

Beginning
Ajax with ASP.NET

Wallace B. McClure, Scott Cate, Paul Glavich, Craig Shoemaker

01_78544x ffirs.qxp 7/18/06 3:11 PM Page iii

01_78544x ffirs.qxp 7/18/06 3:11 PM Page ii

Beginning
Ajax with ASP.NET

01_78544x ffirs.qxp 7/18/06 3:11 PM Page i

01_78544x ffirs.qxp 7/18/06 3:11 PM Page ii

Beginning
Ajax with ASP.NET

Wallace B. McClure, Scott Cate, Paul Glavich, Craig Shoemaker

01_78544x ffirs.qxp 7/18/06 3:11 PM Page iii

Beginning Ajax with ASP.NET
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-78544-6
ISBN-10: 0-471-78544-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QT/QY/QW/IN

Library of Congress Control Number: 2006016507

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis-
sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_78544x ffirs.qxp 7/18/06 3:11 PM Page iv

www.wiley.com

Credits
Executive Editor
Bob Elliott

Senior Development Editor
Kevin Kent

Technical Editor
Steven A. Smith

Production Editor
Pamela Hanley

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Joyce Haughey
Barbara Moore
Heather Ryan
Alicia B. South

Quality Control Technicians
John Greenough
Brian Walls

Project Coordinator
Jennifer Theriot

Proofreading and Indexing
Techbooks

01_78544x ffirs.qxp 7/18/06 3:11 PM Page v

For my wife, Ronda, my two children, Kirsten and Bradley, and the rest of my family.
—Wallace B. McClure

My contribution to this project is dedicated to my newborn son, Cameron. I’d like to thank Michael
Schwarz both for authoring the Ajax.NET Professional library and for his research assistance, as well
as all of the myKB.com staff, who were very helpful and supportive of this project. Special thanks go
to Lorin Thwaits, who helped me with research and provided several great ideas for my chapters.

—Scott Cate

To my wonderful wife Michele for her enduring love and patience; my three children, Kristy, Marc, and
Elizabeth, for being so lovable and great people; my two grandchildren, Olivia and William, for just
being themselves; my loving parents for all their support; and everyone else I have met on the way to
getting where I am, good or bad, thank you for helping me get here.

—Paul Glavich

I dedicate this work first to God, then my Peachy, TyRy, Zachy-zoo, and baby Jacob—who started to
make his appearance as I write this text.

—Craig Shoemaker

For Michelle, for putting up with me longer than anybody should have to do so.
—Steven A. Smith

01_78544x ffirs.qxp 7/18/06 3:11 PM Page vi

About the Authors
Wallace B. “Wally” McClure graduated from the Georgia Institute of Technology in 1990 with a Bachelor
of Science degree in electrical engineering. He continued his education there, receiving a master’s degree
in the same field in 1991. Since that time, he has done consulting and development for such organizations
as The United States Department of Education, Coca-Cola, Bechtel National, Magnatron, and Lucent
Technologies, among others. Products and services have included work with ASP, ADO, XML, and SQL
Server, as well as numerous applications in the Microsoft .NET Framework. Wally has been working with
the .NET Framework since the summer of 2000. Wally McClure specializes in building applications that
have large numbers of users and large amounts of data. He is a Microsoft MVP and an ASPInsider, and a
partner in Scalable Development, Inc. You can read Wally’s blog at http://weblogs.asp.net/wallym.
Wally and coauthor Paul Glavich also co-host the ASP.NET Podcast. You can listen to it at www.aspnet
podcast.com. In addition, Wally travels around the southeast United States doing user group talks and
sessions at various CodeCamps.

When not working or playing with technology, Wally tries to spend time with his wife Ronda and their
two children, Kirsten and Bradley. Occasionally, Wally plays golf and on July 30, 2005, broke par on a
real golf course for the first time in his life. If he hadn’t been there, he would not have believed it.

Scott Cate is the President of myKB.com, Inc., in Scottsdale, Arizona. myKB.com, Inc., is a technology com-
pany specializing in commercial ASP.NET applications. His product line includes myKB.com (knowledge
base software), kbAlertz.com (Microsoft knowledge base notifications), and EasySearchASP.net (a plug-
gable search engine for ASP.NET sites). Scott also runs AZGroups.com (Arizona .NET user groups), one of
the largest and most active user group communities in the country, and is a member of ASPInsiders.com, a
group devoted to giving early feedback to the Microsoft ASP.NET team. In addition, Scott has coauthored
the novel Surveillance, which can be found at http://surveillance-the-novel.com.

Paul Glavich is currently an ASP.NET MVP and works as a senior technical consultant for Readify. He
has over 15 years of industry experience ranging from PICK, C, C++, Delphi, and Visual Basic 3/4/5/6
to his current specialty in .NET C++ with C#, COM+, and ASP.NET. Paul has been developing in .NET
technologies since .NET was first in beta and was technical architect for one of the world’s first Internet
banking solutions using .NET technology. Paul can be seen on various .NET related newsgroups, has
presented at the Sydney .NET user group (www.sdnug.org) and is also a board member of ASPInsiders
(www.aspinsiders.com). He has also written some technical articles that can be seen on community
sites, such as ASPAlliance.com (www.aspalliance.com).

On a more personal note, Paul is married with three children and two grandkids, and holds a third
degree black belt in budo-jitsu.

Craig Shoemaker can’t sit still. As the host of the Polymorphic Podcast (polymorphicpodcast.com),
Craig teaches on topics as timely as software architecture and as cutting edge as the latest Ajax technolo-
gies. Whether he’s writing for CoDe Magazine, ASPAlliance, or DotNetJunkies or speaking at local user
groups, Southern California Code Camp, or VSLive!, Craig loves to share his passion for the art and sci-
ence for software development. Craig is also a full-time software engineer for Microsoft Certified Partner
PDSA, Inc. (pdsa.com) in Tustin, California.

01_78544x ffirs.qxp 7/18/06 3:11 PM Page vii

About the Technical Editor
Steven A. Smith is president of ASPAlliance.com and DevAdvice.com. He is a Microsoft regional devel-
oper, a Microsoft ASP.NET MVP, and an ASPInsiders board member. He is an International .NET
Association (INETA) Speaker Bureau member, and author of two books on ASP.NET. Steve is also an Army
engineer officer and veteran of Operation Iraqi Freedom, where he spent 6 months locating and neutral-
izing munitions in 2004. He lives in Kent, Ohio, with his wife and business partner, Michelle, and their
daughter, Ilyana. When he is not attached to a computer, Steve enjoys spending time with his family
hiking, biking, and playing games.

01_78544x ffirs.qxp 7/18/06 3:11 PM Page viii

Acknowledgments

It is truly interesting how writing projects get started and how ideas turn into books. I had seen the hid-
den frame trick for years (at least 1998), but I always felt that it was too hard to set up and keep running,
so I just dismissed it in general. I saw my first formal Ajax application in the early part of 2003, though it
wasn’t called Ajax then. The application ran in Internet Explorer only and used the MSXML component.
I remember sitting down with the person who had written it as we tried to debug the JavaScript that was
necessary to get everything to work. Though it was only Windows/IE and debugging was very hard,
I could see the potential of this type of development. I always kept it in the back of my mind. With the
release of Google Suggest, Google Maps, and several other web sites and with Jesse James Garrett’s
essay on Ajax, where the coined term became public, Ajax has really taken off as far as developer mind-
share. As I watched March 2005 turn into April 2005 and then into June 2005, I wondered if I was miss-
ing a an opportunity for a writing project on a killer technology. I started working with the Ajax library
for ASP.NET in June 2005, and I wondered if the topic of Ajax on ASP.NET had enough meat to write
about. With Scott Guthrie’s announcement of Atlas near the end of June 2005, I knew that Ajax was
something that I wanted to be involved with. I spoke with Bob Elliott of Wiley on the Tuesday of Scott
Guthrie’s announcement and probably every day through July 2005 regarding Ajax and writing a book
on Ajax with ASP.NET. From there, things took off. I started talking a lot about Ajax in some online lists
at aspadvice.com. Paul, Scott, and I immediately began talking about Ajax. Paul and I already worked
together on the ASP.NET Podcast (at www.aspnetpodcast.com), and the three of us already knew each
other from the ASPInsider and Microsoft MVP groups to which we belong. Given Scott and Paul’s exist-
ing knowledge, it was not hard to convince them to come on board and work on this book.

Personally, I would like to thank Bob Elliott for keeping me focused on what was going on and working
with us to develop this book. Our thanks also go out to the editorial staff at Wiley. Their help keeping us
on track as “life happened” was appreciated. The work of our technical editor, Steven A. Smith, was
impressive, and his attention to detail was great. Many other people behind the scenes have worked
hard on the book. By pulling this group together, Wiley created a team that was dedicated to creating
the best possible book on Ajax on ASP.NET. For that, we are truly appreciative.

~Wallace B. McClure and the author team

01_78544x ffirs.qxp 7/18/06 3:11 PM Page ix

01_78544x ffirs.qxp 7/18/06 3:11 PM Page x

Contents

Acknowledgments ix
Introduction xix

Chapter 1: Introduction to Ajax on ASP.NET 1

Development Trends 1
ASP.NET Development 2

Design Methodology 2
Problems ASP.NET Solves 2

So, What’s the Problem? 4
Improving the User Experience 5
What Is Ajax? 6

Advantages of Ajax 6
History of Ajax 7
Technologies That Make Up Ajax 8
Running Ajax Applications 8

Who’s Using Ajax? 9
Problems Ajax Won’t Solve 9
Summary 10

Chapter 2: Introduction to DHTML 11

What JavaScript Is, and What It Isn’t 11
General Rules of JavaScript 12
Writing Your First Block of JavaScript Code 13

document.write() 14
Using document.write() in Nested for() Loops 14
window.status and Events 16

Getting Input from the User 17
Security Concerns When Getting Text Input 18
Canceling the Normal Outcome of an Event 18
Causing an Event Not to “Bubble Up” 19

Working with Images 19
Working with the image src Attribute 20
Using Functions 20
Programmatically Populating the Options in <select> 21
Using the innerHTML Property 23

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xi

xii

Contents

Manipulating the Style Sheet 24
Creating a Context Menu 26
Summary 27

Chapter 3: JavaScript and the Document Object Model 29

From Static to Dynamic — A Brief History 30
Attempts at Standardization 30
Digging into Some More JavaScript Basics 31

Functions and Syntax 33
Event Handlers 34

Core Language 35
Variables 35
Comments 35
Datatypes 36
Operators and Expressions 39
Flow Control and Loops 40
More on Objects and Functions 43
Summary of Material So Far 51

The Document Object Model 51
Object Model Standardization (or Lack Thereof) 53
Working with the DOM 57
Manipulating Nodes 62
Properties of a Node 64
DOM Level 0 General Collections 69
The DOM, Styles, and CSS 70

Summary 74

Chapter 4: The XMLHttpRequest Object 77

Code Examples for This Chapter 77
What Is the XMLHttpRequest Object? 78

A Little History 78
Synchronous Requests 81
Asynchronous Requests 82
Dealing with Response Data 84
Enhancing Usability 88
Passing Parameters to the Server 93
What about Web Services? 97

Summary 102

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xii

xiii

Contents

Chapter 5: Data Communication: XML, XSLT, and JSON 103

XML 104
History of XML 104
XML Documents 105
Parsing XML 111
XML Summary 112

XSLT 112
How Processing Occurs 112
Built-In Functions 114
Processing with XSLT 116
Writing Functions in XSLT 120

X Path 121
Integrating XML and Ajax 122
JSON 124

Layout of JSON 124
JSON Example 125

Summary 126

Chapter 6: What Is Built into ASP.NET 127

Out-of-the-Box Controls 127
TreeView Control 128
GridView Control 129
DetailsView Control 132

Browser Compatibility 132
The Framework 133

ICallbackEventHandler Interface 133
Page.ClientScript — System.Web.UI.ClientScriptManager 134

Making All the Moving Parts Work Together 135
Obtaining a Callback Reference 135
Implementing the ICallbackEventHandler Interface 136
Initiating the Asynchronous Process from the Browser 138
Handling the Result of Asynchronous Server-Side Call on the Client 138
Handling Errors in the Asynchronous Process 141

Dealing with Complex Data 144
Enabling the Page for Asynchronous Callbacks 145
Obtaining the Data — Implementing the ICallbackEventHandler interface 146
Dealing with the Returned Data on the Client 149
Limitations on Returning Complex Data in XML 154
ICallbackContainer Interface 154

Summary 156

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xiii

xiv

Contents

Chapter 7: Ajax.NET Professional Library 159

Acquiring Ajax.NET Pro Version 6.4.16.1 160
Preparing Your Application 160
Using the Ajax.NET Pro Library 161

Registering Your Page for Ajax.NET Pro 163
Registering Your Methods for Ajax.NET Pro 163
Examining the Request Object 164
Executing Your Ajax on the Client 165
Digging into response.value 167
Returning Custom Objects 169
More Advanced Callbacks and Context 170
Ajax.NET Pro Request Events — Keeping Your Users Updated 172
Errors, Errors, Errors. They Happen, You Trap ’em. 173

Using the Ajax.NET Pro Library — Looking under the Hood 174
When Is the Proxy JavaScript Created? 175
What Does the JavaScript Do? 176
What Happens on the Server after the Proxy JavaScript Has Been Fired? 176
How Is the Method in the Code-Behind Actually Executed and
How Is the Page Actually Created? 177
What Is Really Being Sent Back to the Client 177

Summary 177

Chapter 8: Anatomy of Ajax.NET Pro Library 179

Getting the Ajax.NET Pro Code 180
What Do the Ajax.NET Pro Web.Config Settings Accomplish? 182
What Happens When You Register the Page Class? 183
What Role Does the Ajax.AjaxMethod() Attribute Play? 191
How Does the JavaScript Call Get to the Server and Back? 192
What Is an Ajax.NET Pro Converter? 193
Summary 194

Chapter 9: Other Ajax Frameworks for .NET 195

Client-Side Frameworks 195
Sarissa 196
HTMLHttpRequest 199
MochiKit 201

Server-Side Frameworks 203
Architectural Distinctions 203

Introduction to the Frameworks 207

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xiv

xv

Contents

ComfortASP.NET 208
Setup 208
Using ComfortASP.NET 209
What You Have Learned 219

MagicAjax 219
Setup 219
Using MagicAjax 220
What You Have Learned 231

Anthem.NET 231
Setup 231
Using Anthem.NET 232
What You Have Learned 246

Summary 246

Chapter 10: Atlas Client Script 249

Introduction to Atlas 249
Major Components 250
Ajax Support 251
Asynchronous Communication Only 251

Adding Atlas Support with the ScriptManager Control 252
Communicating with Web Services 253

Generating the JavaScript Proxies 253
Calling Out to Web Services 255

Passing Types 257
Simple Data Types 257
Complex Data Types 258

Caching Web Services 263
Exposing Web Services from a Web Form 265
Atlas Extensions to JavaScript 267

Language Enhancements 267
Registering Namespaces and Classes in Atlas 273
Namespaces and Classes 274
Inheritance 276
Interfaces 277
Enumerations 280

Debugging 281
Debugging Using debug.dump 281
Debugging Using for() loop 283

Special Notes Concerning Atlas Client-Side Script 283
Resources Used 283
Summary 284

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xv

xvi

Contents

Chapter 11: Atlas Controls 285

Controls 285
Buttons 285
Sys.UI.Data Controls 286
Server Controls 287

Data Binding 295
Declarative Data Binding 295
Programmatic Data Binding 297
Binding Directions 300
Binding Transformations 300
Validation 300
Behaviors 307

Resources Used 309
Summary 309

Chapter 12: Atlas Integration with ASP.NET Services 311

Examining ASP.NET Services 312
Authentication 312
Authorization/Roles 313
Membership 314
Profiles 314
Web Part Personalization 314

Using Atlas to Integrate with ASP.NET Services 314
Authentication 314
Authorization/Roles 318

Accessing Profiles via Atlas 320
Profile Property Names 320
Loading Profile Data 322
Save Profile Data 323
Avoiding Profile Service Gotchas 324

Implementing Drag and Drop via Atlas 325
Summary 328

Chapter 13: Debugging 329

Server-Side Debugging 329
Enabling Debugging Support 330
Setting Breakpoints 331

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xvi

xvii

Contents

JavaScript and Client-Side Debugging 332
Tools and Techniques of the Trade 332
Other Ways of Invoking the Debugger 342
Other Ways of Inspecting the Value of Variables 344
Script Debugging So Far 347
Browser Debugging Tools 347
The Man in the Middle 351

Summary 361

Appendix A: XSLT Commands 363

Index 373

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xvii

02_78544x ftoc.qxp 7/18/06 3:11 PM Page xviii

Introduction

Thank you for purchasing Beginning Ajax with ASP.NET. We know that you have a lot of options when
selecting a programming book and are glad that you have chosen ours. We’re sure you will be pleased
with the relevant content and high quality you have come to expect from the Wrox Press line of books.

Ajax is a set of technologies that will revolutionize the way that web-based applications are designed. It
revolutionizes the way that applications are used, provides users a responsive application, and provides
developers with the alternatives for building their applications. We believe that this book will meet your
needs regarding programming Ajax on the ASP.NET platform.

Who Is This Book For?
People interested in this book will be developers who are working in the ASP.NET environment and are
looking to create a more responsive and modern application using technologies that are very similar to
the desktop methodologies. Developers who are looking to improve the user experience of their existing
applications, develop new applications, develop internal line-of-business applications, and those who
want to bulk up with the latest technology that developers all over the world are talking about will find
what they are looking for here.

This book is for programmers who use ASP.NET and are just starting to use Ajax technologies. This book
will assist developers working on ASP.NET-based applications who want to improve their applications
and skills, by providing a background in Ajax for them before delving into how to apply Ajax to their
applications.

What You Need to Use This Book
To run the examples in this book, you will need the following items:

❑ Visual Studio .NET 2005

❑ Windows XP or Windows 2003 Server

❑ A modern web browser, such as the latest version of Internet Explorer, Mozilla Firefox, or
Apple’s Safari.

❑ Ajax.NET Pro addin—While not needed for all of the chapters, the chapters on Ajax.NET Pro
will need the addin. For information on the addin, check out www.ajaxpro.info.

❑ Atlas addin—While not needed for all of the chapters, the chapters on Atlas will need the addin.
For information regarding the addin and getting a copy, check out http://atlas.asp.net.

03_78544x intro.qxp 7/18/06 3:11 PM Page xix

xx

Introduction

What Does This Book Cover?
This book is divided into 13 chapters as follows:

❑ Chapter 1, “Introduction to Ajax on ASP.NET,” introduces the topic of Ajax with .NET. The
chapter provides some background on development trends. We look at the parallels between
PC development trends and web-based development trends.

❑ Chapter 2, “Introduction to DHTML,” introduces the concept of Dynamic HTML. The ability to
dynamically change the HTML within a page is a core piece of making Ajax work.

❑ Chapter 3, “JavaScript and the Document Object Model,” talks about the role of JavaScript and
the DOM.

❑ Chapter 4, “The XMLHttpRequest Object,” discusses the XmlHttpRequest object and how it is
used to communicate between the client web browser and the server. The XmlHttpRequest
object is the object that makes Ajax really go.

❑ Chapter 5, “Data Communication: XML, XSLT, and JSON,” presents an overview of XML, XSLT,
and other ways to send data between the client and the server.

❑ Chapter 6, “What Is Built into ASP.NET,” discusses the various Ajax-type features that are built
into the ASP.NET 2.0 release.

❑ Chapter 7, “Ajax.NET Professional Library,” introduces the Ajax.NET Pro library. This is an
open source library that has garnered significant interest in the ASP.NET community.

❑ Chapter 8, “Anatomy of Ajax.NET Pro Library,” takes a deep dive into the Ajax.NET Pro library
and looks into how the library performs all of its magic.

❑ Chapter 9, “Other Ajax Libraries for .NET,” introduces the reader to several other ASP.NET-
oriented libraries.

❑ Chapter 10, “Atlas Client Script,” introduces and discusses the client scripting environment in
Microsoft’s Atlas.

❑ Chapter 11, “Atlas Controls,” discusses the building and using of controls in Microsoft’s Atlas
environment.

❑ Chapter 12, “Atlas Integration with ASP.NET Services,” shows how to integrate Microsoft’s
Atlas with many of the services available in ASP.NET 2.0

❑ Debugging with Ajax can be problematic. That’s why Chapter 13, “Debugging,” discusses the
options for debugging client-side Ajax applications.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_78544x intro.qxp 7/18/06 3:11 PM Page xx

xxi

Introduction

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples, we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://BeginningAjax.com. You can link to that site directly or go through the
book’s Wrox web site found at www.wrox.com. Once at the Wrox site, simply locate the book’s title
(either by using the Search box or by using one of the title lists).

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-471-78544-X (changing to 978-0-471-78544-6 as the new industry-wide 13-digit ISBN numbering
system is phased in by January 2007).

At the Wrox site, you can also go to the main Wrox code download page at www.wrox.com/dynamic/
books/download.aspx to see the code available for all other Wrox books.

The code samples in the book are provided in C# on the server and JavaScript on the client.

Additionally, at both the http://BeginningAjax.com site and the book’s Wrox site, you can find
updated versions of the Atlas chapters of this book, written to the latest, most stable version of that
product.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all

03_78544x intro.qxp 7/18/06 3:11 PM Page xxi

xxii

Introduction

errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com, and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide, and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_78544x intro.qxp 7/18/06 3:11 PM Page xxii

1
Introduction to Ajax

on ASP.NET

Over the years, we developers have seen many changes in terms of how development occurs.
We have gone from terminal-based programming to PC-based programming to Windows-based
programming to the web. Now we are on the verge of another programming revolution. This pro-
gramming revolution will bring more interactive user interfaces to Web applications. This program-
ming revolution is brought to developers courtesy of a set of technologies that are generally known
as Ajax (Asynchronous JavaScript And XML). No longer will users see the annoying flash with the
click of a button to submit data. No longer will users lose the context where they are located and
be thrown back to the top of a page. With Ajax, developers can build applications that step out of
the traditional postback model of the web, provide an improved user interface to users, and allow
developers to develop applications that are much more user-friendly.

In this chapter, you are going to take a look at:

❑ ASP.NET development and how it led to Ajax

❑ What Ajax is and a high-level overview of some of its base technologies

❑ The advantages of Ajax

❑ Some things that it might not make sense to do with Ajax

Development Trends
If you have been developing for a while, like us old guys, you have gone through several iterations
of development. Development has gone from terminals connected to mainframes and minicom-
puters to personal computers and then to client-server development. Client-server development
allowed for the minimization of back-end resources, network resources, and the front-end PC by
sending only the necessary data between back end and front end. Intelligent client-server develop-
ment allowed for building applications that were responsive to the user and made efficient use of
network and back-end resources. As the web development methodology took off in the late 1990s,
we unfortunately returned to terminal-style development. In this methodology, any major operation

04_78544X ch01.qxp 7/18/06 3:12 PM Page 1

between the client and server requires that all data be sent in what is called a round trip. With a round
trip, all data from the form is sent from the client to the web server. The web server processes data, and
then sends it back to the client. The result of a round trip is that lots of data is sent back and forth
between the client and server. For example, form data, viewstate, and images may be sent back and forth
without the need to be sent back and forth. Figure 1-1 shows how only a web browser is required at the
client and how communications work with the web server being an intermediary between the client and
any resources.

Figure 1-1

ASP.NET Development
ASP.NET is a set of web development technologies produced by Microsoft that is used to build dynamic
web sites, web applications, and XML-based web applications. ASP.NET is a part of the .NET framework
and allows developers to build applications in multiple languages, such as Visual Basic .NET, Jscript,
and C#.

Design Methodology
ASP.NET attempts to make the web development methodology like the graphical user interface (GUI)
development methodology by allowing developers to build pages made up of controls similar to a GUI.
A server control in ASP.NET functions similarly to GUI controls in other environments. Buttons, textboxes,
labels, and datagrids have properties that can be modified and expose events that may be processed.
The ASP.NET server controls know how to display their content in an HTML page just like GUI-based
user controls know how to display themselves in their GUI environment. An added benefit of ASP.NET
is that the properties and methods of the web server controls are similar, and in some cases the same as,
those of comparable controls in the Windows GUI/Winforms environment.

Problems ASP.NET Solves
Microsoft has released various web application development methodologies over the past 10 years.
Why do developers need ASP.NET? What problems does ASP.NET solve that the previous development
methodologies did not solve?

Web server along with various
databases and other resources.

Web browser Client

Full page
including form

elements,
viewstate,

images, and
such.

HTTP postback
with all form
elements,

viewstate, and
associated

data.

2

Chapter 1

04_78544X ch01.qxp 7/18/06 3:12 PM Page 2

Microsoft’s first popular web development technology was the Internet Database Connector (IDC).
The IDC methodology provided only database access; it did not provide access to any other resource
programmatically. There was no way to programmatically send email or do other nondatabase operations.
Another issue was that it seemed to be somewhat different from the traditional programming languages
that most developers were used to (Visual Basic and C++ being two popular ones). Along with this prob-
lem was the fact that the development experience was not very attractive within Microsoft FrontPage.
Along with the development experience, IDC had no debugging experience worth mentioning. Overall,
IDC was nothing more than a stopgap measure to get to an improved environment.

The next web development methodology from Microsoft was Active Server Pages (ASP). ASP was
a scripting environment that allowed developers to work with a Visual Basic like or JavaScript type
environment. Unfortunately, this type of environment came with several problems:

❑ Prevalence of spaghetti code — ASP code does not provide a structured development environ-
ment, often contributing to the creation of twisted and tangled “spaghetti code.” ASP code is
literally a file with some basic configuration information at the top of every page. Each page
is executed from the top of the page to the bottom of the page. While it is possible to use
Component Object Model (COM) objects to eliminate some of the spaghetti code, this intro-
duces more complexity in the form of another development tool.

❑ Lack of code separation — The code tends to be intermixed with display code. Intermixing the
code and the display logic requires that the tools that developers and designers use work well
together. This was often not the case. For example, it was well known that various visual devel-
opment tools could take a properly running ASP page, rearrange some of the code, and render
the ASP page broken.

❑ Lack of code reusability — There is very little ability to reuse code within the ASP environment.

❑ Lack of debugging support — Debugging an ASP application typically involves the use of
Response.Write. This is in sharp contrast to an integrated development environment (IDE)
developed within a GUI environment.

❑ Problems of COM — ASP is based on the Component Object Model and suffers from many of
the problems associated with COM. There were two major problems with COM.

❑ The first was that updating COM objects tended to overwrite one object with the new
one. This could be problematic if a programming method call changed or any other new
behavior was introduced.

❑ The second major problem with COM was that it was a binary standard. This binary
standard was based on a 32-bit programming model. As a result, COM objects would
not scale up to run natively within an environment that was an Intel-based 32-bit envi-
ronment. While this might not have been a big deal in the early to middle 1990s when
COM was designed and built, by the early 2000s and the introduction of inexpensive
64-bit systems, this was seen as a possible bottleneck.

❑ Problems with being interpreted — ASP is interpreted. Each time an ASP file is loaded, the ASP
environment parses the ASP file, compiles the code, and then executes the file. This process is
repeated on each call to an ASP file. The result is wasted processing on the server.

❑ Presence of the statemachine — ASP applications typically have a statemachine (in software
code, a statemachine is a section of code that depends on both its direct inputs and inputs made
during previous calls) at the top of every ASP page that processes the state of the user and then
displays code. Given that most client-side applications are built based on events, which is a sim-
ilar concept to a statemachine, this is an unfamiliar way to develop for developers not well
versed in ASP.

3

Introduction to Ajax on ASP.NET

04_78544X ch01.qxp 7/18/06 3:12 PM Page 3

Upon discovering these problems, Microsoft developed ASP.NET. ASP.NET greatly simplifies the web
development methodology.

❑ Developers no longer need to worry about processing state. With ASP.NET, actions are per-
formed within a series of events that provide statemachine-like functionality.

❑ With the use of code-behind/beside model, code is separated from display. By separating code
and display files, there is less of a chance of designer and developer tools interfering with each
other.

❑ A single development tool may be used for building the application and business logic. Having
a single integrated development suite allows developers to more easily interact with the appli-
cation logic. This results in more code reuse and fewer errors.

❑ With the Visual Studio .NET IDE, ASP.NET supports many methods to debug and track a run-
ning ASP.NET.

❑ Because ASP.NET is based on the common language runtime (CLR) and .NET, ASP.NET does
not suffer from the problems of COM. The .NET framework allows for multiple versions of
components to be on a system without interacting with each other.

❑ ASP.NET is compiled. The first time that a file is loaded, it is compiled and then processed. The
compiled file is then saved into a temporary directory. Subsequent calls to the ASP.NET file are
processed from the compiled file. The execution of the compiled file on requests is faster than
the interpreted environment of Classic ASP.

All in all, ASP.NET is a dramatic improvement over ASP. It has become widely accepted in the develop-
ment community.

So, What’s the Problem?
Based on what you have just read regarding ASP.NET, it may sound really good to you. You may be ask-
ing yourself, “Why is there a need for something else? What’s the problem?”

The truth is ASP.NET has several issues that need to be addressed:

❑ Round trips — The server events in ASP.NET require round trips to the server to process these
events. These round trips result in all form elements being sent between client and server as
well as images and other data files being sent back to the client from the server. While some web
browsers will cache images, there can still be significant data transfer.

❑ Speed/network data transfer — Because of the VIEWSTATE hidden form element, the amount of
data that is transferred during a postback is relatively large. The more data and controls on the
page, the larger the VIEWSTATE will be and the more data that must be processed on the server
and transmitted back to the client.

❑ Waiting on the result — When a user clicks on a button or some other visual element that posts
data back to the server, the user must wait on a full round trip to complete. This takes time
when the processing is done on the server and all of the data, including images and viewstate,
are returned to the client. During that time, even if the user attempts to do something with the
user interface, that action is not actually processed on the client.

4

Chapter 1

04_78544X ch01.qxp 7/18/06 3:12 PM Page 4

❑ User context — Unless an application is able to properly use the SMARTNAVIGATION feature of
ASP.NET, the user is redirected to the top of a page by default on a postback. Although there are
ways around this issue, this is the default behavior.

❑ Processing — The number of server round trips, the amount of data that is transferred, and the
VIEWSTATE element’s size result in processing on the server that is not really necessary (Fig. 1-2).

Figure 1-2

Improving the User Experience
Based on these issues, several options present themselves as available for improving the user experience:

❑ Java — Java applets are cross-platform applications. While being used as a cross-platform mech-
anism to display data and improve the user experience, Java development on the client has not
been accepted with open arms into the development community and is primarily used for user
interface gee-whiz features as opposed to improving the experience of the user application.
(As a side note, Java has been widely accepted for building server-side applications.)

❑ XML-based languages — XML User Interface Language (XUL) and Extensible Application
Markup Language (XAML) are two of several languages that can provide an improved user
experience. The problem with XUL is that it has been used only in the Mozilla/Firefox line of
browsers. XAML is not currently available as a released product. When it is, it will have the
problem of being considered a Microsoft-only technology in spite of discussion items like
XAML-lite, which has been stated as cross-platform.

❑ Flash — Although Flash has been used and there are cross-platform versions, the product has
been used only in the area of graphic UI needs and has not been accepted by the development
community as a whole for building line-of-business applications.

❑ Ajax — Ajax is a set of client technologies that provides for asynchronous communication
between the user interface and the web server along with fairly easy integration with existing
technologies.

Given the amount of recent discussion among developers regarding Ajax, it appears that Ajax has the
greatest chance among these technologies of gaining market acceptance.

Server Response Server Response

User Action User Action User Action

5

Introduction to Ajax on ASP.NET

04_78544X ch01.qxp 7/18/06 3:12 PM Page 5

What Is Ajax?
So into this development environment comes a set of technologies that are collectively referred to as
Ajax. If you are an “old guy” developer like us, then Ajax represents a similar concept to the client-
server development we mentioned earlier in the chapter. With client-server development, the amount of
data transferred is minimized over a terminal application by transferring only the necessary data back
and forth. Similarly, with Ajax, only the necessary data is transferred back and forth between the client
and the web server. This minimizes the network utilization and processing on the client. Figure 1-3
shows that typically Ajax operates with the assistance of some type of proxy.

Figure 1-3

Advantages of Ajax
The advantages of Ajax over classical web based applications are:

❑ Asynchronous — Ajax allows for the ability to make asynchronous calls to a web server. This
allows the client browser to avoid waiting for all data to arrive before allowing the user to act
once more.

❑ Minimal data transfer — By not performing a full postback and sending all form data to the
server, the network utilization is minimized and quicker operations occur. In sites and locations
with restricted pipes for data transfer, this can greatly improve network performance.

❑ Limited processing on the server — With the fact that only the necessary data is sent to the
server, the server is not required to process all form elements. By sending only the necessary
data, there is limited processing on the server. There is no need to process all form elements,
process the viewstate, send images back to the client, and no need to send a full page back to
the client.

Web server and associated backend
services, such as web services.

Web browser client

Data back in
an XML format
or other format

without the
weight of a
postback.

XML data
format in
over HTTP

with no
postback.

Ajax proxy services

6

Chapter 1

04_78544X ch01.qxp 7/18/06 3:12 PM Page 6

❑ Responsiveness — Because Ajax applications are asynchronous on the client, they are perceived
to be very responsive.

❑ Context — With a full postback, the user may lose the context of where they are. The user
may be at the bottom of a page, hit the Submit button, and be redirected back to the top of
the page. With Ajax there is no full postback. Clicking the Submit button in an application that
uses Ajax will allow the user to maintain their location. The user state is maintained, and the
user is no longer required to scroll down to the location that he or she was at before clicking
Submit.

Figure 1-4 shows how the user interface can still operate while using Ajax. The UI is not locked during
the server processing.

Figure 1-4

History of Ajax
For all of its perceived newness and sexiness, the technologies that make up Ajax are really not new.
The ability to communicate back to the server through a hidden frame without posting the main page
back to the server has been around for a long time. Communication between client and server has been
available — back to the release of Internet Explorer’s ability to script ActiveX controls on the client browser
and to the MSXML component, both of which date back into the late 1990s. Personally, I saw the first for-
mal usage of client script and MSXML in 2003. The problem with the technology at that time was the
need to manually create the necessary client-side JavaScript. In 2003, there was too much code overall
that had to be written and too much custom code that had to be written to get this to work. It has been
only in the second half of 2005 that client-side libraries and server-side support for ASP.NET have
started to make their presence felt and been used significantly.

The mainstream development community has only recently started using the technique. The release of
Google’s Suggest and Maps are what really opened the eyes of the users to the development technolo-
gies. These applications sent a shockwave through the development community.

Server Response Server Response

User Action User Action User Action

7

Introduction to Ajax on ASP.NET

04_78544X ch01.qxp 7/18/06 3:12 PM Page 7

Technologies That Make Up Ajax
Ajax is a general umbrella term. As mentioned earlier, Ajax itself stands for Asynchronous JavaScript
And XML. The term Ajax was actually coined by Jesse James Garret of Adaptive Path in an essay that
was published in February 2005 (www.adaptivepath.com/publications/essays/archives/
000385.php) and was quickly accepted by the development community.

Based on this general umbrella term, take a look at the specific items that make up Ajax:

❑ XmlHttpRequest —XmlHttpRequest allows the browser to communicate to a back-end server.
This object allows the browser to talk to the server without requiring a postback of the entire
web page. With Internet Explorer, this capability is provided by the MSXML ActiveX compo-
nent. With the Mozilla Firefox and other web browsers, this capability is provided by an object
literally called XmlHttpRequest. The XmlHttpRequest object is modeled after the MSXML
component. The client-side JavaScript libraries hide the differences between the various browser
environments. Sometimes these communications are done through a hidden FRAME or IFRAME.

❑ JavaScript — JavaScript provides the capabilities to communicate with the back-end server.
The JavaScript must be version 1.5 or later. Although JavaScript is not specifically required, it
is needed from the standpoint that JavaScript is the only client-side scripting environment sup-
ported across the major modern web browsers. There are other client script languages; however,
these are not supported across all browsers.

❑ DHTML/DOM support — The browser must support the ability to dynamically update form
elements, and the ability to do this in a standard way comes through the support for the
Document Object Model (DOM). By supporting the DOM, it becomes easy for developers to
write a single piece of code that targets multiple browsers.

❑ Data transport with XML or JSON — Using XML allows for the ability to communicate with
the web server in a standard mechanism. There are situations where the JavaScript Object
Notation (JSON) is used as the communication notation instead of straight XML.

Running Ajax Applications
Unfortunately, not all web browsers ever produced will support Ajax. To run Ajax, a web browser must:

❑ Be relatively modern. Ajax style applications are not available in all versions of all web browsers.
Whereas Internet Explorer version 6, Firefox version 1.5, and Opera 8.5 provide support for
these applications, older versions may be problematic because of their support for different
versions of the other requirements.

❑ Support DOM.

❑ Utilize JavaScript.

❑ Support Extensible Markup Language (XML) and Extensible Style Language Transformation
(XSLT).

❑ Possibly have ActiveX enabled on the client. If you are using the Internet Explorer browser
while running on Windows, you may have problems if ActiveX is not enabled.

8

Chapter 1

04_78544X ch01.qxp 7/18/06 3:12 PM Page 8

Who’s Using Ajax?
Great, now that you have seen that there is this technology called Ajax, are you alone in not having seen
or talked about this before? Absolutely not! Ajax has just recently taken off in the second half of 2005
from a mindshare standpoint. As discussions have gone on with counterparts in the development com-
munity, many developers are just now looking to what Ajax can do for their applications and ultimately
their customers. So, just who is using Ajax publicly?

❑ Google Suggest — Google Suggest features a dynamic drop-down list box that provides possi-
ble items to search on along with the approximate number of search results.

❑ Google Maps — The ability to grab a map and zoom around without requiring a postback is
just amazing. This app/service took the development world by storm when it came out.

❑ Google GMail — Google GMail is a web-based email system available through Google.

❑ Microsoft Hotmail Kahuna update — At the time of this writing, the Hotmail upgrade that
is referred to as Kahuna is in beta test. As a beta user of the application, I can testify to the
improved user interface and responsiveness that this application provides.

❑ Live.com — The local.live.com service from Microsoft is actively using the Atlas framework, as
is nearly the entire Live.com service.

❑ Easy Search component — The ASP.NET Easy Search Component provides support for search-
ing a single web site similar to the Google Suggest service available through Google.

❑ Other component vendors — Component vendors such as ComponentArt, Dart, and others are
providing controls that provide a rich user experience without forcing a full postback.

In addition to third-party interest, the amount of developer interest is tremendous. For example, one
only has to put the word Ajax into a blog title to receive an increase in the number of web views. Given
the amount of third-party support and the interest of developers, it is only a matter of time before every-
one is using it.

Problems Ajax Won’t Solve
Ajax is a great technology with a lot of help for typical application problems and a lot of general
promise. It will help in areas like network load and user context by sending only the necessary data,
creating less network traffic when processing a command. The user is not redirected to the top of a page
when a command is sent the server. The problem is that to successfully run Ajax, a user needs to have
the transport mechanism and JavaScript support mentioned previously. That sounds like something that
any modern browser has, so what’s the problem? Well, the problem is that many mobile browsers have
support for neither. With many of Ajax solutions, you have limited or no downlevel support, so if you
must support a mobile system, you may be limited to writing multiple versions of your application
because Ajax may not be the right technology to include.

9

Introduction to Ajax on ASP.NET

04_78544X ch01.qxp 7/18/06 3:12 PM Page 9

Summary
Ajax provides developers a foundation to build web-based applications that provide an improved user
experience. In this introductory chapter, you have looked at:

❑ Development from a historical perspective

❑ Web development methodologies

❑ Some of the features that Ajax provides, such as improved user responsiveness and decreased
load on the web server

❑ Multiple technologies that can improve the user experience

❑ Ajax, the problems that it solves, and who is using it

In the next chapter, you are going to examine Dynamic HTML (DHTML). Additional chapters will look
at the other technologies that make up Ajax. After that you will examine the Ajax.NET library, Microsoft
Atlas, and finally tips and tricks on debugging client-side applications.

10

Chapter 1

04_78544X ch01.qxp 7/18/06 3:12 PM Page 10

2
Introduction to DHTML

Dynamic HTML (DHTML) is a combination of three technologies: Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript. With these technologies, the content in a
browser becomes dynamic, not having to rely on time-consuming updates from round trips back
to the server. Additionally, finer control over the user experience is available by leveraging the
various events inherent in HTML, such as playing a small sound when the mouse moves over an
image or providing custom context menus instead of the standard one provided by the browser.

This chapter will introduce JavaScript, and then move into how it can interact with the browser
environment to modify the HTML and CSS that make up the web page being displayed. Colors,
images, text, and more can be modified, all through JavaScript code. In the next chapter, the
coverage dives deeper, analyzing the nature of objects and continuing into the Document Object
Model (DOM).

In this chapter, you take a look at:

❑ JavaScript basics

❑ The alert, write, and loop functions

❑ Modifying the status bar

❑ Getting input from the user with the prompt() function

❑ JavaScript events

❑ The document.getElementById() function

❑ The innerHTML property

What JavaScript Is, and What It Isn’t
In the realm of computer languages and programs, there are two major types: compiled and
interpreted.

05_78544X ch02.qxp 7/18/06 3:12 PM Page 11

❑ Examples of compiled programs are as simple as the Notepad application you’ll be using to edit
the samples shown in this chapter. Notepad was written in C++ and compiled to run specifi-
cally on 32-bit or 64-bit Intel hardware. Therefore, it is very specific as to what platform can run
the code.

❑ JavaScript on the other hand is interpreted, meaning that any platform capable of interpreting the
code can run it. For our purposes, this will mean virtually any web browser, from small handheld
devices like web-enabled phones up to browsers available for mainstream operating systems
like Internet Explorer, Opera, Safari, and Firefox. Some languages, such as .NET and Java, are
actually hybrids, being both partially compiled and partially interpreted.

Although it’s tempting to think that JavaScript is closely related to Java, because of its name, surpris-
ingly that is not the case. The only real similarities between the two are that the structure of the code
looks very similar, with the curly braces and semicolons, and they both provide an object-oriented pro-
gramming experience. Java does this more elegantly and has established itself as a great academic tool to
experiment with object-oriented code design. But the object model is very different from JavaScript.

General Rules of JavaScript
JavaScript code comprises a series of statements. And JavaScript statements are composed of either text
that leads up to a semicolon or text that opens up a code block inside curly braces. Here’s an example of
a couple of statements that first declare a variable called message and then present it on the screen in a
pop-up box:

var message=”Hello, world!”;
alert(message);

The computer determines the end of each of the statement simply by where it finds a semicolon. These two
statements could have been placed on the same line with a semicolon separating them. But it is much
clearer to put them on separate lines.

Most JavaScript interpreters will actually allow statements to exist without the semicolon appearing at
the end of the line. But this is not in keeping with the specifications of other similar languages like Java,
C++, and C#. So, it’s recommended to keep the habit of using semicolons at the end of statements. All of
the JavaScript examples in this book will do so, but when you delve into other samples from the Internet,
you will undoubtedly find JavaScript code that omits the semicolons.

Now take a look at an example of a statement that opens a code block:

if(grade>=90)
{
alert(“You got an A!”);
}

In this sample, the curly braces define a code block, and the single line of code found within runs only if
the grade variable is greater than or equal to 90. There are two statements shown, if and alert, and
there is no concluding semicolon required after the code block. In addition to having code blocks with
an if statement, you’ll see in upcoming samples that they are also found with the looping statement for
and when functions get defined.

12

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 12

Writing Your First Block of JavaScript Code
So, now that you’ve seen JavaScript statements, you can write a few in order to create output in a web
browser. Follow along by opening a copy of Notepad and typing in this sample or simply get all the
code for the book from the download section of http://BeginningAjax.com. This sample is found in
the file chapter_2_starter.htm.

In the example that follows you have a simple web page with some text, and in a <script> element,
one line of JavaScript, an alert statement. You have already seen examples of some simple output oper-
ations using the alert function. The alert function is a method of the window object. The window
object is present as part of every browser’s object model.

Keep in mind that JavaScript code is case-sensitive, so if you do opt to type it all in, then pay particular
attention to getting the casing on all JavaScript lines correct.

<html>
<head>
</head>
<body>

Some text before the Javascript

<script type=”text/javascript”>
alert(“Hello, world”);
</script>

Some text after the Javascript

</body>
</html>

Save the file as some name of your choosing with an .htm extension, and then when you open it with a
web browser, you should see a pop-up appearing that presents “Hello, world,” as shown in Figure 2-1.

Figure 2-1

13

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 13

The alert() function has produced a basic dialog box for the user to interact with, but as you can see,
the user is allowed to acknowledge the prompt only by clicking the OK button.

If you are using either Internet Explorer 6.0 on a system that has Windows XP Service Pack 2 installed
or Internet Explorer 7.0, then depending on your security settings you will probably be presented with
an information bar explaining that Internet Explorer has restricted the file from showing active content.
Simply click on the bar, select “Allow Blocked Content . . .” and select “Yes.”

Notice that during the time the pop-up is showing, in the background, on the web page, only the line
Some text before the Javascript has been rendered. Then after clicking OK to dismiss the pop-up
text, the rest of the page is shown, and you see the line Some text after the Javascript. So, there
is a sequence of events going on here. Because the JavaScript section was placed within the <body> ele-
ment, it ran as the page was being rendered. You’ll experiment a little more with this kind of JavaScript,
which runs as the page is being rendered, and then move into JavaScript that sits dormant until an
event, such as a button click, has occurred.

There are several places that JavaScript can be placed inside an HTML page. All of the code samples in this
chapter will be placed, as was done in the first sample, within the <body> element. This is the same place
that ASP.NET adds any JavaScript that is established using Page.RegisterClientScriptBlock().

You can also place JavaScript in the <head> element. Another technique, described in the next chapter,
is to place JavaScript in a separate code file, usually named with a .js extension, and then have a
<script> element that includes the code file as if it were merged into the HTML at that point.

document.write()
You can see another way to create output by modifying this sample. Change the function alert to
document.write, so the <script> element looks like this:

<script type=”text/javascript”>
document.write(“Hello, world”);
</script>

Now the “Hello, world” text is placed right within the rendered page, just as if it was part of the
HTML itself.

Using document.write() in Nested for() Loops
With document.write, you can have the client build calculated or repetitious HTML. As an example,
you can put a few more lines of code in the <script> element to automatically build a 10 × 10 multipli-
cation table:

<script type=”text/javascript”>
document.write(‘<table border=”1”>’);
for(y=1;y<=10;y++)
{
document.write(“<tr>”);
for(x=1;x<=10;++x)
{
document.write(“<td>”+(x*y)+”</td>”);
}

14

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 14

document.write(“</tr>”);
}
document.write(“</table>”);
</script>

In this example, you see two for loops, each of which opens a code block and one of which is nested
inside of the other. The innermost document.write(), which builds the <td> elements, is run 100
times and produces the output shown in Figure 2-2.

Figure 2-2

Notice that right after each of the for statements there is a somewhat cryptic set of code in parentheses,
broken into three parts separated by semicolons. These are the parts that make up any for() loop. At
the very least the semicolons need to be present to call out these three pieces, and the table that follows
shows what each part does.

for (x=1; x<=10; x++)

The keyword A statement that is A condition to test if A statement that is run every
run before the looping the looping should time the loop reaches the end
begins. It is usually used continue. As long as of the code block and iterates.
to assign the starting this is true, it keeps This actually occurs before the
value of a counter. looping. condition to the left is tested.

The x++ and y++ portions of the for loop act to increment the value of x or y. Each time y is incremented
by 1, the inner loop for x has gone through building a row of 10 cells. In this way, all the <tr> and <td>
elements are built out properly inside the <table>, and it is all quickly rendered on the client.

It is possible to create long-running or endless loops in JavaScript, so be cautious. In such a circumstance,
web browsers will often present a message asking the user if they want to continue running scripts on
the page or not. You definitely want to carefully test any looping code that you write to avoid endless
loops. You can read more about using loops in Chapter 3.

15

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 15

window.status and Events
Another way to present data is with custom text in the status area located at the bottom of the browser
window. If you were to do this in the same <script> element used so far in the chapter, then the text
would be changed very briefly while the page is being rendered but then overwritten by the browser
with the text Done once the page is complete. So, instead you need to find a way to have this next piece
of code run after the page has finished rendering. The perfect place is in something called an event handler
on the <body> tag. There are several events you could trap in this way, and the one you want for this
example is called onload.

You can find more information about event handlers in Chapter 3.

So, for this example, change the <body> tag to look like this:

<body onload=”window.status=’It\’s a beautiful day’;”>

This way, when the page is rendered, the actual document content is not affected at all; it looks the same.
But once it is all rendered, then in the status area at the bottom of the window you find your custom text,
as shown in Figure 2-3. If your browser is not currently configured to show the status bar, then in both
Internet Explorer and Firefox, you can use View➪Status Bar to turn it on.

Firefox users: In order for this example to work, you must tell Firefox it’s okay for JavaScript to change
the status bar text. This is done from Tools➪Options➪Content➪Enable JavaScript➪Advanced➪

Change status bar text.

16

Chapter 2

Single Quotation Marks and Double Quotation Marks in JavaScript
You have seen a couple of samples that use double quotation marks to surround the
strings found in JavaScript. But in this example using those quotation marks would
have confused the browser as to what should actually be included as part of the
onload attribute. The start of a JavaScript string set up with double quotation marks
would have looked to the browser just like the end of that onload attribute.

Fortunately, JavaScript lets you enclose strings with either double quotation marks or
single quotation marks (apostrophes) so that you can work around this issue. So, that’s
exactly what you have done here.

Okay, so if apostrophes mark the start and end of your JavaScript string, what happens
when you want to include an apostrophe as part of the string, such as with the word
It’s in this case? From the sample, you can see that it works if you precede that apos-
trophe with a backslash. This backslash is called an escaping character, which is a great
trick, allowing us to put in double quotation marks and apostrophes wherever we need,
as well as the actual backslash character itself. In a JavaScript string two backslashes in a
row is interpreted as being a single backslash character. This whole business of escaping
is a similar concept to using < in XML or HTML to represent the less than symbol.

You can read more about escaping characters in JavaScript in Chapter 3.

05_78544X ch02.qxp 7/18/06 3:12 PM Page 16

Figure 2-3

Examine how this works — when the <body> of the document is fully loaded, the browser sees if any
pieces of code out there care about that occurrence by searching for code that has registered for the
onload event. The change made to the <body> tag was to include an inline event handler, effectively
registering your code to be called when that event fired. So, when the browser finished rendering the
page, this JavaScript code that was found within the double quotation marks was executed:

window.status=’It\’s a beautiful day’;

Getting Input from the User
Now that you’ve seen how to output information in a couple of ways, you need to see how to get some
input with the confirm() and prompt() functions.

The confirm method is used to invoke a confirmation dialog box like this:

if (confirm(“This is a confirmation box”))
alert(“You clicked OK”);

else
alert(“You clicked cancel”);

This produces the traditional OK/Cancel dialog box, as you’ll see later in the chapter. The confirm method
returns a value of true if the user clicks the OK button, and false if the user clicks the Cancel button.

The prompt dialog box is invoked by using the prompt method of the window object. So, suppose you
would like to ask the user what his or her name is and then present that as text in the page. Here is some
code you can put in your <script> element to make that happen:

<script type=”text/javascript”>
var name=prompt(“Please enter your name”,””);
document.write(“Welcome “+name);
</script>

In this case, you’ve declared a variable called name and assigned it to whatever string comes back from
a pop-up textbox presented to the user. The box starts out blank because of the second parameter being
passed into prompt, which is a blank string. In the next document.write statement, the text entered by
the user is appended to a string in order to present some welcome text. The + operator is not just used
for addition, but in this case, when working with strings, it concatenates one string on the end of another.

You will notice we have not prefixed any of the method calls with the window object such as window
.prompt(“Please enter your name”,””);. This is because the window object is the root, or
default, object within the browser. The alert, confirm, and prompt methods can be inferred to be a
part of the window object, so prefixing the method call with window. is not necessary.

17

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 17

Security Concerns When Getting Text Input
Because the name is written out exactly as it was entered, you want to be very careful when accepting
any assorted text from the user because exactly what someone types in is presented on the screen,
including any additional HTML or JavaScript. Try putting this in when prompted:

<script>location.href=”http://www.wrox.com”;</script>

When the page is rendered, the included script runs as part of the page and redirects the browser to the
Wrox web site! Although we love the Wrox web site, this is probably not at all what you intended when
you asked for the user’s name. So, taking this example further, what if you blindly stored the text from
the user in a database and then on the main page of your site presented a dynamic list of which users are
currently online? When that user is online, suddenly anyone who visits your site is redirected to another
page. This kind of attack is called HTML injection and is related to Cross Site Scripting (XSS). So to avoid
this problem, you need to include code to filter out unintentional HTML elements and JavaScript.
Conveniently, this kind of protection is intrinsic in Microsoft’s ASP.NET environment when using the
.NET Framework 1.1 or later.

Canceling the Normal Outcome of an Event
So, now you can look at another event handler called onclick. Every visible element found on an
HTML page provides this event handler, even the <body> element. So, this really could be placed any-
where. But people are more accustomed to clicking hyperlinks, so for this example you are going to
include this handler on an <a> element that is used to navigate to other pages. What if you wanted to
confirm that people really wanted to navigate to another page when they clicked a link? Add this HTML
at the end of your current <body> content to see how this is done:

<a href=”http://mykb.com”
onclick=”return confirm(‘Really navigate away from this page?’);”>
Knowledge Base Software

The confirm() function presents a pop-up with both OK and Cancel buttons, as shown in Figure 2-4.
When a choice is made by the user, confirm() will equal true if the user clicks OK, or false if the user
clicks Cancel or closes the pop-up. Returning this true or false in an onclick event handler deter-
mines if the handling of that event should continue or not.

Figure 2-4

18

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 18

The return keyword indicates that you’re done with the piece of code that is running, and you can
return a value back to the caller. So, in this case when someone clicks Cancel, a value of false is
returned and whatever the <a> tag would normally do when clicked is cut short and does not happen.
Hence, clicking Cancel has the effect of bypassing the actual navigation to another page.

There are other event handlers you can defer by returning false, such as the onsubmit event of a <form>.

You can find more information about event handlers in Chapter 3.

Causing an Event Not to “Bubble Up”
There is another concept related to using return false in an event handler. If you fully handle a given
event in a contained control, you may not want that same event to “bubble up” to any parent controls it
is within. For instance in the previous example, you may not want the onclick event on the <a> to be
seen by an onclick handler for the <body> element. But by virtue of <a> being a child element under
<body>, normally this onclick would bubble up. If you use only return false, then it will defer
what would happen on the <a> but not what would happen in an onclick on the <body>. To keep this
from happening, use this statement:

event.cancelBubble=true;

You must use this statement before any return because executing return indicates that you’re done
with the event handler code and want to return control to the browser.

Working with Images
By this point, you’re probably starting to see that JavaScript can be a very handy way to enhance the
user experience. But definitely the best is yet to come. Now you’re going to see some “eye candy” types
of examples, starting with images. You can begin by placing an image on your existing page by adding
this line before the closing </body> tag:

Make sure that you have a folder called images and the GIF files in place before you render this sample.

When referring to the pathing of files on a Windows machine, backslashes are used to delimit each folder
name found in the path. But in UNIX, which is the platform on which the Internet was born and pre-
dominantly accessed, the forward slash is used instead. So, for all web development when providing
pathing in a URL, make sure to use the forward slash.

The JavaScript in the onclick event handler says to bring up a pop-up with the alert statement. And
shown in that pop-up will be whatever this.src is equal to. In event handlers, the keyword this is a
reference to the object that experienced the event, which in this case is the actual image itself. By adding
a dot and additional naming, you can then reference properties or methods of that object, such as src in
this case being the URL from which the image data got loaded. Thus you can render the page and click
the image to see its URL, as shown in Figure 2-5.

19

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 19

Figure 2-5

Working with the image src Attribute
Now what if you wanted to change the image when it is clicked? You can just assign a different URL to
this.src, and it is then updated on the fly. Try that by changing the JavaScript in the event handler so
that it now looks like this:

Now when you click the first time on the image, this is the JavaScript that runs:

this.src= ‘images/ArrowRight.gif’;

Thus, as soon as the new image file loads, it is changed out to present the other arrow image.

The use of the src attribute with the <script> tag is discussed in Chapter 3.

Using Functions
Wouldn’t it be nice to have the two images toggle with each click? How can you do this? It takes a little
more code, and writing very much logic inside the double quotation marks of the onclick attribute
starts to get a little obnoxious. So, this is the perfect point to introduce how to use a function. A function
simply wraps up a bundle of useful code into a code block that can be called by name. In this case, the
onclick code will call into a function called ChangeMe(), which will be defined in the <script>
element.

You haven’t deleted the <script> element that you were using before, have you? Hopefully not! But if
so, then you can simply add one in again. It can exist anywhere in the <head> or <body> elements.
It doesn’t have to exist before the element, since it is called after the page has fully loaded.
Within that <script> element, add this:

20

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 20

var isArrowLeft=true;
function ChangeMe(target)
{
isArrowLeft=!isArrowLeft;
if(isArrowLeft)
target.src = “images/ArrowLeft.gif”;
else
target.src = “images/ArrowRight.gif”;

}

After rendering the page, the isArrowLeft variable is initially set to true. And when the image is
clicked, the ChangeMe() function is called with the image object being passed in. Within that function
the image object is called as target. The isArrowLeft variable, which holds a boolean value, is set to
its opposite with the first statement. Then that target image’s src attribute is set based on what the
isArrowLeft value holds.

A similar example to this is found at the start of Chapter 7, but it goes further to include more intricate
string manipulation with the split() function and referencing an array member. It also uses the
prototype keyword to add a method called substitute() to all strings. This more in-depth example
will make better sense after you digest the next chapter, which has information about objects and more
about functions.

Programmatically Populating the Options in <select>
When a choice is made in one drop-down list, it is often handy to populate a second drop-down list with
appropriate choices. With Ajax, this is fairly straightforward, and this sample will show you how to
implement the JavaScript side of things, dynamically adding new <option> objects to the contents of a
drop-down list. The <select> element is what builds a drop-down list (or a list box if the size attribute
has been set). This next Try It Out has you build a drop-down list by using <select>, and then add a
textbox and button underneath. When you type some text and click the button, it will build a new
option in the drop-down list.

21

Introduction to DHTML

Finding Objects with document.getElementById()
Before you go further, you need to know about an important tool at your disposal. In the
last section, you worked with an image object by using the special this keyword avail-
able inside an event handler. It was convenient, but what if you wanted to find an existing
object on the page and change its properties? This is where, historically, different browsers
have had different approaches to get the job done. For example, Internet Explorer (IE)
would use document.all, and Netscape would use document.layers. Fortunately, a
common method on the document object now enables you to search through a web page
and find any object by its ID anywhere on the page: getElementById(). To effectively
use this, the elements being referenced must have id attributes applied. In the remain-
ing samples in the chapter and in even more detail in the next chapter, you’ll see the
use of document.getElementById().

05_78544X ch02.qxp 7/18/06 3:12 PM Page 21

Try It Out Dynamic Drop-Down Options
Begin with the following HTML:

<select id=”mySelect”></select>

<input type=”text” id=”newOption” />
<input type=”button” value=”Add a new option to the drop-down”
onclick=”addOption(document.getElementById(‘newOption’).value);” />

The onclick event handler for the button calls a function named addOption, using the
getElementById() method in order to find the text value in the textbox named newOption.

Next, here is the addOption function that you should add:

<script type=”text/javascript”>
function addOption(optionText)
{
var objSelect=document.getElementById(“mySelect”);
objSelect[objSelect.length] = new Option(optionText);
}
</script>

This function is a little different from the last one you saw: It accepts a parameter called optionText,
called out in the parentheses after the name of the function. When called, this function expects a string
value will be passed in for optionText. This is used later in the function to specify the text that should
be associated with the new Option object being built.

A reference is obtained with document.getElementById() to the <select> element called mySelect.
This reference, named objSelect, is used to update the contents of the options. The square brackets
indicate that an array is being referenced, and in this case it’s an array of options under the <select>
element. The value inside the square brackets defines an index to which piece of the array is being
modified. The new Option object is placed in as the very last piece of the array by having the index refer
to the current length of the array. When this is added, the new option is immediately visible in the drop-
down list, as shown in Figure 2-6. Notice how, in the top screen of Figure 2-6, the select box is empty.
When you add the phrase “Who says HTML is boring” and click the “Add a new option to the drop-
down” button, the bottom of Figure 2-6 shows the finished result.

If this <select> element were in an HTML form and was submitted to the server, the value posted back
would be exactly the same as whatever text the user had typed.

If you want to have a different value posted back to the server, then you can specify two parameters
when building out the new Option object, the first being the text to show the user and the second being
the value that gets posted back to the server. To illustrate the importance of this concept, consider a
drop-down list of states. You would want to display the state name to the user, but once it was posted
back to the server, you would want your application to know about the state code. This is important
because you are now associating what is important to the user, a friendly state name, with what is
important to the computer, the unique state code.

22

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 22

Using the innerHTML Property
A very handy feature of and <div> elements that first showed up in IE4 is the innerHTML prop-
erty. This represents what the browser considers to be the actual HTML it will use to present the contents
of the <div> or . Although the innerHTML property is not officially a part of the World Wide
Web Consortium (W3C) standard, it is still very useful, especially for Ajax — useful enough that it was
also adopted by Netscape starting in version 6 of their browser.

Figure 2-6

Try It Out Using the innerHTML Property
To get a quick idea of what it can do, you can put a on your page with <textarea> and <input
type=”checkbox”> elements inside, and after the , a button to present a pop-up showing what
the browser sees inside the innerHTML of the . Here’s the code:

<textarea></textarea>
<input type=”checkbox” />

<input type=”button” value=”Show the innerHTML”
onclick=”alert(document.getElementById(‘spanTxt’).innerHTML);” />

23

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 23

When you examine the contents of innerHTML, you’ll find that things differ between different
browsers. With the page loaded in Internet Explorer, try typing something in the <textarea>, and
you’ll find that when you click the button, the pop-up alert() shows exactly the HTML that would
re-create the in its current state. Click the checkbox as well, and then click the button to bring
up the alert() again, and note that the CHECKED attribute then appears. See Figure 2-7 for a sample of
what is shown. Unfortunately, in other browsers this nice dynamic reference to innerHTML doesn’t hap-
pen; they simply show the page’s source for what’s inside the .

Figure 2-7

However, something that is possible with both Netscape and Firefox and IE is that you can change the
innerHTML contents programmatically. Consider for a moment the potential. A <div> or can be
set up on a page, and with that page still showing, the browser can send an asynchronous request to the
server, receive raw HTML data back, and conveniently place the result in the innerHTML property.
That’s the very basis of Ajax, dynamically updating only specific content on a page without having to
refresh the whole thing.

Another way to place new content on a page dynamically is by using createElement() and its rela-
tives, which are discussed in the next chapter.

Manipulating the Style Sheet
A primary feature of writing DHTML code is being able to dynamically change the style sheet. Using
JavaScript you have the ability to manipulate the style sheet in a number of different ways. One of the
ways to make these dynamic changes is to respond to user interaction on the page by hooking into ele-
ment events. An example of one of these events is the onclick event of the anchor element.

Before making any changes to the style sheet, JavaScript must know what element on the page you want
to affect. The most common way to find the element you are looking for on the page is to use the function
document.getElementById(). A very useful attribute of the style sheet is the display attribute. The
display attribute will determine how an element is displayed on the page. When the element is set to
display:block the element will take up space on the page. When the element is set to display:none
the element is removed from the elements displayed on the page.

24

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 24

To illustrate this behavior, the next Try It Out demonstrates how to build a panel for which you can tog-
gle the display attributes. The result for the user is that it appears as if you are hiding the panel with one
click and showing the panel with the next click.

Try It Out Showing and Hiding a DHTML Panel
For this example, begin by adding the following HTML to your page:

<a href=”javascript:void(0);”
onclick=”ShowHide(‘divDetails’);UpdateText(this);”>
Show Details

<div id=”divDetails” style=”display:none;”>
Details Panel

</div>

This block has two sections. The first part of the HTML renders a link on the page that allows the user to
click on an element to initiate the change to the style sheet. The next part of the code is the panel that is
affected by the change. This is the panel that is hidden from and then displayed again to the user.

Next, add the following JavaScript to the page:

<script type=”text/javascript”>
function ShowHide(elementId)
{

var element = document.getElementById(elementId);
if(element.style.display != “block”)
{

element.style.display = “block”;
}
else
{

element.style.display = “none”;
}

}

function UpdateText(element)
{

if(element.innerHTML.indexOf(“Show”) != -1)
{

element.innerHTML =
“Hide Details”;

}
else
{

element.innerHTML =
“Show Details”;

}
}
</script>

25

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 25

The preceding JavaScript changes the web page in two ways. The ShowHide function does the work of
finding the panel on the page, and then updating the style sheet’s display property. If the element is
not being shown to the user (display:block), then the settings are updated to display the panel.
Alternatively, if the panel is being displayed, then the style sheet is updated to hide the panel.

The next function UpdateText uses the innerHTML property you learned about in the last section, to
update the text in the link the user is clicking on. Notice in the HTML that when the function is called, a
single argument of this is passed into the function. This element reference allows the function to know
which element initiated the call to the function. With this reference, the function examines the innerHTML
of the link and makes the appropriate changes to the text displayed to the user.

Creating a Context Menu
The last Try It Out in this chapter is for IE only and shows how to reference the various style properties
on a <div> in order to make it visible or hidden and reposition it on the screen. You will use this <div>
as a custom context menu that appears on the page when the right mouse button on a right-handed mouse
is clicked (or whatever alternate mouse button is configured). The event that fires when this click is done is
oncontextmenu. You will handle this event, first just showing the x and y position of the mouse in the sta-
tus window and deferring the normal behavior of an alternate click: showing the browser’s context menu.

Try It Out Adding a Context Menu
If you’ve been working through all of the samples, then there is already an event handler in place on the
<body> tag to handle onload. You’ll keep that intact and add another event handler for oncontextmenu
like this:

<body onload=”window.status=’It\’s a beautiful day’;”
oncontextmenu=”contextMenuClick(); return false;”>

And as you may have guessed, the return false; statement bypasses the normal behavior of this
event handler, which would bring up the browser’s context menu. So, you can now add a function in
the <script> tag called contextMenuClick(), which simply examines a couple of properties called
clientX and clientY found on the event object:

function contextMenuClick()
{
window.status=event.clientX+’ ‘+event.clientY;
}

When you test this, you’ll find that the event.clientX and event.clientY properties give the x and y
coordinates of the exact location of the mouse during the click. So, when you render the page and right-
click somewhere, the status menu shows those x and y coordinates. You can put that information to
work by using the coordinates to place a <div>. Add this code anywhere in the body:

<div id=”contextMenu”
style=”position:absolute; z-index:999;
visibility:hidden; border:3px solid #000080;
background-color:#4000C0; color:#FFFF00”>
My excellent context menu
</div>

26

Chapter 2

05_78544X ch02.qxp 7/18/06 3:12 PM Page 26

Now that you have this <div>, you can place it using its style.left and style.top properties. You
also need to make it visible. Update the existing contextMenuClick() function with this code:

function contextMenuClick()
{
var objContextMenu=document.getElementById(“contextMenu”);
objContextMenu.style.left=event.clientX;
objContextMenu.style.top=event.clientY;
objContextMenu.style.visibility=”visible”;
}

In this case, you use that special method of the document object mentioned earlier in the chapter,
getElementById(), to find the contextMenu object by its id and put that reference in a new variable
called objContextMenu. This effectively gives you a handy pointer to the <div>, which you then use
with the next three statements to update the position and visibility of the <div>. With that, wherever
you right-click on the page the context menu is shown.

Summary
This chapter was designed to be an easy walkthrough to introduce you to some of the important con-
cepts around DHTML, with most coverage given to JavaScript. At this point, you can take the principles
you’ve learned and continue to experiment!

In this chapter, you looked at the following:

❑ Some quick coverage of JavaScript syntax and some examples of presenting data

❑ Retrieving data from the user

❑ Handling events with JavaScript functions

❑ Direct manipulation of HTML objects

These concepts will be essential as you learn more about Ajax. From here, you can dig deeper into how
JavaScript objects work in the next chapter.

27

Introduction to DHTML

05_78544X ch02.qxp 7/18/06 3:12 PM Page 27

05_78544X ch02.qxp 7/18/06 3:12 PM Page 28

3
JavaScript and the

Document Object Model

Hypertext Markup Language (HTML) is currently the language of the Internet. All browsers know
how to parse and render HTML into a format that is easily viewed and understood by humans.
When a browser is instructed to retrieve a page from a server, what is returned to the browser is a
document that contains HTML. The browser can then interpret and render this HTML document
for presentation to the user.

HTML documents are static representations of a user interface. Once this interface is presented to
the user, the interface is typically unable to change without being re-sent to the server for process-
ing, and another HTML document is returned to and rendered for the user. JavaScript and the
Document Object Model (DOM) provide a way that you can change this rendered display pro-
grammatically and dynamically, according to events such as a user clicking the mouse, all from
within the browser.

In this chapter, you take a look at:

❑ The development of JavaScript

❑ The basics of the language

❑ Advanced JavaScript features

❑ The HTML Document Object Model and associated standards

❑ Using JavaScript to programmatically and dynamically change rendered HTML docu-
ments with the Document Object Model

All the code samples for this chapter are available for downloading at http://beginningajax
.com. Just visit the site and download the samples for Chapter 3. They are provided as a Visual
Studio .NET 2005 web site project. Simply load and execute each page as required.

06_78544X ch03.qxp 7/18/06 3:12 PM Page 29

From Static to Dynamic — A Brief History
Approximately 10 years ago in 1995, almost a lifetime in computer industry terms, a man by the name
of Brendan Eich developed a loosely typed scripting language intended to make Netscape Navigator’s
newly added Java support more accessible to non-Java programmers. On December 4, 1995, Netscape
and Sun jointly announced the existence of the new JavaScript language to the world.

Although the original intent of JavaScript was to further the Java language, it soon took on a life of its
own. JavaScript was commonly used to manipulate images and HTML documents’ contents, instead of
just manipulating and controlling Java applets. Although JavaScript retains the use of Java within its
name, currently it bears no relationship to the core Java language other than the fact that Java was used
to model the original language characteristics of JavaScript. This is often a source of confusion for devel-
opers, who assume JavaScript to be a subset of the Java core language. The development of JavaScript
has taken on a life of its own.

Using JavaScript, previously static web content could now be dynamically manipulated. Web program-
mers the world over began to see enormous new potential in their web applications. Initially, a vast
majority of web applications used JavaScript simply to change images in response to a mouse click by
the user. JavaScript was not without its issues however. Browser compatibility issues and security issues
plagued initial implementations, and it has undergone many revisions over the course of its lifetime.
JavaScript has evolved into the primary way to control and extend the way in which document authors
and web application designers can manipulate the client’s browser experience.

Currently, JavaScript is the only way to achieve any sort of dynamic behavior on the client in a cross-
browser-compatible way. Microsoft also attempted to address the issue of dynamic content and interaction
on web pages by releasing VBScript, a scripting language closely resembling the Visual Basic syntax that
was initially limited to the windows platform. Microsoft also released a port of JavaScript, called JScript
in 1996. This fragmentation of scripting languages, the fact that Microsoft’s scripting languages were not
quite as powerful as JavaScript, and the fact that they were a revision or two behind led to JavaScript
being the more popular choice for dynamic web content, in particular, the very popular image swapping
effects.

Attempts at Standardization
As browsers evolved and dynamic web pages became more popular, differences in browsers and their
implementations became apparent. Internet Explorer would implement a feature in one way, whereas
Netscape would implement features in another (albeit often quite similar) way. The natural effect of this
was to attempt to standardize the JavaScript language by submitting it to the European Computer
Manufacturers Association (ECMA). JavaScript now had a new name: ECMAScript. ECMAScript was
adopted in June 1997 by ECMA, and in 1998 by ISO (International Organization for Standardization).

While JavaScript was being standardized, browser vendors were releasing yet another version of their
browsers. This was approximately around the time of the 4.0 release generation of browsers. With new
abilities to dynamically update client-side content, browser vendors implemented object models within
the browser to represent the documents they contained; each of these was known as the Document
Object Model (DOM) by their respective browser vendor. Unfortunately, most vendors implemented
different object models, making dynamic content difficult on browsers from different vendors.

30

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 30

Browser innovation continued at a rapid rate, and incompatibilities continued among different vendors’
browsers. Many libraries were developed that attempted to provide a common application program inter-
face (API) between the different browsers. These would typically enable a common way of developing
Dynamic HTML (DHTML) applications across many browsers, but they were only moderately successful.

During this time, Microsoft, Netscape, and a number of other companies worked with the World Wide
Web Consortium (W3C) to provide a consistent and standardized DOM. This was an attempt to remove
the current complexity with developing DHTML applications across a variety of browsers.

The W3C develops interoperable technologies (specifications, guidelines, software, and tools) for all
web-related technologies. You can visit their web site for more information at www.w3.org.

Throughout this chapter, you will look at the core components of JavaScript and methods of interacting
with and manipulating the DOM. While still not fully realized, cross-browser compatibility with respect
to the DOM is much improved and is much easier than it previously was. However, inconsistencies
among vendor implementations still remain, and there are still many libraries and frameworks available
to provide a common API across vendors’ browser implementations. Some of these libraries are dis-
cussed in Chapter 9 of this book.

Today, JavaScript is the prevalent scripting language of browsers. It is the primary method of achieving
dynamic client-side interactivity in web applications. Microsoft has already initiated work at integrating
the powerful server-side programming environment of ASP.NET with JavaScript support. Technologies
such as asynchronous client scripting and Atlas will also be discussed in later chapters of this book.
All of these advanced technologies make use of the core components and features of JavaScript.

Digging into Some More JavaScript Basics
Chapter 2 started your introduction to JavaScript, particularly in showing how it can interact with the
browser environment to modify the HTML and CSS that make up a web page. In this chapter, you will
build on and extend what you learned in Chapter 2.

Take a look at the following simple JavaScript:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Basic Javascript</title>

<script type=”text/javascript”>
alert(“Hi, I am some simple JavaScript”);

</script>

</head>
<body>

<p>Simple Javascript Page</p>
</body>
</html>

31

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 31

Within the <head> section of the HTML document, you have a <script> tag that contains some basic
JavaScript. In this case, a simple alert box is displayed with the text “Hi, I am some simple JavaScript.”

<script> tags are the primary way of including scripted content in your HTML pages. You also have a
type attribute on the <script> tag that has been set to "text/Javascript" to signify the type of script
you will be including within the <script> tag. Current standards specify that you should use this type
of script attribute setting for all JavaScript script and, additionally, place the <script> tag within the
<head> section of the document (this is actually a semantic guideline and not a compliance requirement).
Previously, this was not required, as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Basic Javascript</title>
<script type=”text/javascript”>

alert(“Hi, I am some simple JavaScript”);
</script>

</head>
<body>

<script language=”javascript”>
alert(“Alert box 2”);

</script>
<p>Simple Javascript Page</p>
<script language=”javascript”>

alert(“Alert box 3”);
</script>

</body>
</html>

Although they are not strictly necessary, and despite the fact that many browsers will work fine without
adhering to these standards, the recommended approach is to adhere to these standards for any current
and future web development.

You will notice in the previous example, that we specified a language attribute with a value of
"javascript" instead of a type attribute with a value of "text/javascript". The script still works
fine; however, this requires that each <script> tag have a type attribute with the specified MIME type
to be contained within the <script> tag. There are some processing differences between the use of the
language and type attributes; however, current standards dictate the use of the type attribute, and
that’s what will be used throughout this book.

XHTML is the most recent version of HTML and describes or reformulates HTML elements more
inline with XML semantics and form. It also enhances the separation of structure from presentation.
More information can be found at www.w3.org/TR/xhtml1.

One of the most important attributes of a <script> tag is the src attribute. You may remember in the
last chapter using the src attribute with the tag. The functionality is similar here. This provides
the ability to include JavaScript from external files and is a great way to centralize and share common
JavaScript code.

<script type=”text/javascript” src=”BasicScripting_Script.js”></script>

32

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 32

The external file referenced in the preceding example contains some JavaScript code as follows:

document.writeln(“I have been written by some javascript”);

So, the page references the JavaScript file "BasicScripting_Script.js", which contains JavaScript
code to output a string to the web page. The page then executes the JavaScript code as if it were declared
directly within the page.

It is possible for a browser to have JavaScript disabled, and thus no script will be run when the page is
loaded. On some browsers, when JavaScript is disabled, the script itself will be rendered to the page as it
is written within the HTML page. To circumvent this side effect, developers often surround their script
with comment tags that cause the script not to be rendered if JavaScript is disabled. Often, you will see
this done with JavaScript libraries and frameworks. The following is an example:

<script type=”text/javascript”>
<!--

alert(“Hi, I am some simple Javascript”);
-->
</script>

Functions and Syntax
Previous examples have shown the use of JavaScript that executes as the page loads, as it is encountered
or parsed. However, you can also define functions to encapsulate blocks of functionality.

<script type=”text/javascript”>
function TestFunction()
{

document.writeln(“I have been written by some javascript”);
}
</script>

Here you have defined a JavaScript function that outputs the specified text when it is called. As indi-
cated in Chapter 2, a function is simply used to group a list of statements together. To call this function,
you simply use the following script:

TestFunction();

You will notice the line is terminated with a semicolon (;). Again, as noted in Chapter 2, this is not
strictly necessary. Each line can also be terminated with simply a carriage return.

function TestFunction()
{

document.writeln(“I have been written by some javascript”)
document.writeln(“This is some more text”)
document.writeln(“and yet some more”)

}

However, to place more than one statement on a line, the statements must be separated with a semicolon.

document.writeln(“
new line”);document.writeln(“
second new line”);

33

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 33

Just a reminder of what was stressed in Chapter 2 — typically, for the sake of consistency and clarity,
most developers will terminate each line with a semicolon regardless of whether there are multiple state-
ments per line or not. This is the recommended approach for all JavaScript development.

Functions also require that the code block that comprises the function, or body of the function, be
encased in curly braces ({ }). The opening and ending curly brace define the start and end of the code
block, respectively. Code blocks defined within curly braces are not just used for functions. Other state-
ments within JavaScript that require the grouping of more than one statement also use the curly brace
syntax.

if (str == “something”)
{

document.writeln(“str contains something”);
alert(“Test evaluated”);

}

Conditional statements and other core language features will be examined in detail later in this chapter.

Functions can accept arguments, or parameters, and return values. For example:

function ConstructMessage(msg)
{

return “You Passed in the string: “ + msg;
}

This function accepts a single argument and returns a string value that in part comprises the argument
that was passed in. To use this function, the code would look like:

alert(ConstructMessage(“Test Message”));

More than one argument can be specified for a function’s input parameters by separating the arguments
with a comma (,), for example:

function MethodWithParameters(arg1, arg2, arg3)
{

// Do something with the values of arg1, arg2 and arg3
}

A function’s arguments can be any primitive type or any type of object.

Event Handlers
You don’t always want script to be executed as the page is loaded. Quite often you want script executed in
response to events such as a user clicking a particular screen element or a mouse movement. (For exam-
ple, you may recall that in Chapter 2, you used the onload event to insert custom text into the status
area of a browser window once a page had fully rendered.) This activity is usually done by referencing
either inline JavaScript or a function using an XHTML attribute. In the following examples, you are han-
dling the onclick event of a button first using inline script:

<input type=”button” value=”Click Me (inline)” onclick=”alert(‘I was clicked -
inline script’);” />

34

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 34

and then using a HandleClick() function:

<input type=”button” value=”Click Me (function)” onclick=”HandleClick();” />

The onclick event is probably one of the most familiar events to web developers and doesn’t have to be
applied only to obvious items such as buttons. It can be applied to other items such as paragraph tags,
<p>, and most other items as well.

<p onclick=”HandleParaTagClick();”>This is some paragraph text</p>

XHTML requires that all event handler declaration be written in lowercase. Although case-sensitivity is not
strictly required to be HTML-compliant, it is required for XHTML compliancy. For example, onClick,
ONCLICK, and onclick are all valid in HTML, but only the lowercase version is XHTML-compliant.
For this reason, all event handlers used in this book will be written in lowercase.

Many more event handling attributes are available that can be utilized by web developers, and these are
discussed in detail later in this chapter.

Core Language
JavaScript is case-sensitive. This means that the case of a variable constitutes part of its name and that
lowercase letters are different from uppercase letters. So, a function that has been named getData() is a
different function to one named GetData().

Variables
Variables are components that store data. A variable is defined in JavaScript by using the var keyword.

var str = “this is a string”;

The preceding statement defines a variable called str that contains the string this is a string. The
literal string value is surrounded by double quotation marks ("); however, you can use single quotation
marks as well ('). These come in handy when specifying strings within JavaScript, which itself is encased
in double quotation marks. This usually occurs when handling events.

<input type=”button” value=”Click Me (inline)” onclick=”alert(‘I was clicked -
inline script’);” />

Comments
Comments can be included in any JavaScript code in two ways. Using double forward slash characters
(//) indicates that everything preceding the characters is a comment.

// This is a comment.

Additionally, an entire comment block can be defined by surrounding the comments with a /* to start
the comment block and a */ to end the comment block.

35

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 35

/*
These are some more comments. This is useful for a larger set of
comments that is written in a paragraph like fashion.

*/

Datatypes
There are three basic, or primitive, datatypes in JavaScript: string, number, and boolean types. A boolean
type can contain either a true or false value. Number types can contain either an integer or floating-
point number.

var boolVar = true;
var numberVar = 8.13;
var stringVar = “This is a string”;

The number datatype can have special values. These special values are Infinity and NaN.

❑ A number variable is given the value of Infinity when its maximum capacity is exceeded.
Similarly, a number variable is given the value of –Infinity when its minimum value is
exceeded.

❑ A number variable can also have a value of NaN, which stands for Not a Number, when the vari-
able is assigned the value of an undefined operation, such as dividing zero by zero.

Infinity values can be compared, and all values that equate to infinity are equal — that is, any result of an
operation that equals infinity is equal to any other operation that results in a value of infinity. Any oper-
ation involving a value of infinity causes the entire result to be equal to infinity. Unlike infinity, NaN must
be explicitly tested for, using the isNaN() function.

Escape Codes
Strings can contain special characters such as backspaces, tabs, and carriage returns by “escaping” the
characters, that is, by using an escape code to represent the character. Escape codes in strings are pre-
fixed by a backslash. The list of escape codes is given in the following table.

