

Bulletproof

Ajax
Jeremy Keith

Bulletproof Ajax
Jeremy Keith

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
800/283-9444
510/524-2221 (fax)
Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com
New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2007 by Jeremy Keith

Editor: Wendy Sharp
Copy Editor: Jacqueline Aaron
Production Editor: Hilal Sala
Indexer: Ron Strauss
Compositor: David Van Ness
Cover design: Mimi Heft
Interior design: Charlene Will

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the prepa-
ration of the book, neither the authors nor Peachpit Press shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software
and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested by the owner
of the trademark. All other product names and services identified throughout this book are used in editorial fashion only and for the
benefit of such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended
to convey endorsement or other affiliation with this book.

ISBN 0-321-47266-7
9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

www.newriders.com

For Jessica

Introduction .vi

Acknowledgments .viii

 CHAPTERONE What Is Ajax? . 1

Defining Ajax . 5

The Ajax Toolkit . 8

Summary . 12

 CHAPTERTWO JavaScript and the Document Object Model 13

JavaScript. 15

The Document Object Model . 34

Summary . 44

 CHAPTERTHREE XMLHttpRequest .45

Origins . 47

Create an Instance . 48

Send a Request . 51

Receive a Response . 56

Putting It All Together . 60

Summary . 65

 CHAPTERFOUR Data Formats .67

XML . 69

JSON . 77

HTML . 87

Summary . 92

Contents

 CHAPTERFIVE Hijax . 93

Progressive Enhancement . 95

Unobtrusive JavaScript . 96

Progressive Enhancement and Ajax 99

Hijax in Action . 103

The Deceptively Rich Client . 115

Summary . 117

 CHAPTERSIX Ajax Challenges . 119

Backward Compatibility . 121

Web Services . 125

Feedback . 126

Browser Behavior . 134

Wireframing . 137

Summary . 138

 CHAPTERSEVEN Ajax and Accessibility . 139

Understanding Screen Readers 141

Screen Readers and Ajax . 142

State of the Art . 146

The Future . 150

Summary . 151

 CHAPTEREIGHT Putting It All Together . 153

Planning . 155

Applying Ajax . 166

Bulletproofing . 182

Summary . 186

 CHAPTERNINE The Future of Ajax . 187

Libraries, Frameworks, and Toolkits, Oh My! 190

Choosing a Library . 193

Whither Ajax? . 194

Index . 197

Table of Contents v

This book has everything you need to get started with bullet-
proof Ajax. You’ll find solutions to the challenges Ajax poses,
illustrated with working examples. More importantly, you’ll find
explanations for the concepts and answers to the questions sur-
rounding Ajax. So don’t think of this as a programming book—
even though you’ll find plenty of code within. Instead, think of
this as a guidebook to help you chart the unknown territory of
using Ajax.

Ajax is a tricky technology to pin down. Most of the tools we
use to make Web sites can be divided into two categories:
browser technologies such as HTML, Cascading Style Sheets, and
JavaScript; and server-side technologies such as Apache, PHP,
and MySQL. Ajax sits somewhere between the browser and the
server. Ajax requires JavaScript, which is a client-side language,
but it also involves communication with the server. So whose job
is it anyway?

With the explosion of interest in Ajax, server-side programmers
are migrating to the browser in droves. They bring many years of
experience in software design and object-oriented programming
with them, but they aren’t necessarily prepared for the unique
challenges of developing in the browser. Meanwhile, client-side
developers dipping their toes into the waters of Ajax are con-
fronted with a tsunami of new technologies to be mastered.

Introduction

Introduction vii

There are plenty of books out there aimed at server-side programmers who
want to learn about Ajax. This isn’t one of them. If you’re a Java programmer
accustomed to creating complex objects, put this book down and move on to
the next book on the shelf.

If you’re a front-end developer, this is the book for you. You’re probably
well-versed in Web Standards. I trust you’re using semantic markup and CSS,
perhaps even some rudimentary DOM Scripting. If so, read on.

The prospect of learning Ajax may seem intimidating. Don’t worry: it’s not
as complicated as the hype suggests. As you’ll see, the JavaScript code
isn’t very complex. The hard part is making sure your Ajax applications are
 bulletproof.

In August 2005, New Riders published a great book called Bulletproof Web
Design, by Dan Cederholm. Dan’s philosophy centers around flexibility. Using
flexible design elements that adapt to the user’s needs, Web sites continue
to work beyond the typical browsing environment. I believe that the same
philosophy can be applied to Ajax.

Far too many Ajax applications are built like a house of cards, dependent
on just the right stack of technologies in the browser. Browsers that don’t
support the required technologies are locked out and their users are turned
away. To avoid this, you need to create flexible applications using bullet-
proof Ajax.

I’ve created a companion Web site (http://bulletproofajax.com/),
where you can download and try all the examples used in this book
(http://bulletproofajax.com/code/). If you’d like to keep track of the lat-
est developments in JavaScript and Ajax, visit my DOM Scripting blog at
http://domscripting.com/blog/.

http://bulletproofajax.com/
http://bulletproofajax.com/code/
http://domscripting.com/blog/

Dan Cederholm let me rip off the term bulletproof and use it for the title of
this book. I owe him my thanks and a nice bottle of Pinot Noir.

The entire book-writing process went smoothly thanks to the stewardship of
Wendy Sharp. She’s responsible for getting me to write this book in the first
place. Her dedication is beyond impressive: she managed to get the book
wrapped up while planning a move across the country.

Thanks to Jacqueline Aaron for her stellar copyediting work. She took my
leaden words and made me sound far more articulate than I deserve. I
thoroughly enjoyed our discussions of style, grammar, and punctuation.

Thanks to my good friend, colleague, and technical editor, Aaron Gustafson.
Working with Aaron was, as always, an absolute pleasure. Not only is he a
JavaScript wizard, he’s also a supremely cool dude.

I’m greatly indebted to Joe Clark, James Edwards, Derek Featherstone, Bruce
Lawson, and Gez Lemon, all of whom kindly agreed to read and comment on
my chapter on Ajax and accessibility. Any remaining inaccuracies are entirely
my own.

My colleagues at Clearleft, Andy Budd and Richard Rutter, have been very
patient with me while I’ve been skiving off work writing this book. Thanks for
your understanding, guys.

Much of the material for this book was road tested at workshops and presenta-
tions throughout 2006. Thanks to everyone who came along to hear me natter
on about this stuff. South by Southwest in Austin, Texas; XTech in Amsterdam;
@media and Barcamp in London; and Web Directions in Sydney were incred-
ibly fruitful sources of ideas and discussions. Thanks to Hugh Forrest, Edd
Dumbill, Patrick Griffiths, Ian Forrester, John Allsopp, Maxine Sherrin and
everyone else who put so much effort into those wonderful events.

Most of all, thanks to my wife, Jessica Spengler, for all the encouragement
and support she gave me while I was freaking out about writing. I love you.

Acknowledgements

1
What Is Ajax?

From Ancient Troy
to Modern Web Design

In Homer’s Iliad, Ajax is the name of the son of Telamon. As a
Greek warrior, he was famed for his strength and courage. He
carried a big ax and an even bigger shield to help in his fight
against the Trojans. He also had a very cool name.

The name Ajax is so cool that it was used more than once in
The Iliad. As well as the Telamonian Ajax, an Ajax the Lesser also
fought in the Trojan War. The name has been reused ever since.

Ajax is the name of a British battleship that took part in the
Battle of the River Plate in World War II. It was also the name of a
rocket ship in Flash Gordon. The name Ajax has been used for at
least four models of car, two record labels, a Dutch football team,
and an arcade game. When the Colgate-Palmolive Company
needed a cool name for a range of household cleaners, they
chose the name Ajax.

What is Ajax? 3

Ajax is one of those terms, like Excelsior or Excalibur, that can be relied upon
to conjure up images of strength. Perhaps the presence of an X, in combina-
tion with a mythological origin, is enough to bestow coolness on a word.

In the buzzword-filled world of Web design, it was almost inevitable that the
name Ajax would show up sooner or later.

THE BALLAD OF JESSE JAMES GARRETT
Jesse James Garrett is an information architect, author and founding part-
ner of the San Francisco–based company Adaptive Path. In February 2005,
he published an essay on the Adaptive Path Web site titled Ajax: A New
Approach to Web Applications (http://adaptivepath.com/publications/
essays/archives/000385.php).

Figure 1.1 Jesse James Garrett on the Adaptive Path Web site.

http://adaptivepath.com/publications/essays/archives/000385.php
http://adaptivepath.com/publications/essays/archives/000385.php

4 Chapter 1

In this essay, Garrett coined the term Ajax to describe techniques used by a
new kind of Web application. Google Suggest and Google Maps were dem-
onstrating that browser-based tools could offer the kind of interactivity and
responsiveness normally associated with desktop applications. But there
was thitherto no single word that could be applied to the technologies that
made these applications sizzle.

When the seminal essay first appeared on the Adaptive Path Web site, the
word AJAX was written using all uppercase letters. It was originally intended
to be an acronym standing for “Asynchronous JavaScript and XML.” While the
first letters of these words map very neatly to the cool name of our favorite
Trojan warrior, they aren’t very effective in describing the technologies in
question.

It’s true that most of the new breed of Web applications are asynchronous.
That is, interaction happens in the background without tying up the browser.
But, as we will see later on, this isn’t mandatory. It’s quite easy to specify
synchronous interaction.

The X for XML is particularly problematic. It implies that XML is a requirement
for Ajax applications. This simply isn’t true. To be fair, the letters XML also
appear in the word XMLHttpRequest—the core technology used in most
Ajax implementations—but XMLHttpRequest doesn’t sound very cool.

Jesse James Garrett later updated his essay, making it clear that Ajax is not an
acronym.

While Ajax may not work as an acronym, it’s an excellent way of encapsulat-
ing a group of technologies in one word. That didn’t stop some hardcore pro-
grammers from getting upset. “This is nothing new,” they cried. “We’ve been
doing this for years and calling it remote scripting. Ajax is just a buzzword.”

While a geeky term like remote scripting was never going to sound as cool
as a Trojan warrior, there was a kernel of truth to these petulant objections.
None of the technologies used for Ajax are particularly new. Still, that’s no
reason to dismiss the term outright.

The word Ajax is a short, simple handle that describes a methodology which
uses a cluster of technologies. It allows developers and clients alike to talk
about important aspects of usability and design in modern Web applications.

But what does it mean?

What is Ajax? 5

Defining Ajax
Jesse James Garrett’s newly coined term highlighted an explosion of activity
among Web developers. A lot of companies and individuals had been sepa-
rately exploring this new methodology. Now they had a word that they could
use to describe their work.

Just three months after the publication of the original essay, Adaptive Path
and O’Reilly Media organized an Ajax summit in San Francisco. Developers
and designers got together to show what they were working on and describe
how Ajax was changing the way they worked.

Following the summit, one of the attendees, Derek Powazek, described Ajax
like this: “If the traditional Web was letter writing, Ajax is instant messaging”
(http://www.powazek.com/2005/05/000520.html).

On traditional Web sites, the browser requests an entire page from the server.
Then, the user clicks on a link or submits a form, at which point the browser
sends a new request to the server. The server then sends another page.

Figure 1.2 The traditional model of the Web. A client machine sends a request
to the server. The server sends back an entire page. Rinse and repeat.

http://www.powazek.com/2005/05/000520.html

6 Chapter 1

The Ajax methodology moves away from this page-based model. When the
user interacts with a page (clicking a link, submitting a form, and so on), the
server sends back a discrete piece of information. Rather than serving up an
entire page, the currently loaded page is updated.

Figure 1.3 In the Ajax model, data is discretely transferred between the
client and the server. The server no longer has to send entire pages.

For the user, this results in a more fluid experience. While traditional Web
sites present users with a start-stop momentum, Ajax applications can offer
faster and more responsive feedback—continuously.

THE BIG DEAL
This is my simplified definition of Ajax: a way of communicating with a Web
server without refreshing the whole page.

This definition can provoke one of two responses. You could shrug your
shoulders and say, “What’s the big deal?” Alternatively, you could widen your
eyes and exclaim, “That’s amazing! It’s a whole new paradigm for the Web!”

The truth about Ajax lies somewhere in between. It is an exciting technology.
The ability to refresh just part of a Web page with information from a server
can be used to great effect. On the other hand, Ajax is just a tool. By itself,
it can’t create a good user experience. Content is still king.

What is Ajax? 7

OPTIONS
According to my simple definition, many technologies would fall under the
umbrella of Ajax.

Flash

Adobe Flash movies are now capable of communicating asynchronously with
a Web server. That means you can update the contents of a Flash movie with-
out a page refresh. That sounds like Ajax.

The Adobe Flex framework has given developers even more power. Flash is
now a viable technology for delivering rich, responsive Web applications.
(Detailing how to build Flash applications would take up an entire book. I’ll
leave that to someone else.)

Java applets

Java applets are little programs written in Java, not to be confused with
JavaScript. Much like Flash movies, these programs can be embedded in Web
pages. They are also capable of communicating with the server even after
they have loaded.

The speed and responsiveness of the applets varies enormously depend-
ing on the specifications of the end user’s machine. Java applets have never
really taken off.

Frames

Remember frames? They aren’t used very much these days, mostly because
they’re a usability nightmare.

If you build a Web page using a frameset, you can update just one frame
without updating every frame in the page. Technically, according to my defini-
tion, that’s Ajax.

My tongue is firmly in cheek. I’m not seriously suggesting that using frames
equates to building an Ajax application, but there are a lot of similarities.
As we’ll see later on, many of the usability problems caused by frames are
resurfacing in Ajax applications: problems with bookmarking and unexpected
behavior from the browser’s back button, for instance.

8 Chapter 1

Hidden iframe

Using an inline frame, or iframe, is a step up from a frameset. An iframe can
also be used as a secret conduit to a Web server. If a Web page contains a
tiny, practically invisible iframe, its source can be constantly updated. Using
JavaScript, the parent page can gather information from the updated iframe.

Google Maps uses a hidden iframe to communicate with the server. It’s a
clever solution, although it does feel slightly hackish.

XMLHttpRequest

The XMLHttpRequest object is an extension to JavaScript that allows Web
pages to communicate with a server. It’s perfect for creating Ajax applica-
tions. Jesse James Garrett had XMLHttpRequest in mind when he coined the
term Ajax.

The biggest problem with XMLHttpRequest is how long it takes to say it.
Even though there is an X in it, it was never going to catch on as a buzzword.
The word Ajax is a lot shorter and snappier, and it’s usually synonymous with
using the XMLHttpRequest object. That’s the kind of Ajax we’ll be dealing
with in this book.

The Ajax Toolkit
The XMLHttpRequest object is the engine that drives Ajax, but it doesn’t
exist in a vacuum. As Jesse James Garrett said in his original essay, “Ajax isn’t
a technology. It’s really several technologies, each flourishing in its own right,
coming together in powerful new ways.”

ANY SERVER-SIDE LANGUAGE
Chances are, you want your application to respond intelligently to a visitor’s
input. The server needs to be able to make decisions about what specific
information needs to be sent to the browser. In order to do that, you need to
use some kind of programming language on the server.

There are countless server-side languages to choose from: PHP, Java, Ruby,
Python, Perl, and many, many more. None of these languages is more suited
or less suited to Ajax than any other. On the server, Ajax is language agnostic.
Use whatever is most comfortable for you or your programming team.

What is Ajax? 9

XML?

You’d be forgiven for thinking that XML was a crucial component of Ajax appli-
cations. The term XMLHttpRequest itself, as well as its long-windedness, is
somewhat misleading.

XML, which stands for eXtensible Markup Language, is a format for describ-
ing data. Ajax applications require some kind of structured format to deliver
information from the server to the client. But XML is just one option. As we’ll
see later on, there are other ways of structuring data that are equally viable
for Ajax.

Valid markup

It’s entirely possible to build an Ajax application without using XML. But
there is another kind of markup language that is fundamental to any Web
site, with or without Ajax.

HyperText Markup Language (HTML) is the lingua franca of the World Wide
Web. It is used to give semantic structure to content on the Web. After the
content itself, markup is the most important and valuable tool for creating
Web pages.

There is a disturbing trend among “serious” programmers to treat markup as
a low-level technology that should be abstracted away from the developer.
I couldn’t disagree more. It doesn’t matter how clever or fast the server-side
programming is if the results are served up in carelessly generated markup.

Well-formed markup is a requirement if you want to manipulate a document
on the client side (which is precisely what Ajax does). If the document isn’t
well formed, processing the document becomes unnecessarily complex and
unpredictable.

Markup is well formed when its elements are correctly nested. Tags must
be closed in the reverse order in which they were opened. For instance, this
markup is not well formed:

<p>I told you to validate!</p>

The closing </p> tag appears before the closing tag. But the
opening tag appears after the opening <p> tag. This is the order in
which the closing tags should appear:

<p>I told you to validate!</p>

10 Chapter 1

The strong element is now correctly nested within the p element.

The simplest way to ensure that your markup is well formed is to make sure
that it is valid. The best tool for checking your markup’s validity is from the
World Wide Web Consortium (W3C) (http://validator.w3.org/).

A markup document is deemed valid if it correctly adheres to the guidelines
specified by the W3C. You can specify exactly which specification you are
using by including a Document Type Declaration, or doctype, at the top of
your document.

There are a number of different specifications that you can validate against.
These come in two different dialects: HTML and eXtensible HyperText Markup
Language, or XHTML.

HTML allows you to be more lax. Some elements don’t require closing tags,
and you can write the tags in uppercase or lowercase.

XHTML is simply HTML reformulated as XML. That means it’s a bit stricter. All
tags must be written in lowercase, and every element must be closed. For
stand-alone elements like line breaks and images, this is accomplished with
a closing slash at the end of the element:
, .

It is completely up to you whether to use HTML or XHTML to mark up your
pages. Some zealots have argued that XHTML should only be served up with
an XML MIME type. However, because some browsers can’t handle that MIME
type, they have also concluded that XHTML should be avoided completely.

Personally, I like the strictness of XHTML. The fact that all elements must
be closed ensures that the documents will be easier to process. Of course,
there’s nothing to stop me from closing every element in HTML either. But
by using an XHTML doctype, the validator is more likely to catch inadvertent
errors in my markup.

Cascading Style Sheets

HTML and XHTML are excellent for describing exactly what your content is.
They allow you to say, “This is a paragraph,” or “This is a headline.” But they
don’t (or shouldn’t) describe how the content is presented. The technology
for accomplishing that is Cascading Style Sheets, or CSS.

http://validator.w3.org/

What is Ajax? 11

Using CSS selectors, you can choose which elements in your document you
wish to style. Using the element selector, you can style all occurrences of an
element. The ID selector lets you target a uniquely identified element in the
document. The class selector finds all the elements marked up with a spe-
cific class. All of these selectors can be combined with one another to allow
for fine-tuned presentational control.

Once elements have been selected, they can be styled using declarations.
These declarations let you specify font size, color, and positioning.

Styles are usually declared in an external style-sheet file (or files), which is
then linked to from the head element in the markup document.

As well as updating the contents of a document in a browser, most Ajax appli-
cations also update styles. In order to update the structure or the presenta-
tion of a document, you need a client-side programming language that can
interface with the browser, the document, and its styles. That language is
JavaScript.

DOM Scripting

Most Web designers are familiar with CSS, HTML, and XHTML. These W3C-
approved technologies have come to be known as Web Standards. But there
are other standards that aren’t quite as popular.

In the same way that CSS can be used to specify the presentation of a docu-
ment, a combination of JavaScript and the Document Object Model, or the
DOM, can be used to specify the behavior of elements in a document.

The DOM is a standard that describes the structure of a document. In the
past, competing Web browsers implemented their own proprietary models.
The practice of controlling the behavior of a document was called Dynamic
HTML, or DHTML—a confusing term because it sounds like another flavor of
HTML. These days, the term DOM Scripting is used to describe standards-
based behavioral control. DOM Scripting is integral to Ajax.

12 Chapter 1

Summary
In this chapter, I’ve explored the history of the term Ajax and attempted to
define what it means. In some ways, it’s easier to explain what Ajax isn’t:

■ Ajax is not a specific technology.

■ Ajax is not an acronym.

Instead, Ajax is a methodology. It’s a way of working with a set of ingredients
to create a more usable, responsive experience on the Web. Some of those
ingredients are based on the server, but the majority are browser-based tech-
nologies:

■ HTML or XHTML

■ CSS

■ DOM Scripting

■ XMLHttpRequest

The XMLHttpRequest object is the glue that binds the server to the browser.
Before looking at this mysterious object in more detail, it’s important to have
a good grounding in the Web Standards upon which Ajax is built.

You’re probably already quite familiar with markup and CSS. You may be less
familiar with JavaScript and the Document Object Model. In the next chapter
I’ll give you a crash course in these two crucial parts of Ajax.

2
JavaScript

and the Document
Object Model

Back to the Basics

The most important technology in a Web designer’s toolkit is
HTML. Without a markup language, you can’t give the content
any structure. Once the markup structure is in place, it can be
enhanced with other technologies, such as CSS and JavaScript.

This chapter will serve as a crash course in JavaScript, a technol-
ogy that is essential for Ajax. If you are already well-versed in
JavaScript, you can skip this chapter although you might still
appreciate this reminder of syntax and terminology.

JavaScript and the Document Object Model 15

JavaScript
Whereas HTML is a markup language, JavaScript is a programming language.
Instead of specifying structure, it performs logical operations and calculations.

There are plenty of programming languages out there. What makes JavaScript
different is that it can be run from within a Web browser. JavaScript is also
found in other environments. It can be used to script PDFs, for example. But
it is JavaScript’s standing as the predominant client-side programming lan-
guage that makes it so useful for creating Ajax applications. On the Web, the
browser acts as an interpreter, capable of executing instructions that are writ-
ten in the JavaScript language.

Like CSS, JavaScript can be embedded in a Web page, often within the head
element. The most efficient way to use JavaScript, as with CSS, is to keep
it in external files. These files can then be referenced by a Web page using
<script> tags in the document’s head:

<script type="text/javascript" src="/path/to/file.js">

</script>

JavaScript is usually written procedurally. That means you specify what you
want to have happen in the order in which you want it to happen. The result
is a script, much like a script for a play or a movie.

STATEMENTS
A single JavaScript instruction is called a statement. A sequence of state-
ments is a script. A statement should always end with a semicolon:

statement one; statement two;

If a statement doesn’t end with a semicolon, but it does end with a line break,
JavaScript inserts a semicolon. It treats the statement as if it ended with a
semicolon:

statement one

statement two

This can lead to some sloppy programming habits. It’s best to always finish a
statement with a semicolon, even if the statement ends with a line break:

statement one;

statement two;

16 Chapter 2

Comments

Most statements in JavaScript can be read by machines. In order for a state-
ment to be successfully executed, it must be written in the syntax of the
programming language.

A comment is a special kind of statement that is intended for humans rather
than machines. A comment is a statement that is ignored by the machine
interpreting the script, but provides valuable information to people reading
the script. Comments can act as useful reminders for the programmer, and
explain more clearly what the script is trying to accomplish.

There are a number of ways to specify comments in JavaScript. If you want to
write a comment on a single line, you can simply preface that line with two
slashes:

// this is a comment

Because the JavaScript interpreter won’t execute this statement, there is no
need to add a semicolon at the end.

If you want to group a number of lines together as a comment block, you can
open the block with a slash followed by an asterisk, and close the block with
an asterisk followed by a slash:

/* This comment block

spans more than one line */

Documenting your code with comments makes life easier for yourself in
the future. If you ever need to return to a script that you wrote a long time
ago, any comments in the script help remind you of its purpose. Comments
are also very helpful if you work as part of a team and other people need to
understand your code.

At the same time, it’s important to remember that every comment adds a
little extra to the page weight and download time. Don’t go overboard with
comments. You will need to use your judgment in determining whether some
code is self-explanatory or whether it requires explanation.

VARIABLES
Variables are the building blocks of any script. A variable is a label that refers
to a value. Even if a value changes, its label stays the same. That makes vari-
ables very useful for storing, manipulating, and retrieving data.

JavaScript and the Document Object Model 17

Creating a variable is called declaration. In JavaScript, you declare a variable
using the var keyword:

var variablename;

Variable names can be made up of letters, numbers (although they can’t
begin with numbers), underscores, and some other characters. Spaces are
not allowed in variable names. To get around this, you can use an underline
to make variable names more readable:

var variable_name;

You can’t use a hyphen, though; it is interpreted as a minus sign.

Another aid to readability in naming variables is camelCasing. The way I’ve
written the word there is a self-describing example. Using an isolated upper-
case letter in an otherwise lowercase name helps differentiate between
words:
var variableName;

Variable names are case sensitive, so all of these examples would represent
different variables:

var variablename;

var VARIABLENAME;

var variableNAME;

var Variablename;

JavaScript has a number of reserved words that can’t be used as variable
names. Most of these are keywords that are used by the language itself: if,
else, for, while, var, and so on.

DATA TYPES
When a variable is first declared, its value is null. It contains no data.
Providing a value for a variable is called assignment. You can assign a value
to a variable using the equals sign. The value of a variable can be a string, a
number, a Boolean value, or an array. These are called data types.

Some programming languages demand that when you declare a variable,
you must also state what data type it will hold. In those languages, you can-
not change your mind later on. If you specified that a variable will contain a
string, you can’t use it to contain a number. This is called strong typing.

18 Chapter 2

JavaScript is a weakly typed language. You don’t have to specify what kind of
value your variable will contain. You can also change the data type of a vari-
able at any stage.

Strings

A string is a collection of characters. There are no forbidden characters
in strings. A string can contain letters, numbers, spaces, and any other
characters.

A string must be enclosed in quotation marks. You can use either single or
double quote marks, but you must be consistent within each string. If you
open a string with a single quote mark, it must close with a single quote mark:

var name;

name = 'Jeremy Keith';

You can declare a variable and assign its value in one statement:

var name = 'Jeremy Keith';

Multiple declarations and assignments can also be combined into one var
statement by using commas to separate variables:

var first_name = 'Jeremy', last_name = 'Keith';

Because quotation marks are used to indicate the start and the end of a
string, you would think they were forbidden characters within a string. In
fact, you can use them within a string, but you need to explicitly state that
they should be treated as part of the string itself. This is called escaping. In
JavaScript, the backslash is used to escape characters:

var remark = 'That\'s my name';

In this case, the problem can be avoided by using double quote marks:

var remark = "That's my name";

But if you use double quote marks to contain a string, any double quote
marks within the string need to be escaped with a backslash. These two
statements are functionally identical:

var remark = "He is 5'10\" tall";

var remark = 'He is 5\'10" tall';

JavaScript and the Document Object Model 19

It’s completely up to you whether you want to use single or double quote
marks. For consistency’s sake, it’s best to choose one or the other and stick
to it for the entire script instead of switching back and forth between the two.

Numbers

If you want a variable to contain a number, you don’t need to enclose the
value in single quotes, double quotes, or anything else. You can simply
assign the number to the variable:
var year = 2006;

Numbers don’t have to be positive. You can use negative numbers:

var score = -50;

You aren’t limited to whole numbers either:

var average = 7.59;

Boolean values

While there are an infinite number of possible values for strings and num-
bers, there are only two possible values for a variable that contains a
Boolean value. It is either true or false:

var happy = true;

var rich = false;

Boolean values aren’t contained within quotes. If I used quotes around the
word true, it would be a string.

Boolean values might seem very limited, but they underpin everything in a
programming language. Boolean logic is the driving force in every computer.
The flow of an electric current in a circuit is either on or off. It is either true or
false. This is why binary is the universal language of computing. One is true.
Zero is false.

As well as values for true and false, JavaScript has concepts of “truthiness”
and “falsiness.”

If a variable has been declared but hasn’t yet been explicitly assigned a
value, its default value, null, is a “falsey” value. It doesn’t have an explicit
value of false but testing the variable name will return false because null
is “falsey.”

20 Chapter 2

Once a variable has been assigned any value at all, it is “truthy.” This is very
useful if you need to test for the existence of a variable with any kind of
value. If the variable name evaluates to true, it exists and it has a value. If
the variable name evaluates to false, either it has never been declared, or no
value has been assigned to it.

Be careful, though. The number zero is a falsey value. So even if you explicitly
state that a variable has a value of zero, a simple Boolean comparison will
return false.

You can use one and zero as alternatives to true and false:

var happy = 1;

var rich = 0;

Arrays

All of the data types you’ve seen so far are called scalars. If a variable is a
scalar, it can hold a single value. There is another data type called an array.
Unlike a scalar, an array can hold multiple values within one variable. The
values held within an array are called members.

You can declare an array using the new keyword:

var fruit = new Array();

Or you can use brackets as shorthand:

var fruit = [];

In an array you can combine declaration and assignment in one statement,
just as you can in a scalar. To assign members to an array, separate each one
with a comma:

var fruit = ["apple", "orange", "banana"];

The members of an array can be strings, numbers, Boolean values, or other
variables. You can mix data types within an array:

var details = ["Jeremy Keith", 35, true];

Because an array itself is a kind of variable, you can store arrays within
arrays:

var fruit = ["apple", "orange", "banana"];

var meat = ["beef", "chicken", "lamb"];

var food = [fruit, meat];

JavaScript and the Document Object Model 21

When you combine declaration and assignment of an array, each member is
automatically given an index. An index is a number that denotes the mem-
ber’s position in the array. If you assign members after declaring an array, you
will need to provide an index for each member:

var fruit = [];

fruit[0] = "apple";

fruit[1] = "orange";

fruit[2] = "banana";

Notice that the index begins at zero. Unlike human beings, most program-
ming languages begin counting from zero instead of one.

To find out how many members are in an array, you can query the array’s
length. This alert statement pops up a dialog with the length of the
fruit array:

alert (fruit.length);

This gives a result of 3.

Wait a minute… aren’t we supposed to be counting from zero?

This is one of the confusing things about arrays. Although indices are
assigned beginning with zero, the length is calculated beginning with one.
So the length of an array will always be one more than the array’s last index.

The fruit array has three members. Its length is 3. The first member
is fruit[0], the second member is fruit[1], and the third member is
fruit[2]. There is no fruit[3], even though the length of the array is 3.

There is another kind of array, called an associative array, or hash. In an asso-
ciative array, strings are used for the indices instead of numbers:

var details = [];

details["name"] = "Jeremy Keith";

details["age"] = 35

details["married"] = true;

The value of a member can then be retrieved using the index string:

alert (details["age"]);

This returns the value 35.

