inserted

UPDATE posts
SET comments = comments + 1
WHERE postid = @postid

RETURN
GO

Nine rapid-fire paragraphs draw out the pertinent details of this listing:

➝ 1 Sets the database context to master.

➝ 2 Deletes the existing Blog database if it exists.

➝ 3 Creates a database named Blog. The data file is stored in
C:\Apps.

➝ 4 Sets the database context to Blog.

➝ 5 Creates the Blogs table.

➝ 6 Creates the Posts table.

➝ 7 Creates the Comments table.

➝ 8 Creates a trigger named tr_PostCount. This trigger executes
whenever a row is inserted in the Posts table. It defines a vari-
able named @blogid which is set to the value of the blogid
column in the inserted row. Then it executes an UPDATE statement
that increments the posts column for the Blogs row that the new
post was added to.

➝ 9 Creates a trigger named tr_CommentCount. This trigger executes
whenever a row is inserted in the Comments table. It defines a
variable named @postid which is set to the value of the postid
column in the inserted row. Then it executes an UPDATE statement
that increments the comments column of the appropriate row in
the Posts table.

Adding test data
On the companion CD, you’ll find a script named InsertData.sql, which
creates test data for the database. It creates two blogs, along with several
posts and comments.

388 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 388

To run the InsertData.sql script, open a command window, change to the
directory that contains the script, and run this command:

sqlcmd -S localhost\SQLExpress -i InsertData.sql

You’ll need to change the server name if it is other than localhost\
SQLExpress.

SQL statements for working
with the database
The Blog application uses several SQL statements to retrieve and update data
in the Blog database, as described in the following paragraphs:

� To list the Blogs on the default.aspx, this SELECT statement is used:

SELECT [blogid], [name],
[description], [username], [posts]

FROM [Blogs]
ORDER BY [name]

� The MyBlogs.aspx page uses a similar SELECT statement to retrieve
the blogs for the current user:

SELECT [blogid], [name],
[description], [username], [posts]

FROM [Blogs]
WHERE [username]=@username
ORDER BY [name]

� The Blog.aspx page uses the following SELECT statement to list the
posts in a particular blog:

SELECT [postid], [blogid],
[postdate], [subject]

FROM [Posts]
WHERE ([blogid] = @blogid)
ORDER BY [postdate] DESC

The posts are sorted in descending date sequence, so the newest post is
listed first.

� The Blog.aspx page also uses this SELECT statement to retrieve the
details for the selected post:

SELECT [postid], [blogid],
[postdate], [subject],
[post], [comments]

FROM [Posts]
WHERE ([postid] = @postid)

389Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 389

� The Comments.aspx page uses this SELECT statement to retrieve all of
the comments for a given post:

SELECT [commentdate], [username], [comment]
FROM [Comments]
WHERE ([postid] = @postid)
ORDER BY [commentdate]

� The MyBlogs.aspx page uses this statement to create a new blog:

INSERT INTO [Blogs]
([username], [name],
[description], [posts])

VALUES (@username, @name,
@description, @posts)

� To create a new post, the NewPost.aspx page uses this statement:

INSERT INTO [Posts]
([blogid], [subject], [post])

VALUES (@blogid, @subject, @post)

� Finally, the Comment.aspx page uses the following INSERT statement to
create a new comment:

INSERT INTO [Comments]
([postid], [username], [comment])

VALUES (@postid, @username, @comment)

Connecting to the database
As with the other applications in this book, the connection string for the
Blog application is stored in the <connectionStrings> section of the
web.config file:

<connectionStrings>
<add name=”BlogConnectionString”

connectionString=”Data
Source=localhost\SQLExpress;

Initial Catalog=Blog;Integrated Security=True”/>
</connectionStrings>

Note that if you’re not using SQL Server Express on your local computer,
you’ll have to modify the connection string to provide the correct server
name.

Building the Master Page
The Master page for the Blog application is shown in Listing 11-2. The code-
behind file for this Master Page has no methods, so it isn’t shown here.

390 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 390

Listing 11-2: The master page (MasterPage.master)

<%@ Master Language=”C#” ➝1
AutoEventWireup=”true”
CodeFile=”MasterPage.master.cs”
Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Blog-O-Rama</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<h1>Blog-O-Rama</h1>
<asp:LoginName ID=”LoginName1” ➝2

runat=”server”
FormatString=”Hello, {0}” />

<asp:LinkButton ID=”btnHome” runat=”server” ➝3
Text=”Home”
PostBackUrl=”~/Default.aspx” />

<asp:LoginStatus ID=”LoginStatus1” ➝4
runat=”server”
LogoutAction=”Refresh” />

<asp:LinkButton ID=”btnRegister” ➝5
runat=”server”
Text=”Register”
CausesValidation=”False”
PostBackUrl=”~/Register.aspx” />

<asp:LinkButton ID=”btnMyBlogs” ➝6
runat=”server”
Text=”My Blogs”
CausesValidation=”False”
PostBackUrl=”~/Admin/MyBlogs.aspx” />

<asp:contentplaceholder ➝7
id=”ContentPlaceHolder1”
runat=”server”>

</asp:contentplaceholder>
</div>
</form>

</body>
</html>

391Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 391

Here’s a rundown on the key points of this listing:

➝ 1 If you’re using Visual Basic rather than C# for the application’s
code-behind files, you should change the Language attribute to
C# and the AutoEventWireup attribute to false.

➝ 2 The LoginName control displays the name of the user if the user
has logged in. The FormatString attribute adds the word Hello
before the user name.

➝ 3 This link button returns the user to the home page
(Default.aspx).

➝ 4 The LoginStatus control displays a link button that lets the user
log in or out.

➝ 5 This link button posts back to the Register.aspx page so new
users can register.

➝ 6 This link button posts to the MyBlogs.aspx page. This page is in
the Admin folder, which contains a web.config file that prohibits
anonymous access. As a result, the user must log in to access this
page. If the user is not already logged in, ASP.NET will automatically
redirect the user to the Login.aspx page. To accomplish this, the
web.config file in the Admin folder contains the following lines:

<system.web>
<authorization>

<deny users=”?” />
</authorization>

</system.web>

➝ 7 The ContentPlaceHolder control marks the location where the
content for each page of the application will be displayed.

Building the Blog Home Page
The Blog Home page (Default.aspx) displays a list of the blogs that are
available on the Blog Web site. You can refer back to Figure 11-2 to see how
this page appears when the application runs.

The Blog Home page consists mostly of a GridView control that displays a
list of the blogs in the Blogs table. The GridView control displays three
columns. The first displays the name and description of the blog, with the
name presented as a link button that posts to the Blog.aspx page and
passes the ID of the selected blog as a query string field. The second column
displays the name of the user that created the blog, and the third displays
the number of posts that have been made to the blog.

Listing 11-3 presents the .aspx code for this page. A code-behind file isn’t
required.

392 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 392

Listing 11-3: The Blog Home page (Default.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Default.aspx.cs”
Inherits=”_Default”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<h3>Active Blogs</h3>

<asp:GridView ID=”GridView1” runat=”server” ➝3
AllowPaging=”True”
AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource1”>
<Columns>
<asp:TemplateField> ➝4

<HeaderTemplate>
Blog

</HeaderTemplate>
<ItemTemplate>

<asp:LinkButton ID=”LinkButton1”
runat=”server”
Text=’<% #Bind(“name”) %>’
PostBackUrl
=’<% #Bind(“blogid”,

“Blog.aspx?blog={0}”) %>’ />

<asp:Label ID=”Label2” runat=”server”

Text=’<% #Bind(“description”) %>’ />
</ItemTemplate>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”250px” />

</asp:TemplateField>
<asp:BoundField ➝5

DataField=”username”
HeaderText=”Owner” >
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle HorizontalAlign=”Left”

Width=”100px” />
</asp:BoundField>
<asp:BoundField ➝6

DataField=”posts”
HeaderText=”Posts” >
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle HorizontalAlign=”Left”

Width=”80px” />
</asp:BoundField>
</Columns>

</asp:GridView>

(continued)

393Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 393

Listing 11-3 (continued)

<asp:SqlDataSource ID=”SqlDataSource1” ➝7
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

SelectCommand=”SELECT [blogid], [name],
[description], [username], [posts]
FROM [Blogs]
ORDER BY [name]”>

</asp:SqlDataSource>
</asp:Content>

Seven important lines in this listing merit a little closer look:

➝ 1 You should change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you’re working with
Visual Basic rather than C#. (It doesn’t really matter for this page,
since no code-behind file is needed, but you should change it
nonetheless.)

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 The GridView control lists the blogs retrieved from the Blogs
table by the SQL data source named SqlDataSource1. Note that
paging is enabled for this GridView control. As a result, ten blogs
will be listed at a time.

➝ 4 The first column defined for the GridView control is a template
column. This column specifies two templates:

The header template displays the word “Blog” as the column
heading.

The item template displays the blog name and title. The blog
name is shown as a link button that uses binding expressions for
the Text and PostBackUrl attributes. The binding expression
for the Text attribute simply retrieves the name field from the data
source. The binding expression for the PostBackUrl attribute is a
little more complicated. It retrieves the blogid field from the data
source and uses a format string to create a URL that specifies the
blogid as a query string field. For example, if the blogid value is 3,
the PostBackUrl attribute’s value will be Blog.aspx?blog=3.

➝ 5 The second column in the GridView control is bound to the
username field in the data source.

➝ 6 The third column in the GridView control is bound to the posts
field in the data source.

➝ 7 The data source uses a SELECT statement to retrieve the blogid,
name, description, username, and posts columns from the
Blogs table.

394 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 394

Building the Blog Page
The Blog page displays one post from a selected blog (by default, the most
recent) as well as a list of all the posts that have been made to the blog. The
Blog page is passed a query string field to indicate which blog to display. In
addition, a query string field is used to indicate which post should be dis-
played. If this query string is not present, the most recent post for the blog is
displayed by default.

A code-behind file is used here to determine which post to display based on
the post query string and to handle the Click events for the buttons that
display comments for the post or enable a visitor to leave a comment. The
following sections present the Blog.aspx file and both the C# and Visual
Basic versions of the code-behind file.

The Blog.aspx page
Listing 11-4 presents the .aspx code for the Blog page. Most of the code for
this page is straightforward, so you shouldn’t have any trouble following it.

Listing 11-4: The Blog.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Blog.aspx.cs”
Inherits=”Blog”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<table border=”0”> ➝3
<tr>
<td width=”700”>
<asp:FormView ID=”FormView1” runat=”server” ➝4
DataSourceID=”SqlDataSource1”>
<ItemTemplate>
<asp:Label ID=”lblName” runat=”server” ➝5
Text=’<%# Bind(“name”,

“<h3>{0}</h3>”) %>’ />
<asp:Label ID=”lblDesc” runat=”server” ➝6
Text=’<%# Bind(“description”,

“<h4>{0}”) %>’ />
<asp:Label ID=”lblUser” runat=”server” ➝7
Text=’<%# Bind(“username”,

(continued)

395Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 395

Listing 11-4 (continued)

“
By {0}</h4>”) %>’ />
</ItemTemplate>

</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝8

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:BlogConnectionString

%>”
SelectCommand=”SELECT [name], [description],

[username], [posts]
FROM [Blogs]
WHERE ([blogid] = @blogid)”>

<SelectParameters>
<asp:QueryStringParameter Name=”blogid” ➝9

QueryStringField=”blog” Type=”Int32” />
</SelectParameters>

</asp:SqlDataSource>
</td>

</tr>
<tr>
<td width=”350” valign=”Top”>

<asp:FormView ID=”FormView2” runat=”server” ➝10
DataKeyNames=”postid”
DataSourceID=”SqlDataSource2” >

<ItemTemplate>
<asp:Label ID=”lblSubject” ➝11
runat=”server”
Text=’<%# Bind(“subject”,

“<h1>{0}</h1>”) %>’ />
<asp:Label ID=”lblDate” ➝12
runat=”server”
Text=’<%# Bind(“postdate”,

“<h3>{0:F}</h3>”) %>’ />
<asp:Label ID=”lblPost” ➝13
runat=”server”
Text=’<%# Bind(“post”, “<p>{0}</p>”) %>’ />

<asp:Label ID=”lblComments” ➝14
runat=”server”
Text=’<%# Bind(“comments”,

“{0} comments.”) %>’/>
<asp:LinkButton ID=”btnViewComments” ➝15
runat=”server”
OnClick=”btnViewComments_Click”
Text=”View comments” />

<asp:LinkButton ID=”btnLeaveComment” ➝16
runat=”server”
OnClick=”btnLeaveComment_Click”
Text=”Leave a comment” />

</ItemTemplate>
</asp:FormView>

396 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 396

<asp:SqlDataSource ID=”SqlDataSource2” ➝17
runat=”server”
ConnectionString=
“<%$ ConnectionStrings:BlogConnectionString

%>”
SelectCommand=”SELECT [postid], [blogid],

[postdate], [subject],
[post], [comments]
FROM [Posts]
WHERE ([postid] = @postid)”>

<SelectParameters>
<asp:ControlParameter ➝18
ControlID=”GridView1”
Name=”postid”
PropertyName=”SelectedValue”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

</td>
<td width=”250”>
<asp:GridView ID=”GridView1” runat=”server” ➝19

AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource3”
DataKeyNames=”postid”
AllowPaging=”True” >

<Columns>
<asp:TemplateField ➝20

HeaderText=”Previous Posts” >
<ItemTemplate>
<asp:LinkButton ID=”btnPost”
runat=”server”
Text=’<%# Bind(“subject”) %>’
CommandName=”Select” />

<asp:Label ID=”lblDate”
runat=”server”
Text=’<%# Bind(“postdate”, “{0:g}”) %>’ />

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource3” ➝21

runat=”server”
ConnectionString=
“<%$ ConnectionStrings:BlogConnectionString %>”
SelectCommand=”SELECT [postid], [blogid],

[postdate], [subject]
FROM [Posts]
WHERE ([blogid] = @blogid)
ORDER BY [postdate] DESC”>

(continued)

397Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 397

Listing 11-4 (continued)

<SelectParameters>
<asp:QueryStringParameter ➝22
Name=”blogid”
QueryStringField=”blog”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

</td>
</tr>

</table>
</asp:Content>

The following paragraphs draw your attention irresistibly to the highlights of
this listing:

➝ 1 If you use the Visual Basic version of the code-behind file, be sure
to change the Language, AutoEventWireup, and CodeFile
attributes in the Page directive.

➝ 2 The <asp:Content> element provides the content displayed by
this page.

➝ 3 A table is used to format the controls on the page. The table
consists of two rows. The first has a single cell and contains a
FormView control that displays the blog name, description,
and owner. The second row has two cells. The first displays
the selected post with a FormView control, and the second dis-
plays the list of posts for the blog using a GridView control.

➝ 4 This FormView control displays the blog name and description
as well as the name of the user that created the blog. It’s bound
to the data source named SqlDataSource1.

➝ 5 The first control in the item template is a label that displays the
blog name. Its Text attribute uses a binding expression that
retrieves the name field from the data source and formats it using
<h3> and </h3> tags.

➝ 6 The second control in the item template is a label that displays the
blog description. Its Text attribute uses a binding expression that
retrieves the description field from the data source and formats
it using an <h4>. Note that this label doesn’t include the closing
</h4> tag. Instead, the closing tag is provided by the label in line 7.

➝ 7 The third control in the item template is a label that displays the
name of the user who created the blog. Its Text attribute uses a
binding expression that retrieves the username field from the
data source and formats it with a closing </h4> tag.

➝ 8 The SqlDataSource1 data source retrieves the information from
the Blogs table, using the blogid parameter to specify the blog to
be retrieved.

398 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 398

➝ 9 The value of the blogid parameter is bound to the query string
field named blog.

➝ 10 This FormView control displays the selected post for the current
blog. It is bound to SqlDataSource2.

➝ 11 The first control in the item template displays the post subject.
The subject is formatted using <h1> and </h1> tags.

➝ 12 The second control in the item template displays the date of the
post, which is formatted using <h3> and </h3> tags.

➝ 13 The third control in the item template displays the text of the
post, which is formatted between a matched set of <p> and
</p> tags.

➝ 14 The fourth control in the item template displays the number of
comments associated with the post.

➝ 15 The fifth control in the item template is a link button that takes
the user to the Comments page.

➝ 16 The final control in the item template is a link button that lets the
user leave a comment.

➝ 17 The SqlDataSource2 data source retrieves the information for
the current post from the Posts table, using the postid parame-
ter to specify the post to be retrieved.

➝ 18 The value of the postid parameter is bound to the
SelectedValue property of the GridView1 control.

➝ 19 The GridView control displays a list of the posts for the current
blog. It is bound to SqlDataSource3. Paging is enabled to dis-
play ten posts at a time.

➝ 20 The first (and only) column for this GridView control is a tem-
plate field column whose item template contains two controls: a
link button that displays the post subject (bound to the subject
field) and a label that displays the date (bound to the postdate
field). Note that the link button includes a CommandName attribute
that specifies Select as the command name. Thus the GridView
row is selected when the user clicks this button.

➝ 21 The SqlDataSource3 data source retrieves the posts for the
current blog, as indicated by the blogid parameter.

➝ 22 The blogid parameter is bound to the blog query string.

The code-behind file for the Blog page
The code-behind file for the Blog page must handle the PageLoad event to
determine which post should be displayed. In addition, it must handle the
click events for the View Comments and Leave a Comment links so it can

399Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 399

set up the query strings passed to the Comments.aspx and Comment.aspx
page. Listings 11-5 and 11-6 show the C# and Visual Basic versions of this
code-behind file.

Listing 11-5: The code-behind file for the Blog page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Blog : System.Web.UI.Page
{

protected void Page_Load(➝1
object sender, EventArgs e)

{
if (!IsPostBack)
{

if (Request.QueryString[“post”] == null)
GridView1.SelectedIndex = 0;

else
{

GridView1.SelectedIndex
= Int16.Parse(

Request.QueryString[“post”]);
}
this.DataBind();

}
}

protected void btnViewComments_Click(➝2
object sender, EventArgs e)

{
Response.Redirect(“Comments.aspx?post=”

+ GridView1.SelectedIndex.ToString()
+ “&postid=”
+ GridView1.SelectedValue.ToString()
+ “&blog=”
+ Request.QueryString[“blog”]);

}

protected void btnLeaveComment_Click(➝3
object sender, EventArgs e)

{
Response.Redirect(“Comment.aspx?post=”

+ GridView1.SelectedIndex.ToString()
+ “&postid=”

400 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 400

+ GridView1.SelectedValue.ToString()
+ “&blog=”
+ Request.QueryString[“blog”]);

}
}

The following paragraphs describe the three methods in this code-behind file:

➝ 1 The Page_Load method sets the SelectedIndex property of the
GridView control to the value indicated by the post query string
field, if the post query string is present. If the post query string
is missing, the SelectedIndex property is set to zero. Then the
DataBind method is called to bind the controls on the page.

➝ 2 The btnViewComments_Click method is called when the user
clicks the View Comments link. It simply redirects the user to the
Comments.aspx page, passing query string fields that contain the
ID of the selected post (postid), the index of the selected post
(post), and the ID of the current blog (blog).

