
1

Assembly 
Language: The 
True Language 

Of Programmers
Chapter 1

PCPC
underground

1.  Assembly Language: The True Language Of Programmers

There are many high-level, structured languages for programming today's PCs. Two popular examples are
C++ and Pascal. However, assembly language still has its place in today's programming world. Since it
mimics the operations of the CPU at the machine level, assembly language lets you get right to the "heart"
of your PC.

In fact, there are some tasks that you can do only by using assembly language. While it's true that the Pascal
language is capable enough to handle interrupts, it can't be used to pass keyboard input to DOS, for
example. Since Pascal has no native way to do this, you must still insert an assembler module routine to
perform the function. Likewise, you can't easily remove a high-level resident program from memory. Once
again, you have to write the routine in assembly language to do this.

For many applications, programming code must still be as compact as possible. For example, in programming
resident programs, each kilobyte of RAM below the 640K boundary is vital. Programs written in high-level
languages usually require a runtime library which may add several additional kilobytes to the size.
Assembly language programs don't need these bulky library routines.

However, the most important advantage of assembly language is speed. Although high-level languages
can be optimized for speed of execution, even the best optimization cannot replace the experience of a
programmer. Here's a simple example. Let's say that you want to initialize two variables in Pascal to a zero
value. The compiler will generate the following assembly code:

xor ax,ax
mov var1,ax
xor ax,ax
mov var2,ax

Here, the Pascal compiler optimized the execution speed by using the XOR instruction to zero the ax register
(the fastest way to do this) and storing this value as var1 . However, due to compiler's limitations, the AX
register was again zeroed before the second assignment although this was redundant.

For truly time-critical tasks such as sprite movement and high-speed graphics, the only choice may be to
use assembly language.

There are two basic ways to do this:

1. Use an internal assembler such as the one built into Borland Pascal and its asm directive.

2. Use a stand-alone assembler such as Turbo Assembler or Microsoft Assembler.

Each way has its own advantages and disadvantages but using the stand-alone assembler is usually the
better choice.



2

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

The stand-alone assembler is designed from the ground up for writing full assembly language programs
- not as an add-on to a high-level language. A stand-alone assembler has a complete programming
environment with many convenient features. For example, it has directives such as "db 20 dup" that makes
programming easier. Only a limited number of directives are available from built-in assemblers. Stand-
alone assemblers also offer the advantage of macros which speed up assembly language programming
tasks.

We've chosen to use a stand-alone assembler in this book wherever possible. Of course there are exceptions
such as if the assembly language routine module has to access a procedure's local variables as in Borland's
GetSprite  and PutSprite  procedures.

Multiplication And Division In Assembly Language

Today's 486 DX4es and Pentiums are fast. These speed demons can perform a multiplication operation in
only six clock cycles. This is a far cry from the 100+ cycles that were required using the ancient 8086
processors or about 20 cycles using yesterday's 286es.

However, if you really want to impress people with fast multiplication, you can use the shift instructions.
The number of bits by which you're shifting corresponds to the exponent of the multiplicand to base 2; to
multiply by 16, you would shift 4 bits since 16 equals 2 to the 4th power. The fastest method of multiplying
the AX register by 8 is the instruction SHL AX,3 which shifts each bit to a position eight times higher in value.

Conversely, you can perform division by shifting the contents to the right. For example, SHR AX,3 divides
the contents of the AX register by 8.

In the early days of computing, numerical analysts suggested other ways to speed up computations. One
common technique was to use factoring. For example, multiplication by 320 can be factored like this:

1. Multiplication of the value by 256 (shift by 8 bits)

2. Multiplication of a copy of the value by 64 (shift by 6 bits)

3. Addition of the two results from above

Mathematicians call this factoring according to the distributive law.

Fixed Point Arithmetic

The preceding examples assume that the values you're working with are integers. But for many applications,
it's not always appropriate or possible to use integers.

In programming graphics, for example, to draw a line on the screen you need to know the slope of the line.
Practically speaking, the slope is seldom an integral number. Normally, in such cases, you would use real
(Pascal) or float (C) values which are based on floating point representation. Floating point numbers allow
a variable number of decimal places. The decimal point can be placed almost anywhere - which gives rise
to the term floating point.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

3

Compared to integers, arithmetic using floating point numbers is very slow. Some PCs have math
coprocessors that can perform arithmetic directly. However, if the PC doesn't have a coprocessor then the
floating point computations must be performed by software. This accounts for the higher computing times
for floating point arithmetic.

Working with floating point number in assembly language isn't very easy. So you can use a high-level
language for floating point operations or you can write your own routines. Using high-level language
operations is not always easy in Pascal, for example, because the four basic arithmetic operations are not
declared as Public. Since both of these alternatives options require a considerable amount of effort, let's look
at another alternative.

Many application require only a limited amount of computational precision. In other words, they may not
really need eleven significant decimal places. For applications where the values have a narrow range, you
may be able to use fixed point numbers.

Fixed point numbers consist of two parts:

1. One part specifies the integer portion of the number

2. The other part specifies the decimal (fraction) part of the number

When using fixed point number, you must first set (or fix) the number of decimal places. Let's see how a
fixed point number can change by varying the number of decimal places. The fixed portion and decimal
portion of 17 and 1 respectively.

By changing the number of decimal places, the value of the fixed point number is changed:

Number of decimal places 1 2 3 4

Value of fixed point number 17.1 17.01 17.001 17.0001

So it's important that there be a clear understanding of how many fixed places the fractional portion will
represent.

Now for a quick look at how the mathematical signs are used for fixed point numbers. In fixed point
notation, the value -100.3 can be divided into two parts: -100 and -3 (using one decimal place). Adding these
two together yields the actual rational number. In this example, adding -100 and -0.3, produces a result of
-100.3, which achieves our objective.

The most important advantage of working with these numbers is obvious: They consist of two simple
integer numbers which are paired in a very simple way. During addition, any overflow of the fractional
portion is added to the integer portion. Using this scheme, even a lowly powered 8086 processor can work
efficiently and quickly without a coprocessor.

Realizing that the CPU is not set up to handle fixed point operations automatically, we'll have to program
a way to perform the arithmetic operations. We'll see one way to do this in the next section. The method is
so flexible that you can even perform more complicated operations, such as root determination by
approximation, where you'll really notice the speed advantage of fixed point arithmetic.



4

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

The four fundamental arithmetic operations

Because they're so close to integer numbers, developing basic arithmetic operations for the fixed point
numbers is no big deal. The math instructions are already built into the processor so the remaining
consideration is deciding how to work with the paired numbers.

The program in this chapter shows one way of packaging a math library for fixed point numbers. This
program implements the four basic arithmetic operations in Pascal. By rewriting the routines in assembly
language, you can make the routines fly even faster, but the Pascal example here demonstrates the method.

Addition

The easiest operation is addition. To add two fixed point numbers, you simply add the integer portions and
the fractional portions separately.

Here's the only complicating factor. If the two fractional portions produce a value greater than one, then
you have to handle the "overflow". For example, an overflow occurs for fixed point numbers with two
decimal places when the two fractional values sum to a value of 100 or higher. In this case, the overflow is
handled by adding one to the integer portion and subtracting 100 from the fractional portion. The reverse
is true with negative numbers. In this case, you subtract one from the integer portion and add 100 to the
fractional portion.

Subtraction

Subtraction is similar to addition, except the two separate portions are subtracted from one another.
Overflow is handled in the same way.

Multiplication

A more elaborate method is used for multiplication. First, each factor is converted to a whole number. Next
the two factors are multiplied. Then the product is reconverted back to a fixed point value. During the
reconversion, the product is adjusted by dividing by the number of decimals since the factors were
increased when they were first converted into whole numbers.

Division

Division is performed by a method that parallels multiplication. As in multiplication, you convert the fixed
point dividend and the divisor into whole numbers, thereby temporarily eliminating the decimals. Again
after the division, the quotient is adjusted by dividing the
number of decimals.

The program BASARITH.PAS, listed below, illustrates this
technique:

Type Fixed=Record                {structure of a fixed point number}
            BeforeDec,
            AfterDec:Integer
          End;

Var Var1,                         {sample variables}
    Var2:Fixed;

PCPCun
de

rg
ro

un
d

You can find
BASARITH.PAS

on the companion CD-ROM



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

5

Const AfterDec_Max=100;              {2 places after decimal point}
      AfterDec_Places=2;

Function Strg(FNumber:Fixed):String;
{converts a fixed point number to a string}
Var AfterDec_Str,                    {string for forming the fractional part}
    BeforeDec_Str:String;            {string for forming the integral part}
    i:Word;
Begin
  If FNumber.AfterDec < 0 Then       {output fractional part without sign}
    FNumber.AfterDec:=-FNumber.AfterDec;
  Str(FNumber.AfterDec:AfterDec_Places,AfterDec_Str);
                                     {generate decimal string}
  For i:=0 to AfterDec_Places do     {and replace spaces with 0s}
    If AfterDec_Str[i] = ' ' Then AfterDec_Str[i]:='0';
  Str(FNumber.BeforeDec,BeforeDec_Str);     {generate integral string}
  Strg:=BeforeDec_Str+','+AfterDec_Str;     {combine strings}
End;

Procedure Convert(RNumber:Real;Var FNumber:Fixed);
{converts Real RNumber to fixed point number FNumber}
Begin
  FNumber.BeforeDec:=Trunc(RNumber);
    {define integral part}
  FNumber.AfterDec:=Trunc(Round(Frac(RNumber)*AfterDec_Max));
    {define fractional part and store as whole number}
End;

Procedure Adjust(Var FNumber:Fixed);
{puts passed fixed point number back in legal format}
Begin
  If FNumber.AfterDec > AfterDec_Max Then Begin
    Dec(FNumber.AfterDec,AfterDec_Max); {if fractional part overflows to positive}
    Inc(FNumber.BeforeDec);            {reset and decrement integral part}
  End;
  If FNumber.AfterDec < -AfterDec_Max Then Begin
    Inc(FNumber.AfterDec,AfterDec_Max); {if fractional part overflows to positive}
    Dec(FNumber.BeforeDec);            {reset and increment integral part}
  End;
End;

Procedure Add(Var Sum:Fixed;FNumber1,FNumber2:Fixed);
{Adds FNumber1 and FNumber2 and places result in sum}
Var Result:Fixed;
Begin
  Result.AfterDec:=FNumber1.AfterDec+FNumber2.AfterDec;
    {add fractional part}
  Result.BeforeDec:=FNumber1.BeforeDec+FNumber2.BeforeDec;
    {add integral part}
  Adjust(Result);
    {Put result back in correct format}
  Sum:=Result;
End;
Procedure Sub(Var Difference:Fixed;FNumber1,FNumber2:Fixed);
{Subtracts FNumber1 from FNumber2 and places result in difference}
Var Result:Fixed;
Begin
  Result.AfterDec:=FNumber1.AfterDec-FNumber2.AfterDec;
    {subtract fractional part}
  Result.BeforeDec:=FNumber1.BeforeDec-FNumber2.BeforeDec;
    {subtract integral part}
  Adjust(Result);



6

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

    {put result back in correct format}
  Difference:=Result;
End;

Procedure Mul(Var Product:Fixed;FNumber1,FNumber2:Fixed);
{multiplies FNumber1 and FNumber2 and places result in product}
Var Result:LongInt;
Begin
  Result:=Var1.BeforeDec*AfterDec_Max + Var1.AfterDec;
    {form first factor}
  Result:=Result * (Var2.BeforeDec*AfterDec_Max + Var2.AfterDec);
    {form second factor}
  Result:=Result div AfterDec_Max;
Product.BeforeDec:=Result div AfterDec_Max;
    {extract integral and fractional parts}
  Product.AfterDec:=Result mod AfterDec_Max;
End;

Procedure Divi(Var Quotient:Fixed;FNumber1,FNumber2:Fixed);
{divides FNumber1 by FNumber2 and places result in quotient}
Var Result:LongInt;           {intermediate result}
Begin
  Result:=FNumber1.BeforeDec*AfterDec_Max + FNumber1.AfterDec;
    {form counter}
  Result:=Result * AfterDec_Max div (FNumber2.BeforeDec*AfterDec_Max+FNumber2.AfterDec);
    {divide by denominator, provide more places beforehand}
  Quotient.BeforeDec:=Result div AfterDec_Max;
    {extract integral and fractional parts}
  Quotient.AfterDec:=Result mod AfterDec_Max;
End;

Begin
  WriteLn;
  Convert(-10.2,Var1);          {load two demo numbers}
  Convert(25.3,Var2);
  {some calculations for demonstration purposes:}
  Write(Strg(Var1),'*',Strg(Var2),'= ');
  Mul(Var1,Var1,Var2);
  WriteLn(Strg(Var1));
  Write(Strg(Var1),'-',Strg(Var2),'= ');
  Sub(Var1,Var1,Var2);
  WriteLn(Strg(Var1));
  Write(Strg(Var1),'/',Strg(Var2),'= ');
  Divi(Var1,Var1,Var2);
  WriteLn(Strg(Var1));

  Write(Strg(Var1),'+',Strg(Var2),'= ');
  Add(Var1,Var1,Var2);
  WriteLn(Strg(Var1));
End.

Addition, subtraction, multiplication and division are implemented in the procedures Add, Sub, Mul  and
Divi  respectively. The main program tests each of the operations.

Procedure Adjust  makes the decimal adjustments after addition and subtraction. Procedure Convert
converts a floating point number to a fixed point number and  Strg  generates a string out of this fixed point
number so it can be displayed on the screen.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

7

Why fixed point numbers? A sample application

The program above demonstrates the simplicity of fixed point numbers. The following example, however,
demonstrates there are also practical applications for fixed point numbers.

In this example, we develop a very fast way to calculate the slope of a line. This method is very fast and rivals
the Bresenham algorithm.

The procedure used here is based on the simple mathematical definition of a straight line: y=mx+b. The
slope, called m, is very important. It indicates the steepness by which a straight line ascends on a segment
with a length of 1.

However, because this value is seldom a whole number, you can make excellent use of fixed point
arithmetic. The sample procedure Line  can draw lines with a slope between 0 and 1; for other slopes, you
have to add reflections (see Chapter 7).

This program uses a procedure called PutPixel . Although we'll discuss PutPixel  in more detail in
Chapter 3, for now we'll just note that this procedure sets a pixel at the coordinates (x,y) in mode 13h with
the color Col .

You'll find this line algorithm converted to assembly language
on the companion CD-ROM. The assembly language version is
called LINEFCT.PAS (the routine uses the Pascal built-in
assembler).

Uses Crt;

Var x:Word;

Procedure PutPixel(x,y,col:word);assembler;
 {sets pixel (x/y) to color col (Mode 13h)}

asm
  mov ax,0a000h                 {load segment}
  mov es,ax
  mov ax,320                    {Offset = Y*320 + X}
  mul y
  add ax,x
  mov di,ax                     {load offset}
  mov al,byte ptr col           {load color}
  mov es:[di],al                {and set pixel}
End;

Procedure Line(x1,y1,x2,y2,col:Word);assembler;
asm
  {register used:
    bx/cx: Fractional/integer portion of of y-coordinate
    si   : fractional portion of increase}
  mov si,x1                     {load x with initial value}
  mov x,si
  sub si,x2                     {and form x-difference (in si)}

  mov ax,y1                     {load y (saved in bx) with initial value}
  mov bx,ax
  sub ax,y2                     {and form y-difference (in ax)}

  mov cx,100                    {expand y-difference for computing accuracy}

PCPCun
de

rg
ro

un
d

You can find
LINEFCT.PAS

on the companion CD-ROM



8

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

  imul cx
  idiv si                       {and divide by x-diff (increase)}
  mov si,ax                     {save increase in si}

  xor cx,cx                     {fractional portion of y-coordinate to 0}

@lp:
  push x                        {x and integer portion of y to PutPixel}
  push bx
  push col
  call PutPixel

  add cx,si                     {increment y-fractional portion}
  cmp cx,100                    {fractional portion overflow}
  jb @no_overflow               {no, then continue}
  sub cx,100                    {otherwise decrement fractional portion}
  inc bx                        {and increment integer portion}

@no_overflow:
  inc x                         {increment x also}
  mov ax,x
  cmp ax,x2                     {end reached ?}
  jb @lp                        {no, then next pass}
end;

Begin
  asm mov ax,0013h; int 10h end;{enable Mode 13h}
  Line(10,10,100,50,1);         {draw line}
  ReadLn;
  Textmode(3);
End.

The main program initializes graphics mode 13h through the BIOS and then draws a line from the
coordinates (10,10) to (100,50) in color 1. The Line procedure takes advantage of the fact this algorithm is
restricted to slopes smaller than one.

This is why no integer portion is required and the fractional part of the slope fits completely in a register
(SI here). The y-coordinate, which must also be handled as a decimal number, is also placed in registers. The
integer portion is placed in BX and the fractional portion is placed in CX.

The main program then loads the x-coordinate with its initial value (x1) and determines the length of the
line in x direction (x1-x2), then repeating the process with y. Next the slope is determined by multiplying
the y difference by 100 (two decimal places) to determine the fractional portion, then dividing by the x
difference and storing this value in SI.

Within the loop: a dot is drawn at the current coordinates and the position of the next dot is determined.
To do this, the program increments the fractional portion of the y-coordinate by the fractional portion of the
slope.

If an overflow occurs (i.e. if the sum is greater than 100), the integer portion is incremented by one and the
fractional portion is de-incremented by 100. Next the x-coordinate is incremented by 1. The procedure is
repeated until the x2 value is reached.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

9

Custom Mathematical Functions

If you use floating point numbers, you can use a language such as Pascal with its many built-in functions.
These include sine, cosine, root and many others which make it easier, but not faster, to program
mathematical problems. In fact, these math functions are among the slowest in a programming language
unless you have a math coprocessor.

Integer numbers are sufficient for many practical programming tasks if the range of values is suitable. But
a sine from -1 to 1 doesn't make much sense with integer values. On the other hand, the Pascal internal
functions are quite slow. In fact, when an integer number is used, it is first converted into real number and
then operated on using the standard, slow Real procedures. The result is that Pascal integer arithmetic is
even slower than their floating point equivalents. To overcome this limitation, there's only one alternative:
Write your own functions.

There are two basic methods for programming a function:

1. Pre-build a table with the result values.

2. Determine the result values by approximation.

Tables

You're probably familiar with tables from your high school math days. You determine the function value
by looking up the corresponding argument in the table.

For use in programs, the same principle applies. At the start of the program, you create the desired function
table. The table is then available for fast lookup.

The following simple example generates a table for determining
the sine function values. We'll use this same table later. The
TOOLS.PAS unit contains a general procedure for calculating
tables called (Sin_Gen ):

procedure sin_gen(var table:Array of word;period,amplitude,offset:word);
                     {precalculates a sine table the length of one period.
                      It is it in the array "table". The height is required
                      in the variable "amplitude" and the location of the
                      initial point is required in variable "offset"}
Var i:Word;
Begin
  for i:=0 to period-1 do
    table[i]:=round(sin(i*2*pi/period)*amplitude)+offset;
End;

First, the array name for the table is passed to this procedure. Next the length of the period of the sine
functions is passed. The length corresponds to the number of table entries since exactly one period is always
calculated. The amplitude specifies the highest value. With an amplitude of 30, for example, the table would
contain values from -30 to +30. The last value is the offset, which specifies the shift of the sine function in
y-direction. In our example above, an offset of 10 would build a table with values from -20 to 40. Now the
program iterates from the first to the last entry of the table and calculates the corresponding values using
the regular sine function of Pascal.

PCPCun
de

rg
ro

un
d

You can find
TOOLS.PAS

on the companion CD-ROM



1 0

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

To test the sine table, our next program draws circles. We'll use text mode to keep the program simple. The
SINTEST.PAS program draws 26 overlapping circles two times.
The circles are first drawn using the standard sine and cosine
functions. Then the circles are drawn a second time using the
tables. The math coprocessor is switched off so we can evaluate
the results of the table lookup method. Run the program and
you'll notice the difference in speed.

{$N-}                           {Coprocessor off}
Uses Crt,Tools;

Var phi,                        {Angle}
    x,y:Word;                   {Coordinates}
    Character:Byte;             {Used character}
    Sine:Array[1..360] of Word; {receives the sine table}

Procedure Sine_Real;            {draws a circle 26 times}
Begin
  For Character:=Ord('A') to Ord('Z')do       {26 passes}
    For phi:=1 to 360 do Begin
      x:=Trunc(Round(Sin(phi/180*pi)*20+40)); {calculate x-coordinate}
      y:=Trunc(Round(Cos(phi/180*pi)*10+12)); {calculate y-coordinate}
      mem[$b800:y*160+x*2]:=Character;        {characters on the screen}
    End;
End;
Procedure Sine_new;             {draws a circle 26 times}
Begin
  For Character:=Ord('A') to Ord('Z')do       {26 passes}
    For phi:=1 to 360 do Begin
      x:=Sine[phi]+40;          {calculate x-coordinate}
      If phi<=270 Then          {calculate y-coordinate}
        y:=Sine[phi+90] div 2 + 12 Else       {Cosine as shifted sine}
        y:=Sine[phi-270] div 2 + 12;
      mem[$b800:y*160+x*2]:=Character;        {characters on the screen}
    End;
End;

Begin
  Sin_Gen(Sine,360,20,0);       {prepare sine table}
  ClrScr;                       {clear screen}
  Sine_real;                    {draw circles}
  ClrScr;                       {clear screen}
  Sine_new;
End.

The main program first builds the sine table. Next, the program calls the two procedures for drawing the
circles. The first procedure is Sine_real . It calculates the coordinates at the current angle using the built-
in sine and cosine functions. Both functions require the angle in radian measure, therefore /180 x pi.

For the radius, the program sets 20 in x-direction and 10 in y-direction. This places the circle in the middle
of the image (+40, +12). Finally, the program displays the character using direct video memory access.

The second procedure is  Sine_new . It takes values for x and y from the table. The cosine is formed by a
90 degree phase displaced sine but has to watch out for the end of the table. This procedure is several times
faster, which you'll notice when you start the program.

PCPCun
de

rg
ro

un
d

You can find
SINTEST.PAS

on the companion CD-ROM



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

1 1

Approximation

Tables are perfect for functions if the range of values can be predetermined in advance, such as the sine.
However, this isn't always possible for functions like the root, which may take on an infinite range of values.
To handle a wider range of values, you can reduce the resolution of the table but this in turn lowers the
computing accuracy.

Alternatively, you can compute the value of a function by approximation. A typical math book presents the
formula for the root function as follows:

Xn+1=1/2(Xn+a/Xn)

If you use the number from whose root you want to find as the radicand, and a random initial value for Xn
(for example, 1), you get a value that approximates the desired result. Repeat the process using this number
again as Xn to get an even more precise value. You can continue until you're satisfied with the accuracy of
the result. This is the case for whole numbers when the current result deviates from the previous result by
0 or 1. A difference of 1 is permissible, otherwise the calculation might never end. For example, the
calculation will never end when the result always jumps between two adjacent values due to rounding.

This algorithm, by the way, is self-correcting. This is especially important for calculations done "by hand":
If a result is false, and it is used in the next step as the initial value for Xn, the algorithm uses the false value
for the approximation. Although this extends the arithmetic operation, you'll still get the correct solution.

This example is in the ROOT.ASM file. We did not store this procedure in a unit because we'll need it later
as a near procedure. A far procedure, such as a unit would generate, would be too slow to call. The assembly
language text contains two procedures: One procedure is Root  and contains the actual calculation. This
procedure is register-oriented, which means that the parameters are passed from the DX:AX register. The
3-D application will branch directly to this procedure later.

This file also contains a "frame" function (Rootfct ). This lets
you access the root directly from Pascal when time is not so
critical. This "frame" function (Rootfct ) is passed as a parameter
to the radicand and returns the root value as a function result
after Root  is called.

.286 ;enable 286 commands at least
e equ db 66h                     ;operand size prefix (32 bit commands)
w equ word ptr

code segment public
assume cs:code
public root
public rootfct
                                 ;radicand value in dx:ax
root proc pascal                 ;result in ax (function)
e ;computer with 32 bits

xor si,si ;clear intermediate result (in esi)
  db 66h,0fh,0ach,0d3h,10h ;shrd ebx,edx,16d - dx to ebx (upper 16 bits)

mov bx,ax ;ax to ebx (down) - dx:ax now in ebx
e
  xor dx,dx ;clear edx
e

mov cx,bx ;store initial value in ecx
e

PCPCun
de

rg
ro

un
d

You can find
ROOT.ASM

on the companion CD-ROM



1 2

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

  mov ax,bx ;load eax also

iterat:
e
  idiv bx ;divide by Xn
e

xor dx,dx ;remainder unimportant
e

add ax,bx ;add Xn
e

shr ax,1 ;divide by 2
e

sub si,ax ;difference to previous result
e

cmp si,1 ;less than equal to 1
  jbe finished ;then finished
e

mov si,ax ;store result as previous
e
  mov bx,ax ;record as Xn
e

mov ax,cx ;reload initial value for division
  jmp iterat ;and go to beginning of loop
finished:
  ret ;result now in eax
root endp

rootfct proc pascal a:dword ;translates procedure to Pascal function
mov ax,word ptr a ;write parameters to register

  mov dx,word ptr a+2
  call root ;and extract root

ret
rootfct endp
code ends
end

Notice the "e" listed in several lines of the Root  procedure. At each occurrence of e, the value 66h is inserted
in the code. It represents the Operand-Size-Prefix of the 386, which extends the instruction following it to
32 bits. 32 bit instructions result in a large increase in speed because the LongInt results no longer need to
be split into two registers. Unfortunately, Pascal compilers still cannot process these instructions directly.
This is true even from a stand-alone assembler. So, the only option is to change each instruction to 32 bit
"manually" as we've done above.

First, the 386 instruction shrd shifts the contents of the register to the upper EBX half and then loads the
lower half with AX. ECX serves as storage for the radicand a, also reused later. The loop performs the steps
described in the formula: After dividing the radicand by the last approximate value (in EBX) it's added to
the quotient. This completes the calculations within the parenthesis. Next, the value is divided by 2 which
is compared to the result of the previous one. The iteration ends
if the results matches (maximum deviation of 1). Otherwise, the
new value Xn is loaded (in the BX register) and the next iteration
is performed. Finally, the root in the AX register can be stored by
a Pascal function.

We'll use another speed comparison as an example:

PCPCun
de

rg
ro

un
d

You can find
ROOTTEST.PAS

on the companion CD-ROM



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

1 3

{$n-}                           {coprocessor off}
Function Rootfct(Radicand:LongInt):Integer;external;
{$l Root}
{Enter the path of the Assembler module Root.obj here !}

var i:word;                     {loop counter}
    n:Integer;                  {result of integer calculation}
    r:Real;                     {result of real calculation}

Procedure Root_new;             {calculates root by integer approximation}
Begin
  For i:=1 to 10000 do          {run 10000 times,}
    n:=Rootfct(87654321);       {to obtain speed comparison}
End;

Procedure Root_real;            {calculates root via Pascal function}
Begin
  For i:=1 to 10000 do          {run 10000 times,}
    r:=Sqrt(87654321);          {to get speed comparison}
End;

Begin
  writeLn;
  WriteLn('Root calculation via Pascal function begins');
  Root_Real;
  WriteLn('result: ',r:0:0);
  WriteLn('Root calculation via integer function begins');
  Root_new;
  WriteLn('result: ',n);
End.

This program, called ROOTTEST.PAS, calculates the root of 87654321. It repeats this 10000 times in two
different ways. After startup, even a 486 (with disabled math coprocessor, compiler switch $n-) will require
a few seconds to compute the results. On the other hand, the second part of the program (custom
calculation) is processed in fractions of a second.

High Speed Tuning: Optimizing Comparisons

Next to arithmetic operations, comparisons are the most time consuming tasks that a processor performs.
That's why you should use them only when necessary and then optimize them as much as you can.

OR instead of CMP

The logical operations of the processor offer one simple way to increase speed. For example, the TEST
instruction basically uses AND. So, you can use this instruction to check for specific bit combinations. If
you're comparing with 0, you can speed things up even more by using OR.

For example, if register AL contains 0, then the instruction OR AL,A sets the Zero flag, otherwise it returns
a cleared Zero flag. You can then use either JZ or JNZ to branch.

Since this instruction sets all the flags to values that correspond to the contents of the register, you can also
check a number's sign, for example: The JS instruction branches to the specified address when the sign is
negative.



1 4

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

String comparisons

There are many instances when string comparisons are important. One example is in programming a TSR
program that must determine whether it is already resident in memory. To understand the comparison, the
effect of the JCXZ instruction is more important than anything else. This instruction jumps to the specified
address when the CX register contains 0. Programming a string comparison with the repeat command
REPE CMPSB is quite easy:

First, load the pointers to the two strings into the ES:DI and DS:SI register pairs. Next load the length into
register CX. Finally, execute the REPE CMPSB instruction, which repeatedly compares the registers until
the strings show a difference (when the Zero-Flag is cleared the REPE completes) or until the end of the
string is reached (and CX=0). The JCXZ instruction now picks up this small difference. CX is not 0 with
variable length strings so the program doesn't branch. Only with same length strings does CX reach 0 and
the program branches.

Variables In Assembly Language

In assembly language, you should always try to keep as many values as possible in the registers since the
processor can access these values faster than others. Don't be afraid to use registers for special tasks (SI, DI,
BP) or use them as normal variable storage. However, even with the most clever use of the register set, you
still won't have enough registers. In such cases, you must save these values in memory as you're forced to
rely on normal variables.

Accessing Pascal variables

It's easy to access a Pascal variable from assembly language. While you can use more complicated constructs
such as mov AX,[offset variable], it's easier to use mov AX,variable. To perform a type conversion at the
same time (e.g., pointer offset to 16 bit register), you have to add a Word ptr or Byte ptr: mov AX,word ptr
Pointer + 2.

Accessing arrays and records

Although you can address arrays directly from the assembly language, you have to perform the indexing
yourself. Most importantly, determine the size of each elements in the array; individual elements have a
length of 2 bytes for Word entries or a length of 4 bytes for Doubleword entries. It's also possible to have
other offsets, for example, with an Array of Record. The 386 can handle these offsets; it can address variables
in the form mov AX,[2*ecx]. However, in Pascal (only 286 code!), this is quite difficult to achieve because
each such instruction must be stored as a complete sequence of bytes. That's why it's better to determine
the offset through multiplication using the shl SI,1 instruction.

With most assemblers, you can also specify the offset of the array in the normal form before the index: mov
AX,word ptr Arr[SI], the assembler converts this instruction to: mov AX,word ptr [SI+offset Arr]. You no
longer need to specify records by using constant offsets. Now, you can access the records directly from
Pascal-ASM, as you would from Pascal:

mov AX,word ptr rec.a.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

1 5

TASM and MASM also have a variable similar to records. This variable is called a structure. A structure is
identical to a Pascal record, allowing you to access it as if from Pascal:

data segment

rec_typ struc
  a dw ?
  b db ?
rec_typ ends

extrn rec:rec_typ

Code segment variables

Unfortunately, programmers always seem to run out of registers which is why they're excited about each
additional register they gain. The BP register is available and as accessible as any other register except for
one small catch: BP is used to address local variables of the procedure. So, you either have to do without
local variables or store them elsewhere when you use the BP register. Global variables are also usually
inaccessible, especially in graphic procedures, because the DS register no longer points to the data segment,
but instead, points to something else such as sprite data. Your only option in this case is to use code segment
variables.

These variables are located in the current code segment with the program code and are addressed at
machine language level by the segment override prefix. However, since the assembler takes over at
programming level, you probably won't notice any peculiarities. The drawback is that you can't access this
routine from other procedure or modules. You can simply create the variables in the code segment from
TASM and MASM instead of the data segment. The assembler then takes care of correct addressing
automatically.

On the other hand, Pascal introduces a complicating factor. Normally, using Pascal you can't fill the code
segment with data from outside of the procedures or functions. However, you can use a little trick: At the
beginning of the procedure, you can insert a short routine such as the one below which set the values of the
variables. Here's what that looks like:

Procedure Test;assembler;
asm
  jmp @los

@Var1: dw 0
@Var2: db 0

@los:
  {Rest of procedure}
End;

Remember to add a word ptr or byte ptr to access these variables, because Pascal considers @Var1 and
@Var2 to be labels and not variables.

Circular arrays

Arrays aren't always processed from front to back. They're often processed in a circular fashion: from front
to back and then from the front again. Using the sine table an example again, you may need to find the sine
for an angle of 700 degrees. The easiest method for solving this problem is to check the range of arguments



1 6

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

and bring that argument back into the correct range when the end of the table is exceeded. In this example,
360 degrees is subtracted from the original 700 degrees and the resulting 340 is used as new argument.

You can optimize the array form by redesigning the array so the number of entries corresponds to a power
of 2, i.e., 32, 64, 128, etc. For these cases, you can determine the index into the array by simple bit masking
using the AND instruction. For example, if an array has 64 entries (0-63), each index is ANDed with 63,
causing the upper two bits of an eight bit argument to be hidden. Only the lower six bits remain significant.
To design such an array, there must be the right number of elements. For example, you can specify a period
of 64 when generating the sine.

Bit mask rotation

Bit masking is used frequently in system programming. In bit masking, a value is written to a specific
register, for example to a VGA card where each bit has a specific task, such as switching on a pixel in the
appropriate bit plane. Each plane is selected in order: Planes 0, 1, 2 and 3 and then plane 0 again, by setting
bits 0, 1, 2, 3 and then 0 again. In this example, the goal is to process all four bit planes in order and then get
back to the original bit plane. How can be get back to bit plane 0 after bit plane 3?

You can select the desired bit plane by using a register. For example, loading a register with the value 01h
sets bit 0; this selects bit plane 0. Rotating to the left one bit at a time sets bit 1 to select bit plane 1, bit 2 for
bit plane 2, and bit 3 for bit plane 3.

Since you can't rotate a half-byte (a 4 bit nibble) directly, you can use a little trick. Instead of loading the
register for selecting the bit plane with 01h, we use the value 11h which places identical values in both the
upper and lower nibbles of the register. Rotate in the same manner but use only the lower nibble for masking
and you'll get the desired effect. After four rotations, the contents of the register is 88h. Rotate left again and
you get the original 11h (bit 7 after bit 0 and bit 3 after bit 4) so you're back where you want to be.

Masking a specific number of bits

Sometimes only a specific number of bits need to be selected from a word or byte. We'll see an example of
this in "The GIF Image Format" section of Chapter 3 when we talk about the GIF Loader.

One way of isolating these significant bits is by masking the values. Load a register with 01h, shift this
register to the left by the number of bits to be kept and reduce this value by 1. The result is a mask in which
the desired bit positions contain 1 and all others contain 0.

Here's the simple formula:

Mask := (1 shl Number) - 1.

For example, to select bit 6, you would use a mask of 63 (1 SHL 6 -1 = 63), with bits 0-5 set and bits 6 and
7 cleared. Now all you have to do is AND the byte to be masked with this value and you've retained the bits
you need.

The SHR and SHL instructions on the 386 and above have a curious feature. It's only possible to shift a
maximum of 31 bits, regardless of the register width that is used. For example, to shift AX by 34 bits, (the
same as clearing them since AX is only 16 bits wide), you would execute SHL AX,34d, but in reality, there
would only be a shift of 2 bits.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

1 7

This isn't normally important. However, it did frustrate us once for several minutes because we assumed
that using a value greater than 31 bits for shifting would clear the register.

Mysterious Interrupts

Although interrupts and interrupt programming can provide versatility to your programming, they can
also be a mystery for many new users. This may be due to the number of times the system crashes when new
programmers start to experiment with interrupts. However, with a little basic knowledge and a few
examples which we'll provide, you can quickly learn how to work confidently with interrupts. You may
even be comforted to know that crashes happen even to the most experienced programmers.

There are two types of interrupts:

1. Software interrupts
These are triggered by the INT instruction and can be compared to simple subroutines.

2. Hardware interrupts
These are sent to the CPU from external devices through the two interrupt controllers. For example,
a keystroke triggers an interrupt that tells the processor to run a program called the interrupt handler
which then accepts and processes the character typed at the keyboard.

Changing vectors

A programmer can easily add his or her own program to handle these interrupts. For example, you can write
your own program to handle the keyboard interrupt that also outputs a "click" from the loudspeaker each
time a key is pressed. How do you do this?

First, the background...DOS defines various interrupts. The keyboard interrupt is an example. Each type
of interrupt is identified by a number - the interrupt number. And for each type of interrupt, there is a
corresponding program routine that runs and handles the processing associated with that interrupt.

The program's main memory address is called a vector. In low memory, there is a large vector table
containing the addresses of all the interrupt handlers.

You can determine the address of an interrupt handler by using DOS functions 35h. Pass the interrupt
number in the AL register and the vector is returned in register pair ES:BX.

To change a vector, you can use DOS function 25h. Pass the interrupt number in the AL register and the
address of the new vector in the DS:DX register pair.

For example, to determine the vector for interrupt 9 which handles the keyboard interrupt, you would do
the following:

mov ax,3509h                    ;Function and interrupt number
int 21h                         ;Execute Dos function

The vector is returned in es:bx. The following instructions are used to set a new interrupt handler:

PCPCun
de

rg
ro

un
d

AbacusPassword:



1 8

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

lds dx,Vector                   ;Get vector (as pointer)
mov ax,2509h                    ;Function and interrupt number
int 21h                         ;Execute Dos function

If you're changing an interrupt vector to point to one of your own routines, you should save the original
vector. You may need to call the original handler after your processing or, in the case of a TSR, when
removing it from memory.

Calling the old handler and exiting

In the example of the keyboard click, it doesn't make much sense to only click when a key is pressed; you'll
probably also want to output a character to the screen. To do this easily, you can call the original handler
before or after making the click - that is unless you want to write a custom keyboard driver.

By saving the original interrupt vector, you can then jump to this destination using a far call. But before
doing so, you must simulate an interrupt call. The only special requirement of an interrupt call compared
to an ordinary far call is saving the processor flag, which is easily duplicated using the pushf instruction
The following is how the complete call should appear:

pushf
call dword ptr [OldVector]

The original vector was saved in the OldVector  pointer.

Use the IRET instruction to exit an interrupt. However, remember to first restore the original state of the
processor register. After all, the interrupt may have been triggered in the middle of a routine that depends
on specific registers.

Disabling interrupts

The CLI instruction is used to disable interrupts. This instruction can be used to "lock" the processor from
further interrupts. When a program has issued the CLI instruction, no further interrupts are accepted by
the processor until the STI instruction reenables them.

Sometimes, however, you may want to disable only specific interrupts and leave the others enabled. To do
this, you have to reprogram the interrupt controllers. These controllers use a different counting method than
the vectors: Hardware interrupts are numbered 0-7 (interrupt controller 1) and 8-15 (interrupt controller 2).
In this case, we talk about IRQ (interrupt request) 0-15, while the label "Interrupt" refers to the number of
vectors.

Controller 1 presents IRQ 0-7 to the CPU as interrupts 8-0fh.

Controller 2 presents IRQ 8-15 to the CPU as interrupts 70h-77h.

The two controllers are linked (cascaded) to each other using IRQ 2, that is, if controller 1 gets this interrupt
request, it passes it to controller 2.

The following shows the layout of the controllers:



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

1 9

Controller 1 Controller 2

IRQ Owner IRQ Owner

0 Timer 8 Real time clock

1 Keyboard 9 VGA (often inactive), Network

2 Cascaded with Controller 2 A -

3 Com 2, Com 4 B -

4 Com 1, Com 3 C -

5 LPT 2 D Coprocessor

6 Diskette E Hard drive

7 LPT 1 F -

Because the interrupts are in hierarchical order, IRQs with lower numbers have a higher priority and are
given preference over IRQs with higher numbers. Although you can change this order by reprogramming
the controllers, we recommend leaving the order as is because both the BIOS and DOS depend on this
structure.

The controllers have IMRs (interrupt mask registers) which can be used to hide or mask specific interrupts.
The IMR of the first controller is located at port address 21h, while the IMR of the second controller is located
at port 0a1h. For both ports, a corresponding set bit indicates the interrupt is disabled.

For example, to disable the real time clock, use the following instructions:

in al,0a1h                      ;Load IMR 2
or al,01h                       ;Set bit 0
out 0a1h,al                     ;and write back

Both controllers have a second port address at 20h or 0a0h, from which the instructions are given. The most
important is the EoI (End of Interrupt) command (numbered 20h). This instruction indicates the end of the
interrupt handler and frees up the corresponding controller for the next interrupt. If you always jump to
the original vector at the conclusion of your custom interrupt handler, the EoI instruction takes care of this
for you. However, if you write a new custom interrupt handler, it's up to you to see to it that at the end of
the handler, the EoI command (20h) is written to either port 20h or port a0h:

mov al,20h
out 20h,al

Reentering DOS

An interrupt handler can last a few clock cycles (keyboard click) or several seconds (e.g., Print-Screen, Int
5), depending on the application. It's important, especially in the latter case, to prevent this handler from
processing a second identical interrupt. With Print-Screen, for example, this might result in two copies of
the printout or even a system crash. The cause is the new second interruption accessing variables which the
handler is already using.



2 0

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

The easiest way to prevent this is to use a flag variable to indicate that the handler is already started. When
there is renewed activity, you can simply check the flag variable to avoid reentrance.

A more complicated case of reentrance concerns larger TSR for example, which enable a complete program
at the press of a key. The problem in this case is with DOS, which doesn't allow you to enable several DOS
functions simultaneously. If an interrupt interrupts a DOS function and then calls other DOS functions (e.g.,
for screen display), the call destroys the DOS stack, so the computer crashes after processing the handler
and returning to the interrupted DOS function.

It isn't easy to catch this. First, you have to check the InDos-Flag. You can determine its memory location
prior to installation of the handler using the undocumented DOS function 34h, which returns a far pointer
in registers ES:BX. The only time the computer can branch to a handler with DOS functions is when this flag
contains the value of 0 at the time the handler is called.

You should also install a handler for interrupt 28h, which is constantly being called while COMMAND.COM
waits for user input at the command line. In this case, the InDos-flag contains the value 1, because
COMMAND.COM itself counts as a DOS function.

Naturally, you can save yourself the trouble of these complicated measures if you don't call any DOS
functions in the handler. This is not a problem for most TSRs.

Intercepting CRTL-C and reset

Most commercial programs are written to be "bulletproof" - it's supposed to be impossible to exit these
programs through a "back door". If you manage to exit the program through a back door, you risk losing
data by leaving files still open. After all, it doesn't look very professional to allow a user to abort the program
by pressing c + k or c + a d.

What is the safest way to intercept these BIOS functions?

DOS has a somewhat safe, although not always reliable, method available for  c + C or c + k: When
you press one of these combinations, DOS calls interrupt 23h, which then causes a program crash. You can
change its vector to your own routine, which simply returns to the caller. The disadvantage of this method
is that it doesn't always work, especially with c + k. Given the right circumstances, it could even lead
to a system crash.

Here's a method that is much safer which also intercepts a reset (c + a d): First, a separate keyboard
interrupt handler checks to see whether one of the critical key combinations has been pressed before calling
the original handler. If one of these combinations has been pressed, the handler terminates. Acceptable key
are passed on to the original handler, which then continues by passing them through to the main program.

This technique is shown in the NO_RST.ASM program. Assemble
this into an EXE file with TASM or MASM:

PCPCun
de

rg
ro

un
d

You can find
NO_RST.ASM

on the companion CD-ROM



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

2 1

data segment public
start_message: db 'reset no longer possible',0dh,0ah,'$'
buffer:   db 40d                ;length of input buffer
          db 40 dup (0)         ;buffer
old_int9  dd 0                  ;old interrupt handler
data ends

code segment public
assume cs:code,ds:data
handler9 proc near              ;new interrupt 9 handler
  push ax                       ;store used register
  push bx
  push ds
  push es
  mov ax,data                   ;load ds
  mov ds,ax

  in al,60h                     ;read characters from keyboard in al

  xor bx,bx                     ;es to segment 0
  mov es,bx
  mov bl,byte ptr es:[417h]     ;load keyboard status in bl

  cmp al,83d                    ;scan code of  Del key ?
  jne no_reset                  ;no, then no reset

  and bl,0ch                    ;mask Ctrl and Alt
  cmp bl,0ch                    ;both pressed ?
  jne no_reset                  ;no, then no reset

block:                          ;reset or break, so block
  mov al,20h                    ;send EoI to interrupt controller
  out 20h,al
  jmp finished                  ;and exit interrupt

no_reset:                       ;no reset, now check Break
  cmp al,224d                   ;extended key ?
  je poss_Break                 ;yes -> Break possibly triggered
  cmp al,46d                    ;'C' key ?
  jne legal                     ;no -> legal key
poss_Break:
  test bl,4                     ;test keyboard status for Ctrl
  jne block                     ;pressed, then block

legal:                          ;legal key -> call old handler
  pushf
  call dword ptr [old_int9]     ;call original handler
finished:
  pop es
  pop ds                        ;get back register
  pop bx
  pop ax
  iret
handler9 endp

start proc near
  mov ax,data                   ;load ds
  mov ds,ax
  mov dx,offset start_message   ;load dx with offset of message
  mov ah,09h                    ;output message



2 2

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

  int 21h

  mov ax,3509h                  ;read old interrupt vector
  int 21h
  mov word ptr old_int9,bx      ;and store
  mov word ptr old_int9 + 2, es

  push ds                       ;store ds
  mov ax,cs                     ;load with cs
  mov ds,ax
  mov dx,offset handler9        ;load offset of handler also
  mov ax,2509h                  ;set vector
  int 21h
  pop ds

;-------------------------------------------------------------------------
;instead of the DOS call, you can also call your main program here

  mov ah,0ah                    ;input character string
  lea dx,buffer                 ;as sample main program
  int 21h
;-------------------------------------------------------------------------

  push ds
  lds dx,old_int9               ;set old vector again
  mov ax,2509h
  int 21h
  pop ds

  mov ax,4c00h                  ;end program
  int 21h
start endp

code ends
end start

The main program (Start) displays a short message, determines the original vector for keyboard interrupt
9 and sets the new vector to the procedure Handler9 . Next, the program calls the DOS character input as
a substitute for the program segment that is being protected (e.g., the demo routines). The DOS character
input receives a 40 character string. Finally, the original handler is restored and the program ends.

Now when a key is pressed the handler itself is called. It first saves all registers used so the interrupted
program doesn't notice any of the handler's activities. Then the pressed key's scan code is determined
(placed in AL) from the data port of the keyboard controller and the status of the c and a keys is read
out (placed in BL) through the keyboard status variable.

The keyboard status variable is located at address 0:417h. The following table shows its layout:

Bit Meaning Bit Meaning Bit

7 Ins 6 Caps Lock 5 Num Lock

4 Scroll Lock 3 Alt 2 Ctrl

1 Shift left 0 Shift right

First, the program checks whether the d key was pressed (pointer to Reset) and then checks whether c
and a (Bit 2 & 3 in BL) are set. If the answer to both questions is yes, the program continues at the label



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

2 3

Block . At this point, the program simply sends an EoI signal to interrupt controller 1 and jumps to the end
of the handler.

If there was no reset, the program checks for c  +  k and c  +  C starting with the label No_reset .
If neither C (scan code 46) nor an enhanced key (scan code 224) has been pressed, we can assume that an
acceptable key has been pressed, and the program calls the original handler at the label legal  and then
terminates. If either k or C has been pressed, the program checks for the c key. If this key is set, the
program ignores the reset, otherwise, it is an acceptable key.

To use this routine, all you have to do is call your own main procedure instead of the DOS character input.

Tips On Programming Loops

There are several ways to optimize machine language programs even in simple areas such as programming
loops. This begins with the typical construct of a loop called a loop label. It seems that CPU developers have
forgotten this instruction in recent years. For a 386, a construct such as dec CX, jne label is 10% faster, while
the same construct on a 486 is about 40% faster. This construct is faster although one additional byte had
to be fetched from slow RAM in the last instruction sequence. So the Loop instruction should be used only
if decrementing CX doesn't affect the flags, for example, with complicated string comparisons that cannot
be resolved with REP CMPSB.

The direction flag with string instructions

A frequent source of errors while using string instructions (lodsb, cmpsb, etc.), which are basically loops,
is the direction flag, which specifies the direction in which the string is processed. This flag is usually
cleared. However, if you somehow set this flag in your program to process a string from back to front,
always remember to clear it again.

Nesting

There's always a trade off between speed and the number of registers used in nested loops. Use as many
registers as possible for loop counters before using memory variables. Clever choice of loop limits can
increase speed execution. For example, by counting backwards, you can determine the end of a loop by
checking the zero flag when a register reaches zero.

16/32 bit accesses

To minimize the number of memory accesses, use 16-bit or 32-bit instructions. Starting with the 386, even
a one byte access by the CPU is executed as a double word. You'll benefit since it takes even take longer to
move a single byte than it does to move a single double word.

Some tasks will still require 8-bit instructions. VGA cards, for example, don't like it when you access video
memory wider than 8 bits in plane-based mode (such as mode X, which we'll explain later), because the
internal plane registers (latches) are only 8 bits wide.



2 4

Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

Practical 386 Instructions

In addition to the 386's basic features (Virtual Mode, Paging, 32-Bit-Register), several other very useful
instructions are available. Since some of these instructions combine several 286 instructions, they can
increase processing speed tremendously in critical areas. Take advantage of these instructions, even in Real
Mode.

The MOVSX and MOVZX instructions

First, are the MOVSX and MOVZX instructions. Both can move an 8 bit register directly to a word register
and a 16-bit register to a 32-bit register, which usually requires two instructions to accomplish. The letters
"S" and "Z" in these instructions represent "signed" and "zero" and apply to the upper half of the destination
register. All bits in the destination register are filled with either 0 or 1 with MOVSX, depending on the signs
of the source register, so the original signs are preserved. MOVZX, on the other hand, clears the upper half
of the destination register.

For example, if BL contains -1 (ffh), the two instructions will produce the following results:

movzx ax,bl  ; ax now contains 255 (00ffh)
movsx ax,bl  ; ax now contains -1  (ffffh)

Different SET commands

It's also possible to optimize comparisons on a 386. The 386 can handle the 30 SETxx instructions, which are
a combination of CMP, conditional jump and MOV. Each conditional jump has a counterpart in a set
instruction (SETz, SETnz, SETs, etc.). If the condition applies, the associated byte operand is set to 1,
otherwise it's set to 0:

dec cx                          ;Decrease (loop) counter
sete al                         ;use al as flag

In this example, which could have been taken from a loop, AL is normally (CX > 0) set to 0. AL isn't set to
1 until the end, when CX becomes 0. In this way, even Pascal Boolean variables can be set directly in
accordance with an assembly condition (SETxx byte ptr Variable).

Fast multiplication and division: SHRD and SHRL instructions

The 386 can perform arithmetic operations directly in 32 bit registers (in particular, multiplication and
division operations), which is much faster than the conventional method using DX:AX. How do you get
numbers in DX:AX format into an extended register (e.g., EAX)?

Unfortunately, you cannot directly address the upper halves of these register. Once again, however, the 386
has specific instructions for this purpose which do more than load registers: SHLD and SHRL, the enhanced
Shift instructions.

In addition to the number of bits to be shifted, these instructions expect two operands instead of one. First,
the instruction shifts the first (destination) operand by the corresponding number of bits; but instead of
filling the vacated bits at the low order (shift left) or the high order (shift right) with 0, they are filled from
the rotated second (source) operand. However, this operand itself is not changed.



Assembly Language: The True Language Of Programmers

Chapter 1

PCPC
underground

2 5

For example, if AX contains 3 (0000 0000 0000 0011b) and BX contains 23 (0000 0000 0001 0111b), the
instruction SHRD BX,AX,3 first rotates BX to the right by three (=2). However, at the same time the high
order is filled with the bits from AX, so the result in the destination operand amounts to (BX) 0110 0000 0000
0010b = 6002h = 24578.

As we said, these instructions are used most frequently for loading 32 bit registers (EBX here) from two 16
bit registers (DX:AX in our example). This is done first when SHRD loads the upper half: SHRD
EBX,EDX,16d. This instruction moves DX "from the top" into the EBX register. Then, the lower half is loaded
with the desired value, while the upper half, which has already been set, remains unchanged: MOV BX,AX.
By the way, this method is also used in the Root  procedure we described in this chapter.

Enhanced multiplication with IMUL

You can also use the new multiplication instructions. Starting with the 386, you can multiply practically any
register by any value: IMUL DX,3 which multiplies DX by 3. You can also use IMUL AX,DX,3  to multiply
DX by 3 and place the result in AX. Unlike the earlier forms of IMUL, you can save a lot of extra coding by
using these new instructions.

Using 386 instructions in Pascal programs

All 386 instructions have one common problem: Borland Pascal is currently unable to process them either
in an internal assembler or through linked external programs (if an object code is linked by the $L-Directive,
the processor specification used there must match the one set in Pascal).

So your only option is to trick the compiler by linking the inline assembler. You do this by calling the Turbo
debugger and entering the desired command there in its final form. The debugger then shows the hex code
for this instruction. Write down this code and insert it in the program after a db directive, for example:

db 66h,0fh,0ach,0d3h,10h    ;shrd ebx,edx,16d

However, changes such as this are no longer easy. You either have to check the inner structure (for instance,
in this example, converting the 16d (10h) operand into 8 by overwriting the last instruction byte with 8
wouldn't be a problem), or you have to reassemble the appropriate instruction by hand using Turbo
Debugger.

Perhaps the best alternative is to wait and hope Borland soon realizes the 386 has become a standard, and
as such, deserves to be supported.





2 7

2.  Assembly Language In Practice

In this chapter we'll describe a practical application of assembly language programming. We'll use
examples to show you what you can do with your PC by programming in assembly language. Here we'll
show you how to program the parallel and serial interfaces, your PC speakers (for samples too!) as well as
TSRs.

The Parallel Port

For most users, only the screen and the keyboard are more important than the parallel port. The reason the
parallel port is so important is that it connects your PC to your printer. Since the BIOS provides excellent

support for the parallel port, you usually
don't have to rewrite the BIOS routines.

However, the parallel port can do much
more for you. For example, you can use it to
transfer data to other computers, or by using
a few electronic components, you can even
use it as a sound card. The parallel port has
a 25 pin sub-D connector. The table on the
left shows its pin layout.

Programming the parallel interface

Every parallel port has three registers which are located at adjacent addresses. The base address determines
the port addresses. The base address is usually 378h for the first parallel port and 278h for the second
parallel port. However, these values can vary between computers. For example, a Hercules card with an
integrated parallel port fits in as the first interface at port 3BCh. If you don't know which port to use, the
word entries for LPT1, LPT2, etc., which specify the base address, are found starting at the address of
0:0408h.

The data register is located at the base address. The data to be output to the port is written to this write-only
register. For each 1 bit written to this port, the corresponding data line is set to High and for each 0, the data
line is set to Low.

The status register is located at the next address. You determine the printer's status from this register. The
corresponding control lines of the printer cable are written to this read-only register (only BUSY appears
inverted in the register).

1 -Strobe 2-9 Data bits 0 - 7

10 -Acknowledge 11 -Busy

12 Paper out 13 Select out

14 -Autofeed 15 -Error

16 -Printer Reset 17 Select in

18-25 Ground

Assembly 
Language In 

Practice

Chapter 2

PCPC
underground



2 8

Assembly Language In Practice

Chapter 2

PCPC
underground

Bit Meaning

7 -Busy (0 = Printer cannot currently accept data)

6 Ack (0 = Printer has read characters)

5 PE, Paper empty (1 = no more paper)

4 SLCT (0 = Printer is off-line)

3 Error (0 = an error occurred)

2-0 Reserved

1 Shift left

A Busy flag indicates the printer is busy and cannot accept any more data. For example, the printer buffer
may be full. Acknowledge (ACK) is always set to 0 when the printer has accepted the character from the
data lines and the next character can be written. PE and Error represent error states to be passed on to the
user, so they can be handled. SLCT reflects the current status of the on-line switch of the printer. The printer
cannot accept any data if it is off-line.

The parallel port has one additional register called the control register which further affects the printer's
operation. You can read and write to this register. The following table shows the layout of the control
register:

Bit Meaning

7-5 Reserved

4 IRQ enable (1 = IRQ active)

3 SLCT (0 Switch printer off-line)

2 Reset (0 Reset printer)

1 Auto LF (1 = Printer completes a line feed after CR)

0 Strobe (0 = Data present/on line)

Theoretically, by setting bit 4 it would be possible to enable IRQ 5 or 7, which is triggered when the
acknowledge signal is raised by the printer. However, to avoid complications with sound cards, this feature
is usually disabled. The parallel interface usually operates using the Polling method (the processor waits for
a flag to change).

With the SLCT line you can switch some printers to off-line status from the computer. Use the Auto-LF line
to control the automatic line feed character (once again, not with all models). All printers use the Reset and
Strobe lines. The Strobe line lets the receiver know that a byte is on the data lines.



Assembly Language In Practice

Chapter 2

PCPC
underground

2 9

Printer control

Outputting a character to the parallel port is simple: Wait until the busy bit is set (busy line inactive), write
the character to the data port, give a strobe signal (set and
immediately clear line) and wait for an acknowledge signal. To
demonstrate this, the following program does precisely this
with all the characters of a sample string. This program is called
PAR_TEST.PAS:

Const Base=$378;                {base address of parallel port}

Procedure PutChar_Par(z:Char);
{outputs a character to parallel port (base address in “Base”)}
Begin
  While Port[Base+1] and 128 = 0 Do;
                                {wait for end of Busy}
  Port[Base]:=Ord(z);           {place character on port}

  Port[Base+2]:=Port[Base+2] or 1;
                                {send strobe}
  Port[Base+2]:=Port[Base+2] and not 1;

  While Port[Base+1] and 64 = 1 do;
                                {wait for Ack}
End;

Procedure PutString_Par(s:String);
{outputs string to parallel port, uses PutChar_Par)}
Var i:Integer;                  {character counter}
Begin
  For i:=1 to Length(s) do      {each character}
    PutChar_Par(s[i]);          {send to parallel port}
End;

Begin
  PutString_Par(‘Hello, Abacus Printer Test’#13#10);
  PutString_Par(‘abcdefghijklmnopqrstuvwxyz0123456789’#13#10);
End.

Other Applications

Although the main reason you use the parallel port is to connect a printer to your computer, there's a very
good reason it's not called a "printer port". The port has 8 output lines, 5 input lines and 4 I/O channels (in
the control register). The I/O channels can serve as either inputs or outputs, depending on the command.

For example, one frequent application is networking two computers using a parallel null modem cable and
the INTERLNK.EXE driver of DOS 6.x. This driver uses a 4 bit transmission protocol. The protocol uses data
registers D0 to D3 for output, and uses the ERROR, SLCT, PE and ACK lines as input. The function of the
Strobe line ("announcing" data) takes on D4 as the output and Busy as the input. The following table shows
how the cable is connected.

PCPCun
de

rg
ro

un
d

You can find
PAR_TEST.PAS

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

AssemblyPassword:



3 0

Assembly Language In Practice

Chapter 2

PCPC
underground

Pin 2 3 4 5 6 15 13 12 11 10 11

With pin 15 13 12 10 11 2 3 4 6 5 6

Other programs such as LapLink can communicate with this cable. While you can chose to write your own
programs for data transfer, there are many shareware and commercial software programs available.

Another option, although no longer popular, is to use the parallel port as a sound card replacement. After
all, the parallel port has an 8 bit digital output. The data just needs to be converted to analog signals.

You can build a simple digital-to-analog conversion, but it's easier to buy a sound card. If you have enough
courage, you can build a sound card for much less money with a pair of resistors:

R

R

R

R

R

R

R

DO

D1

D2

D3

D4

D5

D6

D7 Audio

GND

DA converter built with resistors

The resistors guarantee that D7, the maximum value data line, contributes the most to the analog output
signal and that the voltage is reduced by the resistors with declining bit significance (D7-D0).

Plug this adapter (similar to the Covox device of the mid-1980s) into the parallel port and connect it to an
amplifier. It can be operated by almost any mod player: Sound data uses a specific number of bytes per
second (up to 44,000), which duplicates the frequency of the analog vibration. Fortunately, the PC uses an
unsigned format so the data can be output directly to the parallel port (data port, for LPT1 usually at port
address 378h). You don't need to worry about the other two registers, since they only control communication
with printers and the like. The data lines reproduce the exact contents of the data port.

If you pay attention to the sampling rate and output the data at this speed (e.g., sampling rate 22 KHz or
22,000 bytes per second to the port), you'll hear the beep at the output. This simply indicates the processor
is extremely busy, for port accesses last "forever". So we don't recommend extensive graphic operations at
the same time you play back audio data. If you need to do this, it's better to buy a sound card.



3 1

3.  Graphic Know-how From Underground

In this chapter we'll talk about the most important technical terms in PC graphics programming. Although
we cannot explain all the terms in this chapter, the information will provide you with a general overview
of the terms used in PC graphics programming.

Terms You Need To Know

Pixel

Pixel is an abbreviation for picture element. It represents the smallest element on a video display screen.
Your monitor screen is divided into thousands of tiny dots. A pixel is one or more dots that are treated as
a unit.

A pixel can be one dot on a monochrome screen, three dots (red, green and blue) on color screens, or clusters
of these dots.

You can change the color of each pixel individually in graphics mode.

Palette

All VGA 256-color modes use a palette. This is unlike TrueColor (16.7 million colors) and HiColor (65,536
colors), in which each pixel is assigned specific values of the three primary colors: Red, green and blue.

A pixel is represented by a pointer to a palette entry in palette modes. The palette then provides the three
primary color values for each of the 256 colors. All pixels of the same color have identical values.

The advantage of this method is that it saves significant memory. Instead of 18 bit color codes, only 8 bits
are used per pixel in video memory. This advantage is lost, however, in graphic modes with higher color
depth. The palette would become so large 16 or even 24 bits per pixel would be required.

A further advantage of palette-based modes is their usefulness for certain graphic effects. All colors
containing Color 1 for example can instantly be converted to a different hue, just by changing its palette
entry (3 bytes). This provides a simple method for fading images in and out - you don't need to raise or lower
the brightness of each pixel. Instead, you simply increment the 256 palette entries from 0 to their maximum
value (or vice versa). We'll talk more about this and other palette-based effects in Chapter 5.

Sprite

A sprite is basically a small image which can be positioned freely on the screen, but can also be made
transparent so it can move across a background. Some home computers have a special chip for this purpose
which relieves the CPU of the tasks for producing these effects.

Graphic 
Know-how From 

Underground

Chapter 3

PCPC
underground



3 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Sprites are used commonly in video games where they move freely across the screen and pass by or through
or even collide with each other.

Cathode rays

Luminous pixels of specific color and brightness are produced by a ray of accelerated electrons striking the
rear of the screen. The image is constructed line by line from left to right (as seen from the front) and from
top to bottom.

Retrace

Movement of the cathode ray as the screen image is being constructed. There are both vertical and
horizontal retraces. A horizontal retrace occurs following construction of a screen line, and denotes the
rapid movement of the ray to the beginning of the next line. A vertical retrace occurs when the ray has
reached the bottom of the screen and returns to the top (first) line.

Basically, modifications to screen content, including changes to specific VGA registers, should occur only
during a retrace. By doing this, the changes won't conflict with image construction, which would lead to
flickering in the affected area.

It makes no difference whether you wait for a horizontal or a vertical retrace. However, when performing
extensive changes or register manipulations, you may want to make the changes during a vertical retrace
since it lasts much longer (approximately 200 times longer).

To wait for a vertical retrace, use the procedure WaitRetrace  (in the ModeXLib.asm module, although
it is generally valid for all graphic and text modes). When a vertical retrace is in progress, bit 3 of Input Status
Register 1 (port address 3dah) is set. This procedure relies on this signal.

It's not enough to see if a vertical retrace is in progress. Instead WaitRetrace . In this case WaitRetrace
would end immediately and the screen modification would be performed, but there might not be enough
time. Therefore, WaitRetrace  waits for the beginning of a vertical retrace. A loop called @wait1  first waits
for any retrace in progress to finish, i.e., for the cathode ray to reappear on the screen, before using the second
loop @wait2  to wait for the next retrace.

WaitRetrace proc pascal far
  mov dx,3dah ;Input Status Register 1
@wait1:
  in al,dx    ;Bit 3 = 0 if ray is constructing image
  test al,8h
  jnz @wait1
@wait2:
  in al,dx    ;Bit 3 = 1 if retracing
  test al,8h
  jz @wait2
  ret         ;Ray is now at the very bottom of the screen
Endp

Double-scan

Halving the y-resolution from 400 to 200 by double-displaying each line. This is used for emulating the 200-
line modes not supported by VGA.

Speed is the essential element of graphic programming. Graphic programmers have always had to face the
problems of insufficient speed. Fortunately, processors and graphic cards are becoming faster so today you



Graphic Know-how From Underground

Chapter 3

PCPC
underground

3 3

never have a speed problem with CGA graphics, as was common only a few years ago. However, today's
standard of graphic quality requires several programming tricks.

One important trick is programming graphic chips directly which provides a great speed advantage over
BIOS routines. This works for many reasons, one of which is removing many "validity checks."

However, by doing this it's possible to set a point at coordinates (5000,7000), with, of course, some rather
bizarre effects.

If validity checks must be included for any reason, for example with interactive users (with a mouse), the
checks should be performed outside of the display procedures (PutPixel , etc.), to avoid invoking them
with "valid" pixels as well.

Basis In BIOS Mode 13h

In developing VGA, IBM invented a practical method of addressing video memory in 256-color mode:
Chaining bitplanes in a linear address space. Soon after, BIOS programmers used this technique for video
mode 13h.

Memory organization

Video memory begins at segment a000. The organization of video memory is very simple: Each pixel is
assigned one byte which contains a color, or more accurately, a pointer to an entry in the color palette.
Addressing follows the path of the cathode ray during image construction - a pixel at coordinates (0,0) is
located at offset 0; pixel (0,1) is located at offset 320, etc., until pixel (319,199) is reached at offset 63999.

Thus the address of a pixel at coordinates (x,y) is determined by the following formula:

Offset = Y*320 + X

We're now ready to program a simple star-scroller which sets
pixels according to a certain pattern and then erases them:

Uses Crt;
Var Stars:Array[0..500] of Record
                              x,y,Plane:Integer;
                            End;
  st_no:Word;

Procedure PutPixel(x,y,col:word);assembler;
{sets pixel (x/y) to color col (Mode 13h)}
asm
  mov ax,0a000h                 {load segment}
  mov es,ax
  mov ax,320                    {Offset = Y*320 + X}
  mul y
  add ax,x
  mov di,ax                     {load offset}
  mov al,byte ptr col           {load color}
  mov es:[di],al                {and set pixel}
End;

PCPCun
de

rg
ro

un
d

You can find
STAR.PAS

on the companion CD-ROM



3 4

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Begin
  Randomize;                    {initialize random numbers}
  asm mov ax,13h; int 10h End;  {set Mode 13h}
  Repeat                        {executed once per display}
    For St_no:=0 to 500 do Begin{calculate new position for each star}
      With stars[st_no] do Begin
        PutPixel(x,y,0);        {clear old pixel}
        Dec(x,Plane shr 5 + 1); {continue moving}
        if x <= 0 Then Begin    {left ?}
          x:=319;               {then reinitialize}
          y:=Random(200);
          Plane:=Random(256);
        End;
        PutPixel(x,y,Plane shr 4 + 16);  {set new pixel}
      End;
    End;
  Until KeyPressed;             {run until key pressed}
  TextMode(3);
End.

The inner loop is most significant in this example. In the inner loop, the previous star is first erased from
the screen. Then the star is moved according to its speed (calculated from Plane). When the star moves past
the left edge (x <= 0), it's repositioned to the right edge with new random values for its y-coordinate and
speed.

Finally, the pixel is set at the new position, also calculated from Plane, i.e., the slower stars are further in
the background and appear darker. The program uses the standard default palette used by all VGA cards
at startup. It contains a series of gray values between 16 (black) and 31 (white).

Internal structure of Mode 13h

The linear memory structure which makes programming Mode 13h so easy is actually simulated for the
CPU. VGA converts the linear address internally back to a planar address. The two lower address lines (Bits
0 and 1 of the offset) are used to select the read/write plane. When bits 0 and 1 have been set to 0, the
remaining six bits (2-7) are used as physical addresses within the plane.

A similar process (odd/even addressing) is also used by all text modes. In this process, the lowest address
line is used for selecting between plane 0 and 1, so from the CPU's point of view, the character and attribute
bytes are directly next to each other. Internally, however, the character is stored in Plane 0 and the attribute
in plane 1. Planes 2 and 3 are for character set storage.

The GIF Image Format

GIF is the most widely used format for graphic images. GIF was developed in 1987 by CompuServe for fast,
economical exchange of images between computers.

GIF has several important advantages compared to other formats such as PCX. GIF, unlike other graphic
formats, is not tied to a particular graphic mode because its data format is usable by all graphic systems.
GIF supports image resolutions to 16,000 x 16,000 pixels with a palette of 256 colors out of 16.7 million. Also,
any number of images with the same global or local color palette can be stored in one file (an option which
is seldom used).



Graphic Know-how From Underground

Chapter 3

PCPC
underground

3 5

GIF has an even more important advantage, however. GIF allows excellent compression of images coupled
with high decompression speeds. It uses the modified LZW compression process which is also the basis
for other compression programs.

This is the reason why we use GIF graphic images. The demos which we've included on the companion
CD-ROM will load your images quickly without excessive memory requirements.

The standard format

GIF uses a block structure not as elaborate as TIFF format but which allows for easy handling of information
about resolution and number of colors. The following table describes the basic structure:

Offset Length Contents

0 3 Format ID "GIF"

3 3 Version ID, currently "87a" or "89a"

6 7 Logical Screen Descriptor Block

0dh n Global Color Map (optional), in 256-color modes

VGA-compatible palette (n=768 bytes)

30dh n Extension Block (optional)

30dh 10 Image Descriptor Block

317h n Local Color Map (optional), in 256-color modes

VGA-compatible palette (n=768 bytes)

317h n Raster Data Block (graphic data LZW-compressed)

? 1 Terminator ID (89h)

The offset values assume that a Global Color Map exists but that Extension Blocks and Local Color Maps
do not. Instead of the Terminator ID, you can add any number of Image Descriptor Blocks with the
accompanying palette and raster data. End-of-file occurs only with the terminator. It's not often that
multiple images are stored in a single file. To make our example less complicated, we won't attempt to
design a full-featured GIF viewer but simply a quick load image routine that works with a single image.

Following the 6-byte long Format ID GIF87a or GIF89a is the Logical Screen Descriptor Block (LSDB). It
defines the logical screen and therefore the global resolution and color data. The following table shows the
structure of this block:

PCPCun
de

rg
ro

un
d

VGAPassword:



3 6

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Offset Length Contents

0 2 Screen width

2 2 Screen height

4 1 Resolution flag:

Bit 7  1= Global Color Map exists

Bits 6-4  : Color-depth in bits (minus one)

Bit 3  : Reserved (0)

Bits 2-0  : Number of bits per pixel (minus one)

5 1 Background color (color-number in palette)

6 1 Pixel Aspect Ratio:

Bit 7 : Global palette sort sequence

Bits 6-0 : Pixel Aspect Ratio

This block includes the global palette (Global Color Map), which for each of the 256 colors contains a three-
byte entry with values for the primary colors red, green and blue. Note that 8 bits are available for each color
component for a total of 224 (16.7 million) possible colors. For a VGA display each individual value must first
be shifted two bits to the right before being sent to the VGA-DAC, since VGA uses only the lower 6 bits of
each component.

Another unusual characteristic, which generally makes no difference on a PC, is the palette sort sequence.
Both global and local palettes can be stored in VGA sequence (this is the normal situation). This means color
0 is first defined by red, blue and green, then color 1, etc. Another option, which is seldom used, is to sort
the palette according to color frequency. Therefore, the red components of colors 0 to 255 are stored first
followed by all green components and ending with blue.

To this point, all data is considered global and applies to all the images within the GIF file. Next are the image
specific data for each individual image.

First is the Extension Block which can contain any type of data. Often, a paint program or a scan program
will insert copyright information in the Extension Block. For our sample GIF loader, we'll ignore this data
and just jump over it. An extension block starts with the character "!" (ASCII 21h) and ends with a null value
(ASCII 0H).

Next the local image is described in the Image Descriptor Block. It has the following structure:



Graphic Know-how From Underground

Chapter 3

PCPC
underground

3 7

Offset Length Contents

0 1 "," (2ch) Image Separator Header

1 2 x-coordinate of top left corner of logical screen

3 2 y-coordinate of top left corner of logical screen

5 2 Image width in pixels

7 2 Image height in pixels

9 1 Flag byte:

Bit 7: 1= Local Color Map exists

Bit 6 : 1= Image is interlaced

Bit 5 : Local palette sort sequence

Bits 3-4 : Reserved (0)

Bits 0-2: Bits per pixel (minus one)

The Flag byte is important here. It indicates whether the Image Descriptor Block also has a local palette
which takes precedence over the global one. Separate entries can also exist for sort sequence and number
of pixels. Bit 6 indicates whether the image is interlaced, as in an interlaced monitor. First, all even image
lines; (0, 2, 4 etc.) are written. These are followed by the odd lines. This feature was designed to provide a
rough overview of image content when loading at slow transmission speeds (such as downloading from
a CompuServe mailbox or loading from a diskette).

Directly following this block is the local palette (if one exists). The entries are the same as for the global
palette. The Raster Data Blocks follow the local palette. They contain the actual image data in LZW format.
The data itself, like the image description, is also stored in block format, whereby the length byte consists
of only 8 bits, thus limiting block size to a maximum of 256 bytes (including the length byte).

LZW compression process

The number of bits which represent a pixel once again appears in the first Raster Block which directly
precedes the length byte. This value is used by the LZW process to compress the images.

The most important advantage of using LZW is the file size of the image is reduced.

Unlike other compression schemes such as RLE (Run Length Encoding) used in the PCX format, LZW can
handle both adjacent identical bytes and sequences of bytes that are not adjacent. To do this, an "extended
alphabet" is used. Instead of the usual 8 bits, this alphabet uses additional encoding bits. For example, by
using 9 bits per character, a file can contain codes 256-511 in addition to the usual codes 0-255. These are
used to represent character strings.

The meaning of the extended alphabet is constructed dynamically during compression and decompression.



3 8

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Here's how it works. Characters are read from the source file or video memory until a character string is
encountered which is no longer found in the alphabet. This happens in the beginning after only two
characters: The first character will be in the alphabet (an ordinary character from 0 to 255), while the string
formed from the first two characters does not yet exist.

When the compressor reaches this point it writes this character string into the alphabet, so the next time the
string occurs it can compress it by replacing it with this code. The code of the longest character string still
contained in the alphabet is then written to the destination file and the character string initialized with the
last character read. Characters are again added until the string is no longer found in the alphabet.

Now the question is how many bits you should use for the alphabet. If you use too few the alphabet will
soon overflow and reinitializing it greatly reduces the compression rate. However, taking too many bits
immediately wastes space because the upper bits will never be needed. The solution is the modified LZW
process, which uses a variable byte width. You begin with nine bits, which allows an alphabet with 512
entries. If this limit is exceeded another bit is simply added on.

On the other hand it makes no sense to keep extending indefinitely. This wastes bits unnecessarily, although
the majority of character strings already in the alphabet will never be used again. Therefore, when reaching
a width greater than 12 bits, a clear-code is eventually sent. This clear-code completely clears the alphabet
and resets the width back to nine bits. Compression then basically starts from the beginning.

The effectiveness of this algorithm depends strongly on the length of the file to be compressed. You'll need
large amounts of data to access the alphabet repeatedly and be able to store long character strings in a small
number of bits. This algorithm is therefore best suited for images of several kilobytes in size.

What is even more important for our purposes is the decompression algorithm. It takes the compressed data
and transforms them back into recognizable images. Before you can understand the packing process,
however, you must first understand the compressor.

Interestingly, the LZW process does not require storing the alphabet. The alphabet is regenerated from the
packed data during decompression. The program uses the fact the only character strings coded in the
compressed data are those that already occurred and therefore exist in the alphabet.

The following describes how the decompressor proceeds. Each compressed character read is first checked
to see whether it's actually a real, uncompressed byte. This would be indicated by a value less than 256.
These characters can be written directly to the destination file (or video memory). When encountering an
extended code, however, the corresponding character string is retrieved from the alphabet and then
written. Of course, the alphabet must be constructed at the same time by combining the last decompressed
character string (or uncompressed character) with the first character of the just decoded character string and
entering it into the alphabet.

This corresponds exactly to the compression process but "in reverse". So, the alphabets formed during
compression and decompression correspond exactly at any point in time. An exception to the "any point"
is when a character occurs whose code is not yet in the alphabet. When compressing a character string of
the form AbcAbcA, if the character string Abc already exists in the alphabet, the compressor writes this
entry's code to the destination file and forms the new alphabet entry AbcA, which appears again
immediately afterward and is therefore also used by writing it to the destination file.

The decompressor at this point still does not recognize the character string however; how would it know
the next character will be an A, since it is not writing to the destination file. You should be able to notice when



Graphic Know-how From Underground

Chapter 3

PCPC
underground

3 9

this situation occurs because it arises only with character strings as described above. If a code appears that
is not yet in the alphabet, the last decoded character string plus its first character is simply written to the
video memory and the new character string recorded in the alphabet.