22 Chapter 2

OPERATORS
Storing values in variables is handy, but a programming language needs to
do more than that. In order for JavaScript to fulfill your goal, it needs to per-
form the tasks you set it. The simplest kinds of tasks are called operations.

Arithmetic

Adding two numbers together is an operation. Subtracting one number from
another number is also an operation. These examples, as well as multiplica-
tion and division, are mathematical operations.

Each mathematical operation has a corresponding operator. The operator is
the symbol that indicates what kind of operation should be performed. For
addition, the operator is the plus sign. For subtraction, it’s the minus sign.
The operator for multiplication is the asterisk, and for division it’s the slash.

var addition = 5 + 3;

var subtraction = 15 - 7;

var multiplication = 4 * 2;

var division = 24 / 3;

Most useful of all, you can carry out operations on variables:

var year = 2006;

var age = 35;

var birth = year - age;

Some operations can be specified in shorthand. To decrement a number by
one, use two subtraction operators together:

var price = 10;

price--;

The value of price is now 9. This is equivalent to writing the following:

price = price - 1;

To increment a value by one, use two plus signs together:

var year = 2006;

year++;

JavaScript and the Document Object Model 23

The operator for addition, the plus sign, serves a dual role. As well as adding
up numbers, it can join strings together:

var adjective = "bullet" + "proof";

The variable adjective now contains the string "bulletproof" as its
value.

Joining strings together like this is called concatenation. As well as concat-
enating strings, you can concatenate a string with a number. The number is
automatically converted to a string, so the result is always a string:

var letters = "thx";

var numbers = 1138;

var result = letters + numbers;

The variable result contains the value "thx1138".

Comparison

Not all operations are mathematical. Sometimes you will want to compare
one value with another. Comparison operators allow you to do this.

Using a comparison operator, you can find out if one value is greater than
another, or if one value is less then another, or if two values are the same.
This is accomplished with the symbols for greater than (>), less than (<), or
two equals signs together (==). Remember, a single equals sign is used for
assignment, not comparison.

if

The result of a comparison is always a Boolean value, true or false. A com-
parison needs to be contained in a conditional control structure. The most
common control structure is the if statement.

if (x < y) {

// do something

}

After the if keyword, a comparison is written in parentheses. If the result of
the comparison is true, then everything in the curly braces will be executed.

if (x == y) {

 alert (x+" has the same value as "+y);

}

24 Chapter 2

You can extend the if statement with an else clause. If the comparison in
the if statement evaluates to false, then whatever follows the else clause
will be executed:

if (x > y) {

 alert (x+" is greater than "+y);

} else {

 alert (x+" is not greater than "+y);

}

As well as the more straightforward comparison operators, you can also
use these compound operators: >= means greater than or equal to, and <=
means less than or equal to.

If you want to find out if two values are not equal, you can negate the equal-
ity operator using an exclamation mark; != is the opposite of ==.

if (x != y) {

 alert(x+" is not equal to "+y);

}

Equality and identity

The equality and inequality operators check for truthiness and falsiness. If
two values are falsey, an equality comparison will return true.

If that sounded like complete gobbledygook, maybe this example will make
it clearer:

var x = false;

var y = 0;

if (x == y) {

 alert (x+" is equal to "+y);

}

The variable x has a value of false. The variable y has a value of 0 (zero).
Zero is another way of saying false, so the comparison evaluates to true.

To find out whether values are not just equal, but also identical, use the iden-
tity operator, which is three equals signs (===).

JavaScript and the Document Object Model 25

To recap, the equals sign has different meanings depending on how many of
them are used:

■ Use = for assignment.

■ Use == to find out if two values are equal.

■ Use === to find out if two values are identical.

The operator for “not identical to” is !== .

var x = false;

var y = 0;

if (x !== y) {

 alert(x+" is not identical to "+y);

}

Logic

Using an exclamation point to negate a comparison is an example of a logi-
cal operation. The exclamation point is the not operator. There are two other
logical operators, or and and.

The or operator lets you widen the scope of a control structure, such as an if
statement. When conditions are combined using the or operator, a result of
true will be returned as long as any of the conditions are met. The or operator
is represented by two vertical pipe symbols:

if (x < y || x > y) {

 alert (x+" is less than or greater than "+y);

}

The and operator, represented by two ampersands (&&), narrows the scope of
a control structure. When conditions are joined together with the and opera-
tor, all the conditions must be met in order for the control structure to return
true:

if (x < y && x > y) {

 alert ("This is impossible!");

}

No matter how many conditions are joined together inside the parentheses,
an if statement can only ever return either true or false.

26 Chapter 2

LOOPS
The if statement is an example of a conditional control structure. Other
control structures are used to execute the same piece of code over and over.
These are called loops.

while

The while statement looks a lot like the if statement. The difference is that
the statement or statements inside the curly braces will be executed as long
as the condition evaluates to true:

while (x < y) {

// do something

}

It’s important that something happens inside the curly braces to change the
condition so that it eventually evaluates to false. Otherwise, the loop will
carry on forever. Here, the alert statement will be looped five times:

var i = 0;

while (i < 5) {

 alert (x);

 x++;

}

If the test condition evaluates to false the very first time it is executed, the
statement or statements inside the curly braces will never be executed:

var i = 5;

while (i < 5) {

 alert ("You will never see this message.");

}

do . . . while

The do...while control structure is very similar to the while loop. The dif-
ference is that the statement or statements inside the curly braces will be
executed at least once:

var i = 5;

do {

 alert ("You will see this message once.");

} while (i < 5);

JavaScript and the Document Object Model 27

The loop is executed once, and then the test condition is evaluated. If the test
condition evaluates to true, the loop will be executed again:

var i = 0;

do {

 alert (i);

 i++;

} while (i < 5);

for

In the loops I’ve shown so far, I began by initializing a variable before the
loop. The loop itself has a test condition that uses the variable. Within the
loop, the value of the variable is altered, ensuring that the loop won’t execute
forever.

In the for loop, these three statements—the initialization statement, the
test condition, and the alteration statement—are all contained in parenthe-
ses and separated by semicolons:

for (var i = 0 ; i < 5 ; i++) {

 alert (i);

}

The for loop is especially useful for looping through all the elements in an
array:

var fruit = ["apple", "orange", "banana"];

for (var i = 0 ; i < fruit.length ; i++) {

 alert (fruit[i]);

}

In the initialization statement, I declare a variable called i and assign it a
value of 0 (zero). The test condition compares this value to the length of the
array. As long as i is less than the length of the array, the loop will be exe-
cuted. Finally, the value of i is incremented by one. The loop executes three
times: the length of the fruit array.

28 Chapter 2

FUNCTIONS
A function is a self-contained block of statements. Functions are very good at
holding reusable code.

You can declare a function by using the function keyword followed by the
name of the function you want to create:

function myFunction() {

// do something

}

Later on, you can execute the function like this:

myFunction();

The parentheses are there to take arguments. Arguments are values that you
can pass to a function. Within the function, they act just like variables.

When you create a function, you can specify how many arguments it takes
in a comma-separated list. Here is an example of a function that takes two
arguments:

function multiply(x,y) {

 var result = x * y;

 return result;

}

The multiply function takes the arguments x and y, and multiplies them
together. As well as accepting values, this function is returning a value at the
end using a return statement. A function doesn’t have to return a value, but
if it does, you can assign the result of a function to a variable:

var days_old = multiply (35, 365);

A function is actually a kind of variable. Suppose you have a function that you
have declared like this:

function shout() {

 alert("Hey!");

}

You could use a var statement to achieve the same result:

var shout = function() {

 alert("Hey!");

};

JavaScript and the Document Object Model 29

Note that because this is one long assignment statement, it culminates with
a semicolon. The function is still executed in the same way:

shout();

If you want to refer to a function without executing it, treat it like any other
variable and don’t include the parentheses:

var annoy = shout;

Now the variable annoy is a reference to the function shout. The variable
annoy is effectively a synonym for shout and can be executed the same way:

annoy();

If you include the parentheses when you assign a function to a variable,
JavaScript will assume that you want to assign the result of the function to
the variable. Here, instead of assigning a reference to the function shout to
the variable annoy, the shout function will be executed immediately:

var annoy = shout();

So you can’t include the parentheses when you’re storing a reference to a func-
tion, but what if you want to store a reference to a function with arguments?

Suppose I rewrote the shout function to take a single argument, message,
which is a string that will be output in the alert statement:

function shout(message) {

 alert (message);

}

Now I want the variable annoy to store a reference to that function with a
specific value for the message argument. This won’t work:

var annoy = shout("Hey!");

The shout function will be executed immediately instead of being stored for
later use.

The solution is to wrap the shout function in an empty function:

var annoy = function() {

 shout("Hey!");

};

This is called an anonymous function. As you’ll see later on, anonymous func-
tions are very useful for assigning functions to event handlers.

30 Chapter 2

Scope

If you declare a variable outside of a function, it is a global variable. That
means it can be used anywhere, even inside functions.

A local variable is declared within a function. It can’t be accessed outside the
function in which it is declared.

At first glance, it may seem that global variables are more useful because they
can be used everywhere. In practice, global variables cause more problems
than they solve. It’s very easy to accidentally change the value of a global vari-
able in an unrelated function. Local variables are much easier to keep track of
because they are confined to a function. Ideally, functions should be self-
contained, so it makes sense to use local variables whenever possible.

When we talk about where variables can be used, we are discussing vari-
able scope. Variables declared within functions have local scope. Variables
declared outside functions have global scope.

If you look at the multiply function again, you’ll see that the only variable in
it, result, has been explicitly declared inside the function, so its scope
is local:

function multiply(x,y) {

 var result = x * y;

 return result;

}

Suppose I hadn’t used a var statement:

function multiply(x,y) {

 result = x * y;

 return result;

}

When a value is assigned to the variable result, JavaScript needs to figure
out the scope of the variable. There is no explicit declaration of a variable by
that name within the function, so JavaScript assumes its scope is global and
creates a global variable called result.

This could lead to problems. Suppose I had previously declared a variable
called result outside the function. I want to use it to store a value for later
retrieval:

var result = 50;

JavaScript and the Document Object Model 31

Next, I use the multiply function:

var days_old = multiply(35,365);

alert (days_old);

That will output 12775, which is correct. But now look what happens if I out-
put the value of result:

alert (result);

That will output 12775 instead of 50, which was the value I had stored in
the variable. The value of result was overwritten in the multiply function
because JavaScript assumed I was referring to the same variable.

This could have been avoided if I had used a local variable within the multi-
ply function:

function multiply(x,y) {

 var result = x * y;

 return result;

}

var result = 50;

var days_old = multiply(35,365);

alert (days_old);

alert (result);

Now the value of result has not been overwritten, and the alert statement
correctly outputs a value of 50. I was able to use the same variable name
twice without clashing. The variable result inside the multiply function is a
local variable. The variable result outside the function is a global variable.
They share the same name but are different variables because they have dif-
ferent scopes.

As long as you use local variables inside functions, you won’t have to worry
about inadvertently overwriting an existing variable. If you remember to
always use a var statement the first time you assign a value to a variable,
everything should be OK.

OBJECTS
While a function is a self-contained collection of statements and local vari-
ables, an object is self-contained bundle of functions and variables. When
functions and variables are bundled up in this way, they are called methods
and properties.

32 Chapter 2

A method is a function that belongs to an object. A method can take argu-
ments, just like a function. To execute a method, it must be preceded by the
name of the object to which it belongs, and a dot:

object.method();

A property is accessed using the same kind of dot notation:

object.property;

You’ve already seen this kind of notation in action. Every time you access the
length of an array, you are referring to the length property of the Array
object:

array.length;

So an array is an object. It turns out that objects are everywhere in JavaScript.

Native objects

Every time you create a string variable, you are actually creating an instance of
a String object. There are numerous methods you can invoke on any string.
The toUpperCase method, for example, returns the string in capital letters:

var message = "hey!";

alert (message.toUpperCase());

This outputs the string "HEY!"

Strings and arrays are examples of native objects. They are part of the core
JavaScript language. JavaScript also provides a Math object and a Date
object. All of these objects come with presupplied methods and properties
that are very useful for carrying out common tasks. The Math object, for
example, provides a round method that can be used to round off to the
nearest whole number:

var num = 3.14

alert (Math.round(num));

This outputs the number 3.

User-defined objects

You aren’t limited to the objects that JavaScript provides for you. You can
create your own user-defined objects.

JavaScript and the Document Object Model 33

To begin with, create a new class of object. A class is a template from which
objects are made. Classes are created just like functions.

var Car = function() {

};

Using the this keyword, you can create properties and methods for this
class. The keyword this is shorthand for “the current object”:

var Car = function() {

 this.wheels = 4;

 this.start = function() {

 alert("Vroom!");

 };

};

The variable wheels is a property. The start function is a method.

To create a new object from the class Car, use the new keyword:

var mercedes = new Car();

You can invoke the start method like this:

mercedes.start();

The first statement creates a new instance of the Car class called mercedes.
The second statement executes the start method of the object.

Similarly, you can use dot notation to access the wheels property:

alert (mercedes.wheels);

Don’t worry if all this object stuff isn’t clear to you. Object-oriented program-
ming can be a tricky subject to understand. I will deal with user-defined
objects in more detail later.

Host objects

Whereas native objects are provided by the programming language, and
user-defined objects are created by the programmer, host objects are pro-
vided by the environment in which JavaScript is running. The host objects
provided for JavaScript running inside in a PDF viewer will be different from
the host objects inside a Web browser.

The most basic host object a Web browser provides JavaScript is the window
object. The properties of the window object provide information about the

34 Chapter 2

browser window, such as its size and position. The methods of the window
object allow programmers to create and manipulate browser windows. These
properties and methods are collectively known as the Browser Object Model.
You can thank the BOM for those hideous pop-up windows that pollute the
World Wide Web.

While the BOM lets you query and manipulate the browser window, it doesn’t
provide access to the document within that window. To manipulate the
contents of a page in a Web browser, the browser provides a different host
object: the document object.

The Document Object Model
Early browsers gave JavaScript limited access to some parts of the currently
loaded document through host objects such as forms and images. Version
4 browsers allowed access to more elements. Sadly, the competing browsers
implemented completely different models.

Suppose you had a div element with an ID of example:

<div id="example">

</div>

Netscape Navigator 4 allowed you to access that element in JavaScript using
this syntax:

var mydiv = document.layers["example"];

Internet Explorer 4, meanwhile, insisted on this:

var mydiv = document.all["example"];

Both statements achieve the same result. In order to get code working across
browsers, developers had to fork their code with if statements:

if (document.all) {

// do something for IE

} else if (document.layers) {

// do the same thing for NN

}

This situation was intolerable. Standardization was required and, thanks
to the W3C, it was provided in the form of the Document Object Model, or
the DOM.

JavaScript and the Document Object Model 35

GETTERS
The W3C DOM goes further than any of the proprietary models. It allows
access to any part of a document, whether it’s an element, a piece of text
within an element, or an attribute of an element. It isn’t limited to Web pages,
either. Any DOM-capable language can use the same methods to parse any
kind of markup document.

The DOM provides a number of methods for accessing the individual compo-
nents of a document. These methods are called getters.

getElementById

To access the "example" div with the DOM, you can use the getElement-
ById method of the document object:

var mydiv = document.getElementById("example");

This is similar to the ID selector in CSS:

#mydiv {

}

The syntax is different but the aim is the same: you are accessing a specific
element in the document so that you can manipulate it. With CSS, you can
provide style declarations that specify how the element should be presented.
With the DOM and JavaScript, you can query and update properties of the
element. This means it is possible to update the contents of a document even
after it has been loaded into the browser window.

getElementsByTagName

The similarities between CSS and DOM Scripting don’t stop with getEle-
mentById. CSS uses the element selector to get all the elements in a docu-
ment with a specific tag name. This is how CSS would fetch all the paragraph
elements in a document:

p {

}

The DOM provides an equivalent method with getElementsByTagName:

var paragraphs = document.getElementsByTagName("p");

36 Chapter 2

The variable paragraphs now contains a collection of all the p elements in
the document. You can treat this collection much like an array. You can find
out how many paragraphs are in the document through the length property:

alert (paragraphs.length);

You can also cycle through all the paragraphs by using a for loop:

for (var i=0; i < paragraphs.length; i++) {

// do something with paragraph[i]

}

CSS lets you combine selectors. You can select all the paragraph elements
within an element with the ID example:

#example p {

}

You can also do this with the DOM:

document.getElementById("example").getElementsByTagName("p")

getAttribute

CSS lets you apply styles to elements. That’s why all the selectors reference
elements. The DOM allows you to go deeper: you can retrieve the value for an
attribute.

Suppose you marked up a paragraph with a title attribute:
<p id="intro" title="introductory message">

</p>

Using the getAttribute method, you can retrieve the value of this attribute:

var introduction = document.getElementById("intro");

var title_text = introduction.getAttribute("title");

The variable title_text now contains the string "introductory
 message".

NODES
When you use methods like getElementById, getElementsByTagName, or
getAttribute, you are accessing nodes in the document. The term node is
normally used to describe connecting points in a network. You can think of a
Web page as a network of interconnected nodes.

JavaScript and the Document Object Model 37

There are three basic types of node that make up a document: element
nodes, text nodes, and attribute nodes. Text nodes and attribute nodes con-
tain the content of a Web page. Element nodes are the building blocks used
to structure that content.

Every node in a document is contained in another node. This means that the
network of interconnected nodes in a document has a very straightforward
structure: it is a tree of nodes. More specifically, it resembles a family tree.

Take a look at this simple XHTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

 <head>

 <title>Simple page</title>

 </head>

 <body>

 <h1>Welcome</h1>

 <p id="intro">This is a very simple document.</p>

 </body>

</html>

Figure 2.1 A simple document as viewed in a browser.

38 Chapter 2

If you view this document in a browser, you will see something like Figure 2.1.
The node tree of this document is shown in Figure 2.2.

Figure 2.2 The node tree of a simple document.

The DOM uses the terminology of a family tree to describe the relationship
between nodes. The html element is the parent of the head element and the
body element. That means the head and body elements are siblings. The
head element is the parent of the title element. That means the title
element is a child of the head element.

These relationships can be accessed through DOM properties.

parentNode

The parentNode property of a node will return a reference to an element
node. Only element nodes are capable of being parents.

var introduction = document.getElementById("intro");

var container = introduction.parentNode;

The variable container now contains a reference to the body element. If you
were to access container.parentNode, you would get a reference to the
html element. So, using the parentNode property, you can work your way
right up through the node tree.

JavaScript and the Document Object Model 39

Every node in a document has a parentNode. Every piece of text must be
contained within an element. Every attribute must belong to an element.
Every element, apart from the html element, must be contained within
another element node. Even the html element has a parentNode, namely
the document object itself.

childNodes

The childNodes property of an element node will return a collection of
nodes. You can loop through these nodes just as you can loop through the
elements of an array. The childNodes property has a length property that
provides the number of children an element contains. If an element has no
children, the childNodes property will return an empty collection with a
length of zero.

Only element nodes are capable of having children.

Note that some browsers calculate nodes differently than others. Some
browsers treat line breaks and white space between elements as new text
nodes, while others ignore them. This could lead to inconsistent results from
browser to browser.

You can see this for yourself by testing this code in different browsers:

var introduction = getElementById("intro");

var container = introduction.parentNode;

var children = container.childNodes;

alert (children.length);

More often than not, you’ll be interested in getting the elements contained
by a parent. In that case, the childNodes property is overkill because it also
returns text nodes and attributes. Instead, use the getElementsByTagName
method and pass it the wildcard character, which is an asterisk:

var all_elements = document.getElementsByTagName("*");

The variable all_elements now contains a collection of all the elements in
the document. Most of the time, you won’t use the wildcard character on the
whole document. Instead, you will use getElementsByTagName("*") on a
specific element.

var introduction = getElementById("intro");

var container = introduction.parentNode;

var elements = container.getElementsByTagName("*");

alert (elements.length);

40 Chapter 2

firstChild

The firstChild property of an element node returns a reference to the first
node in the element’s childNodes collection. It is a shorthand way of saying
childNodes[0].

lastChild

Similarly, the lastChild property returns a reference to the last node in an
element’s childNodes property.

previousSibling

If two nodes share the same parent, they are siblings. That means they both
reside in the parent element’s childNodes collection. The previousSib-
ling property of a node returns a reference to the node that comes before it
in the parent’s childNodes property.

nextSibling

Like previousSibling, the nextSibling property returns a reference to
a node that shares the same parent as the current node. Specifically, it pro-
vides a reference to the next node in the parent’s childNodes property.

nodeValue

As you can see, it’s possible to use DOM methods and properties to navigate
all around a document from any starting point. But all of these methods and
properties only return references to nodes. If you want to retrieve the content
of a node, you need to use the nodeValue property.

Suppose I wanted to retrieve the text that’s sitting inside the paragraph with
the ID intro. I might be tempted to use the nodeValue property like this:

var introduction = document.getElementById("intro");

alert (introduction.nodeValue);

But this produces a result of null. The nodeValue for any element node
is null. What I actually want to get is the value of the text node contained
within the element:

JavaScript and the Document Object Model 41

var introduction = document.getElementById("intro");

var text = introduction.firstChild;

alert (text.nodeValue);

Similarly, if I wanted to get the value of the text within the h1 element, this is
what I would do:

var headers = document.getElementsByTagName("h1");

var text = headers[0].firstChild;

alert (text.nodeValue);

I start by getting all of the elements with the tag name “h1.” In this case,
there is only one h1 element, so I’m only interested in the first element in the
collection. The firstChild property of this element is the text node I’m try-
ing to get to. By accessing the nodeValue of that text node, I get the string of
text I wanted.

I can do all of that in one statement, but it isn’t as readable:
alert (document.getElementsByTagName("h1")[0].firstChild.

nodeValue);

SETTERS
The ability to navigate the node tree of a document is useful, but the real
power of the DOM is its ability to manipulate the node tree. DOM methods let
you add and remove nodes from a document. These methods are the setters.

There are three methods for creating nodes. These methods correspond to
the three types of node that make up a node tree: element nodes, text nodes,
and attribute nodes.

createElement

The createElement method allows you to conjure up a new element node.
It takes a single argument, which is the tag name of the element you want to
create.

This creates a new paragraph element:

var para = document.createElement("p");

This newly created paragraph element doesn’t appear in the document.
It’s floating around in JavaScript limbo, waiting to be inserted somewhere
in the document.

42 Chapter 2

createTextNode

The createTextNode method works just like the createElement method,
except that, as you might expect, it creates a text node. The single argument
it takes is a string of text:

var text = document.createTextNode("I made this!");

Again, this won’t automatically appear in the document.

setAttribute

The setAttribute method is the corollary of getAttribute. It lets you spec-
ify a value for an attribute of an element. The method takes two arguments: the
name of the attribute, and the value you want to set for the attribute.

This sets the title attribute of the paragraph element node referenced by
the variable para:

para.setAttribute("title","generated content");

appendChild

The appendChild method allows you to insert one node into another node.
In other words, you can specify that one node should be the child node of
another.

This inserts a newly created text node into a newly-created paragraph element:

var para = document.createElement("p");

var text = document.createTextNode("I made this!");

para.appendChild(text);

appendChild is always a method of an element node. Remember, only ele-
ment nodes can be parents.

This same method can be used to insert generated nodes into the document.

Going back to our simple document, suppose I wanted to update the node
tree by adding a new paragraph before the closing </body> tag. This is the
original markup:

<body>

 <h1>Welcome</h1>

 <p id="intro">This is a very simple document.</p>

</body>

JavaScript and the Document Object Model 43

Here’s the generated content I want to insert:

var para = document.createElement("p");

var text = document.createTextNode("I made this!");

para.appendChild(text);

para.setAttribute("title","generated content");

That creates a chunk of markup, referenced by the variable para, which looks
like this:

<p title="generated content">I made this!</p>

I want to make this paragraph element a child node of the body element.

The easiest way for me to get into the document is by accessing the element
that has a unique ID:

var introduction = document.getElementById("intro");

Now I can create a reference to the body element because it’s the parent of
the element I’ve accessed:

var container = introduction.parentNode;

Finally, I append my generated content using appendChild:

container.appendChild(para);

This adds the para node to the childNodes collection of the body element.
When a node is inserted into an element using appendChild, the inserted
node becomes the lastChild of that element.

removeChild

The opposite of appendChild is removeChild. This method lets you remove
a specified child node from an element.

This removes the text node that’s inside the paragraph with the "intro" ID:

var introduction = document.getElementById("intro");

var text = introduction.firstChild;

introduction.removeChild(text);

44 Chapter 2

Summary
The combination of JavaScript and the Document Object Model is very power-
ful. In this chapter, I’ve covered the basics of the JavaScript language and I’ve
shown you some of the most useful properties and methods of the DOM.

DOM Scripting can be used to achieve some very impressive results. The
structure and content of a Web page can be updated, even after the docu-
ment has loaded. But this isn’t Ajax.

Ajax involves some communication with the server. Ajax and DOM Scripting
are very closely linked: you can use DOM Scripting to update a document
with information sent from the server via Ajax. In order to retrieve that infor-
mation from the server, you need to go beyond the DOM.

In the next chapter, I will introduce you to a mysterious and powerful object
called XMLHttpRequest.

3
XMLHttpRequest

The Object of the Game

The XMLHttpRequest object isn’t part of the DOM. Until recently,
it wasn’t part of any W3C specification. The success of Ajax has
spurred the World Wide Web Consortium into unusually swift
action. You can now find a working draft of a specification for
the XMLHttpRequest object on the W3C site (www.w3.org/TR/
XMLHttpRequest/).

www.w3.org/TR/XMLHttpRequest/
www.w3.org/TR/XMLHttpRequest/

XMLHttpRequest 47

Origins
The idea for an object that can communicate between the client and the
server originated with Microsoft. The developers of Microsoft’s Web-based
mail client, Web Access 2000, needed some way of asynchronously trans-
ferring information to and from the browser. The development team for
Microsoft Internet Explorer scratched that itch. Internet Explorer 5.0 for
Windows was the first Ajax-capable Web browser.

The first implementation of this object was called XMLHttp, and Microsoft
made it available only as an ActiveX object. ActiveX is a proprietary Microsoft
technology designed for embedding multimedia files in Web pages. In some
ways it is a competitor to the Java applet. Both Java applets and ActiveX con-
trols allow developers to embed powerful tools inside a document in a Web
browser. This power could potentially be abused; the threat of malicious
ActiveX controls has continuously shrouded the technology with security fears.

The developers behind the Mozilla project followed Microsoft’s lead, but they
implemented the XMLHttpRequest object natively. Mozilla 1.0 was released
in 2002. The same code base forms the basis of Netscape Navigator since
version 6, as well as the Mozilla Firefox browser. Apple’s Safari has included
support for XMLHttpRequest since version 1.2. The Opera browser has been
Ajax capable since version 8. XMLHttpRequest is even supported in the
mobile browser, Opera Mini.

All of these browsers implement XMLHttpRequest natively. That leaves only
Internet Explorer versions 5 to 6 requiring ActiveX support. Microsoft has
decided to abandon the ActiveX approach and Internet Explorer 7 imple-
ments the XMLHttpRequest object just as any other modern browser does.

It’s worth remembering that just because a visitor to your site is using a
browser that is technically Ajax capable, it doesn’t necessarily mean that Ajax
is an option. JavaScript can be switched off. In the case of Internet Explorer
before version 7, even if JavaScript is switched on, ActiveX support might be
disabled because of security concerns.

48 Chapter 3

Create an Instance
Creating a new instance of an XMLHttpRequest object is quite straight-
forward in most browsers:

var xhr = new XMLHttpRequest();

But it isn’t that simple in Internet Explorer. You need to create a new instance
of an ActiveX object:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

Other browsers will choke on that. Meanwhile, Internet Explorer will choke on
the syntax for creating an instance of the native object. The solution is to test
for the existence of the object before attempting to create an instance:

if (window.XMLHttpRequest) {

 var xhr = new XMLHttpRequest();

}

This is called object detection. Here’s the object detection to test for the exis-
tence of ActiveX:

if (window.ActiveXObject) {

 var xhr = new ActiveXObject("Microsoft.XMLHTTP");

}

To save yourself from writing this every time you want to do some Ajax, you
can wrap up the object detection in a reusable function:

function getHTTPObject() {

 var xhr = false;

 if (window.XMLHttpRequest) {

 xhr = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 }

 return xhr;

}

The function, called getHTTPObject, begins by declaring a variable called
xhr and assigning it a Boolean value of false. The plan is to change this
value over the course of the function.

An if...else statement takes care of the object detection. First, test for
the existence of the native XMLHttpRequest. If such an object exists, change

XMLHttpRequest 49

the value of xhr to a new instance of the object. If not, test for the existence
of ActiveXObject. If that exists, assign a new instance of Microsoft’s
XMLHTTP ActiveX object to xhr.

Finally, return the value of xhr at the end of the function. At this stage, there
are three possible values that the variable could have:

■ An instance of the native XMLHttpRequest object.

■ An instance of an ActiveX object.

■ A value of false.

You can use the function like this:

var request = getHTTPObject();

This assigns the result of the getHTTPObject function to the variable
request. You can now treat this variable as an instance of a cross-browser
XMLHttpRequest object.

It is still possible that the getHTTPObject function has returned a value of
false, meaning that the browser executing the script does not have Ajax
capabilities. If you explicitly check for this, you can make sure you won’t be
asking older browsers to execute code beyond their ability:

var request = getHTTPObject();

if (request) {

// do some Ajax

}

BULLETPROOF INSTANTIATION
The getHTTPObject function works fine most of the time. But it does con-
tain an assumption. Just because a browser supports ActiveX doesn’t neces-
sarily mean that the specific ActiveX object for Ajax also exists.

This is the case with Internet Explorer 5 for Mac. As it stands, the
getHTTPObject function throws an error in that browser.

One solution might be to look at the user-agent string of the browser and check
its name and version number. This is called browser sniffing. It’s a very bad
idea. User-agent strings can be spoofed, and browser sniffing inevitably trig-
gers false positives. Object detection is always preferable to browser sniffing.

In this particular case, you can use object detection to test only for the exis-
tence of ActiveX, not for a particular type of ActiveX object.