➝ 3 The btnLeaveComment_Click method is called when the user
clicks the Leave a Comment link. It redirects the user to the
Comment.aspx page, passing the same query string fields as the
btnViewComments_Click method.

Listing 11-6: The code-behind file for the Blog page (VB version)

Partial Class Blog
Inherits System.Web.UI.Page

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Load

If Not IsPostBack Then
If Request.QueryString(“post”) Is Nothing Then

GridView1.SelectedIndex = 0
Else

GridView1.SelectedIndex _
= Int16.Parse(_

Request.QueryString(“post”))
End If
Me.DataBind()

End If
End Sub

Protected Sub btnViewComments_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs)

Response.Redirect(“Comments.aspx?post=” _

(continued)

401Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 401

Listing 11-6 (continued)

+ GridView1.SelectedIndex.ToString() _
+ “&postid=” _
+ GridView1.SelectedValue.ToString() _
+ “&blog=” _
+ Request.QueryString(“blog”))

End Sub

Protected Sub btnLeaveComment_Click(_ ➝3
ByVal sender As Object, _
ByVal e As System.EventArgs) _

End Sub

End Class

Building the Comments Page
The Comments page uses a GridView control to display all comments left
for a particular post. The ID of the post whose comments are to be displayed
is passed to the page via a query string field. You can refer back to Figure 11-4
for a glimpse of what this page looks like.

The Comments.aspx page
Listing 11-7 shows the Comments.aspx page. As you can see, this page uses
three SQL data sources, two FormView controls, and a GridView control to
display the comments that have been created for the post.

Listing 11-7: The Comments.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Comments.aspx.cs”
Inherits=”Comments”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:FormView ID=”FormView2” runat=”server” ➝3

DataSourceID=”SqlDataSource1”
DataKeyNames=”postid” >
<ItemTemplate>

<asp:Label ID=”lblSubject” ➝4
runat=”server”
Text=’<%# Bind(“subject”,

“<h1>{0}</h1>”) %>’>
</asp:Label>

402 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 402

<asp:Label ID=”lblDate” runat=”server” ➝5
Text=’<%# Bind(“postdate”,
“<h3>{0:F}</h3>”) %>’>

</asp:Label>
</ItemTemplate>

</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝6

runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

SelectCommand=”SELECT [postid], [blogid],
[postdate], [subject]
FROM [Posts]
WHERE ([postid] = @postid)”>

<SelectParameters>
<asp:QueryStringParameter ➝7

Name=”postid”
QueryStringField=”post”
Type=Int32 />

</SelectParameters>
</asp:SqlDataSource>

<asp:DataList ID=”DataList1” runat=”server” ➝8

DataSourceID=”SqlDataSource2”>
<ItemTemplate>

<hr>
<asp:Label ID=”lblUserName” ➝9

runat=”server”
Text=’<%# Bind(“username”,

“Comment by {0}”) %>’
Font-Size=”X-Small” />

<asp:Label ID=”lblDate” runat=”server” ➝10
Text=’<%# Bind(“commentdate”,

“ Date: {0:G}”) %>’
Font-Size=”X-Small” />

<asp:Label ID=”lblComment” ➝11

runat=”server”
Text=’<%# Bind(“comment”) %>’
Width=”300px”/>

</ItemTemplate>
</asp:DataList>
<asp:SqlDataSource ID=”SqlDataSource2” ➝12

runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

SelectCommand=”SELECT [commentdate],
[username], [comment]
FROM [Comments]
WHERE ([postid] = @postid)
ORDER BY [commentdate]”>

<SelectParameters>

(continued)

403Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 403

Listing 11-7 (continued)

<asp:QueryStringParameter ➝13
Name=”postid”
QueryStringField=”postid”
Type=”Int32” />

</SelectParameters>
</asp:SqlDataSource>

<asp:LinkButton ID=”btnReturn” runat=”server” ➝14

Text=”Return”
OnClick=”btnReturn_Click” />

<asp:LinkButton ID=”btnComment” runat=”server” ➝15
Text=”Leave Comment”
OnClick=”btnComment_Click” />

</asp:Content>

To help you follow along, the following paragraphs describe the key points of
this listing:

➝ 1 You’ll need to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This FormView control displays the subject and date of the post
that the comments apply to. The FormView control is bound to
the SqlDataSource1 data source.

➝ 4 The first control in the FormView control’s item template is a
label that displays the subject.

➝ 5 The second control in the item template is another label that dis-
plays the date.

➝ 6 The SqlDataSource1 data source retrieves data for the post
specified by the postid parameter.

➝ 7 The value of the postid parameter is bound to the query string
field named post.

➝ 8 The DataList control displays the comments for the post. It’s
bound to the data source named SqlDataSource2.

➝ 9 The first control in the data list’s item template is a label that dis-
plays the user name.

➝ 10 The second control in the item template is a label that displays
the date the comment was created.

➝ 11 The third control in the item template is a label that displays the
comment text.

➝ 12 The SqlDataSource2 data source retrieves the comments for
the post specified by the postid parameter.

404 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 404

➝ 13 The value of the postid parameter is bound to the query string
field named postid.

➝ 14 The btnReturn button returns the user to the Blog page. The
btnReturn_Click method in the code-behind file executes when
the user clicks this button.

For this line and the next, note that if you’re working with Visual
Basic, you should omit the OnClick attribute.

➝ 15 The btnComment button lets the user add a new comment to the
post. (Again, if you’re working with Visual Basic, omit the
OnClick attribute.)

The code-behind file for the Comments page
Listings 11-8 and 11-9 show the C# and Visual Basic versions of the code-behind
file for the Comments page, which handles the click events for the two links
on this page.

Listing 11-8: The code-behind file for the Comments page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Comments : System.Web.UI.Page
{

protected void btnReturn_Click(➝1
object sender, EventArgs e)

{
Response.Redirect(“Blog.aspx?post=”

+ Request.QueryString[“post”]
+ “&postid=”
+ Request.QueryString[“postid”]
+ “&blog=”
+ Request.QueryString[“blog”]);

}

protected void btnComment_Click(➝2
object sender, EventArgs e)

(continued)

405Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 405

Listing 11-8 (continued)

{
Response.Redirect(“Comment.aspx?post=”

+ Request.QueryString[“post”]
+ “&postid=”
+ Request.QueryString[“postid”]
+ “&blog=”
+ Request.QueryString[“blog”]);

}
}

The two methods in this code-behind file have some details worth noting:

➝ 1 The btnReturn_Click method is called when the user clicks the
Return link. It simply redirects to the Blog.aspx page, passing
back the three query strings that were in the request (via the
redirect URL).

➝ 2 The btnComment_Click method is called when the user clicks
the Leave a Comment link. It redirects to the Comment.aspx
page, again passing the three query strings via the redirect URL.

Listing 11-9: The code-behind file for the Comments page (VB version)

Partial Class Comments
Inherits System.Web.UI.Page

Protected Sub btnReturn_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnReturn.Click

Response.Redirect(“Blog.aspx?post=” _
+ Request.QueryString(“post”) _
+ “&postid=” _
+ Request.QueryString(“postid”) _
+ “&blog=” _
+ Request.QueryString(“blog”))

End Sub

Protected Sub btnComment_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnComment.Click

Response.Redirect(“Comment.aspx?post=” _
+ Request.QueryString(“post”) _
+ “&postid=” _
+ Request.QueryString(“postid”) _
+ “&blog=” _
+ Request.QueryString(“blog”))

End Sub
End Class

406 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 406

Building the Leave Comment Page
The Leave Comment page lets a Web site visitor add a comment to a post. To
see what this page looks like, flip back to Figure 11-5. The following sections
present the .aspx file and the code-behind files for this page.

The Comment.aspx page
The .aspx file for the Leave Comment page is shown in Listing 11-10. This
page displays the topic name in a FormView control at the top of the page.
Then text boxes are used to get the user’s name and comment.

Listing 11-10: The Comment.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Comment.aspx.cs”
Inherits=”Comment”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<table border=”0” width=”700” > ➝3
<tr>
<td width=”80” valign=”top”>
Your name:

</td>
<td width=”620” valign=”top”>
<asp:TextBox ID=”txtName” runat=”server” ➝4

Width=”400px”/>
</td>

</tr>
<tr>
<td width=”80” valign=”top”>
Your comment:

</td>
<td width=”620” valign=”top”>
<asp:TextBox ID=”txtComment” runat=”server” ➝5

TextMode=”MultiLine”
Height=”200px”
Width=”400px” />

</td>
</tr>

</table>
<asp:Button ID=”btnPost” runat=”server” ➝6

Text=”Post”
OnClick=”btnPost_Click” />

(continued)

407Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 407

Listing 11-10 (continued)

<asp:Button ID=”btnCancel” runat=”server” ➝7
Text=”Cancel”
OnClick=”btnCancel_Click”/>

<asp:SqlDataSource ID=”SqlDataSource1” ➝8
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

InsertCommand=”INSERT INTO [Comments]
([postid], [username], [comment])
VALUES (@postid, @username, @comment)” >

<InsertParameters>
<asp:QueryStringParameter Name=”postid” ➝9

Type=”String”
QueryStringField=”postid” />

<asp:ControlParameter Name=”username” ➝10
Type=”String”
ControlID=”txtName”
PropertyName=”Text” />

<asp:ControlParameter Name=”comment” ➝11
Type=”String”
ControlID=”txtComment”
PropertyName=”Text” />

</InsertParameters>
</asp:SqlDataSource>
</asp:Content>

The critical lines of this listing are described in the following paragraphs:

➝ 1 Don’t forget to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This page uses an HTML table to manage the layout of its controls.

➝ 4 This text box lets the Web site visitor enter his or her name.

➝ 5 This multi-line text box lets the Web site visitor enter the text of
his or her comment.

➝ 6 The Web site visitor clicks this button to record the comment.

For this line and the next, you should remove the OnClick
attribute if you’re using Visual Basic instead of C#.

➝ 7 This button cancels the comment and returns to the Blog page.
(Again, remove the OnClick attribute if you’re using VB instead
of C#.)

➝ 8 Even though this page doesn’t contain any bound controls, it still
uses SqlDataSource1 to insert the comment into the Comments
table. The InsertCommand attribute specifies an INSERT statement
that requires three parameters: postid, username, and comment.

408 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 408

➝ 9 The value of the postid parameter is obtained from the query
string field named postid.

➝ 10 The username parameter is bound to the txtName text box.

➝ 11 The comment parameter is bound to the txtComment text box.

The code-behind file for the
Leave Comment page
Listings 11-11 and 11-12 show the C# and Visual Basic versions of the code-
behind file for the Leave Comment page. As you can see, these code-behind
files contain just two methods, which handle the click event for the Post
and Cancel buttons.

Listing 11-11: The code-behind file for the Leave Comment page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Comment : System.Web.UI.Page
{

protected void btnPost_Click(➝1
object sender, EventArgs e)

{
SqlDataSource1.Insert();
Response.Redirect(“Blog.aspx?blog=”

+ Request.QueryString[“blog”]
+ “&post=”
+ Request.QueryString[“post”]);

}

protected void btnCancel_Click(➝2
object sender, EventArgs e)

{
Response.Redirect(“Blog.aspx?blog=”

+ Request.QueryString[“blog”]
+ “&post=”
+ Request.QueryString[“post”]);

}

}

409Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 409

You’ll sleep better tonight if you read the following paragraphs, which
describe the most important two lines of this code-behind file:

➝ 1 The btnPost_Click method executes when the user clicks the
Post button. This method calls the Insert method of the data
source to insert the comment into the Comments table. Then it
redirects to the Blog.aspx page.

➝ 2 The btnCancel_Click method is similar to the btnPost_Click
method, with one important exception: it doesn’t call the INSERT
method of the data source. As a result, any comment entered by
the user is ignored.

Listing 11-12: The code-behind file for the Leave Comment page (VB)

Partial Class Comment
Inherits System.Web.UI.Page

Protected Sub btnPost_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnPost.Click

SqlDataSource1.Insert()
Response.Redirect(“Blog.aspx?blog=” _

+ Request.QueryString(“blog”) _
+ “&post=” _
+ Request.QueryString(“post”))

End Sub

Protected Sub btnCancel_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnCancel.Click

Response.Redirect(“Blog.aspx?blog=” _
+ Request.QueryString(“blog”) _
+ “&post=” _
+ Request.QueryString(“post”))

End Sub
End Class

Building the Login Page
The Login page is displayed if the user clicks the Login button provided by
the Master Page or tries to access the My Blogs page without first logging in.
The .aspx code for this page (pictured back in Figure 11-6) is shown in
Listing 11-13.

410 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 410

Listing 11-13: The Login.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”Login.aspx.cs”
Inherits=”Login”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >

<asp:Login ID=”Login1” runat=”Server” ➝3
DestinationPageUrl=”~/Default.aspx”
TitleText=”Please enter your account information:

”
CreateUserText=”New user?”
CreateUserUrl=”~/Register.aspx” />

</asp:Content>

A quick list explains the details of three key lines in this listing:

➝ 1 Remember to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This page displays just one control, a Login control that lets the
user enter a name and password to log in. For more information
about how this control works, refer to Chapter 4.

Building the Register Page
The Register page is displayed if the user clicks the New User? link on the
Login page or the Register link displayed by the Master Page. (To see what
the Register page looks like, flip back to Figure 11-7.) The .aspx file for this
page, which doesn’t require a code-behind file, is shown in Listing 11-14.

Listing 11-14: The Register.aspx page

<%@ Page Language=”C#” ➝1
AutoEventWireup=”true”
MasterPageFile=”~/MasterPage.master”
CodeFile=”Register.aspx.cs”
Inherits=”Register”
title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2

(continued)

411Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 411

Listing 11-14 (continued)

ContentPlaceHolderID=”ContentPlaceHolder1” >
<asp:CreateUserWizard ID=”CreateUserWizard1” ➝3

runat=”server”
CreateUserButtonText=”Create Account”
ContinueDestinationPageUrl=”~\Admin\MyBlogs.aspx” >

</asp:CreateUserWizard>
</asp:Content>

Here are the details of three key lines in this listing:

➝ 1 Remember to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This page displays just one control, a CreateUserWizard con-
trol that walks the user through the steps required to register a
new user account. The ContinueDestinationPageUrl attribute
provides the URL of the page to be displayed when the user com-
pletes the Wizard. In this case, the My Blogs page will be displayed.
(For more information about how the CreateUserWizard con-
trol works, refer to Chapter 4.)

Building the My Blogs Page
The My Blogs page was originally shown back in Figure 11-8. It is similar to
the Blog Home page (Default.aspx), with four key differences:

1. It’s stored in the \Admin folder, which is protected from anonymous
access. That means that only users who have registered and logged in
can view it.

2. Rather than display all of the blogs in the Blogs table, it displays only
the blogs that were created by the current user.

3. It includes a link that takes the user to the Post page to add a new post
to one of his or her blogs.

4. It includes controls that let the user create a new blog.

The following sections present the .aspx code and code-behind files for
this page.

412 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 412

The MyBlogs.aspx page
The .aspx file for the My Blogs page is shown in Listing 11-15. It includes a
GridView control to display the user’s blogs and a set of text boxes, field val-
idators, and buttons that enable the user to create a new blog. In addition,
two SqlDataSource controls are used.

Listing 11-15: The My Blogs page (MyBlogs.aspx)

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”MyBlogs.aspx.cs”
Inherits=”MyBlogs”
Title=”My Blogs” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1” >
<h2>My Blogs</h2>

<asp:GridView ID=”GridView1” runat=”server” ➝3
AllowPaging=”True”
AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource1”>
<Columns>

<asp:TemplateField> ➝4
<HeaderTemplate>

Blog
</HeaderTemplate>
<ItemTemplate>

<asp:LinkButton ID=”LinkButton1”

runat=”server”
Text=’<% #Bind(“name”) %>’
PostBackUrl=’<% #Bind(“blogid”,

“~\Blog.aspx?blog={0}”) %>’
CausesValidation=”False” />

<asp:Label ID=”Label2” runat=”server”

Text=’<% #Bind(“description”) %>’ />
</ItemTemplate>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle HorizontalAlign=”Left”

Width=”250px” />
</asp:TemplateField>

<asp:BoundField ➝5
DataField=”username”

(continued)

413Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 413

Listing 11-15 (continued)

HeaderText=”Owner” >
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”100px” />

</asp:BoundField>

<asp:BoundField ➝6
DataField=”posts”
HeaderText=”Posts” >
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”80px” />

</asp:BoundField>

<asp:HyperLinkField ➝7
DataNavigateUrlFields=”blogid”
DataNavigateUrlFormatString

=”NewPost.aspx?blog={0}”
Text=”New Post”>
<ItemStyle Width=”70px” />

</asp:HyperLinkField>

</Columns>
</asp:GridView>
<asp:SqlDataSource ID=”SqlDataSource1” ➝8

runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

SelectCommand=”SELECT [blogid], [name],
[description], [username], [posts]
FROM [Blogs]
WHERE [username]=@username
ORDER BY [name]”>

<SelectParameters>
<asp:Parameter Name=”username” ➝9

Type=”String” />
</SelectParameters>

</asp:SqlDataSource>

To create a new blog:

<asp:Label ID=”Label3” runat=”server” ➝10
BorderStyle=”None” Text=”Blog name:”
Width=”80px” />

<asp:TextBox ID=”txtBlogName” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1” runat=”server”
ControlToValidate=”txtBlogName”
Display=”Dynamic”
ErrorMessage=”Required.” />

<asp:Label ID=”Label4” runat=”server” ➝11
BorderStyle=”None” Text=”Description:”
Width=”80px” />

414 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 414

<asp:TextBox ID=”txtDescription” runat=”server” />
<asp:RequiredFieldValidator

ID=”RequiredFieldValidator2” runat=”server”
ControlToValidate=”txtDescription”
Display=”Dynamic”
ErrorMessage=”Required.” />

<asp:Button ID=”btnCreate” runat=”server” ➝12
OnClick=”btnCreate_Click”
Text=”Create Blog” />

<asp:SqlDataSource ID=”SqlDataSource2” ➝13
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

InsertCommand=”INSERT INTO [Blogs]
([username], [name], [description])
VALUES (@username, @name, @description)” >

<InsertParameters> ➝14
<asp:Parameter

Name=”username” Type=”String” />
<asp:Parameter

Name=”name” Type=”String” />
<asp:Parameter

Name=”description” Type=”String” />
</InsertParameters>

</asp:SqlDataSource>
</asp:Content>

The following paragraphs describe the important lines of this listing:

➝ 1 You must change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 The GridView control lists the blogs retrieved from the Blogs
table by the SQL data source named SqlDataSource1. Although
it’s unlikely that any user will have more than a few blogs (most
will have only one), paging is enabled for this GridView control.

➝ 4 The first column of the GridView control is a template column
that specifies two templates:

• A header template displays the word Blog as the column
heading.

• An item template displays the blog name and title; a link button
displays the blog name. Binding expressions are used for the
Text and PostBackUrl attributes.

415Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 415

➝ 5 The second column is a bound column that displays the user-
name field.

➝ 6 The third column control is a bound column that displays the
number of posts for the blog, as indicated by the posts field.

➝ 7 The fourth column is a hyperlink field that provides a link to the
NewPost.aspx page so the user can create a new post. A format
string provides a value for the blog query string.