Escape Code Character or Value Represented

\b Backspace

\r Carriage return

\n Linefeed or newline

\t Horizontal tab

\v Vertical tab

\f Form feed

\” Double quotation mark

\’ Single quotation mark

36

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 36

Escape Code Character or Value Represented

\\ Backslash

\000 Latin-1 character represented by a three-digit octal value in the range
000–377, for example, \056.

\xHH Latin-1 character represented by a two-digit hexadecimal number in the
range of 00–FF, for example, \xA0.

The following is an example of using escape codes:

var s = “This is a tab\tThis is a newline\nI am on a new line”;

Weak or Dynamic Typing
JavaScript supports the notion of weak typing, or dynamic typing. This means that the type of a variable is
inferred from the data it contains. This is why there is only one way to declare variables — by using the
var keyword.

Try this test:

var v = “Some String Data”;
alert(typeof v);

v = 5;
alert(typeof v);

In the first instance, a message box will be displayed showing that the type of v is a string. In the second
instance, the type of v is a number. The type of the v variable has been inferred, and in fact changed,
according to what type of data it contains.

The typeof statement is an operator that returns the type of the variable being examined. This operator
will return a value of object, boolean, number, string, function, and undefined depending
on the argument specified.

Composite Types
JavaScript also has support for more complex datatypes known as composite types. Composite types can
contain not only primitive types, such as a string or number, but also other composite types. The three
composite types are arrays, objects, and functions. However, both the array and the function are really
just special kinds of objects.

An easy way to think of a composite type is an object that can contain any other type of object or objects.
An array is the typical composite type and will contain a list of other objects (which may be integers,
strings, or custom objects) as a sequential list of elements. An array will typically contain a list of objects
of the same type (all integers for example), but it is not limited to just that. Mixing datatypes within
arrays can generally lead to confusing code, which may result in hard-to-track bugs. This practice is
generally not recommended.

37

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 37

Composite types are required where there is a need for an object to contain or handle a logically grouped
set of data. For example, an array might be used to store a list of countries or states.

Arrays are an ordered set of values and can be defined in a number of ways.

var array1 = [1,”string data”,4,5,”6”]; // Mixing data types

var array2 = new Array(4);
array2[0] = “zero”;
array2[1] = “one”;
array2[2] = “two”;
array2[3] = “three”;

var array3 = new Array(1,”two”,3,4); // Mixing data types

You can access the values in an array by using an index value representing the element number con-
tained at the position in the array:

var val1 = array1[0];
var val2 = array1[1];

Objects can contain any type of data and are the primary mechanism for data storage and browser inter-
action. Objects can contain data, which are referred to as properties, and functions, which are referred to
as methods. Methods and properties are accessed on an object using dot notation in the format:

object.property;

or

object.method();

Browsers supply a rich set of objects so that developers can manipulate the browser programmatically.
A popular object is the document object. This object has a write method, which outputs text to the
browser window:

document.write(“This is some text. “);
document.write(“Some more text
”);

To prevent your having to always specify the document object when using its properties and methods,
you can use a with statement:

with (document)
{

write(“Some text again. “);
write(“some more text again.
”);

}

Objects are typically created and allocated using the new keyword. Conversely, they are effectively
destroyed by setting the object instance variable to null. JavaScript offers a delete keyword, and you
might be tempted to think that this can be used to clear allocated objects; however, delete is used only
to delete properties (more on this later) and array elements. The delete keyword is not like the delete
keyword used in C++ and Java. Using delete to delete an object instance will simply fail silently.

38

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 38

var o = new Object();
delete o;

var array4 = new Array(5);
array4[0] = “something”;
delete array4;

Operators and Expressions
For those familiar with C++ or Java, JavaScript will seem very familiar. JavaScript contains a standard
set of operators and expressions for mathematical operations. The standard set of operators includes
assignment (=), addition (+), subtraction (-), multiplication (*), division (/) ,and modulus (%). Some
examples of these are shown in the following code lines:

Assignment/addition/subtraction:

y = x + 3 – 2;

Multiplication/division:

y = 2 * 4;

Modulus:

y = 8 % 3;

JavaScript also includes the standard set of bitwise operators for performing operations on data at the bit
level. These include AND (&), OR (|), NOT (^), Exclusive OR (~), left shift (<<), and right shift (>>). The
result of using these operations is usually some value representing the bit pattern after the operation has
been performed.

JavaScript also supports the standard shorthand notation for mathematical operations in the same way
that C/C++ and Java do. Listed in the following lines are the shorthand versions of the mathematical
operations and in comments their expanded equivalents:

var v = 3;
v++; // v = v + 1;
v--; // v = v - 1;
v *= 2; // v = v * 2;
v /= 2; // v = v / 2;

JavaScript also supports bitwise operators that provide the ability to perform operations on the bit repre-
sentations of a set of arguments. These operators are the AND (&), OR (|), NOT (~), Exclusive OR (^), left
shift (<<), and right shift (>>). These operators are rarely used within typical web applications using
JavaScript because bit-level manipulation and comparison is normally out of the scope of typical web
applications. Accordingly, they will not be discussed here.

However, it is important that these operators are not confused with, and in fact used in place of,
logical operators that bear the same names. Logical operators only equate to a true or false value.
These include the logical AND (&&), OR (||), and NOT (!).

39

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 39

These sets of operators are often used in conjunction with the relational operators, which are equal to (==),
less than (<), greater than (>), not equal to (!=), less than or equal to (<=), and greater than or equal to (>=).
So, the following expression:

5 < 11 && 10 > 20

equates to:

true && false

which ultimately equates to false. If you were to mistakenly substitute the bitwise AND (&) operator
for the logical AND operator (&&) so that the expression looked like:

5 < 11 & 10 > 20

the expression would yield a result of 0, instead of the expected result of false. Clearly, this could lead
to hard-to-track bugs, so it is important that logical operators be used. This mistake is quite often a
source of frustration for beginners and seasoned developers alike.

If you utilize an if statement to create a more complex expression:

if (((x > 1) && (y < 10)) || x == 0)

where x = 0 and y = 5, the expression equates to:

if (((false) && (true) || true)

which rationalizes to:

if (false || true)

and finally:

if (true)

Flow Control and Loops
Again, like C++ and Java, JavaScript contains a reasonably standard set of flow control statements, one
of which you have seen previously, the if-else statement. This statement effectively is saying, if a
condition is true, execute some code; otherwise, execute a different set of code. An example best illus-
trates this:

if (1 < 2)
{

alert(“the test is true”);
} else
{

alert(“The test is false”);
}

40

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 40

The else statement is not strictly required, so you can write the following:

var x = 2;
if (x < 5)
{

document.write(“value was less than 5”);
}

In the case where multiple tests are required, you can use a switch statement. These provide a neat way
of addressing multiple tests using the case keyword like this:

var z = 2;
switch (z)
{

case 1:
document.write(“The value of z is 1”);
break;

case 2:
document.write(“The value of z is 2”);
break;

case 3:
document.write(“The value of z is 3”);
break;

}

In this example, the case statements are evaluated until a true equality test is found against the variable
z and the corresponding value for the case statement. If no condition evaluates to true, the default con-
dition is executed. Each case block is terminated with a break statement to exit the switch block.
Failure to do this would cause evaluation to continue on down the switch block.

The switch statement is a relatively recent addition to the JavaScript language and wasn’t introduced
until version 1.2 of JavaScript. Some older browsers may not support this statement, so it should be
used with care if older browsers need to be catered to.

while and for Loops
Within JavaScript you have two main types of loops —while and for loops — with two variations on
each. The while loop is used like this:

var x = 0;
while (x < 3)
{

x = x + 1;
document.write(“
Current Value of x = “ + x);

}

This will execute the code within the code block, which increments the value of x until the value of x is
greater than or equal to 3. That is, the condition within the parentheses must evaluate to true before
the code block is executed. The test is performed before the code within the code block is executed.
The variation on this is the do/while loop, which is used like so:

41

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 41

var y = 0;
do
{

y = y + 1;
document.write(“
Current Value of y = “ + y);

} while (y < 3);

The difference between the while loop and the do/while loop is that the do/while loop will execute
the code block at least once, then the test is performed. The while loop will always evaluate the test
before executing the code block.

The for loop, which you were introduced to in Chapter 2, is similar in function to the while loop; how-
ever, is a little more compact. Examine the following code example:

for (var i = 0; i < 3; i++)
{

document.write(“
Current Value of i = “ + i);
}

The declaration of the variable, evaluation test, and variable increment are all performed in a single line.
The code initializes a variable i to 0 and executes the code block only if the value of i is less than 3. The
value of i is incremented on each iteration of the loop.

The variation on the for loop is the for/in loop. The for/in loop allows you to loop through the prop-
erties or members of an object. For example:

for (var member in document)
{

document.write(“
Document object has a member named: “ + member);
}

This code will iterate over all the properties and events of the document object and write the name of
those to the display.

Breaking or Continuing a Loop
In all examples of looping constructs shown so far, you can prematurely exit the loop by using the break
statement. Issuing a break statement within a loop will cause program flow to exit the loop or code
block, irrespective of whether the exit condition has been met.

var z = 0;
while (z < 20)
{

z++;
if (z > 5)

break;
document.write(“
The value of z is : “ + z);

}

42

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 42

This code example will exit the loop once the value of the variable z has exceeded a value of 5, even
though the loop test will allow the value to only be less than 20. The if condition is evaluated to true
once z is greater than 5, and the break statement is then executed.

Alternatively, the continue statement causes execution within a loop to immediately go to the next iter-
ation in the loop and skip any intervening statements for that iteration only.

More on Objects and Functions
Almost everything in JavaScript that is not a primitive type is an object, including functions. Objects take
full advantage of the dynamic nature of JavaScript, which is quite advanced, even compared to more tra-
ditional programming languages such as C#, C++, and Java.

Earlier in the chapter, you saw how you can create a new instance of an object using the new operator
and how to clear that object instance by setting the object to equal null, which signifies that the object
and anything it references are no longer required and the memory associated with that object can be
released. The JavaScript interpreter present in the browser takes care of this process for you.

The dynamic nature of JavaScript allows you to create custom objects dynamically in code as you are
executing it. Take the following code example:

function CreateCustomObject()
{

var obj = new Object();
obj.myCustomProperty = 1;
obj.anotherProperty = “some data”;
return obj;

}

var o = CreateCustomObject();
alert(“Property1: “ + o.myCustomProperty);
alert(“Property2: “ + o.anotherProperty);

The CreateCustomObject function returns a custom object with two properties. The code then displays
each property in an alert box. Within the CreateCustomObject function, you simply create a new generic
object and assign values to two initially nonexistent properties. The JavaScript runtime infers the prop-
erty types of each property from the data being assigned to it and also infers that you want to have these
two properties available on your newly created object. You have just created a custom object with two
properties by doing nothing other than assigning values to the properties. There was no need to explicitly
define the properties themselves. Again, the JavaScript interpreter inferred the definition of these two
properties on our behalf. You have dynamically created these two properties. This approach is vastly dif-
ferent from traditional languages, such as C#, C++, and Java, where typically a class definition is required
that explicitly defines what properties are available on the class. However, this type of approach is still
available, as we will examine later in this chapter.

You can also dynamically delete these instance properties from the object by using the delete keyword:

delete o.myCustomProperty;
alert(“Property1: “ + o.myCustomProperty);

43

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 43

Figure 3-1 shows the result that is displayed.

Figure 3-1

An interesting, but seldom used feature is the ability to reference properties using a weakly typed
method. This means accessing the objects properties like a standard name/value pair. For example:

alert(o[“anotherProperty”]);

is exactly the same as:

alert(o.anotherProperty);

Here, you will notice you are accessing the custom property as if it were an array element, except that
the index used is the property name.

As already mentioned, this technique is seldom used within typical web applications. When developing
frameworks for your own web applications, however, this technique can prove valuable due to the
generic nature of frameworks. Often, the need to access an object property of which the name is not
known at design time by using some string argument affords a degree of flexibility and generic opera-
tion to a framework where using the strongly typed mechanism could not normally be used.

Common Properties and Methods
All JavaScript objects have a common set of properties and methods. These properties and methods are
relatively low level and not often used in your average web applications but are very important when
dealing with your own custom objects. The common or basic set of properties available to all objects is
listed in the following table:

Property/Method Description

prototype This property provides a reference to the object from which it
inherits custom, “non-instance” properties. This feature is discussed
later in this chapter.

constructor Provides a reference to an object that acts as the objects constructor.
A constructor is a function that is automatically executed when an
object is first created.

toString() Converts the object into its string representation.

toLocaleString() Converts the object into its localized, or culture-specific string
representation.

valueOf() Converts the objects into an appropriate “primitive” type. This is
normally a number.

44

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 44

Property/Method Description

hasOwnProperty This method returns true if the instance property identified in the
(nameOfProperty) nameOfProperty argument exists; otherwise, it returns false.

isPrototypeOf(obj) This method returns true if the objects acts as the prototype of the
object passed in via the obj parameter; otherwise, false is returned.

propertyIsEnumerable This method returns true if the property specified in the
(nameOfProperty) nameOfProperty argument will be enumerated if the object is

used in a for/in loop.

Custom Objects and Advanced Object Mechanics
The preceding section examined some properties and methods that are common to all JavaScript objects.
Prior to that, the chapter examined how to define custom instance properties and create a customized
form of a generic object. You can also dynamically add functions to objects, as shown in the following:

function someFunction()
{

alert(“You are in a function”);
}

var newObj = new Object();
newObj.prop1 = true;
newObj.showMessage = someFunction;

Here you have created a generic object, assigned an instance property name prop1, and also assigned a
function named someFunction to the showMessage method. To invoke the method on the object, you
simply use:

newObj.showMessage();

Using Function Literals and Object Literals
You can make the preceding example even more compact by using function literals. A function literal is
when a function is defined using the function keyword but is not given a function name. The example
that follows demonstrates this:

var newObj = new Object();
newObj.prop1 = true;
newObj.showMessage = function() { alert (“You are in a function literal”); };

newObj.showMessage();

You can also pass in arguments to the function literal like so:

newObj.showMessage = function(msg)
{

alert (“You are in a function literal. Message was: “ + msg);
};

newObj.showMessage(“my message”);

45

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 45

This allows you to assign specific behavior to your object using the concept of function literals. In the
preceding example, a custom function showMessage was defined that contained behavior to display a
message. This could easily have been a much more complex function and represents part of the process
in building a customized object with completely customized behavior.

Over the course of creating a web application, functionality can be grouped together within custom
objects in the same way that traditional objects are created using server-side languages such as C# and
VB.NET. Encapsulation is an object-oriented technique where logically grouped functionality is contained
within singular components in order to reduce complexity within the greater application. Similarly, this
technique can be applied to JavaScript, where you define your own custom objects with specialized
behavior (using function literals to define your objects behavior) to logically group functionality and
increase the manageability of your web application.

In addition to function literals, JavaScript (as of version 1.2 and above) also supports object literals.
You use the standard set of curly braces to enclose a literal object definition of property value pairs and
optionally function literals. Property names and values are separated by a colon, with each property/
value pair separated by a comma. The following code is the previous object example defined using an
object literal:

var newObj = {
prop1: true,
showMessage: function(msg)

{
alert(“You are in a function literal, which is inside

an object literal. Your message was: “ + msg);
}

};
// Invoke the method
newObj.showMessage(“Another Message”);

What you are seeing here is a way of completely describing an object’s behavior in terms of properties
and functions, without procedurally defining each property and function in code, as shown in previous
examples. The objects functionality has been defined in a declarative manner.

Rather than having large sections of code that perform the task of creating your custom objects, an object
definition using the object literal technique can be used to create your custom objects.

This technique is used throughout some of the custom frameworks and libraries available (which are
discussed in detail in Chapter 9) to create a string representation of an object to transfer to a web applica-
tion that uses JavaScript. Since the representation of an object literal is a simple string, this can be passed
easily to other systems, or in fact, be generated on the fly (dynamically) by the server, for a client web
application to use.

Using Prototypes
Ideally you want to be able to define an object template that can be used to create or instantiate custom
objects in the same way that C#, C++, and Java programmers have class definitions. This is the function
of the prototype feature in JavaScript.

46

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 46

Each object in JavaScript has a prototype property, which itself is an object. A prototype of an object
can contain methods and properties that define the object to which the prototype belongs and are used
when constructing a new object to give the object a default set of properties and methods. The prototype
can be thought of as the blueprint of an object’s properties and behavior when an object of that type is
created. Custom instance properties and methods can still be defined on these objects and combined
with the prototype-supplied properties.

Basically, the prototype property is a reference to an object that contains the initial structure and func-
tionality of an object when first created. Further customization is possible via instance properties, as you
have already seen. When you consider defining custom object structures, you have to grasp the concept
of a constructor. A constructor is a method that is executed when an object is first created. As a web appli-
cation developer, you do not need to explicitly call the constructor to have it executed. A constructor is
implicitly executed when you create a new object. It is typically used to initialize any custom object data
and prepare the object for use. A constructor is simply another function, and you can define it like this:

function Agent()
{
}

var agent1 = new Agent();

Here you have created a new Agent object. The Agent object has a constructor that doesn’t really do
anything special right now. You can use the constructor to add some instance properties to your Agent
object, as follows:

function Agent()
{

this.isActive = true;
this.isSecret = false;

}

var agent1 = new Agent();

Here, you have added two instance properties to your Agent object. You no doubt noticed the use of the
this keyword. The this keyword holds a reference to the object you are working within or basically a
reference to your new object. Your object is now a customized object that can be used within your code.
You can define a function to operate on your custom object:

function CheckIfActive(agentObject)
{

if (agentObject.isActive)
alert(“The agent is currently active.”);

else
alert(“The agent is not active.”);

}

And use that function in conjunction with the custom object like this:

var agent1 = new Agent();
CheckIfActive(agent1);

47

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 47

Because the constructor is just another function, you can also add parameters to the function:

function Agent(initiallyActive)
{

if (initiallyActive == false)
this.isActive = false;

else
this.isActive = true;

this.isSecret = false;
}

This is known as a parameterized constructor.

Now, you can create a new instance of the object either using a parameter to specify an initial value or
using the default constructor, as shown in the following:

var agent1 = new Agent();
var agent2 = new Agent(false);
CheckIfActive(agent1);
CheckIfActive(agent2);

You will notice that in the parameterized constructor, you explicitly check for a value of false and then
set the instance property appropriately. It might seem redundant at first to check for a value of false
and then set the value of the internal value isActive to false. Remember, though, that variables in
JavaScript can be of any type based on what the value of that variable is that is being assigned.

When the Agent object is constructed using the parameterized constructor, the value of the
initiallyActive argument is expected to be a boolean true/false value, but can in fact be any value,
including null. The check to see if the initiallyActive variable is equal to false contains a fall-
through condition to set the value of the internal variable isActive to true if anything but false is
passed in. This ensures that the value of the internal variable isActive is only ever set to a boolean
value of true or false and not a potentially incorrect or invalid value of null. This is known as defensive
programming.

Try It Out Creating a Prototype
So, now that you have seen how to customize an object using instance properties and also how to define
a constructor for an object to perform some initialization within that constructor, you are ready to see
how prototypes provide a flexible and powerful way to describe a “blueprint” of an object. To refactor
the Agent example using prototypes, you would do the following:

function Agent(isUnderCover)
{

if (isUnderCover)
this.isSecret = true;

}

Agent.prototype.isSecret = false;
Agent.prototype.isActive = true;
Agent.prototype.checkIfActive = function()

{
if (this.isActive)

48

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 48

alert(“This agent is currently active. Is a Secret Agent?: “ +
this.isSecret);

else
alert(“This agent is not active. Is a Secret Agent?: “ +

this.isSecret);
};

What this example is doing is defining the properties and methods that exist on an object (in this case
the Agent object) when a new object of that type is created. A “blueprint” of the object is defined by
defining its prototype, and when a new object of that type is created, the prototype definition is auto-
matically used to construct a new version of the object.

In the preceding example, the prototype contains two properties (isSecret and isActive, which are
assigned initial values), a function named checkIfActive(), and a parameterized constructor. Contrast
this to the previous example where a generic object is initially constructed, and then properties and func-
tions are dynamically added through procedural code. In simple examples, using this procedural
method of dynamically constructing an object may suffice; however, in more complex object definitions,
providing prototype definitions allows greater flexibility in defining how your object will behave. This is
particularly important when your object is part of a reusable framework or common library that can be
reused within other applications.

Now to create and use your Agent object, you simply do the following:

var agent1 = new Agent();
agent1.checkIfActive();

var agent2 = new Agent(true);
agent2.checkIfActive();

Now you can see how you have defined the structure of the Agent object using the prototype feature
and how easy it is to create objects based on the prototype definition. It is important to note that each
object you create that is of type Agent shares the same prototype reference. That is, only one copy of the
prototype is shared between all objects created from the prototype. This means that any change to the
prototype is, in effect, made visible to all objects based on that prototype.

Modifying the prototype Property
As mentioned previously in this chapter, all objects have a prototype property, and it is possible to
modify any object’s prototype definition. This can be particularly useful for modifying the behavior of
built-in objects. For example, if you want to enhance the built-in String object to include a method that
prefixes a string with a particular set of characters, you can do the following:

String.prototype.addPrefix = function(prefix)
{

return prefix + this;
}

You can then do the following:

var newString = “Some String”.addPrefix(“This is “);
alert(newString);

49

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 49

This produces the result shown in Figure 3-2:

Figure 3-2

As you can see, modifying an object’s existing prototype definition or defining your own custom pro-
totype provides a very powerful way to define the structure and behavior of your custom objects, as
well as the behavior of the existing built-in objects that JavaScript provides.

Inheritance and Prototype Chaining
You can extend this concept further by utilizing another object-oriented concept, that of inheritance. You
can inherit behavior and properties from an existing object and then build upon that to define your own
custom object. The obvious benefit of this is that you don’t need to define all the object characteristics
you require. You can first inherit some characteristics from another object, and then provide additional
characteristics or selectively override the existing characteristics as required. The technique used to do
this is called prototype chaining.

To demonstrate this, you can inherit from the Agent object in the previous examples, as shown in the
following code block:

function SuperAgent()
{
}
SuperAgent.prototype = new Agent();
SuperAgent.prototype.secretAbility = “See through walls”;

var superDude1 = new SuperAgent();
var superDude2 = new SuperAgent();
superDude2.secretAbility = “Super speed”;

superDude1.checkIfActive();
superDude2.checkIfActive();
alert(“SuperAgent1 is Active: “ + superDude1.isActive.toString() + “, Secret
Ability: “ + superDude1.secretAbility);
alert(“SuperAgent2 is Active: “ + superDude2.isActive.toString() + “, Secret
Ability: “ + superDude2.secretAbility);

Here you have inherited characteristics from the Agent object that you defined earlier by chaining its
prototype to the SuperAgent object, using the line:

SuperAgent.prototype = new Agent();

50

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 50

This gives the SuperAgent object all the characteristics of the Agent object. From this, you can further
supplement this behavior by continuing to define properties and methods using the standard prototype
syntax. To override any of the behavior of the Agent object, simply define properties and/or methods of
the same name as the inherited objects.

Summary of Material So Far
Up to this point, this chapter has covered some of the basics, core concepts, and advanced object con-
cepts of JavaScript. You have learned the basic syntax of JavaScript, how to define arrays, functions,
event handlers, basic flow control, operators, and basic input/output operations, and performed a
whirlwind tour of object-oriented concepts like constructors and the more advanced concepts like object
inheritance via prototype chaining.

One of JavaScript’s main goals is to allow dynamic manipulation of HTML documents, that is, to act as
the scripting engine for DHTML (Dynamic HTML) web applications. Now that you have the core con-
cepts of JavaScript and its operation covered, you can delve into the world of the Document Object
Model and how to manipulate it.

The Document Object Model
The Document Object Model, or DOM, is an object that provides access to all the elements within the
HTML document or page, such as links, forms fields, anchors, and so on. There are, however, several object
models that relate to the DOM as it stands today that warrant some discussion. Earlier in this chapter, we
briefly discussed the evolution of the DOM by various browser vendors and touched upon the various
incompatibilities that have occurred as the object models have evolved over time. This is both a good and
a bad thing. On one hand, it means that the object models are constantly being reviewed and improved
upon, with the ultimate goal to reach a level of standardization, or commonality, among all the major
browser vendors. This is one of the major tenets of the W3C, which was also mentioned at the beginning
of this chapter. On the other hand, it means that, over time, vendors have implemented browser features
in different ways, which makes it hard for developers to implement functionality without ensuring that it
works in browsers from various vendors, as well as different versions of browsers from the same vendor.

There are essentially three object models that form the primary pieces of the JavaScript object model set:

❑ The core JavaScript object library and language

❑ The Browser Object Model

❑ The Document Object Model

So far in the chapter, we have covered the first piece of the JavaScript object model set, and this is fairly
consistent across browser vendors and the various browser versions.

The second piece represents the object model exhibited by the browser itself. This traditionally comprises
a window object as the root object, which holds references to other objects contained within it such as the
document object that contains the page elements. The document object is the reference to the standard
DOM — the third of the primary pieces of the JavaScript object model set — and is the reference by which
you can manipulate page elements dynamically using JavaScript. Figure 3-3 shows this relationship.

51

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 51

Figure 3-3

The distinction between the Browser Object Model and Document Object Model has always been a little
blurred, especially in previous browser versions; however, this distinction is becoming more pronounced
as the standards around them have matured and been more widely adopted.

The Browser Object Model really refers to the capabilities and characteristics of the browser itself. By
interacting primarily with the window object, you can manipulate and control various aspects of the
browser. Because the window object is the root object of the Browser Object Model, its use is often
inferred. By this, we mean the following use of the alert function:

alert(“We have inferred the use of the window object”);

is equivalent to using the alert function in this manner:

window.alert(“Directly referencing the window object”);

with the latter version explicitly listing the window object. In contrast, the former version made use of
the alert statement, which inferred the use of the window object. In other words, in that former case,
the use of the window object was assumed. In the same way, you can write the following:

document.write(“Some text”);

window.document.write(“Some text”);

and both statements mean exactly the same thing. Inferring the use of the window object is a very com-
mon practice and will be used throughout the remainder of this book.

navigator location history frames[] document

window

Document
Object Model

(DOM)

52

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 52

The document object is the primary focus for most web application developers and is used for almost all
dynamic content within a web application.

For more information and details regarding the Browser Object Model, visit the URL http://msdn
.microsoft.com/library/default.asp?url=/library/en-us/dnproasp/html/
thebrowserobjectmodel.asp or http://academ.hvcc.edu/~kantopet/old/
javascript/index.php?page=the+js+bom&printme=true.

Since the document object will be the primary medium through which web application developers will
operate, more time will be devoted to that subject than any other within this chapter. As with most ele-
ments of browser- and web-based application development, some history is involved. To fully describe
the current DOM and to understand the fact that, as a web application developer, it is important to know
what limitations your target customers or audience has, requires a knowledge of the various levels of
DOM compliance, features, and acceptance.

As with any web application development, the fact that you are using the latest and greatest XHTML-
compliant tool, does not mean that your users will be accessing this content using the latest and greatest
set of browsers. Depending upon the nature of the business or the application, you may be required to
cater for older browsers such as Internet Explorer 4 or Netscape 4. This is not particularly desirable due
to the extra amount of work required to cater to these scenarios, but it is important to understand the
limitations involved with these browsers, that is, the level of DOM that they provide access to.

Object Model Standardization (or Lack Thereof)
Early versions of the major browsers such as Netscape 2/3 and Internet Explorer 3 implemented object
models that were similar in purpose, yet in some instances, quite different in implementation. They pro-
vided some rudimentary access to a document’s elements but did not expose all of a document’s elements
and still lacked the mechanics to provide a truly dynamic experience.

Netscape 4 and Internet Explorer 4 laid the foundation upon which truly Dynamic HTML web pages
(DHTML) could be created by exposing a far greater range of properties and elements to JavaScript, but
they did so in a way that is different for each of those vendors.

Internet Explorer 5/5.5/6, Netscape 6+, and later Mozilla/Firefox have continued to build upon their
object models, but with further guidance and standardization by the W3C, have slowly been coming
together in terms of supporting a common API that can be utilized by JavaScript developers.

The DOM Levels
These three phases, or eras, of web development roughly correlate to the formation of, or compliance to,
the “DOM Levels” that have been defined by the W3C. These have been introduced, or formalized, in
order to help straighten out the various flavors of object models exhibited by earlier browsers, to unify
the differences, and to bring a degree of commonality to browsers from different vendors and among
browser versions from the same vendor. Even today, degrees of incompatibility exist between the latest
versions of browsers from the major vendors, but these are much less prevalent than in previous versions,
and the effort you need to expend to overcome these incompatibilities is significantly less compared to
earlier efforts.

More detailed information on the Document Object Model and the standards that compose them is
available at the W3C web site www.w3.org/DOM.

53

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 53

There are four levels of the DOM, or more specifically, the standard Document Object Model. The first
three levels (DOM Levels 0, 1, and 2) are what can be seen implemented in some browsers today at dif-
fering levels of completeness. The fourth level, DOM Level 3, is a relatively new level and has only
recently been recommended by the W3C. As a result, no browsers currently implement anything more
than a few features from this level, if any at all. Full support from the major browsers of this level will
take some time. The four levels of the DOM are:

❑ DOM Level 0 — This level is not a W3C specification, is often referred to as the classic or
traditional JavaScript object model ,and is close to what Netscape 2/3 and Internet Explorer 3
offered. This level is more of a definition of the functionality provided, encompasses the limited
exposure to the HTML document, and supports common object collections such as forms[],
images[], and anchors[].

❑ DOM Level 1 — This level defines the ability to manipulate all elements in a document through
a well-known or common set of methods and properties. This level is all about exposing all ele-
ments of a document and allowing them to be read, and written to, at all times. This level is
composed of DOM Core and DOM HTML elements.

❑ The DOM Core refers to a set of interfaces that can represent any structured document,
as well as an XML document and basic XML document support.

❑ DOM HTML refers to the higher-level interfaces that provide a more convenient way of
viewing the document. DOM HTML refers to the lower-level interfaces of the DOM
Core.

Support for this level within the current major browsers is very good. This level was approved
as a recommendation by the W3C on October 1, 1998.

Although Internet Explorer 4 and above provide a document.all property collection that exposes all
elements of a document, this property is not part of the DOM Level 1 standard. The document.all
property collection is specific to Internet Explorer 4 and above.

❑ DOM Level 2 — This level combines both DOM Levels 0 and 1, provides methods to access and
manipulate style sheet elements, and provides further access to page elements relating to XML.
There are other features that contribute to the DOM Level 2 standard that are lesser known;
however, many of these features are not supported in common/major browsers. Even browsers
that claim high standards compliance have yet to realize full DOM Level 2 support. Most major
browsers tend to focus on the style sheet manipulation features advocated by DOM Level 2, but
fail to implement the full set of DOM Level 2 features. This level is quite comprehensive and
features six different recommendations — DOM2 Core, DOM2 HTML, DOM2 Style/CSS, DOM2
Events, DOM2 Traversal and Range, and DOM2 Views.

❑ The DOM2 Core and DOM2 HTML are extensions to the DOM Core and DOM HTML
defined in the DOM Level 1.

❑ DOM2 Style/CSS provides interfaces for dealing with all aspects of style and cascading
style sheets.

❑ DOM2 Events exposes a generic event system and introduces concepts such as event
flow, bubbling, and cancellation.

❑ DOM2 Traversal and Range provides interfaces to allow scripts to dynamically traverse
and identify a range of content in a document.

❑ DOM2 Views allows scripts to dynamically access and update the content of a represen-
tation of a document.

54

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 54

❑ This level was officially approved as a W3C recommendation on November 13, 2000, with the
exception of DOM2 HTML, which was officially approved as a recommendation on January 9,
2003.

❑ DOM Level 3 — This level represents the final evolution of the DOM standardization process.
This level extends XML support to version 1.1 and other components of the XML Information Set
specification, bringing DOM in line with XML Schema 1.0 and SOAP 1.2 W3C Recommendations.
The new recommendation also makes full use of XML namespaces, which enables easier manip-
ulation of Web Services Description Language (WSDL) descriptions. There are five different
specifications within this level — DOM3 Core, DOM3 Load and Save, DOM3 Validation, DOM3
Events, and DOM3 Xpath.

❑ DOM3 Core is a further extension to DOM1 and 2 Core.

❑ DOM3 Load and Save refers to the ability to dynamically load the content of an XML doc-
ument into a DOM document and serialize a DOM document into an XML document.

❑ DOM3 Validation provides method for dynamically updating a document and ensuring
that the document and associated updates are valid.

❑ DOM3 Events is an extension of DOM2 events and mainly focuses on keyboard events.

❑ DOM3 Xpath provides interfaces to access a DOM tree using X Path 1.0 syntax.

❑ This level has only recently been officially recommended by the W3C, with DOM Core and
DOM Load and Save being officially recommended on the April 7, 2004. DOM Validation, how-
ever, was officially recommended on the January 27, 2004. Other parts of this level have yet to
be officially recommended.

So, what does all this mean to you as a web application developer? These levels represent significant
effort on the part of the W3C to define standards and specifications for all browsers to adopt. Those
familiar with web development in the past know that trying to accommodate a majority of browsers
required significant effort. These levels recommended by the W3C are a significant step forward in
reducing the amount of effort required to create a truly cross-browser-compatible application.

Try It Out Determining the Current Browser’s DOM Level
The levels would not be of much use if there were not an easy way to determine what level the current
browser supports and, therefore, what capabilities its DOM possesses. This can be achieved using the
document.implementation.hasFeatures() method. This method accepts two strings — one for the
feature to test for, such as CORE, and one for the version number, such as 1.0. For example, to determine
if your browser supports DOM HTML Level 1 (or version 1.0), you can use the following JavaScript code:

document.implementation.hasFeature(“HTML”,”1.0”)

The document.implementation.hasFeatures() method returns a boolean value (true/false) that
represents whether the specified feature is supported or not. In Internet Explorer v6.0, the following
JavaScript code would write true to the browser window:

document.write(document.implementation.hasFeature(“HTML”,”1.0”));

For something more comprehensive, the JavaScript code that follows displays a true or false value for
the respective DOM feature and version.

55

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 55

var featuresLevel1 = [“HTML”,”XML”];
var featuresLevel2 =
[“Core”,”HTML”,”XML”,”Stylesheets”,”CSS”,”CSS2”,”Views”,”Events”,”UIEvents”,”MouseE
vents”,”HTMLEvents”,”MutationEvents”,”Range”,”Traversal”];

document.write(“
*** DOM Level 1 ***
”);
showFeatureSupport(featuresLevel1,”1.0”);

document.write(“
*** DOM Level 2 ***
”);
showFeatureSupport(featuresLevel2,”2.0”);

// Generic function to loop through features and output feature support test result
function showFeatureSupport(featureArray,version)
{

for (var featCnt=0; featCnt < featureArray.length; featCnt++)
{

var feature = featureArray[featCnt];

var supportedFlag = document.implementation.hasFeature(feature,version);
document.write(“Feature ‘“ + feature + “‘: “ + supportedFlag);
document.write(“
”);

}
}

This example code simply uses the hasFeature method of the document.implementation object to
determine if a particular feature is implemented. This method returns a true or false value, depending
on whether the specified feature is available on the platform/browser the code is executing on. An array
of features for each DOM level (1 and 2) is passed to the showFeatureSupport function to perform
the test.

You will notice that you have an array of strings for the features that are relevant to DOM Level 1 and
Level 2. These simple strings are named specifically for each feature, and it is important to specify the
name of the feature exactly. Any incorrect spelling for the feature names will result in a false value being
returned from the hasFeature method, when in fact the intended feature may be present.

The hasFeature method is an important method provided by the DOM to enable developers to test if
specific features are implemented in the browser that their code is running on. Given the myriad combi-
nations of browsers and DOM level support, it is necessary to be able to determine if a feature is present
before using it.

Being able to perform this test means a more robust application for your users. If a specific feature that
your site requires is not present, then you may be able to either inform the user in a graceful manner or
possibly provide some workaround code to mitigate this issue. Without such a test, your site may gener-
ate errors when the specific feature is unavailable and may generally not be a good user experience.

It is interesting to note the different results that this code displays in different browsers. In arguably two
of the most prevalent browsers today, Internet Explorer 6 and Firefox 1.5, this code produces the results
shown if Figure 3-4.

Figure 3-4 clearly shows that even in the most current set of browsers DOM level support is inconsistent
and varies across browsers. Even though standards do exist, the compliance of current browsers to these
standards has a long way to go.

56

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 56

Figure 3-4

So, now you know that cross-browser support is difficult but is getting better. The DOMs in the past
have been customized implementations by each browser vendor that sometimes looked similar but often
had glaring differences that made web application development difficult. The move toward standardiza-
tion with the various DOM levels is a slow, but eventual process. DOM Level 1 is relatively well adopted
within the industry, so the remainder of this chapter will deal with components of DOM Level 1, namely
DOM Core and DOM HTML.

Working with the DOM
Once you know the standard DOM, as defined by the W3C, is a workable model for today’s web appli-
cation, what are you really getting from that information? Essentially, when a (X)HTML page is loaded
and rendered by a browser, a document tree is constructed in memory that represents the displayed docu-
ment. The document tree provides an internal layout of the document that can be manipulated and
updated. The document object displayed in Figure 3-3 earlier in the chapter is the reference to this inter-
nal document tree and itself implements a document interface defined by the W3C.

For a detailed description of the document interface provided by DOM Level 1 document object, visit
www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#i-Document.

57

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 57

Take a look at a simple example. The document that follows represents an extremely simplistic web page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Tree 1</title>
</head>
<body>

<h1>This is the Header</h1>
<p>This is a paragraph of text.</p>

List Item 1
List Item 2

</body>
</html>

When a browser loads and parses the preceding document, it builds a document tree and uses that for
displaying the document. The document tree is equivalent to Figure 3-5.

Each box in Figure 3-5 represents a node in the document tree. The arrow-line above a node represents a
parent-child relationship, with the node on the top being the parent and the node on the bottom being
the child. Nodes that have the same parent are sibling nodes.

Try It Out Modifying the Document Tree
The document tree as defined by DOM Level 1 is flexible and powerful enough that a document can be
constructed from scratch using script code. Rarely is this necessary, however, with documents being
defined with standard (X)HTML markup and the document trees being manipulated after being loaded
and parsed by the browser. Any element within the document tree can be modified and manipulated
using JavaScript at any time. For example, you might want to change the contents of the header, write
more paragraph content dynamically, and also remove or delete the unordered list. Examine the
JavaScript code that follows, which does just that:

// Get a nodelist with all the header elements
var headerNodeList = document.getElementsByTagName(“h1”);
// We know there is only 1, so get a reference to the 0th element
var hdr = headerNodeList[0];
// Use that reference to change the text/data
hdr.firstChild.data = “My Dynamically written Header Text”;

// Get a nodelist with all the paragraph elements
var paragraphNodeList = document.getElementsByTagName(“p”);
// We know there is only 1, so get a reference to the 0th element
var paragraph = paragraphNodeList[0];
// Use that reference to change the text/data.
paragraph.firstChild.data = “This represents the new text of the first paragraph.”;

// Get a nodelist with all the ul elements
var ulNodeList = document.getElementsByTagName(“ul”);
// We know there is only 1, so get a reference to the 0th element

58

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 58

var ul = ulNodeList[0];
// Using the parentNode (in this case the ‘body’ element), remove that child
element
paragraph.parentNode.removeChild(ul);

// create a new Text node for the second paragraph
var newTextNode = document.createTextNode(“This text is the second set of paragraph
text”);
// create a new Element to be the second paragraph
var newElementNode = document.createElement(“p”);
// put the text in the paragraph
newElementNode.appendChild(newTextNode);
// and put the paragraph on the end of the document by appending it to
// the BODY (which is the parent of para)
paragraph.parentNode.appendChild(newElementNode);

Figure 3-5

“DOM Tree 1” “This is the
Header”

“This is a
paragraph of text”

document

HTML

h1 ul

head

title p

body

“List Item 1” “List Item 2”

li li

59

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 59

As a matter of interest, you will note the use of an index to retrieve element number 0 in the node list, or
the first element. The getElementsByTagName() method returns a node list, or an array of nodes, so
you can use an array indexer to return a particular element in that array. Alternatively, you could use the
item method to return a particular element number in that array list like this:

var hdr = headerNodeList.item(0);

The web page structure should look something like the document that follows (with the script code
omitted for brevity):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Tree 1</title>
</head>
<body>

<h1>This is the Header</h1>
<p>This is a paragraph of text.</p>

List Item 1
List Item 2

<script type=”text/javascript”>

alert(“About to change the document.”);

// ... script code goes here

</script>
</body>
</html>

Here you have dynamically manipulated the document tree, with the browser simply rendering the con-
tents of that tree as they are changed.

In the previous example, you accessed elements using the getElementsByTagName() method, which
returns a list of nodes (if any) of the specified element. Although this certainly works, you will more
often use the getElementById() method that returns a reference to a specific element. You were first
introduced to getElementById() in the last chapter, and while this method allows more immediate
access to a particular element, it does require that elements be defined with a unique id attribute in the
document itself. Consider the following:

For this particular example, it is important that the preceding script code be placed
after the markup code in the document. If this code were placed in the <head> section
for example, as most of the previous examples have done, the document tree would
not have been constructed yet because the browser has not had a chance to parse
those sections of markup and so the script code would fail.

60

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 60

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Tree 2</title>
</head>
<body>

<h1 id=”hdr1”>This is the Header</h1>
<p id=”p1”>This is a paragraph of text.</p>
<ul id=”ul1”>

List Item 1
List Item 2

<script type=”text/javascript”>

alert(“About to change the document.”);

// ... script code goes here ...

</script>
</body>
</html>

This document is almost identical to the previous example except for the addition of id attributes to each
of the elements you want to manipulate. The JavaScript code can then be simplified a little to make use
of the getElementById() method, as shown in the following:

// Get a node reference to the header element
var hdr = document.getElementById(“hdr1”);
// Use that reference to change the text/data.
hdr.firstChild.data = “My Dynamically written Header Text”;

// Get a node reference to the paragraph element
var paragraph = document.getElementById(“p1”);
// Use that reference to change the text/data.
paragraph.firstChild.data = “This represents the new text of the first paragraph.”;

// Get a node reference to the ul element
var ul = document.getElementById(“ul1”);
// Using the parentNode (in this case the ‘body’ element), remove that child
element
paragraph.parentNode.removeChild(ul);

// create a new Text node for the second paragraph
var newTextNode = document.createTextNode(“This text is the second set of paragraph
text”);
// create a new Element to be the second paragraph
var newElementNode = document.createElement(“p”);
// put the text in the paragraph
newElementNode.appendChild(newTextNode);
// and put the paragraph on the end of the document by appending it to
// the BODY (which is the parent of para)
paragraph.parentNode.appendChild(newElementNode);

61

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 61

The method getElementById() allows immediate access to a node within the tree, whereas the
getElementsByTagName() returns a list of nodes that you must examine further in order to ultimately
retrieve the node object you require. Ultimately, you have a reference to a DOM node object within the
document tree.

Manipulating Nodes
In the example in the preceding section, you saw a brief example of how to create an element, append a
child node, and remove a node. The methods to manipulate nodes are simple yet extensive. You can con-
struct the various types of elements, and either append or insert them into the document tree. You have
seen how a reference to a node object can be retrieved, and with this information, you can also remove,
replace, or copy the node. All of these methods are available as part of the document object that acts as
the root object of the document tree. The sections that follow list the various node manipulation methods
available.

Creating Nodes
The following table lists and describes node creation methods available.

Creation Methods Description

createAttribute(attributeName); Creates an attribute node with the given attribute name.

createComment(commentString); Creates a comment node using the supplied string as
the comment itself.

createDocumentFragment(); Creates a document fragment node that can be used to
hold a collection of nodes for processing.

createElement(tagName); Creates an element that is of the type specified by the
tagName parameter.

createTextNode(textString); Creates a text node with the supplied textString as
the textual content.

Following are examples of using the node creation methods:

var attributeNode = document.createAttribute(“width”);
var commentNode = document.createComment(“My Comment”);
var docFragmentNode = document.createDocumentFragment();
var elementNode = document.createElement(“H1”);
var textNode = document.createTextNode(“Some Simple Text”);

In each case, a specific node object is returned by the method. Note that the statements in the preceding
example do not affect the document in any way, but simply return a reference to a valid of object of the
required type. For these to affect the document’s content, the objects would typically have to be inserted
into the document at some point. This is discussed in the following section.

62

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 62

Inserting and Appending Nodes
When using either the insert or append methods listed in the following table, usually you will obtain a
reference to a parent node using the methods previously described in the chapter, with the method
invoked from that node reference as you have already seen in previous examples. The inserted or
appended node is now a child of that parent node that it was inserted into or appended to.

Insert/Append Methods Description

insertBefore(newChildNode, Inserts the node referenced by the newChildNode
referenceNode); parameter before the node referenced by the

referenceNode parameter in the document tree.

appendChild(newChildNode); Appends the node referenced by newChildNode to the
end of the list of child nodes for that parent node.

Removing, Replacing, and Copying Nodes
When you are removing a node, as seen in previous examples in the chapter, you need to obtain a refer-
ence to the node to be removed; and then using its parent, you call the removeChild() method. You use
the replaceChild() method similarly; the parent node is used to invoke the method, passing a refer-
ence to the new node and a reference to the node to be replaced.

Copying a node is not quite as straightforward. You use the cloneNode() method of the node you want
to copy/clone and also pass in a boolean value indicating whether a deep copy or a shallow copy should
be performed. A value of true indicates the performing of a deep copy, which copies all children of the
node in addition to the node being cloned/copied. A shallow copy simply copies the node itself.

Removal/Replacement/Copying Methods Description

removeChild(childNode); Removes the child node referenced by the
childNode parameter from the list of children of
the parent node invoking the method.

replaceChild(newNode, Replaces the child node referenced by the
nodeToReplace); nodeToReplace parameter with the node refer-

enced by the newNode parameter.

cloneNode(performDeepClone); Returns a reference to a copied or cloned version of
the node on which this method was invoked. If the
performDeepClone parameter is true, then a deep
copy, meaning all the children are also included in
the copy/cloning process, is performed.

Try It Out Cloning a Node
Removing and replacing nodes is a relatively straightforward operation, and has been shown in previ-
ous examples; however, cloning is not quite as intuitive. Consider the web page and associated
JavaScript code that follows:

63

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 63

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Cloning a Node</title>
</head>
<body>

<p id=”p1”>This is some text and here is an image <img src=”Exclamation.bmp”
/></p>

<div id=”div1”></div>

<script type=”text/javascript”>
var node = document.getElementById(“p1”);
var div = document.getElementById(“div1”);

var nodeShallow = node.cloneNode(false);
var nodeDeep = node.cloneNode(true);

alert(“About to append the shallow copied node”);
div.appendChild(nodeShallow);

alert(“About to append the Deep copied node”);
div.appendChild(nodeDeep);

alert(“Done”);

</script>
</body>
</html>

When this page is loaded and executed, initially it appears as though no node is added for the shallow
cloned node, and then the deep cloned node is visibly added. In Figure 3-5, the document tree shows
text content of the paragraph node as a child node of the paragraph node, and indeed JavaScript code
examining the node properties confirms that. So, when you request a shallow copy/clone of the node,
the textual content (and the image) is not cloned; therefore, nothing is displayed when this node is
appended to the div element in the document.

Properties of a Node
The node object has a well-defined set of properties, which are listed in the following table:

DOM Node Object Properties Description/Details

nodeName Contains the name of the node.

nodeValue Contains the value of the node but is generally applicable only
to text nodes.

nodeType This property contains a number corresponding to the type of
node as listed in the table that follows this one.

parentNode A reference to the parent node of the current node, if one exists.

64

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 64

DOM Node Object Properties Description/Details

childNodes A reference to a list of child nodes, if any exist.

firstChild A reference to the first child node of the current object/node, if
one exists.

lastChild A reference to the last child node of the current object/node, if
one exists.

previousSibling A reference to the previous sibling node if one exists. This occurs
if the parent node has multiple child nodes. This property will
not have a valid reference if the node is the first child node.

nextSibling A reference to the next sibling node if one exists. This occurs if
the parent node has multiple child nodes. This property will
not have a valid reference if the node is the last child node.

attributes A list/array of attributes for the current node.

ownerDocument A reference to the containing document, or the document
object to which this node belongs.

The following table explains the numbers corresponding to the types of node, numbers used by the
nodeType property.

Node Type Type Description Comments
Number

1 Element Represents an XML or (X)HTML
element

2 Attribute An XML or (X)HTML attribute For example, class=”light”

3 Text Represents textual content
contained within an element or
attribute

4 CDATA Section Represents a block of text that XML-specific. Used to repre-
may contain characters that sent a literal section of text —
would otherwise be treated that is, to tell the parser to
as markup NOT interpret this as markup

5 Entity Reference Represents an entity reference XML specific

6 Entity Represents an entity XML specific

7 Processing Represents a processing XML specific. For example. The
Instruction instruction first line in an XML document:

<?xml version=”1.0” ?>

8 Comment Represents a comment For example:
<!-- A comment -->

Table continued on following page

65

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 65

Node Type Type Description Comments
Number

9 Document Represents a reference to the See previous detailed
root object in the document tree, discussion in this chapter
that is, a reference to the entire
document

10 Document Type A Document Type Definition For example, the DOCTYPE ele-
ment in an HTML document:
<!DOCTYPE html PUBLIC “-
//W3C//DTD XHTML 1.0
Transitional//EN”
“http://www.w3.org/TR/
xhtml1/DTD/xhtml1-
transitional.dtd”>

11 Document Represents a lightweight
Fragment Document object, or a portion of

a document

12 Notation Represents a notation declared DTD = Document Type
in the DTD Definition. An older form of

defining an XML document
structure

Try It Out Using Node Properties
As an example of utilizing these properties, you can examine one of the paragraph (<p>) nodes from
your previous example. You will add some further script code to the previous example, as shown in the
following code block:

var node = paragraph;
var msg = “Node Name: “ + node.nodeName;
msg += “\nNode Type: “ + node.nodeType;
msg += “\nNode Value: “ + node.nodeValue;
msg += “\nNode Child Name: “ + node.firstChild.nodeName;
msg += “\nNode Child Type: “ + node.firstChild.nodeType;
msg += “\nNode Child Value: “ + node.firstChild.nodeValue;
alert(msg);

This will produce the dialog box shown in Figure 3-6.

Figure 3-666

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 66

You can see here that the paragraph node has a type of 1 and a name of P, and its child node, which rep-
resents the textual content of that paragraph node, has a type of 3 and a name of #text.

The attributes property of a node is convenient way of referencing or examining the attributes that
accompany a particular element or node. As mentioned in the table listing properties earlier in this
chapter, it is an array containing the attributes of the node. This array will contain a differing number of
elements depending on which browser it is run within. To demonstrate this, examine the web page and
associated script code that follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Tree Attributes</title>
</head>
<body>

<h1>Atrribute Listing</h1>
<p id=”p1” align=”center” width=”90%”>This is some paragraph text</p>

<script type=”text/javascript”>

var p = document.getElementById(“p1”);
var attrCnt = p.attributes.length;
document.write(“
Number of attributes: #” + attrCnt + “
”);

for (var cnt=0; cnt < attrCnt; cnt++)
{

var attr = p.attributes[cnt];
var val;
if (attr.value == “”)

val = “[EmptyString]”;
else

val = attr.value;
document.write(“
Attribute: <i>” + attr.nodeName + “</i> has a

value of ” + val + “”);
}
</script>

</body>
</html>

This code has a very simple web page that contains a single header element (<h1>) and a paragraph (<p>)
element. The JavaScript code obtains a reference to the paragraph element using the getElementById()
method, displays the number attributes associated with that element, and then proceeds to list each
attribute’s name and its associated value.

When this page is rendered within Firefox, you get the expected result of three attributes and their asso-
ciated values. The page output is shown in Figure 3-7.

However, when the web page and code is executed within Internet Explorer 6, you get a total of 83
attributes. This basically represents all the possible attributes that this element can have within Internet
Explorer 6, whether defined or not. The screenshot in Figure 3-8 shows this output:

67

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 67

Figure 3-7

Figure 3-8

68

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 68

It is apparent that although the same script code executes without issue and the same basic properties
are supported, still some degree of differences exists in the way that each DOM tree is represented
within each different browser. As mentioned before in this chapter, when you are coding for cross-
browser support, you need to be aware of all these discrepancies and consider how to work with them
to achieve your desired outcome.

DOM Level 0 General Collections
To allow backward compatibility with older browsers, the DOM supports some object collections that
are part of the DOM Level 0 specification. These collections allow indexed access to the various page ele-
ments suggested by the property names. The table that follows lists these collections.

Collection/Array Object Description

document.anchors[] An array or collection of all the anchor elements within the page repre-
sented by the anchor tag — that is, all the
tags

document.applets[] An array or collection of all the java applets within the page

document.forms[] An array or collection of all the form elements within the page

document.images[] An array or collection of all the image elements in the page repre-
sented by the image tag — that is, all the
tags

document.links[] An array or collection of all the link elements in the page represented
by the link anchor tag — that is,

Using these collections is very simple and involves simply accessing each collection by an indexed
value. If you have the simple example of a web page like the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Level 0 Collections</title>
</head>
<body>

<form id=”form1” method=”post” action=”DOMLevel0Collections.htm”>
Links to this same page

</form>
</body>
</html>

you can access HTML elements using these level collections as shown in the following JavaScript code:

alert(document.links[0].nodeName);
alert(document.forms[0].nodeName);

69

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 69

The DOM, Styles, and CSS
So far you have seen how to manipulate the entities or nodes within a document tree. DOM Level 2 contains
support for CSS (Cascading Style Sheets) and styles and enables you to manipulate these elements. Internet
Explorer 6 does not contain complete support for DOM Level 2, but its DHTML model does contain support
for setting styles per the DOM standard. One way to set an element’s style is to manipulate the CSS styles
for that element, that is, its inline style element. Suppose that you had the following paragraph element:

<p id=”p1”>Some Text</p>

When an inline style is used to modify the visual appearance of this element, the inline style attribute is
added, as shown here:

<p id=”p1” style=”width:100%;text-align:left”>Some Text</p>

To reference this inline style property, you use the style property of a node element within JavaScript.

The style Property and Naming Conventions
You will notice in the preceding example that the text-align style attribute is hyphenated (contains
a - character). If you were to try and represent this literally in JavaScript, you would have a problem
because the hyphen represents a minus operator. For this reason, style properties generally follow some
naming guidelines. Any style property that is hyphenated has the hyphen removed and then capitalizes
the following word — that is, it follows camel case naming convention. The camel case naming convention
places the first letter of the first word in lowercase, with subsequent words starting with a capital, for
example, camelCase. So, in the previous example, the style property text-align would be represented
in JavaScript as textAlign. The example that follows demonstrates this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Styles - Example 1</title>
</head>
<body>

<p id=”p1” style=”width:100%;text-align:left”>Some Text</p>
<hr />
<script type=”text/javascript”>
var para = document.getElementById(“p1”);
if (para != null)
{

alert (“Changing the text alignment to ‘center’”);
para.style.textAlign = “center”;

alert (“Changing the text alignment to ‘right’”);
para.style.textAlign = “right”;

alert (“Changing the text alignment back to ‘left’”);
para.style.textAlign = “left”;

70

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 70

}
</script>

</body>
</html>

The only notable exception to the general “remove hyphen, use camel casing” rule is the float CSS style
property. float cannot be literally represented in JavaScript because it is a reserved word. In this case, it
becomes cssFloat. All other properties follow the general camel casing rule mentioned, which includes
properties that normally have a capital. For example, Top becomes top and Width becomes width when
accessing the style rules in JavaScript. Firefox, Internet Explorer 6, and other current major browsers
support CSS1 for the most part (with some minor differences). CSS2 and CSS3 are less supported, partic-
ularly in Internet Explorer 6; however, this will change in time, and it is worth keeping abreast of the
compliance levels of the various browsers. Mozilla/Firefox currently have the best support for these
standards.

A full discussion of the various CSS levels, all the associated properties, and specific browser support is
beyond the scope of this book. For detailed information on this, visit the W3C web site that hosts these
standards at www.w3.org/Style/CSS.

Modifying Style Sheets
Style sheets play an important part when defining CSS rules to be applied within your document. The
DOM Level 2 supports a styleSheets[] collection that holds references to all the <style> elements
within a document. As indicated by the [] of the styleSheets[] property, this is an array, with each
element being a CSSStyleSheet object. This object contains methods and properties that allow a certain
degree of manipulation; however, Internet Explorer does not conform to the standards in this case and
uses a slightly nonstandard set of methods. The table that follows shows both the DOM standard meth-
ods and the Internet Explorer equivalents.

Method/Property Description Internet Explorer Equivalent

insertRule(ruleText, Inserts the CSS rule defined addRule(ruleText,
ruleIndex); in the parameter ruleText at ruleIndex);

the specified index in the array

deleteRule (ruleIndex); Deletes the specified rule removeRule(ruleIndex);
contained at the specific
ruleIndex

cssRules[] A property array that contains rules[]
individual rules within the
style block

Care must be taken when using these properties in multiple browsers because of Internet Explorer’s lack
of standards support. When modifying a style, you must first check to see whether you have access to a
specific property set.

71

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 71

Try It Out Modifying a Style Sheet to Work in Both Firefox and IE
Consider the example that follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Styles - Example 2</title>
<style type=”text/css”>

p { text-align: center; }
body { color: blue; }

</style>
</head>
<body>

<p id=”p1” >Some paragraph Text</p>
<div>This is some body text</div>
<hr />
<script type=”text/javascript”>
document.write(“Number of styleSheets: #” + document.styleSheets.length);

var stylesheet = document.styleSheets[0];
// Check to see if we are operating in Internet Explorer
if (stylesheet.rules)
{

document.write(“
Internet Explorer detected.
”);

// Map the standard DOM attributes and methods to the internet explorer
// equivalents
stylesheet.cssRules = stylesheet.rules;
stylesheet.insertRule = function(ruleText, ruleIndex) {

this.addRule(ruleText, ruleIndex); };
stylesheet.deleteRule = function(ruleIndex) { this.removeRule(ruleIndex);

};
}

// The ‘p’ style rule
document.write(“

 1st Style rule (text-Align) value: “ +

stylesheet.cssRules[0].style.textAlign);
// The ‘body’ style rule
document.write(“
 2nd Style rule (color) value: “ +

stylesheet.cssRules[1].style.color);

alert(“Deleting the ‘body’ color style rule.”);
stylesheet.deleteRule(1);
</script>

</body>
</html>

72

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 72

The code in the example first checks to see if a rules[] collection exists, and if so, adds it to the
stylesheets collection as a cssRules property. In addition, you also add the DOM standard insertRule
and deleteRule methods and map them to the Internet Explorer equivalent methods. You are effectively
adding the DOM properties and methods to Internet Explorer to mimic the required DOM Level 2 sup-
port. You can then develop against the standard DOM interface and ensure that your web page works in
browsers that offer DOM Level 2 support, such as Firefox, as well as in Internet Explorer.

This type of code lends itself to reuse across all your web applications. For this reason, it is recom-
mended that you put this reusable code in a script file that can be included and reused in all your
web applications. To demonstrate this, the following code shows a revised version of the preceding
example code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>DOM Styles - Example 3</title>
<style type=”text/css”>

p { text-align: center; }
body { color: blue; }

</style>

<script type=”text/javascript” src=”DOMStyles3_Include.js”></script>
</head>
<body>

<p id=”p1” >Some paragraph text</p>
<div>This is some body text</div>
<hr />
<script type=”text/javascript”>
document.write(“Number of styleSheets: #” + document.styleSheets.length);

// The ‘p’ style rule
document.write(“

 1st Style rule (text-Align) value: “ +

stylesheet.cssRules[0].style.textAlign);
// The ‘body’ style rule
document.write(“
 2nd Style rule (color) value: “ +

stylesheet.cssRules[1].style.color);

alert(“Deleting the ‘body’ color style rule.”);
stylesheet.deleteRule(1);
</script>

</body>
</html>

You will notice that the code now contains no logic to determine the browser type and the mapping of
functions to DOM-compliant functions if required. The only addition is the line:

<script type=”text/javascript” src=”DOMStyles3_Include.js”></script>

73

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 73

which includes a script file to perform the browser-specific checks and mapping. This allows you to
concentrate on the code relating to the functionality of your application and not worry about the code
required to support multiple browsers. The include file can then be reused across your web applications
as shown in the following example:

/**
** Include script that maps Internet Explorer methods
** to the DOM equivalents
**/

var stylesheet = document.styleSheets[0];
// Check to see if we are operating in Internet Explorer
if (stylesheet.rules)
{

// Internet Explorer detected

// Map the standard DOM attributes and methods to the internet explorer
// equivalents
stylesheet.cssRules = stylesheet.rules;
stylesheet.insertRule = function(ruleText, ruleIndex) { this.addRule(ruleText,

ruleIndex); };
stylesheet.deleteRule = function(ruleIndex) { this.removeRule(ruleIndex); };

}

This script include file can be built upon over time to act as a constantly evolving repository of utility
code that saves you time and effort in all future web development applications.

Summary
This chapter has covered a lot of ground in a very short time, but it has exposed only the surface as far
as possibilities go when developing web pages or applications. This is particularly true when dealing
with the DOM interfaces and the varied support in different browsers. This itself can warrant an entire
book. In this chapter you have:

❑ Covered the early and current development of JavaScript

❑ Examined the basics of the JavaScript language and associated concepts

❑ Learned advanced JavaScript features and how to use them within your web applications

❑ Examined the HTML Document Object Model and its significance to you — the web developer

❑ Examined how to dynamically change rendered HTML documents using the Document Object
Model and JavaScript

The initial development of JavaScript provides insights into why JavaScript is the way it is today and
serves to eliminate some confusion around its Java heritage. The basics of the JavaScript language were
covered, and although the basics remain fairly consistent across browsers, different JavaScript version
support can introduce further complexity and implementation differences. It cannot be stressed enough
that when dealing with web pages or applications that can span browsers of different versions, and
especially from different vendors, it pays to perform some investigation on the minimum levels of stan-
dard support that you need to comply with.

74

Chapter 3

06_78544X ch03.qxp 7/18/06 3:12 PM Page 74

As you have seen, although JavaScript is a scripting language, it is extremely powerful, it has object-
oriented methods, and it has very dynamic features. These features are often not found in more static
languages such as C++, Java, and C#. JavaScript is the language of choice for dynamic web applications,
and the current breed of highly interactive web sites rely heavily on JavaScript for their magic.

JavaScript and the Document Object Model go hand in hand when dealing with dynamic web applica-
tions. JavaScript provides the engine, while the DOM provides the vehicle. Many web application
developers exist without knowing why something works in one particular browser and often resort
to such rudimentary techniques as displaying disclaimers on their site that state that the web site will
only work in browser version X. Not only does this limit the audience of the site, but it also displays
the developer’s inability to deal with cross-browser support and can leave a user feeling disgruntled
because of this lack of support. Worse still, errors and unexpected behavior can leave a user feeling very
frustrated, and it is unlikely that the user will visit your site again. Obviously, this is not desirable, and
you need to determine what is the best way to achieve cross-browser support to address these issues.
The DOM and its various standards can give us these answers. Knowledge of the DOM and the various
capabilities of each level are important, but they can be complex. This chapter barely scratches the sur-
face. Further investigation is recommended if you wish to truly utilize the advantages that the DOM has
to offer.

Finally, both JavaScript and the DOM come with a lot of history. The development and progress of both
has been fueled by the issues, problems and frustration faced over the years by many web developers
trying to achieve what is substantially easier to do today. Both JavaScript and the DOM are the core of
dynamic web applications and will act as core components for all future dynamic web content.

75

JavaScript and the Document Object Model

06_78544X ch03.qxp 7/18/06 3:12 PM Page 75

06_78544X ch03.qxp 7/18/06 3:12 PM Page 76

4
The XMLHttpRequest Object

The XMLHttpRequest object forms the main basis for most Ajax-style applications. It acts as the
main component to facilitate asynchronous requests to the server and to perform server-side pro-
cessing without a traditional postback. This is to avoid the traditional postback delay for the user
and enhance the user experience dramatically.

There are other less traditional methods to achieve this behavior, but use of the XMLHttpRequest
object is becoming the standard way in which this Ajax style functionality is achieved.

In this chapter, you take a look at:

❑ The XMLHttpRequest object — what it actually is and its history

❑ Synchronous and asynchronous requests

❑ Dealing with response data from the server

❑ Using web services

The use of these techniques causes a common usage pattern to emerge. So, it stands to reason that
developers would want to factor out these common techniques and organize code into a library
that they can reuse across many other projects. This would obviously save the time of recoding,
redeveloping, and retesting similar functionality in the future, and this is exactly what is done
throughout this chapter. At the end of this chapter, you will have the rudimentary basis of a
reusable code library that you can carry across to all future projects.

Code Examples for This Chapter
All the code samples for this chapter are available for downloading at http://beginningajax.com.
Just visit the site and download the samples for Chapter 4. They are provided as a Visual Studio .NET
2005 web site project. Simply load and execute each page as required.

07_78544X ch04.qxp 7/18/06 3:12 PM Page 77

Due to the project being a file-based web project, Visual Studio .NET will assign a random port number
when you launch a web page in a browser. The port number will be apparent in the address bar of the
browser. For example, if the address bar contains the following URL:

http://localhost:7615/XmlHttp_Chap4/Examples/SimpleAsyncResponseText.aspx

the web server is using a temporary port number of 7615. This port number needs to be used when any
of the example code is accessing the site. It is for this reason that all the code samples that access a URL
will utilize a dynamic way of determining the port number. The JavaScript location object contains a
host property that will be used to specify the exact location to access. For example, the URL shown in
the following example:

xmlHttpObj.open(“GET”,”http://localhost/XmlHttp_Chap4/DataFile.xml”, true);

would be changed to:

xmlHttpObj.open(“GET”,”http://” + location.host + “/XmlHttp_Chap4/DataFile.xml”,
true);

If the port number was 7615, then the location.host property would contain localhost:7615. The
URL in the preceding example would be the correct host and location. All code samples in this chapter
will utilize this method of accessing the resources required to correctly function.

What Is the XMLHttpRequest Object?
The XMLHttpRequest object is the heart of all asynchronous operations related to Ajax. It is the object
responsible for providing the asynchronous behavior through which Ajax-style applications can interact.

XMLHTTP is a protocol that is designed to package data as XML and send it via the network to a spe-
cific destination, or endpoint. This information is typically processed in some way, and the result is
returned to the caller. The XMLHttpRequest object is an object that is implemented by most modern
browsers to facilitate this communication protocol.

A Little History
The techniques used by the XMLHttpRequest object have been in use since approximately 1998 and are
not new. Microsoft was probably the first major player to make use of this technology in its Outlook Web
Access product, which used an early form of the XMLHttpRequest object to implement the very func-
tional interface of the web client application. It was available in a limited form within Internet Explorer
4.0 but really became usable as an ActiveX object within Internet Explorer 5.0.

Recently, companies such as Google have helped to popularize this technology with very effective imple-
mentations of asynchronous behavior in products such as Google Maps (http://maps.google.com)
and GMail (www.gmail.com). Microsoft has also provided an excellent example with MSN Virtual
Earth (http://virtualearth.msn.com).

Other browser vendors have noted the benefits of this approach and have provided their own imple-
mentation of this object to provide the same asynchronous capability. The current list of browsers that
support this object are Internet Explorer 5.0 and above, Safari 1.2 and above, Mozilla 1.0/Netscape 7 and

78

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 78

above, Opera 8.0 and above, and Firefox. Unfortunately, the support across different browsers is not
seamless, but neither is it a major obstacle. To use this object in the Safari, Mozilla, and some other non-
Microsoft browsers, you can create an object using JavaScript with the following syntax:

var xmlHttpObj = new XMLHttpRequest();

Creating the same object in Microsoft Internet Explorer requires creating an ActiveX object, as shown
here:

var xmlHttpObj = new ActiveXObject(“Microsoft.XMLHTTP”);

or

var xmlHttpObj = new ActiveXObject(“Msxml2.XMLHTTP”);

depending on which version of the Microsoft XML parser is installed.

The terms JavaScript and more recently ECMAScript in this context both refer to the same thing,
which is the Java-like scripting language available in modern browsers. The remainder of this chapter
will refer to this scripting language as JavaScript.

The usage of the XmlHttpRequest object is the same across the different browsers; it is only the con-
struction of the object that differs. For this reason, it is necessary to either check for the browser type to
determine how to construct the object.

Try It Out Checking Browser Type to Determine How to Construct the
XMLHttpRequest Object

A simple way of doing this is shown in the following JavaScript code:

if (window.XMLHttpRequest)
xmlHttpObj = new XMLHttpRequest();

else
{

try
{

xmlHttpObj = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (e)
{

xmlHttpObj = new ActiveXObject(“Msxml2.XMLHTTP”);
}

This checks to see if the browser supports standard object construction; if it doesn’t, the code defaults to
creating an ActiveX object. An alternative approach is:

if (window.ActiveXObject)
{

try
{

xmlHttpObj = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (e)
{

xmlHttpObj = new ActiveXObject(“Msxml2.XMLHTTP”);

79

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 79

}
}
else

xmlHttpObj = new XMLHttpRequest();

This version does the reverse check in that the code checks to see if ActiveX Objects are supported. If so,
then the ActiveX object is created; otherwise, the code will default to standard object creation.

It is highly likely that the creation of the XmlHttpRequest object will be required many times in current
and future web applications. Therefore, it is a good idea to separate out this code into a reusable script
library that can be included in any future pages that are developed. This has the advantage of reusing
working and tested code, as well as reducing the amount of work you would normally have to do by
recoding this logic in each and every application. Further, because script files are cached locally by most
browsers, placing common script logic in separate script files reduces the amount of data that must be
sent between the web server and the browser across subsequent requests.

The preceding example, which created the XmlHttpRequest object in a cross-browser fashion will be
encapsulated in a function called CreateXmlHttpRequestObject() and included in a script file named
CommonAJAXLibrary.js.

The following code fragment shows how to include the file for use within your applications, and you
will see this library referenced in upcoming samples:

<head runat=”server”>
<title>AsyncHandlerSimpleExample</title>

<script type=”text/javascript” src=”CommonAJAXLibrary.js”></script>

<script type=”text/javascript”>

// A “global” variable that is our XMLHttpRequest object reference.
var xmlHttpObj = CreateXmlHttpRequestObject();

As can be seen from the previous code sample, a <script> tag is included within the <head> section of
the page with the src attribute specifying the script file to include, in this case, the CommonAJAXLibrary
.js that you have created. From that point, it is possible to call the function within that file as if it were a
part of the existing page.

Traditional web-based browser applications capture user interactions and send the results of that to the
server via a synchronous HTTP request. The user is typically forced to wait while the request is initiated
by the browser and the response is received by the browser from the server. This is the nature of a syn-
chronous request and is what the Internet-using world is very familiar with.

In concept, the XMLHttpRequest object operates no differently from a typical web browser. Data is cap-
tured or packaged in some way; that data is sent via the network to a server, or endpoint; the result is
sent back to the client or caller that initiated the request. A standard browser form posts the data to the
server; the XMLHttpRequest object sends the data using the XMLHTTP protocol. Both methods can be
scripted, that is, both methods can be initiated and manipulated using a scripting language such as
JavaScript. The main difference between a standard HTTP post and an XMLHTTP request is that the
XMLHTTP request can operate in an asynchronous manner. This means that an XMLHTTP request can
be initiated in parallel with the current browser operation, in effect, acting like a background request

80

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 80

while the user is still manipulating the information within the browser. This represents the heart of Ajax
and is the core advantage that it represents within traditional browser applications. A user can continue
to work within the browser application uninterrupted, while in the background a request is sent and a
response that contains the result of some server-side processing is received.

Synchronous Requests
Take a look at a following simple code example of a synchronous operation and then take a look at the
explanation of exactly what is occurring that follows. Note: The code for the inclusion of the script
include file mentioned previously has been omitted for brevity.

Try It Out A Synchronous Operation
function MakeXMLHTTPCall()
{

var xmlHttpObj;
xmlHttpObj = CreateXmlHttpRequestObject();

if (xmlHttpObj)
{
xmlHttpObj.open(“GET”,”http://” + location.host +

“/XmlHttpExample1/DataFile.xml”, false);
xmlHttpObj.send(null);
alert(“Request/Response Complete.”);

}
}

How It Works
The preceding code sample is very simple, however it does show the basic usage of the XMLHTTP
object. If you examine the code in detail, you’ll see the following:

1. First you create a new XMLHTTP object and assign it to a variable.

2. After checking if the object is not null, that is, that the object creation in Step 1 was successful,
you execute the open method passing in three parameters:

xmlHttpObj.open(“GET”,”http://” + location.host + “/XmlHttpExample1/DataFile.xml”,
false);

❑ The first parameter, “GET”, is the type of request to make (this can be any of the stan-
dard HTTP verbs “GET”, “POST”, “PUT”, or “HEAD”)

❑ The second parameter is the server address, or endpoint, to make the request to. In this
case, it’s an XML file located at http://localhost/XmlHttpExample1DataFile.xml.

❑ The third parameter, false, indicates whether a synchronous or asynchronous request
should take place. In this case, false indicates that a synchronous request should
occur.

3. The send method is executed on the XMLHTTP object instance to perform the actual request.

xmlHttpObj.send(null);

81

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 81

4. Since you specified that a synchronous operation should occur, the next alert statement to dis-
play a message box is not shown until the request has completed executing and returns from the
server.

alert(“Request/Response Complete.”);

As already mentioned, the previous example shows a synchronous operation that offers no real change
from the standard request/response paradigm that is prevalent in web applications. A request is issued,
the user waits until a response is received, and the user can continue. Now, we can change this to be
asynchronous.

Asynchronous Requests
Examine the code that follows, which performs exactly the same operation as the previous example, but
operates in an asynchronous manner. Note: The code for the inclusion of the script include file men-
tioned previously has been omitted for brevity.

Try It Out An Asynchronous Operation
function MakeXMLHTTPCall()
{

var xmlHttpObj;

xmlHttpObj = CreateXmlHttpRequestObject();

if (xmlHttpObj)
{
xmlHttpObj.open(“GET”,”http:// “ + location.host +

“/XmlHttpExample1/DataFile.xml”, true);
xmlHttpObj.onreadystatechange = function()
{
if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

alert(“Request/Response Complete”);
}

}
xmlHttpObj.send(null);

}
}

How It Works
There are two main differences in this example as compared to the initial synchronous example:

xmlHttpObj.open(“GET”,”http://” + location.host +
“/XmlHttpExample1/DataFile.xml”, true);

The first difference is the use of the true parameter as the last argument to the open method to indicate
that the request should be executed in an asynchronous manner.

82

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 82

The second difference is the use of the onreadystatechange event and the readyState property
value. The code:

xmlHttpObj.onreadystatechange = function()

assigns a function or event handler to the onreadystatechange event. When the state of the object
changes, this event is triggered and the function is executed. The code:

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)

checks the state of the object to determine if any action should be taken. The ready state of the
XMLHttpRequest object actually contains a numeric value representing its state. The numeric value
being checked for in the preceding example is a value of 4, which is represented by the variable
READYSTATE_COMPLETE. The valid list of XMLHttpRequest ready states is listed in the following table:

Value Description

0 Uninitialized

1 Loading

2 Loaded

3 Interactive

4 Complete

A convenient place to put the values of the XMLHttpRequest ready states is in the library that was
defined earlier to house the function that created an XMLHttpRequest object. This makes it possible to
add meaning to what appears to be an arbitrary value. The following code:

/* Common values for the ReadyState of the XMLHttpRequest object */
var READYSTATE_UNINITIALIZED = 0;
var READYSTATE_LOADING = 1;
var READYSTATE_LOADED = 2;
var READYSTATE_INTERACTIVE = 3;
var READYSTATE_COMPLETE = 4;

has been added to the JavaScript common library defined earlier in the chapter. This means that the pre-
vious example, showing an asynchronous call, equates to the following line:

if (xmlHttpObj.readyState == 4)

However, the line currently is written as:

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)

which makes it much more readable and adds clarity as to what is being tested in the code fragment.

So, the JavaScript code in the example simply checks the ready state of the object to determine if the
asynchronous request has completed. If the ready state is complete, then you continue processing your
response data (if any).

83

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 83

So far, you have seen to how to perform an asynchronous request to the server and wait for the response
by assigning an event handler. This forms the basis of all asynchronous request functionality, and you
will use this as the foundation for more complex examples as you progress.

Dealing with Response Data
In most scenarios, you will want to retrieve and process some response data from the server as part of
your asynchronous call. In the previous examples, you have requested an XML data file but have not
attempted to process the data returned. You have simply indicated the request has completed.

To retrieve data from the response stream once the request is completed, you can use the following
properties:

❑ responseText—This property returns the response data as a string.

❑ responseXML—This property returns the response data as an XML document object. This object
can be examined and parsed using the standard methods and properties available from the
W3C Document Object Model (DOM) node tree in a read-only (cannot be updated) fashion.

84

Chapter 4

A Note on Security
It is worth noting at this point that there are security restrictions that are placed on the
use of the XMLHttpRequest object. All browsers that implement the XMLHttpRequest
object implement a security policy called the “same origin” policy. This means that a
request issued using an XMLHttpRequest object must be to a server of the same origin
from which it was loaded.

For example, if a web page were loaded from www.yourserver.com/somepage
.aspx, then all requests issued using the XMLHttpRequest must be serviced by the
same host, that is, www.yourserver.com. Any deviation to the server/host name, pro-
tocol, or the port will break the security policy. For example, given the previous exam-
ple server, if a subsequent XMLHttpRequest were issued to www.anotherserver
.com/anotherpage.aspx, then this would fail the security policy. Similarly, trying to
access www.yourserver.com/somepage.aspx will also fail because the protocol is
specified as https: whereas previously the code originated from an http: address.

This policy makes sense because it means that web pages cannot simply issue requests
to any server they choose and potentially become yet another client capable of initiat-
ing denial-of-service attacks to servers (that is, flooding the servers with requests in
order to bring down or disable the service/server).

Unfortunately, different browsers implement the “same origin” security policy differ-
ently. Most will fail in some way if a request is issued to a server that is not deemed the
origin, and it is very hard to accommodate all browsers when performing these types
of requests and handling the errors. The recommended practice is simply to not use
requests that break the same origin policy. Issue a request back to the originating server
as already discussed and let the server make any cross-domain/nonoriginating server
calls on your behalf using standard server-based programming techniques.

07_78544X ch04.qxp 7/18/06 3:12 PM Page 84

Using the responseText Property
The responseText property is the simplest of the methods to utilize data from the response. All data
that is part of the response is returned as a single string. This property is useful for simple operations
where only a singular piece of data is returned and manipulated or displayed by the page. Alternatively,
the data returned may be in a proprietary format that requires specialized parsing by the client. To have
a look at how you use this property in code, you can enhance the existing sample to display data
returned from the asynchronous call on the web page.

Try It Out Returning Response Data As a String
This web page will be a very simple page with a button and a section to display the response data. The
HTML fragment that follows shows the “body” section of the HTML page.

<body>
<form id=”Form1” method=”post” runat=”server”>

<input type=”button” onclick=”MakeXMLHTTPCall();” value=”Test XMLHTTP Call”
/>

<div id=”divResults”>{no results}</div>

</form>
</body>

The example JavaScript code will now look like the fragment that follows. The emphasized text shows
what has been added compared to the previous examples:

<script type=”text/javascript” src=”CommonAJAXLibrary.js”></script>

<script type=”text/javascript”>
function MakeXMLHTTPCall(){

var xmlHttpObj = CreateXmlHttpRequestObject();

if (xmlHttpObj)
{

xmlHttpObj.open(“GET”,”http://” + location.host +
“/XmlHttpExample1/DataFile.xml”, true);

xmlHttpObj.onreadystatechange = function() {
if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

// Extract the response text here and place in the div element.
document.getElementById(“divResults”).childNodes[0].nodeValue =
xmlHttpObj.responseText;

}
}

xmlHttpObj.send(null);
}

}

</script>

85

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 85

The code sets the value of the text property of the page’s single div element to the responseText of the
returned data. For this simple example, the DataFile.xml file that is requested using the
XMLHttpRequest object contains the following:

<?xml version=”1.0” encoding=”utf-8” ?>
<Customers>

<Customer>
<Firstname>Joe</Firstname>
<Lastname>Bloggs</Lastname>
<email>joe@bloggs.com</email>

</Customer>
<Customer>

<Firstname>Alan</Firstname>
<Lastname>Anonymous</Lastname>
<email>anon@ymous.com</email>

</Customer>
<Customer>

<Firstname>Marvin</Firstname>
<Lastname>Martian</Lastname>
<email>marvin@mars.com</email>

</Customer>
</Customers>

When the page executes, and the button is clicked, the web browser displays the result shown in Figure 4-1.

Figure 4-1

86

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 86

As you can see, the data contained within the XML file is rendered in the page in exactly the same way it
is stored within the file.

As mentioned previously, this might be okay for simple scenarios that require only a single unit of data
or data that is in a proprietary format, but for more complex scenarios you’ll want to use the
responseXML property.

Using the responseXML Property
In a majority of scenarios, you will want to return multiple result items. This might be a list of names to
display in a drop-down list, a list of customers, or an object representation. The XML format is ideally
suited to this, and direct support for this format is provided by the responseXML property of the
XMLHttpRequest object. This property is a standard XML document object that can be examined and
parsed using W3C DOM node tree methods and properties.

For detailed reference material on the XML Document Object Model, visit http://msdn
.microsoft.com/library/en-us/xmlsdk30/htm/xmmscxmlreference.asp.

Try It Out Returning Response Data As an XML Document Object
You can continue to modify the code example to extract values from the XML data that was retrieved
and displayed in the previous example. Rather than reproduce the entire previous code sample, we will
show only the modified section that replaces the added code from the previous example that used the
responseText property. Examine the following code:

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

var doc = xmlHttpObj.responseXML;
var node = doc.selectSingleNode(“//Customers/Customer/Firstname/text()”);
document.getElementById(“divResults”).childNodes[0].nodeValue = node.nodeValue;

}

Instead of simply displaying the entire set of returned data, you are extracting the text value of the first
instance of the <Firstname> node. You do this by utilizing the selectSingleNode method, which
takes an X Path expression as an argument and returns an XML node object if one is found or NULL if the
X Path query is unsuccessful. With the returned node object, you assign the nodeValue property of the
first element of the childNodes property, which itself is a property of the divResults element to the
text value of the node.