50 Chapter 3

JavaScript has a useful control structure for situations like this called the
try...catch statement. Using this statement, you can attempt to execute
some code and, if it doesn’t work, you can catch the error. The error won’t be
displayed in the browser.

if (window.ActiveXObject) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 xhr = false;

 }

}

The try block contains the attempt to assign an instance of the ActiveX
object to the variable xhr. If that doesn’t work, the catch block sets the
value to false.

The try...catch statement can be used to refine the getHTTPObject func-
tion even further. Later versions of Internet Explorer can use a newer ActiveX
object to handle Ajax. Using a series of try...catch statements, you can
attempt to use the newest version and, if that fails, fall back to the older way:

if (window.ActiveXObject) {

 try {

 xhr = new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 xhr = false;

 }

 }

}

The finished function look like this:

function getHTTPObject() {

 var xhr = false;

 if (window.XMLHttpRequest) {

 xhr = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 try {

 xhr = new ActiveXObject("Msxml2.XMLHTTP");

XMLHttpRequest 51

 } catch(e) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 xhr = false;

 }

 }

 }

 return xhr;

}

After all that code forking, you now have a bulletproof way of instantiating
an instance of XMLHttpRequest. Don’t worry: most of the cross-browser dif-
ferences end here. Once you’ve created an object with getHTTPObject, its
methods and properties will be the same regardless of whether it’s native or
an ActiveX object.

Send a Request
Once you have created an instance of XMLHttpRequest, it needs to be
prepped for communication with the server. There are three critical compo-
nents for doing this:

1. The onreadystatechange event handler.

2. The open method.

3. The send method.

ONREADYSTATECHANGE
Event handlers let you specify what behavior should occur when an event is
triggered. Most events are triggered by the user. When a user places her cursor
over an element in a Web page, the mouseover event for that element is trig-
gered. The corresponding event handler is onmouseover. When a user submits
a form, its submit event is fired. The event handler for this is onsubmit.

Event handlers have been crucial to the success of JavaScript on the Web.
For years, the most common uses of JavaScript were image rollovers and
form validation. Those tasks rely on event handlers such as onmouseover,
onmouseout, onblur, onsubmit, and so on.

52 Chapter 3

Not all events are triggered by the user. The load event is fired when a
document in the browser window has finished loading. The event handler is
window.onload.

The onreadystatechange event handler is rather unusual, and not just
because of its ludicrously long name. It is the handler for an event that is
triggered not by the user, but by the server.

During an Ajax operation, the server sends updates to the client about
the current status of the communication. This is done by updating a prop-
erty of the XMLHttpRequest object. The property is called readyState,
which we’ll study in more detail later in this chapter. What interests us
now is the fact that every time the readyState property is changed, the
 readystatechange event is triggered.

Whenever the onreadystatechange event handler captures this event, it
means something is happening on the server. Changing the readyState
property is the server’s way of pinging the client.

If you attach a function to the onreadystatechange event handler, that
function will be executed every time the server pings the client with an
update. Here’s an example:

var request = getHTTPObject();

if (request) {

 request.onreadystatechange = doSomething;

}

I’m assigning a reference to a function called doSomething to the
 onreadystatechange event handler. The doSomething function will be
executed every time the readystatechange event is triggered.

I’ve specified what I want to happen when the server sends an update to the
client. I still need to specify exactly what I want from the server.

OPEN
When a Web browser asks for a page from a Web server, it issues a request.
First and foremost, this request specifies the location of the file on the server
that the browser wants to receive. The request might also include more infor-
mation, such as data inputted through a form. The browser also specifies
how the request is sent to the server. This is usually a GET request, unless a
lot of data is being sent, in which case the browser uses a POST request.

XMLHttpRequest 53

The open method of the XMLHttpRequest object lets you replicate this kind
of transaction in an Ajax call.

This method takes two required arguments:

1. The type of request.

2. The location of the file on the server.

Method

The first argument of the open method is a string such as "GET" or "POST".
If you just want to retrieve a file from the server, but you don’t need to send
any data, use a GET request. If you want to send data to the server, use POST.

GET and POST are examples of request methods, not to be confused with
methods of an object. In this sense, method simply means the type of
request. Other methods include PUT, DELETE, and HEAD.

You can send some data in a GET request by appending a query string to
the URL you are requesting. There is a limit on how much data can be sent
to the server this way. Also, GET should never be used to send requests that
will update something on the server, such as editing or deleting a record in
a database.

URL

The second argument of the open method is a string that contains the path
to the file on the server that you want to request. This string can be a rela-
tive path such as “.../myfile.html” or an absolute path such as “/files/
myfile.html”.

You could also write out the full path to the file you are requesting:

http://www.example.com/files/myfile.html

The file you are requesting must reside in the same domain as the JavaScript
file that is making the request. If the JavaScript file is being executed from
foo.com, it cannot request a file from bar.com. Later on, I will show you some
ways of getting around this security restriction, but for now, it’s best to think
of XMLHttpRequest as being domain-specific.

54 Chapter 3

Asynchronous

As well as the two required parameters, request method and URL, the open
method also accepts some optional arguments.

You can specify a Boolean value as the third argument for the open method.
This indicates whether the request should occur asynchronously or not.

If you specify a value of true, then the script will make an asynchronous
request. This means it won’t wait for a response from the server before mov-
ing on to the rest of the script.

If you specify a value of false, then the processing of the script will stop at
that point. The script won’t resume until the Ajax request is completed.

Halting the execution of a script is rarely a good idea. If the server takes
a long time to respond, the browser will effectively stop. One of the great
advantages of Ajax is its ability to process requests in the background while
the user carries on interacting with the browser. To make use of this, always
pass a value of true as the third argument in the open method.

Here’s a statement that describes an asynchronous GET request to a file in
the same directory as the script:

request.open("GET", "file.ext", true);

User name and password

There are two other optional arguments that you can include in the open
method. You can specify a user name and a password to be sent to the
server.

Never write sensitive information straight into a JavaScript file. It would be a
really bad idea to use the open method like this:

request.open("GET", "file.ext", true, "jeremy", "pa55w0rd");

Anybody can view the source of a JavaScript file, just as anybody can view the
source of a Web page or a CSS file. JavaScript, HTML, and CSS can be obfus-
cated, but they can never be hidden completely.

You could use the user name and password arguments of the open method
to accept values that have been inputted through a form. At least that way,
the values aren’t hard-coded into a file that’s viewable in the browser.

In practice, it is unlikely that you will ever need to make use of these
arguments.

XMLHttpRequest 55

SEND
The open method specifies the details of an Ajax request, but it doesn’t initi-
ate the request. Use the send method to fire off a request that you have pre-
pared using the open method.

The send method takes a single argument. You can pass it a string of data
that will then be sent to the server.

If you are using the GET request method, don’t send any data. Instead, pass a
value of null to the send method:

request.send(null);

A complete Ajax GET request looks like this:

var request = getHTTPObject();

if (request) {

 request.onreadystatechange = doSomething;

 request.open("GET", "file.ext", true);

 request.send(null);

}

If you need to send data to the server, use the POST request method. Send
the data as a query string like this:

name=Jeremy+Keith&message=Hello+world

A query string is made up of name-value pairs joined by ampersands. Each
name and value should be URL-encoded. That means spaces become plus
signs and non-alphanumeric characters need to be encoded as hex values.
The @ symbol becomes %40, for example.

To send data, you need to use one more method of the XMLHttpRequest
object.

setRequestHeader

When a Web browser requests a page from a Web server, it sends a series
of headers along with the request. These headers are bits of metadata that
describe the request. A header is used to declare whether a request is GET
or POST.

This ability to send headers can be reproduced in an Ajax request using a
method called setRequestHeader. This method accepts two arguments,

56 Chapter 3

both of which are strings. The first string specifies the name of the header,
and the second string is the value of that header.

If you are sending data to the server with a POST request, you need to set the
value of the "Content-type" header to
"application/x-www-form-urlencoded":

request.setRequestHeader("Content-type", "application/

x-www-form-urlencoded");

This lets the server know that data is being sent, and that the data has been
URL-encoded.

A complete Ajax POST request looks like this:

var request = getHTTPObject();

if (request) {

 request.onreadystatechange = doSomething;

 request.open("POST", "file.ext", true);

 request.setRequestHeader("Content-Type", "application/

x-www-form-urlencoded");

 request.send("name=Jeremy+Keith&message=Hello+world");

}

Now you know how to send requests to the server using XMLHttpRequest.
Next you’ll need to deal with the response from the server.

Receive a Response
Requests are sent to the server using methods of XMLHttpRequest. The
object also has a number of properties. Over the course of an Ajax transac-
tion, these properties are updated by the server.

READYSTATE
The readyState property indicates the current state of an Ajax request. Its
value is numerical:

■ 0 Uninitialized. The open method hasn’t been called yet.

■ 1 Loading. The open method has been called, but the send method hasn’t.

■ 2 Loaded. The send method has been called. The request has begun.

XMLHttpRequest 57

■ 3 Interactive. The server is in the process of sending a response.

■ 4 Complete. The server has finished sending a response.

Every time the value of readyState changes, the readystatechange event
is triggered. If a function has been assigned to the onreadystatechange
event handler, it will be executed every time readyState changes value.

In theory, the value of the readyState property will change in numerical
order from 0 to 4. In practice, the order in which readyState changes varies
from browser to browser. Still, every browser finishes with a readyState
value of 4 when the request is completed.

Rather than trying to do anything clever with the changing readyState prop-
erty, it’s best just to wait until its value has reached 4. Then you know the
server has finished sending a response.

You can compare the value of the readyState property to the number four
using a simple if statement:

function doSomething() {

 if (request.readyState == 4) {

// do something with the response

 }

}

The doSomething function will be executed more than once because it has
been assigned to the onreadystatechange event handler:
request.onreadystatechange = doSomething;

Every time the readyState property changes, doSomething is executed,
but the if statement in the function ensures that nothing will happen until
readyState has a value of 4.

STATUS
In the same way that a Web browser sends headers with each request it makes,
a Web server sends headers with each response it sends. These headers con-
tain information about the server, as well as information about the document
being served. This information includes the document’s content type (HTML,
XML, and so on) and character encoding (utf-8, iso-8859-1, and so on).

The most important header sent with any response from a Web server is the
status code. This three-digit numerical value, which the server sends with
every response to a request, is part of the HyperText Transfer Protocol (HTTP)

58 Chapter 3

that drives all communication on the Web. I’m sure you’re familiar with the
404 status code, which translates to “Not Found.” Some other codes are 403
for “Forbidden,” and 500 for “Internal Server Error.”

The most common status code is 200, which means “OK.” This code indicates
that the server successfully sent the requested resource.

In the XMLHttpRequest object, the status code sent by the server is avail-
able as a property called status. By comparing this property to a value of
200, you can be sure that the server has sent a successful response:

function doSomething() {

 if (request.readyState == 4) {

 if (request.status == 200) {

// the response was sent successfully

 }

 }

}

The first if statement within the doSomething function compares the
readyState property to a value of 4. When that evaluates to true, meaning
that the response is finished being sent, the second if statement is exe-
cuted. This compares the status property to a value of 200. If that evaluates
to true, everything is fine.

By adding an else clause, you can also deal with situations where everything
doesn’t go according to plan:

function doSomething() {

 if (request.readyState == 4) {

 if (request.status == 200) {

// the response was sent successfully

 } else {

// something went wrong!

 }

 }

}

200 isn’t the only server code that indicates a successful response. A value of
304 translates as “Not Modified.” The server sometimes returns this response
if a browser performs what’s known as a conditional GET request. The Opera
browser uses conditional GET requests. In this situation, the server may return
a response of 304, indicating that the document hasn’t changed since it was
last requested, so the browser can safely use a cached version.

XMLHttpRequest 59

To accommodate this behavior, test the status property for a value of 304,
as well as 200:

function doSomething() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

// the response was sent successfully

 } else {

// something went wrong!

 }

 }

}

RESPONSETEXT
The responseText property of XMLHttpRequest contains the data sent
from the server. It is a string. Depending on what the server is sending, this
might be a string of HTML, a string of XML, or just a string of text.

The complete responseText property is available when the readyState
property reaches four, indicating that the Ajax request is complete:

function doSomething() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 alert(request.responseText);

 }

 }

}

In this example, the contents of the responseText property will be dis-
played in an alert message.

RESPONSEXML
If the server is sending back XML, then this data will be available in a prop-
erty called responseXML. The responseXML property will be available only
if the server sends the data with the correct headers. The MIME type must be
text/xml.

In the next chapter, I will show you how to parse XML from the responseXML
property.

60 Chapter 3

Putting It All Together
I’m going to use Ajax to display the contents of a text file. The text file, called
message.txt, contains a simple line of text:

If you can read this, you have successfully requested a text

file from the server.

Now I’m going to write a script that will fetch this file and display its contents
in an alert message. The JavaScript is written in a file called ajaxtest.js
which is located in the same directory as message.txt.

THE JAVASCRIPT
The script begins with the getHTTPObject function:

function getHTTPObject() {

 var xhr = false;

 if (window.XMLHttpRequest) {

 xhr = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 try {

 xhr = new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 xhr = false;

 }

 }

 }

 return xhr;

}

Next, write a function called grabFile. This function takes a single argu-
ment, which is the location of the file I want to display:

function grabFile(file) {

}

XMLHttpRequest 61

The grabFile function begins by creating a new instance of
XMLHttpRequest using the getHTTPObject function. If that is successful,
then I will initiate an Ajax request:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 }

}

I want to attach a function called displayResponse to the
onreadystatechange event handler. I also want to pass an argu-
ment to the displayResponse function, namely the current
instance of XMLHttpRequest. To do this, I need to wrap up the
call to displayResponse inside an anonymous function:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 displayResponse(request);

 };

 }

}

Using the send method, I specify the details of the request. This is a GET
request; the location of the file being requested is taken from the function’s
file argument, and the request will be asynchronous:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 displayResponse(request);

 };

 request.open("GET", file, true);

 }

}

62 Chapter 3

Finally, I set the request in motion using the send method. Because this is a
GET request, no data is being sent:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 displayResponse(request);

 };

 request.open("GET", file, true);

 request.send(null);

 }

}

To handle the response, I need to write the displayResponse function that’s
referenced from the onreadystatechange event handler. This function
takes a single argument, which is an instance of XMLHttpRequest:

function displayResponse(request) {

}

In this way, the current XMLHttpRequest object can be passed around from
function to function.

I don’t want to do anything in the displayResponse function until the
readyState property has a value of 4:

function displayResponse(request) {

 if (request.readyState == 4) {

 }

}

I’m also going to check the status property to make sure that the response
was successfully returned from the server:

function displayResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 }

 }

}

XMLHttpRequest 63

Once these tests have been passed, the responseText property is displayed
in an alert message:

function displayResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 alert(request.responseText);

 }

 }

}

The script is complete. I need to attach this script to a Web page in order to
use it in a browser.

THE MARKUP
Here is a simple XHTML document. The head of the document includes a
script element that points to the ajaxtest.js file. The body of the document
contains a link to the grabFile function:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

 <head>

 <title>Using XMLHttpRequest</title>

 <script type="text/javascript" src="ajaxtext.js"></script>

</head>

<body>

 <p>

 <a href="message.txt" onclick="grabFile(this.href);

return false;">

Click here to see the contents of a text file

 </p>

</body>

</html>

The href attribute of the link points to the message.txt file. An onclick
event handler tells the browser to pass this href value to the grabFile
function. The return false statement cancels the default behavior, which
would be to follow the link in the browser window.

64 Chapter 3

Please bear in mind that this is just an example for testing purposes. Using
inline event handlers like this is a crude way of executing JavaScript func-
tions. Later on, you’ll see more elegant, advanced ways of adding behavior.
For now, this suffices to illustrate basic Ajax functionality.

Save this document as index.html in the same directory as ajaxtest.js
and message.txt. In order for this example to work, you’ll need to host this
directory on a server. This can be your own machine if you are running a Web
server locally, or you can transfer the files to a server on the Internet via FTP.

Figure 3.1 A link to a text file.

Navigate to index.html using a Web browser. You will be presented with the
link shown in Figure 3.1. Clicking on this link generates the alert dialog shown
in Figure 3.2.

Figure 3.2 The contents of a text file displayed in a dialog.

XMLHttpRequest 65

The content of the alert message comes straight from the message.txt file.
On the face of it, this doesn’t seem very impressive. There’s nothing revolu-
tionary about an alert dialog, but the implications are stunning. It is now pos-
sible to take the contents of any file on a server and display its contents in a
browser, without refreshing the whole page.

Summary
The XMLHttpRequest object is the heart and soul of Ajax. Its methods and
properties drive the asynchronous requests that make Ajax applications feel
so responsive.

In this chapter, you’ve seen how to use the XMLHttpRequest object in three
steps:

1. Create an instance of the object that will work across different browser
implementations.

2. Prepare a request using the onreadystatechange event handler, the
open method, and the send method.

3. Process the response from the server through the properties
readyState, status, responseText, and sometimes responseXML.

This basic model will remain unchanged for all the examples throughout this
book. The real skill in creating useful Ajax interactivity is deciding where and
when to initiate requests and how best to handle the server’s response.

In the next chapter, I will look in more detail at the responseText and
responseXML properties. These are the carrier mechanisms the server uses
to deliver data to the client. That data can be formatted in a number of ways.

This page intentionally left blank

4
Data Formats

What’s Your Poison?

Ajax is language agnostic, at least on the server. It doesn’t
matter what server-side language you use for your business
logic. However, when you are requesting data from the server,
the data that’s sent from the server must be formatted in a way
that the browser can understand. Your server-side programming
language of choice needs to return data in one of three ways:
XML, JSON, or HTML. In this chapter, I’m going to examine each
data format so that you can make an informed decision as to
which one best suits your needs.

Data Formats 69

XML
Back when the term AJAX was an acronym, it stood for Asynchronous
JavaScript and XML. XML also figures prominently in the name of the
XMLHttpRequest object. You would be forgiven for thinking that XML is an
intrinsic part of Ajax. It isn’t. But it can be used as the output format in Ajax
responses.

XML stands for eXExtensible Markup Language. It is a general-purpose
markup language that can be used to describe just about anything. XML dif-
fers from other markup languages like SGML and HTML in that the vocabulary
is not prescribed. Instead, the author of an XML document is free to use
whatever terms make the most sense to her. It’s a kind of metalanguage. The
structure of an XML document must follow certain rules, but the vocabulary
used within that structure isn’t tied to any dictionary of terms.

AN EXAMPLE OF XML
Here is a simple XML document called jeremy.xml:

<?xml version="1.0" encoding="utf-8"?>

<person>

 <name>Jeremy Keith</name>

 <website>http://adactio.com/</website>

 <email>jeremy@clearleft.com</email>

</person>

The first line in the file is an XML declaration. That line states the version of
XML being used and the character encoding of the document. Everything
after that is contained within tags. Each set of tags denotes an element. The
name of an element is contained within the opening and closing tags. The
value of an element is also contained between the opening and closing tags.

It’s important to note that XML doesn’t do anything. The language was cre-
ated as a means of storing data, not manipulating it. In this instance, the
XML document is storing contact details for a person. In order to do anything
with this data, I’ll need to use a programming language. I’m going to use
JavaScript to extract the contact information from an XML file and place it into
a Web page.

70 Chapter 4

XML IN ACTION
I have a Web page that lists the people in my office. This XHTML document
references a JavaScript file called fetchxml.js from a script element:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en"> <head>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <title>People at Clearleft</title>

 <style type="text/css">

 @import url("clearleft.css");

 </style>

 <script type="text/javascript" src="fetchxml.js"></script>

</head>

<body>

 <h1>People</h1>

 <a href="files/andy.xml"

onclick="grabFile(this.href); return false;">Andy

 <a href="files/richard.xml"

onclick="grabFile(this.href); return false;">Richard

 <a href="files/jeremy.xml"

onclick="grabFile(this.href); return false;">Jeremy

 <div id="details"></div>

</body>

</html>

Figure 4.1 shows how this page looks in a browser with some basic styling.

Data Formats 71

Figure 4.1 A list of people on a Web page.

Each person in the list is linked to the XML file with that person’s contact
details. I’m using the onclick event handler to pass this value to the
grabFile JavaScript function:

<a href="files/jeremy.xml"

onclick="grabFile(this.href); return false;">Jeremy

This isn’t a very elegant way of capturing events. It’s really starting to clutter
up the markup. In the next chapter, you’ll see a more unobtrusive way of add-
ing JavaScript functionality.

I’m going to write a script that will fetch an XML file, parse its contents,
and generate markup to display the contact details in the Web page. These
details will go inside the div element following the list:

<div id="details"></div>

72 Chapter 4

Writing the script

The fetchxml.js file begins with the getHTTPObject function that you saw
in the last chapter:

function getHTTPObject() {

 var xhr = false;

 if (window.XMLHttpRequest) {

 xhr = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 try {

 xhr = new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 xhr = false;

 }

 }

 }

 return xhr;

}

That takes care of instantiating a cross-browser XMLHttpRequest object.

The next function is grabFile. It’s almost exactly the same as the
grabFile function from the last chapter. The only difference is that the
onreadystatechange event handler now triggers a function called
parseResponse:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("GET", file, true);

 request.send(null);

 }

}

Data Formats 73

The parseResponse function will take the XML returned from the server and
convert it to HTML. But first I need to make sure that the response has been
successfully returned from the server:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

The XML is available through the responseXML property of the HTTPRequest
object. I’m going to assign this property to the variable data:

var data = request.responseXML;

The XML can be traversed using the same DOM methods that you would use
for traversing an HTML document. As long as you know the structure of the
XML being returned from the server, you can get at the information you want
using methods like getElementsByTagName and properties like nodeValue.

Extracting data from XML

I know that there is a name element in the XML file. I want to get the text
node contained within the <name> tags. Using getElementsByTagName,
I get a collection of all the name elements in the XML:
data.getElementsByTagName("name")

I know that there is only one name element, so I’m only interested in the first
occurrence: data.getElementsByTagName("name")[0]

This element contains the text node I want. The text node is the first child of
the element: data.getElementsByTagName("name")[0].firstChild

Now I can get the value of this text node by querying its nodeValue property:
data.getElementsByTagName("name")[0].firstChild.nodeValue

I’m assigning this value to the variable name:

var name = data.getElementsByTagName("name")[0].firstChild.

nodeValue;

I can use the same DOM methods and properties to retrieve the values in the
website and email elements:

var website = data.getElementsByTagName("website")[0].

firstChild.nodeValue;

var email = data.getElementsByTagName("email")[0].

firstChild.nodeValue;

74 Chapter 4

The variables name, website, and email contain strings of text retrieved
from the corresponding XML elements. Instead of outputting plain text, I
want to wrap these values inside HTML elements.

Generating content

Using DOM methods like createElement, createTextNode, and
appendChild, I can build up a chunk of HTML to contain the information
I have extracted. For instance, I want to output the values of name and
email like this:

<h2>Jeremy Keith</

h2>

The h2 and a elements are created with the createElement method:

var header = document.createElement("h2");

var mailto = document.createElement("a");

I’m using the setAttribute method to give the a element the href value I
want:

mailto.setAttribute("href","mailto:"+email);

Last, I’m using the createTextNode method to create the text to go inside
the link:

var text = document.createTextNode(name);

Now I can use the appendChild method to join these nodes together:

mailto.appendChild(text);

header.appendChild(mailto);

I also want to output the website value like this:

http://adactio.com/

This is accomplished using the same set of DOM methods:

var link = document.createElement("a");

link.setAttribute("href",website);

var linktext = document.createTextNode(website);

link.appendChild(linktext);

Now I have the HTML I want in the variables header and link. I need to put
those elements into the document.

Data Formats 75

I’m going to insert my newly created markup into the div with the ID details:

var details = document.getElementById("details");

First, I’ll ensure that this container element is empty:

while (details.hasChildNodes()) {

 details.removeChild(details.lastChild);

}

The while loop will remove the last child until there are no more child
nodes left.

Now that the details element is empty, I can insert the markup I created:

details.appendChild(header);

details.appendChild(link);

That’s it. The finished parseResponse function looks like this:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var data = request.responseXML;

 var name = data.getElementsByTagName("name")[0].

firstChild.nodeValue;

 var website = data.getElementsByTagName("website")[0].

firstChild.nodeValue;

 var email = data.getElementsByTagName("email")[0].

firstChild.nodeValue;

 var header = document.createElement("h2");

 var mailto = document.createElement("a");

 mailto.setAttribute("href","mailto:"+email);

 var text = document.createTextNode(name);

 mailto.appendChild(text);

 header.appendChild(mailto);

 var link = document.createElement("a");

 link.setAttribute("href",website);

 var linktext = document.createTextNode(website);

 link.appendChild(linktext);

 var details = document.getElementById("details");

 while (details.hasChildNodes()) {

 details.removeChild(details.lastChild);

 }

76 Chapter 4

 details.appendChild(header);

 details.appendChild(link);

 }

 }

}

Save the fetchxml.js file and refresh your browser. If you click on one of
the links in the document, you will now get the result shown in Figure 4.2.

Figure 4.2 Clicking a link displays that person’s details.

ADVANTAGES OF XML
XML is a very versatile data format. Instead of forcing your data into predefined
fields, you are free to invent a vocabulary to suit your data. This flexibility has
helped XML become hugely popular. It is one of the most common means of
transferring data within Web applications. That makes it very handy for Ajax
applications. If you ask a server-side programmer to return data in XML, your
request can be easily met.

The other nice thing about using XML is that you don’t need to learn a new
language to parse the data. Because the DOM was designed to parse any
kind of markup, you can recycle the knowledge that you have already gained
from DOM Scripting.

Data Formats 77

The DOM gives you very fine control over your document. You can extract
pieces of data from responseXML and then update any part of the current
document. In the contact details example, it would be relatively easy to
update the h1 element of the document with the name of the person whose
details have been requested:

document.getElementsByTagName("h1")[0].firstChild.nodeValue

= name;

The precision of the DOM, combined with the popularity of XML, make for a
very powerful combination.

DISADVANTAGES OF XML
If you want to send XML from the server, you must ensure that it is sent with
the correct headers. If the content type isn’t “application/xml,” then the
responseXML property will be empty. If the XML is being generated on the fly
by a server-side programming language, it’s easy to miss this requirement.

While the DOM is eminently suited to parsing XML once it reaches the
browser, it can be a long-winded process. That’s evident in the contact details
example. It takes quite a few lines of JavaScript just to generate a small chunk
of markup. Each node has to be created and appended. For a complex applica-
tion dealing with longer XML files, the code could quickly get out of hand.

One alternative to using the DOM is XSLT, or eXtensible Stylesheet Language
Transformations. This lets you transform XML into HTML by pointing it to a
template. Unfortunately, not all browsers support XSLT.

JSON
XML is designed to store data. In order to parse that data, you need some
other technology like the DOM or XSLT. Alternatively, you can use a data for-
mat that stores data in a way that makes it easier for programming languages
to parse.

JSON, which stands for JavaScript Object Notation, is pronounced like the
name Jason. Incidentally, in Greek mythology, one of Jason’s Argonauts was
Telamon, father of Ajax.

78 Chapter 4

JSON is the brainchild of Douglas Crockford, one of the preeminent JavaScript
coders in the world today (www.crockford.com).

Crockford proposes JSON as a lightweight alternative to XML. Anything that
can be stored in XML can also be stored in JSON. Both are text-based repre-
sentations of data, but while XML requires opening and closing tags, JSON
just uses colons, commas, and curly braces.

JSON isn’t a data format that needs to be interpreted by JavaScript: JSON is
JavaScript.

AN EXAMPLE OF JSON
As you’ve already seen, there’s always more than one way of doing some-
thing in JavaScript. Take this function declaration, for example:

function person() {

 var name = "Richard Rutter";

 var website = "http://clagnut.com/";

 var email = "richard@clearleft.com";

}

This function isn’t very useful for achieving a task, but it is a handy way of
storing data in a single global variable. It could also be written like this:

var person = function() {

 var name = "Richard Rutter";

 var website = "http://clagnut.com/";

 var email = "richard@clearleft.com";

};

In order to access all those local variables from outside the function, turn
person into an object:

var person = function() {

 this.name = "Richard Rutter";

 this.website = "http://clagnut.com/";

 this.email = "richard@clearleft.com";

};

Now name, website, and email are available as properties of person:
person.name, person.website, and person.email.

www.crockford.com

Data Formats 79

That same object can be written like this:

{"person":{

 "name":"Richard Rutter",

 "website":"http://clagnut.com/",

 "email":"richard@clearleft.com"

 }

}

This is called an object literal. Values are assigned using colons instead of
equals signs. Each assignment is separated with a comma. The whole object
is encapsulated within curly braces. More sets of curly braces can be used to
nest more levels of information.

The values stored in an object literal can be strings, numbers, or Boolean
values. Object literals can also store functions, which are methods of the
object. But if you write an object literal purely for storing data, then you are
writing JSON.

JSON IN ACTION
Returning to the contact details page, I’m going to change the links to point
to JSON files:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en"> <head>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <title>People at Clearleft</title>

 <style type="text/css">

 @import url("clearleft.css");

 </style>

 <script type="text/javascript" src="fetchjson.js"></

script>

</head>

<body>

 <h1>People</h1>

80 Chapter 4

 <a href="files/andy.js"

onclick="grabFile(this.href); return false;">Andy

 <a href="files/richard.js"

onclick="grabFile(this.href); return false;">Richard

 <a href="files/jeremy.js"

onclick="grabFile(this.href); return false;">Jeremy

 <div id="details"></div>

</body>

</html>

The script element now points to a file called fetchjson.js. This is
very similar to the fetchxml.js file I’ve already written. The functions
 getHTTPObject and grabFile are exactly the same. All I need to change
is the parseResponse function.

Extracting data from JSON

When my data was stored in XML, I was parsing the responseXML property.
JSON is simply a string of text. It is returned in the responseText property.

To access JSON data stored in the responseText property, I need to use
JavaScript’s eval statement. The eval function accepts a string as an argu-
ment. This string is then executed as JavaScript code. Because a string of
JSON consists of JavaScript code, it can be evaluated.