➝ 8 The SqlDataSource1 data source uses a SELECT statement to
retrieve five columns — blogid, name, description, username,
and posts — for the user indicated by the username parameter.

➝ 9 The username parameter is defined as a standard parameter. Its
value will be supplied in the Page_Load method of the code-
behind file.

➝ 10 This label, text box, and RequiredFieldValidator let the user
enter the name for a new blog.

➝ 11 This label, text box, and RequiredFieldValidator let the user
enter the description for a new blog.

➝ 12 The Create button lets the user create a new blog using the name
and description entered in the text boxes.

If you’re using Visual Basic, you should remove the OnClick
attribute.

➝ 13 The second data source (SqlDataSource2) provides the INSERT
statement used to create a new blog.

➝ 14 The INSERT statement uses three parameters — username,
name, and description — whose values will be set in the code-
behind file.

The code-behind file for
the My Blogs page
Listings 11-16 and 11-17 show the C# and Visual Basic versions of the code-
behind file for the My Blogs page. As you can see, it consists of just two meth-
ods: Page_Load (executed when the page loads) and btnCreate_Click,
executed when the user creates a new blog.

Listing 11-16: The code-behind file for the My Blogs page (C# version)

using System;
using System.Data;
using System.Configuration;
using System.Collections;

416 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 416

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.Configuration;

public partial class MyBlogs : System.Web.UI.Page
{

protected void Page_Load(➝1
object sender, EventArgs e)

{
SqlDataSource1.SelectParameters[“username”]

.DefaultValue = User.Identity.Name;

}
protected void btnCreate_Click(➝2

object sender, EventArgs e)
{

SqlDataSource2.InsertParameters[“username”]
.DefaultValue = User.Identity.Name;

SqlDataSource2.InsertParameters[“name”]
.DefaultValue = txtBlogName.Text;

SqlDataSource2.InsertParameters[“description”]
.DefaultValue = txtDescription.Text;

SqlDataSource2.Insert();
GridView1.DataBind();

}
}

Two methods in this file merit closer inspection:

➝ 1 The Page_Load method executes when the page loads. It simply
sets the value of the username parameter for the
SqlDataSource1 data source to the name of the logged-in user.
That way the data source retrieves only the current user’s blogs.

➝ 2 The btnCreate_Click method executes when the user clicks
the Create Blog button. It sets the values of the three Insert
parameters, calls the Insert method of the SqlDataSource2
data source, then calls the GridView control’s DataBind method
so the GridView control will show the new blog.

Listing 11-17: The code-behind file for the My Blogs page (VB version)

Partial Class MyBlogs
Inherits System.Web.UI.Page

Protected Sub Page_Load(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _

(continued)

417Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 417

Listing 11-17 (continued)

Handles Me.Load
SqlDataSource1.SelectParameters(“username”) _

.DefaultValue = User.Identity.Name
End Sub

Protected Sub btnCreate_Click(_ ➝2
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnCreate.Click

SqlDataSource2.InsertParameters(“username”) _
.DefaultValue = User.Identity.Name

SqlDataSource2.InsertParameters(“name”) _
.DefaultValue = txtBlogName.Text

SqlDataSource2.InsertParameters(“description”) _
.DefaultValue = txtDescription.Text

SqlDataSource2.Insert()
GridView1.DataBind()

End Sub

End Class

Building the New Post Page
The New Post page lets a registered and logged-in user add a new post to one
of his or her blogs. To see this page in action, refer to Figure 11-9. The follow-
ing sections present the .aspx file and the code-behind files for this page.

The NewPost.aspx page
The .aspx file for the New Post page is shown in Listing 11-18. This page
uses text boxes to let the user enter the subject and text for the new post and
a SqlDataSource control to provide the INSERT statement used to record
the post.

Listing 11-18: The NewPost.aspx page

<%@ Page Language=”C#” ➝1
MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true”
CodeFile=”NewPost.aspx.cs”
Inherits=”NewPost”
Title=”Blog-O-Rama” %>

<asp:Content ID=”Content1” Runat=”Server” ➝2

418 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 418

ContentPlaceHolderID=”ContentPlaceHolder1” >
<table border=”0” width=”700” > ➝3
<tr>
<td width=”80” valign=”top”>
Subject:

</td>
<td width=”620” valign=”top”>
<asp:TextBox ID=”txtSubject” runat=”server” ➝4

Width=”400px”/>
<asp:RequiredFieldValidator runat=”server”
ID=”RequiredFieldValidator1”
ControlToValidate=”txtSubject”
ErrorMessage=”Subject is required”
Display=”Dynamic” />

</td>
</tr>
<tr>
<td width=”80” valign=”top”>
Text:

</td>
<td width=”620” valign=”top”>
<asp:TextBox ID=”txtPostText” runat=”server” ➝5

TextMode=”MultiLine”
Height=”250px”
Width=”400px” />

<asp:RequiredFieldValidator runat=”server”
ID=”RequiredFieldValidator2”
ControlToValidate=”txtPostText”
ErrorMessage=”Text is required”
Display=”Dynamic” />

</td>
</tr>

</table>

<asp:Button ID=”btnPost” runat=”server” ➝6
Text=”Post” OnClick=”btnPost_Click” />

<asp:Button ID=”btnCancel” runat=”server” ➝7
PostBackUrl=”~/Admin/MyBlogs.aspx”
Text=”Cancel” />

<asp:SqlDataSource ID=”SqlDataSource1” ➝8
runat=”server”
ConnectionString
=”<%$ ConnectionStrings:BlogConnectionString %>”

InsertCommand=”INSERT INTO [Posts]
([blogid], [subject], [post])
VALUES (@blogid, @subject, @post)” >

<InsertParameters>

(continued)

419Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 419

Listing 11-18 (continued)

<asp:QueryStringParameter Name=”blogid” ➝9
QueryStringField=”blog”
Type=”String” />

<asp:ControlParameter Name=”subject” ➝10
ControlID=”txtSubject”
PropertyName=”Text”
Type=”String” />

<asp:ControlParameter Name=”post” ➝11
ControlID=”txtPostText”
PropertyName=”Text”
Type=”String” />

</InsertParameters>
</asp:SqlDataSource>

</asp:Content>

The most important lines of this file are described in the following paragraphs:

➝ 1 You will have to change the Language, AutoEventWireup, and
CodeFile attributes in the Page directive if you use Visual Basic
instead of C#.

➝ 2 The <Content> element provides the content that’s displayed for
the page.

➝ 3 This page uses an HTML table to manage the layout of its controls.

➝ 4 A text box lets the user enter the subject for the new post. Note that
a RequiredFieldValidator is used to ensure that the user doesn’t
leave the subject blank.

➝ 5 A multi-line text box lets the user enter the text of the new post.
Again, a RequiredFieldValidator is used to make sure the post isn’t
left blank.

➝ 6 The Post button causes the new post to be added to the database.
You should remove the OnClick attribute if you’re using Visual
Basic instead of C#.

➝ 7 The Cancel button cancels the post and returns to the My Blogs
page.

➝ 8 Although this page doesn’t use bound controls, a SQL Data Source
is still used to insert the post into the database. The INSERT
statement requires three parameters: blogid, subject,
and post.

➝ 9 The value of the blogid parameter is obtained from the query
string named blog.

420 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 420

➝ 10 The subject parameter is bound to the Text property of the
txtSubject text box.

➝ 11 The post parameter is bound to the Text property of the
txtPostText text box.

The code-behind file for
the New Post page
Listings 11-19 and 11-20 present the C# and Visual Basic versions of the code-
behind file for the New Post page. As you can see, these code-behind files
contain just one method, which handles the click event for the Post button.

Listing 11-19: The code-behind file for the New Post page (C#)

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class NewPost : System.Web.UI.Page
{

protected void btnPost_Click(➝1
object sender, EventArgs e)

{
SqlDataSource1.Insert();
Response.Redirect(“MyBlogs.aspx”);

}
}

There’s only one numbered line to consider for this listing:

➝ 1 The btnPost_Click method executes when the user clicks the
Post button. This method calls the Insert method of the data
source to insert the new post into the Posts table. Then it redi-
rects the user back to the MyBlogs.aspx page. Pretty simple, eh?

421Chapter 11: Building a Blog Application

19_597760 ch11.qxp 1/11/06 10:00 PM Page 421

Listing 11-20: The code-behind file for the New Post page (VB)

Partial Class NewPost
Inherits System.Web.UI.Page

Protected Sub btnPost_Click(_ ➝1
ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles btnPost.Click

SqlDataSource1.Insert()
Response.Redirect(“MyBlogs.aspx”)

End Sub
End Class

422 Part V: Building Community Applications

19_597760 ch11.qxp 1/11/06 10:00 PM Page 422

Part VI
The Part of Tens

20_597760 pt06.qxp 1/11/06 10:00 PM Page 423

In this part . . .

If you keep this book in the bathroom, the chapters in
this section are the ones that you’ll read most. Each

chapter consists of ten (more or less) entertaining (okay,
useful) things that are worth knowing about various
aspects of ASP.NET programming. Without further ado,
here they are, direct from the home office in sunny
Fresno, California.

20_597760 pt06.qxp 1/11/06 10:00 PM Page 424

Chapter 12

Ten New Features of ASP.NET 2.0
In This Chapter
� The new code-behind model

� Special application folders such as App_Code and App_Data

� Master Pages

� Login controls

� Data controls

� The Wizard control

� The Generics feature

This book assumes that you already know a bit of ASP.NET programming.
Okay, you don’t have to be an expert, but this book is not a beginner’s

tutorial; it assumes you know the basics — concepts such as how to code
ASP tags to create server controls, and how to write Visual Basic or C# code
to handle events such as button clicks.

If you have never written a line of ASP.NET code, I suggest you put this
book down momentarily and spend some quality time in a copy of my book,
ASP.NET 2.0 All-In-One Desk Reference For Dummies, published (of course) by
the good people at Wiley.

With that important disclaimer out of the way, I realize that although you may
have worked with ASP.NET 1.0 or 1.1, this may well be your first exposure to
ASP.NET 2.0, the new release issued in November 2005. ASP.NET 2.0 intro-
duces a bevy of new and important features to the ASP.NET programmer’s
tool chest.

And so, without further ado, this chapter introduces you to ten of the best
new features of ASP.NET 2.0. You’ll find that all applications presented in this
book use one or more of these new features. And each of these new features
is used at least once in this book.

Note that this isn’t a comprehensive list of what’s new in ASP.NET 2.0. Instead,
I’ve focused on the new programming features that I’ve utilized to create the
applications in this book. I didn’t include features that I didn’t use in these
applications, such as Web Parts or Themes.

21_597760 ch12.qxp 1/11/06 10:01 PM Page 425

The New Code-Behind Model
ASP.NET has always supported a programming technique called code-behind,
but ASP.NET 2.0 introduces some important changes to the way code-behind
works.

Code-behind lets you separate the code that defines the appearance of a Web
page from the code that executes in response to events such as loading the
page or clicking a button. The code that defines a page’s appearance is stored
in a file called an aspx file, which includes both HTML and ASP tags and has
the extension .aspx. (For example, the aspx file for a page named default
is default.aspx.) The file that contains the code that’s run in response to
page events — called the code-behind file — has the extension .vb or .cs,
depending on the programming language being used. For example, if the lan-
guage is Visual Basic, the code-behind file for the default.aspx page is
default.aspx.vb. If the language is C#, this code-behind file is named
default.aspx.cs.

In other words, there are two files for each page of an ASP.NET application:
an .aspx file that defines the appearance of the page and a code-behind file
that provides the executable code for the page.

From a simple programming perspective, the code-behind file in ASP.NET 2.0
works pretty much the same as it does in ASP.NET 1.x. For example, if you
double-click a button in Visual Studio’s Design view, the code editor opens
and Visual Studio generates a method that handles the click event for the
button. Then this method executes whenever a user clicks the button.

Looks familiar enough, but what’s actually happening behind the scenes is
very different in ASP.NET 2.0 from what it was in ASP.NET 1.x. The details
(which are pretty intricate) depend on a new feature of ASP.NET 2.0 called
partial classes — a capability of splitting the code that defines a class into
two or more source files.

Aside from the behind-the-scenes differences, the new code-behind model
has one very practical and important difference: the code-behind file in
ASP.NET 2.0 does not have any code that’s generated by Visual Studio. In
ASP.NET 1.x, the code-behind file had a hidden region of code (labeled “Web
Form Designer Generated Code”) that was required to keep the code-behind
file synchronized with the .aspx file. As a result, it was possible — and all
too common — for the .aspx file and the code-behind file to fall out of sync
with each other.

If (for example) you deleted or changed the name of a control in the .aspx
file, the corresponding definition for the control in the code-behind file might
not be deleted or changed. Then, when you tried to run the page, a compiling

426 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 426

error would occur. This type of problem happens much less frequently in
Visual Studio 2005 than it used to in previous versions — and that’s because
the code-behind file doesn’t include any generated code.

ASP.NET 2.0 also provides a code-beside model, in which the C# or VB code
is embedded within the .aspx file rather than stored as a partial class in a
separate file. To use the code-beside model, you simply uncheck the Place
Code in Separate File option in the dialog box that appears when you create
a new page. As a general rule, I prefer code-behind to code-beside because
code-behind provides better separation of the application’s presentation and
logic code. However, some programmers prefer code-beside because of its
simplicity, especially for smaller projects. All of the examples in this book use
code-behind.

App_ Folders
In addition to the difference in the way code-behind works, ASP.NET 2.0 also
introduces a set of special application folders you can use in your applications.

These folders have reserved names, so you shouldn’t create your own appli-
cation folders using these names. Here’s a list of the application folders you
can use:

� App_Data: Contains any Access databases used by the application.
Other types of databases can be stored here, too, but SQL server data-
bases are typically stored in a separate folder that’s not part of the appli-
cation’s folder structure.

� App_Code: Contains class files used by the application. If you create util-
ity or helper classes, database-access classes, or classes that define
business objects, this is where you should place them.

� App_GlobalResources: Contains resources you place in this folder to
be accessed by any page in the application.

� App_LocalResources: Contains resources that are available only to
pages in the same folder as the App_LocalResources folder.

� App_WebReferences: Contains references to Web services.

� App_Browsers: Contains browser-definition files. ASP.NET uses these
files to identify the capabilities of individual browsers.

Note that some of these folders are created automatically by Visual Studio
when they’re needed and others can be added by right-clicking the Web site
in Solution Explorer and choosing the Add ASP.NET Folder command.

427Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 427

Master Pages
One of the most common requirements for any Web application is to create
a unified look for all the pages that make up the application. In ASP.NET 1.x,
the only easy way to do that was to specify a user control to create every
element common to all the application’s Web pages. For example, you might
create one user control apiece for the banner that appears at the top of each
page and a navigation menu that appears on the left side of each page. Then
you’d have to make sure that each page included these user controls, as well
as layout elements (such as tables or CSS positioning elements) to provide a
consistent layout for the page. (Hassles, anyone?)

ASP.NET 2.0 introduces a major new feature called Master Pages — an easy
way to provide a consistent layout for all the pages in a Web site. A Master
Page is a page that provides a layout within which the content from one or
more Content pages is displayed. When a user requests a Content page, the
elements from the Master Page specified by the Content page are added to
the elements from the Content page to create the final page that’s rendered
to the browser. Figure 12-1 shows how this works.

Master page Content page

Final page

Figure 12-1:
How Master
Pages work.

428 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 428

The Master Page itself includes the content displayed on each page that uses
the master. In addition, it contains one or more content placeholder controls
(contentplaceholder) that specify where to display content from the
Content page. For example, the Master Page shown in Figure 12-1 includes a
banner and a sidebar displayed for each Content page that uses this master —
plus a content placeholder that displays information from the Content page.

Creating a Master Page
To create a Master Page in Visual Studio 2005, follow these steps:

1. Choose the Web Site➪Add New Item command.

This brings up the Add New Item dialog box (shown in Figure 12-2), which
lists the various templates available for adding new items to a project.

2. Select Master Page from the list of templates.

3. Enter the name you want to use for the new Master Page.

4. Select the programming language you want to use.

Make sure the Place Code in Separate File option is selected.

5. Click OK.

The Master Page is created.

Listing 12-1 shows the .aspx code that’s generated for a new Master Page.

Figure 12-2:
The Add

New Item
dialog box.

429Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 429

Listing 12-1: The default code for a Master Page

<%@ Master Language=”C#” AutoEventWireup=”true” ➝1
CodeFile=”MasterPage.master.cs” Inherits=”MasterPage”

%>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:contentplaceholder id=”ContentPlaceHolder1”➝2
runat=”server”>

</asp:contentplaceholder>
</div>
</form>

</body>
</html>

Just two key points in this listing:

➝ 1 Instead of a Page directive, Master Pages begin with a Master
directive. This directive indicates that the page is a Master Page
and specifies the language used (in this case, C#), whether auto-
matic event wiring is used, the name of the code-behind file, and
the name of the class defined by the code-behind file.

➝ 2 The <ContentPlaceHolder> element (<asp:ContentPlace
Holder>)is used to mark the location on the page where the con-
tent from the content file should appear. In the default Master
Page, the <ContentPlaceHolder> simply fills the entire page; in
an actual Master Page, you add elements outside the
<ContentPlaceHolder>.

Completing a Master Page
Okay, the default Master Page shown in Listing 12-1 isn’t very useful as is; it
doesn’t provide any elements that appear automatically on each page. You
can fix this sad state of affairs by adding (well, yeah) elements that appear on
each page: Simply edit the Master Page in Design or Source view. For exam-
ple, Listing 12-2 shows the code for the Master Page that’s illustrated in
Figure 12-1.

430 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 430

Listing 12-2: A Master Page with a banner image
<%@ Master Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>The Acme Pirate Shop</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:contentplaceholder id=”ContentPlaceHolder1”

runat=”server”>
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

As you can see, the only difference between this code and the code in Listing
12-1 is that I added an .img tag immediately before the <ContentPlace
Holder> element. This image tag displays the banner that appears at the top
of each page that uses this Master Page.

Any content you add between the start and end tags of the <ContentPlace
Holder> element will be treated as default content — stuff that’s rendered
only when the Master Page is used by a Content page that doesn’t specifically
provide a <Content> element for the <ContentPlaceHolder>.

Creating a Content page
Listing 12-3 shows the code for an empty Content page. Of course, for this
page to be useful, you must add (what a concept) some actual content.

Listing 12-3: The default code for a Content page
<%@ Page Language=”C#” ➝1

MasterPageFile=”~/MasterPage.master”
AutoEventWireup=”true” CodeFile=”Default2.aspx.cs”
Inherits=”Default2” Title=”Untitled Page” %>

<asp:Content ID=”Content1” ➝2
ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>

</asp:Content>

431Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 431

A few short, sweet paragraphs describe the key points of this listing:

➝ 1 The Page directive uses the MasterPageFile attribute to indi-
cate the name of the Master Page file to use for the page. In this
example, the Master Page is ~/MasterPage.master, which hap-
pens to be the name of the file that was shown in Listing 12-3.

In ASP.NET 2.0, the tilde (~) represents the application’s root
folder. Thus the line is saying that the MasterPage.master file is
in the application’s root folder.