For those unfamiliar with the X Path language, you can think of it as a dynamic query language for
XML documents that operates in a similar way to ANSI SQL for databases. Nodes, elements, and data
can be queried and returned using X Path expressions. X Path expressions can contain conditional
expressions and be quite complex. For a detailed reference on X Path expressions and the associated
syntax, visit the W3C site at www.w3.org/TR/xpath, or for something a little more readable, try
www.topxml.com/xsl/XPathRef.asp.

This example is still fairly simplistic, though. Now, you’re going to take your newfound knowledge and
apply this by creating a simple web page that allows you to make a selection from a list of customers
and display the fullname and email address by doing a server-side lookup into your XML data file
asynchronously.

87

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 87

Enhancing Usability
One of the primary reasons that the asynchronous capability of the XMLHttpRequest object has received
so much attention lately is that it can remove the interruption of the user experience that would nor-
mally occur when a postback, or server-side call, is required to gather some server-side data.

In the example that follows, you will provide a list of names via a drop-down list gathered from the
XML data file. When the user selects a name, a server call is issued to retrieve that data and extract the
email address. Without using the asynchronous capability of the XMLHttpRequest object, this would
require a postback, and the user would be forced to wait while the request was sent to the server and
processed, and the results returned and displayed on the browser. Now that you have the ability to per-
form a server request asynchronously, the call to retrieve data can be performed without interrupting the
user interaction on the browser. It is, in effect, an invisible postback — a server request that is executed
behind the scenes and in parallel to any user interface interaction.

Try It Out Performing a Server Request Asynchronously
Examine the code that follows, which is a fragment listing of a web page:

<body onload=”LoadCustomers();”>
<form id=”form1” runat=”server”>
<div>

<select id=”ddlCustomers” onchange=”DisplayCustomerDetails();”>
<option value=””>- Select a Customer -</option>

</select>
<hr />
<div>

<p>Details:</p>
(You have not made a selection yet.)

</div>
</div>
</form>

</body>
</html>

Within the ASP.NET form element <form id=”form1” runat=”server”> is a <select> element that
acts as your customer drop-down list and a element where you can display the customer details.
You will also notice that the onload event of the document has a LoadCustomers() function assigned
to it to initially load in the list of customers and that the onchange event of the <select> item has a
DisplayCustomerDetails() function assigned to it to display the selected customers details once a
selection is made.

Firefox does not currently support the use of the selectSingleNode() and
selectNodes() methods to access data within an XML document. To address this,
the script include library includes some JavaScript code to enable this support. The
code included was taken from the site http://km0ti0n.blunted.co.uk/mozXPath
.xap. A full explanation of the details of this support is beyond the scope of this
chapter; suffice it to say that it allows support of the selectSingleNode() and
selectNodes() methods in the same way that Internet Explorer does.

88

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 88

Next listed in the following code blocks are the JavaScript functions that accompany the page listing.
The first function is a generic function to simply create an XMLHttpRequest object that you can use:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>

<script type=”text/javascript”>

// A “global” variable that is our XMLHttpRequest object reference.
var xmlHttpObj = CreateXmlHttpRequestObject();

The next function is what is called when the document first loads and deals with loading the customer
data from the server using the XMLHttpRequest object:

// Function to load the customer selection data into the <SELECT> drop list control
function LoadCustomers()
{

if (xmlHttpObj)
{

// We want this request synchronous
xmlHttpObj.open(“GET”,”http:// “ + location.host +

“/XmlHttp_Chap4/DataFile.xml”, false);

// Execute the request
xmlHttpObj.send(null);

// If the request was ok (ie. equal to a Http Status code of 200)
if (xmlHttpObj.status == 200)
{

var xmlDoc = xmlHttpObj.responseXML;
// Our list of <CUSTOMER> nodes selected using the X Path argument
//var nodes = xmlDoc.selectNodes(“//Customers/Customer”);
var nodes = xmlDoc.selectNodes(“//Customers/Customer/Lastname/text()”);
// Obtain a reference to the <SELECT> drop list control.
var ctrl = document.getElementById(“ddlCustomers”);

for (var i=0; i < nodes.length; i++)
{

// Get the lastname element from our XML data document
var lastName = nodes[i].nodeValue;
// Create a new <OPTION> node.
var htmlCode = document.createElement(‘option’);
// Add the new <OPTION> node to our <SELECT> drop list
ctrl.options.add(htmlCode);
// Set the <OPTION> display text and value;
htmlCode.text = lastName;
htmlCode.value = lastName;

}
} else

89

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 89

{
alert(‘There was a problem accessing the Customer data on the

server.!’);
}

}
}

In the preceding code, you will notice the use of a literal number 200 in the following line of code:

if (xmlHttpObj.status == 200)

This is another perfect candidate to place into the common script include file. The code can be defined in
the following manner:

/* Common values for HTTP status codes */
var HTTPSTATUS_OK = 200;

which means that any code comparing the HTTP status codes as in the previous example can be
replaced with the following line of code:

if (xmlHttpObj.status == HTTPSTATUS_OK)

This makes the code much easier to read and maintain.

Finally, you have the JavaScript function that deals with displaying a customer’s details once a selection
is made from the drop-down list:

function DisplayCustomerDetails()
{

if (xmlHttpObj)
{

// We want this request asynchronous
xmlHttpObj.open(“GET”,”http:// “ + location.host +

“/XmlHttp_Chap4/DataFile.xml”, true);

xmlHttpObj.onreadystatechange = function()
{

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

var ctrl = document.getElementById(“ddlCustomers”);
var doc = xmlHttpObj.responseXML;
var lastName = ctrl.options[ctrl.selectedIndex].value;
var node = doc.selectSingleNode(“//Customers/Customer[Lastname=’” +

lastName + “‘]”);
var details = ‘Fullname: ‘ +

node.selectSingleNode(‘Firstname/text()’).nodeValue +
‘ ‘ + lastName + ‘. Email: ‘ +

node.selectSingleNode(‘email/text()’).nodeValue;
document.getElementById(“spnDetailDisplay”).childNodes[0].nodeValue

= details;
}

90

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 90

}

// Execute the request
xmlHttpObj.send(null);

}
}

</script>
</head>
</head>

Here, you have opted to define the XMLHttpRequest object as a “global” variable xmlHttpObj, rather
than redeclaring and creating this object in each function. The function to assign a valid XMLHttpRequest
instance to the variable is separated into its own discrete function. This might typically be included as
part of your common script library rather than having to rewrite this in every page.

Using a “global” object to hold a reference to your XMLHttpRequest object can expose your client-
side application to a potential bug or flaw in its operation if a subsequent request is issued using the
same XMLHttpRequest object before the first request has completed.

In addition, since the LoadCustomers() function is executed as part of the load event of the page, and the
page is not usable until this function has executed, you make the server call in a synchronous manner using
the false parameter, as shown in the line below:

// We want this request synchronous
xmlHttpObj.open(“GET”,”http://” + location.host + “/XmlHttp_Chap4/DataFile.xml”,
false);

You execute the call, and then you check the status of the call by examining the status property of the
XMLHttpRequest object. This property contains the standard HTTP status code returned by the server as a
result of the request being made. In this example, you check to ensure that a status code of 200 was returned
as part of the call:

// If the request was ok (ie. equal to a Http Status code of 200)
if (xmlHttpObj.status == 200)
{

// rest of function . . .

The status code of 200 returned from the server indicates a successful server request has been made.
Because you have defined this literal value in the script include file, the code would read:

// If the request was ok (ie. equal to a Http Status code of 200)
if (xmlHttpObj.status == HTTPSTATUS_OK)
{

// rest of function . . .

For a list of all the valid HTTP status codes defined by the W3C, see www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html.

You then use the XML DOM method selectNodes to execute an X Path expression over the XML data
to find each Lastname node for each Customer node and return a list of matching nodes:

91

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 91

var nodes = xmlDoc.selectNodes(“//Customers/Customer/Lastname/text()”);
// Obtain a reference to the <SELECT> drop list control.
var ctrl = document.getElementById(“ddlCustomers”);

for (var i=0; i < nodes.length; i++)
{

// rest of function . . .

You iterate over the list of Lastname nodes, adding each customer’s last name to the drop-down list.

Within the DisplayCustomerDetails(), you define a function that is executed when the appropriate
readystate of the request has been reached (readystate == READYSTATE_COMPLETE). You then use
an X Path expression to locate the node matching your selected customer, extract the details of the cus-
tomer from the XML data file using the selectSingleNode method, and display those details within
the element.

The previous example introduced the status property that is part of the XMLHttpRequest object. The
XMLHttpRequest object does not have an extensive list of properties and methods and is relatively sim-
ple and straightforward. The two tables that follow are, respectively, a reference table of the methods
and one of properties available for the XMLHttpRequest object.

Method Description

abort() Cancels the current request.

getAllResponseHeaders() Returns the complete set of HTTP headers as a
string.

getResponseHeader(“headername”) Returns the value of the specified HTTP header.

open(“method”,”URL”, “async”, Specifies the method, URL, and other optional
”uname”,”pswd”) attributes of a request.

The method parameter can have a value of GET,
POST, or PUT (use GET when requesting data and
use POST when sending data — especially if the
length of the data is greater than 512 bytes).
The URL parameter may be either a relative or
complete URL.
The async parameter specifies whether the request
should be handled asynchronously or not. true
means that script processing carries on after the
send() method, without waiting for a response.
false means that the script waits for a response
before continuing script processing.

send(content) Sends the request.

setRequestHeader(“label”,”value”) Adds a label/value pair to the HTTP header to be
sent.

92

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 92

Property Description

onreadystatechange An event handler for an event that fires at every
state change. (Read/Write)

readyState Returns the state of the object: (read-only)
0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

responseText Returns the response as a string (read-only)

responseXML Returns the response as XML. This property
returns an XML document object, which can be
examined and parsed using W3C DOM node tree
methods and properties (read-only)

status Returns the status as a number (e.g., 404 for “Not
Found” or 200 for “OK”, 500 for “Server Error”)
(read-only)

statusText Returns the status as a string (e.g., “Not Found” or
“OK”) (read-only)

Passing Parameters to the Server
Obviously, there are going to be times when you need to pass some parameters to the server-side
request. One traditional way is to use query string arguments as part of the XMLHttpRequest. An exam-
ple follows where the parameter arg is being passed with a value of 123.

xmlHttpObj.open(“GET”,”http://” + location.host +
“/XmlHttpExample1/WebForm1.aspx?arg=123”, true);

This method of passing arguments to the server is typically used with a “GET” request (or the “GET”
verb) as shown in the preceding code; however, it can also be used with “POST” requests as well as
shown in the following example:

xmlHttpObj.open(“POST”,”http://” + location.host +
“/XmlHttpExample1/WebForm1.aspx?arg=123”, true);

The page that receives and processes this request (in this example, WebForm1.aspx) can extract the
query string arguments from the URL and use this to return the appropriate data back to the client.
A simple example of extracting query string arguments using server-side code is shown here:

private void Page_Load(object sender, System.EventArgs e)
{

if (Request.QueryString.Count > 0)
{

93

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 93

string queryArg = Request.QueryString[“arg”];
switch (queryArg)
{

case “123”:
Server.Transfer(“DataFile1.xml”);
break;

case “456”:
Server.Transfer(“DataFile2.xml”);
break;

default:
Server.Transfer(“DataFile1.xml”);
break;

}
}

}

Using a traditional web page to act as the receiver for an XMLHTTP request is not the most efficient way
of performing this type of operation. A page is typically suited to rendering HTML, and you typically
want to respond with some customized data, quite often in the form of a custom XML document. While
the preceding example does achieve that, you also don’t want to have to worry about what ASP.NET
may add to the response as part of its page-processing pipeline. Not only does this add unnecessary pro-
cessing overheard but in some instances may also cause issues with the response data and the way it’s
handled. Ideally, instead of using a standard page, it would be better to have ASP.NET hand off the
request to a custom piece of code that can be specifically dedicated to the task of producing the cus-
tomized response that your web application requires.

HTTP Handlers
A more typical approach to handling these requests is to use an HTTP handler. A handler has the ability to
respond to requests with more direct control over the response data. Essentially, an HTTP handler exists
very early in the ASP.NET processing pipeline and can deal directly with requests without having to worry
about HTML data being generated by the page and the unnecessary burden of the entire page lifecycle.
Additionally, the handler need not be concerned with having the initial request be a properly formed page
but can instead have it be a custom formatted message that has meaning within the context of your appli-
cation. Often, this is an XML document used to transfer data between the client and the server.

HTTP handlers are a way to hook into the early stages of the ASP.NET processing pipeline before any
actual page processing is performed. For more information on developing custom HTTP handlers,
please see the MSDN reference at http://msdn.microsoft.com/library/en-us/cpguide/
html/cpconhttphandlers.asp.

Try It Out Using a HTTP Handler
To demonstrate the use of a HTTP handler to accept arguments sent from an XMLHttpRequest object,
you first define the user interface within the web page, as shown in the following code. This simply
shows a drop-down list with a list of three customers. When one of the customers is selected, that cus-
tomer ID is used as part of the asynchronous request to request a specific set of data pertaining to that
customer’s details only:

<form id=”form1” runat=”server”>
<div>

<select id=”ddlCustomers” onchange=”LoadCustomer();”>

94

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 94

<option value=””>- Select a Customer -</option>
<option value=”1”>Customer 1</option>
<option value=”2”>Customer 2</option>
<option value=”3”>Customer 3</option>

</select>
<hr />
<div>

<p>Details:</p>
(You have not made a selection yet)

</div>
</div>
</form>

You also provide an implementation of the JavaScript function named LoadCustomer() referenced in
the onchange attribute of the select element as follows:

function LoadCustomer()
{

if (xmlHttpObj)
{

// Obtain a reference to the <SELECT> drop list control.
var ddlCtrl = document.getElementById(“ddlCustomers”);
var disp = document.getElementById(“spnDetailDisplay”);

var custNumber = ddlCtrl.value;
// We want this request synchronous
xmlHttpObj.open(“GET”,”http:// “ + location.host +

“/XmlHttp_Chap4/AsyncRequestHandler.ashx?arg=”+custNumber, true);

xmlHttpObj.onreadystatechange = function()
{

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

// If the request was ok (ie equal to a Http Status code of 200)
if (xmlHttpObj.status == HTTPSTATUS_OK)
{

var xmlDoc = xmlHttpObj.responseXML;
// Our list of <CUSTOMER> nodes selected using the X Path

argument
var name =

xmlDoc.selectSingleNode(“//root/Customer/name/text()”);
var email =

xmlDoc.selectSingleNode(“//root/Customer/email/text()”);
alert(name);
disp.childNodes[0].nodeValue = “Name: “ + name.nodeValue + “ -

Email: “ + email.nodeValue;
}

}
}
// Execute the request
xmlHttpObj.send(“SomeDataToSend”);

}
}

95

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 95

You will notice the use of a handler when defining the URL for making the asynchronous request and
appending the value for the arg parameter based on the drop-down list selection.

xmlHttpObj.open(“GET”,”http://” + location.host + “/XmlHttp_Chap4/AsyncRequest
Handler.ashx?arg=”+custNumber, true);

Finally, the implementation of the server-side HTTP handler itself is shown in the following code block.
This is the handler that receives the asynchronous call from your XMLHttpRequest object, extracts the
customer number or ID, and then uses that to return an XML document containing only that customer’s
name and email address. This code resides within the AsyncRequestHandler.ashx file.

<%@ WebHandler Language=”C#” Class=”AsyncRequestHandler” %>

using System;
using System.Web;
using System.Data;

public class AsyncRequestHandler : IHttpHandler {

public void ProcessRequest (HttpContext context) {
// Grab the URL parameters
string param = context.Request.QueryString[“arg”];

const string xmlData = @”<?xml version=””1.0”” encoding=””utf-8”” ?>
<root><Customer><name>{0}</name><email>{1}</email></Customer></root>”;

string returnXML = null;

switch (param)
{

case “1”:
returnXML = string.Format(xmlData, “Big Bob”, “big@bob.com”);
break;

case “2”:
returnXML = string.Format(xmlData, “Small Sammy”,

“small@sammy.com”);
break;

case “3”:
returnXML = string.Format(xmlData, “Large Larry”,

“large@larry.com”);
break;

}

context.Response.ContentType = “application/xml”;
context.Response.Write(returnXML);

}

public bool IsReusable {
get {

return false;
}

}
}

96

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 96

In addition to using query string arguments, as shown in the previous example, you can also utilize the
send method of the XMLHttpRequest object to specify some data to be sent with the server request as
part of the request body.

Previous examples have used the syntax:

xmlHttpObj.send(null);

to initiate a request, specifying null as the method argument. This argument represents the content to
be sent along with the request as part of the request body. To indicate the data to be sent with the
request, you simply specify it as the method argument:

xmlHttpObj.send(“MyDataToSend”);

To extract this data from the request body within your HTTP handler, you can add the code that follows
following to your handler implementation:

byte[] data = new byte[context.Request.ContentLength];
context.Request.InputStream.Read(data, 0, context.Request.ContentLength);
string body = System.Text.UTF8Encoding.UTF8.GetString(data);

Once you have extracted the data from the body of the request, you can then extract the relevant infor-
mation. Typically, this means that you load the data into an XMLDocument object, and extract the data
required to perform your server-side work.

What about Web Services?
.NET contains extensive support for web services and is the preferred mechanism for exposing server-
side functionality or providing entry points to your server-side processes. Accessing these services or
entry points in an asynchronous manner is an obvious step in achieving a marriage of the best technolo-
gies on both the client and server when developing .NET web-based applications.

Web services do require some extra information to be passed as part of the client request to ensure that a
valid call is recognized. The example that follows contains a web service named Adder that will calcu-
late the result of the addition of two integer arguments that are passed to the service from the client.

Try It Out Accessing Web Services
First you construct a simple user interface to facilitate this:

<form id=”form1” runat=”server”>
<div>

<input type=”text” id=”val1” />
<input type=”text” id=”val2” />
<input type=”button” value=”Calculate” onclick=”ExecWebService();” />
<hr />
<div>

<p>Details:</p>
(You have not made a selection yet)

</div>
</div>

</form>

97

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 97

This HTML document simply contains two text fields that accept the integer arguments and a button to cal-
culate the result of the addition of the two arguments. The button contains an onclick handler, which
points to a JavaScript function. This function will execute your asynchronous call to your web service.

Next, have a look at the code of your web service, which is extremely simple and should be very familiar
to all developers who have created web services. The web service itself was created using the endpoint
of AsyncService.asmx and contains a method, more specifically a WebMethod, called Adder:

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class AsyncService : System.Web.Services.WebService {

public AsyncService () {
}

[WebMethod]
public int Adder(int arg1, int arg2) {

return arg1 + arg2;
}

}

Finally, examine the client-side code to call the web service shown previously:

function ExecWebService()
{

if (xmlHttpObj)
{

var disp = document.getElementById(“spnDetailDisplay”);
var ctlVal1 = document.getElementById(“val1”);
var ctlVal2 = document.getElementById(“val2”);

// We want this request synchronous
xmlHttpObj.open(“POST”,”http://” + location.host +

“/XmlHttp_Chap4/AsyncService.asmx/Adder”, true);

xmlHttpObj.onreadystatechange = function()
{

if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

// If the request was ok (ie equal to a Http Status code of 200)
if (xmlHttpObj.status == HTTPSTATUS_OK)
{

var xmlDoc = xmlHttpObj.responseXML;
var result = xmlDoc.lastChild.childNodes[0].nodeValue;
disp.childNodes[0].nodeValue = “Result: “ + result;

} else
{

var fault = xmlHttpObj.responseText;
alert(“Error Occurred! \n\n” + fault);

}
}

}
// Execute the request
xmlHttpObj.setRequestHeader(“Content-Type”,”application/x-www-form-

urlencoded”);

98

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 98

xmlHttpObj.send(“arg1=” + ctlVal1.value + “&arg2=” + ctlVal2.value);

}
}

How It Works
This client-side code is very similar to previous examples but does have some important differences to
facilitate calling the web service.

First, when specifying the endpoint to your web service, the URL follows a slightly different convention
than that of previous requests:

xmlHttpObj.open(“POST”,”http://” + location.host + “/XmlHttp_Chap4/AsyncService
.asmx/Adder”, true);

You will notice that the URL contains the location to the web service asmx file, with the web service
method or operation to be called, appended to the URL /Adder. You have also specified that a “POST”
operation should be performed.

If some data is specified as part of the content to be sent using the XMLHttpRequest.send method, a
“POST” operation is always performed due to the fact that a “GET” operation does not send data as
part of the content or HTTP request body.

Prior to executing the request to call the web service, you set a particular header value named
“Content-Type” to a value of “application/x-www-form-urlencoded”. The “Content-Type”
attribute specifies the encoding type for the form. The default value for a form is “application/
x-www-form-urlencoded”; however, this is not included by default as part of the XMLHttpRequest
and must be specified manually as shown in the preceding code.

In actually executing the “send” method of the XMLHttpRequest object, you construct the list of argu-
ments required in a similar fashion to the way you would specify these arguments as a URL query string.

xmlHttpObj.send(“arg1=” + ctlVal1.value + “&arg2=” + ctlVal2.value);

Notice how the “arg1” parameter and “arg2” parameter are separated by an ampersand (&) in much
the same way URL query strings are constructed. This would result in a string equating to:

arg1=1&arg2=2

where the value of “arg1” is 1 and the value of “arg2” is 2. This string would be sent as part of the request
body and is automatically parsed and handled by the web service so that the correct values are assigned to
the correct web service parameters on the server side. Again, this is similar to the way query strings are
specified in “GET” requests in the browser. A similar request using a query string might look like:

http://www.somesite.com/SomePage.aspx?arg1=1&arg2=2

Finally, the code to extract the result is as follows:

var xmlDoc = xmlHttpObj.responseXML;
var result = xmlDoc.lastChild.text;

99

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 99

The code extracts the text value of the last child node of the response. The response to the web service
request, using the previous set of arguments, would look like:

<?xml version=”1.0” encoding=”utf-8”?>
<int xmlns=”http://tempuri.org/”>3</int>

The first child node of this XML document would equate to the initial processing instruction line, so you
must extract the last child node in this XML response, which equates to the line representing the integer
result. This method of value extraction is fairly simplistic but should work in most cases; however, this
does not take into account whether an error is generated by the web service.

For this example, you can generate two different types of errors that must be handled in different ways:

❑ One type of error can be generated by removing the method specification from the URL passed
into the open method (that is, removing the /Adder from the URL) or by passing in blank or
invalid arguments to the request.

❑ Another type of error can be generated by forgetting to specify the “Content-Type” in the
request header.

For both types of errors, you are returned a status code of 500 representing a server error. However, in
the first instance, you are returned the following as the body of the response:

System.InvalidOperationException: Request format is invalid: .
at System.Web.Services.Protocols.HttpServerProtocol.ReadParameters()
at System.Web.Services.Protocols.WebServiceHandler.CoreProcessRequest()

In the second instance, you are returned the following in the body of the response:

<?xml version=”1.0” encoding=”utf-8”?><soap:Envelope
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”><soap:Body><soap:Fault><soap:Code><soa
p:Value>soap:Receiver</soap:Value></soap:Code><soap:Reason><soap:Text
xml:lang=”en”>System.Web.Services.Protocols.SoapException: Server was unable to
process request. ---> System.Xml.XmlException: Data at the root level is
invalid. Line 1, position 1.

at System.Xml.XmlTextReaderImpl.Throw(Exception e)
at System.Xml.XmlTextReaderImpl.Throw(String res, String arg)
at System.Xml.XmlTextReaderImpl.ParseRootLevelWhitespace()
at System.Xml.XmlTextReaderImpl.ParseDocumentContent()
at System.Xml.XmlTextReaderImpl.Read()
at System.Xml.XmlTextReader.Read()
at System.Web.Services.Protocols.SoapServerProtocol.SoapEnvelopeReader.Read()
at System.Xml.XmlReader.MoveToContent()
at

System.Web.Services.Protocols.SoapServerProtocol.SoapEnvelopeReader.MoveToContent()
at System.Web.Services.Protocols.SoapServerProtocolHelper.GetRequestElement()
at System.Web.Services.Protocols.Soap12ServerProtocolHelper.RouteRequest()
at

System.Web.Services.Protocols.SoapServerProtocol.RouteRequest(SoapServerMessage
message)

at System.Web.Services.Protocols.SoapServerProtocol.Initialize()

100

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 100

at System.Web.Services.Protocols.ServerProtocolFactory.Create(Type type,
HttpContext context, HttpRequest request, HttpResponse response, Boolean&
abortProcessing)

--- End of inner exception stack trace ---</soap:Text></soap:Reason><soap:Detail
/></soap:Fault></soap:Body></soap:Envelope>

In most cases, simply capturing the fact an error has occurred via the status code will be sufficient.
However, determining a more specific nature of the error requires specific processing and will require
specific parsing of the responseText property of the XMLHttpRequest object. To illustrate this, the code
that follows shows an enhanced version of the function to deal with responses from the web service call.

if (xmlHttpObj.status == HTTPSTATUS_OK)
{

var xmlDoc = xmlHttpObj.responseXML;
var result = xmlDoc.lastChild.childNodes[0].nodeValue;
disp.childNodes[0].nodeValue = “Result: “ + result;

} else
{

var fault = xmlHttpObj.responseText;
alert(“Error Occurred! \n\n” + fault);

}

In the event of an error, an alert box will be displayed to the user, with the specific error response text
that was generated by the server.

Invoking Web Services — A Few Caveats
It should be noted that the method of invoking a web service shown in the preceding code is not a stan-
dard way of invoking a web service. Web services message format is typically in an XML format known
as SOAP (Simple Object Access Protocol) and is far more complex to construct than the simplistic HTTP
body used in the previous example. Constructing a properly formatted SOAP message to access web ser-
vices in a standard way is certainly possible but is far more complex than the previous example and
requires considerable effort to implement a SOAP protocol stack to ensure any messages are constructed
in a valid “SOAP envelope.”

The method shown in the previous example to pass arguments to a web service is not guaranteed to
work on other web service implementations. Part of the interoperability features of web services are
achieved by using the SOAP message format, and because you are not using that format to call the web
service, calling non-.NET web services is not guaranteed to be successful.

For more information on the SOAP format in relation to web services, visit www.w3.org/TR/soap.

Nevertheless, the method of accessing a .NET web service as described previously will be sufficient to
invoke a .NET web service using the default and most basic implementation of a web service. Services
that have the “GET” and “POST” verbs disabled or disallowed for web service content may cause errors
and not function as expected.

Additionally, previously we stated that the Content-Type needs to be specified to ensure that the web
service call works. On occasion, it may be also necessary to specify an additional header attribute, the
SOAPAction HTTP header attribute, setting it to the name of the Action or method to be executed.

101

The XMLHttpRequest Object

07_78544X ch04.qxp 7/18/06 3:12 PM Page 101

Although this is not strictly required in the trivial examples shown so far, it adds an extra level of com-
pliance to the web service call and is worthwhile doing to make your web service clients work better
with your services. This can be achieved by using the following code:

xmlHttpObj.setRequestHeader(“SOAPAction”,”{your_action}”);

where “{your_action}” specifies the service method or action to execute. Short of implementing a full
SOAP implementation, this is all you need to do to call .NET web services. Again, this does depend
entirely on the configuration of the service itself. The more complex the requirements, configuration and
parameters of the service, the more likely you are to experience difficulty in effectively crafting a client
side proxy to call it. Some of the frameworks described later in the chapter provide a full SOAP imple-
mentation and are a much easier alternative to writing your own implementation.

Summary
In this chapter, you have had a look at how to construct an XMLHttpRequest object in a cross-browser
friendly way and how to utilize the asynchronous and synchronous request capabilities of this object.
We examined the object’s properties in detail and had a look at how to utilize this object to make server-
side requests to access:

❑ A specific file

❑ A page

❑ A request against a .NET HTTP handler

❑ A request against a .NET web service

You have also had a look at how to extract the response from these requests, and deal with errors when
they occur. This provides a general overview of the majority of ways you can use the XMLHttpRequest
object and bend it to your will. Using these techniques, you can develop your own custom methods and
common routines for accessing and manipulating asynchronous requests.

The XMLHttpRequest object is really the core of Ajax. Building upon this, you have examined how to
perform the typical functions a web developer might need to implement asynchronous features of the
XMLHttpRequest object. Accessing server-side functionality without browser interruption or disruption
to the user is the key, and as already mentioned, this may be performed by simple HTTP GET requests all
the way through to the use of HTTP handlers and web services.

In addition, you have been able to slowly build a reusable script library to factor out common functions
such as the creation of the XMLHttpRequest object in a cross-browser way and to identify commonly
used constants such as HTTP status codes. All this can save time in any future development and can
form the basis of any custom library that you wish to develop further.

Using the knowledge learned from this chapter and the code library you have developed, you are well
armed to begin developing Ajax-style applications. The information presented in this chapter forms the
basis for almost all libraries and applications that utilize Ajax-style functionality.

102

Chapter 4

07_78544X ch04.qxp 7/18/06 3:12 PM Page 102

5
Data Communication:
XML, XSLT, and JSON

An important part of any type of distributed application is how data is pushed around between
tiers or layers of the application. Additionally, with Ajax, several concepts are fairly important to
know and understand, concepts involved with building distributed heterogeneous environments.
Accordingly, in this chapter, you are going to look at:

❑ XML — XML is Extensible Markup Language. It is primarily used for data interchange.

❑ XSLT — XSLT is Extensible Stylesheet Language Transformations. XSLT is designed to
take XML data from one format and put it into another format.

❑ JSON — JSON is the JavaScript Object Notation. JSON is a lightweight data interchange
format.

When tied together with web services, XML and JSON allow for data interchange between differ-
ent operating systems and also across the Internet. This is a major change from systems that are
heavily tied together and require that each system run a specific operating system merely because
of the format the data is communicated in. Another advantage web services provide these data
interchange formats is that web services typically run on HTTP. HTTP runs on port 80. Port 80 is a
very widely used port and is not blocked, unlike many other ports and protocols, such as
Microsoft’s Distributed Component Object Model (DCOM) objects.

Trying to put all information about XML, XSLT, and JSON into one chapter will not do any of
the subjects justice. This chapter attempts to cover enough information regarding these products
so that the reader will have a basic understanding of these technologies as they relate to data com-
munication. However, these topics can each fill a thousand-page book and not completely cover
the subject. Wrox offers several good, complete books on the subject of XML and XSLT, including
Beginning XML, Third Edition (Wiley, 2004), XSLT 2.0 Programmer’s Reference, Third
Edition (Wiley, 2004), X Path 2.0 Programmer’s Reference (Wiley, 2004). You can find these
and other titles at www.wrox.com.

This chapter assumes that you are using Visual Studio 2005 and .NET 2.0. Also, you can down-
load the code samples for this chapter (Chapter 5) at http://beginningajax.com.

08_78544X ch05.qxp 7/18/06 3:15 PM Page 103

XML
I won’t bother you with all of the grand hoopla (and already well covered) talk about how XML will do
this or that. Suffice it to say, it is fairly widely used. XML work began at the level of the W3C in 1996. It
was formally introduced in February 1998. XML won’t wax your floors, and it is not a dessert topping;
however, take a quick look at what XML really is and what features it has that are well designed for data
transfer and storage:

❑ XML is based on Standard Generalized Markup Language (SGML) — Having a format based
on existing international standards, such as SGML, which has been used since 1986, means that
you have an existing body of knowledge to draw upon.

❑ It has a self-describing format — The structure and field names are well known.

❑ It has textual representation of data — This textual representation of data allows computer science
data structures to be represented textually. These data structures include trees, lists, and records.

❑ It is both human- and machine-readable — This is an improvement over binary/machine data
because humans can read it, which allows for simple visual inspection of the data.

❑ It has multiple-language support — It supports information in any human language as well as
ASCII and Unicode.

❑ It is efficient and consistent — Its strict syntax and parsing requirements allow the parsing
algorithms to perform efficiently and consistently.

❑ It is widely applicable — The hierarchical structure of XML is appropriate for many types of
documents.

❑ It is platform-independent — By being text-based, XML is relatively platform-independent and
relatively immune to changes in technology.

All that said, XML is not the best solution for everything. XML has several weaknesses that program-
mers need to be aware of. These are:

❑ XML is fairly verbose — In some cases, an XML representation of data may be redundant. The
result may be higher bandwidth and CPU processing needs. With compression, the storage cost
and bandwidth needs may be negated; however, the cost may be increased storage CPU pro-
cessing requirements. In addition, by compressing the data, the advantage of XML being human
readable is almost certainly lost.

❑ Data storage requirements do not support a wide array of datatypes. The result is that the
numeric e value of 2.781828 may not easily be identified as a floating-point value or a string
with a width of eight characters. XML Schema and validation routines provide this support;
however, XML does not natively provide this information.

❑ Mapping to a relational database model may be difficult — Complex XML layouts may not
easily map to a relational database model.

History of XML
XML can trace its heritage back to the mid 1960s with roots in Generalized Markup Language (GML) from
IBM. SGML is based on the GML work done at IBM. SGML is a metalanguage that was standardized in

104

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 104

1986 by ISO standard “ISO 8879:1986 Information processing — Text and office systems — Standard
Generalized Markup Language (SGML).” After that there were several modifications of the standard
to correct some omissions and clear up some loose ends.

In mid-1996, work began on integrating SGML and the web. During the working time, the group had
various names for the specification until it finally decided on Extensible Markup Language (XML). This
group worked throughout 1997, and on February 10, 1998, the W3C approved the result as a W3C rec-
ommendation. This is sometimes referred to as XML 1.0.

Minor revisions of XML 1.0 have taken place. The current revision is known as XML 1.0 Third Edition.
This revision was published on February 4, 2004.

The XML 1.1 version was published on February 4, 2004, the same day as the XML 1.0 Third Edition.
XML 1.1 has been primarily designed to assist those with unique needs, such as mainframe/host devel-
opers. XML 1.1 is not widely implemented at this time.

There is talk and discussion regarding future versions of XML. There is some talk regarding XML 2.0
that would have it eliminate Document Type Definitions (DTDs) from syntax, integration of namespaces,
and the addition of other features into the XML standard. In addition, the W3C has had some prelimi-
nary discussion regarding the addition of binary encoding into the XML feature set. There is no official
work to include binary encoding, merely discussion and investigation, at the time of this writing.

XML Documents
Take a look at what a simple valid XML document looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>
<cost>4.99</cost>

</menuitem>
</menu>

The first line of the file is the XML declaration. This line is optional. It contains information regarding the
version of XML, typically version 1.0, character encoding, and possibly external dependencies. Next,
with XML, there must be one root element. In the preceding example, the <menu> tag is the root element.

The rest of the document contains a set of nested elements, which can be further divided into attributes
and content. An element is typically defined with a start tag and an end tag. In the preceding example,
you have a start tag of <item> and an end tag of </item> for your list of menu items. The end tag can
be omitted if the start tag is defined as <item />. The content of the item is everything that is between
the start and end tags. Elements may also contain attributes. Attributes are name/value pairs included
within the start tag and after the element name. Attribute values must be quoted with a single or double
quotation mark. Each attribute name should occur only once within an element. In the preceding code,
the item with value of Milk Shake has an attribute. The name of the attribute is flavor and the value is
“Chocolate”. In addition to text, elements may contain other elements. In the preceding code example,
the <menuitem> element contains three individual <item> elements.

105

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 105

XML Document Correctness
For an XML document to be considered to be correct, it must meet two requirements. It must be:

❑ Well formed — A well-formed document meets all of the XML syntax rules. A parser must refuse
to process a document that is not well formed. A well-formed document must conform to the
following rules:

❑ XML declaration, processing instructions, encoding, and other information may exist in
the XML document.

❑ Only one root element is specified in the XML document.

❑ Elements that are not empty are defined with both a start tag and an end tag.

❑ Empty elements may be marked with the empty element tag. An example is <item />.

❑ Attributes must be enclosed in single or double quotation marks. Attribute names are
case-sensitive.

❑ Tags may be nested but must not overlap.

❑ The document must use the specified encoding. UTF-8 is the default.

❑ Elements names are case-sensitive.

❑ Valid — A valid document has data that conforms to a set of content rules. These rules describe
correct data values and document organizational structure. (For example, the datatypes in an
element must match.)

❑ XML documents that comply with a defined schema are defined as valid. An XML Schema is a
description of a type of XML document. The schema is typically expressed as constraints on the
structure and content of the document. This is above and beyond the basic constraints imposed
by XML. You will find out more about schemas a bit later in this chapter.

Try It Out Creating Valid and Well-Formed XML
XML requires that elements be properly next and not overlap. The following example shows invalid
XML because of the overlapping of tags with the <item> tag. In the example that follows, a tag is open,
then a second tag of the same type is opened, the first <item> tag is closed, and then the second <item>
tag is closed.

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger<item></item>

French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

</menuitem>
</menu>

106

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 106

Consider the following code sample that is not well formed. This example contains no root element.

<?xml version=”1.0” encoding=”UTF-8”?>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

For this example to be well formed, a root element must be added. Now this document is set up so that
multiple menu items may be created and is more along the lines of what is desired:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

</menuitem>
</menu>

Figure 5-1 shows a simple XML example after it has been parsed and displayed in Internet Explorer v6.

Figure 5-1

Now compare the previous example to the following invalid XML:

<?xml version=’1.0’ encoding=’UTF-8’?>
<menu>

<menuitem >
<item>Hamburger</item>
<item>French Fries</item>
<item>Milk Shake</item>

</MenuItem> <!— Note the capital M and I -->
</menu>

107

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 107

Figure 5-2 shows the result in Internet Explorer. In this example, the closing </MenuItem> does not
match the opening <menuitem> because the opening and closing tags do not match from the standpoint
of case.

Figure 5-2

Entity References and Numeric Character References
Within XML is the need to store special characters. These special characters are entity characters and
numeric character references.

An entity in XML is body of data, typically text, which contains unusual characters. An entity reference in
XML is a placeholder for an entity. XML contains several predefined entities The entity’s name is prefixed
with an ampersand (&) and ends with a semicolon (;). The following is a full list of redefined entities:

❑ The ampersand character (&) is defined as &.

❑ The left bracket, or less than, character (<) is defined as <.

❑ The right bracket, or greater than, character (>) is defined as >.

❑ The single quote, or apostrophe, character (‘) is defined as '.

❑ The double quote character (“) is defined by ".

Additional entities may be defined in a document’s DTD — see the next section for more on DTDs.

Numeric character references are similar to entities. Instead of merely the & followed by the entity name
and ending with the semicolon, a & and a # character are followed by a decimal or hexadecimal charac-
ter representing a Unicode code point and a semicolon. For example, the & character may also be defined
as &.

DTD
A Document Type Definition (DTD) is the original syntax for XML. A DTD is inherited from SGML.
Although a DTD is defined in the XML 1.0 standard, its use is limited for several reasons:

108

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 108

❑ DTDs lack support for new features of XML. For example, there is no support for namespaces.

❑ Not all parts of an XML document can be expressed within a DTD.

❑ DTDs use a syntax inherited from SGML, as opposed to an XML syntax.

XML Schema
The successor to DTDs is XML Schema. Another term for XML Schemas is XML Schema Definition
(XSDs). XSDs are better suited for describing XML languages than DTDs. XSDs have some of the follow-
ing features:

❑ Have datatyping support

❑ Allow for detailed constraints on a document’s logical structure

❑ Are required for using XML in validation framework

❑ Use an XML-based format

Here is an example XML document for a test. In this example, the MenuSchema will be used to validate
the menu XML document.

<?xml version=”1.0” encoding=”UTF-8”?>
<menu xmlns=”http://my-example.com/menus”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://my-example.com/menus Menu2.xsd”>

<menuitem>
<item>Hamburger</item>
<cost>1.99</cost>

</menuitem>
<menuitem>

<item>Drink</item>
<cost>.99</cost>

</menuitem>
<menuitem>

<item>Fries</item>
<cost>.49</cost>

</menuitem>
</menu>

Here is an example XSD file that will validate that document:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns=”http://my-example.com/menus”
xmlns:xs=”http://www.w3.org/2001/XMLSchema” targetNamespace=”http://my-
example.com/menus” elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”menu”>

<xs:annotation>
<xs:documentation>Menu is the root element</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name=”menuitem” maxOccurs=”unbounded”>

109

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 109

<xs:complexType>
<xs:sequence>

<xs:element name=”item” type=”xs:string”/>
<xs:element name=”cost” type=”xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:schema>

In this example code, the menuitem is validated. The <item> tag is validated as a string, which is fairly
easy to validate, and the <cost> tag is validated as a decimal. Within the <menu> tag, there are multiple
copies of the <menuitem> tag that are allowed. Above the <menuitem> tag is the <menu> tag.

Try It Out Validating XML
Given that there is some XML and the need to validate the XML, take a look at some code to validate the
XML in a .NET 2.0 application. In this example, the code creates an XmlSchemaSet object. This object
holds the contents of the XML Schema file. An XmlReaderSettings object is created. This object holds
the XML Schema and any other settings necessary for reading the XML feed. The XmlReader document is
created from XML feed and the XmlReaderSettings object. Once the XmlReader object is created, any
errors that occur when reading the XML document are raised and passed to the XmlReaderSettings’
ValidationEventHandler method. In this example, the user is notified in a label.

ASPX page
<form id=”form1” runat=”server”>
<div>
Load Result: <asp:Label ID=”lblLoadResult” runat=”server” Text=””></asp:Label>
</div>
</form>

Code-Behind
protected void Page_Load(object sender, EventArgs e)
{

System.Xml.XmlReaderSettings xmlRDS = new System.Xml.XmlReaderSettings();
System.Xml.Schema.XmlSchemaSet sc = new System.Xml.Schema.XmlSchemaSet();
sc.Add(“http://my-example.com/menus”, Server.MapPath(“Menu2.xsd”));
xmlRDS = new System.Xml.XmlReaderSettings();
xmlRDS.ValidationEventHandler += new

System.Xml.Schema.ValidationEventHandler(xmlRDS_ValidationEventHandler);
xmlRDS.ValidationType = System.Xml.ValidationType.Schema;
xmlRDS.Schemas.Add(sc);
System.Xml.XmlReader xmlRd =

System.Xml.XmlReader.Create(Server.MapPath(“Menu2.xml”), xmlRDS);
while (xmlRd.Read())
{
}

}
private void xmlRDS_ValidationEventHandler(object sender,
System.Xml.Schema.ValidationEventArgs e)

110

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 110

{
this.lblLoadResult.Text = “Validation Error: “ + Convert.ToString(e.Message) +

“
”;
}

The XmlReaderSettings object specifies the settings used in reading in some XML. This object is used
with the static .Create() method when an XmlReader object is created. The properties to note are the
ValidationType, which is set from an enumeration, and the Schemas property, which is based on the
SchemaSet object. The XmlSchemaSet object contains a set of XML Schemas to validate against. If the
XML is not valid based on the schema, an XmlSchemaException() is generated.

Parsing XML
Two popular types of XML processing exist — the Document Object Model (DOM) and the Simple API
for XML (SAX). The key difference between these two approaches is that the first loads the entire XML
document into an in-memory data structure, whereas the latter iterates over the XML document one
piece at a time in a forward-only, read-only fashion.

DOM Parsing
The Document Object Model (DOM) is an API that allows access to XML and HTML documents and
their elements. The DOM is programming-language- and platform-independent.

Typically, XML parsers have been developed that must make use of a tree structure will all elements
fully loaded into the parser before any operations occur. As a result, DOM is best used for applications
where the document elements are randomly accessed and manipulated.

There are several levels of DOM specification. These specification levels are:

❑ Level 0 — A Level 0 DOM contains all of the vendor-specific DOMs that existed before the W3C
standardization process.

❑ Level 1 — A Level 1 DOM allows for the navigation of documents and modification of their
content.

❑ Level 2 — A Level 2 DOM contains support for XML namespaces, filtered views, and events.

❑ Level 3 — A Level 3 DOM consists of support for:

❑ DOM Level 3 Core

❑ DOM Level 3 Load and Save

❑ DOM Level 3 XPath

❑ DOM Level 3 Views and Formatting

❑ DOM Level 3 Requirements

❑ DOM Level 3 Validation

For further information on the DOM, please refer to Chapter 3.

111

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 111

SAX Parsing
Simple API for XML (SAX) parsing is another form of processing of XML files. A SAX-based parser
handles XML as a single stream of data that is available only unidirectionally. As a result, accessing
previously used data will result in the XML stream being reread and reparsed.

SAX processing is based on asynchronous events. In this model, as the XML document is read and
parsed, events are fired as set up by the program. This is believed to result in faster XML processing than
the DOM, because of a much smaller memory footprint compared to using a fully loaded and parsed
DOM tree. Truthfully, the speed comparison should be based on a specific program, so generalities like
this do not hold up in all situations. The other problem with SAX, which is more significant than the
unidirectional issues, is the event-driven programming model. Accurately creating an event-driven
program can be very complicated and frustrating.

XML Summary
As you have noticed, XML can be a very complicated topic. In this section, we have attempted to cover
the basic topics that you need regarding what XML is, but this is not meant to be a complete reference
for XML, just a set of basic information. For more complete information, please reference the books men-
tioned at the beginning of the chapter. In the next section, we will look at the processing XML with a
technology referred to as XSLT.

XSLT
Extensible Stylesheet Language Transformations (XSLT) is an XML-based language used to convert XML
from one format to another. These other formats may be a different XML Schema, HTML, plain text,
PDF, or some other format. XSLT grew out of the Extensible Stylesheet Language (XSL) development
effort within the W3C. The XSLT specification was first published by the W3C as a recommendation on
November 16, 1999.

How Processing Occurs
The XSLT language is declarative. Being declarative means that the XSLT stylesheet is made up of a set
of templated rules. Each rule in the collection specifies what to add to the resulting output, and the
result is then sent to the output. Once an XSLT processor finds a node that meets the processing condi-
tions, instructions within the template rules are processed sequentially.

The XSLT specification defines a transformation in terms of source and results. This keeps from locking a
developer into a set of system specific APIs.

XSLT uses the X Path language for identifying the appropriate data in the source tree. X Path also pro-
vides a range of functions that assist XSLT processing.

Now take a look at some example XSLT coding. First, consider the following sample XML:

112

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 112

<?xml version=”1.0” encoding=”UTF-8” ?>
<menuitem xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”MenuSchema.xsd”>

<item>Hamburger</item>
<item>French Fries</item>
<item>Milk Shake</item>
<cost>4.99</cost>

</menuitem>

Suppose that from this code you want to pull out the elements within the <item> tags. The following
XSLT code will pull out a list of items.

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/item”>
<xsl:apply-templates />

</xsl:template>
<xsl:template match=”item”>

<xsl:value-of select=”.” />

</xsl:template>
<xsl:template match=”cost” />

</xsl:stylesheet>

This code works by looking for the matches for the <item> tag, pulling them out, and sending them to
the output stream. With the .NET Framework, there is an XML Transform control. By setting the con-
trol’s DocumentSource and TransformSource properties, the control may be used to easily output the
results of an XML file being transformed by an XSLT file. The result of this XML file being transformed
by the XSLT file is Figure 5-3.

Figure 5-3

Figure 5-4 shows how XSLT processing occurs at a high level.

113

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 113

Figure 5-4

XSLT processing occurs in the following steps:

1. The XSLT stylesheet is loaded by the XML parser.

2. The XSLT stylesheet is converted into a tree of nodes. These nodes are also referred to as a
stylesheet tree.

a. XSLT stylesheet errors are detected.

b. Include and import commands are handled.

3. The XML input is loaded by the parser and converted into a tree of nodes.

4. Whitespace only text nodes are removed from the stylesheet tree.

5. Whitespace-only text nodes are removed from the source tree.

6. The stylesheet tree is supplemented with built-in template rules for default processing.

7. The root node of the source tree is processed along with child nodes.

a. The template rule that best matches a node is processed.

b. Template rules are created. Elements are treated as instructions and their semantics are
interpreted. Elements and text nodes in the template rules are copied specifically into
the result tree.

8. The result tree is serialized, if necessary, according to any provided xsl:output instructions.

Built-In Functions
Like many of programming languages, XSLT provides a set of built-in commands. These commands
range from string processing to date processing and looping operators, such as a for loop structure. In
this section, we will look at some of the functions built into XSLT processors. These functions provide
the basics upon which many XSLT operations are built.

XSLT <template>
The <xsl:template> element is used along with the match attribute to build templates and to associate
them with XML elements.

<xsl:template match=”item” />

XSLT Declaration

XSLT ProcessorInput File Output File

114

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 114

In this example function, the XSLT processor will search for the node named “item”. If a match is made,
then additional functionality is performed.

XSLT <value-of>
The XSLT <xsl:value-of> element is used to extract the value of an XML element. The extracted value
is then added to the output’s stream of the transformation. Consider the following example:

<xsl:value-of select=”item” />

This code will pull the data from the item element of an XML file, and then add that value to the stream
of the transform’s output.

XSLT <for-each>
The XSLT <xsl:for-each> element is used to provide looping support in XSLT. Take a look at the fol-
lowing example:

<xsl:for-each select=”item” />
<xsl:value-of select=”.” />

</xsl:for-each>

This example will pull all the item nodes from the specified node set and return the value of the current
node to the XSLT stream.

XSLT <sort>
The XSLT <sort> element is used to assist the <xsl:for-each> element in sorting the node set pro-
duced by the <xsl:for-each> element.

XSLT <if>
The <xsl:if> element is used to test the content of an XML file, much like the if/endif of a traditional
computer programming language. Take a look at the following example:

<xsl:if test=”cost > 1.00”>
..........
</xsl:if>

This if/endif are often used for conditional tests. With these tests, program execution can be altered
based on these tests. If the condition is true, the commands within the <xsl:if></xsl:if> are exe-
cuted. In this example, if the cost node has a value of greater than 1.00, the code between the <xsl:if>
and </xsl:if> is executed.

XSLT <choose>
The <xsl:choose> element is used along with <xsl:when> and <xsl:otherwise> to perform multi-
ple conditional tests. Consider the following code:

<xsl:choose>
<xsl:when test=”expression”>
...........
</xsl:when>
<xsl:otherwise>

115

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 115

...........
</xsl:otherwise>

</xsl:choose>

In this example, the expression is tested. When the expression is true, the code within the
<xsl:when></xsl:when> tags is executed. If not code is executed, the processing will drop out to the
<xsl:otherwise></xsl:otherwise> tags and execute within those tags.

Processing with XSLT
Now that you have looked at some of the main XSLT directives, take a look at some more complicated
examples of processing XSLT. In this example, you are going to perform some string processing, condi-
tional processing, and mathematical processing in some examples.

Try It Out String Processing
String processing is something that is very common to modern programming languages, and XSLT is no
different. It has a number of built-in string processing commands. These commands allow for the search-
ing of strings, returning the location of characters within strings, and other processing functions. You
will use the following XML file:

<?xml version=”1.0” encoding=”UTF-8”?>
<employees xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Name>John Jones</Name>
<Name>Mike Smith</Name>
<Name>William Skakespeare</Name>
<Name>Wally McClure</Name>

</employees>

You need to perform several operations on this XML code. These operations include getting the length of
the name, parsing for the first name of the employee, and parsing for the last name of the employee. The
following XSLT file will perform these operations:

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<table border=’1’>

<tr>
<th>

Employee Name:
</th>
<th>

Length of Name:
</th>
<th>

First Name:
</th>
<th>

Last Name:
</th>

116

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 116

</tr>
<xsl:apply-templates />

</table>
</xsl:template>
<xsl:template match=”Name”>

<tr>
<td>

<xsl:value-of select=”.” />
</td>
<td>

<xsl:value-of select=”string-length(.)” />
</td>
<td>

<xsl:value-of select=”substring-before(., ‘ ‘)”/>
</td>
<td>

<xsl:value-of select=”substring-after(., ‘ ‘)”/>
</td>

</tr>
</xsl:template>

</xsl:stylesheet>

The XML and XSLT file can be processed by using an XML control like this:

<asp:Xml ID=”XMLStringExample” runat=”server” DocumentSource=”XMLStringTest.xml”
TransformSource=”XMLStringTest.xslt”>

In this example, a table is created. Each row contains four columns.

❑ The first column is the name of the employee. This is pulled straight from the <name> tag.

❑ The second column contains the length of the employee’s name.

❑ The third column contains all of the employee names before the first space.

❑ The final column contains all of the employee names after the first space.

This example assumes that the format for the names is first name, space, and then last name.

Figure 5-5 displays the output of the example XML file being processed by the XSLT file.

Figure 5-5

For a listing of the methods available for string processing in XSLT, review Appendix A.

117

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 117

Try It Out Numeric Processing
XSLT also possesses the ability to perform standard mathematical operations like many other program-
ming languages. These operations can range from the simple addition and subtraction to ceiling, floor,
and rounding.

Take a look at the following XML file:

<?xml version=”1.0” encoding=”utf-8” ?>
<numbers xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<a>9
24.6
<c>-1</c>
<d>4.3</d>
<e>5</e>

</numbers>

You are going to process the numbers in this set and perform several operations on them — displaying
data, performing a sum on the nodes, performing a modulo operation, and finally running through a
conditional to output a string depending on whether or not the processed value is negative. The XSLT
file that follows will process the preceding numeric XML file and output the numeric values.

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<table border=’1’>

<tr>
<th>

a
</th>
<th>

b
</th>
<th>

c
</th>
<th>

d
</th>
<th>

e
</th>
<th>

sum of numbers
</th>
<th>

a mod e
</th>
<th>

Is (a-b) negative or positive
</th>

</tr>
<xsl:apply-templates />

118

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 118

</table>
</xsl:template>
<xsl:template match=”numbers”>

<tr>
<td>

<xsl:value-of select=”a” />
</td>
<td>

<xsl:value-of select=”b” />
</td>
<td>

<xsl:value-of select=”c” />
</td>
<td>

<xsl:value-of select=”d” />
</td>
<td>

<xsl:value-of select=”e” />
</td>
<td>

<xsl:value-of select=”sum(*)”/>
</td>
<td>

<xsl:value-of select=”a mod e”/>
</td>
<td>

<xsl:choose>
<xsl:when test=”(a - b) > 0”>

positive
</xsl:when>
<xsl:when test=”(a - b) < 0”>

negative
</xsl:when>
<xsl:otherwise>

0
</xsl:otherwise>

</xsl:choose>
</td>

</tr>

</xsl:template>
</xsl:stylesheet>

The XML and XSLT file may be processed by using an XML control like this:

<asp:Xml ID=”XmlNumericExample” runat=”server”
DocumentSource=”XMLNumericExample.xml”

TransformSource=”XMLNumericExample.xslt”>

Figure 5-6 shows the output of the numeric XML file after it has been processed by the numeric XSLT file.

❑ The first five columns display the values from the XSLT file.

❑ The sixth column displays the sum of the numbers.

❑ The seventh column displays a modulo e.

119

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 119

❑ The last column shows a combination of conditional tests, <xsl:choose> and <xsl:when>
tags, as well as testing using less than and greater than commands.

Figure 5-6

For more information on the processing functions built into XSLT, please refer to Appendix A on XSLT
elements.

Writing Functions in XSLT
The XSLT processor in the .NET Framework and MSXML component support only the XSLT version 1
standard. This standard version makes it a little bit hard to write functions within XSLT. However, these
components support the ability to write custom business logic. The ability to write these custom busi-
ness objects is provided by extending XSLT, using traditional programming languages, such as VBScript,
JavaScript, or any .NET-support language. Given the widespread acceptance of JavaScript, these exam-
ples use JavaScript to extend XSLT.

XSLT extensions are mostly specific to a given processor. For more comprehensive examples, please refer
to the documentation provided by the XSLT processor that is being used.

XSLT 1.0 provides two types of extensions.

❑ Extension elements, which include such things as xsl:transform, xsl:template, and the like.

❑ Extension functions, which include string, substring, and the like.

XSLT 1.0 has a template base model. XSLT processors need information to distinguish between static
content and extension elements. This can be accomplished by some commands that the processor recog-
nizes. The code that follows shows an example:

<xsl:transform version”1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform
xmlns:out=http://www.w3.org/1999/xhtml
xmlns:ext=http://exampleurl/extension
extension-element-prefixes=”ext”>
<xsl:template match=”/”>

<out:html>
<ext:ExampleFunction/>

</out:html>
</xsl:template>
</xsl:transform>

This example shows the very basics of calling an external function in XSLT. The xml namespace for out-
put is defined by the xmlns:out attribute and the extension’s namespace is added through the
xmlns:ext attribute. The output is formatted for HTML through the <out:html> tag, and a call is
made to the external ExampleFunction through the <ext:ExampleFunction/> tag. This example calls
out to an external function using the MSXML calling convention.

120

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 120

X Path
The XML Path Language (X Path) is a non-XML syntax for addressing parts of an XML document. X
Path has been adopted by developers as a simple query language. X Path is a sequence of steps to get
from one set of nodes to another set of nodes. The steps are separated by a slash (/) character. Each step
is made up of the following parts:

❑ Axis Specifier — The Axis Specifier indicates a navigation direction. The axes available are:

❑ child

❑ attribute

❑ descendant-or-self

❑ parent

❑ ancestor

❑ ancestor-or-self

❑ following

❑ precending

❑ following-sibling

❑ self

❑ namespace

❑ Node Test

❑ Predicate

In X Path:

❑ The root element is defined by /*.

❑ All elements are defined as //*.

❑ All top-level elements are defined as /*/*.

Therefore, an example X Path expression can look like /CustomerOrder/Item. This will select all of the
nodes that are named Item and a child of CustomerOrder.

A more complex expression might be specified as: /CustomerOrder/Item/following-sibling::*[1].
This expression selects all elements that are below the Item node and indicates the Item node is a child of
the CustomerOrder node.

In X Path, the expression @ can be used to get at the attribute axis. For example, the expression
//Item[@price > 2] selects the Item nodes that have an attribute of price that is greater than the
value of 2.

Try It Out X Path Example
In this Try It Out, you take a look at X Path processing using one of the menu examples. In this example,
you are going to search for the <item> tag of one of the Menu2.xml file’s menuitems. Take a look at the
example code in C# and ASP.NET:

121

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 121

System.Xml.XPath.XPathDocument document = new
System.Xml.XPath.XPathDocument(Server.MapPath(“Menu2.xml”));
System.Xml.XPath.XPathNavigator navigator = document.CreateNavigator();
System.Xml.XPath.XPathNodeIterator nodes =
navigator.Select(“//menu/menuitem[cost=.49]/item”);
while (nodes.MoveNext())
{

Response.Write(nodes.Current.Value);
}

In this code, the item tag of the menutitem will be returned if the cost of the item is set to .49. The code
works by creating an X Path DOM document and loading it with the contents of the Menu2.xml file.
The next step is to create the XPathNavigator object. The X Path expression is passed though the
XPathNavigator’s .Select() method and returns a collection of nodes that can then be iterated
through.

Now, take a look at the XML file that you are working with for this example:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<cost>1.99</cost>

</menuitem>
<menuitem>

<item>Drink</item>
<cost>.99</cost>

</menuitem>
<menuitem>

<item>Fries</item>
<cost>.49</cost>

</menuitem>
</menu>

From the XML feed, you can see that the only menuitem that matches the cost of .49 is the Fries item
and that is the only result that is returned from the sample X Path code.

Integrating XML and Ajax
Now that we’ve covered XML, we come to the inevitable question — how do we integrate this with
Ajax? It’s actually a fairly simple process if your development team has its own library or needs to
debug something that is occurring in an existing library.

Take a quick look at some code. In this example, you are using the Sarissa client-side library to perform
the communication back to the server. For the callback to the server, you get a list of people in an XML
format. This is put within an XML DomDocument. In this example, the code is loaded synchronously, but
it could be loaded asynchonrously with a callback. You have created a string holding the XSLT com-
mands. This string is put within an XSLTProcessor() object. The final steps are to use the XSLT object
to transform the XML DomDocument and to then output the data to the browser.

122

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 122

<script language=”javascript” src=”SarissaLibrary.js”>
<script language=”javascript”>
var xsltProc = new XSLTProcessor();
var xsltDoc = Sarissa.getDomDocument();
var xsltStr = “<?xml version=\”1.0\” encoding=\”UTF-8\” ?>” +

“<xsl:stylesheet version=\”1.0\”
xmlns:xsl=\”http://www.w3.org/1999/XSL/Transform\”
xmlns=\”http://www.w3.org/1999/xhtml\”>” +

“<xsl:template match=’/’>” +
“<table border=’1’>” +

“<tr>” +
“<th>” +

“Employee Name:” +
“</th>” +

“</tr>” +
“<xsl:apply-templates />” +

“</table>” +
“</xsl:template>” +
“<xsl:template match=\”Name\”>” +

“<tr>” +
“<td>” +

“<xsl:value-of select=\”.\” />” +
“</td>” +

“</tr>” +
“</xsl:template>” +
“</xsl:stylesheet>”;

xsltDoc = (new DOMParser()).parseFromString(xsltStr, “text/xml”);
xsltProc.importStylesheet(xsltDoc);
function SimpleExample() {

var xmlDoc = Sarissa.getDomDocument();
xmlDoc.async = false;
xmlDoc.load(“XMLStringTest.xml”);
var newDocument = xsltProc.transformToDocument(xmlDoc);
document.write(Sarissa.serialize(newDocument));

}
SimpleExample();

Figure 5-7 shows the output of the preceding example.

Figure 5-7 123

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 123

JSON
As indicated earlier in the chapter, JSON is the JavaScript Object Notation, and it is a lightweight data
interchange format. JSON’s chief advantage over XML is that the data may be parsed fairly easily using
JavaScript’s built-in eval() method. And although JSON has JavaScript in the name, it may actually be
used by various languages.

Layout of JSON
JSON’s usefulness is in the area of data interchange, and in some ways it is similar to XML. However,
there are some key conceptual differences. Whereas XML is conceptually similar to working with
databases and is designed to primarily work with sets of data, JSON is conceptually similar to arrays
and collections in procedural programming languages. That means JSON is designed to be easily usable
from within a procedural programming language.

JSON is built on the following data structures:

❑ Name/value pairs — This may be called an object, record, structure (struct), HashTable, keyed
list, or associated array.

❑ List of values — This list of values is referred to an array in most programming languages.

Take a look at the specific layout of JSON in the following table.

Name Description

object {}

{ members }

members string : value

members , string : value

array []

[elements]

elements value

elements , value

value string, number, object, array, boolean, null

With JSON, these items take on the following forms:

❑ An object is a set of name/value pairs. An object begins with a left brace ({) and ends with a right
brace (}). Names are followed by a colon (:). Name/value pairs are separated by a comma (,).

❑ An array is a collection of values. Arrays start with a left bracket ([) and end with a right
bracket (]). Values within an array are separated by a comma (,).

124

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 124

❑ A value may be one of several datatypes. If it is a string, it will be contained within double quo-
tation marks. Other datatypes supported within an array are numbers, booleans, null, objects,
and arrays.

❑ A string is a collection of Unicode characters wrapped within double quotation marks.
Characters may be escaped by using the forward slash character (/).

JSON Example
Take a look at some data encoded in JSON:

{‘Tables’:[{
‘Name’:’Table1’,’Rows’:[
{‘tblStateId’:1,’State’:’Tennessee’},
{‘tblStateId’:2,’State’:’Alabama’}]}],
‘getTable’:function(n){return _getTable(n,this);}}

This example text displays the textual representation of an ADO.NET dataset. In this JSON object, there
is a table with two rows. There are two columns. These columns are tblStateId and State. Row 1 con-
tains tblStateId:1 and State:Tennessee. Row 2 contains tblStateid:2 and State:Alabama.

Now you can look at the JavaScript code to actually use a JSON object. This JavaScript code runs in
Internet Explorer and uses the Sarissa client-side JavaScript library. It will pull data from a local web
server and then create an object based on a JSON object.

var xmlhttp = new XMLHttpRequest();
function clickme(){

xmlhttp.onreadystatechange= myHandler
xmlhttp.open(“GET”, “GetData.aspx”, true);
xmlhttp.send(null);

}
function myHandler() {

if (xmlhttp.readyState == 4) // READYSTATE_COMPLETE is 4
{
var strObj = xmlhttp.responseText;
var obj;
eval(“obj=” + strObj);
for(m in obj)

alert(m);
}

}

In this example, an XMLHTTP object is created and a request is sent to the web server. When the request
comes back, an object is created from the returned data and the properties of that object that are avail-
able are displayed in a pop-up window to the user.

The example that is shown uses the Sarissa library. This library is discussed in Chapter 9.

125

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 125

Summary
In this chapter, you examined several topics related to data communication.

❑ XML — XML contains the raw data of a data transfer. It is human- and computer-readable in a
language-independent format.

❑ XSLT — XSLT is used to transform information from one XML format into another.

❑ X Path — X Path is used to navigate within an XML/XSLT document.

❑ JSON — JSON is a human- and computer-readable data interchange format that is less complex
then XML.

These topics form an important basis for heterogeneous communications, such as that used in Ajax and
between a web client and a web server. Knowing how XML, XSLT, and JSON are structured can be very
valuable as a basis of a custom Ajax library, for getting data between a web client and a web server, or
for being able to diagnose a problem in an existing library.

You can find more on the topics discussed in this chapter at the following sites:

❑ Wikipedia —http://en.wikipedia.org/wiki/XML

❑ “SGML Source” by Charles F. Goldfarb —www.sgmlsource.com

❑ World Wide Web Consortium (W3C) —www.w3c.org

❑ W3 Schools web site —www.w3schools.org

❑ JSON web site —www.crockford.com/JSON

126

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 126

6
What Is Built into ASP.NET

ASP.NET 2.0 contains an incredible amount of enhancements over ASP.NET 1.0 and 1.1. The ASP.NET
team has attempted to address various areas that required improvement in previous versions, and the
inclusion of Ajax-style functionality is one of those areas.

ASP.NET 2.0 contains a technology called Asynchronous Client Script Callbacks, or simply callbacks
for a shortened name. As the name suggests, this offers the ability for ASP.NET to directly support
the inclusion of JavaScript code that enables asynchronous calls to the server for processing — that
is, to execute a server method asynchronously from within the browser and have ASP.NET instruct
the browser to execute a JavaScript callback method when the server method completes.

In this chapter, you take a look at:

❑ Server controls included with ASP.NET V2.0 that support asynchronous callback
functionality

❑ Enabling your pages to support asynchronous behavior using callbacks in ASP.NET V2.0

❑ Using advanced techniques to develop controls that support asynchronous behavior,
using client callbacks

Out-of-the-Box Controls
Before you delve into the fundamentals and implementation of these features, it is important to
note that some web controls that ship with ASP.NET come with the ability to support callback
functionality. Specifically, these controls are the:

❑ TreeView

❑ GridView

❑ DetailsView

These controls come with simple boolean properties that enable the use of asynchronous callbacks
in a browser-friendly way, without the need to know or write any JavaScript at all.

09_78544X ch06.qxp 7/18/06 3:15 PM Page 127

Again, before the chapter gets too technical, have a look at how easy it is to make use of Asynchronous
Client Script Callbacks by using some of the controls that support this technology natively.

TreeView Control
The TreeView control allows hierarchical navigation over any datasource. A very common use of this
control is to act as a navigation control for web sites. This is easily achieved by binding the TreeView
control to a SiteMapDataSource control. However, for the purposes of this example you are interested
in the built-in ability to provide asynchronous callback functionality to your applications. Examine the
following simple ASP.NET page:

Try It Out TreeView Control Utilizing Asynchronous Client Script Callback Support
<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”TreeView.aspx.cs”
Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Treeview Asynchronous Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

 <asp:XmlDataSource ID=”XmlDataSource1” runat=”server”
DataFile=”TestXMLFile.xml”>

</asp:XmlDataSource>
<asp:TreeView ID=”TreeView1” runat=”server” DataSourceID=”XmlDataSource1”

ExpandDepth=”1”>
</asp:TreeView>

</div>
</form>

</body>
</html>

This page contains a TreeView control and an XmlDataSource control. The XmlDataSource control
provides data from an XML file named TestXMLFile.xml. This file has the following contents:

<?xml version=”1.0” encoding=”utf-8” ?>
<root>

<Node1>
<Data1>

<MoreNodes1 />
<MoreNodes2 />
<MoreNodes3 />
<MoreNodes4 />

</Data1>
<Data2 />

</Node1>
<Node2>

<Data3>

128

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 128

<More1 />
<More2 />
<More3 />
<More4 />
<More5 />

</Data3>
<Data4 />

</Node2>
<Node3>

<Data5 />
<Data6 />

</Node3>
<Node4>

<Data7 />
<Data8 />

</Node4>
</root>

How It Works
From the example data shown in the preceding block, the nodes Node1, Node2, Node3, and Node4 will
be displayed by the TreeView control. When one of these nodes is clicked or selected, the TreeView
requests the subnodes for the selected node from the datasource. By default, when the TreeView control
is dropped onto a page using Visual Studio .NET 2005, asynchronous callback functionality is enabled.
The EnableClientScript property determines this behavior and is set to true by default. The effect
that this has is that when a node within the TreeView is clicked and that node has some subnodes
within it that need to be loaded from the datasource, an asynchronous callback is performed to retrieve
the data or list of subnodes in this case. The user does not see the web page postback to the server. If you
were to change the preceding web page code so that the markup for the TreeView control looked like:

<asp:TreeView ID=”TreeView1” runat=”server” DataSourceID=”XmlDataSource1”
ExpandDepth=”1” EnableClientScript=”False”></asp:TreeView>

this would then tell the TreeView control to not attempt to use client script to retrieve the extra data it
requires. Each time a node is expanded in this case, you would notice that the browser performs a post-
back. Obviously, causing a postback is not as seamless an experience as performing a callback, where no
user experience interruption is seen.

All the JavaScript required to invoke the necessary asynchronous callback method is controlled via the
use of the EnableClientScript boolean property. No JavaScript knowledge or effort is required on
the part of the developer.

Code samples for this chapter are available for download at http://beginningajax.com.

GridView Control
The GridView control has its roots in the DataGrid control in ASP.NET 1.0/1.1 that was used exten-
sively to render tabular data. The GridView control is still used to render tabular data but has some
more advanced features and makes extensive use of ASP.NET 2.0 new features and functionality.

129

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 129

Again, for purposes of this example, you are concerned with the asynchronous behavior that this control
provides for you. Unlike the TreeView control, which had asynchronous callback functionality enabled
by default, the GridView control does not have asynchronous behavior enabled by default. You will
have a look at why this is the case after examining a simple Try It Out. Consider the code that follows.

Try It Out GridView Control Utilizing Asynchronous Client Script Callback Support
<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”GirdView.aspx.cs”
Inherits=”GridViewAsyncExample_GirdView” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>GridView Asynchronous Example</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”
AutoGenerateColumns=”False”

DataSourceID=”XmlDataSource1” EnableSortingAndPagingCallbacks=”True”>
<Columns>

<asp:BoundField DataField=”BookTitle” HeaderText=”BookTitle”
SortExpression=”BookTitle” />

<asp:BoundField DataField=”Description” HeaderText=”Description”
SortExpression=”Description” />

<asp:BoundField DataField=”Comment” HeaderText=”Comment”
SortExpression=”Comment” />

</Columns>
</asp:GridView>
<asp:XmlDataSource ID=”XmlDataSource1” runat=”server”

DataFile=”~/GridViewAsyncExample/XMLFile.xml”>
</asp:XmlDataSource>

</div>
</form>

</body>
</html>

The simple page contains a GridView control and an XmlDataSource, which the GridView control uses
to retrieve and manipulate its data to render. The data is again stored in an XML file, this time with the
following contents:

<?xml version=”1.0” encoding=”utf-8” ?>
<rootNode>
<data1 BookTitle=”Some Interesting stuff” Description=”Lots of interesting stuff”

Comment=”Sort of interesting” />
<data1 BookTitle=”More Interesting stuff” Description=”Even more interesting

stuff” Comment=”Much more interesting” />
<data1 BookTitle=”Less Interesting stuff” Description=”Less interesting stuff”

Comment=”Not as interesting” />

130

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 130

<data1 BookTitle=”Big book” Description=”A very big book” Comment=”Too big” />
<data1 BookTitle=”Small Book” Description=”A very small book” Comment=”Too small”

/>
<data1 BookTitle=”Medium Book” Description=”A medium sized book” Comment=”Just

right” />
<data1 BookTitle=”Truthfull stories” Description=”Its the truth!” Comment=”You

know its true” />
<data1 BookTitle=”Lies, and why I never tell them” Description=”Its all lies”

Comment=”I dont believe any of it” />
<data1 BookTitle=”Fun stories” Description=”Lots of fun” Comment=”Heaps of fun”

/>
<data1 BookTitle=”Horror stories” Description=”Very scary” Comment=”I was too

scared to finish it” />
<data1 BookTitle=”Detective Stories” Description=”Who dunnit?” Comment=”Its a

real mystery” />
<data1 BookTitle=”Fantasy stories” Description=”Its a real fantasy” Comment=”Its

like living in a dream” />
<data1 BookTitle=”Drama stories” Description=”Dramatic” Comment=”I was riveted”

/>
<data1 BookTitle=”Action Stories” Description=”Its all about action”

Comment=”Heart pounding” />
</rootNode>

How It Works
Here you have a list of books, their descriptions, and a comment associated with each one. The GridView
will render the list of books for the user to browse through. By default, sorting and paging is not enabled
on the GridView control, so all the book entries are displayed on the web page. In many cases, paging is
enabled to allow a smaller list of content to be displayed at any one time, but also to allow the user to
advance that window or page to view more entries within the list. In this example, you have enabled
paging by setting the AllowPaging property of the control to true. The GridView control also contains
a PageSize property that determines how many entries are displayed per page when paging is enabled.
By default this is 10, which is what this example uses.

When paging is enabled, the GridView displays a paging navigation bar at the bottom of the control to
allow the user to select a different page to view. By default, when a new page is selected by the user, the
GridView causes a postback to occur, so that the data for the next page can be retrieved by the server.

In the example, you will note that you set the EnableSortingAndPagingCallbacks property to true,
and this is what is required to enable asynchronous callbacks for the GridView control. With this prop-
erty enabled, each time the user clicks on the paging navigation bar to view a different page of data, no
postback occurs, but rather an asynchronous callback is executed to perform this work on the server
and return the results. The new page is then dynamically updated within the GridView control on
the browser.

It may now be more apparent why this property is not enabled by default. The EnableSortingAnd
PagingCalbacks property is applicable only if paging and/or sorting is enabled within the GridView
control, and this functionality is not enabled by default. Therefore, enabling the EnableSortingAnd
PagingCalbacks property by default would make no sense.

131

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 131

DetailsView Control
The DetailsView control also has very similar functionality to the GridView control. As with the
GridView control, client-side callback functionality for the DetailsView control is initially disabled. If
paging is enabled on the control, then the AllowPagingCallbacks property can be set to true to cause
the control to execute its server-side paging functionality asynchronously from the browser.

Browser Compatibility
Microsoft has learned from its lessons of the past, and good cross-browser compatibility is one of the
main goals of ASP.NET 2.0. All of the samples shown previously work across a majority of fifth genera-
tion browsers, such as Internet Explorer 5.x and above, Mozilla/Netscape 6.x and above, Safari 1.2x,
Opera 7.x, and Firefox.

From an application development perspective, it is also very easy to check whether the browser cur-
rently accessing your application supports asynchronous client-side callbacks. There are two new
boolean properties of the Browser object that are part of the request. These are the SupportsCallback
and SupportsXmlHttp properties, and they indicate if the requesting browser supports asynchronous
client callbacks and use of XMLHttpRequest object, respectively. They are part of the property collection
of the Browser object, which itself is part of the Request object, and so can be accessed using the syntax
Request.Browser.SupportsCallback and Request.Browser.SupportsXmlHttp. The properties
can be easily examined to determine if the requesting browser supports the desired functionality, as
shown in the following Try It Out.

Try It Out Determining Client-Side Callback Support Using Server-Side Code
protected void Page_Load(object sender, EventArgs e)
{

if (Request.Browser.SupportsCallback)
lblCallbackMsg.Text = “This browser supports client side callbacks.”;

else
lblCallbackMsg.Text = “This browser DOES NOT support client side

callbacks.”;

if (Request.Browser.SupportsXmlHttp)
lblXmlHttpMsg.Text = “This browser supports XmlHttp (receiving XML over

HTTP).”;
else

lblXmlHttpMsg.Text = “This browser DOES NOT XmlHttp (receiving XML over
HTTP).”;
}

How It Works
The Request object (which is of type System.Web.HttpRequest) that is available to all pages has a
Browser property (which is of type System.Web.HttpBrowserCapabilities) where you access the
boolean properties SupportsCallback and SupportsXmlHttp.

132

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 132

❑ The SupportsCallback property checks for explicit support of the callback functionality used
by ASP.NET 2.0 and looks for advanced script support such as the ability to invoke scripts upon
completion of an asynchronous operation (that is, in callback mode).

❑ The SupportsXmlHttp property will return true only if the browser supports sending XML
content over the HTTP channel.

The combination of asynchronous callbacks and the sending of well-formed XML content over HTTP
provides a powerful method of communication when dealing with complex data, as you will see later in
this chapter.

The Framework
So, you have seen some of the controls that natively support Asynchronous Client Script Callbacks, and
you have seen how you can detect the support of this feature programmatically, but how do you cus-
tomize it for use in your own applications and really harness its potential? The answer is twofold.

❑ First, there is a newly introduced interface named the ICallbackEventHandler interface.
There is another interface called the ICallbackContainer interface that indicates that a class
can generate its own script to invoke a callback, but it is not the primary interface used when
dealing with Asynchronous Client Script Callbacks and will be detailed later in this chapter.

❑ Second, in a change from ASP.NET 1.0/1.1, all client scripting functions are now housed in a
client script object (which is of type System.Web.UI.ClientScriptManager) that exists as a
member within every ASP.NET page object. This houses the required functions to support the
client-side generation and manipulation of JavaScript code, in particular to work in conjunction
with your server-side methods to be called asynchronously.

ICallbackEventHandler Interface
The ICallbackEventHandler interface is the primary mechanism for enabling pages or controls to
participate in the Asynchronous Client Script process. By implementing this interface within a control
or page, server code can generate the relevant JavaScript code that allows asynchronous interaction
between the client browser and the server. This interface has two methods associated with it:

Interface Method Description

string GetCallbackResult(); This method returns the result of the callback
event/asynchronous call to the client browser.

void RaiseCallbackEvent(string The method that is called asynchronously to handle
eventArgument); the callback event. The eventArgument parameter

contains any data passed in via the callback
event/method.

133

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 133

A web control or web page that intends to provide support for Asynchronous Client Script Callbacks
needs to implement this interface and provide implementations for the two interface methods described
in the preceding table.

The reason there are two methods is to provide support for asynchronous datasources, a new feature in
.NET 2.0. An asynchronous datasource will typically initiate a request to get data and then, at some later
stage, process the results of the initial call when they become available. Having two methods to deal with
asynchronous callbacks from the client provides this server-side support for asynchronous datasources.

These events are central to all callback events. This means that if a page implements this interface in order
to act as the recipient for Asynchronous Client Script Callback events, the RaiseCallbackEvent method
will be invoked for all client script callbacks defined within the page, whether one or one hundred. This
has implications for complex situations where you have multiple ways of triggering a callback method
from the client and multiple types of data associated with each event that are passed with each call. This
will become more apparent as you examine some more complex scenarios that utilize Asynchronous
Client Script Callback functionality.

Page.ClientScript — System.Web.UI.ClientScriptManager
In order for the server methods of the ICallbackEventHandler interface to be invoked on the server,
a callback event must first be triggered by the client, which is the browser. Since almost everything
dynamic on the browser is performed using JavaScript, you need to provide a method or register a
method to perform this function.

One of the changes that ASP.NET 2.0 introduced was the centralization of all script-based management
functions into a client script management object that is available to all ASP.NET pages. This includes client
script registration functions that were present in ASP.NET 1.0/1.1 such as the RegisterStartupScript
and RegisterClientScriptBlock method. These functions now exist as part of the ClientScript
object that is now a member of the Page object. Previously, in ASP.NET 1.0/1.1, you accessed the client
script functions as part of the Page object:

private void Page_Load(object sender, System.EventArgs e)
{

Page.RegisterStartupScript(“MyScript”,”<script
type=’text/javascript’>alert(‘This is some Javascript’);</script>”);
}

With ASP.NET 2.0, this functionality is now accessed through the ClientScript object, which is part
of the Page object. The ClientScript object is of type System.Web.UI.ClientScriptManager. The
syntax differences are shown in the following example:

protected void Page_Load(object sender, EventArgs e)
{

Page.ClientScript.RegisterStartupScript(this.GetType(), “MyScript”,
“alert(‘This is some Javascript’);”, true);
}

Page.ClientScript.GetCallbackEventReference
In addition to the ASP.NET 1.0/1.1 script management functions, the asynchronous client script manage-
ment functions also exist as part of this object. Of particular note is the GetCallbackEventReference

134

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 134

method. This method allows a developer to obtain a reference to the JavaScript method that will trigger
the asynchronous callback event. The method allows you to specify the name of the variables used to pass
in event data and contextual data, as well as what client-side JavaScript methods to call when the asyn-
chronous callback event completes. This method will throw an exception if the control or page in which it
is executing does not implement the ICallbackEventHandler interface described in the previous section.
The following code shows an example of using this method:

string js = Page.ClientScript.GetCallbackEventReference(this,
“arg”, “OnServerCallComplete”, “ctx”, true);

The first argument represents the object used to act as the recipient of the callback event. The arg param-
eter represents the name of the parameter used to pass the result of the callback event to the client-side
JavaScript method. The OnServerCallComplete argument represents the name of the client-side
JavaScript method that is called when the asynchronous callback event has completed execution. The
ctx parameter represents the name of the context parameter that is passed to the client-side method (in
this case OnServerCallComplete) when the asynchronous callback event completes. Finally, the true
parameter indicates that the callback event reference returned should be executed in an asynchronous
manner. The js string parameter holds a reference (in actual fact a block of JavaScript code) that is used
to invoke the asynchronous client callback given the parameters specified. Given the preceding example,
the js parameter would contain the following:

WebForm_DoCallback(‘__Page’,arg,OnServerCallComplete,ctx,null,true);

Making All the Moving Parts Work Together
So far, you know that in order for a web page or control to participate in, or support, Asynchronous
Client Script Callbacks, the ICallbackEventHandler interface must be implemented. In addition to
implementing the two server-based methods of the ICallbackEventHandler interface, the page or
control must utilize the script management functionality of the ClientScript object, which is part of
every Page object, to register the requisite JavaScript that will trigger the asynchronous callback event.
This initiates the asynchronous callback process.

Once the process has been initiated, client-side methods (JavaScript methods that exist within the web
page) need to be supplied to act as the final endpoint where the asynchronous process returns its results
for displaying or manipulation by the JavaScript code.