Here, I’m evaluating the contents of the responseText property and assign-
ing the result to the variable data:

var data = eval('('+request.responseText+')');

Now I can access all of the JSON values as properties of data:

var name = data.person.name;

var email = data.person.email;

var website = data.person.website;

Data Formats 81

This dot syntax is shorter and more readable than the DOM methods I used
on the XML files:

var name = data.getElementsByTagName("name")[0].firstChild.

nodeValue;

Once the data has been extracted, the parseResponse function continues
exactly as before, generating markup and inserting it into the document:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var data = eval('('+request.responseText+')');

 var name = data.person.name;

 var email = data.person.email;

 var website = data.person.website;

 var header = document.createElement("h2");

 var mailto = document.createElement("a");

 mailto.setAttribute("href","mailto:"+email);

 var text = document.createTextNode(name);

 mailto.appendChild(text);

 header.appendChild(mailto);

 var link = document.createElement("a");

 link.setAttribute("href",website);

 var linktext = document.createTextNode(website);

 link.appendChild(linktext);

 var details = document.getElementById("details");

 while (details.hasChildNodes()) {

 details.removeChild(details.lastChild);

 }

 details.appendChild(header);

 details.appendChild(link);

 }

 }

}

The final result is the same, as shown in Figure 4.3.

82 Chapter 4

Figure 4.3 JSON is converted into HTML.

As you can see, there isn’t much difference between JSON and XML when
you’re using XMLHttpRequest to send data from your server.

If we take XMLHttpRequest out of the equation, JSON has one huge advan-
tage as a data format: you can request JSON data from a remote server.

THE SCRIPT TAG HACK
Security restrictions prevent us from using XMLHttpRequest to access any
domain other than the one serving up the JavaScript file being executed. This
means we can’t access remote servers like this:

request.open("GET", "http://api.search.yahoo.com/", true);

We can’t use XMLHttpRequest to access the Web APIs offered by so many
sites these days. That’s a real shame because most APIs return their data in
XML, which would then be available in responseXML.

The script element has no such security restrictions. It’s possible to access
a JavaScript file from another domain in this way:

<script type="text/javascript"

src="http://www.google-analytics.com/urchin.js"></script>

Data Formats 83

If you can request a JavaScript file from another domain, then you can also
request a JSON file. Remember, JSON is nothing more than JavaScript.

Using some DOM Scripting, you can dynamically generate a script element.
This function accepts a URL as its argument. It creates a new script element
with the URL as its src attribute, and then adds the element to the head of
the document:

function getScript(url) {

 var scripttag = document.createElement("script");

 scripttag.setAttribute("type","text/javascript");

 scripttag.setAttribute("src",url);

 document.getElementsByTagName("head")[0].

appendChild(scripttag);

}

JSON and Web Services

Some APIs now offer JSON as an alternative to XML. All of Yahoo’s Web
Services can return JSON if it’s requested. If you’d like to try using the Yahoo
Search API, sign up for an application ID at http://api.search.yahoo.com/
webservices/register_application.

My own application ID is adactio. Substitute your own ID in this function:

function searchYahoo(query) {

 var url = "http://api.search.yahoo.com/NewsSearchService/

V1/newsSearch?";

 url+= "appid=adactio";

 url+= "&query="+escape(query);

 url+= "&output=json";

 url+= "&callback=parseResponse";

 getScript(url);

}

The searchYahoo function puts together a URL with the required parameters
for a search. The search term itself is passed as an argument, query. The
other required parameter is the application ID, appid.

There are two optional parameters added to the URL. The first, output, is
given a value of json, indicating that the results should be returned in JSON
rather than XML. The other parameter, callback, indicates that the JSON
data should be evaluated and passed to the function parseResponse.

http://api.search.yahoo.com/webservices/register_application
http://api.search.yahoo.com/webservices/register_application

84 Chapter 4

By passing this URL to the getScript function, this kind of JSON is retrieved
from Yahoo:

{"ResultSet":

 {

 "totalResultsAvailable":2,

 "totalResultsReturned":2,

 "firstResultPosition":"1",

 "Result":[

 {

 "Title":"Man Bites Dog",

 "Summary":"Headline writers take the day off.",

 "Url":"http://www.example.com/false.html"

 },

 {

 "Title":"Stop The Press",

 "Summary":"Man injured by spinning newspaper.",

 "Url":"http://www.example.com/fake.html"

 }

]}

}

That information can then be parsed in the parseResponse function:

function parseResponse(data) {

 for (var i=0; i<data.ResultSet.Result.length; i++) {

 var title = data.ResultSet.Result[i].Title;

 var summary = data.ResultSet.Result[i].Summary;

 var url = data.ResultSet.Result[i].Url;

 }

}

You can trigger the searchYahoo function from a Web page like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

 <title>Yahoo! News Search</title>

 <script type="text/javascript" src="jsonsearch.js">

 </script>

Data Formats 85

 <style type="text/css">

 @import url("style.css");

 </style>

</head>

<body>

 <h1>Yahoo! News Search</h1>

 <form onsubmit="searchYahoo(this.query.value); return

false">

 <fieldset>

 <label>Search for</label>

 <input type="text" name="query" />

 <input type="submit" value="Search" />

 </fieldset>

 </form>

 <div id="results"></div>

</body>

</html>

Put the getScript and searchYahoo functions in the jsonsearch.js file.
You’ll also need to write an expanded version of parseResponse.

This will convert the search results into HTML and place them inside the
element with the ID results:

function parseResponse(data) {

// empty the div

 var results = document.getElementById("results");

 while (results.hasChildNodes()) {

 results.removeChild(results.lastChild);

 }

// loop through the search results

 for (var i=0; i<data.ResultSet.Result.length; i++) {

 var title = data.ResultSet.Result[i].Title;

 var summary = data.ResultSet.Result[i].Summary;

 var url = data.ResultSet.Result[i].Url;

// create the headline link

 var header = document.createElement("h2");

 var link = document.createElement("a");

 link.setAttribute("href",url);

 var text = document.createTextNode(title);

 link.appendChild(text);

 header.appendChild(link);

86 Chapter 4

// create the summary paragraph

 var para = document.createElement("p");

 var paratext = document.createTextNode(summary);

 para.appendChild(paratext);

// insert the markup

 results.appendChild(header);

 results.appendChild(para);

 }

}

Try typing in a search to see the results, as shown in Figure 4.4.

Figure 4.4 Search results for Google from Yahoo News.

ADVANTAGES OF JSON
As a format for transmitting data, JSON is quite similar to XML, but it is a bit
more lightweight. Whereas every value in XML requires an opening and a
closing tag, JSON only requires a name to be written once.

Data Formats 87

Unlike XML, JSON doesn’t need to be sent from the server with a specific
content-type header. It can be sent as plain text.

JSON’s greatest asset is its ability to travel across domains. This means aban-
doning the XMLHttpRequest object in favor of the script tag hack, but right
now, that’s the only way of directly retrieving data from another server.

DISADVANTAGES OF JSON
JSON’s syntax is very precise. One misplaced comma or missing curly brace
will put paid to an entire JSON object. You must also remember to escape
special characters such as quotation marks.

Unlike Douglas Crockford, I don’t find JSON to be very readable. Perhaps it’s
because I’m used to angle brackets in HTML, but XML’s tag-based syntax
looks cleaner to me.

In order to extract the contents of a JSON object, it must be evaluated. The
eval function is powerful, and potentially dangerous. If you’re retrieving
JSON data from a third party that isn’t entirely trustworthy, it could contain
some malicious JavaScript code that will be executed with eval. For this
reason, Douglas Crockford has written a JSON parser that will parse only
properties, ignoring any methods (www.json.org/js.html).

HTML
If you are sending data as XML or JSON, you need to convert it into HTML
before displaying it in a Web browser. This extra step can be avoided if data is
sent as HTML to begin with.

AN EXAMPLE OF HTML
For the contact details page, data can be sent back like this:

<h2>Andy Budd</h2>

http://andybudd.com/

Technically, this isn’t an HTML file. There is no doctype declaration. There is
no body element, no head element, or even an html element. It would be
more accurate to call this a fragment or a snippet of HTML.

This fragment is ready to be inserted into the current document as it is.

www.json.org/js.html

88 Chapter 4

HTML IN ACTION
I have updated the contact details page to point to a JavaScript file called
fetchhtml.js:

<script type="text/javascript" src="fetchhtml.js"></script>

I’m also changing the markup so that the links now point to the snippets of
HTML with each person’s contact details:

 <a href="files/andy.html"

onclick="grabFile(this.href); return false;">Andy

 <a href="files/richard.html"

onclick="grabFile(this.href); return false;">Richard

 <a href="files/jeremy.html"

onclick="grabFile(this.href); return false;">Jeremy

<div id="details"></div>

In the fetchhtml.js file, the getHTTPObject stays the same. So does the
grabFile function. All I need to update is the parseResponse function.

Extracting Data from HTML

HTML consists of plain text. If the server sends HTML via XMLHttpRequest, it
will be available in the responseText property.

I don’t need to extract any data from responseText. It’s already preformat-
ted just the way I want it. All I need to do is dump it into the part of the page
that I want to update.

In this case, I want to update the div with the ID details:

var details = document.getElementById("details");

The simplest way of inserting a fragment of HTML is to update this element’s
innerHTML property.

Data Formats 89

innerHTML

The innerHTML property is not part of the DOM. It isn’t part of any standard.
It is a proprietary addition created by Microsoft.

Normally, I wouldn’t recommend using anything proprietary in your JavaScript
code (although the XMLHttpRequest object itself is a proprietary addition).
However, the innerHTML property is exceptionally well supported, consider-
ing that it is nonstandard. It is, in effect, a de facto standard: it is supported
in all the major browsers. The reason why innerHTML has been so widely
adopted, without any endorsement from the W3C, is that it is very useful in
certain situations.

DOM methods allow you to manipulate a document very precisely. You can
create elements, attributes, and text, one node at a time. That is very power-
ful, but it is also quite time-consuming.

The innerHTML property uses brute force. If you read the innerHTML prop-
erty of an element, you will receive a string of HTML. This is a read/write
property, meaning that you can also assign a string of HTML to go inside
an element:

element.innerHTML = "<p>Here's a string of markup.</p>";

Any HTML that was previously inside the element will be obliterated and
replaced with the contents of the string.

If you use DOM methods like createElement, createTextNode, and
appendChild, you cannot create badly formed markup. If you assign a badly
formed string of HTML to an element’s innerHTML property, you will mess up
your document’s DOM tree:

element.innerHTML = "<p>This is badly formed</p>";

When it’s used carelessly, innerHTML can be very dangerous. But it can be
a real time-saver. Not only does assigning an innerHTML value take less
time than creating and appending nodes one by one, it’s also a much faster
way of updating a document. This difference in speed varies from browser
to browser, but it becomes noticeable when you’re dealing with very large
chunks of markup.

I’m going to update the parseResponse function to change the innerHTML
property of the details element:

90 Chapter 4

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 }

 }

}

That’s it. With one statement I can update the document with the markup
returned from the server.

Click on any of the links on the contact details page to get the desired result,
as shown in Figure 4.5.

Figure 4.5 Updating a document with HTML fragments.

Data Formats 91

ADVANTAGES OF HTML
Sending HTML fragments from the server can save a lot of time in the
browser. You don’t need to write lines and lines of JavaScript to parse the
response and convert it into HTML. The data is already formatted in HTML
and only needs to be inserted into the document. This can be accomplished
in a single line using innerHTML. That can result in a significant saving in
your script’s file size.

As a data format, HTML fragments are certainly as readable as XML or JSON—
perhaps more so, given the ubiquity of HTML on the Web and its familiarity to
developers.

Using HTML fragments together with the innerHTML property is a fast and
efficient combination.

DISADVANTAGES OF HTML
Sending an HTML fragment in an Ajax response works well if you want to
update one part of a document. It doesn’t work so well if you want to update
multiple parts of the same document. In such cases, it’s better to use a data
format like XML or JSON, which can be parsed very precisely.

Perhaps the biggest problem with using HTML fragments is the reliance on
innerHTML. As a dyed-in-the-wool standardista, I’m not entirely comfortable
with using a nonstandard property.

Technically, the innerHTML property should work only in HTML documents,
not in XHTML documents. If you are going to be pedantic, you should be
serving up XHTML pages with a content-type header of application/
xhtml+xml. But if you do that, you can’t use innerHTML in older versions of
Firefox. In practice, most people serve up XHTML as HTML because Internet
Explorer can’t handle the correct content-type header.

92 Chapter 4

Summary
In this chapter, you’ve seen three ways of formatting information returned
from the server in an Ajax response. Each format has its strengths and
weaknesses.

■ XML is a popular format that can be parsed using the DOM.

■ JSON can be used to retrieve data from a remote server, if you use the
script tag hack.

■ HTML fragments can be dumped straight into a page using innerHTML.

In my experience, using HTML fragments is often the quickest and easiest
way of updating part of a page without refreshing the whole page. Most of
the examples I’ll be showing you from now on will use this solution.

All of the examples I’ve shown you so far have worked fine, but they aren’t
very elegant. I’ve been embedding event handlers in my markup to trigger
JavaScript functions. If JavaScript is switched off, there is no fallback func-
tionality. That’s not very bulletproof.

In the next chapter, I’m going to show you how this can be fixed. We will
examine the concepts of progressive enhancement and unobtrusive
JavaScript, and see how those ideas can be applied to Ajax.

5
Hijax

The Secret of Your Success

JavaScript is a great programming language, but it isn’t ubiquitous.
Although all modern browsers support JavaScript, older browsers
don’t. Even when JavaScript is supported, users can always choose
to disable it. They might do this to comply with a workplace policy,
or simply to avoid the annoyance of pop-up windows.

If JavaScript is not available, then neither is Ajax. This is the
Achilles’ heel of many Ajax applications. Without JavaScript, the
application ceases to work.

To offset this weakness, some applications offer a separate non-
Ajax version. Creating a simpler version inevitably takes a lot of
time and effort. This solution is similar to providing a text-only
version of a Web site to meet accessibility requirements. This
“separate but equal” approach leads to the fragmentation of
features and the ghettoization of users.

Ideally, a Web site should be able to adapt to the needs and
capabilities of a browser or user without splitting into separate,
difficult-to-maintain versions.

Hijax 95

Progressive Enhancement
Progressive enhancement is a Web-design strategy in which features are pri-
oritized in order of importance. For instance, the content of a Web document
is its most important component. Therefore, the content should be available
to the widest number of devices possible. The visual design of a Web page
is important, but not as critical as the content, since it is layered on top of
the content. Some browsers will not receive the page with the desired visual
design, but all browsers will receive the content.

By layering on enhancements like this, you can create a
single Web site that uses as many features as the browser
permits. The crucial point is that you add each layer of
enhancement separately, so that the layers are not depen-
dent on each other.

LEARNING FROM CSS
Cascading Style Sheets (CSS) are well suited to the princi-
ple of progressive enhancement. Style declarations can be
layered on top of existing markup. CSS-capable browsers
display the content with the declarations applied. If CSS is
not supported, the content is still available.

Figure 5.1 illustrates how my Web site looks in a CSS-
capable browser.

Figure 5.2 shows the same site with styles disabled.

The only requirement for viewing the content is that the
browser understands HTML or XHTML. Because the CSS is
layered on top of the markup, I don’t have to create a sep-
arate, simpler version for older browsers. One size fits all.

Another great advantage of CSS is that style declarations
can be stored in external files. Instead of setting style
declarations inside HTML tags, it makes more sense to
keep all your style information in a centralized place. This
keeps your markup nice and clean, making it easier to
update the content. It’s also easier to update an external
style sheet than to wade through a mishmash of markup
and CSS in search of one elusive declaration. Figure 5.2 Here is adactio.com laid bare.

Figure 5.1 My site, adactio.com, is enhanced
with CSS.

96 Chapter 5

Unobtrusive JavaScript
As with CSS, it really pays to keep your JavaScript in external files rather than
in your markup. Most scripts are written and stored in external .js files that
are referenced from Web pages using <script> tags. Still, some JavaScript
remains mingled with the markup.

JavaScript functions are sometimes triggered from a link using the
javascript: pseudo-protocol, like this:

Click me!

This is not a real Internet protocol like http:// or ftp://. It presupposes
support for JavaScript. If JavaScript isn’t enabled, at best nothing happens.
At worst, the browser throws an error.

More commonly, JavaScript calls are placed in event-handling attributes like
onclick. All too often, these event handlers are associated with a pointless
internal link:

Click

me!

This is slightly better than using the javascript: pseudo-protocol, but it’s
still an abuse of the href attribute. If JavaScript is disabled, the user is sent
to the top of the current document.

The href attribute should contain a reference to a real resource. This can act
as a fallback if JavaScript is not available:

<a href="page.html" onclick="doSomething(); return

false;">Click me!

This technique doesn’t assume that JavaScript will always be available. That’s
a key difference compared with the javascript: pseudo-protocol. But it
still places calls to JavaScript functions inside inline event handlers. That’s
the scripting equivalent to using inline styles for CSS. Ideally, markup and
JavaScript should be kept separate. That goal can be achieved through the
practice of unobtrusive JavaScript.

EVENT HANDLING
You don’t need to use inline event handlers to trigger JavaScript functions.
You can attach functions to events using some DOM Scripting.

Hijax 97

An event is always attached to an element. Using DOM methods like
getElementById and getElementsByTagName, it is relatively easy to find
a specific element or elements. Every element comes with a range of event-
handling properties: onclick, onmouseover, onmouseout, and so on. If you
assign a function to one of these events, the function will be executed when
the event is triggered.

The following assigns the doSomething function to the click event of every
link in the document:

var links = document.getElementsByTagName("a");

for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

 doSomething();

 return false;

 };

}

I’m using an anonymous function to store the actions that should be trig-
gered by the click event. I could have passed a reference to a function
instead:

links[i].onclick = doSomething;

In that case, I would need to make sure that the doSomething function
returned a value of false to prevent the browser from actually following the
link.

This won’t work:

links[i].onclick = doSomething();

Instead of assigning the doSomething function to the onclick event han-
dler, the function will be executed immediately. When you assign functions
to an event handler, you need to either pass a function reference (without
parentheses) or assign an anonymous function.

We want to get loaded

There’s one problem with using external rather than inline event handlers.
Whenever you use DOM methods, there must be a complete Document Object
Model. If the document hasn’t completely loaded, the DOM is incomplete.

When a browser fetches a Web page from a server, it parses the page from
top to bottom, building a node tree as it goes. As it works its way through

98 Chapter 5

the head element, it may come across a <script> tag that points to an
external JavaScript file. The browser now fetches this JavaScript file and
begins executing it, top to bottom. If a JavaScript statement makes use of
 getElementsByTagName or getElementById, the browser can’t find the
elements being sought. It hasn’t finished loading the document.

This brings back no results:

var links = document.getElementsByTagName("a");

The browser has yet to encounter a single a element.

If you want to use DOM methods, you must wait until the document has fin-
ished loading. Fortunately, this is easily accomplished by assigning functions
to the load event of the window object:

window.onload = prepareLinks;

function prepareLinks() {

 var links = document.getElementsByTagName("a");

 for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

 doSomething();

 return false;

 };

 }

}

This assigns the prepareLinks function to the window.onload event handler.

One problem with using window.onload is that you can assign only one
value to it. It is likely that you will want to queue up quite a few functions to
be executed when the document loads. To help you do that, you can use the
addLoadEvent function:

function addLoadEvent(func) {

 var oldonload = window.onload;

 if (typeof window.onload != 'function') {

 window.onload = func;

 } else {

 window.onload = function() {

 if (oldonload) {

 oldonload();

 }

 func();

Hijax 99

 }

 }

}

This handy little function was written by Simon Willison (http://simon
willison.net/). It takes a single argument, which is a reference to a function
you would like to execute once the document has finished loading:

addLoadEvent(prepareLinks);

The prepareLinks function is added to the list of functions that will be
executed when the document has loaded.

An alternative to triggering functions with the window.onload event handler
is to place your <script> tags right before the closing </body> tag. You can
then execute your functions immediately because the DOM will be (mostly)
complete.

Progressive Enhancement and Ajax
When the principle of progressive enhancement is applied to DOM Scripting,
the result is unobtrusive JavaScript. Scripting enhancements, contained in
external JavaScript files, are applied to a document without ever assuming
that JavaScript will be present. If JavaScript is unavailable, the content of the
document is still available and all its links and forms still work. If JavaScript is
available, extra functionality is added with DOM Scripting. Most importantly,
none of this added functionality is mission critical.

After many years of irresponsible scripting, this approach to JavaScript is
gaining some ground, particularly among standards-savvy front-end develop-
ers who have experienced the benefits of progressive enhancement with CSS.

Alas, the advent of Ajax may have turned back the clock.

Far too many Ajax applications are built on the assumption that JavaScript
will be available. Instead of treating the language as a tool for enhancing
functionality, these applications make JavaScript a requirement. Core func-
tionality is carried out with JavaScript, resulting in an all-or-nothing situation
for the user. The only option is to waste time and energy building a separate,
plain vanilla version without JavaScript.

This problem can be avoided by applying the principle of progressive
enhancement to Ajax.

http://simonwillison.net/
http://simonwillison.net/

100 Chapter 5

THE HIJAX APPROACH
I’d like to introduce you to a methodology I call Hijax. It’s a two-step plan for
building Ajax applications that degrade gracefully:

1. Begin by building a regular Web page. The user can request information
from and send information to the server using links and forms. The server
returns an updated version of the same page. Every time the user clicks on
a link or submits a form, the entire page is refreshed.

2. Use DOM Scripting to intercept (or hijack) the links and forms that are
requesting information from and sending information to the server.
Reroute these requests through the XMLHttpRequest object. Instead of
returning the entire page, the server just needs to send back the part of
the page that changes.

Step 1 doesn’t require JavaScript, CSS, or any other client-side technology. All
the processing takes place on the server.

In Step 2, JavaScript is used to enhance the user experience. Instead of
refreshing the whole page, only part of the page is updated. It’s important to
note that all of the processing still takes place on the server.

The XMLHttpRequest object acts like a dumbwaiter. It shuttles data to and
from the browser, but the business logic remains firmly on the server.

It is not a good idea to entrust core functionality to a client-side scripting
language. The browser is an unpredictable environment. You can’t be certain
what kind of browsers your visitors will be using, or whether JavaScript will
be turned on in those browsers. Your server environment is much more pre-
dictable. You know its capabilities. You know what languages it can execute.
Wherever possible, get the server, not the browser, to do the important work.

ARCHITECTURE
In order for the Hijax technique to work well, pages should be constructed on
the server in a modular fashion. This is how most Web pages are put together
nowadays.

A typical Web page is made up of a collection of components. Some of these
components, like the branding, the navigation, and the fine print at the bot-
tom of the page, are constant from page to page. Other components, like the
body copy, are page specific.

Hijax 101

Figure 5.3 Here’s the architecture of a typical Web page.

The components that are reused from page to page are usually kept in
separate files. There’s one file for displaying the navigation and another for
displaying the footer. When a page is requested, the server pulls in these
reusable files and integrates them with the page-specific content. Quite
often, this content is extracted from a database.

Here is the skeletal markup of a typical page:

<!-- doctype -->

<html>

<head>

 <title><!-- page title --></title>

 <!-- fetch stylesheets and scripts -->

</head>

<body>

 <div id="branding"><!-- display branding --></div>

 <div id="navigation"><!-- display navigation --></div>

 <div id="content">

 <!-- display content from a database -->

 </div>

 <div id="sidebar"><!-- display sidebar --></div>

 <div id="footer"><!-- display footer --></div>

</body>

</html>

102 Chapter 5

Notice that the separate components are often contained within <div> tags.
The div element has something of a bad reputation because it is often over-
used. But it does have some semantic meaning: it defines a self-contained
section, or division, of a Web page. These divisions can continue down to a
finer level. A sidebar, for example, might contain subcomponents like a log-in
form or a shopping cart.

These subcomponents are generated on the server, based on the user’s
actions. They are ideal candidates for Hijax. They would probably be con-
tained in their own div elements:

<div id="sidebar">

 <div id="login"><!-- display login form --></div>

 <div id="cart"><!-- display shopping cart --></div>

</div>

The planning paradox

There seems to be a contradiction in what I’m suggesting. On the one hand,
I’m advocating building an old-fashioned Web site to begin with, instead of
starting with the assumption that Ajax will drive the interaction. On the other
hand, it’s clear that if you want to use Ajax effectively, the back-end architec-
ture of your Web site needs to be very modular. That’s something that needs
to be planned from the start.

This paradox can be resolved by following these two guidelines:

1. Plan for Ajax from the start.

2. Implement Ajax at the end.

Thinking about Ajax interactivity at the beginning of a project encourages
you to view your pages as a collection of modules, some of which could ben-
efit from Ajax. But instead of diving right in with Ajax when it comes time to
build these pages, it pays to start by using regular page-based interaction.
If you do that, then you know your site will be backward-compatible. You
won’t have to build a separate non-Ajax version; it will already exist. All
you have to do is apply Ajax functionality using the principle of progressive
enhancement.

Figure 5.4 Here are
sub com ponents you
might find in a sidebar.

Hijax 103

PATTERN RECOGNITION
Think about situations that fulfill these criteria:

1. The server sends a Web page to a browser.

2. The user can fill in a form or click on a link with a query string.

3. The server sends the same page back to the browser. Part of the page has
been changed based on the user’s request.

Using Hijax, you can change Step 3. Instead of requesting the entire page,
use Ajax to request only the updated component.

Hijax in Action
I’m going to revisit the contact details page from Chapter 4. I need to
start over. First of all, I’m going to build this page so that it works without
JavaScript.

The links now pass a parameter called person in a query string to the same
page:

 Andy

 Richard

 Jeremy

I’m changing this page from a static HTML file into a dynamic PHP file. You
can use any server-side programming language to handle the parameter
being passed. I’m using PHP because that’s what I’m comfortable with.

Inside the “details” div, I’m including a PHP file called people.php:

<div id="details">

<?php include "people.php"; ?>

</div>

104 Chapter 5

This file contains a simple bit of PHP. It checks to see if the parameter
person has been sent in the query string. If it has, the appropriate markup
is displayed:

<?php

if (isset($_GET["person"])) {

 switch ($_GET["person"]) {

 case "andy":

 include "files/andy.html";

 break;

 case "richard":

 include "files/richard.html";

 break;

 case "jeremy":

 include "files/jeremy.html";

 break;

 }

}

?>

This is a small, self-contained script. In a real-world situation, it would prob-
ably be more complex. Scripts like this might extract contact details from a
database or by parsing an XML file. The end result is the same. The file dis-
plays some HTML with a person’s contact details.

The markup that gets displayed looks like this:

<h2>Jeremy Keith

</h2>

http://adactio.com/

Clicking on any name in the list refreshes the page and displays the contact
details for that person. Everything works fine without JavaScript.

Next, I’m going to layer some Ajax on top of the existing functionality. When a
person’s name is clicked, I want to display his details without refreshing the
whole page. To do that, I need to intercept the default browser behavior and
replace it with the behavior I want.

Hijax 105

CAPTURING LINK DATA
First I need to hijack the links in the list of people’s names. This is easy to do
with the DOM if the list has a unique ID. I’m giving the list an ID of people.
Here’s the basic page structure:

<h1>People</h1>

<ul id="people">

...

<div id="details">

...

</div>

Now I have easy access to all the links in the list, using a combination of
getElementById and getElementsByTagName.

In an external JavaScript file called ajax.js, I have a function called
prepareLinks:

function prepareLinks() {

First, I’m going to use object detection to make sure that the browser under-
stands the DOM methods I’m going to employ:

if (!document.getElementById || !document.

getElementsByTagName) {

 return;

}

To be on the safe side, I’m going to make sure that the “people” list exists
before I attempt to do anything with it:

if (!document.getElementById("people")) {

 return;

}

I begin by getting all the links in the “people” list:

var list = document.getElementById("people");

var links = list.getElementsByTagName("a");

I’m looping through each of these links and attaching an anonymous function
to its onclick event handler:

for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

106 Chapter 5

When the link is clicked, I want to extract the query string from its href attri-
bute. I can do this using JavaScript’s split function, which splits a string into
an array. I’m going to split the href attribute on the question mark character.
The first member in the resulting array will be everything before the question
mark. This has an index of zero. The second member, which has an index of
one, contains everything after the question mark:

var query = this.getAttribute("href").split("?")[1];

Now I can construct the URL that I want for my Ajax request. I’m requesting
the file people.php, followed by a question mark, followed by the query
string I’ve just extracted:

var url = "people.php?"+query;

This is the value I’m going to pass to the grabFile function that we wrote in
Chapter 4:

grabFile(url);

I’m going to change the grabFile function slightly. It will return a value of
true if the browser is Ajax capable, and false otherwise. To stop the page
from refreshing, I’m going use this returned value. If grabFile returns a
value of true, then I will cancel the default browser behavior for the click
event like this:

return !grabFile(url);

This statement returns the opposite of whatever grabFile returns. If
grabFile returns true, this returns false, thereby canceling the default
browser behavior. But if grabFile returns false, this statement returns true
and the browser will follow the link.

The finished function looks like this:

function prepareLinks() {

 if (!document.getElementById || !document.

getElementsByTagName) {

 return;

 }

 if (!document.getElementById("people")) {

 return;

 }

 var list = document.getElementById("people");

 var links = list.getElementsByTagName("a");

Hijax 107

 for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

 var query = this.getAttribute("href").split("?")[1];

 var url = "people.php?"+query;

 return !grabFile(url);

 };

 }

}

The prepareLinks function needs to be executed as soon as the document
has finished loading:

window.onload = prepareLinks;

From here on, the JavaScript remains much the same as before. The
getHTTPObject function is used again. The grabFile function is changed
slightly to return a value of true or false:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("GET", file, true);

 request.send(null);

 return true;

 } else {

 return false;

 }

}

The parseResponse function is exactly the same as before:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 }

 }

}

108 Chapter 5

All I need to do is reference this JavaScript file from the head of my .php file:

<script type="text/javascript" src="ajax.js"></script>

The Ajax behavior appears to work exactly as before. Clicking on a person’s
name reveals his contact details without refreshing the whole page. But
behind the scenes, everything is working very differently.

To start, the markup is a lot cleaner. There are no more inline event handlers.
This makes it easier to maintain the content, and easier to maintain the
JavaScript.

The biggest difference is in the way JavaScript is being used. It is enhanc-
ing the existing functionality instead of trying to be the sole provider of that
functionality. If JavaScript is disabled, everything still works, albeit with page
refreshes.

FORMS
Links aren’t the only means of sending data to a server. Forms provide the
best way of sending large amounts of information from a browser.