An alphabet could require a great amount of memory, which was a problem in the past. The algorithm was
therefore again improved. Although it may seem more complicated, it actually simplifies your work even
more. As we have seen in both compressing and decompressing each new alphabet entry is formed from
an already existing character string plus a new character. What is being stored is simply the code of the old
character string and the code of the new character. We, therefore, need just two more entries: Prefix  and
Tail .

GIF-loader optimized to 320 x 200

GIF is clearly a universal format. It supports multiple resolutions, color-depths and is completely system-
independent. A good GIF-viewer must recognize and support all variations of this format. Unfortunately,
this feature doesn't work very well at high speeds. Since many shareware GIF-viewers are available, writing
another one is not the goal of this chapter. Instead, we'll develop a loader optimized to specific formats,
which will compensate for its lack of versatility with a high degree of speed.

The most popular format for demos and entertainment scenes is 320 x 200 with 256 colors. This graphic
mode is our main objective. As we'll see later, expanding to other 256-color modes is no great problem
However, 16 colors is not included because the unpacker would then need to be rewritten completely (4-
bit color-depth instead of 8-bit).

As an example we will use the routine LoadGIF  from unit GIF .
You'll see this routine often in other programs which we discuss
in this book:

unit gif;                       {Header for gif.asm}

Interface
uses modexlib;                  {because of SetPal}
  var
  vram_pos,                     {current position in VGA-RAM}
  rest, errorno:word;           {remaining bytes in RAM and error}

  gifname:String;               {Name, including #0}
  Procedure LoadGif(GName:String);
                                {Loads Gif file "GName.gif" into vscreen}
  Procedure LoadGif_Pos(GName:String;Posit:Word);
                                {Loads Gif file at screen offset Posit}

Implementation
  Procedure ReadGif;external;   {custom Gif loader, complete in Assembler}
  {$l gif}
 Procedure LoadGif;
  {Loads Gif file "GName.gif" into vscreen}
  Begin
    If pos('.',gname) = 0 then  {add ".gif" extension if necessary}
      gname:=gname+'.gif';
    Gifname:=GName+#0;;         {generate ASCIIZ string}
    vram_pos:=0;                {start in VGA-Ram at Offset 0}
    ReadGif;                    {and load image}
    If Errorno <> 0 Then        {terminate if error}
      Halt(Errorno);

PCPCun
de

rg
ro

un
d

You can find
GIF.PAS

on the companion CD-ROM



4 0

Graphic Know-how From Underground

Chapter 3

PCPC
underground

    SetPal;                     {set loaded palette}
  End;

  Procedure LoadGif_pos;
  {Loads Gif file at screen offset Posit}
  Begin
    If pos('.',gname) = 0 then  {add ".gif" extension if necessary}
      gname:=gname+'.gif';
    Gifname:=GName+#0;          {generate ASCIIZ string}
    vram_pos:=posit;            {start in VGA-Ram at passed offset}
    ReadGif;                    {and load image}
    If Errorno <> 0 Then        {terminate if error}
      Halt(Errorno);
    SetPal;                     {set loaded palette}
  End;
Begin
  errorno:=0;                   {normally no error}
  GetMem(VScreen,64000);        {allocate virtual screen}
End.

The two procedures in this unit are LoadGIF  and LoadGIF_Pos . They set the framework for calling the
next assembly language portion and thereby simplify the load process. LoadGIF is the normal procedure.
It simply loads an image into the virtual screen (vscreen) and pages any overflow (images larger than 320
x 200) into video memory starting with Offset 0. You can also pass the offset in LoadGIF_Pos  where paging
begins.

Both procedures add the extension .GIF to the filename if necessary. They also add the terminating 0 to the
string required by DOS. A simple error procedure is also implemented (it prevents a system crash in this
form) by stopping the entire program if ReadGIF  passes an error number other than 0. Unlike a
full-featured GIF-viewer, this demo assumes the files reside in the current directory. Finally, SetPal  is
called, which sets the loaded image palette.

You can find the actual load procedure ReadGIF  in the file
GIF.ASM. True assembly language code lets you achieve
maximum speed.

.286

clr=256                         ;code for "clear alphabet"
eof=257                         ;code for "end of file"
w equ word ptr
b equ byte ptr

data segment public
  extrn gifname:dataptr         ;name of Gif file, incl. ".gif" + db 0
  extrn vscreen:dword           ;pointer to destination memory area
  extrn palette:dataptr         ;destination palette
  extrn vram_pos:word           ;position within video RAM
  extrn rest:word               ;rest, still has to be copied
  extrn errorno:word;           ;flag for error

  handle     dw 0               ;DOS handle for Gif file
  buf        db 768 dup (0)     ;read data buffer
  bufInd     dw 0               ;pointer within this buffer
  abStack    db 1281 dup (0)    ;stack for decoding a byte
  ab_prfx    dw 4096 dup (0)    ;alphabet, prefix portion
  ab_tail    dw 4096 dup (0)    ;alphabet, tail portion
  free       dw 0               ;next free position in alphabet

PCPCun
de

rg
ro

un
d

You can find
GIF.ASM

on the companion CD-ROM



Graphic Know-how From Underground

Chapter 3

PCPC
underground

4 1

  width1     dw 0               ;number of bits in a byte
  max        dw 0               ;maximum alphabet length for current width
  stackp     dw 0               ;pointer within alphabet stack
  restbits   dw 0               ;number of bits remaining to be read
  restbyte   dw 0               ;number of bytes still in buffer
  specialcase dw 0              ;buffer for special case
  cur_code   dw 0               ;code just processed
  old_code   dw 0               ;previous code
  readbyt    dw 0               ;byte just read
  lbyte      dw 0               ;last physical byte read
data ends

extrn p13_2_modex:far           ;needed for overflow

code segment public
assume cs:code,ds:data

public readgif
GifRead proc pascal n:word
;reads n physical bytes from file
  mov ax,03f00h                 ;function 3fh of Interrupt 21h: read
  mov bx,handle                 ;load handle
  mov cx,n                      ;load number of bytes to read
  lea dx,buf                    ;pointer to destination buffer
  int 21h                       ;execute interrupt
  ret
gifread endp

GifOpen proc pascal
;opens the Gif file for read access
  mov ax,03d00h                 ;function 3dh: open
  lea dx,gifname + 1            ;pointer to name (skip length byte)
  int 21h                       ;execute
  mov handle,ax                 ;save handle
  ret
gifopen endp

GifClose proc pascal
;closes Gif file
  mov ax,03e00h                 ;function 3eh: close
  mov bx,handle                 ;load handle
  int 21h                       ;execute
  ret
gifclose endp

GifSeek proc pascal Ofs:dword
;positioning within the file
  mov ax,04200h                 ;function 42h,
  mov bx,w handle               ;subfunction 0: seek relative to start of file
  mov cx,word ptr Ofs + 2       ;load offset
  mov dx,word ptr Ofs
  int 21h                       ;execute
  ret
Endp
ShiftPal proc pascal
;aligns 24-bit palette format to 18-bit VGA format
  mov ax,ds                     ;source and destination arrays in the data segment
  mov es,ax
  mov si,offset buf             ;read from data buffer
  lea di,palette                ;write to palette
  mov cx,768d                   ;copy 786 bytes
@l1:



4 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

  lodsb                         ;get bytes
  shr al,2                      ;convert
  stosb                         ;and write
  loop @l1
  ret
Endp
FillBuf proc pascal
;reads a block from the file in buf
  call gifread pascal,1         ;read one byte
  mov al,b buf[0]               ;load length after al
  xor ah,ah
  mov w restbyte,ax             ;and store in restbyte
  call gifread pascal, ax       ;read bytes
  ret
Endp

GetPhysByte proc pascal
;gets a physical byte from the buffer
  push bx                       ;caller needs bx
  cmp w restbyte,0              ;no more data in buffer ?
  ja @restthere
  pusha                         ;then refill buffer
  call fillbuf
  popa
  mov w bufind,0                ;and reset pointer
@restthere:                     ;data in buffer
  mov bx,w bufInd               ;load buffer pointer
  mov al,b buf[bx]              ;get byte
  inc w bufind                  ;move pointer
  pop bx                        ;finished
  ret
Endp

GetLogByte proc pascal
;gets a logical byte from the buffer, uses GetPhysByte
  push si                       ;caller needs si
  mov ax,w width1               ;get byte width1
  mov si,ax                     ;and store
  mov dx,w restbits             ;shift lbyte 8 remaining bits to the right
  mov cx,8
  sub cx,dx                     ;obtain difference
  mov ax,w lByte
  shr ax,cl                     ;and shift
  mov w cur_code,ax             ;store code
  sub si,dx                     ;remaining bits already obtained -> subtract
@nextbyte:
  call getphysbyte              ;get new byte
  xor ah,ah
  mov w lbyte,ax                ;store in lbyte for next logical byte
  dec w restbyte                ;mark byte as obtained

  mov bx,1                      ;mask remaining bits in obtained byte
  mov cx,si                     ;add number of bits
  shl bx,cl                     ;shift 1 by number
  dec bx                        ;and decrement
  and ax,bx                     ;mask byte

  mov cx,dx                     ;shift to correct position
  shl ax,cl                     ;(by remaining bytes to the left)
  add w cur_code,ax             ;and add to result

  sbb dx,w width1               ;decrement remaining bits



Graphic Know-how From Underground

Chapter 3

PCPC
underground

4 3

  add dx,8                      ;by amount exceeding 8 bits
  jns @positive
  add dx,8
@positive:
  sub si,8                      ;up to 8 bits obtained -> subtract
  jle @finished                 ;<= 0 -> finished, end
  add dx,w width1               ;otherwise increment remaining bits by missing bits
  sub dx,8
  jmp @nextbyte                 ;and continue
@finished:
  mov w restbits,dx             ;store remaining bits for next call
  mov ax,w cur_code             ;and load ax
  pop si
  ret
Endp

ReadGif proc pascal
;loads a Gif image called gifname in vscreen, overflow is paged out to screen
  push ds                       ;store ds
  call GifOpen                  ;open file
  jnc ok                        ;error ?
  mov errorno,1                 ;then issue message and end
  pop ds
  ret

ok:
  call gifseek pascal, 0,13d    ;skip first 13 bytes
  push 768d                     ;load 768 bytes of palette
  call gifread
  call shiftpal                 ;and convert to "palette"
  call gifread pascal,1         ;skip one byte

@extloop:                       ;skip extension blocks
  cmp w buf[0],21h              ;another Extension-Block existing ?
  jne @noext                    ;no, then continue
    call gifread pascal,2       ;read first two bytes
    mov al,b buf[1]             ;data block length
    inc al                      ;increment by one
    xor ah,ah
    call gifread pascal, ax     ;and skip
  jmp @extloop

@noext:
  call gifread pascal, 10d      ;read remainder of IDB
  test b buf[8],128             ;local palette ?
  je @noloc                     ;no, then continue
    push 768                    ;otherwise read
    call gifread
    call shiftpal               ;and set

@noloc:
  les di,dword ptr vscreen      ;load destination address

  mov w lbyte,0                 ;last read byte 0
  mov w free,258                ;first free entry 258
  mov w width1,9                ;byte width1 9 bits
  mov w max,511                 ;so maximum entry is 511
  mov w stackp,0                ;stack pointer to beginning
  mov w restbits,0              ;no remaining bits
  mov w restbyte,0              ;or remaining bytes to obtain
@mainloop:                      ;run for each logical byte
  call getlogbyte               ;get logical byte



4 4

Graphic Know-how From Underground

Chapter 3

PCPC
underground

  cmp ax,eof                    ;end of file  ID
  jne @no_abort
  jmp @abort                    ;yes, then end
@no_abort:
  cmp ax,clr                    ;clr-code ?
  jne @no_clear
  jmp @clear                    ;yes, then clear alphabet
@no_clear:
  mov w readbyt,ax              ;store current byte
  cmp ax,w free                 ;code already in alphabet (<free)
  jb @code_in_ab                ;yes, then output
  mov ax,w old_code             ;no, then special case, i.e., give last string
  mov w cur_code,ax             ;for processing
  mov bx,w stackp
  mov cx,w specialcase          ;and add first character (always concrete)
  mov w abstack[bx],cx          ;enter onto stack
  inc w stackp                  ;move stack pointer forward
@code_in_ab:                    ;code exists in alphabet:
  cmp ax,clr                    ;< clr code ?
  jb @concrete                  ;then concrete character
@fillstack_loop:                ;otherwise decode
  mov bx,w cur_code             ;current code as pointer in alphabet
  shl bx,1                      ;word-array (!)
  push bx
  mov ax,w ab_tail[bx]          ;get tail (concrete)
  mov bx,w stackp               ;push onto stack
  shl bx,1                      ;likewise word-array
  mov w abstack[bx],ax          ;enter
  inc w stackp
  pop bx
  mov ax,w ab_prfx[bx]          ;get prefix
  mov w cur_code,ax             ;give as current code for decoding
  cmp ax,clr                    ;> clr-Code
  ja @fillstack_loop            ;then continue decoding
@concrete:                      ;now just the concrete values onto the stack
  mov bx,w stackp               ;push last code onto stack
  shl bx,1                      ;word-array
  mov w abstack[bx],ax
  mov w specialcase,ax           ;also keep for special case
  inc w stackp                  ;move pointer forward
  mov bx,w stackp               ;prepare to read stack
  dec bx                        ;move pointer backward and
  shl bx,1                      ;align with word-array
@readstack_loop:                ;process stack
  mov ax,w abstack[bx]          ;get character from stack
  stosb                         ;and write to destination memory

  cmp di,0                      ;segment overflow ?
  jne @noovl1
  call p13_2_modex pascal,vram_pos,16384d
  add vram_pos,16384d           ;the page section to video RAM
  les di,dword ptr vscreen      ;next position in VGA-RAM and reset destination pointer

@noovl1:
  dec bx                        ;stack pointer to next element
  dec bx
  jns @readstack_loop           ;finished processing ? no, then continue
  mov w stackp,0                ;set stack pointer variable to 0
  mov bx,w free                 ;now enter in alphabet
  shl bx,1                      ;go to position "free"
  mov ax,w old_code             ;write last code in prefix
  mov w ab_prfx[bx],ax



Graphic Know-how From Underground

Chapter 3

PCPC
underground

4 5

  mov ax,w cur_code             ;current code in tail
  mov w ab_tail[bx],ax
  mov ax,w readbyt              ;store byte read as last code
  mov w old_code,ax
  inc w free                    ;to next position in alphabet
  mov ax,w free
  cmp ax,w max                  ;maximum reached ?
  ja @no_mainloop
  jmp @mainloop                 ;no, then continue
@no_mainloop:
  cmp b width1,12               ;has width1 reached 12 bits ?
  jb @no_mainloop2
  jmp @mainloop                 ;yes, then continue
@no_mainloop2:
  inc w width1                  ;otherwise increment
  mov cl,b width1               ;calculate new maximum value
  mov ax,1                      ;shift 1 by new width1 to the left
  shl ax,cl
  dec ax                        ;and decrement
  mov w max,ax                  ;enter
  jmp @mainloop                 ;and go back to main loop
@clear:                         ;reset alphabet:
  mov w width1,9                ;width1 back to original value
  mov w max,511                 ;reset maximum to 511
  mov w free,258                ;first free position at 258
  call getlogbyte               ;get next byte
  mov w specialcase,ax          ;record as special case
  mov w old_code,ax             ;and also as last byte read
  stosb                         ;this value directly to memory, because
                                  concrete

  cmp di,0                      ;segment overflow ?
  jne @noovl2
  call p13_2_modex pascal,vram_pos,16384d
  add vram_pos,16384d           ;then page to video RAM
  les di,dword ptr vscreen      ;move VGA-RAM pointer forward and reset start
                                 address

@noovl2:
  jmp @mainloop                 ;go back to main loop
@abort:                         ;terminate through eof-code
  call gifclose                 ;close file
  mov rest,di                   ;store number of bytes still to be copied
  pop ds                        ;end
  ret
Endp

code ends
end

GIFOpen , GIFRead , GIFSeek and GIFClose  in this module serve as file handling routines. They open
the file, read data (n Bytes), set the file pointer to position Ofs  and close the file.

One procedure not directly involved with loading is ShiftPal . It reads the palette from the data buffer
where it was loaded previously by GIFRead . It then transfers it to the array "Palette " so it can be set
directly. This is also where the format alignment occurs by using right-shifting to generate the 6-bit values
of VGA format from the 8-bit values of GIF format.



4 6

Graphic Know-how From Underground

Chapter 3

PCPC
underground

The next level of the GIF-loader consists of the procedure GetPhysByte . The task of this procedure is to
obtain exactly one byte from the file. Of course, you could also accomplish this directly through GIFRead ,
but even with caches, individual disk accesses always take longer than intermediate buffering through a
program.

GetPhysByte  first checks whether additional data exists in the buffer, whose fill status is indicated by
RestByte . The program either reads the next byte or the buffer must be refilled with new data by FillBuf .
FillBuf  reads the current block length followed by the corresponding number of bytes from the file.

There is one problem you might encounter with this compression method. The data obtained must be
processed again - a single byte is no longer eight bits in width. Depending on the current status of the
alphabet, a byte consists of a minimum of nine bits. Therefore, the program must take the continuous bit-
stream (transmitted by GetPhysByte  in 8-bit blocks, i.e., physical bytes) and filter out the current number
of bits. This task is carried out by GetLogByte .

The variables LByte  and Restbits  are responsible for the stream of data. The variable LByte contains
the last physical byte transmitted by GetPhysByte . This byte must still be converted to Restbits  bits.
To do this, LByte  is shifted by eight Restbits  to the right and this value stored in cur_code .

The next step is obtaining a new byte, whose required (lower) bits are now masked out and added to. For
bytes consisting of ten or more bits another physical byte may be needed; in this case the program returns
to label @nextbyte  and processes this byte as well.

The most important procedure in this module (and the only one declared as public) is ReadGIF . The
following are passed globally to this procedure:

Ø GIFname
Contains the complete filename with terminal 0.

Ø vscreen
Contains a pointer to the virtual screen which must be previously allocated (done in Unit-Start).

After opening the file (with error checking), the program skips the first 13 bytes. The data contained there
(ID and Logical Screen Descriptor) are not relevant here since we're assuming a 320 x 200 format. Other
formats are not checked (due to speed considerations) and will produce garbage on the screen. Our main
priority here is speed.

Another assumption is the existence of a global palette which is then loaded and aligned through
ShiftPal . Next the ID of the next block is read, skipping over any Extension Blocks. The Image Descriptor
Block (IDB) follows the Extension Blocks. The program reads 10 bytes - 9 bytes from the IDB plus the first
byte of the Raster Data Block. Next if a local palette exists (Bit 7 of the IDB Flag Register), it's now loaded
and set.

The label @nolok  initiates the actual decoding of raster data. The procedure first initiates several variables.
The variable free  contains the first unused position in the alphabet, width  contains the current byte width,
max the highest used position in the alphabet. The main loop (@mainloop ) then begins, which is executed
for each byte.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

4 7

Each byte read is first compared to the variables eof  (end-of-file) and clr  (clear-alphabet). The character
eof  indicates the file is completely loaded. The character clr indicates that an alphabet overflow occurred
during compression. This overflow requires clearing and re-initialization of the alphabet. To synchronize
the packing and unpacking, at this point you also need to reset the alphabet when decompressing.

Next the program checks to see if this code already exists in the alphabet. If not, we have a special case as
described above, which is handled as follows. The last string (compressed in Old_Code ) is combined with
the previously stored second-to-last character and pushed onto the stack (abstack ). This stack is later
processed in the reverse order and written to main memory.

After dealing with this special case (or if no special case occurred) the program continues at code_in_ab .
This routine checks whether the value is less than clr , i.e., within the "normal" alphabet range (0..255). If
so, it's a real code and is pushed onto the stack at the label @concrete . Otherwise it must first be decoded.

This is where we use the stack. The decompressor uses the compressed alphabet, which has a recursive
structure. The postfix (tail) is always real. A new character is added here during compression. The prefix,
on the other hand, is often compressed and must be decompressed through an alphabet entry. This alphabet
entry itself consists of a compressed and an uncompressed portion. This routine continues until an alphabet
entry has two real portions. Until then, all postfixes (tails) are pushed onto the stack since they have not yet
been used. They can now be written to the destination.

The above procedure is executed in the loop labelled @fillstack_loop . Push the tail of the current code
onto the stack and (if compressed) decompress the prefix until it too is actual, then exit the loop.

At @concrete  the last prefix is pushed onto the stack, the stack is saved for a possible special case and
finally emptied in the loop readstack_loop .

At this point (after stosb) the program deals with images larger than 320 x 200. The only problem with these
images is their size - they no longer fit into the virtual screen segment, i.e., they're paged out to video
memory. The pointer is moved here for further paging, if necessary, so the remainder of the image can be
written to the correct position.

The program begins the actual decompression process with the label @noovl1 . The loop continues until
the entire stack has been emptied, after which the alphabet must still be updated. This is done by entering
the last value as the prefix and the current code as the tail. Next, the alphabet pointer (free ) is updated.
If the pointer goes past the alphabet limit, the alphabet is expanded and a new maximum value (max) is set.
The procedure then continues as usual.

On the other hand, no further expansion occurs if the width has already reached twelve bits. Instead, the
routine returns to the main loop. The packer should return clr  which is processed at @Clear :

The alphabet variables are reset to their initial values and the next character (guaranteed to be uncompressed)
is written directly. This is also where any overflow must be handled through paging.

Finally, the procedure must close the file and store the "fill status" of the virtual screen. The calling program
now only needs to copy the remainder from the virtual screen to the screen:

p13_2_ModeX (vram_pos, rest div 4);

For the special case 320 x 200 you can also just insert constants:

p13_2_ModeX (0, 16000);

PCPCun
de

rg
ro

un
d

Password: Underground



4 8

Graphic Know-how From Underground

Chapter 3

PCPC
underground

In Mode 13h, on the other hand, the Pascal Move command is used due to the simple memory structure:

Move(VScreen^,Ptr($a000,0)^,64000);

This is exactly what procedure Show_Pic13  of the ModeXLib unit does.

PCX Is Quick And Simple

In addition to GIF, there are many other formats with a variety of capabilities and compression methods.
The PCX format was originally developed by ZSoft for its paint program and in the meantime has attained
widespread use.

The PCX format doesn't feature either high compression rates or convertibility between different computer
systems. The most important feature of PCX is its simplicity. Frame data is very simply laid out, and its
compression algorithm (RLE) is equally uncomplicated.

Since its invention PCX has gone through several versions, each with quite different capabilities. Here we
will be using Version 3.0 only, which fully supports 256-color images. Regardless of version, all PCX files
have a 128-byte header which contains image data such as size and position. This header in Version 3.0
requires 70 bytes. The rest is disregarded and is usually filled with zeros.

Structure of PCX files

The structure of the header is very simple:

Offset Length Contents Offset Length Contents

0 1 Format ID 0ah 14 2 Vertical resolution in dpi (usually
image height)

1 1 Version (5 for Version 3.0) 16 48 Palette (16-color, normally
disregarded at 256 colors)

2 1 RLE compression used (1) or not (0) 64 1 Reserved

3 1 Bits per pixel 65 1 Number of planes (1 plane at 256
colors)

4 4 Coordinates of top left corner (x,y as
words)

66 2 Bytes per image line, rounded up to
even number

8 4 Coordinates of bottom right corner
(x,y)

68 2 Palette type (1=color or b/w,
2=grayscale)

12 2 Horizontal resolution in dpi (usually
image width)

70 58 Reserved (usually 0)

A compression flag follows the Format ID and version number. A 0 means that no compression was used,
which in some cases actually produces a smaller file (more on this later). A 1 indicates that RLE compression
was used.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

4 9

The image section coordinates and the resolution follow the color-depth (8 bits at 256 colors). We're using
the term "resolution" loosely since some programs use this area to store (as well as request) image width
and height. We can trace the palette back to the days of 16-color images and is irrelevant at 256 colors.
However, to be safe, you should store the first 16 colors of the palette here.

The number of bit-planes (1 at 256 colors) appears at offset 65. This is followed by the number of bytes per
image line (must be rounded up to an even number). The word at offset 68 indicates whether the palette
consists of color- or gray values (1 is for both color and black-and-white). The fill-bytes are next.

The actual palette data for 256-color images are located at the end of the file and are identified by 0ch. So,
there are 769 bytes added on after the graphic data.

The graphic data directly following the header are either uncompressed or compressed by the RLE process.
RLE compression combines identical adjacent bytes into 2-byte combinations. Single bytes are written
directly to the file, while repetitions are identified by setting the upper two bits of the byte. Here we have
a length byte directly followed by a data byte. The data byte when decompressing is written to video
memory according to the number of times indicated by the length byte.

Of course, now there is no way to process single bytes whose upper two bits have been set. These bytes must
therefore be stored as byte-repetitions of length 1. Since two bytes are then occupied in the compressed file,
it's quite possible for the amount of data to expand rather than contract. So if an image has few single-color
regions, which is usually the case with 256-color images, the compressed file may easily become larger than
the uncompressed file.

The main advantage of this compression method is its high processing speed. Decoding of simple byte-
repetitions is significantly faster and easier than using the LZW codes of the GIF format, which must always
be searched out from the alphabet first.

Our objective in this chapter is to create a universal screen-grabber (copies screen contents to a file) for both
320 x 200 x 256 formats, which can also process such features as split-screen. This time we are emphasizing
clarity over maximum speed - the compressor for example is written in Pascal. We'll illustrate the principles
of how to process (i.e., store) PCX images.

One application of our program for example, is taking a demo you have programmed and generating screen
shots from certain sections, which can then be shown as a
sequence with the name of the programmer, graphic designer
and musician.

You'll find the complete source code of this program in the file
GRABBER.PAS:

{$G+}
{$m 1024,0,0}                   {requires little stack and no heap}
Uses ModeXLib,Crt,Dos;

Var OldInt9:Pointer;            {pointer to old keyboard handler}
    active:Boolean;             {set, if hard copy already in motion}
    no:Word;                    {Number of picture, for assigning filenames}
    installed:Boolean;          {already installed ?}

    Mode,                       {current VGA-Mode: 13h, ffh (Mode X)}
                                {or 0 (neither of the two}
    Split_at,                   {Split-Line (graphic line}

PCPCun
de

rg
ro

un
d

You can find
GRABBER.PAS

on the companion CD-ROM



5 0

Graphic Know-how From Underground

Chapter 3

PCPC
underground

    LSA,                        {Linear Starting Address}
    Skip:Word;                  {Number of bytes to skip}

Procedure GetMode;
{sets current graphic mode 13h or Mode X (No. 255)}
{and frame data (Split-Line, Start address)}
Begin
  Mode:=$13;                    {Mode 13h Standard}
  asm                           {set Bios-Mode}
    mov ax,0f00h                {Function: Video-Info}
    int 10h
    cmp al,13h                  {Bios-Mode 13h set ?}
    je @Bios_ok
    mov mode,0                  {if no -> neither Mode 13h nor X active}
  @bios_ok:
  End;
  If Mode=0 Then Exit;          {wrong mode -> abort}

  Port[$3c4]:=4;                {read out TS-Register 4 (Memory Mode)}
  If Port[$3c5] and 8 = 0 Then  {Chain 4 (Bit 3) inactive ?}
    Mode:=$ff;                  {then Mode X}

  Port[$3d4]:=$0d;              {Linear Starting Address Low (CRTC 0dh)}
  LSA:=Port[$3d5];              {read out}
  Port[$3d4]:=$0c;              {Linear Starting Address High (CRTC 0ch)}
  LSA:=LSA or Port[$3d5] shl 8; {read out and enter}

  Port[$3d4]:=$18;              {Line Compare CRTC 18h}
  Split_at:=Port[$3d5];         {read out}
  Port[$3d4]:=7;                {Overflow Low}
  Split_at:=Split_at or         {mask out Bit 4 and move to Bit 8}
    (Port[$3d5] and 16) shl 4;
  Port[$3d4]:=9;                {Maximum Row Address}
  Split_at:=Split_at or         {mask out Bit 6 and move to Bit 9}
    (Port[$3d5] and 64) shl 3;
  Split_at:=Split_at shr 1;     {convert to screen lines}

  Port[$3d4]:=$13;              {Row Offset (CRTC Register 13h)}
  Skip:=Port[$3d5];             {read out}
  Skip:=Skip*2-80               {read difference to "normal" line spacing}
End;

Procedure PCXShift;assembler;
{prepares current palette for PCX (shift 2 to the left)}
asm
  mov si,offset palette         {pointer to palette in ds:si}
  mov cx,768                    {process 768 bytes}
@lp:
  lodsb                         {get value}
  shl al,2                      {shift}
  mov ds:[si-1],al              {write back to old position}
  loop @lp                      {and complete loop}
End;

Var pcx:File;                   {PCX file to disk}

Procedure Hardcopy(Startaddr,splt:Word;s : string);
{copies graphic 320x200 (Mode 13 o. X) as PCX to file s}
{current screen start (Linear Starting Address) in Startaddr}
{Split line in splt}
Var Buf:Array[0..57] of Byte;   {receives data before saving}



Graphic Know-how From Underground

Chapter 3

PCPC
underground

5 1

    Aux_Ofs:Word;
const
  Header1:Array[0..15] of Byte  {PCX header, first part}
    =($0a,5,1,8, 0,0, 0,0, $3f,1, 199,0,$40,1,200,0);
  Header2:Array[0..5] of Byte   {PCX header, first part}
    =(0,1,$40,1,0,0);
  plane:Byte=0;                 {current plane no.}

var count:Byte;                 {number of equivalent characters}
    value,                      {value just fetched}
    lastbyt:Byte;               {previous value}
    i:word;                     {byte counter}

begin
asm                             {read out palette}
  xor al,al                     {start with color 0}
  mov dx,3c7h                   {use Pixel Read Address }
  out dx,al                     {to inform DAC of this}

  push ds                       {pointer es:di to palette}
  pop es
  mov di,offset palette
  mov cx,768                    {read out 768 bytes}
  mov dx,3c9h                   {Pixel Color Value}
  rep insb                      {and read}

  cmp mode,13h                  {Mode X ?}
  je @Linear                    {then:}
  mov dx,03ceh                  {set write and read mode to 0}
  mov ax,4005h                  {using GDC-Register 5 (GDC Mode)}
  out dx,ax
@Linear:
End;

  Assign(pcx,s);                {open file for writing}
  Rewrite(pcx,1);

  BlockWrite(pcx,Header1,16);   {write Header part 1}
  PCXShift;                     {prepare palette}
  BlockWrite(pcx,palette,48);   {enter first 16 colors}
  BlockWrite(pcx,Header2,6);    {write Header part 1}
  FillChar(buf,58,0);           {write 58 nulls (fill header)}
  BlockWrite(pcx,buf,58);
  plane:=0;                     {start with Plane 0}
  count:=1;                     {initialize number with 1}
  If splt<200 Then
    If Mode = $ff Then
      splt:=splt*80 Else        {calculate Split-Offset}
      splt:=splt*320 Else       {varies depending on mode}
    Splt:=$ffff;
  If Mode=$13 Then              {LSA refers to the plane model !}
    Startaddr:=Startaddr*4;
  for i:=0 to 64000 do Begin    {process each pixel}
  If i shr 2 < splt Then
  aux_ofs:=(i div 320) * skip   {set auxiliary offset taking }
                                {line width into consideration}
  Else
  aux_ofs:=((i shr 2 - splt) div 320) * skip;
                                {with splitting reference to VGA-Start}
asm                             {read out pixel}
  mov ax,0a000h                 {load segment}
  mov es,ax



5 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

  mov si,i                      {load offset}
  cmp mode,13h                  {Mode 13h ?}
  je @Linear1
  shr si,2                      {no, then calculate offset}
@Linear1:
  cmp si,splt                   {Split-Line reached ?}
  jb @continue                  {no, then continue}
  sub si,splt                   {otherwise, apply everything else}
  sub si,startaddr              {to screen start}
@continue:
  add si,startaddr              {add start address}
  add si,aux_ofs                {add auxiliary offset}

  cmp mode,13h                  {Mode 13h ?}
  je @Linear2                   {no, then Mode X read method}
  mov dx,03ceh                  {using GDC-Register 4 (Read Plane Select)}
  mov ah,plane                  {select current plane}
  inc plane                     {and continue shifting}
  mov al,4
  and ah,03h
  out dx,ax
@Linear2:
  mov al,es:[si]                {read out byte}
  mov value,al                  {and save in value variable}
End;
  If i<>0 Then Begin            {no compression with first byte}
  If (Value = lastbyt) Then Begin{same bytes ?}
    Inc(Count);                 {then increment counter}
    If (Count=64) or            {counter too high already ?}
     (i mod 320 =0)  Then Begin {or beginning of line ?}
      buf[0]:=$c0 or (count-1); {then buffer}
      buf[1]:=lastbyt;          {write counter status and value}
      count:=1;                 {reinitialize counter}
      BlockWrite(pcx,buf,2);    {and to disk}
    End;
  End Else                      {different bytes :}
    If (Count > 1) or           {several of the same ?}
    (lastbyt and $c0 <> 0) Then {value too large for direct writing ?}
    Begin
      buf[0]:=$c0 or count;     {then write number and value to file}
      buf[1]:=lastbyt;
      lastbyt:=Value;           {current value for further compression}
      Count:=1;                 {save and reinitialize}
      BlockWrite(pcx,buf,2);
    End Else Begin              {single, legal byte:}
      buf[0]:=lastbyt;          {direct writing}
      lastbyt:=Value;           {save current value for later}
      BlockWrite(pcx,buf,1);
    End;

  End Else lastbyt:=value;      {with first byte save only}
End;
  buf[0]:=$0c;                  {insert ID palette}
  blockwrite(pcx,buf[0],1);     {and write}
  blockwrite(pcx,palette,256*3);{and add palette}
  Close(pcx);                   {close file}
End;

Procedure Action;
{called upon activation of the hot-key}
Var nrs:String;                 {string for assigning name}



Graphic Know-how From Underground

Chapter 3

PCPC
underground

5 3

Begin
  if not active Then Begin      {only if not already active}
    active:=true;               {note as active}
    str(no,nrs);                {convert number to string and increment}
    Inc(no);
    GetMode;                    {get graphic mode etc.}
    If Mode <> 0 Then
      HardCopy(LSA,Split_at,'hard'+nrs+'.pcx');
                                {run hard copy}
    active:=false;              {release renewed activation}
  End;
End;

Procedure Handler9;interrupt;assembler;
{new interrupt handler for keyboard IRQ}
asm
   pushf
   call [oldint9]               {call old IRQ 1 - handler}

  cli                           {no further interrupts}
  in al,60h                     {read scan code}
  cmp al,34d                    {G ?}
  jne @finished                 {no -> end handler}
  xor ax,ax                     {load 0 segment}
  mov es,ax
  mov al,es:[417h]              {read keyboard status}
  test al,8                     {Bit 8 (Alt key) set ?}
  je @finished                  {no -> end handler}

  call action                   {run hard copy}
@finished:
  sti                           {allow interrupts again}
End;

Procedure identification;assembler;
{Dummy-Procedure, contains Copyright message for installation ID}
{NOT EXECUTABLE CODE !}
asm
  db 'Screen-Grabber, (c) Data Becker 1995/Abacus 1995';
End;

Procedure Check_Inst;assembler;
{Checks whether Grabber is already installed}
asm
  mov installed,1               {Assumption: already installed}
  push ds                       {ds still needed !}
  les di,oldint9                {load pointer to old handler}
  mov di,offset identification  {Procedure identification in same segment}
  mov ax,cs                     {set ds:si to identification of this program}
  mov ds,ax
  mov si,offset identification
  mov cx,20                     {compare 20 characters}
  repe cmpsb
  pop ds                        {restore ds}
  jcxz @installed               {equal, then already installed}
  mov installed,0               {not installed: note}
@installed:
End;

Begin
  no:=0;                        {first filename: hard0.pcx}
  GetIntVec(9,OldInt9);         {get old interrupt vector}



5 4

Graphic Know-how From Underground

Chapter 3

PCPC
underground

  Check_Inst;                   {check whether already installed}
  If not installed Then Begin   {if no:}
    SetIntVec(9,@Handler9);     {install new handler}
    WriteLn('Grabber installed');
    WriteLn('(c) Data Becker 1995/Abacus 1995');
    WriteLn('Activation with <alt> g');
    Keep(0);                    {output message and exit resident}
  End;
  WriteLn('Grabber already installed');
                                {if already installed, message and exit}
End.

The main program is typical of all TSRs, although features such as deinstallation were omitted due to the
limitations of Pascal. If the program is not already installed, a message is displayed and the program is
loaded. Otherwise the user is informed that a copy already exists in memory and the program terminates
normally. The installation check occurs in a procedure ID which compares the loaded program with the
current keyboard handler.

The handler, which is latched onto the keyboard-interrupt (IRQ 1, i.e., Interrupt 9), now has the job of
transmitting all keypresses to the old handler so the system will function normally. It also starts the Grabber
with the a + G hotkey key combination. It does this by comparing each scan code with the G  key. If a
match is found, it checks the BIOS keyboard flag at address 00417h to see if the  a key has also been pressed.
If both are true, it calls procedure Action .

Action  first checks whether the hotkey was pressed again while saving an image, which would lead to
complications. Next, the filename is assigned using consecutive numbers in case several screenshots are
made.

Before the actual procedure Hardcopy  is called, the program must determine the current graphic mode
since the Grabber is designed specifically for 320 x 200 pixels. This task is performed by the procedure
GetMode .

First, GetMode  checks the BIOS mode, which in both cases is 13h. Any other value and Hardcopy  cannot
run. The procedure then ends with a mode of 0. Next, the Chain 4-bit of TS-Register 4 is used to differentiate
between Mode 13h and Mode X.

Since Grabber must produce the most realistic image possible with the various effects as well, a number of
CRTC-registers must still be read. The first is the Linear Starting Address, which is used for scrolling. The
second is the Line-Compare register for the split-line (this register is divided among three CRTC-registers
which are recombined at this point).

Finally, the Row Offset is used at higher virtual resolutions (640 x 400). Through Row Offset the distance
between two lines (Skip ) is calculated. This value equals 0 at normal 320 x 200 resolutions and 80 at a virtual
resolution of 640 x 400.

Next, Action  calls procedure Hardcopy . It receives the just obtained CRTC values with the filename as
parameters. Hardcopy  reads the current palette from the DAC and enables Read Mode 0 if Mode X is active.
The palette is brought to an 8-bit format through the procedure PCXShift , which follows the reverse path
from reading GIF files (each value is shifted two bits to the left).

The completed header is now written to the file with the first 16 palette entries and filled to 128 bytes. Next,
several variables are calculated. Split  is given as a line and must still be converted to an offset since the



Graphic Know-how From Underground

Chapter 3

PCPC
underground

5 5

copy loop is based on offset. The start-address in Mode 13h must be multiplied by 4, considering the special
(Chain4-) structure of this mode.

In the main loop, the first item calculated is another offset (aux_ofs), which is used for over-wide images
(when scrolling in all directions, for example). If the current offset is still less than the split-line, the program
simply multiplies the number of lines processed by the space per line. After split-line, the split-line itself
must also be considered to obtain a reference to the memory-start.

The ASM block is next. It reads a byte from video memory. First es:si is loaded with a pointer to the current
pixel. The offset is divided by 4 in Mode X as we mentioned.

If the split-line has already been passed, the memory-start reference is reset by eliminating the effect of the
changed start-address (through subtraction) and calculating the distance to the split-line (also through
subtraction). In Mode X the current plane is set as well. Next, the pixel in the variable Value  is read and
compressed as follows.

The first byte only needs to be loaded so it can be processed as the last byte the next time through. Each
subsequent byte is then compared to the previous one. The counter count  is incremented if a match occurs.

A special case arises when the counter goes past the maximum (63) that can be stored in a length-byte. In
this case the counter is "emptied" into the file and the count restarts. Another special case involves the end-
of-line. Originally, PCX was purely line-based which meant that character repetitions could not go past the
end-of-line. You may have to consider this handicap in the compression especially if you're using an older
paint program.

When a character differs from its predecessor, the following Else branch executes. First, the program checks
whether this was a repetition (count > 1) or whether the character is using the upper two bits. In both cases
a compressed character must be written with a count-byte (equal to 1 in the second case) and a data-byte.

Lastbyt  is then set to the current value, so compression occurs the next time through the loop. On the other
hand if Count = 1 and the last byte is valid (upper bits empty) the Else branch of this If structure executes,
which writes the byte directly to the file uncompressed and likewise sets Lastbyt  to the current value.

After the entire image has been written to the file in this way, the palette (with ID 0ch) is added on and the
file closed. The handler is then terminated.

Remember, we mentioned that although this program is not fast, speed isn't the highest priority for a screen
grabber. What is important is that we have shown the structure of a PCX file. This time our example showed
writing a file rather than reading a file.

Once the program is called, it stays resident in memory and waits for the hotkey. Only a system reset will
remove the program from memory. TSR programs with a deinstallation feature are normally most effective
when written in Assembler, however, we were able to avoid repeat installation even in Pascal as seen in the
procedure Check_Inst .



5 6

Graphic Know-how From Underground

Chapter 3

PCPC
underground

VGA To The Last Bit

Later we'll talk about different graphic effects which rely mostly on simple register manipulations. These
registers offer unlimited potential for affecting the VGA display. Many registers in the past remained
unused, with apparently no purpose or function. However,
by using a little imagination, you can use almost every
register to create interesting effects - you just need to start
experimenting.

Before you can understand these effects, we'll want to talk
about all the VGA registers in detail.

In theory you can experiment with the values. However, you
should be careful with the timing registers (CRTC-Registers
0-7) since prolonged operation with extreme values (the
monitor will whistle like crazy) can damage the monitor.

With most other registers, the worst that can happen is a
system crash. The registers can be divided into two major groups:

Ø Discrete registers
These are addressed using separate port addresses.

Ø Indexed registers
The term indexed simply means these registers have no port address of their own. Instead they are
a component of one of the VGA chips, and are selected using a fixed port address and processed using
another port address.

Miscellaneous Output Register

Read: Port 3cch, Write: 3c2h

Bit Meaning Access

7 Vertical retrace polarity RW

6 Horizontal polarity (with Bit 7 vert. resolution) RW

5 Page-select for odd/even addressing RW

4 Reserved

3,2 Clock select (horiz. resolution) RW

1 Enable RAM, 1=RAM access using CPU enabled RW

0 I/O address, 1=monochrome (3bxh), 0=color (3dxh) RW

Explanation

Bits 7,6

The polarity of the two retrace signals determines the vertical physical resolution: 00b is reserved, 01b
means 350 lines, 10b 400 lines (also 320 x 200, see CRTC-Register 9), 11b 480 lines.

PCPC
underground

NOTE

This feature can be used by 
those with malicious intent 
to damage someone's 
monitor permanently. 

Therefore, we repeat: Use caution...if your 
monitor whistles loudly switch it off 
immediately...fast action may save the 
monitor from permanent damage. It normally 
takes several seconds before the monitor is 
damaged. If you try such experiments, we 
recommend keeping one finger on the 
ON/OFF switch at all times just in case.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

5 7

Bit 5

Specifies Bit 0 in odd/even mode, that is, in each plane either all even addresses (Bit 5 = 0) or all odd
addresses (Bit 5 = 1) are occupied, see TS-Register 4.

Bits 3,2

Determines horizontal resolution using pixel frequency: 00b means 640 horizontal pixels, 01b 720 pixels,
02b 800 pixels, 11b is reserved.

Bit 1

Regulates the CPU's access to VGA-RAM (0= access disabled)

Bit 0

This bit indicates the port address of CRTC (3 x 4h/3 x 5h), Input Status Register 1 (3 x ah). A 1 in this bit
means replace the x with d; a 0 means replace it with b.

Input Status Register 0

Read: Port 3c2h

Bit Meaning Access

7 CRT-interrupt RO

6-0 Manufacturer-specific, usually feature code etc. RO

Explanation

Bit 7

Indicates a vertical retrace, provided the retrace-interrupt has been activated (usually deactivated through
hardware DIP switches). Is cleared using CRTC-Register 4.

Input Status Register 1

Port 3dah (color) or 3bah (monochrome)
           depending on Bit 0 Miscellaneous Output Register

Bit Meaning Access

7,6 Reserved (Sometimes inverted Bit 3)

5,4 Test bits, depending on graphic card RO

3 Vertical retrace RO

2,1 Reserved

0 Display enable complement RO



5 8

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Explanation

Bit 3

A value of 1 indicates a vertical retrace is in progress. This bit synchronizes image construction so image
construction and modification are not performed at the same time, which leads to flickering (see the
definition for Retrace earlier in this chapter).

Bit 0

Enable-signal for inverted display. A 1 indicates a horizontal or vertical retrace is in progress. By using this
bit you can determine the current screen line being displayed. This bit changes from 1 to 0 after a vertical
retrace (Bit 3) which indicates the start of a new line.

Other registers are available, depending on the manufacturer, that reflect the capabilities of a specific card
(e.g., Feature Connector). Since these are very specific registers, they're not suited to general programming.

Cathode Ray Tube Controller (CRTC)

Another complex part of the VGA is the Cathode Ray Tube Controller (CRTC). It's responsible for
generating the video signal and is programmable. The cathode ray has a very wide range of motion.
Therefore, a protection bit (CRTC-Register 11) protects these registers from accidental overwriting. The
CRTC also controls several other registers, such as Linear Starting Address, which are unrelated to ray
timing. It's up to you on how you want to manipulate these registers.

There are two port addresses for accessing these registers:

Ø Port 3d4h is the index register

Ø Port 3d5h is the data register (on monochrome displays - Bit 0 of Miscellaneous Output Register = 0
- the addresses are 3b4h/3b5h).

A specific CRTC register is accessed by writing its number to the index register and then reading or writing
to the data register. Once you have set the index, you can access the register as often as you like because the
index remains valid.

A single write access can be accomplished quickly by outputting a word to the index port. The low-byte
contains the register number and the high-byte the register value on the index port.

CRTC-Register 0: Horizontal Total

Bit Meaning Access

7-0 Number of characters per scan-line (-5 in VGA) RW

Explanation

Bits 7-0

This register gives the total line length in character-units (Character Times Units). One character-unit
represents either 8 pixels (TS-Register 1, Bit 0 = 1, for example in 320 x 200 modes) or 9 pixels (TS-Register



Graphic Know-how From Underground

Chapter 3

PCPC
underground

5 9

1, Bit 0 = 0, for example in Text Mode 3). The actual value for this register still be decreased by 5 (2 in EGA
modes).

CRTC-Register 1: Horizontal Display End

Bit Meaning Access

7-0 End of display-enable signal in characters RW

Explanation

Bits 7-0

This register usually indicates the number of visible characters (8 or 9 pixels, see Register 0).

CRTC-Register 2: Horizontal Blank Start

Bit Meaning Access

7-0 Start of horiz. blanking period RW

Explanation

Bits 7-0

Specifies where the CRTC deactivates the cathode ray during line construction. The blanking period
comprises the retrace period and sets the frame to black at the left and right margins.

CRTC-Register 3: Horizontal Blank End

Bit Meaning Access

7 Test bit (normal operation : 1) RW

6-5 Display-enable skew (delay) RW

4-0 Horizontal blank end (Bits 4-0) RW

Explanation

Bits 6-5

Indicates the number of characters the CRTC "previews" in memory (the display-enable signal is delayed
accordingly), so the next character is available in time, normally 0 in VGA

Bits 4-0

Stores the lower 5 bits of the 6-bit end of blank period. Bit 5 of this value is found in CRTC-Register 5 Bit
7



6 0

Graphic Know-how From Underground

Chapter 3

PCPC
underground

CRTC-Register 4: Horizontal Sync Start

Bit Meaning Access

7-0 Starting position of horizontal retrace RW

Explanation

Bits 7-0

Specifies the position (in characters), where the horizontal retrace should begin.

CRTC-Register 5: Horizontal Sync End

Bit Meaning Access

7 Bit 5 of Horizontal Blank End (Register 3) RW

6-5 Horizontal sync skew (delay) RW

4-0 End of horizontal retrace RW

Explanation

Bits 6-5

Specifies the delay after a horizontal retrace (see Register 3). Bits 6-5 are usually 0 in VGA.

Bits 4-0

Defines the end of the horizontal retrace, relative to the start. The retrace ends when the internal character
counter in the lower 5 bits matches this register.

CRTC-Register 6: Vertical Total

Bit Meaning Access

7-0 Total number of screen lines per image -2 (Bits 7-0) RW

Explanation

Bits 7-0

Specifies the total image height in screen lines (minus 2, minus 1 in EGA). The total height is a 10-bit value
(11 bits in Super-VGA). Bits 9-8 are found in the overflow register (Register 7).



Graphic Know-how From Underground

Chapter 3

PCPC
underground

6 1

CRTC-Register 7: Overflow

Bit Meaning Access

7 Vertical sync start - Bit 9 RW

6 Vertical display enable end - Bit 9 RW

5 Vertical total - Bit 9 RW

4 Line compare (split-screen) - Bit 8 RW

3 Vertical blank start - Bit 8 RW

2 Vertical sync start - Bit 8 RW

1 Vertical display enable end - Bit 8 RW

0 Vertical total - Bit 8 RW

Explanation

Bits 7-0:

Contains Bits 8 and 9 of most vertical registers, which do not fit in the actual registers.

CRTC-Register 8: Initial Row Address

Bit Meaning Access

7 Reserved

6-5 Byte panning RW

4-0 Initial row address RW

Explanation

Bits 6-5

Shifts the screen contents up to 3 bytes (four pixels in Mode X!) to the left. For greater flexibility, however,
use the Linear Starting Address (Register 0ch/0dh).

Bits 4-0

Specifies the screen line with which the CRTC should begin after a vertical retrace. Normally this would
be Line 0. Increasing the value makes the CRTC start on a lower line, i.e., it shifts the screen contents upward.
Since the register works the same in text mode, you can use it to implement a vertical smooth-scrolling (see
Chapter 5).

Another application involves 320 x 200 mode. Say you would like to slow down the vertical scroll but still
maintain 70 shifts per second. To prevent jittering, proceed as follows:

First, increment the start-address every other time through. This reduces the speed, while fine-scrolling is
achieved by oscillating this register between 0 and 1. This way you will be scrolling by one screen line
(equals one-half line in 320 x 200 mode) each time.



6 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

CRTC-Register 9: Maximum Row Address

Bit Meaning Access

7 Double scan (line-doubling) RW

6 Line compare (split-screen, Register 18h) Bit 9 RW

5 Vertical blank start Bit 9 RW

4-0 Number of screen lines per character line -1 RW

Explanation

Bit 7

Setting this bit to 1 cuts the vertical clock rate in half so each line is displayed twice. This was designed for
generating 200-line modes at physical resolutions of 400 lines. Most BIOSes, however, accomplish this by
setting Bit 0 (see above).

Bits 4-0

Specifies the character height in text mode, minus 1 (15 in VGA-Mode 3, 9 x 16 pixels per character). Can
also be used in graphic mode to decrease vertical resolution (multiple-display of each line if Bits 4-0 > 0).
For more information see Chapter 5.

CRTC-Register 0ah: Cursor start-line

Bit Meaning Access

7-6 Reserved

5 Cursor on (0) / cursor off (1) RW

4-0 Start-line RW

Explanation

Bits 4-0

Specifies the screen line within character where cursor display begins.

CRTC-Register 0bh: Cursor End - Line

Bit Meaning Access

7 Reserved

6-5 Cursor skew RW

4-0 End-line RW



Graphic Know-how From Underground

Chapter 3

PCPC
underground

6 3

Explanation

Bits 6-5

You can insert a delay when displaying the cursor as well so it will appear at the outermost left and right
margins, usually 0 in VGA

Bits 4-0

Specifies the screen line within character where cursor display ends.

CRTC-Register 0ch: Linear Starting Address High

Bit Meaning Access

7-0 Linear starting address Bits 15-8 RW

Explanation

Bits 7-0

Specifies Bits 15-8 of the 16-bit start-address. The start-address gives the offset in video memory where the
CRTC starts reading the image data. Changing the value lets you scroll horizontally and vertically across
the screen (see Chapter 5).

In text mode, however, scrolling proceeds by characters. The fine-adjustment occurs through Register ATC
13h (Horizontal Pixel Panning) and CRTC 8 (Initial Row Address). For more information see Chapter 5.
Note the true address must be divided by 2 in odd/even mode and by 4 in Chain-4 mode (e.g., 13h), before
writing it to this register.

CRTC-Register 0dh: Linear Starting Address Low

Bit Meaning Access

7-0 Linear Starting Address Bits 7-0 RW

Explanation

Bits 7-0

Specifies the low-order word of the screen start-address (see Register 0dh).

CRTC-Register 0eh: Cursor Address High

Bit Meaning Access

7-0 Cursor position as offset (Bits 15-8) RW

Explanation

Bits 7-0

Specifies the cursor position in video memory.



6 4

Graphic Know-how From Underground

Chapter 3

PCPC
underground

CRTC-Register 0fh: Cursor Address Low

Bit Meaning Access

7-0 Cursor position as offset (Bits 7-0) RW

Explanation

Bits 7-0

Specifies the low-word of cursor address (see Register 0eh).

CRTC-Register 10h: Vertical Sync Start

Bit Meaning Access

7-0 Screen line where vertical retrace begins RW

Explanation

Bits 7-0

Specifies Bits 7-0 of the 10-bit screen line where vertical retrace begins. Bits 9 and 8 are in the overflow
register.

CRTC-Register 11h: Vertical Sync End

Bit Meaning Access

7 Protection bit RW

6 Reserved

5 Vertical retrace interrupt on (0) RW

4 Reset vertical retrace interrupt (0) RW

3-0 Screen line where vertical retrace ends RW

Explanation

Bit 7

When set, the protection bit protects CRTC-Registers 0-7 from write accesses. The sole exception is Bit 4 of
the overflow register (Register 7). This bit is set by virtually every BIOS and must therefore be cleared for
any timing manipulations.

Bit 5

If this bit is cleared and the previous interrupt reset by clearing Bit 4, the CRTC initiates an IRQ 2 at the next
vertical retrace. Unfortunately, very few VGA cards generate this interrupt because they either do not have
the capability or the manufacturer has configured their DIP switches (for compatibility reasons) not to
initiate interrupts.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

6 5

Bit 4

After each interrupt this bit must be cleared, otherwise no new interrupt can occur (see Bit 5).

Bits 3-0

The vertical retrace end is also set relative to its start because only 4 bits are used in the comparison. When
the lower four bits of the internal line counter match this value, the current retrace ends.

CRTC-Register 12h: Vertical Display End

Bit Meaning Access

7-0 Last displayed screen line (Bits 7-0) RW

Explanation

Bits 7-0

After the line number given here, the CRTC disables the screen ray. Bits 9-8 of this value are in the overflow
register.

CRTC-Register 13h: Row Offset

Bit Meaning Access

7-0 Offset between two screen lines RW

Explanation

Bits 7-0

Specifies the distance between two lines in memory, i.e., their length. The unit involved here depends on
which type of memory addressing is active. In doubleword mode, blocks of eight bytes are counted. For
example, in Mode 13h a register value of 40 corresponds to an actual width of 40 x 8 = 320 bytes. In word-
addressing, the unit is 4 bytes (for example in Text-Mode 3, a register value of 40 means 40*4 = 160 bytes).
In byte-mode the unit is 2 bytes (for example Mode X, with the same register value of 40, 40*2 = 80 bytes).
With this register you can also do horizontal scrolling by entering a value of 80 for example. In this case the
lines will begin double-spaced and there will be invisible regions of video memory "next" to the visible part.
Now if you shift the screen-start by a few bytes, you can scroll horizontally over the virtual screen (see
Chapter 5).

CRTC-Register 14h: Underline Location

Bit Meaning Access

7 Reserved

6 Doubleword addressing RW

5 Linear address count by 4 RW

4-0 Line where underlining begins RW



6 6

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Explanation

Bit 6

Enables doubleword mode when set to 1. The current address in this mode is rotated two bits to the left
before being sent to video memory for a read access. This way, the Offsets 0, 4, 8, etc., are first read in
memory, followed by Offsets 1, 5, 9, etc. In Mode 13h, for example, doubleword mode is active.

Bit 5

When accessing video memory with this bit set, the character timing is divided by 4; usually used together
with doubleword mode.

Bits 4-0

In monochrome modes, these bits determine the screen line where the ATC performs the underlining.
Lowering this value lets you strike through or place a line over the characters; if the register exceeds the
character height, underlining is disabled.

CRTC-Register 15h: Vertical Blank Start

Bit Meaning Access

7-0 Vertical Blank Start Bits 7-0 RW

Explanation

Bits 7-0

Specifies the vertical position where the CRTC should deactivate the cathode ray. During this blank period,
the vertical retrace is then performed. Bits 9 and 8 of this register are found in the overflow register.

CRTC-Register 16h: Vertical Blank End

Bit Meaning Access

7-0 Screen line where vertical blanking ends RW

Explanation

Bits 7-0

This register is also relative to the blanking-start because only eight bits are used. The blanking ends when
the lower eight bits of the internal line counter matches this register.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

6 7

CRTC-Register 17h: CRTC Mode

Bit Meaning Access

7 Hold control RW

6 Word mode (0) / byte mode (1) RW

5 Alternative setting for Address-Bit 0 RW

4 Reserved

3 Linear address count by 2 RW

2 Line counter count by 2 RW

1 Alternative setting for Address-Bit 14 RW

0 Alternative setting for Address-Bit 13 RW

Explanation

Bit 7

A value of 0 stops the entire horizontal and vertical timing.

Bit 6

A 0 indicates word mode is active and a 1 indicates byte mode is active. Bit 6 of Register 14h is irrelevant
if it is set (doubleword mode).

Bit 5

When this bit is cleared, Bit 13 instead of Bit 15 is carried over in word mode to Bit 0 (rotated). This prevents
word-mode overflow on EGA cards with only 64K.

Bit 3

Setting this bit halves the clock rate of the CRTC on video memory. This functions similarly to Bit 5 of
Register 14h.

Bit 2

When this bit is set to 1, the line counter is incremented only every other line. This doubles the total vertical
timing.

Bits 1,0

When cleared these two bits cause a reprogramming of Address Line 14 or 13: Bit 0 in this case is mapped
onto Bit 13 and Bit 1 onto Bit 14 (only if Bit 1 of this register = 0). The result is that odd addresses are read
8K after the even ones; the two lower bits therefore determine a block. This is used to emulate the 6845
Controller, which uses this method to address video memory. In CGA Bit 0 is set to 0, in Hercules emulation
Bit 1 as well.



6 8

Graphic Know-how From Underground

Chapter 3

PCPC
underground

CRTC-Register 18h: Line Compare (Split Screen)

Bit Meaning Access

7-0 Line Compare Bits 7-0 RW

Explanation

Bits 7-0

Specifies the physical screen line where the CRTC again begins obtaining its data from the video memory-
start. This allows you to implement a split-screen. The top half displays the area of memory defined by the
linear starting address and the bottom half displays the memory-start (see Chapter 5). Bit 8 of this register
is found in the overflow register and Bit 9 in the Maximum Row Address register.

Timing sequencer (TS)

The main task of the timing sequencer is memory management. Accesses to the timing sequencer itself are
routed on certain planes according to the current configuration. These accesses are combined with the
current character set. The TS is also internally responsible for refreshing the video memory.

Like the CRTC, the TS is also addressed using an index register (at Port 3c4h) and a data register (Port 3c5h).
Here also you can set a register through a simple word-out.

TS-Register 0: Synchronous Reset

Bit Meaning Access

7-2 Reserved

1 Synchronous reset RW

0 Asynchronous reset RW

Explanation

Bit 1

Clearing this bit forces the TS to perform a synchronous reset, i.e., it resets all registers and then switches
itself off until Bits 0 and 1 are set again. Meanwhile, RAM-refresh is deactivated so the reset can finish as
quickly as possible to avoid data loss.

This reset should always be performed when TS-registers are going to be changed.

Bit 0

Clearing this bit initiates an asynchronous reset, which is the same as a synchronous reset, except the Font
Select Register is not cleared, i.e., it retains the current character set.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

6 9

TS-Register 1: TS Mode

Bit Meaning Access

7-6 Reserved RW

5 Screen off RW

4 Shift 4 RW

3 Dot clocks / 2 RW

2 Video load / 2 RW

1 Reserved

0 TS state RW

Explanation

Bit 5

When this bit is set the TS disables the screen, enabling faster RAM access by the CPU.

Bit 4

A set bit means the latches are loaded with a quarter of the timing pulse.

Bit 3

In some 320 x 200 modes this bit is set to reduce horizontal resolution from 640 to 320.

Bit 2

A set bit means the ATC latches are loaded with half the timing pulse.

Bit 0

Status 0 sets character width to nine pixels, Status 1 to eight pixels. This value is primarily used for
calculating horizontal timing, whose registers are all based on character-units.

TS-Register 2: Write Plane Mask

Bit Meaning Access

7-4 Reserved RW

3 Write-access on Plane 3 RW

2 Write-access on Plane 2 RW

1 Write-access on Plane 1 RW

0 Write-access on Plane 0 RW



7 0

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Explanation

Bits 3-0

You can include (1) or exclude (0) certain planes through this register during write-accesses.

TS-Register 3: Font Select

Bit Meaning Access

7-6 Reserved RW

5 Font B Bit 2 RW

4 Font A Bit 2 RW

3-2 Font B Bits 0 and 1 RW

1-0 Font A Bits 0 and 1 RW

Explanation

Bits 5-0

Indicates the status of the character set in memory, according to the following code:

Bits Offset

0 0 0 0

0 0 1 16K

0 1 0 32K

0 1 1 48K

1 0 0 8K

1 0 1 24K

1 1 0 40K

1 1 1 56K

Font A determines the appearance of characters whose attribute-byte, Bit 3, is not set. When this bit is set
Font B becomes active.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

7 1

GDC-Register 0: Set / Reset

Bit Meaning Access

7-4 Reserved

3 Set / reset value for Plane 3 RW

2 Set / reset value for Plane 2 RW

1 Set / reset value for Plane 1 RW

0 Set / reset value for Plane 0 RW

Explanation

Bit 3

Enables Chain-4 mode (1). It uses Address Lines 0 and 1 to select the plane, in both CPU read- as well as
write accesses. This mode has application in Mode 13h - by deactivating it and switching the CRTC to byte
mode, you will be in Mode X (see Chapter 4).

Bit 2

When this bit is cleared, odd/even mode is active. This functions similar to Chain4 mode: Bit 0 of the address
line is used to select even and odd planes. In text mode this means for example, that the ASCII codes for
characters are stored in Planes 0 and 2, while the attribute bytes are in Planes 1 and 3. It should always
correspond to Bit 4 of GDC-Register 5 (inverted bit)

Bit 1

Indicates memory configuration: 0 for 64K video memory, 1 for 256K. Only when this bit is set can you use
Bit 2 of the character set selection.

Graphics Data Controller (GDC)

This chip controls CPU memory access on a slightly higher level than the TS. It manipulates the graphics
data so it can be displayed in the proper graphics mode. The GDC contains the four latches not directly
accessible from outside. Each of these latches receives one byte from each plane during a CPU access.
During a read-access, one plane (depending on GDC-Register 4) is sent to the CPU. During a write access,
the latches are linked with this byte (depending on Register 3) and written back to the planes. Like the CRTC,
the GDC is addressed using an index port (Address 3ceh) and a data port (Address 3cfh).



7 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

GDC-Register 1: Enable Set / Reset

Bit Meaning Access

7-4 Reserved

3 Set / reset function on (1) for Plane 3 RW

2 Set / reset function on (1) for Plane 2 RW

1 Set / reset function on (1) for Plane 1 RW

0 Set / reset function on (1) for Plane 0 RW

Explanation

Bits 3-0

Specifies the set/reset values for individual planes, if their set/reset functions are enabled (see Register 1).

GDC-Register 2: Color Compare

Bit Meaning Access

7-4 Reserved

3 Color compare value for Plane 3 RW

2 Color compare value for Plane 2 RW

1 Color compare value for Plane 1 RW

0 Color compare value for Plane 0 RW

Explanation

Bits 3-0

A set bit indicates the set/reset function is activated for this plane. The corresponding latch is not linked
with the CPU-byte in this case but rather with 0 (if the corresponding bit in Register 0 = 0) or 0ffh (bit = 1).
This function is not available in Write Mode 1.

GDC-Register 2: Color Compare

Bit Meaning Access

7-4 Reserved

3 Color compare value for Plane 3 RW

2 Color compare value for Plane 2 RW

1 Color compare value for Plane 1 RW

0 Color compare value for Plane 0 RW



Graphic Know-how From Underground

Chapter 3

PCPC
underground

7 3

Explanation

Bits 3-0

These bits play a role in Read Mode 1. See Register 5, Bit 3 (read mode).

GDC-Register 3: Function Select

Bit Meaning Access

7-5 Reserved

4-3 Function select RW

2-0 Rotation counter RW

Explanation

Bits 4-3

Indicate the type of link that occurs between the CPU-byte and the four latches:

0:Move (overwrite)

1:AND

2:OR

3:XOR

Explanation

These linkages are ignored in Write Mode 1 where a direct write is always performed.

Bits 2-0

Indicate how many bits a CPU-byte should be rotated to the right before being linked to the latches.

GDC-Register 4: Read Plane Select

Bit Meaning Access

7-2 Reserved RW

1-0 Plane select RW

Explanation

Bits 1-0

Specifies the plane addressed by a CPU read access as a 2-bit integer.



7 4

Graphic Know-how From Underground

Chapter 3

PCPC
underground

GDC-Register 5: GDC Mode

Bit Meaning Access

7 Reserved

6 256-color mode RW

5 Shift RW

4 Odd / even Mode RW

3 Read mode RW

2 Reserved RW

1-0 Write mode RW

Explanation

Bit 6

Enables 256-color mode, which has a completely different plane-distribution and must therefore be
activated explicitly.

Bit 5

Set in CGA-Mode 320 x 200, to generate four colors

Bit 4

Enables odd/even mode from the standpoint of the GDC (1). Should always correspond with Bit 2 of
TS-Register 4 (inverted bit), see above for description.

Bit 3

Indicates the active read mode:

Ø Mode 0:
The GDC reads the four latches and sends the contents of the latch selected in Register 4 to the CPU.

Ø Mode 1:
The GDC reads the four latches and compares each of their bits with the Color Compare Register (if
not excluded using Register 7 - Color Care ). It first compares the combination from Bits 0 of the four
latches, then from Bits 1, etc. The corresponding bit is set in the byte sent to the CPU when a complete
match occurs.

Bits 1-0

Indicates the current write mode:

Ø Mode 0:
The CPU-byte is linked with all four latches and, depending on Register 2, is written to certain planes.
Only those bits are linked which were permitted by Register 8. When the set/reset function (see



Graphic Know-how From Underground

Chapter 3

PCPC
underground

7 5

Register 1) is active for a particular plane, the set/reset value is used instead of the CPU-byte. This
mode is especially suited for manipulating individual bits.

Ø Mode 1:
In this mode the latch contents are written directly to the planes selected by TS-Register 2; the CPU-
byte is irrelevant. This mode is good for fast copying of large screen areas.

Ø Mode 2:
This mode expands each of the lower four CPU bits to a byte (0 becomes 0 and 1 becomes 0ffh), and
links them with the corresponding latches as in Write Mode 0.

Ø Mode 3:
Each CPU-bit not masked using Register 8 is linked with a bit from the Set/Reset Register and written
to the plane corresponding to this bit. Thus Bit 0 is first linked to Bit 0 of the Set/Reset Register
corresponding to Function Select Register 3, and written to Plane 0 as Bit 0. Then Bit 0 is linked with
Set/Reset Bit 1 and written to Plane 1. The same occurs for all selected bits in the CPU-byte.

GDC-Register 6: Miscellaneous

Bit Meaning Access

7-4 Reserved

3-2 Memory map RW

1 Odd/even mode RW

0 Graphic mode RW

Explanation

Bits 3-2

Indicate the video memory range:

0: 0a0000h-0bffffh

1: 0a0000h-0affffh

2: 0b0000h-0b7fffh

3: 0b8000h-0bffffh

Explanation

Bit 1

A 1 means that odd/even mode is active.

Bit 0

A 1 means a graphic mode is active, otherwise a text mode is active.



7 6

Graphic Know-how From Underground

Chapter 3

PCPC
underground

GDC-Register 7: Color Care

Bit Meaning Access

7-4 Reserved

3 Color compare active for Plane 3 RW

2 Color compare active for Plane 2 RW

1 Color compare active for Plane 1 RW

0 Color compare active for Plane 0 RW

Explanation

Bits 3-0

When a bit is set, its corresponding plane is included in a color-compare in Read Mode 1 (see Register 5);
a 0 excludes it.

GDC-Register 8: Bit Mask

Bit Meaning Access

7-0 Mask for CPU-byte RW

Explanation

Bits 7-0

A set bit means the corresponding CPU-bit is linked to the latches; a cleared bit means the latch contents
are transferred unchanged.

Attribute Controller (ATC)

The task of the ATC is color management. It's the second highest authority in a VGA card. Using this
controller is somewhat more complicated than the others since only one port is available for write access.
An index/data flip-flop occurs at 3c0h, i.e., this port alternates with each write access between index modes
and data modes.

You can set the initial status of this register explicitly to index mode through a read access on Input Status
Register 1 (Port 3dah in color mode, 3bah in monochrome mode). A write access is then performed. First,
the index is written to 3c0h. This is followed on the same port by the data byte which is followed again by
the next index.

The read access is somewhat different. After the index has been written, the data byte can be read using Port
3c1h. Here a read access on 3c0h would return the index.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

7 7

Another unusual feature is the structure of the Index/Data Register at Port 3c0h. Bits 4-0 as usual give the
index. However, Bit 5 has a broader meaning:

ATC-Register: Index/Data
Port 3c0h

Bit Meaning Access

7-6 Reserved RW

5 Palette-RAM access RW

4-0 ATC index RW

Explanation

Bit 5

A value of 0 enables CPU-access to the palette-RAM (Registers 0-f), yet disconnects the ATC so the image
is set to the frame color. You should always reset this bit to 1 after any changes.

Bits 4-0

Give the index on an internal ATC register. This value is then written using Port 3c0h, and read using Port
3c1h.

ATC-Registers 0-f: Palette RAM

Bit Meaning Access

7-0 DAC color RW

Explanation

Bit 7

These registers are used to supply all EGA color values with the actual colors. The red, green and blue values
in EGA have been stored here directly. However, the Digital to Analog Converter (DAC) in VGA acts as an
interface. The DAC's first 16 palette entries simulate the same color scheme. Here, for example, you can set
text colors to new DAC values.



7 8

Graphic Know-how From Underground

Chapter 3

PCPC
underground

ATC-Register 10h: Mode Control

Bit Meaning Access

7 Source for Color Circuits 4 and 5 RW

6 PelClock / 2 RW

5 Enable pixel panning RW

4 Reserved

3 Blinking on RW

2 Line graphics enabled RW

1 Monochrome- (1) / color (0) attributes RW

0 Graphic (1)/ text (0) RW

Explanation

Bit 7

In graphic modes with 16 or fewer colors this bit determines the source for Color Circuits 4 and 5. A 1 means
these bits are taken from Bits 0 and 1 of Register 14 (Color Select). A 0 will load the lines with palette register
values. When using the Color Select method you can shift the DAC palette area in blocks of 16. This also
applies of course to EGA mode and CGA mode.

Bit 6

A 1 halves the speed at which pixel data are sent to the DAC. This finds application in 320 x 200 x 256 mode,
since here only half the horizontal resolution is used.

Bit 5

A 1 prevents pixel panning below the split-line, a 0 causes panning over the entire screen.

Bit 3

A cleared bit enables use of all 16 ATC palette colors. A 1 enables blinking. When this bit is set, the top and
bottom halves of the palette in the Intensity Plane alternate continuously. This happens in both text mode
and graphic mode so only eight colors are available. The advantage is the palette can be freely constructed,
enabling almost any type of blinking effect.

Bit 2

A 1 doubles the eighth column of characters in 9-pixel text modes (e.g. Mode 3) with ASCII codes between
0c0h and 0dfh. This allows line characters to be connected without gaps. With a 0 in this bit, the ninth column
is cleared or acquired from the Intensity Plane (Plane 3).

Bit 1

A 1 switches to monochrome attributes (blinking, underline), a 0 to color attributes.



Graphic Know-how From Underground

Chapter 3

PCPC
underground

7 9

Bit 0

A 1 switches the ATC to graphic mode, a 0 to text mode.

ATC-Register: Index/Data
Port 3c0h

Bit Meaning Access

7-6 Reserved RW

5 Palette-RAM access RW

4-0 ATC index RW

Explanation

Bits 7-0

Determine the color number used in the overscan area. This is also where EGA cards with a 6-bit RGB value
entered. Color mixing with VGA occurs using the DAC.

ATC-Register 12h: Color Plane Enable

Bit Meaning Access

7-6 Reserved RW

5-4 Reserved, often test bit configuration RW

3-0 Enable plane

Explanation

Bits 3-0

Enable (1) and disable (0) the corresponding plane, excluding from the display specific color components
(16-color models) or specific pixels (256-color models).

ATC-Register 13h: Horizontal Pixel Panning

Bit Meaning Access

7-4 Reserved RW

3-0 Horizontal pixel panning RW

Explanation

Bits 3-0

Specifies the number of pixels by which the entire image (text- or graphic mode) is shifted to the left. The
actual values, however, are somewhat different. The value 8 In 9-pixel modes indicates that no shift will take
place. Values from 0-7 create shifts of 1-8 pixels. This makes little sense in graphic modes since you might



8 0

Graphic Know-how From Underground

Chapter 3

PCPC
underground

as well work with the start-address. In text mode however this will allow very smooth scrolling (see Chapter
5).

ATC-Register 14h: Color Select

Bit Meaning Access

7-4 Reserved

3-2 Color Circuit 7-6 RW

1-0 Color Circuit 5-4 RW

Explanation

Bits 3-2

In graphic modes with fewer than 256 colors, these bits give the upper two bits of each color value sent to
the DAC. By reprogramming this register you can move the 16 EGA colors to Palette Offsets 0, 64, 128 and
192.

Bits 1-0

If Bit 7 is set in Mode Control Register 10h, in graphic modes with fewer than 256 colors these two bits set
Color-Bits 5 and 4. In combination with Bits 3-2, EGA colors can then be moved to any color offset divisible
by 16.

Digital to Analog Converter (DAC)

The DAC represents the highest-level authority for color generation. The DAC is where 8-bit colors, either
originating directly from RAM (256-color modes) or generated from 4-bits by the ATC, are converted to
analog signals using the external palette. The signals, separated by red, green and blue, are then sent to the
monitor.

The "external palette" refers to the fact this RAM originally existed outside the actual chipset. Meanwhile,
this chip has also been integrated. Therefore, the DAC uses an external palette encompassing 256 color
values, each of which consists of three bytes (one for red, green and blue). Only the lower six bits of each
byte are used, however. Therefore, there are 218 = 262,144 hues available for each color.

Before you can read or set a palette, you must first specify the start-color from which you plan to read or
write. Then through a series of In or Out instructions, consecutively read or write the red, green and blue
components of each individual color. All values can be written directly one after the other because the DAC
automatically increments the pointer. In this context, we advise against the "compatible" method of
controlling the palette through the BIOS. It's not significantly more compatible and the execution time is
over ten times longer.

The DAC provides access to this palette through the following five registers:



Graphic Know-how From Underground

Chapter 3

PCPC
underground

8 1

DAC-Register

Pixel Mask RW

Port 3c6h

Explanation

This register normally contains the value 0ffh. It denotes a mask, with whose help certain colors can be
mapped onto others. During image generation each time the DAC wants to read a palette entry, an AND
operation first occurs between this register and the color number.

DAC-Register

Pixel Write Address RW

Port 3c8h 3c6h

Explanation

Prior to a write access this register specifies which color you wish to change. You can then set the palette
or only parts of it using Port 3c9h (Pixel Color Value).

DAC-Register

Pixel Read Address WO

Port 3c7h 3c6h

Explanation

Prior to a read access this register specifies which color you wish to read. You can then read the color values
using Port 3c9h (Pixel Color Value).

DAC-Register

Pixel Color Value RW

Port 3c9h DAC-Register

Explanation

This is the port where the DAC makes color values available for a read or write, after being initiated using
Pixel Read Address or Pixel Write Address.

DAC-Register

DAC State RO

Port 3c7h DAC-Register

The lower two bits of this register specify the DAC status - a 0 means the DAC is making data available for
a read. An 11b indicates the DAC is ready for a write access.



8 2

Graphic Know-how From Underground

Chapter 3

PCPC
underground

Super-VGA cards contain several additional registers including discrete registers and expanded controller
registers. They sometimes come with entire auxiliary controllers, for example to take over the task of
memory management. Since these registers are not standardized, we cannot provide a general description
here.

As we have seen however, a wide variety of effects is possible even with standard registers. Experiment
with the registers and see if you can create new ones.