This process can be quite hard to grasp and that complexity contributes to the difficulty in being able to
develop and debug applications that utilize asynchronous client scripting. It is important to be able to
fully understand the entire process. As you proceed to integrate all the parts of the asynchronous pro-
cess, it helps to visualize the flow of functionality. This is shown in Figure 6-1, which appears shortly in
the chapter. Constant reference to this diagram as you proceed through the code samples can help in
being able to follow the steps in the process flow.

Obtaining a Callback Reference
The first part of this process, as you have already seen, is retrieving a reference to a callback event within
the browser to trigger the asynchronous call:

string js = Page.ClientScript.GetCallbackEventReference(this,
“arg”, “OnServerCallComplete”, “ctx”, true);

135

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 135

In order to make use of this to invoke a callback event, you must register it as a script block on the client.
Although it is possible to register this block explicitly, it is generally better practice to encapsulate this
script block in a simplified function to allow easy use by your client-side code. Consider the server-side
code in the following example:

protected void Page_Load(object sender, EventArgs e)
{

// Get our callback event reference
string js = Page.ClientScript.GetCallbackEventReference(this,

“arg”, “OnServerCallComplete”, “ctx”, true);

// Create a simplified wrapper method
StringBuilder newFunction = new StringBuilder();
newFunction.Append(“function StartAsyncCall(arg, ctx) “);
newFunction.Append(“{ “);
newFunction.Append(js);
newFunction.Append(“ } “);
// Now register it
Page.ClientScript.RegisterClientScriptBlock(this.GetType(), “NewAsyncMethod”,

newFunction.ToString(), true);
}

Using the preceding code, you have explicitly defined a JavaScript function called StartAsyncCall that
accepts two parameters named arg and ctx. This function will invoke the JavaScript event generated by
the call to the GetCallbackEventReference method, which itself invokes the asynchronous event.

Implementing the ICallbackEventHandler Interface
As already mentioned, you need to provide implementation for the methods defined in the ICallback
EventHandler interface. For a simple implementation, consider the following implementation of the
ICallbackEventHandler interface methods:

public string GetCallbackResult()
{

return “Server method completed at: “ + DateTime.Now.ToLongTimeString();
}

public void RaiseCallbackEvent(string eventArgument)
{

System.Threading.Thread.Sleep(2000);
}

This simple example waits a period of 2 seconds before returning a string containing the date and time
of the server.

This takes care of providing a way of initiating the asynchronous event (through getting a callback refer-
ence) and also providing an implementation for your asynchronous operation to execute on the server
side, but this is only half of the picture. You need a way to handle the result of this asynchronous event
or process. To illustrate what the chapter has covered so far by way of implementation, Figure 6-1 shows
the entire asynchronous callback process, with the specific areas that have already been covered indi-
cated by shaded areas:

136

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 136

Figure 6-1

1. Web page first requested

4. Web page displayed to user
(Contains Javascript code to
initiate async callback event)

5. Invoke async callback via
StartAsyncCall Javascript

method

8. Executes the
OnServerCallComplete
Javascript method, passing

the result of the
GetCallbackResult method

as arg and the call context
as ctx.

9. Update browser display with
results of async callback.

Client/Browser Web Server/Server Side

3. StartAsyncCall Javascript
method constructed and
registered on page via

RegisterClientScriptBlock
method.

2. Event Reference generated
via

GetCallbackEventReference
method.

7. GetCallbackResult
method is triggered, returning

a string result to the
client/browser.

6. RaiseCallbackEvent
method is tiggered,

passing in the arg parameter.

– Area covered so far

137

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 137

Initiating the Asynchronous Process from the Browser
The web page itself needs to initiate the asynchronous callback using the JavaScript method that has
been constructed and registered using the asynchronous client script framework. This is easily accom-
plished in the following HTML fragment:

<form id=”form1” runat=”server”>
<div>

<input type=”button” onclick=”StartAsyncCall(‘some text’,’my context’);”
value=”Initiate Async Call” />

</div>
</form>

In the preceding code, the onclick event of the button is executing the StartAsyncCall method passing
in ‘some text’ as an argument to the function and a string ‘my context’ to represent the contextual
data of the call. The StartAsyncCall method is the method you constructed and registered using the
Page.ClientScript object methods earlier.

At this stage, the asynchronous call has now been executed and will trigger the RaiseCallbackEvent
method on the server (which was defined earlier). Shortly thereafter, the GetCallbackResult method
is also executed and the result is sent back to the client/page.

Handling the Result of Asynchronous
Server-Side Call on the Client

Now that the asynchronous call has been executed, the server-side processing has been performed, and
the results have been sent back to the client browser, you must have a way of receiving and processing
those results. This represents the final step in the asynchronous process, as shown in Figure 6-2.

In the earlier server-side code, you used the Page.GetCallbackEvenReference method to obtain the
JavaScript event that triggers the asynchronous event, but that also provided the ability to specify the name
of a JavaScript method that receives the result of the asynchronous call. This event is automatically called
upon successful completion of the asynchronous server-side process. In the earlier example, this method
was named OnServerCallComplete. This method simply needs to be defined (with a corresponding
implementation) within the web page. This is the method that processes the result of the server-side call on
the client and typically updates the web page or performs some other action in response to this data. A sim-
ple example implementation of this method is shown in the following example:

<script type=”text/javascript”>
function OnServerCallComplete(arg,ctx)
{

alert(“Async Call completed. Returned: [“ +arg+”] Context Value: [“ + ctx +
“]”);
}
</script>

The preceding example simply displays a dialog box showing the result of the server-side call, as passed
in via the arg parameter, and also the context data passed with the server-side operation, passed in the
via the ctx parameter. These parameter names were also registered through the Page.GetCallback
EvenReference method shown earlier.

138

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 138

Figure 6-2

1. Web page first requested

4. Web page displayed to user
(Contains Javascript code to
initiate async callback event)

5. Invoke async callback via
StartAsyncCall Javascript

method

8. Executes the
OnServerCallComplete
Javascript method, passing

the result of the
GetCallbackResult method

as arg and the call context
as ctx.

9. Update browser display with
results of async callback.

Client/Browser Web Server/Server Side

3. StartAsyncCall Javascript
method constructed and
registered on page via

RegisterClientScriptBlock
method

2. Event Reference generated
via

GetCallbackEventReference
method.

7. GetCallbackResult
method is triggered, returning

a string result to the
client/browser.

6. RaiseCallbackEvent
method is tiggered,

passing in the arg parameter.

– Area covered so far

139

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 139

This completes this simplistic asynchronous callback process. To bring this all together, the complete list-
ing of the web page and the associated server-side code is shown in the following code listing.

Try It Out Simple Asynchronous Client Script Callback Example
Web Page (GetCallbackEventReferenceExample.aspx):
<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”GetCallbackEventReferenceExample.aspx.cs”
Inherits=”GetCallbackEventExample_GetCallbackEventExample” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>GetCallbackEventReference Example Page</title>

<script type=”text/javascript”>
function OnServerCallComplete(arg,ctx)
{

alert(“Async Call completed. Returned: [“ +arg+”] Context Value: [“ + ctx +
“]”);

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<input type=”button” onclick=”StartAsyncCall(‘some text’,’my context’);”
value=”Initiate Async Call” />

</div>
</form>

</body>
</html>

Server-Side Code (GetCallbackEventReferenceExample.aspx.cs):
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;

public partial class GetCallbackEventExample_GetCallbackEventExample :
System.Web.UI.Page, ICallbackEventHandler
{

protected void Page_Load(object sender, EventArgs e)
{

140

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 140

// Get our callback event reference
string js = Page.ClientScript.GetCallbackEventReference(this,

“arg”, “OnServerCallComplete”, “ctx”, true);

// Create a simplified wrapper method
StringBuilder newFunction = new StringBuilder();
newFunction.Append(“function StartAsyncCall(arg, ctx) “);
newFunction.Append(“{ “);
newFunction.Append(js);
newFunction.Append(“ } “);
// Now register it
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“NewAsyncMethod”,
newFunction.ToString(), true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

return “Server method completed at: “ + DateTime.Now.ToLongTimeString();
}

public void RaiseCallbackEvent(string eventArgument)
{

System.Threading.Thread.Sleep(2000);
}

#endregion
}

So, now you have a fully functional, albeit very simple, implementation of Asynchronous Client Script
Callbacks. The server-side methods in this example are extremely simple and would not normally have
any problems or generate any exceptions, but in a normal application where complexity is much higher,
this is a very real consideration. Luckily, the asynchronous client script framework provides a mecha-
nism for handling this.

Handling Errors in the Asynchronous Process
When an error occurs on the server, this usually means an exception has been thrown. Obviously, some
way of identifying when an exception has occurred and dealing with this on the client browser is
required. In the same way that you defined a JavaScript method that is called on completion of the asyn-
chronous process, you can define a JavaScript method that is called when an exception is raised on the
server during your asynchronous callback. This is specified as an additional parameter in the call to the
GetCallbackEventReference method, which is shown in the following example:

string js = Page.ClientScript.GetCallbackEventReference(this,
“arg”, “OnServerCallComplete”, “ctx”,”OnServerCallError”, true);

The parameter that contains OnServerCallError identifies the name of the JavaScript method that
is called when an exception occurs on the server. The number of parameters that this method requires is

141

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 141

almost identical to the method defined previously to cater for a successful call. The JavaScript imple-
mentation for the OnServerCallError method is shown here:

function OnServerCallError(err,ctx)
{

alert(“An error occurred! [“ + err + “] Context passed in was [“ + ctx + “]”);
}

The first parameter err represents the message of the exception that was generated, and the ctx param-
eter represents the same context defined in previous examples.

To demonstrate this, the implementations of the server-side methods have been altered to explicitly
throw an exception in order to simulate an error condition. In the following example, the
GetCallbackResult method has been modified to throw an exception:

public string GetCallbackResult()
{

throw new Exception(“Whoa! This is a server side exception from
‘GetCallbackResult’”);

return “Server method completed at: “ + DateTime.Now.ToLongTimeString();
}

This time, when the button on the web page is clicked, the asynchronous process is initiated as expected.
However, the JavaScript error routine is now invoked, with the exception message being displayed,
along with the context data you defined earlier. This, the definition of JavaScript handler methods for
both a successful and an unsuccessful call, would typically be basic requirements for any production
system using the Asynchronous Client Script Callback techniques.

Although the preceding code example allows an exception to be handled by the browser for the purpose
of demonstration, it is important that you properly handle all exceptions in your callback code. Normal
exception-handling techniques should be used with a try...catch syntax. This way, only exceptions
that are meant to be flowed and handled by the browser are allowed by your code. In addition, your
server- side code can take action to prevent data corruption or undesired behavior before allowing the
exception to be passed up to the client-side code.

In the preceding example, the exception was generated from the GetCallbackResult method. The
JavaScript error handler method displayed the message of the exception as expected, but what if the excep-
tion were generated by the companion RaiseCallbackEvent server-side method? In the following exam-
ple, the generation of the exception has been moved to the RaiseCallbackEvent method and removed
from the GetCallbackResult method. To aid this example and prevent confusion, the entire server-side
code listing is shown:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;

142

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 142

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;

public partial class
GetCallbackEventWithErrorHandlingExample_GetCallbackEventWithErrorHandlingExample :
System.Web.UI.Page, ICallbackEventHandler
{

protected void Page_Load(object sender, EventArgs e)
{

// Get our callback event reference
string js = Page.ClientScript.GetCallbackEventReference(this,

“arg”, “OnServerCallComplete”, “ctx”,”OnServerCallError”, true);

// Create a simplified wrapper method
StringBuilder newFunction = new StringBuilder();
newFunction.Append(“function StartAsyncCall(arg, ctx) “);
newFunction.Append(“{ “);
newFunction.Append(js);
newFunction.Append(“ } “);
// Now register it
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“NewAsyncMethod”,
newFunction.ToString(), true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

return “Server method completed at: “ + DateTime.Now.ToLongTimeString();
}

public void RaiseCallbackEvent(string eventArgument)
{

System.Threading.Thread.Sleep(2000);
throw new Exception(“Whoa! This is a server side exception from

‘RaiseCallbackResult’”);
}

#endregion
}

The results from this are not what you might expect and are shown in Figure 6-3.

Figure 6-3

143

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 143

Here you can see that the exception message has been displayed, in addition to the result of the
GetCallbackResult method. Both of the messages have been aggregated together, but separated by
a pipe (|) character. What is happening is that the asynchronous client script framework is still calling
both of the required methods of the ICallbackEventHandler interface, even though one of the meth-
ods generated an exception. The fact that one of the methods generates an exception does not preclude
the execution of the other method. This is an important point because the GetCallbackResult method
needs to be aware of any errors that have occurred during the execution of the RaiseCallbackEvent
method and not blindly execute assuming that if execution reaches that method, then all previous pro-
gram execution has occurred without error.

Dealing with Complex Data
In the previous examples, the result of the asynchronous callback server-side methods has been only a
simple singular textual string result. The needs of applications are many, and the need to deal with more
complex data is a common scenario, particularly where there is a need to return more than one result.
As an example, suppose that you wanted to load the values of a drop-down list from a potentially long-
running server-side query or operation. There might be many items to load into the drop-down list, and
each item will typically have a value associated with it, which is returned when the user selects a partic-
ular option from the drop-down list.

To illustrate this scenario, the following web page contains a simple drop-down list and a span area that
will contain the selected value from the drop-down list:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”AsyncDropDownListExample.aspx.cs”
Inherits=”AsyncDropDownListExample_AsyncDropDownListExample” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Asynchronous Drop Down List Example</title>

<script type=”text/javascript”>
function LoadListItems()
{

}
</script>

</head>
<body onload=”LoadListItems();”>

<form id=”form1” runat=”server”>
<div>

<select id=”ddlList” disabled=”true”>
<option>(Loading values from the Server)</option>

</select>
</div>
<hr />

144

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 144

<div>
<label>Value Selected: </label>{none}

</div>

</form>
</body>
</html>

As already mentioned, the web page contains a drop-down list and an area to display the selected value,
but it also contains a LoadListItems JavaScript method that is called when the page loads, via the onload
event defined in the body element. This will be where the asynchronous server-side call is initiated to
retrieve the items to be loaded in the drop-down list.

The initial state of the drop-down list will be disabled. This is because there will be no items to select
until the list has been populated by your asynchronous operation.

Enabling the Page for Asynchronous Callbacks
The web page must be enabled for Asynchronous Client Script Callback support by implementing the
ICallbackEventHandler interface and also by getting a callback event reference (in the form of a
JavaScript method call) to initiate the request to the server side.

To obtain a callback event reference, you can use exactly the same mechanism and code that was listed
previously. It is the implementation of the ICallbackEventHandler interface that will differ. The code
for the server-side page implementation is shown in the following listing:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;

public partial class AsyncDropDownListExample_AsyncDropDownListExample :
System.Web.UI.Page, ICallbackEventHandler
{

private DataSet lookupData = null;

protected void Page_Load(object sender, EventArgs e)
{

// Get our callback event reference
string js = Page.ClientScript.GetCallbackEventReference(this,

“arg”, “OnServerCallComplete”, “ctx”, “OnServerCallError”, true);

// Create a simplified wrapper method
StringBuilder newFunction = new StringBuilder();

145

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 145

newFunction.Append(“function StartAsyncCall(arg, ctx) “);
newFunction.Append(“{ “);
newFunction.Append(js);
newFunction.Append(“ } “);
// Now register it
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“NewAsyncMethod”,
newFunction.ToString(), true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

// nothing to return yet
return null;

}

public void RaiseCallbackEvent(string eventArgument)
{

// no implementation yet
}

#endregion
}

You will notice that this code listing is almost identical to the previous example. An important difference
at this point is the inclusion of the declaration of a private member variable of type DataSet named
lookupData.

private DataSet lookupData = null;

This is important because it will be used to store the lookup data across the two methods of the
ICallbackEventHandler interface. However, the implementation of the interface methods will
contain the majority of the custom code and be radically different from previous examples.

Obtaining the Data — Implementing the
ICallbackEventHandler Interface

This example will attempt to simulate obtaining lookup values from a database, with associated ID values,
for populating the drop-down list. Obtaining this data will be implemented in the RaiseCallbackEvent
method. The RaiseCallbackEvent method is the first method that is invoked on the server side during
the asynchronous callback process, and it makes sense to initiate the data retrieval request as soon as possi-
ble. The formatting and returning of that data will be implemented in the GetCallbackResult method. The
separation of process into the two methods also separates the discrete process of data retrieval and format-
ting into more manageable units.

When you are dealing with data from a database, a common technique is to use a DataSet object to encap-
sulate that data. For this example, a DataSet will be used as the object returned from your database call.
For simplicity, the data retrieval code will not actually query a database, but rather manually construct a

146

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 146

DataSet object with some data and simulate a lengthy database query. The implementation details of this
method are not important and can be easily changed to match what is required in different applications.
The following is the listing of the method itself:

private DataSet GetLookupValuesFromDatabase()
{

DataSet ds = new DataSet();
DataTable dt = new DataTable();

DataColumn idCol = new DataColumn(“ID”, typeof(int));
DataColumn nameCol = new DataColumn(“Name”, typeof(string));
dt.Columns.Add(idCol);
dt.Columns.Add(nameCol);
dt.AcceptChanges();

DataRow newRow = null;
newRow = dt.NewRow();
newRow[idCol] = 1;
newRow[nameCol] = “Joe Bloggs ID#1”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 2;
newRow[nameCol] = “Mr A. Nonymous ID#2”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 3;
newRow[nameCol] = “Mrs N. Extdoorneighbour ID#3”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 4;
newRow[nameCol] = “Mr. Pea Body ID#4”;
dt.Rows.Add(newRow);

ds.Tables.Add(dt);
ds.AcceptChanges();
return ds;

}

The implementation of the RaiseCallbackEvent method may now look like the following:

public void RaiseCallbackEvent(string eventArgument)
{

System.Threading.Thread.Sleep(2000); // Simulate a delay
lookupData = GetLookupValuesFromDatabase();

}

Notice how the results of the data retrieval routine GetLookupValuesFromDatabase are assigned to
the private member variable lookupData.

147

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 147

With this in place, you can now utilize the returned data from the GetCallbackResult routine.
Examine the following implementation of this method:

public string GetCallbackResult()
{

StringBuilder ids = new StringBuilder();
StringBuilder names = new StringBuilder();

int rowCnt = 0;
int numRows = lookupData.Tables[0].Rows.Count;

foreach (DataRow row in lookupData.Tables[0].Rows)
{

rowCnt++;

ids.Append(row[“ID”].ToString());
if (rowCnt < numRows) // Only append a separator if its NOT the last

element
ids.Append(“|”); // Include a data element separator character

names.Append(row[“Name”].ToString());
if (rowCnt < numRows) // Only append a separator if its NOT the last

element
names.Append(“|”); // Include a data element separator character

}

// Make one big string, separating the sets of data with a tilde ‘~’
string returnData = string.Format(“{0}~{1}”, ids.ToString(), names.ToString());

return returnData;
}

The preceding code loops through each row in the DataSet object that was previously assigned from
the RaiseCallbackEvent method. The code then extracts each ID field value, adds it to a string (imple-
mented by using a StringBuilder object for speed), and separates each value with a pipe (|) character.
The code also does the same for the Name field values, but adds the pipe-separated values to a different
string. Once this process is complete, and all values have been assigned to separate StringBuilder
objects, there is a final step — that of creating a string that contains all of the pipe-separated ID values
and pipe separated Name values, but with each set of data separated by yet another character, this time
a tilde (~) character.

The reason the data is separated by these characters is that when this data is returned to the browser,
JavaScript can easily split this string data into separate element arrays so that you can iterate over the
array and load this data into your drop-down list. All that is required is explicit knowledge of what
characters are used to delimit this data.

The pipe (|) and tilde (~) characters themselves are not important and were simply chosen because they
are typically not used in string data. They can, however, be any character you choose.

The data that is returned to the browser, looks like the following:

1|2|3|4~Joe Bloggs ID#1|Mr A. Nonymous ID#2|Mrs N. Extdoorneighbour ID#3|Mr. Pea
Body ID#4

148

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 148

Dealing with the Returned Data on the Client
Now that the server side has been fully implemented, you must provide a way for the client routines to
parse the string blob of data that is returned.

As in the previous examples, when the callback event reference was obtained during the Page_Load
event on the server, the OnServerCallComplete and OnServerCallError JavaScript routines were
specified as the recipient for the result of the successful and unsuccessful asynchronous calls, respec-
tively. Consider the following implementations of these methods:

function OnServerCallComplete(arg, ctx)
{

var idsAndNames = arg.split(“~”);
var ids = idsAndNames[0].split(“|”);
var names = idsAndNames[1].split(“|”);

var htmlCode;
var ddl = document.getElementById(“ddlList”);

for (var i=0; i < ids.length; i++)
{

htmlCode = document.createElement(‘option’);

// Add the new <OPTION> node to our <SELECT> drop list
ddl.options.add(htmlCode);

// Set the <OPTION> display text and value;
htmlCode.text = names[i];
htmlCode.value = ids[i];

}

// Enable our drop down list as it
// should have some values now.
ddl.disabled = false;

}

function OnServerCallError(err, ctx)
{

alert(“There was an error processing the request! Error was [“ + err + “]”);
}

The OnServerCallComplete method first uses the split method, which is available as part of all
JavaScript string objects, to separate the single string into a string array, using the specified character as
the delimiter to denote the separation between elements. The ids string array contains all the id values
of the data to select, and the names string array contains the corresponding textual descriptions to dis-
play in the drop-down list. These arrays are identical in length.

The code then obtains a reference to the control, as shown in the following line:

var ddl = document.getElementById(“ddlList”);

149

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 149

Using a for loop to iterate over each element of the ids array, you create a new selection option using the
following line:

htmlCode = document.createElement(‘option’);

This creates something like the following markup:

<option></option>

This is then added to the list of options for the drop-down list, and the corresponding id and textual dis-
play values are then assigned to this newly added drop-down list option. Once all the options have been
added, the drop-down list is enabled by setting the disabled flag to false:

ddl.disabled = false;

The drop-down list is now populated with values from your asynchronous server-side call and ready for
selection. To illustrate that the drop-down list has been populated correctly, the drop-down list has had
its onchanged event assigned a JavaScript method to display the selected value, or ID of the textual
selection element. The following is the complete code listing for both web page and server-side code.

Try It Out A More Complex Asynchronous Client Script Callback Example
Web Page (AsyncDropDownListExample.aspx):
<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”AsyncDropDownListExample.aspx.cs”
Inherits=”AsyncDropDownListExample_AsyncDropDownListExample” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Asynchronous Drop Down List Example</title>

<script type=”text/javascript”>
function LoadListItems()
{

StartAsyncCall(null,null);
}

function OnServerCallComplete(arg, ctx)
{

var idsAndNames = arg.split(“~”);
var ids = idsAndNames[0].split(“|”);
var names = idsAndNames[1].split(“|”);

var htmlCode;
var ddl = document.getElementById(“ddlList”);

for (var i=0; i < ids.length; i++)
{

htmlCode = document.createElement(‘option’);

150

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 150

// Add the new <OPTION> node to our <SELECT> drop list
ddl.options.add(htmlCode);

// Set the <OPTION> display text and value;
htmlCode.text = names[i];
htmlCode.value = ids[i];

}

// Enable our drop down list as it
// should have some values now.
ddl.disabled = false;

}

function OnServerCallError(err, ctx)
{

alert(“There was an error processing the request! Error was [“ + err +
“]”);

}

function OnDropListSelectChanged()
{

var ddl = document.getElementById(“ddlList”);

// Display selected value
var msg = document.getElementById(“msg”);
msg.firstChild.nodeValue=ddl.value;

}
</script>

</head>
<body onload=”LoadListItems();”>

<form id=”form1” runat=”server”>
<div>

<select id=”ddlList” disabled=”false”
onchange=”OnDropListSelectChanged();”>

<option>(Loading values from the Server)</option>
</select>

</div>
<hr />
<div>

<label>Value Selected: </label>{none}
</div>

</form>
</body>
</html>

Server-Side Code (AsyncDropDownListExample.cs):
using System;
using System.Data;
using System.Configuration;

151

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 151

using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;

public partial class AsyncDropDownListExample_AsyncDropDownListExample :
System.Web.UI.Page, ICallbackEventHandler
{

private DataSet lookupData = null;

protected void Page_Load(object sender, EventArgs e)
{

// Get our callback event reference
string js = Page.ClientScript.GetCallbackEventReference(this,

“arg”, “OnServerCallComplete”, “ctx”, “OnServerCallError”, true);

// Create a simplified wrapper method
StringBuilder newFunction = new StringBuilder();
newFunction.Append(“function StartAsyncCall(arg, ctx) “);
newFunction.Append(“{ “);
newFunction.Append(js);
newFunction.Append(“ } “);
// Now register it
Page.ClientScript.RegisterClientScriptBlock(this.GetType(),

“NewAsyncMethod”,
newFunction.ToString(), true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

StringBuilder ids = new StringBuilder();
StringBuilder names = new StringBuilder();

int rowCnt = 0;
int numRows = lookupData.Tables[0].Rows.Count;

foreach (DataRow row in lookupData.Tables[0].Rows)
{

rowCnt++;

ids.Append(row[“ID”].ToString());
if (rowCnt < numRows) // Only append a separator if its NOT the last

element
ids.Append(“|”); // Include a data element separator character

names.Append(row[“Name”].ToString());
if (rowCnt < numRows) // Only append a separator if its NOT the last

element

152

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 152

names.Append(“|”); // Include a data element separator character
}

// Make one big string, separating the sets of data with a tilde ‘~’
string returnData = string.Format(“{0}~{1}”, ids.ToString(),

names.ToString());

return returnData;
}

public void RaiseCallbackEvent(string eventArgument)
{

System.Threading.Thread.Sleep(2000); // Simulate a delay
lookupData = GetLookupValuesFromDatabase();

}

#endregion

#region GetLookupValuesFromDatabase helper method

private DataSet GetLookupValuesFromDatabase()
{

DataSet ds = new DataSet();
DataTable dt = new DataTable();

DataColumn idCol = new DataColumn(“ID”, typeof(int));
DataColumn nameCol = new DataColumn(“Name”, typeof(string));
dt.Columns.Add(idCol);
dt.Columns.Add(nameCol);
dt.AcceptChanges();

DataRow newRow = null;
newRow = dt.NewRow();
newRow[idCol] = 1;
newRow[nameCol] = “Joe Bloggs ID#1”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 2;
newRow[nameCol] = “Mr A. Nonymous ID#2”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 3;
newRow[nameCol] = “Mrs N. Extdoorneighbour ID#3”;
dt.Rows.Add(newRow);

newRow = dt.NewRow();
newRow[idCol] = 4;
newRow[nameCol] = “Mr. Pea Body ID#4”;
dt.Rows.Add(newRow);

ds.Tables.Add(dt);
ds.AcceptChanges();

153

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 153

return ds;
}

#endregion
}

Limitations on Returning Complex Data in XML
The previous example demonstrates one way to deal with multiple elements of return data. Ultimately,
any situation that demands that you return multiple elements of data must somehow be packaged and
represented in a string format. One of the major limitations of asynchronous callbacks is the fact that all
data returned from the server-side call must be packaged into a string.

In the previous example, which consisted of textual display elements and corresponding ID values, the
elements were separated by special characters acting as data delimiters. An alternate way of representing
data is, of course, using an XML document. XML is good at representing complex data structures, in par-
ticular hierarchical data structures. .NET has many ways to construct an XML document, and it is beyond
the scope of this book to illustrate these techniques; however, DataSets can easily be represented as XML
by using the WriteXML method of the DataSet object. Alternatively, the XMLDocument object can be
employed to create an XML document from scratch.

Parsing XML data on the browser/client can be a little more work. DOM support for manipulation of
XML documents is still not properly supported in all browsers and quite often, third-party libraries are
required to properly support parsing of XML document, using such tools as X Path.

See Chapter 4 for more details on DOM XML support and handling XML data in the browser.

The main point to be aware of is that the nature of the data to be returned will play a huge part in dictat-
ing how the data should be formatted and packaged into a string for return to the client browser, where it
is parsed and “unpacked.”

ICallbackContainer Interface
This interface is a “companion” interface to the previously detailed ICallbackEventHandler interface
and is for more advanced scenarios, typically where a custom control is required that supports asyn-
chronous callback. An example is the GridView control that was detailed at the beginning of this chapter.
For asynchronous callback operations, the ICallbackEventHandler interface is implemented in all cases;
however, the ICallbackContainer interface is typically used only by controls that support asynchronous
callbacks (although this is not strictly mandatory).

The ICallbackContainer interface has only one method, which has the following signature and
parameters:

❑ Method —string GetCallbackString(IButtonControl control, string argument);

❑ Description — Creates a script for initiating a client callback to a web server. Essentially, this
method returns a string that contains a JavaScript method or script that will initiate the asyn-
chronous callback to the server when executed.

154

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 154

❑ Parameters —

❑ IButtonControl control— A reference to the control initiating the callback request.

❑ string argument— The arguments that are used to build the callback script. This
parameter is passed to the RaiseCallbackEvent method that handles the callback and
is part of the ICallbackEventHandler interface discussed previously. This essentially
represents any context data that the caller wishes to pass to the method to aid in cre-
ation of the final output or return data.

As mentioned previously, this interface is typically implemented by control developers who are author-
ing controls that utilize the asynchronous callback functionality. This interface acts as a complement to
the ICallbackEventHandler interface and actually makes use of the same techniques to emit the
required script to initiate a callback.

The following code shows a sample implementation of this interface for a control that supports asyn-
chronous callbacks.

Try It Out Implementing the ICallbackContainer Interface
public string GetCallbackScript(IButtonControl buttonControl, string argument)
{

// Prepare the input for the server code

string arg = “ControlArgument”;

string js = String.Format(“javascript:{0};{1};{2}; return false;”,
“__theFormPostData = ‘’”,
“WebForm_InitCallback()”,
Page.ClientScript.GetCallbackEventReference(

this, arg, “MyControl_Callback”, “null”));
return js;

}

How It Works
To illustrate a complete server control design is an advanced scenario and is beyond the scope and inten-
tion of this book; however, an explanation of this implementation is warranted — in particular, the for-
matting of the JavaScript method. The following code:

javascript:{0};{1};{2}; return false;

effectively executes the JavaScript code that will be placed in the placeholder positions {0}, {1}, and
{2}, until finally returning a false value. The false value being returned ensures that no further
JavaScript processing takes place as a result of the event raised. For each placeholder element, a section
of JavaScript is embedded.

First, the {0} placeholder represents the:

“__theFormPostData = ‘’”

JavaScript code, which simply resets a hidden variable to an empty value.

155

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 155

The {1} placeholder represents the:

“WebForm_InitCallback()”

JavaScript code, which collects and prepares the form data to post to the server for the callback to the
server to be correctly interpreted and trapped by the ASP.NET runtime engine. This is crucial so that
the correct server-side methods are executed in response to the callback event as expected.

Finally, the {2} placeholder represents the code:

Page.ClientScript.GetCallbackEventReference(
this, arg, “MyControl_Callback”, “null”));

This code should look familiar, and is the same method used to obtain a callback event reference in the
initial page-centric examples detailed previously in the discussion of the ICallbackEventHandler
interface. It is used for exactly the same purpose here, as the final step to initiate the asynchronous call-
back request to the server.

To summarize, the implementation of the ICallbackContainer method first constructs the arguments
to send to the server-side callback request and returns a JavaScript block that first clears the posted data,
initializes the collection of the posted data in the HTTP request (via WebForm_InitCallback()), and
finally initiates the callback request by obtaining the callback event through the
Page.GetCallbackEventReference method.

This section is not intended as a complete discussion on the specifics of implementing asynchronous
callback functionality within your custom controls, but merely serves as an introduction on how to begin
such a task with asynchronous callbacks in mind. The reader is encouraged to perform further investiga-
tion in this advanced topic area and in particular in the creation of custom controls.

Summary
This chapter has introduced the concept of Asynchronous Callback Client Scripts that are provided with
ASP.NET 2.0. This feature allows a developer to utilize Ajax-like functionality within ASP.NET in a num-
ber of ways.

You looked at how you could include asynchronous callbacks in your applications by:

❑ Using “out-of-the-box” server controls that come included with ASP.NET

❑ Implementing the requisite interfaces to enable your pages to support asynchronous behavior
using callbacks

❑ Working with advanced techniques to develop controls that support asynchronous behavior
using client callbacks

By far the easiest way to do this is to use the existing controls shipped with ASP.NET 2.0 that support
this functionality, such as the GridView, DetailsView, and TreeView controls. No JavaScript or

156

Chapter 6

09_78544X ch06.qxp 7/18/06 3:15 PM Page 156

explicit server-side coding is required to utilize asynchronous callbacks. Simply set some properties and
let the controls do the rest.

For any custom behavior, the most common application will be implementing the ICallbackEvent
Handler interface and crafting it to meet your applications requirements. In the examples shown in
this chapter, you explored various ways to interact with the client-side code and server-side code, and
in particular, examined ways of packaging custom data to transfer between the client and server side.

Finally, you engaged in a brief examination of the ICallbackContainer interface that is used for more
advanced scenarios in the creation of custom controls that support asynchronous client script callback
functionality.

Asynchronous Client Script Callbacks provide a framework to utilize Ajax-like functionality that is inte-
grated with the server-side-centric development nature of ASP.NET. It is a powerful framework that is
flexible, but does require some manual effort to customize to meet your applications requirements.
Experimentation is the key to becoming adept at making this powerful feature set work the way you
want it to.

It is worth mentioning here that the future of asynchronous client script callbacks actually lies in a tech-
nology that Microsoft is currently developing, code named Atlas. Atlas will make the implementation
of asynchronous functionality on the client as well as the server significantly easier. It will consist of a
vastly enhanced client-side framework, as well as tightly integrated server controls to make what has
been demonstrated in this chapter achievable with far less effort and complexity.

Atlas technology will be covered in detail later in this book starting at Chapter 10.

157

What Is Built into ASP.NET

09_78544X ch06.qxp 7/18/06 3:15 PM Page 157

09_78544X ch06.qxp 7/18/06 3:15 PM Page 158

7
Ajax.NET Professional

Library

Every once in a while, a technology is extremely simplified with the introduction of new wrapper
libraries. These libraries use existing technologies but make the development process easier to use
by wrapping the sometimes difficult concepts into easier-to-use, more simplified concepts. So, the
term wrapper library comes from having a library of code wrapped around existing technology. You
can tell when a great wrapper library is released because of its instant popularity.

This chapter covers one such wrapper library known as the Ajax library for .NET. In this chapter
and the next, we will show off the simplicity of talking back and forth between client browsers and
your application server without page postbacks. We’ll also dig a little under the hood of the library
to show you how and why the library works.

This chapter shows you how to get started using the Ajax.NET Pro library. To get started, you’ll set
up a simple example and get it working. The following topics will be covered:

❑ Acquiring Ajax.NET Pro

❑ Adding a reference to the Ajax.NET Pro assembly

❑ Setting up the Web.Config to handle Ajax requests

❑ Registering the page class

❑ Writing methods in code-behind to be accessible on the client

❑ Examining the request

❑ Executing the Ajax method and getting a server response

❑ Digging into callbacks and context

❑ Trapping errors

When you have finished these examples, you will have completed your first implementation of
the Ajax.NET Pro library. You will have successfully set up an ASP.NET page that uses the library
to refresh parts of your page with data from the web server.

10_78544X ch07.qxp 7/18/06 3:15 PM Page 159

Acquiring Ajax.NET Pro Version 6.4.16.1
In Chapters 7 and 8, we’re using and talking about Ajax.NET Pro version 6.4.16.1. As with all software,
this library is evolving and continually being added to and upgraded. We’ve made the version 6.4.16.1
library available to you for downloading on our web site, http://BeginningAjax.com. You can down-
load the version in one of two ways:

❑ Compiled Library, ready to use

❑ Library Source Code, must be compiled first

I would recommend that first you download the Compiled Library. This is a simple zip file that contains a
single file named Ajax.NET. This is the already compiled library that is ready for you to start using as a
reference in the next section. If you would like to have access to the source code, you can download the
Library Source Code, which has all the source code files needed for you to do the compiling yourself; then
the code can be embedded into your application.

Preparing Your Application
In order to prepare your application to use Ajax.NET Pro, follow these two steps:

1. Add a reference to the Ajax.NET Pro library.

2. Wire up the Ajax.NET Pro library in the Web.Config file so that your application can process
the special requests created by the Ajax.NET Pro library.

Try It Out Preparing Your Application to Use Ajax.NET Pro
1. To use the Ajax.NET Pro library, your first step is to set a reference to the library. This allows

you to use library functionality inside your application. Create a new web site in Visual Studio.
Visual Studio 2005 automatically creates a Bin folder for you. Right-click on this folder and
select Add Reference. Figure 7-1 shows the Add Reference dialog box. Select the Browse tab,
and navigate to the AjaxPro.dll file that you downloaded (or compiled from the Library
Source Code). Once this is selected, click the OK button, and you will have successfully refer-
enced the Ajax.NET Pro library from your application.

2. The Ajax.NET Pro library uses a page handler to process requests that come into the server from
your client application. This page handler needs to be wired up to your application, and this
is done by an inserting it into your Web.Config file. This code should be inserted in the
<system.web> section of Web.Config:

<httpHandlers>
<add verb=”POST, GET” path=”AjaxPro/*.ashx”

type=”AjaxPro.AjaxHandlerFactory,AjaxPro” />
</httpHandlers>

160

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 160

Figure 7-1

If you don’t fully understand what an HTTP handler is, you’re not alone. This code basically
tells ASP.NET to take ownership of all requests that come into your web site with the path of
/AjaxPro/ and have a file extension of .ashx, and then process that request with the Ajax.NET
Pro library. Later you’ll see JavaScript that is loaded dynamically from these *.ashx paths. When
you see URLs like this, remember that they’re being processed by the Ajax.NET Pro library.

You’ll examine what is happening with those requests later in this chapter.

Using the Ajax.NET Pro Library
Now that your application is set up to use the Ajax.NET Professional library, you are ready to benefit
from the ease of use the library offers. In Chapter 2, you saw how a JavaScript method could be used to
change an image. In the first example here, you’ll perform that same functionality, but instead of chang-
ing the image client side from left to right and back again, you’ll ask the server for an image to display.

There are three steps required to use the Ajax.NET Pro library in your application:

1. First, you write the code that is going to be used in your image switching routine.

2. Second, you wire up that code to be used by the Ajax.NET Pro library.

3. Third, you execute that code from JavaScript.

So, your goal in this example is to switch an image by using JavaScript as you did in Chapter 2. However,
the major difference will be that you ask the server for an image name, and the response from the server
will become the src attribute of your image.

161

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 161

The server-side code that is responsible for switching the image looks like this:

ChangeImage Method for Code-Behind Page
public string ChangeImage(string input, string left, string right)
{

//Get the image filename without the file extension
string filename = System.IO.Path.GetFileNameWithoutExtension(input);
//Check if the strings match, ignoring case
if (string.CompareOrdinal(filename, left) == 0)
{

//if the strings match then send back the ‘right’ string
return input.Replace(filename, right);

}
//strings did not match, send back ‘left’ string
return input.Replace(filename, left);

}

The ChangeImage method accepts three parameters; an input string, which is the path of the current
image that is loaded; a left string, which defines what the Left image src should be; and a right
string, which defines the Right image src. Calling this method in code would look something like this:

MyImage.ImageUrl = ChangeImage(MyImage.ImageUrl, “ArrowLeft”, “ArrowRight”);

This is straightforward code that switches the image.

Try It Out Placing the Image-Switching Code in Your Page
1. Create a page in the root of your web site called ImageSwitcher.aspx.

2. Right-click on this file, and select Use as Default, so that when you run your application,
this is the page that will be shown in your browser. By default, Visual Studio creates an
ImageSwitch.aspx.cs file for you.

3. Add using AjaxPro; with all the other using statements at the top of your page.

4. Open this file, and insert the ChangeImage() method just below your Page_Load method.
Compile your project.

At this point, your project should compile with zero errors. If you do have compile errors, it’s most
likely because you haven’t referenced the AjaxPro assembly correctly, as shown in Figure 7-1. If you run
your project, you will not see any page output because you haven’t done any UI work just yet. That will
come later.

You have completed Step 1 in using the Ajax.NET Pro library in your application. However, the real
magic in this example is in Step 2 — making that code accessible using JavaScript so that you can access
this functionality in the client browser. This is very simple to do using the Ajax.NET Pro library, and that
is just where you’re going with this example. One of the nicest features of the Ajax.NET Pro library is
that you can easily adapt your existing code without rewriting it. Yes, you read that correctly — you do
not have to rewrite any of your code to make it available in your JavaScript. All you have to do is regis-
ter your code with the Ajax.NET Pro library. That sounds kind of strange — register your code — doesn’t
it? The first two of the three steps in using the Ajax.NET library are the easiest to implement. And if
your code is already written, this next step should take you only about 2 minutes. To make your code

162

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 162

accessible using JavaScript, you first register your page class with the Ajax.NET Pro library. This class
has method(s) on it that you want to expose to JavaScript. Then, you register the method you want to
expose. This is all explained in the next two sections.

Registering Your Page for Ajax.NET Pro
Registering your page class with the Ajax.NET Pro library is what activates the library. This is the com-
mand that generates a JavaScript object that you can use on the client browser. Registering your page
class is very simple and is done with just one line of code. This single line of code needs to be executed
somewhere in the page’s lifecycle and is generally inserted into the Page_Load method.

protected void Page_Load(object sender, EventArgs e)
{ AjaxPro.Utility.RegisterTypeForAjax(typeof(Chapter7_ImageSwitcher));
}

By default, your page class is the same as the page name that you assigned to the .aspx file, preceded
by any folder structure that the file is in. In this case, the file ImageSwitcher.aspx is in a /Chapter7/
folder, so the name is automatically created as Chapter7_ImageSwitcher. This can get out of sync if
you’ve used the rename function in Visual Studio. You can confirm your page class name in two places
if your application is compiling.

❑ At the top of the .aspx page in the page directive, you’ll see an Inherits attribute. This is your
page class name.

<%@ Page Language=”C#” Inherits=”Chapter7_ImageSwitcher” %>

❑ The second place you can check your page class name is in the .cs file. The .cs file actually
defines a partial class that is shared with the same class your .aspx page is inherited from.
The class signature is the class name.

We bring this up only because if you rename an .aspx page, Visual Studio will rename the actual files,
but it will not rename the page class.

public partial class Chapter7_ImageSwitcher: System.Web.UI.Page

Remember that C# is a case-sensitive, so imageswitcher is different from ImageSwitcher is different
from imageSwitcher. If you’ve incorrectly cased the name, your application shouldn’t compile.

Registering Your Methods for Ajax.NET Pro
Now that you’ve registered your page, the next step is to register your page methods. You can’t have
one without the other. You have to register a class that has Ajax.NET Pro method(s) on it. You’ve already
added the ChangeImage() method to your ImageSwitch.aspx.cs file. Remember, I said you can call
this code in JavaScript without rewriting any of it. Here is the magic of the library. Simply mark your
method with an AjaxPro.AjaxMethod() attribute. If you’ve never used attributes before you’re in for
a great surprise. This is a simple way of decorating your existing code. Just add the following line pre-
ceding your ChangeImage() method:

[Ajax.AjaxMethod()]

163

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 163

So, your entire server-side ImageSwitch.aspx.cs code file should look like this:

Server Side — Chapter7_ImageSwitcher.aspx.cs

protected void Page_Load(object sender, EventArgs e)
{

AjaxPro.Utility.RegisterTypeForAjax(typeof(Chapter7_ImageSwitcher));
}

[AjaxPro.AjaxMethod()]
public string ChangeImage(string input, string left, string right)
{

//Get the image filename without the file extension
string filename = System.IO.Path.GetFileNameWithoutExtension(input);
//Check if the strings match, ignoring case
if (string.CompareOrdinal(filename, left) == 0)
{

//strings match == send back ‘right’ string
return input.Replace(filename, right);

}
//strings did not match, send back ‘left’ string
return input.Replace(filename, left);

}

Violà! Step 2 of using the Ajax.NET Pro library in your application is done. You’ve now registered your
page class, and that class has an AjaxMethod() in it. You can now access this method in JavaScript with
a very standard syntax. Your JavaScript is going to be as simple as the following:

Chapter7_ImageSwitcher.ChangeImage(img.src, “ArrowLeft”, “ArrowRight”);

This line of code returns a response object that has a value of the URL that you want to set as the source
of your image, pointing to either the left or the right image. Now you’re ready to start writing the UI and
the JavaScript, which is the last step in the three-step process to use the Ajax.NET Pro library.

Examining the Request Object
In the coming pages, you’ll execute the preceding JavaScript line and work with the response object
you’ll get back from the JavaScript call. This object is very simple to work with and has only five proper-
ties: value, error, request, extend, and context. These are defined in the table that follows. All of
these properties have a default value of null, so if they are never populated, you will get a client-side
error if you try to use them. This is usually the culprit for the famous ever-so-unhelpful undefined
error, as seen in Figure 7-2. It’s good practice to check for null values just about everywhere. You’ll see
more of this as you move on, specifically under the section about trapping errors later in the chapter.

Figure 7-2

Chapter 7

164

10_78544X ch07.qxp 7/18/06 3:15 PM Page 164

Property Default Value Description

response.value null The value is populated with what is returned from the
server.

response.error null The error value is either null or the error string that
was returned from the server. Normally you want this
to be null, although, as you’ll see, it can be a nice way
to provide information to yourself about the client.

response.request null This is a copy of the original request object that was
used to issue the request back to the server. This con-
tains two very helpful properties: method and args.
method is the original method name that was called,
and args is an object describing all of the values
passed into the method.

response.extend null The extend property is a JavaScript prototype that is
added to all Ajax.NET Pro objects. It is used internally
by the library to bind events and is not normally used.

response.context null The context is optional and can be used in certain sit-
uations to pass data along from one point to another.
You’ll see this in use later in the chapter, where it’ll be
easier to understand.

Executing Your Ajax on the Client
Building on the concept you learned from Chapter 2, you’ll start this example with very similar HTML,
as you see in the code that follows. The HTML preloads both the left and the right image. This is simply
to make the switch faster once you get a response from the server. If you didn’t preload these images in
a hidden <div> tag, the end user would have to wait while the new image was downloaded from the
server. You also have a ChangeMe() JavaScript function that does the work of actually changing the
image. So, how does this ChangeMe() function get fired?

Client Side — Chapter7/ImageSwitcher.aspx
<script type=”text/Javascript” language=”Javascript”>
function ChangeMe(target, leftName, rightName) {

var response = Chapter7_ImageSwitcher.ChangeImage(target.src, leftName,
rightName);

target.src = response.value;
}
</script>

<div style=”DISPLAY:none;VISIBILITY:hidden”>
<!-- preload images -->

</div>
<img onclick=”ChangeMe(this,’ArrowLeft’,’ArrowRight’)” src=”images/ArrowLeft.gif”
border=”0”>

165

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 165

Notice that the tag has a JavaScript onclick attribute that points to your ChangeMe() function.
You pass in three values: first, the tag represented by the keyword this, followed by the left
and right image names, ArrowLeft and ArrowRight.

The first line of the function calls into the Ajax.NET Pro library with the Class.Method naming conven-
tion. Remember, you registered your page class, which was named Chapter7_ImageSwitcher, and
then you attributed your server-side ChangeImage() method with the AjaxPro.AjaxMethod()
attribute. The Ajax.NET Pro library now makes a JavaScript object for you that is a proxy object used
to communicate with your ASP.NET application.

This proxy object makes it possible for you to simply call the Chapter7_ImageSwitcher.ChangeImage()
method, which looks like it’s executing your server-side code right inside your JavaScript. What’s actually
happening is that the proxy object uses the same signature and naming conventions that your server-side
code uses, making it look transparent when you call your server code from JavaScript.

When the end user clicks the image, the ChangeMe() function is called. The first thing you do is build a
response variable that will hold the return value of your Chapter7_ImageSwitcher.ChangeImage()
method. Notice that you also pass in the appropriate parameters to your server-side method to the
proxy. Finally, you get back a value from the server in the response.value property, and that becomes
the new source value of the image, which is the new URL of the image to be used.

This is the same client-side effect that you saw in Chapter 2, changing the image from left to right when
the user clicked the image. However, this time the value came from the server. Although this example is
pretty basic, it is very important because what you’ve really built so far is the ability to use Ajax.NET Pro
between the client browser and your ASP.NET server to return a single string from the server and then
update the client page.

Imagine the possibilities here. You could return the HTML of an entire datagrid and update the
innerHTML of a div tag. With a little Dynamic HTML (DHTML) you can change the style of a div or
span tag and create some very powerful features using just what you’ve learned so far.

166

Chapter 7

What Is a Language Proxy?
The term proxy is used when one language represents an object that has all the same prop-
erties (and sometimes method calls) as an object in another language. So, a JavaScript
proxy object will mimic all the properties of the .NET object. This means you can easily
use the same syntax in JavaScript that you would use in .NET. It is the job of the proxy
object to talk back and forth between JavaScript and .NET. Proxy classes make your pro-
gramming life easier because you don’t have to worry about communication between the
two languages or systems.

Think of a proxy class as a language interpreter, allowing you to communicate easily
in your native language, while the proxy does all the interpreting for you to the other
language.

10_78544X ch07.qxp 7/18/06 3:15 PM Page 166

Digging into response.value
In the first example, you received a string in the response.value property. This was the string name of
the image LeftArrow or RightArrow that you used to set the image source to change the image from
right to left. Strings can be very helpful and are a very common datatype to be passed back to the client
from the server. Imagine using HTML in your return strings. What if you rendered an entire control, such
as a datagrid, to its HTML and then returned that HTML as your string value. With this logic, it’s pretty
easy to magically load a datagrid client side. The code that follows is used to render a control to HTML.
The next example then builds a datagrid, and you can easily adapt these examples to any control to get its
rendered HTML. The reason that this works is that all controls have a RenderControl() method.

RenderControlToHtml() — Getting the HTML String from a Control
public string RenderControlToHtml(Control ControlToRender)
{

System.Text.StringBuilder sb = new System.Text.StringBuilder();
System.IO.StringWriter stWriter = new System.IO.StringWriter(sb);
System.Web.UI.HtmlTextWriter htmlWriter = new

System.Web.UI.HtmlTextWriter(stWriter);
ControlToRender.RenderControl(htmlWriter);
return sb.ToString ();

}

Rendering a Datagrid
[AjaxPro.AjaxMethod()]
public string CreateNewDataGrid()
{

DataGrid myDataGrid = new DataGrid();
myDataGrid.ShowHeader = false;
myDataGrid.DataSource = BuildMultiplicationTable();
myDataGrid.DataBind();
return RenderControlToHtml(myDataGrid);

}

public DataTable BuildMultiplicationTable()
{

//Build a Data Table with 11 cells
DataTable myTable = new DataTable();
for (int i = 1; i < 11; i++)

myTable.Columns.Add(new DataColumn(i.ToString()));

//Populate 10 rows with a 10X10 multiplication chart
for (int i = 1; i < 11; i++)
{

DataRow row = myTable.NewRow();
for (int j = 1; j < 11; j++)
{

row[j-1] = i*j;
}
myTable.Rows.Add(row);

}

return myTable;
}

167

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 167

Using strings will get you moving quickly on your project. After all, just about anything can be con-
verted to a string, but as you’ll see in the next section, it’s also nice to be able to return custom objects.
Ajax.NET Pro has support out of the box for the following .NET types. Any type on this list can be
returned from your server side function to your client side call with no additional programming.

❑ Strings

❑ Integers

❑ Double

❑ Boolean

❑ DateTime

❑ DataSet

❑ DataTable

All the types in this list are pretty easy to understand with exception of the last two items. What would
you do with a DataSet in JavaScript on the client? What about a DataTable? Well, it turns out that you
would do pretty much the same thing as you would on the server. You do not have Databind() opera-
tions as you would on the server, but you do have a DataTable.Tables array, each table has a Rows
array, and finally, each row has properties that are inline with the original table column names.

Try It Out Building an HTML Table from a DataTable Object
The following code gets a DataTable, server side, and draws an HTML table on the client.

Client Code — Building an HTML Table from a DataSet
<script type=”text/javascript” language=”javascript”>
function BuildHtmlTable() {

var response = Chapter7_BuildHtmlTable.BuildMultiplicationTable();
if(response.value != null && response.value.Rows.length>0) {

var datatable = response.value;
var table = new Array();
table[table.length] = ‘<table border=1>’;
for(var r=0; r<datatable.Rows.length; r++) {

var row = datatable.Rows[r];
table[table.length] = ‘<tr>’;
for(var c=0; c<datatable.Columns.length; c++) {

table[table.length] = ‘<td valign=top>’ + row[c+1] + ‘</td>’;
}
table[table.length] = ‘</tr>’;

}
table[table.length] = ‘</table>’;
document.getElementById(“DynamicTable”).innerHTML = table.join(‘’);

}
}
function ClearHtmlTable() {

document.getElementById(“DynamicTable”).innerHTML = ‘’;
}
//-->
</script>
<form id=”form1” runat=”server”>

168

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 168

<p>Chapter 7 :: Build Html Table.

Clear Html Table

Build Html Table

</p>
<div id=”DynamicTable”></div>
</form>

Server Code — Returning a DataTable
protected void Page_Load(object sender, EventArgs e)
{

AjaxPro.Utility.RegisterTypeForAjax(typeof(Chapter7_BuildHtmlTable));
}

[AjaxPro.AjaxMethod()]
public DataTable BuildMultiplicationTable()
{

//Build a Data Table with 11 cells
DataTable myTable = new DataTable();
for (int i = 1; i < 11; i++)

myTable.Columns.Add(new DataColumn(i.ToString()));

//Populate 10 rows with a 10X10 multiplication chart
for (int i = 1; i < 11; i++)
{

DataRow row = myTable.NewRow();
for (int j = 1; j < 11; j++)
{

row[j - 1] = i * j;
}
myTable.Rows.Add(row);

}
return myTable;

}

Notice that the last line in the client code block is an empty <div> tag named DynamicTable. When
the hyperlink “Build Html Table” is clicked, the JavaScript function BuildHtmlTable() is called. In the
server-side code, the page class name is Chapter7_BuildHtmlTable, and the server side method
that returns a DataTable is BuildMultiplicationTable(). So, inside the JavaScript function
BuildHtmlTable(), you can call Chapter7_BuildHtmlTable.BuildMultiplicationTable().
Then in the response.value, you’ll get back an object that is very similar to a server-side DataTable,
with Rows and Columns properties. As with the DataTable object, Ajax.NET Pro also has a DataSet
object that can be used just as easily.

Returning Custom Objects
So, what about custom objects? Suppose that you have a person class, and the person has name, street,
city, state, zip, and phone number properties. Can you return this person from your function and have
it magically converted for you? Luckily, the answer is yes — but there is a catch. The custom class that
you’re returning needs to be registered, just like the page class needed to be registered (you’ll see why
this needs to happen in Chapter 8), and the custom class needs to be marked with a Serializable()
attribute. The code block in this section shows the partial code for the custom person class, just showing

169

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 169

the name and street properties. To use this class as a return type, it would need to be registered, and the
proxy class will automatically be processed by the Ajax.NET Pro library.

Ajax.Utility.RegisterTypeForAjax(typeof(Person));

The only down side to this is that the automatic conversion is one-way. It allows for you to serialize your
.NET objects to JavaScript Object Notation (JSON as described in Chapter 5) for use in JavaScript, but it
does not allow you to use the Person class as an input value from JavaScript back to .NET. It is possible
to send this Person class back to .NET (maybe as a parameter), but it’s not automatic. You’ll look at how
to get a custom class back to .NET form JavaScript in Chapter 8.

A Simple Person Class Marked with [Serializable()] Attribute
[Serializable()]
public class Person
{

public Person()
{ }

private string _Name;
public string Name
{

get { return _Name; }
set { _Name = value; }

}

private string _Street;
public string Street
{

get { return _Street; }
set { _Street = value; }

}
}

More Advanced Callbacks and Context
The preceding method of using the Ajax.NET Pro library is great, but it’s worth going to the next step
here. Did you notice that the way the response is requested was inline in your code? What if it took 10
seconds to execute your method and get a response back to the client? That means your browser would
be locked and waiting for the response to come back, and nothing else could happen while you were
waiting. This, as you’ve encountered previously in this book, is called synchronous execution. There is a
very simple way to make this code execute asynchronously, which is to say that the request will be fired,
but you’re not going to wait for the response. Instead you’re going to tell the Ajax.NET Pro library what
to do with the response once it is returned. This is accomplished with a callback routine. A callback is
simply another function that can be called where the response can be passed in.

Take a look at a minor difference in this JavaScript ChangeMe() function, and compare it to the one ear-
lier in the chapter in the “Executing Your Ajax on the Client” section.

function ChangeMe(target, onName, offName) {
Chapter7_ImageSwitcherCallback.ChangeImage

(target.src, onName, offName, ChangeMe_Callback,target);
}

170

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 170

Notice the number of parameters that you’re passing into the ImageSwitcher.ChangeImage()
method. There are now five parameters, where before there were only three. The server-side method
accepts only three, so how can this work? Remember that this is actually a JavaScript proxy object that is
created by the Ajax.NET Pro library for you to use. Every proxy object that is created is created with a
couple of overloads. An overload is a variation of a method using the same method name but with a
unique set of parameters known as a signature. The signature is defined as the order and types of the
parameters the method accepts. The proxy object Chapter7_ImageSwitcher.ChangeMe() gets created
with the following signatures.

❑ Chapter7_ImageSwitcher.ChangeImage(string, string, string)

❑ Chapter7_ImageSwitcher.ChangeImage(string, string, string, callback)

❑ Chapter7_ImageSwitcher.ChangeImage(string, string, string, callback, context)

Notice the last two parameters, callback and context. callback is the name of the method that you
want the response to be sent to. In this example, you would have a problem if all you could work with in
the callback method was the response from the server. You’d have a problem because you need to set
the value of the image tag, and you wouldn’t know what that image tag was. So, Ajax.NET Pro has a last
parameter called context. Whatever object you pass in as the context parameter will be returned in
the response object as its context property. Remember, the response object has five properties, value,
error, request, extend, and context. Now you see where the context is helpful. The context basi-
cally gets a free ride from your execution point (where you ask for the server method to be called) into
your callback method.

It is common to name the callback function the same as the original function name, with the _Callback
appended to it. Take a look at this callback function.

function ChangeMe_Callback(response) {
if(response.error != null)

alert(response.error.name + ‘ :: ‘ + response.error.description);
else

response.context.src = response.value;
}

Notice that the callback method takes only one parameter. It’s common to call this parameter response,
or res. The response object’s context parameter is populated with the image tag because you sent that
tag in as the context when you executed this line.

Chapter7_ImageSwitcherCallback.ChangeImage
(target.src, onName, offName, ChangeMe_Callback,target);

In the JavaScript, you can reference the response.context as if it’s the image. You set its source equal
to the value that was returned from the server. To get the value returned from the server, you look in the
response.value property. The entire HTML + JavaScript now should look like this.

Client Side — Chapter7/ImageSwitcherCallback.aspx
<script type=”text/Javascript” language=”Javascript”>
<!--
function ChangeMe(target, leftName, rightName) {

alert(response.value);

171

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 171

Chapter7_ImageSwitcherCallback.ChangeImage(target.src, leftName,
rightName,ChangeMe_Callback,target);
}
function ChangeMe_Callback(response) {

if(response.error != null)
alert(response.error.name + ‘ :: ‘ + response.error.description);

else
response.context.src = response.value;

}
//-->
</script>

<div style=”DISPLAY:none;VISIBILITY:hidden”>
<!-- preload images -->

</div>
<img onclick=”ChangeMe(this,’ArrowLeft’,’ArrowRight’)” src=”images/ArrowLeft.gif”
border=”0”>

In the preceding code, you’re now executing the image changer in an asynchronous manner. This means
that you don’t have to wait for the server to return a response. The code can continue to execute and do
other functions. When the server does return a response, the Ajax.NET Pro library will receive that
response and execute the callback method, sending in the response as its object. This is a much more
fluid style of programming, and you’ll enjoy the benefits of not having your code bottlenecked because
of a long-running process on the server.

Ajax.NET Pro Request Events —
Keeping Your Users Updated

The AjaxPro.Request object has several placeholder events that you can set up JavaScript functions
against. These event placeholders are onLoading, onError, onTimeout, and onStateChanged. I call
them placeholders because they’re null unless you assign a function to them. In this section, we’re going
to look at the onLoading event and how it can be used to let your users know that something is happen-
ing in the background. For example, the user might have just clicked a button that loads a large set of
data and takes 5 seconds to execute. During this 5 seconds (which seems like forever) if nothing updates
to let the user know something is happening, they might get antsy and press the button again, and
again, and again — which we know just further delays the problem.

The following example uses the onLoading event from the class object that was registered using the
Utility.RegisterTypeForAjax call (probably in your page load event). This onLoading event is
called by the Ajax.NET Pro library before and after all calls are made to AjaxMethods on your registered
class. The code-behind page for this example has a simple method on it called WaitXSeconds. Its job is to
simply wait for a given number of seconds and then return true. In a real application, this might be your
database call or some other routine that might take a while. While this code is working, you can let your
users know the code is busy with a little DHTML. When the text button is clicked, a red “Loading . . .”
box will show in the top-left corner of the window. When the method is done, the “Loading . . .” box
is hidden.

172

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 172

Chapter7_Onloading.aspx.cs Example
protected void Page_Load(object sender, EventArgs e)
{

Utility.RegisterTypeForAjax(typeof(Chapter7_OnLoading));
}
[AjaxPro.AjaxMethod()]
public string WaitXSeconds(int SecondsToWait)
{

System.Threading.Thread.Sleep(SecondsToWait*1000);
return string.Format(“{0} seconds have passed”,SecondsToWait.ToString());;

}

The onLoading event in this example will get assigned to a function that you create. The onLoading
function takes a single parameter, which is true or false, and lets you know if the onLoading function
is being called at the beginning of the request (true) or at the end of the request (false). You use this
parameter to set the visible property of an absolute positioned div tag named “loading”. When it’s
true, you set the visibility to visible, and when it’s false (the end), you set its value to hidden.

Chapter7_Onloading.aspx Example
<form id=”form1” runat=”server”>
<div id=”loading”
style=”visibility:hidden;position:absolute;top:0px;left:0px;background-
color:Red;color:White;”>Loading...</div>
<div>

Click Here
to run a 4 second process, and let the user know with a “Loading...”
tag in the top left corner of the window.

</div>
</form>
<script language=”javascript” type=”text/javascript”>

Chapter7_OnLoading.onLoading = function(currentVis) {
var loadingDiv = document.getElementById(“loading”);
if(loadingDiv != null) {

loadingDiv.style.visibility = currentVis ? “visible” : “hidden”;
}

}
function ShowLoading(seconds) {

Chapter7_OnLoading.WaitXSeconds(seconds,WaitXSeconds_Callback);
}
function WaitXSeconds_Callback(response) {

alert(response.value);
}

</script>

A nice feature of the way the onLoading event works is that it’s tied to the class object. So, if your registered
class (in this case the Page class) has many AjaxMethods on it, the onLoading event will be fired at the
beginning and the end of every method that is called. And remember, you had to program this only once!

Errors, Errors, Errors. They Happen, You Trap ’em.
So far you’ve covered the response’s value, request, and context properties. Last, and maybe most
important, is the error property. When Ajax.NET Pro processes your request, if all goes as planned and
no error occurs, this property will have a null value. If any unhandled error is thrown during the Ajax.NET

173

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 173

Pro request, the string value of that error is returned. The response.error object has three properties —
name, description, and number.

Property Description

response.error.name The name of the error, usually the namespace of the error
that was thrown.

response.error.description This is the equivalent of the Exception.Message in the
.NET Framework.

response.error.number If the exception thrown has an error number, it is popu-
lated here.

Notice that the last code block in the preceding section contains code to check the response.error
property to see if it is null. If it is found not to be null, then you know you have an error, and you dis-
play the error message to the user. This will probably not be what you want to do in your real-world
application. You would probably check the error number, and then handle the error appropriately,
according to what caused the error.

Using the Ajax.NET Pro Library —
Looking under the Hood

So, in summary, preparing your application to use the Ajax.NET Pro library requires the following steps:

1. First, you have to set up your ASP.NET application to be Ajax.NET Pro–enabled. This is done
with the reference being set to the AjaxPro.dll assembly.

2. Second, you must modify your Web.Config file to register the AjaxPro.AjaxHandlerFactory
to process all the AjaxPro/*.ashx requests.

174

Chapter 7

Checking for Null Values
If the error property is null, there is no error, at least not one that was sent back with
the response object. If the value property is null, the server didn’t return any values,
and if the context is null, no context was originally set up. But no matter what they
mean, usually you account for these nulls with a simple if() statement in your code,
as demonstrated in code earlier in the chapter using this line:

if(response.error != null)

This line lets you know if an error was returned. In the sample, you coded that if there
is an error, the error is shown to the user, and the value of the image source tag is not
set. But you can choose to handle the error however you want.

10_78544X ch07.qxp 7/18/06 3:15 PM Page 174

3. Now that your application is Ajax.NET Pro–enabled, you’re ready to build some Ajax function-
ality into your pages. On the page level, register your page class with the AjaxPro.Utility
.RegisterTypeForAjax() method.

4. Then decorate your methods with the AjaxPro.AjaxMethod() attribute.

5. Finally, the Ajax.NET Pro library will create a JavaScript proxy object for you that follows
the ClassName.MethodName() naming convention. Just add a little client UI and JavaScript to
activate your server response, and your application is running on Ajax fuel.

You also now know how to trap errors, check for those errors, and check for null values.

However, although you now know the steps to make this all happen, you may have some questions
about what’s really happening under the hood to make this functionality work. The next few sections
answer some of the common questions you may have about how all this functionality is really working.

When Is the Proxy JavaScript Created?
Remember preparing your page to be enabled with the Ajax.NET Pro library? This involved two steps.
The first was registering your page class, with a line like the following:

AjaxPro.Utility.RegisterTypeForAjax(typeof(Chapter7_ImageSwitcher));

The second was attributing your public method with the AjaxPro.AjaxMethod() attribute:

[AjaPro.AjaxMethod()]

If you set a breakpoint on the RegisterTypeForAjax call and walk through the code, you’ll find that
this part of the library is doing something very simple. It’s creating JavaScript tags that will be inserted
at the top of your page with source values that point back to the AjaxPro/*.ashx page handler. When
you set up your Web.Config file, you registered the page handler so that these types of calls are pro-
cessed by the Ajax.NET Pro library. So, the entire job of the RegisterTypeForAjax method is to write
<script> tags to the page. If you view source on the ASPX page from the browser, look towards the top
of the page scripts that match this format.

<script type=”text/javascript” src=”/ajaxpro/prototype.ashx”></script>

<script type=”text/javascript” src=”/ajaxpro/core.ashx”></script>

<script type=”text/javascript” src=”/ajaxpro/converter.ashx”></script>

<script type=”text/javascript” src=”/ajaxpro/Chapter7_BuildHtmlTable,App_Web_it-
_kzny.ashx”></script>

The first three tags point to /AjaxPro/common.ashx, core.ashx, and converter.ashx files. These are
JavaScript files that contain some general housekeeping helpers for Ajax.NET Pro (you’ll look at this in
the next chapter).

175

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 175

The fourth script source has a little more interesting name. The RegisterTypeForAjax created this
script source, and the format is:

ClassName,AssemblyName.ashx

But this file doesn’t exist — how does it get processed? Remember the /AjaxPro/*.ashx mapping to
the Ajax page handler in the Web.Config? Because of that, any requested file path in the /AjaxPro/
directory that ends with .ashx will be processed by the Ajax.NET Pro library. This URL is parsed, and
from the named assembly that is found and the named class, the library is able to create the JavaScript
proxy objects.

How does it know what proxy objects to create? It knows by using something in the .NET Framework
called reflection. Reflection allows you to use code to inspect other code. So, the Ajax.NET Pro library cre-
ates a page class instance, in the example, a Chapter7_ImageSwitcher.aspx page, and then inspects
that page class for any methods that are marked with the AjaxPro.AjaxMethod() attribute. Any meth-
ods that are found will automatically have JavaScript proxy objects created for them. These proxy objects
are generated on demand and are written as the source of the AjaxPro/Chapter7_ImageSwitcher,
App_Web_it-kzny.ashx request.

Why the funky assembly name App Web it-kzny? This is a framework-generated assembly where the
page class Chapter7_ImageSwitcher lives. The .NET framework uses these unique names to keep sep-
arate versions of the page when it shadow compiles them, so it’s helpful to the framework to have a set
of random characters added to the assembly name. These unique assembly names are generated by the
framework, and the Ajax.NET Pro library is smart enough to figure this out for you. So luckily, you don’t
ever have to know or care where the page class lives. The RegisterTypeForAjax call does this for you.

What Does the JavaScript Do?
When the browser requests a URL, the server (in this case your ASP.NET application server) returns to
it a bunch of HTML. You can easily see this HTML with a view source in your browser. As soon as this
HTML is received, it has to be parsed. You don’t ever see the raw HTML (unless you do a view source)
because the browser actually renders that HTML into a web page. When the <script> tag that has a
source attribute is loaded, the browser will make another request back to the server to get that data. It’s
important to realize that these are loaded as separate requests. The same thing is done for images; that
is they are loaded in separate synchronous requests one right after the other.

What Happens on the Server after the
Proxy JavaScript Has Been Fired?

When the JavaScript source is called on the server, based on the URL, you know that these script files
are going to be processed by the Ajax.NET Pro library. The JavaScript that is created, creates the proxy
objects that enable you to call the PageClassName.MethodName() JavaScript function calls. These are
called proxy objects because they don’t actually do any of the work; they simply proxy the call through
an Ajax protocol to the server.

176

Chapter 7

10_78544X ch07.qxp 7/18/06 3:15 PM Page 176

How Is the Method in the Code-Behind Actually Executed
and How Is the Page Actually Created?

You’ll see how this is done in detail in the next chapter. Essentially, this is where the reflection is done,
the page class is created in code, and then the method is executed with the parameters that were sent in
from the JavaScript call.

What Is Really Being Sent Back to the Client
In an earlier example, you read about a string being sent back to the client. Remember response.value?
response.value can hold any value or object, or even stay null. When a simple type is sent back (such
as String or Integer), the actual value is what is stored. When something like a DataSet is returned,
because there is no such thing as a DataSet object in JavaScript, the DataSet is converted into a
JavaScript Object Notation (JSON) object (JSON is discussed in Chapter 5) that holds much of the same
data that a DataSet holds. But understand, you’re not dealing with a full ADO.NET DataSet, you’re
dealing with a JSON object that has simply been populated with data that matches the data in the
DataSet you were expecting. This was shown earlier in the chapter when you dynamically created an
HTML table from an Ajax.NET Pro call that returned a DataTable. Once you know that JSON objects
can be held in the response.value property, the question to answer is this — “Can I return my own
custom types?” Absolutely, you can. In fact if your custom type is a simple type, you can simply mark
you class with the [Serializable()] attribute, and the Ajax.NET Pro library will do the rest. You’ll
look more into this functionality when you look at extending the Ajax.NET Framework in Chapter 8.

Summary
In this chapter:

❑ You were given an introduction to the Ajax.NET Pro library.

❑ You were able to download the code from www.BeginningAjax.com and reference the
Ajax.NET Pro library.

❑ And once you had the project set up, you were able to create a client/server conversation, and
updated your web page with the server content Ajax style.

In Chapter 8, you’ll look under the hood of the Ajax.NET library and see more about how the magic is
happening. You’ll walk through the code that comes with the library and show what’s happening when
and why. Remember, the idea of a wrapper library is to make life easier, which hopefully the simplicity
of the code in this chapter has shown. Chapter 8 is a little more advanced. If you’re interested in extend-
ing the library with custom objects, then Chapter 8 will be a good read for you.

177

Ajax.NET Professional Library

10_78544X ch07.qxp 7/18/06 3:15 PM Page 177

10_78544X ch07.qxp 7/18/06 3:15 PM Page 178

8
Anatomy of Ajax.NET

Pro Library

There are many different levels of learning a specific technology. Sometimes, just knowing that a
technology works and how to use it is good enough. You know how to use the technology well
enough to get what you need out of it, and it doesn’t really matter how it works. Let’s talk about
Microsoft Excel as an example. You’re probably pretty good at using Excel. You can color-code
cells, create formulas, print spreadsheets, and probably accomplish hundreds of other somewhat
complicated tasks. You accomplish these simply by using the technology. Do you really truly
understand what happens in Excel to make all those features work? A better question might be —
do you really care how anything works “under the hood” of Excel? My guess is probably not. In
Chapter 7, you were given an introduction to using the Ajax.NET Pro library, which brings you
up to speed on how to use the library.

Now that you’re comfortable using the library, you can look at how the magic happens. There is a
difference between understanding that something just works and understanding the fundamentals
of why it works. In this chapter, you’re opening the hood to check what’s inside the Ajax.NET Pro
library to better understand why it works the way it does. And unlike Excel, you’ll want to know
how this works because that’s what makes it very easy for you to extend the library or modify it
for your own usage.

This chapter covers a code walk-through of the library. You’ll use the steps that you took in
Chapter 7 as a guide to this chapter. That is to say, you will duplicate the examples in Chapter 7,
only this time, you’re going to walk into the library and examine what happens when and why.

In this chapter, the following topics will be covered:

❑ Getting the Ajax.NET Pro C# Code library running on your machine

❑ The Ajax.NET Pro Web.Config settings and what they accomplish

❑ Registering the page class

❑ The role of the AjaxPro.AjaxMethod() attribute

11_78544X ch08.qxp 7/18/06 3:16 PM Page 179

❑ How the JavaScript call gets to the server and back

❑ Ajax.NET Pro converters

When you understand the mechanics of these examples, you will have a great foundation for extending
the Ajax.NET Pro library for use in your application.

Getting the Ajax.NET Pro Code
In Chapter 7, you were given two options to prepare your application to use the Ajax.NET Pro library.
You can either download the Ajax.NET Pro code library and compile it as a project, or you can choose to
download the Ajax.NET Pro assembly and simply set a reference to it. Because this chapter is doing a
walk-through of the code, it’s not a requirement, but it will be more helpful to have the code local on
your machine; therefore, it is highly suggested. If you want the code, then you’ll need to grab the code
library from the http://BeginningAjax.com web site. Two versions of the library are available, one
for ASP.NET 1.1 and another for ASP.NET 2.0.

ASP.NET Version URL for Ajax.NET

ASP.NET 1.1 http://BeginningAjax.com/Downloads/
ASP1-Ajax-6.4.16.1.zip

ASP.NET 2.0 http://BeginningAjax.com/Downloads/
ASP2-Ajax-6.4.16.1.zip

Download and extract the zip file for the version of the ASP.NET framework you’re working with. You’ll
have all the code necessary to follow along in this chapter. The zip file contains a Visual Studio project
file named AjaxPro.csproj. Open the Ajax application you’ve been working with, and add this project
to your solution.

Figure 8-1 shows an easy way to add a project to your already open solution. Right-click on the Solution,
and select Add➪Existing Project. This will bring up an open file dialog box that you can point to the
Ajax.csproj file.

There’s another way to get this code to compile within your solution. The first example assumes that
you want to add a new project to your solution. (See Fig. 8-2) However, if you already have a project in
your solution that you want to add this code to you can do that by simply dragging/dropping the files
from the file system into your chosen project. If you choose this route, then you need to be aware of the
build action for several files. By default when you drop a file into your project, the build action of the file
is Compile. This is great for all the files, except core.js and prototype.js. These two files are embed-
ded resources and need to have the default Build Action changed from Compile to Embedded
Resource. To do this, simply click each file once to select it. If the properties window is not already dis-
played, you can right-click the file and select properties. Figure 8-3 shows the properties for core.js
and that the Build Action should be set to Embedded Resource.

180

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 180

Figure 8-1

Figure 8-2

181

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 181

Figure 8-3

What Do the Ajax.NET Pro Web.Config
Settings Accomplish?

When you prepare your application to use the Ajax.NET Pro library, one of the first steps is to create a
Web.Config entry to wire up the Ajax.NET Pro HTTP page handler.

01.<system.web>
02. <httpHandlers>
03. <add verb=”POST,GET” path=”ajaxpro/*.ashx”

type=”AjaxPro.AjaxHandlerFactory,AjaxPro” />
04. </httpHandlers>
05.</system.web>

This Web.Config modification tells ASP.NET that all requests that come in for the AjaxPro directory
with ASHX file extensions should be processed by the Ajax.NET Pro library. What this allows you to do
is have a page request, with a page name, that doesn’t exist in the file system. This is done with the use
of a page handler. When you create an ASPX page, this is done for you automatically. If your page is
named Default.aspx, you can request Default.aspx, and ASP.NET will serve you back that content.

But what happens if you want to be able to dynamically generate page names and parse the page names
during the request to use those newfound values to serve content to do something in your application?
You use an HttpPageHandler like the Ajax.NET Pro library does. If you examine the <add /> on line 3
of the preceding code block, you’ll notice a few attributes. Take a look at the path attribute. You might
remember from the old DOS days, that the * symbol is a wildcard character. This path is not case-sensitive,
but is usually written in lowercase. As you’ll see in the next few sections, the Ajax.NET Pro library will be
creating requests using this path structure. The type attribute’s value is broken into three pieces of useful
formatted data. The first part is the namespace, followed by the class name, followed by the assembly that
this class can be found in (without the .dll extension). So, the type in the preceding example says find
the AjaxHandlerFactory in the AjaxPro namespace in the AjaxPro.dll assembly.

182

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 182

Mastering the concept of HttpPageHandler is outside the scope of this book, but I would like to dive in
just a little more and show you what’s happening with an example. Remember the proxy classes that
were magically created for you in Chapter 7?

Listing 8-1 shows two examples that will end up being processed by the Ajax.NET Pro library.

Note that in this chapter, some code blocks contain listing numbers and line numbers to aid reference.

Listing 8-1: Creating a Request, Matching Your PageHandler Path

01. <script type=”text/javascript”
src=”/BeginningAjaxPro/ajaxpro/core.ashx”></script>

02. <script type=”text/javascript”
src=”/BeginningAjaxPro/ajaxpro/Chapter7_OnLoading,
App_Web_rjv9qbqt.ashx”></script>

These are JavaScript tags with src attributes that call back into your application. BeginningAjaxPro
is the application name, ajaxpro is the pseudo-folder, and the page name is Chapter7_OnLoading_
App_Web_rjv9qbqt_ashx. You know that this file doesn’t exist; in fact, the ajaxpro folder doesn’t even
exist in your application. But, because you have the HttpPageHandler wired up in Web.Config, the
Ajax.NET Pro library is able to process these files for you. When these requests come in, the class name
Chapter7_OnLoading is loaded from the automatically named App_Web_rjv9qbqt assembly. This is a
quick introduction to the page handler; later in this chapter, you’ll look deeper into how this really
works, but for now the concept is what’s important.

What Happens When You Register
the Page Class?

Once your application is set up to work with the Ajax.NET Pro library and you’ve made your Web.Config
modification, you’re ready to start using the library. When you’re serving a page from ASP.NET that has
code-behind methods that you want to be able to access, there are two steps the library requires. First, reg-
ister the page class, and second, mark the method with an AjaxPro.AjaxMethod() attribute. This was
demonstrated several times in Chapter 7. Take a look at what happens when you register the page class.

01. protected void Page_Load(object sender, EventArgs e)
02. {
03. AjaxPro.Utility.RegisterTypeForAjax(typeof(Chapter7_Onloading));
04. }

The page class name here is Chapter7_OnLoading. You’ll notice that you’re sending in a type as the
parameter to the AjaxPro.Utility.RegisterTypeForAjax() method. Using the typeof() method,
you can get the type of the class, in this case the page you’re using, and send that as your parameter. So,
take a peek into the AjaxPro.Utility.RegisterTypeForAjax() method. Listing 8-2 is the code that
gets run for the RegisterTypeForAjax() method. This method has two jobs. First, to make sure that
the Common.ashx has already been rendered to the page, and second, to render the proper script tag to
the page for the type that is being registered. This is the HTML code rendered in Listing 8-1.

183

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 183

Listing 8-2: RegisterTypeForAjax Definition in /Ajax/Utility.cs

01. public static void RegisterTypeForAjax(Type type)
02. {
03. System.Web.UI.Page page =

(System.Web.UI.Page)System.Web.HttpContext.Current.Handler;
04. RegisterTypeForAjax(type, page);
05. }
06.
07. public static void RegisterTypeForAjax(Type type, System.Web.UI.Page page)
08. {
09. RegisterCommonAjax(page);
10. string path = type.FullName + “,” + type.Assembly.FullName.Substring(0,

type.Assembly.FullName.IndexOf(“,”));
11. if(Utility.Settings.UseAssemblyQualifiedName) path =

type.AssemblyQualifiedName;
12.
13. if(Utility.Settings != null &&

Utility.Settings.UrlNamespaceMappings.ContainsValue(path))
14. {
15. foreach(string key in Utility.Settings.UrlNamespaceMappings.Keys)
16. {
17. if(Utility.Settings.UrlNamespaceMappings[key].ToString() == path)
18. {
19. path = key;
20. break;
21. }
22. }
23. }
24.
25. RegisterClientScriptBlock(page, “AjaxType.” + type.FullName,

“<script type=\”text/javascript\” src=\”” +
System.Web.HttpContext.Current.Request.ApplicationPath +
(System.Web.HttpContext.Current.Request.ApplicationPath
.EndsWith(“/”) ? “” : “/”) + Utility.HandlerPath + “/” +
GetSessionUri() + path + Utility.HandlerExtension + “\”></script>”);

26. }

The first thing that happens in the RegisterTypeForAjax() method is that the Utility.Register
CommonAjax() method is called on line number 09. The RegisterCommonAjax() method is responsible
for adding script references to the prototype, core, and converter files. This method makes sure to
register these files only once per page, even if you’re registering multiple types. You’ll see how this is
done shortly with the inspection of the Settings object.

At this point, you know that the prototype, core, and converter scripts have been registered, and
you’re ready to move on and create a reference to your own type. Line 10 creates a string that consists of the
type’s fully qualified name and the assembly that the type is in. This results in the /Chapter7_OnLoading,
App_Web_rjv9qbqt found in line 2 in Listing 8-1. This value is checked against a HashTable named
Utility.Settings.UrlNamespaceMappings. If the value is found, line 20 calls break, and the method
replaces the type name with the mapped name. You’ll take look at this UrlNameSpaceMappings shortly.
If the value is not found, then you know to simply use the type name as the script source.

184

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 184

Line 25 creates the actual JavaScript tag that renders on the page. This is the entire line number 2 entry
from Listing 8-1. Also, line 25 uses the RegisterClientScriptBlock method to inject this JavaScript
call onto the page that is being rendered.