➝ 2 This is the <Content> element that defines the content that will
appear on the page. The ContentPlaceHolderID attribute pro-
vides the name of the Master Page’s contentplaceholder in
which the content should appear. (In this case, the content will
appear in the ContentPlaceHolder1 placeholder.)

Note that the actual content for the page should appear
between the opening tag (<asp:Content>) and the closing tag
(</asp:Content>) for the placeholder.

New Data Controls
For ASP.NET 2.0, Microsoft has completely revamped data access. The old
ADO.NET classes (such as SqlConnection, SqlCommand, SqlDataAdapter,
and DataSet) are still there, as are the old data-bound controls (such as
Repeater, DataList, and DataGrid). However, ASP.NET 2.0 introduces a
new set of controls that are designed to replace the old way of controlling
data. The new data controls include data sources such as SqlDataSource
(which simplify the task of connecting to databases and retrieving and updat-
ing data) as well as new data controls such as GridView, FormView, and
DetailsView that are designed to work with the new data sources.

The goal of the new data features is to dramatically reduce the amount of
code you have to write for most database applications. And, for the most
part, Microsoft has succeeded in this goal. In most of the applications in this
book, you’ll find at least one page that retrieves data from a database and
doesn’t require a code-behind file. That’s because the database access is han-
dled declaratively — and often the declarative code is generated entirely by
Visual Studio, using wizards.

For most real-world applications, however, some code is still required — and
you should be aware that some programmers take a dim view of providing
database access through declarative code in the .aspx file. That’s because
this practice violates one of the basic principles of application design —
keeping the presentation and data-management aspects of an application sep-
arate. For example, the Shopping Cart application presented in Chapter 6
keeps presentation apart from data access by providing separate classes that

432 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 432

handle the application’s data access. As a result, this application avoids using
the declarative data-access features of ASP.NET 2.0.

The following sections describe the new data access controls you’ll use most:
SqlDataSource, GridView, FormView, and DetailsView.

The SqlDataSource control
The new SqlDataSource connects to a SQL database and binds controls
such as DataList, GridView, and DetailsView to SQL data retrieved from
SQL databases such as Microsoft’s own SQL Server and Access. This control
isn’t rendered on the page, so it isn’t visible to the user when the application
runs. However, it is visible in the Web Designer in Visual Studio, so you can
work with it in Design view.

The following paragraphs describe some of the more important features of
the SqlDataSource control:

� It uses the ADO.NET data provider classes to connect to relational data-
bases. As a result, you can use it to access several different types of
databases, including Microsoft SQL Server, Access, and Oracle.

� The connection string can be automatically retrieved from the applica-
tion’s web.config file, so you don’t have to code the connection string
on the page.

� Each SqlDataSource control has a Select command associated with
it via the SelectCommand property. The data source executes this com-
mand whenever it needs to retrieve data from the database. You can also
manually execute this Select command by calling the data source’s
Select method.

� The SqlDataSource control can also have an Insert, Update, and
Delete command associated with it via InsertCommand, Update
Command, and DeleteCommand properties. When you bind a
SqlDataSource control to a data control such as GridView or
FormView, the data control executes these commands when the user
inserts, updates, or deletes data. In addition, you can manually execute
these commands by calling the data source’s Insert, Update, or
Delete methods.

� The SqlDataSource has three collections of parameters that provide
values for the Select, Insert, Update, and Delete commands. These
parameter collections are accessed via the SelectParameters,
InsertParameters, UpdateParameters, and DeleteParameters col-
lections. The parameters can be bound to a property of another control
(for example, the Text property of a text box or the SelectedValue
property of a drop-down list), a query string, a value retrieved from ses-
sion state, a cookie, or a form field.

433Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 433

� You can configure a SqlDataSource so the SELECT statement returns
an ADO.NET dataset or a data reader. The data reader is more efficient
if you simply want to display read-only data on a page. If you want to
update the data — or if you want to filter, sort, or page the data — you
should use a dataset. (The default mode is dataset.)

� The SqlDataSource control can be configured to automatically cache
data. As a result, you no longer have to write code to cache data.

The following example shows a basic SqlDataSource control from the
Product Catalog application presented in Chapter 5:

<asp:SqlDataSource ID=”SqlDataSource2”
runat=”server”
ConnectionString=

“<%$ ConnectionStrings:ConnectionString %>”
SelectCommand=”SELECT catid, name, [desc]

FROM Categories ORDER BY name”>
</asp:SqlDataSource>

This data source simply retrieves the catid, name, and desc columns from
the Categories table in the database, sorting the rows by name.

Here’s a more complicated SqlDataSource control, from the Maintenance
application presented in Chapter 7:

<asp:SqlDataSource ID=”SqlDataSource1”
runat=”server”
ConflictDetection=”CompareAllValues”
ConnectionString=
“<%$ ConnectionStrings:MaintConnectionString %>”
SelectCommand=”SELECT [catid],

[name], [desc]
FROM [Categories] ORDER BY [catid]”

InsertCommand=”INSERT INTO [Categories]
([catid], [name], [desc])

VALUES (@catid, @name, @desc)”
UpdateCommand=”UPDATE [Categories]

SET [name] = @name, [desc] = @desc
WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc”

DeleteCommand=”DELETE FROM [Categories]
WHERE [catid] = @original_catid
AND [name] = @original_name
AND [desc] = @original_desc” >

<InsertParameters>
<asp:Parameter Name=”catid”

Type=”String” />
<asp:Parameter Name=”name”

Type=”String” />

434 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 434

<asp:Parameter Name=”desc”
Type=”String” />

</InsertParameters>
<UpdateParameters>

<asp:Parameter Name=”name”
Type=”String” />

<asp:Parameter Name=”desc”
Type=”String” />

<asp:Parameter Name=”original_catid”
Type=”String” />

<asp:Parameter Name=”original_name”
Type=”String” />

<asp:Parameter Name=”original_desc”
Type=”String” />

</UpdateParameters>
<DeleteParameters>

<asp:Parameter Name=”original_catid”
Type=”String” />

<asp:Parameter Name=”original_name”
Type=”String” />

<asp:Parameter Name=”original_desc”
Type=”String” />

</DeleteParameters>
</asp:SqlDataSource>

This SqlDataSource specifies all four command types (Select, Insert,
Update, and Delete) as well as parameters for the INSERT, UPDATE, and
DELETE statements.

In some cases, you may want to access data from a SqlDataSource in code.
For example, the Shopping Cart application presented in Chapter 6 needs to
retrieve data from the current record so it can use the data to update the
ShoppingCart item in session state. To do this, it calls the data source’s
Select method, which returns an object defined by the DataView class. It
then uses the DataView object to get the DataRowView object for the first
row returned by the SELECT statement. Then it can access the individual
fields for the row. Here’s the code (in C#):

DataView dv = (DataView)SqlDataSource1.Select(
DataSourceSelectArguments.Empty);

DataRowView dr = dv[0];
string ID = (String)dr[“ProductID”];
string Name = (string)dr[“Name”];
decimal Price;
if (dr[“SalePrice”] is DBNull)

Price = (decimal)dr[“Price”];
else

Price = (decimal)dr[“SalePrice”];

435Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 435

Notice that one of the fields (SalePrice) allows nulls, so its value must be
tested for DBNull. Here’s the equivalent code in Visual Basic:

Dim dv As DataView
dv = SqlDataSource1.Select(_

DataSourceSelectArguments.Empty)
Dim dr As DataRowView = dv(0)
Dim ID As String = dr(“ProductID”)
Dim name As String = dr(“Name”)
Dim Price As Decimal
If TypeOf (dr(“SalePrice”)) Is DBNull Then

Price = dr(“Price”)
Else

Price = dr(“SalePrice”)
End If

The GridView control
The GridView control replaces the old DataGrid control as the way to dis-
play data in a tabular format. The GridView control has several features that
weren’t available in the DataGrid control. In particular:

� Binding to the new data source controls, including SqlDataSource.

� Automatic paging, which makes it easy to display just a subset of rows
at a time. You can specify the number of rows to display on each page
and can specify the appearance of the paging controls.

436 Part VI: The Part of Tens

Other Data Sources
Besides the SqlDataSource control,
ASP.NET 2.0 includes several other data-source
controls that let you work with different types of
data. The other data-source controls include:

� AccessDataSource: A data source that
connects directly to a Microsoft Access
database.

� ObjectDataSource: A data source that
connects to a custom business class. This
data source lets you write custom classes
to access your databases, while still taking
advantage of the data-binding features

available in controls such as GridView
and DetailsView. (Note, however, that
programming with the ObjectData
Source is more difficult and limited than
programming with the SqlDataSource.)

� XmlDataSource: Lets you bind to
XML data.

� SiteMapDataSource: A special data
source that’s used with ASP.NET 2.0 site-
navigation controls, which let you create
menus to navigate your Web site.

21_597760 ch12.qxp 1/11/06 10:01 PM Page 436

� Automatic sorting, which lets the user click a column heading to sort
the data.

� Updating and deleting. However, you can’t insert a new row using the
GridView control.

Each column in a GridView control is represented by a column that can be
bound to a data field. There are actually seven different types of columns you
can create:

� BoundField: A column bound to a data source field.

� ButtonField: A column that contains a button.

� CheckBoxField: A column that displays a check box.

� CommandField: A column that displays one or more command buttons
(command buttons include Select, Edit, and Delete).

� HyperLinkField: A column that displays a data source field as a
hyperlink.

� ImageField: A column that displays an image. The URL for the image is
provided by a data source field.

� TemplateField: A column that uses a template to specify its contents.

Here’s a GridView control that has five columns. Three of the columns are
bound to fields in the data source (catid, name, and desc). The other two
columns display command buttons that let the user edit or delete a row, like
this:

<asp:GridView ID=”GridView1” runat=”server”
AutoGenerateColumns=”False”
DataKeyNames=”catid”
DataSourceID=”SqlDataSource1”
OnRowDeleted=”GridView1_RowDeleted”
OnRowUpdated=”GridView1_RowUpdated”>
<Columns>

<asp:BoundField DataField=”catid”
HeaderText=”ID” ReadOnly=”True”>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”80px” />

</asp:BoundField>
<asp:BoundField DataField=”name”

HeaderText=”Name”>
<HeaderStyle HorizontalAlign=”Left” />
<ItemStyle Width=”100px” />

</asp:BoundField>
<asp:BoundField DataField=”desc”

HeaderText=”Description”>
<HeaderStyle HorizontalAlign=”Left” />

437Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 437

<ItemStyle Width=”400px” />
</asp:BoundField>
<asp:CommandField

CausesValidation=”False”
ShowEditButton=”True” />

<asp:CommandField
CausesValidation=”False”
ShowDeleteButton=”True” />

</Columns>
</asp:GridView>

The DetailsView control
The DetailsView control displays one row from a data source at a time by
rendering an HTML table. The HTML table contains one row for each field in
the data source.

The DetailsView control supports paging, so you can use it to display one
row of a data source that returns multiple rows. Then the DetailsView con-
trol displays paging controls that let the user navigate through the data.

But a more common way to use the DetailsView control is in combination
with a GridView control or other list control that enables the user to select
a row. Then the data source for the DetailsView control uses a Select
parameter that’s bound to the SelectedValue property of the GridView or
other list control. When the user selects a row, the DetailsView control’s
data source retrieves the row and the DetailsView control displays the
details for that row.

Here’s a typical DetailsView control, adapted from the Product Catalog
application that was presented in Chapter 5:

<asp:DetailsView ID=”DetailsView1”
runat=”server”
AutoGenerateRows=”False”
DataKeyNames=”productid”
DataSourceID=”SqlDataSource1” >
<Fields>

<asp:BoundField DataField=”name” />
<asp:BoundField DataField=”shorttext” />
<asp:BoundField DataField=”longtext” />
<asp:BoundField DataField=”price”

DataFormatString=”
{0:c}” />
</Fields>

</asp:DetailsView>

This DetailsView control displays four fields from the data source: name¸
shorttext, longtext, and price. The price field uses a format string to
apply a format to the data.

438 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 438

The FormView Control
The FormView control is similar to the DetailsView control. However,
instead of rendering data as an HTML table, the FormView control uses tem-
plates that let you specify exactly how you want it to render the data. It gives
you these template choices:

� EmptyItemTemplate: Rendered if the data source is empty.

� ItemTemplate: Displays data in read-only mode.

� EditItemTemplate: Displayed when the FormView control is in Edit
mode.

� InsertItemTemplate: Displayed when the FormView control is in
Insert mode.

� HeaderTemplate: Displayed at the top of the control.

� FooterTemplate: Displayed at the bottom of the control.

� PagerTemplate: Displayed when paging is enabled.

To display data from the data source, you can use the Eval or Bind meth-
ods. For example:

<asp:Label ID=”lblLastName” runat=”server”
Text=’<%# Eval(“lastname”) %>’/>

Here, a label is bound to a data-source field named lastname. Here’s an
example that shows how to bind a text box to the lastname field:

<asp:TextBox ID=”txtProductID” runat=”server”
Width=”100px”
Text=’<%# Bind(“lastname”) %>’/>

Notice that Bind is used instead of Eval when you want the binding to be
two-way — that is, for input as well as output.

You can also include a command button in a template; when the user clicks
the button, the specified command is sent to the FormView control. The fol-
lowing commands are allowed:

� Edit: Places the FormView control in Edit mode and displays the
EditItemTemplate template.

� New: Places the FormView control in Insert mode and uses the
InsertItemTemplate.

� Update: Accepts changes made while in Edit mode and updates the data
source.

439Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 439

� Insert: Inserts a row using data entered while in Insert mode.

� Cancel: Cancels Edit or Insert mode and ignores any changes.

For a complete example of a FormView control, refer to the Product Details
page presented in Chapter 5.

Login Controls
ASP.NET 2.0 provides an entire set of controls that make it easy to create
applications for which users must register and log in. These controls include:

� Login: Lets the user log in by entering a user name and password.

� CreateUserWizard: Lets the user create a new user account.

� PasswordRecovery: Lets the user retrieve a forgotten password.

� ChangePassword: Lets the user change his or her password.

� LoginView: Displays the contents of a template as appropriate to the
user’s login status.

� LoginStatus: If the user is logged in, displays a link that logs the user
off. If the user isn’t logged in, displays a link that leads to the applica-
tion’s login page.

� LoginName: Displays the user’s login name if the user is logged in.

You’ll find more information about using these controls in Chapters 3 and 4.

The Wizard Control
The Wizard control lets you create wizards that walk the user through a
series of steps. Each step can include any content and controls you want it to
include. Only one step at a time is displayed, along with navigation buttons
that let the user move from step to step.

To define the steps of a Wizard, you use the <WizardSteps> element. This
element, in turn, can contain one or more <WizardStep> child elements.
There are five different types of steps you can create:

� Start: The first step, which includes a Next button but not a Previous
button.

� Step: An intermediate step, with both a Next and a Previous button.

440 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 440

� Finish: The next-to-last step. Instead of a Next button, this step includes
a Finish button.

� Complete: The final step, displayed after the user clicks the Finish button.
No navigation buttons are included on this step.

� Auto: The Wizard control determines the step type according to its
position in the <WizardSteps> element. For example, the first step
declared is the start step.

Here’s a basic skeleton of a simple Wizard control with three steps:

<asp:Wizard id=”Wizard1” runat=”server”>
<WizardSteps>

<asp:WizardStep steptype=”Start” title=”Step One”>
Content for step one goes here.

</asp:WizardStep>
<asp:WizardStep steptype=”Step” title=”Step Two”>

Content for step two goes here.
</asp:WizardStep>
<asp:WizardStep steptype=”Finish”

title=”Step Three”>
Content for step three goes here.

</asp:WizardStep>
</WizardSteps>

</asp:Wizard>

For more information about using the Wizard control, refer to Chapter 6.

The Generics Feature
Generics is a new language feature introduced with ASP.NET 2.0. It applies to
both C# and Visual Basic. The basic idea of the Generics feature is to let you
create type-specific classes — particularly, to create strongly typed collec-
tion classes that have specified uses.

One of the problems most common to working with collections is that the
collections store objects of type Object — that is, a collection can store any
type of object. So, if you want to store a collection of Product objects, you
might declare an ArrayList and add Product objects to it. Note, however,
that nothing prevents you from adding a Customer object to the array list;
the Add method of the ArrayList class accepts any object. Result (all too
often): mishmash.

With the Generics feature, you can designate the type of object a collection
can hold when you declare the collection. For example, you can create an
ArrayList that can hold only Product objects. Then the compiler won’t let
you add a Customer object to the list.

441Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 441

The generics features introduces a new namespace (System.Collections.
Generic) that provides typed collection classes, including these:

� List: A generic array list.

� SortedList: A generic list that’s kept in sorted order.

� LinkedList: A generic linked list.

� Stack: A generic last-in, first-out stack.

� Queue: A generic first-in, first-out queue.

� Dictionary: A generic collection of key/value pairs.

� SortedDictionary: A generic collection of key/value pairs kept in
sorted order.

Here’s an example in C# that creates a list of Product objects:

List<Product> plist;
plist = new List<Product>();

Note that you specify the type of object you want contained in a collection by
using greater-than (>) and less-than (<) symbols, both when you declare the
list and when you instantiate it.

Here it is in Visual Basic, which uses the Of keyword rather than angle brackets:

Dim custlist As List(Of Customer)
custlist = New List(Of Customer)()

442 Part VI: The Part of Tens

Other New Features of ASP.NET 2.0
This chapter describes the new ASP.NET 2.0
features that I used in the applications pre-
sented in this book. But ASP.NET 2.0 has many
other new features as well. Here are a few of
the more important ones:

� Navigation controls: A set of controls that
let you build site-navigation features into
your Web applications. These controls
include a Menu control for creating menus,
a SiteMapPath control that displays a
path to the current page, and a TreeView

control that displays the site’s navigation
structure as a tree.

� WebParts: A set of controls that let you
create pages that the user can customize
by selecting components called Web parts.
The WebParts feature is designed to build
portal sites similar to the Microsoft portal,
MSN.com.

� Themes: A feature that lets you apply for-
matting to controls and other page ele-
ments throughout the application.

21_597760 ch12.qxp 1/11/06 10:01 PM Page 442

The Web Site Administration Tool
ASP.NET 2.0 includes a new feature called the Web Site Administration Tool
that lets you configure web.config settings from a browser-based interface.
You can also create the user accounts used by the new Login controls. To use
this tool, choose the Web Site➪ASP.NET Configuration command from within
Visual Studio. Note that this tool works only for file system Web sites, which
means you probably won’t be able to use it for applications that have been
deployed to an IIS server and are in production. Figure 12-3 shows the open-
ing page of the Web Site Administration Tool.

Figure 12-3:
The Web

Site
Administrati

on Tool.

443Chapter 12: Ten New Features of ASP.NET 2.0

21_597760 ch12.qxp 1/11/06 10:01 PM Page 443

444 Part VI: The Part of Tens

21_597760 ch12.qxp 1/11/06 10:01 PM Page 444

Chapter 13

Ten Rookie Mistakes
In This Chapter
� Coding too soon

� Skimping on documentation

� Inadequate testing

� Abusing state features

� Not validating input data

� Reinventing the wheel

� Not asking for help

If you’re relatively new to programming in general or ASP.NET Web pro-
gramming in particular, this chapter is for you. It forewarns you about

some of the most common mistakes made by inexperienced developers.
Human nature being what it is, experienced developers make these mistakes
too; most of them are caused by our desire to get on with the nitty-gritty of pro-
gramming rather than getting stuck in the more tedious — but vital — aspects
of development, such as planning, testing, and documenting our code.