83

4.  Mode X: The "Secret" To Great Graphics

Although graphics Mode 13h is easy to use, it has a few disadvantages. Unfortunately, these disadvantages
make it difficult to program many sophisticated effects. Although hardware has undergone great
technological advances over the last few years, current processors and bus architectures are still unable to
paint large screen areas within a single retrace.

Mode X Offers Superior Graphic Power

Image quality usually suffers when the screen cannot be constructed within a retrace. We can prove this
with a simple example. A sprite is moving horizontally across the screen. If the electron beam travels over
this area while a change is in progress, the top half will contain the new image, while the bottom half will
still contain the previous, unchanged image.

There will be flickering and the sprite will appear split and distorted. Therefore, if changes during image
construction and other time consuming activity during retraces are avoided, only one option remains. The
video pages must be preconstructed "invisibly" and activated during the vertical retrace. For this, we need
a minimum of two video pages: One is displayed while the other is being built.

These pages can simply be stored adjacent to each other in video memory and selected using Registers 0ch
and 0dh (Linear Starting Address). The problem in Mode 13h, however, is the total image size is already
close to 64K (exactly 64,000 bytes). A single video page occupies the entire video memory (0a0000h-0affffh)
within main memory. This makes it impossible for the CPU to detect the second page. Modifications are
possible only through VGA segment-selectors. However, each manufacturer programs them differently.
In fact, an IBM VGA card offers no way to do this. The solution to this problem is Mode X.

Another disadvantage of Mode 13h is access speed. A moving image usually has a static background. It
must be recopied to the current page with each image construction. Even with fast doubleword-access in
Mode 13h using a VESA local bus, it takes approximately 10% longer to copy a full video page than in Mode
X. The time with other bus systems can be even greater. In addition, if you're still using word access to
provide support for 286es for example, the slow speed of copying becomes unacceptable.

Mode X on the other hand, as we'll show in the following sections, copies four pixels at a time using
byte-access. It also uses Read-Mode 0 and Write-Mode 1, which require no time-consuming internal
address conversions and send no data to the CPU. This explains the speed advantage of Mode X over 32-bit
accesses made by the CPU.

Mode X: The 
"Secret" To Great 

Graphics

Chapter 4

PCPC
underground



84

Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

Initialization

What properties should Mode X have? The most important
property of Mode X is disabling the Chain-4 mechanism,
which enables access to individual planes. In addition,
Odd/Even Mode (plane-selection using lowermost offset
bit) must be disabled by clearing Bit 3 (Enable Chain4) in
TS-Register 4 (Memory Mode) and setting Bit 2 (Odd/Even
Mode):

port[$3c4]:=4;
port[$3c5]:=port[$3c5] (and (not 8)) or 4;

Depending on the graphic card (compatibility), you must also change memory access to byte-addressing.
First, clear doubleword-addressing from Bit 6 in CRTC-Register 14h (Underline Row Address), then set Bit
6 in CRTC-Register 17h (CRTC-Mode):

port[$3d4]:=$14;
port[$3d5]:=port[$3d5] and (not 64);
port[$3d4]:=$17;
port[$3d5]:=port[$3d5] or 64;

Next, clear the video memory because the areas not used by Mode 13h (which now become visible) may still
contain "garbage" from other video modes. Use Register 2 of the Timing Sequencer Write Plane Mask for
this. To clear the video memory, enable all planes within this register so 32,000 word accesses or 16,000
dword accesses are enough to clear all four video pages.

Structure

As we mentioned, all plane-based graphic modes have four bytes "hidden" behind each memory address,
one for each plane. The four bytes appear to lie one behind the other at each address, hence the term "plane"
(level).

Plane 3210

Plane 2210

Plane 1210

Plane 0210

Same offset in VGA memory but different point

Plane representation

PCPC
underground

NOTE

In the meantime the name 
"Mode X" has become 
official, so it always 
denotes the same storage

model. Thus higher resolutions such as 320 x 
400 are possible on all VGAs. Even 320 x 480 
can be displayed on most VGAs, but here a 
video page requires more than 128K, and the 
advantage of different video pages becomes 
irrelevant. 



Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

85

The planes are virtually independent storage areas which are separately addressable but are used together
to display an image on the screen. In other words, data from all four planes is read simultaneously.

Aside from this however, there are major differences between 16-color modes and Mode X. Since sixteen
colors can be represented by four bits, they can also be represented by the four planes. Namely, Bit 0 of a
pixel is stored in the corresponding bit of Plane 0, Bit 1 in Plane 1, etc. It's different in Mode X, however, since
four bits are no longer enough to address one pixel. Each pixel occupies one byte of a particular plane in
Mode X.

The planes are filled byte by byte, i.e., Pixel 0 is located at Offset 0 in Plane 0, Pixel 1 at Offset 0 in Plane 1.
Plane 0 is next used for Pixel 4 (this time at Offset 1).

Pixel: Offset, Plane

Pixel 2 Pixel 3 Pixel 4Pixel 0 Pixel 1

80,0 80,1 80,2 80,3 81,0

Plane structure

For addressing in Mode X, you must first calculate the offset for the pixel. Take the pixel number (calculated
the same as in Mode 13h: 320 y + x) and divide by 4 (shift two to the right). You can also incorporate this
division directly into the offset calculation by multiplying the y-coordinate by 80 (320 / 4) and dividing the
x-coordinate by 4. The remainder (pixel number +3) determines which plane will be used. The following
is how the formula notation might read:

Plane := X mod 4            {gives the remainder}
Offset := Y*80 + X div 4

This procedure corresponds with the one normally used by Mode 13h with one difference. The offset is
derived by shifting the pixel number two bits to the right and not by masking. There are, therefore, no gaps
between the pixels in memory. This way four pages can fit into a 256K video memory.

It's important to note the differences between read/write accesses when selecting the plane in Mode X. The
plane number is written to Register 4 (Read Plane Select) of the GDC when reading. However, it's possible
to address several planes at once when writing (as we have seen when clearing the screen). To do this, a mask
is set in TS-Register 2 (Write Plane Mask), which must first be generated from the plane number. It looks
like the following in pseudocode:

Mask:=1 shl Plane-Number;

Therefore, the mask from Plane 2 is 1 shl 2 = 4 = 0100.

One more item regarding byte-wise addressing by the CPU. It's very tempting to use 32-bit accesses on the
graphic data or, at the very least , 16-bit (theoretically possible even on an XT).

Anyone who tries this, however, will soon find out differently. A completely distorted image will appear
on the screen. This can be explained by how the CPU accesses memory. When the CPU copies a word (or



86

Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

doubleword) using movsw, it doesn't separate this operation into individual byte-movements. Instead, it
reads the word completely and writes it back completely.

VGA, however, can accept only four bytes in its four latches, which actually function as intermediate
storage. Therefore, after the read access, only the four high-bytes of the word will be present there. In the
subsequent write access, the four high-bytes as well as the four low-bytes are set to the same value (the one
corresponding to the latch). The result on the screen is that two (four with 32-bit accesses) adjacent blocks
of four will always have the same contents. A normal image display is therefore impossible.

Higher Resolutions In Mode X

Mode X has the important advantage of working with four video pages. It also maintains the same
resolution as Mode 13h. There are certain applications, however, that require a higher resolution. Of course,
Super-VGA resolutions are available (although handled differently by each card) through VESA drivers.
The larger problem arises when you want to use multiple video pages in the higher resolution. Actually,
there are few VGA cards still available with less than 1 Meg of memory, so even 800 x 600 mode could
theoretically be handled by two pages of video memory. Video page management similar to the Linear-
Starting-Address Register is not anticipated under VESA. Direct programming again brings up compatibility
problems unavoidable with Super-VGA.

In our search for a higher resolution mode which also supports the page concept, we see that Mode X
supports four entire video pages, but that in many cases only two are needed. Doubling the resolution to
320 x 400 is therefore no problem. Why 320 x 400 and not 640 x 200? This has to do with the actual structure
of 200-line modes on a VGA card. Namely, VGA cannot explicitly address 200 lines (Miscellaneous-Output
Register, Bits 6-7 allow only 350, 400, 480 and sometimes 768 lines as values for vertical resolution).

The fact that 200-line modes are still possible is due to a feature called double-scan. This simply means that
at a physical vertical resolution of 400 lines, each line is displayed twice, i.e., doubled in the y-direction. This
results in a halving of the vertical resolution. Here, neither the horizontal nor the vertical timing need to be
changed because physically 400 lines are still displayed for each 320 pixels.

Disabling this mechanism is very easy. You only need to clear five bits in Register 9 of the CRTC (Maximum
Row Address), Bit 7 and Bits 0-3. Depending on the VGA-BIOS, doubling will occur using Bit 7 (Double Scan
Enable), which is the bit actually designed for this purpose, or Bits 0-3 which show the number of scan-lines
per character-line in text mode. This value minus 1 is then written to the register. This register value in
graphics mode indicates how many additional copies of the line will be displayed. By increasing the value
you can keep lowering the vertical resolution down to 320 x 25 or even 320 x 12.5 with Bit 7. Although this
makes no sense, it does demonstrate the purpose of this register.

To get back the original 400 lines, simply clear the above mentioned bits in the register in pseudocode:

CRTC[9] := CRTC[9] and 01110000b

The actual Assembler code for this line is found in the procedure
Enter400  in the MODEXLIB.ASM module:

PCPCun
de

rg
ro

un
d

The procedure Enter400
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

87

Enter400 proc pascal far        ;switches from mode X (200 rows)
  mov dx,3d4h                   ;to extended 400 row mode
  mov al,9                      ;CRTC register 9 (maximum row address)
  out dx,al                     ;select
  inc dx                        ;read out value 2
  in al,dx
  and al,01110000b              ;clear bits 7 and 3:0
  out dx,al                     ;and write back
  ret
Enter400 endp

As we mentioned, no timing changes are necessary. Also, rewriting the Mode X routines is unnecessary
since the structure remains the same. When switching to 400 lines, the 200 lines of normal Mode X are
"pushed together" at the top. This clears the view for the lower 200 lines which immediately follow in VGA
memory.

There is now a larger range of values in all routines for coordinates. These values are freely selectable (for
speed, validity checks are omitted). The only change involves the video pages: Instead of four 64000-byte
pages, now only two 128000-byte pages are available.

This affects switching in this case because the start-address (vpage) is no longer switched between 0 and
16000 but between 0 and 32000. Also, there is no longer a "reserve page" available for a background image
because almost the entire 256K is used (in the end, 256K - 256000 bytes = 6K are still available and can be
used for small (very small) sprite backgrounds).

Backgrounds in this mode must therefore be copied into VGA from main memory (using p13_2_ModeX ,
see the "Expanding The GIF Loader For Mode X" section in this chapter).

Incidentally, you must also consider this mode's unusual page ratio of 320:400 when drawing a background.
The page ratio generates very flat, wide rectangles. Circles are are actually very flat ellipses. Since, as far
as we know, no paint program supports the 320 x 400 resolution, it's best to draw your images in a "square"
resolution such as 640 x 480 and later convert them to 320 x 400.

In addition to 320 x 400, it's possible to generate graphic modes with even higher resolutions. Therefore, you
can have such odd resolutions as 512 x 400 or 320 x 480. Despite their highly complicated initialization,
which requires a complete reprogramming of the timing registers, these modes have no significant
advantage over Super-VGA modes because they greatly exceed the maximum memory use for page-
programming.

Although one page can be displayed on any standard VGA, two pages will exceed the upper address limit
(256 bytes). You'll face incompatibility problems of Super-VGA cards at higher addresses so you should use
a Super VGA mode from the start and have at least a reasonable page ratio.

Using Mode X

It's sometimes necessary, even in Mode X, to address individual pixels and change their color. However,
for applications that rely almost exclusively on single-pixel modifications (for example the star-scroller), we
recommend using Mode 13h, provided you can do without the four video pages. Mode 13h makes it easier
to address individual pixels and it's also faster. This is because breakdown of offsets into memory offset and
plane number occurs internally on the VGA and does not have to be performed by the CPU.



88

Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

This also saves you from outputting the plane number on the port-addresses of the TS and GDC, which on
some motherboards can be very slow. Some chipsets on fast computers (386 and above) include several wait
states when accessing the ports to give the hardware enough time for the data transfer with today's
hardware. This is, however, really not necessary.

Setting pixels

You can use the following procedure when you need to change
a few pixels. It can also be used in the Mode 13h star-scroller if
you initialize Mode X instead of Mode 13h.

Procedure PutPixel(x,y,col:word);assembler;
{sets pixel (x/y) to color col (Mode X)}
asm
  mov ax,0a000h                 {load segment}
  mov es,ax

  mov cx,x                      {define Write Plane}
  and cx,3                      {as x mov 4}
  mov ax,1
  shl ax,cl                     {set appropriate bit}
  mov ah,al
  mov dx,03c4h                  {Timing Sequencer}
  mov al,2                      {Register 2 - Write Plane Mask}
  out dx,ax

  mov ax,80                     {Offset = Y*80 + X div 4}
  mul y
  mov di,ax
  mov ax,x
  shr ax,2
  add di,ax                     {load offset}
  mov al,byte ptr col           {load color}
  mov es:[di],al                {and set pixel}
End;

By masking out the lower two bits of the x-coordinate you determine the plane. This plane must still be
converted to the format of the Write Plane Mask Register by setting the bit corresponding to the plane
number. You then calculate the offset (shifted 2 bits to the right compared to Mode 13h) and set the color.

Switching pages

The main advantage of Mode X is definitely its ability to use several video pages. In most cases you would
be continually switching between video pages 0 and 1. A new image, with repositioned sprites for example,
is drawn on the invisible page and then brought to the screen. The process then continues with the role of
the pages reversed.

BIOS Function 5 is used to page in text mode. Unfortunately, this is of little use in Mode X. Even so, the task
is quite simple. As we mentioned, the four video pages are arranged linearly in memory, one following the
other: Page 0 occupies Offsets 0-15999, page 1 Offsets 16000-31999, etc. All you need now is a way to
determine where the CRTC begins the image display. This function is performed by CRTC-Registers 0ch
and 0dh (Linear Starting Address). Register 0ch contains the high-byte and Register 0dh the low-byte of the
starting address.

PCPCun
de

rg
ro

un
d

The procedure listed here
is part of the

STARX.PAS file
on the companion CD-ROM



Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

89

You can usually set the start-address with the procedure SetStart  in MODEXLIB.ASM, where the
address to be set is passed as a parameter. This procedure splits the given address into high bytes and low
bytes and writes it to the registers mentioned above.

The procedure Switch  is somewhat more sophisticated. It uses the global variable vpage to store the start-
address of the invisible page. This procedure also takes care of page management. Therefore, you can
always construct your image at the page specified by vpage , which is currently invisible. Calling Switch
then makes this page visible, while vpage  points to the new invisible page.

As we mentioned, registers 0ch and 0dh contain the screen-start offset and not a page number. So, you can
also enter intermediate values. We'll talk about this in more detail in Chapter 5.

Expanding The GIF Loader For Mode X

We've mentioned the GIF format is the preferred graphic format for demos. Therefore, we'll also need a way
to load and display GIF images in Mode X. This is not a problem since the loader is designed to unpack
images in main memory from where they are simply copied in Mode 13h to video memory using the Pascal
Move command. Only this last step, copying, must be rewritten to conform to the altered memory
organization of Mode X.

We use procedure p13_2_modeX  in the MODEXLIB.ASM module for this purpose. It copies an image of
size pic_size*4  from main memory (pointer in VScreen) to Mode X at the starting address start . For
example, to copy a 320 x 200 image (just loaded by LoadGIF) to video page 2, enter the call as follows:

p13_2_modex(2*16000,64000 div 4);

The difficulty with such a copy procedure is in dividing the image among the various planes. The simplest,
but by far the slowest, option is moving pixel by pixel, i.e.,
loading a source pixel, selecting the destination plane and then
writing the byte. A more efficient option, however, is first
copying all plane 0 pixels (located at Offsets 0, 4, 8 ... of the
source image), then plane 1 pixels, etc. This saves you from
continually changing the Timing Sequencer:

p13_2_modex proc pascal far start,pic_size:word
    mov dx,03ceh                ;set write mode 0
    mov ax,4005h                ;via GDC register 5 (GDC mode)
    out dx,ax
    mov b plane_l,1             ;store plane mask
    push ds
    lds si,dword ptr ds:vscreen ;load source address
    mov w plane_pos,si          ;and store
    mov ax,0a000h               ;set destination address
    mov es,ax
    mov di,start
    mov cx,pic_size             ;get number
@lpplane:
    mov al,02h                  ;TS register 2 (write plane mask)
    mov ah,b plane_l            ;mask corresponding plane
    mov dx,3c4h
    out dx,ax
  @lp1:

PCPCun
de

rg
ro

un
d

The procedure p13_2_modex
is part of the

MODEXLIB.ASM file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

Mode XPassword:



90

Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

    movsb                       ;copy byte
    add si,3                    ;position at next source byte
    loop @lp1
    mov di,start                ;get destination address again
    inc w plane_pos             ;source address to new start
    mov si,w plane_pos
    mov cx,pic_size             ;get size
    shl b plane_l,1             ;mask next plane
    cmp b plane_l,10h           ;all 4 planes copied ?
    jne @lpplane
    pop ds
    ret
Endp

The variable  plane_l , which contains the current plane mask, is first initialized to 1 so it can address Plane
0. The source data pointer is loaded into ds:si and its offset stored in plane_pos . The plane-loop @lpplane
begins after loading the destination address into es:di and the image length into cx. It selects the correct
plane with the help of the current mask (Timing Sequencer, Register 2 - Write Plane Mask). The inner loop
@lp1 copies  one byte and moves 3 bytes forward in the source image (movsb already incremented si by
1), so it can read the next byte for the same plane.

When this loop is finished running, one plane is already at the correct location. To copy the next plane, the
destination pointer is reset to the beginning and the destination address incremented by 1. So, when
copying plane 1, for example, offsets 1, 5, 9, etc., will be read. Cx is reloaded and the new plane masked by
rotating 1 to the left. The terminating condition is the masking of the nonexistent fifth plane, in other words
when all four planes have been copied.

On the Mode X screen there now appears a video page from main memory, stored in Mode 13h format. You
can copy it from this point to any page with a fast copying mode, for example to erase an old image and
restore the old background.

This method of plane-wise copying is also used for displaying sprites which we'll describe in Chapter 6.
However, since special requirements apply here, a completely different procedure is used.

A Simple Text Scroller

Anyone who has worked with computers such as the Commodore 64 or Atari ST may remember early
versions of scrollers - programs that make text "walk" across the screen. Here, we'll demonstrate a simple
scroller using Mode X.

Scroller in Mode X

Basically a scroller moves a text from right to left across the screen, past the "eye" of the observer. You could
program something like this in just a few minutes in text mode. Take a character string and a pointer
indicating the current position of the left screen edge within the string. Then, write 80 characters 70 times
per second starting from this current position, perhaps onto a particular screen line. Then increment the
pointer by one position. This moves the window (currently visible text section) through the string in the
direction of reading. You now have your scroller.



Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

91

Programming a scroller in graphic mode is somewhat more complicated. Although the principle is the
same, the programmer has no BIOS routines available for character output in Mode X or very limited BIOS
routines available in Mode 13h. Everything is therefore the programmer's responsibility (which actually
can be an advantage for display speed).

Another important difference from a text-mode scroller is duplicating the forward motion of the screen
contents. You can display a new character string at the new starting position in text mode. However, the
speed factor is much more critical in graphic mode, so you no longer have the luxury of assembling each
character from the font information.

There is a much simpler way to do this, however. With this basic scroller form, the text only moves and no
longer changes once it's on the screen. You can therefore simply copy it graphically one position further by
shifting columns 4-319 four pixels to the left and adding the new "text" in the "empty" columns 316-319.
These four-pixel steps make effective use of the advantages of Mode X, and provide a simple way to copy
four-byte blocks in Write-Mode 1.

To shift a number not exactly divisible by four (three for example), you would have to copy contents from
plane to plane, which is possible only by accessing individual pixels. Copying from one offset to another
without switching planes however can be used on four pixels at a time, significantly increasing the speed.

Font for scroller text

All you need to do now is display a four-pixel wide strip of new text at the right edge of the screen. Where
does the data to be displayed (the font) come from? A simple solution of course is to use the VGA-ROM font,
but this provides neither color nor elaborate graphic designs. Designing your own font is not for everyone
but is essential for visual presentations.

Some programmers write their own editor for this purpose which includes features of a paint program and
the ability to generate fonts. However, the effort required to do this usually outweighs its usefulness. Why
spend time writing an editor when the demo for which you are creating the font can be finished in half the
time? Also, public domain or shareware paint programs are capable of drawing basic objects such as lines,
circles, section-copying, etc.

In fact, public domain, shareware or commercial paint programs are the better alternative for another
reason. Saving a complete alphabet in a single image also saves valuable hard drive space since the image
can be saved in compact GIF format.

How you design the characters themselves is up to you. If you're artistically inclined you can always create
a new font. Another option is to modify or edit an existing font. Remember, the characters must meet the
requirements for further processing when you're finished. The routine that appends the new columns is
based on blocks of four so the characters must be arranged similarly. Both the x-coordinate and the character
width must be divisible by four while also allowing for varying character widths. This also lets you use
proportional fonts.

After you've properly arranged all the characters, comes the hard part: Entering all the character positions.
The character output procedure uses these positions to access the font by reading their location in video
memory and their width from the table.

To create the table, just take paper and pencil, with a paint program that continuously displays the cursor
position. Be careful however, because some paint programs start counting coordinates at 1, so the upper left



92

Mode X: The "Secret" To Great Graphics

Chapter 4

PCPC
underground

corner of the screen has coordinates (1,1). Although perhaps convenient for the program's developers, it
conforms neither to mathematical reality nor to the conventions of your computer. The coordinates must
always conform to a 0-based system. You can always subtract 1 if necessary (this applies also when
positioning in blocks of four). Based on the coordinates of the upper left corner, the offset in video memory
is calculated according to our previously derived formula:

Offset:= Y*80 + X div 4

You must enter this value into the table for each letter. The plane is always 0 because that was the
requirement for using the fast write mode. To determine the width, first measure the letter in pixels (either
in your head or with the length function in the paint program) and round it up to the next integer multiple
of four. This will give you the width in blocks of four, which is essential to the process. Enter this value into
the table as well.

Once you're finished with the table, you must still transfer it to the program. The ASCII sequence should
be retained to keep the programming as simple as possible. For example you could make a table from ASCII
code 32 (space) to 96 (accent grave ̀ ) and assign a width of zero to unused characters (i.e., ASCII character
64 - @).

 Of course you could also include the lower case letters (97-122) or the entire ASCII set if you like, because
you can have a small graphic for each character. Normally however, uppercase letters, numbers, and a few
special characters are enough.

The previous program uses a small demo font which we've included on the companion CD-ROM.



93

5. Split-screen And Other Hot Effects

The term "graphic effect" has assumed an entirely new meaning in the last few years. We used to consider
a simple static image created with a paint program as a "graphic effect". Today graphics and graphic effects
now include animation, moving sprites or other types of visual movement. These graphics effect are usually
processed by the CPU. However, we'll talk about effects which can be handled independently by the VGA;
whereby the CPU only gives the command to initiate the process

Basics

All the effects we'll talk about in this chapter can also be generated in some way using the CPU. However,
this involves shifting large amounts of data within video RAM. It's very slow to move data this way. DMA
can accelerate these movements only slightly (direct CPU access may actually be faster on most computers).
In any case, accessing video memory usually ends up with a  bottleneck at the data bus.

Fast access to video memory is limited on the earlier ISA-bus since even the fastest CPU's are constrained
by the 8 MHz bus speed needed for 'downward' compatibility. Also, if an extra Hercules card is installed,
it switches the 16-bit VGA card down to 8 bits which again doubles the access time.

Even current bus systems that use a 16-bit or even 32-bit data bus at a speed of 33 MHz can still create a
"traffic jam" for the data. This is because strict protocols must be maintained, several wait states are often
added and some VGAs are unable to keep up and add wait states of their own.

So, there must be another way to bring the type of effects to the screen that we see in countless demos. These
demos display dazzling effects and yet still manage to play sound and perform the calculations for three-
dimensional objects. All this is possible if we use the built-in capabilities of the graphic card.

PC graphic cards do not yet have programmable controllers, processors, etc., designed specifically for
graphic effects (like the Amiga), where the CPU performs
only control and supervisory tasks. VGA cards do, however,
have many registers and combinations of register contents
that if you look closely, you'll discover possibilities never
considered by early designers of VGA.

However, there's no substitute for actually experimenting
with the register contents. Providing you don't change the
timing registers of the CRTC, your experiments cannot
damage or destroy any hardware. The worst that could
happen is the image or effect is distorted or doesn't appear.

Split-screen And 
Other Hot Effects

Chapter 5

PCPC
underground

PCPC
underground

NOTE

One area which could lead 
to dangerous situations is if 
you change CRTC 
Registers 0-7. 

These registers usually affect horizontal 
timing and can "blow out" a monitor or 
graphic card when used incorrectly. 
Disordered timing can cause the electron 
beam to move wildly across the screen or 
use frequencies which are too high. This can 
soon overheat the monitor's deflecting coils. 
Inexpensive monitors can actually be 
destroyed this way. 



94

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

If this happens, press the q key to return to the Turbo Pascal editor.

To avoid the risk of damaging your monitor don't play with these registers. We've never seen any
worthwhile effects produced with them anyway...reprogramming the timing generally leads to images so
distorted as to be useless.

This should not stop you from experimenting with other registers, however. As we'll talk about in the next
section, the registers offer possibilities far beyond their original design.

How Split Screen Works

One common display technique is to divide the screen into two separate areas, for example, a scrolling area
in the top half and a fixed status bar on the bottom. You can, of course, assign this task to the CPU. However,
if execution speed is critical you should determine what hardware programming options are available, and
perhaps assign the job to the VGA.

The VGA has a register called Line-Compare (also called the Split-Screen Register) which we can use to split
the screen. Although less functional than comparable PC registers, it's still adequate for most applications.
The Line-Compare Register specifies the line number that splits the screen into an upper, movable half and
a lower, static half. The line number must be doubled in 200-line modes.

How this register works is quite simple. As the image is being drawn, the VGA keeps track of the current
line number. This line number is always the physical line number - so even in 200-line modes such as Mode
13h and Mode X, this value ranges from 0 to 400 due to the line-doubling.

Unfortunately, this line number is located in a register is not accessible through port addresses, but which
is used internally for comparison with the Line-Compare Register (CRTC, Index 18h). When the line
number reaches the value contained in this register, the address counter is set to 0, that is, the display begins
at this line using data from Offset 0 of the video memory.

Fixed area

Variable area

Split line given in Line Compare

Frame

Scan Line 0

Split-screen construction

PCPCun
de

rg
ro

un
d

GraphicsPassword:



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

95

Since the line number does not fit into 8 bits (none of the VGA modes have fewer than 350 lines, even 200-
line modes are generated by 400 physical lines), the Line-Compare Register is divided among three different
registers (four on Super-VGA cards). There is no more room for additional registers so all "overflow" bits
of these registers are combined into two new registers (three in Super-VGA).

The first of these registers is the Overflow-Register. As its name implies, it takes up the overflow from the
vertical timing registers. In addition to other items, this register contains Bit 8 of the Line-Compare Register
in Bit 4. Incidentally, Bit 4 is the only bit in this register not protected by the protection bit of Register 11h.

Line-Compare Bit 9, although not yet needed at these resolutions, is located in the Maximum Row Address
Register (the second overflow register) at Bit 6. So, if you want
to set Line Compare, you need to use bit-shifting and masking
to specify the line number among these three registers. This task
is accomplished by the procedure Sp l i t  located in
MODEXLIB.ASM:

Split proc pascal far row:byte  ;screen splitting in "row" row
  mov bl,row
  xor bh,bh
  shl bx,1                      ;*2 because of row duplication
  mov cx,bx
  mov dx,3d4h                   ;CRTC
  mov al,07h                    ;register 7 (overflow low)
  out dx,al
  inc dx
  in al,dx
  and al,11101111b              ;load bit 4 with bit 8 of the row
  shr cx,4
  and cl,16
  or al,cl
  out dx,al                     ;and set
  dec dx
  mov al,09h                    ;register 9 (maximum row address)
  out dx,al
  inc dx
  in al,dx
  and al,10111111b              ;load bit 6 with bit 9 of the row
  shr bl,3
  and bl,64
  or al,bl
  out dx,al                     ;and set
  dec dx
  mov al,18h                    ;register 18h (line compare/split screen)
  mov ah,row                    ;set remaining 8 bits
  shl ah,1
  out dx,ax

  ret
Endp

First, the procedure doubles the given value. Therefore, despite Double-Scan (line-doubling) in 200-line
mode, it uses the y-coordinates which ranges from 0 to 199. After selecting the overflow register (CRTC,
Register 7), Bit 4 is cleared so Bit 8 of the line number can be specified by masking and right-shifting by 4
bits. The same method is used to copy Bit 9 of the line number to Bit 6 of the Maximum Row Address Register
(CRTC, Register 9). Finally, the remaining 8 bits of the line number are written to Register 18h (Line
Compare or Split Screen) and the procedure is ended.

PCPCun
de

rg
ro

un
d

The procedure Split
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



96

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

When using the Linear Starting Address Registers 0ch and 0dh to move the starting screen location to a
higher address, such as the beginning of Page 2, the top half of the screen will display this area, while the
bottom half (below the line specified in the Line-Compare Register) will display the contents at start of the
video RAM.

You can now adjust the upper area using the Linear Starting Address and scroll in all directions (see the
"Scrolling In Four Directions" section in this chapter) while the bottom area displays the same contents.

While this is somewhat limited compared to the split-screen options available on "game computers", many
interesting effects are still possible.

In addition to the obvious effect of dividing the screen into two areas, you can also create other effects as
well. For example, you can change the screen so the dividing line alternates between movable and fixed
portions. Since the dividing line can be placed anywhere, you can use a loop to reposition it continuously.
The entire bottom of the screen also moves when you change the Line-Compare Register. This is because
the line always begins with Memory-Offset 0. Subtracting 2 (Double-Scan) moves the entire lower partial
screen up by one graphic line, so a new line becomes visible at the bottom.

In this way, you can push an image up from the bottom over a background image, say, for example, as a
transition to a new scene in a demo. All you need to do is load the background image onto Page 1 (with
LoadGIF  and P13_2_ModeX) and the "top" image onto Page 0. Then turn on split-screen, first at Line 400
so the top image stays invisible and only the background is visible.

Now begin moving the split-line up (decrement the Line-Compare Register by 2), the contents of Page 0 will
slide up from the bottom over the background image until it hits the top of the screen (Line Compare 0). You
can then switch to Page 0 and disable the split-screen. It's important that you program these in this order.
Otherwise, you might see a brief flash of the old background because disabling the split-screen brings the
current page to the screen, which at this point should already be Page 0.

Of course going the opposite way (i.e., pulling an image down from the top, like a card game, so the image
underneath comes into view) is also possible. This is a good effect for a slide show presentation
(preprogrammed images displayed at fixed time intervals).

If you want to do this, you must store the foreground on Page 0 and the background on Page 1. First, activate
the split-screen, switch to Page 1 and increment the value of the Line-Compare Register in a loop so the split-
line moves downward. The contents of Page 1 (currently the active page) will then appear above this line
as the background.

Like most other effects, incrementing or decrementing the Line-Compare Register should be synchronized
with the vertical retrace to prevent jittering and flickering. Simply add the command WaitRetrace  into
the loop. This also serves as a necessary delay; the CPU would otherwise finish the entire process in a
fraction of a second. Only 70 images per second are displayed with the synchronization (repeat-frequency
of Mode 13h and Mode X), so the process now takes 2.8 seconds (200 lines/70 lines per second).

In experimenting with these effects you'll quickly notice a false color display in one of the two images. This
display is due to the 256-color limit in palette-based graphic modes. As you load one image, you set the
palette of this image. Then the palette of the second image you load overwrites the first because only 256
colors can be displayed at one time. The only way out of this situation is to use one palette for both images.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

97

When drawing your own images, make certain to use the same palette for both (palettes can normally be
loaded and saved separately). With finished images (scanned or from graphic collections), the two different
palettes must be combined into one. Several graphic conversion programs have a function for this purpose,
but image quality often deteriorates in the process which results in incorrect colors and incorrectly set
pixels.

A better alternative is to reduce both images separately to 128 colors. Of course, if you have two images with
one more complex than the other, you could reduce one to 192 and the other to 64 colors. What is important
is to make the sum equal to 256. By using a graphic converter, you can then build a complete palette without
dithering. You can now load the two images into the demo, regardless of order, since the palettes are now
identical.

It's also possible (and useful) in this effect to compute the Line-Compare Register in units of one. This makes
single scan-lines, i.e., half graphic-lines, the smallest unit and doubles the shift time. Because motion is
involved, the user's eye won't notice the half-lines anyway.

In a simple split-screen, however, it might be distracting for a half graphic-line to appear in the middle of
the screen. In this case, you'll need to use odd numbers because the display of the second partial image
begins on the line immediately following the one given in the Line-Compare Register. Since this must be
an even number, the value in the register must be odd.

We'll illustrate the procedure Split  with a small demo program. It takes two pages (single-color for
clarity), pushes them over each other and separates them again. The program first fills the two video pages
and activates Page 1 (Start-Address 16000). The loops increment and decrement the Line-Compare Register,
creating the desired motion, and synchronizing the entire process with the retrace.

You may wonder why we used the Exit  command in the
keyboard inquiry since it doesn't fit the structured programming
model of Pascal. The reason is to prevent unnecessary work,
otherwise, you would need cumbersome flag variables as
terminating conditions for the loops.

Uses Crt,Gif,ModeXLib;
Var i:Word;
begin
  Init_ModeX;
  LoadGif('uwp');
  p13_2_ModeX(16000,16000);
  LoadGif('enter320');
  p13_2_modex(0,16000);
  SetStart(16000);
  Repeat
    For i:=200 downto 0 do Begin
      WaitRetrace;
      Split(i);
      If KeyPressed Then Exit;
    End;
    For i:=0 to 200 do Begin
      WaitRetrace;
      Split(i);
      If KeyPressed Then Exit;
    End;
  Until KeyPressed;
End.

PCPCun
de

rg
ro

un
d

You can find
SPLIT.PAS

on the companion CD-ROM



98

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

Furthermore, split-screen works in all graphic as well as text modes, but makes sense only when more than
one video page can be displayed. In Mode 13h for example there is not enough memory for two independent
screen sections. In this case the identical contents would appear, just distributed differently within the
windows. Therefore, although split-screens are possible in one-page graphic modes, all statements made
refer to Mode X.

Scrolling In Four Directions

Until now we have been using the Linear Starting Address Register of the
CRTC (Register No. 0ch/0dh) for switching video pages. This was done by
calculating the offset of the page (Page Number x 16000) and writing it to
the register. You could as easily write an intermediate value here as well,
thereby freely shifting the start of the display area in RAM.

Now the electron beam builds a new image beginning at the point specified
in the Linear Starting Address Register instead of obtaining the image data
from the start of video RAM. This way you can shift the physical screen (the
area that appears on the monitor) like a window over the entire VGA RAM,
so any desired section of a 256K image can be displayed.

When you shift the beginning of the screen within RAM, the window
moves in the same direction. This causes the graphic to move in the opposite
direction on your monitor. Increasing the Linear Starting Address by 80
shifts the image contents up one line (320 pixels/4 planes = 80 bytes long).

The contents of Line 0 are now outside the window and Line 200 moves up
from the bottom. The visible lines are now 1-200. You can implement a
vertical scrolling of the entire screen contents with minimum calculation by
incrementing the register in units of 80 bytes each . The illustration on the
right is an example of a video-RAM configuration with four vertical pages.

The following example easily accomplishes this task:

Uses Crt,Gif,ModeXLib;
Var y,                      {Current value of Linear Starting Address}
    y_dir:word;             {Gives scroll direction}
Begin
  Init_ModeX;               {Enable Mode X}
  LoadGif('upfold');        {Load first image into Pages 0 and 2}
  p13_2_ModeX(0,16000);
  p13_2_ModeX(32000,16000);
  LoadGif('corner');        {Load second image into Pages 1 and 3}
  p13_2_ModeX(16000,16000);
  p13_2_ModeX(48000,16000);
  y:=80;                    {Begin with Line 1}
  y_dir:=80;                {Direction of motion +80 bytes per pass}
  Repeat
    Inc(y,y_dir);           {Motion}
    WaitRetrace;            {Wait for retrace}
    SetStart(y);            {and write new start to register}
    if (y >= 600*80)        {Border reached -> reverse direction}
    or (y <= 80) Then y_dir:=-y_dir;

Offset 0

Start of video RAM

Linear Starting Address

Visible section

Freely movable

End of memory



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

99

  Until KeyPressed;         {Run until key is pressed}
End.

After loading the two partial images into the four video pages
(you can, of course, use different images) the program sets the
y-counter to 80, the starting address of Line 1. Y_dir  determines
the scrolling direction. A positive value for the register value in
Linear Starting Address increases (scroll up). A negative value will decreases (scroll down).

The starting address (y) is continually incremented (or decremented if Y_Dir  is negative) within the main
loop. The scrolling direction reverses when the borders are reached.

A scrolling text which appears on more than four video pages, for example in a header or window is more
complicated. As the scrolling progresses, you must load the next video page from the hard drive and copy
it to the section just read which has disappeared from the screen.

In addition to vertical scrolling, you may also find the need for horizontal scrolling. Imagine a logo four
video pages in size, visible only in sections, moving back and forth "underneath" the screen.

The solution appears very simple. We previously modified the Linear Starting Address Register by 80 each
time, why not go by units of one? In this case, however, whatever was scrolled out at the left would be added
again at the right. This is because the lines are still directly one behind the other in memory.

For example, if you shift the screen-start by one byte (shift left 40 pixels), the CRTC displays Bytes 1 to 80
(instead of the usual 0-79) on the first screen line. Byte 80, however, actually belongs to the second line of
the image so each byte that you scroll out at the left border will appear one line higher at the right border.

The solution to this problem is to enlarge the screen to a virtual width of 640 pixels. The display has only
320 pixels, but additional pixels will appear "next" to the monitor on the right. The four video pages will
no longer lie one on top of the other, as in vertical scrolling, but will form a square. Pixels scrolled past the
left edge will go to the extreme right (x-coordinates 636-639) of the invisible area and new pixels will scroll
in from the invisible to the visible area.

In other words, we can also now move the window (which is actually what the Mode X screen represents)
horizontally. Thanks to the horizontally adjacent video pages, we now have enough room to do this.

How do we generate this special mode? VGA has a register for this purpose, too. In fact, we can use Register
13h of the CRTC, Row Offset for other purposes as well. It indicates how far the internal data pointer (Linear
Counter) moves up when the electron beam reaches the right border. This distance corresponds to the
interval between lines within video memory and thereby gives us their length.

Row-Offset normally contains the value 40, which corresponds to a width of 80 bytes, in both Mode 13h and
Mode X. This register counts by words, i.e., an 80-byte width equals 40 words. Although the lines in Mode
13h are 320 bytes long, the computational basis (largest unit addressable by the CPU) is also quadrupled
from one byte to a doubleword, whereby the programmed value again becomes 320 / 8 = 40.

Of course, you can also write larger values to this register. For example, the value 80 means the lines have
an interval, or length, of 160 bytes (equals 640 pixels). The 80-byte gaps which are created between
individual 80-byte lines are padded with the invisible half-lines to the right.

The following illustration shows the video RAM configuration after activating 160-byte mode.

PCPCun
de

rg
ro

un
d

You can find
SPLIT2.PAS

on the companion CD-ROM



100

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

Offset 0

Start of video RAM

Line length 160 bytes = 640 pixels
Height  400 pixels

End of memory

Linear Starting Address

Visible section
Freely movable

320 x 200 pixels

Visible window in video-RAM area

We use the procedure Double  in the ModeXLib module to enable this line-doubling:

double proc pascal far
  mov dx,3d4h                   ;CRTC register 13h (row offset)
  mov ax,5013h                  ;set to 80 (double width1)
  out dx,ax                     ;and write
  ret
double endp

The only result here is that CRTC-Register 13h is loaded with the
value 50h = 80d, which doubles the line length to 160 as
described above.

Using the GIF loader for large images

You may also want to load GIF images in this extended mode. Basically, you can use the normal loader
because it functions independently of the screen format. In other words, the loader unpacks the compressed
data in the order read: In main memory first and then to the video memory. To load an image in 640-pixel
mode, it simply must exist as a 640 pixel wide image. Otherwise, every other line will be stored in the right
half of the screen (not our goal).

You can also load extremely large images the same way. These images, such as the header, can be loaded
in a single step by generating an image of size 320 x 800 and then loading it, for example. If you check the
image size, you will notice that these images are larger than 64K and therefore cannot be stored in the
variable VScreen^ . Turbo Pascal does no allow fields larger than 64K segment size.

Here are a few suggestions to help you overcome this problem:

1. Partitioning the image from the start into 64K portions. This results in an image size of 640 x 100 at
double-width. This solution is neither practical nor efficient.

2. Divide the image among several pointers as you are loading it, so when one segment overflows you
switch to the next variable. The programming involved here is quite complex, however.

PCPCun
de

rg
ro

un
d

The procedure Double
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

101

3. Bypass the Turbo Pascal memory management completely and allocate the memory through DOS.
In this case, when you have a segment overflow, all you need to do is increment the corresponding
segment register by 1000h.

Solutions #2 and #3 have the same problem: Where will you get the necessary memory? A two-page image
already requires 128K, while 64K is just barely manageable.

The best solution is found in the procedure ReadGIF  in ModeXLib. Immediately following the two stosb
instructions, which write the newly decoded pixel, the procedure tests for an overflow. When an overflow
has occurred, the image built-up to that point is simply copied to video RAM. Since large video pages make
sense only in Mode X anyway, the procedure calls up p13_2_ModeX , which copies VScreen  to video RAM
at the position defined by VRAM_Pos and resets the destination pointer to 0. The variable VRAM_pos is then
moved to the end of the copied area in video RAM, so a possible second overflow will be added here.

At the end, the procedure ReadGIF   assigns the current fill-status of VScreen (located in di) to the variable
Rest . VScreen  returns the number of copied bytes because Pascal always places allocated variables at
even segment addresses. This way, by using Rest  as the number of bytes to be copied, the main program
can again call p13_2_ModeX  to copy the rest into video RAM.

This process may not be the optimum algorithm but it does have two important advantages:

1. The procedure ReadGIF  is 100% compatible with the old one. So, an image size doesn't have to be
determined by passing a parameter or reading the GIF header. Theoretically, any image format is
possible (even Super-VGA resolutions are no problem).

2. The procedure saves a great deal of memory because only one segment in memory is occupied. This
segment can be removed from the heap after loading and created again when the next image is
loaded.

Now that you have loaded a large image into video RAM, we'll start the actual scrolling. You'll need the
Linear Starting Address Register again. Since it can now be modified by any desired value, vertical,
horizontal and even diagonal scrolling are possible. The procedure is almost identical for vertical scrolling
as that described in the previous section. The Linear Starting Address Register is incremented or
decremented by one line length each time. You only need to consider the changed line length since vertical
scrolling requires 160 byte steps.

Horizontal scrolling is done by increasing or decreasing the register by units of one, whereby one byte
always represents four pixels. Scrolling is, therefore, possible only in four-pixel increments (for another
option, see Pixel-Panning Register 13h of the Attribute Controller.

Diagonal scrolling simply combines these two directions. For
example, to scroll four pixels up and to the left, increase the
Linear Starting Address by 641 (160 bytes per line x 4 lines + 1
byte). This program demonstrates the capabilities of this register:

Uses Crt,Gif,ModeXLib;
Var x,                          {current offset in x-direction}
    x_dir,                      {specifies scroll direction for x}
    y,                          {current offset for y-direction}
    y_dir:word;                 {specifies scroll direction for y}
Begin
  Init_ModeX;                   {enable Mode X}

PCPCun
de

rg
ro

un
d

You can find
SCROLL4.PAS

on the companion CD-ROM



102

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

  double;                       {160 byte mode on (640*400 pixels total}
  LoadGif('640400');            {load image}
  p13_2_ModeX(vram_pos,rest div 4); {rest of image in video RAM}
  x:=1;                         {x-beginning with column 1}
  x_dir:=1;                     {x-direction 1 byte per pass}
  y:=160;                       {y-beginning with line 1}
  y_dir:=160;                   {y-direction +160 bytes per pass}
  Repeat
    Inc(x,x_dir);               {x-movement}
    Inc(y,y_dir);               {y-movement}
    WaitRetrace;                {wait for retrace}
    SetStart(y+x);              {and write new start in register}
    if (x >= 80)                {x-border reached -> turn x-direction around}
    or (x <= 1) Then x_dir:=-x_dir;
    if (y >= 200*160)           {y-border reached -> turn y-direction around}
    or (y <= 160) Then y_dir:=-y_dir;
  Until KeyPressed;             {run until key is pressed}
  TextMode(3);
End.

In addition to the familiar position and direction variables for the y-direction, similar variables are also
needed for the x-direction. These are called x  and x_dir  and have the same purpose as their y-counterparts:
x  indicates the current position in the x-direction.

 Note an increase or decrease of 1 represents a shift of four pixels because of the four parallel planes . x_dir
describes the x-scrolling direction. A 1 shifts the image contents four pixels to the left for each pass through
the loop and a -1 shifts four pixels to the right.

After initialization, the program switches on 160-byte VGA mode by calling the double routine. This creates
a virtual doubling of the screen to enable horizontal scrolling. The image is then loaded with LoadGIF . Note
that a portion of the oversized image (640 x 400 pixels = 256,000 bytes) is copied to video RAM during the
actual load process (you could also say it is paged out due to insufficient memory).

Since this paging occurs only with an overflow past the 64K limit, the procedure call to p13_2_ModeX
copies the rest to video RAM, starting at the position after the last byte copied (vram_pos), and using the
length variable Rest , whose value is entered by LoadGIF . The number of bytes must now be divided by
four since p13_2_ModeX  works with main memory data - because of the four planes, a length of 1 means
that four bytes are copied and the contents of the variable Rest  are given as real bytes (corresponding to
the number of pixels).

As we mentioned, the x-direction is initialized to 1 so scrolling initially proceeds to the left. The position
is likewise set to 1 so it starts at Column 1 (prior to entering the loop the screen still starts at Column 0, Line
0). The doubling of both values to 160 occurs in the y-direction variables which accounts for the doubled
line length of 160 bytes.

Very little changes in the loop itself. To create movement in the x-direction another Inc  command is used.
In addition, the starting screen location is set to the sum of the x-offset and y-offset, so both directions are
established (see above). Furthermore, a reversal in x-direction must occur upon reaching the right or left
border, so combined with a similar reversal in the y-direction, the scroll area always stays within the
rectangular virtual screen defined in video RAM.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

103

Combining It All: Split-screen With Scrolling

Split screen and multidirectional scrolling can already generate
some interesting effects. However, you can have a tremendous
visual impact by combining them as you'll see in the following
example (SCRL_SPT.PAS):

uses crt,Gif,ModeXLib;
Var x,                          {current offset in x-direction}
    x_dir,                      {specifies scroll direction for x}
    y,                          {current offset for y-direction}
    y_dir:word;                 {specifies scroll direction for y}
    split_line:word;            {current position of Split-Line}
    split_dir:word;             {specifies direction of movement for Split-Line}
Begin
  Init_ModeX;                   {enable Mode X}
  double;                       {enable 160 byte mode}
  Screen_Off;                   {screen off}
  LoadGif_Pos('640400',160*50);{load big picture at position (0/50)}
  p13_2_ModeX(vram_pos,rest div 4); {copy rest to VGA-RAM}
  LoadGif('corner');            {load small picture at position (0/0)}
  p13_2_ModeX(0,160*50);        {and copy to screen}
  Screen_On;                    {screen on}

  split_line:=150;              {set Split at line 150 first}
  split_dir:=1;                 {move Split-Line down first}
  x:=1;                         {x-start with column 1}
  x_dir:=1;                     {x-direction 1 byte per pass}
  y:=160;                       {y-start with row 1}
  y_dir:=160;                   {y-direction+160 bytes per pass}
  Repeat
    Inc(x,x_dir);               {x-movement}
    Inc(y,y_dir);               {y-movement}
    Inc(Split_line,Split_dir);  {move Split Line}
    WaitRetrace;                {wait for Retrace}
    SetStart(50*160+y+x);       {and write new start in register,}
                                {skipping the first 50 lines}
    Split(Split_line);          {split screen at Split Line}
    if (x >= 80)                {x-border reached -> turn x-direction around}
    or (x <= 1) Then x_dir:=-x_dir;
    if (y >= 200*160)           {y-border reached -> turn y-direction around}
    or (y <= 160) Then y_dir:=-y_dir;
    if (split_line >= 200)      {split reached border -> change direction}
    or (split_line <= 150) then split_dir:=-split_dir
  Until KeyPressed;             {run until key pressed}
  TextMode(3);
End

We're no longer splitting the screen into two static regions at a fixed line. Instead the line itself is also
moving. The variables Split_line  and Split_dir  serve to describe this motion, based on the same
principle as in the corresponding x- and y-variables. Split_line  contains the line at which the screen is
divided while Split_dir contains either a 1 for movement in the positive y-direction (down) or a -1 for
moving the split-line upward.

PCPCun
de

rg
ro

un
d

You can find
SCRL_SPT.PAS

on the companion CD-ROM



104

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

After switching on Mode X and activating 160-byte lines, the screen is disabled for loading the image.
Although the speed advantage is barely measurable, the overall visual effect of the demo improves if the
monitor remains disabled as the image is being constructed. You can remove these commands when you
need to view the load process, say, for debugging purposes. However, in the final version of a demo, the
image construction should remain invisible while it's loading.

The large image, which will later scroll in all four directions, is now loaded at Position 160*50 (50 lines past
RAM-start) by the procedure LoadGIF_Pos , while a smaller image is placed at RAM-start by the normal
LoadGIF procedure. LoadGIF_Pos  works like LoadGIF , but receives the offset to which the (large-
image) overflow is copied as an additional parameter.

This 50-line shift accounts for the split-screen's mode of operation. Since at the split-line the linear counter
is set to 0, the contents at RAM-start, i.e., the small image are displayed below this line. Later, when scrolling
the program simply uses the start-address of the large image as the point of origin.

Next, the image is again enabled. The split-line is set to an initial value of 150 which is internally converted
to scan lines (corresponds to graphic lines). Now, thanks to the split, the lower quarter-screen comes "alive".
Since Split_Dir  contains a value of 1, the lower part of the screen in the loop moves toward the bottom.

When the split-line reaches a value of 200, which corresponds to a complete "removed" of the lower section,
the direction of motion reverses itself likewise at the top border (150), so as the upper screen is scrolling,
the bottom also moves vertically.

In this version the SetStart  command, which provides the scrolling, has been expanded by adding the
constant 50*160. This assures the first 50 lines of video RAM never appear on the screen while scrolling.
These lines contain the lower area of the split-screen, while the large image begins 50 lines later.

Door Closed: Squeezing An Image

Another application for the split-screen/scrolling combination is squeezing two halves of an image
together. This effect is often used at the opening of many demos.

Here the upper half, which moves from the top to the middle, is controlled through the Linear Starting
Address; in other words, it's scrolled vertically (in this case downward). Note that Video Page 1 is either
empty or filled with a certain color, since half of it is visible at the beginning.

The bottom half is controlled by the splitting process.
Decrementing the line number pushes the start of the split-
screen up toward the middle.

Procedure Squeeze  from MODEXLIB.ASM accomplishes both
of these tasks:

squeeze proc pascal far         ;squeezes screen together
  mov si,200*80                 ;initial value for start address
  mov di,199                    ;initial value for split row
sqlp:                           ;main loop
  call waitretrace              ;wait for retrace
  call split pascal, di         ;set lower half by splitting
  call setstart pascal, si      ;set upper half by scrolling

PCPCun
de

rg
ro

un
d

The procedure Squeeze
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

105

  sub si,80                     ;one row further, so go down
  dec di                        ;split one row down, so
  cmp di,99d                    ;move lower half up
  jae sqlp                      ;finished ?
  ret
squeeze endp

Registers SI and DI are used in this procedure. You may wonder why we're not using other registers. Here,
speed is not the most important factor. After all, the CPU has very little to do because all the work is handled
by the VGA. Therefore, it's sometimes more efficient to use register variables which can save storage space
and processing time.

SI contains the value of the Linear Starting Address Register and so is responsible for moving the upper
partial screen. DI determines the split-line, which controls the position of the lower half. These registers are
assigned initial values which generate a completely separated image.

After the usual wait for a vertical retrace, the loop updates the current status with the help of the
corresponding register. The movement takes place in the statements decrementing the register by 80
(Linear Starting Address, 1 line) or by 1 (Split-Line), whereby the upper part scrolls down and the split-line
moves up. The image is therefore squeezed together. The terminating condition is when the split-line
moves past the half-screen.

We'll use a small example called SQUEEZE.EXE. It simply loads an image and, as its name suggests,
squeezes it together. The wait for the e key points out something you should remember when creating
an image: Notice the opening screen reverses the upper and lower screens. When press e, the upper and
lower screens are squeezed in the correct position.

The beginning contents of video RAM are displayed at the bottom half of the monitor. Scrolling moves data
from the second half of the first video page to the top half of the
monitor. To do this, you simply have to do reverse the image by
cutting and copying both halves. The program should now be
self-explanatory:

uses Crt,ModeXLib,Gif;
Begin
  Init_ModeX;                   {switching on Mode X}
  LoadGif(‘squeeze’);           {loading of image}
  p13_2_ModeX(vram_pos,rest div 4);
  ReadLn;                       {waiting for Enter}
  Squeeze;                      {squeezing of image}
  ReadLn;
  TextMode(3);
End.

Smooth Scrolling In Text Mode

Scrolling in text mode actually works the same as in graphic mode. The visible portion of video RAM is
shifted using the starting address (Linear Starting Address). The one noticeable difference is scrolling is
very jittery because shifting always occurs by entire characters in text mode whereas you can shift by
individual pixels in graphic mode . This is due to the structure of video RAM in text mode. Data for

PCPCun
de

rg
ro

un
d

You can find
SQUEEZE.PAS

on the companion CD-ROM



106

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

individual pixels no longer exists here, so the Linear Starting Address also refers to whole characters and
enables only very coarse scrolling.

To prevent this, we can use a few new VGA registers: The horizontal and vertical panning registers. In
panning, we're shifting the image contents by one pixel, which these registers allow in text mode as well.

For smooth scrolling in text mode, simply shift the image contents by panning in the desired direction. Once
you have moved ahead by one character, set the corresponding panning register back to its initial value and
modify the Linear Starting Address Register. This is necessary because the maximum panning distance is
one character width or one character height. Panning therefore is only a fine control, while coarse scrolling
is achieved through the Linear Starting Address.

Vertical panning is generated by CRTC-Register 8 (Initial Row Address), where Bits 4-0 indicate the graphic
line where display of the first scan line begins. Incrementing this value by 1 makes Line 1 begin inside the
character set the screen contents therefore move one line up.

Horizontal panning on the other hand, is the responsibility
of the Attribute Controller. Here Register 13h (Horizontal
Pixel Panning) provides for smooth motion in the x-
direction. The table on the right shows the somewhat
unusual value assignments for this register:

The necessary format conversion is done by a simple
calculation (without requiring difficult IF-structures):

register-value := (panning-value - 1) mod 9

The complete demonstration program SCROLLT.PAS:

Uses ModeXLib,Crt;

Var x,                          {x-position in pixels}
    x_dir,                      {x-direction}
    y,                          {y-position in pixels}
    y_dir:Word;                 {y-direction}

Procedure Wait_In_Display;assembler;
{Counterpart to Wait_In_Retrace, waits for display via cathode ray}
asm
  mov dx,3dah                   {Input Status 1}
@wait2:
  in al,dx
  test al,8h
  jnz @wait2                    {Display on ? -> then finished}
End;
Procedure Wait_In_Retrace;assembler;
{waits for retrace, also resets the ATC flip-flop by read access to Input Status 1}
asm
  mov dx,3dah                   {Input Status 1}
@wait1:
  in al,dx
  test al,8h
  jz @wait1                     {Retrace active ? -> then finished}
End;

Value Function

0 Panning by one pixel

1 to 7 Panning by 2 to 8 pixels

8 No panning

PCPCun
de

rg
ro

un
d

You can find
SCROLLT.PAS

on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

107

Procedure FillScreen;
{Fills video RAM with test image 160*50 characters in size}
var i:word;
Begin
  For i:=0 to 160*50 do Begin   {character loop}
    If i mod 10 <> 0 Then       {write column counter ?}
      mem[$b800:i shl 1]:=      {no, then '-'}
        Ord('-') Else
      mem[$b800:i shl 1]:=      {yes, then column number in tens}
      ((i mod 160) div 10) mod 10 + Ord('0');
    If i mod 160 = 0 Then       {column 0 ? -> write row counter}
      mem[$b800:i shl 1]:=(i div 160) mod 10 + Ord('0');
  End;
End;
Procedure V_Pan(n:Byte);assembler;
{performs vertical panning}
asm
  mov dx,3d4h                   {CRTC Register 8 (Initial Row Adress)}
  mov al,8
  mov ah,n                      {set panning width}
  out dx,ax
End;
Procedure H_Pan(n:Byte);assembler;
{performs horizontal panning}
asm
  mov dx,3c0h                   {ATC Index/Data Port}
  mov al,13h or 32d             {Register 13h (Horizontal Pixel Panning)}
  out dx,al                     {select; Bit 5 (Palette RAM Address Source)}
  mov al,n                      {set, in order not to switch off screen}
  or al,32d                     {write panning value}
  out dx,al
End;

Begin
  TextMode(3);                  {set BIOS mode 3 (80*25 characters, Color)}
  FillScreen;                   {build test picture}
  portw[$3d4]:=$5013;           {double virtual screen width(160 character)}
  x:=0;                         {initialize coordinates and directions}
  x_dir:=1;
  y:=0;
  y_dir:=1;
  Repeat
    Inc(x,x_dir);               {movement in x and y-directions}
    Inc(y,y_dir);
    If (x<=0) or (x>=80*9)      {turn around at borders}
      Then x_dir:=-x_dir;
    if (y<=0) or (y>=25*16)
      Then y_dir:=-y_dir;
    Wait_in_Display;            {wait until display running}
    SetStart((y div 16 *160)    {set start address (rough scrolling}
      + x div 9);
    Wait_in_Retrace;            {wait until retrace active}
    V_Pan(y mod 16);            {vertical panning   (fine scrolling)}
    H_Pan((x-1) mod 9);         {horizontal panning (fine scrolling)}
  Until KeyPressed;             {wait for key}
  TextMode(3);                  {and set normal video mode}
End.



108

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

After setting text mode and drawing a test image, the program switches over to double-virtual-width by
setting Row-Offset Register 13h of the CRTC to the value 320 bytes/4 bytes = 80 (4 due to doubleword-
access). The motion itself corresponds exactly - with somewhat different values - to the same procedure in
graphic mode.

One special feature is dividing WaitRetrace  into two parts: Wait_in_Display  and Wait_in_Retrace .
This is because the registers used here are linked to different timing circuits. Linear Starting Address is
loaded by VGA directly after entering into the retrace, so a switch during the retrace will usually show no
effect in the next image. This was previously unimportant because the entire operation was simply delayed
by one retrace. Now we also have the panning registers, whose effects become immediate after being
changed.

The starting address is, therefore, set during image construction, because it has no function at this point
anyway, and is guaranteed to be set correctly for constructing the next image. The panning registers
however are set during the retrace because their effects are immediate and must therefore take place in the
invisible area of the screen.

The procedure Wait_in_Retrace  has a second purpose. Accesses to the ATC are somewhat unconventional:
This port alternates between index and data register with each write-access to Port-Address 3c0h. When the
program starts the current status of this register is unknown. However, reading Input-Status Register 1, as
happens in this procedure, switches Port 3c0h to the index function and thereby gives it a defined status.

Since writing to the ATC (Attribute Controller) occurs almost immediately after the wait for the retrace, you
can assume the index mode is active. The only possibility of this port switching over unnoticed is if a TSR
"stumbles in" through an interrupt. This is highly unlikely however, and can be prevented anyway by a
simple CLI instruction.

It's very important when writing to the ATC-index to always set Bit 5 at the same time. This bit controls
access to the internal palette of the ATC. When Bit 5 is cleared the CPU obtains full access and the ATC
disables itself; leading in the best case (if you reset the bit quickly enough) to flickering, but in the normal
case to a complete system crash, where only a reboot will help.

Of course, this scrolling can also be combined with a split-screen. The procedure is exactly the same as in
graphic mode. The split-screen is fully mode-independent, because you are directly programming the
physical scan-line where the split occurs.

A Different Kind Of Monitor: Flowing Images

We've mentioned the double-scan mode of VGA several times. Depending on the BIOS, this double-line
mode (which displays 200 graphic lines at a physical resolution of 400 lines) is implemented using either
Bit 7 (Double-Scan-Enable) of CRTC-Register 9 (Maximum Row Address) or by entering 1 instead of 0 in
Bits 4-0. These bits in text mode contain the number of screen lines per character line minus 1 (equal to 15
in VGA text modes), i.e., the number of screen lines in which the same information is repeatedly retrieved
from video RAM.

Of course, these screen lines in text mode are still not identical because a different line of the character set
is used each time. In graphic mode, however, there is no character set so the same data is actually displayed
many times. A value of 1 in these bits also creates a line-doubling, whereby a copy is generated of each line.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

109

Even more copies are generated if you enter higher values. The pixels are expanded in the y-direction, and
the vertical resolution cut in half.

This effect is used in FLOW.PAS. First, it places a demo image on the screen and stretches it out through
continuous incrementing of Bits 4-0. Of course, the other bits in
this register cannot be touched the old contents are therefore
stored in old9  and an OR operation performed on the current
contents when writing to the register. The entire process is
synchronized with the vertical retrace as usual.

Uses Crt,Gif,ModeXLib;
Procedure Flow;
var i,
    Old9:Byte;
Begin
  Port[$3d4]:=9;                      {select CRTC Register 9 (Maximum Row Address)}
  Old9:=Port[$3d5] and $80;           {save old contents, }
  for i:=2 to 31 do begin             {saves on constant read out}
    WaitRetrace;                      {synchronization}
    Port[$3d5]:=old9 or i;            {write value}
  End;
End;

Begin
  asm mov ax,13h; int 10h End;        {Mode 13h on (or different graphic mode)}
  LoadGif('upfold');                  {load wallpaper}
  Move(vscreen^,Ptr($a000,0)^,64000); {and to screen}
  ReadLn;
  Flow;                               {read out}
  ReadLn;
  TextMode(3);                        {restore VGA to original state}
End.

Theoretically, this procedure is also possible in text mode but would lead to nonviewable images. This is
because no character set data exists for these new lines although the VGA still doubles, triples etc., the
memory contents like in graphic mode. Therefore, since only garbage appears as images in text mode, this
effect is limited to graphic mode.

When selecting a suitable image, at least 13 lines must be black or some other solid color at the top.
Otherwise, the image won't flow down, it will just be stretched out. At a vertical resolution of 400 lines and
a maximum value of 31 in the Maximum Row Address Register, each line will be displayed 32 times,
producing 400 / 32 = 12.5 visible lines. These must all be the same color for the entire image to be one color
later.

Let's Add More Color Please: Copper Bars Without Copying

Until now we have essentially created our effects by simply reprogramming certain VGA registers. The
CPU executes only control functions, such as updating the screen start-address during scrolling.

We'll talk about a new role for the CPU in this section. In addition to control, we'll add some range checking
tasks. We won't, however, use the CPU to copy memory areas. This means the CPU will continuously
monitor the VGA, and at certain screen lines perform modifications to the VGA registers. We can now

PCPCun
de

rg
ro

un
d

You can find
FLOW.PAS

on the companion CD-ROM



110

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

produce an effect called copper bars which has been a popular effect since the days of the old Commodore
64.

Copper bars are vertical bars of a specific color. They continuously move up and down in the y-direction.
They not only move up-and-down but also in front of one another while moving up-and-down. Meanwhile
other graphic effects, like text-scrollers, can be running at the same time and appear in front of the copper
bars.

You can probably figure out how copper bars work simply by their appearance. Video RAM contains
absolutely no data at those areas being displayed. It's filled with zeros, for example, so no bars can go out
from this point. For each new screen line, however, you define what color this zero actually represents: It
might represent a light red color one time, while at another time it might represent a bright yellow.

Incidentally, you can also display more than 256 colors on the screen in this manner. Theoretically, each
screen line can contain 256 colors and these can be different for each line. In practice, however, the range
of colors is very limited because it's not possible within a retrace to set an entire palette. The number of colors
will vary depending on the processing speed of the computer. In the example in this section only Color 0
is continuously reprogrammed, which already gives us 127 new colors. Reprogramming just a few more
colors expands this range even further.

By continuously changing the color as the screen lines are displayed, you can produce vertical structures
such as bars. Colors other than 0 are not affected by this, so text can still be scrolling in the foreground using
Colors 1-16 for example. The places in the text containing a zero are transparent so the copper bars become
visible in the background.

This way, you don't have to worry as the text scrolls through the background. Otherwise, you would have
to keep saving the background contents and rewriting the text. You can simply copy blocks of data to video
RAM, which in the transparent sections contain 0. The main advantage here is that you can use the fast Write
Mode 1 for copying.

This process is comparable to the one used by a Genlock card. This specialized video card overlays a TV
image wherever the video signal displays a certain color (usually blue). Here also, mixing occurs at a very
low level and not in the slow video RAM.

How then do we generate the multicolored lines? Home computers usually have a screen-line interrupt.
You can program the video controller to execute an interrupt upon reaching a particular screen line; the
color can then be quickly reset in response to this event.

Although some VGA cards also have a vertical-retrace interrupt (often deactivated through dip-switches),
the situation is far worse with the horizontal retrace. We're not aware of any graphic card which supports
this interrupt. You only choice is to continuously monitor the VGA status counting the lines as you go and
then change the color at the desired line.

To do this, you first need to create an initial status by waiting for a vertical retrace. The next time the Display-
Enable circuit is activated (read from Input-Status Register, Bit 0 - Display Enable Complement), you are
guaranteed to be on Line 0 of the screen. You can count with the current line through a permanent inquiry
on this bit.

Since displaying a single line takes much less time than displaying the entire image, you cannot allow any
interrupts during the wait (they often last much too long).



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

111

Disabling the interrupts however causes a serious problem. Time becomes critical if you also plan to use
sound during the wait for the horizontal retrace...you must prevent the sound card from requesting new
data.

Even this limitation is not as significant compared to the computing time needed to copy data into video
RAM. For example, if only the top half of the screen is reserved for screen lines (i.e., copper bars) instead
of the entire screen, then there will be enough time remaining for scrolling and sound generation in the
bottom half, too.

When it comes to timing, the order of commands is also important. In the short time it takes for the actual
retrace (approximately 6 microseconds) it's practically impossible to do the calculations for all the bars.
These must therefore be done earlier, while during the retrace itself the only other thing that happens is to
set the color.

The following example program is called COPPER.EXE. It
consists of a Pascal section (COPPER.PAS) and an Assembler
section (COPPER.ASM) to show how to build these pieces into
a program.

Uses Crt,ModeXLib;
var y1,                         {y-location Copper 1}
    y1_dir,                     {y-direction Copper 1}
    Mask:Word;                  {overlay mask, for overlaying the copper}

Procedure MakeCopper(y_pos1,y_pos2,overlay_mask:word);external;
{$l copper}

begin
  TextMode(3);                  {Copper functions in EVERY video mode ! }
  y1:=Port[$3da];               {switch ATC to Index-Mode}
  Port[$3c0]:=$11 or 32;        {select Register 11h}
  Port[$3c0]:=255;              {frame color 255}
  y1:=0;                        {Start at upper screen border}
  y1_dir:=2;                    {first movement down}
  Mask:=$00ff;                  {first Copper 1 (red) in foreground}
  Repeat
    Inc(y1,y1_dir);             {Copper-movement}
    If (y1<=0) or (y1>=150)     {at border : }
      then Begin
      y1_dir:=-y1_dir;          {reverse direction}
      Mask:=Swap(Mask);         {each time a different copper in foreground}
    End;
    Write('T h  i  s   i  s  d  e  m  o   t  e  x  t  ');
    MakeCopper(y1,150-y1,Mask); {Draw copper}
  Until KeyPressed;
End.

The program first enables Mode 3 (although any text mode or graphic mode will work). Screen line counting
is independent of the VGA mode. You only need to consider the various vertical resolutions of different
modes where different values for y-position expand or contract the bars in the y-direction. Here, also we're
using physical resolution, which in 200-line modes (such as Mode 13h) consist of a full 400 lines (Double
Scan).

Next, the border color is set to 255 using ATC-Register 11h because the copper uses Color 0 to display the
bars. Simply leave the border color at 0 if you also want to display the bars in the screen border. However,

PCPCun
de

rg
ro

un
d

You can find
COPPER.EXE

on the companion CD-ROM



112

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

a value other than zero not only allows for clear separation of image from copper, it also extends the
duration of the horizontal retrace. This is especially true on slower computers, making the flickering at the
left border disappear.

The loop, following the familiar pattern, moves and displays the copper in the y-direction. The call to
WaitRetrace , however, is hidden in the procedure MakeCopper . This is done to guarantee immediate
proximity to the retrace and the line counting. Text is also output for demonstration purposes and shows
how easy it is to change the screen independently of the background. Also demonstrated is the fact that
when the scanning ray is outside the range of the coppers, enough computing time remains for other tasks.

The procedure MakeCopper  is in the COPPER.ASM module. When the call is made, the program passes
the y-positions of both coppers (red and green) with a priority mask which controls their overlapping. The
low-byte is responsible for Copper 1 and the high-byte for Copper 2. A value of 0 means the corresponding
copper is running in the background. A value of 0ffh pages it to the foreground. An overlay occurs when
both have a value of 0 and the two colors are mixed. A mask value of 0ffffh, however, erases both coppers
at the point of overlap.

When the maximum position is reached in our example, the
mask switches, which creates a circular motion. The red copper
fades into the background as it moves up and appears in the
foreground as it moves down. The COPPER.ASM module
mostly consists of the procedure MakeCopper .

extrn waitretrace:far
data segment public
  maxrow dw (?)
data ends
code segment public
public makecopper
assume cs:code,ds:data
MakeCopper proc pascal y_pos1,y_pos2,overlay_mask:word
; draws 2 copper beams at positions y_pos1 (red) and y_pos2 (green)
; overlay_mask: 0ff00h : Copper 2 in foreground
;                000ffh : copper 1 in foreground
;                00000h : penetration of both coppers
height equ 88                    ;total height per copper

  mov ax,y_pos1                 ;define maximum y-coordinate
  cmp ax,y_pos2
  ja ax_high
  mov ax,y_pos2
ax_high:
  add ax,height                  ;add height
  mov maxrow,ax                 ;maximum row to be taken into consideration
  xor cx,cx                     ;start row counter with 0
  call waitretrace              ;wait for retrace for synchronization
next_line:
  inc cx                        ;increment row counter
  mov bx,cx                     ;calculate color 1
  sub bx,y_pos1                 ;in addition, get position relative to copper start
  cmp bx,height/2 -1             ;2nd half ?
  jle copper1_up
  sub bx,height -1               ;then bx:=127-bx
  neg bx
copper1_up:

  or bx,bx

PCPCun
de

rg
ro

un
d

You can find
COPPER.ASM

on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

113

jns copper1_ok                ;positive, then color
  xor bl,bl
copper1_ok:
  mov ax,cx                     ;calculate color 2
  sub ax,y_pos2                 ;calculate position relatively
  cmp ax,height/2 -1            ;2nd half
  jle copper2_up
  sub ax,height -1              ;then ax:=127-ax
  neg ax
copper2_up:
  or ax,ax                      ;positive, then color
  jns copper2_ok
  xor al,al
copper2_ok:
  mov bh,al                     ;bl now has color copper 1 / bh copper 2
  mov ax,bx                     ;calculate overlay
  and ax,overlay_mask           ;mask out copper 1 or 2
  or al,al                      ;copper 1 priority
  je copper1_back
  xor bh,bh                     ;then clear copper 2
copper1_back:
  or ah,ah                      ;copper 2 priority
  je copper2_back
  xor bl,bl                     ;then clear copper 1
copper2_back:
  xor al,al                     ;select color 0 in DAC
  mov dx,3c8h
  out dx,al
  or bl,bl                      ;if copper 1 black -> leave as is
  je bl_0
  add bl,(128-height) / 2       ;otherwise lighten to achieve maximum
bl_0:                           ;brightness
  or bh,bh                      ;the same for copper 2
  je bh_0
  add bh,(128-height) / 2
bh_0:
;now wait for horizontal retrace and enable copper
  cli                           ;clear interrupts, because it is VERY time-critical
  mov dx,3dah                   ;select Input Status Register 1
in_retrace:
  in al,dx                      ;wait for display
  test al,1
  jne in_retrace
in_display:
  in al,dx                      ;wait for (horizontal) retrace
  test al,1
  je in_display
  mov al,bl                     ;load color 1
  mov dx,3c9h                   ;and set
  out dx,al                     ;set red percentage for copper 1
  mov al,bh
  out dx,al                     ;set green percentage for copper 2
  xor al,al
  out dx,al
  cmp cx,maxrow                 ;last row generated ?
  jne next_line

  mov dx,3dah                   ;yes -> end
wait_hret:                      ;before switching off, wait for retrace
  in al,dx                      ;otherwise flickering in last row
  test al,1
  je wait_hret



114

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

xor al,al                     ;select color 0 in DAC
  mov dx,3c8h
  out dx,al
  inc dx                        ;set all to 0: black
  out dx,al
  out dx,al
  out dx,al
  sti
  ret
makecopper endp
code ends
end

First, the program determines the larger of the two y-coordinates. This establishes the first screen line
beyond which a copper is never displayed. Upon reaching this position you can exit the procedure and use
the computer time for other tasks. The procedure then sets the line counter to 0 and waits for the vertical
retrace. This also begins at line 0 of the monitor.

The loop next_line  uses the y-positions to calculate the scan-line relative to the topmost copper-line,
which indicates the color. When the electron beam reaches the second half, you must again decrement the
color to guarantee symmetry. A negative color-value is generated outside the copper regardless of whether
the ray is above or below the center of the copper. This value is later intercepted and reset to 0 (black).

As a result of this calculation, BL contains the color-value of Copper 1 and BH contains the color value of
Copper 2. When the two coppers overlap, the program must convert these values according to the overlay
mask. This is accomplished here in only two steps without tedious CMPs. An AND operation is performed
on the color and the current mask so only the copper masked with 0ffh is significant. The copper masked
with 0 automatically goes to the background. If both are masked with 0, no overlay occurs and the two
coppers are mixed. Provided that it appears at the current position (has a color other than 0), the bar masked
with 0ffh overlays the other bar by resetting its color component to 0.

At this point DAC Color Register 0 is selected so time is saved during the actual switching of the color. It's
highly unlikely that a TSR would affect the program now. A color-value is also added for the case when the
copper fails to occupy the maximum height of 128 lines (specified in the variable height. The dark
components are cut out here instead of the middle components. The copper is set to maximum brightness
by summing the components.

Now, as you've probably assumed by the CLI instruction, the time critical part begins. The procedure waits
for entry into a horizontal retrace. As with its vertical counterpart, it waits for Display Enable followed by
a retrace which is just beginning. This guarantees that even on slower computers, where the electron beam
is already within the next retrace, the switch never takes place during display time.

Next, Color 0 must be set using the Pixel Color Value Register of the DAC. Here, Copper 1 determines the
red component and Copper 2 determines the green component. Meanwhile, blue remains at 0 in both. The
loop now starts from the beginning, unless the last line (determined by the variable maxrow) has already
been drawn. In this case, another retrace is awaited and Color 0 set to black for the remainder of the screen.
The wait for the retrace is necessary, otherwise the switch would occur during display of the last line which
would then fail to fully appear. You can now re-enable the interrupts and end the procedure.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

115

Shake On The Screen: The Wobbler

In addition to copper bars, the horizontal retrace can be used for many other effects. For example, instead
of changing the color, what if you changed the horizontal position within each line? Such an effect, based
on a sine table, will overlay the entire screen with a wave motion. Thanks to direct programming of the
CRTC registers, you can even do this effect in text mode.

The horizontal location of a screen line is best controlled through CRTC-Register 4. This register, as its name
Horizontal-Sync Start implies, determines the position where the horizontal retrace begins. Since the end
of the synchronization is determined relative to the start, modifying this register shifts the "location" of the
retrace on the screen but not its length (you should avoid modifying its length if possible). Some monitors
cannot handle too short a retrace and will respond by completely distorting the image.

The strategy behind the Wobbler again consists of waiting for a specific screen line. It then feeds Register
4 with new values in each following line. These values are obtained from a sine table, generated using
procedure Sin_Gen  in the unit Tools (see the "Tables" information in the "Custom Mathematical
Functions" section in Chapter 2. Of course, other functions will also work but the sine waves are the most
similar to water waves.