Listings 8-2 and 8-3 make common references to the Utility.Settings class. This class is populated
with several properties that all have default values.

Listing 8-3: RegisterCommonAjax in /Ajax/Utility.cs

01. internal static void RegisterCommonAjax(System.Web.UI.Page page)
02. {
03. if(page == null)
04. return;
05.
06. // If there is a configuration for this fileName in
07. // web.config AjaxPro section scriptReplacements we will
08. // redirect to this file.
09.
10. string rootFolder = System.Web.HttpContext.Current.Request.

ApplicationPath + (System.Web.HttpContext.Current.
Request.ApplicationPath.EndsWith(“/”) ? “” : “/”);

11.
12. string prototypeJs = rootFolder + Utility.HandlerPath +

“/prototype” + Utility.HandlerExtension;
13. string coreJs = rootFolder + Utility.HandlerPath + “/core” +

Utility.HandlerExtension;
14. string convertersJs = rootFolder + Utility.HandlerPath +

“/converter” + Utility.HandlerExtension;
15.
16. if(Utility.Settings != null)
17. {
18. if(Utility.Settings.ScriptReplacements.

ContainsKey(“prototype”))
19. {
20. prototypeJs = Utility.Settings.ScriptReplacements[“prototype”];
21. if(prototypeJs.Length > 0 && prototypeJs.StartsWith(“~/”))
22. prototypeJs = rootFolder + prototypeJs.Substring(2);
23. }
24. if(Utility.Settings.ScriptReplacements.ContainsKey(“core”))
25. {
26. coreJs = Utility.Settings.ScriptReplacements[“core”];
27. if(coreJs.Length > 0 && coreJs.StartsWith(“~/”))
28. coreJs = rootFolder + coreJs.Substring(2);
29. }
30. if(Utility.Settings.ScriptReplacements.ContainsKey(“converter”))
31. {
32. convertersJs = Utility.Settings.ScriptReplacements[“converter”];
33. if(convertersJs.Length > 0 && convertersJs.StartsWith(“~/”))
34. convertersJs = rootFolder + convertersJs.Substring(2);
35. }
36. }
37.

(continued)

185

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 185

Listing 8-3: (continued)

38. if(prototypeJs.Length > 0)
39. RegisterClientScriptBlock(page, Constant.AjaxID + “.prototype”,
40. “<script type=\”text/javascript\” src=\”” +

prototypeJs + “\”></script>”);
41.
42. if(coreJs.Length > 0)
43. RegisterClientScriptBlock(page, Constant.AjaxID + “.core”,
44. “<script type=\”text/javascript\” src=\”” +

coreJs + “\”></script>”);
45.
46. if(convertersJs.Length > 0)
47. RegisterClientScriptBlock(page, Constant.AjaxID + “.converters”,
48. “<script type=\”text/javascript\” src=\”” + convertersJs +

“\”></script>”);
49.
50.
51. if(Settings.TokenEnabled)
52. {
53. RegisterClientScriptBlock(page, Constant.AjaxID + “.token”,
54. “<script type=\”text/javascript\”>AjaxPro.token = \”” +

CurrentAjaxToken + “\”;</script>”);
55. }
56. }

Being as flexible as possible, the library allows you to set these property values with additional
Web.Config entries. The only thing you’ve done so far in the Web.Config is to wire up the Ajax Pro
page handler. The library has defined a custom section that you can use in your Web.Config. This is
processed by the AjaxPro.AjaxSettingsSectionHandler, found in the /Configuration/
AjaxSettingsSectionHandler.cs file.

Try It Out Adding Custom Sections to Your Web.Config File
Fortunately, ASP.NET has framework calls that make it really easy to add custom sections to your
Web.Config file. Listing 8-4 shows a sample entry in your Web.Config to override the several default
property and actions of the Ajax.NET Pro library. Listing 8-5 shows how the library reads those overridden
values.

Listing 8-4: Web.Config configSections Sample

<configuration>
...
01. <configSections>
02. <sectionGroup name=”ajaxNet”>
03. <section name=”ajaxSettings”

type=”AjaxPro.AjaxSettingsSectionHandler, AjaxPro”
04. requirePermission=”false”
05. restartOnExternalChanges=”true” />
06. </sectionGroup>
07. </configSections>
08.

186

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 186

09. <ajaxNet>
10. <ajaxSettings>
11. <urlNameSpaceMappings>
12. <add namespace=”Namespace.ClassName,AssemblyName” path=”MyPath” />
13. </urlNameSpaceMappings>
14. <jsonConverters>
15. <!-- <remove type=”Namespace.Class1,Assembly”/>
16. <add type=”Namespace.Class2,Assembly”/>
17. -->
18. </jsonConverters>
19. <debug enabled=”false” />
20. <token enabled=”false” sitePassword=”password” />
21. <!-- <scriptReplacements>
22. <file name=”core” path=”~/scripts/debugcore.js” />
23. <file name=”prototype” path=”~/scripts/debugprototype.js” />
24. <file name=”converter” path=”~/scripts/debugconverter.js” />
25. </scriptReplacements>
26. -->
27. </ajaxSettings>
28. </ajaxNet>
...
</configuration>

How It Works
❑ The first custom setting in Listing 8-4 is the urlNameSpaceMappings on line 11. This setting

allows you to mask your JavaScript calls so that you do not expose the class name and assembly
names in your application. You may or may not be able to use this, depending on the version of
ASP.NET and Visual Studio that you are using. If you know the name of your final assembly,
then you can add this masking. If you’re using dynamic compiling, as you did in Listing 8-1, then
you can’t use this mask because you don’t know the assembly name beforehand. The benefit to
masking your class and assembly names is that this removes the ability of someone to discover
the internal knowledge of your application.

❑ Next is jsonConverters. This is the section that enables you to instruct Ajax.NET Pro to load
your JavaScript JSON converters. In the commented section, on lines 15 and 16, you can see the
format of loading these converters. Converters can be removed and added with the standard
<remove /> and <add /> nodes.

Debugging can also be turned on or off in this section. If debugging is turned on, and an excep-
tion returned in the Response.Error object, then the exception will contain more information
than just the exception text, such as Stack, TargetSize, and Source information.

❑ Ajax.NET Pro supports a token concept that tries to confirm that requests are coming from clients
that you originally served content to. This is to help eliminate spoofing of your site. Because the
calls back into the server are simple JavaScript calls, it’s possible to execute JavaScript from other
pages against your site. If the token is enabled and the password is set, then a security token is
placed in the head of the page that is rendered.

<script type=”text/javascript”>AjaxPro.token =
“f5274a7d77bc2a417b22efb3dfda9ba8”;</script>

187

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 187

This token is a hash that is made up of several parameters about the user, including IP address,
the site being visiting, the browser being used, and the password you supplied. This makes it
much more difficult to try hacking routines from another machine against your site.

❑ Refresh your memory with Listing 8-1, specifically with the line number 1. Script replacements
allow you to use scripts other than the default scripts that were installed with Ajax.NET Pro.
Maybe you have a static file that you’ve added some debugging code to that you’d like to use
while you’re debugging your application, but not once you deploy your application. Having
these replacement script options in Web.Config is great because you can switch it without
recompiling your application. How would you create an overridden core, prototype, or converter
file? Don’t you still need all the base functionality that the original files offer? The answer is yes,
you do, but that doesn’t mean that you can’t add you own debugging or other code into that
script. Open your browser and point it to your web application, /AjaxPro/core.ashx. Do a
view source, and you now have a copy of the core.ashx JavaScript file. Save this in your appli-
cation as /scripts/debugcore.js. You might play with simply adding an alert() method in
a few places, just to see it work. Now to try that debugcore.js in your application, add Listing 8-4
line 22 to your Web.Config. Set the path of the core to “~/scripts/debugcore.js”. Save and
run your application, and view the source of the page. Notice that the listing for the Core.ashx
shown in Listing 8-1 has changed to your /scripts/debugcore.js file.

Listing 8-5 shows the code for Ajax/AjaxSettingsSectionHandler.cs that makes all of these config-
uration settings possible. If you’re new to Web.Config section handlers, this code is a great read. It’s
pretty simple to follow and might introduce you to a few new XML tricks.

Listing 8-5: /Ajax/AjaxSettingsSectionHandler.cs

01. namespace AjaxPro
02. {
03. internal class AjaxSettingsSectionHandler :

IConfigurationSectionHandler
04. {
05. #region IConfigurationSectionHandler Members
06. public object Create(object parent, object configContext,

System.Xml.XmlNode section)
07. {
08. AjaxSettings settings = new AjaxSettings();
09.
10. foreach(XmlNode n in section.ChildNodes)
11. {
12. if(n.Name == “coreScript”)
13. {
14. if(n.InnerText != null && n.InnerText.Length > 0)
15. {
16. settings.ScriptReplacements.Add(“core”, n.InnerText);
17. }
18. }

The token should be enabled in all cases. It’s a very nice feature that makes hacking
your site more difficult.

188

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 188

19. else if(n.Name == “scriptReplacements”)
20. {
21. foreach(XmlNode file in n.SelectNodes(“file”))
22. {
23. string name = “”;
24. string path = “”;
25. if(file.Attributes[“name”] != null)
26. {
27. name = file.Attributes[“name”].InnerText;
28. if(file.Attributes[“path”] != null) path =

file.Attributes[“path”].InnerText;
29. if(settings.ScriptReplacements.ContainsKey(name))
30. settings.ScriptReplacements[name] = path;
31. else
32. settings.ScriptReplacements.Add(name, path);
33. }
34. }
35. }
36. else if(n.Name == “urlNamespaceMappings”)
37. {
38. settings.UseAssemblyQualifiedName =

n.SelectSingleNode(“@useAssemblyQualifiedName[.=’true’]”) !=
null;

39. XmlNode ns, url;
40. foreach(XmlNode e in n.SelectNodes(“add”))
41. {
42. ns = e.SelectSingleNode(“@type”);
43. url = e.SelectSingleNode(“@path”);
44. if(ns == null || ns.InnerText == “” || url ==

null || url.InnerText == “”)
45. continue;
46. if(settings.UrlNamespaceMappings.Contains(url.InnerText))
47. throw new Exception(“Duplicate namespace mapping ‘“

+ url.InnerText + “‘.”);
48. settings.UrlNamespaceMappings.Add

(url.InnerText, ns.InnerText);
49. }
50. }
51. else if(n.Name == “jsonConverters”)
52. {
53. XmlNodeList jsonConverters = n.SelectNodes(“add”);
54. foreach(XmlNode j in jsonConverters)
55. {
56. XmlNode t = j.SelectSingleNode(“@type”);
57. if(t == null)
58. continue;

59. Type type = Type.GetType(t.InnerText);
60. if(type == null)
61. {
62. // throw new ArgumentException(“Could not find type “
63. // + t.InnerText + “.”);
64. continue;
65. }

(continued)

189

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 189

Listing 8-5: (continued)

66. if (!typeof(IJavaScriptConverter).
IsAssignableFrom(type))

67. {
68. // throw new ArgumentException(“Type “ +
69. // t.InnerText + “ does not inherit from
70. // JavaScriptObjectConverter.”);
71. continue;
72. }
73.
74. IJavaScriptConverter c =

(IJavaScriptConverter)Activator.CreateInstance(type);
75. c.Initialize();
76. settings.JavaScriptConverters.Add(c);
77. }
78. }
79. else if(n.Name == “encryption”)
80. {
81. string cryptType = n.SelectSingleNode(“@cryptType”) !=

null ? n.SelectSingleNode(“@cryptType”).InnerText
: null;

82. string keyType = n.SelectSingleNode(“@keyType”) !=
null ? n.SelectSingleNode(“@keyType”).InnerText
: null;

83. if(cryptType == null || keyType == null)
84. continue;
85.
86. AjaxEncryption enc = new AjaxEncryption(cryptType, keyType);
87. if(!enc.Init())
88. throw new Exception(“Ajax.NET Professional

encryption configuration failed.”);
89. settings.Encryption = enc;
90. }
91. else if(n.Name == “token”)
92. {
93. settings.TokenEnabled = n.SelectSingleNode(“@enabled”) !=

null && n.SelectSingleNode(“@enabled”)
.InnerText == “true”;

94. settings.TokenSitePassword =
n.SelectSingleNode(“@sitePassword”) != null ?
n.SelectSingleNode(“@sitePassword”).InnerText :
settings.TokenSitePassword;

95. }
96. else if (n.Name == “debug”)
97. {
98. if (n.SelectSingleNode(“@enabled”) != null &&

n.SelectSingleNode(“@enabled”).InnerText == “true”)
99. settings.DebugEnabled = true;
100. }
101. else if (n.Name == “oldStyle”)
102. {
103. if (n.SelectSingleNode(“objectExtendPrototype”) != null)
104. {

190

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 190

105. if (!settings.OldStyle.Contains(“objectExtendPrototype”))
106. settings.OldStyle.Add(“objectExtendPrototype”);
107. }
108. }
109. }
110.
111. return settings;
112. }
113. #endregion
114. }
115. }

What Role Does the Ajax.AjaxMethod()
Attribute Play?

As far as the library goes, at this point, you’ve registered a type with the AjaxPro.RegisterType
ForAjax() method, which in turn sent multiple <script> tags to the browser. These are seen in
Listing 8-1. Now it’s time to examine the request that is generated because of the src of the script.
In the example, the source of the registered type rendered as /BeginningAjax/ajaxpro/Chapter7_
OnLoading,App_Web_rjv9qbqt.ashx. Remember that Chapter7_OnLoading is the page class name,
and App_Web_rjv9qbqt is the dynamic assembly that the page class is compiled into.

The first code in the library to get this request is the AjaxHandlerFactory, which is assigned to catch
all incoming requests for /AjaxPro/*.ashx. The AjaxHandlerFactory is in charge of looking at the
incoming URL, creating a new AjaxPro.Request object, and then handing off that request to an
AjaxProcessor, which is run. This is all pretty standard and happens on every request. Remember, one
of the ideas of using a page handler is to handle dynamically generated requests. The library does this

so that you can ask for the class and assembly that you want a JavaScript proxy for. Once you’ve sup-
plied this information (class name and assembly), the library is smart enough to figure out what you’re
looking for.

How is it smart enough, you ask? Well, truthfully, it’s not without another piece of information that
you’ve already supplied. That piece of information is the AjaxPro.AjaxMethod() attribute that you
placed over the signature of the public method that you wanted to make available to the AjaxPro.NET
library. So, we’ll fast forward a little bit and talk about what the library does. A request comes in, and
the library is able to parse the class name and the assembly name from the URL. If you’re using the
urlNameSpaceMappings, then the library is still able to figure out the class name and the assembly; it
just has to look in this mappings’ HashTable first. Once the library has these two crucial pieces of infor-
mation, it’s able to use a .NET Framework technology called reflection to inspect or, as it’s appropriately
named, reflect upon the class that you’ve supplied. Reflection really is an aptly named portion of the
.NET Framework. Something already exists, a compiled class in this example, and you wish to reflect
upon that class. So, reflection has its own great support that is native in the .NET Framework, and it
allows you to find everything you want to know about that class. The library at this point is interested in
finding all the methods in the class that have been marked with the AjaxPro.AjaxMethod() attribute.
Once the library finds a method that has been marked with that attribute, it knows that a JavaScript
proxy is going to need to be built. This is, in fact, done for all the methods on the class that are marked

191

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 191

with the AjaxPro.AjaxMethod() attribute. The proxy classes are all created sequentially and sent back
to the browser as the source of your JavaScript call.

You’ll look at the code in a minute, but it should all be coming into focus now, and to drill it in, consider
the following quick review.

1. When you register a page class, the register utility is responsible for writing the <script> tag
with a source that will call into the library and tell the library the class name and the assembly
name to find that class in.

2. Once this call comes into the library, it uses reflection to load that class and find all the methods
marked with the AjaxPro.AjaxMethod() attribute.

3. For each method it finds, a JavaScript proxy class is created, and this final result is sent back to
the browser as the source of the <script> tag.

Now all this JavaScript is loaded into the browser memory and is ready for you to make the JavaScript
calls (as you did in Chapter 7) that use the proxy classes created to communicate back to the server.

How Does the JavaScript Call Get
to the Server and Back?

So now you know how the framework creates the proxy classes. This is typically never seen by the devel-
oper, or anyone, because the view source just shows a URL as the src attribute pointing into the library.
Listing 8-6 shows the rendered code from the Chapter7_OnLoading JavaScript source page. This is what’s
returned to the browser as a result of the <script> having a URL pointing to AjaxPro/Chapter7_
OnLoading,App_Web_rjv9qbqt.ashx.

Listing 8-6: JavaScript Source from AjaxPro/Chapter7_OnLoading,App_Web_rjv9qbqt.ashx

01. addNamespace(“Chapter7_OnLoading”);
02. Chapter7_OnLoading_class = Class.create();
03. Object.extend(Chapter7_OnLoading_class.prototype,

Object.extend(new AjaxPro.AjaxClass(), {
04. WaitXSeconds: function(SecondsToWait) {
05. return this.invoke(“WaitXSeconds”, {“SecondsToWait”:SecondsToWait},

this.WaitXSeconds.getArguments().slice(1));
06. },
07. initialize: function() {
08. this.url =

‘/BeginningAjaxPro/ajaxpro/Chapter7_OnLoading,App_Web_ao7bzzpr.ashx’;
09. }
10. }));
11. Chapter7_OnLoading = new Chapter7_OnLoading_class();

Notice that the end of line 3 is a call to return a new AjaxPro.AjaxClass function. This function is call-
ing into the source returned by the Core.ashx request. Remember that this is the code that is coming
back from only one of the two requests you made. This is specific to the Chapter7_OnLoading request,
but there is also an /AjaxPro/Core.ashx request.

192

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 192

What Is an Ajax.NET Pro Converter?
You now should have a great fundamental understanding of the Ajax.NET Pro library and how it works
inside and out. You know how to register classes that create <script> tags with src values that will
build and dynamically generate JavaScript proxy classes of your AjaxPro.AjaxMethod() methods. You
also know how these methods get called in the proxy classes, and the return values processed with the
sync request or async callback methods. There is only one thing that you have missed, and that’s deal-
ing with parameter mismatching.

The JavaScript language is not a part of the .NET Framework, and obviously it’s true that .NET is not part
of the JavaScript language. One of the consequences of communicating between two different platforms is
making sure that both platforms understand each other’s data types. The Ajax.NET Pro converters have
the sole job of converting objects between .NET and JavaScript Object Notation (JSON). These converters
make it possible to have access to objects and their properties in a similar fashion on both platforms, and
lucky for us all, part of the Ajax.NET Pro library already defines a nice set of the converters for us. Once
both platforms can understand each other’s data types, the types can be passed around, and interchanged
more easily on both platforms. Think of the converters as language interpreters. They’re the man in the
middle, communicating back and forth to both platforms.

In the following example, you’ll look at the System.Data.DataTable converter that is built into the
Ajax.NET Pro library. The example shows the JSON converter for a DataTable. You may recognize this
format from the basic DataTable sample in the introduction to JSON in Chapter 5.

01: public override string Serialize(object o)
02: {
03: if(!(o is DataTable))
04: throw new NotSupportedException();
05:
06: StringBuilder sb = new StringBuilder();
07: DataTable dt = (DataTable)o;
08:
09: DataColumnCollection cols = dt.Columns;
10: DataRowCollection rows = dt.Rows;
11:
12: bool b = true;
13:
14: sb.Append(“new “);
15: sb.Append(clientType);
16: sb.Append(“([“);
17:
18: foreach(DataColumn col in cols)
19: {
20: if(b){ b = false; }
21: else{ sb.Append(“,”); }
22:
23: sb.Append(‘[‘);
24: sb.Append(JavaScriptSerializer.Serialize(col.ColumnName));
25: sb.Append(‘,’);
26: sb.Append(JavaScriptSerializer.Serialize(col.DataType.FullName));
27: sb.Append(‘]’);
28: }
29:

193

Anatomy of Ajax.NET Pro Library

11_78544X ch08.qxp 7/18/06 3:16 PM Page 193

30: sb.Append(“],[“);
31:
32: b = true;
33:
34: foreach(DataRow row in rows)
35: {
36: if(b){ b = false; }
37: else{ sb.Append(“,”); }
38:
39: sb.Append(JavaScriptSerializer.Serialize(row));
40: }
41:
42: sb.Append(“])”);
43:
44: return sb.ToString();
45: }

This converter allows you to work with a .NET DataTable in JavaScript. If you look back at the Try It
Out “Building an HTML Table from a DataTable Object” section in Chapter 7, you’ll see how this
DataTable is used in action on the JavaScript side.

You have the ability to create custom converter classes for your objects as well. A custom converter class
is needed only if you need to expose additional functionality in JavaScript. Most of the time, simply
marking your custom class with a [Serializable()] attribute will be sufficient. Remember, if your
class is marked with the [Serializable()] attribute, then Ajax.NET Pro will automatically create a
JavaScript proxy class for that object and pass all the data back for you.

Summary
In this chapter, you took a deep dive into the Ajax.NET Pro library. You should now have a great under-
standing of the library and the entire process taken to communicate with the library from the client
browser using JavaScript to the server-side code behind. Specifically, in this chapter, you looked at:

❑ Ajax.NET Pro library C# source code

❑ Custom Setting through the Web.Config

❑ Ajax.NET Pro converters

Now, in the next chapter, you will turn your attention to other Ajax libraries for .NET.

194

Chapter 8

11_78544X ch08.qxp 7/18/06 3:16 PM Page 194

9
Other Ajax Frameworks

for .NET

Ajax.NET is certainly the most popular of the open source Ajax frameworks for ASP.NET, but the
following material will give you a working knowledge of additional frameworks that aid in Ajax
development.

This chapter is broken up into two parts. The first part provides a high-level review of three client-
side Ajax frameworks: Sarissa, HTMLHttpRequest, and MochiKit. The second part of the chapter
features more in-depth explanations and examples of three server-side frameworks:
ComfortASP.NET, MagicAjax, and Anthem.NET.

Throughout this chapter the terms framework and library will be used interchangeably to
describe third-party assemblies referenced in your project to provide Ajax functionality.

In this chapter, you will learn about:

❑ How client-side only Ajax frameworks operate

❑ The difference between returning data structures and using the changed-HTML architec-
ture of server-side frameworks

❑ Integration methods of a library: custom controls and panels

❑ Different configuration options among the Ajax frameworks

❑ Implementing real-world scenarios using three different server-side Ajax frameworks

Client-Side Frameworks
Ajax development is about seamlessly integrating communication between the client and the
server for the user. Although there may be times when you have full control over how data is pre-
sented in an application, at times you may encounter a situation where you have no control over

12_78544X ch09.qxp 7/18/06 3:16 PM Page 195

what the server makes available to the client. In these situations, a client-side-only Ajax framework is a
great asset to your toolkit. The following section will introduce you to three frameworks that abstract
Ajax functionality on the client.

Sarissa
URL: http://sarissa.sourceforge.net/doc/

Sarissa is an entirely client-side library written in JavaScript that provides a programming layer, or
application program interface (API) that abstracts a majority of implementation details away from the
web developer. Specifically, Sarissa can be used to perform the following tasks:

❑ XML DOM (Document Object Model) manipulation and document loading (both synchronous
and asynchronous)

❑ XMLHttpRequest functionality

❑ XSLT (Extensible Stylesheet Language Transformations)

❑ X Path document navigation

❑ Object serialization and deserialization

Some browsers natively support some of the functionality provided by the Sarissa framework, but
Sarissa provides a common layer for access to all these functions, regardless of which browser you are
developing for. This means that a developer using this library can develop code using the same method
calls and objects regardless of the type of browser it is operating under. The Sarissa framework will take
care of translating those method calls and object creation in a way that is suitable for or specific to that
browser.

Creating an XMLHttpRequest Using the Sarissa Framework
The following is an example of using the Sarissa framework to create a new XMLHttpRequest object in a
way that is supported across all the browsers previously listed and to use the object to perform an asyn-
chronous request:

var xmlhttp = new XMLHttpRequest();
xmlhttp.open(“GET”, “http://www.YourServer.com/DataDocument.xml”, true);
xmlhttp.onreadystatechange = function()
{
if(xmlhttp.readyState == 4)
alert(“Finished loading!”);

}

xmlhttp.send(null);

As you can see from the preceding code, creating the XMLHttpRequest is extremely simple. Creating the
object in specific ways across all the supported browsers is taken care of for you by the Sarissa frame-
work. Once you have an XMLHttpRequest object, you manipulate it in exactly the same way you would
a normal XMLHttpRequest.

196

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 196

Testing for Features Using the Sarissa Framework
There is provision within the framework to test for the existence of various features. Sarissa provides a
utility object called Sarissa with some properties that make it easy to determine the capabilities of the
browser your application is running under. This is a very useful feature because it ensures that you don’t
have to be overly concerned with what browser your code is running under. The code can simply test for
the existence of a particular feature and make use of that feature if it exists or take corrective action. Two
primary examples are the IS_ENABLED_SELECT_NODES and IS_ENABLED_XMLHTTP properties.

❑ The IS_ENABLED_SELECT_NODES property is a boolean value that is true if the selectNodes/
selectSingleNode functionality is available. The selectNodes/selectSingleNode methods
are used to perform X Path queries over an XML document. Currently, this functionality is available
in Internet Explorer but not available in Firefox. In Chapter 4, the script library that was developed
contains functionality to add this capability into Firefox. The IS_ENABLED_SELECT_NODES prop-
erty is a static boolean property and accessing it does not require the creation of an object instance.
See the example that follows shortly.

❑ The IS_ENABLED_XMLHTTP property is a boolean value that is true if the XMLHttpRequest
(or equivalent) functionality is available. This is the central object around which asynchronous
request functionality is made available. This is a static property, and accessing it does not require
the creation of an object instance.

To use these properties in your application, you can do the following:

<script type=”text/javascript”>
function TestPageProperties()
{

if (Sarissa.IS_ENABLED_SELECT_NODES)
alert(“selectNodes/selectSingleNode functionality is supported in this

browser”);
else

alert(“selectNodes/selectSingleNode functionality is NOT supported in this
browser”);

if (Sarissa.IS_ENABLED_XMLHTTP)
alert(“Asynchronous functionality using XMLHTTP is supported in this

browser.”);
else

alert(“Asynchronous functionality using XMLHTTP is NOT supported in this
browser.”);
}
</script>

As shown in the previous example, simple one-line checks can be performed to determine if a feature
exists. This makes catering to features in different browsers very easy and straightforward. Normally,
intricate knowledge of a browser is required, and checking for a particular feature can be often be done in
many different ways, according to what browser is running your web applications. These simple one-line
checks can be performed within the page or be embedded with an include script to allow for seamless
detection of a browsers features.

197

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 197

Using Sarissa Framework for Asynchronous XML Document Loading
In addition to providing an easy way of creating the XMLHttpRequest object, you can also use the XML
document asynchronous loading capabilities of Sarissa, as shown in the following example:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>
<html>

<head>
<title></title>
<meta name=”GENERATOR” content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>
<script type=”text/javascript” src=”sarissa.js”> </script>

<script type=”text/javascript”>
function TestDocLoad()
{

var oDomDoc = Sarissa.getDomDocument();
oDomDoc.async = true; // this line can be ommited - true is the default
// we add a listener for the load event to know when loading is finished

oDomDoc.onreadystatechange = function() {
if(oDomDoc.readyState == 4)

document.getElementById(“mySpanElement”).firstChild.nodeValue
=Sarissa.serialize(oDomDoc);

};
oDomDoc.load(“someXMLDocument.xml”);

}
</script>

</head>
<body>

<form>
<input type=”button” onclick=”TestDocLoad()” name=”tstButton”

id=”tstButton” value=”Run Test Function” />

<hr />
{nothing to display}

</form>
</body>

</html>

Again, the Sarissa framework has made the task of asynchronously requesting a document from the
server a trivial task. The code is clean and self-explanatory, making it easy to maintain and debug. The
code is still quite similar to the original code shown in Chapter 4 to achieve the same functionality using
the XMLHttpRequest object directly.

Effectively, the creation of the XMLHttpRequest object has been masked for you with the code:

var oDomDoc = Sarissa.getDomDocument();

198

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 198

Attaching an event to check for the completion of the document load is exactly the same as if you were
dealing with an XMLHttpRequest object directly, as shown in the following sample:

oDomDoc.onreadystatechange = function() {
if(oDomDoc.readyState == 4)

Initiating the request is slightly different but very easy and intuitive:

oDomDoc.load(“someXMLDocument.xml”);

From the previous examples, it is easy to see how Sarissa simplifies the task of dealing with asyn-
chronous or Ajax-like functionality but more important, Sarissa extends that simplicity to be a common
factor across all supported browsers.

You will also notice a line in the preceding code that reads:

ctrl.firstChild.nodeValue=Sarissa.serialize(oDomDoc);

This illustrates the ability of the Sarissa framework to cater to custom document and object serialization.
The serialization process caters to nonstandard JavaScript objects (that is, custom defined) and will con-
vert these objects to an XML string representation and back again into an object with a very simple single
method call. Because Sarissa is a completely client-side/JavaScript-only library, no server type object sup-
port is included.

Included in the downloadable package for Sarissa is a complete set of unit tests to run against the frame-
work. Unit tests are a way of testing and verifying that each individual component of an application or
library works as expected. If a unit test is run and fails, then some part of the code is broken and needs
to be rectified. If all unit tests are run and passed, then the code should work as expected. Unit tests also
provide a form of documentation, showing how a library’s methods are expected to be used. These unit
tests were written using another freely available and open source tool known as ECMAUnit. ECMAUnit
is a specific framework that allows the writing of unit tests for ECMAScript or JavaScript code.

For more information on ECMAUnit or to download a copy of ECMAUnit, please visit the web site at
http://kupu.oscom.org/download/ecmaunit-0.3.html. Currently this unit test framework
is version 0.3.

Overall, the Sarissa framework is a reasonably comprehensive programming interface. Its adoption rate
or usage within the industry is low; however, it is a relatively new framework and worth investigation.

HTMLHttpRequest
URL: www.twinhelix.com/javascript/htmlhttprequest/

The HTMLHttpRequest library is a JavaScript client script framework that does not contain as much
functionality as some other libraries or frameworks, such as Sarissa, but does provide a unique way of
asynchronously loading content and issuing requests.

It should be noted that as of this writing, this library is currently only in the beta 2 stage.

199

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 199

Like many other Ajax-style libraries and frameworks, this library provides a layer of abstraction around
the XMLHttpRequest object and shields the developer from having to know any intricate details about
coding against that specific object. The purpose of this library is somewhat different and more focused
than some other libraries available. Most other frameworks and libraries provide generic mechanisms
around construction and manipulation of the XMLHttpRequest object and manipulation of various
aspects or functionality surrounding that object, such as “supporting” technologies like X Path, XSLT,
and the like. This framework is specifically geared at the asynchronous loading and displaying of HTML
content, hence, the name HTMLHttpRequest. HTML content is the focus, and various mechanisms make
the loading and displaying of that content very easy, and make it occur in an asynchronous manner.

One of the major differentiators that this library offers is the unique way of invoking an asynchronous
request. A direct method call is not required (although this can be used) to load a remote document.
Instead, decorating tags in the document with a specific class style reference cause
an asynchronous load of the referenced document to occur and place it in a predefined location, dynami-
cally within the HTML document. An example demonstrates this best:

/*
HTMLHttpRequest v1.0 beta2
(c) 2001-2005 Angus Turnbull, TwinHelix Designs http://www.twinhelix.com
Licensed under the CC-GNU LGPL, version 2.1 or later:
http://creativecommons.org/licenses/LGPL/2.1/
This is distributed WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
My HTML
Content Document

<div id=”displayDocument”>
Area to have document loaded into
</div>

The preceding code example asynchronously loads in the SomePage.html HTML file from the
SomeDirectory directory and dynamically places that content inside the <div> element, which has an
id of displayDocument. Notice that this code contains no JavaScript at all, yet the asynchronous load-
ing behavior of the XMLHttpRequest object is being utilized. The magic is in the naming system of the
class attribute of the element and the <div> element.

An element with a class attribute that contains the loadinto-{control_id} text, indicates that when
this element receives a mouse click, the underlying framework should create an XMLHttpRequest object
and use it to perform an asynchronous request for the document specified in the href attribute. Once the
document is received, the framework then locates the control that has an id attribute that matches the
second part of the loadinto-{control_id} class attribute (that is, the {control_id} portion of that
attribute). In the preceding example, the control ID to search for is displayDocument. The document
that has been loaded is then assigned to the .innerHTML property of the control.

Additional functionality includes creating a “blind” toggle where a link is clicked and toggles the dis-
play of a content section, which is often used on sites that display articles and contain a Read More link
to expand the entire article. This also utilizes a similar method to that described previously with specific
class attribute definition to achieve this dynamic behavior.

200

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 200

The framework contains supporting code to trap events where the user clicks on a link that points to
another HTML document on the server. The click event is interrogated by the custom method, and if it con-
tains a “class” attribute that matches the format described previously (that is, loadinto-{control_id}),
then an asynchronous operation is invoked to perform the document loading and subsequent dynamic
displaying on the web browser display.

Currently, this framework is ideally suited to constructing HTML pages using multiple content sources
located on a server and loaded in asynchronously so that links never actually cause a postback to occur.
As of this writing, experimental modifications allow post-ing a form asynchronously to a server and
receiving a result, which is also dynamically displayed. This is, however, not fully tested and is a work
in progress.

If the display of an HTML file using dynamic and asynchronous behavior is desired, then this library
can be easily and effectively used to achieve that. If access to specific server-side services is required
above and beyond that of simple HTML document display, then this library may not be the ideal choice.
If nothing else, the ability of this library to capture events easily can be used to perform any number of
tasks not currently offered by the framework.

MochiKit
URL: http://mochikit.com

MochiKit is a client-side JavaScript framework or more specifically, a suite of JavaScript libraries. MochiKit
is described as (taken from the web site itself) a suite of JavaScript libraries that “make JavaScript suck
less.” The aim of the MochiKit framework is to make programming in JavaScript a lot easier and, like
many of the other client-side-only libraries, provide a layer of abstraction between raw coding details
that are specific to each browser. This allows a common method of accessing objects and functions, such
as Ajax asynchronous functionality, without having to code specific implementations for all the browsers
you are required to support in your development efforts.

MochiKit is quite a comprehensive framework and contains a large amount of functionality that extends
asynchronous behavior. Broadly speaking, MochiKit covers the following areas:

❑ Asynchronous requests

❑ Low-level functional and comparison features

❑ DOM manipulation

❑ Color and style manipulation with CSS3 (Cascading Style Sheets) support

❑ Date and time formatting and parsing routines

❑ String formatting routines

❑ Logging features and supporting an API

❑ Specialized Logging Pane to aid in tracing and debugging

❑ Visual effects library

❑ Iteration support API

201

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 201

Each one of the areas listed is contained within a separate module of the MochiKit framework. Simplicity
is a key goal with this framework and some examples best demonstrate this:

var x = getXMLHttpRequest();

The preceding code will simply return an object that is the equivalent XMLHttpRequest object for the
particular platform (that is, browser type):

var d = loadJSONDoc(url):

This code will perform an asynchronous request to the specified URL location and retrieve the response
as a JSON-formatted document. JSON is an acronym for the JavaScript Object Notation and is a stan-
dard, lightweight way of representing objects using a string format. JavaScript natively understands this
format and can evaluate a string that is in JSON format using the eval method to return a valid object.

The loadJSONDoc method shown in the preceding code line returns an object that is of type Deferred.
The Deferred object is a special type provided by the MochiKit library. Deferred type objects are a way
of abstracting nonblocking events, such as the final response to an XMLHttpRequest. These allow the
addition of callback functions to the Deferred objects collection that are called when an asynchronous
operation completes. The complete code might look like this:

var d = loadJSONDoc(“http://www.yourhost.com/somedocument.json”);
var gotMetadata = function (meta) {

alert(“JSON document loaded ok.”);
};
var metadataFetchFailed = function (err) {
alert(“The document could not be fetched.”);

};
d.addCallbacks(gotMetadata, metadataFetchFailed);

The first line of the preceding example:

var d = loadJSONDoc(“http://www.yourhost.com/somedocument.json”);

simply instructs the MochiKit library to asynchronously load the document specified and returns an
instance of an object that is of type Deferred. The next two lines define functions that you want to be
called when the document loads successfully and when an error occurs, respectively.

var gotMetadata = function (meta) {
alert(“JSON document loaded ok.”);

};
var metadataFetchFailed = function (err) {
alert(“The document could not be fetched.”);

};

It is then a matter of attaching these functions to the Deferred object that is returned using the syntax:

d.addCallbacks(gotMetadata, metadataFetchFailed);

The Deferred object is a fundamental part of the MochiKit framework and provides much more exten-
sive functionality than what has been listed here to support a wide variety of asynchronous operations,

202

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 202

locking, synchronization, callbacks, and so on. In many ways, the Deferred object provides similar fea-
tures, or at least provides a similar function, to delegates within the .NET framework.

In addition to support for asynchronous behavior, MochiKit also contains support for some basic visual
effects. At this time, MochiKit provides one visual effect: rounded corners for your HTML elements. These
rounded corners are created completely through CSS manipulations and require no external images or
style sheets. This is performed by calling either of the two methods, roundClass or roundElement. The
former rounds all of the elements that match the supplied tagName and className arguments, and
the latter immediately rounds the corners of the specified element.

MochiKit provides a good abstraction around some of the complexities and drudgery of JavaScript
coding and is continually undergoing enhancement and change. It is a well-documented library, with
provision for unit tests and extensive API reference documentation. This alone makes it a framework
worth considering and evaluating for client-side development that seems to succeed in its mission of
“making JavaScript suck less.”

Server-Side Frameworks
While the client side frameworks have their obvious advantages as an ASP.NET developer you may find
yourself wanting to work with a framework that is tailor-made for the ASP.NET world. The following
discussion will briefly explain the differences between three server-side frameworks and give you an
opportunity to work directly with each one.

Architectural Distinctions
Every software architect tries to solve the same problems using a different approach. An Ajax-enabled
page will not only use the XmlHttpRequest object but will also need to alter the rendered page to
update the user interface. Each library highlighted in this section is chosen for the varying ways the
framework developers tried to create an abstraction layer around the lower-level Ajax technologies.

Creating Ajax applications can be taxing on a developer. JavaScript is an integral part of Ajax develop-
ment and is not supported in the same way as server-side languages. While some programmers have
limited skills in JavaScript, even seasoned developers do not have the luxury of full integrated develop-
ment environment (IDE) integration, powerful debugging tools, and unit-testing support. The creators
of the various Ajax frameworks have addressed this challenge by architecting their frameworks to mini-
mize the need for manual JavaScript coding. In fact, some frameworks allow you to develop full Ajax
applications without writing one line of JavaScript; while this is attractive, each benefit comes with its
own tradeoff.

Some frameworks require you to inherit from a base class; others give you the option or have no require-
ment at all. Some frameworks wrap up Ajax functionality by abstracting all JavaScript calls to the server;
others allow you to use JavaScript to directly invoke server methods.

How do you remove JavaScript from the equation? Ajax is dependent on the XmlHttpRequest object,
which exists only on the web browser, so how is this possible?

The answer lies in how the application deals with data and how the user interface is updated.

203

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 203

Data Structures versus Changed HTML
Ajax frameworks may be categorized in many ways, but one way to distinguish them is to look at what
type of data is returned to the browser. Some Ajax frameworks will return data structures and others
will return only changed HTML.

The idea behind the two different approaches lies in the use of JavaScript. A framework that returns data
structures to the client will require the browser to “do something” with that data. Often the browser will
glue the data to the existing HTML structure on the page using the DOM.

Some developers would rather stay away from working with JavaScript directly and return to the
browser only the changes in HTML. This technique removes the need for intensive JavaScript parsing
of the DOM and the need to write JavaScript manually. Another benefit of this approach is that the stan-
dard ASP.NET page event lifecycle may be preserved.

Ajax.NET and Atlas return JavaScript Object Notation (JSON) data structures to the client, whereas
ComfortASP.NET and MagicAjax return only changed HTML. Anthem.NET gives you the option work-
ing manually with JSON objects or simply serving back to the browser what is changed in the HTML.

Benefits
The benefit of working with data structures is that you have complete power and control over your data.
Should you choose to return a block of data to the client and render the same information a number of
different ways, you may do so. The availability of data structures also allows you to manipulate data in
ways that are not available to you in a strict code-behind setup. If you want to make an Ajax call when
the focus is lost on a control, having a package that returns data structures where you can write custom
functions to manipulate your data is not only desirable but also required.

HTML-only solutions are nice because they truly make Ajax development effortless. When all you have
to do is define some controls on your page and then in code-behind manipulate the controls the same
way you would if there was a postback, the learning curve is drastically shortened. Solutions that will
return changed HTML to the browser also often do not require the writing of any manual JavaScript.
This is desirable because now you do not have to worry about maintaining client-side code.

Drawbacks
The drawbacks may seem obvious, but when you have a framework that returns data structures you
will often have to write and maintain your own JavaScript code.

The disadvantage to frameworks that offer a changed HTML-only architecture is that should you need
to manipulate your data in such a way that is not native to an ASP.NET control, you will have no way to
hook into the framework. For example, in ComfortASP.NET there is no way for you to call a server-side
method when the focus leaves a control. The architectural structure of this library is designed to keep
development as close to the way you would code if the page were still operating under the traditional
ASP.NET postback model.

Anthem.NET is unique in this regard because you have the option of returning data
structures or changed HTML.

204

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 204

Panels versus Custom Controls
Once the server has finalized its processing and has returned a response to the client, the application
must have a way of determining what part of the HTML page to update. The two methods you find in
the frameworks in this section use either panels or custom controls.

When you think of an “Ajax panel” think along the same lines as the ASP.NET Panel control. When using
this control, you create a container on the page where other controls placed inside the container may be
dealt with as a group. For example if you make the panel invisible, all the child controls are invisible.

The panels used in the Ajax libraries function in much the same way. When you define an Ajax panel on
your page, you are automatically given the ability to update the panel’s child control attributes without
requiring the page to conduct a full postback. All three frameworks feature panels in their architecture.

The other method of letting the browser know what to update is to use custom controls. Instead of
wrapping your controls in some sort of container, you may declaratively add Ajax controls to the page.
These controls are then recognized by the host framework and are given the Ajax capabilities. Custom
controls are an integral part of the Anthem.NET framework.

Benefits
The benefits of a paneled architecture are most apparent in ease of use. When using panels, most of the
hard work of creating Ajax solutions is managed by the code the panel creates for a developer. Perhaps
the greatest benefit to using panels is that you may deal with controls as a group; you are not required
to touch each control just to give it the behavior you desire. Panels bring flexibility to your page.

Custom controls bring an alternate set of benefits. Since a custom control is specific for each control on
the page, you will have a richer set of features available to you. Anthem.NET adds a variety of custom
properties, events, and methods to its custom controls. The primary benefit of custom controls is the
fine-grained control over a page.

Drawbacks
The downside to using panels is that you will not have as much control over the controls on your page.
This method’s advantage may be a disadvantage, depending on your situation.

The disadvantages of using custom controls are twofold:

❑ The first drawback is that there is sometimes not a one-to-one relationship between ASP.NET
controls and the custom controls of the framework. For instance, as of this printing Anthem.NET
does not feature an equivalent control for the ASP.NET 2.0 DetailsView control.

❑ The other disadvantage is that when using custom controls you are, by nature, forced to replace
the native ASP.NET controls with your library’s controls. This may or may not be a problem
depending on your situation.

Configuration Options
Each framework requires you to configure your application a little bit differently. The different configura-
tion approaches found among the featured frameworks include using httpHandlers or httpModules,
inheriting your ASP.NET page from the library’s base page class, or using page control directives.

205

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 205

❑ The use of an httpHandler or httpModule is similar in the respect that ASP.NET will process
the requests through either the handler or module before allowing the page to execute. To
signify this distinction, from now on we will refer to the use of either an httpHandler or
httpModule as “preprocessing.” Preprocessing provides a layer where the application will
examine requests coming to the server to determine if any Ajax support is required to render
to the page. Preprocessing configuration options are not enough alone to grant a page Ajax sup-
port, but less work is required on a page level.

❑ Some frameworks have a base page class that you inherit your ASP.NET web forms from instead
of the traditional System.Web.UI.Page class. The custom base class will encapsulate the required
plumbing that your page needs to handle Ajax interaction between the client and server.

❑ The final option is to use a page control directive. These directives allow you to declaratively
add Ajax support to a page at design time. The page control directive can supersede the need
for preprocessing or the use of a base page class.

You will see each of these options implemented in coming examples.

Benefits
Preprocessing allows each page in your application the ability to cycle through your Ajax engine. This
can make turning on Ajax features of a page easier because there is less code you must write on the
page level.

Base classes give you all the benefits of inheritance by giving your page Ajax processing support “for free.”
The base class will often include useful services that make coding easier, but the true benefit is found in ease
of use. Often frameworks that provide a base class require very little extra coding to create an Ajax experi-
ence. Another benefit to using a base class lies in the fact that you may inherit from the class. This extra layer
of abstraction allows you to make changes and provide services to your Ajax pages in one place.

Page control directives perhaps give you the best of both worlds, because you will avoid the disadvan-
tages (stated in the following section) of the preprocessing and base class options, while still giving your
page full Ajax support.

Drawbacks
In some experiments with frameworks that use preprocessing, we have found a few cases where the Ajax
httpHandler or httpModule interfered with applications that used their own custom handler or mod-
ule. The preprocessing configuration may not be the best option for you if you are working on a project
that already employs its own handlers or modules. Test rigorously to ensure a true working solution.

The drawbacks to base classes are classic in object-oriented development. If want to use a solution that
requires you inherit from the base class, you may run into a few problems. What if you are already inher-
iting from your own base class? The .NET runtime does not support multiple inheritances, so you must
then make a choice; do you keep your base class or go with the base class from the third-party frame-
work? Other questions you might pose to yourself are: What if I change Ajax libraries? What will that
to do my inheritance structure? Although base classes at first may seem attractive, implementation by
inheritance, rather than composition may often architecturally limit you in the end.

Page control directives are nice because they are a light-touch addition to your page. However, since you
are not inheriting from the control, making global changes becomes more difficult. If you wanted to add

206

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 206

custom logic to the directive control, you would have to inherit from the Ajax control and create your
own control exposing it as a page directive control.

Creating Your Resource Data File
Before you begin implementing the coming examples, there is a file you must create that will give your
applications some sample data. This file is an XML structure that will allow you to conduct data binding
without having to worry about connecting up to a database.

1. Open Visual Studio.NET 2005.

2. Press Ctrl+N to display the New File dialog box.

3. Click XML file template.

4. Click the Open button.

5. Enter the following code:

Resources.xml
<?xml version=”1.0” encoding=”utf-8”?>
<resources>
<resource>
<title>Polymorphic Podcast</title>
<url>http://polymorphicpodcast.com/</url>
<author>Craig Shoemaker</author>

</resource>
<resource>
<title>ASP.NET Podcast</title>
<url>http://aspnetpodcast.com/</url>
<author>Wally McClure</author>

</resource>
<resource>
<title>Glavs Blog : The dotDude of .Net</title>
<url>http://weblogs.asp.net/pglavich/</url>
<author>Paul Glavich</author>

</resource>
<resource>
<title>Scott Cate Weblog</title>
<url>http://scottcate.mykb.com/</url>
<author>Scott Cate</author>

</resource>
</resources>

6. Press Ctrl+S to save the file.

7. Save the file to C:\BeginningAJAX\Chapter9\Resources.xml.

Introduction to the Frameworks
The following examples will highlight different features from the ComfortASP.NET, MagicAjax, and
Anthem.NET frameworks. While learning about each framework, keep in mind the type of development
that you do and which solution best fits your needs.

207

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 207

Each library employs a number of the architectural distinctions presented earlier in this section. The
introductory sections will familiarize you with the framework and describe the options available in each
framework. The examples begin with the traditional “Hello World” implementation, and then proceed
to more in-depth samples. Some demonstrations are repeated between the frameworks. The repetition is
included by design to illustrate how the same problems are addressed by the different libraries.

ComfortASP.NET
URL: www.comfortasp.de

ComfortASP.NET is a framework that allows you to quickly Ajax-enable any ASP.NET page. A demo ver-
sion of the software is all that is needed for the following examples. You may download ComfortASP.NET
from http://beginningajax.com/chapter9/ComfortASPNET. For more information about
ComfortASP.NET, please visit the official web site at www.comfortasp.de.

ComfortASP.NET’s architecture is flexible and gives a developer a number of different ways to configure
the application. The framework employs a changed HTML-only architecture, uses panels, and gives you
the option of either using preprocessing or a base page class.

In the coming examples, you will use ComfortASP.NET’s base page class. When the base class is config-
ured properly, you may code your page normally, and the framework will worry about the Ajax imple-
mentation details. What’s surprising about this framework is that the only configuration required of the
base class is to set the HiddenFormPostBack property to true.

Optionally, ComfortASP.NET will save the page and ViewState information in session. Using session
state allows the framework to quickly serve pages back to the client because it uses the information per-
sisted in session rather than asking the server to build up the page again. Session use is optional and
may or may not be desirable, depending on the application you are building.

Data transferred between the client and server may also be compressed by ComfortASP.NET. The
CompressionLevel property of a ComfortASP.NET Manager control determines the amount of com-
pression applied to the transporting data. The compression scale ranges from 1 to 9. At the low end of
the spectrum, there is little compression with higher transfer speeds. The higher end of the spectrum is
more data compression, resulting in lower transmission speeds.

Setup
Before you begin using the ComfortASP.NET framework, you must first download the files and then ref-
erence them in a web project. The following steps help you build a solution that houses all the samples
you create for the ComfortASP.NET framework.

Downloading Files
1. Download the zip file containing the ComfortASP.NET DLL file from http://beginning

ajax.com/downloads/chapter9/Chapter9-Framework DLLs.zip.

2. Extract the files and place them in a convenient location.

208

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 208

Creating the Solution
1. Open Visual Studio 2005.

2. Click File➪New➪Website.

3. Select the ASP.NET Website template.

4. Choose File System under location.

5. Set the path to c:\BeginningAJAX\Chapter9\ComfortASPDemo.

6. Choose C# as the language.

7. Click OK.

Referencing ComfortASP.NET
1. In the Solution Explorer, right-click on the project name and select Add ASP.NET Folder.

2. Choose App_LocalResources to create the ASP.NET folder.

3. Copy ComfortASP.dll (from the zip file you extracted) to the App_LocalResource folder.

4. Create a reference to ComfortASP.dll.

Copying the Data File
1. Copy the Resources.xml you created in the last section into the App_Data folder in the solution.

Adding the ComfortASP.NET Group to the Toolbox
ComfortASP.NET comes with some controls that can be used to create specific behaviors. To use these
controls in the Visual Studio Designer, you must add them into the Toolbox:

1. Right-click on the Toolbox window, and select Add Tab.

2. Name the tab ComfortASP.NET.

3. Left-click the ComfortASP.NET tab.

4. Right-click ComfortASP.NET.

5. Select Choose Items.

6. Click Browse and select ComfortASP.dll from the location you placed it in the earlier steps.

7. The new controls are automatically selected — click OK.

You may now begin implementing your first Ajax pages using the ComfortASP.NET framework.

Using ComfortASP.NET
Now that the project is configured to work with the ComfortASP.NET framework, you may begin work-
ing hands-on with the framework. The next few sections will walk you through building pages that
implement an introductory example, highlight some of the features unique to ComfortASP.NET, and
explain how to execute some common operations using the framework.

209

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 209

Example 1: Hello World
The first exercise will take you step by step through creating a Hello World page. In the coming examples,
the interaction between the client and server is handled by subclassing ComfortASP.NET’s base page
class. To Ajax-enable the page, you simply switch on the page’s HiddenFormPostBack property and the
rest of the code-behind remains unchanged from the code used in the traditional postback paradigm.

Figure 9-1 is a screenshot of what the page looks like once it’s constructed.

Figure 9-1

When you click on the Test button, the label is updated with the words “Hello World” plus the current
date and time.

Try It Out Implementing “Hello World”
Add a new web form to the solution and name it HelloWorld.aspx. Open the HTML editor, and enter
the following markup between the <div> tags:

<asp:Button
ID=”btnTest”
Text=”Test”
runat=”server” />

210

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 210

<asp:Label
ID=”lblTest”
runat=”server” />

Note that the HTML markup is exactly the same as if the page were not using ComfortASP.NET.

Switch to the designer view, and double-click the Test button. This will wire up a click event method to
the button and switch you to the code-behind window.

Next, update the HelloWorld class to inherit from ComfortASP.ComfortASP_Page:

public partial class HelloWorld : ComfortASP.ComfortASP_Page
{

protected void Page_Load(object sender, EventArgs e)
{

this.HiddenFormPostBack = true;
}
protected void btnTest_Click(object sender, EventArgs e)
{

this.lblTest.Text = “Hello World “ + DateTime.Now.ToString();
}

}

The Page_Load event method will set the HiddenFormPostBack property equal to true, enabling
ComfortASP.NET on the page. In the button click event, update the text of the label to print Hello World
and current date and time for the user.

Now you may launch the application in the browser to test your code. Click the Test button, and you
will notice that the label is updated. Click the button again, and you can observe that no postbacks are
taking place and the time will be updated with each click.

Example 2: Using Complex Controls
You see now that working with ComfortASP.NET is easy, but what about when you want to use more
complex controls like the ASP.NET GridView control? Databound controls like the ASP.NET GridView
have a much larger property set as well as custom events. ComfortASP.NET can make developing with
these controls just as easy as the Hello World example above.

This example will bind the contents of the Resources.xml file to a GridView control. When the user clicks
on an item in the grid, the SelectedIndexChanged event will fire to update the page, notifying the user of
the new selected index. The purpose of this demonstration is to show you that the ComfortASP.NET frame-
work makes working with controls that have custom events and extended properties just as easy as the
previous Hello World example.

Figure 9-2 shows what the page will look like when you are done.

When you click the Load Resource button, the grid is loaded with data. When you click an item in the
grid, the new selected index is printed on the page.

211

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 211

Figure 9-2

Try It Out Using Complex Controls
Add a new web form to the solution and call it ComplexControls.aspx. Switch to the source view and
add the following markup between the <div> tags.

<asp:Button
ID=”btnLoadResources”
OnClick=”btnLoadResources_Click”
Text=”Load Resources”
runat=”server” />

<asp:gridview
ID=”grdResources”
runat=”server”
OnSelectedIndexChanged=”grdResources_SelectedIndexChanged”>
<Columns>

<asp:CommandField ShowSelectButton=”True” />
</Columns>

</asp:gridview>

<p>Selected index:
<asp:Label ID=”lblSelectedIndex” runat=”server” /></p>

212

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 212

Switch to the source window to update the ComplexControls class.

public partial class ComplexControls : ComfortASP.ComfortASP_Page
{

protected void Page_Load(object sender, EventArgs e)
{

this.HiddenFormPostBack = true;
}

protected void btnLoadResources_Click(object sender, EventArgs e)
{

System.Data.DataSet ds;

ds = new System.Data.DataSet();
ds.ReadXml(Server.MapPath(“~/App_Data/Resources.xml”));

this.grdResources.DataSource = ds;
this.grdResources.DataBind();

}

protected void grdResources_SelectedIndexChanged(object sender, EventArgs e)
{

this.lblSelectedIndex.Text =
this.grdResources.SelectedIndex.ToString();

}
}

The page will inherit from the ComfortASP.NET base page and will turn on the HiddenFormPostBack
property in the Page_Load method. When the Load Resources button is clicked, you will load the data
from the Resources.xml file and bind it to the GridView control. Finally, when an item in the grid is
selected, the SelectedIndex is printed to the lblSelectedIndex label on the page.

You can now launch the application in the browser to test your code.

Example 3: ComfortASP.NET Manager Control
The ComfortASP.NET Manager control gives you a centralized place to administer the page’s Ajax capa-
bilities. The manager control provides services that implement many common requirements. We will
review some of the more common features of the control here, but please refer to the ComfortASP.NET
web site for full documentation of the Manager control.

If you want to stop a user from repeatedly clicking on a button that initiates an Ajax call, you might
choose to disable the button once the call is dispatched. ComfortASP.NET makes it easy to disable these
controls. The manager’s DisableFormWhilePostBack property will automate this process of enabling
or disabling the controls on a page during a callback to the server. If the property is set to true, then all
controls are disabled during an Ajax call; otherwise, the controls are left alone.

Ajax applications face the challenge that the server will not always respond in a timely manner. Consider
what the user would think when he or she clicks a button and nothing happens on the page for well over
a minute, or perhaps never. The ComfortASP.NET Manager control has a built-in safeguard against this
situation. The HiddenRequestTimeout property will define the number of seconds the page should wait

213

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 213

until sending a notification that the request has timed out. The user may then decide whether or not to try
the request again. The Manager control also exposes a property that will allow you to customize the mes-
sage displayed to the user in the event of a timeout.

The TransferDifference property will determine if the entire page markup is returned to the client or
if just the changed section of the page goes across the wire. The distinction between the two options lies
in the use of session state. If you do not want ComfortASP.NET to use session state to persist the page
contents, then TransferDifference is false. Alternatively, if you allow the framework to use session
to hold page content, then TransferDifference is set to true.

Figure 9-3 shows an example of the “loading” message generated by the ComfortASP.NET framework
when the server is engaged in processing. Also notice how the button is disabled. This behavior is imple-
mented by changing some of the values on the ComfortASP.NET Manager control.

Figure 9-3

Figure 9-4 is an example of how the user is notified when a request timeout occurs.

214

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 214

Figure 9-4

Try It Out Using the Control Manager
Add a new web form to the solution and name it Manager.aspx. Make sure that the ASPX page is in
design view, and hover over the toolbar to drag a ComfortASP.NET Manager control onto the page.
Switch to source view, and add the following markup.

The ComfortASP.NET Manager control is already added to your page; simply adjust the property values
to match what is listed here, and add the markup for the button and label.

<cc1:ComfortASP_Manager
ID=”comfortManager”
HiddenRequestTimeout=”20”
HiddenRequestTimeoutText=”The server is busy. Try again?”
DisableFormWhilePostBack=”True”
TransferDifference=”True”
runat=”server” />

<asp:Button
ID=”btnLongRequest”
Text=”Simulate Long Server Request”
runat=”server” />

<asp:Label
ID=”lblResult”
runat=”server” />

215

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 215

Switch back to the design view and double-click the btnLongRequest button. This action will switch
you to the code window and wire up a button click event method.

Update the Manager class by inheriting from the ComfortASP.ComfortASP_Page class. The only other
changes required for this demonstration are to add a short delay when the button is clicked and to print
a message on the label when the request is completed.

Notice that you are not setting the page’s HiddenFormPostBack property. The ComfortASP.NET
Manager control is responsible for notifying the application that this page is Ajax-enabled.

public partial class Manager : ComfortASP.ComfortASP_Page
{

protected void Page_Load(object sender, EventArgs e)
{

}

protected void btnLongRequest_Click(object sender, EventArgs e)
{

System.Threading.Thread.Sleep(5000);
this.lblResult.Text = “Done”;

}
}

Now run the page to demonstrate its behavior.

Experiment with the manager settings by changing the HiddenRequestTimeout property to 3 in the
ASPX file. This allows the page to time out before the server is done processing, and you see how the
framework will notify the user of a timeout. Change the DisableFormWhilePostBack property, and
note how the controls on the page are no longer disabled when you make a call to the server. Finally, you
can see the effect of the TransferDifference property by setting it to false and clicking on the button.
The ComfortASP.NET demo version includes a bar graph that represents the amount of information sent
across the wire. When TransferDifference is turned off, you can see by the graph how much more
data is transported to the client.

Example 4: PanelUpdater Control (Periodic Refresh)
The ComfortASP.NET PanelUpdater is a control that allows you to target specific areas of a page to
update. You may decide that you want to change the contents of a section of your page, but the rest of
the page should remain unchanged. The PanelUpdater wraps up many of the implementation details,
allowing you to easily access page segments.

The PanelUpdater works by being nested within an ASP.NET Panel control. The panel acts as the
overall container and the PanelUpdater, simply by being placed inside the panel, will expose the con-
tainer to ComfortASP.NET. The control exists on the page to service interaction between the browser
and the server and will not render anything visible to the user.

The ComfortASP.NET PanelUpdater is associated to its parent panel, so you may have multiple
Panel/PanelUpdater combinations on a single page.

216

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 216

Imagine for a moment that you want to create a page that will continually engage with the server to see
if there are new messages available for the user. The PanelUpdater is a perfect choice for a requirement
like this for two reasons:

❑ Reason one is that the control will allow you to target a portion of the page and allow the system
to update only that region of the page you have specified.

❑ Reason two is that the PanelUpdater features a timer interval that, once set, will instruct the
control to send requests to the server at every n number of seconds. This pattern is known as the
Periodic Refresh pattern, and you will also implement this same behavior in the next section,
using MagicAjax.

The following example implements a page with the requirements just described. Figure 9-5 is an example
of how the finished product will look.

Figure 9-5

The ComfortASP.NET demo version will automatically print the bar graph at the top of the page, indicat-
ing the amount of data transferred with a link back to the ComfortASP.NET web site. The full version does
not have this feature.

The page includes a panel that will contact the server every 3 seconds to update the page with the new
message count.

217

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 217

Try It Out Using PanelUpdater Control
Begin by adding a new web form to the solution, naming it PanelUpdater.aspx. Make sure that you are
in source view, and add the following line after the Page directive line found at the top of the ASPX page.

<%@ Register Assembly=”ComfortASP” Namespace=”ComfortASP” TagPrefix=”cc1” %>

The Register tag will make the ComfortASP.NET framework available to the page.

Continue by adding the following markup between the <div> tags:

<asp:Panel ID=”pnlContent” runat=”server”>

<cc1:ComfortASP_PanelUpdater
ID=”ComfortASP_PanelUpdater1”
TimerIntervalUpdate=”3”
Active=”True”
runat=”server” />

Message Count:
<asp:Label

ID=”lblMessageCount”
runat=”server” />

</asp:Panel>

The ASP.NET panel is the container for the section of the page to update. The ComfortASP.NET
PanelUpdater control will handle generating the client-side code to create the timeout behavior. Be sure
to activate the PanelUpdater by setting the Active property equal to true. The TimerIntervalUpdate
property will take a value for the number of seconds you want the browser to wait before contacting the
server. Finally, the label at the end of the listing will take the latest information from the server and print
the message count back to the user.

Now switch to the code window to update the PanelUpdater class.

public partial class PanelUpdater : ComfortASP.ComfortASP_Page
{

private int MessageCount
{

get
{

if (this.ViewState[“messageCount”] == null)
{

return 0;
}
else
{

return Convert.ToInt32(this.ViewState[“messageCount”]);
}

}
set
{

this.ViewState.Add(“messageCount”, value);

218

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 218

}
}

protected void Page_Load(object sender, EventArgs e)
{

this.HiddenFormPostBack = true;
this.UpdateMessageCount();

}

private void UpdateMessageCount()
{

this.MessageCount++;
this.lblMessageCount.Text = this.MessageCount.ToString();

}
}

As always, the class will inherit from ComfortASP.ComfortASP_Page instead of System.Web.UI.Page.
You will Ajax-enable the page by turning on HiddenFormPostBack property in the load method. The
MessageCount property is a strongly typed wrapper to a ViewState entry that persists the message
count. If the ViewState entry does not exist, the wrapper will initialize the value to 0. Finally, the
UpdateMessageCount method will simply increment the MessageCount property and report the new
count to the label on the page.

You can now run the page to demonstrate its behavior.

What You Have Learned
The ComfortASP.NET framework is an Ajax library that is unobtrusive for a .NET developer. The frame-
work allows you to implement Ajax functionality in your ASP.NET pages without having to manually
code JavaScript or deal with XML. ComfortASP.NET also features a number of useful controls that allow
you to administer the framework’s settings and behaviors from a centralized location.

MagicAjax
URL: www.magicajax.net

MagicAjax is a panel-based, changed-HTML framework that makes it easy for you to add Ajax function-
ality to your ASP.NET applications. The architects of MagicAjax created a framework that integrates into
your application with a light touch. Once the site is configured to communicate with MagicAjax, most
Ajax functionality can be achieved by adding a MagicAjax Panel to the page. You do not have to inherit
from a base class, nor are there any custom controls to declare. Other than adding the MagicAjax Panel
to your page, the ASPX and code-behind code is unchanged from how you would write your pages in
the traditional postback model.

Setup
Before you begin using MagicAjax, you must first download the files and then reference them in a web pro-
ject. The following steps help you build a solution that houses all the samples you create for the MagicAjax.

219

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 219

Downloading Files
1. If you haven’t already done so, download the zip file containing the MagicAjax DLL from

http://beginningajax.com/downloads/chapter9/Chapter9-Framework DLLs.zip.

2. Extract the files and place them in a convenient location.

Creating the Solution
1. Open Visual Studio 2005.

2. Click File➪New➪Website.

3. Select the ASP.NET Website template.

4. Choose File System under location.

5. Set the path to c:\BeginningAJAX\Chapter9\MagicAjaxDemo.

6. Choose C# as the language.

7. Click OK.

Referencing ComfortASP.NET
1. In the Solution Explorer, right-click on the project name and select Add ASP.NET Folder.

2. Choose App_LocalResources to create the ASP.NET folder.

3. Copy MagicAjax.dll (from the zip file you extracted) to the App_LocalResource folder.

4. Create a reference to the MagicAjax.dll.

Updating Web.Config
Open the Web.Config file and add the following code just after the open <system.web> tag:

<pages>
<controls>

<add
namespace=”MagicAjax.UI.Controls”
assembly=”MagicAjax” tagPrefix=”ajax”/>

</controls>
</pages>
<httpModules>

<add
name=”MagicAjaxModule”
type=”MagicAjax.MagicAjaxModule, MagicAjax”/>

</httpModules>

Your application is now configured to use MagicAjax.

Using MagicAjax
Now that you have MagicAjax set up on your machine, you may begin implementing the examples.
Each example will expose a new layer of the MagicAjax framework giving you a taste of the library’s

220

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 220

features and strengths. The coming examples will demonstrate some of MagicAjax stock capabilities as
well as a providing few more involved examples to show you how you might use these techniques in
the real world.

Example 1: Hello World
Your MagicAjax examples begin with a Hello World page. With no base class to inherit from and the
Web.Config settings exposing the framework to each page, the page-level configuration is minimal. To
give a MagicAjax page asynchronous functionality, you simply must declare some ASP.NET controls inside
a MagicAjax Panel. This exercise is much like the page you implemented for the ComfortASP.NET frame-
work in that a button click will initiate a request to the server, which in turn will return fresh data to the
client, all without a postback.

Figure 9-6 is a screenshot of what the page will look like.

Figure 9-6

When you click the Test button, the text “Hello World” plus the current date and time is returned to the
browser.

Try It Out Implementing “Hello World”
Begin by adding a new web form to the solution and name it HelloWorld.aspx. Switch to source view,
and add the following markup between the <div> tags:

221

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 221

<ajax:ajaxpanel ID=”Ajaxpanel1” runat=”server”>

<asp:Button
ID=”Button1”
OnClick=”Button1_Click”
Text=”Test”
runat=”server” />

<asp:Label
ID=”Label1”
runat=”server” />

</ajax:ajaxpanel>

The reason you do not have access to IntelliSense for the ajaxpanel is that you used a configuration
option that added the MagicAjax functionality to each page in Web.Config. If you were to change the
configuration to use a Register directive, then you would see the IntelliSense listings.

Now switch to the code view, and update the HelloWorld class.

public partial class HelloWorld : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
protected void Button1_Click(object sender, EventArgs e)
{

this.Label1.Text = “Hello World “ + DateTime.Now.ToString();
}

}

Notice that there is no change to the code-behind as compared to a normal ASP.NET implantation with
postbacks. MagicAjax.NET does all the work by adding the controls into an ajaxpanel.

You can now launch the page in a browser to test its behavior.

Example 2: Delay
Every Ajax framework must deal with the likely event that the server will take a few (or perhaps more)
seconds to complete a given command. When your application experiences such a delay, you must pro-
vide feedback to the user to give them a clue of what is happening. MagicAjax provides a “Loading...”
message out of the box to help you keep your users informed of what is happening on the page.

This next example will force the server to wait 5 seconds before returning data to the server. This delay
will give you an opportunity to see how MagicAjax responds to such a hesitation.

Figure 9-7 is a screenshot showing what the “Loading...” message looks like.

222

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 222

Figure 9-7

Try It Out Demonstrating the Delay Message
Add a new web form to the solution, and name it Delay.aspx. Open the source view of the page and
update the markup between the <div> tags with the following code:

<ajax:AjaxPanel ID=”AjaxPanel1” runat=”server”>

<asp:Button
ID=”btnDelay”
Text=”Delay”
OnClick=”btnDelay_Click”
runat=”server” />

<asp:Label
ID=”lblDelay”
runat=”server” />

</ajax:AjaxPanel>

Now switch to the code view to update the Delay class.

223

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 223

public partial class Delay : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
protected void btnDelay_Click(object sender, EventArgs e)
{

System.Threading.Thread.Sleep(5000);
this.lblDelay.Text = “Done”;

}
}

When you click the Delay button, the server will hesitate for 5 seconds displaying the MagicAjax
“Loading...” message at the top right of the screen.

You can now launch the page in the web browser to test its behavior.

Example 3: Ajax Call Helper (Periodic Refresh)
If you recall from the examples in the ComfortASP.NET section, you created a page that implemented
the Periodic Refresh pattern. The next example will teach you how to implement the same behavior
using MagicAjax.

The design goals are the same; create a page that will check the server for changes in data at a regular
interval without requiring the user to initiate the request. The page in this example will use MagicAjax’s
AjaxCallHelper class. This class has utilities that help automate your Ajax development. For this
example, you will use the SetAjaxCallTimerInterval method, which will register a timeout on the
browser and create a request to the server every n seconds.

Figure 9-8 is a screenshot showing what the page will look like when you are done.

Try It Out Using the Ajax Call Helper
Begin by adding a new web form to the solution, and name it AjaxCallHelper.aspx. Switch to source
view, and update the page with the following markup between the <div> tags:

<ajax:AjaxPanel ID=”AjaxPanel1” runat=”server”>

Message Count:
<asp:Label

ID=”lblMessageCount”
runat=”server” />

</ajax:AjaxPanel>

The ASPX code in this example is straightforward. You create a label to hold the current count and place
it inside a MagicAjax Panel.

224

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 224

Figure 9-8

Now switch to the code window to update the AjaxCallHelper class.

public partial class AjaxCallHelper : System.Web.UI.Page
{

private int MessageCount
{

get
{

if (this.ViewState[“messageCount”] == null)
{

return 0;
}
else
{

return Convert.ToInt32(this.ViewState[“messageCount”]);
}

}
set
{

this.ViewState.Add(“messageCount”, value);
}

}

protected void Page_Load(object sender, EventArgs e)
{

225

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 225

if (!this.Page.IsPostBack)
{

MagicAjax.AjaxCallHelper.SetAjaxCallTimerInterval(5000);
}
this.UpdateMessageCount();

}

private void UpdateMessageCount()
{

this.MessageCount++;
this.lblMessageCount.Text = this.MessageCount.ToString();

}
}

If you implemented the ComfortASP.NET demo, this code is familiar to you. The MessageCount prop-
erty encapsulates the ViewState container for the number of messages for this series of requests.

Upon the first request to the page, you register a timeout on the browser by using the SetAjaxCall
TimerInterval method. This command will take care of rendering all the appropriate JavaScript to
the page to fire a request to the server every 5 seconds.

When the page is in “postback” mode, the message count increments and the label is updated.

Now launch the page in a browser to test its behavior.

Example 4: Direct Scripting (Micro-content)
In previous examples, you saw how the ASP.NET page event lifecycle is preserved by MagicAjax, allow-
ing you to make drastic changes to a page’s contents using Ajax and doing it all from code-behind. This
model is powerful and will probably aid you in most of your Ajax development, but what if you need to
create interaction on the page that is not native to the ASP.NET architecture? What if you want to update
an element on the page when the user clicks away from the control?

The following steps walk you through the process of creating a page that allows a user to directly edit
text on the page. For example, when the user encounters the page title, he or she may click on the title
text, edit its contents, and continue browsing. In the background, the page recognizes the change and
is responsible for contacting the server to persist the latest data.

The Ajax design pattern being implemented in this example is called micro-content. The micro-content
pattern states that certain areas of a page may be editable by the user without having to manually switch
the page into an “edit mode” by clicking on buttons or changing page locations. Small or “micro” areas
of the content on the page are open for the user to edit simply by clicking on the text. You will often see
this pattern implemented in wikis that are Ajax-powered.

This exercise will make use of not only MagicAjax but also some custom Cascading Style Sheet definitions
to power the change in the user interface to give clues as to what is happening.

Figure 9-9 is a screenshot of how the user will first encounter the page.

The page will provide initial clues that parts of the page are editable by drawing a border over the text
when the cursor hovers over the editable area. Figure 9-10 shows how the control will look when the
mouse is hovering over the control.

226

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 226

Figure 9-9

Figure 9-10
227

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 227

The next step is to change the appearance of the control when the user has placed this area of the page in
“edit mode.” Figure 9-11 shows the page after the user clicks within the border of the control.

Figure 9-11

Finally, when the focus is lost from the control, MagicAjax will contact the server and allow the back-end
processing to persist the latest data. Under normal circumstances, you would probably persist the data
to a data store of some kind. For demonstration purposes, this exercise will simply store the information
in Session state. This way, after you make a change to the data, you can navigate off the page and return
to see your latest changes, but avoid having to implement a data layer just for this example.

Try It Out Using Direct Scripting
Begin by adding a new web form to your solution, and name it DirectScripting.aspx. Next, switch
to the source view, and add the following Cascading Style Sheet entries and JavaScript to the page just
after the <title> tag:

<style type=”text/css”>
input
{

border:solid 1px #fff;
}
.focus
{

background-color:#eee;

228

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 228

border:dashed 1px #ccc;
}
.blur
{

background-color:#fff;
border:dashed 1px #fff;

}
.mouseOver
{

border:solid 1px #c00;
}
.mouseOut
{

border:solid 1px #fff;
}
</style>

These style sheet entries give the page the visual clues to help the user understand what is happening on
the page. The first entry will place a one pixel white border around the page’s input control. This white
border is necessary because later you will apply a colored border to the control, and if there is no exist-
ing border, the page contents will appear to shift.

The focus, blur, mouseover, and mouseout CSS classes are named consistently with the events that will
use them. When focus is brought to the control, the background color is turned a light grey, and a dashed
border is applied to the control. When focus is lost from the control, or the focus is blurred, the blur style is
applied. The blur style will change the background and border back to white. When the user mouses over
the control, the border is turned red as dictated by the mouseover class. Finally, when the user moves their
mouse off of the control, the border is returned to the original white state by the mouseOut event and class.

Next, add this JavaScript block directly below the closing <style> tag:

<script type=”text/javascript”>
function ChangeCSSClass(element,className)
{

element.className = className;
}
</script>

This function will handle the work of programmatically applying the stated style sheet entry to a con-
trol. The function is defined here and wired up to the control in code-behind.

Next, update the markup between the <div> tags with the following code:

<ajax:AjaxPanel ID=”AjaxPanel1” runat=”server”>

<asp:TextBox
ID=”txtTitle”
text=”Title”
OnTextChanged=”txtTitle_TextChanged”
runat=”server” />

</ajax:AjaxPanel>

229

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 229

The markup is simple. A single ASP.NET TextBox control in a MagicAjax panel is all that is required.
When the browser recognizes a change to the contents of the textbox, the OnTextChanged event will
fire. You will implement your persistence logic in the resulting method.

Finally, switch to the code window, and update the DirectScripting class with the following code.

public partial class DirectScripting : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!this.Page.IsPostBack)
{

this.txtTitle.Attributes.Add(“onfocus”,
“ChangeCSSClass(this,’focus’);”);

this.txtTitle.Attributes.Add(“onblur”,
“ChangeCSSClass(this,’blur’);” +
MagicAjax.AjaxCallHelper.GetAjaxCallEventReference(this.txtTitle) +
“ return false;”);

this.txtTitle.Attributes.Add(“onmouseover”,
“ChangeCSSClass(this,’mouseOver’);”);

this.txtTitle.Attributes.Add(“onmouseout”,
“ChangeCSSClass(this,’mouseOut’);”);

if (this.Session[“title”] != null)
{

this.txtTitle.Text = this.Session[“title”].ToString();
}

}
}

protected void txtTitle_TextChanged(object sender, EventArgs e)
{

this.Session.Add(“title”, this.txtTitle.Text);
}

}

When the page is first served to the browser, each event’s JavaScript call is wired up to the control. The
final portion of this code block inspects Session state for a current “title” value. If the value is found,
the control will display the value; otherwise, the page renders the default text defined in the HTML.

While each event function is attached using the familiar Attributes.Add approach, one event stands
out among the rest. The blur event is responsible for contacting the server when the user leaves the
focus of the control. This type of interaction with the code-behind is not native to the ASP.NET architec-
ture. In order to create a link between the client and server at this time, the MagicAjax AjaxCallHelper
class must do the work of talking to the server.

The AjaxCallHelper exposes a method named GetAjaxCallEventReference, which will contact the
server simulating a “postback” in code-behind, telling the page that whatever control is passed in as an
argument is the sender for the request. Once the server recognizes the request, the page will run the

230

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 230

txtTitle_TextChanged event and will update Session state with the latest value. Now when you
move to another page and return, this page will have your changed value instead of saying “Title.”

You can now launch the page in your browser to test its behavior.

What You Have Learned
MagicAjax is a framework that will make any .NET developer feel comfortable. The panel, changed-
HTML-type architecture makes creating Ajax applications easy because the framework is responsible for
creating the wireup between the browser and the server. In fact, the only custom JavaScript you wrote in
these examples was to update style sheet settings and not to facilitate Ajax scripting. MagicAjax also
provides hooks for you to call code written in your code-behind that is not a part of the traditional
ASP.NET Event Postback pattern.

Anthem.NET
URL: http://anthem-dot-net.sourceforge.net

Although the Anthem.NET framework features panels and a changed HTML architecture, you also have the
option of using custom controls and returning data structures to the client. Anthem.NET is architected to use
page Register directives instead of forcing you to inherit from a base class, and you are not required to
implement preprocessing to harness its power. Anthem.NET truly represents the best of both worlds.

Setup
Before you begin using Anthem.NET, you must first download the files and then reference them in a
web project. The following steps help you build a solution that houses all the samples you create for the
Anthem.NET.

Downloading Files
1. If you haven’t done so yet, download the zip file containing the Anthem.NET DLL from

http://beginningajax.com/downloads/chapter9/Chapter9-Framework DLLs.zip.

2. Extract the files, and place them in a convenient location.

Creating the Solution
1. Open Visual Studio 2005.

2. Click File➪New➪Website.

3. Select the ASP.NET Website template.

4. Choose File System under location.

5. Set the path to c:\BeginningAJAX\Chapter9\AnthemDemo.

6. Choose C# as the language.

7. Click OK.

231

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 231

Referencing ComfortASP.NET
1. In the Solution Explorer, right-click on the project name and select Add ASP.NET Folder.

2. Choose App_LocalResources to create the ASP.NET folder.

3. Copy Anthem.dll (from the zip file you extracted) to the App_LocalResource folder.

4. Create a reference to the Anthem.dll.

Copying the Data File
1. Copy the Resources.xml you created in the last section into the App_Data folder in the solution.

Using Anthem.NET
Since you have had an opportunity to use panels, the coming examples will focus on using Anthem.NET’s
custom controls. You will also have an opportunity to work with a data structure returned from the
server. Working with Anthem.NET’s data structures will seem familiar to you because the process is
nearly identical to the way you would do it using the Ajax.NET framework.

Example 1: Hello World
Anthem.NET’s introductory example will follow the same pattern as the examples for ComfortASP.NET
and MagicAjax.

This demonstration will use Anthem.NET controls. The Anthem button and label inherit from the stan-
dard .NET controls and extend them for the framework. While the markup for the controls remains the
same in this example, you will set a property in the code-behind that will flag the label control for
Anthem.NET to use for updating instead of the traditional .NET postback mechanism.

Figure 9-12 shows an example of how the page will look when you are done.

Try It Out Implementing “Hello World”
Begin by adding a web form to the solution and naming it HelloWorld.aspx. Now add the Anthem
register directive to the page just under the <%@ Page %> directive.

<%@ Register TagPrefix=”anthem” Namespace=”Anthem” Assembly=”Anthem” %>

Next, update the markup by adding the following code between the <div> tags.

<anthem:Button
ID=”Button1”
OnClick=”Button1_Click”
Text=”Test”
runat=”server” />

<anthem:Label
ID=”Label1”
runat=”server” />

232

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 232

Finally, update the HelloWorld class with the following code-behind.

public partial class HelloWorld : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
protected void Button1_Click(object sender, EventArgs e)
{

this.Label1.Text = “Hello World “ + DateTime.Now.ToString();
this.Label1.UpdateAfterCallBack = true;

}
}

When you click on the Test button, the label will update with the text “Hello World” and the current
date and time. Click the button multiple times to see that the time will continue to be updated without
a postback to the server.

You may now test the behavior by launching the page in the browser.

Figure 9-12

233

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 233

Example 2: Complex Controls
Just as you observed with ComfortASP.NET, the framework operates well with a single textbox, but how
will the system perform with more demanding controls? This example will guide you through adding a
GridView control to the page and will use Anthem.NET to respond to the SelectedIndexChanged
method.

Figure 9-13 is an example of the way the page will look when you are done.

Figure 9-13

Try It Out Using Complex Controls
Begin by adding a new web form to the solution, naming it ComplexControls.aspx. Now add the
Anthem register directive to the page just under the <%@ Page %> directive.

<%@ Register TagPrefix=”anthem” Namespace=”Anthem” Assembly=”Anthem” %>

Next, update the markup by adding the following code between the <div> tags:

<anthem:Button
ID=”btnLoadResources”
OnClick=”btnLoadResources_Click”
Text=”Load Resources”
runat=”server” />

234

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 234

<anthem:gridview
id=”grdResources”
runat=”server”
OnSelectedIndexChanged=”grdResources_SelectedIndexChanged”>
<Columns>

<asp:CommandField ShowSelectButton=”True” />
</Columns>

</anthem:gridview>

<p>Selected index:
<anthem:Label ID=”lblSelectedIndex” runat=”server” /></p>

Finally, switch to the code view, and add the following code to the ComplexControls class:

public partial class ComplexControls : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}

protected void btnLoadResources_Click(object sender, EventArgs e)
{

DataSet ds;

ds = new DataSet();
ds.ReadXml(Server.MapPath(“~/App_Data/Resources.xml”));

this.grdResources.DataSource = ds;
this.grdResources.DataBind();
this.grdResources.UpdateAfterCallBack = true;

}

protected void grdResources_SelectedIndexChanged(object sender, EventArgs e)
{

this.lblSelectedIndex.Text = this.grdResources.SelectedIndex.ToString();
this.lblSelectedIndex.UpdateAfterCallBack = true;

}
}

When you click the Load Resources button, the grid is loaded with data from the XML store. When you
click on a Select link in the grid, the text of the label is updated with the selected index value.