Many Web sites have a contact form, like the one shown in Figure 5.5. This is
an easy way of allowing visitors to give their feedback.

Figure 5.5 A typical form on a contact page.

Hijax 109

Here’s the source of the contact page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <title>Contact Us</title>

 <style type="text/css">

 @import url("style.css");

 </style>

</head>

<body>

 <h1>Contact Us</h1>

 <div id="container">

<?php include "formlogic.php"; ?>

 </div>

</body>

</html>

In this case, PHP is being used to create the form inside a div called “con-
tainer.”

The formlogic.php file carries out a number of tasks:

■ If the form has been submitted, check that all the required fields have
been filled out.

■ If all the required fields have been filled out, display a “thank you” mes-
sage.

■ If a required field hasn’t been filled out, display the form and highlight the
required field.

■ If the form hasn’t been submitted at all, display the form.

This is fairly standard form-processing logic. It could be written in any num-
ber of server-side programming languages. The end result is that once the
processing is done, some markup is output for inclusion in the Web page.

110 Chapter 5

The markup for the form looks like this:

<form method="post" id="contactform" action="">

 <p>

 <label for="name">Name</label>

 <input type="text" name="name" id="name" value="" />

 </p>

 <p>

 <label for="email">Email</label>

 <input type="text" name="email" id="email" value="" />

 </p>

 <p>

 <label for="message">Message</label>

 <textarea name="message" id="message" cols="30"

 rows="10">

 </textarea>

 </p>

 <p>

 <input type="submit" name="submit" value="Submit" />

 </p>

</form>

In this case, all three fields are mandatory. If the form is submitted and one of
the fields has not been filled out, that field is highlighted with some extra text
in its label element:

<label for="name">Name

 <strong class="error">is required

</label>

Once all the required fields have been filled out, the form is no longer dis-
played. Instead, this message is output:

<p class="feedback">

Thank you for getting in touch

</p>

At this point, the data that has been submitted via the form can be sent in an
email to the Web site owner. The data could also be stored in a database or
logged to a file.

Hijax 111

CAPTURING FORM DATA
As it stands, the contact form works without any JavaScript. The server
handles all of the processing. The only slight irritation is that there’s a round
trip to the server every time the form is submitted. If a required field hasn’t
been filled out, the user won’t find out until the entire page, with the updated
form, comes back from the server. Getting rid of these page refreshes would
enhance the user’s experience.

I’m going to use some Ajax to send the form data straight to the
formlogic.php file. To do this, I’ll write a function called sendData. This
function works a lot like the grabFile function you’ve seen already. The
function takes a single argument, which is the string of data that will be sent
to the server:

function sendData(data) {

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("POST", "formlogic.php", true);

 request.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

 request.send(data);

 return true;

 } else {

 return false;

 }

}

This time, the request to the server is using the POST method, not GET:

request.open("POST", "formlogic.php", true);

Because data is being sent, it’s important to set the content-type header cor-
rectly using setRequestHeader:

request.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");

The sendData function returns a Boolean value. If it is successful, the func-
tion returns a value of true. If, on the other hand, an Ajax request can’t be
initiated, sendData returns a value of false.

112 Chapter 5

To use this function, I need to pass it some data. I’m going to extract this
data from the form when it is submitted. I can do this using the onsubmit
event handler.

I’m going to write a function called prepareForm, which will execute when
the document loads:

window.onload = prepareForm;

Because I don’t want to assume anything about the browser’s capabilities
or the contents of the current document, I have this function begin by doing
some object detection:

function prepareForm() {

 if(!document.getElementById) {

 return;

 }

 if(!document.getElementById("contactform")) {

 return;

 }

Now I can assign an anonymous function to the form’s onsubmit event
handler:

document.getElementById("contactform").onsubmit = function()

{

To extract the data from the form, I can make use of a handy shortcut. The
elements array contains all the form elements in a specified form. Looping
through this single array is a lot easier than using the DOM to find all of the
form’s input elements, textarea elements, and select elements:

var data = "";

for (var i=0; i<this.elements.length; i++) {

 data+= this.elements[i].name;

 data+= "=";

 data+= escape(this.elements[i].value);

 data+= "&";

}

The variable data begins as an empty string. As I loop through the form
elements, the name of each element (name, email, message, and so on) is
added to this string. Then, an equals sign is appended. After that, the value

Hijax 113

of the form element is added. I’m making use of JavaScript’s escape function
to ensure that the value is correctly formatted for its journey to the server.
Finally, an ampersand is added to separate the name/value pairs.

At the end of the loop, the variable data holds a string of names and values.
This is what I want to pass to the sendData function.

Once again, I will return a Boolean value. This is the opposite of the value
returned by sendData:

return !sendData(data);

If sendData works correctly and it returns a value of true, this statement
returns a value of false. The default browser behavior will be canceled. The
form won’t be submitted.

Here’s the finished function:

function prepareForm() {

 if(!document.getElementById) {

 return;

 }

 if(!document.getElementById("contactform")) {

 return;

 }

 document.getElementById("contactform").onsubmit =

function() {

 var data = "";

 for (var i=0; i<this.elements.length; i++) {

 data+= this.elements[i].name;

 data+= "=";

 data+= escape(this.elements[i].value);

 data+= "&";

 }

 return !sendData(data);

 };

}

When the form is submitted, its data is extracted and passed to the
sendData function. The sendData function then sends this data to the
formlogic.php file. The server sends back a response, which I need to
handle in the parseResponse function:

114 Chapter 5

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var container = document.getElementById("container");

 container.innerHTML = request.responseText;

 prepareForm();

 }

 }

}

The responseText property returned from the server is inserted into the
“container” div by updating its innerHTML property. Then the prepareForm
function is executed once more. If the server returns the form with error mes-
sages, I’ll need to hijack its submit event again.

These functions, prepareForm, sendData, and parseResponse, are all
placed in a file called ajax.js, along with the getHTTPObject function.
All I need to do is reference this JavaScript file from a <script> tag in the
Web page:

<script type="text/javascript" src="ajax.js"></script>

Now the form processing will take place without any full-page refreshes, as
shown in Figure 5.6.

Figure 5.6 Required fields are flagged without a whole
page refresh.

Hijax 115

Form validation

Using JavaScript to avoid page refreshes when processing a form is nothing
new. Form validation is one of the oldest uses of JavaScript. But it has always
suffered from an enormous drawback: unreliability.

You cannot rely on JavaScript alone to validate data submitted in a form.
JavaScript might be unsupported in the user’s browser, or simply switched off.
Whatever form validation is carried out in the browser with JavaScript must be
repeated in another programming language once the information reaches the
server. This means duplicating your logic, which is never a good idea.

The Hijax approach avoids this duplication. JavaScript is used solely as a
transport mechanism, sending data to the server and displaying the subse-
quent response.

If I want to make the processing of my contact form smarter, I just need to
update my formlogic.php file. I could add a regular expression that tests
whether the email value looks like a proper email address. Perhaps I might
decide that the name field isn’t mandatory after all. These are all decisions
about the processing logic. It’s much better that this processing takes place
only on the server. With each new decision, I only have to update one file.
Because the JavaScript file isn’t attempting to do anything too clever, it isn’t
affected by changes in the business logic.

This also keeps the size of the JavaScript file to a minimum. A very complex
form might require a lot of intricate validation. All of this can be handled on
the server, where file size isn’t an issue. Even as the form increases in com-
plexity, the JavaScript remains simple.

For the end user, this is all academic. The end result is a snappy response in
the browser without a page refresh.

The Deceptively Rich Client
Traditionally, the Web browser has played a subservient role to the Web
server. The server can process information, extract dynamic data from a
database, and send the resulting page to the browser. The browser is simply
the vessel for retrieving and displaying these pages. In this relationship, the
browser is what’s known as a thin client. The server is where the thick of the
action takes place.

116 Chapter 5

With the advent of JavaScript, the capabilities of the browser were enhanced.
It was now possible to create richer, more dynamic interaction directly in the
browser. But, as we’ve seen, the presence of JavaScript cannot be taken for
granted. If JavaScript is used in an unobtrusive way, enhancements can be
added to improve the user experience without breaking the fundamental cli-
ent-server model. Fundamentally, the browser is still a thin client.

Some Ajax applications have shifted the balance of power. By harnessing the
power of JavaScript and the DOM, these applications use the browser to carry
out complex programming tasks that are integral to the application’s opera-
tion. I believe this is a mistake.

Before Ajax, a Web site worked like a self-service restaurant. Every time you
wanted some information, the browser had to fetch a new page. In a self-
service restaurant, whenever you want some food, you have to go up to the
counter to order it.

Adding Ajax to a Web site is like hiring a waiter for a restaurant. The customer
no longer needs to go to the counter to order food. The waiter will take the
order to the counter instead. This results in a much more pleasant dining
experience.

Just because you’ve hired a waiter doesn’t mean you can fire the cook. Yet
this is exactly what some Ajax applications attempt to do. Not content with
having a waiter take orders and bring food, they get the waiter to do all the
cooking too.

Cooking should happen in the kitchen. Application logic belongs on the server.
It’s better for everyone that way. Your application will work more consistently
when it is server-based. The browser environment is simply too unpredictable.

Your users are interested in one thing. They want a pleasant experience when
they’re using your site. That is where the strength of Ajax really lies. Ajax
allows you to create responsive, interactive interfaces. When used correctly,
Ajax can be a charming and attentive waiter.

From the user’s perspective, the browser now seems to be a rich client. Rich
clients, like desktop applications, carry out processing instructions immedi-
ately, in situ. A Web site that has been enhanced using the Hijax methodol-
ogy appears to do the same. Forms are processed and links are fetched, all
without a browser refresh. The action appears to be taking place within the
browser. In fact, all of the heavy lifting is still being done on the server, where
it belongs.

Hijax 117

Hijax is deceptive. It creates the illusion that the browser is a rich client
when, in fact, this is a facade. Don’t feel bad about deceiving your users this
way. To borrow from James Carville, “It’s the user experience, stupid.” That’s
what really matters.

Summary
When progressive enhancement meets Ajax, the result is Hijax. In my experi-
ence, it’s a simple but powerful way of applying Ajax. It allows you to update
part of a page instead of the whole page, which is the very essence of Ajax
interaction. Most importantly, Hijax enhancements can be stripped away
without changing the fundamental functionality of your pages. Your Web
site’s business logic remains bulletproof.

The examples you’ve seen in this chapter have been simple and straightfor-
ward. They could be greatly improved with the addition of some interactive
pizzazz. In the next chapter, we’ll be looking at ways of providing more feed-
back for your users.

I also want to examine some important issues. Ajax can be a useful tool, but
sometimes it introduces as many problems as it solves. Developing with Ajax
raises a number of unique challenges. I’ll show you how to confront them.

This page intentionally left blank

6
Ajax Challenges

Dodging Bullets

Ajax allows you to explore new forms of interaction. Instead of
being tied to the page-based model of requests and responses,
you are now free to add more discrete, focused interactivity to
your Web sites. This is exciting, but it is also potentially dangerous.

Change can be scary. While it is tempting to sweep away every-
thing that has come before and replace it with shiny new Ajax-
powered interfaces, this would be a mistake. Your users would
not thank you for it. It is unrealistic to expect people to feel
instantly comfortable in a brave new Web.

Users have expectations that are built upon conventions. Ajax
breaks some of those conventions. That means that Ajax messes
with user expectations, which is rarely a wise move.

If we’re not careful, the convention-busting, expectation-break-
ing nature of Ajax will scare users away. If their initial experience
of a new Ajax interface is uncomfortable, they may never come
back. If, on the other hand, the transition to Ajax is handled in
a careful and respectful manner, the new enhancements will
seem obvious, useful, and pleasing.

Ajax Challenges 121

With all the hype surrounding Ajax, it sometimes sounds like a magic bullet.
While there’s no doubt that Ajax can bring enormous benefits, it also intro-
duces many design challenges. If these challenges aren’t dealt with deftly,
you might end up using the magic bullet to shoot yourself in the foot.

Backward Compatibility
Technologies like Ajax can be used to enhance the user experience. But that
doesn’t mean the technology should be a requirement.

CSS and JavaScript do not have to be present for users to access content.
If these technologies are not applied in a thoughtful manner, they can be a
dreadful impediment. But as long as the principle of progressive enhance-
ment drives your workflow, the end result will always be backward compat-
ible. This is especially important for Ajax-powered Web pages.

As you’ve seen, the Hijax approach lets you implement Ajax as an enhance-
ment rather than a requirement. With enough planning and consideration, no
user is left behind. As with any methodology, there is an unavoidable ques-
tion: Does it scale?

All of the examples you’ve seen so far have been relatively simple. The user
interaction driving the contact details page or the feedback form was as
straightforward as clicking a link or filling out a form. There’s nothing new
about that. The Web is built around links and forms: GET and POST. What’s
changed is the way that these requests are handled. Thanks to Ajax, the
browser seems like a rich client, displaying responses within a page without
refreshing the whole page. Because traditional links and forms trigger the
Ajax functionality, it’s not hard to ensure that a fallback solution is always
available.

The examples I’ve given thus far have been traditional Web sites enhanced
with Ajax so that they become slightly more application-like. But the term
Ajax also refers to applications that just happen to be on the Web.

Ajax is a broad term. It covers everything from snappy forms right up to word
processors and email clients. There is a sliding scale with straightforward
Web pages at one end and fully blown in-browser chat clients at the other.
The challenge of providing backward compatibility increases as you move
along this scale.

122 Chapter 6

DOCUMENTS AND APPLICATIONS
In discussions about the difference between Web sites and Web applications,
you’ll often hear about how the Web seems to be in a state of transition. It
appears to be moving from a document-delivery platform to an application-
based system. But this is a disingenuous distinction; it implies that applica-
tions aren’t centered on documents.

In fact, documents are at the heart of applications as well as Web sites. A
word processor is useless without a document. A spreadsheet application
requires a spreadsheet. Even a complex desktop application like Adobe
Photoshop works on documents; the documents just happen to be images.

The difference between Web sites and Web applications lies in how malleable
a document is. A traditional Web site simply displays a document. A Web
application lets you interact with—and change—that document. But make
no mistake: the World Wide Web is based on documents, no matter how
interactive they become.

That said, as one moves along the sliding scale from Web site to Web applica-
tion, it becomes more difficult to offer a rich interactive experience that can
also degrade gracefully to a series of simple HTML documents.

The continuum

An online email client like Google’s Gmail is
enhanced through the use of Ajax (https://mail.
google.com/). Updating discrete parts of the page
improves the user experience. But online email
clients can also be made using full-page refreshes,
so it is theoretically possible to build an Ajax email
client that also degrades gracefully.

Figure 6.1 Gmail is Google’s online email client,
enhanced with Ajax.

https://mail.google.com/
https://mail.google.com/

Ajax Challenges 123

Google Maps is a revolutionary way of interacting with maps because of the
JavaScript that powers it (http://maps.google.com/). The ability to drag the
visible map area, combined with the Ajax functionality that loads images
as needed, creates a very rich interface. It’s hard to imagine how this func-
tionality might degrade gracefully without an unacceptable number of page
refreshes.

Meebo is a chat client built entirely inside the Web browser using markup,
CSS, and JavaScript (http://meebo.com/). Thanks to Ajax, you can chat in
virtual windows just as you would in a desktop application. This is a very
impressive achievement. It may well be impossible to provide this kind of
interaction without using Ajax.

Hijax will take you surprisingly far along the sliding scale from Web page to
Web application. But, at some point, the goal of backward compatibility may
simply become unachievable.

If you find yourself at this point, it may come as a relief. Finally, you are freed
from worrying about providing graceful degradation. But be careful what you
wish for. Either you will need to build a separate non-Ajax version of your site,
or you will have to turn users away. Neither option is particularly appealing.

Figure 6.2 Google Maps uses Ajax to create an
entirely new way of navigating maps.

Figure 6.3 Meebo is a chat client delivered through
a Web browser.

http://maps.google.com/
http://meebo.com/

124 Chapter 6

The numbers game

You may be able to justify the decision to make an exclusive application
if you believe you know your audience from tracking browser statistics.
Statistics can be misleading, however. The decision not to support a par-
ticular Web browser may be based on circular reasoning: the statistics show
very few visits from some browser, therefore there’s no point supporting
it—but the reason there are so few visits is that the site doesn’t support that
browser.

It’s important to remember that you aren’t building Web sites for numbers,
percentages, or even browsers. Web sites are used by people. Your statistics
may show that 97 percent of your visitors are using Ajax-capable browsers.
The remaining 3 percent of your total traffic sounds like a small amount. But
if your site has 500 visitors a day, that figure translates to 15 people who
are being turned away each day. Every person visiting your site should have
access to its content.

I’m not suggesting that each and every visitor to your site should have
exactly the same experience. That’s the great thing about progressive
enhancement: it lets you provide each visitor with as much or as little func-
tionality as they can handle, while ensuring that everyone has access to the
content. If you decide to make Ajax a requirement, you will miss out on the
key benefits of using Web standards like HTML/XHTML, CSS, and JavaScript.
Should you decide to forego the benefits of progressive enhancement, you
may be better off using a different technology.

If you use the Flex framework and deliver your Web application in Flash, you
can provide a very rich interface in a stable, predictable environment: the
Flash player. Of course, the Flash player plug-in will be a requirement for the
user to access the application. But if you have already decided that you are
going to exclude visitors on technological grounds, you are simply swapping
one group of excluded users for another.

Use the right tool for the job at hand. The biggest advantage of Ajax over
Flex is that Ajax can be applied as an enhancement, whereas the Flash player
offers all-or-nothing content delivery. If you decide not to avail your site of
Ajax’s greatest strength, you should certainly explore other options for pro-
viding rich interactivity on your Web sites.

Ajax Challenges 125

Web Services
As described in Chapter 3, the open method of the XMLHttpRequest object
can only make requests to the same domain as itself. This is an infuriating
stumbling block if you want to retrieve data from a third-party service.

Many applications allow access to their data through public Application
Programming Interfaces, or APIs. APIs usually return data in XML, which
would appear to make them ideally suited to Ajax requests. However, the
same-domain restriction prevents this union.

If a Web service provides an option to supply data formatted as JSON, the
script tag hack can be used to retrieve that data. The problem with this solu-
tion is that it requires JavaScript in order to work. There is no non-JavaScript
fallback.

A more robust solution involves the use of a proxy. A proxy is simply a gate-
way that relays requests. Using your own server as a proxy for third-party
services, you can make Ajax requests as usual. The XMLHttpRequest object
requests a file on your own server. This file then sends a request to the Web
service on a third-party server, which returns some data. This data can be
passed back to the XMLHttpRequest object.

Figure 6.4 Using your server as a proxy, you can shuttle requests between
the browser and third-party Web services.

The downside to using a proxy is that the requests and responses must pass
through an extra gateway. This extra hop means that the data won’t flow
quite as quickly as it would without a proxy.

The great advantage to using a proxy is that JavaScript is not a requirement.
You can build a Web site that uses full-page requests to retrieve data from a
Web service and then use Hijax to add the Ajax interactivity. If Ajax is not sup-
ported, the data is still available through traditional full-page interaction.

126 Chapter 6

If you use your server as a proxy for communicating with Web services, it
makes sense to parse the data on your server rather than use JavaScript. It’s
a lot faster to convert XML into HTML on your server than in a browser.

Feedback
Web browsers are built around the traditional, page-based model of content
delivery. By default, when a link is clicked or a form is submitted, the browser
sends a request to a server for a new page. At this point, the browser instantly
provides feedback to let the user know that something is happening.

In most Web browsers, this feedback takes the form of some kind
of animation. Apple’s Safari shows an expanding strip of color
in the background of the address bar. In Microsoft’s Internet
Explorer, the normally static logo in the corner begins to spin
when the user requests a new page.

With Ajax, the default browser behavior of fetching a whole new
page is replaced with custom actions written using JavaScript
and event handlers. Because the usual behavior is canceled, the
browser no longer indicates that some action is under way. It’s up
to us to provide that feedback.

In an ideal world, Ajax responses would be received instantaneously. In real-
ity, a resource requested via Ajax is subject to the same bottlenecks as any
other traffic on the Internet. The speed of the response is determined by
bandwidth, latency, and all the other factors that govern the flow of data on a
network.

For a visitor to an Ajax-enabled Web page, this could be potentially disorient-
ing. If clicking a link or submitting a form produces no immediate response,
the logical assumption is that something is broken.

To deal with this issue, Ajax scripts should include some mechanism to indi-
cate that an action is under way. You could use DOM Scripting to insert a
piece of explanatory text into the page. This might be as simple as writing the
text “Loading…” into an appropriate element.

A more effective solution would be to use animation. Take a leaf out of the
browser manufacturer’s book. Create an endlessly looping animated image
and then display this image until the response is successfully received.

Figure 6.5 The logo for Microsoft's
Internet Explorer begins spinning the
moment a new page is requested.

Ajax Challenges 127

The simplest format for this kind of image is an animated GIF
file. The exact image can be anything you like, as long as it fea-
tures a smoothly looping animation. Rotating shapes, spinning
arrows, and barbershop-pole progress bars are all popular con-
ventions for indicating activity.

Here’s a short function called displayLoading. It takes a single argument,
which is an element in the document. This element is first emptied by remov-
ing all of its child nodes. Then, a newly created img element is appended.

function displayLoading(element) {

 while (element.hasChildNodes()) {

 element.removeChild(element.lastChild);

 }

 var image = document.createElement("img");

 image.setAttribute("src","loading.gif");

 image.setAttribute("alt","Loading...");

 element.appendChild(image);

}

Now I can update the contact details example to use this function. I want to
execute it at the same time that I’m starting the Ajax request in the grabFile
function:

function grabFile(file) {

 var request = getHTTPObject();

 if (request) {

 displayLoading(document.getElementById("details"));

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("GET", file, true);

 request.send(null);

 return true;

 } else {

 return false;

 }

}

When a name is clicked, a GIF animation appears in the “details” div,
which is where that person’s details will appear.

Figure 6.6 Some of the possible ways
to show activity.

128 Chapter 6

Figure 6.7 A spinning icon reassures visitors that something is
happening.

Once the Ajax call is successfully completed, the loading image is obliterated
by the use of innerHTML in the parseResponse function:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 }

 }

}

For the contact form, I want to display a GIF animation at the bottom of the
form when it’s submitted. I’m going to amend the displayLoading function
so that it doesn’t empty the containing element before appending the image.
This time I’m using a progress bar:

function displayLoading(element) {

 var image = document.createElement("img");

 image.setAttribute("src","progressbar.gif");

 image.setAttribute("alt","Loading...");

 element.appendChild(image);

}

Ajax Challenges 129

I just need to update the sendData function:

function sendData(data) {

 var request = getHTTPObject();

 if (request) {

 displayLoading(document.getElementById("contactform"));

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("POST", "formlogic.php", true);

 request.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

 request.send(data);

 return true;

 } else {

 return false;

 }

}

Now a progress bar will appear as soon as the form is submitted.

Figure 6.8 A progress bar below the contact form shows that
an action is under way.

130 Chapter 6

WHAT JUST HAPPENED?
Just as it is important to show that something is happening, it’s also a good
idea to show that something just happened.

In 37signals’ suite of Ajax applications, the company pioneered the yellow
fade technique (www.37signals.com). Using a combination of JavaScript and
CSS, a Web page displays an updated element with a yellow background
color that gradually fades to white. This is an effective way of showing which
part of the current page has changed.

Figure 6.9 The yellow fade technique in action.

The yellow fade technique has been employed on quite a few sites—so much
so that it is now a convention of sorts. This is good. Users find repeated
conventions reassuring. The more a visual feedback technique is used, the
clearer its meaning becomes.

www.37signals.com

Ajax Challenges 131

Here’s a function that fades an element’s background color to white:

function fadeUp(element,red,green,blue) {

 if (element.fade) {

 clearTimeout(element.fade);

 }

 element.style.backgroundColor = "rgb("+red+","+green+",

 "+blue+")";

 if (red == 255 && green == 255 && blue == 255) {

 return;

 }

 var newred = red + Math.ceil((255 - red)/10);

 var newgreen = green + Math.ceil((255 - green)/10);

 var newblue = blue + Math.ceil((255 - blue)/10);

 var repeat = function() {

 fadeUp(element,newred,newgreen,newblue)

 };

 element.fade = setTimeout(repeat,100);

}

The fadeUp function takes four arguments. The first argument is the element
that will have its background color altered. The other three arguments are
RGB values: red, green, and blue. These are the starting RGB values of the
element’s background color:

function fadeUp(element,red,green,blue)

The backgroundColor of the element’s style property is updated with the
red, green, and blue values. With CSS, you can declare color values using
hexadecimal or RGB values:

element.style.backgroundColor = "rgb("+red+","+green+",

 "+blue+")";

This is a recursive function, meaning it calls itself. There is a slight
pause before the function calls itself again. This pause is achieved using
setTimeout, which takes two arguments: the function to be executed and
the number of milliseconds to wait before executing it:

var repeat = function() {

 fadeUp(element,newred,newgreen,newblue)

};

element.fade = setTimeout(repeat,100);

132 Chapter 6

In this case, I’m attaching the time-out to a custom property of the element
called fade. Every time the function is called, the time-out is flushed using
clearTimeout. This ensures that there won’t be any conflicting instructions
if the fadeUp function is ever applied to the same element more than once at
the same time:

if (element.fade) {

 clearTimeout(element.fade);

}

Before the function is called again, the RGB values are increased to bring
each of them closer to 255:

var newred = red + Math.ceil((255 - red)/10);

var newgreen = green + Math.ceil((255 - green)/10);

var newblue = blue + Math.ceil((255 - blue)/10);

When each of the values reaches 255, the element’s background color is
white: rgb(255,255,255). The function no longer needs to repeat:

if (red == 255 && green == 255 && blue == 255) {

 return;

}

The fadeUp function allows me to add a yellow fade, or any other colored
fade, as long as the background color of my document is white.

I can add a yellow fade to the contact details page by updating the
parseResponse function:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 fadeUp(details,255,255,153);

 }

 }

}

I’m starting with a shade of yellow that has a value of rgb(255,255,153).
When the Ajax response is returned, this color will fade to white.

Ajax Challenges 133

Figure 6.10 Adding a subtle fade indicates which part of
the page has been updated.

I’m using yellow because users may find it familiar from other Ajax applica-
tions. In other situations, the fading color could be used for added context. For
contact forms, you could use a shade of red to draw attention to any errors.

Figure 6.11 A pale red fade indicates a problem area.

134 Chapter 6

The fadeUp function I’ve written is quite basic and works only on docu-
ments with a white background. For a more robust script, check out the Fade
Anything Technique (www.axentric.com/aside/fat/).

Browser Behavior
The lack of a spinning icon isn’t the only difference that Ajax brings to a
browser’s behavior. Many of the tools and shortcuts that are built into Web
browsers are based on the traditional model of full-page refreshes.

BOOKMARKING
Almost every Web browser includes functionality for storing bookmarks. The
architecture of the World Wide Web is built around the idea of uniquely iden-
tified resources. These resources are usually pages, and their unique identi-
fiers are URLs. If you can store the value of a page’s URL, you can instantly
jump to that page without following a link from another page. Bookmarks (or
“favorites”) are simply URLs that a browser stores at your request so that you
can return to the associated pages at a later date.

When an Ajax action takes place, the URL is not updated. The contents of the
current document may have changed, but there’s no way for you to bookmark
the document in its changed state.

Take the contact details page, for example. I can bookmark this page only in
its initial state. Through the power of Ajax, Richard Rutter’s contact details
can be displayed on the same page without a full-page refresh. If I try to
bookmark the page while these contact details are visible, I will still book-
mark the page only in its original state. The URL does not change. As far as
the browser is concerned, this is the same page.

This poses quite a challenge. We are doing away with full-page refreshes, but
at the same time we want to update the current URL. We want to have our
cake and eat it too.

This isn’t a new problem. In Chapter 1, I made the tongue-in-cheek observa-
tion that a frameset is a form of Ajax. As it turns out, frames suffered from
this same problem. No matter how deep inside a frameset you navigated, the
URL in the address bar of your browser remained constant.

www.axentric.com/aside/fat/

Ajax Challenges 135

The only way to bookmark a page that is contained within a frameset is to
right-click and open the frame in a new browser window. Hijax allows for a
similar workaround. I can right-click Richard Rutter’s name and open that link
in a new window.

It’s nice that Hijax offers links that you can bookmark, but right-clicking to
spawn a new window isn’t an intuitive action for most users. Bookmarking a
link has changed from something straightforward to something laborious.

THE BACK BUTTON
Another challenge, one that is closely related to the bookmarking issue, lies
with the browser’s back button.

Bookmarks are links that users add at will. The browser doesn’t bookmark
every page you visit; you must actively add a page to your bookmark list. Your
Web browser creates a different list to keep track of all the pages you have
recently visited. These URLs are automatically stored in the browser’s history.

The back button and forward button let you navigate quickly backward and
forward through the pages you recently visited. The back button in particular
has become an indispensable tool for the average user. If you follow a link to
a page but then wish you hadn’t, the back button allows you to turn back the
clock and return to the previous page. It is the Web browser’s equivalent of
the “undo” action in desktop applications.

When part of a page is changed using Ajax, the browser’s history does not
get updated. As far as the browser is concerned, the URL hasn’t changed;
therefore, the user has not moved forward. At this point, the back button
is no longer the useful tool it once was. Clicking the back button will take
the user further back than they may wish. It certainly won’t act like an undo
mechanism.

Again, this isn’t an entirely new problem. For many years, Flash movies were
divorced from the history stack. No matter how deeply you navigated through
a Flash movie, the browser’s back button would take you back to the page
before the movie rather than stepping back through the movie itself. Some
Flash developers attempted to solve this problem by removing the back but-
ton from the browsing experience. Pages with Flash movies were opened
in new browser windows with all the browser chrome removed. This was a
draconian solution. The back button is far too valuable, both practically and
psychologically, to take away from your users.

136 Chapter 6

Solutions

Many smart Ajax developers have attempted to tackle the twin challenges
of bookmarking and the back button. Most of the solutions involve the addi-
tion of an internal anchor to the current URL, as well as some trickery with a
hidden iframe (see the article “Ajax: How to Handle Bookmarks and Back
Buttons,” by Brad Neuberg, at http://onjava.com/lpt/a/6293).