We must consider timing very carefully for this effect. Here, unlike the copper bars, the registers should be
modified while the electron beam displays the image. Assigning color with the coppers had no effect during
the retrace but does during the display period. So we made the switches during the retrace. With
WOBBLER.PAS, on the other hand, the position of the retrace is very important during the retrace itself
(Blank Time), while the register has no effect during the display of the actual image data. So this time the
changes must occur during the Display Enable period. To do this, simply reverse the order of the two wait-
loops.

WOBBLER.PAS is also fully independent of image content because we're working directly with the timing
at the lowest level. You only need to consider the various register defaults in each mode when generating
the sine table. The value is normally 85 in Text Mode 3 and 84 in Mode 13h and Mode X. Otherwise, the fixed
areas of the screen will shift to the left or right because these are determined by the zero-point of the sine
table.

Second, the value of this register can vary only within a certain range. For example if you use 87 as the zero-
point by mistake and add an amplitude of 4 to it, the result will appear outside the acceptable range and
no effect will occur. The sine at this point will be flattened out.

We should also mention, like all registers affecting horizontal timing, the Horizontal-Sync-Start Register is
protected through Bit 7 of CRTC-Register 11h (Vertical Sync End). So, you must first clear this bit by calling
CRTC_unprotect (Unit ModeXLib).

You should then call CRTC_protect at the end of the program
since the default value for the protection bit is 1. Both procedures
are very simple and require no further explanation:

PCPCun
de

rg
ro

un
d

CRTC_UnProtect and 
CRTC_Protect are part of
MODEXLIB.ASM on the

companion CD-ROM



116

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

Procedure CRTC_UnProtect;
Begin
  Port[$3d4]:=$11;              {Register 11h of CRTC (Vertical Sync End)}
  Port[$3d5]:=Port[$3d5] and not $80  {clear Bit 7 (Protection Bit)}
End;
Procedure CRTC_Protect;
Begin
  Port[$3d4]:=$11;              {Register 11h of CRTC (Vertical Sync End)}
  Port[$3d5]:=Port[$3d5] or $80 {set Bit 7 (Protection Bit)}
End;

The program WOBBLER.EXE consists of the main program
WOBBLER.PAS. The Assembler portion WOBBLER.ASM is
linked into WOBBLER.PAS:

Uses Crt,Gif,ModeXLib,Tools;
const y=246;                    {height and position are defined here}
      height=90;                {can also be variables}
Var Sine:Array[0..63] of Word;  {Sine table, will be filled later}
    i:Word;                     {temporary counter}

Procedure Make_Wob(wob_pos,wob_height,wob_offset:word);external;
{$l wobbler}

begin
  TextMode(3);                  {Wobbler functions in ANY video mode! }
  Draw_Ansi('db6.ans');         {load Ansi file}
  Sin_Gen(Sine,64,4,83);        {precalculate sine}
  CRTC_Unprotect;               {enable horizontal timing}
  ReadKey;                      {wait}
  i:=0;
  Repeat
    inc(i);                     {generate movement}
    Make_Wob(y,height,i);       {draw wobble}
  Until KeyPressed;
  CRTC_Protect;                 {protect CRTC again}
End.

This program creates a test image in Text Mode 3, generates the sine table and then unprotects CRTC-
Registers 0-7 (CRTC_unprotect) to enable access to Register 4. The loop, initiated by a keypress, continually
increments the variable i , which gives the current offset within the sine table in the procedure call to
Make_Wob. This creates the wavelike motion.

Finally, the protection bit of the CRTC is reset and the protection
mechanism reactivated. The actual procedure Make_Wob  is
located in the module WOBBLER.ASM:

extrn WaitRetrace:far

data segment public
  extrn sine:dataptr           ;sine table
data ends
code segment public
assume cs:code,ds:data
public make_wob
make_wob proc pascal wob_pos,wob_height,wob_offset:word
  xor cx,cx                     ;row counter to 0
  call waitretrace              ;synchronization with cathode ray
next_line:

PCPCun
de

rg
ro

un
d

You can find
WOBBLER.ASM

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

You can find
WOBBLER.PAS

on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

117

  inc cx                        ;increment row counter
  mov bx,cx                     ;define position within the wobbler
  sub bx,wob_pos
  mov si,bx                     ;note for end

  add bx,wob_offset             ;offset for movement
  and bx,63                     ;allow only values from 0..63 (array size)
  shl bx,1                      ;array access to words
  mov bx,sine[bx]               ;get value in bx

  cli                           ;clear interrupts, because it's VERY time critical
  mov dx,3dah                   ;select input status register 1

in_display:
  in al,dx                      ;wait for (horizontal) retrace
  test al,1
  je in_display
in_retrace:
  in al,dx                      ;wait for display
  test al,1
  jne in_retrace

  cmp cx,wob_pos                ;reached desired line ?
  jb next_line                  ;no -> set default value

  mov dx,3d4h                   ;CRTC register 4 (horizontal sync start)
  mov al,4                      ;select
  mov ah,bl                     ;get sine value
  out dx,ax                     ;and enter

  cmp si,wob_height              ;end reached ?
  jb next_line

  mov dx,3dah
wait1:
  in al,dx                      ;wait for (horizontal) retrace
  test al,1
  jne wait1
  mov dx,3d4h                   ;set sync start back to normal
  mov ax,5504h
  out dx,ax
  sti                           ;allow interrupts again
  ret
make_wob endp

code ends
end

The procedure uses the following parameters: The vertical position, height in screen lines and the offset for
the first line which then affects all the other lines. Incrementing this value by 1 moves the sine wave up one
line on the screen and changing it continuously produces a type of wave motion.

This procedure waits for the number of screen lines specified in wob_pos . Prior to the two wait-loops for
horizontal synchronization, the vertical position is calculated to save time later.

To access the sine table, the specified table offset is added. The result must fall within the table; therefore,
an AND operation is performed using the value 63 (see the "Variables In Assembly Language" section in
Chapter 1). Next comes the table lookup. The table consists of word entries (the reason for shl bx,1). The table
value is temporarily stored in BX.



118

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

The program now waits for the beginning of the display period and not a retrace, which is precisely what
we want to avoid. If the start-line has not yet been reached the line is incremented (jb next_line), otherwise
an access occurs and CRTC-Register 4 is loaded with a new (sine) value.

The value in register SI was saved earlier. It still contains the vertical position and is compared to wob
height . You must also wait here before resetting the register to its original value, so as not to interfere with
display of the last line. Note that you are waiting for the beginning of a line display.

Real-time Animation Made Easy: Palette Effects

The palette offers an excellent way to change the entire screen easily. All pixels of a particular color-value
can be changed to a new color in a single step.

Fade-out effect

The simplest effect that we can create this way is called a fade-out. Similar to what happens in a film, the
brightness of the image is reduced from normal to zero in a relatively short time. The palette makes a fade-
out very easy to accomplish. All colors are decreased by 1 within a loop and the newly calculated palette
is set. You then wait for the next retrace and again decrease by
1 until the entire screen is black.

The procedure fade_out  from the module MODEXLIB.ASM
performs this task:

fade_out proc pascal far        ;fades out image, video-mode independent
local greatest:word             ;contains maximum possible color value
  mov greatest,63
  mov ax,ds                     ;load destination segment
  mov es,ax
main_loop:                      ;main loop, run once per image
  lea si,palette                ;source and destination offset to palette
  mov di,si
  mov cx,768                    ;modify 768 bytes
lp:
  lodsb                         ;get value
  dec al                        ;decrement
  jns set                       ;if not yet negative -> set
  xor al,al                     ;otherwise 0
set:
  stosb                         ;write destination value in "palette"
  dec cx                        ;loop counter
  jne lp
  call waitretrace              ;synchronize to retrace
  call setpal                   ;set calculated palette
  dec greatest                  ;decrement outer loop
  jne main_loop                 ;still not finished ? then continue
  ret
fade_out endp

Here, the variable max provides the terminating condition. This variable is actually only a counting
variable, counting backwards from 63 to 0, but you can also consider it as the current maximum image
brightness possible. Since this value starts out at 63 (maximum brightness of a red, green or blue

PCPCun
de

rg
ro

un
d

The procedure fade_out
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

119

component), max is initialized to 63. As the colors are decremented, this maximum brightness also
decreases until it reaches 0 and the entire image is certain to be black.

After loading the source and destination pointers in the main loop, the procedure returns the secondary
loop, which decrements the entire palette by 1. Each individual value is loaded, decremented by 1 and
written back, with 0 as the limit.

Once initialized in this way the palette is set by SetPal , synchronized of course with the vertical retrace.
It's also possible to set the palette at the same time as calculating it - just initialize the DAC for write-access
(port[$3c8]:=0) and rewrite the data each time to Port $3c9. There is, however, one serious disadvantage:
Calculating the new values takes a relatively long time; even longer than a retrace on slower computers.

 The result is flickering at the top of the screen, which you can prevent by setting the palette all at once with
SetPal (rep outsb), a much faster process. The main loop now runs until greatest is 0 and the screen reaches
its darkest level.

This palette effect also works in text mode (in the program
FADE_OUT.PAS)

uses crt,modexlib,Tools;
var i:word;
Begin
  GetPal;                       {load “Palette” with current DAC-palette}
  Draw_Ansi(‘color.ans’);       {load picture}
  Setpal;
  ReadLn;
  Fade_out;                     {fade out picture}
  ReadLn;
  TextMode(3);                  {normal picture again}
End.

To work with the palette you must first load it from the DAC registers into the corresponding variable.
Normally in graphic mode, however, the palette is already stored in the variable Palette because the GIF
loader already placed it there. The call to Fade_Out  is then just a formality.

This shows a major advantage of direct DAC programming over using the BIOS: Accessing the palette using
the BIOS is impossible in text mode and too slow in graphic mode. The only option left in this case is direct
register manipulation.

Fade-in effects

The opposite of fade-out is, naturally, fade-in. A fade-in begins with a black image and the brightness
increases to the desired palette.

The principle is the same as with fade-out. During each pass through the loop - synchronized with the
vertical retrace - you increment the color-values by 1 or more, until the target value (from the image's
original palette) is reached. Naturally you can't use 0 as the terminating condition, instead you must keep
comparing with the target value.

The following example program is called FADE-IN.PAS and is
primarily for demonstration purposes. We'll talk about a fade-
in which uses a more general (and much more powerful)
procedure in the next section. PCPCun

de
rg

ro
un

d

You can find
FADE_IN.PAS

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

You can find
FADE_OUT.PAS

on the companion CD-ROM



120

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

uses crt,ModeXLib,Tools;
var i,j:word;
    destpal:Array[0..767] of Byte;
Procedure Fade_in(DPal:Array of Byte);
Begin
  For j:=0 to 63 do Begin       {64 passes, in order to fade completely}
    For i:=0 to 767 do          {calculate 768 color values}
      If Palette[i] < DPal[i]   {current value still smaller that destination
                                 value ?}
        Then Inc(Palette[i]);   {then increase}
    WaitRetrace;                {synchronization}
    SetPal;                     {set calculated palette}
  End;
End;
begin
  ClrScr;                       {clear screen}
  GetPal;                       {load “Palette” with current DAC-palette}
  Move(Palette,Destpal,768);    {save palette}
  FillChar(Palette,768,0);      {delete old palette}
  SetPal;                       {and set}
  Draw_Ansi(‘color.ans’);       {load wallpaper}
  ReadLn;
  fade_in(Destpal);             {fade to destination pal (original palette)}
  ReadLn;
  TextMode(3);                  {establish normal state}
End.

The main element of this program is the procedure fade_in . It receives the target palette as a parameter.
The image will have this palette when the fade is completed. The current palette is assumed to be black.

The main loop of this procedure runs 64 times, when the brightest of whites will be fully visible. The loop
calculates the new palette each time through and sends it to the VGA. The calculation is very simple: Each
individual color-value is checked to see whether it is still below the target value. If so, the value is
incremented, otherwise it stays at the target value (which cannot be exceeded).

The main program in FADE IN.PAS simply constructs a test image which is then faded in. Before this,
however, it reads the current DAC palette (the future target palette) and stores it in Destpal . The palette
itself can then be switched to black, the starting point for the fade-in.

Fading to the target palette from any source

Until now we have faded from a palette to black or vice versa. What's missing is fading from one palette
to another. At first this doesn't seem to make much sense, resulting only in a step-wise distortion of image
colors. However, this process can produce a very interesting effect (including its use in overlays which we'll
discuss later).

For instance, what if at the very end of a demo you took the last image and slowly reduced it to black-and-
white? You could then display text with the credits for example.

Now we'll use the new procedure. We'll still need to fade to the black-and-white palette. The first problem
here is how is a black-and-white palette generated? Although we could use a BIOS function for this, it's too
slow and inflexible. Fortunately, however, we can easily copy its method.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

121

A color consisting of red, green and blue components is recalculated to black-and-white by adding the three
components and assigning this value to all three colors in the new palette. Mixing all three colors in equally
always produces a shade between black and white.

So how do we combine the colors? Simply letting all three colors flow in equal proportions won't give a
satisfactory result. This is because the human eye doesn't perceive all colors as equally bright. For example
a blue dot of maximum brightness appears darker than a green one.

The optimal ratio, which provides the most natural-looking
display, is 30% of the red component, 59% of the green
component and 11% of the blue component. This simple
calculation is performed by the procedure Make_bw from the
MODEXLIB.ASM module:

Procedure Make_bw;              {Reduces a palette to black-and-white}
Var i,sum:Word;                 {Valuation: 30% red, 59% green, 11% blue}
Begin
  For i:=0 to 255 do Begin
    Sum:=Round(WorkPal[i*3]*0.3 + WorkPal[i*3+1]*0.59 + WorkPal[i*3+2]*0.11);
    FillChar(WorkPal[i*3],3,Sum);  {Enter values}
  End;
End;

For each individual color, the loop first calculates the sum. It then uses FillChar to write it to all three
components. The program simply uses the Pascal floating-
point calculation To form the sum because speed is not the main
object. The rest is simple percentage calculation. The fade
procedure is illustrated in the FADE_TO.PAS example:

uses crt,ModeXLib,Tools;
var i:word;
    origpal,
    destinationpal:Array[0..767] of Byte;
begin
  ClrScr;
  GetPal;                       {load “Palette” with current DAC-palette}
  Move(Palette,OrigPal,768);    {save palette}
  Move(Palette,Destinationpal,768);    {set Destination-Palette}
  Draw_Ansi(‘color.ans’);       {load Ansi-picture}
  Make_bw(DestinationPal);             {DestinationPal to black/white}
  readkey;
  fade_to(DestinationPal,1);           {fade to black/white palette}
  ReadKey;
  fade_to(OrigPal,1);           {fade to original palette}
  ReadLn;
  TextMode(3);                  {normal state}
End.

This procedure uses a colored text screen which fades to black when a key is pressed and faces to color again
when another key is pressed.

To do this, GetPal  is used to load the current text mode palette. This palette is then stored in OrigPal  for
later use and in DestinationPal  for the black-and-white calculation.

Once the screen is initialized, a call to Make_bw recalculates DestinationPal  to black-and-white. At
this point nothing changes on the screen because only the array DestinationPal  is being modified. The

PCPCun
de

rg
ro

un
d

The procedure Make_bw
is part of the

MODEXLIB.ASM file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

You can find
FADE_TO.PAS

on the companion CD-ROM



122

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

actual call to fade_to  occurs after a key is pressed. Passed to this procedure is the target palette, or end
result. The only requirement is that the current palette displayed by the VGA is the same as the one in the
variable Palette .

Procedure fade_pal  uses another parameter as the step size to be used for fading. This determines the
speed of the entire process. As each image is built, each color
value is incremented/decremented by the amount given. The
larger the value the faster the image fades.

Procedure fade_to  itself is found in the MODEXLIB.ASM
module of the ModeXLib unit:

fade_to proc pascal far destinationpal:dword, length1:word, step:byte
;fades “palette” to “destinationpal”, passed by Pascal as array of byte !
local greatest:word
  mov ax,63                     ;calculate number of passes
  div step                      ;necessary to reach 63
  xor ah,ah
  mov greatest,ax               ;set number of loop passes
next_frame:
  les di,destinationpal         ;get offset holen, Pascal passes arrays far !
  lea si,palette                ;get offset of “palette”
  mov cx,768                    ;process 768 bytes

continue:
  mov al,[si]                   ;get value from current palette
  mov ah,[di]                   ;get value from destinationpal

  mov bl,ah
  sub bl,al                     ;difference to destination value
  cmp bl,step                   ;more than one step over ?
  jg up                         ;-> decrement
  neg bl                        ;difference
  cmp bl,step                   ;greater than negative step
  jg down
  mov al,ah                     ;destination reached, finally set

write:
  dec cx                        ;decrement color loop
  je finished                   ;0 ? -> finished
  mov [si],al                   ;write value in palette
  inc si                        ;select next value
  inc di
  jmp continue                  ;and continue
down:
  sub al,step                   ;decrement
  jmp write
up:
  add al,step                   ;increment
  jmp write
finished:                       ;palette calculated
  call waitretrace              ;synchronization
  call setpal                   ;set palette
  dec greatest                  ;all 63 passes finished ?
  jne next_frame                ;no -> continue
  ret
fade_to endp

PCPCun
de

rg
ro

un
d

The procedure fade_to
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

123

Next es:di is loaded with the palette pointer passed by Pascal. Only the offset is important here since the
palette lies in the data segment anyway; however, it cannot hurt to also load the ES register (or perhaps mov
di,destpal + 2 looks better to you).

The loop continue , which runs 768 times (256 colors * 3 components), loads AL with the current value of
the just-processed color and AH with the target value to be reached. Now only the fade direction needs to
be determined - up for increasing brightness or down for decreasing brightness. A simple comparison,
however, is not enough.

Imagine this situation: The initial value is 0, the target value is 15 and the step size is 2. After 7 passes through
the loop the current value is 14, which is too low and therefore must be incremented. It then becomes 16,
which is too high and so is set back to 14. The palette entry continuously oscillates fluctuates around a
particular value and never arrives at the target. This is disastrous, especially at fast fade rates and large step
sizes where the oscillations are correspondingly large as well.

The solution is to test whether the current value has approached the target value by less than one step size.
To do this the procedure simply forms the difference (in Register BL: if positively greater (JG, Jump if
Greater) than the step size, the value is still far above its target value and must be decremented. On the other
hand if the difference is less than (the amount is greater) a negative step size, the value must be incremented
(NEG BL can be used to compare with a positive step size). When neither condition exists, the target value
has been reached and the two values can be set equal to each other to eliminate the final small difference.

It makes no difference if you subtract the step size from the current value at Label down , add the step size
to the current value at Label up  or set both values equal to each other. Either way the path leads to write ,
which enters the new value into the palette and moves the pointer forward. When all 768 values have been
processed, the program branches from the inner loop to Label finished . Here, after synchronization, the
new palette is set and if greatest is still not 0, the next palette calculated (next_frame, following new image
(frame) construction).

Film techniques: Fading from one image to the next

When fading between images it's much more effective to fade-out the first image and then fade-in the next
image (unless you're intentionally making abrupt changes for effect). The procedures we've talked about
so far can already do this. However, you must create a gradual transition from one image to the next for
truly professional results.

As you can imagine, there are many "morphing" programs designed for this purpose. However, morphing
programs deal with fixed images where the morph process calculates the desired changes. This requires
enormous resources which occupy a great deal of room on both the hard drive and in memory.
Furthermore, they must be copied (slowly and tediously) into video RAM. This method is an alternative
to the real-time fade ins..

Fading in palette images (the graphic modes discussed are all palette-based) is basically a simple palette-
fade. It uses the procedure fade_to we talked about in the previous section. Only with complicated
metamorphoses, which combine image sections while moving at the same time, would you need to use
morphing software.

Basically then you just fade one palette to another. However since the images lie one on top of the other and
a change of image data (as in morphing) is out of the question due to speed considerations, the same image



124

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

data must represent different images depending on the palette. First, the source palette is active so the data
represents the source image. At the conclusion, the target palette is active and the same image data now
represents the target image. The intermediate steps are executed by the procedure fade_to .

This method raises two questions:

1. How do you manipulate image data so it will represent (depending on the palette) both the original,
or source, image as well as the target image?

2. How do you create a palette that generates different images from the same data?

Let's look at question 1 first. With this type of fade, we're working with a fundamentally different problem
than before. Until now, either the target color (fade-out) or the initial color (fade-in) was identical for all
pixels, specifically black. Now any color can be faded to any other color. Some red pixels will be green in
the target image, but some will later be blue.

Anyone familiar with the field of random combinational logic in mathematics recognizes what this means
for the number of colors. The number of possibilities resulting from a particular number of colors combined
with an equal number of different colors amounts to the number of colors squared. Each combination must
be included in the fading and therefore requires an entry in the palette. To convert a two-color image to
another two-color image, 4 palette entries are needed (Color 0 to Color 0, staying the same, Color 0 to Color
1, 1 to 0 and 1 to 1). So, with only two four-color images, 16 entries are already required.

Since VGA has only one palette consisting of 256 colors, the largest number of colors you can have without
changing image data is 16. For multiple flicker-free fades, however, this number (as we'll explain later) is
further reduced to 15.

Based on these combination possibilities, we can now derive a method for mixing the images. Because each
combination must be represented, we use N blocks of N entries each, where N represents the number of
colors per image. The block number corresponds to the target color, while the index within the block
corresponds to the source color. A different way is also possible but that would unnecessarily complicate
the reset (explained below). To determine the color number simply use the following formula:

color number := target color * number of colors + source color

You may already be familiar with this principle. The same method is used to convert a hexadecimal byte
to a decimal number: Upper nibble (higher-order position)*16 + lower nibble. With 16 colors this would
increase the speed tremendously: Simply load the target color in the upper nibble and the source color in
the lower nibble to obtain the color value you need. The only problem with this is that instead of 16 colors
we can only use a maximum of 15, so we must stay with the difficult multiplication. Fortunately, the part
of the program handling the multiplication is not time-critical and creates at most a barely noticeable delay
prior to the actual fade.

The following illustration shows the block setup for two four-color images fading into each other:



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

125

Color
value

0

Color
value

1

Color
value

2

Color
value

3

Color
value

4

Color
value

5

Color
value

6

Color
value

7

Color
value

8

Color
value

9

Color
value

10

Color
value

11

Color
value

12

Color
value

13

Color
value

14

Color
value

15

Source
color

0

Source
color

1

Source
color

2

Source
color

0

Source
color

3

Source
color

0

Source
color

1

Source
color

1

Source
color

1

Source
color

2

Source
color

2

Source
color

2

Source
color

3

Source
color

3

Source
color

3

Source
color

0

Line color 0

Block 0

Line color 1

Block 1

Line color 2

Block 2

Line color 3

Block 3

Color palette for fading

This illustration answers the second, still outstanding, question about palette organization. The block
structure corresponds exactly to the palette structure. The source palette (of size 1 block) is copied the same
number of times as the number of colors - creating exactly identical source blocks - while the target palette
is expanded to its full size. This is done by individually multiplying each color so all the blocks in this palette
are homogeneous.

Note this effect does not require multiple video pages or copying precalculated pages to the screen.
Manipulation can take place directly on the screen.

You should be aware however the visible image doesn't change during the modifications (palette-
generation and mixing). Otherwise, the image would flicker. Since the image cannot change there are two
points to consider: First, the active palette can be changed only in areas where colors are not currently on
the screen. Second, when changing the image data the palette must already be initialized so the modified
pixels can again assume their original colors. So, if a red pixel, for example of Color 3, is to be set to Color
23, you must make certain that Color 23 already contains red, so nothing changes on the screen.

Next is the order of procedure calls to be maintained when fading:

1. Initialize palettes, changing only inactive colors

2. Mix image data, no change yet visible

3. Fade palettes into each other.

The requirement that only inactive palette areas can be changed results in adding an extra color block. This
block initially contains the source colors, used by the source image. Since a four-color source image
normally uses Colors 0 to 3, the new block will also be at this location. To generate the source palette (in this
case copy the block four times), the block is taken as the initial palette and multiplied. The block itself does
not change, so at this point nothing happens on the screen.

This block, which is known as the Reset-Block, has another important task to accomplish. Once the fade has
executed, the visible image now has a much larger palette than either of the original images, specifically the
number of colors squared. You'll have a problem if you want to fade-to yet another image because the
maximum number of colors is 15. Fortunately, the target blocks are homogeneous which means all the
colors in each block have the same contents and can therefore be replaced. There are only four different
colors in our example, after all, on the monitor.

To reduce these many colors to a fadeable palette, you would again use the Reset-Block, which should
already contain the source palette. This is also why it's called the Reset-Block. The greatly expanded image
data is reduced, or reset, to this block. After the fade the Reset Block contains the actual target palette, so
only the image data needs to be recalculated.



126

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

This calculation is very simple because only the expansion needs to be reversed to go back to the actual
target color. To obtain the block number and therefore also the target color, simply divide by the number
of colors. As with all such operations, you must still subtract the Reset-Block.

The Reset-Block is also the reason the number of colors must be limited to 15. In addition to the palette
entries required for fading (n^2, n represents the number of related colors), a Reset-Block is also needed,
which again must contain n colors. In the end, fading two images requires n*n+n or (n+1)*n palette entries.
With 16 colors this would amount to 16*17 = 272 palette values, which unfortunately VGA does not provide.
Therefore 15 color images are the most that can be faded into each other, requiring 15*16=240 colors.

It often makes sense to restrict the colors even further to free unused colors at the upper palette end. You
can then use these colors for static image sections, such as a fixed logo underneath which texts are faded
into each other. Only colors from the very top of the palette can be used for the static image because the lower
ones are already used for fading.

In mixing the two images, the new palette entry is calculated according to the above formula and rewritten
to VGA-RAM. Remember, in practice only another block number is written the index within the block
(corresponding to the source color) does not change. Since at this point all the blocks have the same contents,
nothing changes on the screen.

At the end, the current palette (which originates from copying the source palette), is faded to the expanded
target palette, so all blocks are homogeneous and contain the target color. The target image then becomes
visible. Only the fading itself makes the changes visible, so this is the only time-critical phase. The procedure
we are using, fade_to , is very speedy however. For each image construction only the palette registers are
reloaded; this is much faster than changing the image data itself.

We're including the following as an introductory fade
application. The program, called FADE_OVE.PAS, uses the
FADE.PAS unit which we will describe below.

uses Crt,ModeXLib,gif,fade;
Var pic1_pal,                   {palettes of both pictures}
    pic2_pal:Array[0..767] of Byte;
    pic1,                       {contains 1st picture}
    pic2:Pointer;               {2nd picture, equals vscreen}

Begin
  Init_Mode13;                  {Mode 13h on}
  Screen_off;                   {screen off during loading}
  LoadGif('chess');             {load first picture}
  GetMem(pic1,64000);           {get memory for 1st picture}
  Move(vscreen^,pic1^,64000);   {save in pic1}
  Move(Palette,pic1_pal,768);   {and save the palette}
  Show_Pic13;                   {this picture on screen}
  LoadGif('box');               {load next in vscreen^ }
  pic2:=vscreen;                {pic2 used as a pointer to it}
  Move(Palette,pic2_pal,768);   {save its palette}
  Move(pic1_pal,Palette,768);   {enable palette of picture 1}
  SetPal;                       {and set}
  Screen_on;                    {switch screen back on now}
  ReadLn;                       {wait}
  Fade1(pic2,pic2_pal,0,0,200);
                                {and then fade in picture 2)}
  fade_ResetPic(0,200);         {prepare renewed fading}
  ReadLn;

PCPCun
de

rg
ro

un
d

You can find
FADE_OVE.PAS

on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

127

  Fade1(pic1,pic1_pal,0,0,200);
                                {and fade in picture 1}
  ReadLn;
  TextMode(3);
End.

This program fades two completely different GIF images into each other. It requires two variables. Variable
pic1  contains a pointer to the image data of the first image in main memory (this pointer must first be
allocated). Variable pic2 points to the second image - here an allocated block of proper size already exists
in main memory (vscreen). For clarity, however, we'll continue referring to the pointer pic2 .

The two individual palettes are stored in the variables pic1_pal  and pic2_pal .

After turning on Mode 13h the program disables the screen because the palette changes during loading. A
professional looking demo might display a blank screen during the loading process.

The first image is loaded and moved to address pic1  (previously allocated); its palette is stored in
pic1_pal .

The second image is loaded after the first image has been copied to VGA RAM. This image is found in
vscreen for the remainder of the program. However, we'll use its equivalent, the pointer pic2 , which
at this point must still be allocated. Once the second palette has also been stored in a variable, the program
activates the first palette (copies it to Palette ) and sends it to the VGA (setpal ). The screen can now be
turned on again.

The fading itself occurs in the procedure Fade . It receives the following parameters:

Ø The target image's address

Ø Its palette

Ø The y-coordinate within the target image

Ø The y-coordinate to which the target image should be copied

Ø The height of the target image

The last three values have no direct function so far in this program because they describe the copying of a
complete image. The first two parameters contain values for the second image (the image being faded to).

After fading, the image is reset to enable another fade. We also pass a y-coordinate within VGA-RAM here
and a height although they still perform no function. The program then fades back to the original image and
ends.

The central command of this program is the call to the procedure
Fade1 . This procedure, found in the unit Fade, combines all the
tasks necessary for fading.

Unit fade;
{used to fade a picture (part) that has just been displayed into a new one}
Interface
Uses ModeXLib;
Var Colors:Word;                {Number of colors per single frame}

Procedure fade_ResetPic(y,Height:Word);

PCPCun
de

rg
ro

un
d

You can find
FADE_OVE.PAS

on the companion CD-ROM



128

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

Procedure Fade1(Pic:Pointer;Pal:Array of Byte; Start,y,Height:Word);

Implementation
Var i,j:Word;                   {temporary counter}
    Destination_Pal:Array[0..768] of Byte;  {temporary destination palette}

Procedure fade_set(Source:Pointer;Start,y,Height:Word);external;
{"mixes" source with VGA-Ram}
{use source beginning at Start line and VGA-Ram beginning at y line at height of Height}
Procedure fade_ResetPic(y,Height:Word);external;
{prepares faded picture for another fade}
{reduction of "Colors^2" to "Colors" colors}
{here again y=line in VGA-Ram, Height=Height of area to be edited}
{$l fade}

Procedure fade_CopyPal;
{multiply palette on Colors^2 (multiply non-homogenous Block 0)}
Begin
  For i:=1 to Colors do
    Move(Palette[0],Palette[i*3*Colors],Colors*3);
End;

Procedure fade_spread(Var Pal:Array of Byte);
{spread palette to Colors^2 (multiply each color separately)}
{the homogenous blocks are formed here from the colors 0..Colors-1}
Begin
  For i:= 0 to Colors-1 do      {edit each color separately}
    For j:=0 to Colors -1 do    {write Colors once each time}
      Move(Pal[i*3],Pal[(i+1)*3*Colors+j*3],3);
End;

Procedure Fade1(Pic:Pointer;Pal:Array of Byte; Start,y,Height:Word);
{Fades from current visible picture to Pic (with Palette Pal). During
this process, in the "Start" row, the program begins copying "Height"
rows to the y-coordinate y of the current picture.}
Begin
  WaitRetrace;                  {synchronization}
  fade_CopyPal;                 {multiply block in current palette}
  SetPal;                       {reset this palette}
  Move(Palette,Destination_Pal,768);   {keep original palette parts}
  Move(pal,Destination_Pal,Colors*3);  {load destination palette}
  fade_spread(Destination_pal);      {spread destination palette blocks}
  fade_set(pic,start,y,height);  {mix in new picture}
  fade_to(Destination_pal,1);          {and fade}
End;
Begin
  Colors:=15;                   {only default value !}
End.

The only global variable in this unit is Colors , which gives the number of colors in each individual image.
When fading two 15 color images into each other this value equals 15 (the default value).

The entire fade process is controlled by the procedure Fade1 . To eliminate flickering, it first waits for a
retrace. The procedure then takes the source palette, which is actually the current palette (in the variable
Palette ), and copies it to initialize it for fading. This palette is then set (no change occurs on the screen
because only inactive palette entries are being changed).

The target palette is assembled by the two Move statements which follow. The current palette is taken as
the source palette so static image sections, which use entries at the very end of the palette, are also



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

129

represented in the target palette. The palette passed in the variable pal  then goes into the lower area (Colors
entries of 3 bytes each). This lower area is expanded and initialized for fading by fade_spread .

The actual image data is mixed in fade_set , so depending on the palette the data will represent either the
source or the target image. Finally, the actual fade to the target palette takes place, using the familiar
fade_to procedure, and the target image slowly appears on the screen.

The unit contains two internal Pascal procedures fade_CopyPal  and fade_spread . Since speed is not
important here, we've kept these procedures in Pascal for greater clarity. fade_CopyPal  initializes the
source palette (contained in Palette) by copying the Reset-Block (Colors 0 to Colors -1) Colors times. The
loop simply copies Colors *3 bytes to the block positions Colors times.

fade_spread  is slightly more complicated. Each color must be expanded to one block. The program
accomplishes this through two nested loops. The outer loop (counter i) expands each color (from 0 to Colors
-1) to the necessary width. The j loop is inside this loop. It generates Colors copies of each color, lying
directly one behind the other within the block. Now the block corresponding to a particular color is filled
with this exact color. The Move statement is responsible for the filling, whereby the active color (at palette
position i*3) is copied to each position (j*3) within the current
block ((i+1)*3*Colors).

Besides these Pascal procedures, the unit also uses two Assembler
procedures from the module FADE.ASM: fade_set  and
fade_ResetPic .

data segment public
  extrn colors:word
data ends
code segment public
assume cs:code,ds:data
public fade_set,fade_ResetPic
col db 0                        ;code segment pendant to colors

fade_set proc pascal near source:dword, start:word, y:word, height:word
  mov ax,colors                 ;colors entered in code segment variable col
  mov col,al
   push ds
  mov ax,word ptr source + 2    ;source pointer to ds:si
  mov ds,ax
  mov si,word ptr source
  mov ax,320                    ;start address within the source image
  mul start
  add si,ax
  mov ax,0a000h                 ;destination pointer 0a000:0 to es:di
  mov es,ax
  mov ax,320                    ;start address within the destination image
  mul y
  mov di,ax
  mov ax,320                    ;convert height to number bytes
  imul height
  mov cx,ax
lp:                             ;main loop
  lodsb                         ;destination value in al
  mul col                       ;calculate new color value
  add al,es:[di]                ;add current value
  add al,col
  stosb                         ;and write back

PCPCun
de

rg
ro

un
d

You can find
FADE.ASM

on the companion CD-ROM



130

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

  dec cx                        ;all pixels copied ?
  jne lp
  pop ds
  ret
fade_set endp

fade_ResetPic proc pascal far y:word, height:word
  mov ax,0a000h                 ;VGA address 0a000:0 to es:di
  mov es,ax
  mov ax,320                    ;take row y into consideration
  mul y
  mov di,ax
  mov ax,320                    ;calculate number bytes to be processed
  mul height
  mov cx,ax
res_lp:
  mov al,es:[di]                ;get value
  xor ah,ah                     ;clear ah during division !
  div byte ptr colors           ;calculate block number
  dec al                        ;remove reset block
  stosb                         ;write back
  dec cx                        ;all pixels finished ?
  jne res_lp                    ;no, then continue
  ret
fade_ResetPic endp
code ends
end

These procedures also refer to the global variable Colors , which is listed here in the data segment. In the
meantime because of changes made to ds, fade_set  can no longer access this variable and must therefore
use the code-segment variable col .

To do this fade_set  first copies the contents of Colors to Col , whereby ds is now free to accept the target
pointer (segment component). Si then receives the offset of the target image (image data). Here you must
consider the starting coordinate, which gives the line from which the target image is read. This offset is
calculated by multiplying by 320 and is then added to si.

Next the pointer es:di receives the VGA address, where the segment is simply the VGA-RAM start-segment.
As with the target image, the offset is calculated by multiplying the y-coordinate by 320.

Finally, cx also receives a value, which is the height multiplied by 320. The procedure then enters the main
loop lp.

Here the procedure reads the target value from the target image (ds:si). This value corresponds to the block
number. It must, therefore, be multiplied by the number of colors. As an offset within the block, the source
image color is read from video RAM and added on.

After writing this value back, the loop ends by decrementing cx and performing the required branch.

The second procedure in the assembler portion is fade_ResetPic . It reduces the visible image back to
Colors colors once the fade is complete. Using the block number, which corresponds to the target color,
the colors are reduced to the Reset-Block (color numbers 0 to Colors -1).

Here again, a pointer to VGA-RAM at the corresponding y-coordinate is stored in es:di, and based on the
height cx receives the number of passes through the loop.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

131

The main loop in this procedure is res_lp . It reads a value from video RAM, calculates its block number
by dividing by the number of colors and rewrites the value. Again it must consider the Reset-Block, which
keeps block numbers in the range 1 to Colors . They must, however, return to their actual color values
in the range 0 to Colors -1. The loop then closes and the procedure ends.

In our example a full 15-color image was faded into another 15-color image, involving (almost) the entire
color palette. Reducing the number of colors to 14 for example, gives you colors at the upper end of the
palette which are unaffected by the fading. You can then use these colors to display static image sections
which remain unchanged during the fading.

This is one way of displaying credits for a demo. A small image
(say, a screen shot) is faded in for each demo section. Then text
of the credits are faded into each other in the bottom half of the
screen.

You can see this process in the program FADE_TXT.PAS:

Uses Crt,Gif,ModeXLib,Fade;
Var
  Text_Pal:Array[0..767] of Byte;
  i:word;
Begin
  Init_Mode13;                  {use Mode 13h}
  Screen_Off;                   {screen off during loading}
  LoadGif('vflog210');          {load static part}
  Move(Palette[210*3],          {its palette part (colors 210..255)}
  Text_Pal[210*3],46*3);        {enter}
  Show_Pic13;                   {copy static picture to VGA}
  LoadGif('texts');             {load picture with texts}
  Move(Palette,Text_Pal,14*3);  {its palette part (colors 0..13)}
                                {enter}
  Move(Text_Pal,Palette,768);   {set finished palette}
  SetPal;
  Move(vscreen^,                {first text can be copied}
    Ptr($a000,160*320)^,19*320);{directly to screen}
  Screen_On;                    {picture now finished -> switch on}
  Colors:=14;                   {pictures with 14 colors in this program !}
  For i:=1 to 6 do Begin        {fade to the next 6 texts, one after the other}
    Delay(500);                 {time to read}
    Fade1(vscreen,              {fade next picture to old location (y=160)}
      text_pal,i*20,160,19);
    Fade_ResetPic(160,19);      {and "reset"}
    If KeyPressed Then Exit;    {anyone who has had enough can cancel here}
  End;
  Readln;
  TextMode(3);
End.

This program first loads the static portion onto the screen, and writes its contribution to the total palette into
the variable Text_Pal . The image with the texts is then loaded into vscreen and its palette section copied
to Text_Pal , after which the palette is loaded and set.

The program next copies the first text portion directly to video RAM, because a fade is not yet required. Once
the image is switched back on, the main loop begins. For each of the remaining six texts the following occurs:
First, the program waits for half a second to give the viewer time to read. The text is then faded in, this time
using the coordinates in the call to Fade1 . The program copies from the target image starting at Line i*20,

PCPCun
de

rg
ro

un
d

You can find
FADE_TXT.PAS

on the companion CD-ROM



132

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

because in this example the texts begin at y-coordinates 0,20,40, etc. They're all 19 pixels high and are faded
in at screen line 160.

The same coordinates are again used in the call to Fade_ResetPic . At the end comes a (not very
structured) wait for a keypress, enabling the user to exit.

When developing your own images for this effect, the correct palette distribution is important. For images
being faded the maximum number of colors is 15 images with more colors need to be reduced. In all cases
these colors must lie in the lowest area of the palette (0..Colors -1).

The following formula gives the number of colors for the static image:

static colors = 256 - dynamic colors * (dynamic colors+1)

The static colors must always lie at the upper end of the palette, because only this area remains unchanged
during fading.

Therefore when fading 15-color images back and forth, at the end of the palette there are 256-15*16 = 16
colors left over for static images (Colors 240 to 255). In a 13-color fade there are 256-13*14 = 74 colors (Colors
182 to 255).

The faster alternative: Animation through palette rotation

So far in this chapter we've talked about using simple palette modifications to change large areas of the
screen in a single step. We can extend this advantage of palette-based graphic modes to animations. Images
in a true animation not only fade-in and fade-out but actually move across the screen.

How is this possible? As a simple example, let's take a red pixel and move it ten pixels from left to right. To
do this, just draw ten pixels next to each other, each with a different (adjacent in the palette) color, in this
example Colors 0 to 9. Now if you set Color 0 to red and the other nine colors to black, only the first of the
ten pixels will be visible. Now shift the palette up by one, so Color 1 is red and Colors 0 and 2 through 9 are
black. The second pixel becomes visible and the first disappears.

Continue to shift the palette and the pixel will travel across the screen from left to right, without a single
byte changing in video RAM (once the ten pixels are initialized). When the red entry arrives at the upper
end (Color 9), you can set it back to Color 0 and thereby creating a cyclic animation where the pixel
continually moves from left to right and jumps again to the left. You can also reverse the motion at the end
so the pixel moves back and forth.

This method obviously makes little sense for a single pixel. Instead of two bytes being changed in video
RAM (clear old pixel, set new one), you're already resetting ten color-values using relatively slow accesses
to a port. A much more efficient method with large and/or complicated images is palette rotation. We
recommend using palette rotation with either a high number of pixels or complex mathematical descriptions
of motion are involved.

You must format larger areas before they can be moved. These areas cannot consist of just one palette color,
instead the colors must flow in the direction of motion. You are, in effect, moving line by line. The following
illustration shows how this is done:



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

133

Color 0 Color 0

Color 1 Color 1

Color 2 Color 2

Color 3 Color 3

Color 0 Color 0

red

blue

red

red

blue

red

Color configuration for motion

We're scrolling up through blocks 2 pixels in height. The principle is exactly the same for larger blocks and
more complex structures. The sample image contains two-and-a-half blocks, alternately colored red and
blue. The number of blocks makes no difference; you can expand the image up and down as far as you like
but the order of colors must be maintained. Fractions of blocks are also possible.

The structure of the overall image is periodic, in other words, it repeats itself after two blocks. Therefore two
blocks are filled using a constant color progression from Colors 0 to 3. In the palette, Colors 0 and 1 are set
to red and Colors 2 and 3 to blue. These initializations are best made in a paint-program, so all our program
needs to worry about is the motion itself.

You generate this motion by shifting the (partial) palette one position downward over the range 0 to 3. Color
0 receives the color from Color 1, Color 1 the one from Color 2, Color 2 the one from Color 3 and Color 3
the one from Color 0, therefore creating a rotation. As you can see in the illustration, the red and blue areas
are shifted up by one line, exactly as we intended.

This method of scrolling doesn't make too much sense either, since you can just as easily do the same thing
by changing the screen-start address (Linear Starting Address). The simple block structure of our example
becomes interesting only when you add effects. For example, if you construct a chessboard out of these
blocks and use a paint program to rotate it backward slightly, palette rotation will give you a backward
scrolling or forward scrolling plane. Programming this conventionally through pixel manipulation
requires far too much calculation. So leave the calculating to the paint program, and all your program needs
to do is move a few bytes in memory and set the palette.

A further advantage is that objects can be placed freely in front of the scrolling-plane. Normally you would
have to copy the objects there with each image construction, using a (relatively slow) sprite routine. With
this technique the objects can be static within the image.

When creating such images, in all cases, you must have a palette-based paint program. Unfortunately, most
of today's Windows paint programs are based on TrueColor, which makes it impossible to tell what palette
color a pixel will later assume. For coherent color progressions, you need direct control over the palette.

We created the PALROT.GIF sample image in Deluxe Paint II Enhanced. This program handles perspectives
and direct palette manipulations. First, a black-and-white chessboard was drawn. We then filled all white
blocks with Colors 16 to 31 (color progression red to blue) and all black blocks with Colors 32 to 47. You can



134

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

now freely manipulate this chessboard. Its graphic presentation has no affect on the palette rotation; in our
example we have angled it backward so it represents a plane.

Notice the logo above the chessboard. It occupies unused areas at the upper end of the palette. Above the
chessboard and to the right you see a slightly different application of palette rotation often used in
adventure scenes called a fountain. The fountain uses Colors 48 to 63, with a progression from black to blue.
When placed in front of a black background, this color combination creates the impression of flowing water.

The last effect in this image is a red "radar screen". This is generated with a circular color progression from
Color 64 to 88. This color progression consists of 25 concentric circles which have adjacent color-values.
Only Colors 64 and 80 are set to red in the palette. The remaining colors are set to black. When these two
red color-rings are rotated, they move across the rings with Colors 64 through 80, and generate expanding
concentric circles.

For basic control of effects, Deluxe Paint has a function called Rotate color, which (very slowly) carries out
a rotation. But how do you generate this effect in your own programs? Here we present the procedure
Pal_Rot , from MODEXLIB.ASM module, which receives the
area to be rotated as a parameter. In the normal case, the area in
question shifts downward by one position (toward lower color
numbers), and the lowest color moves back to the top. However,
if the first limit passed is larger than the second, the procedure
rotates upward:

Pal_Rot proc pascal far Start,End1:Word
                                ;rotates palette part by 1 from start to end1
                                ;if start < end1 : rotation down
                                ;if start > end1 : rotation up

  mov ax,ds                     ;es to data segment
  mov es,ax

  lea si,palette                ;set palette offset
  mov di,si                     ;also to di

  mov ax,3                      ;convert "start" to palette offset  '
  mul start
  add si,ax                     ;and add to si
  mov ax,3                      ;same for destination
  mul end1
  add di,ax                     ;add to di
  mov bx,[si]                   ;store bytes of start color
  mov dl,[si+2]
  mov cx,di                     ;difference between start and end is number
  sub cx,si                     ;bytes to be copied
  mov di,si                     ;start color as destination offset
  add si,3                      ;one color above as source offset
                                ;ready for forward copying
  cld                           ;default: forward copy
  or cx,cx                      ;if cx negative (start > end1)
  jns forward
  std                           ;then backwards copy
  neg cx                        ;correct cx
  sub si,4                      ;si to 2nd byte of penultimate color
  add di,2                      ;di to 2nd byte of last color
  add cx,2                      ;copy 2 bytes more,
forward:                        ;so that position is correct after copy loop

PCPCun
de

rg
ro

un
d

The procedure Pal_Rot
is part of the

MODEXLIB.ASM file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

135

  rep movsb                     ;copy colors
  mov [di],bx                   ;bytes of old start color
  mov [di+2],dl               ;write as last color

  cld                        ;clear direction-flag again
  ret
Pal_Rot Endp

Once the passed color-value is converted to byte-offsets, the starting color needs to be stored because the
remaining colors will shift toward it and overwrite it.

The number of bytes to be shifted equals the difference between the two offsets, which is calculated below.
To initialize the shift itself, di is set to the initial offset since the shift proceeds in that direction. Assuming
a forward shift, si is set to the following color, which in the first step is copied to the staring color.

If Start is greater than End  (number of bytes to be copied is negative), the copying proceeds upwards
and certain registers need to be adjusted. First, the Direction-flag is set because with overlapping source and
destination areas, a memory shift from bottom to top means the program must copy backwards. Otherwise,
the copied values would overwrite the uncopied ones, giving you at best a very ineffective algorithm for
filling a memory area.

Also, since cx is negative, you need to reverse its sign. Next si and di must be properly aligned, because si
at this point is on the color-value immediately following the palette area (it was moved there previously
with add si,3, which is correct for forward copying). Now si must be set to the last byte of the second-to-
last color (the last byte because rep movsb copies backward). Also, di must point to the last (second) byte
of the last color so this color and the ones below it from top to bottom are filled.

Due to this positioning, when the copying ends di does not point to the lowest color. You can fix this by
inserting a copy-direction inquiry after the loop and adjusting di accordingly, but it's easier to just copy two
more bytes and after the copy-loop, replace them with the stored start-color bytes. This loop and the
replacement of the copy-loop are again identical for both directions, and therefore follow directly after the
label forward  . Finally, the Direction-flag is cleared to avoid
confusion in other procedures from incorrect string-directions.

The companion CD-ROM includes the sample program
PALROT.PAS, which uses the image PALROT.GIF:

Uses Crt,ModeXLib,Gif;
Var slow_flag:Boolean;          {for controlling the slow progressions}

Begin
  Init_Mode13;                  {Mode 13h on}
  LoadGif('palrot');            {load and display image}
  Show_Pic13;
  Repeat
    Pal_Rot(16,47);             {move "chess board"}
    If slow_flag Then Begin     {with every other progression:}
      Pal_Rot(63,48);           {move "fountain"}
      Pal_Rot(88,64);           {move "radar"}
    End;
    slow_flag:=not slow_flag;   {alternating "fountain" and "radar"}
                                {enable and lock}
    WaitRetrace;                {synchronization}

PCPCun
de

rg
ro

un
d

You can find
PALROT.PAS

on the companion CD-ROM



136

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

    SetPal;                     {set rotated palette}
  Until KeyPressed;             {until keypress}
  TextMode(3);
End.

This program loads the image onto the Mode 13h screen and in a loop, rotates through the palette areas of
each effect in the corresponding direction. To experiment with these directions, switch the values passed
to Pal_Rot .

While the chessboard scrolls at full speed, this is too fast for the fountain and radar screen; the palette
sections for these are rotated only every other pass through the loop. This is controlled by the Boolean
variable slow_flag  which alternates between TRUE and FALSE).

Blazing Monitors: FIRE!

Watching a "blazing" fire on your screen may not seem so special today as it would have been a few years
ago. These flames, however, are based on painted images played consecutively one after the other. We'll
also talk about another option often used in demos which directly imitates the structure of the flames.

There are two important points to consider here: A fire continually moves upward. Also, fire starts out
white at the bottom and fades more towards red as it nears the
top. The program FLAMES.PAS illustrates the procedure. Two
buffers are required to reproduce the video RAM (or its lower
half) in fast system RAM.

The procedures  Show_Screen , Prep_Pal  and the main program are very easy to understand:

Procedure Show_Screen;          {copies finished screen to VGA}
Var temp:Pointer;               {for exchanging pointers}
Begin
asm
  push ds
  lds si,Dest_Frame             {finished picture as source}
  mov ax,0a000h                 {VGA as destination}
  mov es,ax
  mov di,320*100                {starting at line 100}
  mov cx,320*100/4              {copy 100 lines as Dwords}
db 66h                          {Operand Size Prefix (32 Bit)}
  rep movsw                     {copy}
  pop ds
End;
  temp:=Dest_Frame;             {exchange pointers to source and destination pictures}
  Dest_Frame:=Src_Frame;
  Src_Frame:=temp;
End;

Procedure Prep_Pal;             {prepare palette for flames}
Var i:Word;
Begin
  FillChar(Palette,80*3,0);     {foundation: all black}
  For i:=0 to 7 do Begin
    Palette[i*3+2]:=i*2;        {color 0-7: increase blue}
    Palette[(i+8)*3+2]:=16-i*2; {color 0-7: decreasing blue}
  End;
  For i:=8 to 31 do             {color 8 -31: increase red}

PCPCun
de

rg
ro

un
d

The procedure Show_Screen
is part of the

FLAMES.PAS file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

137

    Palette[i*3]:=(i-8)*63 div 23;
  For i:=32 to 55 do Begin      {color 32-55: increase green, red constant}
    Palette[i*3]:=63;
    Palette[i*3+1]:=(i-32)*63 div 23;
  End;
  For i:=56 to 79 do Begin      {color 56-79: increase blue, red and blue const.}
    Palette[i*3]:=63;
    Palette[i*3+1]:=63;
    Palette[i*3+2]:=(i-56)*63 div 23;
  End;
  FillChar(Palette[80*3],176*3,63);  {rest white}
  SetPal;                       {set finished palette}
End;

begin
  Randomize;                    {determine Random Seed}
  GetMem(Src_Frame,320*100);    {get memory for source picture and delete}
  FillChar(Src_Frame^,320*100,0);
  GetMem(Dest_Frame,320*100);   {get memory for destination picture and delete}
  FillChar(Dest_Frame^,320*100,0);
  Init_Mode13;                  {set Mode 13h}
  Prep_Pal;                     {prepare palette}
  Repeat
    Scroll_Up;                  {flames up}
    New_Line;                   {add new line at bottom}
    Show_Screen;                {show finished screen}
  Until KeyPressed;
  TextMode(3);

end.

The main program allocates and clears both buffers, turns on Mode 13h and initializes the palette for flames.
The result is shown in the following graphic:

Value

64

48

32

16

0 8 16 32 64 Color number

BlueGreenRed

WhiteYellowRed

Blue

Color palette for flames

Pixels with lower color numbers will later represent the cooler zones within the flames. These appear at the
left in the diagram above. As you read from right to left, i.e., from higher to lower temperatures, note the
following:



138

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

Initially, all color components are at maximum (= white). Starting at Color 80 the blue component gradually
disappears, so the appearance is somewhat more yellow. At Color 56 the green component is also
diminished, so only red remains. Once this color (starting at number 32) also fades out, the result normally
would be black. In this case, however, we add a small glimmer of blue (Colors 16 to 0), standing above the
red flames. To get rid of this you can simply delete the first loop from the procedure.

The main loop consists of three commands: Scroll_Up , New_Line  and Show_Screen . After the new
screen has been initialized in the buffer Dest_Frame , Show_Screen  moves it to the screen through a
simple (DWord) loop. The two buffer pointers are then switched
so the finished screen is used as the source the next time
through.

Scroll_Up  and New_Line  are the central procedures.

Procedure Scroll_Up;assembler;
{scrolls the picture one line up and interpolates}
asm
  push ds
  les di,Dest_Frame             {load pointer to destination picture}
  lds si,Src_Frame              {pointer to source picture}
  add si,320                    {in source picture on line 1}
  mov cx,320*98                 {scroll 99 lines}
  xor bl,bl                     {required as dummy for High-Byte}
@lp1:
  xor ax,ax
  xor bx,bx
  mov al,[si-321]               {get first point}
  mov bl,[si-320]               {add next point}
  add ax,bx
  mov bl,[si-319]               {add next point}
  add ax,bx
  mov bl,[si-1]                 {etc...}
  add ax,bx
  mov bl,[si+1]
  add ax,bx
  mov bl,[si+319]
  add ax,bx
  mov bl,[si+320]
  adc ax,bx
  mov bl,[si+321]
  adc ax,bx
  shr ax,3

  or ax,ax                      {already 0 ?}
  je @null
  dec al                        {if no, then decrease}
@null:
  stosb                         {value to destination}
  inc si                        {next point}
  dec cx                        {other points ?}
  jne @lp1
  pop ds
End;

Procedure New_Line;             {rebuilds the bottom lines}
Var i,x:Word;
Begin
  For x:=0 to 319 do Begin      {fill bottom 3 lines with random values}
    Dest_Frame^[97,x]:=Random(15)+64;

PCPCun
de

rg
ro

un
d

The procedure Scroll_Up
is part of the

FLAMES.PAS file
on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

139

    Dest_Frame^[98,x]:=Random(15)+64;
    Dest_Frame^[99,x]:=Random(15)+64;
  End;
  For i:=0 to Random(45) do Begin {insert random number Hotspots}
    x:=Random(320);             {to random coordinates}
    asm
      les di,Dest_Frame         {address destination picture}
      add di,98*320             {edit line 98 (second from bottom)}
      add di,x                  {add x-coordinate}
      mov al,0ffh               {brightest color}
      mov es:[di-321],al        {generate large Hotspot (9 points)}
      mov es:[di-320],al
      mov es:[di-319],al
      mov es:[di-1],al
      mov es:[di],al
      mov es:[di+1],al
      mov es:[di+319],al
      mov es:[di+320],al
      mov es:[di+321],al
    End;
  End;
End;

Scroll_Up  moves the sea of flames one position up and interpolating at the same time. In other words,
each new pixel is calculated from the average of its immediate surroundings. This is how the flames become
blurry and faded.

In loop @lp1, the procedure takes the eight adjacent pixels for each source pixel, sums them up and divides
by 8. This average is decremented by 1 so the flames won't flare up too high and then written to the
destination buffer.

New_Line  is responsible for adding new lines at the bottom screen border (the "embers" of the fire). The
first loop fills the bottom three lines with random values from 64 to 79. The second loop adds "hot spots",
very hot zones with flames shooting out. To do this, blocks of nine pixels are set to 255 so as you scroll
upward, they cool off very slowly and appear as glowing zones rising to the top.

The Secret Of Comanche: Voxel Spacing

A popular component of many demo programs and even a few games is voxel spacing. Using this effect, the
observer moves over an imaginary landscape with hills and valleys.

Although this is a very general description, many methods exist for displaying this effect. In fact, there is
likely to be as many algorithms as programmers who have already tried this effect. The procedure we show
here has no complex three-dimensional images, and relies instead on simple two-dimensional relationships.

Basically, the program takes a map and tips it on its side so the observer views it at an angle from above.
Altitude can now be represented by vertical lines of varying lengths.

The map, which depicts the high and low points of the landscape, is a simple 320 x 200 image with transitions
as smooth as possible. Color 0 represents the lowest point and Color 255 the highest.



140

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

In practice, two-dimensional projections depend on a fairly basic principle. As we know, objects farther
away appear smaller than objects closer to us. So when viewing a landscape through a frame (i.e., your
computer monitor) you'll find that more distant objects can fit in the frame than closer objects because the
distant objects are smaller. What you see will always be similar to the following illustration.

Example of a landscape drawn with voxel spacing

The rectangular frame shows the entire existing landscape from a bird's eye view. A trapezoid displays its
visible portion. All you need to do now is display this trapezoid on a rectangular screen section. This
rectangle must stretch the front horizontally so objects in this area appear larger. Any coordinates refer to
a projection on the lower screen-half of Mode X.

The trapezoidal projection is formed by steadily decreasing the number of pixels that fit onto one line. So,
the ratio of landscape size to screen-pixel size is continually decremented. The initial value is a 1:1 diagram,
with 80 pixels to a line (this resolution is used for speed). As the image is drawn the ratio becomes smaller
and smaller, until perhaps a 1:2 diagram is reached and only 40 pixels fit on the frontmost line.

In line-by-line display you must also remember the distance between lines always becomes smaller as you
move backward. Therefore, you should continually increase the line spacing when drawing from top to
bottom.

The only thing missing now is the altitude information for the image. As we mentioned, this involves taking
the color for each pixel and arranging a corresponding number of pixels one on top of the other. The greater
the color-value, the higher the pixel grows into a vertical line. This vertical structure also eliminates gaps
arising from the ever increasing line-spacing toward the front.

To make the scenery more realistic, you'll need to add bodies of water. Simply take all colors below a certain
value and set them to this value. This creates surfaces without a vertical structure.

The easiest way to generate the landscape is to use a fractal generator that can generate plasma-clouds.
FRACTINT is used for this purpose. Simply generate a plasma-field of resolution 320 x 200 and then load
the palette LANDSCAP.MAP (by pressing C L). The completed image can be saved with q S.

The program VOXEL.PAS redraws the scene in a loop in response
to mouse-movement (control is through mouse):

PCPCun
de

rg
ro

un
d

You can find
VOXEL.PAS

on the companion CD-ROM



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

141

{$G+}
Uses Crt,Gif,ModeXLib;
Var x,y:Integer;                {Coordinates of the trapezoid}

Procedure Draw_Voxel;external;
{$l voxel.obj}
Begin
  asm mov ax,0; int 33h End;    {reset mouse driver}
  Init_ModeX;                   {enable Mode X}
  LoadGif(‘landsc3’);           {load landscape}
  x:=195;                       {define start coordinate}
  y:=130;
  Repeat
    ClrX($0f);                  {clear screen}
    Draw_Voxel;                 {draw landscape}
    Switch;                     {activate completed video page}
    WaitRetrace;                {wait for retrace}
    asm
      mov ax,000bh              {Function 0bh: read relative coordinates}
      int 33h
      sar cx,2                  {Division by 2}
      sar dx,2
      add x,cx
      add y,dx
    End;
    If x < 0 Then x:=0; If x > 130 Then x:=130;
    If y < 0 Then y:=0; If y > 130 Then y:=130;
  Until KeyPressed;             {until key}
  TextMode(3);
End.

The central procedure is Draw_Voxel , found in Assembler module VOXEL.ASM:

data segment
  extrn vscreen:dword           ;pointer to landscape data
  extrn x,y: word               ;coordinates of trapezoid
  extrn vpage:word              ;current video page
data ends

code segment
assume cs:code,ds:data

;variables with fractional part (lower 8 bits):
offst dd 0                      ;current offset
step dd 0                       ;pixel size
row_start dd 0                  ;beginning of current row
row_step dd 0                   ;distance from next row

r_count dw 0                    ;counter for depth
shrink dw 0                     ;correction on lower screen border
row dd 0                        ;current screen row number
vpage_cs dw 0                   ;video page in the code segment

.386
public Draw_Voxel
Draw_Voxel proc pascal
;shows landscape on current video page
;reads data from vscreen starting from position (x/y)
  mov ax,vpage                  ;note number of video page
  mov vpage_cs,ax



142

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

  push ds
  mov ax,0a000h                 ;load destination segment
  mov es,ax
  mov ax,320                    ;calculate offset in landscape
  imul y
  add ax,x
  lds si,vscreen                ;take data from vscreen
  add si,ax                     ;add offset
  shl esi,8                     ;convert to fixed point number
  mov offst,esi                 ;initial values for pixel ...
  mov row_start,esi             ... and row
  mov step,100h                 ;first scaling factor 1
  mov row,100*256               ;begin in screen row 100
  mov row_step,14040h           ;distance of rows 320,25
  mov shrink,0                  ;first no correction
  mov r_count,160               ;number of rows to calculate

The first part initializes several important variables. We should mention Offst  and row_start  in
particular. Both form a fixed-point value in Bits 8-31 and following the decimal point in Bits 0-7), which
gives the offset of the current pixel or current line. After each pixel, Offst  is incremented by Step , moving
you one step further in the landscape; for example if Step  equals 080h (= 0.5), a new pixel is read from the
landscape every two steps.

row_start  and row_step  are similar: row_step  contains 14040, or 320.25 in decimal notation. After each
line this sets row_start  to the beginning of the next line and at the same time takes care of the narrowing
toward the front, by starting the next line a little farther to the right.

next_y:
  mov eax,row                   ;get current (screen) row number
  mov ebx,eax                   ;store
  shr eax,8                     ;convert to whole number
  add eax,50                    ;50 pixels down
  imul eax,80                   ;convert to offset
  mov di,ax                     ;store as destination pointer
  cmp di,199*80                 ;screen border exceeded ?
  jb normal
  mov di,199*80                 ;yes, then position on last row
  mov eax,row                   ;difference to bottom screen border
  shr eax,8
  sub eax,149
  mov shrink,ax                 ;and note as correction
normal:
  add di,vpage_cs               ;add current video page
  imul ebx,16500                ;multiply row number by 1,007
  shr ebx,14                    ;calculate * 16500 / 16384
  mov row,ebx                   ;and store

Here the program calculates an offset before each line. The variable row contains the current line on the
screen, which is converted to an offset. This line number should not be confused with row_Offst , which
represents the position within the landscape. row  represents the position on the screen. Even if the
calculated offset lies below the screen, drawing must still occur because the vertical lines of this pixel can
still project into the screen. The program handles this special case by again placing the destination pointer
di in the screen and shrinking the height of the bar (by the number of lines given in shrink ).

Now the increasing space between screen lines comes into play. The current y-coordinate of the screen is
found in the variable row , which is multiplied here by a factor of 1.007, so the lines continue to spread out
as they move forward.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

143

  mov bp,80                     ;number of pixels per row
next_x:
  mov esi,offst                 ;load current pixel offset
  shr esi,8                     ;convert to whole number
  xor eax,eax
  mov al,[si]                   ;load dot from landscape
  mov cx,ax                     ;store
  cmp cx,99                     ;color (=height) < 100
  ja fill_bar
  mov ax,99                     ;then set to 99

fill_bar:
  shl ax,5                      ;vanishing point projection: height * 32
  xor dx,dx
  push bp
  mov bp,r_count                ;divides by the distance
  add bp,50
  idiv bp
  pop bp
  sub ax,shrink                 ;perform correction
  jbe continue                  ;if <= 0, don’t even draw

For each pixel, the color at the current offset is read and the water level set to a minimum value of 99. The
counter z_count , which gives the distance of each line from the observer, is used to calculate the flight
perspective. This process will be discussed in Chapter 7. Finally, the height (stored in al) is decremented
by the value shrink , so the bottom screen border can be processed.

  push di
next_fill:
  mov es:[di],cl                ;Enter color
  sub di,80                     ;Address next higher line
  dec al                        ;Decrement counter
  jne next_fill                 ;Continue ?
  pop di

weiter:
  inc di                        ;Address next byte on screen
  mov esi,step                  ;Get step size
  add esi,offst                 ;Add up
  mov offst,esi                 ;and rewrite

  dec bp                        ;Next pixel
  jne next_x

  mov esi,row_step              ;Move line-start
  add esi,row_start
  mov row_start,esi
  mov offst,esi                 ;Also reload pixel-offset

  dec step                      ;Decrement scaling factor
  dec z_count                   ;Line counter continues
  jne next_y
  pop ds
  ret
Draw_Voxel endp

code ends
end



144

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

The loop next_Fill  now draws the vertical bar of the given size. The program then calculates the offset
of the next pixel and, if a new line is beginning, its offset as well. In addition, the step size Step is decremented
after each line to create the expansion in the foreground.

Enlarging Graphics: The Magnifying Glass Effect

In this section we'll talk about an effect that is similar to what happens in nature when light is refracted. In
MAGN.PAS use the mouse to move the cursor, shaped as a magnifying glass or "glass ball", across a GIF
image. The portion of the image immediately below the cursor is distorted, as you can see in the following
illustration:

Example of using the glass ball cursor over a GIF image

You can achieve several effects by simple reprogramming the VGA register, which saves a tremendous
amount of CPU time. However, VGA cannot help us with calculated images such as that under the glass
ball cursor. Instead, the CPU has to control all the plotting/imaging work. However, as long as you don't
overdo it with the size of the image area to be manipulated, you can manage with this (the glass ball cursor
will have a diameter of 49 pixels).

When the CPU calculates the data of the image to be displayed, make certain each point really does get
processed so gaps do not appear by recalculating: You run through each point of the destination image and
calculate the source point with which it corresponds. To do this, you have to reverse the mathematical
allocation.

Also, you have to use double-buffering to prevent flickering when the CPU is building the image. Double
buffering is a technique where data in one buffer is being processed while the next set of data is read into
the second buffer. If you don't use double buffering, you'll come into conflict with the physical refresh from
the cathode ray when you make changes to the image data.



Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

145

Many algorithms can describe the desired distortion. However, the physical correctness of the refraction
isn't as important as obtaining the fastest possible execution speed. Therefore, we'll use a simple
mathematical statement:

We'll use a unit circle (origin in (0/0), radius 1) as the shape of the magnifying glass. The radii of the original
and projected magnifying glass points are in quadratic ratio to each other; as a result, the area around the
center point becomes greatly lengthened while the outer area becomes compressed. Now all we have to do
is resolve this ratio to the root coordinates (rg: original, even coordinates, rl: distorted magnifying glass
coordinates).

Make certain the coordinates are in the interval [-1;1] by subtracting the radius of the magnifying glass
beforehand and then divide by this value. At a width of 48, 12 becomes:

xl = (12-24)/24 = -0,5)

You do the opposite with the result: Multiply it by the radius and then add it.

MAGN.PAS shows this effect. The algorithm is located in the
assembly routine MAGN.ASM. GIF.ASM includes a GIF loader
for the format 320*200*256. Although the GIF loader has
limitations (i.e., reading other formats and that it cannot even
read other color depths), it is very fast.

After allocating memory for the buffer and the background (Buffer  and BackGnd), graphic mode 13h is
set and the mouse driver is initialized. The image is loaded and stored in the background array. Next, use
the circle equation:

x2+y2=r2

to make certain the magnifying glass changes to a circular shape. It calculates where the drawing begins
and ends for each row (arrays Circle_Start ' and Circle_End ). The following loop takes the current
coordinates from the mouse driver and checks them. Next, the background is copied to the buffer to clear
the magnifying glass from the previous refresh and draw the new magnifying glass by calling MAGN.ASM.
After copying to video RAM, the loop closes with a keyboard inquiry.

Assembly procedure MAGN.ASM displays the magnifying
glass. The coordinates of the magnifying glass are passed to this
procedure is passed as parameters zx  and zy :

First, the procedure copies the circle array to the code segment
because the DS register (and the data segment) won't be available later. The outer loop begins after
calculating the destination address (Pascal array Buffer ) to the desired coordinates (zx /zy ) and loading
the source address (the background BackGnd). This loop increments the y-coordinate from 0 to 49.

By using this coordinate, the current offset is taken from array Circle_Start , added to Destination-
Offset . A t the same time it's used as the initialization value for the x-counter. Also, the end coordinate
of the row is loaded and stored temporarily in cur_End .

Now the x-loop implements the inferred calculation: The y-coordinate (y_count ) is reduced by 24 and
divided by 24. Meanwhile, the result is shifted to the left by 8 bits to allow for decimal places. The value must
range from -1 to 1 which includes the (hexadecimal) numbers ff00h - 0100h (e.g., in this case 0.5 would be

PCPCun
de

rg
ro

un
d

You can find
MAGN.PAS

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

You can find
MAGN.ASM

on the companion CD-ROM



146

Split-screen And Other Hot Effects

Chapter 5

PCPC
underground

080h). The result is temporarily stored in edx. Then the x-coordinate is converted in the same way and stored
in ecx.

Now the radicand of the root is calculated by squaring both coordinates separately and then adding them.
Function root  is in charge of extracting the root, and performs an approximation in accordance with the
formula

 xn+1=0,5*(xn+a/xn)

In this formula a is the radicand.

The result becomes the desired width again by multiplying it times 24 and then stored in edi. Now the root
is multiplied by y and then by x, which completes the formula (Note: the results have to be shifted to the
right by 16 bits to compensate for the squared 8 bit shift from before). Each of the destination coordinates
(zx /zy ) are added and the origin is shifted back to the upper left corner. The offset is calculated from these
two values and stored in esi.

Now di is also loaded and the pixel can be copied with movsb. Both loops are closed; after each row the
destination offset is switched by one row (320 bytes).

Assemble MAGN.ASM and GIF.ASM and compile MAGN.PAS. Now move the magnifying glass across
the screen with the mouse and see what happens.

Now it's your turn...it's really not too difficult to write your own small effect.



147

6.  Sprites: Rapid action on the screen

Sprites are most commonly used in video and action games. A sprite might appear as directional pointers
in games or as action figures. Anything on the screen which moves differently than the background picture
can be called a sprite. A sprite is defined as an independent graphic object which is controlled by its own
bit plane. Sprites move freely across the screen and can move or collide or even pass through each other.

Now that you have a general idea of what a sprite is, we'll see how you can program sprites.

The Basic Ideas Behind Sprites

To create your own sprites, you must first carefully consider their internal make-up. Actually, sprites are
simply graphic cut-outs that are positioned anywhere over a background picture. These sprites can be small
or large depending on the required computer effect.

Sprites must meet at least one more requirement: They need to be transparent in places so the background
can be seen through the sprite. This transparency is necessary for the "holes" inside the sprite as well as for
areas around the sprite's edges. Every sprite that is not a true rectangle needs transparent edges. Certain
forms such as circular forms or other irregular forms cannot be used due to speed considerations. Therefore,
only rectangular areas are usually used because the edges are filled. Otherwise, filled up rectangles will
always appear independent of their form.

Early computers such as the Commodore 64 or the Atari ST usually handled sprites quite easily with very
little programming...you only needed to specify the position of the sprite. The task is more complicated
when using a PC because the sprite is part of the VGA screen memory. Although this requires more
programming, it has many more advantages compared to the earlier home computers. The programmer
controls the layout completely and the size of the sprite is adjustable. Other advantages include scaling or
rotating sprites.

The following lists the three basic operational procedures you'll need to follow when presenting sprites:

1. Erase the sprite by copying the background picture onto the current screen page.

2. Movement and presentation of the sprite.

3. Switch to the completed page.

Before a sprite can be displayed at a new position, the previous one must first be erased from the screen.
You might attempt to copy the background, draw the sprite and then rewrite the background. However,
since this method requires an enormous amount of time and effort, it only makes sense when using one or
two sprites.

Sprites: Rapid 
Action On The 

Screen

Chapter 6

PCPC
underground



148

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

First, it is only practical to make a single copy of the background in video memory where there is reasonably
fast access. However, the limited amount of video memory will eventually be exhausted. Second, the time
and effort required far exceeds the cost of copying a screen page. Finally, we're using areas in the middle
of the screen that can only be copied line by line. A simple REP MOVSB of the entire area is not possible.

A complete background page is copied and positioned in video memory with a fast copy loop placing it on
the current displayed page.

You have complete freedom in moving a sprite. You can move it across the screen in a line or in circles. A
sprite can move as a sine wave or follow the rhythm of music. It's your decision on how, where and when
you want the sprite to move.

Before continuing, we want to introduce two screen pages. As we mentioned, it's nearly impossible to
perform extensive picture manipulations within a vertical retrace but it's the only way to avoid flickering
and "tearing" the sprites. Besides, in the procedure mentioned above, there are no sprites on the screen for
a brief period (between steps 1 and 2). We know this to be true because all the sprites flicker.

You need to add a second screen page here to prepare this invisible page while the visible one remains
untouched. You only switch on the new screen page after finishing all the changes and while the previously
visible one is then redrawn.

Two basic concepts can be used for the presentation:

You can leave the sprite data in the graphic memory, for example leave it on Page 2 and always copy it to
the current page from there. However, this has two disadvantages. The fast Write-Mode 1 is based on
complete blocks of four (one byte from all four planes), so it's not possible to copy a sprite, for example, from
x-coordinate 5 (plane 1) to 6 (plane 2).

Data can be quickly copied within the plane. The only way to avoid this problem is to place every sprite in
the memory four times, once in the x-position 0, once in the x-position 1, etc., which greatly limits the
number of available sprites.

The second disadvantage of this concept concerns the unmasking of the transparent points. This is only
possible by using separate masks that are contained in the main storage unit but which must first be created.
We'll talk about a better alternative in the next section.

Reading And W riting Sprites

A better alternative is for the sprite data to remain in the CPU and moved point-by-point to the screen. You
can overcome the relatively limited speed by optimizing your routine as much as possible.

This starts when you format the sprite data in the CPU. The graphic data is divided in the four planes for
positioning a sprite. Points with addresses divisible by 4 are allocated to plane 0. Addresses with a
remainder of 1 are allocated to plane 1, etc. The easiest way to bring data to the screen is to place the points
in the "normal" series and to constantly shift the write plane.

We saw in the procedure p13_2_ModeX this is not exactly the fastest solution. This procedure yields to
another method which is applied to the sprites: First, copy all the data from one plane, then switch and copy
the next plane.



149

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

The outcome results in the sprite format: The data does not remain here in Mode-13h format (contiguous
pixels), but in one of the Mode X related series. First, the complete data from the first plane arrives. This is
followed by the data from the second plane, which is followed by the data from the third plane, etc. When
writing the sprite, you can access this data without additional time and effort; the starting address simply
needs to be loaded in the SI-register. Then copy the first plane and, immediately thereafter, the next plane
is available. Adjusting the SI-register is unnecessary.

The data contain the color values and can be copied without any difficulty to the screen memory. Only Color
0 has special significance. It represents the background and the sprite is transparent in these positions.

A problem occurs when calculating the width of the sprite because it isn't the same in every plane. Imagine
a five pixel wide sprite that should be written at x-position 0. In this case, two bytes must be copied in plane
0 (pixel 0 and 4), while the others contain only one byte.

The algorithms we discuss are for the general case, although not dependent on the x-coordinate of the final
position. If the sprite is copied, for example, in the x-position 1, the 2 byte wide block physically finds itself
in plane 1. Because the copy loop begins with this plane, considering the sprite data, this is always a matter
of plane 0, which, moreover, is two bytes wide. In other words, with only the sprite width, you can create
an array with the width of the individual planes, which the number variable provides in the copy loop. The
first plane of the sprite data always two bytes wide, the others are one byte, regardless of their current
position.

You need to consider the initial plane's purpose is to communicate with the VGA.

Beyond All Borders: Clipping

In most programs, a sprite is made to move towards and eventually disappear at the edge of the screen. If
you do not adjust for this, you'll get undesirable results by copying the data for the entire sprite to video
memory. If the sprite is to disappear from the right or bottom edge of the screen, part of the sprite will be
copied to the next line or screen page. Since this will not produce the desired result, you have to design an
algorithm which performs clipping or cutting off the "invisible" data.

One method for clipping is to verify that each sprite point falls within the range of the visible screen before
drawing it. Unfortunately, this is also the slowest method. A better way is to change the margin
specifications before copying the data to video memory. In doing this, you should try to perform the
clipping outside of the copy loop. Doing calculations this way reduces the amount of time to write the sprite
data to video memory.

Clipping is quite simple. The width, height or both of the sprite are adjusted to exclude parts that are outside
the visible area. For sprites that disappear from the left or top edge of the screen, you must determine the
first visible point of the sprite by calculating which point is to be drawn at x-coordinate=0 (left edge) or
y-coordinate=0 (top edge).