You can now test the behavior by launching the page in the browser.

Example 3: Custom Attributes
When Anthem.NET extends web controls, part of the new interface includes some attributes you can
define to make working with the controls easier. In some frameworks, you must manually script a fea-
ture to disable a button when a call to the server is initiated. With an Anthem button, you may set an
attribute that implements this feature for you automatically. You may also find that you want to change
the text of a button once the page begins to contact the server. Again, Anthem.NET’s button control
allows you to declaratively define this behavior.

235

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 235

Figure 9-14 shows an example of how the page will look after you click the button defined with
Anthem.NET’s custom attributes.

Figure 9-14

Try It Out Using Custom Attributes
Begin by adding a new web form to the solution naming it CustomAttributes.aspx. Now add the
Anthem register directive to the page just under the <%@ Page %> directive.

<%@ Register TagPrefix=”anthem” Namespace=”Anthem” Assembly=”Anthem” %>

Next, update the markup by adding the following code between the <div> tags:

<anthem:Button
ID=”btnTest”
EnabledDuringCallBack=”false”
TextDuringCallBack=”Working...”
Text=”Test”
runat=”server”
OnClick=”btnTest_Click” />

<anthem:Label
ID=”lblTest”
runat=”server” />

236

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 236

Finally, update the CustomAttributes class with the following code-behind:

public partial class CustomAttributes : System.Web.UI.Page
{

protected void btnTest_Click(object sender, EventArgs e)
{

System.Threading.Thread.Sleep(5000);
this.lblTest.Text = DateTime.Now.ToString();
this.lblTest.UpdateAfterCallBack = true;

}
}

When you click the Test button, the server will hesitate for 5 seconds before returning a response to
the browser. During this delay, you may observe that the button is disabled and the text is changed
to “Working....” When the browser regains control of the operation the button is enabled and the text
returns to its original value.

Now test the behavior by launching the page in the browser.

Example 4: Client Functions
In addition to custom attributes, Anthem.NET exposes client-side events. These events give you a
high degree of control over your page when contacting the server. This example will show you how to
implement some custom logic before the framework is contacted, before callback begins, and when the
callback is completed.

When you are wiring up code-behind events on an ASP.NET page, the OnClick attribute will link the
client-side click event to the ASP.NET postback mechanism to contact the code on the server to run
the click event method defined in your code-behind. Anthem.NET implements an OnClientClick
attribute where you may define a function name to run after the button is clicked but before the
Anthem.NET framework is invoked. The PreCallBackFunction will fire as Anthem.NET takes control
of the request but before contacting the server. Finally, the PostCallBackFunction will define a
JavaScript function that is run once a response is recognized by the browser.

Notice in the example that each JavaScript function is defined passing an argument of this to the
method. Passing the argument will expose a reference to the initiating control, in this case the Test but-
ton. This approach is valuable as you now have an easy way to access the control that originated the
request without having to parse the DOM.

Figure 9-15 is an example of the way the page will look when you first click on a button using client
functions.

237

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 237

Figure 9-15

Try It Out Using Client Functions
Begin by adding a new web form to the solution, naming it ClientFunctions.aspx. Now add the
Anthem register directive to the page just under the <%@ Page %> directive:

<%@ Register TagPrefix=”anthem” Namespace=”Anthem” Assembly=”Anthem” %>

Next, add the following code within the <head> tag:

<script type=”text/javascript”>
function btnTest_PreCallBack()
{

alert(“This happens before contacting the server”);
}

function btnTest_PostCallBack()
{

alert(“This happens after getting a “ +
“response from the server”);

}

function btnTest_Click(control)
{

alert(“This happens right after you click the ‘“ +

238

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 238

control.value + “‘ button.”);
}
</script>

Each method will alert the browser of which event is firing. The btnTest_Click function will access the
originating control’s properties to build its statement.

Next, update the markup by adding the following code between the <div> tags:

<anthem:Button
ID=”btnTest”
OnClientClick=”btnTest_Click(this)”
PreCallBackFunction=”btnTest_PreCallBack(this)”
PostCallBackFunction=”btnTest_PostCallBack(this)”
Text=”Test”
OnClick=”btnTest_Click”
runat=”server” />

<anthem:Label
ID=”lblTest”
runat=”server” />

Finally, update the ClientFunctions class with the following code-behind:

public partial class ClientFunctions : System.Web.UI.Page
{

protected void btnTest_Click(object sender, EventArgs e)
{

this.lblTest.Text = DateTime.Now.ToString();
this.lblTest.UpdateAfterCallBack = true;

}
}

When you click the button, each event will fire the appropriate JavaScript function.

You can now test the behavior by launching the page in the browser.

Example 5: Invoke Page Method
This example demonstrates how you can use Anthem.NET to call sever-side code without requiring
the use of a panel or custom controls. Anthem.NET implements this feature in a similar fashion to the
Ajax.NET framework, but instead of creating a proxy object for each page that exposes a method to
the client, Anthem.NET has a single function that will take care of communicating with the server.

Anthem.NET’s function for interfacing with the code-behind is called Anthem_InvokePageMethod.
This function may take three arguments.

❑ The first argument is the name of the method on the server you want the function to execute.

❑ The second argument is an array of the server-side method argument values.

❑ Lastly, the third argument is for the callback function and is the name of the function that the
browser will call when the server has completed its processing. The callback function argument
is optional.

239

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 239

Figure 9-16 is an example of the way the page will look when you are done.

Figure 9-16

Try It Out Invoking Page Method
Begin by adding a new web form to the solution, naming it InvokePageMethod.aspx. Now add the fol-
lowing code within the <head> tag:

<script type=”text/javascript”>
function Multiply()
{

var int1;
var int2;

int1 = document.getElementById(‘txtInt1’).value;
int2 = document.getElementById(‘txtInt2’).value;

Anthem_InvokePageMethod(‘Multiply’,[int1, int2],Multiply_CallBack);
}

function Multiply_CallBack(result)
{

document.getElementById(‘txtResult’).value = result.value;
}
</script>

240

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 240

The block of JavaScript is responsible for gathering the user input and passing it to the Anthem_Invoke
PageMethod function. The first argument in this function is the name of the method on the server that
you want to execute. In an upcoming code block, you will define a method on the page named Multiply,
which is the code this function will execute. The next argument is an array of values that represent the sig-
nature of the Multiply method on the server. Multiply requires two integers to multiply together and
returns the result. The final argument is the address of the callback function. After Multiply_CallBack
runs, the textbox txtResult’s value will contain the product of the two numbers.

You will not add the Anthem page directive to the page in this example. The technique used here will
use Anthem.NET’s functionality to access methods in the code-behind directly from JavaScript. This
approach does not require that you use Anthem.NET controls.

Next, update the markup by adding the following code between the <div> tags:

<input
type=”text”
id=”txtInt1” />

X

<input
type=”text”
id=”txtInt2” />

<input
type=”button”
id=”btnMultiply”
value=”Multiply”
onclick=”Multiply();” />

<input
type=”text”
id=”txtResult” />

The HTML you see here is a bit different from the type of markup you have defined in the previous
examples. In this case, you are not using a panel, nor are you declaring your controls as custom controls.
This approach uses JavaScript to directly access the code-behind methods. Each input box is a standard
HTML input box, and the work begins when you click the Multiply button.

Finally, update the InvokePageMethod class with the following code-behind:

public partial class InvokePageMethod : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Anthem.Manager.Register(this);
}

[Anthem.Method]
public int Multiply(int int1, int int2)
{

return (int1 * int2);
}

}

241

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 241

The code defined here should immediately be familiar to you from your experience with Ajax.NET. The
pattern here is the same as with Ajax.NET. First, you must register the page with the Anthem.NET frame-
work. Then you add the Anthem.Method attribute to your method. As stated above, the Multiply
method requires two factors as arguments and returns the product.

Now test the behavior by launching the page in the browser.

Example 6: Direct Scripting (Micro-Content)
Recall from the MagicAjax section how you implemented the micro-content pattern. You will now
implement the same pattern using Anthem.NET.

This exercise uses Anthem.NET as well as some custom Cascading Style Sheet definitions to power the
change in the user interface to give clues as to what is happening.

The page will provide initial clues that parts of the page are editable by drawing a border over the text
when the cursor hovers over the editable area. (You can refer back to Figure 9-10 to remind yourself of
what this looks like.)

The next clue is to change the appearance of the control when the user has placed this area of the page in
“edit mode.” (Refer back to Figure 9-11 to see an example of this.)

Finally when the focus is lost from the control Anthem.NET will contact the server and allow the back-end
processing to persist the latest data. Under normal circumstances you would probably persist the data to
a data store of some kind. For demonstration purposes, this exercise will simply store the information in
Session state. This way, once you make a change to the data, you can navigate off the page and return to
see your latest changes, but you avoid having to implement a data layer just for this example.

Try It Out Using Direct Scripting
Begin by adding a new web form to the solution, naming it DirectScripting.aspx. Now add the
Anthem register directive to the page just under the <%@ Page %> directive.

<%@ Register TagPrefix=”anthem” Namespace=”Anthem” Assembly=”Anthem” %>

Next, add the following code within the <head> tag:

<style type=”text/css”>
input
{

border:solid 1px #fff;
}
.focus
{

background-color:#eee;
border:dashed 1px #ccc;

}
.blur
{

242

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 242

background-color:#fff;
border:solid 1px #fff;

}
.mouseOver
{

border:solid 1px #c00;
}
.mouseOut
{

border:solid 1px #fff;
}
</style>

The style sheet entries hold the formatting information to give signals to the user as to what is happen-
ing. (This is the exact same CSS you implemented in the MagicAjax section, so if you have the code
available you can copy it into your file for this example.)

Next, add the following JavaScript just after the style sheet definitions.

<script type=”text/javascript”>
function ChangeCSSClass(element,className)
{

element.className = className;
}
</script>

Next, update the markup by adding the following code between the <div> tags:

<anthem:TextBox
ID=”txtTitle”
text=”Title”
OnTextChanged=”txtTitle_TextChanged”
runat=”server” />

Finally, update the DirectScripting class with the following code-behind:

public partial class DirectScripting : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!this.Page.IsPostBack)
{

this.txtTitle.Attributes.Add(“onfocus”,
“ChangeCSSClass(this,’focus’);”);

this.txtTitle.Attributes.Add(“onblur”,
“ChangeCSSClass(this,’blur’);”);

this.txtTitle.Attributes.Add(“onmouseover”,
“ChangeCSSClass(this,’mouseOver’);”);

243

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 243

this.txtTitle.Attributes.Add(“onmouseout”,
“ChangeCSSClass(this,’mouseOut’);”);

if (this.Session[“title”] != null)
{

this.txtTitle.Text = this.Session[“title”].ToString();
}

}
}
protected void txtTitle_TextChanged(object sender, EventArgs e)
{

this.Session.Add(“title”,this.txtTitle.Text);
this.txtTitle.AutoUpdateAfterCallBack = true;

}
}

Although much of this implementation is similar to the MagicAjax demonstration, notice the different
approaches. Using Anthem.NET you declare an Anthem TextBox control and use the built-in mecha-
nism of firing the TextChanged event to initiate a request to the server. Once the server is contacted, you
can apply the Session value and set the AutoUpdateAfterCallBack property on the TextBox control
equal to true.

You can now test the behavior by launching the page in the browser.

Example 7: Server Exceptions
A feature exclusive to Anthem.NET from all the frameworks listed in this section is the ability to deal
with unhandled server-side exceptions. In other frameworks, should your application encounter an
unhandled exception, the error may bubble up to the user interface as the cryptic and intimidating stock
yellow and white ASP.NET error page. While the subject of structured exception management is out of
the scope of this book, you will implement an example that will enforce this foundational rule: protect
the user from useless error messages.

Anthem.NET will wrap up unhandled exceptions into a JSON error object. When you encounter this
object, you may then decide what to do on the client with the error. The response object returned by
Anthem.NET includes an error object in its interface. If the error property is not null, then you have
encountered an error on the server.

Figure 9-17 shows an example of how the page will appear when Anthem wraps up an unhandled
server exception.

244

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 244

Figure 9-17

Try It Out Handling Server Exceptions
Begin by adding a new web form to the solution, naming it ServerException.aspx. Next, add the fol-
lowing code within the <head> tag:

<script type=”text/javascript”>
function ShowError()
{

Anthem_InvokePageMethod(‘ShowError’,null,ShowError_CallBack);
}

function ShowError_CallBack(response)
{

if(response.error != null)
{

alert(response.error);
}
else
{

alert(“No errors here, just keep on working!”);
}

}
</script>

245

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 245

This example uses the Anthem_InvokePageMethod function to call a method on the server that will
throw an unhandled exception. When the callback function runs, the response object is evaluated to see
if an error exists. If the error is present, then the error message is displayed to the user.

Next, update the markup by adding the following code between the <div> tags:

<input
type=”button”
ID=”btnTest”
onclick=”ShowError();”
value=”Throw Unhandled Exception on Server” />

Since you are calling the server-side code directly, you do not need to use an Anthem control.

Finally, update the ServerException class with the following code-behind:

public partial class ServerException : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Anthem.Manager.Register(this);
}

[Anthem.Method()]
public string ShowError()
{

throw new Exception(“Something went very wrong.”);
}

}

You can now test the behavior by launching the page in the browser.

What You Have Learned
The Anthem.NET framework opens up options that are not found in most server-side frameworks. One
benefit of Anthem.NET is a noninvasive configuration option for integration into your application. You can
also choose between methods that simply change the HTML on your pages or work directly with returned
data to the client. Throw in support for custom controls, and Anthem.NET may be the best of both worlds.

Summary
You have had an opportunity to review three client-side Ajax frameworks and work with three server-
side Ajax frameworks that approach problems in development in different ways.

On the client side, Sarissa, HTMLHttpRequest, and MochiKit provide a lightweight way of abstracting
the details away of making XMLHttpRequest calls through the browser. Each client-side framework
includes much more than just Ajax abstractions, so be sure to examine each library for the best fit with
your application before choosing one.

246

Chapter 9

12_78544X ch09.qxp 7/18/06 3:16 PM Page 246

On the server side, ComfortASP.NET and MagicAjax with their changed-HTML-only architecture can
make adding Ajax to your pages a painless endeavor. Anthem.NET provides the option of working in a
changed-HTML mode but also gives you the option of dealing directly with returned data structures.
Each is easy to use, and all are worthy of your time, so experiment more to see which best fits your
development environment.

When choosing a framework keep in mind:

❑ The expertise of developers — Do you have people well-versed in JavaScript, HTML, and CSS?

❑ Your page-level architecture — Do your pages currently inherit from a custom or third-party
base class?

❑ Your application-level architecture — Does your application use httpHandlers or
httpModules that might cause conflicts with any third-party framework?

The next chapter will begin your introduction to Microsoft’s Ajax framework, Atlas, and explain how to
use it to quickly develop Ajax applications.

247

Other Ajax Frameworks for .NET

12_78544X ch09.qxp 7/18/06 3:16 PM Page 247

12_78544X ch09.qxp 7/18/06 3:16 PM Page 248

10
Atlas Client Script

On the surface, Atlas sounds like just another Ajax library that happens to be from Microsoft.
While Atlas does provide support for Ajax-style operations, Atlas provides so much more than
that. With the Microsoft Atlas package, there is support for generating client-side JavaScript, and
this chapter delves into that aspect of Atlas. In this chapter, you look at:

❑ An introduction to Atlas

❑ Calling out to web services

❑ Data objects in Atlas

❑ Extensions to the JavaScript language

❑ Support for a programming model similar to programming in .NET

The Atlas examples and code are based on the March/April CTPs of Atlas. The March CTP is the
first version of Atlas that comes with a “Go-Live” license for actual usage in a production appli-
cation. The April CTP is basically a set of bug fixes to the March CTP. It is our intention to
update these files with new versions as breaking changes are made to Atlas. The site for the files
is http://beginningajax.com. Alternatively, you can check for updates on the Wrox web
site for this book (www.wrox.com).

Introduction to Atlas
There has been a lot of confusion in the marketplace regarding what Microsoft’s Atlas project is. At
this time, Atlas will be included in the next version of ASP.NET and the .NET Framework. From a
programming standpoint, Atlas may be considered to be at least a couple key things:

❑ Ajax library — The part of Atlas that has programmers talking the most is the support for
Ajax. With this support, Microsoft has created a library to support the ability to communi-
cate back to the server without the need to perform a full postback from the client to the
server.

13_78544X ch10.qxp 7/18/06 3:17 PM Page 249

❑ Client-side components — The ASP.NET framework has typically supported the creation of
ASP.NET server-side controls. Atlas introduces the concept of client-side components and the
ability to create client-side components. Along with those components is an object-oriented
paradigm on the web client that includes support for inheritance, interfaces, and such items
normally considered to be a part of any modern programming language.

Major Components
Atlas consists of a set of files. These files are:

❑ A server-side assembly (.dll). This assembly is named Microsoft.Web.Atlas.dll.

❑ A server-side WebResource.axd HTTP handler. This file handles streaming the appropriate
JavaScript files down to the client. The content of the JavaScript that is streamed to the client is
based on the functionality specified in the ScriptManager control, which is a control that will
be introduced later in this chapter.

❑ The JavaScript files that are streamed to the client are embedded within the WebResource.axd
HTTP handler. In addition, a set of standalone JavaScript files is also installed. These files are
the same as those that are processed in the WebResource.axd file.

Server Support
The server-side support for Atlas is provided by the Microsoft.Web.Atlas.dll. This assembly pro-
vides support for the Microsoft.Web.* family of namespaces. Within these namespaces is support for
controls, serialization of data, and for communicating with web services.

The WebResource.axd HTTP handler handles sending the appropiate JavaScript files down to the client.

JavaScript Files
As mentioned earlier, there is a set of JavaScript files that come with Atlas. These files are as follows:

❑ Atlas.js— The Atlas.js file contains the core set of Atlas functionality. For example, the Sys
namespace is defined within this file.

❑ AtlasCompat.js— The AtlasCompat.js file provides the majority of the browser compatibility
layer. This file contains support for Internet Explorer, Mozilla, and Safari.

❑ AtlasCompat2.js— The AtlasCompat2.js file provides additional support for other browsers.

❑ AtlasFX.js— This file contains support for gadgets.

❑ AtlasRuntime.js— The AtlasRuntime.js file is for performing Ajax-only communication to
the server without the need for all of the other files and associated overhead.

❑ AtlasUIDragDrop.js—AtlasUIDragDrop.js provides the Drag and Drop API for Atlas.
In addition, there are a few behaviors that are included.

❑ AtlasUIGlitz.js— The AtlasUIGlitz.js file contains support for special UI and visual
effects. This includes classes that support UI features such as opacity and animation.

❑ AtlasUIMap.js—The AtlasUIMap.js file provides support for the Virtual Earth Atlas control.

❑ AtlasWebParts.js— The AtlasWebParts.js file provides support for Web Parts in Atlas.

❑ GadgetRuntime.js— The GadgetRuntime.js file provides support for gadgets in Atlas.

250

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 250

These scripts fall into the following general layers of code:

❑ Browser compatibility layer — This layer handles the differences between the browsers. By
abstracting the differences in the various browsers, the higher-level code does not require
if-else code to handle browser differences.

❑ JavsaScript extensions — The JavaScript extensions provide support for objects, functions, and
data types that are found not in JavaScript natively.

❑ Script Core — The script core provides many features that could be considered to be language
extensions to JavaScript. These features include support for namespaces, classes, interfaces,
inheritance, enumerations, delegates, and so forth. By providing this layer, Atlas is able to pro-
vide features to encapsulate data, logic, behaviors, and such into classes, just like other pro-
gramming languages. Functionally, this brings JavaScript close to the features available in the
.NET languages.

❑ Base Class Library (BCL) — The Atlas BCL is very similar to and is modeled after the BCL in
the .NET Framework. This layer provides such things as the StringBuilder, Debug, Event,
Disposable support, and XmlHTTP abstraction through WebRequest and WebResponse. In addi-
tion, this layer provides support for ASP.NET services, such as Profile and Authentication, to
work with the services on the server.

❑ Component Model and UI — This layer provides support for components that can be self-
described by their object model.

❑ Controls and components — This layer provides a set of built-in components. Some of these
components are the Timer, Counter, Listview, and the MapControl.

❑ Web Parts and gadgets — This layer provides support for integrating with external services,
such as Web Parts and gadgets.

Ajax Support
With Atlas, Microsoft has added many web browser/client-side features. The most talked about feature
is support for Ajax. Frequently, Microsoft has been criticized for its lack of cross-platform (or non-
Microsoft operating system) support. At the time of this writing, Atlas supports Internet Explorer,
Mozilla Firefox, and the Macintosh Safari browsers.

Atlas allows for the calling of a regular web service in a web application through the browser. This
allows for the web browser to provide a rich experience to the user without the need for the traditional
postback to the web server. Atlas provides the mechanism to consume and expose web services by
exposing JavaScript proxies of web services within the browser.

Asynchronous Communication Only
With Atlas, all communication is asynchronous. Most operations that programmers work with are syn-
chronous communication, so it is important to understand the differences. With Atlas, there is no ability
to call a web service and wait for its response. This is important. If Atlas provided support for making
synchronous calls and a synchronous call were made, the client might very well lock up if the server
were to somehow disappear after a request was made. The only way to exit would be to stop the
browser task that was running. Other libraries provide support for synchronous operations, but Atlas is
currently designed to provide asynchronous communication.

251

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 251

Now that you have heard why Atlas is asynchronous and why synchronous processing can cause prob-
lems in a web browser environment, you can actually change this behavior. You have two mechanisms
to perform this change:

❑ One of the members of the ASP.NET team has provided a mechanism to perform this. This can
be viewed on Bertrand LeRoy’s blog at http://weblogs.asp.net/bleroy/archive/2005/
12/15/433278.aspx.

❑ It is possible to go into the Open method of the XmlHttpRequest object in the appropriate JavaScript
files and change the Asynchronous flag to false, as opposed to the default value of true.

Please remember that performing synchronous operations is dangerous and not supported in Atlas. If
you feel that you must change the Atlas files, you will be making significant changes to the Atlas files
and to the programming model. In addition, you will be creating an unsupported implementation.

Adding Atlas Support with the
ScriptManager Control

Now that you have down some of the basics of Atlas, you can turn to the question of how you add Atlas
support to a web page. In addition to the ScriptManager, you will need to add some commands to the
Web.Config to properly configure Atlas.

The ScriptManager control is the mechanism for adding Atlas support to an .aspx page. Basically, the
scripts needed are added to an .aspx page by using the ScriptManager control. So, to add the basic
support for Atlas (Atlas.js), the following code is used:

<atlas:ScriptManager ID=”Script1” runat=”server” />

The next step is to add support for calling a specific web service. This is done by adding a service to the
ScriptManager control:

<atlas:ScriptManager ID=”Script1” runat=”server”>
<Services>

<atlas:ServiceReference Path=”WebService.asmx” />
</Services>

</atlas:ScriptManager>

In the preceding example, you see the ScriptManager control. This control provides support for Atlas
on the page. The <Services> tag adds support for web services that are called by code. In this example,
a WebService.asmx’s proxy will be placed on a page for calling. The proxy can be called out by
JavaScript code running on the client browser.

If only the AtlasRuntime.js file is necessary, the EnableScriptComponents=”false” can be set in
the ScriptManager tag.

<atlas:ScriptManager ID=”Script1” runat=”server” EnableScriptComponents=”false” />

252

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 252

You will face situations when additional Atlas (or other) JavaScript libraries need to be loaded. These
libraries are added by using the <Scripts> tag. This next example adds several scripts through the
ScriptManager control; specifically, the script named AtlasUIDragDrop and the file Script.js file
are loaded in the browser.

<atlas:ScriptManager ID=”Script1” runat=”server” EnableScriptComponents=”false”>
<Scripts>

<atlas:ScriptReference ScriptName=”AtlasUIDragDrop” />
<atlas:ScriptReference Path=”Script.js” />

</Scripts>
<Services>

<atlas:ServiceReference Path=”WebService.asmx” />
</Services>

</atlas:ScriptManager>

In this example code, two ways of calling a script are shown. The first way is that the AtlasUIDragDrop
script is added by name. This will be the normal way that an Atlas script is added to a page. A second
way to add a script is to add it by path. This is shown using the imaginary Script.js file.

Communicating with Web Services
Calling out to an ASP.NET web service is an important part of Atlas. By default, JavaScript running within
a web browser does not know how to communicate with a web service. A web service is built with C#,
Visual Basic .NET, or some other language. To communicate with a web service, JavaScript must know
how to call a web service, and this is done by generating JavaScript proxies using a feature of Atlas.

Generating the JavaScript Proxies
To generate the JavaScript proxies, you need to add a reference to a web service. Along with that refer-
ence, the web service methods must be exposed. This is done automatically when a JavaScript library is
added as a service through the ScriptManager control. For example, the ScriptManager produces the
following JavaScript code when you add a reference to the WebService.asmx file.

This code is the source code on the web page:

<atlas:ScriptManager ID=”Script1” runat=”server”>
<Services>

<atlas:ServiceReference Path=”WebService.asmx” />
</Services>

</atlas:ScriptManager>

The preceding code will generate the output that follows on the client browser:

<script type=”text/xml-script”>
<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<references>
<add src=”WebService.asmx/js” />

</references>
<components />

</page>
</script>

253

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 253

This code shows how an external web service proxy is generated. The /js switch instructs the Atlas run-
time to create a proxy object. This proxy object will also run on the client.

When you use the previous code, the following JavaScript proxy is generated and loaded on the client:

var WebServiceTest = { path: “/Chapter10Sample/WebService.asmx”,
GetProjects:function(onMethodComplete, onMethodTimeout, onMethodError)
{return Web.Net.ServiceMethodRequest.callMethod(this.path, “GetProjects”,{},
onMethodComplete, onMethodTimeout, onMethodError); } }

The following is the web service that will be called by the client and will run on the server:

using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Xml;

/// <summary>
/// Summary description for WebService
/// </summary>
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class WebServiceTest : System.Web.Services.WebService {

public WebServiceTest () {
//Uncomment the following line if using designed components

//InitializeComponent();
}

private string strCn = “.........”;

[WebMethod]
public DataTable GetProjects()
{

string strSql = “select * from tblProject”;
SqlConnection sqlCn = new SqlConnection(strCn);
SqlDataAdapter sqlDa = new SqlDataAdapter(strSql, sqlCn);
DataSet dsData = new DataSet();
try{

//throw (new ApplicationException(“Error on the server.”));
sqlDa.Fill(dsData, “tblProject”);

}
finally{

if(sqlCn.State != ConnectionState.Closed)
sqlCn.Close();

sqlCn.Dispose();
sqlCn = null;
sqlDa.Dispose();
sqlDa = null;

}

254

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 254

return(dsData);
}

}

The preceding code is a simple example of a web service. In this example, all of the records from the
table tblProject are queried and returned to the calling method, which is the web browser.

In an Atlas application, the Web.Config file has a new handler for web services. It is defined as follows:

<httpHandlers>
<remove verb=”*” path=”*.asmx”/>
<add verb=”*” path=”*.asmx” type=”Microsoft.Web.Services.ScriptHandlerFactory”

validate=”false”/>
</httpHandlers>

Calling Out to Web Services
Now that you have seen how to generate the JavaScript proxies necessary to call out to a web service,
you can look at actually calling out to the web service.

Calling out to a web service from JavaScript is a fairly simple process. An example of a JavaScript call is:

Namespace.Class.MethodName(param1, param2, ..., paramN, OnMethodComplete,
OnServerTimeOut, OnServerException)

In this example, look at the parameters. The items detailed as param1, param2, and paramN are the
parameters that the web service would take normally. The other three parameters are rather interesting.
These three parameters, which you will see in more detail in the next three sections, are the callback
methods that are used when something happens on the server.

OnMethodComplete
When a web service completes its activities and returns data to the calling application, it needs to have a
place to return to. The OnMethodComplete event is the JavaScript callback that is called when the web
service returns to the application. When this event is called, the method is passed a result parameter. The
result parameter is a JavaScript Object Notation (JSON) serialized version of the returned value from the
web service.

The syntax of the OnMethodComplete method is:

function MethodReturn(result)
{

// Do something with the returned object.
}

The result that is returned may be anywhere from a simple datatype to a very complicated complex
object that is serialized and sent to the browser.

OnServerTimeOut
In the event that the server does not respond within a predefined timeframe, the OnServerTimeOut
method is called. In this method, it is possible for the application to communicate to the user that the
server is not available.

255

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 255

OnServerException
Examine the following code to look at what happens when an exception is returned from a web service.

[WebMethod]
public DataSet GetProjects()
{

string strSql = “select * from tblProject”;
SqlConnection sqlCn = new SqlConnection(strCn);
SqlDataAdapter sqlDa = new SqlDataAdapter(strSql, sqlCn);
DataSet dsData = new DataSet();
try{

throw (new ApplicationException(“Error on the server.”));
sqlDa.Fill(dsData, “tblProject”);

}
finally{

if(sqlCn.State != ConnectionState.Closed)
sqlCn.Close();

sqlCn.Dispose();
sqlCn = null;
sqlDa.Dispose();
sqlDa = null;

}
return(dsData);

}

When a server’s web service encounters an exception that is thrown back to the calling application, the
Atlas OnServerException event is called at the client. This event receives the result object. Take a look
at the result object that is returned (there are three parts, but the last two are not required).

❑ get_message()— This is the textual message of the exception that occurred on the server. This
is shown in Figure 10-1.

Figure 10-1

❑ get_stackTrace()— This is the stack trace of the exception. The stack trace is shown in
Figure 10-2.

Figure 10-2

256

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 256

❑ get_exceptionType()— This is the type of the exception. The exception type is shown in
Figure 10-3.

Figure 10-3

Passing Types
Applications have methods that require passing various types of parameters. These parameters may be
either simple datatypes, such as numbers, strings, and booleans or more complicated types that are defined
by the developers. The passing of various types is supported within Atlas. Simple and complex datatypes
may be easily sent and received. These include booleans, integers, strings, and other simple datatypes, as
well as datasets and custom objects. These datatypes are easily sent back and forth between the calling
parameters and returned values. The next sections take a look at passing the simple and complex data
types between the client web browser and the server.

Simple Data Types
Let’s look at a web page that contains a call using simple datatypes. In this example, the code passes two
integers to a web service and then returns the sum of those values to the calling method through Atlas.

The web service code is:

[WebMethod]
public int ServerAdd(int val1, int val2)
{

return (val1 + val2);
}

In this example, the code accepts two integers and returns an integer all through a web service:

The code on the web page is as follows:
<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”SimpleDataTypes.aspx.cs”
Inherits=”SimpleDataTypes” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Simple Data Types Page</title>
<script language=”javascript”>

function CallServerAdd()
{

SimpleDataTypeWebService.ServerAdd(3, 4, ServerAddReturn);

257

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 257

}
function ServerAddReturn(result)

{
alert(“Result Value: “ + result);

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<input type=”button” value=”Click - Simple Add” onclick=”CallServerAdd()”

/>
<atlas:ScriptManager ID=”Script1” runat=”server”>

<Services>
<atlas:ServiceReference Path=”SimpleDataTypeWebService.asmx” />

</Services>
</atlas:ScriptManager>

</form>
</body>
</html>

In the preceding code, the click of the “Click – Simple Add” button will call the JavaScript method
named CallServerAdd(). The CallServerAdd() method calls out to the ServerAdd(...) method on
the server. The values of 3 and 4 are passed along with the callback method named ServerAddReturn.
When the ServerAdd() method is completed on the server, the client-side ServerAddReturn is called
with the data that is returned from the server-side method.

The result of clicking the button is shown as Figure 10-4. It is very simple to call a web service through
Atlas with simple datatypes and then to obtain the returned result.

Figure 10-4

Complex Data Types
Now, you can take a look at what it takes to use some complex datatypes. In these examples, you will
see some datasets and custom data types.

Datasets
What is a dataset? In .NET, a dataset is an object within the System.Data namespace. A dataset can be
thought of as a local subset of data. A dataset contains a set of data tables. These data tables typically
contain the results of queries. When developers work with datasets, they typically are used as the result
of some database query. It is possible to send datasets from the server down to the client, and that is
what we will look at in this section.

258

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 258

Atlas supports the return of datasets to the web browser and then the processing of the dataset on the
client. Take a look at an example of calling a web service, returning a dataset, and then processing that
dataset.

Here is your web service. It is just a web service that performs a query and then returns a dataset. The
web method returns a dataset with a data table called tblProject. Notice that this is the same code that
the web service used in the exception example, without the exception.

[WebMethod]
public DataSet GetProjects()
{

string strSql = “select * from tblProject”;
SqlConnection sqlCn = new SqlConnection(strCn);
SqlDataAdapter sqlDa = new SqlDataAdapter(strSql, sqlCn);
DataSet dsData = new DataSet();
try{

sqlDa.Fill(dsData, “tblProject”);
}
finally{

if(sqlCn.State != ConnectionState.Closed)
sqlCn.Close();

sqlCn.Dispose();
sqlCn = null;
sqlDa.Dispose();
sqlDa = null;

}
return(dsData);

}

The following is the client-side JavaScript. It is contained in the page DataTable.aspx page in the
example code.

<form id=”form1” runat=”server”>
<atlas:ScriptManager ID=”Script1” runat=”server”>

<Services>
<atlas:ServiceReference Path=”~/WebService.asmx” />

</Services>
</atlas:ScriptManager>

<div>
<input type=”button” id=”btnGetProjects” value=”Get Projects”
onclick=”PageLoadMethod()” />

</div>
</form>
<script language=”javascript”>

function PageLoadMethod()
{

WebService.GetProjects(MethodReturn);
}
function MethodReturn(result)
{

var i = 0;
var str = “”;

259

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 259

var strRowsInfo = “”;
var strReturn = “
”;
//get a datatable
var tbl1 = result.getItem(0);
for(i = 0; i < tbl1.get_length(); i++)
{

//tbl1.getItem(i) will return the ith DataRow
//getProperty(“Column Name”) will return the column value from a

DataRow
strRowsInfo += tbl1.getItem(i).getProperty(“ProjectName”) + strReturn;

}
document.getElementById(“RowInfo”).innerHTML = strRowsInfo;

}
</script>

In this code, the reference is created to your WebService.asmx file. When the button is clicked, an asyn-
chronous call is made to WebService.GetProjects(). The only callback method that you process in this
example is the MethodReturn callback. The MethodReturn function gets the dataset as a parameter in the
call to it. To get the data table, the result .getItem(0) is called. This will return the data table. Once you
have the data table, you can get the number of rows of the data table by calling .get_length(). This is
then used within the for loop to iterate through the rows in the data table. Within the for loop, the
.getProperty() method is used to then get the contents of the column.

For some additional information on how Atlas handles data tables, data columns, and the like, refer to
the appropriate section later in this chapter.

Custom Datatypes
Many applications built over the past several years are built with custom business objects. These custom
business objects are highly optimized for a specific application. In this example, a custom business object
will be created. This example will have two strings as properties of the custom object. These properties
are Name and Address.

The ASP.NET page code for this example is:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”ComplexDataSource.aspx.cs”
Inherits=”ComplexDataSource” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Complex Data Type Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<script language=”javascript”>
function ComplexDataTypeCall()
{

var CustName = “ACME Inc.”;
var CustAddr = “WileyVille, USA”;
var objCustObj = new cComplexCustomerType();
objCustObj.Name = CustName;
objCustObj.Address = CustAddr;
ComplexWebService.AcceptComplexDataType(objCustObj,

ComplexScriptCompleteCallback);

260

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 260

}

function ComplexScriptCompleteCallback(result)
{

alert(“Value: “ + result);
}
</script>
<input type=”button” value=”Click for Complex DataType”

onclick=”ComplexDataTypeCall();” />
<atlas:ScriptManager ID=”Script1” runat=”server”>

<Services>
<atlas:ServiceReference Path=”ComplexWebService.asmx” />

</Services>
</atlas:ScriptManager>

<div>
</div>
</form>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<references>
</references>
<components>
</components>

</page>
</script>

</body>
</html>

The code for the complex data type is:

public class cComplexCustomerType
{
public cComplexCustomerType()
{
}

private string _Name;
private string _Address;
public string Name
{

get { return _Name; }
set { _Name = value;}

}
public string Address
{

get { return _Address; }
set { _Address = value; }

}
}

The code for the web service is:

[WebMethod]
public cComplexCustomerType AcceptComplexDataType(cComplexCustomerType

objComplexCustomerType)

261

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 261

{
return (objComplexCustomerType);

}

In this example code, the web service accepts the custom business object and then returns the value.
There is nothing that would stop the web service from using the properties of the business object that is
passed or the web service from returning a string as opposed to the custom business object.

Interrogation of the custom object returns interesting information. The following code will generate the
results in Figure 10-5. This figure shows that the Name and Address properties are available along with
an added member — the __serverType property. This property defines the type on the server.

function ComplexScriptCompleteCallback(result)
{

var str = “”;
debug.dump(result);
for(prop in result)

str += “Member: “ + prop + “\r\n”;
alert(str);

}

Figure 10-5

A call to debug.dump() on the returned result object produces the output in Figure 10-6. The debug
.dump() method displays the contents of an object in Atlas. This method will be discussed more later in
this chapter.

Figure 10-6262

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 262

Caching Web Services
The data returned from a web service may be cached. This can be helpful in situations where data may
not be time critical (for example, a web service that returns the weather forecast for a given location).
This is performed in .NET by setting a value on the CacheDuration of the WebMethod() attribute. As
you may have previously done when working with web services, Atlas makes it possible to call a cached
web service and get the results of a web service call. Depending on the data and the time that is required
to perform the calculation, the time saved by caching may be significant when factored over thousands
of possible users.

Take a look at some code and the result. In this example, you are just going to display the time of each
call. On the first call, both times that are returned will be the same. Subsequent calls will result in the
current time being updated and the cached time being the same, while the cached time is not updated
until the cache duration is over.

This is the code for an .aspx page:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”CachedWebService.aspx.cs”
Inherits=”CachedWebService” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<input type=”button” id=”btnGetServerTime” value=”Get Server Time”

onclick=”GetServerTime();” />
<script language=”javascript”>

function GetServerTime()
{

CachingWebService.GetServerCachedTime(DisplayServerCachedTime);
CachingWebService.GetServerCurrentTime(DisplayServerCurrentTime);

}
function DisplayServerCurrentTime(result)
{

var ctrl = document.getElementById(“NewTime”);
ctrl.innerText = result;

}
function DisplayServerCachedTime(result)
{

var ctrl = document.getElementById(“StartTime”);
ctrl.innerText = result;

}
</script>

<atlas:ScriptManager ID=”Script1” runat=”server”>
<Services>

<atlas:ServiceReference Path=”CachingWebService.asmx”
GenerateProxy=”true” />

</Services>
</atlas:ScriptManager>

Start Call:

263

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 263

<div id=”StartTime”></div>

New Time:
<div id=”NewTime”>
</div>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<references>
</references>
<components>
</components>

</page>
</script>
</form>

</body>
</html>

In the preceding code, on a button click, two remote calls are made out to the server — a call to the
GetServerCachedTime method and one to the GetServerCurrentTime method. The GetServer
CachedTime method on the server returns the current server time when it is called the first time. The
result of this call is cached in server memory. Subsequent calls are returned the cached result for the next
100 seconds, at which point the next request will generate a new time and a new entry in the server cache.
As a result, calls to GetServercurrentTime() will result in the current time of the server being
returned while calls to GetServerCachedTime() will result in a value that is up to 100 seconds old.

The following is the code for a web service:

[WebMethod(CacheDuration = 100)]
public DateTime GetServerCachedTime()
{

return(DateTime.Now.ToUniversalTime());
}

[WebMethod]
public DateTime GetServerCurrentTime()
{

return (DateTime.Now.ToUniversalTime());
}

Atlas uses UTC encoding for dates and time. This may create confusion for you if you don’t remember
it. Personally, my system is set with the time of GMT – 5. As a result, the times that were coming back
were 5 hours off.

Figure 10-7 shows the results of multiple calls to the cached and noncached web services.

In Figure 10-7, you will notice the two different time values. This shows that calling the cached web ser-
vice returns the cached value and the noncached version returns the current value of the DateTime.Now
object.

264

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 264

Figure 10-7

Exposing Web Services from a Web Form
All of the examples you’ve explored to this point in this chapter have used a dedicated web service. It is
also possible to have a web service that is exposed within an internal page of a web application. On the
surface, it appears that there is no real advantage to this. However, there are two advantages to using
web services that are exposed by a web form. These are:

❑ The page and web service are deployed together. There are fewer files to deploy and fewer
things that can go wrong.

❑ While not having been announced as this is being written, it appears that Microsoft will be adding
some special functionality that will be available only to a web service that is called within a web
form. Given the early status of Atlas, more information will come out about this in the future.

This next example calls back to a web service on the same .aspx page.

The code for the web page is:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”InternalWebService.aspx.cs”
Inherits=”InternalWebService” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Internal Web Service Page</title>
</head>
<body>

<atlas:ScriptManager ID=”Script1” runat=”server”>
</atlas:ScriptManager>

<form id=”form1” runat=”server”>
<div>
<input type=”button” id=”btn” value=”Call Internal Web Service”

onclick=”CallInternalWebService()” />

265

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 265

<script language=”javascript”>
function CallInternalWebService()
{

PageMethods.CallInternalWebService(InternalCallBack);
}
function InternalCallBack(result)
{

alert(result);
}

</script>
</div>
</form>

</body>
</html>

In the preceding code, note that the calling convention is not Class.MethodName(), but PageMethods
.MethodName(). PageMethods is a special class that is used to call the methods internal to a page.

The code-behind file is shown below. Note the addition of the System.Web.Services namespace,
which is not typically specified in a code-beside or aspx page. The method displayed in the following
merely returns a string as an example; however, any number of datatypes can be returned, just like a
regular web service and the other examples.

using System.Web.Services;
........
[WebMethod]
public string CallInternalWebService()
{

return (“Internal Web Service Called.”);
}

The result of this is shown in Figure 10-8.

Figure 10-8

266

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 266

Atlas Extensions to JavaScript
Atlas allows for the creation of rich client-side applications that run within the browser. To facilitate the
creation of these applications, Atlas has created a set of extensions to the type system in JavaScript.
These extensions provide many of the features of the .NET type system to the client-side web browser
environment. These extensions include namespaces, inheritance, interfaces, enums, support for strings,
and arrays.

Language Enhancements
JavaScript has been around as a language since the early betas of the Netscape Navigator 2.0 web
browser appeared in late 1995 to early 1996. Since then, there have been numerous enhancements to the
JavaScript language. The latest version of the language is version 1.6. With the shipment of the .NET
Framework, Microsoft has released a framework that contains a set of base classes that have features
across various languages, including Visual Basic, C#, and JavaScript when running native and server-
side applications. Into this, steps Atlas. Atlas provides a set of enhancements on top of JavaScript as it
runs in the web browser. The next sections look at these enhancements and extensions.

Controls
Atlas provides a set of controls, classes, and objects that may be used programmatically in JavaScript.

Object
The Object class is a client version of the .NET System.Object class. The only method that it imple-
ments is the getType(obj) method. This method will return the type of the specified object.

Array
The Array class is similar in concept to the .NET System.Collections.ArrayList() class. It has
several interesting members such as length, push(), and pop(). A small example is

var ary = new Array();
ary.push(47);
alert(“length: “ + ary.length);

In this short example, the user is presented with an alert box with a length of 1.

Date
The Date class is conceptually similar to a client web browser version of the .NET System.DateTime class.
The Date object supports a set of methods similar to the Date() class in .NET. There are methods to create
a date, get various parts of a date, and set the parts of a date. For a quick example, it is possible to create a
date:

var dt = new Date();
dt.setFullYear(2006, 03, 26);
dt.setHours(10, 12, 13, 5);
alert(“Date: “ + dt.toString());

In the preceding example code, the date that is created is March 26, 2006, 10 hours, 12 minutes, 13 sec-
onds, and 5 milliseconds. The resulting date is then displayed to the user in an alert() window.

267

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 267

Number
The Number class contains several methods. There are several methods to parse the content of the num-
ber as well as convert it to a string, get the exponential value, and perform other operations.

Boolean
The Boolean class is used for parsing traditional boolean values. It implements several methods for
creating a boolean. If the passed value is a string and would return as boolean, the boolean value is
returned.

String
The String class is a client web browser version of the .NET String class. The String() class imple-
ments some of the methods that are similar to the String() class in .NET. Some of the more interesting
members of the Atlas String() class are:

❑ indexOf()— The indexOf(string, startingindex) returns the value of the starting loca-
tion of the specified string when at the startingindex location.

❑ lastIndexOf()— The lastIndexOf(string, startingindex) returns the value of the
starting location of the last time the specified string is found.

❑ substring()— The substring(start, end) returns the substring from the starting location
to the ending location.

❑ substr()— The substr(start, length) returns the substring from the starting location of
the specified length.

❑ toLowerCase()— The lowercase version of the string is returned.

❑ toUpperCase()— The uppercase version of the string is returned.

RegExp
The RegExp class is a client web browser version of the .NET Regular Expression library. The Atlas
RegExp class supports the .parse(value) method.

Built-In Namespaces
Atlas comes with a number of built-in namespaces and classes for managing data, HTTP communica-
tion, user interface design, and other things. These are in the Sys.* namespaces. The next sections look
at several of the namespaces and their associated classes.

Sys.Net.WebRequest
The Sys.Net namespace provides a set of classes to facilitate HTTP communications between the client
and the web server. Though other classes exist within the name, the one we are going to look at is the
WebRequest class.

The Sys.Net.WebRequest class provides support for making HTTP requests. The following sample
code, for example, makes a web request.

var request;

268

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 268

function MakeCall()
{

request = new Sys.Net.WebRequest();
var url = Sys.Net.WebRequest.createUrl(“PageThatIsCalled.aspx”, null);
request.set_url(url);
request.completed.add(RequestCompleted);
request.timeout.add(RequestTimeOut);
request.invoke();

}
function RequestCompleted(objSender, evArgs)
{

if (blRun == true)
{

var obj = objSender.get_webRequest();
var objWR = objSender.get_data();
debug.dump(objWR, “Web Content:”, true);

}
}

Figure 10-9 shows the output of the preceding code. In this example, the content from the called page is
contained within the debug.dump statement as expected. In the preceding example, a call is made out to
a web page in the same directory, and its contents are displayed.

Figure 10-9

Sys.Data.DataColumn
The Sys.Data namespace provides a set of classes that are essentially client-side versions of the similar
classes in the System.Data namespace of the .NET Framework. This namespace provides support
for classes called DataColumn, DataRow, DataTable, DataView, DataFilter, DataSource, and
PropertyFilter.

269

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 269

The Sys.Data.DataColumn class allows for the interrogation of column information within a
Sys.Data.DataTable class. The DataColumn exposes the following members. These members
will be useful for processing datasets and data tables that are returned from a web service.

Members Description

get_columnName() This method will retrieve the column name of a specific column.

get_dataType() This method will retrieve the datatype of the column.

get_defaultValue() This method will retrieve the default value of a column.

dispose() This method will dispose() of the object and perform any nec-
essary cleanup.

The following example code will interrogate a returned dataset. The first thing that is necessary is to get
a datatable. This is performed by calling the result.getItem(0) method.

function MethodReturn(result)
{

var i = 0;
var str = “”;
var strColInfo = “”;
var strReturn = “
”;
for (prop in result)

str += “Property: “ + prop + “\r\n”;
alert(str);
var tbl1 = result.getItem(0);
for(i = 0; i < tbl1.get_columns().length; i++)
{

strColInfo += tbl1.get_columns()[i].get_columnName() + “:” +
tbl1.get_columns()[i].get_dataType() + strReturn;

}

document.getElementById(“ColInfo”).innerHTML = strColInfo
}

In the preceding code, a web service returns a dataset in the result variable to the MethodReturn()
JavaScript function. There is a for() loop that returns the properties/members of the result object. This
is then presented to the user in an alert() box. This alert() box is only for information’s sake. The
first table in the dataset is pulled out of the dataset by calling result.getItem(0). Within the first
table, the next for() loop iterates through the columns returned, gets the datatype, and creates a string,
and after the for() loop exits, the data is presented to the user.

Figure 10-10 shows the output of the preceding code. One thing to notice is that the get_dataType()
returns information.

270

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 270

Figure 10-10

Sys.Data.DataTable
The Sys.Data.DataTable class provides all information for integration with the System.Data
.DataTable. The DataTable exposes the following members that may be of interest.

Members Description

get_columns() This method will return an array of DataColumns within the DataTable.

get_keys() This method will return an array of DataColumns that contain various
keys within the DataTable.

get_isDirty() This method will return a boolean indicating whether or not updates have
been made on the DataTable object.

get_length() This method will return the number of rows within the DataTable.

add() The add method will allow the addition of a DataRow.

clear() The clear() method will clear the contents of the DataTable.

getChanges() The getChanges() method will provide a set of DataRows that have
changed.

getColumn() The getColumn() method will provide the specified column.

getItem() The getItem() method will provide the specified row. This method is
very important.

remove() The remove() will remove the specified row.

dispose() Performs the standard dispose mechanism.

271

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 271

The following is some code that will iterate through the rows of a DataTable:

function MethodReturn(result)
{

var i = 0;
var str = “”;
var strRowsInfo = “”;
var strReturn = “
”;
//get a datatable
var tbl1 = result.getItem(0);
for(i = 0; i < tbl1.get_length(); i++)
{

//tbl1.getItem(i) will return the ith DataRow
//getProperty(“Column Name”) will return the column value from a DataRow
strRowsInfo += tbl1.getItem(i).getProperty(“ProjectName”) + strReturn;

}
document.getElementById(“RowInfo”).innerHTML = strRowsInfo;

}

In the preceding code, a dataset is returned. The first datatable is obtained by the call to getItem(0). Then
the DataRows are iterated. This is done by the for() loop. To get at the value of a column in a specific row,
we use the getProperty(“ProjectName”) method. This method returns the value from the column
ProjectName in the example. Some example output from the preceding code is shown in Figure 10-11.

Figure 10-11

Sys.Data.DataRow
The Sys.Data.DataRow class is the Atlas version of the System.Data.DataRow class. The DataRow
has a set of properties and is designed for accessing a single row of data from a data table. For example,
the DataRow.getProperty(“ColumnName”) method shown in the previous code will return the value
of that specific column in that DataRow.

272

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 272

For more information about this namespace and classes and others, you can check out http://atlas
.asp.net/ and http://atlas.asp.net/docs for updated documentation from Microsoft along
with the site for this book http://BeginningAjax.com.

Registering Namespaces and Classes in Atlas
JavaScript is a fairly simple scripting language. When implemented in a web browser environment, it
lacks many features that are common to modern programming languages. As a result, it is necessary for
Atlas to add functionality to create namespaces, classes, and other items that are familiar to developers
who use modern programming languages. There are several different mechanisms to register classes in
Atlas.

Type.registerNameSpace
A namespace is used to group common functionality together. The Type.registerNameSpace()
method is used to register a namespace in Atlas-enabled JavaScript. The proper call for this method
is as follows.

Type.registerNameSpace(‘NamespaceName’);

In this example, NamespaceName is a string representing the name of the namespace.

NamespaceName.ClassName.registerClass
A class is a set of methods and data that provide a specific piece of functionality. Atlas provides a mecha-
nism to register classes. This is performed within the following call.

NamespaceName.ClassName.registerClass(‘NamespaceName.ClassName’, ParentClass,
InterfaceImplemented);

In this example, the NamespaceName.ClassName is a string representing the name of the class. If the
class that is being registered is to inherit from another class, that parent class is passed as the second
parameter. The final parameter is any interface that may be implemented within the class.

Take note that not all of the parameters are required.

NamespaceName.ClassName.registerAbstractClass
An abstract class is one that contains methods that are not actually implemented within the class. Also,
abstract classes cannot be instantiated — their only purpose is to be used as a model for child classes.
The definition is performed by the following code.

NamespaceName.ClassName.registerAbstractClass(‘NamespaceName.ClassName’,
ParentClass, InterfaceImplemented);

In this example, the NamespaceName.ClassName is a string representing the name of the class. If the
class that is being registered is to inherit from another class, that parent class is passed as the second
parameter. The final parameter is any interface that may be implemented within the class.

Take note that not all of the parameters are required.

273

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 273

NamespaceName.ClassName.registerSealedClass
A sealed class is one that may not be inherited from. The definition is performed by the following code.

NamespaceName.ClassName.registerSealedClass(‘NamespaceName.ClassName’, ParentClass,
InterfaceImplemented);

In this example, the NamespaceName.ClassName is a string representing the name of the class. If the
class that is being registered is to inherit from another class, that parent class is passed as the second
parameter. The final parameter is any interface that may be implemented within the class.

Take note that not all of the parameters are required.

InterfaceName.registerInterface
An interface essentially states that a class implements a specific set of methods. The interface is defined
by registering an interface. This is performed by the following code.

InterfaceName.registerInterface(‘InterfaceName’);

In this example, the InterfaceName is merely a string representing the name of the interface that is to
be implemented. Note that by convention all interfaces are named with a capital “I” prefix.

NamespaceName.ClassName.registerBaseMethod
If a class is going to be specifically overridden in a base class, the method must be marked in the base
class. This is performed by the following code:

NamespaceName.ClassName.registerBaseMethod(class, “methodname”);

For example, the class will most likely be defined as the current class in JavaScript (this). A good candi-
date for the method name is the dispose method.

Namespaces and Classes
Namespaces allow for the grouping of classes, methods, objects, and data that are closely related. Atlas
includes functionality on the Type object to add namespaces and classes. These are accomplished
through the Type.registerNamespace and Class.registerClass methods.

Try It Out Adding a Namespace and Class through Atlas
The steps necessary to add a namespace and class to JavaScript through Atlas are:

1. The atlas:ScriptManager must be added to an .aspx page. The script manager will add the
appropriate script references.

<atlas:ScriptManager runat=”server” ID=”scriptManager” />

2. Register a namespace. This is performed through the Type.registerNamespace method. In
this example, the string NamespaceName is just an example name for a namespace:

Type.registerNamespace(“NamespaceName”);

274

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 274

3. Define the contents of a class:

ExampleNamespace.cComplexCustomerType = function(Name, Address)
{

var _Name = Name;
var _Address = Address;

this.getName = function() {
return _Name;

}
this.setName = function(val){

_Name = val;
}
this.getAddress = function() {

return _Address;
}
this.setAddress = function(val){

_Address = val;
}
this.Dispose = function(){

alert(“disposing component with Customer Name:” + this.getName() + “ @ “ +
this.getAddress());

}
}

4. Register the class:

Type.registerClass(“ExampleNamespace.cComplexCustomerType”, Web.IDisposible);

5. To add standard methods, such as toString(), to a class, use the prototype member:

ExampleNamespace.cComplexCustomerType.prototype.toString = function(){
return this.getName() + “ at “ + this.getAddress();

}

Adding an item through the prototype member results in sharing of the member between
instances. Sharing of objects defined with the prototype member must be avoided or unusual
results may occur. Conceptually, this is similar to static/shared members in .NET.

Now that a class has been created a program can use the class. The following code will use the class and
display the .toString() value of the customer object:

var objCust = new ExampleNamespace.cComplexCustomerType(“Acme”, “Wileyville,
USA”);
alert(objCust.toString());

Figure 10-12 shows the result.

Figure 10-12

275

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 275

Inheritance
Inheritance is a mechanism to create new classes based on the functionality of an existing class. The new
class takes over attributes and behavior of the parent or base classes. This helps in reusing existing code
with very little modification. With Atlas, it is possible to provide inheritance in JavaScript:

Try It Out Providing Inheritance with Atlas
In the following example, you will see a class created called Animal.Generic. This class has two prop-
erties, Name and Address. Then the code creates a class title Animal.Cat that inherits from the
Animal.Generic class:

<script language=”javascript”>
Type.registerNamespace(“Animal”);
Animal.Generic = function(Name, Address)
{

var _Name = Name;
var _Address = Address;

this.getName = function() {
return _Name;

}
this.setName = function(val){

_Name = val;
}
this.getAddress = function() {

return _Address;
}
this.setAddress = function(val){

_Address = val;
}
this.Dispose = function(){

alert(“disposing component with Animal Name:” + this.getName() + “ @ “ +
this.getAddress());

}
this.toString = function(){

return _Name + “ at “ + _Address;
}

}
Type.registerClass(“Animal.Generic”, null, Web.IDisposible);
Animal.Cat = function(Name, Address, Parents)
{

Animal.Cat.initializeBase(this, [Name, Address]);

var _Parents = Parents;

this.getParents = function()
{

return _Parents;
}
this.setParents = function(Parents)
{

276

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 276

_Parents = Parents
}

}
Type.registerClass(‘Animal.Cat’, Animal.Generic);
</script>

Note that on the call to Class.registerClass, the parent object is passed as the second parameter
in the call to register the class.

To create the Animal.Cat class, you use the following code:

function GenerateClasses()
{

var strReturn = “
”;
var strOutput;
var objCat = new Animal.Cat(“Wells”, “Knoxville, TN”, “Wally and Ronda”);
strOutput = “Cat’s name: “ + objCat.getName() + strReturn;
strOutput += “Cat’s Parents: “ + objCat.getParents();
document.getElementById(“Output”).innerHTML = strOutput;

}

The output from the preceding code is shown in Figure 10-13.

Figure 10-13

Interfaces
Interfaces are contracts that allow a software program to see if a component/class implements specific
methods. Interfaces can be thought of as complementary to inheritance. With inheritance, the base
classes provide the majority of the functionality. With interfaces, the new classes are responsible for
implementing the required functionality. It is assumed that if an interface is implemented, the methods/
property that the interface defines are implemented.

277

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 277

Try It Out Implementing an Interface
In this example, you take your existing classes Animal.Generic and Animal.Cat, and you implement
the interfaces IPet in Animal.Cat but not in Animal.Generic. Take a look at the following code:

<script language=”javascript”>
Type.registerNamespace(“Animal”);
// Define an interface
Animal.IPet = function()
{

this.getFriendlyName = Function.abstractMethod;
}
Animal.IPet.registerInterface(‘Animal.IPet’);
// define a generic base class
Animal.Generic = function(Name, Address)
{

var _Name = Name;
var _Address = Address;

this.getName = function() {
return _Name;

}
this.setName = function(val){

_Name = val;
}
this.getAddress = function() {

return _Address;
}
this.setAddress = function(val){

_Address = val;
}
this.Dispose = function(){

alert(“disposing component with Animal Name:” + this.getName() + “ @ “ +
this.getAddress());

}
this.toString = function(){

return _Name + “ at “ + _Address;
}

}
Animal.Generic.registerClass(“Animal.Generic”, null, Sys.IDisposable);
// define a specific subclass of the generic class
Animal.Cat = function(Name, Address, Parents)
{

Animal.Cat.initializeBase(this, [Name, Address]);

var _Parents = Parents;

this.getParents = function()
{

278

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 278

return _Parents;
}
this.setParents = function(Parents)
{

_Parents = Parents
}
this.getFriendlyName = function()
{

return “Cat”;
}

}
Animal.Cat.registerClass(‘Animal.Cat’, Animal.Generic, Animal.IPet);
</script>

In the preceding code, a namespace called Animal has been created. Within that namespace is an Animal
.Generic class. This class does not inherit from anything. It implements Sys.IDisposable through the
registerClass() method. An Animal.IPet interface is defined, and the method getFriendlyName()
is defined. A new class is created called Animal.Cat. This class inherits from Animal.Generic, and it
implements the Animal.IPet interface by defining the getFriendlyName. This work is handled by the
call to the Animal.Cat.registerClass() method.

To call the preceding code, you use the following code. The code that follows tests the obj and objGen
object. The obj object is of type Animal.Cat. Given that the Animal.Cat class implements the IPet inter-
face, the call to the isImplementedBy(obj) method returns a true. Given that the Animal.Generic class
does not implement the IPet interface, the call to the isImplemented(objGen) method returns a false.

function GenerateClasses()
{

var strReturn = “
”;
var strOutput;
var objCat = new Animal.Cat(“Wells”, “Knoxville, TN”, “Wally and Ronda”);
var objGeneric = new Animal.Generic(“Spot”, “Atlanta, GA”);
strOutput = “Cat’s name: “ + objCat.getName() + strReturn;
strOutput += “Cat’s Parents: “ + objCat.getParents() + strReturn;
if (Animal.IPet.isImplementedBy(objCat))
{

strOutput += “Obj does implement IPet.” + strReturn;
strOutput += “This object has a friendly name of: “ +

objCat.getFriendlyName() + strReturn;
}
if (!Animal.IPet.isImplementedBy(objGeneric))
{

strOutput += “Animal.Generic does not implement the IPet interface.”;
}
document.getElementById(“Output”).innerHTML = strOutput;

}

The result of the preceding code is shown in Figure 10-14.

279

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 279

Figure 10-14

Enumerations
The Atlas framework allows for the creation of enumerations similar to enumerations in the .NET
Framework. The Web.Enum class supports the method getValues(), which returns a set of values.
In this example, the code iterates through the value.

function PerformEnumerations()
{

var strOut = “”;
var strReturn = “
”;
var objEnum = Web.Enum.create(“Good”, “Bad”, “Indifferent”);
for (var strItems in objEnum.getValues())
{

strOut += strItems + strReturn;
}
document.getElementById(“Output”).innerHTML = strOut;

}

Example output is shown in Figure 10-15.

280

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 280

Figure 10-15

Debugging
With Atlas you have two features that are useful for debugging. Each of these built-in mechanisms
shows the contents of an object. For more information on debugging see Chapter 13.

Debugging Using debug.dump
The first of these options is the command debug.dump. The debug.dump command will output the con-
tents of an object and is primarily used with three parameters. An example call takes the following
parameters:

debug.dump(object, string, boolean)

In this call, the object to be interrogated is the first parameter. The second parameter is a string that will
be displayed as the object’s name in the trace. The last parameter determines if the object will be interro-
gated within multiple layers below its top level.

Figure 10-16 shows the output of a call to debug.dump() with a dataset as the contents that are passed.

281

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 281

Figure 10-16

282

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 282

Debugging Using for() loop
The second option is to interrogate a JavaScript object within standard JavaScript. The code to interro-
gate an object’s properties uses the for() loop construction and is as follows:

for(prop in obj)
{

alert(prop);
}

This code will display the properties of the object. This code could be expanded out to display all prop-
erties of an object through a recursive algorithm.

Special Notes Concerning
Atlas Client-Side Script

When working with Atlas client-side script, you should take a few special considerations into account.

❑ document.writeln()— The use of document.writeln() creates a timing issue within Atlas
that may cause the method to fail. As a result, it should not be used.

❑ Body tag’s onload() event — The onload() event may not properly fire. To create this same
type of functionality, the command <application load=”yourFunction”/> can be added to
the XML/script section of your page.

❑ Timing issues — There will most likely be other timing related problems, so be flexible. For
example, it has been discussed at forums.asp.net that the pageLoad() method has some
undocumented issues in the Atlas environment and may be removed at some time.

Resources Used
Because the Atlas chapters of this book are being written while the software is still relatively new, the
documentation available is rather limited. As a result, the following resources were used extensively
during the writing of these chapters of the book.

❑ Wilco Bauwer — Wilco was an intern on the Atlas team. He blogs about Atlas extensively at
www.wilcob.com. In addition, Wilco has personally answered a number of my emails and IM
questions.

❑ ASP.NET Forums — Several forums at www.asp.net are dedicated to Atlas.

❑ Scott Guthrie’s blog —http://weblogs.asp.net/scottgu.

❑ Nikhil Kothari’s blog —www.nikhilk.net.

283

Atlas Client Script

13_78544X ch10.qxp 7/18/06 3:17 PM Page 283

Summary
In this chapter, you have started taking a close look at Atlas. Atlas has allowed you to call to the web
server and call methods through web services without having to round trip to the web server. For users,
this eliminates the annoying flash that users typically see as well as the loss of user context that result
from redirecting the user back to the top of a web page as opposed to where the user has scrolled within
the page. In this chapter, we have seen that Atlas supports:

❑ Calling back to the web server through a web service

❑ Passing simple and complicated objects back and forth between client and server

❑ Using features like namespaces, classes, inheritance, and interfaces to provide a set of language
extensions

Now that you have looked at some of the client-side building blocks of Atlas, the next chapter will build
on this and will look at the controls provided by the Atlas framework.

284

Chapter 10

13_78544X ch10.qxp 7/18/06 3:17 PM Page 284

11
Atlas Controls

This chapter introduces the concept of the Microsoft Atlas controls. These controls function like
other ASP.NET server controls. Once rendered, these controls provide the HTML necessary to
communicate back to the server from the client. In this chapter, you look at:

❑ Referencing and creating client-side controls with Atlas

❑ Client-side events — events that are raised by user controls and processed in client-side script

❑ Extending existing ASP.NET controls

❑ Data binding, which allows for the connection of components and controls to manage the
flow of data between the two

Controls
With the Atlas framework, the page developer has the ability to create rich applications that do not
need to post back to the server on every action that a user performs. Much of this functionality is pro-
vided by a set of controls referred to as the Atlas server controls. These controls output the appropriate
markup for the web browser client so that actions on the client do not require the dreaded postback.

You start by looking at some generic controls and then move into several more complicated controls.

Buttons
An HTML button is one of the most basic controls in a web application. It is typically used as the
last step in some type of user interaction. For example, a user will fill out a form with contact
information. The last step in the process is for the user to submit that information to the web
server. Atlas has support for working with the buttons in the Sys.UI.Button() class.

Try It Out Creating a Button and Changing Its Properties
Take a look at an example of dynamically creating a button and then changing one of the properties of
the button. Creating a button dynamically can be done through the Document Object Model (DOM):

14_78544X ch11.qxp 7/18/06 3:17 PM Page 285

var associatedElement = document.getElementById(“divTest”);
var btnCreate = document.createElement(“button”);
btnCreate.id = “btnCreated”;
btnCreate.value = “Hi”;
btnCreate.innerHTML = “Hi”;
associatedElement.appendChild(btnCreate);

For more information regarding the DOM, turn to Chapter 3.

Atlas allows a control to be manipulated through JavaScript. The preceding code will hold a reference to a
button. After the reference to the button is created, the visible and accessKey properties of the object are
set. In the first code snippet, a button is created using the DOM. In the second snippet, a reference is created
to the button. The visible property of the button is set to true, and the access property is set to “o”.

Now that you have a button in the browser, you may need to reference the button in Atlas. To reference a
button in Atlas, use the following code.

var btnAlreadyThere = new Sys.UI.Button($(“btnCreated”));
btnAlreadyThere.set_visible(true);
btnAlreadyThere.set_accessKey(“o”);

While looking at the preceding code, take notice of several things:

❑ The dollar sign ($) is a shortcut to document.getElementById. Using the DOM methods
means that the method will provide support across multiple browsers that support the DOM.

❑ There is a class titled Sys.UI.Button. This class encapsulates functionality of an HTML button
and allows that button to be modified through Atlas.

❑ The Sys.UI.Button class provides a reference to a button. The class does not provide support
for creating a new button, merely for referencing the button.

❑ Setting the properties is easy. The preceding code shows the visible and accessKey proper-
ties being set. These are set by calling set_visible(boolean) and set_accessKey(string).

Approximately 40 properties can be set on a button or other user control in Atlas. The most common
ones will be the display/user interface (UI) oriented properties, such as behaviors, cssClass,
enabled, and other UI properties. It is beyond the scope of this book to go through all the properties of
the button control or all the properties of every single control. Suffice it to say, each of the additional UI
wrapper controls provided by Microsoft Atlas provides a similar set of properties. You can obtain them
by the using the for() loop presented at the end of Chapter 10 to interrogate the JavaScript objects.

Sys.UI.Data Controls
The Sys.UI.Data namespace provides a couple of key visual/UI-related controls — namely the
listView and itemView classes. We are going to take a look at the listView control here.

Try It Out Using listView
A listView is an Atlas control that is used to display a tabular set of data. It is very similar to a
GridView/DataGrid in ASP.NET or an HTML table in classical ASP used to present data. A listView
is set up within the <page> tag of the xml-script section of the page. Take a look at the following code
using the listView taken from the data binding section later in the chapter.

286

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 286

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<listView id=”ProjectResults”
itemTemplateParentElementId=”ProjectTemplate” >
<layoutTemplate>

<template layoutElement=”ProjectTemplate” />
</layoutTemplate>
<itemTemplate>

<template layoutElement=”ProjectItemTemplate”>
<label id=”ProjectNameLabel”>

<bindings>
<binding dataPath=”ProjectName” property=”text” />

</bindings>
</label>

</template>
</itemTemplate>

</listView>
</components>
</page>

Notice some of the settings in this listView:

❑ The listView has an ID of “ProjectResults”.

❑ The target element is “ProjectTemplate”. The target element from this example is a div tag
that will receive the tabular results.

❑ The bindings define how data is bound to the element. More information on data binding is
found later in this chapter. In this example, the data column ProjectName is bound to the label
ProjectNameLabel.

❑ The layoutTemplate defines the layout that will be used for the records. In this situation, the
ProjectItemTemplate is the element that will hold the contents of data that is bound to the
listView.

❑ The itemTemplate defines the layout that will be used for a single record. Within the
itemTemplate, there is a binding setup that associates the ProjectItemTemplate tag
with the layout of the individual records as defined by the ProjectNameLabel element.

Server Controls
One of the interesting pieces of Atlas is the support for various server-centric controls and integration
with the server-centric ASP.NET way of thinking. The idea behind these controls is to keep the server
control model and add support for client-side/Ajax scenarios.

Partial Updates and the UpdatePanel
One of the simplest scenarios is the ability to perform updates incrementally. The goal is to minimize the
use of postbacks and whole refreshes and to instead use targeted and partial updates. This scenario is
enabled by turning on partial updates through the ScriptManager control.

<atlas:ScriptManager runat=”server” id=”scriptManager”
EnablePartialRendering=”true” />

287

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 287

Setting the EnablePartialRending attribute to true causes a postback to be simulated using the Atlas
Sys.Net.WebRequest class (which is based on the XMLHttpRequest object). On the server, the page is
processed as if a “classical” page postback has occurred. This works with the server controls, both in-
the-box and third-party controls, which call doPostBack. The result is that Page.IsPostBack returns a
true, if that is necessary. In addition, server-side events fire as they are designed to, and event handlers
continue to be processed.

Try It Out Using an UpdatePanel
The next step in this process is to determine what to do when the server returns the data. The Script
Manager needs to determine what parts of the page have changed. The UpdatePanel helps the
ScriptManager in this situation. UpdatePanels are used to define portions/regions of a page that can
be updated together. The ScriptManager will override the rendering of an entire HTML page and dis-
play only the content of the UpdatePanels. In addition, the ScriptManager will handle the updating of
page titles, viewstate (and other hidden fields), updated styles, and the like.

Consider this small example. In this example, you will have a drop-down list of employees. When an
employee is selected, a GridView will be displayed and filled based on the employee that is selected.
Here is some ASPX code:

<atlas:ScriptManager ID=”ScriptManager1” runat=”server”
EnablePartialRendering=”true” />

<div>
</div>

<div>
<table>

<tr>
<td><asp:Label runat=”server” ID=”lblEmployee”>Employee:</asp:Label></td>
<td><asp:DropDownList runat=”server”

ID=”ddlEmployee”></asp:DropDownList></td>
</tr>
<tr>

<td colspan=”2”>
<asp:Button runat=”server” ID=”btnSearch” Text=”Search”

OnClick=”btnSearch_Click” />
</td>

</tr>
</table>

</div>
<atlas:UpdatePanel runat=”server” ID=”upSearch”>

<ContentTemplate>
<asp:GridView ID=”gvSearchResults” runat=”server”

EnableSortingAndPagingCallbacks=”true”>
</asp:GridView>

</ContentTemplate>
<Triggers>

<atlas:ControlEventTrigger ControlID=”btnSearch” EventName=”Click” />
</Triggers>

</atlas:UpdatePanel>

288

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 288

How It Works
Conceptually, there are several things you should take notice of in the preceding code:

❑ The UpdatePanel allows the developer to define a region that will be updated.

❑ The <atlas:ControlEventTrigger> allows for the ControlID to be specified through the
named property. This allows for Atlas to specifically act on a control.

❑ There is an EventName property. This property “listens” for the specific event as specified by
the EventName property. This property works with the specified ControlID property.

Based on the preceding code, you are able to get the screen of results shown in Figure 11-1.

Figure 11-1

289

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 289

Just to show that there is not an update of the complete page, take a look at the source code of the pre-
ceding page after the method returns its values.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head><title>
Update Panel Page
</title><style type=”text/css”>
atlas__delta { font-family:Lucida Console; }
</style></head>
<body>
<form name=”form1” method=”post” action=”PartialUpdates.aspx” id=”form1”>
<div>
<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE” value=”.....” />
</div>
<script src=”../ScriptLibrary/Atlas/Debug/Atlas.js”
type=”text/javascript”></script>
<div>
</div>
<div>
<table>
<tr>
<td>Employee:</td>
<td><select name=”ddlEmployee” id=”ddlEmployee”>
<option value=””></option>
<option value=”ee8d807d-fab3-4e39-948a-67362c61a470”>McClure, Wallace</option>
<option value=”4d39f850-2b65-477d-9cf4-c90158e26b5f”>Coder, Lou</option>
<option value=”3a3221a8-5043-46cb-bd61-d12e77195f61”>Smith, Joe</option>
</select></td>
</tr>
<tr>
<td colspan=”2”>
<input type=”submit” name=”btnSearch” value=”Search” id=”btnSearch” />
</td>
</tr>
</table>
</div>

<div>
</div>

<div>
<input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION”
value=”/wEWBgK9+Yf9BgLO+4f+BgKWzeL+BQL4qeKmDgKdwp/VDgKln/PuCnnVW0Hi59nE7dq0vREhD29F
VgTo” />
</div>
<script type=”text/xml-script”><page
xmlns:script=”http://schemas.microsoft.com/xml-script/2005”><components />
</page></script><script
type=”text/javascript”>Sys.WebForms._PageRequest._setupAsyncPostBacks(document.getE
lementById(‘form1’), ‘ScriptManager1’);
</script></form>
</body>
</html>

290

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 290

The preceding code contains several things it’s important to understand:

❑ This is the same code that would be generated when the page is first loaded. The ViewState is
at its default setting within the “view source.” While the ViewState has been “clipped” for
brevity in this example, the ViewState does not seem to hold all the data-bound content of
the GridView that you would expect to see from a page that contained the data bound to the
GridView and resent to the client. The UpdatePanel has handled the updating of ViewState.

❑ The GridView is not displayed on the page. The UpdatePanel is replaced by the tag.
This will be the location where the GridView is placed when the data is returned to the web
client. When the data is returned, the data is placed within the tag.

❑ This methodology allows for the integration of Ajax functionality into ASP.NET applications, while
preserving the server-centric development methodology that ASP.NET has traditionally provided.

Timed Refreshes
Atlas contains a timer control that provides for timed actions to occur. Situations where this would be
useful might be:

❑ Stock symbol updates for an investor

❑ Inventory updates within a manufacturing environment

❑ Retail inventory

❑ Executive information system or dashboard

Try It Out Performing a Timed Update with the Timer Control
Take a look at some code to perform a timed update:

<atlas:TimerControl runat=”server” ID=”tc” Interval=”5000” OnTick=”tc_Tick”/>
<atlas:UpdatePanel ID=”up” runat=”server” Mode=Conditional>
<ContentTemplate>
<asp:Label ID=”lblInv” runat=”server” AssociatedControlID=”lblNum” />:
<asp:Label ID=”lblNum” runat=”server” />
</ContentTemplate>
<Triggers>

<atlas:ControlEventTrigger ControlID=”tc” EventName=”Tick” />
</Triggers>
</atlas:UpdatePanel>

The ASP.NET event control is:

protected void tc_Tick(object sender, EventArgs e)
{

lblInv.Text = “Widget”;
lblNum.Text = DateTime.Now.Millisecond.ToString();
if (/* Something happened */ true)
{

up.Update();
}

}

291

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 291

How It Works
In this example, an Atlas server control called the <atlas:TimerControl> is set up. There are two
properties that are of interest. These are:

❑ Interval— The interval is the number of milliseconds before the OnTick event is called. In
this example, the interface is set to 5,000 milliseconds. As a result, every 5,000 milliseconds, the
timer control will update and run.

❑ OnTick— This event fires when the period of time defined by the Interval has elapsed.

Along with the timer, the <Trigger> in the example shows that when the timer control counts down
from 5 seconds to 0, a call is made to the specified method. In this case, the server-side event fires and
updates the label controls without the unnecessary page postback. In this example, the inventory listed
on screen is updated every 5 seconds.

Figure 11-2 shows what the output might look like.

Figure 11-2

If you look at the source for this page, the code of interest is defined as:

<script type=”text/xml-script”><page
xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>
<timer interval=”5000” enabled=”true”>
<tick>
<postBack target=”tc” argument=”” />

</tick>
</timer>

</components>
</page></script>
<script
type=”text/javascript”>Sys.WebForms._PageRequest._setupAsyncPostBacks(document.getE
lementById(‘form1’), ‘ScriptManager1’);
</script>

This code contains the definition for the component configuration on the client. This code is generated
by the server-side TimerControl. When the server control is rendered to the client, this is the code that
is generated.

292

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 292

Control Extenders
With ASP.NET, there is a set of controls that developers have become fairly familiar with. These controls
include things like the textbox, label, drop-down list box, and many others. One of the questions that
Atlas brings to the table is how to provide additional functionality to these controls, while maintaining
the programming model that developers have come to be familiar with. Into this problem step control
extenders. With control extenders, client-side functionality is added to an existing server-side control,
while maintaining the server-side programming model. There are numerous examples of these exten-
sions of existing controls.

You are going to see the AutoComplete extender control in the next section. The AutoComplete extender
control is designed to extend the capabilities of an ASP.NET Textbox control. The AutoComplete control
will extend the functionality of the Textbox control by hooking it to a web service to get information.

In Chapter 12, the Drag and Drop extender will be presented. It will provide Drag and Drop support
through Atlas.

AutoComplete
One of the classic examples of Ajax has been a textbox that is similar in concept to the Windows combo
box (similar, but not quite the same). This feature has been popularized by the Google Suggest service.

Atlas provides the capability to extend the <asp:Textbox> in ASP.NET 2.0. This extension takes input
from the textbox, passes the text to the web service, and the web service returns a list of possible items,
similar to the Windows Combo Box. Take a look at the following simple example. Here is the ASPX code.

<atlas:ScriptManager ID=”ScriptManager1” runat=”server”
EnablePartialRendering=”true” />
<div>
<asp:Textbox runat=”server” id=”txtBox” />
<atlas:AutoCompleteExtender runat=”server” ID=”ace”>

<atlas:AutoCompleteProperties TargetControlID=”txtBox”
Enabled=”true” ServicePath=”AutoCompleteEx.asmx”
ServiceMethod=”TextBoxAutoComplete” />

</atlas:AutoCompleteExtender>
</div>

Look at what is being specified.

❑ There is an ASP.NET textbox. This is the standard textbox in ASP.NET.

❑ There is a new type of server control. This is an extender control, and specifically the
AutoCompleteExtender. It is a server control that acts on the ASP.NET textbox. The extender
control “extends” the functionality in the textbox.

❑ There are series of properties specified within the <atlas:AutoCompleteProperties> tag:

❑ TargetControlID— The TargetControlID is the control that will be the target of the
extender.

❑ ServicePath— The ServicePath property is the path to the web service that will be
called.

❑ ServiceMethod— The ServiceMethod property is the name of the function within the
web service.

293

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 293

Now that you have seen the ASPX code, look at the web service:

[WebMethod]
public String[] TextBoxAutoComplete(string prefixText, int count) // Seems to be a
problem if the names are not prefixText and count
{

int i = 0;
int iLength = 10;
List<String> Values = new List<string>();

for (i = 0; (i < iLength); i++)
{

Values.Add(Convert.ToString(prefixText + i.ToString()));
}
String[] strReturn = new String[Values.Count];
strReturn = Values.ToArray();
return (strReturn);

}

The issues with the web service are:

❑ A set of strings in the form of an array must be returned.

❑ The input parameters must be a string and an integer. In addition, at the time of this writing,
these parameters must be named prefixText and count. Naming these values something dif-
ferent will result in the code not working correctly.

❑ In this example, the code is designed to take an input and add the values 0–9. This code merely
takes the input and adds a number. It expects a number to be input, but there is no specific
checking in the example.

Now that you have seen the code, look at the output of the AutoCompleteExtender in Figure 11-3.

Figure 11-3

294

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 294

From there, take a look at the source code generated. Here is the HTML output from the View Source
functionality in Internet Explorer.

<script src=”../ScriptLibrary/Atlas/Debug/Atlas.js”
type=”text/javascript”></script>
<div>
<input name=”txtBox” type=”text” id=”txtBox” />
</div>
<div>

<input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION”
value=”/wEWAgK44YDODwKF+8K0ARfViGhYgqOYxdy6jHmmcbQs826z” />
</div>
<script type=”text/xml-script”><page
xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>

<components>
<control id=”txtBox”>
<behaviors>
<autoComplete serviceURL=”AutoCompleteEx.asmx”

serviceMethod=”TextBoxAutoComplete” />
</behaviors>

</control>
</components>

</page></script><script
type=”text/javascript”>Sys.WebForms._PageRequest._setupAsyncPostBacks(document.getE
lementById(‘form1’), ‘ScriptManager1’);
</script></form>

In reviewing this code, take note of the following:

❑ There are no special parameters on the HTML textbox definition.

❑ There is a definition of components.

❑ The definition of components contains a control ID and a behavior. These definitions associate
the textbox with the behavior.

Data Binding
Data binding allows for the interchange of data between components and user interface controls. Atlas
allows datasources and data controls to directly interact in the web browser without the need to post
back to the server. Atlas provides the mechanism to create datasources. These datasources provide ser-
vices for performing CRUD (create, read, update, delete) style operations. The associated database oper-
ations are select, insert, update, and delete.

Atlas supports two types of data binding — declarative and programmatic. Declarative data binding is what
most ASP.NET developers are familiar with, but the next two sections look at these both in more detail.

Declarative Data Binding
When a developer ties together data components and user interface components that is known as data bind-
ing. With Atlas and ASP.NET, there is a further type of data binding known as declarative data binding. With
declarative data binding, all of the binding information is declared statically within a section of the web page.