Coding Too Soon
Probably the most common application development mistake is to start
coding too soon. This is a natural mistake to make, since programming is
what programmers do. But you should resist the temptation to begin writing
code for your application until you’ve thoroughly designed the application
and thought through how you will handle the more challenging aspects of the
code. In particular, you should make sure your application design addresses
the following issues:

� How will database access be handled? Will you use ASP.NET data
source controls such as SqlDataSource to handle data access declara-
tively, or will you write custom data access classes? Will you include
SQL statements in your code, or will you use stored procedures to store
the SQL statements in the database?

22_597760 ch13.qxp 1/11/06 10:02 PM Page 445

� How will you pass state information from page to page? Will you rely
on ASP.NET’s session-state feature, or will you pass query strings around
among the application’s pages?

� How will you protect the application from security breaches? In what
ways will the application be vulnerable to attacks such as SQL injec-
tions, and how can you design the application to protect itself from such
attacks?

� How will the application handle error situations? For example, how do
you want it to respond to database-connection problems?

Don’t start coding your application until you’ve resolved these issues.

For more complicated applications, it’s sometimes a good idea to do a simple
version of the application before you write the complete application, just to
make sure the application can be done. This proof-of-concept version should
focus on the most troublesome parts of the application, such as linkages to
other existing applications or tricky database design issues. Once you’ve
established that the application is doable, you’ll have the knowledge and
confidence you need to prepare a detailed application design.

Skimping On Documentation
Most developers love good documentation in other people’s programs, but
they hate doing it because it’s tedious work. And it involves writing. (I happen
to like to write, but I realize that I’m a bit weird. Most people don’t like to
write.)

Another reason most developers hate documentation is that it doesn’t seem
productive. Why waste the day writing about what you did yesterday, when
you could be writing more code?

The answer is that today you probably remember what you did yesterday and
why you did it. But six months from now, you won’t. So even if you hate doing
the documentation, suffer through it; your future self will be glad you did.

Remember that there are two basic kinds of documentation you should pre-
pare. First, you should liberally sprinkle your code with inline comments that
explain what’s going on. And second, you should prepare separate docu-
ments that explain what the application does, how it is designed, and how to
use the application.

446 Part VI: The Part of Tens

22_597760 ch13.qxp 1/11/06 10:02 PM Page 446

Inadequate Testing
The most common mistake when testing a computer program is to assume
that the purpose of testing is to make sure your program works. That’s exactly
the opposite of the approach you should take. Instead of trying to prove your
program right, you should try to prove it wrong. Do everything you can think
of to make your program fail.

Always keep in mind the many ways your users will use and abuse your
program. Here are just a few crazy things to try when you’re testing your
applications:

� Try leaving all the input fields blank.

� Try entering data that includes angle brackets < >.

� After you type data into a data-entry page, hit the browser’s Back button
to return to the data-entry page — and enter the same data again.

� After you delete or update a record, hit the browser’s Back button, then
try to delete or update the same record again.

� Have someone who has never seen the application before test the appli-
cation. We developers tend to get into a rut when we test our applications,
testing the same things over and over again. You’ll be surprised at the
errors discovered by someone who has never before seen the application.

Also, remember the principle of regression testing: Whenever you make any
change to the application, you need to retest the entire application, not just
the part you change. You never know what unintended consequences the
change may have.

Abusing State Features
ASP.NET provides several convenient ways to save state information, includ-
ing session state and view state. However, it’s easy to overuse these features.
Here are some ways you can improve the way your application works with
state features:

� Disable view state for controls that don’t need it. By default, most
ASP.NET controls enable view state. This needlessly sends state informa-
tion to the browser for each page. The application will run more effi-
ciently if you use view state only when necessary.

447Chapter 13: Ten Rookie Mistakes

22_597760 ch13.qxp 1/11/06 10:02 PM Page 447

� Try not to save excessive amounts of data in session state. Session state
is usually stored in server RAM, which is a precious resource shared by
all users of the application.

� Remove data from session state as soon as you know you won’t need it
any more.

Not Validating Input Data
All data allowed into an application should be validated. ASP.NET includes a
rich set of validation controls, and you should rarely code a text box or other
input control without at least one validation control to go along with it. At
minimum, a text box should include a RequiredFieldValidator if it gath-
ers required data; text boxes that gather numeric data should use validators
to ensure that the data is of the correct type (and, if appropriate, within the
correct range).

One common omission is to forget to check for negative numbers for values
that must be positive. For example, a quantity field in a shopping cart appli-
cation shouldn’t allow negative values.

Another common mistake is to forget to treat query strings as input data.
ASP.NET lets you use validation controls to automatically validate input data
received from text boxes and other input controls. However, query strings
are a form of input data too, but ASP.NET doesn’t provide an automatic way
to validate them. So you have to write code that manually validates query
string fields before your program uses those values. If you don’t, malicious
users can alter or fake query string values in an attempt to hack your applica-
tion. A word to the wise: Never assume that a query string contains valid or
legitimate data.

Reinventing the Wheel
I recently needed to write a routine that would sort the letters of a word into
alphabetical order. I was working in C, not C# or Visual Basic, so I had no sort
function or method available. Rather than work out the details of how to
write a sort routine from scratch, I just grabbed a book off my shelf, looked
up sort in the index, found a good routine, and shamelessly copied it into my
program.

448 Part VI: The Part of Tens

22_597760 ch13.qxp 1/11/06 10:02 PM Page 448

Before you spend hours, days, or weeks writing code, find out if the code
you’re developing is already available. Odds are it is.

In fact, you should apply this principal to the entire application. You may
find that you can purchase a ready-made application that does exactly — or
almost exactly — what your application will do. Depending on the purchase
price, of course, it may be considerably less expensive to buy the ready-made
solution.

Not Asking for Help
There are plenty of places on the Internet where you can ask for help and get
good (and sometimes useful) answers. One of the best-known (and best) is
the forums section of www.asp.net. There you can post a question and get
answers, usually within a few hours or a day. It always amazes me that other
ASP.NET programmers are so often willing to help others with programming
problems.

Of course, you shouldn’t abuse the willingness of others to help. Don’t post
questions before you’ve spent a reasonable amount of time researching the
answer yourself and trying several different solutions. In particular, be sure
to read whatever the online help has to say about the controls and classes
you’re having trouble with.

Before you post, search the forum for similar questions. You may well find
that someone has already asked your question and the answer to your prob-
lem is there, waiting for you to read it.

449Chapter 13: Ten Rookie Mistakes

22_597760 ch13.qxp 1/11/06 10:02 PM Page 449

450 Part VI: The Part of Tens

22_597760 ch13.qxp 1/11/06 10:02 PM Page 450

Chapter 14

Ten Database Design Tips
In This Chapter
� Using the right number of tables

� Avoiding repetition of data

� Avoiding redundant data

� Using a naming convention

� Avoiding nulls

� Avoiding secret codes

� Using constraints wisely

� Using triggers when appropriate

� Using stored procedures

One of the most important aspects of any application-development pro-
ject is the database design. And so, without further ado, here are ten-or-

so tips for designing good databases, straight from the Home Office in sunny
Fresno, California.

Use the Right Number of Tables
In Amadeus (one of my all-time favorite flicks from the ’80s), the Emperor of
Germany criticizes one of Mozart’s works as having “too many notes.” Mozart
replies indignantly that he uses neither too many nor too few notes, but the
exact number of notes that the composition requires.

So it should be with database design. Your database should have as many
tables as the application requires — not more, not fewer. There is no single
“right” number of tables for all databases.

Inexperienced database designers have a tendency to use too few tables —
sometimes trying to cram an entire database-worth of information into a
single table. At the other extreme are databases with dozens of tables, each
consisting of just a few fields.

23_597760 ch14.qxp 1/11/06 10:02 PM Page 451

Avoid Repeating Data
One of the core principles of relational database design is to handle repeating
data by breaking it out into a separate table. For example, in the old days of
flat-file processing, it was common to create invoice records that had room
for a certain number of line items. Thus the invoice record would have fields
with names like Item1, Item2, Item3, and so on.

Bad!

Whenever you find yourself numbering field names like that, you should
create a separate table. In the case of the invoice record, you should create
a separate table to store the line item data.

Avoid Redundant Data
When designing the tables that make up your database, try to avoid creating
redundant data. Whenever redundant data creeps into a database, it introduces
the likelihood that the data will become corrupt. For example, suppose you
store a customer’s name in two different tables. Then, if you update the name in
one of the tables but not the other, the database has become inconsistent.

The most obvious type of redundant-data mistake is to create a field that
exists in two or more tables. But there are more subtle types of redundant
data. For example, consider an Invoice table that contains a LineItemTotal
field that represents the sum of the Total fields in each of the invoice’s line
items. Technically, this field represents redundant data; the data is also
stored in the Total fields of each line item.

Whether you should allow this type of redundancy depends on the application.
In many cases, it’s better to put up with the redundancy for the convenience
and efficiency of not having to recalculate the total each time the data is
accessed. But it’s always worth considering whether the added convenience
is worth the risk of corrupting the data.

Use a Naming Convention
To avoid confusion, pick a naming convention for your database objects and
stick to it. That way your database tables, columns, constraints, and other
objects will be named in a consistent and predictable way. (Just think of the
savings on aspirin.)

452 Part VI: The Part of Tens

23_597760 ch14.qxp 1/11/06 10:02 PM Page 452

You can argue from now until St. Swithen’s day about what the naming con-
ventions should be. That doesn’t matter so much. What does matter is that
you make a convention — and follow it.

Avoid nulls
Allowing nulls in your database tables significantly complicates the applica-
tion programming required to access the tables. As a result, I suggest you
avoid nulls by specifying NOT NULL whenever you can. Use nulls rarely, and
only when you truly need them.

Nulls are often misused anyway. The correct use of null is for a value that is
unknown; not for a blank or empty value. For example, consider a typical
address record that allows two address lines, named Address1 and Address2.
Most addresses have only one address, so the second address line is blank.
The value of this second address line is, in fact, known — it’s blank. That’s
not the same thing as null. Null would imply that the address may have a
second address line; we just don’t know what it is.

Even for columns that might seem appropriate for nulls, it’s usually more
convenient to just leave the column value blank for values that aren’t known.
For example, consider a phone number column in a Customer table. It’s
safe to assume that all your customers have phone numbers, so it would be
correct to use null for phone numbers that you don’t know. However, from a
practical point of view, it’s just as easy to disallow nulls for the phone
number column, and leave the unknown phone numbers blank.

Avoid Secret Codes
Avoid fields with names like CustomerType, where the value of the field is
one of several constants that aren’t defined elsewhere in the database, such
as R for Retail or W for Wholesale. You may have only these two types of
customers today, but the needs of the application may change in the future,
requiring a third customer type.

An alternative would be to create a separate table of customer-type codes
(call it CustomerTypes), and then create a foreign-key constraint so the value
of the CustomerType column must appear in the CustomerTypes table.

453Chapter 14: Ten Database Design Tips

23_597760 ch14.qxp 1/11/06 10:02 PM Page 453

Use Constraints Wisely
Constraints let you prevent changes to the database that violate the internal
consistency of your data. For example, a check constraint lets you validate
only data that meets certain criteria. For example, you can use a check con-
straint to make sure the value of a field named Price is greater than zero.

A foreign-key constraint requires that the value of a column in one table must
match the value that exists in some other table. For example, if you have a
LineItems table with a column named ProductID, and a Products table
with a column also named ProductID, you could use a foreign-key constraint
to make sure that the ProductID value for each row in the LineItems table
matches an existing row in the Products table.

Use Triggers When Appropriate
A trigger is a procedure that kicks in when certain database data is updated
or accessed. Triggers are a great way to enforce those database rules that are
more complicated than simple constraints. For example, suppose an Invoice
table contains an ItemCount column whose value is the number of line items
for the invoice. One way to maintain the value of this column automatically
would be to create triggers that increment the ItemCount column whenever
a line item is inserted, and decrement the ItemCount column whenever a
line item is deleted. Sometimes automation is a beautiful thing.

Use Stored Procedures
Stored procedures are SQL procedures that are tucked away in the database
and are part of it. There are several advantages to using stored procedures
instead of coding SQL in your applications:

� Using stored procedures removes the burden of SQL programming from
your application programmers. Instead, it makes the SQL used to access
the database a part of the database itself — no fuss, no muss. All the
application programs have to do is call the appropriate stored proce-
dures to select, insert, update, or delete database data.

� Stored procedures are more efficient as a way of handling transactions,
because the database server handles the entire transaction.

� Stored procedures are also more efficient because they reduce the amount
of network traffic between the database server and the Web server.

� Finally, stored procedures are more secure because they reduce the risk
of SQL injection attacks.

454 Part VI: The Part of Tens

23_597760 ch14.qxp 1/11/06 10:02 PM Page 454

Appendix

About the CD

I included a CD to provide you with all the source code for the applications
presented in this book. That way you won’t have to type everything in

from scratch. In this appendix, I explain the requirements for using the CD —
and show you how to install and use the applications.

System Requirements
Basically, any modern PC will be sufficient to run the applications on this CD,
provided the computer is powerful enough to run Visual Studio 2005 or Visual
Web Developer 2005 Express Edition. Here’s what you need at minimum:

� A PC with a Pentium processor, running at 600MHz or faster. (The faster
the better, of course.)

� 128MB of RAM.

� Windows XP with Service Pack 2. Or, Windows 2003 Server or Windows
2000 Service Pack 4.

� At least 1.3 GB of space available on your hard drive. (That’s to install
Visual Web Developer 2005 Express Edition. The applications on the CD
don’t require nearly that much disk space.)

� A monitor that can display at least 800x600 pixels in 256 colors.

� A mouse or other pointing device.

� A CD-ROM drive.

Any way your system can exceed these requirements is, by and large, all to
the good — and the more it exceeds them, the better.

24_597760 app.qxp 1/11/06 10:02 PM Page 455

456 ASP.NET 2.0 Everyday Apps For Dummies

Using the CD
To install the applications on the CD, follow these steps:

1. Insert the CD into your CD-ROM drive.

The license agreement should automatically appear. Note that if you
have disabled the AutoRun feature in Windows, you’ll have to start the
installation program manually. To do so, choose Start➪Run, and then
enter d:\start.exe. (Replace d: with the proper drive letter if your
CD drive isn’t drive d.)

2. Read the license agreement, and then click the Accept button to
access the CD.

The CD interface appears, which allows you to install the applications.

Using the Source Files
The CD contains the source files for all applications presented in this book.
Both the C# and Visual Basic versions are included. You can copy any or all
of these applications to your hard drive, and then access them from Visual
Studio 2005 or Visual Web Developer 2005 Express Edition as file-system
applications. Note that the installation program will let you chose to copy
just the C# or VB versions of the applications if you want.

Here is the folder structure for the applications:

Apps\LoginCS
Apps\LoginVB

Apps\CatalogCS
Apps\CatalogVB

Apps\CartCS
Apps\CartVB

Apps\MaintCS
Apps\MaintVB

Apps\OrderListingCS
Apps\OrderListingVB

Apps\ContentCS
Apps\ContentVB

24_597760 app.qxp 1/11/06 10:02 PM Page 456

Apps\ForumCS
Apps\ForumVB

Apps\BlogCS
Apps\BlogVB

Troubleshooting
If you encounter any problems with the applications on the CD, please check
my Web site (www.lowewriter.com/apps) for more information. I’ll be
sure to post any updates or corrections based on feedback from readers like
you. You may also find updated versions of the applications.

Customer care: If you have trouble with the CD-ROM, please call the Wiley
Product Technical Support phone number at (800) 762-2974. Outside the
United States, call (317) 572-3994. You can also contact Wiley Product Technical
Support at www.wiley.com/techsupport. Wiley Publishing provides techni-
cal support only for installation and other general quality-control items.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

457Appendix: About the CD

24_597760 app.qxp 1/11/06 10:02 PM Page 457

458 ASP.NET 2.0 Everyday Apps For Dummies

24_597760 app.qxp 1/11/06 10:02 PM Page 458

• Numerics •
1NF (first normal form), 25
2NF (second normal form), 25–26
3NF (third normal form), 26–27
4NF (fourth normal form), 26
5NF (fifth normal form), 26

• A •
acceptance testing of an application-

development project, 10
AccessDataSource control, 436
accounts for Content Management

System, 303–304
Add New Item dialog box, 429
adding buttons, 42–44
Admin page (User Authentication

application)
.aspx code, 94–95
Button control, 95
<Content> element, 95
features, 82
illustration, 83

ADO.NET classes, 432
<allow> element, 91
analysis of an application-development

project, 10
AnswerLabelText attribute
CreateUserWizard control, 63
PasswordRecovery control, 68

App_Browsers folder, 46–47, 427
App_Code folder, 427
App_Data folder, 46, 427
App_GlobalResources folder, 46–47, 427
application deployment, 52
application design, 12
application for authentication

Admin page, 82–83, 94–95
anonymous users, 90

Change Password page, 86–87, 101–102
Content page, 81–82, 93–94
design decisions, 88
features, 79–80
folders, 88–89
Login page, 81, 95–96
Master Pages, 88, 91–93
page flow, 80
Password Confirmation page, 100–101
Recover Password page, 84–85, 98–100
Recovery Confirmation page, 84–86
Register page, 97–98
Registration page, 82–84
user interface, 80–87
User List page, 86–87, 102–104
web.config file, 89–91

application for blog
Blog page, 378, 395–402
Blogs table, 384
Comments page, 379, 402–406
Comments table, 385–386
connection string, 390
CreateBlogDB.sql script, 386–388
database, 383–388
features, 375–376
Home page, 376–377, 392–395
InsertData.sql script, 388–389
Leave Comment page, 379–380, 407–410
log in requirements, 375–376
Login page, 380–381, 410–411
Master Page, 390–392
My Blogs page, 381–382, 412–418
New Post page, 383, 418–422
page flow, 377
Posts table, 384–385
Register page, 381–382, 411–412
SQL statements, 389–390
test data, 388–389
user interface, 376–383

Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 459

460 ASP.NET 2.0 Everyday Apps For Dummies

application for content management
system

connection string, 303
Content database, 297–300
Content Detail page, 295–296, 318–328
Content List page, 294–295, 313–318
ContentItems table, 298–299
ContentTypes table, 298
CreateContentsDB.sql script, 299–300
Department Home page, 293–294, 309–313
Departments table, 297–298
design decisions, 289–290
expired content, 290
features, 289
Home page, 292–293, 308–309
InsertData.sql script, 301
log in requirements, 290
Login page, 292, 307–308
Master Pages, 304–307
page flow, 291
SQL statements, 302–303
test data, 301
user accounts, 303–304
user interface, 291–296

application for forum
connection string, 342
CreateForumDB.sql script, 338–340
database, 338–340
design decisions, 329–330
features, 329
Forums table, 335–336
Home page, 331–332, 343–350
InsertData.sql script, 340
log in requirements, 330
Master Page, 342–343
Messages page, 332–333, 355–360
Messages table, 338
New Message page, 367–374
New Thread page, 334, 360–367
page flow, 331
Post Reply page, 334–335
SQL statements, 341–342
test data, 340
Threads page, 332–333, 350–355

application for product catalog
Cart page, 111, 142
Categories table, 113–114
connection string, 121–122
CreateProducts.sql script, 116–117
design decisions, 111–113
FeaturedProducts table, 115–116
features, 107
folders, 122
InsertProducts.sql script, 118–119
Master Pages, 122–123
page flow, 108
Product Detail page, 109–110, 136–141
Product List page, 108–109, 123–135
Products database, 113–117
Products table, 114–115
queries, 119–121
test data, 118–119
user interface, 107–111

application for product maintenance
Categories table, 231–232
Category Maintenance page,