150

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

The Unit Sprites

All these special features can be found in the procedures
GetSprite  and PutSprite  in the Unit Sprites:

{$G+}
Unit Sprites;
Interface
Type SpriteTyp=Record           {structure of a sprite data block}
  Addr:Pointer;                 {pointer to graphic data}
  dtx,dty:Word;                 {width and height in pixels}
  px,py,                        {current position, optional *}
  sx,sy:Integer;                {current speed, optional *}
End;
{*: optional means that the sprite routines GetSprite and PutSprite
 don't use these specifications, the variables serve only the purpose
 of making control easier on the part of the main program}
Procedure GetSprite(Ofs,dtx,dty:Word;var zSprite:SpriteTyp);
{read a sprite from vscreen-Offset ofs, with dtx width and dty height,
 zsprite is the sprite record in which the sprite is to be saved}
Procedure PutSprite(pg_ofs,x,y:Integer;qsprite:spritetyp);
{copies sprite from RAM (position and size taken from qsprite)
 to video RAM page pg at position (x/y)}

Implementation
Uses ModeXLib;
Var i:Word;

Procedure GetSprite;
Var ppp:Array[0..3] of Byte;    {table with number of pixels to copy}
                                {per plane}
    Skip:word;                  {number of bytes to skip}
    Plane_Count:Word;           {counter of copied planes}
Begin
  GetMem(zsprite.addr,dtx*dty); {allocate RAM}
  zsprite.dtx:=dtx;             {note width and height in sprite record}
  zsprite.dty:=dty;
  i:=dtx shr 2;                 {number of smooth blocks of 4}
  ppp[0]:=i;ppp[1]:=i;          {equals minimum number of bytes to copy}
  ppp[2]:=i;ppp[3]:=i;
  For i:=1 to dtx and 3 do      {note "excess" pixels in ppp}
    Inc(ppp[(i-1) and 3]);      {add pixels beginning with Startplane}
  Plane_Count:=4;               {copy 4 planes}
asm
  push ds
  mov di,word ptr zsprite       {first load pointer to data block}
  les di,[di]                   {load pointer to graphic data in es:di}
  lea bx,ppp                    {bx points to ppp array}
  lds si,vscreen                {load pointer to image}
   add Ofs,si                   {offset of actual sprite data in addition}
@lcopy_plane:                   {will be run once per plane}
  mov si,ofs                    {load si with start address of sprite data}
  mov dx,dty                    {load y-counter with row number}
  xor ah,ah                     {clear ah}
  mov al,ss:[bx]                {load al with current ppp entry}
  shl ax,2                      {blocks of 4 get moved}
  sub ax,320                    {obtain difference to 320}
  neg ax                        {make 320-ax out of ax-320}
  mov skip,ax                   {store value in skip}
@lcopy_y:                       {run once per row}

PCPCun
de

rg
ro

un
d

You can find
SPRITES.PAS

on the companion CD-ROM



151

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

  mov cl,ss:[bx]                {load width from ppp-array}
@lcopy_x:                       {runs once per pixel}
  movsb                         {copy byte}
  add si,3                      {to next pixel of this plane}
  dec cl                        {copy all the pixels of this row}
  jne @lcopy_x
  add si,skip                   {after that, at beginning of next row}
  dec dx                        {copy all rows}
  jne @lcopy_y
  inc bx                        {position at next ppp entry}
  inc ofs                       {position at new plane start}
  dec plane_count               {copy all planes}
  jne @lcopy_plane
  pop ds
End;
End;

Procedure PutSprite;
var plane_count,                {counter of copied planes}
    planemask:Byte;             {masked Write-Plane in TS-Register 2}
    Skip,                       {number of bytes to skip}
    ofs,                        {current offset in video RAM}
    plane,                      {number of current plane}
    Width,                      {width of bytes to be copied in a row,}
    dty:Word;                   {height}
    source:Pointer;             {pointer to graphic data, if ds modified}
    clip_lt, clip_rt:integer;   {number of excess PIXELS left and right}
    clipact_lt,                 {with current plane active number}
    clipact_rt,                 {excess BYTES}
    clip_dn,clip_up:Word;       {number of excess ROWS above and below}

    ppp:Array[0..3] of Byte;    {number of pixels per plane}
    cpp:Array[0..3] of Byte;    {excess BYTES per plane}
Begin
  if (x > 319) or               {Display unnecessary, }
  (x+qsprite.dtx < 0) or        {because it's not even in the picture ?}
  (y > 199) or
  (y+qsprite.dty < 0) then exit;
  clip_rt:=0;                   {no clipping normally}
  clip_lt:=0;                   {-> all clipping variables to 0}
  clip_dn:=0;
  clip_up:=0;
  clipact_rt:=0;
  clipact_lt:=0;
   with qsprite do begin
    if y+dty > 200 then begin   {first clipping case: down}
      clip_dn:=(y+dty-200);     {note excess rows}
      dty:=200-y;               {and reduce sprite height}
    End;
    if y<0 then begin           {second clipping case: up}
      clip_up:=-y;              {note excess rows}
      dty:=dty+y;               {and reduce sprite height}
      y:=0;                     {Start-y is 0, because upper screen border}
    End;
    if x+dtx > 320 then begin   {third clipping case: right}
      clip_rt:=x+dtx-320;       {note excess pixels}
      dtx:=320-x;               {reduce width}
    End;
    if x<0 then begin           {fourth clipping case: left}
      clip_lt:=-x;              {note excess pixels}
      plane:=4-(clip_lt mod 4); {calculate new start plane for column 0}
      plane:=plane and 3;       {reduce this to 0..3}



152

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

      ofs:=pg_ofs+80*y+((x+1) div 4) - 1;  {set Ofs to correct block of 4}
      x:=0;                     {begin display in column}
    End Else Begin              {no clipping to the right ?}
      plane:=x mod 4;           {then conventional calculation of plane}
      ofs:=pg_ofs+80*y+(x div 4); {and offset}
    End;
  End;
  Source:=qsprite.addr;         {pointer graphic data}
  dty:=qsprite.dty;             {and save height in local variables}
  Width:=0;                     {preinitialize width and skip}
  Skip:=0;
  i:=qsprite.dtx shr 2;         {number smooth blocks of 4}
  ppp[0]:=i;ppp[1]:=i;          {equals minimum number of bytes to be copied}
  ppp[2]:=i;ppp[3]:=i;
  For i:=1 to qsprite.dtx and 3 do{note "excess" pixels in ppp}
    Inc(ppp[(plane+i - 1) and 3]);{add pixels beginning with StartPlane}
  i:=(clip_lt+clip_rt) shr 2;
  cpp[0]:=i;cpp[1]:=i;          {Clipping default : all pages 0}
  cpp[2]:=i;cpp[3]:=i;
  For i:=1 to clip_rt and 3 do {if right cl ipping, enter corresponding number}
    Inc(cpp[i-1]);              {in planes}
  For i:=1 to clip_lt and 3 do  {if left clipping, enter corresponding
                                  number}
    Inc(cpp[4-i]);              {in planes}
asm
  mov dx,3ceh                   {GDC Register 5 (GDC Mode)}
  mov ax,4005h                  {set to Write Mode 0}
  out dx,ax
  push ds                       {save ds}
  mov ax,0a000h                 {load destination segment (VGA)}
  mov es,ax
  lds si,source                 {source (pointer to graphic data) to ds:si}
  mov cx,plane                  {create start plane mask}
  mov ax,1                      {move bit Bit 0 left by plane}
  shl ax,cl
  mov planemask,al              {save mask}
  shl al,4                      {enter in upper nibble also}
  or planemask,al
  mov plane_count,4             {4 planes to copy}
@lplane:                        {will run once per plane}
  mov cl,byte ptr plane         {load current plane}
  mov di,cx                     {in di}
  mov cl,byte ptr ppp[di]       {load cx with matching ppp number}
  mov byte ptr Width,cl         {recalculate skip each time}
  mov ax,80                     {obtain difference 80 width}
  sub al,cl
  mov byte ptr skip,al          {and write in skip}
  mov al,byte ptr cpp[di]       {load plane specific clipping width}
  cmp clip_lt,0                 {if left no clipping, continue with right}
  je @right
  mov clipact_lt,ax             {save in clip_act_lt}
  sub Width,ax                  {reduce width of bytes to be copied}
  jmp @clip_rdy                 {no clipping right}
@right:                         {if left no clipping}
  mov clipact_rt,ax             {clipping for all planes, in clip_act}
@clip_rdy:
  mov ax,Width                  {calculate total width in bytes}
  add ax,clipact_rt
  add ax,clipact_lt
  mul clip_up                   {multiply by number of rows of upper clipping}
  add si,ax                     {these bytes are not displayed}
  mov cx,Width                  {load cx with width}



153

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

  or cl,cl                      {width 0, then plane finished}
  je @plane_finished
  mov di,ofs                    {destination offset in video RAM to di}
  mov ah,planemask              {reduce plane mask to bit [0..3]}
  and ah,0fh
  mov al,02h                    {and via TS - Register 2 (Write Plane Mask)}
  mov dx,3c4h                   {set}
  out dx,ax
  mov bx,dty                    {initialize y-counter}
@lcopy_y:                       {y-loop, run once per row}
  add si,clipact_lt             {add source pointer for left clipping}
  add di,clipact_lt             {destination pointer also}
@lcopy:                         {x-loop, run once per pixel}
  lodsb                         {get byte}
  or al,al                      {if 0, then skip}
  je @Value0
  stosb                         {else set}
@entry:
  loop @lcopy                   {and continue loop}
  add si,clipact_rt             {after complete row right clipping}
  dec bx                        {continue y-counter}
  je @plane_finished            {y-counter = 0, then next plane}
  add di,skip                   {else skip to beginning of next row}
  mov cx,Width                  {reinitialize x-counter,}
  jmp @lcopy_y                  {jump back to y-loop}
@value0:                        {sprite color 0:}
  inc di                        {skip to destination byte}
  jmp @entry                    {and back to loop }
@plane_finished:                {y-loop ends here}
  mov ax,Width                  {calculate total width in bytes}
  add ax,clipact_rt
  add ax,clipact_lt
  mul clip_dn                   {multiply times number of rows of lower clipping}
  add si,ax                   {these bytes won't be displayed}
  rol planemask,1             {select next plane}
  mov cl,planemask            {plane 0 selected ?}
  and cx,1                    {(Bit 1 set), then}
  add ofs,cx                  {increase destination offset by 1 (cx Bit 1 !)}
  inc plane                   {increment plane number (Index in ppp)}
  and plane,3                  {reduce to 0 to 3}
  dec plane_count              {4 planes already copied ?, then end}
  jne @lplane
  pop ds                       {restore ds, and see you later}
End;{asm}
End;
Begin
End.

In addition to the two procedures, this unit also contains the definition of SpriteTyp . It holds several
important attributes of each sprite. It contains a pointer to the actual graphic data in main memory (addr );
the sprite's width (dtx ) and the sprite's height (dty). Procedure GetSprite  initializes these variables
before they’re used by PutSprite . Make certain that they're not overwritten by other procedures.

Depending on the application, record SpriteTyp  can be expanded. Since the straight line movement of
a sprite is the most frequent application, four components are defined to handle future applications; these
components aren’t used by the procedures in this unit:



154

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

Ø px and py are the current position of the sprite

Ø sx and sy are the speed (step size)

Again, these procedures do not use components px , py , sx  and sy . Remember, they’re available if you
want to use them.

A sprite must first be created. In other words, you have to first define a sprite. We’ll use the GIF format in
these examples because it’s so universal.

After loading a picture containing a sprite, it is transferred to memory. The GetSprite  procedure is used
to do this.

We'll assume the sprites are located in the video memory and that the coordinates are expressed as offsets.
In other words, the coordinates are passed to procedure GetSprite  as offset parameters. This is quite
simple to do. Since the pictures are stored in video memory in 13h Mode, the conversion is as follows:

Offset := y-coordinate * 320 + x-coordinate

Using this offset relative to video memory, GetSprite  uses two other parameters dtx  and dty  to "cut" the
sprite from the GIF image and copy it to memory.

The routine which copies the sprite to memory is written in assembly language. It consists of three nested
loops. The source (vscreen+Ofs ) and target (zsprite.addr ) are loaded in es:di and ds:si; register bx
points to array ppp .

The outer loop (@lcopy_plane ) executes once per plane. During each iteration, register si is set with the
new staring value, register dx with the sprite height and variable skip  with distance between points.

Within loop @lcopy_y , executes once per sprite row. After a row is copied, skip  is added to register si
which takes us to the next sprite row. Register dx specifies how many times the loop is executed, depending
on sprite’s height in rows.

Procedure PutSprite is similar. It uses four parameters - the offset of the screen page, the x-coordinate
and y-coordinate for the upper left corner of the sprite and record SpriteTyp .

In some instances, clipping is simply handled. The easiest case is for a sprite which isn’t visible on the screen.
In this case, the procedure is interrupted by an Exit command and the program continues normally.

If the sprite is partially visible, PutSprite  has to perform additional calculations to handle the clipped
portion of the sprite.

For a sprite which has to be clipped at the bottom of the screen (y + dty > 200 ), then the height of the
sprite is reduced to fit on the screen. Since the sprite is examined four times (once for each plane), you must
make sure that the pointer is reset to the beginning of the next plane.

Clipping at the top border is also simple. Again, the number of lines to be skipped is stored in clip_up  and
the height is truncated.

Clipping at the right border is slightly more complicated. Here, you have to consider the arrangement of
the color planes. The routine makes sure that the image is clipped correctly for each plane. The number of
pixels is stored in clip_rt  and the width is truncated.



155

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

Clipping at the left border is different. Here, too, the number of pixels is recorded, this time in clip_lt .
However, the width is left unchanged. Instead, the sprite copy routine adjusts for the narrower width. In
addition, the routine performs additional calculations to determine the starting plane. For example, assume
that our sprite extends three pixels off the left edge. The starting plane for this sprite would normally be
column -3.

Of course, this is not possible; the first visible column is (-3 + 4 = 1) column 1. The offset must also be
recalculated since it points to a place in the previous line when it has a negative x-value. The x-coordinate
is set to 0.

The adjusted plane and offset values apply only to clipping along the left border; in other instances the
values are calculated as before in Mode X.

Array ppp  is initialized for the different plane widths.

Array cpp  is similarly initialized. Later, cpp  will hold the clipped image from the left or right borders.

The clipping width (clip_lt  + clip_rt ) divided by 4 gives us the number of even blocks.

The assembly language section sets up for Write Mode 0 in order to address individual points. After the
source and target pointers are loaded, a mask is defined to select the current plane.

Variable plane_count  ensures that the loop @lplane  is performed four times. Within the loop, array ppp
specifies how many pixels are to be copied. The step size is set into variable skip .

Array cpp  is used to save the clipped image. For sprites that are clipped on the right border, variable
clipact_rt  is loaded with this width from cpp.  Correspondingly, variable clipact_lt  is used for
sprites that are clipped on the left border.

Now we’re ready to perform the first clip. The total width of the line including the pixels to be clipped on
the left and right sides is multiplied by the number of lines to be clipped at the top border. This value is
placed into the si register.

In simplest terms, the loop starting at @lcopy  simply moves the
individual bytes from the source address to the target address.
The majority of the code is used to handle the different planes.

The program SPRT_TST.PAS includes the applications for these
routines:

Uses Crt,Gif,ModeXLib,Sprites;
Const Sprite_Number=3;          {number of sprites used in the program}
Var Sprite:Array[1..Sprite_Number] of SpriteTyp;
                                {data records of sprites}
    i:Word;                     {counter}
Begin
  Init_ModeX;                   {enable Mode X}
  LoadGif('sprites');           {load image with the three sprites}
  GetSprite(62 +114*320,58,48,Sprite[1]);  {coordinates (62/114), width
                                            58*48}
  GetSprite(133+114*320,58,48,Sprite[2]); {(133/114), 58*48}
  GetSprite(203+114*320,58,48,Sprite[3]); {(203/114), 58*48}
                                {load the three sprites}
  LoadGif('wallpape');          {load wallpaper}
  p13_2_ModeX(48000,16000);     {and copy to background page}

PCPCun
de

rg
ro

un
d

You can find
SPRT_TST.PAS

on the companion CD-ROM



156

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

  With Sprite[1] do Begin       {coordinates and speeds}
    px:=160;py:=100;            {of all three spites to (random values)}
    sx:=1;sy:=2;
  End;
  With Sprite[2] do Begin
    px:=0;py:=0;
    sx:=1;sy:=-1;
  End;
  With Sprite[3] do Begin
    px:=250;py:=150;
    sx:=-2;sy:=-1;
  End;
  Repeat
    CopyScreen(vpage,48000);    {wallpaper to current page}
    For i:=1 to Sprite_Number do{run for all 3 sprites}
      With Sprite[i] do Begin
        Inc(px,sx); Inc(py,sy); {movement}
        If (px < -dtx div 2)    {at left or right border ? -> turn around}
          or (px > 320-dtx div 2) Then sx:=-sx;
        If (py < -dty div 2)    {at top or bottom border ? -> turn around}
          or (py > 200-dty div 2) Then sy:=-sy;
        PutSprite(vpage,px,py,Sprite[i]);
                                {draw sprite}
      End;
    switch;                     {switch to calculated page}
    WaitRetrace;                {only after next retrace can screen}
  Until KeyPressed;             {be changed again}
  ReadLn;
  TextMode(3);
End.

After loading a sprite, it's placed (set) in arbitrary positions and at arbitrary speeds. The repeat loop
highlights the basic principle of the sprite presentation: Erase the background (CopyScreen ), move the
sprites, display the sprites. The WaitRetrace  command is placed behind the Switch  command because
switching to a new page causes in a delay in retrace. We're using a different logic here than we used before.
First, the command to switch over is sent to the VGA. Then wait for the retrace to be certain that the screen
will be changed at that instant. Now you will be able to prepare the next page.

Unfortunately, slower computers can become overtaxed with the three sprites from this demo program. If
this occurs, simply set the number lower.

Use Scrolling For Realistic Movement

To create the illusion of depth and add a three-dimensional appearance, a sprite must be reduced in size
as it "moves" towards the back of the screen. One way to do this is to define an individual sprite for each
intermediary step and redraw it to the appropriate size. In terms of execution speed, this is the fastest
method; but it also requires the most memory.

For some situations, you may want to use a single sprite and automate the resizing tasks. While there are
general algorithms that can do this, its a very tedious process; it involves remapping each point of the sprite
to a new position.

Instead, there's another method which makes the sprite appear to scroll quickly. The technique is quite
simple. Rather than redraw the entire sprite, only a percentage of the sprite lines are redrawn during each



157

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

iteration. For example, if the percentage is 50%, then every
second line of the sprite is skipped as it is drawn on the screen.

Procedure  SCAL_TST.PAS demonstrates the technique:

{$G+}
Uses Crt,Sprites,ModeXLib,Gif,Tools;

Procedure PutScalSprt(pg_ofs,x,y,scale_y:Integer;qsprite:spritetyp);
var planecount,                 {counter of copied planes}
    planemask:Byte;             {masks Write-Plane in TS-Register 2}
    Skip,                       {number of bytes to skip}
    ofs,                        {current offset in video RAM}
    plane,                      {Number of current plane}
    Width,                      {width of bytes to be copied in a line,}
    dty:Word;                   {height}
    source:Pointer;             {pointer to graphic data, if ds modified}

    ppp:Array[0..3] of Byte;    {number of pixels per plane}
    rel_y,                      {fractional portion of rel. y-position}
    add_y:Word;                 {fractional value of the addend}
    direction:Integer;          {direction of movement (+/- 80)}
    i:Word;                     {local loop counter}
Begin
  if (x + qsprite.dtx > 319)    {Clipping ? then cancel}
  or (x < 0)
  or (y + qsprite.dty*scale_y div 100 > 199) or (y < 0) then exit;
  add_y:=100-abs(scale_y);      {calculate addend}
  if scale_y < 0 then direction:=-80 else direction:=80;
                                {define direction}
  Source:=qsprite.adr;          {Pointer graphic data}
  dty:=qsprite.dty;             {load local Height variable}
  plane:=x mod 4;               {calculate start plane}
  ofs:=pg_ofs+80*y+(x div 4);   {and offset}
  Width:=0;                     {preinitialize Width and Skip}
  Skip:=0;
  i:=qsprite.dtx shr 2;         {number of smooth blocks of 4}
  ppp[0]:=i;ppp[1]:=i;          {equals the minimum number of bytes to be
                                 copied}
  ppp[2]:=i;ppp[3]:=i;
  For i:=1 to qsprite.dtx and 3 do{note "excess" pixels in ppp}
    Inc(ppp[(plane+i - 1) and 3]);{add pixels beginning with Startplane}
asm
  push ds                       {save ds}
  mov ax,0a000h                 {load destination segment (VGA)}
  mov es,ax
  lds si,source                 {source (pointer to graphic data) to ds:si}
  mov cx,plane                  {Create start plane mask}
  mov ax,1                      {move Bit 0 left by plane}
  shl ax,cl
  mov planemask,al              {save mask}
  shl al,4                      {enter in upper nibble also}
  or planemask,al
  mov planecount,4              {4 planes to copy}
@lplane:                        {will run once per plane}
  mov cl,byte ptr plane         {load current plane}
  mov di,cx                     {in di}
  mov cl,byte ptr ppp[di]       {load cx with matching ppp number }
  mov byte ptr Width,cl         {recalculate skip each time}
  mov ax,direction              {obtain difference direction width}
  sub ax,cx

PCPCun
de

rg
ro

un
d

You can find
SCAL_TST.PAS

on the companion CD-ROM



158

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

  mov skip,ax                   {and write in skip}
  mov rel_y,0                   {start again with y=0,0}
  mov cx,Width                  {load cx with Width}
  or cl,cl                      {Width 0, then Plane finished}
  je @plane_finished
  mov di,ofs                    {destination offset in video RAM to di}
  mov ah,planemask              {reduce plane mask to bit [0..3]}
  and ah,0fh
  mov al,02h                    {and through TS - Register 2 (Write Plane Mask)}

  mov dx,3c4h                   {set}
  out dx,ax
  mov bx,dty                    {initialize y-counter}
@lcopy_y:                       {y-loop, run once per row}
@lcopy_x:                       {x-loop, run once per pixel}
  lodsb                         {get byte}
  or al,al                      {if 0, then skip}
  je @Value0
  stosb                         {else set}
@entry:
  loop @lcopy_x                 {and loop continues}

  mov ax,rel_y                  {addend to fractional portion}
  add ax,add_y
  cmp ax,100                    {integer place incremented ?}
  jb @noaddovfl                 {no, then continue}
  sub ax,100                    {else reset decimal place}
  sub di,direction              {and in next/previous line}
@noaddovfl:
  mov rel_y,ax                  {and rewrite in fractional portion}

  dec bx                        {continue y-counter}
  je @plane_finished            {y-counter = 0, then next plane}
  add di,skip                   {else skip to next line beginning}
  mov cx,Width                  {reinitialize x-counter,}
  jmp @lcopy_y                  {jump back to y-loop}
@value0:                        {sprite color 0:}
  inc di                        {skip destination byte}
  jmp @entry                    {and back to loop}
@plane_finished:                {y-loop ends here}

  rol planemask,1               {mask next plane}
  mov cl,planemask              {plane 0 selected ?}
  and cx,1                      {(Bit 1 set), then}
  add ofs,cx                    {increase destination offset by 1 (Bit 1 !)}
  inc plane                     {increment plane number (Index in ppp)}
  and plane,3                   {reduce to 0 to 3}
  dec planecount                {4 planes copied already ?, then end}
  jne @lplane
  pop ds                        {restore ds, and see you later}
End;{asm}
End;

Var Logo:SpriteTyp;
    Sine:Array[0..99] of Word;
    Height:Integer;
    i:Word;

Begin
  Init_ModeX;                   {enable Mode X}
  LoadGif('sprites');           {load image with logo}
  GetSprite(88+ 6*320,150,82,Logo);    {initialize logo}

PCPCun
de

rg
ro

un
d

SpritesPassword:



159

Sprites: Rapid Action On The Screen

Chapter 6

PCPC
underground

  LoadGif('wallpape');          {load wallpaper}
  p13_2_ModeX(48000,16000);     {and copy to background page}
  Sin_Gen(Sine,100,100,0);      {precalculate sine}
  I:=0;                         {index in sine to 0}
  repeat
    Inc(i);                     {increment index}
    Height:=Integer(Sine[i mod 100]); {get height from sine}
    CopyScreen(vpage,48000);    {clear background}
    PutScalSprt(vpage,85,100-Height *84 div 200,Height,Logo);
                                {copy scaled sprite to current page}
    Switch;                     {switch to this page}
    WaitRetrace;                {and wait for retrace}
  Until KeyPressed;
  ReadLn;
  TextMode(3);                  {normal text mode on}
End.

In this program we demonstrate how to rotate a logo in front of a transparent background. The height is
periodically changed (the y-coordinate in a circular motion appears as a sine oscillation from the page).
Every sprite is displayed using  PutSprite  or scaled with PutScalSprt .

The procedure PutScalSprt is merely a demo and is therefore not placed in its own unit. Besides, for
speed of execution, it doesn't perform any clipping. Its parameter is shared with the familiar data using
scale_y , the percentage of the original height the scaled sprite is to show. Here, a negative value indicates
a mirroring of the x-axis.





161

The Third 
Dimension:

3-D Graphics 
Programming

Chapter 7

7. The Third Dimension: 3_D Graphics Programming

Each of the effects we have demonstrated so far have one thing in common: They function only in two
dimensions. To produce pictures with snap, you might consider the third dimension. The challenge is to
produce a three-dimensional presentation on a two dimensional monitor. Additionally, the monitor can
only display believable depth information if we use a few tricks, such as vanishing point perspective and
point of light shadings.

These tricks require an understanding of mathematics, especially geometry. Transformations, illustrations,
brightness gradations, etc., are very complex calculations when you consider the number required for a
presentation. These calculations must be adapted to programming logarithms to enable fast drawings in
many cases. Therefore, the language used for these procedures is assembly, since a high-level language may
produce code which executes too slowly.

Throughout this chapter, we will use a small main program to introduce the practical applications and
methods. These programs are all based on the same assembly modules (3DASM.ASM, POLY.ASM,
BRES.ASM, TEXTURE.INC), which contain independent presentation functions (transformations, etc.) as
well as special sections (point of light shading), which are activated through global variables. Using global
variables for direction may not seem like a good idea at first. However, it will save both computing time
and code.

Mathematics For Graphics Enthusiasts

If you're already familiar with analytical geometry, you can probably skip this section. However, if you'd
like a quick refresher, we'll explain geometric concepts like vector, determinants and intersecting product
(sum). These terms are important if you want to produce three-dimensional presentations.

The vector

What the number is to algebra, the vector is to geometry. A simple analogy for a vector is an arrow that
points in a particular direction and which has a particular length. Besides, a vector can be moved arbitrarily
in space and it's defined relatively. A vector is defined as a line designated by its end points (x-y or x-y-z
coordinates). A circle consists of many small vectors.

In this definition, there is no indication of where, or at which specific location in space, a vector is found.
The opposite is the case with location vectors. These vectors always start at the coordinate system's origin



162

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

(0/0) and specify an exact point. In the vector manner of writing, the x, y and z vector components are
written on top of one another:

Or
ax

ay

az

=a =a
a1

a2

a3

For example:

2
3
-5

=a

Mathematical depiction of a vector

Calculating (computing) with vectors

As we mentioned, a vector describes both direction and length. The length, which is often required, can be
determined very easily from the components if you use the three dimensional Pythagorean theorem:

ax

ay

az

=a

3
-2
1

a = = + +

3 2 + (-2)
2

+ 1 2
= 14

For example:

a1
2 a2

2 a3
2

In a way, we add vectors because the sums of their components are totaled. In a geometric definition, this
addition means placing the two vectors so one is on top of the other.

Subtraction is performed similarly. Here the components are subtracted. Mathematically, the second vector
is added to the first one.

a
b

a

b

ba

a
b

a b+

Vector subtraction

There are three types of multiplication:

Scaling (S-multiplication)

One is called scaling (S-multiplication). Here, only one vector is multiplied by the number, so only its length
changes. An S-multiplication with a negative number reverses the direction.



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

163

=-3

1

-2

3

-3

6

-9

Vector multiplication

Scalar multiplication

The second is scalar multiplication. It multiplies two vectors with each other, whereby the product of the
two is a number (a scalar). The following illustration shows the two definitions for this:

=a b a b cos

: Angle between the vectors

1.

= (-1)531 2 3+ +
1
2
3

3
5
-1

= 10

For example:

2.
=a b

b1

b2

b3

a1

a2

a3

= b3b2b1a1 a2 a3+ +

Scalar multiplication

The angle of the vectors can be calculated as:

cos =

= b3b2b1a1 a2 a3+ +

a b

a b
a b

Angle between two vectors

Vector or intersecting product

The third type of multiplication is vector or intersecting product. Once again, two vectors are multiplied with
each other and the product is a vector. This vector stands vertically on top of both of the multiplied vectors,
which is why the intersecting product only has meaning in a three dimensional space. It's defined in the
following illustration:



164

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

=a b
b1

b2

b3

a1

a2

a3

=
b1

b3

b2a3

a1

a2

-
-
-b2

b1

b3a2

a3

a1

= =
-17
10
-1

1
2
3

3
5
-1 3

(-1)
53

1
2

-
-
-5

3
(-1)2

3
1

For 
example:

Vector intersecting product

Presenting 3-D Figures In 2-D

The goal of this section is to describe the calculations needed to display 3-D effects on a flat 2-D screen. There
are many ways to do this, from the simplest parallel projection to complex ray tracing algorithms. However,
due to the huge amount of calculations required to render the objects, complex ray tracing algorithms are
used less frequently. These calculations can require several minutes of computing time just to produce a
single picture.

The easiest way to convert the depth information the monitor cannot display is simply to ignore it. In so
doing, the two dimensional coordinates of the corner points for each surface are given three dimensional
definitions from the x- and y- coordinates. Parallel lines in the three dimensional space with this method
appear as parallel lines on the screen — hence the name parallel projection.

a
a = y'

a

= a * y
zy' = a * x

zx'

Eye

Picture
Object

a y'
z

Equals

The radiation theory

In this illustration we see the three dimensional world as it exists behind the screen. All rays emitted from
an object are ultimately seen by our eyes, so their origin lies in the picture. Every coordinate for the object
(here is an example of the y-coordinate for the top and bottom corners) is projected into a two dimensional
screen coordinate (here y'). We can explain this using the radiation theory. It establishes a clear relationship
between y, y', a (eye-screen distance) and z (object depth).

You can see that increasing depth (z) with this algorithm reduces the angle between the rays as well as the
picture on the screen. Therefore, the desired vanishing point perspective is achieved. This vanishing point
(the point where all the parallel lines join in the distance) can always be found in this method on the z-axis.
It cannot be placed arbitrarily.



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

165

Reshaping Objects: Transformations

You can create a more realistic picture by adding movement. A rotating cube with a picture on each side
is more visually exciting than a static picture of the same cube created by a paint program.

Movement basically consists of two components (although some programmers would also include scaling):

Ø Translation

Ø Rotation

A translation is simply shifting in a certain direction, for example, motion through a long corridor.
Mathematically, the translation is built upon vector addition: The shifting is determined by a vector,
specifically the translation vector. This vector is simply added to all location vectors (point coordinates) of
the object to be shifted.

Motion by the viewer is achieved in the same manner, but the viewpoint is reversed. If you wish to move
yourself, as the viewer, around a unit in the z direction, you simply shift the entire 3-D environment around
the unit in the negative z direction.

Rotation is slightly more complicated, especially if you want to use matrices in the calculation. Matrices
combine all the necessary computation steps for transformations, translations, rotations and scaling into
one. Each component has its own matrix. The advantage here is that you can put together additional
matrices and save on computing time (if it is initially clear which transformations are to be performed in
which series). However, since that is rarely the case, we are suggesting the rotation matrices only to give
you a better alternative.

When considering rotation, you must determine around which of the three axes you will rotate.

For rotations around the x-axis, the following algorithm applies:

x'= x
y'= y*cos(a)-z*sin(a)
z'= y*sin(a)+z*cos(a)

The corresponding matrix would appear as follows:

1 0 0

0 cos(a) -sin(a)

0 sin(a) cos(a)

For rotations around the y-axis, the following algorithm applies:

x'= x*cos(a)+z*sin(a)
y'= y
z'= -x*sin(a)+z*cos(a)

The corresponding matrix would appear as follows:



166

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

cos(a) 0 sin(a)

0 1 0

-sin(a) 0 cos(a)

These formulas examine only the rotation around the coordinate axes. By combining many rotations, an axis
can be formed from the original extended straight lines. If you wish to bypass the limits of the original
straight lines, you must combine the rotation with a translation.

In doing so, the world is pushed so the point around which the rotation occurs is located at its original
position. After the rotation, they are then pushed back, for which the translation vector must be rotated in
advance.

With continual rotation around many axes, the coordinates from the previous rotation must understandably
be set as source coordinates in the ones that follow. Always using the actual world coordinates for your
source will give unusual results that have little in common with the actual world to be presented.

Because of its many sine and cosine calculations, you can predetermine the values used in the rotation and
store them in a table. Using a program language such as Pascal to perform these calculations in real time
would probably produce a jerky, non-fluid movement.

These transformations are not commutative, i.e., their order is not arbitrary. For example, if you rotated the
point lying on the x-axis (1/0/0) 90 degrees around the x-axis, then around the same angle at the z-axis, the
result would be on the y-axis. By changing the order, it would then be on the z-axis. Therefore, you should
establish a unified rotation order first around the x-, then the y- and finally around the z-axes.

Even with mixed transformations, their order must be maintained. With a translation that has rotation
following it, another point emerges that is different from that which emerges in the opposite series order,
which is why you should commit to a particular order. In this case, the most practical translation series is
rotation, because translation values are based on the known world coordinates and not on their rotating
illustrations.

In summary, the following is the recommended order:

1. Translation

2. Rotation (x, y, then z)

3. Projection onto the screen

Wiry Figures: Wireframe Modeling

The easiest way to get three dimensional objects onto the screen is to use wireframe models. A wireframe
model represents all surfaces of a 3-D object as an outlined object. This includes the opposite sides and all
internal components that you usually cannot see. It's a less complex method for representing 3-D images.

A wireframe model is useful because three dimensional lines appear as straight lines and not as curves with
both parallel projections and the vanishing point perspective. Therefore, you can limit yourself to corner



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

167

point transformations and you will not need to push, rotate and illustrate every point to the edge. If you then
combine these calculated corner points, you have a realistic picture of the figure as a wireframe model.

The most important section of this model is the line drawing algorithms. The speed of display depends on
these line algorithms since the transformations themselves require hardly any computational time. The
fastest way to draw a line is with the Bresenham algorithm, which we'll use in this chapter.

You can find complete mathematical derivation of this algorithm in many books so we won't delve into its
principles.

The algorithm is limited to angles between 0 and 45 degrees. As the line is being drawn, the algorithm
decides whether each point should be placed exactly to the right of the previous point or directly above it.
The decision as to which of the two points will be next is similar to the fixed decimal procedure discussed.
A variable (Dist , stored in BP) is dependent on the last step (right or directly above), either raised to Add_1
(in SI) or to Add_2 (in DI) and dependent on whether Dist  is positive or negative.

The angle limitations can be removed; to handle angles between
45 and 90 degrees, you can switch x and y. Negative angles are
handled by reversing this direction. The exact procedure is
listed as follows:

.286
b equ byte ptr
w equ word ptr
data segment
  extrn vpage:word              ;current video page
data ends

putpixel macro                  ;puts pixel at ax/bx
  pusha
  xchg ax,bx                    ;exchange x and y
  push ax                       ;store y for later
  mov cx,bx                     ;get x
  and cx,3                      ;mask plane
  mov ax,1                      ;and set corresp. bit
  shl ax,cl
  mov ah,2                      ;TS register 2
  xchg ah,al
  mov dx,3c4h
  out dx,ax
  pop cx                        ;get y
  mov ax,80d                    ;calculate row offset
  mul cx
  shr bx,2                      ;add column offset
  add bx,ax
  add bx,vpage                  ;write to current page
  mov b es:[bx],3               ;and set color
  popa
endm

code segment public
assume cs:code,ds:data
public bline
bline proc    near
;draws line from ax/bx to cx/dx
  push bp
  push ax                       ;store x0 and

PCPCun
de

rg
ro

un
d

The following procedure
is part of the

BRES.ASM file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

DimensionPassword:



168

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  push bx                       ;y0
  mov bx,4340h                  ;prepare self modification
  sub cx,ax                     ;calculate deltax
  jns deltax_ok                 ;negative ?
  neg cx                        ;yes, then reverse deltax sign
  mov bl,48h                    ;and decrement ax instead of incrementing ax
deltax_ok:
  mov bp,sp                     ;addressing of y1 on the stack
  sub dx,ss:[bp]                ;calculate deltay
  jns deltay_ok                 ;negative ?
  neg dx                        ;yes, then reverse deltay sign
  mov bh,4bh                    ;and decrement bx instead of  incrementing bx
deltay_ok:
  mov si,dx                     ;deltay and
  or si,cx                      ;deltax = 0 ?
  jne ok
  add sp,6                      ;then ax, bx and bp from stack and end
  ret
ok:
  mov w cs:dist_pos,bx          ;write dec/inc ax/bx to destination
  cmp cx,dx                     ;deltax >= deltay ?
  jge deltax_great
  xchg cx,dx                    ;no, then exchange deltax and deltay
  mov bl,90h                    ;and increment ax noppen
  jmp constants
deltax_great:
  mov bh,90h                    ;otherwise increment bx noppen
constants:
  mov w cs:dist_neg,bx          ;write dec/inc ax/bx to destination
  shl dx,1                      ;define add_2
  mov di,dx                     ;store in di
  sub dx,cx                     ;define start-dist
  mov bp,dx                     ;and store in bp
  mov si,bp                     ;define add_1
  sub si,cx                     ;and store in si
  mov ax,0a000h                 ;load VGA segment
  mov es,ax
  pop bx                        ;retrieve stored values for x0 and y0
  pop ax
loop_p:
  putpixel                      ;set pixel
  or bp,bp                      ;dist positive ?
  jns dist_pos
dist_neg:
  inc ax                        ;increment x (if necessary, self modification)
  inc bx                        ;increment y (if necessary, self modification)
  add bp,di                     ;update dist
  loop loop_p                   ;next pixel
  jmp finished                  ;finished
dist_pos:
  inc ax                        ;increment x (if necessary, self modification)
  inc bx                        ;increment y (if necessary, self modification)
  add bp,si                     ;update dist
  loop loop_p                   ;next pixel
finished:
  pop bp
  ret
bline endp
code ends
end



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

169

This procedure draws a line in Mode X from the point at coordinates (ax/bx) to point (cx/dx). The current
page (offset in vpage) is considered.

The step into the third dimension next takes us to unit
VAR_3D.PAS, which contains the most important global
variables. The meaning of those global variables will become
apparent in the following sections:

Unit Var_3d;
Interface
Uses Tools;
Const Txt_Number=5;             {number of used textures}
      Txt_Size:                 {size specifications of textures}
        Array[0..Txt_Number-1] of Word=
        ($0a0a,$0a0a,$0a0a,$0a0a,$0a0a);

Var  vz:Word;                   {shifting into the screen}
    rotx,                       {angle of rotation}
    roty,
    rotz:word;                  {3 degree steps}
    sf_sort:Boolean;            {sort surfaces ?}
    Fill:Boolean;               {true: Fill / false:Lines}
    sf_shift:Boolean;           {suppress surface shift ?}
    Texture:Boolean;            {use textures ?}
    lightsrc:Boolean;           {use light source ?}
    Glass:Boolean;              {glass surface ?}
    Txt_Data:Array[0..Txt_Number-1] of Pointer;
                                {location of textures in memory}
    Txt_Offs:Array[0..Txt_Number-1] of Word;
                                {offset within the texture picture}
    Txt_Pic:Pointer;            {pointer to texture picture}

    Sine:Array[0..149] of Word;
    {sine table for rotations}
Implementation
Begin
  Sin_Gen(Sine,120,16384,0);
  Move(Sine[0],Sine[120],60);
End.

This unit is used by all our 3-D programs. It initializes the sine tables used for the rotations. Subsequently,
the first quarter (30 entries = 60 byte) of this table is appended to the end. This has the advantage that both
its sine (zero in sine[0]) and its cosine values (zero in sine[30])
can be inferred.

The Bresenham algorithm is used in the 3D_WIRE.PAS program,
which direct the assembly module to clear the global variable
filling, to draw wireframe models:

Uses Crt,ModeXLib,var_3d;
Const
    worldlen=8*3;               {Point-Array}
    Worldconst:Array[0..worldlen-1] of Integer =
    (-200,-200,-200,
    -200,-200,200,
    -200,200,-200,
    -200,200,200,
    200,-200,-200,

PCPCun
de

rg
ro

un
d

You can find
VAR_3D.PAS

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

You can find
3D_WIRE.PAS

on the companion CD-ROM



170

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

    200,-200,200,
    200,200,-200,
    200,200,200);
    surfclen=38;                {Surface-Array}
    surfcconst:Array[0..surfclen-1] of Word=
    (0,4, 0,2,6,4,
     0,4, 0,1,3,2,
     0,4, 4,6,7,5,
     0,4, 1,5,7,3,
     0,4, 2,3,7,6,
     0,4, 0,4,5,1,0,0);

Var
    i,j:Word;
procedure drawworld;external;   {Draws the world on current video page}
{$l 3dasm.obj}
{$l poly.obj}
{$l bres.obj}
{$l root.obj}

Begin
  vz:=1000;                     {solid is located at 1000 units depth}
  vpage:=0;                     {start with page 0}
  init_modex;                   {enable ModeX}
  rotx:=0;                      {initial values for rotation}
  roty:=0;
  rotz:=0;
  Fill:=false;                  {SurfaceFill off}
  sf_sort:=false;               {SurfaceSort off}
  sf_shift:=false;              {SurfaceShift suppression off}
  Glass:=false;                 {glass surfaces off}
  repeat
    clrx($0f);                  {clear screen}
    DrawWorld;                  {draw world}
    switch;                     {switch to finished picture}
    WaitRetrace;                {wait for next retrace}
    Inc(rotx);                  {continue rotating ... }
    If rotx=120 Then rotx:=0;
    Inc(rotz);
    If rotz=120 Then rotz:=0;
    inc(roty);
    if roty=120 Then roty:=0;
  Until KeyPressed;             { ... until key}
  TextMode(3);
End.

You'll find the definitions for the world and the surfaces at the start of this program and in the following
programs. The world includes only the coordinates for the corners, which are simply listed in the x, y, z
series order for every given point. A relationship between these points is first established by defining the
surface. The characteristics of each surface are established in this array.

The first word for every surface definition includes the top surface structure. We will talk more about top
surface structure in later sections but it's simply listed here as 0. This is followed by the number of the corner
points of this surface and the numbers of the corner points themselves, whereby their numbering starts with
0.



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

171

The first square consists of the corner points 0,2,6,4, which corresponds to the coordinates (-200/-200/-200),
(-200,200,-200), (200,200,-200). (200,-200,-200). The definition of the top surface is complete by specifying
two consecutive zero words, otherwise it will not be recognized by the procedure.

In the main program, the global depth vz  of the object is then set (placed). Reduce this value to zoom closer.
The variables rotx , roty  and rotz  indicate the object's rotation angle in steps of 3 degrees; i.e., a rotation
of 15 degrees is established with a value of 5.

The choice of graphic mode is assigned to Mode X. This mode has a few disadvantages relating to the speed
at which it can address individual pixel but its most important advantage is its two screen pages. This is
important with the textures, because here the painting of the screen takes longer than a retrace period.

The global directional variables are then set. In this instance, the surface (filling ), the sorting (fl_sort ),
the hiding of the reverse side (fl_backs ) and the glass top surfaces (glass) are turned off.

The loop that follows is the same for all the programs and follows this pattern if no key is pressed:

1. The screen is cleared every time.

2. The world is drawn.

3. It's switched over to the new screen page.

4. It's rotated further.

The main function of this program takes over the module
3DASM.ASM, which is written in assembly language for faster
execution. Instead of listing the source code in individual
sections, we've listed the entire source code at one time:

 .286
w equ word ptr
b equ byte ptr
surfclen equ 200                ;maximum length of surface defined
Pointlen equ 4*100              ;length of point array
num_ar equ 30                   ;maximum number of areas
num_cor equ 10                  ;maximum number of corners
data segment                    ;external variables from Pascal segment
  extrn vz:word                 ;total depth
  extrn rotx:Word               ;angle of rotation
  extrn roty:Word
  extrn rotz:word
  extrn worldconst:dataptr      ;array with points
  extrn surfcconst:dataptr      ;array with surface definitions
  extrn lightsrc:word           ;flag for light source shading
  extrn sf_sort:word            ;flag for surface sorting
  extrn sf_shift:word           ;flag for surface shift suppression
  extrn Texture:Byte            ;flag for textures
  extrn Fill:Byte               ;flag for fill / wireframe model
crotx dw 0                      ;x, y and z angle as offset to
croty dw 0                      ;specific sine value
crotz dw 0
rotx_x dw 0                     ;x,y,z to x-rot
rotx_y dw 0
rotx_z dw 0
roty_x dw 0                     ;to y-rot
roty_y dw 0

PCPCun
de

rg
ro

un
d

You can find
3DASM.ASM

on the companion CD-ROM



172

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

roty_z dw 0
rotz_x dw 0                     ;to z-rot, final
rotz_y dw 0
rotz_z dw 0
startpoly dw 0                  ;start of definition of current area
Point      dw Pointlen dup (0);receives calculated coordinates
Pointptr   dw 0                 ;pointer in Point-Array
Point3d    dw Pointlen dup (0)  ;receives completed 3D-coordinates (texture)
mean      dw num_ar*2 dup (0)   ;list of mean z-values
meanptr   dw 0                  ;pointer in Mean-Array
n           dw 0,0,0,0,0,0      ;normal vector 32 Bit
n_amnt      dw 0                ;amount of normal vector

extrn sine:dataptr
data ends
extrn drawpol:near              ;draws area as wireframe model
extrn fillpol:near              ;fills area
extrn root:near                 ;calculates root of ax
getdelta macro                  ;calculates the two surface vectors
  mov ax,poly3d[0]              ;x: original corner
  mov delta2[0],ax              ;store temporarily in delta2
  sub ax,poly3d[8]              ;obtain difference to first point
  mov delta1[0],ax              ;and delta1 finished
  mov ax,poly3d[2]              ;y: original corner
  mov delta2[2],ax              ;store temporarily in delta2
  sub ax,poly3d[10d]            ;obtain difference to first point
  mov delta1[2],ax              ;and delta1 finished
  mov ax,poly3d[4]              ;z: original corner
  mov delta2[4],ax              ;store temporarily in delta2
  sub ax,poly3d[12d]            ;obtain difference to first point
  mov delta1[4],ax              ;and delta1 finished
  mov bp,polyn                  ;select last point
  dec bp
  shl bp,3                      ;8 bytes at a time
  mov ax,poly3d[bp]             ;get x
  sub delta2[0],ax              ;obtain difference
  mov ax,poly3d[bp+2]           ;get y
  sub delta2[2],ax              ;obtain difference
  mov ax,poly3d[bp+4]           ;get z
  sub delta2[4],ax              ;obtain difference
endm
setcoord macro source,offst     ;sets calculated screencoord
.386
  mov ax,source                 ;project coordinate
  cwd
  shld dx,ax,7
  shl ax,7
  idiv cx
   add ax,offst                 ;middle of screen is 0/0/0
  mov bx,Pointptr               ;note in Point-Array
  mov Point[bx],ax
  add Pointptr,2                ;add array pointer
endm
z2cx macro tabofs               ;moves z-coordinate to cx
  mov cx,tabofs + 4
  add cx,vz                     ;add z-translation
  mov bx,meanptr                ;note in Mean-Array
  add mean[bx],cx
endm

xrot macro zcoord,qcoord        ;rotates qcoord by x, stores in zcoord
.386



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

173

  mov bp,crotx                  ;get angle
  mov bx,[qcoord]
  shl bx,3                      ;x8, to align to point entries
  mov Pointptr,bx
  sub bx,[qcoord]               ;insg. x6, to align to world entries
  sub bx,[qcoord]
  add bx,offset worldconst      ;set to world
  mov ax,[bx]                   ;get x
  mov zcoord,ax                 ;and set unchanged
  mov ax,[bx+2]                 ;get y
  imul w ds:[bp+60d]            ;*cos rotx
  shrd ax,dx,14d
  mov cx,ax                     ;store in cx
  mov ax,[bx+4]                 ;get z
  imul w ds:[bp]                ;*-sin rotx
  shrd ax,dx,14d
  sub cx,ax
  mov zcoord+2,cx               ;y value finished and set
  mov ax,[bx+2]                 ;get y
  imul w ds:[bp]                ;*sin rotx
  shrd ax,dx,14d
  mov cx,ax                     ;store in cx
  mov ax,[bx+4]                 ;get z
  imul w ds:[bp+60d]            ;*cos rotx
  shrd ax,dx,14d
  add cx,ax
  mov zcoord+4,cx
endm

yrot macro zcoord,qcoord        ;rotates qcoord by y, stores in zcoord
  mov bp,croty                  ;get angle
  mov ax,qcoord+2               ;get y
  mov zcoord+2,ax               ;and set unchanged
  mov ax,qcoord                 ;get x
  imul w ds:[bp+60d]            ;*cos roty
  shrd ax,dx,14d
  mov cx,ax                     ;store in cx
  mov ax,qcoord+4               ;get z
  imul w ds:[bp]                ;*sin roty
  shrd ax,dx,14d
  add cx,ax
  mov zcoord,cx                 ;x value finished and set
  mov ax,qcoord                 ;get x
  imul w ds:[bp]                ;*-sin roty
  shrd ax,dx,14d
  mov cx,ax                     ;store in cx
  mov ax,qcoord+4               ;get z
  imul w ds:[bp+60d]            ;*cos roty
  shrd ax,dx,14d
  sub ax,cx
  mov zcoord+4,ax
endm

zrot macro zcoord,qcoord        ;rotates qcoord by z, saves in zcoord
  mov bx,Pointptr               ;prepare entry in 3D-Point-Array
  mov bp,crotz                  ;get angle
  mov ax,qcoord+4               ;get z
  mov zcoord+4,ax               ;and set unchanged
  mov Point3d[bx+4],ax          ;also note in 3D-Array
  mov ax,qcoord                 ;get x
  imul w ds:[bp+60d]            ;*cos rotz
  shrd ax,dx,14d



174

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  mov cx,ax                     ;store in cx
  mov ax,qcoord+2               ;get y
  imul w ds:[bp]                ;*-sin rotz
  shrd ax,dx,14d
  sub cx,ax
  mov zcoord,cx                 ;x value finished and set
  mov Point3d[bx],cx
  mov ax,qcoord                 ;get x
  imul w ds:[bp]                ;*sin rotz
  shrd ax,dx,14d
  mov cx,ax                     ;store in cx
  mov ax,qcoord+2               ;get y
  imul w ds:[bp+60d]            ;*cos rotz
  shrd ax,dx,14d
  add cx,ax
  mov zcoord+2,cx
  mov Point3d[bx+2],cx
endm

get_normal macro                ;calculates normal vector of an area
  mov ax,delta1[2]              ;a2*b3
  imul delta2[4]
  shrd ax,dx,4
  mov n[0],ax
  mov ax,delta1[4]              ;a3*b2
  imul delta2[2]
  shrd ax,dx,4
  sub n[0],ax
  mov ax,delta1[4]              ;a3*b1
  imul delta2[0]
  shrd ax,dx,4
  mov n[2],ax
  mov ax,delta1[0]              ;a1*b3
  imul delta2[4]
  shrd ax,dx,4
  sub n[2],ax
  mov ax,delta1[0]              ;a1*b2
  imul delta2[2]
  shrd ax,dx,4
  mov n[4],ax
  mov ax,delta1[2]
  imul delta2[0]
  shrd ax,dx,4
  sub n[4],ax                   ;cross product (=normal vector) finished
  mov ax,n[0]                   ;x1 ^ 2
  imul ax
  mov bx,ax
  mov cx,dx
  mov ax,n[2]                   ;+x2 ^ 2
  imul ax
  add bx,ax
  adc cx,dx
  mov ax,n[4]                   ;+x3 ^ 2
  imul ax
  add ax,bx
  adc dx,cx                     ;sum in dx:ax
  push si
  call root                     ;root in ax
  pop si
  mov n_amnt,ax                 ;amount of normal vector finished
endm



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

175

light macro                     ;determines brightness of an area
  mov ax,n[0]
  imul l[0]                     ;light vector * normal vector
  mov bx,ax                     ;form sum in cx:bx
  mov cx,dx
  mov ax,n[2]
  imul l[2]
  add bx,ax
  adc cx,dx
  mov ax,n[4]
  imul l[4]
  add ax,bx                     ;scalar product finished in dx:ax
  adc dx,cx
  idiv l_amnt                   ;divide by l_amnt
  mov bx,n_amnt                 ;and by n_amnt
  cwd
  shld dx,ax,5                  ;values from -32 bis +32
  shl ax,5d
  mov bp,startpoly              ;prepare addressing of  surface color
  idiv bx                       ;division by denominator
  inc ax
  or ax,ax
  js turned_toward           ;if cos à positive -> turned away from the light
  xor ax,ax                  ;thus, no light
turned_toward:
  sub b polycol,al           ;cos<0 -> add to primary color
endm
code segment
assume cs:code,ds:data
public drawworld
public linecount
public polycol
public polyn
public poly2d
public poly3d
linecount dw 0
polycol dw 3                    ;current surface color
polyn   dw 0                    ;number of existing corners
poly2d dw num_cor*4 dup (0)     ;corners of polygon to be drawn
poly3d dw num_cor*4 dup (0)     ;3D corners
public Txt_No
Txt_No dw 0                     ;current texture number
public delta1,delta2
delta1      dw 0,0,0            ;plane vectors
delta2      dw 0,0,0
l            dw 11d,11d,11d     ;light vector
l_amnt      dw 19d              ;amount of light vector

drawworld proc pascal           ;draws three-dimensional world
  push ds
  push es
  push bp
  lea si,surfcconst             ;surfaces are addressed by si
  mov meanptr,0                 ;start in Mean-Array with 0
  mov ax,ds:[rotx]              ;get angle,
  shl ax,1                      ;convert as memory offset
  add ax,offset sine
  mov crotx,ax                  ;and store in help variables
  mov ax,ds:[roty]              ;exactly the same for y
  shl ax,1
  add ax,offset sine
  mov croty,ax



176

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  mov ax,ds:[rotz]              ;and z
  shl ax,1
  add ax,offset sine
  mov crotz,ax

npoly:                          ;polygon loop
  mov startpoly,si              ;store for later use
  add si,2                      ;skip color
  mov cx,[si]                   ;get number of corners
  mov linecount,cx              ;load counter
  inc cx                        ;due to closed area
  mov w polyn,cx                ;enter in Point-Array
  add si,2                      ;move to actual coordinates
nline:
  xrot rotx_x,si                ;rotate coordinates by x
  yrot roty_x,rotx_x            ;by y
  zrot rotz_x,roty_x            ;and by z
  z2cx rotz_x                   ;get z start
  setcoord rotz_x,160           ;write coordinates
  setcoord rotz_y,100

  add si,2                      ;next corner point
  dec linecount                 ;advance line counter
  je polyok                     ;all drawn -> terminate
  jmp nline                     ;otherwise next line

polyok:
  mov bx,meanptr                ;calculate mean value:
  mov ax,mean[bx]               ;get sum
  mov cx,polyn
  dec cx
  cwd
  div cx                        ;and divide by number of corners
  mov mean[bx],ax               ;write back
  mov ax,startpoly              ;write "number" of area also
  mov mean[bx+2],ax
  add meanptr,4                 ;continue
  cmp w [si+2],0                ;polygons all finished ?
  je finished
  jmp npoly

finished:
  cmp b sf_sort,0               ;sort surfaces ?
  je no_quicksort
  call quicksort pascal,0,bx    ;sort field from 0 to current position

no_quicksort:
  mov mean[bx+4],0              ;set termination
  mov ax,cs                     ;set destination segment
  mov es,ax
  xor bx,bx                     ;start with first surface

npoly_draw:
  lea di,poly2d                 ;destination:Poly-Array
  mov bp,mean[bx+2]             ;get pointer to color and points of surface
  mov ax,ds:[bp]                ;get color and set
  mov polycol,ax
  mov texture,0                 ;Assumption: no texture
  cmp ah,0ffh                   ;texture ?
  jne no_texture
  mov texture,1                 ;yes, then set
  mov b txt_no,al               ;note number



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

177

no_texture:
  mov b lightsrc,0              ;Assumption: no shading
  cmp ah,0feh                   ;shading ?
  jne no_lightsource
  mov b lightsrc,1              ;yes, then set

no_lightsource:
  add bp,2                      ;position on number
  mov cx,ds:[bp]                ;get number of corners
  mov polyn,cx                  ;write in Poly-Array

npoint:
  add bp,2
  mov si,ds:[bp]                ;get pointer to actual point
  shl si,3                      ;3 word entry !
  add si,offset Point           ;and x/y from Point-Array to Poly-Coord.
  mov ax,[si+Point3d-Point]     ;3d-get x
  mov es:[di+poly3d-poly2d],ax  ;set 3d-x
  mov ax,[si+Point3d-Point+2]   ;3d-get y
  mov es:[di+poly3d-poly2d+2],ax;set 3d-y
  mov ax,[si+Point3d-Point+4]   ;3d-get z
  mov es:[di+poly3d-poly2d+4],ax;set 3d-z
  movsw                         ;set 2D-coordinates
  movsw
  add di,4                      ;next Poly2d entry
  dec cx                        ;all corners ?
  jne npoint
  mov bp,polyn                  ;copy first corner to last
  shl bp,3                      ;position on first point
  neg bp
  mov ax,es:[di+bp]             ;and copy
  mov es:[di],ax
  mov ax,es:[di+bp+2]
  mov es:[di+2],ax
  add di,poly3d-poly2d          ;the same for 3d-coordinates
  mov ax,es:[di+bp]             ;and copy
  mov es:[di],ax
  mov ax,es:[di+bp+2]
  mov es:[di+2],ax
  mov ax,es:[di+bp+4]
  mov es:[di+4],ax
  cmp fill,1                    ;fill surface ?
  jne lines
  getdelta                      ;yes, then calculate Delta1 and 2
  cmp b lightsrc,0              ;light source ?
  jne shade
  jmp no_light

shade:                          ;yes,
  push bx
  get_normal                    ;then normal vector
  light                         ;and calculate light
  pop bx

no_light:
  inc polyn                     ;increment number of corners
  call fillpol                  ;draw surface

next:
  add bx,4                      ;locate next surface
  cmp mean[bx],0                ;last ?



178

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  je _npoly_draw                ;no, then continue
  jmp npoly_draw

lines:
  push bx
  call drawpol                  ;draw polygon
  pop bx
  jmp next

_npoly_draw:
  pop bp                        ;finished
  pop es
  pop ds
  ret
drawworld endp
public quicksort
quicksort proc pascal down,up:word
;sorts Mean-Array according to Quicksort algorithm

local key:word
local left:word
  push bx
  mov bx,down                  ;find middle
  add bx,up
  shr bx,1
  and bx,not 3                  ;posit on blocks of 4
  mov dx,mean[bx]               ;get key
  mov key,dx
  mov  ax,down                  ;initialize right and left with base values
  mov si,ax
  mov left,ax
  mov ax,up
  mov di,ax
  mov dx,key

left_nearer:
  cmp mean[si],dx               ;greater than key -> continue searching
  jbe left_on
  add si,4                      ;posit on next one
  jmp left_nearer               ;and check it

left_on:
  cmp mean[di],dx               ;less than key -> continue searching
  jae right_on
  sub di,4                      ;posit on next one
  jmp left_on                   ;and check it
right_on:
  cmp si,di                     ;left <= right ?
  jg end_schl                   ;no -> subarea sorted
  mov eax,dword ptr mean[si]    ;exchange mean values and positions
  xchg eax,dword ptr mean[di]
  mov dword ptr mean[si],eax

  add si,4                      ;continue moving pointer
  sub di,4
end_schl:
  cmp si,di                     ;left > right, then continue
  jle left_nearer
  mov left,si                   ;store left, due to recursion
  cmp down,di                   ;down < right -> sort left subarea
  jge right_finished
  call quicksort pascal,down,di ;continue sorting recursive halves



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

179

right_finished:
  mov si,left                   ;up > left -> sort right subarea
  cmp up,si
  jle left_finished
  call quicksort pascal,si,up  ;continue sorting recursive halves
left_finished:
  pop bx
  ret
quicksort endp
code ends
end

You've probably guessed the procedure drawworld  is important simply by its length. Here, the complete
three dimensional world is drawn, depending on the current transformation values. Parameters are not
given since these are completely handled by global variables.

The current rotation angle (rotx , roty , rotz ) is immediately converted to the offset relative to the data
segment (crotx ,  croty ,  crotz ) so direct access is available later without requiring any further calculations.
Within the loop npoly  which is performed for every polygon, the SI-register is used for addressing within
the surface array (surfcconst ).

Then, the color information is skipped and the numbers of corners for this polygon are read directly from
the array. This value is saved in LineCount , which indicates the number of corners that still need to be
calculated. The procedure next enters into the point loop, nline , which rotates the individual points one
after another and projects them onto the screen coordinates. The rotations (macros xrot , yrot , zrot )
respectively transmit the results to the one that follows, so the original coordinates are rotated one after
another around the x-, y- and z-axes.

The structures of the three rotation macros is very similar. Since bp contains the angle in the offset form, the
corresponding sine value can be easily read by indexing with bp from the chart. The cosine is correspondingly
addressed by adding 60 (byte, i.e., 30 entries) to bp.

The number of the actual corner points is multiplied by 8 to access the three dimensional point array (with
8 byte long entries). This index is saved in variable PointsPtr .

Now on to the macros. For an x rotation, the x-coordinate remains unchanged. The y-and z-coordinates are
changed as follows:

 y'=y*cos_ - z*sin_

and

 z'=y*sin_ + z*cos_.

The other two macros are similar for the y- and z-coordinates. Macro z2cx  loads the rotated z coordinates
into the cx register.

Now the coordinates for the corner points are ready to be projected onto the screen. This is performed by
macro SetCoord . It projects the coordinates listed in the source (one time  rotz_x  and one time rotz_y )
and simultaneously moves the completed image to the middle of the screen where the offset (the second
parameter) is added.

The nline  loop is closed by advancing to the next corner point (increasing SI) and reducing the line
counter.



180

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

When all the corner points have been calculated, the middle section of the polygon is calculated at label
polyok . The wireframe model at the end of the npoly  loop with the cmp instruction gets interesting. When
the number of corners equals zero, the loop is ended and jumps to the label complete .

In later models, a surface sorter is introduced at this position. However, it's skipped here due to the setting
of variable fl_Sort . Here, the termination is set in array mean  by using a trailing zero. Each polygon is
individually drawn in the npoly_draw  loop . Array Poly2  is used to transfer the coordinates to routine
DrawPoly .

The polygon identification is retrieved from array mean  every time, as is the color information retrieved
from the SurfcConst  field and saved in polycol . The two instruction blocks that follow are for activating
the texture and light source routines, which, in this case, are not yet required. The reading of the number
of corners proceeds from the array mean  with the label no_light source . It's then saved in variable
polyn . The npoint  loop follows and is performed for every corner point. It then reads the number of corner
points and addresses the two dimensional corner coordinates in the points array using the loop. Both of the
movsw commands then copy the coordinates from this array into the Poly2D  field, where the DI counter
has been increased. The loop then ends.

Now the first corner must be copied to the last one to maintain a closed line. The following trick is used for
this: Multiply the number of corners (polyn ) by 8 (number of bytes per corner) to determine the total length
of the array Poly2D  in byte. This length is then subtracted by sorting out from the current position (hence
neg bp) and the word is copied in here.

Since this program uses wireframe models, lines branch out from the label, which procedure drawpol  calls
from the module POLY.ASM and, in this manner, draws the polygon to the screen as a wireframe model.
Afterwards, the next polygon in array mean  is addressed at label next  and jumps to the beginning of the
loop npoly_Draw .

The polygon is drawn in the POLY.ASM module, in this case by
the procedure drawpol :

public drawpol
;draws wireframe model of surface in poly2d
drawpol proc near
  push es
  pusha
  xor si,si                     ;index to first entry
  mov bp,polyn                  ;get number of corners
@nline:
  mov ax,poly2d[si]             ;get coordinates from table
  mov bx,poly2d[si+2]
  mov cx,poly2d[si+8]
  mov dx,poly2d[si+10d]
  push bp
  push si
  call bline                    ;draw line
  pop si
  pop bp
  add si,8                      ;next line
  dec bp                        ;decrement number
  jne @nline
  popa
  pop es
  ret
drawpol endp

PCPCun
de

rg
ro

un
d

The drawpol procedure
is part of the

POLY.ASM module
on the companion CD-ROM



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

181

We are obviously using the simpler presentation procedure here. Starting and ending coordinates are read
for every point from the array Poly2D  and the procedure bline is called. si serves as an index in the array
and bp is used for purposes other than originally intended, i.e., as a counter for the number of lines to be
drawn.

Get A Perspective: Glass Figures

The objects in the previous section consist primarily of only sides. Therefore, they don't resemble real
objects. The next step, then, is to add surfaces to these objects. In doing this, you'll encounter one of the
biggest problems in 3-D: Hidden surfaces.

If you simply erase all the surfaces that are behind each other, as they are defined, often surfaces will appear
which are normally invisible. We'll talk about hiding these surfaces from a different angle in this section.

Instead of adapting the illustrations to reality, we will first adapt reality to the illustration. We'll start with
a glass figure where all side surfaces are always visible. Nevertheless, the sides can be in color. In fact, they
must be in color so we can create a picture.

If only two surfaces lie back to back, their colors are superimposed on one other and a somewhat darker
blended color results (two surfaces filter out more light than one surface).

In principle, every possible surface combination must be considered, i.e., if surface A is superimposed over
surface B at any angle, a blended color for the two surfaces must exist. The only way to allow for this is to
reserve a bit in the color information for each surface. So, only surfaces that cannot be superimposed under
any circumstances can use the same bit because blending is not possible.

When preparing the surface, the old color is not transferred, but both values are joined using OR, producing
a new color value. For example, if surface A has the color 2 (bit 1 is set) and surface B has the color 16 (bit
4), this combination results in the color 18 (bit 1 and 4 set).

Naturally, the palettes for these special structures must be included. The pure colors must be maintained
and every bit combination is provided with a blended color from the respective bit. The named color 18 must
be, in this case, a blend of colors 2 and 16.

The palette must then be prepared at the beginning of the program. You will use the existing VGA
arithmetic unit when filling the polygons. This can be switched (or operated) using GDC register 3 in the
OR mode. It joins the incoming CPU data with the OR values located in the latches before they are written
to screen memory. Before write access can occur, the latches must be loaded with the values from the screen
memory, in which read access is given at the same memory position.

The following program, 3D_GLASS.PAS, is also based on the
3DASM.ASM model. Unlike the previous section, different
variables have been set:

PCPCun
de

rg
ro

un
d

You can find
3D_GLASS.PAS

on the companion CD-ROM

PCPCun
de

rg
ro

un
d

GlassPassword:



182

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

Uses Crt,ModeXLib,var_3d;

Const
    worldlen=8*3;               {Point-Array}
    Worldconst:Array[0..worldlen-1] of Integer =
    (-200,-200,-200,
    -200,-200,200,
    -200,200,-200,
    -200,200,200,
    200,-200,-200,
    200,-200,200,
    200,200,-200,
    200,200,200);
    surfclen=38;                {Surface-Array}
    surfcconst:Array[0..surfclen-1] of Word=
    (01,4, 0,2,6,4,
     02,4, 0,1,3,2,
     04,4, 4,6,7,5,
     08,4, 1,5,7,3,
     16,4, 2,3,7,6,
     32,4, 0,4,5,1,0,0);
Var
    i,j:Word;
Procedure Glass_Pal;
{prepares the palette for glass solids}
Begin
  FillChar(Palette[3],765,63);  {first all colors white}
  For i:=1 to 255 do Begin      {define 255 mixed colors}
    If i and 1 = 1 Then Dec(Palette[i*3],16);
    If i and 2 = 2 Then Dec(Palette[i*3+1],16);
    If i and 4 = 4 Then Dec(Palette[i*3+2],16);
    If i and 8 = 8 Then Begin
                          Dec(Palette[i*3],16);
                          Dec(Palette[i*3+1],16);
                        End;
    If i and 16 = 16 Then Begin
                          Dec(Palette[i*3],16);
                          Dec(Palette[i*3+2],16);
                        End;
    If i and 32 = 32 Then Begin
                          Dec(Palette[i*3+1],16);
                          Dec(Palette[i*3+2],16);
                        End;
  End;
  SetPal;
End;

procedure drawworld;external;   {draws the world on current video page}
{$l 3dasm.obj}
{$l poly.obj}
{$l bres.obj}
{$l root.obj}

Begin
  vz:=1000;                     {solid is located at 1000 units depth}
  vpage:=0;                     {start with page 0}
  init_modex;                   {enable ModeX}
  Glass_Pal;
  rotx:=0;                      {initial values for rotation}
  roty:=0;
  rotz:=0;
  Fill:=true;                   {SurfaceFill on}



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

183

  sf_sort:=false;               {SurfaceSort off}
  sf_shift:=false;              {SurfaceShift suppression off}
  Glass:=true;                  {glass surfaces on}
  repeat
    clrx($0f);                  {clear screen}
    DrawWorld;                  {draw world}
    switch;                     {switch to finished picture}
    WaitRetrace;                {wait for next retrace}
    Inc(rotx);                  {continue rotating ... }
    If rotx=120 Then rotx:=0;
    Inc(rotz);
    If rotz=120 Then rotz:=0;
    inc(roty);
    if roty=120 Then roty:=0;
  Until KeyPressed;             { ... until key}
  TextMode(3);
End.

The surface filling algorithm is turned on by setting the variable Filling . Otherwise, Glass would be
set to TRUE, whereby the GDC would be switched to the OR mode. Procedure Glass_Pal  is called before
the main program (discussed in the previous section). It prepares the palette for the glass figures.

For every color in which bit 0 is set, the red portion is reduced to 16. All blended colors are created in this
manner when the color 1 is involved. The same is true with other 5 bit experiences, which filter out other
colors respectively.

The remaining POLY.ASM modules are considered at this point. After the polygon fill algorithm, a colorful
surface is created with the coordinates found in Poly2D .

There are two basic categories of fill algorithms:

Ø General filling
This arbitrarily fills pre-drawn surfaces and is often used in paint programs

Ø Coordinate filling
This uses coordinates to fill defined polygons. This algorithm is the fastest for our purposes.

The method described here is based on drawing of lines. This is the reason why, starting with the point
having the lowest y-coordinate, the left and right edges of the polygon are keyed until the point with the
largest y-coordinate is reached. As this happens, the border lines of the polygon are calculated but not
drawn. If you advance a line in this fashion on both sides, a horizontal line can be drawn between the points
calculated on the left and right points. You can take advantage there by being able to draw horizontal lines
in Mode X at a very high rate of speed.

A filling routine must constantly calculate lines on the left as well as on the right margins of the polygon.
If a line has been completely "drawn," the next one that has the last corner point as its starting point is started.