295

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 295

You will notice that there is still some code in the example that follows that is programmatic. Declarative
data binding is typically not 100 percent declarative.

Try It Out Declarative Data binding
In this example, you will take look at the pieces of code and the steps taken for getting data in a declarative
manner:

<form id=”form1” runat=”server”>
<atlas:ScriptManager runat=”server” ID=”ScriptManager1” >

<Services>
<atlas:ServiceReference GenerateProxy=true Path=”WebServiceProjects.asmx” />

</Services>
</atlas:ScriptManager>
<input type=”button” id=”btnGetData” value=”Get Project List” onclick=”GetData()”
/>
<script language=”javascript”>

function GetData()
{

WebServiceProjects.GetProjects(OnServiceComplete);
}
function OnServiceComplete(result)
{

var projectName = $(“ProjectResults”);
projectName.control.set_data(result);

}
</script>
<div id=”ProjectResults”>
</div>
<div id=”ProjectTemplate”>
This is a list of all project in the table tblProject:

<div id=”ProjectItemTemplate”>

Project:
</div>
</div>
</form>
<script type=”text/xml-script”>
<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>
<listView id=”ProjectResults”

itemTemplateParentElementId=”ProjectTemplate” >
<layoutTemplate>

<template layoutElement=”ProjectTemplate” />
</layoutTemplate>
<itemTemplate>

<template layoutElement=”ProjectItemTemplate”>
<label id=”ProjectNameLabel”>

<bindings>
<binding dataPath=”ProjectName” property=”text” />

</bindings>
</label>
</template>

</itemTemplate>
</listView>
</components>
</page>
</script>

296

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 296

How It Works
Now take a look at the details of the example:

1. The page is set up just like any other page that uses Atlas. The page has the ScriptManager
along with a reference to a web service.

2. There is a <serviceMethod> tag that defines a web service to call and to create the JavaScript
proxy.

3. There is an onclick event defined in the HTML for the btnGetData button. When the web ser-
vice returns data, the OnServiceComplete method is called and processing is completed there.
Within the OnServiceComplete method, a reference to the ProjectResults div is obtained
and data is bound to the div tag.

4. A “holder” for the final results is defined within the <div> tag with an ID of ProjectResults.

5. A listView control is defined. This listView control is associated with the ProjectResults
<div> tag within the script definition.

6. The binding section defines where to get the data from. The ProjectName field in the web ser-
vice’s dataset is bound to the projectNameLabel.

7. The itemTemplate defines the items to be contained within a binding on a per row basis. In
this example, the ProjectNameLabel output span is bound to the ProjectName property.

Programmatic Data Binding
Most ASP.NET developers are familiar with declarative data binding. It is also possible to programmati-
cally set up and perform data binding programmatically. Programmatic data binding means you are set-
ting up the data binding through imperative program code rather than through declarative tags and
structures.

Try It Out Programmatic Data Binding
The following example uses programmatic data binding:

<atlas:ScriptManager runat=”server” ID=”ScriptManager1”>
<Services>
<atlas:ServiceReference GenerateProxy=”true” Path=”WebServiceProjects.asmx” />

</Services>
<Scripts>
<atlas:ScriptReference Path=”~/ScriptLibrary/CustomTemplates.js” />

</Scripts>
</atlas:ScriptManager>
<input type=”button” id=”btnGetData” onclick=”GetData()” value=”Get Project List”
/>
<script type=”text/javascript”>
function pageLoad()
{

var listView = new Sys.UI.Data.ListView($(“ProjectResults”));
listView.set_itemTemplateParentElementId(“ProjectTemplate”);
var layoutTemplate = new GenericTemplate($(“ProjectTemplate”));

297

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 297

listView.set_layoutTemplate(layoutTemplate);
var itemTemplate = new GenericTemplate($(“ProjectItemTemplate”),

createItemTemplate);
listView.set_itemTemplate(itemTemplate);
itemTemplate.initialize();
layoutTemplate.initialize();
listView.initialize();

}
function createItemTemplate(markupContext, dataContext)
{

var
associatedElement = markupContext.findElement(“ProjectNameLabel”);

var projectNameLabel = new Sys.UI.Label(associatedElement);
projectNameLabel.set_dataContext(dataContext);
var bindings = projectNameLabel.get_bindings();
var textBinding = new Sys.Binding();
textBinding.set_property(“text”);
textBinding.set_dataPath(‘ProjectName’);
textBinding.initialize(projectNameLabel);
bindings.add(textBinding);
projectNameLabel.initialize();

}
function GetData()
{

WebServiceProjects.GetProjects(OnServiceComplete);
}
function OnServiceComplete(result)
{

var projectName = $(“ProjectResults”);
projectName.control.set_data(result);

}
</script>
<div id=”ProjectResults”>
</div>
<div id=”ProjectTemplate”>

This is a list of all projects in the table tblProject:

<div id=”ProjectItemTemplate”>

Project:
</div>

</div>

How It Works
Now, take a look at this code in a step-by-step process:

1. The display information is set up exactly like the declarative data-binding example. As a result,
the pages work the same.

2. There is a custom template in a JavaScript file that is included by using the ScriptManager
control. The custom template is defined as the class GenericTemplate(). This custom tem-
plate makes it easier for developers to programmatically data bind.

298

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 298

3. The pageLoad() event creates and sets up the listView, layoutTemplate, and
itemTemplate controls. The layoutTemplate and itemTemplate are defined using the
GenericTemplate class that is defined in the included JavaScript file.

4. An item template is created by the createItemTemplate method. Within the pageLoad()
event, the createItemTemplate method is passed as a callback to the GenericTemplate()
class.

5. The GetData() method is called when the onclick event of the button occurs.

6. The OnServiceComplete() method binds the data to the listView.

Figure 11-4 shows the output on screen of a call to both the declarative and programmatic code versions.

Figure 11-4

The question that you most likely have is why would a developer choose programmatic data binding
versus declarative data binding. The simple answer is ease of use versus control. Programmatic data
binding depends on the developer to know and understand many aspects of data binding, creating tem-
plates, and the intricacies of Atlas, which at this time are not all known. At the same time, programmatic
data binding provides an amount of flexibility. Declarative data binding, on the other hand, will most
likely be supported by designers, wizards, and graphical interface in a version of Visual Studio .NET
after the 2005 release.

299

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 299

Binding Directions
As previously indicated, data binding allows data to be interchanged between components and user
interface controls. This interchange may be cast in several directions — specifically, In, Out, and InOut.
These directions are defined within the Sys.BindingDirection enumeration. The meanings of these
directions are:

❑ In— Defines data going from a datasource into a user interface control

❑ Out— Defines data going from a user interface control in a datasource

❑ InOut— Defines data going back and forth between a user interface control and a datasource

The following code displays the allowed values of the Sys.BindingDirection enumeration:

function PerformEnumerations()
{

var strOut = “”;
var strReturn = “
”;
for (var strItems in Sys.BindingDirection)
{

strOut += strItems + strReturn;
}
document.getElementById(“Output”).innerHTML = strOut;

}

Binding Transformations
Bindings provide the ability to attach handlers and methods for performing operations along with the
binding. Two of the built-in transforms are ToString and Invert. The ToString transform converts
the data into a string. The Invert transform is designed for boolean operations. It will output the oppo-
site of the input value. Atlas provides the flexibility to create custom transforms.

var custBinding = new Sys.Binding();
..
custBinding.transform.add(CustomTransformHandler);
..
function CustomTransformHandler(sender, eventArgs) { .. }

The class that makes this possible is the Sys.Bindings() class.

Validation
Validation is a mechanism to verify data input. There are a number of ASP.NET server validators that
include client functionality. Atlas provides a set of client-side controls that perform a similar function.
The built-in validators are:

❑ requiredFieldValidator— Verifies that data is within the associated control

❑ typeValidator— Verifies the type of data. This may be String or Number

❑ rangeValidator— Verifies that the data within a lower and upper value

300

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 300

❑ regexValidator— Verifies the data against the supplied regular expression

❑ customValidator— Defines a custom expression handler

Validators are defined together through a collection and are typically fired on a propertyChanged event.
During this event, the validation is checked, and the validate event is raised. From there, code can subscribe
to a validation event. This event is raised after validation. During the validation, the validators are checked.
Checking the validators may result in the client-side control invalid and validationMessage properties
being set.

In addition to validators, a special control exists for displaying this information. This control is of type
validationErrorLabel and is used to display error messages — similar in function to the ASP.NET
ValidationSummary control. The error messages may be displayed through an asterisk, tooltip, or
other mechanism. In addition, validators may be grouped together. A rollup of the validator controls can
then occur.

Try It Out Using a requiredFieldValidator
In the following code, you are going to investigate the use of the requiredFieldValidator.

<form id=”form1” runat=”server”>
<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<div class=”description”>

The textbox requires data entry. A requiredFieldValidator is attached.
Enter a text field, then remove to see the effect. The validator is shown
via the tooltip.

<input type=”text” id=”textboxRequired” class=”input” />

*

</div>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<textBox targetElement=”textboxRequired”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some
text.” />

</validators>
</textBox>
<validationErrorLabel targetElement=”valRequired”

associatedControl=”textboxRequired” />
</components>

</page>
</script>

How It Works
Now look at the steps taken to get this code to work.

1. An HTML textbox and span are defined along with the Atlas ScriptManager.

2. Within the xml-script section, there is a set of defined components. The textBox is defined,
and a validator is assigned to the textBox control.

301

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 301

3. The validationErrorLabel is set up with a targetElement and the associatedControl.

Figure 11-5 shows the output of the preceding required field validator.

Figure 11-5

Try It Out Adding Datatype and Range Validation Support
The next step in this example adds datatype and range validation support. By making the changes that
follow to the xml-script section, the validation is added. In this example, the <textbox> tag contains
a <validators> tag. Within the <validators> tag, there are several validators that are set up. The first
validator is the requiredFieldValdiator. The requiredFieldValidator requires that a value be
entered for that field. The second validator is the typeValidator. The typeValidator sets the type
that must be entered. In this example, the Number type must be entered. The third validator in this
example is the rangeValidator. In this example, if a number outside of the range from 10 to 20 is
entered, a message is presented to the user regarding the number being out of the specified range.

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<textBox targetElement=”textboxRequired”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some text.” />
<typeValidator type=”Number” errorMessage=”You must enter a valid

number.” />
<rangeValidator lowerBound=”10” upperBound=”20” errorMessage=”You

must enter a number between 10 and 20.” />
</validators>

</textBox>
<validationErrorLabel targetElement=”valRequired”

associatedControl=”textboxRequired” />
</components>

</page>

302

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 302

Try It Out Regex-Based Validation
This next example involves the source code to perform a regex-based validation. This example is simi-
lar to the previous example. There is an xml-script section that contains a list of components. In this
situation, the text that is entered is validated for being in the form of an email address. In this example,
a regexValidator is placed within the <validators> tag. Within the regexValidator, a regular
expression is passed for processing by the validator.

<form id=”form1” runat=”server”>
<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<div class=”description”>

Regex Validation Example. Enter a valid email address. The validator is
show

via the tooltip.

<input type=”text” id=”textboxRegex” class=”input” />

*

</div>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<textBox targetElement=”textboxRegex”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some
text.” />

<regexValidator regex=”/(\w[-._\w]*\w@\w[-
._\w]*\w\.\w{2,3})/” errorMessage=”You must a valid email address in the form of
an email address.” />

</validators>
</textBox>
<validationErrorLabel targetElement=”valRegex”

associatedControl=”textboxRegex” />
</components>

</page>
</script>

</form>

Although the code looks the same as the previous validator example, there is one important difference.
The regex that is used for the validation has “/” and “/” characters at the beginning and the end of the
string representing the regex statement.

You may question under what situation a regular expression validation would need to occur. While test-
ing for datatypes, required fields, and ranges can meet many validation requirements, there are situations
where looking for pattern is required. In those scenarios, using regular expressions will work well in
meeting those requirements.

Try It Out Custom Validation
Next, take look at a custom validator. The code will look very similar to the existing validator code.
There is a customValidator within the <components> section that will call the custom JavaScript rou-
tine. Take a look at the code for this:

303

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 303

<form id=”form1” runat=”server”>
<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<div class=”description”>

Regex Validation Example. Enter a value. Entering the term “fail” will cause
the validation to fail.

<input type=”text” id=”textboxValue” class=”input” />

*

</div>
<script language=”javascript”>
function onValidateValue(sender, eventArgs) {

var val = eventArgs.get_value();
var valid = true;
if (val == “fail”)
{

valid = false;
}
//You could do something like this to send an alert to to the user.
//alert(“The entry is: “ + valid);
eventArgs.set_isValid(valid);

}
</script>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<textBox targetElement=”textboxValue”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some
text.” />

<customValidator validateValue=’onValidateValue’
errorMessage=”You entered fail.” />

</validators>
</textBox>
<validationErrorLabel targetElement=”valLabel”

associatedControl=”textboxValue” />
</components>

</page>
</script>

There are a couple of key things to pay attention to in the customValidator when writing a custom
validator.

❑ The onValidateValue method takes two parameters, just like an event in .NET, such as press-
ing a button in a web form.

❑ The customValidator takes a JavaScript function as the parameter in the validateValue
function.

Now that you have seen requiredFieldValdiator, typeValidator, rangeValidator, and
regexValidator, I am sure that you are asking, “Why would I need to use a customValidator?” That
is an excellent question. There are situations where data must be validated against custom business
rules. There might be a need perform a more complicated validation, for example to validate some data
against a database. It’s not possible to do this through the other validators. The custom validator allows
for more programmatic options when validating.

304

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 304

Try It Out Group Validation
Now that you have seen the code for custom validators, you can tie two or more validators together for
a group validation.

<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<div id=”lblValid” >Valid. Good data has been entered.

</div>
<div id=”lblInValid”>Invalid. Bad data has been entered. Please review your
inputs.

</div>
<div class=”description”>

This is the group validation page. This example demonstrates the validation of
two controls together.

Regex Validation Example. Enter a value. Entering the term “fail” will cause
the validation to fail.

<input type=”text” id=”textboxValue” class=”input” />

*

A requiredFieldValidator, typeValidator, and rangeValidator are attached.
Enter a number between 10 and 20, then remove to see the effect. The validator

is show
via the tooltip.

<input type=”text” id=”textboxRequired” class=”input” />

*

</div>
<script language=”javascript”>
function onValidateValue(sender, eventArgs) {

var val = eventArgs.get_value();
var valid = true;
if (val == “fail”)
{

valid = false;
}
//You could do something like this to send an alert to to the user.
//alert(“The entry is: “ + valid);
eventArgs.set_isValid(valid);

}
</script>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<textBox targetElement=”textboxValue”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some
text.” />

<customValidator validateValue=’onValidateValue’
errorMessage=”You entered fail.” />

</validators>
</textBox>
<validationErrorLabel targetElement=”valLabel”

associatedControl=”textboxValue” />

305

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 305

<textBox targetElement=”textboxRequired”>
<validators>

<requiredFieldValidator errorMessage=”You must enter some
text.” />

<typeValidator type=”Number” errorMessage=”You must enter a
valid number.” />

<rangeValidator lowerBound=”10” upperBound=”20”
errorMessage=”You must enter a number between 10 and 20.” />

</validators>
</textBox>
<validationErrorLabel targetElement=”valRequired”

associatedControl=”textboxRequired” />
<validationGroup id=”formGroup” targetElement=”formGroup”>

<associatedControls>
<reference component=”textboxValue” />
<reference component=”textboxRequired” />

</associatedControls>
</validationGroup>
<label targetElement=”lblValid” visibilityMode=”Collapse”>

<bindings>
<binding dataContext=”formGroup” dataPath=”isValid”

property=”visible” />
</bindings>

</label>
<label targetElement=”lblInValid”>

<bindings>
<binding dataContext=”formGroup” dataPath=”isValid”

property=”visible” transform=”Invert” />
<binding dataContext=”lblInValid” dataPath=”text”

property=”text” transform=”onValidGroup” />
</bindings>

</label>
</components>

</page>
</script>

How It Works
In this example, take note of several things:

❑ Two div tags have been added. The IDs for the div tags are lblValid, which contains the text
to display when all validators are satisfied with the input, and lblInValid, which contains the
text to display when one or more validators are invalid.

❑ A validationGroup has been defined in the xml-script section. The validation group defines
the controls that will be validated together.

❑ The lblValid and lblInValid tags have been added to the xml-script section. A set of
bindings is defined for each.

Figure 11-6 shows the output of the group validation process.

306

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 306

Figure 11-6

Why would you want to group validators together? Obviously, each individual validator will fire.
However, there may be situations where the validation should be done together. For example, it would
be valuable for checking required fields when a user signs up for a new service. This is what the
validationGroup control in Atlas is for.

Behaviors
A behavior is the name of the set of actions that can be performed based on events in DTHML. These
events might be click, hover, mouseover, or other client-side events. These sets of actions that are
performed comprise features such as auto-completion and Drag and Drop. In other words, behaviors
are used to provide a more sophisticated UI and behavioral features beyond standard DHTML In Atlas,
behaviors are defined as a collection on a client-side control. In other words, the individual behaviors are
attached to a client-side control.

Try It Out Using Behaviors
Take a look at some code that incorporates behaviors. In this example, a click behavior is set on the
lblHide label so that when it is clicked, the visibility of the displayData label is set to false, and the
displayData label is hidden from view. When the lblShow label is clicked, the visibility of the display
Data label is set to true, and the displayData label is displayed on the screen, if it is not already viewable.

<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<div>
<div id=”displayData”>This is the text that will be hidden and shown based on
clicking the text below. Pretty cool.</div>

307

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 307

Hide
Show

</div>
<script type=”text/xml-script”>

<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<components>

<control targetElement=”displayData” cssClass=”start” />
<label targetElement=”lblHide”>

<behaviors>
<clickBehavior>

<click>
<setProperty target=”displayData”

property=”visible” value=”false” />
</click>

</clickBehavior>
</behaviors>

</label>
<label targetElement=”lblShow”>

<behaviors>
<clickBehavior>

<click>
<setProperty target=”displayData”

property=”visible” value=”true” />
</click>

</clickBehavior>
</behaviors>

</label>
</components>

</page>
</script>

Figure 11-7 shows the output of the preceding code. Clicking Hide will hide the text, assuming that the
code is visible. Clicking Show will display the code, assuming that it is hidden. The advantage to using
behaviors in this way is that no programming must be done in the preceding code. You don’t have to set
up any JavaScript onclick events or anything to that effect.

Figure 11-7

308

Chapter 11

14_78544X ch11.qxp 7/18/06 3:17 PM Page 308

Resources Used
❑ Wilco Bauwer — Wilco Bauwer, a intern on the Microsoft Atlas team provided significant assis-

tance in answering questions regarding many features in Atlas. Wilco’s web site and blog are
located at www.wilcob.com.

❑ Nikhil Kothari — Nikhil provided several helpful articles on his blog regarding how to prop-
erly use several features of Atlas. Nikhil’s web site and blog are located at www.nikhilk.net.

❑ Atlas Quickstarts — The Atlas web site is http://atlas.asp.net.

❑ Forums on ASP.NET site — The forums are located at http://forums.asp.net.

Summary
In this chapter, you have been introduced some very new and important concepts. These are

❑ Programming controls through Atlas

❑ Working with server controls

❑ Using data binding

❑ Using behaviors

From these you have seen that there is a lot of functionality in the server controls. Along with that func-
tionality is the ability to extend the server control and add new functionality to the server controls.
The integration with the server controls is very important as it brings the server-side methodology of
ASP.NET and allows it to provide significant client-side functionality.

Now that you have looked at how to integrate Atlas with server controls, in the next chapter, you are
going to look at integrating Atlas with membership, profiles, and other services provided by ASP.NET.

309

Atlas Controls

14_78544X ch11.qxp 7/18/06 3:17 PM Page 309

14_78544X ch11.qxp 7/18/06 3:17 PM Page 310

12
Atlas Integration with

ASP.NET Services

Microsoft Atlas provides a mechanism to integrate with the services provided by ASP.NET. The
integration is provided for services such as:

❑ Authentication — Applications must be able to integrate with the ASP.NET authentication
services if they are to let only the correct people in and to keep the incorrect users out.

❑ Authorization — Applications must be able to control where a user is allowed to go
within an application. Authorization is the process of deciding if an application user is
allowed to access a portion, or all, of an application. It is typically based on authentication
within an application as well as the roles that a user is assigned to.

❑ Roles — Applications must be able to provide client-side role-based security. Roles are
typically used along with authorization.

❑ Profiles — Applications must be able to provide integration with the ASP.NET profile
services.

In this chapter, we are going to look at how the client-side focus of Atlas integrates with the server-
side ASP.NET services. We’ll start by doing a little bit of background on the ASP.NET services and
then moving into code and an explanation of how these services integrate with Atlas.

The Atlas examples and code are based on the March/April CTPs of Atlas. The March CTP is the
first version of Atlas that comes with a “Go-Live” license for actual usage in a production applica-
tion. The April CTP is basically a set of bug fixes to the March CTP. It is our intention to update
these files with new versions as changes are made to Atlas. The site for the files is http://
beginningajax.com.

15_78544X ch12.qxp 7/18/06 3:17 PM Page 311

Examining ASP.NET Services
Before you dive into how Atlas supports authentication, some quick background on the ASP.NET ser-
vices provided in version 2.0 of ASP.NET is in order. These services are defined and provided by the
ASP.NET 2.0 Provider Model. It is possible for a developer to extend these services.

Although it is possible to extend these services by creating custom providers, the examples in this chap-
ter will use the default providers unless otherwise noted.

Authentication
In an ASP.NET application, authentication is the process of verifying that a user is who the user states that
he or she is. Typical authentication has two parts — a mechanism to request credentials, such as a set of
text boxes for inputting a user ID and password, and a data store, such as a database, to check those cre-
dential against. The user ID and password are checked against the data store on the initial request. If the
initial request is granted, the user is typically granted a token in the form of a browser-side cookie. This
browser-side cookie shows that the user has been granted access. Subsequent checks involve examining
the validity of the cookie.

ASP.NET supports four types of authentication. These are:

❑ Windows-based authentication — Windows-based authentication is controlled by IIS. It is used
mainly for internal web applications that run over an intranet, and provides authentication
through a Windows-based server.

❑ Basic authentication — Basic authentication is similar to Windows-based authentication from
the user’s standpoint; however, it transmits its information in clear text.

❑ Forms-based authentication — Forms-based authentication is a catchall type of authentication that
is primarily used to authenticate information against various data sources when a nonstandard
data source is used. It is used in a majority of non-intranet ASP.NET applications. Forms authentica-
tion provides a mechanism to authenticate users based on custom requirements and code and to
then maintain the authentication token (browser cookie, munged URL, or something else).

❑ Passport authentication — With Passport authentication, the Microsoft Passport Service is used.
If you have used the Microsoft Hotmail service, you are using the Passport Service. With the
Passport Service, the user ID and password are stored in a central location on the Internet. This
information is managed by Microsoft. With Passport authentication, an application will pass the
user ID and password to the Passport system for testing. If successful, the Passport service will
hand a token back, similar to forms-based authentication.

Windows Authentication
Windows authentication, also referred to as integrated Windows authentication, uses the Windows oper-
ating system account to test the user ID and password (also knows as credentials) against a Windows-
based user store, such as Active Directory. If a user makes a request against a web resource that requires
Windows authentication, the user must either be logged into the domain that the server is running on, or
they must log on to the domain when they attempt to access a protected page. With Windows authenti-
cation, the credentials used to test are stored in the Microsoft Active Directory database. The validation

312

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 312

is performed using the Kerberos protocol. A major advantage to this authentication scheme is that the
password is not sent over the wire. If a user is not already authenticated to a resource, the user is pre-
sented with a browser pop-up style window for inputting a user ID/password combination.

Although this is a fairly secure scheme it has several downfalls. The main ones are:

❑ Users must be authenticated against the domain that the server is running against. This would
be a large problem for remote users that are not logged on to the network.

❑ Windows authentication is tightly associated with Windows and Internet Explorer. While recent
versions of the Mozilla Firefox web browser support Windows authentication when running on
Windows, most developers identify Windows authentication as running only on Windows with
Internet Explorer.

Basic Authentication
From the user’s standpoint, basic authentication is very similar to Windows authentication. If a user is
not authenticated to a resource (page, image, or such) that requires authentication, the user is presented
with browser pop-up style windows for inputting a user ID/password combination. Behind the scenes,
there are significant differences between the two. With basic authentication, passwords are sent over the
network using base64 encoding, are embedded within HTTP, and are not encrypted in any way. While
not being quite as secure as Windows authentication, basic authentication is supported across multiple
major web browsers and server products.

Forms Authentication
Forms authentication is similar to basic authentication. The major difference is that Forms authentication
allows a developer to define their own login pages, error pages, and resources to validate users against.
With Forms authentication, a login form is created for inputting user IDs and passwords. A button on
that form will call a routine to test for the user having the rights to access the resource. ASP.NET pro-
vides some built-in methods to test whether or not a user may get to a resource. In addition, the devel-
oper may substitute his or her own routines to validate the user.

Passport Authentication
Passport authentication uses the Microsoft Passport system. This is a centralized authentication service
provided by Microsoft. It provides a single logon and profile services for member web sites. Passport
uses Triple DES encryption. Unfortunately, the Passport authentication system has not been widely
accepted outside of the Microsoft family of web sites and is no longer available as public service or for
signup by non-Microsoft web sites.

Authorization/Roles
Once a user has been authorized to use a web resource, the next step is authorization. This allows devel-
opers to specify which resources application users are allowed to access within an application. Grouping
users together to manage which resources they may access is referred to as role-based security. This allows
for users to be grouped as necessary within an application, for example users, directors, application
administrators, and other roles.

313

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 313

Within ASP.NET, the authorization rules may be stored within the Web.Config file, database, external
files, custom objects, or other locations.

Membership
One of the “new” features of ASP.NET 2.0 is that user management capabilities are included in the box.
This new feature eliminates the need for writing all of the code necessary to manage users and passwords.

With ASP.NET 2.0, the logon controls provide the default implementation of the membership service.
The membership service provides two methods that are of significance. These are:

❑ login— The login method will validate the user against a data store and return the appropri-
ate Forms authentication cookie.

❑ validateUser— The validateUser validates the users against a data store; however, it does
not return a forms authentication cookie.

Profiles
The profile service is a “new” feature of ASP.NET 2.0. The profile service provider supports the storage
and retrieval of user-specific data within an application. Profile information is stored within the
Machine.Config or the Web.Config. Once the application’s profiles have been defined, the profile
information is available through IntelliSense in Visual Studio .NET 2005.

Web Part Personalization
Web Parts are a new feature of ASP.NET 2.0 that moves web applications one step closer to acting like desk-
top applications. Web Parts allow an application to be customized by users at runtime. This customization
may include the layout of elements on the page as well as the selection of elements that actually appear on
a page. The personalization service provides support for persisting Web Part configurations and support
for storing the layout and location of Web Parts between sessions for individual users.

Using Atlas to Integrate
with ASP.NET Services

Now that you have looked at the basics of the services provided by ASP.NET, you can look at how these
services are provided by Atlas.

Authentication
Atlas provides support for Forms-based authentication. This support is provided by the
Sys.Services.AuthenticationService static class. Inside of that class, there are two methods:

❑ login— This method maps to the configured membership provider’s login method. It contains
several additional parameters. The complete calling syntax is:

314

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 314

login(username, password, OnLoginComplete, OnTimeOut, onError);

❑ validateUser— This method maps to the configured membership provider’s validateUser
method. This method is different from the previous method in one way. In this method, the only
thing that is not done is that if the username and password are accepted, a cookie is not set on
the client web browser. In addition to the username and password parameters, there are some
additional parameters. The complete calling syntax is:

validateUser(username, password, OnLoginComplete, OnTimeOut, onError);

Try It Out Using Atlas to Perform Authentication
Take a look at some source for performing authentication:

<atlas:ScriptManager runat=”server” ID=”ScriptManager1” />
<form id=”form1” runat=”server”>
<div>
<table border=”1”>

<tr>
<td>User Id:</td>
<td><input type=”text” id=”txtUserId” name=”txtUserId” /></td>

</tr>
<tr>

<td>Password:</td>
<td><input type=”password” id=”txtPassword” name=”txtPassword” /></td>

</tr>
<tr>

<td colspan=”2”>
<input type=”button” id=”btnAuth” name=”btnAuth” onclick=”AuthTest()”

value=”Auth Test” />
</td>

</tr>
</table>
</div>
<script language=”javascript”>
function AuthTest()
{

var UserId = document.forms[0].txtUserId.value;
var PassWord = document.forms[0].txtPassword.value;
var authObj = Sys.Services.AuthenticationService;
authObj.login(UserId, PassWord, OnAuthTestComplete, OnAuthTestTimeOut,

OnAuthTestError);
}
function OnAuthTestComplete(result)
{

if (null == result)
{

alert(“Auth Test Complete. Null Result”);
}
else
{

alert(“Auth Test Complete. Result: “ + result);
if(true == result)

315

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 315

{
alert(“You are now logged in.”);
document.forms[0].txtUserId.value = “”;
document.forms[0].txtPassword.value = “”;

}
else
{

alert(“You are not logged in.”);
}

}
}
function OnAuthTestTimeOut(result)
{

alert(“Auth Test TimeOut. Result: “ + result);
}
function OnAuthTestError(result)
{

if (null == result)
{

alert(“Auth Test Error. Null Result”);
}
else
{

alert(“Auth Test Error. Result: “ + result.get_message());
}

}
</script>
</form>

How It Works
Now take a walk through the code and take note of these important items:

❑ Add in the ScriptManager so that the Atlas scripts are properly set up on the client web
browser.

❑ Set up the UserId and Password input elements. It is important to remember to use the type of
password for the input element so that the “*” character is used to display input and the input
value is not cached at the client.

❑ This example creates an instance of the Sys.Services.AuthenticationService.

❑ Call the login method of the Sys.Services.AuthenticationService class. When calling the
login method, all of the options are handed to the method. These include the user ID, password,
callback method on success, callback method on timeout, and callback method on an error.

❑ The user authentication cookie is set automatically for the code.

❑ If a user is successfully authenticated, the user ID and password for that user are removed from
displaying on the web page. While not a requirement, zeroing out the form elements is a good
idea given that some browsers might have security problems.

Now that the application code has been written, there are several security-related issues (issues that
occur because of the security requirements of the various web servers) that you must deal with:

316

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 316

❑ ScriptFolder— In this code example, the ScriptFolder has been set to allow anonymous
access. The Atlas scripts must be available to anonymous users so that the authentication pro-
cess may be started from the client.

❑ ScriptServices/Microsoft/Web/Services/Standard folder — This folder is currently the
virtual folder that contains the Atlas authentication web service. For authentication to properly
call the web service, the web service must be available to the anonymous user. This may be
done by adding the following lines to the Web.Config file for the application:

<location path=”ScriptServices”>
<system.web>

<authorization>
<allow users=”*” />

</authorization>
</system.web>

</location>

❑ The noted security issues will most likely be dependent on the version of the web server that is
being used. For example when dealing with anonymous versus named user access, this applica-
tion has been developed with the Visual Studio 2005 development–oriented web server and not
with IIS 5 or IIS 6. As a result, these security requirements are designed for the application to
function properly under it. IIS 5’s or IIS 6’s security requirements and services are different and
will require a different setup. With IIS 5/6, security will need to be set through the IIS manage-
ment console because IIS, not .NET, controls the access to folders. IIS 7, which is currently under
development, will have security services that are different from what is in IIS 6. IIS 7 will have a
security modem more inline with the security model and requirements of the web server that
ships with Visual Studio 2005.

Figure 12-1 shows the result of calling the login routine.

Figure 12-1

317

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 317

Authorization/Roles
Once the problems of authenticating a user to an application has been completed, the next step is to
work with the roles that are assigned to a user. While there are no prebuilt web services that are avail-
able for a developer to use, it is still possible to use web services to provide this integration. The basic
steps are:

1. Create a web service that returns the roles that a user is assigned.

2. Call the web service as needed.

3. Process the returned results and perform any settings on the client that are necessary.

Try It Out Working with Roles
In the example code, there are two roles set up — admin and users. Assume that there are two types of users
of the application — the admin users, who have application-level administrative duties, and the users, who
are merely regular users of the application. The following web service code returns a list of roles:

[WebMethod]
public string[] GetRoles()
{

return ((RolePrincipal)HttpContext.Current.User).GetRoles();
}

This code returns an array of strings. Each element in the array consists of a string representing one of
the various roles assigned to the user that is logged in.

Although this example shows the return of all of the roles associated with a user, the other methods for a
RolePrincipal, or any other object, may easily be called also. The only requirement is that a string
array be returned.

Take a look at code on an .aspx page to call this web service:

<form id=”form1” runat=”server”>
<div>
<input type=”button” value=”Get Role Information” id=”btnGetRoles”
onclick=”GetRoleInfo()” />
</div>
</form>
<script language=”javascript” >

function GetRoleInfo()
{

var authObj = Sys.Services.AuthenticationService;
var UserId = “.....”;
var PassWord = “.....”;
authObj.validateUser(UserId, PassWord, OnValidateUser);

}
function OnValidateUser(result)
{

if(null != result)
{

if (result == true)

318

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 318

RoleService.GetRoles(OnGetRolesComplete, OnGetRolesTimeOut,
OnGetRolesException);

}
}
function OnGetRolesComplete(result)
{

var i = 0;
var bAdmin = false;
var bUser = false;
if (null != result)
{

for(i=0; i<result.length; i++)
{

bAdmin = bAdmin || (result[i] == “admin”);
bUser = bUser || (result[i] == “users”);

}
alert(“User is an Admin: “ + bAdmin);
alert(“User is a user: “ + bUser);

}
}
function OnGetRolesTimeOut(result)
{

alert(“Auth Test TimeOut. Result: “ + result);
}
function OnGetRolesException(result)
{

if (null == result)
{

alert(“Auth Test Error. Null Result”);
}
else
{

alert(“Auth Test Error. Result: “ + result.get_message());
}

}
</script>

How It Works
Take a look at what this code does step by step:

1. There is a button, that when clicked, will call the GetRoleInfo() JavaScript method. The
GetRoleInfo() JavaScript method will verify first that the user is valid. This is not strictly
required; however, it is a good practice to do so when the user is not guaranteed to be logged in.

2. Within the validate user callback, if the user is a valid user, a call is made to the
RoleService.GetRoles web service method.

3. Within the OnGetRolesComplete callback, the returned array is searched for roles. This search
is done by iterating through the result array that is returned. If any of the returned roles are
admin or users, the appropriate boolean JavaScript variable is set.

4. Finally, an alert is displayed to the user showing the user his or her status within a role.

319

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 319

Figure 12-2

Accessing Profiles via Atlas
As was mentioned earlier in this chapter, profiles are a mechanism to easily provide users with a custom
experience while they use a web application. In this example, you are going to use a fairly simple exam-
ple of a user’s name, address, city, state, and zip code.

Microsoft’s Atlas framework provides the Sys.Profile class, which is used to directly access profile
information. The class is “static/shared” — it does not require an instance for its methods and properties
to be called.

For the ASP.NET profiles in this chapter, your profile will be defined as follows in the Web.Config.

<profile>
<properties>
<add name=”Name” defaultValue =”” />
<add name=”Address” defaultValue =”” />
<add name=”City” defaultValue =”” />
<add name=”AddressState” defaultValue =”” />
<add name=”ZipCode” defaultValue =”” />
<add name=”DragNDropLocation” />
</properties>

</profile>

In this example setup, the properties fall into two groups. The Name, Address, City, AddressState,
and ZipCode fall into the area of an address for a user. The DragNDropLocation property is used by
the Drag and Drop property example later in this chapter.

Profile Property Names
Atlas provides the ability to get a list of profile names through a standard asynchronous request; how-
ever, the semantics of making the call are slightly different from that of making a standard request.

320

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 320

Try It Out Retrieving Profile Property Names
Take a look at some code for getting the names of the properties from a profile.

function GetProfile()
{

var profObj = Sys.Profile;
profObj.loaded.add(OnGetProfile);
profObj.load();

}
function OnGetProfile()
{

var propArray = Array();
propArray = Sys.Profile.properties;
if (null != propArray)
{

for(m in propArray)
alert(m);

}
}

How It Works
Consider what happens in the code:

1. An alias to the Sys.Profile class is created.

2. The callback on completion is assigned to the method OnGetProfiles.

3. The asynchronous call is made through the .load() method call.

4. When the callback is made, the code gets the .properties property. The property contains the
profile information for a user and the application.

5. The code loops through the returned properties and displays them to the user.

Figure 12-3 shows the output of getting the profile properties.

Figure 12-3 321

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 321

Loading Profile Data
Now that you have seen how to get the names of the profile properties, you need to get the actual data
within the profile for the logged-in user. To get the data, you go through a set of steps similar to those
you used in getting the profile names.

Try It Out Retrieving Profile Data
The following JavaScript code running in a web browser retrieves profile values for the properties you
retrieved in the previous section:

function GetProfileData()
{

var profObj = Sys.Profile;
profObj.loaded.add(OnGetProfileData);
profObj.load();

}
function OnGetProfileData()
{

document.getElementById(“txtName”).value = Sys.Profile.properties.Name;
document.getElementById(“txtAddress”).value = Sys.Profile.properties.Address;
document.getElementById(“txtCity”).value = Sys.Profile.properties.City;
document.getElementById(“txtAddressState”).value =

Sys.Profile.properties.AddressState;
document.getElementById(“txtZipCode”).value = Sys.Profile.properties.ZipCode;

}

How It Works
This code performs the following steps:

1. Creates an alias for the Sys.Profile class.

2. Creates the method to callback once the data is filled. This callback is called
OnGetProfileData and is created by the call to loaded.add(OnGetProfileData).

3. Performs the asynchronous load. This is done by the call to profObj.load() (a.k.a.
Sys.Profile.load()).

4. Once the callback (OnGetProfileData()) is called, the various textboxes are filled with the
profile values. This done by setting the value of the text field to the profile property value.

It appears that the profile properties are “early bound.” This might get some IntelliSense support in a
future version of Visual Studio .NET.

Figure 12-4 shows the output of the code in the previous “Try It Out” Section.

322

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 322

Figure 12-4

Save Profile Data
Now that you have looked at loading data from the ASP.NET profile service, you can look at saving the
data in code.

function SaveProfileData()
{

var profObj = Sys.Profile;
profObj.properties.Name = document.getElementById(“txtName”).value;
profObj.properties.Address = document.getElementById(“txtAddress”).value;
profObj.properties.City = document.getElementById(“txtCity”).value;
profObj.properties.AddressState =

document.getElementById(“txtAddressState”).value;
profObj.properties.ZipCode = document.getElementById(“txtZipCode”).value;
profObj.save();

}

The steps in the code are fairly simple.

1. An alias to the Sys.Profile class is created.

2. The properties of the profile are set from the data on the form.

3. The data is saved asynchronously.

This code will save the profile’s properties asynchronously. It is possible to receive notification when
data is saved. To do that you can specify an asynchronous callback and set a notification to the user with
the following code.

323

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 323

profObj.saved.add(OnSaveProfileData);
profObj.save();
..............
function OnSaveProfileData()
{

alert(“Profile Data has been saved.”);
}

Avoiding Profile Service Gotchas
You should keep in mind several important “gotchas” whenever you are using the ASP.NET profile ser-
vice in Atlas. These are:

❑ Web.Config file — The Web.Config file needs to be set up properly, and there are several set-
tings you need to pay attention to:

❑ The <configSections> tag must be configured. This may mean adding a section for
authenticationService and profileService. A set of entries should look some-
thing like this example:

<configSections>
<sectionGroup name=”microsoft.web”

type=”Microsoft.Web.Configuration.MicrosoftWebSectionGroup”>
<section name=”converters”

type=”Microsoft.Web.Configuration.ConvertersSection” requirePermission=”false”/>
<section name=”webServices”

type=”Microsoft.Web.Configuration.WebServicesSection” requirePermission=”false”/>
<section name=”authenticationService”

type=”Microsoft.Web.Configuration.AuthenticationServiceSection”
requirePermission=”false”/>

<section name=”profileService”
type=”Microsoft.Web.Configuration.ProfileServiceSection”
requirePermission=”false”/>

</sectionGroup>
</configSections>

❑ Within the <microsoft.web> tag, the enableBrowserAccess must be turned on. This
is accomplished within the <webServices> like this:

<microsoft.web>
<webServices enableBrowserAccess=”true”/>

</microsoft.web>

❑ The <profileService> tag must be configured to get and set the profile’s properties.
Either the properties may be configured with “*”, which represents all profile proper-
ties, or each property may be listed out individually, such as Name;Address. Note that
each property is separated from the others by a semicolon.

<microsoft.web>
<profileService enabled=”true” setProperties=”*” getProperties=”*” />

</microsoft.web>

❑ Properties that are part of groups may be referenced by GroupName.PropertyName in
the profileService, setProperties, and getProperties attributes.

324

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 324

❑ A special connectionString is used. This connectionString is called the
AtlasAppServices connection string. It will need to be set up as follows for Atlas to
be able to properly communicate with the ASP.NET application services. Please remem-
ber that what you see in the following is an example and will change based on your
server environment.

<connectionStrings>
<add name=”AtlasAppServices” connectionString=”Data

Source=.\SQLEXPRESS;AttachDbFilename=C:\Work Data\Ajax book\Chapter 12\Chapter 12
Sample Code\App_Data\ASPNETDB.MDF;Integrated Security=True;User Instance=True” />
</connectionStrings>

❑ Profile configuration — Profiles need to be configured properly. As shown earlier, the following
is an example for the samples presented in this chapter.

<profile>
<properties>

<add name=”Name” type=”String” />
<add name=”City” type=”String” />
<add name=”Address” type=”String” />
<add name=”ZipCode” type=”String” />
<add name=”AddressState” type=”String”/>
<add name=”DragNDropLocation” />

</properties>
</profile>

❑ Login — For the profile properties to work correctly, the user must have logged in. Although
you can use profile properties and anonymous users, these examples are designed for a user
that is logged in.

❑ Sys.Profile.set_autoSave() method — This method will control whether or not a profile’s
properties are automatically saved when the properties are modified. If a true is passed in,
which is the default value, the profile properties are automatically saved on a change. If a false
is passed in, the profile properties are not saved on a change. In this case, it is up to the devel-
oper to manage the saving of the data.

Implementing Drag and Drop via Atlas
“Drag and Drop” is the generic term for the action of selecting an element with a mouse and moving it
on screen. Although Drag and Drop is not a feature of the ASP.NET services, it integrates very smoothly
with the Atlas framework’s support for the ASP.NET profile services.

Try It Out Implementing Drag and Drop
The following code example shows how to implement the ability to drag text around the screen and save
the position of the text with the ASP.NET profile service.

<atlas:ScriptManager ID=”scriptManager” runat=”server”></atlas:ScriptManager>
<form id=”form1” runat=”server”>
<div>
<atlas:ProfileScriptService ID=”profile” runat=”server” AutoSave=”true” />
<div class=”dropZone”>

325

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 325

<asp:Button ID=”btnRefresh” runat=”server” Text=”Perform a postback” />
<asp:Label ID=”lblToDrag” runat=”server”>This is the text to drag around the

screen.</asp:Label>
</div>
<atlas:DragOverlayExtender ID=”atlasDNDExtender” runat=”server”>

<atlas:DragOverlayProperties TargetControlID=”lblToDrag”
ProfileProperty=”DragNDropLocation” Enabled=”true” />
</atlas:DragOverlayExtender>
</div>
</form>

Take a look at what this ASP.NET code does:

1. A new control is introduced. This is the atlas:ProfileScriptService control. It integrates
with the ASP.NET Profile service so that updates are made to the profile service. The AutoSave
property is set to true. This will automatically update the profile property
DragNDropLocation as appropriate.

2. The atlas:DragOverlayExtender is introduced. This control is a helper control for imple-
menting Drag and Drop functionality. In this example, the Drag and Drop functionality is
added to the label with the ID lblToDrag, thus the “extender” term on the control name.
By clicking on the text, it is possible to drag this text around the screen.

3. By placing a server button on the page, you can show that the profile is indeed updated on a
postback and reloaded on the page load. When the page is reloaded, the text stays in its previ-
ously defined position.

4. The dropZone div tag has its height set to some relatively large number. This is to demonstrate
the Drag and Drop functionality. If this were not set, the there would be problems attempting to
drag outside of the page’s body tag.

The next thing you need to do is look at the source code that is created and sent to the web browser:

<script src=”../../ScriptLibrary/Atlas/Debug/Atlas.js”
type=”text/javascript”></script>

<div>

<div class=”dropZone”>
<input type=”submit” name=”btnRefresh” value=”Perform a postback”

id=”btnRefresh” />
This is the text to drag around the screen.

</div>
</div>

<div>
<input type=”hidden” name=”__EVENTVALIDATION” id=”__EVENTVALIDATION”
value=”/wEWAgLoiZW4DwLAn+vmDOPGFKUwps8DZtEoBXsJWcSnsQOm” />
</div>
<script type=”text/xml-script”>
<page xmlns:script=”http://schemas.microsoft.com/xml-script/2005”>
<references>
<add src=”../../ScriptLibrary/Atlas/Debug/AtlasUIDragDrop.js” />

</references>

326

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 326

<components>
<profile id=”profile” autoSave=”true” />
<control id=”lblToDrag”>
<behaviors>
<floatingBehavior handle=”lblToDrag”>
<bindings>
<binding property=”location” dataContext=”profile”

dataPath=”DragNDropLocation” direction=”InOut” />
</bindings>

</floatingBehavior>
</behaviors>

</control>
</components>

</page></script>
<script type=”text/javascript”>
</script>

Although most of the data presented in the “source” view is fairly standard, there are several items of note.

❑ The AtlasUIDragDrop.js file has been added as a reference in spite of the developer’s not
having explicitly added it.

❑ The profile service is added in the components section.

❑ Within the lblToDrag control, a set of behaviors has been added. This includes a
floatingBehavior.

❑ Data binding is occurring between the label with text and the profile service. This is defined
within the floatingBehavior tag.

Figure 12-5 shows this Drag and Drop example as it would be displayed on screen.

Figure 12-5

327

Atlas Integration with ASP.NET Services

15_78544X ch12.qxp 7/18/06 3:17 PM Page 327

Summary
You have covered a lot of complicated material in this chapter. Integration with the ASP.NET services
can be very tricky, but the Microsoft Atlas framework has done a good job of abstracting out many of the
complications and making this fairly simple. As a result, you have seen how to:

❑ Integrate with the membership services for its support of authentication and authorization

❑ Integrate with the role services for its support for authorization

❑ Integrate with the profile services

❑ Tie these together with a Drag and Drop example

Now that you have explored the integration with the services provided by ASP.NET, the next chapter
turns to look at support debugging an Ajax-oriented application.

328

Chapter 12

15_78544X ch12.qxp 7/18/06 3:17 PM Page 328

13
Debugging

Debugging is the art of identifying and removing problematic code within your applications. Every
developer has been required to perform some degree of debugging within their applications at
some point in time.

ASP.NET is predominately a server-side development technology, and support for debugging of
applications within ASP.NET is quite extensive. Ajax applications introduce some new aspects that
make the debugging of applications more involved. The extensive use of JavaScript and the fact
that custom data may be transferred through the use of asynchronous postbacks mean that new
challenges are introduced when debugging Ajax-type applications with ASP.NET.

This chapter is going to examine the various aspects of debugging Ajax applications within
ASP.NET and will cover the following topics:

❑ Server-side ASP.NET debugging

❑ Various methods of JavaScript debugging (in conjunction with Document Object Model
(DOM) level debugging)

❑ Debugging and examination of data sent via asynchronous postbacks

As you will see, this chapter covers the full range of areas involving Ajax application development —
from the client side, with examination of DOM, HTML, and JavaScript, to the server side, with
ASP.NET and the associated server-side language. In addition, we will examine the in between, the
data that is sent across the network through the use of asynchronous postbacks from the client to
the server, and back again.

Server-Side Debugging
ASP.NET is a server-based development environment, and the ASP.NET runtime engine parses
and compiles virtually all web pages and code into .NET assemblies.

16_78544X ch13.qxp 7/18/06 3:18 PM Page 329

When an ASP.NET web page is requested (for example, www.SomeSite.com/SomePage.aspx), the
ASP.NET runtime engine parses the web page and also the code that is associated with the page. This
code is usually in the form of a code file present in the App_Code directory of a web site, or the code
can be embedded within the web page (ASPX) itself. The web page and code are compiled into a .NET
assembly and loaded into the assembly cache for execution.

A .NET assembly is a very rich unit of deployment, in that it can contain an extensive amount of infor-
mation that allows it to be self-describing. This means that the ASP.NET runtime can interrogate the
assembly and obtain a large amount of information about the assembly, such as security requirements
and other operating parameters. In addition, special debugging information can be included when the
assembly is compiled. As a result of this, the debugging experience on the server for ASP.NET applica-
tions can be very rich and interactive.

First, let’s look at how debugging support and information can be enabled so that a developer can utilize
the debugging features available on the server.

Enabling Debugging Support
Debugging support needs to be enabled specifically before debugging can be used. For ASP.NET web
applications, this means including the following <compilation> setting within the Web.Config web
application configuration file:

<configuration>
<system.web>
<compilation debug=”true”>
</compilation>

</system.web>
</configuration>

If you try to run a web application using Visual Studio .NET 2005 in debug mode, and the <compilation
debug=”true” /> configuration entry has not been set, you will be prompted to enable debugging sup-
port (see Figure 13-1).

Figure 13-1

For other project types such as class libraries, Debug must be selected as the active configuration within
Visual Studio .NET 2005, as shown in Figure 13-2.

330

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 330

Figure 13-2

In either case, when the application files are compiled, special debugging information and symbols are
produced that enable the Visual Studio .NET debugger to track and accurately show what lines are
being executed. You can see this by looking at the output directory of the respective application you
are compiling. If the debug build has been selected, or debugging is enabled via the Web.Config setting
mentioned previously, there will be debug symbol files present, which have a .pdb file extension.

For example, if your project produces a MyApp.exe assembly, then a corresponding MyApp.pdb file will
be produced.

Setting Breakpoints
Now that debugging has been enabled, application execution can be tracked on the server. The easiest
way to do this is to set a breakpoint.

A breakpoint is a marked line of code that tells the debugger to pause execution at the line indicated by
the breakpoint when program execution reaches that line. A breakpoint is indicated by a red dot to the
left of the line, with the entire line itself also highlighted in red. Figure 13-3 illustrates what a breakpoint
looks like (albeit in black and white rather than color).

Figure 13-3

So as you can see, the figure shows that a breakpoint has been set on the line that executes the
PerformWork() method.

When the application is run, execution is paused at the breakpoint. When this occurs, the application is
literally suspended, and this allows the developer to examine various aspects of the programs execution
such as values of variables. The developer can choose to continue execution step by step and examine
the changing values of variables as the program executes each step. This can be accomplished by press-
ing the F10 function key or by selecting the Debug menu and then selecting the Step Over menu option.
When a method is encountered during debugging, the developer may opt to continue execution past the

331

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 331

method, using the Step Over option previously mentioned, or the developer can drill into the execution
of each step within the method by either pressing the F11 function key or selecting the Debug menu
option and then selecting Step Into.

This debugging environment is very rich and allows a huge amount of flexibility when it comes to
inspecting and evaluating the state of your application. Figure 13-4 shows the debugger displaying
the value of a variable when the mouse hovers over that variable during a debugging operation.

Figure 13-4

This is one of the many ways the developer can interact with the server-side debugger within Visual
Studio .NET.

For an exhaustive explanation of debugging applications, visit http://msdn2.microsoft.com/
en-us/library/awtaffxb.aspx.

This method of debugging should be reasonably familiar to most Visual Studio developers. One of the
reasons it is so rich and powerful is that it exists within the domain and execution control of ASP.NET.
Visual Studio .NET has intimate knowledge of .NET runtime execution and can, therefore, offer a richer
environment.

JavaScript and Client-Side Debugging
JavaScript is a scripting language that executes within the context of the browser. Visual Studio .NET
provides ways of creating and developing with this language but offers only very limited support for
interactive debugging in the same way that was demonstrated previously with server-side debugging.
This is because the browser is outside the Visual Studio .NET domain. Since the execution of asyn-
chronous requests and most Ajax-related functionality relies on JavaScript, it is important to know how
to effectively debug the client-side portion of your web applications.

Tools and Techniques of the Trade
Given that execution and processing of JavaScript is outside the direct control of Visual Studio .NET,
how then does a developer debug a web application that utilizes rich Ajax functionality and, therefore,
makes extensive use of JavaScript?

The answer lies in having an arsenal of tools, techniques, and utilities to suit whatever task is required.

332

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 332

Using Alert Statements
Starting with the most basic and simplistic of options, a developer can intersperse their client-side code
with Alert statements that either display a value of a variable or simply indicate where in the client
script code that execution has reached.

Try It Out Simple Alert Dialog Boxes
This example simply displays alert boxes at various stages of the code’s execution, showing the values of
any arguments passed in to the respective functions:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”AlertExample.aspx.cs”
Inherits=”Alert_AlertExample” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>

<script type=”text/javascript”>
function SomeMethod(arg1)
{

alert(“In SomeMethod: arg = [“ + arg1 + “]”);
var counter = 0;
counter++;
// ... do some processing
counter = counter + 2;
SomeMethod2(counter);
return true;

}

function SomeMethod2(cntr)
{

alert(“In SomeMethod2: cntr = [“ + cntr + “]”);
}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<input id=”btnMain” name=”btnMain” type=”button” value=”Test Alert”
onclick=”SomeMethod(this.id);” />

</div>
</form>

</body>
</html>

This approach is obviously extremely simplistic and requires the developer to add extra code to various
places within the page. In a complex application, this may not be easy, or even possible.

What would be ideal is to use a rich debugging environment similar to the one provided by the server-
side environment discussed earlier.

333

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 333

Code samples from the book are available for download at http://beginningajax.com and at
www.wrox.com.

Visual Studio Script Debugging
Enabling a rich debugging environment, similar to the server-side environment, is possible. However,
this does require some interaction between the browser and Visual Studio .NET; therefore, some quick
configuration is required to enable this support that is not normally enabled by default.

Internet Explorer needs to be configured to allow debugging to take place. By default, debugging is not
enabled within Internet Explorer. To enable this feature within Internet Explorer, select Tools➪Internet
Options.

A dialog box will be presented with a number of tab options. Selecting the Advanced tab will show a
number of options (see Figure 13-5).

Figure 13-5

Ensure that both Disable Script Debugging (Internet Explorer) and Disable Script Debugging (Other) are
not selected. Strictly speaking, only Disable Script Debugging (Internet Explorer) needs to be unselected
for script debugging to work. Unselecting the Disable Script Debugging (Other) means that debugging
will be enabled for scripts hosted outside of Internet Explorer, such as Microsoft Outlook.

For a comprehensive document on configuring and troubleshooting client script debugging, have a look
at the following document: www.gotdotnet.com/team/csharp/learn/whitepapers/
How%20to%20debug%20script%20in%20Visual%20Studio%20.Net.doc.

That’s all the configuration required to enable script debugging.

334

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 334

Try It Out Client-Side Script Debugging
To test this, create a new web site project within Visual Studio .NET. Create a new web form/ASPX page,
or alternatively edit the Default.aspx page within the project. Remove the existing <html></html>
declaration and everything contained within those tags, and replace it with the following code:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Test Script Debugging</title>

<script type=”text/javascript”>
function DoSomeWork()
{

var cntrl = document.getElementById(“txtInput”);
var number = cntrl.value;
number++;

var newValue = DoSomeMoreWork(number);

alert(“New Value = “ + newValue);

}

function DoSomeMoreWork(arg)
{

// Do some calculations
arg = arg * 2 + 32;
arg = arg + 18 / 2;

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<input type=”text” id=”txtInput” value=”test” />
<input type=”button” value=”Submit value” onclick=”DoSomeWork();” />

</div>
</form>

</body>
</html>

Ensure that the newly created page is set as the Startup Page within Visual Studio by right-clicking on
the page with the mouse and selecting Set as Start Page.

Click the Play button, shown in Figure 13-6 (ensure that the active configuration is set to Debug), or
press F5 to launch the application in debug mode.

Figure 13-6

335

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 335

Clicking on the Submit Value button should yield an alert box similar to that shown in Figure 13-7.

Figure 13-7

This behavior is not what is desired, and typically you would expect something more than simply being
undefined. To fix this, you are going to debug the client-side script within this application. You will set a
breakpoint early in the script’s execution to see what is going on within the code.

1. Leave the Internet Explorer browser instance running, and click on the OK dialog box button if
it is still displayed.

2. Switch to Visual Studio .NET (while Internet Explorer is still running), and select
Debug➪Windows➪Script Explorer, as shown in Figure 13-8.

Figure 13-8

3. Once the option has been selected, a Script Explorer window will be displayed within Visual
Studio. If your window layout is at the default settings, then the Script Explorer window should
appear on the right side of the screen, as shown in Figure 13-9.

336

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 336

Figure 13-9

4. In the Script Explorer window, you will notice one ASPX page listed, which is the one currently
being executed. Double-click on that page within the Script Explorer window. This will list the page
within the editor window and will look very similar to the page at design/development time.

The big difference is that you can now set breakpoints and examine variable values as the code
is executing in almost exactly the same way you can with server-side code.

5. Within the editor window where the web page is displayed, navigate to the first line within
the DoSomeWork JavaScript function, and press F9 or click on the left-side grey sidebar to place
a breakpoint on the line. The editor window should now look similar to the one shown in
Figure 13-10.

6. Now switch back to the running instance of the browser that is executing the web page. Click
the Submit Value button. Visual Studio should automatically become the active window, and
execution of the web page will pause on the line that the breakpoint is on. The line will be high-
lighted in a similar fashion to that shown in Figure 13-11.

337

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 337

Figure 13-10

Figure 13-11

7. Press the F10 button to advance the execution to the next line. The next line will now be high-
lighted. Position the mouse pointer above the cntrl variable definition on the line that reads:

var cntrl = document.getElementById(“txtInput”);

A small dialog box is displayed, showing the cntrl variable with an option to expand the val-
ues of this variable by clicking on the + symbol (see Figure 13-12).

Clicking on the + symbol allows a developer to examine the value of that variable and to drill
down into the properties of that variable at the current position within the program’s execution.
This method of examining a variable is very similar to the debugging experience with server-
side code.

338

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 338

Figure 13-12

Right-clicking on the cntrl variable with the mouse brings up a context menu, again similar to
the menu presented to users when they are debugging server-side code. Traditional debugging
mechanisms are available such as Add watch to add the display of the cntrl variable to the
Watch window at the bottom of the display. These features are discussed in more detail later in
this chapter. Alternatively, a developer can open a Quick watch window that allows the developer
to open a dialog box that provides for easy examination of the variables contents. This window
is similar to the Watch window but provides a more direct and prevalent way of interacting
with and examining a specific variable. A modal window is presented for the user to navigate;
the sole purpose is to display the contents of the selected variable only. The functionality is oth-
erwise almost identical to the Watch window. The only real difference is the availability of a
Reevaluate button to allow a new variable to be entered into the text entry field and examined.

8. Press F10 again to advance the programs execution to the next line. Program execution should
now be paused on the line that reads:

number++;

9. Position the mouse over the number variable. The debugger should display the value of the
number variable, as shown in Figure 13-13.

Currently, the value of the number variable is as expected — that is, it is equal to the contents of
the input textbox control defined within the form.

Figure 13-13

339

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 339

10. Press the F10 key again to cause the debugger to execute the next line of execution. The debug-
ger should now be paused/positioned on the line that reads:

var newValue = DoSomeMoreWork(number);

Position the mouse over the number variable to display its current value. The display should
look like Figure 13-14.

Figure 13-14

You now can see the exact point at which the variable value is turned into something invalid.
It is apparent that the value of the number value was in fact a textual value of test. The next
point of execution attempts to perform a mathematical operation on that string value, which of
course is invalid. JavaScript is not like the traditional strongly typed server-side languages such
as VB.NET and C#. This apparently invalid operation does not yield an exception, but rather,
the value of the number variable is now flagged as undefined, which is exactly what you are
seeing output by the browser.

11. Pressing the F5 key, or clicking the Play button will allow execution to continue as normal,
which yields the result seen previously.

You have successfully debugged the script code and identified why the web application behaves in the
way it does. Debugging in this manner is a very powerful and intuitive way of examining the execution
of script-based applications. Applications can be examined with intricate detail, allowing very accurate
determination of any problems within the code’s execution.

Stepping Through Code — Stepping Over and Stepping Into
The technique discussed in the previous section works great; however, it assumes that the application
starts okay, and then that you can set breakpoints to debug into the operations required. What if you
wanted to start debugging the code immediately or examine the code as it was starting?

You can do this by starting the application using the F10 key, or by using the Debug➪Step Over menu
option. Normally, this is used to advance the debugger to the next step in the code’s execution or to step
over the current instruction. Using this step over technique to start the application will start the applica-
tion as if you had pressed F5 to start it in debug mode but will immediately pause execution on the first
instruction, rather than stopping only on a breakpoint.

340

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 340

So far, you have used F10 to advance the debugger’s execution. As mentioned in the previous para-
graph, this steps over the next line of code. If the debugger encounters a function to execute, pressing
the F10 key will call the function, but will not step through each line within that function. In order to do
that, you must use either the F11 key or the Debug➪Step Into menu option. Pressing the F11 key when
about to execute a function or call out to another method will have the effect of stepping through each
line of that method.

Try It Out “Stepping into” the Execution of the Method
To see this in action:

1. Run the application again by pressing the F5 key. Switch back to Visual Studio and ensure that
the Script Explorer window is visible as described previously. Double-click on the page within
the Script Explorer window, and place a breakpoint on the line that reads:

var newValue = DoSomeMoreWork(number);

The display should look like Figure 13-15.

Figure 13-15

341

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 341

If you find you are unable to place a breakpoint on a line, it is most likely that you have not double-clicked
on the page within the Script Explorer window, and you are simply examining the source code of the page
in the standard Visual Studio .NET display window.

2. With the breakpoint placed on the line that calls the DoSomeMoreWork() method, switch to
Internet Explorer (which is running the web page) and click on the Submit Value button.
Visual Studio .NET will switch to the foreground and execution will pause on the line with
the breakpoint.

3. Press the F10 key. Notice that execution is now paused on the next line, which reads:

alert(“New Value = “ + newValue);

The method has been executed, and you are now positioned on the next line in the code’s
sequence. In this case, you have stepped over the execution of the DoSomeMoreWork() method.
Suppose instead that you want to examine execution of the code within that function.

4. Press F5 to allow execution of the code to continue, and the alert box will be displayed as shown
previously in Figure 13-7. Click OK in the alert box and then click the Submit Value button once
more. Execution should again pause on the line with the breakpoint.

5. This time, press the F11 key. Notice that the debugger has now jumped to the first line within
the DoSomeMoreWork() method and is paused on that line. Hovering the mouse over the arg
variable shows a value of Nan (JavaScript’s method of indicating the value is Not a Number).
From here you can continue to step through the execution of the code, and the debugger will
return to the original place where the method was called and continue execution.

Other Ways of Invoking the Debugger
Previously, we have discussed placing breakpoints in code to pause the debugger at certain positions
within the code. While this is a great and easy technique to use, it does have some limitations.

When JavaScript has been generated and registered on the client, it becomes a little more difficult. The
JavaScript may be executed on startup and be sufficiently long and complex that you don’t want to step
through the entire section of code from the beginning using the technique described previously where
the application is launched by pressing the F10 key to invoke the debugger.

Try It Out Using the debugger Keyword
Another way to invoke the debugger is to make use of the debugger keyword in your script. In the fol-
lowing example, the code-beside file is registering the JavaScript for immediate execution within your
web page. The web page itself contains nothing different from a newly added web form within Visual
Studio .NET. Examine the web page and code-beside file in the following example:

Web Page/ASPX Page
<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”DebuggerKeword.aspx.cs”
Inherits=”ScriptDebuggingSample_DebuggerKeword” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

342

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 342

<head runat=”server”>
<title>Debugger Keyword Test Page</title>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

</div>
</form>

</body>
</html>

Code File/Code-Beside File
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class ScriptDebuggingSample_DebuggerKeword : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

string script = @”
var val1 = 10;
var val2 = 20;
var result1 = AddValues(val1,val2);
alert(‘Sum of values 1 & 2 = ‘ + result1);
var val3 = 30;
var result2 = AddValues(result1,val3);
alert(‘Sum of previous values and Value 3 = ‘ + result2);
“;

string addFunction = @”
function AddValues(v1, v2)
{
return v1 + v2;

}”;

Page.ClientScript.RegisterStartupScript(this.GetType(), “startupCode”,
script,true);

Page.ClientScript.RegisterClientScriptBlock(this.GetType(), “addMethod”,
addFunction,true);

}
}

This example will register all the required JavaScript to execute from the Page_Load event of the code file.
Running this code (by pressing F5 to execute in debug mode) will produce two alert boxes displaying the
sum of some values. You can alter this code to automatically invoke the debugger just prior to the first
invocation of the AddValues method.

343

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 343

To accomplish this, you will insert the debugger keyword as part of the generated script. Examine the
following code, which just shows the Page_Load method and highlights the modifications:

protected void Page_Load(object sender, EventArgs e)
{

string script = @”
var val1 = 10;
var val2 = 20;
debugger;
var result1 = AddValues(val1,val2);
alert(‘Sum of values 1 & 2 = ‘ + result1);
var val3 = 30;
var result2 = AddValues(result1,val3);
alert(‘Sum of previous values and Value 3 = ‘ + result2);
“;

string addFunction = @”
function AddValues(v1, v2)
{
return v1 + v2;

}”;

Page.ClientScript.RegisterStartupScript(this.GetType(), “startupCode”,
script,true);

Page.ClientScript.RegisterClientScriptBlock(this.GetType(), “addMethod”,
addFunction,true);

}

Now execute this application using F5 to start the application in debug mode. The application will start
normally but will then jump to the debugger screen and pause execution of the code on the line with the
debugger keyword as shown in Figure 13-16.

Other Ways of Inspecting the Value of Variables
As mentioned previously, when in debug mode, a developer can simply hover the mouse over a variable
to display its current value. However, having to do this for a range of variables, constantly as each line
of code is executed, can be cumbersome. But you do have alternatives.

Using the Watch Window
In similar fashion again to server-side debugging techniques, you can apply a “watch” to variables to
monitor their values and interactively perform computations against variables within your application.

344

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 344

Figure 13-16

Try It Out Using the Watch Window
Using the previous code example, press F5 to launch the application, which should automatically pause
at the debugger keyword. When Visual Studio .NET displays the debugger window, using the mouse,
right-click on the result1 variable. This will bring up a context menu. Select the Add Watch option,
which will add the result1 variable to the Watch window. The Watch window is typically located on
the bottom left of the Visual Studio .NET environment, as shown in Figure 13-17.

345

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 345

Figure 13-17

Notice that the result1 variable is displaying a value of undefined in the Watch window. Pressing F10
twice to advance the programs execution past the call to the AddValues method causes the value of the
result1 variable to be updated within the Watch window according to the operation within the code’s
execution.

Multiple items can be added to the Watch window to enable the developer to track the values of vari-
ables as execution progresses.

Using the Command Window
Alternatively, a developer may wish to evaluate conditions that are not part of the program itself as the
code is executing. To accomplish this, a developer can make use of the Command window. This allows
interactive evaluation of ad hoc statements within the context of the applications execution at the point
in time that it has been paused.

Try It Out Using the Command Window
To demonstrate this, again run the previous application by pressing the F5 key to start the application in
debug mode. The application will present the debug screen within Visual Studio with execution paused
on the debugger statement.

Ensure that the Command window is visible by clicking on the Command Window tab (typically located
on the bottom right of the Visual Studio .NET environment) or by selecting the View➪Other Windows➪

Command Window (or by pressing Ctrl+Alt+A).

346

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 346

The Command window will have a > symbol as the prompt. In the Command window, type the following
command and press Enter:

? val1 + val2

A value of 30 should be displayed. Now try typing the following command:

? AddValues(81,42)

A value of 123 should be displayed. The Command window should now look like Figure 13-18.

Figure 13-18

Here, you are interactively evaluating variables and executing methods within the application. The
question mark (?) symbol is shorthand for display or print. This technique is an extremely powerful way
of evaluating different conditions within your script applications at various points within the scripts
execution.

Script Debugging So Far
This method of debugging script code is extremely powerful and is very similar to the way we would
debug server-side code. This familiarity means that developers do not need to learn different tools or
become accustomed to specialized techniques when debugging script-based code.

Armed with this information, you can now effectively debug script on the client side, as well as debug
application execution on the server side (using traditional debugging methods). However, there are still
areas that you need to explore and examine thoroughly to enable you to properly debug Ajax-style
applications.

Browser Debugging Tools
Quite often, Ajax applications will want to update portions of the browsers display as a result of some
background request, typically executed as an asynchronous postback. The browser’s DOM is what a
developer will typically manipulate to fashion the screen according to the information that has been

347

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 347

collected. Although a developer makes a best effort to understand all the implications of making changes
to styles, elements, and display items within the browser, sometimes things don’t always go as planned.

Both Internet Explorer and Firefox browsers provide tools that allow the developer to interactively exam-
ine and manipulate the structural contents of a web page. This allows developers to see any changes that
a script may perform interactively as they are applied, and also to apply changes to a web page as it is
being displayed.

Internet Explorer
Internet Explorer does not natively provide any tools or support for interactively examining the contents
and structure of a web page. However, an external download is provided by Microsoft called the Internet
Explorer Developer Toolbar. As we write this book, this tool is currently in beta status, meaning it is not
an officially released product yet and may change before it is finally released. It is however very func-
tional and extremely useful.

This tool can be downloaded from the following location: www.microsoft.com/downloads/
details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en.
Alternatively, you can also use http://tinyurl.com/boscb.

Once the tool is installed, it is not activated by default. To activate the toolbar, open Internet Explorer,
and select View➪Explorer Bar➪IE DOM Explorer. The toolbar will open at the bottom of the screen,
as shown in Figure 13-19.

From this point on, a web page can be loaded, and the structure of the web page will be displayed
within the toolbar window (shown in the previous diagram in the lower left of the screen). Web pages
can be loaded from any location on the Internet, or they can be part of an application that a developer
may be working on.

Figure 13-19

348

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 348

Although this section of the chapter is not intended to be a tutorial on usage of the toolbar, some of the
toolbar’s functionality is worth noting here.

The entire structure of a web page can be navigated using the structural elements of the page, using the
tree view display of the toolbar. Each textual, structural, or style-based element can be selected, and its
properties displayed for examination or manipulation.

Complex web pages can be difficult to navigate, and so can locating a particular element that a devel-
oper may be concerned with. Selecting the Find➪Select Element by Click menu option of the toolbar
allows an element to be clicked on in the web page concerned, and the element itself will be highlighted
within the toolbar’s tree view display. The element’s properties and styles can then be manipulated and
examined as required.

One simple but useful feature for developers is the ability to resize the browser window according to
standard screen resolutions. Quite often, a developer will be required to ensure a web site/page is dis-
played suitably within a minimum of screen resolution (for example, a site must display correctly at a
minimum screen resolution of 800 × 600). Selecting the Resize menu option from the IE Developer
Toolbar menu presents a list of resolutions that may be selected, which will cause the browser to redis-
play in the selected resolution. This is an easy way for a developer to test a site at varying screen resolu-
tions without having to continually change the display resolution of their system.

Firefox
When Firefox is installed, an option is provided to install a set of developer tools. Selecting the option
to install these tools provides the user with a menu option Tools➪DOM Inspector. Selecting this menu
option will display a window that has a similar look and feel to the IE Developer Toolbar discussed pre-
viously (see Figure 13-20).

Figure 13-20

349

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 349

The DOM Inspector tool available within the Firefox browser is very similar to the IE Developer Toolbar
in that it allows a developer to view the structural and style elements of a web page and any associated
attributes or contextual items. The tool also allows some degree of manipulation to certain elements
within the page.

Firefox also provides a convenient JavaScript console that displays any errors and warnings encountered
while processing the JavaScript code within a web page, in addition to also displaying any Cascading
Style Sheet (CSS) errors that are encountered.

Selecting the Tools➪JavaScript Console menu option displays a window showing any JavaScript or CSS
errors encountered thus far in the pages execution and will look like Figure 13-21.

Figure 13-21

Firefox JavaScript Debugger — Venkman
Venkman is a tool that integrates with Firefox to provide JavaScript debugging facilities. It is not a part of
the official distribution of Firefox but is a very popular and powerful means of allowing developers to
debug JavaScript code within Firefox. Actually, Venkman itself is not specific to Firefox, but works in all
browsers based on the Mozilla engine version 0.9.5 and later. Firefox itself is based on the Mozilla browser
engine. In addition, Venkman also works on Netscape version 6.2 and later.

Venkman can be downloaded from the Venkman project page at www.mozilla.org/projects/
venkman/index.html. This site also contains additional information such as a FAQ and detailed infor-
mation about the installation and usage of Venkman.

To install Venkman, you should browse to the project home page (listed in the preceding paragraph),
using the Firefox browser, and click on the appropriate link. This will launch an install process and

350

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 350

install the Venkman tool within Firefox. Once installed, the tool can be accessed from the
Tools➪JavaScript Debugger menu option.

Note that the direct link to the download/install location is https://addons.mozilla.org/
extensions/moreinfo.php?id=216.

This section does not attempt to provide a detailed examination of the features and functionality of the
Venkman debugger, because this is beyond the scope of this chapter. Instead, this is a brief overview
provided to give you an idea of what is possible with Venkman. Detailed information and tutorials are
available from the link shown in the preceding Note.

Venkman allows a complete JavaScript debugging experience within the Firefox browser. The interface of
Venkman is not as intuitive as the server-side debugging experience within Visual Studio .NET; however,
it does provide a very usable and powerful way of debugging JavaScript code by supporting standard
and advanced debugging features such as:

❑ Setting of breakpoints within JavaScript code

❑ Triggering of breakpoints based on conditions within your code such as a value of a variable or
when an exception is thrown

❑ Adding watch conditions to monitor the value of variables within currently executing script code

❑ Supporting of multiple views within the Venkman interface, providing a fully customizable
interface

❑ Profiling of JavaScript code to measure the execution speed of your JavaScript application

These features provide a similar client-side debugging experience to that provided by Visual Studio
.NET on the server side; however, even advanced features such as profiling are not natively supported
by Visual Studio .NET, especially on the client side. Venkman is a free download that not only provides
exceptional value, but also provides a powerful array of features that are a valuable asset to any devel-
oper doing JavaScript development, most notably developers writing Ajax applications.

The Man in the Middle
The IE Developer Toolbar for Internet Explorer, the DOM Inspector within Firefox, and the Venkman
debugger are valuable tools to assist a web developer in debugging, and identifying any issues within a
web page or application. These combined with both server- and client-side debugging features previ-
ously discussed, provide an excellent set of tools and techniques to identify, debug, and resolve issues
within web applications, particularly those that contains a large degree of JavaScript.

However, at this point, one area remains largely unaddressed — that of the actual HTTP traffic that is
generated by the web application itself. This is particularly important for Ajax-style applications that can
initiate many asynchronous postback operations that are not immediately apparent by just examining
the user interface and any associated interaction. Without being able to examine the actual data that
form the HTTP communication, a developer can identify issues based only on the effects of the data
that is sent and received, and, therefore, make assumptions given those effects.

To make this point clear, Figure 13-22 illustrates what aspect of the web application is being referred to.

351

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 351

Figure 13-22

Clearly, the actual traffic being sent and received by a web application is crucial to its correct operation,
and you would assume that if the code were correct at both the client and server levels, then examining
the actual content of the HTTP traffic would not be necessary.

In some cases, this may be correct; however, it is not always apparent when some code is incorrect.
Furthermore, assumptions can be made regarding the operation of the application and associated code
that result in unexpected HTTP contents that can adversely affect the operation of the application and
yield incorrect and/or unexpected results.

This becomes very apparent when dealing with HTTP headers. The HTTP headers that are sent with a
request need to be very specific to the operation being performed. For most operations, these headers are
implicitly sent along with any requests you make from code, or in some cases, easily mistaken. Examine
the following example code:

<script type=”text/javascript”>
function MakeXMLHTTPCall(){

var xmlHttpObj;

xmlHttpObj = CreateXmlHttpRequestObject();

if (xmlHttpObj) {

The HTTP requests and
responses generated by an

application flow between the client
(browser) and the web server.

How do we know what gets sent
and received?

Workstation
Web Browser

Web Server

HTTP Traffic/Data

Request

Response

Request

Response

352

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 352

xmlHttpObj.open(“POST”,”http://” + location.host + “/Chap14/DataFile.xml”,
true);

xmlHttpObj.onreadystatechange = function() {
if (xmlHttpObj.readyState == READYSTATE_COMPLETE)
{

alert(“Request/Response Complete”);
}

}

xmlHttpObj.send(null);
}

}
</script>

When this code is executed, an alert box is presented stating that the request/response is complete, and
the code seems to have been successful. If you were to examine the traffic generated by this request, you
would see that this request actually generated a 405 error code and was unsuccessful. The problem is
that the code specifies a POST operation in the following line:

xmlHttpObj.open(“POST”,”http://” + location.host + “/Chap14/DataFile.xml”, true);

A GET operation should be used here instead, as shown in the following line:

xmlHttpObj.open(“GET”,”http://” + location.host + “/Chap14/DataFile.xml”, true);

Without your being able to examine the network traffic and associated error codes, it would not be easily
apparent what error was occurring and the fact that the POST verb was the cause of the problem. What is
required is a tool that enables a developer to examine and monitor the traffic negotiated between the
client and the server — the data that goes over the wire. A tool for just this purpose is the subject of the
next section.

In some cases, it may also be necessary to specifically construct the data that is sent to a server, and ulti-
mately, the only way to truly verify that the server is receiving what you think it’s being sent is to actually
examine what is being sent.

There are many tools and network monitors available that will allow you to examine network traffic in
various forms. However, the actual function of sending data over the network (whether that network be
the Internet or a local intranet) relies on many layers of networking components and protocols acting
together. Web developers are typically interested only in the traffic pertinent to their web application.
One such tool that effectively provides this functionality is Fiddler.

Fiddler
Fiddler is a freely available tool that installs as a component that can be activated from within Microsoft
Internet Explorer and allows the HTTP traffic between a browser and a server to be easily viewed, exam-
ined, and manipulated, or fiddled with (hence, the name of Fiddler).

The Fiddler home page, where a copy can be downloaded, is located at www.fiddlertool.com/fiddler.

353

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 353

A full set of documentation, instructions, and tutorials exists on Fiddler site, and this is not intended to
be a detailed instructional text on how to use Fiddler. However, it is worth discussing how this tool can
be used to assist the debugging process within a web application, specifically using Ajax techniques.

Once Fiddler has been downloaded and installed, it can be accessed by selecting the Tools➪Fiddler menu
option. In addition, it appears as a new icon within the Internet Explorer toolbar (see Figure 13-23).

Figure 13-23

Try It Out Using Fiddler
To see Fiddler in action, create a new web site project within Visual Studio .NET. Add a new page (or
modify the existing default.aspx page) so that the web page and associated code-beside file contain
the following code.

TestFiddler.aspx — Web Form
<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”TestFiddler.aspx.cs”
Inherits=”FiddlerExamples_TestFiddler” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Test Fiddler</title>
<script type=”text/javascript”>
function OnCallComplete(arg,ctx)
{

var dataReturned = arg.split(“;”);
var cnt = 0;
for (var cnt=0; cnt < dataReturned.length;cnt++)
{

alert(“Data #” + cnt + “ returned was: “ + dataReturned[cnt]);
}

}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<button onclick=”DoCallback(null,null);”>Do Async Callback</button>
</div>
</form>

</body>
</html>

354

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 354

TestFiddler.aspx.cs — Code-Beside file
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class FiddlerExamples_TestFiddler : System.Web.UI.Page,
ICallbackEventHandler
{

protected void Page_Load(object sender, EventArgs e)
{

string js = Page.ClientScript.GetCallbackEventReference(this, “arg”,
“OnCallComplete”, “ctx”, true);

string jsFunction = “function DoCallback(arg,ctx) { “ + js + “ } “;

Page.ClientScript.RegisterClientScriptBlock(this.GetType(), “Callback”,
jsFunction,true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

System.Threading.Thread.Sleep(2000);
string[] dataToReturn = new string[] { “Data1”, “DataPart2”, “SomeData3” };
// return a hardcoded string array as a single string
return string.Join(“;”, dataToReturn);

}

public void RaiseCallbackEvent(string eventArgument)
{

// Do nothing here
}

#endregion
}

Ensure that the application runs by right-clicking on the modified page with the mouse and selecting
View in Browser. A simple web page should be displayed with a single button labeled Do Async
Callback. Clicking the button with the mouse should result in a 2-second delay and then three alert
boxes displaying the returned data values of Data1, DataPart2, and SomeData3.

This page is obviously not very complex, but it does utilize an asynchronous postback to execute a
server-side method and retrieve some data for display.

Now click on the Fiddler icon shown previously or access the Fiddler tool by selecting the Tools➪Fiddler
menu option.

355

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 355

This will display a new dialog window. Ignore that window for now, but do not close it. Select the previ-
ous browser window (that is running the web page previously listed), and click the button labeled Do
Async Callback. The same result should be seen within the browser, that is, the display of the three
result values.

Bring the Fiddler window to the foreground by clicking in the window or selecting it in the windows
taskbar.

You will notice that all requests made by the browser are now logged in the Fiddler window. These will
include the original request for the page as specified in the address bar, but also any additional requests
for images, script libraries, and other resources that the page loads as part of its functionality and display.

The Fiddler screen should now look similar Figure 13-24.

Figure 13-24

You will notice that the asynchronous request issued by the browser has been logged in the Fiddler win-
dow in the left-hand pane (indicated in the figure by the localhost:1511 entry, although the port
number may be different on different systems). Select this entry by clicking on it with the mouse. The
right-hand section of the display should now show some details about the request.

This initial display shows some simple performance timings as well as the total bytes for the request and
response itself.

Click on the Session Inspector tab in the right-hand pane. This will initially display the HTTP headers that
were sent as part of the HTTP request in the top right-hand pane. The bottom right-hand pane will auto-
matically have the Transformer section selected. Select the Headers tab in the bottom right-hand pane.
This will then display the HTTP headers that were sent from the web server as part of the response. The
Fiddler display window should now look like Figure 13-25.