224–226, 240–249
connection string, 237
CreateDB.sql script, 233–234
design decisions, 229–230
features, 223
folders, 238
InsertData.sql script, 234
Maint database, 231–234
Master Pages, 238–239
Menu page, 224–225, 239–240
page flow, 224
Product Maintenance page, 227–229,

249–263, 265–268
Products table, 232
SQL statements, 235–237
test data, 234–235
user interface, 224–229

application for reports
connection string, 276
CreateOrdersDB.sql script, 274
Customers table, 272–273
database, 272–274

25_597760 bindex.qxp 1/11/06 10:03 PM Page 460

Default page, 283–285
design decisions, 271–272
features, 269
InsertData.sql script, 274–275
Master Page, 276–277
Order user control, 277–283
OrderItems table, 273–274
Orders table, 273
Print Order page, 286
SQL statements, 275
test data, 274–275
user interface, 270–271

application for shopping cart
Cart database, 153–159
Cart page, 146, 148–149, 171–181
CartItem class, 164, 203–207
Check Out page, 148–152,

181–190, 192–193
Completed page, 152–153
connection string, 161
CreateCartDB.sql script, 157–159
credit card transactions, 145
Customer class, 162–163, 194–199
Customers table, 154–155
design decisions, 144–145
features, 143
folders, 161
InsertData.sql script, 159
inserting order data, 159–161
international shipments, 144
log in requirement, 144
Master Pages, 165–168
Order class, 164–165, 207–212
OrderDB class, 165, 212–220
OrderItems table, 156
Orders table, 155
page flow, 146
PayPal, 145
Product Detail page, 146–147, 168–170
Product List page, 146–147
Profile feature, 145
queries, 159
shipping charges, 145
ShoppingCart class, 163, 199–202
SSL (Secure Socket Layers), 145

state features, 144–145
test data, 159
user interface, 145–152

Application Layer, 13–15
application life cycle, 10–11
applications (ready-made), 448–449
App_LocalResources folder, 46–47, 427
App_WebReferences folder, 46–47, 427
arrows (in UML), 32
ASP.NET 2.0
App folders, 427
code-behind model, 426–427
code-beside model, 427
data controls, 432–440
Generics feature, 441–442
login controls, 440
Master Pages, 428–431
navigation controls, 442
partial classes, 426
themes, 442
Web Site Administration Tool, 443
WebParts feature, 442
Wizard control, 440–441

ASP.NET 2.0 All-In-One Desk Reference For
Dummies (Lowe), 9, 425

attacks on security
cross-site scripting (XSS), 75–76
malicious scripts, 75–76
SQL-injection attacks, 77–78

attributes
AnswerLabelText, 63, 68
CancelButtonImageUrl, 63, 70
CancelButtonText, 63, 70
CancelButtonType, 63, 70
CancelDestinationPageUrl, 63, 70
ChangePasswordButtonImageUrl, 70
ChangePasswordButtonText, 70
ChangePasswordButtonType, 70
ChangePasswordFailureText, 70
ChangePasswordTitleText, 70
CompleteStepText, 64
ConfirmNewPasswordLabelText, 71
ConfirmPasswordLabelText, 64
ContinueButtonImageUrl, 64, 71
ContinueButtonText, 64, 71

461Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 461

attributes (continued)
ContinueButtonType, 64, 71
ContinueDestinationPageUrl, 64, 71
CreateUserButtonImageUrl, 64
CreateUserButtonText, 64
CreateUserButtonType, 64
CreateUserIconUrl, 61
CreateUserText, 61, 71
CreateUserUrl, 61, 71
DestinationPageUrl, 61
DisableCreatedUser, 64
DisplayCancelButton, 64
DisplayRememberMe, 61
DisplayUserName, 71
EmailLabelText, 64
FailureText, 61
Font, 38
Font-Size, 39
GeneralFailureText, 68
HeaderText, 64
id, 39, 61, 63, 68, 70, 74
InstructionText, 61, 64, 71
LoginButtonText, 61
LoginButtonType, 62
LoginCreatedUser, 65
LoginImageUrl, 74
LoginText, 74
LogoutAction, 74
LogoutImageUrl, 75
LogoutPageUrl, 75
LogoutText, 75
NewPasswordLabelText, 71
NewPasswordRegularExpression, 71
Orientation, 62
PasswordHintText, 71
PasswordLabelText, 62, 65, 71
PasswordRecoveryIconUrl, 62
PasswordRecoveryText, 62, 72
PasswordRecoveryUrl, 62, 72
QuestionFailureText, 68
QuestionInstructionText, 68
QuestionLabelText, 65, 68
QuestionTitleText, 68
RememberMeText, 62
runat, 39, 61, 63, 68, 70, 74
SubmitButtonImageUrl, 68

SubmitButtonText, 68
SubmitButtonType, 68
SuccessPageUrl, 68, 72
SuccessText, 68, 72
Text, 38–39
TextLayout, 62, 68
TitleText, 62
UserNameFailureText, 69
UserNameInstructionText, 69
UserNameLabelText, 62, 65, 69, 72
UserNameTitleText, 69

authentication
defined, 56
forms-based, 56
Passport, 57
Windows-based, 56

Authentication application
Admin page, 82–83, 94–95
anonymous users, 90
Change Password page, 86–87, 101–102
Content page, 81–82, 93–94
design decisions, 88
features, 79–80
folders, 88–89
Login page, 81, 95–96
Master Pages, 88, 91–93
page flow, 80
Password Confirmation page, 100–101
Recover Password page, 84–85, 98–100
Recovery Confirmation page, 84–86
Register page, 97–98
Registration page, 82–84
user interface, 80–87
User List page, 86–87, 102–104
web.config file, 89–91

<authentication> element, 89
authorization

configuring, 57–59
defined, 56–57

• B •
bin folder, 46
Blog application

Blog page, 378, 395–402
Blogs table, 384

462 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 462

Comments page, 379, 402–406
Comments table, 385–386
connection string, 390
CreateBlogDB.sql script, 386–388
database, 383–388
features, 375–376
Home page, 376–377, 392–395
InsertData.sql script, 388–389
Leave Comment page, 379–380, 407–410
log in requirements, 375–376
Login page, 380–381, 410–411
Master Page, 390–392
My Blogs page, 381–382, 412–418
New Post page, 383, 418–422
page flow, 377
Posts table, 384–385
Register page, 381–382, 411–412
SQL statements, 389–390
test data, 388–389
user interface, 376–383

blog (defined), 375
Blog page (Blog application)
.aspx code, 395–399
code-behind file (C# version), 399–401
code-behind file (VB version), 401–402
features, 378, 395
FormView control, 378, 398–399
GridView control, 378, 398–399
illustration, 378
SqlDataSource1 data source, 398
SqlDataSource2 data source, 399

Blogs table (Blog application), 384
bound controls, 76
<BoundField> element, 243
Break mode, 50
breakpoints, 51–52
browsers (App_Browsers folder),

46–47, 427
btnAdd_Click method, 141, 168–170,

247, 360
btnBack_Click method, 141
btnContinue_Click method, 178
btnCreate_Click method, 417
btnPost_Click method, 372
btnReturn_Click method, 360
Business Rules Layer, 15, 17

buttons
adding, 42–44
btnAdd_Click method, 1041, 168–170,

247, 360
btnBack_Click method, 141
btnContinue_Click method, 178
btnCreate_Click method, 417
btnPost_Click method, 372
btnReturn_Click method, 360
Wizard1_FinishButtonClick

method, 192

• C •
C#, coexistence with Visual Basic, 4
calculator application, 47–50
CancelButtonImageUrl attribute
ChangePassword control, 70
CreateUserWizard control, 63

CancelButtonText attribute
ChangePassword control, 70
CreateUserWizard control, 63

CancelButtonType attribute
ChangePassword control, 70
CreateUserWizard control, 63

CancelDestinationPageUrl attribute
ChangePassword control, 70
CreateUserWizard control, 63

Cart application
Cart database, 153–159
Cart page, 146, 148–149, 171–181
CartItem class, 164, 203–207
Check Out page, 148–152,

181–190, 192–193
Completed page, 152–153
connection string, 161
CreateCartDB.sql script, 157–159
credit card transactions, 145
Customer class, 162–163, 194–199
Customers table, 154–155
design decisions, 144–145
features, 143
folders, 161
InsertData.sql script, 159
inserting order data, 159–161
international shipments, 144

463Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 463

Cart application (continued)
log in requirement, 144
Master Pages, 165–168
Order class, 164–165, 207–212
OrderDB class, 165, 212–220
OrderItems table, 156
Orders table, 155
page flow, 146
PayPal, 145
Product Detail page, 146–147, 168–170
Product List page, 146–147
Profile feature, 145
queries, 159
shipping charges, 145
ShoppingCart class, 163, 199–202
SSL (Secure Socket Layers), 145
state features, 144–145
test data, 159
user interface, 145–152

Cart page (Product Catalog application)
.aspx code, 142
features, 111
illustration, 111

Cart page (Shopping Cart application)
.aspx code, 171–173
btnContinue_Click method, 178
CheckTimeStamps method, 176, 178
code-behind file (C# version), 174–178
code-behind file (VB version), 179–181
features, 146, 148
GetItems method, 176–177
GridView control, 172–173
GridView1_RowCancelingEdit

method, 177–178
GridView1_RowDeleting method, 177
GridView1_RowEditing method, 177
GridView1_RowUpdating method, 177
illustration, 149
int.Parse method, 177
IsExpired method, 178
Page_Load method, 176

CartItem class (Shopping Cart
application), 164, 203–207

Catalog application
Cart page, 111, 142
Categories table, 113–114
connection string, 121–122

CreateProducts.sql script, 116–117
design decisions, 111–113
FeaturedProducts table, 115–116
features, 107
folders, 122
InsertProducts.sql script, 118–119
Master Pages, 122–123
page flow, 108
Product Detail page, 109–110, 136–141
Product List page, 108–109, 123–135
Products database, 113–117
Products table, 114–115
queries, 119–121
test data, 118–119
user interface, 107–111

Categories table
Product Catalog application, 113–114
Product Maintenance application, 231

Category Maintenance page (Product
Maintenance application)

Add Category button, 226
.aspx code, 240–245
<BoundField> element, 243
btnAdd_Click method, 247
code-behind file (C# version), 245–247
code-behind file (VB version), 248–249
<Columns> element, 243
<Content> element, 243
<DeleteCommand> element, 244
<DeleteParameters> element, 244
features, 224, 226
GridView control, 226, 243–244
GridView1_RowDeleted method, 247
GridView1_RowUpdated method, 247
illustration, 225–226
<InsertParameters> element, 244
setParameter method, 247
SqlDataSource element, 244
text boxes, 226, 245
<UpdateParameters> element, 244

CD
application installation, 456
application source code, 4, 456–457
application versions, 4
system requirements, 455
troubleshooting, 457

464 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 464

Change Password page (User
Authentication application)

.aspx code, 102
ChangePassword control, 102
<Content> element, 102
features, 86, 101
illustration, 87

ChangePassword control, 60, 69–72
ChangePasswordButtonImageUrl

attribute, 70
ChangePasswordButtonText

attribute, 70
ChangePasswordButtonType

attribute, 70
ChangePasswordFailureText

attribute, 70
ChangePasswordTitleText attribute, 70
charter for a database, 18–19
Check Out page (Shopping Cart

application)
.aspx code, 181–189
code-behind file (C# version),

189–190, 192
code-behind file (VB version), 192–193
Confirmation step, 151–152
features, 148–149, 181
Payment step, 150–151
Shipping step, 149–150
Wizard control, 187
<WizardSteps> element, 187–189

CheckTimeStamps method, 176, 178
Chonoles, Michael Jesse (UML 2 For

Dummies), 30
class diagrams, 30–32
classes

ADO.NET classes, 432
Dictionary, 203
Generics feature, 203
LinkedList, 203
List, 203
MembershipUserCollection class, 103
.NET Membership class, 102
partial classes, 426
Queue, 203
SortedDictionary, 203
SortedList, 203

Stack, 203
System.Web.Security.Membership–

Provider, 59
classes (Shopping Cart application)
CartItem, 164, 203–207
Customer, 162–163, 194–199
Order, 164–165, 207–212
OrderDB, 165, 212–220
ShoppingCart, 163, 199–201

CMS (Content Management System)
application

connection string, 303
Content database, 297–300
Content Detail page, 295–296, 318–328
Content List page, 294–295, 313–318
ContentItems table, 298–299
ContentTypes table, 298
CreateContentsDB.sql script, 299–300
Department Home page, 293–294, 309–313
Departments table, 297–298
design decisions, 289–290
expired content, 290
features, 289
Home page, 292–293, 308–309
InsertData.sql script, 301
log in requirements, 290
Login page, 292, 307–308
Master Pages, 304–307
page flow, 291
SQL statements, 302–303
test data, 301
user accounts, 303–304
user interface, 291–296

code-behind files
Application layer, 14
calculator application, 49
creating, 40–42
.cs extension, 426
Hello World application, 44–45
Model-View-Controller (MVC), 15
.vb extension, 426

code-behind files (Blog application)
Blog page, 399–402
Comments page, 405–406
Leave Comment page, 409–410
My Blogs page, 416–418
New Post page, 421–422

465Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 465

code-behind files (Content Management
System application)

Content Detail page, 325–328
Content List page, 317–318

code-behind files (Forum application)
Home page, 346–350
Messages page, 359–360
New Message page, 371–374
New Thread page, 363–367
Threads page, 353–355

code-behind files (Product Catalog
application)

Product Detail page, 140–141
Product List page, 132–135

code-behind files (Product Maintenance
application)

Category Maintenance page, 245–249
Product Maintenance page, 265–268

code-behind files (Report application),
284–285

code-behind files (Shopping Cart
application)

Cart page, 173–181
Check Out page, 189–190, 192–193

code-behind files (User Authentication
application), 104

code-behind model, 426
code-beside model, 427
coding mistakes, 445–446
coexistence of C# and Visual Basic, 4
<Columns> element, 243
Comments page (Blog application)
.aspx code, 402–405
btnComment button, 405
btnReturn button, 405
code-behind file (C# version), 405–406
code-behind file (VB version), 406
DataList control, 404
features, 379, 402
FormView control, 404
illustration, 379
SqlDataSource1 data source, 404
SqlDataSource2 data source, 404

Comments table (Blog application),
385–386

Completed page (Shopping Cart
application)

features, 152
illustration, 153

CompleteStepText attribute, 64
concurrency, 230, 235
configuring authorization, 57–59
ConfirmNewPasswordLabelText

attribute, 71
ConfirmPasswordLabelText

attribute, 64
connection strings

Blog application, 390
Content Management System (CMS)

application, 303
Forum application, 342
Product Catalog application, 121–122
Product Maintenance application, 237
Report application, 276
Shopping Cart application, 161

constraints, 454
Content Detail page (Content Management

System)
.aspx code, 319–324
code-behind file (C# version), 325–327
code-behind file (VB version), 327–328
features, 295, 318–319
illustration, 296

<Content> element, 94
Content List page (Content

Management System)
.aspx code, 313–316
code-behind file (C# version), 317–318
code-behind file (VB version), 318
<Content> element, 315–316
features, 294
FormView control, 315
illustration, 295
Label control, 315
LinkButton control, 316
OnClick element, 316
QueryParameter element, 316
Repeater control, 316
SqlDataSource1 control, 315
SqlDataSource2 control, 316

466 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 466

Content Management System (CMS)
application

connection string, 303
Content database, 297–300
Content Detail page, 295–296, 318–328
Content List page, 294–295, 313–318
ContentItems table, 298–299
ContentTypes table, 298
CreateContentsDB.sql script, 299–300
Department Home page, 293–294, 309–313
Departments table, 297–298
design decisions, 289–290
expired content, 290
features, 289
Home page, 292–293, 308–309
InsertData.sql script, 301
log in requirements, 290
Login page, 292, 307–308
Master Pages, 304–307
page flow, 291
SQL statements, 302–303
test data, 301
user accounts, 303–304
user interface, 291–296

Content page (User Authentication
application)

.aspx code, 93–94
<Content> element, 94
features, 81–82
illustration, 82

content pages
creating, 431–432
default code, 431
Master Pages, 428–429

ContentItems table (Content
Management System), 298–299

ContentPlaceHolder control, 93
ContentTypes table (Content

Management System), 298
ContinueButtonImageUrl attribute
ChangePassword control, 71
CreateUserWizard control, 64

ContinueButtonText attribute
ChangePassword control, 71
CreateUserWizard control, 64

ContinueButtonType attribute
ChangePassword control, 71
CreateUserWizard control, 64

ContinueDestinationPageUrl
attribute

ChangePassword control, 71
CreateUserWizard control, 64

controller (defined), 15
<ControlParameter> element, 131
controls
AccessDataSource, 436
bound controls, 76
ChangePassword, 60, 69–72
ContentPlaceHolder, 93
CreateUserWizard, 60, 62–66
data controls, 432–440
DataList1, 123–124, 128
DataGrid, 131
DetailsView, 138, 438
FormView, 264, 439–440
GridView, 131, 436–438
GridView1, 124, 129–130
Image, 93
Label, 37–39
LinkButton, 129
Login, 60–62
login controls, 59, 440
LoginName, 60, 73–74, 93
LoginStatus, 60, 74–75, 93
LoginView, 60, 72–73, 93
Menu, 442
navigation controls, 442
ObjectDataSource, 436
Order user control (Report

application), 277–283
PasswordRecovery, 60, 66–69
SiteMapDataSource, 436
SiteMapPath, 442
SqlDataSource, 125, 433–436
SqlDataSource1, 124, 129
SqlDataSource2, 124, 129
SqlDataSource3, 124, 130
Text Box, 42–44
TreeView, 442
user-input controls, 16

467Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 467

controls (continued)
Wizard, 191, 440–441
XmlDataSource, 436

CreateBlogDB.sql script, 386–388
CreateCartDB.sql script (Shopping Cart

application), 157–159
CreateContentsDB.sql script (Content

Management System), 299–300
CreateDB.sql script (Product

Maintenance application), 233–234
CreateForumDB.sql script (Forum

application), 338–340
CreateOrdersDB.sql script (Report

application), 274
CreateProducts.sql script (Product

Catalog application), 116–117
CreateUserButtonImageUrl

attribute, 64
CreateUserButtonText attribute, 64
CreateUserButtonType attribute, 64
CreateUserIconUrl attribute, 61
CreateUserText attribute
ChangePassword control, 71
Login control, 61