These solutions, while clever, are inevitably convoluted. They need to be, in
order to deal with the inconsistent behavior exhibited by different browsers
(see the article “Fixing the Back Button and Enabling Bookmarking for Ajax
Apps,” by Mike Stenhouse, at www.contentwithstyle.co.uk/Articles/38/).

It would be better if the situation could be avoided in the first place.

If you are updating so much of the page that your users believe they have
moved to a new page, you are probably doing too much. If Ajax is used to
alter small, discrete portions of a document, then it is unlikely that any prob-
lems will arise with bookmarking or using the back button.

When you are deciding whether to replace full page refreshes with Ajax
requests, ask yourself, Would I want to bookmark the changed state of this
page? If the answer could be yes, then you should probably decide against
using Ajax.

This isn’t always an easy question to answer. Sometimes the answer var-
ies from person to person. Think about a search form: should the results be
displayed without using a page refresh? It may seem like a usability enhance-
ment, but someone may want to bookmark the search results, or at least the
first page of the results. After the first page of search results, you may decide
to use Ajax for paginating deeper into the results. If the search results take
up a significant portion of the page, you’ll need to update a large chunk of
the document. That’s probably not a good idea. Your users may feel that they
are actually moving between pages and would rightly expect to be able to
navigate using the back button as well.

The cognitive dissonance surrounding the back button isn’t entirely new to
Ajax. The back button has never really meant “undo” in all browsing situa-
tions. If I fill out and submit a form, my data is sent to the server and I am
directed to a new page. Clicking the back button won’t undo the act of send-
ing that information.

www.contentwithstyle.co.uk/Articles/38/
http://onjava.com/lpt/a/6293

Ajax Challenges 137

Judicious use of Ajax should ensure that problems with the back button and
bookmarking never arise to begin with. When in doubt, do some user testing.
Actually, even if you have no doubts, you should still do some user testing.
However, you may find that trying to do user testing with Ajax applications
introduces its own problems.

Wireframing
Most Web sites don’t start life as pixels. Before a line of markup is written, a
plan is usually in place. Through the discipline of information architecture,
you can formulate and fine-tune the structure of a Web site as well as indi-
vidual Web pages. This kind of structural planning is often crafted using wire-
frames, which are documents that outline the infrastructure of a site or page.

Because wireframes are cheaper and easier to produce than finished Web
pages, they can provide enormous savings by highlighting potential prob-
lems early in the site-building process. Even some rudimentary user testing
with wireframes printed on paper can result in beneficial feedback.

The traditional model of the Web maps very well onto paper prototypes: a
single wireframe represents a single Web page. Once Ajax enters the equa-
tion, that balance is upset. How is it possible to test multiple interactions
within a single document?

As Jeffrey Zeldman so succinctly put it, “Wireframing Ajax is a bitch” (www.
alistapart.com/articles/web3point0/).

I don’t have any easy solutions to this problem. It may be that the useful-
ness of wireframing is negated by the complexity of Ajax. It’s certainly hard
to imagine how Ajax interaction could be tested so early in the development
process.

There seems to be little choice but to develop a bare-bones prototype early
on for testing. This prototype need not be fully functional as long as it can
simulate the effects of Ajax. The effects might be as simple as hiding and
showing portions of the document based on the user’s actions. This could be
achieved using some straightforward DOM Scripting, without the need for
full-blown Ajax requests. Nonetheless, even the simplest functional proto-
type will require more time and effort than a simple wireframe.

www.alistapart.com/articles/web3point0/
www.alistapart.com/articles/web3point0/

138 Chapter 6

THE ARROW OF TIME
Until now, wireframes were good enough at describing how a Web page
should be structured. Until now, Photoshop comps were good enough at
describing how a Web page should look. Neither technique is well suited
to describing how a Web page should behave.

Wireframes and Photoshop comps are static models. They don’t change
state. Ajax-enhanced Web documents are dynamic. The state of the docu-
ment can change over time, usually based on the actions of the user. There
doesn’t seem to be an easy way to represent changes over time in a static
document.

Summary
In this chapter, I’ve tried to highlight some of the common pitfalls in Ajax
development. By far the greatest challenge is providing functionality to user-
agents that don’t support Ajax. Even once this is dealt with, there are many
other issues to overcome. The solutions to most of these problems can be
found by empathizing with the user in the following ways:

■ Provide reassuring feedback as soon as an Ajax request is initiated.

■ Indicate clearly which part of the current document has been updated.

■ Don’t alter the state of the document so much that it would upset the
expected behavior of the back button.

■ If users will want to bookmark the altered state of a document, don’t
use Ajax.

Following these guidelines will keep your Ajax applications from becoming
overly confusing.

There is a bigger challenge that I haven’t mentioned until now. In the next
chapter, we will tackle a very thorny issue: can Ajax be accessible?

7
Ajax and

Accessibility

Doing the Right Thing

In an oft-quoted remark, Sir Tim Berners-Lee said:

“The power of the Web is in its universality. Access by everyone
regardless of disability is an essential aspect.”

The first sentence refers to the power of universal access. Using
the principle of progressive enhancement, you can harness that
power pretty easily. If you build your Web sites on a foundation
of semantic, well-structured markup and then use technologies
like CSS and JavaScript to add extra layers of presentation and
behavior, you can rest assured that your content will be acces-
sible by any user-agent.

Ajax and Accessibility 141

As you’ve seen, the same approach can be taken with Ajax. The Hijax tech-
nique lets you add snazzy interactivity for the benefit of modern browsers,
while ensuring that older browsers can still access the same content and
functionality.

Sir Tim’s second sentence is a little more problematic. On the Web, just as
in the real world, there is a moral imperative not to discriminate based on
disability.

As long as the text is legible and the images are clear, a Web page’s infor-
mation should be accessible. Visually impaired users require some help to
gain access to the same information. Assistive technology can provide that
help. People with weak vision often employ screen-magnifying software to
increase the size of text and images. People with very serious visual impair-
ment, such as blindness, are more likely to use screen-reading software.

Understanding Screen Readers
A screen reader is a piece of software that converts visual information on
a computer into a nonvisual output such as speech or Braille. The term is
something of a misnomer: many screen-reader users don’t have screens
connected to their computers.

Apple’s Mac OS X operating system features a built-in screen reader called
VoiceOver. This is still in its infancy and isn’t being used much yet. The major-
ity of screen readers are commercial products designed to work with Windows
operating systems. These include SuperNova and Hal from Dolphin Computer
Access, Window-Eyes from GW Micro, and JAWS from Freedom Scientific.

These screen readers sit between the operating system and the user. The
software attempts to make sense of the output being delivered by whatever
program is currently in use. In order to access Web pages with a screen
reader, blind users must still use a Web browser such as Firefox or, more
commonly, Internet Explorer.

SCREEN READERS AND WEB BROWSERS
Most screen readers don’t interact directly with the DOM structure of a Web
page. Instead, the software takes a snapshot of the document when the page
loads. This content is then placed into a virtual buffer. Without this virtual
buffer, screen readers would only be able to interact with forms and links—

142 Chapter 7

elements that can receive focus from input devices. Thanks to the virtual buf-
fer, screen-reader users can navigate their way through other elements like
headers, images, and tables.

Most screen readers share some common characteristics, such as being
able to toggle between modes of interaction. JAWS, for instance, can toggle
between a virtual PC cursor mode (making use of the virtual buffer) and a PC
cursor mode that interacts directly with focusable elements in a Web page.
JAWS also offers a forms mode, but this behaves identically to the PC cursor
mode as form elements can take focus. Window-Eyes has a browse mode
that uses its virtual buffer. When the browse mode is disabled, the screen
reader can interact directly with focusable elements. So, roughly speaking,
the browse mode in Window-Eyes corresponds to the virtual PC cursor mode
in JAWS.

SCREEN READERS AND JAVASCRIPT
There is a common misconception that screen readers aren’t capable of
executing JavaScript. In fact, the underlying Web browser determines the
JavaScript capability. However, screen readers do behave erratically in
response to JavaScript events.

For example, if JAWS is in virtual PC cursor mode, it reacts to the onclick
event handler and refreshes its virtual buffer. Other event handlers don’t
fare quite so well. The onreadystatechange event handler, which lies at
the heart of Ajax requests, does not trigger a refresh. It’s a similar story for
Window-Eyes in browse mode.

Screen Readers and Ajax
If screen readers don’t automatically respond to Ajax updates, how can we
design Ajax-enhanced Web sites so that they inform screen-reader users
when something has changed? That’s the fundamental problem with Ajax and
assistive technology.

It’s easy to show sighted users when part of a page has been updated. The
yellow fade technique is one way of indicating not only that content has been
inserted or changed, but also exactly where the change occurred. Providing a
similar feedback mechanism for screen readers is a huge challenge.

Ajax and Accessibility 143

Screen readers show a bias toward certain elements. For example, screen
readers can access form fields and links directly because they can take focus.
Tables are also treated as special cases because they can have such compli-
cated structures making it difficult for blind people to navigate them. If an
Ajax request results in creating or updating these kinds of elements, there’s a
greater likelihood that the screen reader will notice the generated content. In
practice, most Ajax requests generate content within ordinary elements such
as div elements.

GIVING FOCUS
One way of harnessing the inherent bias of screen readers is to update the
tab order of the page. This is the order in which focusable elements like links
and form fields can be accessed. Each focusable element has a tab index that
is usually assigned automatically, but that can also be assigned through the
tabindex attribute. Messing around with the default tab order of a docu-
ment is a bad idea, however. Web pages that are well structured already have
a logical tab order.

There is a somewhat hackish trick that lets you make an element focusable
without upsetting the existing tab order. The tabindex attribute is supposed
to contain a positive value ranging from zero to 32,767. Despite this, many
browsers let you specify a negative tabindex value. In these browsers, a
tabindex value of minus one allows an element to accept focus without
interfering with the tab order of the document.

Here’s a typical function triggered by the onreadystatechange event han-
dler. The responseText property is placed inside a div called “details”
using innerHTML:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 }

 }

}

144 Chapter 7

Once the “details” div is updated, give it a tabindex value of minus one.
Then, the div can be focused using JavaScript:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 details.tabindex = -1;

 details.focus();

 }

 }

}

This technique doesn’t work in all browsers. Safari ignores the negative
tabindex value. If a screen reader like JAWS or Window-Eyes is in a mode
that uses the virtual buffer, the element will be focused but its content won’t
be read automatically. The user needs to request manually that the virtual
buffer be refreshed before the content can be read. If the screen reader is in a
mode that doesn’t use the virtual buffer, the user doesn’t have to do anything
in order to hear the new content.

For more information on how different devices react to this technique,
read the results of testing done by Steve Faulkner and Gez Lemon (http://
juicystudio.com/article/making-ajax-work-with-screen-readers.php).

ALERTING
The tabindex hack doesn’t work in all situations. There are many possible
permutations of a screen reader’s make, version, and mode, not to mention
all the possible variations of the underlying browser.

An alternative approach is to use an alert dialog to inform the user that part
of the page has changed. These dialogs are part of the operating system, so
there’s a greater chance a screen reader will notice them.

The biggest disadvantage of using alert dialogs is that they are intrusive
and annoying. They should almost certainly be an opt-in extra.

You could, for instance, begin your document with a check box and some text
that asks the user if he or she wishes to be notified of Ajax updates:

http://juicystudio.com/article/making-ajax-work-with-screen-readers.php
http://juicystudio.com/article/making-ajax-work-with-screen-readers.php

Ajax and Accessibility 145

<p class="opt-in-question">

<label>

Would you like to be informed of changes made to the page

by JavaScript?

<input type="checkbox" id="alert-opt-in" />

</label>

</p>

Using an external CSS file, this message can be hidden from sighted users.
Don’t make the mistake of using display: none; that will hide the message
from screen readers too. Instead, try shunting the message off the screen:

.opt-in-question {

 position: absolute;

 left: -999px;

 width: 990px;

}

Now the parseResponse function can be updated to find out if the check box
is checked or not. If it is checked, an alert dialog is displayed:

function parseResponse(request) {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 var details = document.getElementById("details");

 details.innerHTML = request.responseText;

 var box = document.getElementById("alert-opt-in");

 if (box.checked) {

 alert ("The page has been updated.");

 }

 }

 }

}

As long as the check box is checked, an alert dialog pops
up every time the page is updated.

This technique isn’t very helpful. It’s nice that screen-reader
users can be informed that a document has been updated,
but they then have to manually trigger a refreshed reading
of the entire document. This can be extremely frustrating.
In many ways, it would be better for screen-reader users if
they could bypass the Ajax functionality entirely.

n o t e

Hiding form elements
introduces new problems.
The hidden form element
is included in the docu-
ment’s tab index. This is
confusing for users who
navigate using a keyboard.
People with motor impair-
ments may not be able
to use a mouse, relying
on keyboard navigation
instead. Hiding a form
off-screen in an attempt
to help one group of dis-
abled users—the visually
disabled—will cause prob-
lems for a different group.

Figure 7.1 An alert dialog is displayed
whenever the page is updated.

146 Chapter 7

State of the Art
The current level of support for Ajax in screen readers leaves a lot to be
desired. Clearly, Web browsers have evolved at a faster rate than assistive
technology.

James Edwards, the JavaScript expert better known by his moniker
Brothercake, tested the current crop of screen readers to find out how they
deal with generated content (http://www.sitepoint.com/article/ajax-screen-
readers-work).

The results are not encouraging. Brothercake sums up his findings:

“I’m forced to conclude that, unless a way can be found to notify screen read-
ers of updated content, Ajax techniques cannot be considered accessible,
and should not be used on a production site without a truly equivalent non-
script alternative being offered to users up-front.”

At the same time that Brothercake released the results of his test cases,
another accessibility expert published some Ajax-related material. Joe Clark,
author of Building Accessible Websites, conducted a series of tests on the
Basecamp application from 37signals. He presented the results at the Iceweb
conference in 2006 (http://joeclark.org/access/research/ice/iceweb2006-
test-results.html).

Joe’s conclusions aren’t quite as pessimistic as Brothercake’s:

“What we can say, then, is that this Ajax application is usable by screen-
reader users some of the time. They aren’t totally shut out, but it isn’t totally
easy for them, either.”

Nonetheless, the results make it clear that the presence of Ajax in the appli-
cation is an annoying hindrance for screen-reader users.

A MODEST PROPOSAL
Derek Featherstone is an expert in JavaScript, accessibility, and the intersec-
tion of the two (http://boxofchocolates.ca/).

At the @media conference in London in 2005, Derek expressed his frustra-
tion with screen-reader technology’s handling of generated content. As he
pointed out, we can deal with user-agents that support JavaScript and we
can deal with user-agents that don’t support JavaScript, but we have a much
harder time dealing with user-agents like screen readers that support only

http://www.sitepoint.com/article/ajax-screen-readers-work
http://www.sitepoint.com/article/ajax-screen-readers-work
http://joeclark.org/access/research/ice/iceweb2006-test-results.html
http://joeclark.org/access/research/ice/iceweb2006-test-results.html
http://boxofchocolates.ca/

Ajax and Accessibility 147

a subset of JavaScript functionality. In a daring move, Derek suggested that
we should encourage users of outdated screen-reader technology to switch
JavaScript off. After all, if we are building our Ajax applications using progres-
sive enhancement, then everything will degrade gracefully.

In practice, it isn’t so easy to simply disable JavaScript in the browser. Even
for a sighted user, it can be hard to find the right check box in a browser’s
preferences. In Internet Explorer, for example, the control for JavaScript is
found in Internet Options under Security, where it is called Active Scripting.

Nonetheless, Derek’s point is well taken. If Ajax is proving to be more of a
hindrance than a help for screen-reader users, non-Ajax interaction is prefer-
able. It would be better if screen readers didn’t initiate Ajax requests only to
fail at a critical point later on.

BYPASSING AJAX
The hidden check box can be repurposed for bypassing Ajax functionality:

<p class="opt-in-question">

<label>

This page uses Ajax functionality which may cause problems

for screen readers. Would you like to disable this

functionality?

<input type="checkbox" id="disable-opt-in" />

</label>

</p>

Instead of waiting until the Ajax request is complete, you can test the state of
this check box before initiating the request in the first place:

function grabFile(file) {

 var box = document.getElementById("disable-opt-in");

 if (box.checked) {

 return false;

 }

 var request = getHTTPObject();

 if (request) {

 request.onreadystatechange = function() {

 parseResponse(request);

 };

 request.open("GET", file, true);

148 Chapter 7

 request.send(null);

 return true;

 } else {

 return false;

 }

}

In order to save the user from having to check the box every time, you could
store a value in a cookie, using either JavaScript or your server-side language
of choice. Even then, this is a fairly clunky solution.

Google’s Gmail application contains text that, theoretically, is only displayed
to screen readers. The text reads, “If you are using a screen reader, you may
wish to switch to basic HTML for a better experience.” The text contains a link
to the non-Ajax version of the application.

Figure 7.2 Hidden text in Google’s Gmail application.

This is a thoughtful addition, but it requires the existence of a “separate but
equal” non-Ajax site. Building parallel applications is rarely desirable. Ideally,
one single site should be able to adapt to the needs of its visitors.

Ajax and Accessibility 149

DETECTING SCREEN READERS
Using hidden text and check boxes requires a lot of participation on the part
of the screen-reader user. The mere presence of an outdated screen reader
should be enough to trigger a bypass of Ajax functionality.

There is no way to directly detect the presence of a screen reader using
JavaScript. It is possible to glean plenty of information about the Web
browser accessing the current document, but, because screen readers work
on top of the browser, their presence goes unannounced.

While Web browsers can’t detect or communicate the presence of screen
readers, other applications can. The current Flash player, for instance, can
detect a screen reader’s make and whether it is currently enabled. By itself,
this capability of the Flash plug-in doesn’t appear to help us much.

Flash has made huge strides in functionality and power in recent years. One
of the many innovations introduced to the Flash player is a Flash-JavaScript
bridge. It is now possible to trigger a JavaScript function from within a Flash
movie. Combined with Flash’s screen-reader detection, this opens up some
possibilities for bypassing Ajax.

FlashAid

FlashAid is a proof-of-concept application written by Aral Balkan (http://
osflash.org/flashaid).

A small, 1-pixel-by-1-pixel movie checks for the presence of a screen reader
and passes the result to a JavaScript function. This function can then act
on the result accordingly. For instance, a global variable could be given a
Boolean value of true or false, depending on the result returned by the
Flash movie. Based on the value of this variable, Ajax requests can then be
executed or bypassed.

FlashAid is still in its infancy and requires plenty of testing. It would be useful
to find out just what percentage of screen-reader users have a recent version
of the Flash player plugged into their browsers.

A mailing list has been set up to take the research and development of
FlashAid further (http://osflash.org/mailman/listinfo/flashaid_osflash.org).

http://osflash.org/flashaid
http://osflash.org/flashaid
http://osflash.org/mailman/listinfo/flashaid_osflash.org

150 Chapter 7

The Future
Current screen readers don’t seem to be able to deal with Ajax applications
effectively. Or, to take a different perspective, it’s fair to say that current
browsers aren’t able to effectively communicate changes of state in a way
that’s meaningful to assistive technology.

This situation will change.

In XHTML 2, there are plans for embedding role and state values that can
be used to declare explicitly how an element should behave. This behavioral
information can then be read directly by screen readers.

Here’s an example from the W3C Web site of an element that acts as an inter-
active slider widget:

<span id="slider" class="myslider myselector2"

role="wairole:slider"

waistate:valuemin="0"

waistate:valuemax="50"

waistate:valuenow="33">

A “Roadmap for Accessible Rich Internet Applications” has already been
published by the W3C (http://www.w3.org/TR/aria-roadmap/).

These additions will undoubtedly make life better for users of assistive tech-
nology as long as browser makers and screen-reader manufacturers follow
the specifications.

For the time being, we are stuck with outdated technology. Ajax is pushing
the boundaries of technology on the Web. Browsers have reached an accept-
able level of support, but screen readers are lagging behind.

THE INNOVATOR’S DILEMMA
Web developers today are faced with a difficult decision. Ajax can be used
to provide significant usability enhancements. Yet, wherever Ajax is imple-
mented, there’s a good chance that it will negatively affect accessibility.

When confronted with this tough choice, it seems that the morally acceptable
solution is to forgo Ajax entirely. Yet this would mean deliberately avoiding
technological improvements that would benefit the majority of users.

http://www.w3.org/TR/aria-roadmap/

Ajax and Accessibility 151

At the same time, the needs of screen-reader users can’t simply be ignored.
If there were a straightforward way of making Ajax applications accessible,
the problem would merely be one of implementation. As it is, there are no
easy answers.

It is slightly unfair that Web developers are asked to shoulder so much
responsibility. There is also an onus on screen-reader manufacturers to
update their products to keep pace with the latest developments.

Summary
On the face of it, the situation with Ajax and accessibility looks grim.
Although there are some clever hacks that might help screen readers access
generated content, there is no way to make the Ajax experience as seamless
as it is for sighted users.

Still, these are early days. There may well be accessibility solutions just waiting
to be discovered. Further testing by users of screen readers on real-world Ajax
applications may reveal unexpected opportunities for increased accessibility.

The Web development community is very fortunate to have smart, talented
people like Brothercake, Derek Featherstone, Joe Clark, and others tackling
this issue.

This page intentionally left blank

8
Putting It All

Together

Building a Better Bookshop

So far you’ve learned about these key areas:

■ The code required for Ajax interaction

■ The principle of progressive enhancement

■ Design challenges posed by Ajax

In this chapter, I put all of that theory to the test. It’s time to
build an Ajax application.

I’m using PHP to create this application, but you can use any
server-side language. Don’t worry if you don’t understand PHP.
Understanding the language I’m using isn’t as important as
following the underlying concepts.

You can download the source code for this chapter at http://
bulletproofajax.com/shop/files/.

http://bulletproofajax.com/shop/files/
http://bulletproofajax.com/shop/files/

Putting It All Together 155

Planning
I’m building an online bookshop called Bulletproof Books. You can find a
working version at http://bulletproofajax.com/shop/

The target audience of this shop is the discerning Web developer, so only the
finest books on Web development will be stocked. It won’t be a very large
store; in fact, the site consists of just one page.

Figure 8.1 Bulletproof Books will stock a small but essential range of books.

The main purpose of the site is to allow visitors to add books to a shopping
cart. In this utopian example, none of the books have prices, but obviously
that wouldn’t be the case with a real e-commerce site.

The functionality isn’t limited to shopping. Visitors can also rate books on a
scale from one to five.

Before I start coding all this interaction, I need to think about the underlying
structure of the page.

http://bulletproofajax.com/shop/

156 Chapter 8

STRUCTURE
The page begins with some straightforward branding: the name of the shop.
Then, the page is divided into two parts. The first division holds all the avail-
able products. This is the main content. The second division holds the shop-
ping cart.

Figure 8.2 The broad structure of the page.

The XHTML structure looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

 <head>

 <meta http-equiv="content-type" content="text/html;

charset=utf-8" />

 <title>Bulletproof Books</title>

 </head>

 <body>

 <h1>Bulletproof Books</h1>

 <div id="mainContent">

 </div>

 <div id="subContent">

 <h2>Shopping Cart</h2>

 <div id="basket">

 </div>

 </div>

 </body>

</html>

Putting It All Together 157

I’m using the div element to divide the markup into sections. These divisions
are reflected in the file structure on the server. A series of files are combined
on the server to serve up a complete document.

This is the structure of the framework page, index.php:

<h1>Bulletproof Books</h1>

<div id="mainContent">

<?php include "products.php"; ?>

</div>

<div id="subContent">

<h2>Shopping Cart</h2>

<div id="basket">

<?php include "shoppingcart.php"; ?>

</div>

</div>

The include statements in index.php pull in two files: products.php and
shoppingcart.php.

The products.php file assembles the markup for the products. In a real appli-
cation, the product data would probably be stored in a database. For this
example, I’m simply storing the data in a PHP array:

<?php

$products = array(

 1 => array(

 "id" => "zeldman",

 "cover" => "zeldman.jpg",

 "title" => "Designing with Web Standards",

 "author" => "Jeffrey Zeldman"

),

 2 => array(

 "id" => "veen",

 "cover" => "veen.jpg",

 "title" => "The Art and Science of Web Design",

 "author" => "Jeffrey Veen"

),

 3 => array(

 "id" => "krug",

 "cover" => "krug.jpg",

158 Chapter 8

 "title" => "Don't Make Me Think",

 "author" => "Steve Krug"

)

);

Looping through this array, I then create a div for each product:

foreach ($products as $product) {

 echo '

<div class="product" id="'.$product["id"].'">

 <dl class="info">

 <dt>'.$product["title"].'</dt>

 <dd>by '.$product["author"].'</dd>

 </dl>

 <img class="cover" src="images/'.$product["cover"].'"

 alt="'.$product["title"].'" />

 <div class="rating">';

 $id = $product["id"];

 include "rating.php";

 echo '

 </div>

 <form class="shopping" method="post" action="index.php">

 <fieldset>

 <input type="text" class="amount" name="amount"

 value="1" />

 <input type="hidden" name="product"

 value="'.$product["title"].'" />

 <input type="submit" name="action" value="Add to cart" />

 </fieldset>

 </form>

</div>

';

}

?>

In each loop, I’m creating a variable called $id and then including a file called
rating.php. This file creates a list for each item. The list contains five links
that can be used to rate the product.

Here’s an example of the markup produced by products.php and rating.php:

Putting It All Together 159

<div class="product" id="zeldman">

 <dl class="info">

 <dt>Designing with Web Standards</dt>

 <dd>by Jeffrey Zeldman</dd>

 </dl>

 <img class="cover" src="images/zeldman.jpg"

 alt="Designing with Web Standards" />

 <div class="rating">

 <p>Rate this book:</p>

 <a class="worst" title="hate it"

 href="?product=zeldman&rating=worst">1

 <a class="bad" title="don't like it"

 href="?product=zeldman&rating=bad">2

 <a class="fair" title="it's fine"

 href="?product=zeldman&rating=fair">3

 <a class="good" title="like it"

 href="?product=zeldman&rating=good">4

 <a class="best" title="love it"

 href="?product=zeldman&rating=best">5

 </div>

 <form class="shopping" method="post" action="index.php">

 <fieldset>

 <input type="text" class="amount" name="amount"

 value="1" />

 <input type="hidden" name="product"

 value="Designing with Web Standards" />

 <input type="submit" name="action"

value="Add to cart" />

 </fieldset>

 </form>

</div>

The markup displays some basic information about the
product, followed by an image. Then it displays the rat-
ings list. Finally, it shows a form for adding this product to
the shopping cart. This same structure is applied to all the
products.

Figure 8.3 The structure of a single product.

160 Chapter 8

FUNCTIONALITY
As well as displaying the list of numbers for rating a product, the rating.php
file contains the functionality for storing the rating for the current product:

if (isset($_GET['product']) && $_GET['product'] == $id) {

 if (isset($_GET['rating'])) {

 $_SESSION[$id] = $_GET['rating'];

 }

}

Again, don’t worry if you don’t understand the PHP code: the underlying
functionality is the important thing.

If a query string is sent containing a value for product and that value matches
the current product, and the query string also contains a value for rating, that
rating value is stored in a session variable. A session variable, usually stored
as a cookie, is a quick and easy way of storing the value. In a real application,
the value would probably be stored in a database.

In this case, the name of the session variable is the ID of the current product,
and the value is the rating that has been sent in the query string.

If a session variable exists for the current product, the markup is updated
accordingly:

if (isset($_SESSION[$id])) {

 echo '

 <p>Your rating:</p>

 <ul class="'.$_SESSION[$id].'">';

 } else {

 echo '

 <p>Rate this book:</p>

 ';

}

If a query string is sent as product=zeldman&rating=best, the ratings
markup looks like this for the Zeldman product:

<p>Your rating:</p>

<ul class="best">

The functionality for rating products is now in place. The shopping-cart
functionality still needs to be added. That will be handled by the
shoppingcart.php file.

Putting It All Together 161

Shopping

The shoppingcart.php file pulls in a file called Cart.inc. This is a class that
handles all the shopping transactions using methods like getProducts,
addProduct, removeProduct, and so on:

<?php

class Cart {

 function countTotal() {

 }

 function getProducts() {

 }

 function addProduct($product) {

 }

 function removeProduct($product) {

 }

 function processInput($data = array()) {

 }

}

?>

I won’t go into the details of the PHP code involved. All you need to know
is that these methods take care of all the functionality required for a shop-
ping cart.

In the shoppingcart.php file, a new instance of this class is created as a ses-
sion variable (again, if this were a real application, you would probably use a
database instead):

if (!isset($_SESSION["cart"])) {

 $_SESSION["cart"] = new Cart();

}

If any data has been posted from a form, the Cart class takes care of adding
products to the session variable:

if (count($_POST)>0) {

 $_SESSION["cart"] -> processInput($_POST);

}

Now, depending on the contents of the session variable, either a short
message is displayed or a table showing the contents of the shopping cart
is shown:

162 Chapter 8

if ($_SESSION["cart"] -> countTotal() < 1) {

 echo '

 <p>Your shopping cart is empty</p>

';

} else {

 echo '

 <table>

 <thead>

 <tr>

 <th>Item</th>

 <th><abbr title="quantity">Qty</abbr></th>

 </tr>

 </thead>

 <tbody>';

 foreach ($_SESSION["cart"] -> getProducts() as

 $product => $count) {

 echo '

 <tr>

 <td>'.stripslashes($product).'</td>

 <td>'.$count.'</td>

 </tr>';

 }

 echo '

 </tbody>

 </table>

';

}

In this way, the markup for the whole page is output, and information
received via query strings and forms is processed.

PRESENTATION
Now that the structure of my application is in place, I can add style informa-
tion to the document using CSS.

In the head element of the page, I’m adding a link element that points to a
CSS file:

<link rel="stylesheet" media="screen" type="text/css"

href="styles/basic.css" />

Putting It All Together 163

This file, basic.css, imports a series of other CSS files:

@import url("layout.css");

@import url("ratings.css");

@import url("products.css");

@import url("basket.css");

Each of these files takes care of styling a different part of the page.