Procedure FillPol  shows how this theoretical statement can
be put into practice. Besides the procedure DrawPol , the
complete code for the POLY.ASM module is used by the fill
algorithm: PCPCun

de
rg

ro
un

d

You can find
POLY.ASM

on the companion CD-ROM



184

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

.286
w equ word ptr
b equ byte ptr
include texture.inc             ;implement texture macros
setnewlinel macro               ;use only ax and bx here !
local dylpos,dxlpos,dxlgreat,macro_finished
  mov bx,4043h                  ;code for inc ax (in bh) and inc bx (in bl)
  mov bp,left
  mov ax,poly2d[bp+8]           ;store destination coordinates
  mov xl1,ax
  mov ax,poly2d[bp+10d]
  mov yl1,ax
  mov ax,poly2d[bp]             ;left x/y start in glob. var
  mov xl0,ax
  sub ax,xl1                    ;make delta x
  inc xl1                       ;for the condition of truncation
  neg ax                        ;xl1-xl0
  jns dxlpos                    ;dxl negative ?
  neg ax                        ;then obtain amount
  mov bh,48h                    ;code for dec ax (dec xl0)
  sub xl1,2                     ;extension of destination coordinate to negative
dxlpos:
  mov dxl,ax                    ;and store glob.
  mov incflagl,ax               ;store in increment flag
  mov ax,poly2d[bp+2]
  mov yl0,ax
  sub ax,yl1                    ;obtain |delta y|
  inc yl1                       ;for the condition of trunctation
  neg ax
  jns dylpos                    ;negative ?
  neg ax                        ;then obtain amount
  mov bl,4bh                    ;code for dec bx (dec yl1)
  sub yl1,2                     ;extension of destination coordinate to negative
dylpos:
  mov dyl,ax                    ;and store glob.
  cmp dxl,ax                    ;dx < dy
  jae dxlgreat
  neg incflagl                  ;then sign change for increment flag
dxlgreat:
  mov cs:byte ptr incxl,bh      ;perform self modification
  mov cs:byte ptr incyl,bl
  cmp texture,1                 ;textures required ?
  jne macro_finished              ;no, then skip
  txt_makevarl                  ;otherwise calculate texture variables
macro_finished:
  mov ax,xl0                    ;use register as control variable
  mov bx,yl0
  mov si,incflagl
endm

setnewliner macro               ;use only cx and dx here !
local dyrpos,dxrpos,dxrgreat,macro_finished
  mov cx,4142h                  ;code for inc cx (in ch) and inc dx (in cl)
  mov bp,right
  mov dx,poly2d[bp]             ;get destination coordinates
  mov xr1,dx
  mov dx,poly2d[bp+2]
  mov yr1,dx
  mov dx,poly2d[bp+8]           ;right x/y in glob. var
  mov xr0,dx
  sub dx,xr1                    ;make |delta x|
  inc xr1                       ;for the condition of truncation



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

185

  neg dx
  jns dxrpos                    ;negative ?
  neg dx                        ;then obtain amount
  mov ch,49h                    ;code for dec cx
  sub xr1,2                     ;extension of destination coordinate to negative
dxrpos:
  mov dxr,dx                    ;store in glob. var
  mov incflagr,dx
  mov dx,poly2d[bp+10d]         ;make |delta y|
  mov yr0,dx
  sub dx,yr1
  inc yr1                       ;for the condition of truncation
  neg dx
  jns dyrpos                    ;negative ?
  neg dx                        ;then obtain amount
  mov cl,4ah                    ;code for dec dx
  sub yr1,2                     ;extension of destination coordinate to negative
dyrpos:
  mov dyr,dx                    ;and store in glob. var
  cmp dxr,dx                    ;dx < dy ?
  jae dxrgreat
  neg incflagr                  ;then sign change for increment flag
dxrgreat:
  mov cs:byte ptr incxr,ch      ;self modification
  mov cs:byte ptr incyr,cl
  cmp texture,1                 ;textures needed ?
  jne macro_finished            ;no, then skip
  txt_makevarr                  ;otherwise calculate texture variables

macro_finished:
  mov cx,xr0                    ;load register
  mov dx,yr0
  mov di,incflagr
endm
data segment public
  extrn vpage:word              ;current video page
  extrn sf_shift                ;flag for surface shift suppression
  extrn glass:byte;             ;flag for glass surfaces
;texture variables:
  extrn texture:byte            ;texture needed  ?
  extrn txt_data:dataptr        ;array with pointer to graphic data
  extrn txt_offs:dataptr        ;array with offsets within the texture image
  extrn txt_size:dataptr        ;array with size specifications

d_x  dd 0                       ;relative x-coordinate
d_y dd 0                        ;relative y-coordinate
D    dd 0                       ;main determinant
column1 dd 0                    ;components of the main determinant
        dd 0
column2 dd 0
        dd 0
upper_row dw 0                  ;which coordinates were used ?
lower_row dw 0

xl_3d dd 0                      ;control values for 3d-coordinates when filling
yl_3d dd 0
zl_3d dd 0
xr_3d dd 0
yr_3d dd 0
zr_3d dd 0

inc_xl dd 0                     ;values for addition to control values



186

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

inc_yl dd 0
inc_zl dd 0
inc_xr dd 0
inc_yr dd 0
inc_zr dd 0

;variables for fill algorithm
high_point   dw 0               ;kept in dx during search
high_y      dw 0                ;kept in bx during search
left        dw 0                ;point of left side
right      dw 0                 ;point of right side
xl0  dw 0                       ;control values for left start and end points
yl0 dw 0
xl1 dw 0
yl1 dw 0
xr0 dw 0                        ;control values for right
yr0 dw 0
xr1 dw 0
yr1 dw 0
dxl dw 0                        ;delta X / Y for both pages
dyl dw 0
dxr dw 0
dyr dw 0
incflagl dw 0                   ;flags, when y has to be incremented
incflagr dw 0

data ends

code segment public
assume cs:code,ds:data
extrn polycol:word              ;surface color
extrn polyn:word                ;number of corners
extrn poly2d:word               ;array with 2D-coordinates
extrn poly3d:word               ;array with 3D-coordinates
extrn delta1,delta2:word        ;plane vectors
extrn bline:near                ;draws line

lambda1 dd 0                    ;affine coordinates
lambda2 dd 0

inc_lambda1 dd 0                ;steps
inc_lambda2 dd 0

plane dw 0002h                  ;current plane to set
x0 dw 0                         ;coordinates for line
y0 dw 0
x1 dw 0
zz dw 0                         ;points still to be drawn

extrn txt_no:word               ;number of texture to be drawn

public drawpol
;draws wireframe model of surface in poly2d
drawpol proc near
  push es
  pusha
  xor si,si                     ;index to first entry
  mov bp,polyn                  ;get number of corners
@nline:
  mov ax,poly2d[si]             ;get coordinates from table
  mov bx,poly2d[si+2]
  mov cx,poly2d[si+8]



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

187

  mov dx,poly2d[si+10d]
  push bp
  push si
  call bline                    ;draw line
  pop si
  pop bp
  add si,8                      ;next line
  dec bp                        ;decrement number
  jne @nline
  popa
  pop es
  ret
drawpol endp

hline proc near                 ;draws horiz. line ax/bx -> cx/bx
  pusha
  push es
  mov x0,ax                     ;store coordinates for later
  mov y0,bx
  mov x1,cx
  sub cx,ax                     ;calculate number of pixels to be drawn
  jne zzok
  inc cx

zzok:
  mov zz,cx
  cmp glass,1                   ;glass surface ?
  jne Solid1
  push ax                       ;yes, then GDC mode: OR
  mov dx,3ceh
  mov ax,1003h                  ;register 3: function select
  out dx,ax
  pop ax

Solid1:
  mov dx,3c4h                   ;timing sequencer port
  mov di,0a000h
  mov es,di                     ;select VGA segment
  mov di,ax                     ;calculate offset
  shr di,2                      ;(x div 4) + y*80
  add di,vpage                  ;add current page
  mov bx,y0
  imul bx,80d
  add di,bx                     ;now in di
  cmp zz,4
  jl no_middle                  ;<draw 4 points -> no blocks of 4
  and ax,11b                    ;two lower bits are important
  je middle                     ;if 0 set blocks of 4 immediately
no_middle:
  mov bx,0f02h                  ;if no_shift, then use this mask
  mov cx,zz                     ;set number of pixels in mask
  cmp cx,20h                    ;beginning with 20h the 386 shifts back in !
  jae no_shift
  mov bx,0102h                  ;prepare mask
  shl bh,cl                     ;number of pixels=number of bits to set
  dec bh
  and bh,0fh
no_shift:
  mov cx,ax                     ;shift correctly depending on start plane
  and cl,3
  shl bh,cl
  mov ax,bx                     ;and mask finished



188

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

    sub zz,4                      ;decrement pixels to be drawn
  add zz,cx
start:
  out dx,ax                     ;set calculated write mask
  mov al,b polycol              ;get color
  mov ah,es:[di]                ;load latches, only for glass solids
  stosb                         ;set
middle:
  cmp zz,4
  jl close                     ;if no more blocks of 4 -> conclusion
  mov ax,0f02h                  ;select all planes
  out dx,ax                     ;(zz div 4) set blocks of 4
  mov cx,zz
  shr cx,2
  mov al,b polycol
  cmp glass,1                   ;glass solid ?
  jne solid

@lp:
  mov ah,es:[di]                ;load latches, only glass solids
  stosb                         ;and write back
  dec cx
  jne @lp
  jmp close

solid:
  rep stosb                     ;draw middle part

close:
  mov cx,x1                     ;set remaining pixels
  and cx,3h
  dec zz
  js hline_finished             ;if nothing more there -> end
  mov ax,0102h
  shl ah,cl                     ;create mask
  dec ah
  out dx,ax
  mov al,b polycol              ;get color
  mov ah,es:[di]                ;load latches, only for glass solids
  stosb                         ;and draw pixels
hline_finished:
  mov dx,3ceh                   ;GDC mode back to MOVE
  mov ax,0003h
  out dx,ax
  pop es
  popa
  ret
hline endp

txt_hline                       ;macro contains procedure "hline_texture"

public fillpol
fillpol proc near               ;fills polygon in mode X
  push bp
  pusha

  cmp texture,1                 ;textures being used ?
  jne fill                      ;no, then simply fill

  txt_maindet                   ;otherwise calculate main determinant

Fill:



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

189

  xor si,si                     ;search for highest point, select first entry
  mov cx,polyn                  ;number of corners
  sub cx,2
  mov bx,0ffffh                 ;very high value, in any case lower
npoint:
  mov ax,poly2d[si+2]           ;get y
  cmp ax,bx                     ;if previous minimum lower
  ja  no_min
  mov bx,ax                     ;record new minimum
  mov dx,si
no_min:
  add si,8
  dec cx                        ;next corner, if not 0ffffh
  jns npoint
  mov high_point,dx             ;record in glob var
  mov high_y,bx                 ;high point search concluded
  or dx,dx                      ;left = 0 ?
  jne dec_valid
  mov bx,polyn                  ;yes: right to the other end
  sub bx,2
  shl bx,3
  jmp lr_finished               ;position
dec_valid:
  mov bx,dx                     ;otherwise
  sub bx,8
lr_finished:
  mov left,dx                   ;record one beforehand in glob var
  mov right,bx
; ax/bx : start coordinates left    (xl0/yl0)
; cx/dx : start coordinates right   (xr0/yr0)
; si    : overflow flag left
; di    : overflow flag right
; bp    : pointer to current point
  setnewlinel                   ;load line variables
  setnewliner

loopl:
  cmp ax,xl1
  je new_linel                  ;if end reached -> set new line
  cmp bx,yl1
  je new_linel                  ;otherwise continue drawing
  or si,si                      ;increment flag <= 0
  jg flaglgreat
incyl:                          ;this place is being patched !
  inc bx                        ;continue y
  add si,dxl                    ;continue setting inc flag
  txt_incl                      ;continue 3d coordinates also
  cmp bx,yl1                    ;destination reached ?
  je new_linel                  ;then new line
  jmp left_increased            ;y has been increased left -> now right
flaglgreat:
  sub si,dyl                    ;decrement inc flag
incxl:                          ;this place being patched !
  inc ax                        ;continue x
  jmp loopl
finished__:
  jmp finished

new_linel:
  mov bx,left                   ;prepare increase
  cmp bx,right
  je finished__                 ;same, then finished



190

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  add bx,8                      ;continue left
  mov ax,polyn                  ;is left at the end of the list ?
  shl ax,3
  sub ax,8                      ;end defined
  cmp bx,ax                     ;compare
  jb left_set
  xor bx,bx                     ;if yes, then set to 0
left_set:
  mov left,bx
  setnewlinel                   ;reload variables
  jmp loopl
finished_:
  jmp finished
left_increased:

loopr:
  cmp cx,xr1
  je new_liner                  ;if end reached -> set new line
  cmp dx,yr1
  je new_liner                  ;otherwise continue drawing

  or di,di                      ;increment flag <= 0
  jg flagrgreat
incyr:                          ;this place being patched !
  inc dx                        ;continue y
  add di,dxr                    ;continue setting inc flag
  txt_incr
  cmp dx,yr1                    ;destination reached ?
  je new_liner                  ;then new line
  jmp right_increased           ;y was increased right -> now draw line
flagrgreat:
  sub di,dyr                    ;decrement inc flag
incxr:
  inc cx                        ;this place being patched !
  jmp loopr

new_liner:
  mov dx,right                  ;prepare decrease
  cmp dx,left
  je finished_                  ;if same, then finished
  sub dx,8                      ;if previously at 0->set at other end
  jns right_set
  mov dx,polyn
  sub dx,2
  shl dx,3                      ;positioned at end
right_set:
  mov right,dx
  setnewliner                   ;reload variables
  jmp loopr
right_increased:
  push ax
  push cx
  cmp cx,ax                     ;correct sequence ?
  jae direct_ok                 ;then ok, otherwise:
  cmp w sf_shift,0              ;suppress surface shift ?
  je draw                       ;no, then draw anyway
  pop cx
  pop ax
  jmp finished                  ;polygon will not be drawn
draw:
  xchg ax,cx                    ;coordinates in correct sequence
direct_ok:



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

191

  cmp texture,1                 ;use textures ?
  jne norm_fill                 ;no, then normal fill
  call hline_texture            ;draw horizontal texture line
  pop cx
  pop ax
  jmp loopl                     ;and continue
norm_fill:
  call hline                    ;draw horizontal line
  pop cx
  pop ax
  jmp loopl                     ;and continue
finished:
  popa
  pop bp
  ret
fillpol endp
code ends
end

Next, the high point (the one with the lowest y-coordinate) is determined in the loop npoint . BX contains
the previous minimum and SI contains this point's number. Then, variables left or right are loaded
They indicate which line will be worked on the left or on the right. If, for example, left indicates point 1, a
line is drawn on the left polygon margin from point 1 to point 2. On the right margin, the variable is defined
opposite. A variable point number of 3 means a line will be drawn from point 4 to point 3.

Now left is set to the determined high point and right is set in the coordinate table one point ahead
(or at the end of the definition if left  points to point 0). Now both macros, setnewlinel  and
setnewliner , are called. These specify the required variables for the left and right lines.

Similar to the Bresenham algorithm, delta x and delta y are calculated. Their values are calculated with
negative signs and the corresponding position in the code is modified so it can be drawn in reverse direction.
This is an effective and fast method to control the execution of a loop while avoiding variables.

Incflag  is included during the display loop if the y-coordinate is to increase. It's then reversed with delta
x and, if there is an increase greater than 1 (delta x < delta y), in the sign. Incflag  , as well as the current
coordinate, are held in the register for faster presentation speed. The AX/BX for the coordinates and SI for
Incflag   are located on the left side. The corresponding CX/DX and DI are located on the right side.

The actual line drawing algorithm uses a slope defined by delta x and delta y. Incflag   (in SI or DI) is
reduced at delta y with each movement in the x direction and increased at delta x with a movement in the
y direction. By recognizing the Incflag  sign change, we can decide in which direction the next step must
go. A positive flag indicates a step in the x-direction and a negative flag indicates a step in the y-direction.

For instance, if delta x = 100 and delta y = 50, the Incflag  is initially loaded with 100. The first movement
occurs to the right (Incflag  = 100); then delta y is subtracted (Incflag  = 50) so the second movement is
also the right and delta y is again subtracted. The next movement is down since (Incflag  <= 0).
Afterwards, Incflag  is raised to delta x so it again equals 100. Two steps to the right and one step down
is performed repetitively corresponding to a slop of 0.5.

These calculations are performed in loops loopl  and loopr on the left or right sides. They are then
checked to see if the target point has been reached. Therefore, the target point is pushed in the SetNewLineX
macro by one point in the x- and in the y-direction. So, this position must only be checked if one of the two
coordinates is identical with the expanded target point. In this case, the original target point was bypassed.



192

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

When a line has reached its target, the next one must be taken from the list and the respective variables must
be set. This occurs at labels new_linel  or  new_liner . Variables left  and right  are examined to see
if they are identical, in which case the polygon is completely drawn and the procedure can be exited at
finished .

Otherwise, we advance by 8 bytes on the left side of the counter (left) and moved correspondingly back a
position on the right side (right). Accordingly, the margins must also be considered, i.e., after the last point
it must be positioned on the first point and vice versa.

After the counter has been loaded, the line variables are reset. setnewline1  and  setnewline2 are called
to jump back into the loop.

As we mentioned, the line is drawn after increasing both sides of the y-coordinate. This occurs at label
right_increased . Essentially, only the procedure hline is called, which draws a line from point ax/bx
to point cx/bx. Subsequently, it jumps back into loop left .

This procedure then saves the variables that are still required and calculates the length of the distance. If
the glass surfaces are lengthened, as happens in this program, the GDC is needed at this point to execute
an OR operation between the old latch-content and the new data.

The easiest way to draw a horizontal line is to set all the points following one another to the desired color.
This isn't efficient in Mode X where addressing each individual point is very tedious. Instead, you should
attempt, wherever possible, to set four points at that address.

At label Solid1 , the target address of the first byte is then calculated. The first, incomplete block is drawn
at label no_middle . This is either skipped if the total number of points to draw is smaller than 4 or is needed
if the start plane (determined by AND of the x-coordinate with 11b) is not equal to 0. To draw this block,
the number of the pixel that needs to be set is first masked in bh. Now, all the pixel from this block are masked
and the actual required number of bits is set. This mask is now pushed to the correct position relative to the
start plane and sent to the timing sequencer after decreasing zz .

Now a read access is performed at the desired offset. This is not sent from the contents of the screen memory
to the CPU, but to load the latches so the write access that follows can match the new color with the correct
data.

If there are fewer than four pixels to set, then branch to label end . Otherwise, all the planes must be turned
on and the corresponding number of blocks set to the correct color. This placement is performed with an
invisible figure using a REP STOSB instruction. Unfortunately, it's slightly more complicated with glass
figures. Here, a loop needs to be inserted since a read access must follow each byte.

The end now sets all the pixels from the last block up to the target coordinate. In this manner, a mask is
formed, set, and the color written all corresponding to the target plane. With the label hline_complete ,
only the write mode of the GDC is again directed to replace and the procedure is exited.



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

193

Hidden Lines

Glass figures have their own appeal, but they are seldom suitable for depicting real figures. Since most
figures are not transparent, even computer illustrations must be careful not to show invisible back surfaces.

The problem with concealing back surfaces is one of the most complex ideas in three-dimensional
presentations. It's not just a matter of drawing only certain surfaces rather than other surfaces. To some
extent, surfaces overlap each other requiring that both be drawn -- but in the correct order. We will talk
about both concealment and sorting in this section.

There are many ways to hide invisible surfaces. Invisible surfaces usually form an angle between the
surfaces and the line of vision (line extending from the eye to the corresponding surface). This angle
determines whether the viewer is looking at the front or the back of the surface. The surface must be
concealed if the viewer is looking at the back of the surface.

Although the method we will describe is based on a similar idea, it assumes that all surfaces are defined
in a counterclockwise sense (mathematically positive). Therefore, the surface is independent of its position
in space. If it turns itself around so the viewer sees its back surface, it appears mirror reversed and is drawn
"forwards".

Now, it is easily checked with hline  when the horizontal lines are drawn, if their ending point
(corresponding to the definition of the surface algorithm) is to
the right of the starting point. If this is not the case, you'll be
looking at its back surface, which must be hidden. The program
checks for this in the procedure Fillpol  of the POLY.ASM
module at label right_increased :

right_increased:
  push ax
  push cx
  cmp cx,ax                     ;correct sequence ?
  jae direct_ok                 ;then ok, otherwise:
  cmp w sf_shift,0              ;suppress surface shift ?
  je draw                       ;no, then draw anyway
  pop cx
  pop ax
  jmp finished                  ;polygon will not be drawn
draw:
  xchg ax,cx                    ;coordinates in correct sequence
direct_ok:

The AX and CX registers contain the x-coordinates of the starting and ending points. With a mathematically
positive defined surface, CX must be larger than AX. If this is the case, it is drawn directly (label
direct_ok ), otherwise, the filling is ended (if fl_backs  TRUE, otherwise the position is ignored and
drawn anyway after exchanging the coordinates).

This method is adequate for convex figures and figures without "depth" (i.e., cubes) but what about concave
figures such as a U-shaped object? Invisible surfaces are sorted out, but the series order is still not correct,
leaving some of the surfaces completely visible, while others remain hidden.

If you now sort the surfaces, so the first surface to be drawn is the one with the largest z-coordinate, i.e., the
one that is farthest back, and then always work towards the front, the newer surfaces that are in front cover
the recently drawn world. Since this method is also used in painting, this is called a "painter's algorithm".

PCPCun
de

rg
ro

un
d

The procedure Fillpol
is part of the

POLY.ASM file
on the companion CD-ROM



194

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

How do you go about sorting surfaces? Surface corners usually have entirely different z-coordinates.
Complex (therefore, slow) algorithms attempt to make the calculations and to find connections between the
corners, which makes a clear assignment possible.

Therefore, the mean value for the depth information is given for each surface and used as sorting criteria.
This method can be imprecise. Especially with surfaces having a large range in the z direction, you
experience very attractive and, above all, very fast results when combined with the concealment of the
surface backs.

The most recently mentioned array mean picks up this middle
value and saves the corresponding registers for the surfaces.
That is why completed z-values are added to the current array
position in the macro z2cx . The mean value is then formed in
the label polyok , where this total is divided from the number
of corners:

polyok:
  mov bx,meanptr                ;calculate mean value:
  mov ax,mean[bx]               ;get sum
  mov cx,polyn
  dec cx
  cwd
  div cx                        ;and divide by number of corners
  mov mean[bx],ax               ;write back

If the variable fl_sort  is set to TRUE, the procedure
quicksort , which sorts the array mean, is called after calculating
all the surfaces. The depth information (in thelower half of a
doublewords) serves as a sorting criterion. The surface
identification is sorted with it.

public quicksort
quicksort proc pascal down,up:word
;sorts Mean-Array according to Quicksort algorithm

local key:word
local left:word
  push bx
  mov bx,down                  ;find middle
  add bx,up
  shr bx,1
  and bx,not 3                  ;posit on blocks of 4
  mov dx,mean[bx]               ;get key
  mov key,dx
  mov  ax,down                  ;initialize right and left with base values
  mov si,ax
  mov left,ax
  mov ax,up
  mov di,ax

  mov dx,key
left_nearer:
  cmp mean[si],dx               ;greater than key -> continue searching
  jbe left_on
  add si,4                      ;posit on next one
  jmp left_nearer               ;and check it
left_on:

PCPCun
de

rg
ro

un
d

The procedure polyok
is part of the

POLY.ASM file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure quicksort
is part of the

3DASM.ASM file
on the companion CD-ROM



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

195

  cmp mean[di],dx               ;less than key -> continue searching
  jae right_on
  sub di,4                      ;posit on next one
  jmp left_on                   ;and check it
right_on:
  cmp si,di                     ;left <= right ?
  jg end_schl                   ;no -> subarea sorted
  mov eax,dword ptr mean[si]    ;exchange mean values and positions
  xchg eax,dword ptr mean[di]
  mov dword ptr mean[si],eax
  add si,4                      ;continue moving pointer
  sub di,4
end_schl:
  cmp si,di                     ;left > right, then continue
  jle left_nearer
  mov left,si                   ;store left, due to recursion
  cmp down,di                   ;down < right -> sort left subarea
  jge right_finished
  call quicksort pascal,down,di ;continue sorting recursive halves
right_finished:
  mov si,left                   ;up > left -> sort right subarea
  cmp up,si
  jle left_finished
  call quicksort pascal,si,up  ;continue sorting recursive halves
left_finished:
  pop bx
  ret
quicksort endp

The Quicksort algorithm then divides the array into two halves. It continues to exchange elements until only
values larger than that in the middle element are in the left half and smaller values on the right half. This
part of the array is then sorted recursively in the same manner.

Unlike the 3D_GLASS.PAS program, 3D_SOLID.PAS does not generate a palette. This is why other colors
are also defined for the surfaces. 3D_SOLID.PAS also uses the global variables differently. For example,
glass  is set to FALSE because glass surfaces are not desired here; besides, both the variables fl_backs
and fl_sort  are set to TRUE for the handling of the hidden surfaces. Otherwise, both programs are
identical.

Throwing Shadows: Light Source Shading

Now, we have control over solid, visible figures that can move around anywhere in the space. However,
illumination is one important aspect that we have overlooked. We can present the three dimensional worlds
much more impressively by introducing a light source.

Today's PC's do not yet have the ability to perform for real time ray tracing. These types of pictures require
a few minutes to generate. So, we use a faster method that does not consider every ray of light but produces
very beautiful effects by using simpler methods.

If you move away from a continuous yet distant light source, all the rays of light appear to be parallel on
the surface of the object. This is why you can perform ray tracing calculations using a single light vector
instead of calculating each point on the surface individually. This "homogenous" illumination makes it
possible to estimate the light covering each surface.



196

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

The following model demonstrates how the illumination on a surface is calculated. The "flatter" the light
that strikes the surface, the darker is the illumination. The illumination is at its maximum when the light
is perpendicular to the surface. This is because an equally large mass of energy is distributed over a larger
surface of flat angles and is, therefore, not as dense:

dn

l
f

ß '

 = sin (ß - 90) = -cosß
d

f

ß '  = ß - 90

d

f
 = sinß

ß

Relationship of the angle to the brightness

The relationship d/f is proportional to the illumination of the surface (as shown above). This relationship
is the same as the negative cosine of the angle between the light vector and the normal vector for the surface.
The normal vector is a vector that stands perpendicular to the surface. It's easily determined using the
intersecting product of two vectors that lie in the plane. Because the cosine of the angle is needed here, and
not the angle itself, simplifies the calculation greatly since the angle determination (through the scalar
product) indicates the cosine of the angle.

The procedure for determining the illumination is as follows:

Ø Find two vectors appearing on the surface. The easiest would be two margin vectors (from the first
to the second and to the last point).

Ø Form normal vector (intersecting product of the surface vectors).

Ø Through the scalar product, angle between (form constant light vector and normal vector).

Ø Add the result to the color.

The result of the angle calculation is negative in the example. If the surface is turned away from the light
(ß < 90 degrees), the result will be positive. Only the basic
surface color can be used because it lies in the shadow and,
therefore, only receives diffused light. The 3D_LIGHT.PAS
program demonstrates the capabilities of the shading routine:

Uses Crt,ModeXLib,Gif,var_3d;
Const
    worldlen=8*3;               {Point-Array}
    Worldconst:Array[0..worldlen-1] of Integer =
    (-200,-200,-200,
    -200,-200,200,
    -200,200,-200,
    -200,200,200,

PCPCun
de

rg
ro

un
d

You can find
3D_LIGHT.PAS

on the companion CD-ROM



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

197

    200,-200,-200,
    200,-200,200,
    200,200,-200,
    200,200,200);
    surfclen=38;                {Surface-Array}
    surfcconst:Array[0..surfclen-1] of Word=
    ($fee0,4, 0,2,6,4,
     $fec0,4, 0,1,3,2,
     $fec0,4, 4,6,7,5,
     $fee0,4, 1,5,7,3,
     $fec0,4, 2,3,7,6,
     $fec0,4, 0,4,5,1,0,0);
    { $fe = use light source, primary color in the low-byte}
Var
    i,j:Word;
Procedure Shad_Pal;             {prepare palette for shading}
Begin
  For j:=192 to 223 do Begin    {prepare colors 192 - 223 and 224 - 255}
    i:=trunc((j/32)*43);        {determine brightness}
    Fillchar(Palette[j*3],3,i+20);  {colors 192-223 to gray tones}

    Palette[(j+32)*3]:=i+20;    {colors 224-255 to red tones}
    Palette[(j+32)*3+1]:=0;
    Palette[(j+32)*3+2]:=0;
  End;
  Setpal;                       {set this palette}
End;
procedure drawworld;external;   {draws the world on current video page}
{$l 3dasm.obj}
{$l poly.obj}
{$l bres.obj}
{$l root.obj}
Begin
  vz:=1000;                     {solid is located at 1000 unit depth}
  vpage:=0;                     {start with page 0}
  LoadGif('logor.gif');         {load wallpaper}
  init_modex;                   {enable ModeX}
  Shad_Pal;                     {calculate shading palette}
  rotx:=0;                      {initial values for rotation}
  roty:=0;
  rotz:=0;
  Fill:=true;                   {SurfaceFill on}
  sf_sort:=true;                {SurfaceSort on}
  sf_shift:=true;               {SurfaceShift suppression on}
  Glass:=false;                 {glass surfaces off}
  p13_2_modex(16000*2,16000);   {wallpaper to VGA page 2}
  repeat
    CopyScreen(vpage,16000*2);  {wallpaper to current page}
    DrawWorld;                  {draw world}
    switch;                     {switch to finished picture}
    WaitRetrace;                {wait for next retrace}
    Inc(rotx);                  {continue rotating ... }
    If rotx=120 Then rotx:=0;
    Inc(rotz);
    If rotz=120 Then rotz:=0;
    inc(roty);
    if roty=120 Then roty:=0;
  Until KeyPressed;             { ... until key}
  TextMode(3);
End.



198

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

The palette is prepared before the shading can be established. Colors 192 to 223 and 224 to 255 are filled with
two color displays. The first one contains the colors ranging from gray to white. The second one contains
the colors ranging from dark red to red. Now the cosine can simply be added to the basic color when filling
so the correct degree of shading is maintained.

The basic color is classified in the low byte of the color information ( 0C0h and 0E0h). The high byte is tested
against this with the first directional value. The light source shading for this surface is turned on with 0FEh.
This is why it's now possible to mix shaded surfaces (directional byte 0FEh) with fixed value surfaces
(directional byte < 0FEh) or with textures later.

An additional change to the 3D_SOLID program involves the background picture. A picture is loaded at
the beginning, which is then calculated by a raytracer and contains a similar light vector as the rotating
object, which reinforces the impression of a light source. Instead of erasing the screen before creating every
picture, the background picture is simply copied each time to the corresponding page.

In procedure drawworld   (in 3DASM.ASM), the directional byte is deciphered right at the beginning and
the global variables Lightsrc  and Texture  are set, in this case it only refers to Lightsrc .

Additionally, arrays Points3D  and Poly3D  are factored. The first array receives three dimensional
coordinates which were completely rotated and calculated in the macro zrot . These are then carried over
to loop npoint  in array Poly3D  and ultimately formed into a closed line, in which the first corner is copied
onto the last one. This process completely corresponds to the
one executed for the two dimensional coordinates.

If the surface is now filled, the macro getdelta  is called. It
determines both surface vectors:

getdelta macro                  ;calculates the two surface vectors
  mov ax,poly3d[0]              ;x: original corner
  mov delta2[0],ax              ;store temporarily in delta2
  sub ax,poly3d[8]              ;obtain difference to first point
  mov delta1[0],ax              ;and delta1 finished
  mov ax,poly3d[2]              ;y: original corner
  mov delta2[2],ax              ;store temporarily in delta2
  sub ax,poly3d[10d]            ;obtain difference to first point
  mov delta1[2],ax              ;and delta1 finished
  mov ax,poly3d[4]              ;z: original corner
  mov delta2[4],ax              ;store temporarily in delta2
  sub ax,poly3d[12d]            ;obtain difference to first point
  mov delta1[4],ax              ;and delta1 finished
  mov bp,polyn                  ;select last point
  dec bp
  shl bp,3                      ;8 bytes at a time
  mov ax,poly3d[bp]             ;get x
  sub delta2[0],ax              ;obtain difference
  mov ax,poly3d[bp+2]           ;get y
  sub delta2[2],ax              ;obtain difference
  mov ax,poly3d[bp+4]           ;get z
  sub delta2[4],ax              ;obtain difference
endm

delta1  is loaded here with the difference between the first and second polygon points and delta2  is
loaded with the difference between the first and last points. If no illogical surfaces are defined, both vectors
will always be independently linear (not parallel) and, therefore, available.

PCPCun
de

rg
ro

un
d

The getdelta macro
is part of the

3DASM.ASM file
on the companion CD-ROM



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

199

Otherwise, the program is stopped with a Division by Zero error.

If global variable lightsrc  is TRUE here, both get_normal
and light  macros are called. The first one determines the
normal surface vector from the two surface vectors, delta1 and
delta2 . The second macro determines the lightness of the
surface from the angle.

get_normal macro                ;calculates normal vector of an area
  mov ax,delta1[2]              ;a2*b3
  imul delta2[4]
  shrd ax,dx,4
  mov n[0],ax
  mov ax,delta1[4]              ;a3*b2
  imul delta2[2]
  shrd ax,dx,4
  sub n[0],ax
  mov ax,delta1[4]              ;a3*b1
  imul delta2[0]
  shrd ax,dx,4
  mov n[2],ax
  mov ax,delta1[0]              ;a1*b3
  imul delta2[4]
  shrd ax,dx,4
  sub n[2],ax
  mov ax,delta1[0]              ;a1*b2
  imul delta2[2]
  shrd ax,dx,4
  mov n[4],ax
  mov ax,delta1[2]
  imul delta2[0]
  shrd ax,dx,4
  sub n[4],ax                   ;cross product (=normal vector) finished
  mov ax,n[0]                   ;x1 ^ 2
  imul ax
  mov bx,ax
  mov cx,dx
  mov ax,n[2]                   ;+x2 ^ 2
  imul ax
  add bx,ax
  adc cx,dx
  mov ax,n[4]                   ;+x3 ^ 2
  imul ax
  add ax,bx
  adc dx,cx                     ;sum in dx:ax
  push si
  call root                     ;root in ax
  pop si
  mov n_amnt,ax                 ;amount of normal vector finished
endm

The first part of this macro calculates the normal vector itself. Then, every individual vector component
from the difference of two products is formed. This must follow the definition of the intersecting product
and is stored in array n. The second part next calculates the
amount of the normal vector in which all the components are
squared and then added. This sum is reduced and the result is
saved in n_amt . The last step executes the light  macro:

PCPCun
de

rg
ro

un
d

The get_normal macro
is part of the

3DASM.ASM file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The light macro
is part of the

3DASM.ASM file
on the companion CD-ROM



200

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

light macro                     ;determines brightness of an area
  mov ax,n[0]
  imul l[0]                     ;light vector * normal vector
  mov bx,ax                     ;form sum in cx:bx
  mov cx,dx
  mov ax,n[2]
  imul l[2]
  add bx,ax
  adc cx,dx
  mov ax,n[4]
  imul l[4]
  add ax,bx                     ;scalar product finished in dx:ax
  adc dx,cx
  idiv l_amnt                   ;divide by l_amnt
  mov bx,n_amnt                 ;and by n_amnt
  cwd
  shld dx,ax,5                  ;values from -32 bis +32
  shl ax,5d
  mov bp,startpoly              ;prepare addressing of  surface color
  idiv bx                       ;division by denominator
  inc ax
  or ax,ax
  js turned_toward           ;if cos à positive -> turned away from the light
  xor ax,ax                  ;thus, no light
turned_toward:
  sub b polycol,al           ;cos<0 -> add to primary color
endm

After the scalar product is formed between the normal vector and the (constant) light vector (in l), the
amount of the (equally constant) light vector is divided by the amount of the normal vector and the angle
between both of the vectors is determined. The result of this calculation would normally be between plus
and minus one. However, since whole numbers are used here, the interim result is multiplied by 32 before
the second division so a value range of -32 to +32 is reached.

If the result is positive, AX is set to zero and the basic color is retained. If the result is negative, this value
is subtracted from the basic color and, as a result, the amount is added. The completely calculated lightness
factor is then located in variable PolyCol , which is used as a filling color by FillPol .

Impressive Top Surfaces: Textures

Our final 3-D topic is textures. By using textures, you can add a "structure" to the previously static and
monotone surfaces. These textures are bitmap graphics that are projected onto the surfaces and moved in
different directions with each rotation.

The bitmaps, when used, appear glued to the surfaces and can simulate a particular surface, such as wood
or metal. This technique is used in role playing games such as Ultima Underworld where the walls are
sometimes made out of stone, wood or other materials.

If you have a definite programming concept, you can compose a surface from many small surfaces. These
small surfaces, in turn, correspond to a point from a bitmap. This technique may not be the fastest because
it does not often function regularly. If such a surface should be somewhat enlarged or turned, you will notice
glitches immediately because a few of the points overlap, which then become missing.



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

201

The only practical solution to this problem is to reverse the process so the surface is presented as indicated
so every point is set. This point is projected back every time to the original surface to establish its location
(position) within this surface. Based on the position, the point color can then be read from the texture
bitmap.

Since it's impossible to close from the two dimensional screen coordinates to the three dimensional position
of the point, the 3D coordinates are counted from the beginning when filling, so you know the coordinates
for every point and, therefore, its position within the surface.

The 3D_TEXTU.PAS program demonstrates the texture
routines. The difference between this program and the previous
program is its different color values in the world definition and
procedure Prep_Textures , which is called immediately:

Uses Crt,ModeXLib,Gif,var_3d;
Const
    worldlen=8*3;               {Point-Array}
    Worldconst:Array[0..worldlen-1] of Integer =
    (-200,-200,-200,
    -200,-200,200,
    -200,200,-200,
    -200,200,200,
    200,-200,-200,
    200,-200,200,
    200,200,-200,
    200,200,200);
    surfclen=38;                {Surface-Array}
    surfcconst:Array[0..surfclen-1] of Word=
    ($ff00,4, 0,2,6,4,
     $ff01,4, 0,1,3,2,
     $ff02,4, 4,6,7,5,
     $ff00,4, 1,5,7,3,
     $ff03,4, 2,3,7,6,
     $ff04,4, 0,4,5,1,0,0);
    { $ff = use textures, number in the low-byte}
Var
    i,j:Word;
Procedure Prep_Textures;
{load texture variables}
Begin
  LoadGif('Texture');           {load texture image}
  GetMem(Txt_Pic,64000);        {get memory for this}
  Move(VScreen^,Txt_Pic^,64000);{and copy to memory}
  For i:=0 to Txt_Number-1 do Begin
    Txt_Data[i]:=Txt_Pic;       {load pointer to data}
    Txt_Offs[i]:=i*64;          {determine offset}
  End;
End;

procedure drawworld;external;   {draws the world on current video page}
{$l 3dasm.obj}
{$l poly.obj}
{$l bres.obj}
{$l root.obj}

Begin
  vz:=1000;                     {solid is located at 1000 unit depth}
  vpage:=0;                     {start with page 0}
  init_modex;                   {enable ModeX}

PCPCun
de

rg
ro

un
d

You can find
3D_TEXTU.PAS

on the companion CD-ROM



202

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  Prep_Textures;
  LoadGif('logo.gif');          {load wallpaper}
  rotx:=0;                      {initial values for rotation}
  roty:=0;
  rotz:=0;
  Fill:=true;                   {SurfaceFill on}
  sf_sort:=true;                {SurfaceSort on}
  sf_shift:=true;               {SurfaceShift suppression on}
  Glass:=false;                 {glass surfaces off}
  p13_2_modex(16000*2,16000);   {Wallpaper to VGA page 2}
  repeat
    CopyScreen(vpage,16000*2);  {wallpaper to current page}
    DrawWorld;                  {draw world}
    switch;                     {switch to finished picture}
    WaitRetrace;                {wait for next retrace}
    Inc(rotx);                  {continue rotating ... }
    If rotx=120 Then rotx:=0;
    Inc(rotz);
    If rotz=120 Then rotz:=0;
    inc(roty);
    if roty=120 Then roty:=0;
  Until KeyPressed;             { ... until key}
  TextMode(3);
End.

The value 0FFh serves as the directional byte for all the surfaces. It activates the texture with the number
listed in the low byte for the respective surfaces. Procedure Prep_Textures  then loads the GIF picture
with the necessary textures and moves it to another file area (TxtPic^ ). At this point, the arrays Txt_Data
and Txt_Offs  are used. Txt_Data  displays a counter with the position of the texture screen for every
texture, making it possible to load many independent screens with textures. Txt_Offs  contains the offset
for the respective texture within this screen.

In this case, Txt_Data  contains a counter for all the textures in Txt_Pic^  and Txt_Offs  a multiple of
64, i.e., five textures in a row with a width of 64 Pixel.

The size of the textures is determined by the constant array Txt_Size . For every texture listed here, the
y-size is established with the high byte and the x-size with the low byte. A particular standard needs to be
observed when calculating these sizes: The textures each has the dimension of 256 SHR (n-8) Pixel. The
value of 10 (0Ah) indicates, for instance, a size of 256 SHR 2 = 64 Pixel (in the x- or y- direction).

Some of the program sections that we have already discussed, such as forming the surface vectors Delta1
and Delta2 , can also be used with the textures. However, most of the required algorithms are found as
macros in the include file TEXTURE.INC, which functions as a complement to POLY.ASM.

The global variable Texture  is set to TRUE with texture surfaces. The primary determinants are formed
immediately from the start of the procedure FillPol  in the macro Txt_Maindet . With their help, the
relative coordinate of the point within the surface is determined later. It's also important to know that every
point is a key in the following equation:

x1=lambda1 * a1 + lambda2 * b1
x2=lambda1 * a2 + lambda2 * b2
x3=lambda1 * a3 + lambda2 * b3,

Then x1-x3 are the coordinates for the point, a1-a3 the components of the first surface vector (Delta1 ) and
b1-b3 the components of the second (Delta2 ). lambda1  and lambda2  give the refined coordinates relative



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

203

to both of the surface vectors and can be used to gain direct access to the texture. To calculate lambda1 and
lambda2 , you need two of the equations. The third is then completed in every case because the point lies
in the plane.

If, for example, you take the first of the two equations, the solution is easy to find using the determinants:
The primary determinant equals D=a1*b2 - a2*b1, the first
adjacent determinant D1=x1*b2 - x2*b1 and the second adjacent
determinant D2=a1* x2 - a2*x1. The two unknowns are then
identified as lambda1 =D1/D and lambda2 =D2/D. The main
determinant is now the same for the entire surface so it can be
directly calculated here:

txt_maindet macro              ;calculate main determinate
  xor si,si                    ;first attempt: rows 0 and 1
  mov di,2
next:
  mov ax,w delta1[si]           ;calculate main determinant
  imul w delta2[di]
  mov bx,ax                     ;store intermediate result
  mov cx,dx
  mov ax,w delta2[si]
  imul w delta1[di]
  sub bx,ax                     ;store difference
  sbb cx,dx
  mov w D,bx
  mov w D+2,cx
  or bx,cx                      ;main determinant = 0 ?
  jne D_finished
  add si,2                      ;then new components
  add di,2
  cmp di,4                      ;still within existing rows ?
  jbe next
  xor di,di                     ;no, then start again from above
  jmp next
D_finished:
  movsx eax,delta1[si]          ;store used columnn values
  mov column1[0],eax
  movsx eax,delta1[di]
  mov column1[4],eax
  movsx eax,delta2[si]
  mov column2[0],eax
  movsx eax,delta2[di]
  mov column2[4],eax
  shl si,1                      ;note used columns
  shl di,1
  mov upper_row,si
  mov lower_row,di
endm

However, you are likely to notice another problem: Under certain circumstances, selecting the first of the
two equations may not be what you expect or want. This indicates the main determinant equals 0. In this
case, you simply need to use another combination.

This occurs in front of the label D_complete . It's simply positioned on the next row within the surface
vectors (initially 0/2, then 2/4, then 4/0) and another attempt is initiated. Afterwards, the main determinant
is saved in the column1  and column2  arrays and the numbers for the rows that were used in top_row  and
bottom_row ; this data will be needed later.

PCPCun
de

rg
ro

un
d

The macros listed on
pages 203-209 are from

TEXTURE.INC
on the companion CD-ROM



204

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

As we mentioned, the filling algorithm must constantly keep pace with whatever coordinate the current
point is located. Three dimensional lines are calculated parallel to touching the polygon edges, which define
the polygon in its entirety. The initialization of the attached three dimensional lines must be imbedded in
macros  SetNewLineL  and SetNewLineR . This occurs in macros  txt_makefarl  and  txt_makevarr :

txt_makevarl macro              ;reloads the 3d variables of the left side
.386
  movsx ebx,dyl                 ;number steps
  inc ebx
  push ecx
  push edx

  movsx eax,poly3d[bp]          ;get 3d-x
  shl eax,8                     ;lower 8 bits are "fractional" part
  mov xl_3d,eax                 ;and write
  movsx ecx,poly3d[bp+8]        ;obtain difference
  shl ecx,8
  sub eax,ecx
  neg eax
  cdq
  idiv ebx                      ;define step
  mov inc_xl,eax

  movsx eax,poly3d[bp+2]        ;get 3d-y
  shl eax,8
  mov yl_3d,eax
  movsx ecx,poly3d[bp+10d]      ;obtain difference
  shl ecx,8
  sub eax,ecx
  neg eax
  cdq
  idiv ebx                      ;define step
  mov inc_yl,eax
  movsx eax,poly3d[bp+4]        ;get 3d-z
  shl eax,8
  mov zl_3d,eax
  movsx ecx,poly3d[bp+12d]      ;obtain difference
  shl ecx,8
  sub eax,ecx
  neg eax
  cdq
  idiv ebx                      ;define step
  mov inc_zl,eax
  pop edx
  pop ecx
endm

The three-dimensional coordinates for the corner points of the recently worked surfaces are located in the
array Poly3D . Register bp shows the position of the current coordinates in the Poly2D  array (we are still
in setnewlinel  or setnewliner ). Since this array is constructed synchronously, the 3-D coordinates
are addressed using BP. The macro then loads the variables xl_3D , yl_3D , etc., with the start values of
the first corner point and calculates the difference to the second corner point, i.e., the line lengths, in x-, y-
and z-direction.

The principle for these lines is that the drawing depends on every change to the y-coordinate also advancing
the steps on the line. From now on, the differences must still be divided by the number of steps (i.e., the
"height" of the two dimensional line in dyl or dyr ). Several values are pushed to the left by 8 bit in the
process so they are sufficiently precise. If the three dimensional line is, for example, seven units long (let's



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

205

say, in the z-direction) and the number of steps equals four, the value 1.75 must be added every time, which
can only be possible if you reserve the bottom most byte for the after comma section (in this case, it would
be inc_zl = 01C0h).

Now the variables must be recounted with every step into the next screen line. That is why shortly after the
labels incyl  or incyr , the macros Txt_incl  and txt_incr  must be combined:

txt_incl macro                  ;increment left
  push eax
  mov eax,inc_xl                ;add 3d x-coordinate
  add xl_3d,eax
  mov eax,inc_yl                ;add 3d y-coordinate
  add yl_3d,eax
  mov eax,inc_zl                ;add 3d z-coordinate
  add zl_3d,eax
  pop eax
endm
txt_incr macro                  ;increment right
  push eax
  mov eax,inc_xr                ;add 3d x-coordinate
  add xr_3d,eax
  mov eax,inc_yr                ;add 3d y-coordinate
  add yr_3d,eax
  mov eax,inc_zr                ;add 3d z-coordinate
  add zr_3d,eax
  pop eax
endm

These macros simply do what their names suggest: They increment the respective variables. Inc_xl  is
added to xl_3D , inc_yl  to yl_3D , etc. In doing so, the variables block of xl_3D  - yl_3D - zl_3D  always
contain the current 3-D coordinates for the left start point of the horizontal filling line. The same is true for
the right side and the end point of the filling line.

The listing becomes interesting in the hline_texture procedure. It's located in the macro txt_hline  so it
can be placed in an include file. This procedure is called with texture surfaces instead of hline and does
basically the same thing: It draws a horizontal line between the coordinates specified in ax/bx and cx/bx.
The only difference between it and hline is the color is not the same for every point. The color is instead
determined by the texture.

After saving the coordinates, the adjacent determinants for the left and for the right side are calculated with
lambda1  and lambda2 . The left side transmits the start values since the drawing begins on this page. The
right side transmits the end value, which flow into variables inc_lambda1  and inc_lambda2 :

txt_hline macro
hline_texture proc near         ;replaces "hline" procedure with textures
.386
  push es
  pusha
  mov x0,ax                     ;save coordinates for later
  mov y0,bx
  mov x1,cx
  sub cx,ax                     ;calculate number of pixels to be drawn
  jne zzok2
  inc cx
zzok2:
  mov zz,cx



206

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  mov bp,upper_row
  mov bx,lower_row
  mov eax,xr_3d[bx]             ;determine relative x-coordinate
  movsx ecx,poly3d[2]
  shl ecx,8                     ;put in "fixed point" format
  sub eax,ecx
  mov d_y,eax
  movsx ecx,w column2[0]
  imul ecx                      ;multiply by Delta2 x
  mov esi,eax                   ;place result in temporary storage

  mov eax,xr_3d[bp]             ;determine relative y-coordinate
  movsx ecx,poly3d[0]
  shl ecx,8                     ;put in "fixed point" format
  sub eax,ecx
  mov d_x,eax
  movsx ecx,w column2[4]
  imul ecx                      ;multiply by Delta2 y
  sub eax,esi                   ;obtain difference (D1)
  cdq                           ;prepare division
  idiv dword ptr D              ;divide by main determinant
  shl eax,8
  neg eax
  mov inc_lambda1,eax           ;store for subtraction

  mov eax,d_x                   ;get relative x-coordinate
  movsx ecx,w column1[4]
  imul ecx                      ;multiply by Delta1 y
  mov esi,eax                   ;place result in temporary storage

  mov eax,d_y                   ;get relative y-coordinate
  movsx ecx,w Column1[0]
  imul ecx                      ;multiply by Delta1 x
  sub eax,esi                   ;obtain difference (D2)
  cdq                           ;prepare division
  idiv dword ptr D              ;divide by main determinant
  shl eax,8
  neg eax
  mov inc_lambda2,eax           ;store for subtraction

With the variables top_row  and bottom_row , the necessary coordinates (depending on the main
determinants used) are then selected by the right side and the difference is calculated to the beginning of
the surface (point 0); with multiplying the corresponding section of the main determinant (in column1  and
column2 ) and the subsequent subtraction of both products, the adjacent determinant is established and
divided by the main determinant, the result is stored temporarily in inc_lambda1  and inc_lambda2 .
The left lambda values are then determined in the same manner:

  mov eax,xl_3d[bx]             ;determine relative x-coordinate
  movsx ecx,poly3d[2]
  shl ecx,8                     ;put in "fixed point" format
  sub eax,ecx
  mov d_y,eax
  movsx ecx,w column2[0]
  imul ecx                      ;multiply by Delta2 x
  mov esi,eax                   ;place result in temporary storage

  mov eax,xl_3d[bp]             ;determine relative y-coordinate
  movsx ecx,poly3d[0]
  shl ecx,8                     ;put in "fixed point" format
  sub eax,ecx



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

207

  mov d_x,eax
  movsx ecx,w column2[4]
  imul ecx                      ;multiply by Delta2 y
  sub eax,esi                   ;obtain difference (D1)
  cdq                           ;prepare division
  idiv dword ptr D              ;divide by main determinant
  shl eax,8
  neg eax
  mov lambda1,eax               ;Lambda1 determined
  sub inc_lambda1,eax
  mov eax,d_x                   ;get relative x-coordinate
  movsx ecx,w column1[4]
  imul ecx                      ;multiply by Delta1 y
  mov esi,eax                   ;place result in temporary storage
  mov eax,d_y                   ;get relative y-coordinate
  movsx ecx,w column1[0]
  imul ecx                      ;multiply by Delta1 x
  sub eax,esi                   ;obtain difference (D2)
  cdq                           ;prepare division
  idiv dword ptr D              ;divide by main determinant
  neg eax
  shl eax,8
  mov lambda2,eax               ;Lambda2 determined
  sub inc_lambda2,eax

The results of these Lambda calculations are stored in the variables lambda1  and lambda2  and
inc_lambda1  and inc_lambda2 account for the difference. Afterwards, both Inc-values are divided by
the length of the horizontal lines, i.e., the number of steps:

  movsx ecx,zz                  ;calculate Lambda-Schrittweiten
  mov eax,inc_lambda1           ;get total length
  cdq
  idiv ecx                      ;and divide by number steps
  mov inc_lambda1,eax
  mov eax,inc_lambda2           ;get total length
  cdq
  idiv ecx                      ;and divide by number steps
  mov inc_lambda2,eax

In this manner, it is enough to add inc_lambda1  to lambda1  and Inc_lambda2  to lambda2 at every
step so we can have the current lambda1  and lsambda2  available.

Next, we'll prepare to address the points in the screen memory:

  mov ax,80d                    ;determine offset
  mov bx,y0
  mul bx
  mov bx,x0                     ;(x div 4) + y*80
  shr bx,2
  add ax,bx
  add ax,vpage
  mov di,ax
  mov ax,0a000h                 ;load VGA segment
  mov es,ax

  mov cx,x0                     ;mask start plane
  and cx,3
  mov ax,1
  shl ax,cl                     ;set corresponding bit
  mov b plane+1,al



208

The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

  shl al,4                      ;and extend to high nibble
  or b plane+1,al

After calculating the offset for the first point, the start-plane is determined and filed in the high-byte of
variable plane ; the low-byte contains constant 2, so the entire word must be sent to the timing sequencer
in order for the current plane to be selected. The plane is prepared on the rotation, in that the high- as well
as the low-nibble contain the plane mask (plane 3 becomes 88h, after one rotation, then 11h, i.e., plane 0).

  mov bp,txt_no                 ;get number of current texture
  shl bp,1                      ;two bytes per entry
  mov bx,txt_size[bp]           ;get current size specification
  mov b cs:size_patch+3,bl      ;and patch in code
  mov b cs:size_patch+7,bh

  mov ax,word ptr txt_offs[bp]  ;get offset of this texture

  push ds
  shl bp,1                      ;4 byte entries
  lds si,dword ptr txt_data[bp];get pointer to actual data
  add si,ax
  mov w cs:ofs_patch+2,si       ;and patch in code

  mov dx,3c4h                   ;timing sequencer
  mov ebp,lambda1               ;register instead of variables
  mov esi,lambda2

With the number of the current texture (in txt_no ), the texture size is then loaded and patched in the code.
In so doing, the operand of two of the SAR instructions are addressed, so the Lambda's values area can be
limited.

The offset is also read from the corresponding array and patched with the txt_data-counter  offset
section into the code.

The loop to draw the points can now be held relatively short. This is extremely important when considering
the speed:

lp:                             ;runs for each pixel
  add ebp,inc_lambda1           ;continue Lambda1 and 2
  add esi,inc_lambda2

  mov ax,plane                  ;get plane
  out dx,ax                     ;and select
  mov eax,ebp                   ;determine offset within the texture graphic
  mov ebx,esi
size_patch:
  sar eax,11d                   ;set size, being modified
  sar ebx,11d
   imul eax,320d
  add ebx,eax

ofs_patch:
  mov al,ds:[bx+1111h]          ;get color from texture, being modified
  mov es:[di],al                ;enter color
  dec cx                        ;decrement number pixels
  je hlt_finished               ;all pixels finished ?
  rol b plane+1,1               ;next plane
  cmp b plane+1,11h             ;plane overflow from 3 to 0 ?
  jne lp                        ;no, then continue
  inc di                        ;otherwise increment offset



The Third Dimension: 3-D Graphics Programming

Chapter 7

PCPC
underground

209

  jmp lp                        ;and continue
hlt_finished:
  pop ds
  popa
  pop es
  ret
hline_texture endp
endm

The EBP register contains lambda1  and lambda2  within the loop. Both values must then be increased to
their increments. Afterwards, the current plane is selected and the offset within the texture is determined
with edp and esi. Both lambda values are then pushed to the right because of their sizes so the desired value
area can be uncovered.

The deciding event occurs in the label ofs_patch . Here, the color is retrieved from the texture. In this, the
offset that was patched in the code is added to the calculated value and the texture is selected at this point.
The color is written into the screen memory and the loop is closed by further rotating the plane mask; if an
overrun occurs from plane 3 to plane 0, the target address is raised by 1, for the next offset to be addressed.





211

8.  Modern Copy Protection

Most software developers believe many more copies of their programs are being used than the number of
programs that have been sold. This is, of course, due to the widespread use of illegal or pirated copies. Most
experts agree those illegal or pirated copies of software cost developers many millions of dollars annually
in sales and royalties. This is why some software developers use various schemes to protect their programs
from illegal copying and distribution.

The most common form of software protection is password protection. It's both the oldest form and the
easiest to implement. Passwords are available in many forms. For example, you might have the option of
protecting your computer by means of a ROM password which is requested on system startup. When using
a network computer, you probably have a password on the network to grant or deny you access to the
system. If you are a modem user, you are certainly familiar with the passwords for various BBSes and
information services such as CompuServe.

We'll talk about the available passwords in the next section and which are the most appropriate for you.

Protecting Your Programs: Passwords

You have several ways to protect your program. First, you must consider the purpose or reason for using
a password query. We group the reasons for using a password query into three main areas:

The password as permission to access

The password serves to acknowledge that a legitimate user is using the program. This is the type of
password you will find, for example, protecting your user account on CompuServe, on networks or even
in ATM machines used by banks or corporations. Because only a few employees need access to the financial
data, these records and files are often protected with a password.

The password as registration

This type of password is often used in shareware programs. When you register the shareware program, you
are sent a password that you use to upgrade your shareware program to a complete and more powerful
version. This method is used frequently for applications.

Modern Copy 
Protection

Chapter 8

PCPC
underground

PCPCun
de

rg
ro

un
d

ProtectionPassword:



212

Modern Copy Protection

Chapter 8

PCPC
underground

The password as copy protection

This type of password is often used for games and entertainment software. The software developer uses this
method if there is a likelihood the game or program will be copied. The password query doesn't usually
appear as the program is loading or at the start of the program. Instead, the password query appears after
one or more levels are completed or, more likely, when the user reloads a saved game or session.

Some earlier methods, such as changing a few sectors on a separate, yet required, startup diskette, are
seldom used today because registered or otherwise "legitimate" users found these methods to be inconvenient.
Also, these methods are no longer quite up to date with today's larger hard drives.

A few extremely expensive programs use a dongle (also called a hardware key). A dongle is a small hardware
device containing a password or checksum which plugs into either a parallel or serial port. Some specially
designed dongles even include complete program routines.

We won't talk about hardware-oriented password queries such as dongles in this chapter. Instead, we'll talk
only about software solutions.

There is one basic principle which applies to all three password types we mentioned above: The better the
password is hidden, and the better it is encrypted, the more secure your program will be. So, you should
carefully consider where you want to store your password. Choose, if possible, an external file and not the
.EXE file. If you work with several files, save the password in one of the larger files. Under no circumstances
should the password be at the beginning or the end of a file...this is the first place an intruder would look
and where it is easiest to find. Even when you're working with a single file, save the password in the middle
of a file where it is the most difficult to locate.

If possible, don't save the actual comparison string, but an encoded version of the string. Use a supplementary
checksum for additional security.

Most password queries work according to the following pattern:

1. Build screen

2. Read user password

3. Compare with user password and respond accordingly

This scheme works quite well and is easy to program. However, if you want to protect one of your own
programs with a password, you should use a different technique. Dividing the individual steps will make
the code less transparent.

First, build the screen and then perform the other tasks: Initialize variables, draw graphics, test checksums,
etc. Read the user password only when these steps are complete. The operating speed of the PC and the
keyboard buffer will prevent user entries from being lost. After you have read in the password, we
recommend that you do not immediately compare the password. Instead, perform some of the other tasks
we mentioned. Then load the correct password from the file and compare it.

The main goal is to frustrate any would-be hackers. When you incorporate the password query into a
procedure, it becomes difficult to find on the screen. Then the jump resulting after a comparison is then
turned quickly into a random jump by the would-be hackers. There's no guarantee, of course, that using this



Modern Copy Protection

Chapter 8

PCPC
underground

213

method will result in an absolutely secure system but you will have made break-in considerably more
difficult because the query is harder to locate.

Depending on the type of password you need, you will have to build encrypting and decrypting routines
and the necessary loading and saving routines into your program. Let's first take a look at the second type.
In this case there is only the password. It is created by the programmer of the program and built into one
of the files. A routine is in the program itself with which the password is queried, read and compared.

You'll find a program for generating a coded password in PASSWGEN.PAS. In this program, the desired
password is read in, the respective letters being added to a key to be entered. Finally, the complement of
the letters is formed by means of an XOR with 255. The key is
first saved (1 char), then the password (256 char) and, finally, the
checksum (1 word) which prevents manipulation of the
password file. The program generates the file PASSWORD.DAT
containing the password, which should be inserted into a
different file.

program GENERATE_PASSWORDFILE;
{
 The program encrypts an entered password and saves it
 in the file PASSWORD.DAT.
  Author: Boris Bertelsons
 (c)'95 Data Becker GmbH
 (c)'95 ABACUS Software, Inc
}

Uses Crt;

var password : string;
    pwf : file;
    check : word;
    key : char;

function Encrypt(pasw : string;add : char) : string;
var li : integer;
begin
  for li := 1 to 255 do begin;
    pasw[li] := char(255 xor (ord(pasw[li]) + ord(add)));
  end;
  Encrypt := Pasw;
end;

function Gen_checksum(pasw : string) : word;
var sum : word;
    li : integer;
begin
  sum := 0;
  for li := 1 to ord(pasw[0]) do begin;
    sum := sum + ord(pasw[li]);
  end;
  Gen_checksum := sum;
end;

function Decrypt(pasw : string;add : char) : string;
var li : integer;
begin
  for li := 1 to 255 do begin;
    pasw[li] := char((255 xor ord(pasw[li])) - ord(add));

PCPCun
de

rg
ro

un
d

You can find
PASSWGEN.PAS

on the companion CD-ROM



214

Modern Copy Protection

Chapter 8

PCPC
underground

  end;
  decrypt := Pasw;
end;

function Checksum_Ok(pasw : string; Key: char; sum : word) : boolean;
var tsum : word;
    li : integer;
    h : char;
begin
  tsum := 0;
  for li := 1 to ord(pasw[0]) do begin
    tsum := tsum + ord(pasw[li]);
  end;
  if sum = tsum then
    Checksum_Ok := true
  else
    Checksum_Ok := false;
end;

begin
  clrscr;
  writeln('Please enter the password to be encrypted !');
  write('Password: ');
  readln(password);
  writeln('Please enter the key (any randomly selected ASCII character)');
  write('Key: ');
  readln(key);
  writeln('Writing information to file ...');
  writeln;
  check := Gen_checksum(password);
  password := encrypt(password, key);
  assign(pwf,'PASSWORD.DAT');
  rewrite(pwf,1);
  blockwrite(pwf,key,1);
  blockwrite(pwf,password,256);
  blockwrite(pwf,check,2);
  close(pwf);

  reset(pwf,1);
  blockread(pwf,key,1);
  blockread(pwf,password,256);
  blockread(pwf,check,2);
  close(pwf);

  writeln('Rereading Information for verification ...');
  writeln('Encrypted : ',password);
  writeln('Key: ',key);

  Password := decrypt(password,key);
  writeln('Verify  : ',password);
  If Checksum_Ok(password,key,check) then
    writeln('Checksum O.K.')
  else
    writeln('WARNING! Checksum not correct !');

  repeat until keypressed; readkey;
end.

Before you can use the password in your programs, you must first SEARCH the file where you stored the
password. Then, load the key, the password and the checksum (make certain to load in that order) as you
implemented it in the program printed above.



Modern Copy Protection

Chapter 8

PCPC
underground

215

Use the Decrypt  procedure to decrypt the password. Use Checksum_Ok to check whether the password
was modified.

If you need the first type of password, you will have to give the user the chance to select a proper password
and enter it. This procedure is comparable to the one we just described. You store an empty password with
it in the file, which the user can then overwrite. It's very important the password is difficult to locate and
that it is not displayed during entry. This is a necessary protection
against other users who "just happen" to be watching your
screen as you enter the password.

You'll see a password query in action in the following program.
The default password is ABACUS.

program PASSWORD_TYPE1;

Uses Crt, Design;

var password : string;
    passwordcheck : boolean;

procedure Secret_readln(var s : string);
var c : char;
   li : integer;
begin
  repeat
    c := readkey;
    if c <> #8 then begin;
      s := s + c;
      gotoxy(24,12);
      for li := 1 to length(s) do write(‘*’);
    end else begin;
      s := copy(s,1,length(s)-1);
      gotoxy(24,12);
      for li := 1 to length(s) do write(‘*’);
      write(‘ ‘);
      gotoxy(wherex-1,wherey);
    end;
  until c = #13;
end;

procedure Change_password;
begin
  save_screen;
  window(10,8,60,7,’ Change password ‘,black,7);
  writexy(13,10,’Please enter your new password’);
  writexy(13,12,’Password: ‘);
  password := ‘’;
  secret_readln(password);
  restore_screen;
  textcolor(7);
  textbackground(black);
end;

Function Gen_checksum(pasw : string) : word;
var sum : word;
    li : integer;
begin
  sum := 0;
  for li := 1 to ord(pasw[0]) do begin

PCPCun
de

rg
ro

un
d

You can find
PASSWD1.PAS

on the companion CD-ROM



216

Modern Copy Protection

Chapter 8

PCPC
underground

    sum := sum + ord(pasw[li]);
  end;
  Gen_checksum := sum;
end;

function Encrypt(pasw : string;add : char) : string;
var li : integer;
begin
  for li := 1 to 255 do begin
    pasw[li] := char(255 xor (ord(pasw[li]) + ord(add)));
  end;
  encrypt := pasw;
end;

procedure Save_password;
var pwf : file;
    key : char;
    check : word;
begin
  check := gen_checksum(password);
  password := encrypt(password,key);
  assign(pwf,’password.dat’);
  rewrite(pwf,1);
  blockwrite(pwf,key,1);
  blockwrite(pwf,password,256);
  blockwrite(pwf,check,2);
  close(pwf);
end;

procedure QueryPassword;
begin
  save_screen;
  window(10,8,60,7,’Query Password’,black,7);
  writexy(13,10,’Please enter your password’);
  writexy(13,12,’Password: ‘);
  password := ‘’;
  secret_readln(password);
  restore_screen;
  textcolor(7);
  textbackground(black);
end;

function Decrypt(pasw : string;add : char) : string;
var li : integer;
begin
  for li := 1 to 255 do begin
    pasw[li] := char((255 xor ord(pasw[li])) - ord(add));
  end;
  decrypt := pasw;
end;

function Checksum_Ok(pasw : string; Key: char; sum : word) : boolean;
var tsum : word;
    li : integer;
    h : char;
begin
  tsum := 0;
  for li := 1 to ord(pasw[0]) do begin;
    tsum := tsum + ord(pasw[li]);
  end;
  if sum = tsum then
    Checksum_Ok := true



Modern Copy Protection

Chapter 8

PCPC
underground

217

  else
    Checksum_Ok := false;
end;

procedure CheckPassword;
var pwf : file;
    key : char;
    check : word;
    should_pass : string;
begin
  assign(pwf,’password.dat’);
  reset(pwf,1);
  blockread(pwf,key,1);
  blockread(pwf,should_pass,256);
  blockread(pwf,check,2);
  close(pwf);
  should_pass := decrypt(should_pass,key);
  if Checksum_Ok(should_pass,key,check) and (should_pass = password) then
    PasswordCheck := true
  else
    PasswordCheck := false;
end;

procedure RespondPassword;
begin
  save_screen;
  window(10,8,40,7,’’,black,7);
  If PasswordCheck then begin
    writexy(13,11,’Password correct - Access granted’);
  end else begin
    writexy(13,11,’Password WRONG ! - No access !’);
  end;
  repeat until keypressed; readkey;
  restore_screen;
  textcolor(7);
  textbackground(black);
end;

procedure Menu;
var choice : byte;
begin
  repeat
    clrscr;
    writexy(10,1,’Example program for password type 1  (c) ‘’95 by ABACUS ‘);
    writexy(20,4,’M E N U’);
    writexy(20,5,’~~~~~~~’);
    writexy(15,6,’1)  Change Password’);
    writexy(15,8,’2)  Query Password’);
    writexy(15,10,’3)  End’);
    writexy(15,13,’Your Choice: ‘);
    readln(choice);
    if choice = 1 then begin
      Change_password;
      Save_password;
    end;
    if choice = 2 then begin
      QueryPassword;
      CheckPassword;
      RespondPassword;
    end;
  until choice = 3;
end;



218

Modern Copy Protection

Chapter 8

PCPC
underground

begin
  Menu;
end.

In menu box 1 you can enter a new password. A password query is simulated in menu box 2. Note how it
is developed into three separate procedures. In your calling program, take precautions to call them at
irregular intervals and not perform them one after another.

For this third type of password, you may be asked to select from a list of passwords. You frequently see this
with games where you are asked for the x-th word on a certain page. Besides words, you may also be
prompted for icons, colors, etc. The principle of the query is the same, only the input and output procedures
change.

You'll see such a query implemented in the following example. You have the option under menu option 1
of entering a list of ten passwords with a fictional page number. Under menu option 2 you are asked to enter
one of the passwords in a simulated password query. The
program then randomly selects one of the ten passwords from
the password file. In this example, there is no built-in encryption
of the passwords due to space limitations. However, we do
recommend you encrypt the passwords. Otherwise, the words
can be easily found and modified.

program PASSWORD_TYPE3;

Uses Crt, Design;

type PasswordType = record
       page : byte;
       text  : string[20];
     end;

var pwords: array[1..10] of PasswordType;
    pword    : PasswordType;
    password : string;
    PasswordCheck : boolean;
    Pw_index : byte;

procedure Enter_list;
var li : integer;
begin
 for li := 1 to 10 do begin
  save_screen;
  window(10,8,60,9,’ Change password ‘,black,7);
  writexy(13,10,’Please enter password ‘);
  write(li,’ of 10 of the list’);
  writexy(13,12,’Page of the password in the manual: ‘);
  readln(pwords[li].page);
  writexy(13,14,’Password :’);
  readln(pwords[li].text);
  restore_screen;
  textcolor(7);
  textbackground(black);
 end;
end;

procedure Save_list;

PCPCun
de

rg
ro

un
d

You can find
PASSWD3.PAS

on the companion CD-ROM



Modern Copy Protection

Chapter 8

PCPC
underground

219

var pwf : file;
begin
  assign(pwf,’Passtyp3.DAT’);
  rewrite(pwf,10*sizeof(PasswordType));
  blockwrite(pwf,pwords,1);
  close(pwf);
end;

procedure Load_password(Idx : byte);
var pwf : file;
begin
  assign(pwf,’Passtyp3.DAT’);
  reset(pwf,1);
  seek(pwf,Idx*sizeof(PasswordType));
  blockread(pwf,pword,sizeof(PasswordType));
  close(pwf);
  save_screen;
  window(10,8,45,7,’’,black,7);
  writexy(12,10,’Please enter the password on page ‘);
  write(pword.page,’’);
  writexy(12,12,’Password: ‘);
  readln(password);
  restore_screen;
end;

procedure CheckPassword;
begin
  if password = pword.text then
    PasswordCheck := true
  else
    PasswordCheck := false;
end;

procedure RespondPassword;
begin
  save_screen;
  window(10,8,40,7,’’,black,7);
  If PasswordCheck then begin
    writexy(13,11,’Password correct - Access granted’);
  end else begin
    writexy(13,11,’Password WRONG ! - No Access !’);
  end;
  repeat until keypressed; readkey;
  restore_screen;
  textcolor(7);
  textbackground(black);
end;

procedure Menu;
var choice : byte;
begin
  repeat
    clrscr;
    writexy(10,1,’Example program for password type 3 (c) ‘’94 by DATA BECKER’);
    writexy(20,4,’M E N U’);
    writexy(20,5,’~~~~~~~’);
    writexy(15,6,’1)  Enter password list’);
    writexy(15,8,’2)  Password query’);
    writexy(15,10,’3)  End’);
    writexy(15,13,’Your choice: ‘);
    readln(choice);



220

Modern Copy Protection

Chapter 8

PCPC
underground

    if choice = 1 then begin
      Enter_list;
      Save_list;
    end;
    if choice = 2 then begin;
      Pw_index := random(10)+1;
      Load_password(Pw_Index);
      CheckPassword;
      RespondPassword;
    end;
  until choice = 3;
end;

begin
  textcolor(7);
  textbackground(black);
  Menu;
end.

High-level Language Programs At Machine Level

Now that you are familiar with some of the ways passwords are implemented in Pascal, we'll move on to
machine-oriented programming in this section. More secure queries are possible using machine oriented
programming because portions of a Pascal program are easily recognized. That is not the fault of your
programming technique but to a few significant procedures used by the Pascal compiler.

Pascal program structure

Let's take a look first at this simple program:

program LITTLE_PROGRAM;

Uses Crt;

var i : integer;

begin
  clrscr;
  for i := 5 downto 1 do begin;
    gotoxy(10,6);
    writeln('Please wait ',i,' second(s)');
    delay(1000);
  end;
end.

If we use Turbo Debugger to disassemble this program, various parts of the Pascal program are easily
recognized. The program in the beginning calls the initialization procedures for the included units. In this
case, these are SYSTEM.TPU and CRT.TPU.

LITTLE_PROGRAM.7: begin
  cs:001C 9A0000D862     call   62D8:0000
  cs:0021 9A0D007662     call   6276:000D
  cs:0026 55             push   bp
  cs:0027 89E5           mov    bp,sp



Modern Copy Protection

Chapter 8

PCPC
underground

221

Then, the procedure clrscr  for the unit Crt  is called. If you have compiled the program without
comments for an external debugger, you'll find a far address instead of the CRT.CLRSCR symbol, as in the
case of initializations.

LITTLE_PROGRAM.8:  clrscr;
  cs:0029 9ACC017662     call   far CRT.CLRSCR

The next step is the initialization of the loop. The variable i  is found again as the memory location [0052h]
in the data segment. The value 5 is assigned to it. The assigned value is correct during the first through the
loop. Then the program jumps to Pascal program line 10. In each additional pass through the loop [0052h],
i  is decremented by 1.

LITTLE_PROGRAM.9:  for i := 5 downto 1 do begin
  cs:002E C70652000500   mov    word ptr [0052],0005
  cs:0034 EB04           jmp    LITTLE_PROGRAM.10 (003A)
  cs:0036 FF0E5200       dec    word ptr [0052]

The call to procedure gotoxy is next in the loop. It's given the x and the y coordinates to which the procedure
is to jump. For that purpose, 000Ah for the x-coordinate and 0006h for the y-coordinate are pushed onto the
stack. The procedure is called using a far  call.

LITTLE_PROGRAM.10:  gotoxy(10,6);
  cs:003A 6A0A           push   000A
  cs:003C 6A06           push   0006
  cs:003E 9A1F027662     call   far CRT.GOTOXY

The next line includes the output of the message of procedure writeln . It has the peculiarity that several
arguments can be passed to it, i.e., that you can output either a string or even a combination of strings or
variables. It's clear how this is translated by the Pascal compiler in this example: A separate procedure is
called for each argument passed to it.

A distinction must be made there between three different types. First, procedure 0615h of the SYSTEM.TPU
outputs a text string. Its address on the stack, and not the string to be displayed, is saved.

Next is the return of the number [0052h]. It's copied into the ax:dx register and passed to procedure 06D9h
of SYSTEM.TPU. Finally, there is the procedure for generating the line feed. Its inclusion represents the only
difference regarding the write procedure. It's found at position 0582h of SYSTEM.TPU.

LITTLE_PROGRAM.11:  writeln('Please wait ',i,' second(s)');
  cs:0043 BF6801         mov    di,0168
  cs:0046 1E             push   ds
  cs:0047 57             push   di
  cs:0048 BF0000         mov    di,0000
  cs:004B 0E             push   cs
  cs:004C 57             push   di
  cs:004D 6A00           push   0000
  cs:004F 9A1506D862     call   62D8:0615

  cs:0054 A15200         mov    ax,[0052]
  cs:0057 99             cwd
  cs:0058 52             push   dx
  cs:0059 50             push   ax
  cs:005A 6A00           push   0000
  cs:005C 9A9D06D862     call   62D8:069D



222

Modern Copy Protection

Chapter 8

PCPC
underground

  cs:0061 BF1200         mov    di,0012
  cs:0064 0E             push   cs
  cs:0065 57             push   di
  cs:0066 6A00           push   0000
  cs:0068 9A1506D862     call   62D8:0615
  cs:006D 9A8205D862     call   62D8:0582

The call to the procedure Delay follows the display of the message in the loop. The number of milliseconds
to wait is saved on the stack. In this case, 03E8h (1000 decimal) milliseconds.

LITTLE_PROGRAM.12:  delay(1000);
  cs:0072 68E803         push   03E8
  cs:0075 9AA8027662     call   far CRT.DELAY

A check for the end of the loop is performed and if not complete control jumps back to the beginning of the
loop and continue decrementing the [0052h] variable.

LITTLE_PROGRAM.13:  end;
  cs:007A 833E520001     cmp    word ptr [0052],0001
  cs:007F 75B5           jne    0036

However, if the ending value is reached, the program arrives at the last program line. There, the stack frame
is first removed. Finally, the ax register containing the "result value" of the program is removed and the
termination procedure 0116h of the SYSTEM.TPU is called.

LITTLE_PROGRAM.14: end.
  cs:0081 C9             leave
  cs:0082 31C0           xor    ax,ax
  cs:0084 9A1601D862     call   62D8:0116

You have seen that several significant procedures are already found in this small program. Because these
procedures are present, an .EXE file is easily identified as one generated by Turbo Pascal. Besides the unit
initialization, a procedure like DELAY from the CRT unit is also of particular interest. Let's look closer at
the procedure DELAY:

CRT.DELAY
  cs:02A8_8BDC           mov    bx,sp
  cs:02AA 368B4F04       mov    cx,ss:[bx+04]
  cs:02AE E313           jcxz   02C3
  cs:02B0 8E064400       mov  es,[SYSTEM.SEG0040]
  cs:02B4 33FF           xor    di,di
  cs:02B6 268A1D         mov    bl,es:[di]
  cs:02B9 A16000         mov    ax,[0060]
  cs:02BC 33D2           xor    dx,dx
  cs:02BE E80500         call   02C6
  cs:02C1 E2F6           loop   02B9
  cs:02C3 CA0200         retf   0002
  cs:02C6 2D0100         sub    ax,0001
  cs:02C9 83DA00         sbb    dx,0000
  cs:02CC 7205           jb     02D3
  cs:02CE 263A1D         cmp    bl,es:[di]
  cs:02D1 74F3           je     02C6
  cs:02D3 C3             ret

First, the ms counter is loaded in cx. Therefore, when

cs:02AA  B90100         mov    cx,0001
cs:02AD  90             nop

');



Modern Copy Protection

Chapter 8

PCPC
underground

223

appears at this point, only one more pass would be made through the loop. Finally, program execution will
cycle through the loop until the specified number of ms has lapsed.

In the case of important procedures like wait loops or password queries, it's best to avoid using reserved
Pascal procedures. Instead, we recommend developing original and more specialized procedures by
building on the available procedures. Some command scanners can easily be tricked by rearranging the
sequence of commands and a few little modifications.

However, we want to avoid using DELAY for a wait procedure and develop our own small wait routine.
It's as effective as DELAY but isn't likely to be recognized by anyone looking to break your program.

The solution we're talking about uses the timer interrupt for its
own routine. To make it possible to work precisely, the timer
interrupt is reprogrammed to 1,000 calls per second. We'll use
the DOS routines for interrupt handling. These routines will
allows us to manage the program better.

program WAIT;
Uses Crt, Dos;
var oldtimer : pointer;
    mscount  : longint;
    msready  : boolean;
    i        : integer;
procedure WaitInt; Interrupt;
begin
  dec(mscount);
  if mscount = 0 then msready := true;
  port [$20] := $20;
end;

procedure Wait1(ms : longint);
begin
 GetIntVec(8,oldtimer);
 SetIntVec(8,@waitint);
 asm
   cli
   mov dx,43h
   mov al,36h
   out dx,al
   sub dx,3
   mov al,169
   out dx,al
   mov al,4
   out dx,al
   sti
 end;
 msready := false;
 mscount := ms;
 repeat until msready;
 asm
   cli
   mov dx,43h
   mov al,36h
   out dx,al
   sub dx,3
   xor ax,ax
   out dx,al
   out dx,al

PCPCun
de

rg
ro

un
d

You can find
WAIT.PAS

on the companion CD-ROM



224

Modern Copy Protection

Chapter 8

PCPC
underground

   sti
 end;
 SetIntVec(8,oldtimer);
end;

begin
  clrscr;
  for i := 5 downto 1 do begin
    gotoxy(10,6);
    writeln(‘Please wait ‘,i,’ seconds’);
    wait1(1000);
  end;
end.

A Protected Password Query

The method for a protected password query we are introducing in this section is not the best protection
imaginable. Nevertheless, it can prevent would-be hackers from deciphering the password query. This
version stores the passwords and related data as constants. This should be replaced by one of the methods
which we'll introduce when used in your own programs. We use them here only for clarity.

Instead of creating insurmountable obstacles for hackers, we will use several little tricks in the program. It
all starts with the MEM command. It's not implemented (we really don't need much memory) but is
included to prevent the program from being debugged with the normal Turbo Debugger.

This trap can of course be avoided by appropriately reducing the value in the .EXE header, offset 0Ah, to
0D430h for 200,000 bytes for example. The program can then be debugged with the normal Turbo
Debugger, although further refinements await the intruder. The main loop, which asks for the password,
is kept in assembler.

The first thing we do in this loop is switch off the keyboard in similar fashion to a hardware lock. This
triggers an INT 3h interrupt. This interrupt will have no effect if a debugger was not installed. However,
if Turbo Debugger is running in the background, there will be a program break at this point. This is similar
to the case for the normal Turbo Debugger because it's no longer possible to manipulate the program with
the keyboard turned off. At best, Turbo Debugger can still be used with a mouse, but even the mouse
interrupt 33h can be switched off.

If would-be hackers should overcome this obstacle, they'll encounter the PIQ trick that we will introduce
in the next section. The main reason we have included the unnecessary jumps is to cause further confusion.
Should the would-be hacker overcome all these obstacles, our only hope is that they're discouraged by the
prospect of untangling the entire mess not only once, but several times. If that does not stop them, we're
probably no longer dealing with a would-be hacker but a professional hacker. There may not be an
appropriate defense for a professional hacker.