CreateUserUrl attribute
ChangePassword control, 71
Login control, 61

CreateUserWizard control, 60, 62–66
creating

code-behind files, 40–42
Content pages, 431–432
folders, 46
Master Pages, 429–430
Web sites, 35–36

credit card transactions, 145
cross-site scripting (XSS), 75–76
.cs extension (code-behind files), 426
Customer class (Shopping Cart

application), 162–163, 194–199
Customers table

Report application, 272–273
Shopping Cart application, 154–155

• D •
Data Access Layer, 13–15, 17–18
data controls, 432–440

Data Flow Diagrams (DFDs), 12
data model, 12
databases

Blog application, 383–388
charter, 18–19
constraints, 454
Content Management System (CMS)

application, 297–300
denormalization, 27–28, 156
designing, 18–23, 451–454
entities, 19
foreign key, 22–23
Forum application, 338–340
identity column, 21
naming conventions, 452–453
normalization, 23–27
nulls, 453
primary key, 21–23
Product Catalog application, 113–117
Product Maintenance application,

231–234
redundant data, 452
repeating data, 452
Report application, 272–274
secret codes, 453
Shopping Cart application, 153–159
stored procedures, 454
tables, 19–21
triggers, 454

DataGrid control, 131
DataList1 control, 123–124, 128
DataList1_SelectedIndexChanged

method, 133, 135
DataTips feature, 50–51
Date, C.J. (An Introduction to Database

Systems), 26
ddlCategory drop-down list (Product

Catalog application), 124, 129
Debug toolbar, 51
debugging

Break mode, 50
breakpoints, 51–52
DataTips feature, 50–51
web.config file, 52

Default page (Report application), 283–285
<DeleteCommand> element, 244
<DeleteParameters> element, 244, 263

468 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 468

denormalization, 27–28, 156
<deny> element, 89, 91
Department Home page (Content

Management System)
.aspx code, 310–313
<Content> element, 312
features, 293, 309–310
FormView control, 312
illustration, 294
Label control, 312
LinkButton control, 313
Repeater control, 313

Departments table (Content Management
System), 297–298

deploying applications, 52
design of an application-development

project, 10
Design view, 37
designing

databases, 18–23, 451–454
user interface, 16–17

DestinationPageUrl attribute, 61
DetailsView control, 138, 438
DetailsView1_ItemCommand

method, 327
DetailsView1_ItemDeleted

method, 327
DetailsView1_ItemInserted

method, 327
DFDs (Data Flow Diagrams), 12
diagrams

class diagrams, 30–32
Data Flow Diagrams (DFDs), 12
Entity-Relationship Diagrams (ERDs),

12, 28–29
flowcharts, 29–30
structure charts, 30
UML (Unified Modeling Language), 30–32
User Interface Flow Diagrams, 12

Dictionary class, 203
directives
Master directive, 430
Page directive, 432
Register directive, 286

DisableCreatedUser attribute, 64
DisplayCancelButton attribute, 64

DisplayRememberMe attribute, 61
DisplayUserName attribute, 71
documentation, 11, 446
downloading .NET Framework, 33

• E •
editing Master Pages, 430–431
elements
<allow>, 91
<authentication>, 89
<BoundField>, 243
<Columns>, 243
<Content>, 94
<ControlParameter>, 131
<DeleteCommand>, 244
<DeleteParameters>, 244, 263
<deny>, 89, 91
<InsertParameters>, 244, 263
<ItemTemplate>, 345
<MailDefinition>, 98, 100
<PagerSettings>, 130
<roleManager>, 89
<SelectParameters>, 131, 263
<UpdateParameters>, 244, 263
<WizardSteps>, 187, 191

EmailLabelText attribute, 64
entities (defined), 19
Entity-Relationship Diagrams (ERDs),

12, 28–29
error messages, hiding, 78
ExecuteScalar method, 217

• F •
FailureText attribute, 61
feasibility study for an application-

development project, 10
FeaturedProducts table (Product

Catalog application), 115–116
FeatureTextLabel label (Product

Catalog application), 128
fifth normal form (5NF), 26
file system Web sites, 35
first normal form (1NF), 25
flowcharts, 29–30

469Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 469

folders
App_Browsers folder, 46–47, 427
App_Code folder, 427
App_Data folder, 46, 427
App_GlobalResources folder,

46–47, 427
App_LocalResources folder, 46–47, 427
App_WebReferences folder, 46–47, 427
bin, 46
creating, 46
Product Catalog application, 122
Product Maintenance application, 238
regular, 46
Shopping Cart application, 161
themes, 46–47
User Authentication application, 88–89

Font attribute, 38
Font-Size attribute, 39
foreign key, 22–23
foreign-key constraint, 454
forms-based authentication, 56
FormView control, 264, 439–440
Forum application

connection string, 342
CreateForumDB.sql script, 338–340
database, 338–340
design decisions, 329–330
features, 329
Forums table, 335–336
Home page, 331–332, 343–350
InsertData.sql script, 340
log in requirements, 330
Master Page, 342–343
Messages page, 332–333, 355–360
Messages table, 338
New Message page, 367–374
New Thread page, 334, 360–367
page flow, 331
Post Reply page, 334–335
SQL statements, 341–342
test data, 340
Threads page, 332–333, 350–355
Threads table, 337
Topics table, 336–337
user interface, 331–335

forums
ASP.NET-specific, 449
defined, 329
moderated, 330
threads, 330
topics, 330
unmoderated, 330

Forums table (Forum application), 335–336
fourth normal form (4NF), 26
FTP Web sites, 36
function for @@IDENTITY, 160–161

• G •
GeneralFailureText attribute, 68
Generics feature, 203, 441–442
GetItems method, 176
global resources, 46
GridView control, 131, 436–438
GridView1 control, 124, 129–130
GridView1_RowCancelingEdit

method, 177–178
GridView1_RowDeleted method, 247
GridView1_RowDeleting method, 177
GridView1_RowEditing method, 177
GridView1_RowUpdated method, 247
GridView1_RowUpdating method, 177
GridView1_SelectedIndexChanged

method, 133, 135, 354

• H •
HeaderText attribute, 64
Hello World application
.aspx code, 44
buttons, 42–44
code-behind files, 40–42, 45
creating, 34–37
Label control, 37–39
running, 39–40
text boxes, 42–44

help
forums, 449
Wiley Product Technical Support, 457

hiding error messages, 78

470 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 470

Home page (Blog application)
.aspx code, 393–395
features, 376, 392
GridView control, 392
illustration, 377
Master Page, 376

Home page (Content Management System)
.aspx code, 308–309
<Content> element, 309
features, 292–293
illustration, 293
Label control, 309
LinkButton control, 309
Repeater control, 309

Home page (Forum application)
.aspx code, 344–346
code-behind file (C# version), 346–349
code-behind file (VB version), 349–350
<Content> element, 345
features, 331, 343
illustration, 332
<ItemTemplate> element, 345
LinkButton control, 345
Repeater controls, 345
table element, 345

HTTP Web sites, 35

• I •
id attribute
ChangePassword control, 70
CreateUserWizard control, 63
Label control, 39
Login control, 61
LoginStatus control, 74
PasswordRecovery control, 68

identity column, 21
@@IDENTITY function, 160–161
IIS server, 35
Image control, 93
implementation of an application-

development project, 10
input data

query strings, 448
validating, 448

InsertCustomer method, 216–217

InsertData.sql script
Blog application, 388–389
Content Management System, 301
Forum application, 340
Product Maintenance application, 234
Report application, 274–275
Shopping Cart application, 159

inserting order data into Shopping Cart
application, 159–161

InsertItem method, 217
InsertOrder method, 217
<InsertParameters> element, 244, 263
InsertProducts.sql script (Product

Catalog application), 118–119
installing applications from CD, 456
InstructionText attribute
ChangePassword control, 71
CreateUserWizard control, 64
Login control, 61

interfaces
Blog application, 376–383
Content Management System (CMS)

application, 291–296
defined, 13
designing, 16–17
Forum application, 331–335
Product Catalog application, 107–109, 111
Product Maintenance application, 224–229
Report application, 270–271
Shopping Cart application, 145–152
User Authentication application, 80–87

international shipments (Shopping Cart
application), 144

int.Parse method, 177
An Introduction to Database Systems

(Date), 26
IsExpired method, 178
<ItemTemplate> element, 345
iterative process of an application-

development projects, 11

• K •
keys

foreign key, 22–23
identity column, 21
primary key, 21–23

471Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 471

• L •
Label control, 37–39
layered architecture, 12–15
layers

Application Layer, 13–15
Business Rules Layer, 15, 17
Data Access Layer, 13–15, 17–18
defined, 13
logic code, 14
Presentation Layer, 15

Leave Comment page (Blog application)
.aspx code, 407–409
code-behind file (C# version), 409–410
code-behind file (VB version), 410
features, 379–380, 407
illustration, 380

life cycle of application-development
projects, 10–11

LinkButton control, 129
LinkButton_Click method, 327
LinkButton1_Click method, 354
LinkedList class, 203
List class, 203
local resources, 46
log in requirements

Blog application, 375–376
Content Management System (CMS)

application, 290
Forum application, 330
Shopping Cart application, 144

logic code, 14
Login control, 60–62
login controls, 59, 440
Login page (Blog application)
.aspx code, 411
features, 380, 410
illustration, 381
Login control, 380, 411

Login page (Content Management System)
.aspx code, 307–308
<Content> element, 307–308
features, 292
illustration, 292
Login control, 308

Login page (User Authentication
application)

.aspx code, 95–96
<Content> element, 96
features, 81
illustration, 81
Login control, 96

LoginButtonText attribute, 61
LoginButtonType attribute, 62
LoginCreatedUser attribute, 65
LoginImageUrl attribute, 74
LoginName control, 60, 73–74, 93
LoginStatus control, 60, 74–75, 93
LoginText attribute, 74
LoginView control, 60, 72–73, 93
LogoutAction attribute, 74
LogoutImageUrl attribute, 75
LogoutPageUrl attribute, 75
LogoutText attribute, 75
Lowe, Doug (ASP.NET 2.0 All-In-One Desk

Reference For Dummies), 9, 425

• M •
<MailDefinition> element, 98, 100
Maintenance application
Categories table, 231–232
Category Maintenance page,

224–226, 240–249
connection string, 237
CreateDB.sql script, 233–234
design decisions, 229–230
features, 223
folders, 238
InsertData.sql script, 234
Maint database, 231–234
Master Pages, 238–239
Menu page, 224–225, 239–240
page flow, 224
Product Maintenance page, 227–229,

249–263, 265–268
Products table, 232
SQL statements, 235–237
test data, 234–235
user interface, 224–229

472 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 472

maintenance of an application-
development projects, 11

malicious scripts, 75–76
Master directive, 430
Master Pages

Blog application, 390–392
Content Management System (CMS)

application, 304–307
Content pages, 428–429
content placeholders, 429
creating, 429–430
default code, 430
default content, 431
defined, 428
editing, 430–431
Forum application, 342–343
Product Catalog application, 122–123
Product Maintenance application, 238–239
Report application, 276–277
Shopping Cart application, 165–168
templates, 429
User Authentication application,

88, 91–93
membership providers, 59–60
MembershipUserCollection class, 103
Menu control, 442
Menu page (Product Maintenance

application)
.aspx code, 239–240
<Content> element, 240
features, 224
illustration, 225
LinkButton element, 240

Messages page (Forum application)
.aspx code, 355–359
btnAdd_Click method, 360
btnReturn_Click method, 360
code-behind file (C# version), 359–360
code-behind file (VB version), 360
<Columns> element, 358
<Content> element, 358
features, 332, 355
FormView control, 358
GridView control, 358
illustration, 333

Messages table (Forum application), 338

methods
btnAdd_Click, 141, 168–170, 247, 360
btnBack_Click, 141
btnContinue_Click, 178
btnCreate_Click, 417
btnPost_Click, 372
btnReturn_Click, 360
CheckTimeStamps, 176, 178
DataList1_SelectedIndexChanged,

133, 135
DetailsView1_ItemCommand, 327
DetailsView1_ItemDeleted, 327
DetailsView1_ItemInserted, 327
ExecuteScalar, 217
GetItems, 176
GridView1_RowCancelingEdit,

177–178
GridView1_RowDeleted, 247
GridView1_RowDeleting, 177
GridView1_RowEditing, 177
GridView1_RowUpdated, 247
GridView1_RowUpdating, 177
GridView1_SelectedIndexChanged,

133, 135, 354
InsertCustomer, 216–217
InsertItem, 217
InsertOrder, 217
int.Parse, 177
IsExpired, 178
LinkButton_Click, 327
LinkButton1_Click, 354
Page_Load, 40–41, 133, 135, 176, 192,

326–327, 417
Rollback, 216
setParameter, 247
SqlDataSource2_Deleted, 266
SqlDataSource2_Inserted, 267
SqlDataSource2_Updated, 267
Wizard1_FinishButtonClick, 192
WriteOrder, 216

model (defined) 15
model-controller (defined), 15, 29
models, 11–12
moderated forums, 330
MVC (Model-View-Controller), 15, 29

473Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 473

My Blogs page (Blog application)
.aspx code, 413–416
btnCreate_Click method, 417
code-behind file (C# version), 416–417
code-behind file (VB version), 417–418
features, 381, 412
GridView control, 415–416
illustration, 382
Page_Load method, 417
SqlDataSource1 data source, 416
SqlDataSource2 data source, 416

• N •
NameLabel label, 128
namespace for System.Collections.

Generic, 203, 442
naming conventions, 28, 452–453
naming Web sites, 36
navigation controls, 442
.NET Framework, downloading, 33
.NET Membership class, 102
new features in ASP.NET 2.0
App folders, 427
code-behind model, 426–427
code-beside model, 427
data controls, 432–440
Generics feature, 441–442
login controls, 440
Master Pages, 428–431
navigation controls, 442
partial classes, 426
themes, 442
Web Site Administration Tool, 443
WebParts feature, 442
Wizard control, 440–441

New Message page (Forum application)
.aspx code, 368–370
btnPost_Click method, 372
code-behind file (C# version), 371–373
code-behind file (VB version), 373–374
<Content> element, 370
features, 367
FormView control, 370

New Post page (Blog application)
.aspx code, 418–421
code-behind file (C# version), 421

code-behind file (VB version), 422
features, 383, 418
illustration, 383

New Thread page (Forum application)
.aspx code, 361–363
code-behind file (C# version), 363–366
code-behind file (VB version), 366–367
<Content> element, 362
features, 334, 360
FormView control, 362
illustration, 334

New Web Site dialog box, 35
NewPasswordLabelText attribute, 71
NewPasswordRegularExpression

attribute, 71
normalization, 23–27
Notepad, 33
nulls (in database tables), 453

• O •
ObjectDataSource control, 436
obsolescence of an application-

development projects, 11
optimistic concurrency checking, 230, 235
Order class (Shopping Cart application),

164–165, 207–212
Order user control (Report application),

277–283
OrderDB class (Shopping Cart

application), 165, 212–220
OrderItems table

Report application, 273–274
Shopping Cart application, 156

Orders table
Report application, 273
Shopping Cart application, 155

Orientation attribute, 62
overusing state features, 447–448

• P •
Page directive, 432
Page_Load method

Blog application, 417
Content Management System

application, 326–327

474 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 474

Hello World application, 40–41
Product Catalog application, 133, 135
Shopping Cart application, 176, 192

<PagerSettings> element, 130
partial classes, 426
Passport authentication, 57
Password Confirmation page (User

Authentication application)
.aspx code, 101
Button control, 101
<Content> element, 101
features, 100

PasswordHintText attribute, 71
PasswordLabelText attribute
ChangePassword control, 71
CreateUserWizard control, 65
Login control, 62

PasswordRecovery control, 60, 66–69
PasswordRecoveryIconUrl attribute, 62
PasswordRecoveryText attribute
ChangePassword control, 72
Login control, 62

PasswordRecoveryUrl attribute
ChangePassword control, 72
Login control, 62

PayPal, 145
phone number for Wiley Product

Technical Support, 457
Post Reply page (Forum application)

features, 334
illustration, 335

Posts table (Blog application), 384–385
precompiled deployment, 52
Presentation Layer, 15
PriceLabel label, 129
primary key, 21–23
Print Order page (Report application), 286
Product Catalog application

Cart page, 111, 142
Categories table, 113–114
connection string, 121–122
CreateProducts.sql script, 116–117
design decisions, 111–113
FeaturedProducts table, 115–116
features, 107
folders, 122
InsertProducts.sql script, 118–119
Master Pages, 122–123

page flow, 108
Product Detail page, 109–110, 136–141
Product List page, 108–109, 123–135
Products database, 113–117
Products table, 114–115
queries, 119–121
test data, 118–119
user interface, 107–111

Product Detail page (Product Catalog
application)

.aspx code, 136–139
code-behind file (C# version), 140
code-behind file (VB version), 141
DetailsView control, 138–139
features, 109–110, 136
illustration, 110

Product Detail page (Shopping Cart
application)

.aspx code, 168–169
btnAdd_Click method, 168–170
features, 146
illustration, 147

Product List page (Product Catalog
application)

.aspx code, 124–131
code-behind file (C# version), 132–133
code-behind file (VB version), 134–135
<ControlParameter> element, 131
DataList1 control, 123–124, 128
ddlCategory drop-down list, 124, 129
features, 108–109
FeatureTextLabel label, 128
GridView1 control, 124, 129–130
illustration, 109
LinkButton control, 129
NameLabel label, 128
<PagerSettings> element, 130
PriceLabel label, 129
SalePriceLabel label, 129
<SelectParameters> element, 131
SqlDataSource1 control, 124, 129
SqlDataSource2 control, 124, 129
SqlDataSource3 control, 124, 130

Product List page (Shopping Cart
application)

features, 146
illustration, 147

475Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 475

Product Maintenance application
Categories table, 231–232
Category Maintenance page,

224–226, 240–249
connection string, 237
CreateDB.sql script, 233–234
design decisions, 229–230
features, 223
folders, 238
InsertData.sql script, 234
Maint database, 231–234
Master Pages, 238–239
Menu page, 224–225, 239–240
page flow, 224
Product Maintenance page, 227–229,

249–263, 265–268
Products table, 232
SQL statements, 235–237
test data, 234–235
user interface, 224–229

Product Maintenance page (Product
Maintenance application)

.aspx code, 249–263
code-behind file (C# version), 265–267
code-behind file (VB version), 267–268
<Content> element, 259
<DeleteParameters> element, 263
features, 227–228, 249
FormView control, 228, 260
GridView control, 227–228, 260
illustration, 227–229
<InsertParameters> element, 263
<SelectParameters> element, 263
SqlDataSource2_Deleted method, 266
SqlDataSource2_Inserted

method, 267
SqlDataSource2_Updated method, 267
text boxes, 260–262
<UpdateParameters> element, 263

production of an application-development
project, 11

Products table
Product Catalog application, 114–115
Product Maintenance application, 232