The layout.css file arranges the div elements on the page:

#mainContent {

 width: 77%;

 position: relative;

 float: left;

}

#subContent {

 width: 20%;

 position: relative;

 float: left;

}

The file products.css contains the color and font information for the product
data. Here’s a sample of the CSS:

.product {

 border-top: 6px solid #ccc;

 width: 27%;

 min-width: 10em;

 padding: .5em;

 margin: 0 .5em;

 float: left;

}

#zeldman {

 border-top-color: #693;

}

#veen {

 border-top-color: #fc3;

}

#krug {

 border-top-color: #f93;

}

The basket.css file contains some basic styling for the shopping-cart table.

164 Chapter 8

Ratings

The file for styling the ratings for each product is ratings.css. This is quite
complex. The CSS displays stars for each rating and fills in the appro-
priate number of stars when you hover over each link. For an in-depth
explanation of this technique, see http://komodomedia.com/blog/index.
php/2005/08/24/creating-a-star-rater-using-css/.

The text inside the ratings list is replaced with a background image of stars
that is 200 pixels wide. The first 100 pixels has filled-in stars. The next 100
pixels has unfilled stars.

.rating ul {

 list-style: none;

 position: relative;

 width: 100px;

 height: 20px;

 background: transparent url("../images/stars.gif")

 -100px 0 no-repeat;

 padding: 0;

 left: 50%;

 margin-left: -50px;

 overflow: hidden;

}

If a class has been applied to the list, the background image is positioned
accordingly:

.rating ul.worst {

 background-position: -80px 0;

}

.rating ul.bad {

 background-position: -60px 0;

}

.rating ul.fair {

 background-position: -40px 0;

}

.rating ul.good {

 background-position: -20px 0;

}

.rating ul.best {

 background-position: 0 0;

}

Figure 8.4 The background
image for the ratings.

http://komodomedia.com/blog/index.php/2005/08/24/creating-a-star-rater-using-css/
http://komodomedia.com/blog/index.php/2005/08/24/creating-a-star-rater-using-css/

Putting It All Together 165

The text for each link in the list is hidden:

.rating li {

 margin: 0;

 padding: 0;

 float: left;

}

.rating li a {

 display: block;

 position: absolute;

 width: 20px;

 height: 20px;

 text-indent: -100px;

 overflow: hidden;

 z-index: 20;

}

Each link in the list is postioned differently. As the scale increases, the
position is moved farther along:

.rating a.worst {

 left: 0;

}

.rating a.bad {

 left: 20px;

}

.rating a.fair {

 left: 40px;

}

.rating a.good {

 left: 60px;

}

.rating a.best {

 left: 80px;

}

When the user moves the pointer over any of these links, a repeating
background image of a darker-colored star is added:

.rating li a:hover {

 background: transparent url("../images/star.gif")

 left top repeat-x;

166 Chapter 8

 left: 0;

 z-index: 1;

}

The width of the link increases according to its position in the scale:

.rating a.worst:hover {

 width: 20px;

}

.rating a.bad:hover {

 width: 40px;

}

.rating a.fair:hover {

 width: 60px;

}

.rating a.good:hover {

 width: 80px;

}

.rating a.best:hover {

 width: 100px;

}

Applying Ajax
At this stage, Bulletproof Books is functional: you can rate books and add
them to your shopping cart. It’s fairly useless without a link to a checkout
page, but this is just an example, after all.

The application is built in a modular fashion:

■ The products.php file outputs a chunk of XHTML that displays all the
products.

■ The rating.php file outputs a snippet of XHTML for a list of ratings for a
single product.

■ The shoppingcart.php file outputs the XHTML for a table of products
added to the shopping cart.

Figure 8.5 As you hover
the pointer over each link
in the ratings scale, the
corresponding number of
stars appears.

Putting It All Together 167

A familiar Ajax pattern emerges as you look at the functionality handled by
some of these individual files:

■ Ratings. Whenever you click on a ratings link, information is sent to the
server in a query string. The server sends back the same page with only
one slight difference: the chosen rating is now displayed with the appro-
priate product. The rating.php file handles this.

■ Shopping. Whenever you click an Add to Cart button, information is sent
to the server through a form submission. The server sends back the same
page, this time with the shopping cart updated to reflect the new addition.
The shoppingcart.php file takes care of this.

Both situations are good candidates for the Hijax treatment.

REUSABLE JAVASCRIPT
So far, I have written JavaScript code specifically for each example. But all the
examples have followed much the same pattern:

1. One part of a page is a container for some links or a form.

2. The data from this container is captured.

3. This data is sent to a URL on the server via XMLHttpRequest.

4. A loading function is triggered to let the user know that something is
happening.

5. When the Ajax request is done, part of the page is updated. Let’s call this
the canvas.

6. A callback function is triggered to let the user know that something has
happened.

The specific details vary from case to case, but the process remains the
same.

It seems a shame to reinvent the wheel every time I want to add some Ajax
functionality. Instead, I’m going to abstract the process to create a reusable
chunk of JavaScript code.

I want to bundle up a number of variables and functions into one self-
contained block. That sounds like the perfect job for a user-defined object.

168 Chapter 8

Writing an object

If you recall, JavaScript has three kinds of objects:

1. Native objects such as Math, Date, and Array are provided by the
language.

2. Host objects such as window are provided by the environment in which
JavaScript is running.

3. User-defined objects are created by you, the programmer.

Wrapping up a bunch of variables and functions inside an object is a great
way of making your code portable.

I’m going to create an object to handle Ajax requests. The name of this object
is Hijax. Creating an object is just like creating a function:

function Hijax() {

}

Now I’m declaring all my variables in one place:

function Hijax() {

 var container,url,canvas,data,loading,callback,request;

}

■ container is the element on the page that contains the trigger mecha-
nism for the Ajax request: either a form or a collection of links.

■ url is the path to a file on the server.

■ canvas is the part of the page that gets updated.

■ data is either null or a string of name/value pairs to be sent to the
server.

■ loading is a function to be triggered when the Ajax request begins.

■ callback is a function to be triggered when the Ajax request ends.

■ request is an instance of XMLHttpRequest.

Most of these values need to be set from outside the object. To make that
possible, I create a series of methods. Remember, a method is simply a
function that is tied to an object. I’m using the this keyword, which is short-
hand for “this current object”:

Putting It All Together 169

function Hijax() {

 var container,url,canvas,data,loading,callback,request;

 this.setContainer = function(value) {

 container = value;

 };

 this.setUrl = function(value) {

 url = value;

 };

 this.setCanvas = function(value) {

 canvas = value;

 };

 this.setLoading = function(value) {

 loading = value;

 };

 this.setCallback = function(value) {

 callback = value;

 };

}

Each of these methods can be accessed from outside the object. Suppose
I create a new instance of the Hijax object, like this:

var myobject = new Hijax();

I can now access its methods using the dot syntax:

myobject.setUrl("rating.php");

The presence of the this keyword allows the methods to be accessed from
outside the object. These methods then take care of assigning values to
container, url, canvas, loading, and callback. The other values, data
and request, are created within the object.

I create one more method that can be accessed from outside the object.
This is called captureData:

this.captureData = function() {

};

When this method is triggered, data is extracted from the container
element.

I begin by testing the nodeName property of container to see if it is a form:

if (container.nodeName.toLowerCase() == "form") {

170 Chapter 8

If it is, then I want to extract the values from the form when it is submitted:

container.onsubmit = function() {

 var query = "";

 for (var i=0; i<this.elements.length; i++) {

 query+= this.elements[i].name;

 query+= "=";

 query+= escape(this.elements[i].value);

 query+= "&";

 }

I have concatenated the names and values of the form elements into a
variable called query. Now I’m assigning this value to data:

data = query;

In that single line, I am making use of one of the most powerful capabilities
of JavaScript: closures.

Closures

Normally there are two kinds of variable scope in JavaScript:

1. Global. If a variable is declared outside a function, it can be accessed from
anywhere.

2. Local. If a variable is declared within a function using the var keyword, it
can be accessed only from within that parent function.

Something interesting happens when a function is nested within another
function. The nested function can also access any local variables belonging
to the parent function:

function test() {

 var foo = "bar";

 function getFoo() {

 alert (foo);

 }

}

This is an example of a closure. Normally the getFoo function would have
access only to global variables or its own local variables. Because getFoo is
nested within the test function, it can also access the local variables of test.

Think of closures as a kind of regional scope: broader than local but not as
broad as global.

Putting It All Together 171

Thanks to closures, functions within an object can access variables declared
within the same object. Remember, a function within an object is a method,
and a variable within an object is a property. The captureData method of
the Hijax object has access to the data property even though that property
was declared outside the method:

function Hijax() {

 var container,url,canvas,data,loading,callback,request;

 ...

 this.captureData = function() {

 if (container.nodeName.toLowerCase() == "form") {

 container.onsubmit = function() {

 var query = "";

 for (var i=0; i<this.elements.length; i++) {

 query+= this.elements[i].name;

 query+= "=";

 query+= escape(this.elements[i].value);

 query+= "&";

 }

 data = query;

 };

 }

 };

...

}

The really remarkable characteristic of this particular closure is the way that
scope is maintained even within the onsubmit event handler. Normally it
would be impossible to reference anything other than a global variable from
within an event-handling function. Thanks to the power of closures, all of the
variables declared within an object are still available when an event-handling
function is called from within that object.

Once the data from the form has been captured, another method, called
start, is invoked. This method initiates the Ajax request. If the start
method is successful, it returns a value of true. In that case, I want to cancel
the default browser behavior for the submit event:

return !start();

If the start method returns true, the onsubmit event handler returns the
opposite, which is false. If, on the other hand, the start method fails and
it returns a value of false, the onsubmit event handler returns the opposite

172 Chapter 8

value, true, which means the default browser behavior kicks in and the form
is submitted as normal.

Before getting to the start method, I need to finish writing the captureData
method.

If the container element is not a form, then the data is being transmitted
via links instead. By looping through all of the links within the container
element, I can add an onclick event-handling function to capture any data
contained in query strings:

var links = container.getElementsByTagName("a");

for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

 var query = this.getAttribute("href").split("?")[1];

 url+= "?"+query;

 return !start();

 };

}

In this case, the closure is the url property, which is being updated with the
link’s query string.

The finished captureData method looks like this:

this.captureData = function() {

 if (container.nodeName.toLowerCase() == "form") {

 container.onsubmit = function() {

 var query = "";

 for (var i=0; i<this.elements.length; i++) {

 query+= this.elements[i].name;

 query+= "=";

 query+= escape(this.elements[i].value);

 query+= "&";

 }

 data = query;

 return !start();

 };

 } else {

 var links = container.getElementsByTagName("a");

 for (var i=0; i<links.length; i++) {

 links[i].onclick = function() {

 var query = this.getAttribute("href").split("?")[1];

Putting It All Together 173

 url+= "?"+query;

 return !start();

 };

 }

 links = null;

 }

};

I’ve included a little bit of housecleaning for Internet Explorer. Versions 5 and 6
of that browser aren’t very good at cleaning up references to DOM nodes. The
links variable is no longer needed once the captureData method is finished,
but, unlike other browsers, Internet Explorer doesn’t perform garbage collec-
tion on this variable. Once the onclick event handlers have been assigned,
the statement links = null performs the garbage collection manually.

Initiating the Ajax request

Once data has been intercepted from either a form or a link, the start
method is executed.

I could create the start method like this:

function start() {

}

I’m writing it like this instead:

var start = function() {

};

The two are equivalent, but I prefer to use the second style when I’m writing
the methods of an object.

The start method is a straightforward function that returns either true
or false:

var start = function() {

 request = getHTTPObject();

 if (!request || !url) {

 return false;

 } else {

 initiateRequest();

 return true;

 }

};

174 Chapter 8

As long as a URL has been specified for the Ajax request and the function
getHTTPObject successfully creates an instance of XMLHttpRequest, the
start method returns a value of true.

The getHTTPObject function should be quite familiar to you. Now that it is
nested within the Hijax object, getHTTPObject is a method of Hijax:

var getHTTPObject = function() {

 var xmlhttp = false;

 if (window.XMLHttpRequest) {

 xmlhttp = new XMLHttpRequest();

 } else if(window.ActiveXObject) {

 try {

 xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

 } catch (e) {

 try {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 } catch (e) {

 xmlhttp = false;

 }

 }

 }

 return xmlhttp;

};

In the start method, the result of getHTTPObject is assigned to the
request property:

request = getHTTPObject();

If getHTTPObject returns an instance of XMLHttpRequest, the start method
invokes a method called initiateRequest before returning a value of true:

initiateRequest();

return true;

The initiateRequest method is the engine that drives the Hijax object.
First of all, this method tests whether a function has been assigned to the
loading property of the current Hijax object. If the loading property has a
value, now is the time to execute it:

var initiateRequest = function() {

 if (loading) {

 loading();

Putting It All Together 175

 }

};

The initiateRequest method contains the three building blocks of
XMLHttpRequest: onreadystatechange, open, and send.

A reference to a method called completeRequest is assigned to the
onreadystatechange event handler:

request.onreadystatechange = completeRequest;

If data has been captured from a form, a POST request is specified in the
open method and the data property is passed to the server in the send
method:

request.open("POST", url, true);

request.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

request.send(data);

If data has no value, a GET request is specified and no data is sent to the
server:

request.open("GET", url, true);

request.send(null);

Determining which kind of request to initiate is accomplished with a
straightforward if statement that tests the value of data. The finished
initiateRequest method looks like this:

var initiateRequest = function() {

 if (loading) {

 loading();

 }

 request.onreadystatechange = completeRequest;

 if (data) {

 request.open("POST", url, true);

 request.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

 request.send(data);

 } else {

 request.open("GET", url, true);

 request.send(null);

 }

};

176 Chapter 8

Once the Ajax request is initiated, all that remains is to handle the response
from the server.

Completing the Ajax request

A method called completeRequest has been attached to the
onreadystatechange event handler. As usual, there is a test to see if the
readyState property has reached 4 and if the server is sending a status
of 200 or 304:

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

If the canvas property of the current Hijax object has been specified, that
part of the page is updated with the contents of responseText:

if (canvas) {

 canvas.innerHTML = request.responseText;

}

If a function has been assigned to the callback property of the current
Hijax object, that function is executed:

if (callback) {

 callback();

}

That’s all there is to the completeRequest method:

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 if (canvas) {

 canvas.innerHTML = request.responseText;

 }

 if (callback) {

 callback();

 }

 }

 }

};

Putting It All Together 177

PREPARING THE PAGE
The Hijax object provides a nice reusable way of adding Ajax functionality to
a Web page. All the examples in this book so far could be reengineered to use
Hijax because they all follow the same steps.

In the case of Bulletproof Books, rating books and adding them to the shop-
ping cart both follow the classic Ajax pattern: user interaction through a form
or a link updates a discrete part of the same page.

Each book has an associated list of ratings links as well as a form for adding
that product to the shopping cart. There are three books altogether, making a
total of six page elements to be given the Hijax treatment. Rather than speci-
fying the details of each Ajax request in turn, I’m creating a function called
bookshop to wrap up all the instructions:

function bookshop() {

}

Within bookshop, I have a method called prepareCart, which will be exe-
cuted three times, once for each book. This method takes a single argument,
which is the form element that will be intercepted:

var prepareCart = function(element) {

};

I’m creating a new instance of the Hijax object:

var xhr = new Hijax();

Using the setContainer method, I’m specifying the form element as the
container property. This is passed in the element argument:

xhr.setContainer(element);

The URL for this Ajax request is shoppingcart.php:

xhr.setUrl("shoppingcart.php");

The part of the page that will be updated is the shopping cart, which has the
ID basket. This element is the canvas:

xhr.setCanvas(document.getElementById("basket"));

Within bookshop, I create a method called displayLoading, which will
show a progress bar. In this case, I want the progress bar to appear in the
shopping cart:

178 Chapter 8

xhr.setLoading(function() {

 displayLoading(document.getElementById("basket"));

});

Finally, when the Ajax request is complete, I want to add a yellow fade to
the shopping cart. This will be accomplished using a method called fadeUp.
Fading up the shopping cart like this is the callback function:

xhr.setCallback(function() {

 fadeUp(document.getElementById("basket"),255,255,204);

});

With all of these properties specified, it’s time to apply the captureData
method:

xhr.captureData();

Now I have a method, prepareCart, that I can use to intercept the data from
the forms associated with each product.

To intercept the data from each book’s ratings links, I have a similar method
called prepareRating:

var prepareRating = function(element) {

 var xhr = new Hijax();

 xhr.setContainer(element);

 xhr.setUrl("rating.php");

 xhr.setCanvas(element);

 xhr.setLoading(function() {

 displayLoading(element);

 });

 xhr.setCallback(function() {

 fadeUp(element,255,255,204);

 prepareRating(element);

 });

 xhr.captureData();

};

In this case, the URL is rating.php and the container element and canvas
element are one and the same.

Before I can start passing values to prepareCart and prepareRating, I
need to define the loading and callback functions, which I specified as
displayLoading and fadeUp, respectively.

Putting It All Together 179

What is happening?

The displayLoading function looks like this:

var displayLoading = function(element) {

 var image = document.createElement("img");

 image.setAttribute("alt","loading...");

 image.setAttribute("src","images/progressbar.gif");

 image.className = "loading";

 element.appendChild(image);

};

This creates a new img element with progressbar.gif as its src. This
newly created image is then inserted into the specified page element.

Figure 8.6 A GIF animation indicates that something is happening.

What just happened?

The fadeUp method should be familiar to you from previous examples:

var fadeUp = function(element,red,green,blue) {

 if (element.fade) {

180 Chapter 8

 clearTimeout(element.fade);

 }

 element.style.backgroundColor = "rgb("+red+","+green+",

 "+blue+")";

 if (red == 255 && green == 255 && blue == 255) {

 return;

 }

 var newred = red + Math.ceil((255 - red)/10);

 var newgreen = green + Math.ceil((255 - green)/10);

 var newblue = blue + Math.ceil((255 - blue)/10);

 var repeat = function() {

 fadeUp(element,newred,newgreen,newblue)

 };

 element.fade = setTimeout(repeat,100);

};

This changes the background color of a specified page element from the
color set in RGB values up to RGB (255, 255, 255), which is white.

Figure 8.7 A color fade from yellow to white shows that something just
happened.

Putting It All Together 181

Execution

With all the methods of bookshop in place, I can now assign the right Ajax
functionality to the right page elements.

Each book has an associated form that has a class name of shopping. I’m
passing each of them to the prepareCart method:

var all_forms = document.getElementsByTagName("form");

for (var i=0; i<all_forms.length; i++) {

 if (all_forms[i].className.match("shopping")) {

 prepareCart(all_forms[i]);

 }

}

For the sake of older versions of Internet Explorer, I’m cleaning up the all_
forms variable once I’m done with it:

all_forms = null;

For the rating functionality, I’m passing any div with a class name of rating
to the prepareRating method:

var all_divs = document.getElementsByTagName("div");

for (var i=0; i<all_divs.length; i++) {

 if (all_divs[i].className.match("rating")) {

 prepareRating(all_divs[i]);

 }

}

all_divs = null;

The bookshop function is ready. All I need to do now is execute it. I can’t
execute it right away, though; I have to wait until the document has loaded:
window.onload = bookshop;

Better yet, I can use the addLoadEvent function I showed you in Chapter 5:
addLoadEvent(bookshop);

182 Chapter 8

Bulletproofing
Bulletproof Books is now working. See for yourself at http://bulletproofajax.
com/shop/

Everything is working fine, but there’s always room for improvement. I’d like
to point out a few areas where you might want to tweak the code.

ERROR HANDLING
The completeRequest method of the Hijax object expects the server to
send a status property of 200 or 304. If any other status is sent from the
server, nothing happens. It’s quite easy to build in some kind of error han-
dling to let the user know that the request failed:

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 if (canvas) {

 canvas.innerHTML = request.responseText;

 }

 if (callback) {

 callback();

 }

 } else {

 alert("Error: "+request.status);

 }

 }

};

An alert statement isn’t the nicest way to display an error message. You
could append the error message to the canvas element instead.

A more robust solution would allow the error handling to change on a
case-by-case basis. Try declaring a new variable in the Hijax object called
errorhandler:

var container,url,canvas,data,loading,callback,request,

errorhandler;

http://bulletproofajax.com/shop/
http://bulletproofajax.com/shop/

Putting It All Together 183

Create a corresponding method for assigning a function to this property from
outside the object:

this.setErrorhandler = function(value) {

 errorhandler = value;

};

If a function has been assigned to errorhandler, it is executed in the
completeRequest method:

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 if (canvas) {

 canvas.innerHTML = request.responseText;

 }

 if (callback) {

 callback();

 }

 } else {

 if (errorhandler) {

 errorhandler();

 }

 }

 }

};

You can now add a method to bookshop to take care of any unexpected
errors:

var displayError = function(element) {

 var para = document.createElement("p");

 para.className = "error";

 var message = document.createTextNode("Oops! Something went

 wrong.");

 para.appendChild(message);

 element.appendChild(para);

 fadeUp(para,204,51,102);

};

184 Chapter 8

Assign this method in prepareCart and prepareRating:

xhr.setErrorhandler(function() {

 displayError(element.parentNode);

});

You probably want to use a more meaningful error message. You can update the
displayError method so that it accepts a second argument—a string of text:

var displayError = function(element,errortext) {

 var para = document.createElement("p");

 para.className = "error";

 var message = document.createTextNode(errortext);

 para.appendChild(message);

 element.appendChild(para);

 fadeUp(para,204,51,102);

};

Now you can tailor the error message according to the expected Ajax inter-
action.

TIMING OUT
In an ideal World Wide Web, connectivity would be fast and seamless. In real-
ity, that isn’t always the case. Sometimes connections drop, either because
of a problem on the server or because of the user’s Internet connection.

Ajax requests don’t time out automatically. Once a request is initiated, it
remains open until the readyState property reaches 4.

The XMLHttpRequest object has an abort method that cancels the Ajax
request. Using a setTimeout statement, you can invoke this method if the
request is taking too long.

Add a new variable called timer to the Hijax object:

var container,url,canvas,data,loading,callback,request,

errorhandler,timer;

In the initiateRequest method, assign timer a setTimeout statement:

var initiateRequest = function() {

 timer = setTimeout(function() {

 request.abort();

 }, 60000);

Putting It All Together 185

This aborts the Ajax request after 60 seconds. If an errorhandler function
has been provided, you might want to invoke that here:

timer = setTimeout(function() {

 request.abort();

 if (errorhandler) {

 errorhandler();

 }

}, 60000);

Some browsers exhibit the strange behavior of firing the readystatechange
event when abort is invoked. To counteract this, assign an empty function to
onreadystatechange before aborting the Ajax request:

timer = setTimeout(function() {

 request.onreadystatechange = function() {

 };

 request.abort();

 if (errorhandler) {

 errorhandler();

 }

}, 60000);

Now you have a way of handling unsuccessful requests. If the request
works as planned, you’ll need to cancel the timer countdown in the
completeRequest method:

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 clearTimeout(timer);

ACCESSIBILITY
As it stands, the Hijax object doesn’t make any concessions to screen-
reader users but, as we saw in the last chapter, there is no way of consis-
tently informing a screen reader that part of the page has been updated.

You could use the tabindex hack to focus the canvas area in the
completeRequest method:

186 Chapter 8

var completeRequest = function() {

 if (request.readyState == 4) {

 if (request.status == 200 || request.status == 304) {

 clearTimeout(timer);

 if (canvas) {

 canvas.innerHTML = request.responseText;

 canvas.tabindex = -1;

 canvas.focus();

 }

Remember, this doesn’t work in every combination of screen reader and Web
browser. Also, it may be overkill: do you really want to call the user’s atten-
tion to the shopping cart every time she adds a new product? Perhaps she
would rather continue browsing from her current position in the document.

Summary
Bulletproof Books is a good example of how Ajax can be used to enhance
an existing application—an online shop, in this case. The application works
just fine without Ajax, but the shopping experience is smoother once Ajax is
added to the mix.

The Hijax object is a flexible collection of common Ajax patterns. You can
use it for more than shopping carts and ratings. Don’t treat this object as a
finished solution for your Ajax needs. Instead, treat it as a starting point.

In this chapter, I’ve highlighted just some of the ways that the Hijax object
could be improved. I’m sure the code can be further refined. There’s no such
thing as the perfect script. Writing Ajax should be a continuous process of
assessment and iteration.

There may not be such a thing as truly bulletproof Ajax, but it remains a
worthy goal. Never stop questioning. Never stop looking for ways to improve
your code. I have the utmost confidence that you can take the code I’ve given
you as a starting point and make it more robust, elegant, and bulletproof.

9
The Future of Ajax

Where Do We Go From Here?

As you write more Ajax applications, you will confront many
of the same issues over and over again. Every time you solve a
general problem, it’ll be helpful to put that piece of JavaScript
to one side so you can reuse it later. It makes sense to abstract
your code into reusable pieces—that’s what I did with the Hijax
object. Eventually you will have a handy collection of code at
your fingertips.

The Future of Ajax 189

BUILDING A JAVASCRIPT LIBRARY
Here are just some of the issues that you may come across while building up
your own personal library of reusable code.

Event handling

I’ve been using straightforward event handlers like onclick and onsubmit.
These work in all browsers, but they have a major drawback: you can only
assign one event to each event handler.

The W3C DOM specification provides a method called addEventListener.
Internet Explorer doesn’t support this method. Instead, Microsoft provides
a proprietary method called attachEvent. The differences in implemen-
tations can be abstracted away by using a function like addEvent from
John Resig (http://ejohn.org/projects/flexible-javascript-events/) or Dean
Edwards (http://dean.edwards.name/weblog/2005/10/add-event2/).

Manipulating the DOM

If you aren’t using innerHTML, generating markup takes a lot of work.
You need to use a lot of DOM methods such as createElement and
appendChild combined with DOM properties such as childNodes,
nodeName, and so on. Instead of writing very similar code over and over,
it makes sense to create reusable functions for generating markup. Dan
Webb has done just that with his DOM Builder script (http://www.vivabit.
com/bollocks/2006/04/06/introducing-dom-builder).

Animation

The DOM is implemented fairly consistently from browser to browser. The
BOM, or Browser Object Model, is another story. Browsers use different
property names for measurements such as browser width. These differences
can be frustrating if you’re trying to do complex animation. Again, the logical
solution is to abstract away the browser differences with reusable code.

http://www.vivabit.com/bollocks/2006/04/06/introducing-dom-builder
http://www.vivabit.com/bollocks/2006/04/06/introducing-dom-builder
http://ejohn.org/projects/flexible-javascript-events/
http://dean.edwards.name/weblog/2005/10/add-event2/

190 Chapter 9

Libraries, Frameworks, and Toolkits,
Oh My!
Over time, all JavaScript developers build up their own library of reusable
code. Some developers have taken this a step further and released their
libraries into the wild for other developers to use. These collections of func-
tions and objects are sometimes called toolkits, or even frameworks. As far as
I can tell, the terms library, toolkit, and framework are used interchangeably.

There are two reasons why you might use someone else’s library:

1. Although you are well versed in DOM Scripting and Ajax, you need to
save some time on a project. Rather than reinvent the wheel, you can
use code that somebody else has written to solve a similar problem. You
understand exactly what the code is doing and you can tweak and adjust
it according to your needs.

2. Faced with a problem, you turn to a library that claims to provide a solu-
tion. The danger in using someone else’s code is that you don’t know how
the code works, and when something goes wrong (and it will), you won’t
be able to fix it.

The first scenario illustrates how useful libraries are for saving time and
effort. The second scenario illustrates how dangerous libraries can be for the
same reasons. Using a JavaScript library is like wielding a knife: it can be a
useful tool, but in the wrong hands it can cause terrible damage.

There are many JavaScript libraries out there to choose from. Let’s take a look
at some of the more popular options.

PROTOTYPE
Sam Stephenson of 37signals created the Prototype library (http://
prototype.conio.net/). The birth of Prototype coincided with the creation
of the Ruby on Rails server-side framework at the same company. The two
work well together: Rails uses Prototype (and its offspring, Scriptaculous)
to add JavaScript helpers. These helpers are added in an obtrusive manner,
but thanks to the passionate Rails community, a patch is available (http://
www.ujs4rails.com/).

http://www.ujs4rails.com/
http://www.ujs4rails.com/
http://prototype.conio.net/
http://prototype.conio.net/

The Future of Ajax 191

The Prototype code is elegant and clean, weighing in at about 48K.
Prototype is designed to make the developer’s life easier by provid-
ing a number of shortcuts. For instance, instead of writing document.
getElementById("element_id"), Prototype lets you type
$("element_id").

The Prototype Web site doesn’t provide much documentation, but an
enthusiastic fan base of bloggers is demonstrating how to use the library
(http://www.prototypedoc.com/).

SCRIPTACULOUS
Prototype forms the basis of the Scriptaculous library (http://script.aculo.
us/). Scriptaculous contains a series of modules that have been created with
Prototype. There are separate files available for drag and drop, animation,
and Ajax.

The animation module is built in a very modular way. A series of combination
effects are built on top of a bundle of core effects. The Web site also provides
a treasure chest of user-submitted effects.

Users provide documentation for Scriptaculous on an ongoing basis through
a wiki.

MOCHIKIT
Bob Ippolito created the MochiKit library (http://mochikit.com/). Like
Scriptaculous, it has been constructed in a modular fashion so that you
don’t have to download everything if you don’t need to use all the available
functionality.

The design of MochiKit is heavily influenced by the Python programming
language. It is a testament to the flexibility of JavaScript that it allows itself
to be adapted in this way. That said, it makes more sense to me to learn
the characteristics of JavaScript rather than try to make it behave more like
another language.

MochiKit provides methods such as loadJSONDoc and
 doSimpleXMLHttpRequest for Ajax requests. It also provides a great log
function that makes debugging much easier than using a series of alert
statements. All of the MochiKit methods are documented on the Web site.

http://www.prototypedoc.com/
http://script.aculo.us/
http://script.aculo.us/
http://mochikit.com/

192 Chapter 9

JQUERY
Like Prototype, jQuery is a JavaScript library filled with shortcuts (http://
jquery.com/). It even replicates the $ function from Prototype.

The most interesting aspect of jQuery is the way it lets you chain methods
together in one statement. Here is an example from the front page of the
jQuery Web site:

$("p.surprise").addClass("ohmy").show("slow");

This finds all the paragraph elements that have a class of surprise, adds
the class ohmy to each of them, and then slowly reveals them. This syntax is
very handy for attaching multiple events and effects to elements.

jQuery is available in two versions: a compressed version (about 20K) for
use in production sites and an uncompressed version (around 52K) that is
more readable.