356

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 356

Figure 13-25

This is useful for examining the HTTP headers of the request/response sequence to ensure that the
correct headers are being set in an easy-to-view tree-type display. This is especially important when for-
mulating your own Simple Object Access Protocol (SOAP) requests (as demonstrated in Chapter 4 of
this book).

However, one of the most useful aspects of Fiddler is the ability to examine the raw contents of the
request/response sequence. With the Fiddler display still showing the headers, click on the Raw tab
in both the top and bottom right-hand panes.

This display shows the entire request and response data, including header information, as it would be
sent by the client and received from the server. In the top-right pane, showing the request, you can see
the HTTP headers and also the associated data payload of the HTTP request. This should be something
similar to the following text:

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE=%2FwEPDwUJNzgzNDMwNTMzZGRyE%2BruV%2Bh77
fo76pKQAZFknAX7Ag%3D%3D&__CALLBACKID=__Page&__CALLBACKPARAM=null

From this, you can get an idea of how asynchronous client script callbacks notify the server of what
control generated the callback and what the argument of the call is (via the _CALLBACKID=__Page and
__CALLBACKPARAM=null arguments, respectively).

357

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 357

Looking at the request data in the bottom-right pane, again you can see the HTTP headers that form
the response and also response data that has been sent back as a result of the asynchronous request.
The response data should look similar to the following:

0|Data1;DataPart2;SomeData3

This enables you to verify that what is being displayed within the browser through the application code
is in fact what has been returned by the server.

Try It Out Using Fiddler Breakpoints to Manipulate Request/Response
Data Directly

One of the most powerful features of Fiddler is its ability to allow request and response data to be altered
by setting breakpoints at the request and response points. This is completely external to the breakpoints
associated with any client- or server-side code. Once a Fiddler breakpoint is hit, request or response data
can be examined and/or manipulated and then allowed to continue to its destination with the modified
data. This provides an excellent way of debugging and testing your applications.

An example best illustrates this. Create a new web page within Visual Studio .NET and copy the follow-
ing code into the web page (.aspx file) and the code-beside file (.cs file), respectively.

Web Form — TestFiddlerBreakpoint.aspx
<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”TestFiddlerBreakpoint.aspx.cs” Inherits=”FiddlerExamples_TestFiddler” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Test Fiddler Breakpoint</title>
<script type=”text/javascript”>
function OnCallComplete(arg,ctx)
{

alert(“The argument returned from the server was: “ + arg);
}
</script>

</head>
<body>

<form id=”form1” runat=”server”>
<div>

<button onclick=”DoCallback(‘button clicked!’,null);”>Do Async
Callback</button>

</div>
</form>

</body>
</html>

Code-Beside File — TestFiddlerBreakpoint.cs
using System;
using System.Data;
using System.Configuration;

358

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 358

using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class FiddlerExamples_TestFiddler : System.Web.UI.Page,
ICallbackEventHandler
{

private string _argReceived = null;

protected void Page_Load(object sender, EventArgs e)
{

string js = Page.ClientScript.GetCallbackEventReference(this, “arg”,
“OnCallComplete”, “ctx”, true);

string jsFunction = “function DoCallback(arg,ctx) { “ + js + “ } “;

Page.ClientScript.RegisterClientScriptBlock(this.GetType(), “Callback”,
jsFunction,true);

}

#region ICallbackEventHandler Members

public string GetCallbackResult()
{

System.Threading.Thread.Sleep(2000);
return string.Format(“The argument received by the server was ‘{0}’ at

{1}”, _argReceived, DateTime.Now.ToShortTimeString());
}

public void RaiseCallbackEvent(string eventArgument)
{

_argReceived = eventArgument;
}

#endregion
}

As performed in the previous section, using the mouse, right-click on this page in Visual Studio .NET
and select View in Browser. Verify that the application works as expected by clicking the button on the
web page. An alert box should be displayed with the text similar to that shown in Figure 13-26.

Figure 13-26

359

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 359

The server-side method simply accepts the argument that was sent by the client and returns a string
displaying that argument, in addition to the time on the server. In the previous example, the client
(browser) sent the string button clicked! as an argument.

Click on the Fiddler icon or select the Tools➪Fiddler menu option to load the Fiddler display. Select the
Rules➪Automatic Breakpoints➪Before Requests menu option, or simply press the F11 key. Now click
on the button on the web form to initiate the asynchronous call.

On the taskbar, the Fiddler task icon should highlight to indicate it requires some acknowledgment.
Switch to the Fiddler application and select the request that was initiated (in the left-hand Fiddler pane)
with the mouse. Click on the Session Inspector tab in the top right-hand pane of the Fiddler display.
The display should look similar to Figure 13-27.

Figure 13-27

Fiddler has intercepted this request, and because you have enabled breakpoints on requests, Fiddler has
stopped the request from proceeding until you allow it to proceed.

Select the TextView tab in the top right-hand pane of the Fiddler display. The text content of the HTTP
Request data should be displayed and look similar to the following text:

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE=%2FwEPDwUJNzgzNDMwNTMzZGT4go7HPnnHZvVOI
xsR9u48Hce4EA%3D%3D&__CALLBACKID=__Page&__CALLBACKPARAM=button%20clicked!

360

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 360

Replace the text button%20clicked! with the text I_am_a_hacker (note: do not use spaces). The
request data should now look like the following:

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE=%2FwEPDwUJNzgzNDMwNTMzZGT4go7HPnnHZvVOI
xsR9u48Hce4EA%3D%3D&__CALLBACKID=__Page&__CALLBACKPARAM=I_am_a_hacker

Now click on the Run to Completion button in the Fiddler display. The alert box that is displayed should
look similar to the one in Figure 13-28.

Figure 13-28

The alert box is displaying the modified text I_am_a_hacker. This is because you intercepted the request,
modified the data after the request was issued by the client but before it was actually transmitted over the
network. The raw data was modified and then allowed to proceed to the server. The server extracted the
data normally, and returned the results, which included the modified data.

Obviously, this is an extremely powerful way to test and debug your web applications because it allows
a developer to examine and modify the raw HTTP data as it is being sent over the wire.

Summary
This chapter has covered all the major areas of debugging, focusing on each isolated area of development
to provide a complete view of the debugging process and the techniques involved.

❑ First, the traditional server-side debugging methods were looked at. These are easily the most
powerful and easy to use debugging methods, and an entire book could be devoted to the sub-
ject itself. It is highly recommended that additional time be spent in this area to investigate all
the possible features and means of debugging.

❑ Second, the dark art of client-side/client script debugging was examined, and it was shown
how the powerful server-side debugging techniques could be utilized within a client script sce-
nario. This type of code has traditionally been very difficult to debug, and Visual Studio .NET
makes this task much simpler, enabling the use of familiar debugging methods and techniques.

❑ In addition, techniques to investigate and manipulate the DOM tree were provided to allow a
detailed view of how the web page is represented. The DOM is used internally within browsers
to represent a web page and its contents, and understanding this is crucial to achieving the
desired behavior within web applications.

❑ Finally, a method of investigating, testing, and modifying the data that actually travels between
the client and server was examined. The freely available Fiddler tool was used to provide a
powerful and easy to use way of viewing, manipulating, and intercepting this data in both a
structured display and also in its raw form.

361

Debugging

16_78544X ch13.qxp 7/18/06 3:18 PM Page 361

At the beginning of this chapter, we mentioned that having an arsenal of tools is the really the answer
to effective debugging. Visual Studio .NET, the IE Developer Toolbar, Firefox, and Fiddler are but a few
of these tools. Debugging is a crucial skill for any developer to possess and having this arsenal of tools
enhances that skill considerably. Debugging is a skill that needs to be built upon over time, and as a
developer, you will also build upon your debugging toolbox as time passes.

Finally, although this chapter has touched upon the various facets and areas of debugging, it is highly
recommended that each area be investigated more thoroughly by the developer. Experiment, learn, and
expand your knowledge.

To help, the following is a list of URLs relevant to the tools and information discussed in this chapter:

❑ Detailed information on debugging applications —http://msdn2.microsoft.com/
en-us/library/awtaffxb.aspx

❑ Configuring and troubleshooting client-side debugging —www.gotdotnet.com/team/
csharp/learn/whitepapers/How%20to%20debug%20script%20in%20Visual%20Studio%
20.Net.doc

❑ Internet Explorer Developer Toolbar —http://tinyurl.com/boscb

❑ Venkman Debugger download —https://addons.mozilla.org/extensions/
moreinfo.php?id=216

❑ Fiddler utility download —www.fiddlertool.com/fiddler

362

Chapter 13

16_78544X ch13.qxp 7/18/06 3:18 PM Page 362

A
XSLT Commands

This appendix provides additional XSLT commands that may be of value to readers.

XSLT Elements
The following are additional XSLT elements that are a part of the XSLT 1.0 specification.

Element Description

apply-imports This element applies a template rule from an imported style
sheet.

apply-templates This element applies a template rule to the current element or
to the current element’s child nodes.

attribute This element adds an attribute to an element.<xsl:attribute
name=”attributename” namesapce=”uri”>
<xsl:value-of select=”attributevalues” />
</xsl:attribute>

attribute-set This element adds an attribute-set to an element.
<xsl:attribute-set name=”name” use-attribute-
sets=”name-list”>
<xsl:attribute
name=”attributename”>value</xsl:attribute>

call-template This element calls a named template.
<xsl:call-template name=”templatename” />

comment The comment element creates a comment node in the result tree.
<xsl:comment>
Comment.
</xsl:comment>

Table continued on following page

17_78544X appa.qxp 7/18/06 3:18 PM Page 363

Element Description

copy This element creates a copy of the current node with namespace
nodes but without child nodes and attributes.

copy-of This element creates a copy of the current node as well as namespace
nodes, child nodes, and attributes of the current node.
<xsl:copy-of select=”expression” />

decimal-format This element provides the characters and symbols used when con-
verting numbers in strings. This element is used along with the
format-number() function. This element has a large number of
additional attributes.

element This element creates an element node in the output document.

fallback This element specifies alternate code to run if the XSL processor does
not support an XSL element.

import This element is used to import contents of one style sheet into
another.
<xsl:import href=”URI” />

include This element includes the contents of one style sheet in another.
<xsl:include href=”URI” />

key This element declares a named key that may be used in a style sheet
with a key() function.
<xsl:key name”keyname” match=”matchkey” use=
”expression” />

message This element writes a message to the output. This is typically used to
report errors back to the output stream.
<xsl:message terminate=”yes|no”>

........output content
</xsl:message>
The value of yes will terminate processing after the message is sent to
the output stream. The value of no will allow processing to continue.

namespace-alias This element replaces a namespace in the style sheet with a different
namespace in the output stream.
<xsl:namesapce-alias stylesheet prefix=”stylesheet
prefix” result-prefix=”stylesheetresult” />

number This element determines the integer position of the current node in
the source. It has many attributes.

otherwise This element specifies a default action for <xsl:choose> element. This
action takes place when none of the <xsl:when> conditions apply.

output This element defines the format of the output document.

param This element defines a local or global parameter.

364

Appendix A

17_78544X appa.qxp 7/18/06 3:18 PM Page 364

Element Description

preserve-space This element is used to define the elements that should have their
whitespace preserved.
<xsl:preserve-space elements=”item1 item2” />
This will preserve the space for all of the elements listed in the ele-
ments attribute.

processing- The element writes a processing instruction to the output stream.
instruction <xsl:processing-instruction name=”xml-stylesheet”>

href=”stylesheet.css” type=”text/css”
</xsl:processing-instruction>

strip-space This element strips the whitespace for the defined elements.

stylesheet This element defines the root element of a style sheet.

text This element writes literal text to the output.
<xsl:text disable-output-escaping=”yes|no” >
</xsl:text>
A yes means that special characters are output as is. A no means that
special characters are output as their encoded versions.

transform This element is synonymous with the stylesheet element.

variable This element is used to declare a local or global variable.
<xsl:variable name=”varName” select=”expressionValue”>
</xsl:variable>
If no value is specified for the select attribute, a value may be defined
within the <xsl:variable> element.

when This element is used to specify an action for the <xsl:choose>
element. When the <xsl:when> element returns a true, an action
is performed.

with-param This defines the value of a parameter that is passed to a template.
For the <xsl:with-param> to work, the name in the with-param
element must match the name in the <xsl:param> element.

XSLT Functions
XSLT contains a set of built-in methods. Other methods used in XSLT are available through X Path.
These methods from X Path fall into the areas of accessor, boolean, context, datetime, error/trace, node,
numeric, OName, sequence, string, and URI. This section covers both the XSLT-only methods and those
areas provided through X Path.

365

XSLT Commands

17_78544X appa.qxp 7/18/06 3:18 PM Page 365

XSLT-Only Methods
XSLT-only functions may be called only from within an XSLT processor. These methods are not callable
from the Document Object Model (DOM).

Function Name Description

current The current method returns a node set that contains the current
node as its only member.

document The document method provides a mechanism to retrieve data from
other XML resource from within the XSLT style sheet.

element-available The element-available method returns a true only if the
expanded-name is the name of an instruction.

format-number The format-number method converts the first argument to a string
using the pattern specified by the second argument.

function-available The function-available method returns true if the function is
available in the function library.

generate-id The generate-id method returns a string that identifies the node in
the node set argument that is first in the document order. The node is
identified uniquely.

key The key method returns elements that have been market with an
<xsl:key> statement.

node-set The node-set method converts a tree in a node set.

system-property The system-property method returns an object that represents the
value of the system property that has been identified by the name.

unparsed-entry-uri The unparsed-entity-uri method returns declarations of
unparsed entities in the DTD of the source document.

Accessor
The accessor family of methods provides information about the internal state of a node.

Name Description

node-name(node) The method returns the node-name of the specified node.

nilled(node) This method returns a Boolean value as to whether or not the argu-
ment node has been nilled.

data(item, ...) This method returns a sequence of atomic values.

base-uri() This method returns the value of the base-uri property of the
base-uri(node) current or specified nodes.

document-uri(node) This method returns the value of the document-uri property for the
specified node.

366

Appendix A

17_78544X appa.qxp 7/18/06 3:18 PM Page 366

Boolean
The boolean family of methods provides operations that are associated with boolean (true/false) style
operations.

Name Description

boolean(blarg) A boolean value for a string, number, or node set is returned.

not(blarg) The boolean value of the opposite of the boolean argument is
returned.

true() The boolean value of true is returned.

false() The boolean value of false is returned.

Context
The context family of methods provides operations that are associated with location in the XML.

Name Description

position() The index position of the node that is currently being processed is
returned

last() The last() method has the index position of the last node.

current-dateTime() The current date and time are returned along with the appropriate
time zone.

current-date() The current date is returned along with the appropriate time zone.

current-time() The current time is returned along with the appropriate time zone.

implicit-timezone() The implicit time zone is returned.

default-collation() The default collation is returned.

static-base-uri() The base-uri is returned.

Datetime
The datetime family of methods returns information that is date- and time-related.

Name Description

dateTime(date,time) Creates a dateTime from the specified date and time.

years-from-duration Returns an integer that represents the years
(datetimeduration) component of the specified datetimeduration.

Table continued on following page

367

XSLT Commands

17_78544X appa.qxp 7/18/06 3:18 PM Page 367

Name Description

months-from-duration Returns an integer that represents the months
(datetimeduration) component of the specified datetimeduration.

hours-from-duration Returns an integer that represents the hours
(datetimeduration) component of the specified datetimeduration.

minutes-from-duration Returns an integer that represents the minutes
(datetimeduration) component of the specified datetimeduration.

seconds-from-duration Returns an integer that represents the seconds
(datetimeduration) component of the specified datetimeduration.

year-from-dateTime(datetime) Returns an integer that represents the year compo-
nent of the specified datetime.

month-from-dateTime(datetime) Returns an integer that represents the months compo-
nent of the specified datetime.

day-from-dateTime(datetime) Returns an integer that represents the day component
of the specified datetime.

hours-from-dateTime(dateTime) Returns an integer that represents the hours compo-
nent of the specified datetime.

minutes-from-dateTime(dateTime) Returns an integer that represents the minutes com-
ponent of the specified datetime.

seconds-from-dateTime(dateTime) Returns an integer that represents the seconds com-
ponent of the specified datetime.

timezone-from-date(date) This method returns the timezone component of the
argument.

year-from-date(date) Returns an integer that represents the year compo-
nent of the specified date.

month-from-date(date) Returns an integer that represents the month compo-
nent of the specified date.

day-from-date(date) Returns an integer that represents the day component
of the specified date.

timezone-from-date(date) Returns the timezone from the date argument.

hours-from-time(time) Returns an integer that represents the hours compo-
nent of the specified time.

minutes-from-time(time) Returns an integer that represents the minutes com-
ponent of the specified time.

seconds-from-time(time) Returns an integer that represents the seconds com-
ponent of the specified time.

timezone-from-time(time) Returns the timezone from the time argument.

368

Appendix A

17_78544X appa.qxp 7/18/06 3:18 PM Page 368

Name Description

adjust-dateTime-to-timezone Returns the datetime adjusted for the timezone.
(datetime, timezone) If no timezone is specified, then the datetime is

returned with no timezone.

adjust-date-to-timezone Returns the date adjusted for the timezone. If no
(date,timezone) timezone is specified, then the date is returned with

no timezone.

adjust-time-to-timezone Returns the time adjust for the timezone. If no
(time, timezone) timezone is specified, then the time is returned with

no timezone.

Error/Trace
The error/trace family provides information regarding errors that are returned.

Name Description

error() Returns error information.
error(error)
error(error, description)
error(error, description,
error-object)

trace(value, label) This is used to debug queries.

Node
The node family of functions returns information that is primarily information about the specified node.

Name Description

name() The name() method returns the name of the current node or the
name(nodeset) first node in the node set passed to the method.

local-name() The local-name() method returns the name of the current node or
local-name(nodeset) the first node in the specified node set without the namespace prefix.

namespace-uri() The namespace-uri() method returns the namespace URI of the
namespace-uri(nodeset) current node or the first node of the specified node set that is

passed to the method.

lang(lang) The lang() method returns a boolean if the language of the cur-
rent node matches the specified language.

root() The root() returns the root of the tree to which the specified node
root(node) belongs to. If no node is specified, the current node is used. The

return value will typically be a document node.

369

XSLT Commands

17_78544X appa.qxp 7/18/06 3:18 PM Page 369

Numeric
The numeric family of functions performs operations that are numeric.

Name Description

number(arg) The number() method returns the numeric value of the argu-
ment. The argument may be a boolean, string, or node set.

abs(num) The abs() method returns the absolute value of the argument.

ceiling(num) The ceiling() method returns the smallest integer that is
greater than the number specified.

floor(num) The floor() method returns the largest integer less than the
number specified.

round(num) The round() method returns the nearest integer to the number
specified.

round-half-to-even(num) The round-half-to-even() method returns the nearest
whole number. 1⁄2 is rounded towards the nearest even number.

Sequence
The sequence family of functions operates on arrays, or sequences, of lists.

Name Description

index-of((item1, item2, This method returns the positions within the sequence of items
...), searchitem) that are within the argument listed as the searchitem.

remove((item1, item2, This method returns a new sequence of items with the item at
...), position) position removed from the list. If the position does not exist

within the list of items, the original list is returned.

empty(item1, item2, ...) This method returns true if the value of the arguments is an
empty sequence; otherwise, it returns false.

exists(item1, item2, This method returns a true if the value of the arguments is not
...) an empty sequence; else, it returns false.

distinct-values((item1, This method returns distinct values from the list of items.
item2, ...), collation)

insert-before(item1, This method returns a new sequence with the item list and the
item2, ...), position, value of the inserts argument at the position specified.
inserts)

reverse((item1, This method returns a sequence of items that is reversed from
item2, ...)) the specified list of items.

370

Appendix A

17_78544X appa.qxp 7/18/06 3:18 PM Page 370

Name Description

subsequence((item1, item2, This method returns a sequence of items starting at the posi-
...), start, length) tion specified at the starting point and for the length specified.

unordered(item1, item2, This method returns a list of items in an implementation
...)) dependent order.

String
The string family of functions performs operations on strings.

Name Description

string(argument) This method returns the string value of the argument. This
argument may be a number, boolean, or node set.

codepoints-to-string This method returns a string from a sequence of code
(int1, int2, ...) points.

string-to-codepoints This method returns a list of code points from a string.
(string)

codepoint-equal(item1, This method returns true if the value of item1 and item2 are
item2) equal based on the rules of the unicode code point collation.

compare(item1, item2) This method returns a value of -1 if item1 is less than item2, 0,
compare(item1, item2, if item1 is equal to item2, or 1 if item1 is greater than item2.
collation) This comparison is based on the rules of collation used.

concat(string1, This method returns the concatenation of the strings
string2, ...) supplied.

string-join(string1, This method returns a string created by concatenating the
string2, ...), separator) string arguments and uses the separator argument.

substring(string, start) This method returns a string based on the supplied string,
substring(string, start, which starts at the supplied starting point and is based on the
length) supplied length. If no length is supplied, a substring from the

start position to the end of the string is returned.

string-length() This method returns the length of the specified string. If there
string-length(string) is no string passed as an argument, the string value of the cur-

rent node is used.

normalize-space() This method removes the trailing and leading spaces from the
normalize-space(string) string used. All internal sequences of white space are replaced

with one space. If no string is specified, the string value of the
current node is used.

Table continued on following page

371

XSLT Commands

17_78544X appa.qxp 7/18/06 3:18 PM Page 371

Name Description

normalize-unicode() This method indicates whether or not the serialization should
convert the serialized output to Unicode.

upper-case(string) This method converts the supplied string argument to
uppercase.

lower-case(string) This method converts the supplied string argument to
lowercase.

translate(string1, This method converts string1 by replacing the values in
string2, string3) string2 with the values in string3.

escape-uri(stringurl, This method returns an escaped version of the string URI
escres) specified. The escres argument is a boolean.

contains(string1, This method returns true if string1 contains the value
string2) specified in string2.

starts-with(string1, This method returns true if string1 starts with string2.
string2) Otherwise, the method returns a false.

ends-with(string1, This method returns true if string1 ends with string2.
string2) Otherwise, the method returns a false.

substring-before(string1, This method returns the start of string1 before string2
string2) occurs in string1.

substring-after(string1, This method returns the end of string1 after string2 occurs
string2) in string1.

matches(string, pattern) This method returns true if the string argument matches the
specified pattern.

replace(string, pattern, This method returns a string that is made by replacing the
replacement) specified pattern with the replacement string.

tokenize(string, This method tokenizes the specified string based on the
patternstring) patternstring.

URI
The URI family of functions provides support for URI resolution.

Name Description

resolve-uri(relative, This method will return the URI given a base URI and a
base) relative URI. The two are put together and a result is returned.

372

Appendix A

17_78544X appa.qxp 7/18/06 3:18 PM Page 372

Index

18_78544x bindex.qxp 7/18/06 3:18 PM Page 373

18_78544x bindex.qxp 7/18/06 3:18 PM Page 374

In
de

x

Index

A
abort() method (XMLHttpRequest

object), 92
abs(num) function (XSLT), 370
activating Ajax.NET Pro library, 163
Active Server Pages (ASP), 3
Adaptive Path, 8
adding

classes, 274–275
namespaces, 274–275
projects to solutions, 180–181

adjust-dateTime-to-timezone

(datetime, timezone) function
(XSLT), 369

adjust-date-to-timezone(datetime,

timezone) function (XSLT), 369
adjust-time-to-timezone(datetime,

timezone) function (XSLT), 369
Ajax

advantages of, 6–7
Atlas support, 249, 251
browser support, 8
defined, 1, 6
development history, 7
DHTML/DOM support, 8
JavaScript, 8
JavaScript Object Notation (JSON), 8

problems it won’t solve, 9
processing, 6
UI (user interface), 7
user context, 7
user experience, 5
XML, 8, 122–123
XMLHttpRequest object, 8

AjaxHandlerFactory, 191
Ajax.NET Pro converters, 193–194
Ajax.NET Pro library

activating, 163
Ajax/AjaxSettingsSectionHandler

.cs, 188–191
AjaxHandlerFactory, 191
AjaxPro.AjaxMethod() attribute,

163–164, 191–192
Compiled Library, 160
downloading, 180
HTTP page handlers, 182–183
JavaScript, 192
Library Source Code, 160, 180
preparing applications to use it, 160–161,

174–175, 180–182
references, 160–161
registering page class, 163, 183–186
using in applications, 161–164
Web.Config settings, 182, 186–188

18_78544x bindex.qxp 7/18/06 3:18 PM Page 375

AjaxPro.AjaxMethod() attribute, 163–164,
191–192

alert() function (JavaScript), 13–14
alert statements, 333
Anthem.NET server-side framework

client functions, 237–239
complex controls, 234–235
custom attributes, 235–237
Hello World example, 232–233
invoke page method, 239–242
micro-content, 242–244
server exceptions, 244–246
setup, 231–232

appending nodes, 63
apply-imports element (XSLT), 363
apply-templates element (XSLT), 363
April CTP (Atlas project), 249
architectural distinctions in server-side

frameworks, 203–207
arguments (JavaScript functions), 34
Array class, 267
arrays in JavaScript, 38
ASP (Active Server Pages), 3
ASP.NET

browser compatibility, 132
callbacks

browser support, 132–133
ClientScript object, 134–135
defined, 127
DetailsView control, 132
enabling pages for callbacks, 145–146
error handling, 141–144
examples, 140–141, 150–154
GridView control, 129–131
ICallbackContainer interface,

133, 154–156
ICallbackEventHandler interface,

133–137
initiating the asynchronous process from the

browser, 138
limitations on returning complex data in XML,

154

obtaining a callback reference, 135–136
receiving and processing the results,

138–150
TreeView control, 128–129

controls
DetailsView, 132
GridView, 129–131
TreeView, 128–129

debugging
breakpoints, 331–332
ease of, 329–330
Visual Studio .NET 2005, 330–332

development environment, 2–5
Easy Search component, 9
integration with Atlas

authentication, 311–313, 315–319
authorization, 311, 314, 319–321
Drag and Drop implementation, 328
membership service, 314
profiles, 311, 314, 322–328
roles, 311, 314, 319–321
Web Parts, 314

interfaces
ICallbackContainer, 133, 154–156
ICallbackEventHandler, 133–137

XML, 154
ASP.NET Forums, 283
Asynchronous Client Script Callbacks.

See callbacks
asynchronous execution, 170–172
Asynchronous JavaScript And XML. See Ajax
asynchronous operations

Atlas project, 251
XMLHttpRequest object, 82–84, 88–92

Atlas project
Ajax support, 249, 251
April CTP, 249
asynchronous operations, 251
blogs, 283
classes

adding, 274–275
Array, 267

376

AjaxPro.AjaxMethod() attribute

18_78544x bindex.qxp 7/18/06 3:18 PM Page 376

Boolean, 268
Date, 267
inheritance, 276–277
Number, 268
Object, 267
RegExp, 268
registering, 273–274
String, 268
Sys.Data.DataColumn, 269–271
Sys.Data.DataRow, 272
Sys.Data.DataTable, 270–272
Sys.Net.WebRequest, 268–269
Web.Enum, 280

client-side components, 250
client-side scripts, 283
control extenders
AutoComplete, 294–297
Drag and Drop, 328
functionality, 294

controls
button control, 285–286
custom validators, 306–307
customValidator control, 303
functionality, 285
listView control, 287
rangeValidator control, 303, 305
regexValidator control, 303, 305–306
requiredFieldValidator control,

303–305
ScriptManager control, 252–253
server controls, 288–292
Sys.UI.Data namespace, 287
timer control, 292–294
typeValidator control, 303, 305
UpdatePanel control, 288–292
validationErrorLabel control, 303
validationGroup control, 308–310

data binding
declarative, 297–299
defined, 297
directions, 302
programmatic, 299–302

Sys.BindingDirection enumeration,
302

transformations, 302
validation of data input, 303–310

datatypes, 257–262
debugging, 281–283
documentation, 273
enumerations, 280–281, 302
integration with ASP.NET services

authentication, 311–313, 315–319
authorization, 311, 314, 319–321
Drag and Drop implementation, 328
membership service, 314
profiles, 311, 314, 322–328
roles, 311, 314, 319–321
Web Parts, 314

interfaces, 277–280
JavaScript extensions, 267–268
JavaScript files, 250–251
March CTP, 249
Microsoft.Web.Atlas.dll server-side

assembly, 250
namespaces

adding, 274–275
registering, 273
Sys.Data, 269
Sys.Net, 268

passing parameters, 257–258
resources, 283
server-side support, 250
synchronous operations, 251–252
UTC encoding for dates and time, 264
web services

caching, 263–265
communicating with, 253–257
exposing from a web form, 265–266

WebResource.axd HTTP handler, 250
attacks on security, 18
attribute element (XSLT), 363
attributes
AjaxPro.AjaxMethod(), 163–164,

191–192
display, 24

377

attributes

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 377

attributes (continued)
id, 21
language, 32
Serializable(), 169–170, 194
size, 21
src, 20–21, 32
type, 32
XML, 105

attribute-set element (XSLT), 363
authentication, 311–313, 315–319
authorization, 311, 314, 319–321
AutoComplete extender control, 294–297

B
base-uri() function (XSLT), 366
basic authentication, 312–313
Bauwer, Wilco (intern and blogger on Atlas

project team), 283
Beginning XML, Third Edition (Wiley), 103
binding data

declarative, 297–299
defined, 297
directions, 302
programmatic, 299–302
Sys.BindingDirection enumeration, 302
transformations, 302
validation of data input, 303–310

blogs about Microsoft Atlas project, 283
Boolean class, 268
Boolean datatype, 168
boolean(blarg) function (XSLT), 367
break statement (JavaScript), 42–43
breaking loops, 42–43
breakpoints, 331–332, 336–337
Browser object
SupportsCallback property, 132–133
SupportsXmlHttp property, 132–133

Browser Object Model, 51–53

browsers
Ajax support, 8
ASP.NET, 132
callback support, 132–133
checking type, 79–80
debugging tools, 347–351
Document Object Model (DOM), 30–31
JavaScript support, 30–31, 33
object model standardization, 53
XMLHttpRequest object support, 78–80

BuildHtmlTable() function (JavaScript), 169
BuildMultiplicationTable() function

(JavaScript), 169
button control, 285–286

C
caching web services, 263–264
callbacks

browser support, 132–133
ClientScript object, 134–135
defined, 127, 170–172
DetailsView control, 132
enabling pages for callbacks, 145–146
error handling, 141–144
examples, 140–141, 150–154
GridView control, 129–131
ICallbackContainer interface,

133, 154–156
ICallbackEventHandler interface,

133–137
initiating the asynchronous process from the

browser, 138
limitations on returning complex data in XML,

154
obtaining a callback reference, 135–136
receiving and processing the results

complex data, 144–150
simple data, 138–144

TreeView control, 128

378

attributes (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 378

calling functions in JavaScript, 33
call-template element (XSLT), 363
camel case naming convention, 70
Cascading Style Sheets (CSS)

DHTML (Dynamic HTML), 11
DOM (Document Object Model), 70–74

case keyword (JavaScript), 41
case-sensitivity

JavaScript, 13, 35
XHTML, 35

ceiling(num) function (XSLT), 370
ChangeImage() method, 162
ChangeMe() function (JavaScript), 20–21,

165–166, 170–171
character references in XML, 108
checking browser type, 79–80
choose element (XSLT), 115–116
classes

adding, 274–275
Array, 267
Boolean, 268
custom classes, 169–170
custom converter classes, 194
Date, 267
inheritance, 276–277
Number, 268
Object, 267
proxy classes

defined, 166
generating, 175–177, 191–192

RegExp, 268
registering, 273–274
String, 268
Sys.Bindings(), 302
Sys.Data.DataColumn, 269–271
Sys.Data.DataRow, 272
Sys.Data.DataTable, 270–272
Sys.Net.WebRequest, 268–269
Web.Enum, 280

client functions (Anthem.NET server-side
framework), 237–239

ClientScript object (ASP.NET), 134–135
client-server development, 1
client-side frameworks

defined, 195–196
HTMLHttpRequest, 199–201
MochiKit, 201–203
Sarissa, 196–199

client-side JavaScript debugging
Alert statements, 333
breakpoints, 336–337
Command window, 346–347
debugger keyword, 342–344
difficulties of, 332
stepping through code, 340–342
Visual Studio .NET, 334–347
Watch window, 344–346

client-side scripts in Atlas, 283
cloning nodes, 63–64
code

Ajax.NET Pro library, 160, 180
JavaScript, 35–36

code blocks in JavaScript, 12, 34
code samples

downloading, 13, 29, 77, 103
port numbers, 78

codepoint-equal(item1, item2)

function (XSLT), 371
codepoints-to-string(int1,

int2, ...) function (XSLT), 371
COM (Component Object Model), 3
ComfortASP.NET server-side framework

complex controls, 211–213
downloading, 208
Hello World example, 210–211
Manager control, 213–216
PanelUpdater control, 216–219
setup, 208–209

379

ComfortASP.NET server-side framework

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 379

Command window, 346–347
comment element (XSLT), 363
compare(item1, item2) function (XSLT),

371
compare(item1,item2, collation)

function (XSLT), 371
Compiled Library (Ajax.NET Pro library), 160
compiled programs, 11–12
complex controls

Anthem.NET server-side framework, 234–235
ComfortASP.NET server-side framework,

211–213
Component Object Model (COM), 3
composite types in JavaScript, 37–38
concat(string1, string2, ...)

function (XSLT), 371
confirm() function (JavaScript), 17–18
constructor property (JavaScript objects), 44
constructors (JavaScript), 47–48
contains(string1, string2) function

(XSLT), 372
context menus, 26–27
context property (response object),

164–165, 171–172
continue statement (JavaScript), 43
continuous loops, 43
control extenders (Atlas)
AutoComplete, 294–297
Drag and Drop, 328
functionality, 294

controls (ASP.NET)
DetailsView, 132
GridView, 129–131
TreeView, 128–129

controls (Atlas)
button control, 285–286
custom validators, 306–307
customValidator control, 303
functionality, 285
listView control, 287
rangeValidator control, 303, 305
regexValidator control, 303, 305–306

requiredFieldValidator control,
303–305

ScriptManager control, 252–253
server controls, 288–292
Sys.UI.Data namespace, 287
timer control, 292–294
typeValidator control, 303, 305
UpdatePanel control, 288–292
validationErrorLabel control, 303
validationGroup control, 308–310

controls (ComfortASP.NET server-side
framework)

complex, 211–213
Manager, 213–216
PanelUpdater control, 216–219

converting objects between .NET and
JavaScript Object Notation (JSON),
193–194

copy element (XSLT), 364
copying nodes, 63
copy-of element (XSLT), 364
CreateCustomObject() function

(JavaScript), 43
CreateXmlHttpRequestObject()

function (JavaScript), 80
creating nodes, 62
Cross Site Scripting (XSS), 18
CSS (Cascading Style Sheets)

DHTML (Dynamic HTML), 11
DOM (Document Object Model), 70–74

current function (XSLT), 366
current-date() function (XSLT), 367
current-dateTime() function (XSLT), 367
current-time() function (XSLT), 367
custom attributes (Anthem.NET server-side

framework), 235–237
custom classes, 169–170
custom converter classes, 194
custom HTTP handlers, 94
custom objects, 169–170
custom validators, 306–307
customValidator control, 303

380

Command window

18_78544x bindex.qxp 7/18/06 3:18 PM Page 380

D
data binding

declarative, 297–299
defined, 297
directions, 302
programmatic, 299–302
Sys.BindingDirection enumeration, 302
transformations, 302
validation of data input, 303–310

data(item, ...) function (XSLT), 366
DataSet datatype, 168
datasets, 258–260
DataTable datatype, 168–169
datatypes

Ajax.NET Pro, 167–169
Atlas, 257–262
JavaScript, 36

Date class, 267
DateTime datatype, 168
dateTime(date,time) function (XSLT), 367
day-from-date(date) function (XSLT), 368
day-from-dateTime(datetime) function

(XSLT), 368
debug.dump command, 281–282
debugger keyword (JavaScript), 342–344
debugging

ASP.NET (server-side)
breakpoints, 331–332
ease of, 329–330
Visual Studio .NET 2005, 330–332

Atlas, 281–283
defined, 329
Fiddler network traffic monitor, 353–361
JavaScript (client-side)
Alert statements, 333
breakpoints, 336–337
Command window, 346–347
debugger keyword, 342–344
difficulties of, 332
stepping through code, 340–342
Visual Studio .NET, 334–347
Watch window, 344–346

network traffic, 351–353
web browser tools, 347–351

decimal-format element (XSLT), 364
declarative data binding, 297–299
default-collation() function (XSLT), 367
defensive programming, 48
delete keyword (JavaScript), 38, 43–44
DetailsView control (ASP.NET), 132
development history

Ajax, 7
JavaScript, 30
XML, 104–105
XMLHttpRequest object, 78

development trends
Ajax, 1, 5–7
ASP.NET, 2–5
client-server development, 1
intelligent client-server development, 1
terminal-style development, 1–2

DHTML (Dynamic HTML)
CSS (Cascading Style Sheets), 11
defined, 11
HTML (Hypertext Markup Language), 11
JavaScript, 11
support, 8

direct scripting
Anthem.NET server-side framework, 242–244
MagicAjax server-side framework, 226–231

directions for data binding, 302
display attribute, 24
distinct-values((item1, item2, ...),

collation) function (XSLT), 370
div element, 23–24
document function (XSLT), 366
Document Object Model (DOM). See DOM

(Document Object Model)
document tree, 57–62
Document Type Definition (DTD), 108–109
documentation for Microsoft Atlas project,

273
document.getElementById() function

(JavaScript), 21–22

381

document.getElementById() function (JavaScript)

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 381

document-uri(node) function (XSLT), 366
document.write() function (JavaScript), 14
DOM (Document Object Model)

browsers, 30–31
camel case naming convention, 70
CSS (Cascading Style Sheets), 70–74
defined, 51–53
document tree, 57–62
levels, 53–57
nodes

appending, 63
cloning, 63–64
copying, 63
creating, 62
inserting, 63
properties, 64–69
removing, 63
replacing, 63

object collection support, 69
parsing XML, 111
standardization, 31

Double datatype, 168
double quotation marks in JavaScript, 16
do/while loop (JavaScript), 41–42
downloading

Ajax.NET Pro library, 180
code samples, 13, 29, 77, 103
ComfortASP.NET server-side framework, 208
Venkman (Firefox debugging tool), 350–351

Drag and Drop extender control, 328
drop-down lists, 21–22
DTD (Document Type Definition), 108–109
Dynamic HTML (DHTML)

CSS (Cascading Style Sheets), 11
defined, 11
Hypertext Markup Language (HTML), 11
JavaScript, 11
support, 8

dynamic typing in JavaScript, 37

E
Easy Search component (ASP.NET), 9
ECMA (European Computer Manufacturers

Association), 30
ECMAScript, 30
Eich, Brendan (creator of JavaScript), 30
element element (XSLT), 364
element-available function (XSLT), 366
elements (HTML)
div, 23–24
script, 13–14, 32–33
select, 21–22
span, 23–24

elements (XML), 105
elements (XSLT)
apply-imports, 363
apply-templates, 363
attribute, 363
attribute-set, 363
call-template, 363
choose, 115–116
comment, 363
copy, 364
copy-of, 364
decimal-format, 364
element, 364
fallback, 364
for-each, 115
if, 115
import, 364
include, 364
key, 364
message, 364
namespace-alias, 364
number, 364
otherwise, 364
output, 364
param, 364
preserve-space, 365

382

document-uri(node) function (XSLT)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 382

processing-instruction, 365
sort, 115
strip-space, 365
stylesheet, 365
template, 114–115
text, 365
transform, 365
value-of, 115
variable, 365
when, 365
with-param, 365

empty(item1, item2, ...) function
(XSLT), 370

enabling pages for callbacks, 145–146
encapsulation, 46
endless loops, 15
end-with(string1, string2) function

(XSLT), 372
entity references in XML, 108
enumerations, 280–281, 302
error() function (XSLT), 369
error handling for callbacks, 141–142, 144
error property (response object), 164–165,

173–174
error(error, description, error-

object) function (XSLT), 369
error(error, description) function

(XSLT), 369
error(error) function (XSLT), 369
escape codes, 16, 36–37
escape-uri(stringurl, escres) function

(XSLT), 372
European Computer Manufacturers Association

(ECMA), 30
event handlers

defined, 34–35
onclick, 18–19
onload, 16–17
onsubmit, 19
preventing events from bubbling up, 19

events
onclick, 34–35
onError, 172
onLoading, 172–173
onStateChanged, 172
onTimeout, 172

exists(item1, item2, ...) function
(XSLT), 370

exposing web services from a web form,
265–266

expressions, 39–40
extend property (response object),

164–165
extender controls (Atlas)
AutoComplete, 294–297
Drag and Drop, 328
functionality, 294

Extensible Application Markup Language
(XAML), 5

Extensible Markup Language. See XML
Extensible Stylesheet Language

Transformations. See XSLT
extensions (XSLT), 120

F
fallback element (XSLT), 364
false() function (XSLT), 367
Fiddler network traffic monitor, 353–361
Firefox

DOM Inspector tool, 349–350
Venkman debugging tool, 350–351

Flash, 5
floor(num) function (XSLT), 370
flow control statements (JavaScript), 40–41
for loop (JavaScript), 14–15, 41–42, 283
for-each element (XSLT), 115
for/in loop (JavaScript), 42
format-number function (XSLT), 366
forms-based authentication, 312–313

383

forms-based authentication

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 383

frameworks
Ajax.NET Pro

activating, 163
Ajax/AjaxSettingsSectionHandler

.cs, 188–191
AjaxHandlerFactory, 191
AjaxPro.AjaxMethod() attribute,

163–164, 191–192
Compiled Library, 160
downloading, 180
HTTP page handlers, 182–183
JavaScript, 192
Library Source Code, 160, 180
preparing applications to use it, 160–161,

174–175, 180–182
references, 160–161
registering page class, 163, 183–186
using in applications, 161–164
Web.Config settings, 182, 186–188

client-side
defined, 195–196
HTMLHttpRequest, 199–201
MochiKit, 201–203
Sarissa, 196–199

server-side frameworks
Anthem.NET, 231–246
architectural distinctions, 203–207
ComfortASP.NET, 208–219
MagicAjax, 219–231

FrontPage (Microsoft), 3
function keyword (JavaScript), 45
function literals (JavaScript), 45–46
function-available function (XSLT), 366
functions (JavaScript)
alert(), 13–14
arguments, 34
BuildHtmlTable(), 169
BuildMultiplicationTable(), 169
calling, 33
ChangeImage(), 162
ChangeMe(), 20–21, 165–166, 170–171

confirm(), 17–18
CreateCustomObject(), 43
CreateXmlHttpRequestObject(), 80
defined, 20–21
document.getElementById(), 21–22
document.write(), 14
HandleClick(), 35
hasOwnProperty(nameOfProperty), 45
isPrototypeOf(obj), 45
OnServerCallError, 142
parameters, 34
prompt(), 17
propertyIsEnumerable(nameOf

Property), 45
RegisterCommonAjax(), 184–186
RegisterTypeForAjax(), 183–184
RenderControl(), 167
return values, 34
ShowHide(), 25–26
toLocaleString(), 44
toString(), 44
Type.registerNameSpace(), 273
UpdateText(), 25–26
valueOf(), 44

functions (XML DOM)
selectNodes(), 87–88, 91–92
selectSingleNode(), 87–88

functions (XMLHttpRequest object)
abort(), 92
getAllResponseHeaders(), 92
getResponseHeader(“headername”), 92
open(“method”, “URL”, “async”,

“uname”, “pswd”), 92
send(content), 92
setRequestHeader(“label”,

”value”), 92
functions (XSLT)
abs(num), 370
adjust-dateTime-to-timezone(date

time, timezone), 369
adjust-date-to-timezone(datetime,

timezone), 369

384

frameworks

18_78544x bindex.qxp 7/18/06 3:18 PM Page 384

adjust-time-to-timezone(datetime,

timezone), 369
base-uri(), 366
boolean(blarg), 367
ceiling(num), 370
codepoint-equal(item1, item2), 371
codepoints-to-string(int1,

int2, ...), 371
compare(item1, item2), 371
compare(item1,item2, collation),

371
concat(string1, string2, ...), 371
contains(string1, string2), 372
current, 366
current-date(), 367
current-dateTime(), 367
current-time(), 367
data(item, ...), 366
dateTime(date,time), 367
day-from-date(date), 368
day-from-dateTime(datetime), 368
default-collation(), 367
distinct-values((item1, item2,

...), collation), 370
document, 366
document-uri(node), 366
element-available, 366
empty(item1, item2, ...), 370
end-with(string1, string2), 372
error(), 369
error(error), 369
error(error, description), 369
error(error, description, error-

object), 369
escape-uri(stringurl, escres), 372
exists(item1, item2, ...), 370
false(), 367
floor(num), 370
format-number, 366
function-available, 366
generate-id, 366
hours-from-dateTime(datetime), 368

hours-from-duration(datetime

duration), 368
hours-from-time(time), 368
implicit-timezone(), 367
index-of((item1, item2, ...),

searchitem), 370
insert-before((item1, item2, ...),

position, inserts), 370
key, 366
lang(lang), 369
last(), 367
local-name(), 369
local-name(nodeset), 369
lower-case(string), 372
matches(string, pattern), 372
minutes-from-dateTime(datetime),

368
minutes-from-duration(datetime

duration), 368
minutes-from-time(time), 368
month-from-date(date), 368
month-from-dateTime(datetime), 368
months-from-duration(datetime

duration), 368
name(), 369
name(nodeset), 369
namespace-uri(), 369
namespace-uri(nodeset), 369
nilled(node), 366
node-name(node), 366
node-set, 366
normalize-space(), 371
normalize-space(string), 371
normalize-unicode(), 372
not(blarg), 367
number(arg), 370
position(), 367
remove((item1, item2, ...),

position), 370
replace(string, pattern,

replacement), 372
resolve-uri(relative, base), 372

385

functions (XSLT)

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 385

functions (XSLT) (continued)
reverse((item1, item2, ...)), 370
root(), 369
root(node), 369
round-half-to-even(num), 370
round(num), 370
seconds-from-dateTime(datetime),

368
seconds-from-duration(datetime

duration), 368
seconds-from-time(time), 368
starts-with(string1, string2), 372
static-base-uri(), 367
string(argument), 371
string-join((string1, string2,

...), separator), 371
string-length(), 371
string-length(string), 371
string-to-codepoints(string), 371
subsequence((item1, item2, ...),

start, length), 371
substring-after(string1, string2),

372
substring-before(string1,

string2), 372
substring(string, start), 371
substring(string, start, length),

371
system-property, 366
timezone-from-date(date), 368
timezone-from-time(time), 368
tokenize(string, patternstring),

372
trace(value, label), 369
translate(string1, string2,

string3), 372
true(), 367
unordered((item1, item2, ...)), 371
unparsed-entry-uri, 366
upper-case(string), 372
year-from-date(date), 368

year-from-dateTime(datetime), 368
years-from-duration(datetime

duration), 367

G
Garret, Jesse James, Adaptive Path, 8
generate-id function (XSLT), 366
generating proxy classes, 175–177, 191–192
getAllResponseHeaders() method

(XMLHttpRequest object), 92
getElementById() function (JavaScript),

21–22
getResponseHeader(“headername”)

method (XMLHttpRequest object), 92
Google

GMail, 9, 78
Google Maps, 7, 9, 78
Google Suggest, 7, 9

GridView control (ASP.NET), 129–131
group validation, 308–310
Guthrie, Scott (blogger), 283

H
HandleClick() function (JavaScript), 35
hasOwnProperty(nameOfProperty)

function (JavaScript), 45
Hello World example

Anthem.NET server-side framework, 232–233
ComfortASP.NET server-side framework,

210–211
MagicAjax server-side framework, 221–222

Hotmail Kahuna update (Microsoft), 9
hours-from-dateTime(datetime)

function (XSLT), 368
hours-from-duration(datetime

duration) function (XSLT), 368
hours-from-time(time) function (XSLT),

368

386

functions (XSLT) (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 386

HTML (Hypertext Markup Language)
DHTML (Dynamic HTML), 11
JavaScript, 14

HTML injection attacks, 18
HTMLHttpRequest library, 199–201
HTTP handlers

custom, 94
WebResource.axd HTTP handler, 250
XMLHttpRequest object, 94–97

HTTP page handlers, Ajax.NET Pro library,
182–183

HTTP status codes, 91
HTTP traffic, 351–353
HTTP web services, 103
Hypertext Markup Language (HTML)

Dynamic HTML (DHTML), 11
JavaScript, 14

I
ICallbackContainer interface, 133,

154–156
ICallbackEventHandler interface,

133–137
id attribute, 21
IDC (Internet Database Connector), 3
if element (XSLT), 115
if-else statement (JavaScript), 40–41
images, 19–20
implicit-timezone() function (XSLT), 367
import element (XSLT), 364
include element (XSLT), 364
index-of((item1, item2, ...),

searchitem) function (XSLT), 370
inheritance, 50–51, 276–277
initiating the asynchronous callback process

from the browser, 138
innerHTML property, 23–26
insert-before((item1, item2, ...),

position, inserts) function (XSLT),
370

inserting nodes, 63
integers, 168
intelligent client-server development, 1
interfaces

ASP.NET
ICallbackContainer, 133, 154–156
ICallbackEventHandler, 133–137

Atlas, 277–280
International Organization for Standardization

(ISO), 30
Internet Database Connector (IDC), 3
Internet Explorer Developer Toolbar, 348–349
interpreted programs, 11–12
Invert transform, 302
invisible postback, 88–91
invoke page method (Anthem.NET server-side

framework), 239–242
ISO (International Organization for

Standardization), 30
isPrototypeOf(obj) function

(JavaScript), 45

J
Java

JavaScript, 12, 30
user experience, 5

JavaScript
Ajax, 8
Ajax.NET Pro library, 192
arrays, 38
Atlas

extensions, 267–268
files included, 250–251

browser support, 30–31, 33
case-sensitivity, 13, 35
code, 35–36
code blocks, 12, 34
composite types, 37–38
constructors, 47–48
context menus, 26–27

387

JavaScript

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 387

JavaScript (continued)
datatypes, 36
debugging
Alert statements, 333
breakpoints, 336–337
Command window, 346–347
debugger keyword, 342–344
difficulties of, 332
stepping through code, 340–342
Visual Studio .NET, 334–347
Watch window, 344–346

defensive programming, 48
defined, 12
development history, 30
DHTML (Dynamic HTML), 11
drop-down lists, 21–22
dynamic typing, 37
ECMAScript, 30
encapsulation, 46
escape codes, 16, 36–37
event handlers

defined, 34–35
onclick, 18–19
onload, 16–17
onsubmit, 19
preventing events from bubbling up, 19

expressions, 39–40
function literals, 45–46
functions
alert(), 13–14
arguments, 34
BuildHtmlTable(), 169
BuildMultiplicationTable(), 169
calling, 33
ChangeMe(), 20–21, 165–166, 170–171
confirm(), 17–18
CreateCustomObject(), 43
CreateXmlHttpRequestObject(), 80
defined, 20–21
document.getElementById(), 21–22
document.write(), 14

HandleClick(), 35
hasOwnProperty(nameOfProperty), 45
isPrototypeOf(obj), 45
OnServerCallError, 142
parameters, 34
prompt(), 17
propertyIsEnumerable(nameOf

Property), 45
RegisterCommonAjax(), 184–186
RegisterTypeForAjax(), 183–184
RenderControl(), 167
return values, 34
ShowHide(), 25–26
toLocaleString(), 44
toString(), 44
Type.registerNameSpace(), 273
UpdateText(), 25–26
valueOf(), 44

HTML (Hypertext Markup Language), 14
images, 19–20
inheritance, 50–51
Java, 12, 30
keywords
case, 41
debugger, 342–344
delete, 38, 43–44
function, 45
new, 38
return, 19
this, 19
var, 35, 37

loops
breaking, 42–43
continuous, 43
do/while, 41–42
endless loops, 15
for, 14–15, 41–42, 283
for/in, 42
while, 41–42

object literals, 46
objects, 38–39, 43–44

388

JavaScript (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 388

operators, 39–40
properties
constructor, 44
prototype, 44, 49–50

prototype chaining, 50–51
prototypes, 46–49
quotation marks, 16
script element, 13–14, 32–33
standardization, 30
statements
Alert, 333
break, 42–43
continue, 43
flow control statements, 40–41
if-else, 40
switch, 41
syntax, 12
writing, 13–14

syntax, 12, 33–34
user input, 17–18
variables, 35
weak typing, 37

JavaScript Object Notation (JSON)
Ajax, 8
converting objects between .NET and

JavaScript Object Notation (JSON),
193–194

defined, 103, 124
example, 125
layout, 124–125
web services, 103

.js filename extension, 14
JScript (Microsoft), 30
JSON (JavaScript Object Notation)

Ajax, 8
converting objects between .NET and

JavaScript Object Notation (JSON),
193–194

defined, 103, 124
example, 125
layout, 124–125
web services, 103

K
key element (XSLT), 364
key function (XSLT), 366
keywords (JavaScript)
case, 41
debugger, 342–344
delete, 38, 43–44
function, 45
new, 38
return, 19
this, 19
var, 35, 37

Kothari, Nikhil (blogger), 283

L
lang(lang) function (XSLT), 369
language attribute, 32
last() function (XSLT), 367
libraries

Ajax.NET Pro library
activating, 163
Ajax/AjaxSettingsSection

Handler.cs, 188–191
AjaxHandlerFactory, 191
AjaxPro.AjaxMethod() attribute,

163–164, 191–192
Compiled Library, 160
downloading, 180
HTTP page handlers, 182–183
JavaScript, 192
Library Source Code, 160, 180
preparing applications to use it, 160–161,

174–175, 180–182
references, 160–161
registering page class, 163, 183–186
using in applications, 161–164
Web.Config settings, 182, 186–188

Anthem.NET
client functions, 237–239
complex controls, 234–235

389

libraries

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 389

libraries (continued)
custom attributes, 235–237
Hello World example, 232–233
invoke page method, 239–242
micro-content, 242–244
server exceptions, 244–246
setup, 231–232

ComfortASP.NET
complex controls, 211–212
downloading, 208
Hello World example, 210–211
Manager control, 213–216
PanelUpdater control, 216–219
setup, 208–209

HTMLHttpRequest, 199–201
MagicAjax

call helper, 224–226
delay message, 222–224
Hello World example, 221–222
micro-content, 226–231
setup, 219–220

MochiKit, 201–203
Sarissa, 196–199

Library Source Code (Ajax.NET Pro library),
160, 180

listView control, 287
Live.com (Microsoft), 9
local-name() function (XSLT), 369
local-name(nodeset) function (XSLT), 369
loops (JavaScript)

breaking, 42–43
continuous, 43
do/while, 41–42
endless loops, 15
for, 14–15, 41–42, 283
for/in, 42
while, 41–42

lower-case(string) function (XSLT), 372

M
MagicAjax server-side framework

call helper, 224–226
delay message, 222–224
Hello World example, 221–222
micro-content, 226–231
setup, 219–220

Manager control (ComfortASP.NET server-side
framework), 213–216

March CTP (Atlas project), 249
matches(string, pattern) function

(XSLT), 372
membership service, 314
menus, 26–27
message element (XSLT), 364
methods

overloads, 171
signature, 171

methods (JavaScript)
alert(), 13–14
arguments, 34
BuildHtmlTable(), 169
BuildMultiplicationTable(), 169
calling, 33
ChangeImage(), 162
ChangeMe(), 20–21, 165–166, 170–171
confirm(), 17–18
CreateCustomObject(), 43
CreateXmlHttpRequestObject(), 80
defined, 20–21
document.getElementById(), 21–22
document.write(), 14
HandleClick(), 35
hasOwnProperty(nameOfProperty), 45
isPrototypeOf(obj), 45
OnServerCallError, 142
parameters, 34
prompt(), 17

390

libraries (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 390

propertyIsEnumerable(nameOf

Property), 45
RegisterCommonAjax(), 184–186
RegisterTypeForAjax(), 183–184
RenderControl(), 167
return values, 34
ShowHide(), 25–26
toLocaleString(), 44
toString(), 44
Type.registerNameSpace(), 273
UpdateText(), 25–26
valueOf(), 44

methods (XML DOM)
selectNodes(), 87–88, 91–92
selectSingleNode(), 87–88

methods (XMLHttpRequest object)
abort(), 92
getAllResponseHeaders(), 92
getResponseHeader(“headername”), 92
open(“method”, “URL”, “async”,

“uname”, “pswd”), 92
send(content), 92
setRequestHeader(“label”,

“value”), 92
methods (XSLT)
abs(num), 370
adjust-dateTime-to-timezone(date

time, timezone), 369
adjust-date-to-timezone(datetime,

timezone), 369
adjust-time-to-timezone(datetime,

timezone), 369
base-uri(), 366
boolean(blarg), 367
ceiling(num), 370
codepoint-equal(item1, item2), 371
codepoints-to-string(int1,

int2, ...), 371
compare(item1, item2), 371
compare(item1, item2, collation),

371

concat(string1, string2, ...), 371
contains(string1, string2), 372
current, 366
current-date(), 367
current-dateTime(), 367
current-time(), 367
data(item, ...), 366
dateTime(date,time), 367
day-from-date(date), 368
day-from-dateTime(datetime), 368
default-collation(), 367
distinct-values((item1, item2,

...), collation), 370
document, 366
document-uri(node), 366
element-available, 366
empty(item1, item2, ...), 370
end-with(string1, string2), 372
error(), 369
error(error), 369
error(error, description), 369
error(error, description, error-

object), 369
escape-uri(stringurl, escres), 372
exists(item1, item2, ...), 370
false(), 367
floor(num), 370
format-number, 366
function-available, 366
generate-id, 366
hours-from-dateTime(datetime), 368
hours-from-duration(datetime

duration), 368
hours-from-time(time), 368
implicit-timezone(), 367
index-of((item1, item2, ...),

searchitem), 370
insert-before((item1, item2, ...),

position, inserts), 370
key, 366
lang(lang), 369

391

methods (XSLT)

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 391

methods (XSLT) (continued)
last(), 367
local-name(), 369
local-name(nodeset), 369
lower-case(string), 372
matches(string, pattern), 372
minutes-from-dateTime(datetime),

368
minutes-from-duration(datetime

duration), 368
minutes-from-time(time), 368
month-from-date(date), 368
month-from-dateTime(datetime), 368
months-from-duration(datetime

duration), 368
name(), 369
name(nodeset), 369
namespace-uri(), 369
namespace-uri(nodeset), 369
nilled(node), 366
node-name(node), 366
node-set, 366
normalize-space(), 371
normalize-space(string), 371
normalize-unicode(), 372
not(blarg), 367
number(arg), 370
position(), 367
remove((item1, item2, ...),

position), 370
replace(string, pattern,

replacement), 372
resolve-uri(relative, base), 372
reverse((item1, item2, ...)), 370
root(), 369
root(node), 369
round-half-to-even(num), 370
round(num), 370
seconds-from-dateTime(datetime),

368
seconds-from-duration(datetime

duration), 368

seconds-from-time(time), 368
starts-with(string1, string2), 372
static-base-uri(), 367
string(argument), 371
string-join((string1, string2,

...), separator), 371
string-length(), 371
string-length(string), 371
string-to-codepoints(string), 371
subsequence((item1, item2, ...),

start, length), 371
substring-after(string1, string2),

372
substring-before(string1,

string2), 372
substring(string, start), 371
substring(string, start, length),

371
system-property, 366
timezone-from-date(date), 368
timezone-from-time(time), 368
tokenize(string, patternstring),

372
trace(value, label), 369
translate(string1, string2,

string3), 372
true(), 367
unordered((item1, item2, ...)), 371
unparsed-entry-uri, 366
upper-case(string), 372
year-from-date(date), 368
year-from-dateTime(datetime), 368
years-from-duration(datetime

duration), 367
micro-content

Anthem.NET server-side framework, 242–244
MagicAjax server-side framework, 226–231

Microsoft
Active Server Pages (ASP), 3
ASP.NET development, 2–5
FrontPage, 3
Hotmail Kahuna update, 9

392

methods (XSLT) (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 392

Internet Database Connector (IDC), 3
Internet Explorer Developer Toolbar, 348–349
JScript, 30
Live.com, 9
MSN Virtual Earth, 78
Passport Service, 312–313
VBScript, 30

Microsoft Atlas project
Ajax support, 249, 251
April CTP, 249
asynchronous operations, 251
blogs, 283
classes

adding, 274–275
Array, 267
Boolean, 268
Date, 267
inheritance, 276–277
Number, 268
Object, 267
RegExp, 268
registering, 273–274
String, 268
Sys.Data.DataColumn, 269–271
Sys.Data.DataRow, 272
Sys.Data.DataTable, 270–272
Sys.Net.WebRequest, 268–269
Web.Enum, 280

client-side components, 250
client-side scripts, 283
control extenders
AutoComplete, 294–297
Drag and Drop, 328
functionality, 294

controls
button control, 285–286
custom validators, 306–307
customValidator control, 303
functionality, 285
listView control, 287
rangeValidator control, 303, 305
regexValidator control, 303, 305–306

requiredFieldValidator control,
303–305

ScriptManager control, 252–253
server controls, 288–292
Sys.UI.Data namespace, 287
timer control, 292–294
typeValidator control, 303, 305
UpdatePanel control, 288–292
validationErrorLabel control, 303
validationGroup control, 308–310

data binding
declarative, 297–299
defined, 297
directions, 302
programmatic, 299–302
Sys.BindingDirection enumeration,

302
transformations, 302
validation of data input, 303–310

datatypes, 257–262
debugging, 281–283
documentation, 273
enumerations, 280–281, 302
integration with ASP.NET services

authentication, 311–313, 315–319
authorization, 311, 314, 319–321
Drag and Drop implementation, 328
membership service, 314
profiles, 311, 314, 322–328
roles, 311, 314, 319–321
Web Parts, 314

interfaces, 277–280
JavaScript extensions, 267–268
JavaScript files, 250–251
March CTP, 249
Microsoft.Web.Atlas.dll server-side

assembly, 250
namespaces

adding, 274–275
registering, 273
Sys.Data, 269
Sys.Net, 268

393

Microsoft Atlas project

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 393

Microsoft Atlas project (continued)
passing parameters, 257–258
resources, 283
server-side support, 250
synchronous operations, 251–252
UTC encoding for dates and time, 264
web services

caching, 263–265
communicating with, 253–257
exposing from a web form, 265–266

WebResource.axd HTTP handler, 250
minutes-from-dateTime(datetime)

function (XSLT), 368
minutes-from-duration(datetime

duration) function (XSLT), 368
minutes-from-time(time) function

(XSLT), 368
mismatching parameters, 193
MochiKit client-side framework, 201–203
month-from-date(date) function (XSLT),

368
month-from-dateTime(datetime)

function (XSLT), 368
months-from-duration(datetime

duration) function (XSLT), 368
MSN Virtual Earth, 78

N
name() function (XSLT), 369
name(nodeset) function (XSLT), 369
namespace-alias element (XSLT), 364
namespaces

adding, 274–275
registering, 273
Sys.Data, 269
Sys.Net, 268
System.Data, 258
Sys.UI.Data, 287

namespace-uri() function (XSLT), 369
namespace-uri(nodeset) function (XSLT),

369

.NET Framework
converting objects between .NET and

JavaScript Object Notation (JSON),
193–194

reflection, 176–177
network traffic, 351–353
new keyword (JavaScript), 38
nilled(node) function (XSLT), 366
node-name(node) function (XSLT), 366
nodes

appending, 63
cloning, 63–64
copying, 63
creating, 62
inserting, 63
properties, 64–69
removing, 63
replacing, 63

node-set function (XSLT), 366
normalize-space() function (XSLT), 371
normalize-space(string) function

(XSLT), 371
normalize-unicode() function (XSLT), 372
not(blarg) function (XSLT), 367
Notepad, 12
Number class, 268
number element (XSLT), 364
number(arg) function (XSLT), 370
numeric character references in XML, 108
numeric processing with XSLT, 118–120

O
Object class, 267
object literals (JavaScript), 46
object model standardization, 31, 53
objects
Browser object
SupportsCallback property, 132–133
SupportsXmlHttp property, 132–133

ClientScript object (ASP.NET), 134–135
custom objects, 169–170

394

Microsoft Atlas project (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 394

JavaScript, 38–39, 43–44
request object
onError event, 172
onLoading event, 172–173
onStateChanged event, 172
onTimeout event, 172

response object
context property, 164–165, 171–172
defined, 164
error property, 164–165, 173–174
extend property, 164–165
request property, 164–165, 173
value property, 164–165, 167–169

XML Document Object Model, 87
XMLHttpRequest object
abort() method, 92
asynchronous requests, 82–84, 88–92
browser support, 78–80
development history, 78
functionality, 8, 77–78
getAllResponseHeaders() method, 92
getResponseHeader(“headername”)

method, 92
HTTP handlers, 94–97
onreadystatechange property, 93
open(“method”, “URL”, “async”,

“uname”, “pswd”) method, 92
passing parameters, 93–94
readyState property, 93
responseText property, 84–87, 93
responseXML property, 84, 87, 93
Sarissa client-side framework, 196
security, 84
send(content) method, 92
setRequestHeader(“label”,

“value”) method, 92
status property, 91–93
statusText property, 93
synchronous requests, 81–82
web services, 97–102
XMLHTTP protocol, 78, 80–81

obtaining a callback reference, 135–136
onclick event, 34–35
onclick event handler (JavaScript), 18–19
onError event, 172
onload event handler (JavaScript), 16–17
onLoading event, 172–173
onreadystatechange property

(XMLHttpRequest object), 93
OnServerCallError function (JavaScript),

142
onStateChanged event, 172
onsubmit event handler (JavaScript), 19
onTimeout event, 172
open(“method”, “URL”, “async”,

“uname”, “pswd”) method
(XMLHttpRequest object), 92

operators in JavaScript, 39–40
otherwise element (XSLT), 364
output element (XSLT), 364
overloads, 171

P
page class, registering, 163, 183–186
PanelUpdater control (ComfortASP.NET

server-side framework), 216–219
param element (XSLT), 364
parameters

JavaScript functions, 34
mismatching parameters, 193
passing

Atlas, 257–258
XMLHttpRequest object, 93–94

parsing XML
Document Object Model (DOM), 111
Simple API for XML (SAX), 112

passing parameters
Atlas, 257–258
XMLHttpRequest object, 93–94

Passport authentication, 312–313
Passport Service (Microsoft), 312–313

395

Passport Service (Microsoft)

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 395

port 80, 103
port numbers in code samples, 78
position() function (XSLT), 367
postback delay, 77
preparing applications to use Ajax.NET Pro

library, 160–161, 174–175, 180–182
preserve-space element (XSLT), 365
processing

Ajax, 6
ASP.NET, 5
XSLT, 112–114, 116–120

processing-instruction element (XSLT),
365

profiles, 311, 314, 322–328
programmatic data binding, 299–302
projects, adding to solutions, 180–181
prompt() function (JavaScript), 17
properties
constructor (JavaScript objects), 44
context (response object), 164–165,

171–172
error (response object), 164–165, 173–174
extend (response object), 164–165
innerHTML, 23–26
nodes, 64–69
onreadystatechange (XMLHttpRequest

object), 93
prototype (JavaScript objects), 44, 49–50
readyState (XMLHttpRequest object), 93
request (response object), 164–165, 173
responseText (XMLHttpRequest object),

84–87, 93
responseXML (XMLHttpRequest object),

84, 87, 93
status (XMLHttpRequest object), 91–93
statusText (XMLHttpRequest object), 93
SupportsCallback (Browser object),

132–133
SupportsXmlHttp (Browser object),

132–133
value (response object), 164–165, 167–169

propertyIsEnumerable(nameOf

Property) function (JavaScript), 45
prototype chaining, 50–51
prototype property (JavaScript objects),

44, 49–50
prototypes (JavaScript), 46–49
proxy classes

defined, 166
generating, 175–177, 191–192

Q
quotation marks in JavaScript, 16

R
rangeValidator control, 303, 305
readyState property (XMLHttpRequest

object), 93
references to Ajax.NET Pro library, 160–161
reflection, 176–177
RegExp class, 268
regexValidator control, 303, 305–306
RegisterCommonAjax() method, 184–186
registering

classes, 273–274
namespaces, 273
page class, 163, 183–186

RegisterTypeForAjax() method, 183–184
remove((item1, item2, ...),

position) function (XSLT), 370
removing nodes, 63
RenderControl() method, 167
replace(string, pattern,

replacement) function (XSLT), 372
replacing nodes, 63
request object events
onError, 172
onLoading, 172–173
onStateChanged, 172
onTimeout, 172

396

port

18_78544x bindex.qxp 7/18/06 3:18 PM Page 396

request property (response object),
164–165, 173

requiredFieldValidator control,
303–305

resolve-uri(relative, base) function
(XSLT), 372

response object
defined, 164
properties
context, 164–165, 171–172
error, 164–165, 173–174
extend, 164–165
request, 164–165, 173
value, 164–165, 167–169

responseText property (XMLHttpRequest
object), 84–87, 93

responseXML property (XMLHttpRequest
object), 84, 87, 93

return keyword (JavaScript), 19
return values of JavaScript functions, 34
reverse((item1, item2, ...)) function

(XSLT), 370
roles, 311, 314, 319–321
root() function (XSLT), 369
root(node) function (XSLT), 369
round trips

ASP.NET, 4
defined, 2

round-half-to-even(num) function
(XSLT), 370

round(num) function (XSLT), 370

S
Sarissa client-side framework, 196–199
SAX (Simple API for XML), 112
script element, 13–14, 32–33
ScriptManager control, 252–253
seconds-from-dateTime(datetime)

function (XSLT), 368

seconds-from-duration(datetime

duration) function (XSLT), 368
seconds-from-time(time) function

(XSLT), 368
security

HTML injection attacks, 18
XMLHttpRequest object, 84

select element, 21–22
selectNodes() function (XML DOM), 87–88,

91–92
selectSingleNode() function (XML DOM),

87–88
send(content) method (XMLHttpRequest

object), 92
Serializable() attribute, 169–170, 194
server controls, 288–292
server-side ASP.NET debugging, 329–332
server-side frameworks

Anthem.NET
client functions, 237–239
complex controls, 234–235
custom attributes, 235–237
Hello World example, 232–233
invoke page method, 239–242
micro-content, 242–244
server exceptions, 244–246
setup, 231–232

architectural distinctions, 203–207
ComfortASP.NET

complex controls, 211–212
downloading, 208
Hello World example, 210–211
Manager control, 213–216
PanelUpdater control, 216–219
setup, 208–209

MagicAjax
call helper, 224–226
delay message, 222–224

397

server-side frameworks

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 397

server-side frameworks (continued)
Hello World example, 221–222
micro-content, 226–231
setup, 219–220

server-side support for Atlas, 250
setRequestHeader(“label”, “value”)

method (XMLHttpRequest object), 92
setting breakpoints, 331–332, 336–337
setup

Anthem.NET server-side framework, 231–232
ComfortASP.NET server-side framework,

208–209
MagicAjax server-side framework, 219–220

ShowHide() function (JavaScript), 25–26
signature, 171
Simple API for XML (SAX), 112
Simple Object Access Protocol (SOAP),

101–102
single quotation marks in JavaScript, 16
size attribute, 21
solutions, adding to projects, 180–181
sort element (XSLT), 115
source code for Ajax.NET Pro library, 160, 180
spaghetti code, 3
span element, 23–24
src attribute, 20–21, 32
standardization

JavaScript, 30
object models, 31, 53

starts-with(string1, string2)

function (XSLT), 372
statements (JavaScript)
Alert statements, 333
break, 42–43
continue, 43
flow control statements, 40–41
if-else, 40
switch, 41
syntax, 12
writing, 13–14

static-base-uri() function (XSLT), 367

status codes, 91
status property (XMLHttpRequest object),

91–93
statusText property (XMLHttpRequest

object), 93
String class, 268
string processing with XSLT, 116–117
string(argument) function (XSLT), 371
string-join((string1, string2,

...), separator) function (XSLT), 371
string-length() function (XSLT), 371
string-length(string) function (XSLT),

371
strings, 167–168
string-to-codepoints(string)

function (XSLT), 371
strip-space element (XSLT), 365
style sheets. See CSS (Cascading Style

Sheets)
stylesheet element (XSLT), 365
stylesheet tree (XSLT), 114
subsequence((item1, item2, ...),

start, length) function (XSLT), 371
substring-after(string1, string2)

function (XSLT), 372
substring-before(string1, string2)

function (XSLT), 372
substring(string, start) function

(XSLT), 371
substring(string, start, length)

function (XSLT), 371
Suggest (Google), 7, 9
SupportsCallback property (Browser

object), 132–133
SupportsXmlHttp property (Browser

object), 132–133
switch statement (JavaScript), 41
synchronous execution, 170
synchronous operations

Atlas project, 251–252
XMLHttpRequest object, 81–82

398

server-side frameworks (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 398

syntax of JavaScript, 12, 33–34
Sys.BindingDirection enumeration, 302
Sys.Bindings() class, 302
Sys.Data namespace, 269
Sys.Data.DataColumn class, 269–271
Sys.Data.DataRow class, 272
Sys.Data.DataTable class, 270–272
Sys.Net namespace, 268
Sys.Net.WebRequest class, 268–269
System.Data namespace, 258
system-property function (XSLT), 366
Sys.UI.Data namespace, 287

T
template element (XSLT), 114–115
terminal-style development, 1–2
text element (XSLT), 365
this keyword (JavaScript), 19
timer control, 292–294
timezone-from-date(date) function

(XSLT), 368
timezone-from-time(time) function

(XSLT), 368
tokenize(string, patternstring)

function (XSLT), 372
toLocaleString() function (JavaScript), 44
toString() function (JavaScript), 44
ToString transform, 302
trace(value, label) function (XSLT), 369
transform element (XSLT), 365
transformations in data binding, 302
translate(string1, string2,

string3) function (XSLT), 372
TreeView control (ASP.NET), 128–129
true() function (XSLT), 367
type attribute, 32
Type.registerNameSpace() method, 273
typeValidator control, 303, 305

U
UI (user interface), 7
unordered((item1, item2, ...))

function (XSLT), 371
unparsed-entry-uri function (XSLT), 366
UpdatePanel control, 288–292
UpdateText() function (JavaScript), 25–26
upper-case(string) function (XSLT), 372
user context

Ajax, 7
ASP.NET, 5

user experience
Ajax, 5
Flash, 5
invisible postback, 88–91
Java, 5
postback delay, 77
XML-based languages, 5

user input in JavaScript, 17–18
user interface (UI), 7
using Ajax.NET Pro library in applications,

161–164
UTC encoding for dates and time, 264

V
valid HTTP status codes, 91
valid XML documents, 106–108
validating

data input, 303–310
XML, 110–111

validationErrorLabel control, 303
validationGroup control, 308–310
validators

built-in, 303–307
custom, 306–307
group, 308–310

value property (response object), 164–165,
167–169

399

value property (response object)

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 399

value-of element (XSLT), 115
valueOf() function (JavaScript), 44
var keyword (JavaScript), 35, 37
variable element (XSLT), 365
variables in JavaScript, 35
VBScript (Microsoft), 30
Venkman (Firefox debugging tool), 350–351
Virtual Earth (MSN), 78
Visual Studio .NET

ASP.NET debugging, 330–332
JavaScript debugging, 334–347

W
Watch window, 344–346
weak typing in JavaScript, 37
web browsers

Ajax support, 8
ASP.NET, 132
callback support, 132–133
checking type, 79–80
debugging tools, 347–351
Document Object Model (DOM), 30–31
JavaScript support, 30–31, 33
object model standardization, 53
XMLHttpRequest object support, 78–80

Web Parts, 314
web services

Atlas
caching, 263–265
communicating with, 253–257
exposing from a web form, 265–266

HTTP, 103
JSON (JavaScript Object Notation), 103
SOAP (Simple Object Access Protocol),

101–102
XML, 103
XMLHttpRequest object, 97–102

Web.Config settings for Ajax.NET Pro library,
182, 186–188

Web.Enum class, 280
WebResource.axd HTTP handler, 250
well-formed XML documents, 106–108
when element (XSLT), 365
while loop (JavaScript), 41–42
Windows authentication, 312–313
with-param element (XSLT), 365
wrapper library, 159
writing statements (JavaScript), 13–14

X
X Path 2.0 Programmer’s Reference (Wiley),

103
X Path Language, 87, 112, 121–122
XAML (Extensible Application Markup

Language), 5
XHTML

case-sensitivity, 35
defined, 32

XML
Ajax, 8, 122–123
ASP.NET, 154
attributes, 105
defined, 103
development history, 104–105
Document Type Definition (DTD), 108–109
elements, 105
entity references, 108
features, 104
numeric character references, 108
parsing

Document Object Model (DOM), 111
Simple API for XML (SAX), 112

validating, 110–111
web services, 103

XML declaration, 105
XML Document Object Model, 87
XML documents, 105–108

400

value-of element (XSLT)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 400

XML DOM functions
selectNodes(), 87–88, 91–92
selectSingleNode(), 87–88

XML Path Language (X Path), 87, 112,
121–122

XML Schema, 106, 109–110
XML Schema Definitions (XSDs), 109–110
XML User Interface Language (XUL), 5
XML-based languages and user experience, 5
XMLHTTP protocol, 78, 80–81
XMLHttpRequest object

asynchronous requests, 82–84, 88–92
browser support, 78–80
development history, 78
functionality, 8, 77–78
HTTP handlers, 94–97
methods
abort(), 92
getAllResponseHeaders(), 92
getResponseHeader(“headername”), 92
open(“method”, “URL”, “async”,

“uname”, “pswd”), 92
send(content), 92
setRequestHeader(“label”,

“value”), 92
passing parameters, 93–94
properties
onreadystatechange, 93
readyState, 93
responseText, 84–87, 93
responseXML, 84, 87, 93
status, 91–93
statusText, 93

Sarissa client-side framework, 196
security, 84
synchronous requests, 81–82
web services, 97–102
XMLHTTP protocol, 78, 80–81

XSDs (XML Schema Definitions), 109–110

XSLT
defined, 103, 112
extensions, 120
processing, 112–114, 116–120
stylesheet tree, 114
X Path Language, 112, 121–122

XSLT 2.0 Programmer’s Reference, Third Edition
(Wiley), 103

XSLT elements
apply-imports, 363
apply-templates, 363
attribute, 363
attribute-set, 363
call-template, 363
choose, 115–116
comment, 363
copy, 364
copy-of, 364
decimal-format, 364
element, 364
fallback, 364
for-each, 115
if, 115
import, 364
include, 364
key, 364
message, 364
namespace-alias, 364
number, 364
otherwise, 364
output, 364
param, 364
preserve-space, 365
processing-instruction, 365
sort, 115
strip-space, 365
stylesheet, 365
template, 114–115
text, 365
transform, 365

401

XSLT elements

In
de

x

18_78544x bindex.qxp 7/18/06 3:18 PM Page 401

XSLT elements (continued)
value-of, 115
variable, 365
when, 365
with-param, 365

XSLT functions
abs(num), 370
adjust-dateTime-to-timezone(date

time, timezone), 369
adjust-date-to-timezone(datetime,

timezone), 369
adjust-time-to-timezone(datetime,

timezone), 369
base-uri(), 366
boolean(blarg), 367
ceiling(num), 370
codepoint-equal(item1, item2), 371
codepoints-to-string(int1,

int2, ...), 371
compare(item1, item2), 371
compare(item1, item2, collation),

371
concat(string1, string2, ...), 371
contains(string1, string2), 372
current, 366
current-date(), 367
current-dateTime(), 367
current-time(), 367
data(item, ...), 366
dateTime(date,time), 367
day-from-date(date), 368
day-from-dateTime(datetime), 368
default-collation(), 367
distinct-values((item1, item2,

...), collation), 370
document, 366
document-uri(node), 366
element-available, 366
empty(item1, item2, ...), 370
end-with(string1, string2), 372

error(), 369
error(error), 369
error(error, description), 369
error(error, description, error-

object), 369
escape-uri(stringurl, escres), 372
exists(item1, item2, ...), 370
false(), 367
floor(num), 370
format-number, 366
function-available, 366
generate-id, 366
hours-from-dateTime(datetime), 368
hours-from-duration(datetime

duration), 368
hours-from-time(time), 368
implicit-timezone(), 367
index-of((item1, item2, ...),

searchitem), 370
insert-before((item1, item2, ...),

position, inserts), 370
key, 366
lang(lang), 369
last(), 367
local-name(), 369
local-name(nodeset), 369
lower-case(string), 372
matches(string, pattern), 372
minutes-from-dateTime(datetime),

368
minutes-from-duration(datetime

duration), 368
minutes-from-time(time), 368
month-from-date(date), 368
month-from-dateTime(datetime), 368
months-from-duration(datetime

duration), 368
name(), 369
name(nodeset), 369
namespace-uri(), 369

402

XSLT elements (continued)

18_78544x bindex.qxp 7/18/06 3:18 PM Page 402

403

years-from-duration(datetimeduration) function (XSLT)

In
de

x

namespace-uri(nodeset), 369
nilled(node), 366
node-name(node), 366
node-set, 366
normalize-space(), 371
normalize-space(string), 371
normalize-unicode(), 372
not(blarg), 367
number(arg), 370
position(), 367
remove((item1, item2, ...),

position), 370
replace(string, pattern,

replacement), 372
resolve-uri(relative, base), 372
reverse((item1, item2, ...)), 370
root(), 369
root(node), 369
round-half-to-even(num), 370
round(num), 370
seconds-from-dateTime(datetime),

368
seconds-from-duration(datetime

duration), 368
seconds-from-time(time), 368
starts-with(string1, string2), 372
static-base-uri(), 367
string(argument), 371
string-join((string1, string2,

...), separator), 371
string-length(), 371
string-length(string), 371
string-to-codepoints(string), 371
subsequence((item1, item2, ...),

start, length), 371

substring-after(string1, string2),
372

substring-before(string1,

string2), 372
substring(string, start), 371
substring(string, start, length),

371
system-property, 366
timezone-from-date(date), 368
timezone-from-time(time), 368
tokenize(string, patternstring),

372
trace(value, label), 369
translate(string1, string2,

string3), 372
true(), 367
unordered((item1, item2, ...)), 371
unparsed-entry-uri, 366
upper-case(string), 372
year-from-date(date), 368
year-from-dateTime(datetime), 368
years-from-duration(datetime

duration), 367
XSS (Cross Site Scripting), 18
XUL (XML User Interface Language), 5

Y
year-from-date(date) function (XSLT),

368
year-from-dateTime(datetime)

function (XSLT), 368
years-from-duration(datetime

duration) function (XSLT), 367

18_78544x bindex.qxp 7/18/06 3:18 PM Page 403

19_78544x bob.qxp 7/18/06 3:18 PM Page 410