Back to our starting point: The memory command. Our hacker will use Turbo Debugger 386 if they don't
know how to decipher it. Besides a small memory requirement, this also offers the advantage of a complete
virtualization of the PC. This means our interrupt misdirection and switching off the keyboard tricks occur
on the virtual computer and will have little effect on Turbo Debugger.



Modern Copy Protection

Chapter 8

PCPC
underground

225

However, protected mode is one small detail which Turbo Debugger 386 does not recognize. We, therefore,
deliberately switch into protected mode at the most dissimilar areas in the program and then switch back
again immediately. Although this has no effect on our program, the Turbo Debugger 386 terminates with
an Exception Error.

The indirect procedure calls present a final difficulty. The procedures of the Pascal program are not called
with their true names, but by means of a pointer containing the
address of the procedure. This makes reading the program
several times more difficult.

Here, now, is the source code for the password program:

{$F+}
{$M $4000,500000,650000}
program passwordquery;

uses crt,design;
const Passwords : array[1..10] of string =
        (‘Abacus’,’Underground’,’Graphics’,’Sprites’,
         ‘Dimension’,’Protection’,’Mode X’,’Assembly’,’Glass’,’VGA’);
      Pw_Pages : array[1..10] of word =
        (17,47,94,158,167,211,89,29,181,35);

Var pw_no : byte;
    remaining_passes : byte;
    Password_correct : word;
    New_Pass : string;
    PNew_Password_select : pointer;
    PInput_Box_draw : pointer;
    PPassword_query : pointer;
    PSystem_stop : pointer;
    unnecessary_Variable1 : word;
    unnecessary_Variable2 : word;

{$L Pwmodul}
procedure Query_Loop; far; external;

procedure New_Password_select;
begin;
  pw_no := random(10)+1;
  unnecessary_Variable1 := 1;
  unnecessary_Variable2 := 2;
end;

procedure Input_Box_draw;
var pws : string;
begin;
  str(Pw_Pages[pw_no]:2,pws);
  asm int 3; end;
  Window1(6,10,52,6,’Please type the password on page ‘+pws+’ of the manual’,black,7);
  unnecessary_Variable1 := 1;
  unnecessary_Variable2 := 2;
  gotoxy(23,12);
end;

procedure Password_query;
begin;
  readln(New_Pass);
  unnecessary_Variable1 := 1;

PCPCun
de

rg
ro

un
d

You can find
QUERY.PAS

on the companion CD-ROM



226

Modern Copy Protection

Chapter 8

PCPC
underground

  unnecessary_Variable2 := 2;
  if New_Pass = Passwords[pw_no] then
    Password_correct := 1
  else
    Password_correct := 0;
end;

procedure System_stop;
begin;
  textbackground(black);
  textcolor(7);
  clrscr;
  writeln(‘We probably would have been better off buying an original ...’);
  halt(0);
end;

procedure Main_Program;
begin;
  textbackground(black);
  textcolor(7);
  clrscr;
  gotoxy(20,12);
  writeln(‘Welcome to the main program !’);
  gotoxy(20,22);
  write(‘Enter to exit ... ‘);
  readln;
  halt(0);
end;

begin;
  textbackground(black);
  textcolor(7);
  clrscr;
  remaining_passes := 57;
  PNew_Password_select := @New_Password_select;
  PInput_Box_draw   := @Input_Box_draw;
  PPassword_query      := @Password_query;
  PSystem_stop        := @System_stop;
  randomize;
  Query_Loop;
end.

The following program listing is from PWMODUL.ASM.

.386p

.MODEL TPASCAL

keyb_off macro
  push ax
  in  al,21h
  or  al,02
  out 21h,al
  pop ax
endm

keyb_on macro
  push ax
  in  al,21h
  and al,0Fdh
  out 21h,al

PCPCun
de

rg
ro

un
d

You can find
PWMODUL.ASM

on the companion CD-ROM



Modern Copy Protection

Chapter 8

PCPC
underground

227

  pop ax
endm

.DATA
 extrn remaining_passes
 extrn pnew_password_select : dword
 extrn pinput_box_draw : dword
 extrn ppassword_query : dword
 extrn psystem_stop : dword
 extrn password_correct : byte
 extrn unnecessary_variable1 : word
 extrn unnecessary_variable2 : word

.CODE
extrn main_program : far

public query_loop

query_loop proc pascal
  keyb_off

 ;PIQ - Trick
  int 3
  mov  cs:word ptr [@int_21_funct1],4CB4h  ; function end prg.
@int_21_funct1:
  mov  ah,30h                              ; function get DOS vers.
  int 21h

@query_loop:
  keyb_off

  call dword ptr pnew_password_select
  cmp  unnecessary_variable1,5
  jbe  @unnecessary_destination1a

 ;PIQ - Trick
  int 3
  mov  cs:word ptr [@int_21_funct2],4CB4h  ; function end prg.
@int_21_funct2:
  mov  ah,30h                              ; function get DOS vers.
  int 21h
  mov  cs:word ptr [@int_21_funct2],30B4h  ; function end prg.

  call dword ptr pinput_box_draw
  jmp  @unnecessary_destination1b

@unnecessary_destination1a:
 ;PIQ - Trick
  int 3
  mov  cs:word ptr [@int_21_funct2],4CB4h  ; function end prg.
@int_21_funct2a:
  mov  ah,30h                              ; function get DOS vers.
  int 21h
  mov  cs:word ptr [@int_21_funct2a],30B4h ; function end prg.

  call dword ptr pinput_box_draw
@unnecessary_destination1b:
  keyb_on

  cmp  unnecessary_variable2,10
  jbe  @unnecessary_destination2a



228

Modern Copy Protection

Chapter 8

PCPC
underground

  dec  byte ptr remaining_passes

; Protected MODE Trick
pusha
cli                                ; disa4ble interrupts
mov eax,cr0                        ; switch to Protected mode
or eax,1
mov cr0,eax
jmp PROTECTION_ENABLED             ; clear execution pipe

PROTECTION_ENABLED:
and al,0FEh                        ; switch back to Real mode
mov cr0,eax                        ; do not reset CPU
jmp PROTECTION_DISABLED            ; clear execution pipe

PROTECTION_DISABLED:
sti                                ; enable interrupts again
popa

  call dword ptr ppassword_query
  jmp  @unnecessary_destination2b

@unnecessary_destination2a:
  dec  byte ptr remaining_passes

; Protected MODE Trick
pusha
cli                                ; disable interrupts
mov eax,cr0                        ; switch to Protected mode
or eax,1
mov cr0,eax
jmp PROTECTION_ENABLED2a           ; clear execution pipe

PROTECTION_ENABLED2a:
and al,0FEh                        ; switch back to Real mode
mov cr0,eax                        ; do not reset CPU
jmp PROTECTION_DISABLED2a          ; clear execution pipe

PROTECTION_DISABLED2a:
sti                                ; enable interrupts again
popa

  call dword ptr ppassword_query

@unnecessary_destination2b:

  cmp  byte ptr password_correct,1
  je   @query_was_OK
  jmp  @query_was_not_OK
@query_was_OK:

  call main_program
@query_was_not_OK:

  cmp byte ptr remaining_passes,54
  ja  @query_loop
  call dword ptr psystem_stop
  ret
query_loop endp

END



229

9.  Protect Your Know-how: Protection Tricks

Most experts agree using a dongle is currently the best protection against illegal copying. However, using
a dongle to protect  programs is impractical. The dongle, if it is to provide reliable protection, could cost
several times more than the program; low cost dongles provide only minimal security.

A more reliable method is using a CD-ROM. The CD offers a certain degree of security for at least two
reasons:

1. Although it's possible to write directly to a CD, the hardware required is quite expensive. Unless the
program is illegally copied by a professional, the CD offers a certain degree of security.

2. An enormous quantity of data can be stored on one CD-ROM. Most users will think twice about
copying 150 Meg onto their hard disk for only one program.

The disadvantage of using a CD-ROM is that many users still do not have a CD-ROM drive. Therefore, your
program cannot be used by those who do not have a CD-ROM drive.

Therefore, if using a dongle or a CD-ROM is not possible, you have only one more possibility: You must
build copy protection into your program. Remember, there is no copy protection that a dedicated hacker
cannot defeat. However, you can make a hacker's life much more difficult.

The protection tricks we'll talk about in this chapter become more important in this age of rising economic
crime. No one likes to see their ideas and technology stolen.

The tricks we'll talk about probably will not protect your programs from the professional hacker, but they
will frustrate the would-be debugger expert. You will also find these tricks used in many professional
programs.

Dissecting Programs

There are many tools that can be used to debug. We'll introduce a few of the most popular ones to you in
this section.

Your first thought when we mention "tools" is probably programs like PC Tools or the Norton Utilities.
However, we are not talking about this type of program here. Instead, we'll discuss several useful programs
that will make your life with your computer easier. By the time you finish reading this section, you'll be
familiar with the following types of programs:

Protect Your 
Know-how: 

Protection Tricks

Chapter 9

PCPC
underground



230

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

Ø Compression/decompression programs

Ø Debugging programs

Ø Hex editors

Removing the camouflage: Compression/decompression programs

Using compression/decompression programs like PKZIP or WinZip, you can compress files so they do not
occupy as much space on the hard drive. Many compression programs compress .EXE and .COM files into
self-extracting EXE files or COM files that decompress automatically when they are run and do not require
a separate decompression program.

The one area of caution with compression programs is the possibility of a virus. If you compress a file that
is infected with a virus, the virus itself is also compressed with the program and cannot be recognized by
virus detection software.

We cannot discuss all the specific compression/decompression programs here. For more in-depth
information on compression/decompression programs see PKZIP, LHARC & Co. from Abacus (6th
printing).

Debugging programs: Turbo Debugger

Turbo Debugger, bundled by Borland with C(++) and Pascal, is one of the most popular debugging
programs. Using Turbo Debugger, you can step through both your source code and .EXE or .COM files. You
are also able to set breakpoints with Turbo Debugger. You can allow your program to execute to these points
and then, from this point onward, work through the program one step at a time.

In the following paragraphs we'll explain how you can analyze a program with this powerful tool and
monitor specific variables. However, if you need more detailed information on Turbo Debugger, refer to
any of the several books available for either Borland C(++) or Borland Pascal.

Running Turbo Debugger

First, you must determine which version of Turbo Debugger you would like to use. You can use the
standard Turbo Debugger. This works with any memory manager, but also requires a large amount of
memory. Alternatively, you can also use Turbo Debugger386 . However, for this debugger you have to enter
the following line in your CONFIG.SYS:

Device = TDH386.SYS

The driver is not compatible with EMM386 and QEMM. So, if your system requires EMS memory, you will
not be able to use this debugger. However, Turbo Debugger can be used to debug even very large, memory-
intensive programs. If you can manage without EMS memory, Turbo Debugger386 is the best choice to use.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

231

Command line parameters

You can configure Turbo Debugger individually with each session by using command line parameters.
There are, however, several options that you will need each time. You can save them in a configuration file.
Create this file using Turbo Debugger's Option/Save Options command. Give the configuration file a name
that you can easily remember, for example, MYCONFIG.TD. Later, use the command line parameter -c to
load the file directly each time you start Turbo Debugger. The call could then look similar to the following:

TD386 -cMYCONFIG.TD the prg

where the prg  represents the program to be debugged.

Additionally, there are many other options that you can select:

-d  -  screen conversion

-do  -  use two screens

Select the option with a Hercules video card that has two monitor outputs. The debugger output is
displayed on the Hercules monitor and the normal output on the VGA monitor. The advantage of this
arrangement is that you are always able to see just what your program displays on the monitor.

-dp  -  page-flipping (particularly for text mode)

By selecting this option, Turbo Debugger uses two virtual screen pages. This option works only in text mode
and only if the program to be debugged uses a single screen page and does not change the starting address
of the video RAM. When debugging programs in graphics mode, you'll encounter many graphics errors if
you switch between the graphics screen and the debugger screen. These errors are usually tolerable;
because this mode is the quickest, it is the one preferred.

-ds  -  screen swapping

By selecting this option, Turbo Debugger saves the screen content of the program to be debugged in a buffer
before restoring the debugger screen. It then restores it again following user entries. However, this
swapping takes time and is therefore rather awkward when you are debugging a program step-by-step.
Select this mode only if you really need it.

-k  -  keyboard record

This is a useful option. It records all user entries in the program to be debugged in a file. This lets you return
later to a given point in a program if you have debugged "too far".

-l  -  start in assembler mode

When you start the debugger in assembler mode, the CPU window is displayed on start-up instead of the
source code. The procedures executed on start-up are not performed automatically. This means that you
can also view the loading process of the program.

-m  -  set heap size

Turbo Debugger uses an 18K heap for internal purposes. However, if you then find yourself seriously low
on memory, you can use this parameter to reduce the size of the heap to as low as 7K. The size of the memory
to be used is expressed in kilobytes (K) directly following -m.



232

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

-v  -  video RAM setting

-vg  -  backup entire video RAM

This option always saves the entire 8K of video RAM. Additional 8K screen RAMs are, of course, used in
this case, but you can debug programs that use this memory and whose output would otherwise be erased.

-vn  -  no 50 line mode

If you're certain the 50-line mode is not needed, use this parameter. This will help free more memory.

-vp  -  backup color palette

Many programs modify the VGA color palette. For these programs you should use -vp. This saves the
palette, and you'll likewise always have the correct colors when you step through a program.

-y  -  set TD overlay size

Turbo Debugger swaps part of itself using overlays. Depending upon how much memory is needed by the
program to be debugged, you can adjust the size of this overlay. If your program is quite memory intensive,
select the minimal request using -y20. Although you will now have much more free memory, you will
paying for it with correspondingly longer loading times. If the program to be debugged needs less memory,
you can select the maximum memory size of 200K with -y200. This keeps the entire debugger in memory.

Targeted searches with Turbo Debugger

In this book we're not concerned with how Turbo Debugger debugs a program for which the source code
is available. Instead, our interest is in finding certain variables or commands in the program to be debugged.

In the following paragraphs we'll see how you can, for example,
find the variables for "lives" or "points" in an .EXE file in the
following small Pascal program:

{$A+,B-,D-,E+,F+,G+,I+,L-,N-,O-,P-,Q-,R-,S+,T-,V+,X+,Y-}
{$M 16384,0,655360}
program SHOW_HOW_TO_DEBUG;

uses Crt;

var inputvar : word;
    lives     : byte;
    factor   : real;

procedure Init_variables;
begin
  lives   := 4;
  factor := 0.27
end;

procedure User_input;
begin
  textcolor(14);
  gotoxy(10,3);
  write('                                                     ');
  gotoxy(10,3);
  write('Please enter your new test value : ');
  readln(inputvar);

PCPCun
de

rg
ro

un
d

You can find
TD_TEST.PAS

on the companion CD-ROM



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

233

end;

procedure Nonsense_evaluation;
begin
  if (inputvar * factor) < 10 then
    dec(lives);
end;

procedure Write_status;
begin
  textcolor(15);
  gotoxy(10,10);
  write('Input : ',inputvar:5,'      ==>    Lives : ',lives:3);
end;

begin
  clrscr;
  Init_variables;
  repeat
    User_input;
    Nonesense_evaluation;
    Write_status;
  until lives = 0;
end.

The program inputs a value from the user. If the value is smaller than 38, the user loses a "life". This
continues until the user has no more lives left.

After you have compiled the program (you will find it on the companion CD-ROM), you can start Turbo
Debugger. Type the following:

TD td_test e

and you'll see the following screen:

Loading the program

The initialization procedures of the units are at the top of the program. Press 8 to move through the
program step-by-step. You'll then encounter the calls to the individual subroutines. Instead of following
these procedures, let's try to determine their function.



234

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

You'll see that you're in a loop in which user input is first requested. The meaning of the next procedure is
not clear yet. The third one echoes the value entered and displays the lives remaining on the screen. Finally,
there is a very interesting comparison. The [0054]  variable is checked for a value of zero. If it is not zero,
another pass is made through the loop.

Checking a variable

Let's take a closer look at this important variable using the Watch window where specific memory areas can
be checked.

Setting Watch variables

Now we'll continue through the program. You'll see the variable has the same value as the number of "lives"
in the program. Therefore, this is the "lives" variable. The significance of the second procedure now becomes
clear. If a value less than 38 is entered, the variable is then decremented.

Now we know where we can find the "fellow" who counts down the number of lives. The next time you get
to the second procedure, don't pass over it again, but go through it one step at a time. To do that, press the



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

235

7 key when you're at that procedure. You will now be in the subroutine. Step through it again with 8.
Our "fellow" who decrements the lives variable is near the end of the procedure, specifically:

dec byte ptr[0054]

Found command chain

To check whether lives  is really decremented here, you can overwrite the 5 bytes of the decrement
instruction with 5 NOPs (no operation). To enter a different instruction, press the z and enter the
instruction. Note the length of the previous instruction must coincide with the length of the new instruction.

Entering new commands

At the very least, you'll confirm the variable [0054]  is really the variable lives for which you are searching.
If you're writing a game trainer, you can do one of the following:



236

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

1. Change the memory location where the variable is stored.

or

2. Change the memory location of the place in your computer where variable lives  is decremented.

Turbo Debugger has offers many other functions besides watches and stepping through a program. These
include stopping execution of the program at various points or executing the program to a specific point
and other search and jump functions.

2  -  set breakpoint

You can set a breakpoint with the 2 key. When the program reaches a breakpoint, control is given to Turbo
Debugger so you can inspect memory, variables, etc. Move to the location in the program where you would
like to insert a breakpoint and press the 2 key.

a-2  -  setting a breakpoint at a specific location

By using the a-2 key combination, you can set a breakpoint at a specific memory location. To do this,
enter the segment and the offset position of the desired breakpoint. This does not have to be in the program
just loaded but can be anywhere in memory. This is very useful whenever you want to, for example, debug
interrupts or drivers.

9  -  run program

To start the loaded program, simply press the 9 key. You can usually interrupt the program to be
debugged at a "critical point" with c-k and then debug step-by-step.

4  -  execute up to current position

When you happen to find yourself at a certain point in the program, and want to test program execution
again to this point, you don't have to debug your way through the entire program again to this point, step-
by-step. Instead, you can reset it with c-2 and cause the program to execute to your current position
in the same with 4.

a-9  -  execution up to a location in memory

This key combination is similar to the 4 mentioned above. You enter the location (segment and offset)
in the program where the program (starting from the current position) is to be executed.

a-5  -  display user screen

When debugging, you should be able to check which outputs were last displayed on the screen or at which
entry the program was stopped by a breakpoint. An application running in graphics mode is switched
automatically to this mode. If your program is using Mode X, you'll probably see some rather bizarre
graphics. This is because reprogramming of a few registers in the VGA card is ignored.

c-S  -  search for an expression

Whenever you're searching for a specific statement in the program to be examined, you enter the search
criteria using c-S. Enter the assembler statement for which you are searching in the input window which
appears, for example:



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

237

dec byte ptr [0054]

Turbo Debugger then searches from the current position in the program for these instructions. Be careful
with short commands: It's possible that a part of a statement is interpreted as this instruction. In this case,
you should scroll up and down for a few lines to check whether the statement found is really the one you
are searching for or part of a different one.

c-G  -  go to place

Turbo Debugger shows the current position in RAM to the far left in the CPU window. Note this position
when you have found an interesting place in the program. You can jump to it at any time using the  c-G
keys. This makes testing the program at various points easier.

c-C  -  return to procedure to be called

If you have jumped into a procedure, and it appears that what you are searching for is not there, you do not
have to step through all the way to the end. Instead, you can use  c-C to return to the procedure call and
then skip it with 8.

Now that you are familiar with the basic functions of the Turbo Debugger, you should be able to analyze
any program you like. Perhaps you would like to try your luck with RAIDER from the companion CD-ROM
as an example for trainer programming. You can debug and change this program according to your own
ideas.

Not hexing: Hex editors

A hex editor is not used like a text editor to edit ASCII text files. Instead, it's used to address the numeric
code that represent machine language instructions and data. These numeric values are entered in
hexadecimal form, hence the name hex editor.

Why a hex editor?

A hex editor lets you edit application files and other files that cannot be accessed by a text editor. Unlike
text editors, hex editors let you edit actual program code. The best examples of such files can be found in
entertainment software where you have discovered yourself short of money, points, weapons, etc. You can
save the current game and look at the program code using a hex editor.

For example, in a business simulation game, note how much money you have before you save the current
game. Convert this sum into a hexadecimal number (i.e., 1000 gold pieces would equal 03E8h gold pieces).
The CPU saves a number, but usually the least significant bytes first followed by its most significant bytes.
Therefore, you have to reverse the sequence. You now have E803h. Now use the hex editor to search for this
number. When you have located E803h, simply replace it with, for example, 9999h and restart the game.
When you reload the game and have found the right place, you can then enjoy your 39,321 gold pieces.

If you see a different amount, search again using the hex editor to see whether E803h turns up somewhere
else. In this way, you can also increase lives, ammunition, extra weapons, etc. You can in this way search
for and replace different byte combinations. What is required, of course, is a good hex editor.



238

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

The Hexcalibur hex editor

Using the Hexcalibur editor, you not only can overwrite data,
but you can also insert, remove and copy data. To start the
editor, you must also enter the name of the file to be edited, for
example:

HC SAVEGAME.01

Press any key and you'll be in the editor. The editor defaults to the insert mode. To edit a saved game files,
activate the overwrite mode by pressing the i key. You move from one file location to another using the
arrow keys. Switch between the hexadecimal window on the left and the ASCII window on the right by
pressing the 2 key.

The following is an overview of the defined keys:

AWSZ
You can use the arrow keys to move from one file location to another within the respective window.

uy
Use these keys to jump one "page" up or down. One page represents 256 characters.

h
Press this key to move to the beginning of the current line.

j
Press this key to move to move to the end of the current line.

a B or a 0
Press one of these two key combinations to move to the beginning of the file.

a 1 to a 9
Press one of these key combinations to move to approximate positions within a file. For example,
press  a + 1 to jump to the position representing 10% of the file, press  a + 2 to jump to the position
representing 20% of the file, etc.

a E
Press one of these key combinations to move to the end of the file.

a G
Press this key combination to jump to a specific position on the disk. To do this, enter the desired
sector and the number of the first byte and then press e.

1
Displays a summary of the available editor functions.

2
Switches between the hexadecimal window and the ASCII window.

i
Switches between the insert mode and overwrite mode.

PCPCun
de

rg
ro

un
d

The Hexcalibur hex 
editor is on the 

companion CD-ROM



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

239

d
Deletes the character beneath the cursor. The character is in both the ASCII window and in the
hexadecimal window. Caution: The loss of just this one character can have fatal consequences in
program files.

a A
Press this key combination to highlight the beginning of a block with which you would like to carry
out one of the following operations.

a C
Copies the highlighted block.

a M
Moves the highlighted block.

a D
Removes the highlighted block.

a P
Selects the highlighted block for insertion.

a F
Press this key combination to find text. Simply press a F end enter the text for which you want to
search. The search begins from the current position in the file.

a R
Press this key combination to replace one character string with a different one. The character strings
do not need to have the same length.

a S
Press this key combination to save an edited file.

a X, a Q
Press this key combination to exit the program. You'll be asked if you want to save any changes to the
file.

a U
Press a + U to cancel all changes since the last time the file was saved.

Editing a saved game with Hexcalibur

How do you edit a saved game with Hexcalibur?

Let's assume you would like to edit the file called SAVEGAME.001. You proceed as follows:

First, start the editor with HC SAVEGAME.001 which will then load the saved game into the editor. Now
look for the value that needs to be changed. For example, if you had 1,234 gold pieces, first press a + F,
enter D2 04 and press e. HC will now search for this byte sequence. When the editor finds it, it marks
the found area red and ends the search.



240

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

This is the location which you need to change. Enter the hexadecimal value of the desired sum in the hex
window, e.g., 30 75 for 30000. Now press a + S to save the changes. Confirm the prompt, and the program
saves the modified version. HC creates a backup copy using the .BAK extension by default.

You're finished with the task and can exit the program by pressing a + X. If the first occurrence of the byte
sequence is not the desired value, then rename the backup copy of the file to the original filename and search
for another occurrence of the value. To do this, press a + F after Hexcalibur found the first value.

The Debug Interrupts

To protect your own programs from being themselves debugged, it helps to know how a debugger works.
Depending on the type of debugger, it will use the same virtual machine as the program being debugged
or will emulate a virtual CPU. All debuggers use interrupt 3 (Debug interrupt). If this interrupt is called,
a debugger is switched on which may run in the background. Of course, if no interrupt is set, the program
will continue to run.

We now introduce a neat little trick which we'll build into our program: A few calls to Int 3 which appear
unconnected and in random locations in the program will help frustrate our would-be hackers.

Masking interrupts

It's definitely more effective to mask Int 3 using hardware such as the keyboard. This is done through the
interrupt controller (port 20h), bit 1, which has interrupt 09h. If we now simply block the channel for this
interrupt, the routine associated with the interrupt will not be called, however. In fact, often the interrupt
itself may be called. Unfortunately, the debug interrupt has one small disadvantage. Since it has a value less
than 8, it's called an NMI (nonmaskable interrupt). Simply masking the interrupt won't work. However,
masking is a simple method for disabling serial ports, for example, which, of course, can mean that without
a mouse many applications simply can't be used .

Changing the debug interrupt

A further option for making the interrupts useful is to point them to your own routine. You can, for example,
swap an important routine which isn't call too often, but which is required for program execution, into a
procedure which you declare as an interrupt. You then coerce interrupt 3 to your own routine and call
interrupt 3. This method works only for debuggers which do not create a virtual CPU with its own interrupt
table. You cannot use Turbo Debugger for such a task.

Hiding data in an interrupt vector

Another way to protect a program is by hiding data in an unused interrupt vector. Each vector is a DWORD.
You can hide a checksum or special code here that you later test at runtime to ensure no one has tampered
with your program.

The interrupt table is arranged so a given interrupt is located at 0:4*interrupt number. The address of the
standard interrupt handler is located here. After your program is finished, you must restore the original
interrupt vector.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

241

You can also directly modify the interrupt vector table. Many commercial products do this. For example,
many sound cards do not modify the SoundBlaster interrupt by using functions 25h and 35h of Int 21h, but
by directly accessing the vector table. These tricks, however, only protect against debugging if the debugger
does not use a virtual machine.

The following is an assembler example of this method in
NODEB.ASM. The longint  value is saved by Check_for_vector
in the vector table at the position for Int 3.

public Check_for_vector
Check_for_vector proc pascal check : dword;
  mov bx,0
  mov es,bx
  mov bx,18
  mov eax,es:[bx]
  mov oldint3,eax
  mov eax,check
  mov es:[bx],eax
  ret
Check_for_vector endp

Vector_ok  lets you check whether a certain longint value is saved at the position of Int 3 in the vector table.
A 1 or TRUE is returned if the value in the table agrees with the value returned, otherwise you get 0 or
FALSE.

public Vector_ok
Vector_ok proc pascal check : dword;
  mov bx,0
  mov es,bx
  mov bx,18
  mov eax,es:[bx]
  cmp eax,check
  je  @check_ok
  mov al,0
  jmp @check_end
@check_ok:
  mov al,1
@check_end:
  ret
Vector_ok endp

Procedure  Restore_checkvector  restores the changed Int 3 to its original state. You should execute this
procedure before ending the program, if you have modified the vector.

public restore_Checkvector
restore_Checkvector proc pascal
  mov bx,0
  mov es,bx
  mov bx,18
  mov eax,oldint3
  mov es:[bx],eax
  ret
restore_Checkvector endp

PCPCun
de

rg
ro

un
d

The procedures/functions
on pages 241-242 are from

the NODEB.ASM file
on the companion CD-ROM



242

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

Substituting interrupts

A last trick with interrupts is to substitute one interrupt for another. This means that instead of calling
interrupt 21h, you call the single-step interrupt (01h) or debug interrupt (03h). This method is useful when
you program in assembler.

First, determine the address of Int 21 handler and then save it in the desired vector. Now, when you call Int
21h, write the number of the appropriate vector instead of 21h. You should have no problems programming
it because you can take care of replacing the interrupt when your program is completed. However, this
method may not work every time and it reduces the legibility of the code significantly.

An example of how you can substitute interrupt 21h for int 3h is found in assembler procedure
Copy_int21_int3 . The old interrupt is saved in the variable old_interrupt3  and must be restored
before terminating the program.

public Copy_int21_int3
Copy_int21_int3 proc pascal
  mov bx,0
  mov es,bx
  mov bx,18
  mov eax,es:[bx]
  mov old_interrupt3,eax              ; store old int3
  mov bx,84                           ; load int 21
  mov eax,es:[bx]
  mov bx,18                            ; store in int3
  mov es:[bx],eax
  ret
Copy_int21_int3 endp

Fooling The Debugger

Another approach to protection is to interfere with the debugger intentionally.

The memory trick

The simplest method is a memory trick. You reserve all the available memory and not just the amount of
memory required by your program. You can do this easily in Turbo Pascal with the following command:

{$M $800,550000,65000}

If you now try to debug this program using Turbo Debugger, you'll get an error message saying there is not
enough memory available to run the program. If you set the number too high, you may even cause Turbo
Debugger386 to quit with the same error message. However, in any case, don't push Turbo Debugger386 too
far. Remember, not all computers are configured with 630K available. You'll never know if your program
will still run on all configurations of computers.

Ambiguous instructions

Another option for fooling the debugger is using ambiguous instructions, for example, a jump to the middle
of another instruction. Most debuggers become disoriented with such an instruction and jump to the next
one which can be recognized.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

243

The trick, then, is to write a DOS interrupt instruction for ending the program at the next statement. If the
debugger operates step-by-step, it will stop at this point. In normal operation, however, it will jump to the
instruction addressed and find there is another jump using the end program DOS interrupt 21h subfunction
4Ch.

Here's an example of such a program:

No_stepping proc near
  push ax
  jmp @Nostep+2
@Nostep:
  mov ds:byte ptr [06EBh],00
  mov ax,4C01h
  int 21h
  pop ax
  ret
No_stepping endp

Stopping TD386

The methods we've talked about so far have all been designed to protect against prying eyes using Turbo
Debugger. However, Turbo Debugger386 uses hardware mechanisms which can defeat these protection
schemes. Fortunately, there is another method we can use: Turbo Debugger386 cannot tolerate protected
mode.

The trick we'll use is only a few lines long. We won't be concerned with the entire way protected mode
operates; we need only switch to protected mode and then immediately back again. We do this by using
the cr0 register.

Now for a procedure which switches you to protected mode
and then back again immediately into real mode. It runs with
the EMS driver installed.

public protected_stopping
protected_stopping proc pascal

pusha
cli                         ; disable interrupts
mov eax,cr0                 ; switch to protected mode
or eax,1
mov cr0,eax
jmp PROTECTION_ENABLED      ; clear execution pipe

PROTECTION_ENABLED:

and al,0FEh                 ; switch back to real mode
mov cr0,eax                 ; don’t reset CPU
jmp PROTECTION_DISABLED     ; clear execution pipe

PROTECTION_DISABLED:
sti                         ; enable interrupts again
popa
ret

protected_stopping endp

PCPCun
de

rg
ro

un
d

This procedure
is from

the NODEB.ASM file
on the companion CD-ROM



244

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

Self-modifying Programs

Another interesting and widely used way to protect a program is to write one that modifies itself. A
self-modifying program changes its code during execution so it no longer looks like it did when it was first
loaded into memory.

Checksums

If you've used a modem, then you're probably familiar with checksums. A checksum is a method used to
ensure that a file has been transmitted error-free. A checksum can detect missing or erroneous data. They
serve, for example, to check whether a file has the correct size or contains the correct data. A checksum is
basically a value used to make certain that data is transmitted without error. It's necessary when
transmitting data by modem to check the entire file sent.

The same may be true for passwords inserted in programs. These places cannot normally be so easily
located, but a little trick can be used: Declare a local constant at the beginning of the procedure, if possible,
with an easily recognized string. For example, if you use the longint constant 12345678h, it is then easily
found in the finished compilation. Now simply note the position in the .EXE file and determine the
checksum for the next 100 to 500 bytes. You can therefore be certain that no one has modified the program.

The same method also works for a program in memory. The address of the interesting procedure can be
easily determined. Check the next 100 to 500 bytes, starting from this address, and you can be sure the
procedure has likewise not been modified by a TSR crack. Your checksum procedure should also be backed
up at least once by other checksum procedures. You then call these procedures at random in your program.
Execute all the tests only after a certain time has elapsed or when the user wants to save his/her work.

Encryption algorithms

Encryption algorithms are a very broad field and could fill a book. Therefore, we only touch on encryption
algorithms. There are basically two approaches which interest us. The first is modifying a character by
means of a specific key, a different character. A simple but effective method adding the key to the character.
Any overflow can be handled by the processor, so data is not lost even if the key has a high value.

Another way is to XOR the characters and the key. This method can be used effectively if combined with
a random number. The method works because most random numbers are not really random numbers.
When they use the same initialization, the numbers always appear in the same sequence. You're therefore
able to use them without difficulty.

A different approach to encryption is using your own alphabet so each character is replaced by a character
from your alphabet. This method is somewhat more difficult to unravel than that described above because
decryption requires not only a key but an entire alphabet. Of course, decryption is also correspondingly
more time consuming. However, if you encrypt only certain parts of a file using the method presented we
described in this section, the method makes a lot of sense.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

245

The PIQ technique

The PIQ technique is another example of how you can get any debugger to stop. The trick is based on the
prefetch queue of the CPU. To enhance performance, the CPU reads both the current instruction and the
next one.

This technique changes the memory location following the next instruction. For example, you change an
instruction for checking the DOS version number into an instruction for stopping the program.

The instruction is already loaded during normal execution by the PIQ. This means the memory location is
changed but the instruction was already fetched by the processor.

If the debugger is active, the instructions are executed one step at a time and the PIQ is not active. Therefore,
the memory location is changed and when the modified instruction is reached, the program encounters the
stop instruction.

The following shows this technique:

PIQ_Stop_System proc near
  push ds
  push ax
  push bx
  push cs
  pop  ds                             ; CS to DS
  mov  cs:word ptr [@int_21_funct],4CB4h  ; End function Prg.
@int_21_funct:
  mov  ah,30h                         ; Function Get DOS-Vers.
  int  21h
  pop  bx
  pop  ax
  pop  ds
  ret
PIQ_Stop_System endp

Using compression programs

Compressing your program has two important advantages:

1. The .EXE file will not require as much room on your hard drive.

2. The file will be "encrypted".

The .EXE file cannot be modified when it's compressed. Of course, you can decompress the file, modify it
and recompress it again, but a different file size usually results. If you've put a check for the file size into
the program, the changed size will be recognized. Then you can stop the program and display an error
message.

The protection techniques we've discussed are irritating nuisances for any hacker to overcome. However,
they're the basis for some protection if combined creatively. Write the code in assembler and not in high
level procedural code which generate predictable code. A few techniques used liberally should frustrate
most would-be hackers.



246

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

Train 'em: Game Trainers And Debuggers

Game trainers are another of the fascinating areas in computing. A trainer uses a program, either a TSR or
a loader, to add functions for the user. These functions are activated by using a specific key combination.
The user can then affect the behavior of a different program, usually an arcade or adventure game. These
game trainers, unfortunately, are also been misused by crackers for dismantling program protection.

In this section, we'll talk about game trainers. Many of you've probably been involved in a great action game
in which you have fought your way to the final opponent only to discover that you have no more weapons
or only a single life remaining. In such a case, you'd be fortunate to have a trainer available. By just pressing
a few keys, you immediately find yourself equipped with all weapons and have all your lives back.

The problem is that such trainers are not available in every game. There's only one thing you can do in that
case: Create your own. You'll find the information you'll need in this section to write your own trainer. First,
consider which programs are best suited for a trainer. Programs and games which are not suited for trainers
usually include role games and adventure games. These games use a form of script language which is
translated by an interpreter. In this case, it's better to save a game and inspect the "save" file with a hex editor
(see the "Not hexing: Hex editors" information starting on page 237). In the extreme case, you can even write
a savegame editor.

However, action games are quite suitable for training, especially action games where lives are lost, extra
weapons distributed and points collected. These are all managed directly within the game, usually by
WORD or DWORD variables. All you need for a trainer in these cases is to find the location of these variables
in memory. Then write a small TSR which will change these variables to new values when a certain key
combination is pressed.

Rummage around: Finding variables

It's not so easy to write game trainers, otherwise there would already be dozens of trainers for every game.
The biggest problem is finding the variables used. To find the variables, you'll need to use a debugger such
as Turbo Debugger. First, you should search for the structures usually used to increment or decrement
variables. Let's say, you're looking for that place in the program where you lose a life. When you find this
place, you have also found the "lives" variable. To find it, there are two methods:

Method A - look for frequently used structures

This is the method you should try first because, if successful, it leads quickly to our target. In our example,
look for a machine code which decrements the content of a byte variable. A byte variable is used because
you probably won't get more than 256 lives. The structure most frequently used for decrementing is:

dec byte ptr [xxyy]

where xxyy is the offset-position of the variable in the current data segment. The assembler translates this
instruction into:

FE 0E  yy xx

That means you'll probably want to look for the byte combination FE 0E because you won't know the value
of yy xx. Don't panic if the program is long or if there are many duplicate combinations. First, some
combinations will be eliminated because they're part of an instruction consisting of several bytes. Then,



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

247

other combinations involve the same variable. Write down the variables which are found and then check
their contents while the program is running. You'll soon find the desired variable.

If you are unable to find the decrement instruction, you should look for a different combination. The
following table shows an overview of the most commonly used structures:

Assembler instruction Translation Assembler instruction Translation

dec word ptr [xxyy] FF 0E yy xx sub [xxyy],dx 29 16 yy xx

dec byte ptr [xxyy] FE 0E yy xx inc word ptr [xxyy] FF 06 yy xx

sub word ptr [xxyy],zz 83 2E yy xx zzzz inc byte ptr [xxyy] FE 06 yy xx

sub byte ptr [xxyy],zz 80 2E yy xx zz add word ptr [xxyy],zz 83 06 yy xx zzzz

sub [xxyy],ax 29 06 yy xx add byte ptr [xxyy],zz 80 06 yy xx zz

Be aware during your search that many programs use several data segments or save data in the code
segment. If you don't have any luck in the current segment, then you should look through the other
segments used in the program.

If all the variables found in these targeted searches failed to contain the desired value or, very simply, too
many variables were found, you'll have to use method B.

Method B - following the operation of the program

The tracing of programs has become more important since the lawsuit between Microsoft and Stack, Inc.
However, if method A is unsuccessful, this is the only option for locating the variables searched. First, locate
a procedure which rebuilds the screen. Now step through this procedure and see which variables are used
for which screen structures. Here, you'll usually find something quickly and have a series of trainable
variables. If you still cannot find the desired variable for life or the program break, follow the main loop until
you reach the comparison of a certain variable with 0. This variable is usually (but not always) the variable
for lives or the program end.

Handling the corner data

After you have found the variables used by the program, you can begin writing the trainer. You'll need some
corner data from the program to do this. First, you'll have to note the data segment of the respective
variables. Then you must determine whether the program uses its own routine for handling the keyboard.
Search in the program for the command:

in al,60h.

Now set a breakpoint on this command. Then execute the program and press a key at that point. If the
program breaks when you press a key, you have found the handling routine if you're at the breakpoint
position. Write down the current code segment (CS) and the offset where the command stands. You can find
this value in the instruction pointer (IP).

In case the program is not interrupted, you'll have to keep on searching for the command. If you do not find
it, check whether your program has several code segments. You must look through all code segments if you
have no luck in the base segment. It's also a good idea to look very carefully at the ES and DS segments often.



248

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

If after all these efforts you still have not found it, it is rather likely that your program does not even have
its own handling routine but instead uses DOS interrupt 9h or 16h.

Programming trainers

How, then, must a trainer be constructed? A trainer consists in principle of two essential parts:

Installation
This doesn't refer to the loading of the program as a TSR but integrating it into the program to be
trained.

Interface
This part checks whether a key of the trainer was activated and correspondingly reacted.

We'll describe both in more detail below.

The installation part

During installation, you must determine if the program uses its own keyboard routine or accesses the DOS
routines. If the DOS routines are used, then you can just change interrupt 9h to point to your routine. Check
to see if the key combination is for the game trainer; if so, respond appropriately and then call the original
interrupt.

If the program uses its own keyboard routine, the steps are slightly more complicated. First, find and
unused interrupt, such as interrupt 65h. We then proceed to a frequently used interrupt, preferably
interrupt 21h. This interrupt will in any case be called by the program to be trained. You can use it to make
a slight modification in the program code. That is legal, because you are not modifying the program on the
hard disk, only a region of memory.

The place to be modified is that point in the program where a character is read from the keyboard using the
following:

in al,60h.

In machine code, the instruction reads E4 60.

If an interrupt is then generated, the processor saves the following:

Ø The flags

Ø The code segment where the call originated

Ø The current instruction pointer on the stack

Now save the current values of BP, BX and DS on the stack. Then move the stack register SP to BP. You'll
now be able to determine the code segment using [BP+10], and the position of the IP using [BP+8]. Then
move the value of the code segment to DS and the IP to BX. You can now check whether E4 60 is at the
memory location addresses by DS:[BX]. If so, the interrupt was triggered by the program to be trained and
you have found the place to be modified. Now replace the two bytes with CD 65. Interrupt 65h will now be
called instead of having the program reading in a character using in al,60h.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

249

In interrupt 65h, no registers except for the al register can be changed. You must also read a character from
the keyboard using in al,60h. Check now whether the character is a key used by your trainer. If yes, the
corresponding code is handled by the trainer.

The interface part

The interface part is really the most interesting part of a trainer. We'll distinguish between programs that
use a single data segment and programs that use several data segments.

The first type is typically programs that are generated by a language, such as Borland Pascal, which allow
only one data segment. In this case you don't have to worry whether you're using the correct data segment:
You'll automatically have the right one. If the interrupt which you changed is called, check first which key
was pressed. If it's one of the trainer keys, the routine will first jump to where the corresponding variable
is changed and then to the routine which correctly terminates the interrupt. This will be an IRET or even
a call to the original interrupt, depending on which interrupt you used. If the key pressed is not a trainer
key, the jump is made directly to this routine.

Now, in the variable-modifying part, write the new value for the variable at the position you determined.
Don't always write the maximum value for the variable type. You should instead determine, for example,
at which value the energy is completely restored or the maximum complement of weapons is available. A
typical instruction might look like the following:

Full_energy:
mov ds:[1234],80
jmp End_routine

Your work will be slightly more complicated when your program has more than one data segment.
Hopefully, you wrote down the respective data segment of the variables to be modified and you know the
code segment in which the keyboard is queried. You can now identify the data segment based on that
information. In the trainer interrupt, determine the code segment where the interrupt is called. Now add
to or subtract from this value the difference between the data segment of the variable and the code segment
of the interrupt call. You already have the correct code segment. You can now modify your variables entirely
normally. Here, now, is an example of how such a routine could look:

Full_weapons:
  pusha
  mov bx,[bp+8]
  sub bx,3E43h
  mov ds,bx
  mov ds:[1234],255
  popa
  jmp End_interrupt

Now you know the secrets of writing a trainer. You can try your hand at writing a trainer for the minigame
RAIDERS which we've included on the companion CD-ROM.

Trainer for the RAIDERS game

We hope that you've tried your luck with RAIDERS already. It will serve as a good introduction to creating
a trainer.



250

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

You'll find the complete source code for a trainer for RAIDERS on the companion CD-ROM. We've included
the source code as a basic kit for your own project. We'll take a
closer look at the part containing the actual trainer programming.

The trainer first defines a few variables to check whether the
trainer is already resident.

;            ****************************************************
;            ***                                              ***
;            ***            Trainer for Raiders               ***
;            ***                                              ***
;            ***   (c) 1995 by ABACUS/1994 by DATA Becker     ***
;            ***                                              ***
;            ***   Author: Boris Bertelsons                   ***
;            ***                                              ***
;            ****************************************************
;
;

.286
  w equ word ptr
  b equ byte ptr
code segment public
public insthand
public handler9
public reslim
public oldint21
public oldint65
public ID
public IDlen
public check_inst

assume cs:code,ds:code
ID: ab 'ABACUS'
oldint21: dd 0
oldint65: dd 0
procedure: dd ?
IDlen equ offset oldint21 - offset ID

;  *********************************************************************
;  ***                                                               ***
;  ***  The actual Trainer routines are here                         ***
;  ***                                                               ***
;  *********************************************************************

The new handler for the 9h interrupt is installed next. The latter reads a character from the keyboard and
checks whether it is a trainer character. If the answer is yes, the corresponding variable is adjusted. The
variables were determined during a small Turbo Debugger session.

;  **********************************************************************
;  ***                                                                ***
;  ***  The new INT 21h. The procedure checks whether the "in al,60h" command ***
;  ***  is in the specified location in memory, and if necessary, replaces it  ***
;  ***  with "int 65h" !                                ***
;  ***                                                                ***
;  **********************************************************************
handler9 proc pascal
  pushf
  push bp

PCPCun
de

rg
ro

un
d

You can find
RAIDTRAI.ASM

on the companion CD-ROM



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

251

  push ds
  push bx

  in  al,60h       ; read character
  cmp al,63        ; F5 key
  je  Full_Shoots_j
  cmp al,64        ; F6 key
  je  Full_Lives_J
  cmp al,65        ; F7 key
  je Weapon_new_j  ;
  cmp al,66        ; F8 key
  je Weapon_new_j  ;
  cmp al,67        ; F9 key
  je Weapon_new_j  ;
  cmp al,68        ; F10 key
  je  More_Points_J

End_Keyb:
  pop bx
  pop ds
  pop bp
  popf
  iret

Full_Shoots:
  pushf
  PUSHA
  sub  bx,0    ; since already correct CS
  mov word ptr procedure+2,bx
  mov  bx,1401h    ; es:[bx]  =  14EF:1401
  mov word ptr procedure,bx

  mov ds:byte ptr [0DA3h],20h
  mov ax,20h
  push ax
  call dword ptr [procedure]
  POPA
  popf
  jmp End_Keyb

Full_Lives:
  pushf
  pusha
  sub  bx,0  ;
  mov word ptr procedure+2,bx
  mov  bx,1317h  ; es:[bx]  =  14EF:1317
  mov word ptr procedure,bx
;-----------
  mov ds:byte ptr [0DA3h],0009
  mov ax,9
  push ax
  call dword ptr [procedure]
  popa
  popf
  jmp End_Keyb



252

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

More_Points:
  pushf
  pusha
  sub  bx,0  ;
  mov word ptr procedure+2,bx
  mov  bx,1BD0h  ; es:[bx]  =  14EF:1BD0
  mov word ptr procedure,bx
;-----------
  mov ax,1000
  push ax
  call dword ptr [procedure]
  popa
  popf
  jmp End_Keyb

handler65 endp

The code which now follows serves to install or uninstall the trainer.

insthand proc pascal
reslim label byte

push ds
  pop ds

mov ax,3521h                    ; store old INT 21
  int 21h
  mov w oldint21,bx
  mov w oldint21 + 2,es

mov ax,3565h                    ; store old INT 65h
  int 21h
  mov w oldint65,bx
  mov w oldint65 + 2,es
  mov ax,2521h                    ; bend/deflect INT 21h to custom routine
  lea dx,handler21
  int 21h
  mov ax,2565h                    ; INT 65h to custom keyboard routine
  lea dx,handler65
  int 21h

ret
insthand endp

check_inst proc near
  mov ax,3521h                    ; get interrupt vector
  int 21h
  mov di,bx
  mov si,offset ID
  mov di,si
  mov cx,IDlen
  repe cmpsb                      ; check for ID

ret
check_inst endp

code ends
end

The RAIDERS program has only one data segment and does not use its own keyboard routine. This trainer
is therefore a good introductory trainer.



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

253

The following trainer represents a small "tidbit" because it still
calls the procedure for updating the display of the altered
variable. Then you can see quite clearly, how the handling looks
for those programs which program the keyboard directly.

;            ****************************************************
;            ***                                              ***
;            ***            Trainer for *******               ***
;            ***                                              ***
;            ***   (c) 1995 by ABACUS/1994 by DATA Becker     ***
;            ***                                              ***
;            ***   Author: Boris Bertelsons                   ***
;            ***                                              ***
;            ****************************************************
;
;

.286
  w equ word ptr
  b equ byte ptr
code segment public
public insthand
public handler21
public reslim
public oldint21
public oldint65
public ID
public IDlen
public check_inst

assume cs:code,ds:code
ID: db 'ABACUS'
oldint21: dd 0
oldint65: dd 0
procedure: dd ?
IDlen equ offset oldint21 - offset ID

;  *********************************************************************
;  ***                                                               ***
;  ***  The actual Trainer routines are here                         ***
;  ***                                                               ***
;  *********************************************************************

First, the new procedure checks for interrupt 21h. It checks whether the in al,60h instruction is in the
program and if necessary replaces it.

;  **********************************************************************
;  ***                                                                ***
;  ***  The new INT 21h. The procedure checks whether the             ***
;  ***  "in al,60h" command is in the specified location in memory,   ***
;  ***  and if necessary, replaces it                                 ***
;  ***  with "int 65h" !                                              ***
;  ***                                                                ***
;  **********************************************************************
handler21 proc pascal
  pushf
  push bp
  push ds
  push bx

PCPCun
de

rg
ro

un
d

You can find
TRAINER.ASM

on the companion CD-ROM



254

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

  mov  bp,sp
  mov  bx,[bp+10]  ; cs at time of interrupt to BX, DOS !!!
                   ; IMPORTANT ! In TD [bp+16] !!!
  add  bx,0366h    ; CS of 1st int 21h + 2136h = CS of keyboard routine
  mov  ds,bx       ; cs of keyboard routine to ds
  mov  bx,568Bh    ; 8B56h = mov dx,[bp+06]
  cmp  ds:word ptr [0005h],bx     ; is it in the keyboard routine ?
  jne  not_change
  mov  ds:word ptr [0005h],9090h  ; write in int 65h !
  mov  ds:word ptr [0007h],65CDh  ; write in int 65h !
not_change:
  pop  bx
  pop  ds
  pop  bp
  popf
  jmp dword ptr cs:oldint21       ; call old int 21h
handler21 endp

Now for the actual trainer routines. The handler first determines the code segment at the time the interrupt
is called. Because the code segment for keyboard handling is the same as the procedures for updating the
screen, it can be transferred directly. Otherwise, an adjustment would have to be made using one of the
methods described above. Whenever a variable is to be trained, the pointer to the procedure is first set to
the correct values with the respective screen update. The variable is then called and the screen update
executed. Finally, the procedure jumps into the original handler.

;  *************************************************************************
;  ***                                                                   ***
;  ***  Int 65h procedure. It reads in a character via "in al,60h"       ***
;  ***  and checks whether the read character was defined as the         ***
;  ***  Trainer key. If the answer is yes, the allocated memory          ***
;  ***  changes and procedure calls are executed. Enter your training    ***
;  ***  variables here !!!                                               ***
;  ***                                                                   ***
;  *************************************************************************

handler65 proc far
  pushf
  push bp
  push ds
  push bx
  mov  bp,sp
  mov  bx,[bp+10]  ; cs at time of interrupt to BX
  in  al,60h       ; read character
  cmp al,63        ; F5 key
  je  Full_Shoots_j
  cmp al,64        ; F6 key
  je  Full_Lives_J
  cmp al,65        ; F7 key
  je Weapon_new_j  ;
  cmp al,66        ; F8 key
  je Weapon_new_j  ;
  cmp al,67        ; F9 key
  je Weapon_new_j  ;
  cmp al,68        ; F10 key
  je  More_Points_J

End_Keyb:
  pop bx
  pop ds
  pop bp



Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

255

  popf
  iret

Full_Shoots_j:
  jmp Full_Shoots
Full_Lives_j:
  jmp Full_Lives
More_Points_j:
  jmp More_Points
Weapon_new_j:
  jmp Weapon_new

Full_Shoots:
  pushf
  PUSHA
  sub  bx,0    ; since already correct CS
  mov word ptr procedure+2,bx
  mov  bx,1401h    ; es:[bx]  =  14EF:1401
  mov word ptr procedure,bx
;--------
  mov ds:byte ptr [0DA3h],20h
  mov ax,20h
  push ax
  call dword ptr [procedure]
  POPA
  popf
  jmp End_Keyb

Full_Lives:
  pushf
  pusha
  sub  bx,0  ;
  mov word ptr procedure+2,bx
  mov  bx,1317h  ; es:[bx]  =  14EF:1317
  mov word ptr procedure,bx
;-----------
  mov ds:byte ptr [0DA3h],0009
  mov ax,9
  push ax
  call dword ptr [procedure]
  popa
  popf
  jmp End_Keyb

Weapon_new:
  pushf
  pusha
  sub  bx,0  ;
  mov word ptr procedure+2,bx
  mov  bx,1454h  ; es:[bx]  =  14EF:1454
  mov word ptr procedure,bx
;-----------
  sub al,65
  mov ah,0
  mov ds:byte ptr [0DA2h],al
  push ax
  call dword ptr [procedure]
  popa
  popf
  jmp End_Keyb

More_Points:



256

Protect Your Know-how: Protection Tricks

Chapter 9

PCPC
underground

  pushf
  pusha
  sub  bx,0  ;
  mov word ptr procedure+2,bx
  mov  bx,1BD0h  ; es:[bx]  =  14EF:1BD0
  mov word ptr procedure,bx
;-----------
  mov ax,1000
  push ax
  call dword ptr [procedure]
  popa
  popf
  jmp End_Keyb

handler65 endp

insthand proc pascal
reslim label byte
  push ds
  pop ds
  mov ax,3521h                    ; store old INT 21
  int 21h
  mov w oldint21,bx
  mov w oldint21 + 2,es
  mov ax,3565h                    ; store old INT 65h
  int 21h
  mov w oldint65,bx
  mov w oldint65 + 2,es
  mov ax,2521h                    ; bend/deflect INT 21h to custom routine
  lea dx,handler21
  int 21h
  mov ax,2565h                    ; INT 65h to custom keyboard routine
  lea dx,handler65
  int 21h

ret
insthand endp

check_inst proc near
  mov ax,3521h                    ; get interrupt vector
  int 21h
  mov di,bx
  mov si,offset ID
  mov di,si
  mov cx,IDlen
  repe cmpsb                      ; check for ID

ret
check_inst endp

code ends
end

By working with these two examples, you should be able to write a trainer. However, we also recommend
that you keep practicing with other examples.



10. Memory Management

Most PCs today have at least 4 Meg of memory. However, regardless of the amount of RAM, you can only
access 640K of this memory directly from DOS. In this chapter, we'll show you some ways of using the
memory above this 640K barrier.

First, we'll review a few of the basic structures.

Conventional DOS Memory

Under DOS, conventional memory is the first 640K. As we've discovered, this isn't enough for many
applications. Here we'll show you how to get around the 640K barrier and address up to 4 Gigabytes
(4,000,000,000 bytes) of memory.

Conventional DOS memory has a maximum size of 640K. This memory range is not be addressed as a single
large block. Instead, it's divided into segments of 64K. A segment starts at a paragraph address that is a
physical address divisible by 16. If you want to address a memory location, the computer has to know which
segment to access. The exact address is specified within the segment using an offset. An offset is always one
word long because exactly 64K can be addressed with one word. Specifying an address is as follows:

addr := SEGMENT:OFFSET.

If you program in a high-level language like C or Pascal and you don't need more than the prescribed data
types, you don't need to worry about addressing memory. C or Pascal does this automatically for you.
However, if you get into more advanced system programming, you will need to have an understanding of
the different ways to access memory.

In earlier 286 processors, a PC had four segment registers:

Code segment Specifies the segment in which the current executable code is located.

Data segment Specifies the memory range in which the program data is stored.

Extra segment Specifies a segment for storage and copy operations.

Stack segment Specifies the stack segment.

The 386 and later processors also have FS and GS registers.

257

Memory 
Management

Chapter 10

PCPC
underground



258

Memory Management

Chapter 10

PCPC
underground

There are different ways to access the memory. In Pascal, you can use the MEM command. The following
line is an example of using MEM to copy a byte from memory into a variable:

Result := MEM[Segment:Offset];

For example, if you want to read the 50th pixel of the screen in MCGA mode, then write the following:

Byte_50 := MEM[$A000:0050];

There are several ways to do the same thing in assembler. Probably the most common method (especially
for reading large blocks of data) is to use the LODSB/STOSB/MOVSB instructions or their corresponding
WORD or DWORD equivalents. This method is slightly longer because the data segment is saved so it can
access the program data again.

push ds
mov si,0a0000h
mov ds,si
mov si,50
lodsb
mov byte ptr byte_50,al
pop ds

During execution, you may need additional memory to store data, for example. You can ask DOS to allocate
this additional memory.

To reference this additional memory you use a pointer. A pointer is a data type containing both the segment
and offset to a range of memory. A pointer is normally initialized using the procedure Getmem, but it can
also be built. You can use Freemem  to free the allocated area of memory. The memory used by Pascal is only
accessible to the Pascal program. When a program begins execution, Pascal reserves the minimum amount
of memory indicated. This memory is not available to others until the program has completed execution.

If you do not want to use the memory reserved by Pascal, but you would rather use the conventional DOS
memory, you need to use the 48h and 49h functions of DOS interrupt 21h. Reserve a block of memory with
function 48h and free it with function 49h. It's important to know the blocks are always allocated on
paragraph boundaries so you have to round all sizes up to the
next 16 bytes.

An example of how these routines might look is shown by the
assembler procedures dos_getmem  and dos_freemem .

dos_getmem proc pascal pointer:dword,amount:word
; **************************************************************************
; *** Allocates a (max. 64K) memory area in DOS RAM                      ***
; **************************************************************************
  push ds
  mov bx,amount
  shr bx,4
  inc bx
  mov ah,48h
  int 21h
  mov bx,w [pointer+2]
  mov ds,bx
  mov bx,w [pointer]
  mov w [bx],0
  mov w [bx+2],ax
  pop ds

PCPCun
de

rg
ro

un
d

The following procedures
are part of the 

GUSASM.ASM file
on the companion CD-ROM



Memory Management

Chapter 10

PCPC
underground

259

  ret
dos_getmem endp

dos_freemem proc pascal pointer:dword
; **************************************************************************
; *** Frees up an area allocated by dos_getmem                            ***
; **************************************************************************
  mov ax,word ptr [pointer+2]
  mov es,ax
  mov ah,49h
  int 21h
  ret
dos_freemem endp

EMS: A First Step Towards More Memory

Originally, the memory range for DOS was limited to 640K. Some applications required more memory than
this "640K barrier". The three industry leaders at the time (Lotus, Intel and Microsoft) created a standard
called the "Expanded Memory Specification", or LIM EMS, to go beyond this barrier.

To use EMS, an application must be specifically written to use it (Lotus 1-2-3 Version. 2.x, AutoCAD, etc.)
or the application must run in an environment that supports it, such as DESQview.

EMS is installed in the old XTs and ATs by plugging in an EMS memory board and adding an EMS driver.
In systems using a 386 or above, EMS is simulated by software (EMM) software that turns extended memory
into EMS.

The original LIM EMS consisted of an expansion card that could be inserted into a PC/XT to give the
computer 8 Meg of additional memory. This memory was switched into the conventional memory address
in banks up to 64K in size (four 16K pages) in the Upper Memory Area (640K to 1 Meg area). This memory
was called the EMS frame. The switched banks are divided into four pages of 16K each and they can be
accessed like normal memory.

Access to the pages is controlled by an Expanded Memory Manager (EMM). It converts extended memory
into EMS in computers using the 386es or higher (we'll forego the technical details of the EMM in this book).

EMM Functions

The EMM makes its functions available using interrupt 67h. If an error occurs in one of its functions, EMM
returns an error code listed in the following table:



260

Memory Management

Chapter 10

PCPC
underground

Code Meaning

80h Error in software interface

81h Error in EMS hardware

82h EMM is busy

83h Invalid handle

84h Invalid function number

85h No additional handles available

86h Error when saving or resetting the display between logical and physical pages

87h Too few free pages

88h Invalid number of pages

89h An attempt was made to allocate 0 pages

8Ah Invalid page number

8Bh Invalid physical page number

8Ch Mapping cannot be saved

8Dh Mapping is already saved

8Eh Mapping was not saved

8Fh Wrong subfunction number

Now onto the functions of EMM. The functions we'll describe are through Version 3.0 because later versions
weren't widely distributed.

Function 40h - Read status

Input: AH = 40h

Output: AH = Status of the EMM

If the function returns a value of 0, the EMM is working correctly. Otherwise, the error can be determined
from the status code using the error table.

Function 41h - Determine the segment address of the frame

Input: AH = 41h

Output: AH = Status of the EMM

BX = Segment address of the window

The segment address is only valid if the status code contains the value of 0. Otherwise, an error is indicated
as listed in the table. The segment address is the address where the frame is to be found in the main memory.



Memory Management

Chapter 10

PCPC
underground

261

Function 42h - Determine the number of EMS pages

Input: AH = 42h

Output: AH = status of the EMM

BX = number of free EMS pages

DX = total number of EMS pages

An EMS page is 16K in length. The amount of free EMS memory can be calculated by multiplying 16 x 1024.
The values are only valid if the status code has the value of 0.

Function 43h - Allocate the EMS memory

Input: AH = 43h

BX = number of 16K pages to reserve

Output: AH = status of the EMM

DX = handle number

DX = total number of EMS pages

The allocated pages are addressed using the returned handle. It's only valid if the status code has the value
of 0. Make certain not to lose the handle and to free all the allocated pages at the end of the program. A
maximum of 512 pages can be allocated.

Function 44h - Set mapping

Input: AH = 44h

AL = number of the page in the EMS frame

BX = number of the page in the reserved block

DX = handle of the reserved block

Output: AH = status of the EMM

The page number in an EMS frame can have a value between 0 and 3. The page number in the reserved block
is relative to the start of the reserved block (e.g., the sixth page of the handle 1Ch). The indicated range is
immediately merged into the DOS EMS frame. If the status code has a value of 0, the function is working
correctly.

Function 45h - Free pages

Input: AH = 45h

DX = handle

Output: AH = status of the EMM



262

Memory Management

Chapter 10

PCPC
underground

This function frees the reserved EMS pages. All the pages of the handle are deallocated. It's very important
you call this function at the end of the program for all the handles you have allocated. Otherwise, other
programs cannot access the allocated EMS memory. A status code of 0 shows there were no errors in
execution.

Function 46h - Determine EMS version

Input: AH = 46h

Output: AH = status of the EMM

AL = version number

The version number is stored in BCD-format. The main version number is located in the upper four bits.
The minor version is located in the lower four bits. There is an error if the status code is not 0.

Function 47h - Save mapping

Input: AH = 47h

DX = Handle

Output: AH = Status of the EMM

The allocation of the mapping within the EMM is saved as a setting with this function. The function is
working error-free if the status code equals 0.

Function 48h - Deprotect mapping

Input: AH = 48h

DX = handle number

Output: AH = status of the EMM

With this function, an allocation made using the function 47h can be unprotected. There is an error if the
status code does not equal 0.

Function 4Bh - Determine handle number

Input: AH = 4Bh

Output: AH = status of the EMM

BX = number of handles currently allocated

This function determines the number of handles currently allocated by the EMM. A status code other than
0 indicates an error.



Memory Management

Chapter 10

PCPC
underground

263

Function 4Ch - Determine allocated pages

Input: AH = 4C

DX = handle number

Output: AH = status of the EMM

BX = number of allocated pages

With this function you can determine how many 16K pages of EMS memory are allocated by the given
handle.

Function 4Dh - Determine allocated handles

Input: AH = 4Dh

ES = segment of the address of the data structure

DI = offset of the address the data structure

Output: AH = status of the EMM

BX = number of pages allocated all together

This function loads the numbers of all active handles and the number of all allocated pages into a data
structure. The structure has the length "number of handles * 4". The entries in the table each consist of two
words. The number of handles is stored in the first word and the number of pages is stored in the second
word.

Using EMS

Now we can see how to use EMS. First, we need to make certain EMS is installed. This can be done by
checking the label of the interrupt 67h. An EMS driver is installed if the string 'EMMXXXX' appears in the
label. Next we can check the version number. Determining the
version number is especially important if you want to use
certain functions that have not been implemented in Version
3.0, for example. The following is an example of an initialization
procedure:

procedure Check_for_EMS;
var emsseg : word;
    emsptr : pointer;
    emshead : EMS_Header;
begin;
  asm
    mov ax,3567h
    int 21h
    mov emsseg,es
  end;
  move(ptr(emsseg,0)^,emshead,17);
  if emshead.ID = ‘EMMXXXX’ then begin;
    EMS_Available := true;
    asm
      mov ah,40h                 { get EMS driver status }

PCPCun
de

rg
ro

un
d

The following functions are
part of the

MEMORY.PAS file
on the companion CD-ROM



264

Memory Management

Chapter 10

PCPC
underground

      int 67h
      cmp ah,0
      jne @EMS_Vers_Error
      mov ah,46h                 { get EMS version }
      int 67h
      cmp ah,0
      jne @EMS_Vers_Error
      mov bl,al
      shr al,4
      mov bh,al   { bh = Vers.maj }
      or  bl,0Fh  { bl = Vers.min }
      mov EMS_Version,bx
      jmp @EMS_Vers_End
@EMS_Vers_Error:
      mov EMS_Available,1
@EMS_Vers_End:
    end;
  end else begin;
    EMS_Available := false;
  end;
end;

Next, determine the address where the EMS frame is inserted into the main memory. This is important
because all memory accesses refer to this address. Use function 41h of EMM to do this:

Function EMS_Segment_determine(VAR Segment : word) : byte;
VAR hseg : word;
    fresult : byte;
begin;
  asm
    mov ah,41h
    int 67h
    cmp ah,0
    jne @EMS_Segdet_Error
    mov hseg,bx
    mov fresult,0
    jmp @EMS_Segdet_End
@EMS_Segdet_Error:
    mov fresult,ah
@EMS_Segdet_End:
  end;
  Segment := hseg;
  EMS_Segment_determine := fresult;
end;

To see how much memory is available, use the function to determine the number of EMS pages. Function
42h provides the total number of pages available and the number of pages still free (which is the one we're
interested in). In this function, this value is stored in the global variable  EMS_Pages_Free . This function
is an auxiliary function for EMS_Free.

Function EMS_Get_PageNumber : byte;
var fresult : byte;
begin;
  asm
    mov ah,42h
    int 67h
    cmp ah,0
    jne @EMS_GetPages_Error
    mov EMS_Pages_Free,bx
    mov EMS_Pages_Tot,dx



Memory Management

Chapter 10

PCPC
underground

265

    mov fresult,0
    jmp @EMS_GetPages_End
@EMS_GetPages_Error:
    mov fresult,ah
@EMS_GetPages_End:
  end;
  EMS_Get_PageNumber := fresult;
end;

If your program needs the value for the amount of available EMS memory, use function EMS_free . It
returns the number of bytes that are available in EMS and uses the auxiliary function EMS_Get_PageNumber
to do so.

function EMS_free  : longint;
var    help : longint;
begin;
  EMS_Get_PageNumber;
  help := EMS_Pages_Free;
  EMS_free := help SHL 14;
end;

To allocate EMS memory from within your program, you can program the EMM directly. However, it is
easier to allocate memory using the function Getmem_EMS. This function's first parameter is the target
handle under which the block is to be accessible. The second parameter is the size (in bytes) of the block to
be allocated. The function converts your request into the appropriate number of pages and allocates the
memory using function 43h.

Function Getmem_EMS(VAR H : EMSHandle; Size : longint) : byte;
var Fresult : byte;
    EPages : word;
    Hhandle : word;
begin;
  EPages := (Size DIV 16384) + 1;
  asm
    mov ah,43h
    mov bx,EPages
    int 67h
    cmp ah,0
    jne @Getmem_Ems_Error
    mov Hhandle,dx
    mov fresult,0
    jmp @Getmem_Ems_End
@Getmem_Ems_Error:
    mov Fresult,ah
@Getmem_Ems_End:
  end;
  H := Hhandle;
  Getmem_EMS := Fresult;
end;

To free the allocated EMS memory later (something you should always do at the end of the program) use
function Freemem_EMS. Using the EMM function 45h, the function Freemem_EMS frees up the memory
block which was managed using the provided handle.



266

Memory Management

Chapter 10

PCPC
underground

Function Freemem_EMS(H : EMSHandle) : byte;
var Fresult : byte;
begin;
  asm
    mov ah,45h
    mov dx,H
    int 67h
    mov Fresult,ah
  end;
  Freemem_EMS := Fresult;
end;

The function EMS_Allocation  is very important. Use it to determine which pages from the EMS will be
displayed in the EMS frame. For the first parameter, provide the function with the handle by which the page
block in EMS is addressed. Next, inform the function as to which of the pages are to be allocated in the EMS
frame (0 to 3). The number of the page in EMS should be provided as the last parameter.

Function EMS_Allocation(H : EMSHandle;PagePage,EMSPage : word) : byte;
VAR Fresult : byte;
begin;
  asm
    mov ah,44h
    mov al,byte ptr PagePage
    mov bx,EMSPage
    mov dx,H
    int 67h
    mov Fresult,ah
  end;
  EMS_Allocation := Fresult;
end;

To protect the memory allocated in EMS for a particular handle, use function EMS_Protect_Allocation .
A protected page of EMS memory cannot be changed until it has been first unprotected.

Function EMS_Protect_Allocation(H : EMSHandle) : byte;
VAR Fresult : byte;
begin;
  asm
    mov ah,47h
    mov dx,H
    int 67h
    mov Fresult,ah
  end;
  EMS_Protect_Allocation := Fresult;
end;

Use EMS_Unprotect_Allocation  to remove the protection on a previously protected EMS page. This
function uses the EMM function 48h. Protected memory must be unprotected before it can be changed.

Function EMS_Unprotect_Allocation(H : EMSHandle) : byte;
VAR Fresult : byte;
begin;
  asm
    mov ah,48h
    mov dx,H
    int 67h
    mov Fresult,ah
  end;
  EMS_Unprotect_Allocation := Fresult;
end;



Memory Management

Chapter 10

PCPC
underground

267

Function RAM_2_EMS provides an example of how you can swap out the data to EMS. Use it to copy a block
from DOS RAM to EMS. Use this function as an example for your own routines or try it out directly. If time
is a very important factor, you should formulate the routine for each application because the method we
show here only serves to swap out the data, and not to directly access the pages.

Function RAM_2_EMS(q : pointer; H : EMSHandle; Size : longint) : byte;
VAR fresult : byte;
    EMSseg    : word;
    hp        : ^byte;
    li        : word;
begin;
  EMS_Segment_determine(EMSseg);
  hp := q;
  if Size > 16384 then begin;
    { More than one page required }
    for li := 0 to (Size SHR 14)-1 do begin;
      EMS_Allocation(H,0,li);
      move(hp^,ptr(EMSseg,0)^,16384);
      dec(Size,16384);
      inc(hp,16384);
    end;
    EMS_Allocation(H,0,li+1);
    move(hp^,ptr(EMSseg,0)^,16384);
    dec(Size,16384);
    inc(hp,16384);
  end else begin;
    EMS_Allocation(H,0,0);
    move(hp^,ptr(EMSseg,0)^,16384);
    dec(Size,16384);
    inc(hp,16384);
  end;
end;

Copy a block from the EMS memory back into the DOS RAM using the function EMS_2_RAM.

Function EMS_2_RAM(q : pointer; H : EMSHandle; Size : longint) : byte;
VAR fresult : byte;
    EMSseg    : word;
    hp        : ^byte;
    li        : word;
begin;
  EMS_Segment_determine(EMSseg);
  hp := q;
  if Size > 16384 then begin;
    { More than one page required }
    for li := 0 to (Size SHR 14)-1 do begin;
      EMS_Allocation(H,0,li);
      move(ptr(EMSseg,0)^,hp^,16384);
      dec(Size,16384);
      inc(hp,16384);
    end;
    EMS_Allocation(H,0,li+1);
    move(ptr(EMSseg,0)^,hp^,16384);
    dec(Size,16384);
    inc(hp,16384);
  end else begin;
    EMS_Allocation(H,0,0);
    move(ptr(EMSseg,0)^,hp^,16384);
    dec(Size,16384);
    inc(hp,16384);



268

Memory Management

Chapter 10

PCPC
underground

  end;
end;

In your program, use function 4Ch of the EMM if you need to know how many EMS pages are allocated
by a particular handle. The first parameter you provide to the function EMS_Pages_allocated  is the
number of the handle to be analyzed. The second parameter is the variable in which the number of pages
is to be stored.

Function EMS_Pages_allocated(H : EMSHandle;var Pages : word) : byte;
var fresult : byte;
    Hs : word;
begin;
  asm
    mov ah,4Ch
    mov dx,H
    int 67h
    mov HS,bx
    mov fresult,ah
  end;
  Pages := Hs;
  EMS_Pages_allocated := Fresult;
end;

One last function is used to determine the allocated EMS handle. Unfortunately, you can't access as many
EMS handles as you might want; the number is usually limited to 32. This is also the reason why you should
make sure you always reserve blocks that are as large as possible and which can be addressed using a
handle.

Function EMS_Handles_assign(Var Number : word) : byte;
Var Fresult : byte;
    Han       : word;
begin;
  asm
    mov ah,4Bh
    int 67h
    mov Han,bx
    mov Fresult,ah
  end;
  Number := Han;
  EMS_Handles_assign := Fresult;
end;

XMS: Thanks For The Memory

The XMS standard (Extended Memory Specification) was developed by Microsoft, Lotus, Intel and AST
Research. Unlike the EMS standard, XMS is not based on a hardware expansion card.

The XMS standard provides several functions which reserve, release and transfer data to and from extended
memory without conflict (including the HMA or high memory area). These functions are made available
by an XMS driver which uses interrupt 2Fh. The most commonly used XMS driver is HIMEM.SYS which
is loaded through the CONFIG.SYS file. The HIMEM.SYS driver is included with both DOS and Windows.



Memory Management

Chapter 10

PCPC
underground

269

XMS Error codes

The functions of the driver are addressed as a far call rather than by an interrupt. To determine the address
of the XMS driver, you must first test whether an XMS driver has been installed by calling interrupt 2Fh with
the value 4300h in the AX register. A driver is installed if the value 80h is returned in the AL register. In this
case, the interrupt must be called again using the value 4310h in the AX register. The segment address of
the driver is returned in the ES register and the offset address of the XMM in the BX register.

Once you have determined the address of the XMM (Extended Memory Manager), you can call its functions
with a far-call. If the function was able to finish successfully, it usually returns the status code 0001h in AX.
If an error occurred during execution, AX will contain the value 0000h. In this case the BL register will
contain an error code. The following table defines the error codes:

Code Meaning Code Meaning

80h Function is not known A4h Source offset is invalid

81h VDISK ramdisk found A5h Target handle is invalid

82h Error on the A20 address line A6h target offset is invalid

8Eh General driver error A7h Invalid length for move function

8Fh Irreparable error A8h Inadmissible overlap at move function

90h HMA not available A9h Parity error

91h HMA already filled AAh UMeg not blocked

92h The amount of memory indicated in DX is
too small

ABh UMeg still blocked

93h HMA not allocated ACh Overrun of the UMeg blocking counter

94h A20 address line is still on ADh UMeg cannot be blocked

A0h No more XMS available B0h Smaller UMeg available

A1h All XMS handles are allocated B1h No more UMeg available

A2h Handle is invalid B2h Invalid UMeg segment address

A3h Source handle is invalid

XMS Functions

The function number of the XMS functions is always passed in the AH register. In this section we'll provide
basic information on the XMM functions. A comprehensive list of all XMS functions is found in PC Intern
(5th edition) from Abacus.



270

Memory Management

Chapter 10

PCPC
underground

Function 00h - Determine version number

Input AH = 00h

Output AX = XMS version number

BX = internal revision number

DX = status of the HMA

BX = number of pages allocated all together

Use this function to determine the version number of the driver. Make certain the driver you're working
with is at least Version 2.0. If the value 1 is found in the HMA status, the HMA is accessible; otherwise no
access to it is possible.

Function 03h - Globally activate A20

Input AH = 03h

Output AX = error code

If you want HMA to be used reliably in read mode as well, this function must be called before or after the
request to the HMA. Remember to close the A20 address line again before the program ends to avoid
segment overruns with subsequent programs.

Function 04h - Globally close A20

Input: AH = 04h

Output: AX = error code

You close the A20 address bus again with this function.

Function 05h - Locally activate A20

Input: AH = 05h

Output: AX = error code

Use this function to activate the A20 address line locally. This means it will only be activated if the function
has not already been called. This test is performed using a call counter, which is incremented using function
05h and is decremented using function 06h.

Function 06h - Locally disable A20

Input: AH = 06h

Output: AX = error code

The counterpart to function 05h disables the A20 address line locally.



Memory Management

Chapter 10

PCPC
underground

271

Function 07h - Query the status of A20

Input: AH = 07h

Output: AX = status of the address bus

Returns the value 0001h in the AX register if A20 address line is available; otherwise, it returns the value
0000h.