Profile feature, 145
programming mistakes, 445–446
program deployment, 52

program design, 12
program for authentication

Admin page, 82–83, 94–95
anonymous users, 90
Change Password page, 86–87, 101–102
Content page, 81–82, 93–94
design decisions, 88
features, 79–80
folders, 88–89
Login page, 81, 95–96
Master Pages, 88, 91–93
page flow, 80
Password Confirmation page, 100–101
Recover Password page, 84–85, 98–100
Recovery Confirmation page, 84–86
Register page, 97–98
Registration page, 82–84
user interface, 80–87
User List page, 86–87, 102–104
web.config file, 89–91

program for blog
Blog page, 378, 395–402
Blogs table, 384
Comments page, 379, 402–406
Comments table, 385–386
connection string, 390
CreateBlogDB.sql script, 386–388
database, 383–388
features, 375–376
Home page, 376–377, 392–395
InsertData.sql script, 388–389
Leave Comment page, 379–380, 407–410
log in requirements, 375–376
Login page, 380–381, 410–411
Master Page, 390–392
My Blogs page, 381–382, 412–418
New Post page, 383, 418–422
page flow, 377
Posts table, 384–385
Register page, 381–382, 411–412
SQL statements, 389–390
test data, 388–389
user interface, 376–383

program for content management system
connection string, 303
Content database, 297–300
Content Detail page, 295–296, 318–328

476 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 476

Content List page, 294–295, 313–318
ContentItems table, 298–299
ContentTypes table, 298
CreateContentsDB.sql script, 299–300
Department Home page, 293–294, 309–313
Departments table, 297–298
design decisions, 289–290
expired content, 290
features, 289
Home page, 292–293, 308–309
InsertData.sql script, 301
log in requirements, 290
Login page, 292, 307–308
Master Pages, 304–307
page flow, 291
SQL statements, 302–303
test data, 301
user accounts, 303–304
user interface, 291–296

program for forum
connection string, 342
CreateForumDB.sql script, 338–340
database, 338–340
design decisions, 329–330
features, 329
Forums table, 335–336
Home page, 331–332, 343–350
InsertData.sql script, 340
log in requirements, 330
Master Page, 342–343
Messages page, 332–333, 355–360
Messages table, 338
New Message page, 367–374
New Thread page, 334, 360–367
page flow, 331
Post Reply page, 334–335
SQL statements, 341–342
test data, 340
Threads page, 332–333, 350–355

program for product catalog
Cart page, 111, 142
Categories table, 113–114
connection string, 121–122
CreateProducts.sql script, 116–117
design decisions, 111–113
FeaturedProducts table, 115–116
features, 107
folders, 122

InsertProducts.sql script, 118–119
Master Pages, 122–123
page flow, 108
Product Detail page, 109–110, 136–141
Product List page, 108–109, 123–135
Products database, 113–117
Products table, 114–115
queries, 119–121
test data, 118–119
user interface, 107–111

program for product maintenance
Categories table, 231–232
Category Maintenance page,

224–226, 240–249
connection string, 237
CreateDB.sql script, 233–234
design decisions, 229–230
features, 223
folders, 238
InsertData.sql script, 234
Maint database, 231–234
Master Pages, 238–239
Menu page, 224–225, 239–240
page flow, 224
Product Maintenance page, 227–229,

249–263, 265–268
Products table, 232
SQL statements, 235–237
test data, 234–235
user interface, 224–229

program for reports
connection string, 276
CreateOrdersDB.sql script, 274
Customers table, 272–273
database, 272–274
Default page, 283–285
design decisions, 271–272
features, 269
InsertData.sql script, 274–275
Master Page, 276–277
Order user control, 277–283
OrderItems table, 273–274
Orders table, 273
Print Order page, 286
SQL statements, 275
test data, 274–275
user interface, 270–271

477Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 477

program for shopping cart
Cart database, 153–159
Cart page, 146, 148–149, 171–181
CartItem class, 164, 203–207
Check Out page, 148–152,

181–190, 192–193
Completed page, 152–153
connection string, 161
CreateCartDB.sql script, 157–159
credit card transactions, 145
Customer class, 162–163, 194–199
Customers table, 154–155
design decisions, 144–145
features, 143
folders, 161
InsertData.sql script, 159
inserting order data, 159–161
international shipments, 144
log in requirement, 144
Master Pages, 165–168
Order class, 164–165, 207–212
OrderDB class, 165, 212–220
OrderItems table, 156
Orders table, 155
page flow, 146
PayPal, 145
Product Detail page, 146–147, 168–170
Product List page, 146–147
Profile feature, 145
queries, 159
shipping charges, 145
ShoppingCart class, 163, 199–202
SSL (Secure Socket Layers), 145
state features, 144–145
test data, 159
user interface, 145–152

program life cycle, 10–11
programs (ready-made), 448–449
properties
AnswerLabelText, 63, 68
CancelButtonImageUrl, 63, 70
CancelButtonText, 63, 70
CancelButtonType, 63, 70
CancelDestinationPageUrl, 63, 70
ChangePasswordButtonImageUrl, 70
ChangePasswordButtonText, 70

ChangePasswordButtonType, 70
ChangePasswordFailureText, 70
ChangePasswordTitleText, 70
CompleteStepText, 64
ConfirmNewPasswordLabelText, 71
ConfirmPasswordLabelText, 64
ContinueButtonImageUrl, 64, 71
ContinueButtonText, 64, 71
ContinueButtonType, 64, 71
ContinueDestinationPageUrl, 64, 71
CreateUserButtonImageUrl, 64
CreateUserButtonText, 64
CreateUserButtonType, 64
CreateUserIconUrl, 61
CreateUserText, 61, 71
CreateUserUrl, 61, 71
DestinationPageUrl, 61
DisableCreatedUser, 64
DisplayCancelButton, 64
DisplayRememberMe, 61
DisplayUserName, 71
EmailLabelText, 64
FailureText, 61
Font, 38
Font-Size, 39
GeneralFailureText, 68
HeaderText, 64
id, 39, 61, 63, 68, 70, 74
InstructionText, 61, 64, 71
LoginButtonText, 61
LoginButtonType, 62
LoginCreatedUser, 65
LoginImageUrl, 74
LoginText, 74
LogoutAction, 74
LogoutImageUrl, 75
LogoutPageUrl, 75
LogoutText, 75
NewPasswordLabelText, 71
NewPasswordRegularExpression, 71
Orientation, 62
PasswordHintText, 71
PasswordLabelText, 62, 65, 71
PasswordRecoveryIconUrl, 62
PasswordRecoveryText, 62, 72
PasswordRecoveryUrl, 62, 72

478 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 478

QuestionFailureText, 68
QuestionInstructionText, 68
QuestionLabelText, 65, 68
QuestionTitleText, 68
RememberMeText, 62
runat, 39, 61, 63, 68, 70, 74
SubmitButtonImageUrl, 68
SubmitButtonText, 68
SubmitButtonType, 68
SuccessPageUrl, 68, 72
SuccessText, 68, 72
Text, 38–39
TextLayout, 62, 68
TitleText, 62
UserNameFailureText, 69
UserNameInstructionText, 69
UserNameLabelText, 62, 65, 69, 72
UserNameTitleText, 69

• Q •
quality assurance, 11
queries

Product Catalog application, 119–121
Shopping Cart application, 159

query strings for input data, 448
QuestionFailureText attribute, 68
QuestionInstructionText attribute, 68
QuestionLabelText attribute
CreateUserWizard control, 65
PasswordRecovery control, 68

QuestionTitleText attribute, 68
Queue class, 203

• R •
ready-made applications, 448–449
Recover Password page (User

Authentication application)
.aspx code, 98–100
<Content> element, 99
features, 84
illustration, 85
<MailDefinition> element, 100
PasswordMessage.txt file, 100
PasswordRecover control, 99–100

Recovery Confirmation page (User
Authentication application)

e-mail message, 84, 86
features, 84
illustration, 86

redundant data in databases, 452
Register directive, 286
Register page (Blog application)
.aspx code, 411–412
CreateUserWizard control, 381, 412
features, 381, 411
illustration, 382

Register page (User Authentication
application)

.aspx code, 97–98
<Content> element, 97
CreateUserWizard control, 98
<MailDefinition> element, 98
NewUser.txt file, 98
<WizardSteps> element, 98

Registration page (User Authentication
application)

features, 82, 84
illustration, 83

regression testing, 447
regular folders, 46
relational databases

Blog application, 383–388
charter, 18–19
constraints, 454
Content Management System (CMS)

application, 297–300
denormalization, 27–28, 156
designing, 18–23, 451–454
entities, 19
foreign key, 22–23
Forum application, 338–340
identity column, 21
naming conventions, 452–453
normalization, 23–27
nulls, 453
primary key, 21–23
Product Catalog application, 113–117
Product Maintenance application,

231–234
redundant data, 452

479Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 479

relational databases (continued)
repeating data, 452
Report application, 272–274
secret codes, 453
Shopping Cart application, 153–159
stored procedures, 454
tables, 19–21
triggers, 454

RememberMeText attribute, 62
repeating data in databases, 452
Report application

connection string, 276
CreateOrdersDB.sql script, 274
Customers table, 272–273
database, 272–274
Default page, 283–285
design decisions, 271–272
features, 269
InsertData.sql script, 274–275
Master Page, 276–277
Order user control, 277–283
OrderItems table, 273–274
Orders table, 273
Print Order page, 286
SQL statements, 275
test data, 274–275
user interface, 270–271

<roleManager> element, 89
Rollback method, 216
runat attribute
ChangePassword control, 70
CreateUserWizard control, 63
Label control, 39
Login control, 61
LoginStatus control, 74
PasswordRecovery control, 68

running applications, 39–40

• S •
SalePriceLabel label, 129
Schardt, James A. (UML 2 For Dummies), 30
scripts
CreateBlogDB.sql script (Blog

application), 386–388
CreateCartDB.sql script (Shopping

Cart application), 157–159

CreateContentsDB.sql script (Content
Management System), 299–300

CreateDB.sql script (Product
Maintenance application), 233

CreateForumDB.sql script (Forum
application), 338–340

CreateOrdersDB.sql script (Report
application), 274

CreateProducts.sql script (Product
Catalog application), 116–117

InsertData.sql script (Blog
application), 388–389

InsertData.sql script (Forum
application), 340

InsertData.sql script (Product
Maintenance application), 234

InsertData.sql script (Report
application), 274–275

InsertData.sql script (Shopping Cart
application), 159

InsertProducts.sql script (Product
Catalog application), 118–119

second normal form (2NF), 25–26
secret codes in databases, 453
Secure Socket Layers (SSL), 145
security features

authentication, 56–57
authorization, 56–59
ChangePassword control, 60, 69–72
CreateUserWizard control, 60, 62–66
Login control, 60–62
LoginName control, 60, 73–74
LoginStatus control, 60, 74–75
LoginView control, 60, 72–73
membership providers, 59–60
PasswordRecovery control, 60, 66–69

security threats
cross-site scripting (XSS), 75–76
malicious scripts, 75–76
SQL-injection attacks, 77–78

<SelectParameters> element, 131, 263
session state, 144–145
setParameter method, 247
Setup project, 52
shipping goods

charges, 145
international shipments, 144

480 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 480

Shopping Cart application
Cart database, 153–159
Cart page, 146, 148–149, 171–181
CartItem class, 164, 203–207
Check Out page, 148–152,

181–190, 192–193
Completed page, 152–153
connection string, 161
CreateCartDB.sql script, 157–159
credit card transactions, 145
Customer class, 162–163, 194–199
Customers table, 154–155
design decisions, 144–145
features, 143
folders, 161
InsertData.sql script, 159
inserting order data, 159–161
international shipments, 144
log in requirement, 144
Master Pages, 165–168
Order class, 164–165, 207–212
OrderDB class, 165, 212–220
OrderItems table, 156
Orders table, 155
page flow, 146
PayPal, 145
Product Detail page, 146–147, 168–170
Product List page, 146–147
Profile feature, 145
queries, 159
shipping charges, 145
ShoppingCart class, 163, 199–202
SSL (Secure Socket Layers), 145
state features, 144–145
test data, 159
user interface, 145–152

ShoppingCart class (Shopping Cart
application), 163, 199–201

SiteMapDataSource control, 436
SiteMapPath control, 442
SortedDictionary class, 203
SortedList class, 203
source code on CD, 4, 456–457
Source view, 37
SQL names, 28

SQL statements
Blog application, 389–390
Content Management System (CMS)

application, 302–303
Forum application, 341–342
Product Maintenance application, 235–237
Report application, 275

SqlDataSource control, 125, 433–436
SqlDataSource1 control, 124, 129
SqlDataSource2 control, 124, 129

SqlDataSource3 control, 124, 130
SqlDataSource2_Deleted method, 266
SqlDataSource2_Inserted method, 267
SqlDataSource2_Updated method, 267
SQL-injection attacks, 77–78
SSL (Secure Socket Layers), 145
Stack class, 203
Start Page (Visual Web Developer 2005

Express Edition), 34
state features

overusing, 447–448
session state, 144–145
Shopping Cart application, 144–145

stored procedures, 454
storyboards, 12
structure charts, 30
SubmitButtonImageUrl attribute, 68
SubmitButtonText attribute, 68
SubmitButtonType attribute, 68
SuccessPageUrl attribute
ChangePassword control, 72
PasswordRecovery control, 68

SuccessText attribute
ChangePassword control, 72
PasswordRecovery control, 68

system requirements for CD, 455
System.Collections.Generic

namespace, 203, 442
System.Web.Security.Membership-

Provider class, 59

• T •
tables (databases)

nulls, 453
number of, 451
planning, 19–21

481Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 481

technical support for CD, 457
telephone number for Wiley Product

Technical Support, 457
templates
FormView control, 264, 439
Master Pages, 429
Web sites, 35–36

test data
Blog application, 388–389
Content Management System (CMS)

application, 301
Forum application, 340
Product Catalog application, 118–119
Product Maintenance application,

234–235
Report application, 274–275
Shopping Cart application, 159

testing
acceptance testing of an application-

development project, 10
common mistakes, 447
regression testing, 447

Text attribute, 38–39
Text Box control, 42–44
TextLayout attribute
Login control, 62
PasswordRecovery control, 68

themes
folders, 46–47
uses, 442

third normal form (3NF), 26–27
threads (forums), 330
Threads page (Forum application)
.aspx code, 350–353
code-behind file (C# version), 353–354
code-behind file (VB version), 353, 355
<Content> element, 353
features, 332, 350
FormView control, 353
GridView control, 353
GridView1_SelectedIndexChanged

method, 354
illustration, 333
LinkButton control, 353
LinkButton1_Click method, 354

Threads table (Forum application), 337

threats to security
cross-site scripting (XSS), 75–76
malicious scripts, 75–76
SQL-injection attacks, 77–78

three-layer architecture, 15
TitleText attribute, 62
topics (forums), 330
Topics table (Forum application), 336–337
tr_CommentCount trigger, 388
TreeView control, 442
triggers

defined, 454
tr_CommentCount, 388
tr_PostCount, 388

troubleshooting CD problems, 457
tr_PostCount trigger, 388

• U •
UML 2 For Dummies (Chonoles and

Schardt), 30
UML (Unified Modeling Language), 30–32
unmoderated forum, 330
<UpdateParameters> element, 244, 263
user accounts for Content Management

System, 303–304
user authentication

defined, 56
forms-based, 56
Passport, 57
Windows-based, 56

User Authentication application
Admin page, 82–83, 94–95
anonymous users, 90
Change Password page, 86–87, 101–102
Content page, 81–82, 93–94
design decisions, 88
features, 79–80
folders, 88–89
Login page, 81, 95–96
Master Pages, 88, 91–93
page flow, 80
Password Confirmation page, 100–101
Recover Password page, 84–85, 98–100
Recovery Confirmation page, 84–86
Register page, 97–98

482 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 482

Registration page, 82–84
user interface, 80–87
User List page, 86–87, 102–104
web.config file, 89–91

User Interface Flow Diagrams, 12
user interfaces

Blog application, 376–383
Content Management System (CMS)

application, 291–296
defined, 13
designing, 16–17
Forum application, 331–335
Product Catalog application, 107–109, 111
Product Maintenance application,

224–229
Report application, 270–271
Shopping Cart application, 145–152
User Authentication application, 80–87

User List page (User Authentication
application)

.aspx code, 103
code-behind file (C# version), 104
code-behind file (VB version), 104
<Content> element, 103
DataGridView control, 102
features, 86, 102
illustration, 87
Label control, 103
MembershipUserCollection class, 103
.NET Membership class, 102

user-input controls, 16
UserNameFailureText attribute, 69
UserNameInstructionText attribute, 69
UserNameLabelText attribute
ChangePassword control, 72
CreateUserWizard control, 65
Login control, 62
PasswordRecovery control, 69

UserNameTitleText attribute, 69

• V •
validating input data, 448
.vb extension (code-behind files), 426
view (defined), 15, 29

visibility, 31
visibility indicator, 31
Visual Basic, coexistence with C#, 4
Visual Basic 2005 Express Edition, 34
Visual C# 2005 Express Edition, 34
Visual Web Developer 2005 Express

Edition (VWDE)
cost, 9, 33
Start Page, 34

• W •
Web Forum application

connection string, 342
CreateForumDB.sql script, 338–340
database, 338–340
design decisions, 329–330
features, 329
Forums table, 335–336
Home page, 331–332, 343–350
InsertData.sql script, 340
log in requirements, 330
Master Page, 342–343
Messages page, 332–333, 355–360
Messages table, 338
New Message page, 367–374
New Thread page, 334, 360–367
page flow, 331
Post Reply page, 334–335
SQL statements, 341–342
test data, 340
Threads page, 332–333, 350–355
Threads table, 337
Topics table, 336–337
user interface, 331–335

Web forums
ASP.NET-specific, 449
defined, 329
moderated, 330
threads, 330
topics, 330
unmoderated, 330

Web services (App_WebReferences
folder), 46–47, 427

Web Site Administration Tool, 443

483Index

25_597760 bindex.qxp 1/11/06 10:03 PM Page 483

Web sites
creating, 35–36
Design view, 37
file system, 35
FTP, 36
HTTP, 35
naming, 36
Setup project, 52
Source view, 37
templates, 35–36

web.config file, 39, 52, 89–91
Weblog application

Blog page, 378, 395–402
Blogs table, 384
Comments page, 379, 402–406
Comments table, 385–386
connection string, 390
CreateBlogDB.sql script, 386–388
database, 383–388
features, 375–376
Home page, 376–377, 392–395
InsertData.sql script, 388–389
Leave Comment page, 379–380, 407–410
log in requirements, 375–376
Login page, 380–381, 410–411

Master Page, 390–392
My Blogs page, 381–382, 412–418
New Post page, 383, 418–422
page flow, 377
Posts table, 384–385
Register page, 381–382, 411–412
SQL statements, 389–390
test data, 388–389
user interface, 376–383

weblog (defined), 375
WebParts feature, 442
Wiley Product Technical Support, 457
Windows-based authentication, 56
Wizard control, 191, 440–441
Wizard1_FinishButtonClick

method, 192
<WizardSteps> element, 187, 191
WriteOrder method, 216

• X •
Xcopy deployment, 52
XmlDataSource control, 436
XSS (cross-site scripting), 75–76

484 ASP.NET 2.0 Everyday Apps For Dummies

25_597760 bindex.qxp 1/11/06 10:03 PM Page 484

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

26_597760 bob.qxp 1/11/06 10:03 PM Page 485

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

26_597760 bob.qxp 1/11/06 10:03 PM Page 486