YUI
YUI is short for Yahoo User Interface library (http://developer.yahoo.com/
yui/). As the name suggests, developers at Yahoo created this library. As well
as talking the talk, Yahoo walks the walk: this is the same JavaScript that is
used across all of Yahoo’s worldwide properties.

Rather than providing one monolithic code structure, YUI is split into sepa-
rate modules called utilities. There are utilities for events, animation, drag
and drop, DOM manipulation, and Ajax. The Ajax utility is called the connec-
tion manager.

Unlike Prototype and jQuery, brevity is not the main goal of YUI. Priority is
given instead to ensuring that the library’s JavaScript plays nicely with your
own code. Everything is encapsulated within an object called YAHOO. Here’s
an example of an event handler:

YAHOO.util.event.addListener("element_id", "click",

myFunction);

As well as the core utilities, YUI provides controls for common Web applica-
tion widgets such as sliders, calendars, and menus.

http://jquery.com/
http://jquery.com/
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/

The Future of Ajax 193

Because YUI is in active development by a big organization, the documenta-
tion for the library is very detailed. Best of all, Yahoo developers are also
documenting the research behind the utilities (http://developer.yahoo.com/
ypatterns/). Called the Design Pattern Library, this offers invaluable insight
into the complexities behind seemingly simple interactions such as drag
and drop.

Choosing a Library
I’ve listed just some of the JavaScript libraries that are freely available. There
are many more, such as Dojo, originally developed by Alex Russell and now
maintained by the Dojo Foundation (http://dojotoolkit.org/). Mootools is
another popular library (http://mootools.net/).

If you want to get a feel for any of these libraries, try downloading them and
playing around with the code. When you are evaluating a library, there are a
number of factors to bear in mind.

FILE SIZE
Because JavaScript is a client-side language, the end user will need to down-
load whichever library you choose. Nobody likes long download times. You
will need to decide if the waiting time is offset by the benefits provided by the
library. The modular structure of some libraries allows you to pick and choose
the bare minimum amount of code for your needs.

DOCUMENTATION
Documentation matters. A library might be filled with powerful features, but
without a set of instructions, those features will languish unused.

Most libraries provide some kind of documentation on their Web sites. The
style of documentation varies. Some libraries have very technical documen-
tation that isn’t very pleasurable to read. On the other hand, there are quite
a few blog posts about the practical usage of libraries, which are generally
more readable.

http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/
http://dojotoolkit.org/
http://mootools.net/

194 Chapter 9

BROWSER SUPPORT
It is common practice at the beginning of a Web design project to specify a
baseline of browsers that will be actively supported. This list of browsers
should be as inclusive as possible. Likewise, every JavaScript library has its
own list of supported browsers. The more cross-browser–compatible a library
is, the better. Your browser baseline should not change to accommodate a
fussy library. If a library does not work in all the browsers that you need to
support, don’t use that library.

Whither Ajax?
The abundance of JavaScript libraries seems like a boon for Web develop-
ers, but their very existence raises a troubling question. Is JavaScript—and
by extension, Ajax—really so complex that we require third-party toolkits to
solve our problems?

For the level of Ajax that I have covered in this book, I believe that using a
library would be overkill. For more complex, animation-rich applications, a
library could certainly save a lot of time and effort.

As applications grow more complex, the need for cross-browser shortcuts
increases. However, as the complexity of a Web application increases, its
robustness declines. It becomes increasingly difficult to employ progressive
enhancement. Providing access for screen-reader users moves from being
tricky to downright Sisyphean.

Given this steep difficulty curve, it makes sense to keep Ajax enhancements
lightweight and subtle. Yet most Ajax applications on the Web today are quite
complex.

FROM DESKTOP TO WEB BROWSER
A common yardstick for measuring the perceived success of an Ajax appli-
cation is how well it mirrors the desktop experience. Web developers are
attempting to emulate the experience of using native applications. The
results are called Rich Internet Applications.

The Future of Ajax 195

I am not convinced by this scramble for RIAs. The term itself implies that non-
RIAs, if they aren’t rich, must be poor Internet applications. There is a fallacy
in assuming that a rich user interface equates to a rich user experience. In
my experience, the opposite can be true. Some of the most rewarding, emo-
tionally involving experiences I’ve had on the Web were on plain, text-heavy
sites. Some of my most frustrating experiences involved highly interactive
but unusable Web applications.

What’s good for the desktop is not necessarily good for the Web browser.
Drag and drop is a case in point. This convention is used in many Ajax appli-
cations but rarely with the same thought that has gone into native desktop
apps. If I want to move a file from my computer’s desktop to the trash, I can
drag and drop it, but I can also use the keyboard or navigate using the file
system. Dragging and dropping is only one way of accomplishing my task.
When this convention is borrowed by Ajax applications, alternate solutions
are seldom provided.

For many developers, the term Ajax has come to mean any kind of desktop-
like interaction on the Web. For me, Ajax is fundamentally about asynchro-
nous communication with a Web server from within a Web browser. Desktop
software can teach us many lessons about interface and interaction design,
but we must not lose sight of the fact that Ajax is a Web technology at heart.
If you decide to borrow conventions from the desktop, make sure you don’t
break the fundamental expectations of interaction on the Web.

Users expect to initiate interaction by clicking on links and buttons or by
filling in forms. With progressive enhancement, it is possible to ensure that
these kinds of interactions degrade gracefully to hyperlinked documents and
form submissions.

Ajax is pushing the boundaries of Web browsers’ capabilities, which is excit-
ing. It’s important that the Web evolves and moves forward. At the same
time, it’s equally important that the fundamental nature of the Web remains
undamaged. The World Wide Web is a wondrous collection of documents
linked together through the beautifully simplistic power of hypertext. Used
well, Ajax can enhance the experience of navigating and enjoying this vir-
tual cornucopia. Used carelessly, Ajax could sever the very connections that
define the Web.

196 Chapter 9

THANK YOU
Thank you for reading this book. I’ve shown you some code, but I’m sure you
can improve on what you’ve seen here. More importantly, I hope I’ve shown
you how crucial it is to have a questioning attitude when it comes to Ajax.
Question the way you implement Ajax. Question the impact Ajax will have on
your users. Question the need to use Ajax at all.

Ajax is a cool technology, but that’s not a good reason to use it. Ajax can
improve usability: that’s a much better reason to use it. I’m sure you will
use Ajax to enhance your Web sites to be more powerful without sacrificing
access to your content.

Creating bulletproof Ajax is challenging, but the rewards are worth it.
Good luck.

, (commas)
arrays and, 20
comma-separated lists, 28
to separate variables, 18

() (parentheses)
arguments and, 28
in if statements, 23–24

Numbers
37signals’ suite, 130, 190

A
abort method, 184
accessibility of Ajax. See screen readers
Active Scripting, 147
ActiveX technology, 47
Adaptive Path, 3
addEvent function, 189
addEventListener method, 189
addLoadEvent function, 98–99, 181
Ajax. See also application building (example), 2–12

accessibility. See screen readers
Ajax toolkit, 8–11

CSS basics, 10–11
DOM basics, 11
markup language validity, 9–10
server-side languages, 8
XML?, 9

defining Ajax, 5–8
design challenges. See design challenges of Ajax

Symbols
&& (and) operator, 25
$id variable, 158
* (asterisks) in JavaScript, 16, 22, 39
// (slashes) in JavaScript, 16
[] (brackets) in arrays, 20
_ (underlines) in JavaScript, 17
{ } (curly braces)

in object literal, 79
in while loops, 26

| | (as or operator), 25
+ (plus sign) operators, 22–23
< (less than) symbol operators, 23
<= compound operator, 24
== (equal signs) operators

as comparison operators, 23
as identity operators (===), 24
uses of in JavaScript, 25

!== (not identical to operator), 25
> (greater than) symbol operators, 23
>= compound operator, 24
\ (backslash) in JavaScript, 18
. (dot notation), in methods and properties, 32
! (exclamation marks)

in if statements, 24
as not operators, 25

" (quotation marks) in strings, 18–19
; (semicolons)

in functions, 29
in for loops, 27
in statements, 15

Index

Ajax (continued)
origin of term, 2–4
traditional Web model vs. Ajax, 5–6

Ajax: A New Approach to Web Applications Web site, 3
“Ajax: How to Handle Bookmarks and Back Buttons”

by Brad Neuberg, 136
Ajax toolkit, 8–11

CSS basics, 10–11
DOM basics, 11
markup language validity, 9–10
server-side languages, 8
XML?, 9

ajax.js file, 114
ajax.js JavaScript file, 105
alert dialogs, 144–145
alert statement, 182
alteration statement, 27
and (&&) operator, 25
animation

browser feedback and, 126–127
DOM and BOM and, 189

anonymous functions, 29
appendChild method, 42–43, 74, 89, 189
Apple Safari

animation and, 126
XMLHttpRequest support and, 47

application building (example), 155–186
accessibility (screen reader), 185–186
error handling, 182–184
JavaScript for, 167–176

closures, 170–173
completing requests, 176
initiating requests, 173–176
writing objects, 168–170

pages, preparing, 177–181
displayLoading function, 179
execution, 181
fadeUp method, 179–180

planning, 155–166
functionality for rating and shopping cart,

160–162
ratings, styling of, 164–166

styling, 162–166
XHTML page structure, 156–159

timing out, 184–185
arguments within functions, 28
arithmetic operators, 22–23
Array objects, 168
arrays, 20–21
assignment of values to variables, 17
associative arrays (hash), 21
asterisks (*) in JavaScript, 16, 22, 39
asynchronous requests (open method), 54
attachEvent method, 189
attribute nodes, 37

B
back buttons, 135–137
background

changing color of, 180
fading color of, 130–133

backgroundColor property, 131
backslash (\) in JavaScript, 18
Balkan, Aral, 149
Basecamp application, 146
basic.css file, 163
basket.css file, 163
Berners-Lee, Sir Tim, 140
binary language, 19
body element nodes, 38
<body> tag, 99
BOM (Browser Object Model), 34, 189
bookmarking, 134–136
bookshop function, 181
Boolean values, 19–20
brackets ([]) in arrays, 20
Braille, and screen readers, 141
Browser Object Model (BOM), 34, 189
browsers. See Web browsers
Building Accessible Websites, 146
Bulletproof, instantiation, 49–51
Bulletproof books example. See application building

(example)
Bulletproof Web Design (New Riders, 2005), vii
buttons, back, 135, 136

198 Index

C
callback function, 167, 168, 178
callback parameter, 83
callback property, 176
camelCasing, 17
canvas element, 167, 168, 176, 177, 178
captureData method, 169, 171, 172–173, 178
cart.inc file, 161
Carville, James, 117
Cascading Style Sheets (CSS)

basics of, 10–11
and progressive enhancement, 95

case sensitivity, in naming variables, 17
Cederholm, Dan, vii
childNodes, 39
Clark, Joe, 146
classes, defined, 33
click event, 97
closures, in JavaScript, 170–173
code. See reusable code; source code, downloading for

chapter 8
color

changing background, 180
fading background, 130–133

commas (,)
arrays and, 20
comma-separated lists, 28
to separate variables, 18

comments in JavaScript, 16
comparison operators, 23–24
completeRequest method, 175, 176, 182, 183, 185
container element, 167, 168, 178
createElement method, 41, 74, 89, 189
createTextNode method, 42, 74, 89
CSS (Cascading Style Sheets)

basics of, 10–11
and progressive enhancement, 95

curly braces ({ })
in object literal, 79
in while loops, 26

D
data

capturing in Hijax
form data, 111–115
link data, 105–108

extracting
from HTML, 88
from JSON, 80–82
from XML, 73–74

data formats, 69–92
HTML. See HyperText Markup Language (HTML)
JSON, 77–87

advantages of, 86–87
example of, 78–79
extracting data from, 80–82
script tag hack, 82–83
Web services and, 83–86
working with, 79–82

XML. See EXtensible Markup Language (XML)
data types, JavaScript, 17–21

arrays, 20–21
Boolean values, 19–20
numbers, 19
strings, 18–19

Date objects, 168
declarations, defined, 17
DELETE method, 53
design challenges of Ajax, 120–138

backward compatibility, 121–124
browser behavior, 134–137

back button, 135–137
bookmarking, 134–136

feedback from browsers, 126–134
animation, 126–127
displayLoading function, 127, 128
fadeUp function, 131–134
fading background color, 130–133
parseResponse function, 128
sendData function, 129

Web services, 125–126
wireframing, 137–138

Design Pattern Library (Yahoo), 193
details element, 89

Index 199

200 Index

DHTML (Dynamic HTML), 11
displayLoading function, 127, 128, 178, 179
displayLoading method, 177
div element, 102, 157, 158
do. . .while loops, 26–27
Document Object Model (DOM), 34–43

basics of, 11
DOM Scripting, 83, 126
getters, 35–36
manipulating for JavaScript libraries, 189
nodes, 36–41

basics of, 36–38
childNodes, 39
firstChild property, 40
lastChild property, 40
nextSibling property, 40
nodeValue property, 40–41
parentNode property, 38–39
previousSibling property, 40

setters, 41–43
Document Type Declaration (doctype), and markup

validity, 10
documentation of library features, 193
Dojo library, 193
Dolphin Computer Access screen reader, 141
DOM. See Document Object Model (DOM)
doSimpleSMLHttpRequest method, 191
doSomething function, 97
dot notation (.), 32
Dynamic HTML (DHTML), 11

E
Edwards, Dean, 189
Edwards, James, 146
element nodes, 37
elements. See specific elements
else clauses, 24
equal signs (==) operators

as comparison operators, 23
as identity operators (===), 24
uses of in JavaScript, 25

equality and identity operators, 24–25
error handling, Bulletproof books example, 182–184

errorhandler variable, 182, 183
escape function, JavaScript, 113
escaping, defined, 18
eval statement, JavaScript, 80
event handlers. See also specific event handlers, 51–52
event handling

JavaScript libraries and, 189
progressive enhancement and, 96–99

examples. See also application building (example)
displaying contents of text file (example), 60–65

JavaScript, 60–63
markup, 63–65

downloading examples in this book, vii
Hijax, 103–115

capturing form data, 111–115
capturing link data, 105–108
forms, 108–110

HTML, 87
interactive slider widget, 150
JSON, 78–79
XML, 69

exclamation marks (!)
in if statements, 24
as not operators, 25

EXtensible HyperText Markup Language (XHTML)
vs. HTML, 10
page structure, 156–159

EXtensible Markup Language (XML), 69–77
advantages of, 76–77
Ajax and, 9
disadvantages of, 77
example of, 69
vs. HyperText Markup Language (HTML), 10
working with, 70–76

extracting data from XML, 73–74
generating content, 74–76
writing script, 72–73

F
Fade Anything Technique, 134
fade element, 132
fadeUp function, 132
fadeUp method, 178, 179–180

Index 201

falsey values, 19
Faulkner, Steve, 144
Featherstone, Derek, 146
fetchjson.js file, 75
fetchxml.js file, 70, 88
files. See also text files, displaying contents of (example)

ajax.js file, 114
ajax.js JavaScript file, 105
Bulletproof books

basic.css file, 163
basket.css file, 163
Cart.inc file, 161
products.css file, 163
products.php file, 166
rating.php file, 158, 166
ratings.css file, 164
shoppingcart.php file, 161, 166

fetchjson.js file, 80
fetchxml.js file, 70
formLogic.php file, 109, 111
size of, 193

firstChild property, 40
“Fixing the Back Button and Enabling Bookmarking for

Ajax Apps” by Mike Stenhouse, 136
Flash

basics of, 7
Flash player, 124, 149
Flash-JavaScript bridge, 149
movies, 135

FlashAir, and screen readers, 149
Flex, 124
focusable elements and tab order, 143–144
for loops, 27
form elements, hiding, 145
formLogic.php file, 109, 111
forms, Hijax, 108–110
frames, 7
Freedom Scientific’s JAWS, 141, 144
functions. See also specific functions, 168

JavaScript, 28–31
nested functions, 169

G
garbage collection, 173
Garrett, Jesse James, 3–4
GET request, 52, 53, 55, 121, 175
getAttribute method, 36
getElementById method, 35, 97, 98, 105
getElementsByTagName method, 35–36, 97, 98, 105
getFoo function, 170
getHTTPObject function, 48–49, 60, 107, 114, 174
getScript function, 85
getters, DOM, 35–36
GIF animation, 179–180
global variables, 30, 169
Gmail, 122, 148
Google

Gmail, 122, 148
Google Maps, 8, 123

grabFile function, 72, 106, 107, 127
greater than (>) symbol operators, 23
GW Micro’s Window-Eyes, 141, 144

H
Hal from Dolphin Computer Access, 141
head element, 98, 162
head element nodes, 38
HEAD method, 53
hidden iframes, 8
hiding form elements, 145
Hijax, 95–117

bookmarking and, 135
progressive enhancement, 95, 99–103

architecture of Web pages, 100–102
Hijax methodology, 100
pattern recognition, 103

unobtrusive JavaScript, 96–99
Web browser enhancement, 115–117
working with, 103–115

capturing form data, 111–115
capturing link data, 105–108
forms, 108–110

Hijax objects, 168, 169, 171, 176, 177, 182
host objects, 33–34, 168

202 Index

href attribute, 96
HyperText Markup Language (HTML), 87–91

advantages of, 91
basics of, 9–10
disadvantages of, 91
example of, 87
html element nodes, 38
working with, 88–90

extracting data from, 88
innerHTML property, 89–90

vs. XHTML, 10
vs. XML, 10

I
identity and equality operators, 24–25
if statement, 23, 175
iframes

for bookmarking and back buttons, 136
hidden, 8

img element, 179
include statements, 157
indexes, defined, 21
initialization statements, 27
initiateRequest method, 174, 175
innerHTML property, 89–90, 91, 143, 189
input elements, 112
instances, creating, 48–51
instantiation, Bulletproof, 49–51
interactive slider widget example, 150
Internet Explorer

animation and, 126
attachEvent method and, 189
element access in version 4, 34
housecleaning for, 173
version 5.0 for Windows, 47

J
Java applets, 7
JavaScript, 15–34

basics of, 15
data types, 17–21

arrays, 20–21

JavaScript, data types (continued)
Boolean values, 19–20
numbers, 19
strings, 18–19

displaying contents of text file and, 60–63
functions, 28–31
loops, 26–27
objects, 31–34
operators, 22–25

arithmetic, 22–23
comparison, 23–24
equality and identity, 24–25
logic, 25

reusable code in Bulletproof books example,
167–176

closures, 170–173
completing requests, 176
initiating requests, 173–176
writing objects, 168–170

statements, 15–16
variables in, 16–17

JavaScript libraries, 189–195
choosing, 193–194
documentation of library features, 193
Dojo library, 193
files, size of, 193
jQuery library, 192
MochiKit library, 191
prototype library, 190–191
Scriptaculous library, 191
YUI library, 192–193

JavaScript Object Notation (JSON), 77–87
advantages of, 86–87
example of, 78–79
extracting data from, 80–82
script tag hack, 82–83
Web services and, 83–86
working with, 79–82

javascript: pseudo-protocol, 96
JAWS (Freedom Scientific), 141, 144
jQuery library, 192
JSON. See JavaScript Object Notation (JSON)

Index 203

K
keywords

in JavaScript, 17
new keyword, 33
this keyword, 33, 168, 169
var keyword, 17, 169

L
languages. See also EXtensible Markup Language (XML);

HyperText Markup Language (HTML)
binary language, 19
markup languages, validity of, 9–10
Python programming language, 191
server-side languages, 8

lastChild property, 40
Lemon, Gez, 144
length of arrays, 21
length property (child nodes), 39
less than (<) symbol operators, 23
libraries. See JavaScript libraries
link data, capturing in Hijax, 105–108
link element, 162
load events, 52, 98
load]SONDoc method, 191
loading function, 167, 168, 178
loading property, 174
local variables, 30, 169
logic operators, 25
loops, JavaScript, 26–27

M
Mac, OS X VoiceOver, 141
markup, and displaying contents of text file, 63–65
markup languages, validity of, 9–10
Math objects, 168
mathematical operations, 22
Meebo, 123
members in arrays, 20
methods, defined, 31–32
Microsoft. See Internet Explorer
MochiKit library, 191

Mozilla
Mozilla Firefox browser, 47
version 1.0 and XMLHttpRequest object, 47

multiply function, 28

N
native objects, 32, 168
nested functions, 169
Netscape Navigator

version 4 element access, 34
version 6, code basis since, 47

Neuberg, Brad, 136
new keyword, 33
nextSibling property, 40
nodes, DOM, 36–41

basics of, 36–38
childNodes, 39
firstChild property, 40
lastChild property, 40
nextSibling property, 40
nodeValue property, 40–41
parentNode property, 38–39
previousSibling property, 40

nodeValue property, 40–41
non-alphanumeric characters, 55
not identical to operator (!==), 25
not operators, exclamation marks (!) as, 25
null, 17, 19
numbers, JavaScript, 19

O
object detection, defined, 48
object literal, 79
objects. See also specific objects

JavaScript, 31–34
native objects, 168
user-defined, 32–33
writing, JavaScript, 168–170

onclick attribute, 96
onclick event handler, 189
onclick property, 97
onmouseout property, 97

204 Index

onmouseover event handler, 51
onmouseover property, 97
onreadystatechange event handler

creating instances and, 51–52
readyState value and, 57

onsubmit event handler, 51, 112, 171, 189
open method

creating instances and, 52–54
initiating requests and, 175

Opera browser, and Ajax capability, 47
operators, JavaScript, 22–25

arithmetic, 22–23
comparison, 23–24
equality and identity, 24–25
logic, 25

or operator (| |), 25
output parameter, 83

P
pages. See Web pages
pareLinks function, 105
parentheses ()

arguments and, 28
in if statements, 23–24

parentNode property, 38–39
parseResponse function

capturing link data, Hijax, 107
feedback from browsers and, 128
forms and, 114
HTML and, 89
JSON and, 80, 81, 83–84
screen readers and, 145
XML and, 73, 75

password argument (open method), 54
pattern recognition, Hijax, 103
person parameter, 103
plus sign (+) operators, 22
POST method, 111
POST request, 52, 53, 121, 175
Powazek, Derek, 5
prepareCart method, 177, 178, 181
prepareForm function, 112, 114
prepareLinks function, 98, 99, 106

prepareRating method, 178, 181
previousSibling property, 40
products.css file, 163
products.php file, 166
progressbar.gif, 179
progressive enhancement, Hijax, 95, 99–103

architecture of Web pages, 100–102
Hijax methodology, 100
pattern recognition, 103

properties. See also specific properties
defined, 31–32

prototype library, 190–191
Prototype Web site, 191
proxies, 125–126
PUT method, 53
Python programming language, 191

Q
query strings, 55
quotation marks (") in strings, 18–19

R
rating products (Bulletproof books example)

functionality for, 160–162, 167
rating class, 181
rating.php file, 158, 166
ratings.css file, 164
styling of, 164–166

readyState property, 52, 56–57, 184
readystatechange event, 185
refreshes, full page, 134
removeChild method, 43
request methods, 53
request property, 168, 174
requests

for Bulletproof books example
completing, 176
initiating, 173–176

sending, 51–56
Resig, John, 189
responses, to XMLHttpRequest, 56–59
responseText property, 57–59, 88, 114, 143
responseXML property, 59

Index 205

reusable code
in Bulletproof books example, 167–176

closures, 170–173
completing requests, 176
initiating requests, 173–176
writing objects, 168–170

JavaScript libraries and, 189–193
RGB values, 131–132
Rich Internet Applications (RIA’s), 194–195
“Roadmap for Accessible Rich Internet Applications”, 150
role for screen readers, 150
Ruby on Rails server-side framework, 190
Russell, Alex, 193

S
Safari

animation and, 126
XMLHttpRequest support and, 47

scalar data types, 20
scope of variables, 30–31
screen readers

Ajax and, 142–145
basics of, 141
Bulletproof books example, 185–186
bypassing Ajax, 147–148
detecting, 149
FlashAir and, 149
future technology, 150–151
state of the art, 146–149
Web browsers and, 141–142

script
defined, 15
script element, 82–83
script tag hack, JSON, 82–83
<script> tag, 98, 99
writing in XML, 72–73

Scriptaculous library, 191
searchYahoo function, 83, 84, 85
select elements, 112
semicolons (;)

in functions, 29
in for loops, 27
in statements, 15

send method, 55–56
sendData function, 111, 113, 114, 129
server-side languages, 8
session variables for storing values, 160
setAttribute method, 42, 74
setContainer method, 177
setRequestHeader method, 55–56
setters, DOM, 41–43
setTimeout function, 131
setTimeout statement, 184
shopping cart functionality (Bulletproof books example),

161–162, 167
shoppingcart.php file, 161, 166
slashes (//) in JavaScript, 16
source code, downloading for chapter 8, 154
split function, JavaScript, 106
start method, 171, 172, 173, 174
state values, for screen readers, 150
statements, JavaScript, 15–16
status code, 57–59
Stenhouse, Mike, 136
Stephenson, Sam, 190
strings, 18–19
strong typing, 17
styling (Bulletproof books example), 162–166
submit event, 171
subtraction operators, 22
SuperNova, 141
surprise class, 192

T
tab order, updating, 143–144
tabindex attribute, 143
tabindex hack, 185
tabindex value, 144
test condition, in for loops, 27
text files, displaying contents of (example), 60–65

JavaScript, 60–63
markup, 63–65

text function, 170
text nodes, 37
textarea elements, 112
this keyword, 33, 168, 169

206 Index

timing out, Bulletproof books example, 184–185
title element nodes, 38
toolkits. See Ajax toolkit
truthy variables, 20
try. . .catch statement, 50

U
underlines (_) in JavaScript, 17
url element, 168
URL parameter (open method), 53
url property, 172
user name argument (open method), 54
user-defined objects, 32–33, 168

V
values

falsey, 19
null, 17, 19
session variables for storing, 160
state values for screen readers, 150
tabindex value, 144

var keyword, 17, 169
var statements, in functions, 30
variables

$id variable, 158
basics in JavaScript, 16–17
global, 169
local, 30, 169
scope of, 30–31
storing values with session, 160
truthy, 20

VoiceOver, Mac, 141

W
W3C (World Wide Web Consortium), and markup

validity, 10
Web browsers

back button, 135–137
bookmarking, 134–136
enhancement with Hijax, 115–117
feedback from, 126–134

animation, 126–127

displayLoading function, 127, 128
fadeUp function, 131–134
fading background color, 130–133
parseResponse function, 128
sendData function, 129

Mozilla Firefox browser, 47
Opera browser, 47
screen readers and, 141–142

Web pages
architecture of, Hijax, 100–102
preparing (Bulletproof books example), 177–181

displayLoading function, 179
execution, 181
fadeUp method, 179–180

XHTML page structure, 156–159
Web services

design challenges of Ajax and, 125–126
JSON and, 83–86

Web sites
for downloading examples in this book, vii
for further information

37signals’ suite, 130
addEvent function, 189
addLoadEvent function, 99
Ajax: A New Approach to Web Applications, 3
Basecamp application tests, 146
bookmarking and back buttons, 136
Bulletproof Books bookshop, 155
Dojo library, 193
DOM Builder script, 189
DOM Scripting blog, vii
examples in this book, vii
Fade Anything Technique, 134
FlashAid, 149
markup validity checks, 10
MochiKit library, 191
Powazek, Derek, 5
Prototype library, 190, 191
screen readers, 144, 146, 150
Scriptaculous library, 191
styling ratings, 164
wireframing, 137
XMLHttpRequest, 46

Index 207

Webb, Dan, 189
while loops, 26
wildcard character (*), 39
Willison, Simon, 99
window objects, 33–34, 168
Window-Eyes (GW Micro), 141, 144
window.onload event handler, 52, 98
wireframing, 137–138
“Wireframing Ajax is a bitch” by Jeffrey Zeldman, 137
World Wide Web Consortium (W3C), and markup validity,

10
World Wide Web, traditional model vs. Ajax, 5

X
XHTML (EXtensible HyperText Markup Language)

vs. HTML, 10
page structure, 156–159

XML. See EXtensible Markup Language (XML)
XMLHttpRequest

basics of, 8, 12
reusable JavaScript and, 167
security restrictions and, 82

XMLHttpRequest instance, 174
XMLHttpRequest object, 47–65

creating instances, 48–51
displaying contents of text file (example), 60–65

JavaScript, 60–63
markup, 63–65

Hijax and, 100
origin of, 47
receiving responses, 56–59

readyState property, 56–57
responseText property, 57–59
responseXML property, 59
status code, 57–59

sending requests, 51–56
onreadystatechange event handler, 51–52
open method, 52–54
send method, 55–56

Web services and, 125

Y
Yahoo

Design Pattern Library, 193
searchYahoo function, 83
YAHOO object, 192
Yahoo User Interface library (YUI), 192–193
Yahoo’s Web services, 83

yellow fade technique, 130
YUI library (Yahoo User Interface library), 192–193

Z
Zeldman, Jeffrey, 137
zero, as “falsey” value, 20

	Bulletproof Ajax
	Contents
	Introduction
	Acknowledgments
	CHAPTERONE: What Is Ajax?
	Defining Ajax
	The Ajax Toolkit
	Summary

	CHAPTERTWO: JavaScript and the Document Object Model
	JavaScript
	The Document Object Model
	Summary

	CHAPTERTHREE: XMLHttpRequest
	Origins
	Create an Instance
	Send a Request
	Receive a Response
	Putting It All Together
	Summary

	CHAPTERFOUR: Data Formats
	XML
	JSON
	HTML
	Summary

	CHAPTERFIVE: Hijax
	Progressive Enhancement
	Unobtrusive JavaScript
	Progressive Enhancement and Ajax
	Hijax in Action
	The Deceptively Rich Client
	Summary

	CHAPTERSIX: Ajax Challenges
	Backward Compatibility
	Web Services
	Feedback
	Browser Behavior
	Wireframing
	Summary

	CHAPTERSEVEN: Ajax and Accessibility
	Understanding Screen Readers
	Screen Readers and Ajax
	State of the Art
	The Future
	Summary

	CHAPTEREIGHT: Putting It All Together
	Planning
	Applying Ajax
	Bulletproofing
	Summary

	CHAPTERNINE: The Future of Ajax
	Libraries, Frameworks, and Toolkits, Oh My!
	Choosing a Library
	Whither Ajax?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