Function 08h - Determine free XMS

Input: AH = 08h

Output: AX = length of the largest free block

DX = total size of the XMS inK

Use this function to determine the amount of free XMS memory. Note the value that is returned is always
64K too large. This is due to the 64K size of the HMA which is also counted.

Function 09h - Allocate Extended Memory Block

Input: AH = 09h

DX = size of the block in K

Output: AX = error code

DX = handle for further access to the EMB

This function reserves an Extended Memory Block (EMB) in the XMS memory block. The allocation is only
successful if a sufficiently large block is still free in the XMS. The allocated block can be addressed using the
handle which is returned. Remember to free all allocated memory before ending the program. Otherwise,
it won't be available for subsequent programs.

Function 0Ah - Free Extended Memory Block

Input: AH = 0Ah

DX = handle

Output: AX = error code

Use this function to free an allocated XMS. After this function is invoked, the handle becomes invalid. The
data is deleted.



272

Memory Management

Chapter 10

PCPC
underground

Function 0Bh - copy memory

Input: AH = 0Bh

DS = segment of the copy structure

SI = offset of the copy structure

Output: AX = error code

Use this function to copy memory into, out of, or within the XMS. The following structure specifies the area
involved in this operation:

Offset Function Data Type

00h Length of the block 1 Dword to be copied

04h Handle of the source block 1 Word

06h Offset in the source block 1 Dword the copying starts from here

0Ah Handle of the target block 1 Word

0Ch Offset in the target block 1 Dword the copying starts from here

If there is an overlap between the areas, the source must be located before the target region; otherwise, there
is no guarantee that it will work. For a faster copy, the areas should begin at an address which is divisible
by 4.

Function 0Ch - Protect EMB against being moved

Input: AH = 0Ch

DX = handle

Output: AX = error code

DX: BX = The linear 32-bit address of the EMB in memory

If necessary, the XMM will move some blocks of memory so there aren't any holes in the XMS. Use this
function to protect a block against being moved. This can be important if you need to access the memory
directly. The result is the linear address under which you can access the memory in DX:BX.

Function 0Dh - Deprotect blocked EMB

Input: AH = 0Dh

DX = handle

Output: AC = error code

Use this function to unprotect the block that was protected with the function 0Ch.



Memory Management

Chapter 10

PCPC
underground

273

Function 0Eh - Fetch information about EMB

Input: AH = 0Eh

DX = handle

Output: AX = error code

DX = length of the EMB

These functions allow you to fetch information about a block of memory and to determine the number of
XMS handles that are still free. If there were no errors, AX will contain the value 0001h. In that case, BH will
contain the block counter of the EMB. The blocking counter is incremented each time the function 0Ch is
called and it is decremented each time the function 0Dh is invoked. Therefore, if the value of BH is greater
than 0, you have to call the function 0Dh BH-times to unprotect the block. BL contains the number of free
EMB handles.

Make certain to allocate memory blocks that are as large as possible since the number of XMS handles is
limited. An error occurred if AX contains the value 0000h. The cause of the error can then be determined
using the error table. When the function has successfully completed, DX contains the size of the EMB in K.

Function 0Fh - Change EMB size

Input: AH = 0Fh

BX = new size in K

DX = handle

Output: AX = error code

You can use this function to change the size of an EMB later, if necessary. The block should not be protected
if you want to change its size. If you reduce the size of the block, the data are irretrievably lost.

Now that you know the most important functions of the XMM, we'll turn to their practical application. We'll
develop routines that you can use to allocate and deallocate XMS memory and to copy data into the memory
or to fetch it from memory.

Let's start with a function with which you can verify whether XMS is installed. The procedure checks first
to see whether the XMM is present and then determines the
entry point of the driver if necessary. Then it checks to see
whether the driver is out-of-date (having a version number
smaller than 2.0). An appropriate value is then assigned to the
variable XMS_Available .

Procedure Check_for_XMS; assembler;
  asm
    mov ax,4300h              { Check whether driver installed }
    int 2Fh
    cmp al,80h
    jne @No_XMSDriver
    mov ax,4310h              { Get entry point address of driver }
    int 2Fh
    mov word ptr XMST + 2,es

PCPCun
de

rg
ro

un
d

The procedures/functions
on pages 273-276 are from

MEMTEST.PAS or RMEM.PAS
on the companion CD-ROM



274

Memory Management

Chapter 10

PCPC
underground

    mov word ptr XMST + 0,bx
    xor ax,ax                 { Get version number }
    call dword ptr [XMST]
    cmp  ax,0200h
    jb   @No_XMSDriver        { If version < 2.0 then cancel ! }
    mov  XMS_Version,ax
    mov  XMS_Available,0
@No_XMSDriver:
    mov XMS_Available,1
@End_XMS_Check:
end;

Before you start using XMS memory, you should check to see how much memory is available. Use the
function XMS_free  for this purpose.

function XMS_free  : longint;
var xms_in_kb : word;
    xms_long: longint;
begin;
  asm
    mov ax,0800h                 { 8 = Get free memory }
    call dword ptr [XMST]
    mov xms_in_kb,dx
  end;
  xms_long := xms_in_kb;
  XMS_free := xms_long * 1024;
end;

You can allocate the memory once you know how much is available by using the function Getmem_XMS.
It's similar to the Pascal function Getmem. The first parameter you pass to it is the variable in which the
handle for accessing the allocated memory should be stored. The second parameter is the size of the block
to be reserved in bytes.

Function Getmem_XMS(VAR H : XMSHandle; Size : longint) : byte;
var bsize : word;
    Fresult : byte;
    xmsh : word;
begin;
  bsize := (size DIV 1024) + 1;
  asm
    mov ax,0900h                 { 9 = Allocate memory area }
    mov dx,bsize
    call dword ptr [XMST]
    cmp ax,1
    jne @Error_GetmemXms
    mov xmsh,dx
    mov Fresult,0
    jmp @End_GetmemXms
@Error_GetmemXMS:
    mov Fresult,bl
@End_GetmemXms:
  end;
  h := xmsh;
  Getmem_Xms := Fresult;
end;

Use the function Freemem_XMS to free all allocated XMS memory again at the end of the program. The only
parameter the function needs is the number of the handle of the EMB.



Memory Management

Chapter 10

PCPC
underground

275

Function Freemem_XMS(H : XMSHandle) : byte;
var fresult : byte;
begin;
  asm                            { A = deallocate memory area }
    mov ax,0a00h
    mov dx,h
    call dword ptr [XMST]
    cmp ax,1
    jne @Error_FreememXms
    mov Fresult,0
    jmp @End_FreememXms
@Error_FreememXms:
    mov Fresult,bl
@End_FreememXms:
  end;
end;

The allocated memory is no use to us if we cannot copy data into it or from it. Function Ram_2_XMS copies
data from RAM to the XMS. The function XMS_2_Ram  copies data from the XMS to RAM. Note that you
must allocate the XMS memory first using function Getmem_XMS before you can copy data into the
memory.

Function RAM_2_XMS(q : pointer; h : XMSHandle; Size : Word) : byte;
VAR fresult : byte;
begin;
  XC.Size     := Size;
  XC.Q_Handle := 0;              { 0 = RAM }
  XC.Q_Offset := q;
  XC.Z_Handle := h;
  XC.Z_Offset := nil;
  asm
    mov si,offset XC
    mov ax,0B00h
    call dword ptr [XMST]
    cmp ax,1
    jne @Error_RAM2XMS
    mov fresult,0
    jmp @End_Ram2XMS
@Error_Ram2XMS:
    mov fresult,bl
@End_Ram2XMS:
  end;
end;

Function XMS_2_Ram(d : pointer; h : XMSHandle; Size : Word) : byte;
VAR fresult : byte;
begin;
  XC.Size     := Size;
  XC.Q_Handle := h;
  XC.Q_Offset := nil;
  XC.Z_Handle := 0;              { 0 = RAM }
  XC.Z_Offset := d;
  asm
    mov si,offset XC
    mov ax,0B00h
    call dword ptr [XMST]
    cmp ax,1
    jne @Error_XMS2RAM
    mov fresult,0
    jmp @End_XMS2Ram



276

Memory Management

Chapter 10

PCPC
underground

@Error_XMS2Ram:
    mov fresult,bl
@End_XMS2Ram:
  end;
end;

The last function is XMS_2_XMS. It lets you copy data within the XMS. This can be useful, for example, if
you load a picture from the disk and then you want to duplicate it. The function requires for the first
parameter the handle of the source block, and for the second parameter the handle of the target block. You
enter the size in bytes for the last parameter.

Function XMS_2_Ram(d : pointer; h : XMSHandle; Size : Word) : byte;
VAR fresult : byte;
begin;
  XC.Size     := Size;
  XC.Q_Handle := h;
  XC.Q_Offset := nil;
  XC.Z_Handle := 0;              { 0 = RAM }
  XC.Z_Offset := d;
  asm
    mov si,offset XC
    mov ax,0B00h
    call dword ptr [XMST]
    cmp ax,1
    jne @Error_XMS2RAM
    mov fresult,0
    jmp @End_XMS2Ram
@Error_XMS2Ram:
    mov fresult,bl
@End_XMS2Ram:
  end;
end;

The Flat Memory Model: The Solution To Your Memory Problems

In many case, using XMS is an acceptable solution to the memory problem. However, it has a slight
disadvantage: You can't access the XMS directly. Instead, you always have to copy block-by-block into or
from the XMS which can require a lot of time.

So, if you need to directly access the memory, or if speed is important, you will have to use the flat model.
The flat model makes it possible to linearly access the entire memory of the PC, and it is also supported by
the new Borland Pascal 8.0.

The idea for the flat model is based on following technique: The processor, which must be at least a 386, is
switched into Protected Mode. There the segment limits for the FS and GS registers are adjusted to 4
Gigabyte (Gbyte). Then we switch the processor back to Real Mode without resetting it. That way we have,
at least in theory, up to 4 Gbyte available.

The technical background for the flat model

So how does this all work? First, we need to talk about memory management in protected mode. The
memory in protected mode is not addressed directly, instead uses selectors. Selectors are pointers to a
descriptor. All the information about a given segment is stored in a descriptor: Size, physical address and



Memory Management

Chapter 10

PCPC
underground

277

access permissions. The size of a segment is set by default at 0FFFFh when the computer is switched on.
These are the "magic" 65,536 bytes which normally is the most you can address under DOS. You won't face
this limit in protected mode. You can address a maximum of 4 Gbyte of memory. You simply need to modify
the descriptor for the particular segment appropriately. This modification is controlled by the Global
Descriptor Table (GDT). It contains the segment information.

So, if you want to switch to the flat model, first you have to construct a GDT. In principle, the GDT can be
considered to be an array of descriptors. The following table shows how a descriptor is created:

Number of Bits Meaning

16 bits Length of the segment

24 bits Physical address

8 bits Access permissions

16 bits Additional bits for segment length

For our purposes, the GDT must contain a null segment at first (all values are = 0). Next comes the modified
segment for the access of up to 4 Gbyte. The lower 16 bits are set to 0FFFFh, and the last 16 bits for the segment
length receive the value 0FFCFh. We set the physical address to 0. That's how the segment at the top of the
memory starts. The access permissions are allocated using a value of 92h with highest priority for a data
segment.

After we have finished constructing a GDT, we only need to load it using the command lgdt. After we have
masked out the interrupts using cli so we don't get any interference, we can switch to Protected Mode. In
Protected Mode, the first thing to do is to delete the execution pipe of the processor using a jump. That's
important because otherwise the machine will crash, since it still has commands in the prefetch queue. Now
adjust the segments to 4 Gbyte by assigning the appropriate
selector to the segment registers. After you have taken care of
that, you can switch back to Real Mode without resetting the
processor. Here, too, a jump must occur directly after switching
over. Don't forget to activate the interrupts again at the end.

How the flat model is programmed

This an assembler procedure for initializing the flat model. The GDT is declared externally:

;*************************************************************************
;***                                                                   ***
;***            Switches the processor to Flat - Model                 ***
;***                                                                   ***
;*************************************************************************
Enable_4Giga proc pascal

mov GDT_Off[0],16
mov eax,seg GDT
shl eax,4
mov bx,offset GDT
movzx ebx,bx
add eax,ebx
mov dword ptr GDT_Off[2],eax
lgdt pword ptr GDT_Off         ; load GDT

PCPCun
de

rg
ro

un
d

The procedures on pages
277-279 are from
RMEMASM.ASM

on the companion CD-ROM



278

Memory Management

Chapter 10

PCPC
underground

mov bx,08h                     ;  bx points to 1st entry of GDT
push ds
cli                            ; disable interrupts
mov eax,cr0                    ; switch to Protected mode
or eax,1
mov cr0,eax
jmp To_Protectedmode       ; clear execution pipe
To_Protectedmode:
mov gs,bx                      ; adapt segments to 4 gigabytes
mov fs,bx
mov es,bx
mov ds,bx
and al,0FEh                    ; switch back to Real mode, without
mov cr0,eax                    ; resetting the processor
jmp To_Realmode            ; clear execution pipe
To_Realmode:
sti                            ; enable interrupts again
pop ds

  ret
Enable_4Giga endp

END

Next, we need a procedure to access the memory. Unfortunately, the RMEM (real memory) can't be
addressed using the lodsb/stosb/movsb instructions. Instead, the RMEM must be addressed using its
physical address. To do that, we store each desired address in a Longint variable which we can then use to
address the memory. An access might look like this:

mov ebx, variable position
mov al, gs: [ebx]

Before you access the memory, you still need to make sure that the 20th address bit is cleared. Normally this
causes things to be switched back to the beginning of the memory. If you are accessing the expanded
memory using an XMS driver, for example, the driver itself takes care of the matter.

However, we must clear the bit. Direct programming here would involve a lot of effort since you have to
use the keyboard controller. However, we can simply use the functions provided by the HIMEM driver
since we're using it anyway.

Procedure mem_Write  is one example of how to access RMEM. By using mem_Write , you copy a block
from the main memory into the RMEM. The first parameter it requires is the target in RMEM. For the second
parameter, you indicate the offset of the pointer to the source region in main memory, followed by the
segment of the pointer. The last parameter represents the length of the block to be copied.

;*************************************************************************
;***                                                                   ***
;***       Copies a block from RAM to RMEM                             ***
;***                                                                   ***
;*************************************************************************

mem_Write proc pascal sourcep:dword, destinationofs:word, destinationseg:word, length1:word
         call xms_Enable_A20
         mov  ax,destinationseg           ; RAM-addy to ES:SI
         mov  es,ax
         mov  di,destinationofs
         xor  ax,ax                ; RMEM source address to GS:EAX
         mov  gs,ax



Memory Management

Chapter 10

PCPC
underground

279

         mov  eax,sourcep
         mov  cx,length1
nloop:
         mov  bl,es:[di]           ; copy bytes
         mov  byte ptr gs:[eax],bl
         inc  eax
         inc  di
         loop nloop
         ret
mem_Write endp

Procedure mem_read is the opposite of mem_Write . Use it to read a block from the RMEM back into RAM.
The first parameter you provide it is the source position in the RMEM; the second is the offset and then the
segment of the pointer to the target region in RAM. The last parameter indicates the length to be copied in
bytes. You can even indicate the video RAM of the VGA card for the target region.

;*************************************************************************
;***                                                                   ***
;***      Copies a block from RMEM to RAM                              ***
;***                                                                   ***
;*************************************************************************
mem_read proc pascal sourcep:dword,destinationofs : word,destinationseg : word,length1:word
         call xms_Enable_A20
         mov  ax,destinationseg           ; RAM-addy to ES:SI
         mov  es,ax
         mov  di,destinationofs
         xor  ax,ax                ; RMEM source address to GS:EAX
         mov  gs,ax
         mov  eax,sourcep
         mov  cx,length1
lloop:   mov  bl,byte ptr gs:[eax] ; copy bytes
         mov  es:[di],bl
         inc  eax
         inc  di
         loop lloop
         ret
mem_read endp

It's somewhat time-consuming to try to call the inline assembler
in Pascal every time. Furthermore, we're only dealing with
pure copy procedures without any regional testing. So, now
we'll introduce two small Pascal procedures which make
accessing the RMEM very easy:

procedure Rmem_read(source:longint; destination:pointer;length:word);
{
 *************************************************************************
 ***                                                                   ***
 ***      Copies a block from RMEM to RAM                              ***
 ***                                                                   ***
 *************************************************************************
}
begin
 if source + length < Rmem_Max then begin
   Segm:=seg(destination^);
   Offs:=ofs(destination^);
   inc(Segm,Offs div 16);
   Offs:=Offs mod 16;
   inc(source,Mbyte1);

PCPCun
de

rg
ro

un
d

The procedures on pages
279-282 are from

RMEM.PAS
on the companion CD-ROM



280

Memory Management

Chapter 10

PCPC
underground

   mem_read(source,Offs,Segm,length);
  end else begin;
    asm mov ax,0003; int 10h; end;
    writeln('Error reading back XMS Realmemory !');
    writeln('System halted');
    halt(0);
  end;
end;

procedure Rmem_write(source:pointer;destination:longint;length:word);
{
 *************************************************************************
 ***                                                                   ***
 ***       Copies a block from RAM to RMEM                             ***
 ***                                                                   ***
 *************************************************************************
}
begin
 if destination+length < Rmem_Max then begin
   Segm := seg(source^);
   Offs := ofs(source^);
   inc(Segm,Offs div 16);
   Offs := Offs mod 16;
   inc(destination,MByte1);
   mem_write(destination, Offs,Segm,length);
  end else begin;
    asm mov ax,0003; int 10h; end;
    writeln('XMS allocation error ! Not enough memory ?');
    writeln('System halted');
    halt(0);
  end;

Before you apply the RMEM procedures, you have to verify every time whether the appropriate memory is
even available. The worst scenario for the unit is one where a memory manager like EMM386, QEMM or
something similar is already installed. The unit isn't compatible with these memory managers because they
work based on a similar principle. Function Multitasker_active  lets you easily determine whether one
of these programs is active.

public Multitasker_active

;*************************************************************************
;***                                                                   ***
;***   Checks whether a multitasker like QEMM or EMM386 is active      ***
;***                                                                   ***
;*************************************************************************
Multitasker_active proc pascal
   mov eax,cr0
   and ax,1
   ret
Multitasker_active endp

You can verify whether sufficient memory is available using the procedure Memory_Checks . It uses the
HIMEM driver to examine any free main memory available and the XMS memory.

procedure memory_checks(minmain,minxms : word);
{
 *************************************************************************
 ***                                                                   ***
 ***         Checks whether enough memory is available                 ***



Memory Management

Chapter 10

PCPC
underground

281

 ***                                                                   ***
 *************************************************************************
}
var xmsfree,mainfree : word;
begin;
  { Get Free XMS - memory }
  xmsfree := xms_free;
  { Get Main Memory }
  mainfree := memavail div 1024;
  { Message, if not enough free memory }
  if (xmsfree < minxms) or (mainfree < minmain) then begin;
    asm mov ax,0003; int 10h; end;
    writeln('Sorry, not enough memory available !');
    writeln('           You need       Available');
    writeln('XMS :     ',minxms :6,' KB         ',xmsfree:4,' KB');
    writeln('Main:     ',minmain:6,' KB         ',mainfree:4,' KB');
    halt(0);
  end;
end;

You should set up your own management unit for managing the RMEM. Our solution here is only valid
if you know exactly what you're doing with the memory. That will likely be the case if you are writing code
for a demo, but if you should make the RMEM handling available to other, perhaps less-experienced users,
you should consider using Freemem and sort  routines.

function Rgetmem(Var rpos : longint;rsize : longint) : boolean;
{
 *************************************************************************
 ***                                                                   ***
 ***        A simplified Getmem-Procedure for RMEM                     ***
 ***                                                                   ***
 *************************************************************************
}
begin;
  if Rmemposi+rsize > Rmem_max then begin;
    Rgetmem := false;
  end else begin;
    rpos := Rmemposi;
    inc(Rmemposi,rsize);
    Rgetmem := true;
  end;
end;

Finally, we would like to give you two other procedures that you can use to switch your system into RMEM
mode and back again without problems from within Pascal. You merely have to provide the procedure
enable_Realmem  with the desired RMEM memory in K; the procedure takes care of the rest for you. It tests
to see whether a HIMEM driver is installed, whether the requested memory is available and whether a
multitasking program is active. Then it allocates the needed memory and switches into RMEM mode.

procedure enable_Realmem(Min : word);
{
 *************************************************************************
 ***                                                                   ***
 ***               Switches to RMEM - Mode                             ***
 ***    There must be "MIN" KB free XMS-Memory available !             ***
 ***                                                                   ***
 *************************************************************************
}
begin



282

Memory Management

Chapter 10

PCPC
underground

 { Check for Multitasker ... }
 if multitasker_active then begin;
   asm mov ax,0003; int 10h; end;
   writeln('Processor already in V86 mode !');
   writeln('Please reboot without any EMS-drivers such as EMM386, QEMM etc.');
   writeln('HIMEM.SYS is required ! ');
   halt(0);
 end;
 { XMS driver installed ?  }
 if not XMS_available then begin;
   asm mov ax,0003; int 10h; end;
   writeln('No XMS or Himem-driver available');
   writeln('Please reboot your System using HIMEM.SYS !!!');
   halt(0);
 end;
 { Allocate required memory }
 error := Getmem_XMS(My_XmsHandle,min*1024);
 if error <> 0 then begin;
   asm mov ax,0003; int 10h; end;
   writeln('Error during memory-allocation !');
   writeln('We need at least ',Min,' KB of free XMS Memory !!!');
   writeln('Please reboot your System using HIMEM.SYS');
   writeln;
   halt(0);
 end;
 { Get physical Start position }
 Rmemposi := XMS_lock(My_XmsHandle);
 if rmemposi < 1000000 then begin;
   asm mov ax,0003; int 10h; end;
   writeln('Error during memory-fixing !');
   writeln('We need at least ',Min,' KB of free XMS Memory !!!');
   writeln('Please reboot your System using HIMEM.SYS');
   writeln;
   halt(0);
 end;
 { Enable }
 Enable_4Giga;
end;

Of course, you should "clean up" the program by freeing the allocated XMS memory; otherwise, it cannot
be used by other programs. Use procedure Exit_Rmem  for this. This procedure must be invoked at the end
of the program if you have used RMEM.

procedure Exit_Rmem;
{
 *************************************************************************
 ***                                                                   ***
 ***        Exit-Procedure of RMEM, MUST be called !                   ***
 ***                                                                   ***
 *************************************************************************
}
begin;
  { unlock block }
  XMS_unlock(My_XmsHandle);
  { Free memory }
  Freemem_XMS(My_XmsHandle);
end;



283

Programming 
Other PC 

Components

Chapter 11

PCPC
underground

11. Programming The Auxiliary Components

In this chapter we'll talk about other PC components such as the timer, the interrupt controller, the real-time
clock chip (RTC) and the DMA controller. These components let you use your computer's hardware to the
fullest extent possible.

Interrupts

As the name suggests, an interrupt causes the computer system to stop its normal processing so it can attend
to other tasks. An interrupt can be generated by several circumstances:

Software interrupt

This type of interrupt is caused by an instruction in the program.

Hardware interrupt

This type of interrupt is the result of some action by a hardware device, such as pressing a key or moving
a mouse.

NMI

(NonMaskable Interrupt) This is a high-priority interrupt that cannot be disabled. It's used to report
problems like parity, bus or other errors.

Let's talk about the basic principles of interrupt programming and show you several different applications.

When an interrupt is invoked, the processing of the current program is interrupted. A section of code
(routine) that is defined to handle this interrupt is executed. This routine ends with the assembler
instruction IRET, which represents Interrupt Return. When the interrupt is invoked, the FLAG register, CS
and IP are stored on the stack. Using these within the interrupt, you can easily determine the point in the
main program where the interrupt was triggered.

A table in RAM called the interrupt vector table contains the addresses of the routines that are called if a
corresponding interrupt is invoked. These addresses are simply pointers that you might recognize from



284

Programming Other PC Components

Chapter 11

PCPC
underground

earlier chapters. For example, if you want to assign a pointer to the address of your routine in Pascal, you
can use the following:

My_Pointer := ADR(The_Procedure);

A shorter version is:

My_Pointer := @The_Procedure;

Pascal supports this simple means of working with interrupts. To determine the address of a specific
interrupt, such as the timer interrupt, you can use this statement:

VAR Pointer_to_Timer : pointer;
GetIntvec (8,Pointer_to_Timer);

You can change the contents of an interrupt vector to go to your own routine by using the following:

SetIntvec(8,@My_Timer_Procedure);

Important: You must include the word Interrupt  after the procedure declaration of the interrupt routine.
This is necessary so Pascal executes the IRET instruction at the end of the interrupt routine and not the
normal RET instruction. The declaration might look like the following:

Procedure My_Timer_Procedure; Interrupt;
begin;
  writeln ('Hello! This is an interrupt!');
  port[$20]:= $20;
end;

Note that Interrupt 8 is a hardware interrupt. At the end of a hardware interrupt you must let the interrupt
controller know the interrupt has been handled and is terminated. To do this, you send the command EOI
(End of Interrupt, = 20h) to the controller at port 20h .

You might be asking yourself, "So what good does all this do me?" Let's answer that question by using the
timer interrupt as an example. Let's say you want to write a program that displays ASCII character #1 every
half-second and ASCII character #2 every half-second. You could, of course, use a loop in the main program
to check the clock time continuously and display the desired character every half-second. However, that
would make it difficult to process other parts of the program.

Another option is to divert the normal timer interrupt, which is called up 18.2 times per second, to your own
routine. In this routine count how often the interrupt was invoked. Every ninth interrupt you display the
desired character and reset the counter. Now you can process the other parts of your program and display
the desired screen characters every half second. You'll have to reset the interrupt at the end of the program
to its original routine, which you determined using GetIntvec . Trying to debug an interrupt-driven
program step-by-step usually ends in disaster.

Now that you know how to program your own interrupts in Pascal, let's talk about interrupt programming
in more detail. One question is: "What do the procedures  GetIntvec  and  SetIntvec  really do?" They
use the DOS functions 25h and 35h of the DOS interrupt 21h. That brings up another phenomenon: An
interrupt can have not only a routine but also several subroutines.

DOS provides interrupt 21h for all important functions of the operating system. To tell the interrupt which
subroutine you want to execute now, there is almost no way to get around the (inline) assembler. You must



Programming Other PC Components

Chapter 11

PCPC
underground

285

pass the number of the desired interrupt function to the AH register, and any other required parameters
to other registers, which will be different from one function to another. With function 25h you have to
initialize the following registers:

Register Contents/Meaning

AH 25h

AL Number of the interrupt which is to be set

DS Segment address of your interrupt procedure

DX Offset address of your interrupt procedure

With function 35h, not only do you have to pass values, you'll also receive return values. After all, it is
determining the address of the current interrupt routine, and you have to get the result somehow. Here is
how the registers are allocated:

Input AH 35h

AL  Number of the interrupt to be determined

Output ES Segment address of the routine

BX Offset address of the routine

So what would an assembler routine for determining an interrupt look like?

.Model TPascal

.data
int_seg dw?
int_ofs dw?

.code
get_interrupt proc pascal int_nr: BYTES
mov ah,35h
mov al,int_nr
int 21h
mov int_ofs,bx
mov bx,es
mov int_seg,es
RET
get_interrupt endp

Your work will be more complicated if instead of completely overwriting the original interrupt, first execute
your own routine and then call the original interrupt. In that case, first determine the address of the original
interrupt and save it in a DWORD variable. Now you can reset the interrupt to your own routine.

In this routine you must first save all the registers that you'll change and that are important for the target
interrupt. Now you can perform your own processing. For example, you can check to see whether a key was
pressed or whether a certain value is located at a particular place in memory.

Remember to reset the registers after your code has been processed. Now you jump directly to the original
interrupt routine. You don't have to invoke IRET; the original routine takes care of that for you. The code
might look like the following:



286

Programming Other PC Components

Chapter 11

PCPC
underground

.data
oldint dd ?
.code
my_interrupt proc far
pusha
mov ax,irgendeine_Variable
[...]
popa
jmp dword ptr oldint
my_iterrupt endp

Here's one trick you can use to outfox would-be hackers. The addresses of the interrupts are stored in the
interrupt table. This table is located in RAM at $0000:0000. Each entry is 4 bytes large. So the value of the
interrupt address is at $0000:Interrupt_Number  x 4. Now you don't have to use the DOS functions 25h and
35h every time you want to determine or change the address of an interrupt. You can write to these locations
directly to change a vector. You can also read these directly from the table at the appropriate location or you
can write them in the table.

You've been told not to write directly to this table, but you might want to keep this technique in mind to
foil the hackers.

It's very easy to make a backup copy of the interrupt table. At the beginning of your program simply copy
the 30 entries into a buffer and restore them again before your program ends. This ensures that all the
modified interrupts really do point back to their original routines.

The Programmable Interval Timer (PIT)

The PIT is like an alarm clock. It can be set to remind your program to perform a certain task. We use the
counter 0 of the PIT for that purpose. This counter controls the timer interrupt of the PC, which otherwise
works at 18.2 interrupts per second.

Let's take a close look at the timer hardware.

The PIT hardware

The timer chip that is used is a 8254 PIT. It contains three independent 16-bit counters. Each of these three
counters can perform one of these six logical operations:

Mode 0 Interrupt generator

Mode 1 Programmable monoflop

Mode 2 Cycle generator

Mode 3 Rectangular wave signal generator

Mode 4 Triggering the exit through software

Mode 5 Triggering the exit through hardware

We're especially interested in operating modes 1 and 3.



Programming Other PC Components

Chapter 11

PCPC
underground

287

Each of these three channels is controlled by its own counter. The counter can be set to work in either binary
or in BCD mode. Channel 0 controls the system timer, which is responsible for operations like the system
time, time of day or disk timeout. The system uses channel 1 to control the DRAM-refresh. Finally, channel
2 is used to generate sound through the PC speaker.

The channel consists of several registers. We're interested in the counter register, the two counter input
registers ZEL and ZEH and the control register. There is also a status register and two counter output
registers, ZAL and ZAH.

The following table summarizes these different counters:

Counter 0 Gate 0Ch System Timer Counter 2 Gate 2Ch Loudspeaker frequency

Clk 0Ch Generates IRQ0 CLK 2Ch Loudspeaker on

Out 0Ch OUT 2Ch

Counter 1 Gate 1Ch DRAM refresh

CLK 1Ch REFTIME

OUT 1Ch

The control register

The control register controls the activity of the individual channels. It's addressed through port 43h. You
assign the number of desired channels, the type of command, the operating mode and the counter format
to the control register. You use the status register to read the current settings of the control register. The
following table describes the purpose of these bits:

Bit Meaning Bit Meaning

Bit 7-6 counter selection Bit 3-1 select the operating mode

00 counter 0 000 mode 0, interrupt generation

01 counter 1 001 mode 1, programmable monoflop

10 counter 2 010 mode 2, cycle generator

11 read back mode 011 mode 3, rectangular wave signal generator

Bit 5-4 command type 100 mode 4, triggering the output through software

00 latch counter 101 mode 5, triggering the output through hardware

01 read/write the counter low byte Bit 0 select the counter format

10 read/write the counter high byte 0 16-bit binary (default)

11 read/write the counter low byte then the
counter high byte

1 BCD-format



288

Programming Other PC Components

Chapter 11

PCPC
underground

The counter register

The counter register is a 16-bit register that counts from 0 to 0ffffh. A write access to one of the counter input
registers starts the counter. A typical initialization of the counter 0 would be as follows:

port[43] := $36;
port[40] := 12;
port[40] := 34;

Rereading the registers

The data in the counters can be reread from the respective counter registers. The read-back mode is selected
for this. Next, you specify whether you want to read the counter or the status byte. The following table
explains the structure:

Bit Meaning Bit Meaning

Bit 7-6 Indicate read back command Bit 3-0 Select counter

11 Must have this value 1000 Select counter 2

Bit 5-4 Read back selection 100 Select counter 1

1 Read current counter value 10 Select counter 0

10 Read status byte

11 Read nothing

The value of the status byte has the following meaning:

Bit Meaning

Bit 7 Status of the OUT signal Bit 3-1 Select the operating mode

0 OUT signal 0 (low) 0 Mode 0

1 OUT signal 1 (high) 1 Mode 1

Bit 6 Counter flag NIL-COUNT set? 10 Mode 2

0 The counter was via the input registers and can be read 11 Mode 3

1 The control register was written but the expected counter
values haven't yet appeared.

100 Mode 4

Bit 5-4 Type of transfer command 101 Mode 5

0 Reserved Bit 0 Choice of the counter format

1 Read/write low byte 0 16-bit binary (default)

10 Read/write high byte 1 BCD format

11 First read/write low byte, then high byte



Programming Other PC Components

Chapter 11

PCPC
underground

289

Using the PIT

The PIT is most often used to synchronize multiple events. For example, you may need to play music
through a sound card at periodic intervals during a program or to perform sophisticated screen display
based at fixed time intervals.

An example is when you have to update or switch a screen display every second or third retrace. How can
you make a switch like this? First, you must determine the frequency at which the screen is updated. This
is 70 Hz for most display cards in normal 320 x 200 mode. So we have to generate an interrupt shortly before
the end of the display of a picture to be able to synchronize with the retrace and then to perform the switch.
In our case, this means that to generate the interrupt shortly before, its frequency should be higher than 70
Hz. How much higher depends on the amount of calculations within your routines.

TIMER.PAS is an example of such a program. First, it determines the frequency of the screen display by
using the timer interrupt to check how long it can change the value of a variable while waiting for the retrace.
The timer is next switched from the rectangular mode into the
monoflop mode. The interrupt routine has to program the
timer from scratch every time. To illustrate where the interrupt
occurs, the screen is first switched to red and then to green by
the interrupt. This is the program listing:

program test_timer;
uses crt,dos;
Var OTimerInt    : pointer;
    Timerfreq    : word;
    Orig_freq    : word;
    Sync_counter : word;
    Ticounter    : word;
procedure SetColor (Nr, R, G, B : BYTE);
begin;
  asm
    mov   al,Nr
    mov   dx,03C8h
    out   dx,al
    mov   dx,03C9h
    mov   al,r
    out   dx,al
    mov   al,g
    out   dx,al
    mov   al,b
    out   dx,al
  end;
end;

procedure waitretrace;
begin;
  asm
    MOV   DX,03dAh
@WD_R:
    IN    AL,DX
    TEST  AL,8d
    JZ    @WD_R
@WD_D:
    IN    AL,DX
    TEST  AL,8d
    JNZ   @WD_D

PCPCun
de

rg
ro

un
d

You can find
TIMER.PAS

on the companion CD-ROM



290

Programming Other PC Components

Chapter 11

PCPC
underground

  end;
end;

procedure SetTimerOn(Proc : pointer; Freq : word);
var icounter : word;
    oldv : pointer;
begin;
 asm cli end;
 icounter  := 1193180 DIV Freq;
 Port[$43] := $36;
 Port[$40] := Lo(ICounter);
 Port[$40] := Hi(ICounter);

 Getintvec(8,OTimerInt);
 SetIntVec(8,Proc);
 asm sti end;
end;

procedure New_Timerfreq(Freq : word);
var icounter : word;
begin;
 asm cli end;
 icounter  := 1193180 DIV Freq;
 Port[$43] := $36;
 Port[$40] := Lo(ICounter);
 Port[$40] := Hi(ICounter);
 asm sti end;
end;

procedure SetTimerOff;
var oldv : pointer;
begin;
  asm cli end;
  port[$43] := $36;
  Port[$40] := 0;
  Port[$40] := 0;
  SetIntVec(8,OTimerInt);
  asm sti end;
end;

procedure Syncro_interrupt; interrupt;
begin;
  inc(Sync_counter);
  port[$20] := $20;
end;

procedure Syncronize_timer;
begin;
  Timerfreq := 120;
  SetTimerOn(@Syncro_interrupt,Timerfreq);
  Repeat
    dec(Timerfreq,2);
    waitretrace;
    New_timerfreq(Timerfreq);
    Sync_counter := 0;
    waitretrace;
  until (Sync_counter = 0);
end;

procedure Timer_Handling;
begin;
  setcolor(0,0,63,0);



Programming Other PC Components

Chapter 11

PCPC
underground

291

end;

procedure Timer_Proc; interrupt;
begin;
  Timer_Handling;
  waitretrace;
  Port[$43] := $34;                     { Mono - Flop  mode }
  Port[$40] := Lo(TiCounter);
  Port[$40] := Hi(TiCounter);

  setcolor(0,63,0,0);

  port[$20] := $20;
end;

procedure Start_Syncrotimer(Proc : pointer);
var calcl : longint;
begin;
 asm cli end;
  port[$43] := $36;
  Port[$40] := 0;
  Port[$40] := 0;

  Ticounter := 1193180 DIV (Timerfreq+5);
  setintvec(8,Proc);
  waitretrace;
  Port[$43] := $34;                     { Mono - Flop  mode }
  Port[$40] := Lo(TiCounter);
  Port[$40] := Hi(TiCounter);
 asm sti end;
end;

begin;
  clrscr;
  Syncronize_Timer;
  writeln('The timer frequency is : ',Timerfreq);
  Start_Syncrotimer(@Timer_Proc);
  repeat until keypressed;
  while keypressed do readkey;
  SetTimerOff;
  setcolor(0,0,0,0);
end.

The Programmable Interrupt Controller (PIC)

The Programmable Interrupt Controller is another important component for controlling a PC's interrupt
electronically. Technically, a PC has two interrupt controllers. The first is found at the address 20h, the
second at A0h. However, the second controller is joined with the first through "cascading" (a series of chips
or other devices that are connected). This cascade is implemented through channel 2 of the controller at 20h.

The PIC works based on a priority logic. That means the interrupt with the lowest value, interrupt 0, has
the highest priority. As a result, interrupt 7 has the lowest priority and not interrupt 15, like you might think.
This is because the interrupts 8 to 15 are connected through interrupt 2, and therefore are higher than
interrupt 3 in the priority logic. The following table summarizes this priority logic:



292

Programming Other PC Components

Chapter 11

PCPC
underground

Priority PIC No. Int. No. Meaning

1 - NMI all nonmaskable interrupts

2 1 IRQ 0 interval timer

3 1 IRQ 1 keyboard interrupt

4 2 IRQ 8 RTC

5 2 IRQ 9 software emulated IRQ 2

6 2 IRQ 10 Unused

7 2 IRQ 11 Unused

8 2 IRQ 12 mouse or other input device

9 2 IRQ 13 coprocessor interrupt

10 2 IRQ 14 hard drive controller

11 2 IRQ 15 Unused

12 1 IRQ 3 2nd serial interface

13 1 IRQ 4 1st serial interface

14 1 IRQ 5 2nd parallel port

15 1 IRQ 6 diskette controller

16 1 IRQ 7 1st parallel port

The PIC uses this priority logic to simplify the operation of an interrupt driven operating system which
helps to reduce the time spent managing interrupts.

As this is an overview of the PIC operation, if you need more information, refer to a book on system
programming.

The PC distinguishes between four types of interrupts:

Ø Maskable interrupts (MI)

Ø Nonmaskable interrupts (NMI)

Ø Hardware interrupts

Ø Software interrupts

Maskable interrupts

Maskable interrupts are triggered by the PC hardware. They can be blocked by using the following
assembler command:

cli ;clear all maskable interrupts



Programming Other PC Components

Chapter 11

PCPC
underground

293

Conversely, they can be reactivated using this instruction:

sti ; turn interrupts back on

Furthermore, it's possible to selectively switch off the interrupts. This is done by masking them at a given
port. For interrupts IRQ 0 to IRQ 7, this is port 020h; for other interrupts this is port 0A0h.

Nonmaskable interrupts

Our work with interrupts becomes slightly more complicated with Nonmaskable Interrupts (NMI).
They're invoked, for example, if a parity error appears or if the BIOS invokes the interrupt. Even these
interrupts can be switched off. This is useful in the situation where you are executing operations that are
very critical with respect to the timing, and you don't want them to be interrupted. You can switch off the
NMIs with the following assembler instruction:

mov al,80h
out 70h,al

You can later reactivate them using these instructions:

mov al,00h
out 70h,al

Hardware interrupts

These are the interrupts triggered by hardware devices. The hardware usually generates an interrupt on
one of the interrupt channels. They are treated like maskable interrupts.

Software interrupts

Software interrupts are the interrupts that are triggered by software. They can be system interrupts of the
operating system, like the int 21h for example. They can also include interrupts that the user installed to
control hardware or other applications. You can switch them off using the cli  instruction and reactivate
them using sti .

The DMA Controllers

By using the DMA controller, large blocks of data can be quickly transferred from a peripheral device to
memory or vice versa. The method we'll use is somewhat radical: The DMA controller simply switches off
the processor and then transfers the data.

A PC has two DMA controllers. The first controller is responsible for 8-bit transfers; the second controller
regulates 16-bit transfers. The second controller provides a cascade connection to the first controller using
channel 0.

The following table summarizes each channel:



294

Programming Other PC Components

Chapter 11

PCPC
underground

Channel Controller Description

Channel 0 Controller 1 RAM-refresh

Channel 1 Controller 1 Free, usually SoundBlaster, GUS, etc.

Channel 2 Controller 1 Disk drive

Channel 3 Controller 1 Hard drive

Channel 4 Controller 2 Cascade controller 1 => controller 2

Channel 5 Controller 2 Free

Channel 6 Controller 2 Free

Channel 7 Controller 2 Free

Let's look at a practical example: How to program the DMA controller to send data to the SoundBlaster.

The general procedure is listed in the following seven steps:

1. Block DMA channel

2. Set transfer mode

3. Clear flip-flop

4. Write address of the data block

5. Write page of the data block

6. Write transfer length

7. Release DMA channel again

Masking a DMA channel

Let's see how we could implement these steps. First, let's address the masking and unmasking of the DM
channel. There are two ways to mask a DMA channel:

1. Masking using the Single Mask register

You can mask and unmask only one channel with this register. The register is found at port 0Ah for channels
0-3 and at port 0D4h for channels 4-7. The bits have the following meaning:



Programming Other PC Components

Chapter 11

PCPC
underground

295

Bit Meaning Bit Meaning

Bit 7-3 Unused Bit 1-0 Selection of the channel

00 Channel 0 of the respective controller

Bit 2 Setting or deleting the mask 01 Channel 1 of the respective controller

1 Setting the mask 10 Channel 2 of the respective controller

0 Deleting the mask 11 Channel 3 of the respective controller

To mask out channel 1 of controller 1 (which you need to do for the standard SoundBlaster), you write the
value 5 to port 0Ah. Write the value 1 to restore the channel after programming the DMA controller.

2. Masking using the All Mask register

You can mask or unmask all the DMA channels of a controller at one time with the All Mask register. The
advantage is that you don't have to mask each channel individually like you do with the Single Mask
register. However, you must indicate whether each channel should be masked or unmasked. So, if you're
uncertain about each channel, you should use Single Mask. The All Mask register is at port 0Fh found for
the first controller and at port 0DEh for the second controller.

The following table shows the allocation of the bits:

Bit Meaning Bit Meaning

Bit 7-4 Unused Bit 1 Mask/unmask channel 1

Bit 3 Mask/unmask channel 3 1 Channel - switch on 1 mask

1 Channel - switch on 3 mask 0 Channel - switch off 1 mask

0 Channel - switch off 3 mask Bit 0 Mask/unmask channel 0

Bit 2 Mask/unmask channel 2 1 Channel - switch on 0 mask

1 Channel - switch on 2 mask 0 Channel - switch off 0 mask

0 Channel - switch off 2 mask

Setting the transfer mode

The DMA controller handles different transfer modes. Before a DMA transfer, you first set the desired
mode. To do so, you send the mode bit to either port 0Bh for the first DMA controller or to port 0D6h for
the second controller. First, the following table describes the meaning of the bits here:



296

Programming Other PC Components

Chapter 11

PCPC
underground

Bit Meaning Bit Meaning

Bit 7-6 Select mode Bit 3-2 Transfer selection

00 Request mode 00 Verify transfer

01 Single mode 01 Writing transfer

10 Block mode 10 Reading transfer

11 Cascade mode 11 Not allowed

Bit 5 Increment/decrement addresses Bit 1-0 Channel selection

1 Address is decremented 00 Use channel 0

0 Address is incremented 01 Use channel 1

Bit 4 Turn on/off autoinitialization 10 Use channel 2

1 Switch on autoinitialization 11 Use channel 3

0 Switch off autoinitialization

Let's take a closer look at the meaning of the individual bits:

Mode selection

Bits 7 and 6 specify the transfer mode to be used. There are four modes:

Ø Request mode

Ø Single mode

Ø Block mode

Ø Cascade mode

The mode in which we're most interested is the single mode. Exactly one byte is transferred in this mode.
Then the address counter is incremented or decremented, depending on the mode that was selected. If the
counter has reached its target value, autoinitialization is performed if this was specified.

Incrementing/decrementing addresses

Bit 5 specifies whether the defined block should be transferred forward (incremented) or backward
(decremented).

Autoinitialization on/off

Bit 4 specifies whether autoinitialization will occur at the end of a transfer. Autoinitialization resets the
address register and counter registers to their initial programmed values.



Programming Other PC Components

Chapter 11

PCPC
underground

297

Transfer selection

Bits 3 and 2 specify the direction of the transfer. A "write transfer" means a transfer from the source to the
addressed main memory. A "read transfer" means a transfer from the addressed main memory to the
desired target. A "verify transfer" verifies the completed transfer.

Channel selection

Bits 1 and 0 specify the channel to be used for the transfer. Remember, DMA channel 4 corresponds to
channel 0 of the second controller. Therefore the differences between the first and the second controller are
really only in the different port addresses.

Clearing the DMA flip-flop

When programming the DMA controller, most action require you first to clear the flip-flop. Do this with
the "Clear flip-flop" register. This is located at port 0Ch for the first controller and at 0D8h for the second
controller. Clear this register by writing the value 0 to the appropriate port.

Specifying the address of a data block

You specify the address of the data block to be transferred as a physical page. This is calculated using the
following formula:

adr := 16*longint(Seg(Block^)) +ofs (Block^);

The 32-bit number derived using this formula contains the page in the upper
16 bits and the offset in the lower 16 bits. To set the address, first the offset must
be written to the DMA address register. This is located in the ports listed in the
table to the right (depending on the channel):

At the appropriate port, fist write the low byte of the offset, then the high byte.

Now you can transfer the page address to the controller. There are two
different registers for this: A lower page register for the lower 8 bits of the
address and an upper page register for the upper 4 bits of the address. An
address up to 256 Meg can be transferred using this method. This is enough
for the typical situation. The lower page register overwrites the contents of the
upper page register with 0 if it is programmed. Therefore, it has to be
programmed before the upper page register. The following table lists the
ports of these registers:

Channel Lower Page Upper Page Channel Lower Page Upper Page

0 87h 487h 4 0 0

1 83h 483h 5 8Bh 48Bh

2 81h 481h 6 89h 489h

3 82h 482h 7 8Ah 48Ah

Channel 0 Port 00h

Channel 1 Port 02h

Channel 2 Port 04h

Channel 3 Port 06h

Channel 4 Port C0h

Channel 5 Port C4h

Channel 6 Port C8h

Channel 7 Port CCh



298

Programming Other PC Components

Chapter 11

PCPC
underground

Adjusting the size of a DMA transfer

Before specifying the size of the block to be transferred to the DMA controller,
you first have to clear the flip-flop. Then you transfer the block size - low byte
first, then the high byte to the DMA Count register. This specifies the amount
of data to be transferred. The table on the right lists the ports of the counter
register.

The following is a small unit for programming the DMA controller. It
includes all the required procedures. You can either program all the steps
individually or perform the entire initialization using the procedure
DMA_Init_Transfer .

The procedure's first parameter is the number of the channel to be used. The
next parameter is the desired mode. The third parameter is a pointer to the
data block in RAM. Finally, the fourth parameter is the size of
this data block.

unit DMA;
interface
TYPE DMAarray = array[0..7] of byte;
CONST
 { DMA controller addresses }
 DMA_Address           : DMAarray = ($00,$02,$04,$06,$C0,$C4,$C8,$CC);
 DMA_Count             : DMAarray = ($01,$03,$05,$07,$C2,$C6,$CA,$CE);
 DMARead_status_Reg    : DMAarray = ($08,$08,$08,$08,$D0,$D0,$D0,$D0);
 DMAWrite_status_Reg   : DMAarray = ($08,$08,$08,$08,$D0,$D0,$D0,$D0);
 DMAWrite_requ_Reg     : DMAarray = ($09,$09,$09,$09,$D2,$D2,$D2,$D2);
 DMAWr_single_mask_Reg : DMAarray = ($0A,$0A,$0A,$0A,$D4,$D4,$D4,$D4);
 DMAWr_mode_Reg        : DMAarray = ($0B,$0B,$0B,$0B,$D6,$D6,$D6,$D6);
 DMAClear_Flipflop     : DMAarray = ($0C,$0C,$0C,$0C,$D8,$D8,$D8,$D8);
 DMARead_Temp_Reg      : DMAarray = ($0D,$0D,$0D,$0D,$DA,$DA,$DA,$DA);
 DMAMaster_Clear       : DMAarray = ($0D,$0D,$0D,$0D,$DA,$DA,$DA,$DA);
 DMA_Clear_Mask_Reg    : DMAarray = ($0E,$0E,$0E,$0E,$DC,$DC,$DC,$DC);
 DMA_Wr_All_Mask_Reg   : DMAarray = ($0F,$0F,$0F,$0F,$DE,$DE,$DE,$DE);
 DMA_Lower_Page        : DMAarray = ($87,$83,$81,$82,$00,$8B,$89,$8A);
 DMA_Higher_Page       : Array[0..7] of word
                            = ($487,$483,$481,$482,$0,$48B,$489,$48A);
 { Mode Register  DMA_Wr_mode_Reg }
 Request_mode  = $00;
 Single_mode         = $40;
 Block_mode          = $80;
 Cascade_mode = $C0;
 Addresses_Decrement = $20;
 Addresses_Increment = $00;
 Autoinit_Enable     = $10;
 Autoinit_Disable    = $00;
 Check_transfer      = $00;
 Write_Transfer      = $04;
 Read_Transfer       = $08;
 Set_Request_Bit     = $04;
 Clear_Request_Bit   = $00;
 Set_Mask_Bit        = $04;
 Clear_Mask_Bit      = $00;
procedure DMA_Mode_set(Channel,Mode : byte);
procedure DMA_NormMode_set(Channel,Mode : byte);
procedure DMA_Clear_Flipflop(Channel : byte);

Channel 0 Port 01

Channel 1 Port 03

Channel 2 Port 05

Channel 3 Port 07h

Channel 4 Port C0h

Channel 5 Port C4h

Channel 6 Port C8h

Channel 7 Port CCh

PCPCun
de

rg
ro

un
d

You can find
DMA.ASM

on the companion CD-ROM



Programming Other PC Components

Chapter 11

PCPC
underground

299

procedure DMA_Startaddress(Channel : byte; Start : pointer);
procedure DMA_Blocksize(Channel : byte; size : word);
procedure DMA_Channel_maskon(Channel : byte);
procedure DMA_Channel_maskoff(Channel : byte);
procedure DMA_Init_Transfer(Channel,Mode : byte; p : pointer; s : word);
implementation
TYPE
  pt = record                           { makes simple pointer    }
    ofs,sgm  :  word;                   { handling possible    }
  end;
procedure DMA_Mode_set(Channel,Mode : byte);
begin;
  port[DMAWr_Mode_Reg[Channel]] := Mode;
end;
procedure DMA_NormMode_set(Channel,Mode : byte);
begin;
  port[DMAWr_Mode_Reg[Channel]] := Mode+Addresses_Increment+Read_Transfer+
                                 Autoinit_Disable+Channel;
end;
procedure DMA_Clear_Flipflop(Channel : byte);
begin;
  port[DMAClear_Flipflop[Channel]] := 0;
end;
procedure DMA_Startaddress(Channel : byte; Start : pointer);
var l : longint;
    pn,offs : word;
begin;
  l := 16*longint(pt(Start).sgm)+pt(Start).ofs;
  pn := pt(l).sgm;
  offs := pt(l).ofs;
  port[DMA_Address[Channel]] := lo(offs);
  port[DMA_Address[Channel]] := hi(offs);
  port[DMA_Lower_Page[Channel]] := lo(pn);
  port[DMA_Higher_Page[Channel]] := hi(pn);
end;
procedure DMA_Blocksize(Channel : byte; size : word);
begin;
  DMA_Clear_Flipflop(Channel);
  port[DMA_Count[Channel]]:= lo(size);
  port[DMA_Count[Channel]] := hi(size);
end;
procedure DMA_Channel_maskon(Channel : byte);
begin;
 port[DMAWr_single_mask_Reg[Channel]] := Channel + Set_Mask_Bit;
end;
procedure DMA_Channel_maskoff(Channel : byte);
begin;
 port[DMAWr_single_mask_Reg[Channel]] := Channel + Clear_Mask_Bit;

end;
procedure DMA_Init_Transfer(Channel,Mode : byte; p : pointer; s : word);

begin;
  DMA_Channel_maskon(Channel);
  DMA_Startaddress(Channel,p);
  DMA_Blocksize(Channel,s);
  DMA_NormMode_Set(Channel,Mode+Channel);
  DMA_Channel_maskoff(Channel);
end;
begin;
end.



300

Programming Other PC Components

Chapter 11

PCPC
underground

The Real Time Clock (RTC)

The Real Time Clock is another interesting chip (either a Dallas 1287 or compatible). It has a battery backup
and works in a low-power mode, which protects the system from loss of data during boot-up and shut-
down. The system configuration is stored in the CMOS-RAM (64 bytes). The chip also has a clock, a calendar
and a programmable periodical interrupt.

The time and the calendar are updated periodically. Under normal operation, the RTC's second counter is
increased each second. On an overflow, the other registers that are affected are incremented. During the
overflow, bytes 0 through 9 of the RTC's RAM are not available to the CPU. The speed of the update cycle
is adjusted by the divider bits 2-0 of status register A and the SET bit 7 of status register B.

Accessing the RTC's RAM is very easy. First, at port 70h, the index number of the desired register is written.
Then data can be read or written at port 71h. All registers can be read and written except for the following
read-only bits:

Ø Status registers C and D

Ø Bit 7 of status register A

Ø Bit 7 of the seconds byte (Index 00h)

The first 14 bytes of the RTC's RAM are used for the clock and the four status registers; the remaining 50
bytes are used for the system configuration. The following table shows the purpose of each byte:

00h Seconds 01h Seconds alarm 02h Minutes

03h Minutes alarm 04h Hours 05h Hours alarm

06h Day of the week 07h Day of the month 08h Month

09h Year 0Ah Status A 0Bh Status B

0Ch Status C 0Dh Status D 0Eh Diagnosis status

0Fh Shutdown status 10h Floppy type 11h Reserved

12h HD type 13h Reserved 14h Configuration

15h Low base memory 16h High base memory 17h Low extended memory

18h High extended memory 19h HD 1 extended type byte 1Ah HD 2 extended type byte

1Bh Reserved 1Ch Reserved 1Dh Reserved

1eh Reserved 1Fh Installed features 20H HD 1 Low cylinder number

21h HD 1 High cylinder number 22H HD 1 Heads 23h HD 1 Low pre-compensation
start



Programming Other PC Components

Chapter 11

PCPC
underground

301

24H HD 1 High pre-compensation
start

25h HD 1 Low landing zone 26H HD 1 High landing zone

27h HD 1 sectors 28h Options 1 29h Reserved

29h Reserved 2Bh Reserved 2Bh Options 2

2Dh Options 3 2Dh Reserved 2Eh Low CMOS RAM checksum

2Fh High CMOS RAM checksum 30h Low extended memory byte 31h High extended memory byte

32h Century byte 33h Setup information 34h CPU speed

35h HD 2 Low cylinder number 36h HD 2 High cylinder number 37h HD 2 Heads

38h HD 2 Low pre-compensation
start

39h HD 2 High pre-compensation
start

3Ah HD 2 Low landing zone

3Bh HD 2 High landing zone 3Ch HD 2 sectors 3Dh Reserved

3Eh Reserved 3Fh Reserved

Clock functions

The CPU retrieves the time and date by reading the appropriate bytes within the RTC. To se the time, you
first switch on the SET bit of status register B and then write the desired values to the RTC's RAM. The data
within the clock are stored in BCD format. This means the tens position is stored in the upper four bits and
the ones position is stored in the lower four bits. The following is the organization of these bytes:

Function Address BCD Data

Seconds 00 00 to 59

Seconds alarm 01 00 to 59

Minutes 02 00 to 59

Minutes alarm 03 00 to 59

Hours 04 (12 hour mode) 01 to 12 (AM) 81 to 92 (PM) (24 hour mode) 00
to 23

Hours alarm 05 (12 hour mode) 01 to 12 (AM) 81 to 92 (PM) (24 hour mode) 00 to 23

Day of the week 06 01 to 07

Day of the month  07 01 to 31

Month 08 01 to 12

Year 09 00 to 99



302

Programming Other PC Components

Chapter 11

PCPC
underground

Status registers

The RTC has four status registers that are used to control and indicate the status of the chip.

Register A

Register A is especially interesting because of its ability to specify the speed at which the periodic interrupt
is invoked. Bit 7 is the UIP (Update In Progress) bit. When it contains a value of 1m the time is being updated
at that moment. Bits 6 to 4 contain the timebase. The default value 101b represents a value of 32, 768 Hz. Bits
3 to 0 selects the rate according to the following formula:

rate = 65536 / 2^RS.

So the default value of 1024 Hz is calculated from 65536 / 2^6 (101b).

Register B

Register B has several functions.

Bit 7 is the set bit. Normally this is set to 0 which means the clock is updated once every second. If set to 1,
the update cycle is interrupted and you can then initialize the clock to a new time and date.

Bit 6 is the PIE (Periodic Interrupt Enable). When set to 1, the periodic interrupt is invoked with a frequency
specified by Register A. The interrupt is not triggered when set to 0.

Bit 5 is the AIE (Alarm Interrupt Enable). This interrupt is enabled when set to 1.

Bit 4 is the UIE (Updated Ended Interrupt Enable). This interrupt is enabled when set to 1.

Bit 3 is the SQWE (Square Wave Enable). When set to 1, the rectangular wave frequency specified in Register
A is activated.

Bit 2 is the DM (Date Mode). When set to 1, the values are in binary format. When set to 0, the values are
in BCD format.

Bit 1 is the 24/12 (24 or 12 Hour mode). When set to 1, the 24 hour mode is selected. When set to 0, the 12
hour mode is selected.

Register C

Register 0Ch is a flag register.

Bit 7 is the Interrupt Request flag. If set to 1, then one of the conditions that triggers an interrupt is true and
the corresponding interrupt flag is also set.

Bit 6 is the periodic interrupt flag.

Bit 5 is set if the alarm time and current time are the same of if the alarm is off,

Bit 4 is the is the Updated Ended Interrupt flag. If set to 1, the update code of the RTC is completed.

Bits 3 to 0 are reserved.



Programming Other PC Components

Chapter 11

PCPC
underground

303

Register D

Register D is used to monitor the battery. If bit 7 is set, then the battery is fully functional. If bit 7 is clear,
the battery is defective. Bits 6 to 0 have no function.

Configuration bytes

The system configuration is found memory starting at 0Eh. In the following pages we'll describe the
purpose of the individual bytes. If you need more information, refer to more in-depth information books
on system programming such as PC Intern from Abacus.

Diagnostic status byte 0Eh

This byte is used to validate the system configuration at boot-up. The following table shows the meaning
of the individual bits:

Bit Meaning Bit Meaning

Bit 7 Status of the RTC Bit 4 Test for change in memory size

1 Current is off 1 Memory size has changed

0 Current is on 0 Memory size has not changed

Bit 6 Checksum test Bit 3 Hard disk test

1 Checksum is not valid 1 Hard disk or controller error

0 Checksum is valid 0 No error

Bit 5 Correct configuration information? Bit 2 Time status

1 Configuration is not valid 1 Time is not correct

0 Configuration is valid 0 Time is correct

Shutdown status byte 0Fh

This byte is set during a reset of the CPU. The reset code serves as an indicator of the type of reset. The
following allocations are possible:

00h Normal system reset

09h Software reset (return from protected mode)

Type of connected floppies - 10h

Information about the installed floppy disk drive can be determined using this byte.



304

Programming Other PC Components

Chapter 11

PCPC
underground

Bit Meaning Bit Meaning

Bit 7-4 Type of the first disk drive Bit 3-0 Type of the second diskette drive

0000 No drive installed 0000 No drive installed

0001 360K 5.25-inch drive 0001 360K 5.25-inch drive

0010 1.2 Meg 5.25-inch drive 0010 1.2 Meg 5.25-inch drive

0011 720K 3.5-inch drive 0011 720K 3.5-inch drive

0100 1.44 Meg 3.5-inch drive 0100 1.44 Meg 3.5-inch drive

0101 2.88 Meg 3.5-inch drive 0101 2.88 Meg 3.5-inch drive

Type of the installed hard drives - 12h

This byte is used to determine the type of installed hard drive. You'll probably need to read bytes 19h and
1Ah for further information. The byte has the following meaning:

Bit Meaning Bit Meaning

Bit 7-4 Type of the first hard drive Bit 3-0 Type of the second hard drive

0000 No hard drive installed 0000 No hard drive installed

0001-1110 Hard disk of type 1 to 14 0001-1110 Hard disk of type 1 to 14

1111 Type information in byte 19h 1111 Type information in byte 1Ah

Definition of the equipment - 14h

This byte is accessed for the hardware self test.

Bit Meaning Bit Meaning

Bit 7-6 Number of installed floppies Bit 3-2 Not used

00 One disk drive

01 Two disk drives Bit 1 Coprocessor

10 Reserved 1 Coprocessor is installed

11 Reserved 0 No coprocessor installed

Bit 5-4 Type of the graphics card Bit 0 Disk drive installed?

00 Extended functionality controller 1 Drive is installed

01 Color display with 40 columns 0 No drive

10 Color display with 80 columns

11 Monochrome display



Programming Other PC Components

Chapter 11

PCPC
underground

305

Low/High Base Memory - 15h/16h

The size of the installed main memory can be read from the low base memory byte and the high base
memory byte. A value of 0200h represents 512K of RAM and 0280h represents 640K.

Low/High Extended Memory - 17h/18h

The size of the installed extended memory (above 1 Meg) can be read from the low and high extended
memory byte. For example, 0400h represents 1024K extended RAM, 0C00 for 3072K.

Extended Type Byte for Hard Disk 1 - 19h

This byte contains the type of the first hard drive if the bits 7-4 of the byte 12h have the value 0Fh.

Extended Type Byte for hard drive 2 - 1Ah

This byte contains the type of the second hard drive if the bits 3-0 of byte 12h have the value 0Fh.

Installed Features Byte - 1Fh

This byte reports error messages.

Bit 7-3 Reserved

Bit 2 Report disk drive error

Bit 1 Report video display error

Bit 0 Report keyboard error

CPU Speed Byte - 34h

The speed of the CPU is determined by this byte. Bits 7 to 1 are reserved. If bit 0 has the value 0h, the CPU
is in the slow mode; if the bit is set, the CPU is working in turbo mode.

The RTC in practice

This program demonstrates how to access the RTC and evaluate
the registers. It can serve as basis for a RTC-control unit.

program rtc_unit;

uses crt,dos;

const
  Rtc_Seconds         = $00;
  Rtc_Seconds_alarm   = $01;
  Rtc_Minutes         = $02;
  Rtc_Minutes_alarm   = $03;
  Rtc_Hours           = $04;
  Rtc_Hours_alarm     = $05;
  Rtc_Weekday         = $06;
  Rtc_Day_of_Month    = $07;
  Rtc_Month           = $08;
  Rtc_Year            = $09;

PCPCun
de

rg
ro

un
d

You can find
RTC.PAS

on the companion CD-ROM



306

Programming Other PC Components

Chapter 11

PCPC
underground

  Rtc_Status_A        = $0A;
  Rtc_Status_B        = $0B;
  Rtc_Status_C        = $0C;
  Rtc_Status_D        = $0D;
  Rtc_Diagnosis_status = $0E;
  Rtc_Shutdown_status = $0F;
  Rtc_Floppy_Typ      = $10;
  Rtc_HD_Typ          = $12;
  Rtc_Equipment       = $14;
  Rtc_Lo_Basememory   = $15;
  Rtc_Hi_Basememory   = $16;
  Rtc_Lo_Extendedmem  = $17;
  Rtc_Hi_Extendedmem  = $18;
  Rtc_HD1_extended    = $19;
  Rtc_HD2_extended    = $1A;
  Rtc_Features        = $1F;
  Rtc_HD1_Lo_Cylinder = $20;
  Rtc_HD1_Hi_Cylinder = $21;
  Rtc_HD1_Heads       = $22;
  Rtc_HD1_Lo_Precom   = $23;
  Rtc_HD1_Hi_Precom   = $24;
  Rtc_HD1_Lo_Landing  = $25;
  Rtc_HD1_Hi_Landing  = $26;
  Rtc_HD1_Sectors     = $27;
  Rtc_Options1        = $28;
  Rtc_Options2        = $2B;
  Rtc_Options3        = $2C;
  Rtc_Lo_Checksum     = $2E;
  Rtc_Hi_Checksum     = $2F;
  Rtc_Extendedmem_Lo  = $30;
  Rtc_Extendedmem_Hi  = $31;
  Rtc_Century         = $32;
  Rtc_Setup_Info      = $33;
  Rtc_CPU_speed       = $34;
  Rtc_HD2_Lo_Cylinder = $35;
  Rtc_HD2_Hi_Cylinder = $36;
  Rtc_HD2_Heads       = $37;
  Rtc_HD2_Lo_Precom   = $38;
  Rtc_HD2_Hi_Precom   = $39;
  Rtc_HD2_Lo_Landing  = $3A;
  Rtc_HD2_Hi_Landing  = $3B;
  Rtc_HD2_Sectors     = $3C;

function wrhexb(b : byte) : string;
const hexcar : array[0..15] of char =
 ('0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F');
begin;
  wrhexb := hexcar[(b shr 4)] + hexcar[(b AND $0F)];
end;

function wrhexw(w : word) : string;
begin;
  wrhexw := '$'+wrhexb(hi(w))+wrhexb(lo(w));
end;

procedure write_rtc(Reg,val : byte);
{
 Writes a value to the RTC register specified in Reg
}
begin;
  port[$70] := Reg;



Programming Other PC Components

Chapter 11

PCPC
underground

307

  port[$71] := val;
end;

function read_rtc(Reg : byte) : byte;
{
 Reads a value from the RTC register specified in Reg
}
begin;
  port[$70] := Reg;
  read_rtc := port[$71];
end;

Procedure Write_Floppy;
{
 Outputs information about the installed floppy drives
}
Var Fl : byte;
    Fls : array[1..2] of byte;
begin;
  Fl     := Read_Rtc(Rtc_Floppy_Typ);
  Fls[2] := Fl AND $0F;
  Fls[1] := Fl SHR 4;
  for Fl := 1 to 2 do begin;
    write('Floppy ',Fl,': ');
    case Fls[Fl] of
      0 : begin;
            writeln('No  Floppy        ');
          end;
      1 : begin;
            writeln('5.25-inch" Floppy, 360K');
          end;
      2 : begin;
            writeln('5.25-inch" Floppy, 1.2 Meg');
          end;
      3 : begin;
            writeln('3.5-inch" Floppy, 720K');
          end;
      4 : begin;
            writeln('3.5-inch" Floppy, 1.44 Meg');
          end;
    end;
  end;
end;

Procedure Write_Hd;
{
 Outputs the type of installed HD
}
Var Hd : byte;
    Hds : array[1..2] of byte;
begin;
  Hd     := Read_Rtc(Rtc_HD_Typ);
  Hds[2] := Hd AND $0F;
  Hds[1] := Hd SHR 4;
  If HDs[1] = $F then HDs[1] := Read_Rtc(Rtc_HD1_extended);
  If HDs[2] = $F then HDs[2] := Read_Rtc(Rtc_HD2_extended);
  writeln('HD 1 : Typ ',Hds[1]);
  writeln('HD 2 : Typ ',Hds[2]);
end;

procedure Write_Memory;
{



308

Programming Other PC Components

Chapter 11

PCPC
underground

 Outputs available memory
}
var base,extended : word;
begin;
  Base     := 256 * Read_Rtc(Rtc_Hi_Basememory) +
              Read_Rtc(Rtc_Lo_Basememory);
  extended := 256 * Read_Rtc(Rtc_Hi_Extendedmem) +
              Read_Rtc(Rtc_Lo_Extendedmem);
  writeln('Base memory: ',Base,' KB');
  writeln('Extended memory: ',extended,' KB');
end;

procedure Write_Display;
{
 Outputs the type of graphic card and tells whether a coprocessor
 is installed
}
var dtyp : byte;
    Copro : byte;
begin;
  dtyp  := Read_Rtc(Rtc_Equipment);
  Copro := (dtyp AND 3) SHR 1;
  dtyp  := (dtyp AND 63) SHR 4;
  case dtyp of
    0 : begin;
          writeln('Extended functionality GFX controller');
        end;
    1 : begin;
          writeln('Color display in 40 column mode');
        end;
    2 : begin;
          writeln('Color display in 80 column mode');
        end;
    3 : begin;
          writeln('Monochrome display controller');
        end;
  end;
  if Copro = 1 then
    writeln('Coprocessor found')
  else
    writeln('Coprocessor not found');
end;

procedure write_shadow;
{
 Outputs which areas of shadow RAM are supported
}
var shadow : byte;
begin;
  shadow := read_rtc(Rtc_Options1);
  shadow := shadow AND 3;
  case shadow of
    0 : begin;
          writeln('Shadow System AND Video BIOS');
        end;
    1 : begin;
          writeln('Shadow System BIOS');
        end;
    2 : begin;
          writeln('Shadow disabled');
        end;
  end;



Programming Other PC Components

Chapter 11

PCPC
underground

309

end;

procedure write_cpuspeed;
{
 Indicates whether the CPU is in Turbo mode
}
var speed : byte;
begin;
  speed := read_rtc(Rtc_CPU_speed);
  if speed = 1 then
    writeln('CPU in Turbo mode')
  else
    writeln('CPU not in Turbo mode');
end;

var speed : byte;
begin;
 clrscr;
 Write_Floppy;
 Write_Hd;
 Write_Memory;
 Write_Display;
 Write_Shadow;
 Write_CPUSpeed;
end.





11. Experience Sonic Worlds: The Sound Blaster Card

Most people agree the Sound Blaster card is now the de facto standard for sound on the PC. The Sound
Blaster has been improved many times since it was introduced by Creative Labs in 1989. Early versions of
the Sound Blaster included SBPro and the SB16; the current version is the AWE 32. At first, most of the cards
were "backward" compatible. An exception is the built-in DSP chip (Digital Signal Processor).

This chapter shows the basics of programming sound cards.

Sound Blaster Card Components

The heart of a Sound Blaster card is the Digital Signal Processor (DSP). It performs the function of an
AD/DA converter (Analog to Digital/Digital to Analog) and is responsible for the input and output of
digital data. The card also includes an OPL chip, which is responsible for the FM synthesis. The SBPro also
contains an additional mixer chip, which performs other useful functions such as controlling volume level
or balance.

Programming the signal processor: The DSP

The DSP used in the Sound Blaster series is the CT-DSP-1321. It's located at port address 2x0h (the x here
represents the appropriate base address). It's programmed by writing a value to one of its registers. The base
address can be selected in increments of 10h and may lie between 210h and 280h. The following table shows
the available registers:

311

Experience Sonic 
Worlds: The 

Sound Blaster 
Card

Chapter 12

PCPC
underground



312

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Port Name Status Port Name Status

B+00h Left FM register selection & status R/W B+0Dh DSP timer_interrupt clear port R

B+01h Left FM register, data W B+0Eh DSP status of existing data R

B+02h Right FM register selection &
status R/W

B+0Fh DSP 16 bit voice-int. clear port R

B+03h Right FM register, data W B+10h CD ROM data R

B+04h Mixer chip, index register W B+11h CD ROM command W

B+05h Mixer chip, data register L/W B+12h CD ROM reset W

B+06h DSP reset W B+13h CD ROM activate W

B+08h Both FM registers, selection &
status R/W

338h FM register status port R

B+09h Both FM registers, data W 339h FM selection register W

B+0Ah DSP data (Read Data) R 38Bh Advanced FM register selection W

B+0Ch DSP data or command & status R/W 38Bh Advanced FM register data port W

A register is accessed in the following order: First, the command value and then any necessary parameters
are written to the Sound Blaster through command port 2xCh. Read access is through data port 2xAh.

However, before sending various commands to your Sound Blaster, you must first reset it. Write the value
1 to the reset port, wait a moment, and then write the value 0 to the reset port. You can check whether the
reset was successful by checking if the data port contains the
value $AA after about 100 ms. If it does, the reset was successful.

An example of the reset function is contained in Reset_sb16 .

FUNCTION Reset_sb16 : BOOLEAN;
{
 Function resets the DSP. If the reset was successful, TRUE
 is returned, otherwise FALSE
}
CONST  ready = $AA;
VAR ct, stat : BYTE;
BEGIN
  PORT[dsp_addr+$6] := 1;                { dsp_addr+$6 = Reset function}
  FOR ct := 1 TO 100 DO;
  PORT[dsp_addr+$6] := 0;
  stat := 0;
  ct   := 0;                             { Comparison ct < 100, since }
  WHILE (stat <> ready)                  { initialization takes    }
  AND   (ct < 100)      DO BEGIN         { approx. 100ms               }
    stat := PORT[dsp_addr+$E];
    stat := PORT[dsp_addr+$a];
    INC(ct);
  END;
  Reset_sb16 := (stat = ready);
END;

PCPCun
de

rg
ro

un
d

The function Reset_sb16
is part of the

MOD_SB.PAS file
on the companion CD-ROM



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

313313

Knowing that the value 0AAh is found in the data register after a reset can be used to your advantage when
you're trying to find the base port. Simply use a loop to check all ports between 210h and 280h, in increments
of 10h, as possible Sound Blaster base ports. If the reset is
successful, then you've found the correct base port. Function
Detect_sb16  is an example of how a detect procedure might
appear. The function uses this approach and returns the value
TRUE if it was able to detect a Sound Blaster card.

FUNCTION Detect_Reg_sb16 : BOOLEAN;
{
 Function returns TRUE if a SoundBlaster was initialized,
 otherwise FALSE. The dsp_addr variable is set to the base
 address of the SB.
}
VAR
  Port, Lst : WORD;
BEGIN
 Detect_Reg_sb16 := SbRegDetected;
 IF SbRegDetected THEN EXIT;            { Exit, if initialized   }
 Port := Startport;                     { Possible SB addresses bet-  }
 Lst  := Endport;                       { ween $210 and $280 !      }
 WHILE (NOT SbRegDetected)
 AND   (Port <= Lst)  DO BEGIN
   dsp_addr := Port;
   SbRegDetected := Reset_sb16;
   IF NOT SbRegDetected THEN
     INC(Port, $10);
 END;
 Detect_Reg_sb16 := SbRegDetected;
END;

By using this function, you can find a Sound Blaster card and determine at which port it can be addressed.
However, this function doesn't tell us which of the many Sound Blaster versions was detected.

To determine which version, use a function of the Sound Blaster card that returns the card's version number.
Send a command to the Sound Blaster that writes the version number to the data register. How do you send
a command to the Sound Blaster?

All you actually need to know is that commands are always sent
over the command port 2xCh. Note, however, you cannot write
to the port while bit 7 of the command port is set. Therefore you
have to use a loop to wait until the port may be written to and
you can send the appropriate value to the port. The following
is an example of such a procedure:

procedure wr_dsp_sb16(v : byte);
{
 Waits until the DSP is ready to write and then writes the
 byte passed in “v” to the DSP
}
begin;
  while port[dsp_addr+$c] >= 128 do ;
  port[dsp_addr+$c] := v;
end;

PCPCun
de

rg
ro

un
d

The function Detect_sb16
is part of the

MOD_SB.PAS file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure wr_dsp_sb16
is part of the

MOD_SB.PAS file
on the companion CD-ROM



314

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Since you not only want to send values to the Sound Blaster, but also read values from it, you'll need a
function that reads a value from the Sound Blaster. To read a
value from the data port, wait until it no longer contains the
value 0AAh. At that point the value can be read. Let's look at this
simple process in practice: Sound Blaster ReadSB function uses
the described principle and returns the current byte in the data
port.

FUNCTION SbReadByte : BYTE;
{
 Function waits until the DSP can be read and returns the
 read value
}
begin;
  while port[dsp_addr+$a] = $AA do ;     { wait till DSP ready      }
  SbReadByte := port[dsp_addr+$a];       { write value             }
end;

Now back to the problem of determining the version number of the Sound Blaster card. Use the command
$E1 to determine the version number. Once this command is sent, read the version number from the data
port. The version number consists of two bytes. The first indicates
the main version number. By reading the port a second time,
you'll also receive the sub-version number. Procedure
SbGetDSPVersion  determines the version number of a Sound
Blaster card.

PROCEDURE SbGetDSPVersion;
{
 Determines the DSP version and stores the result in the
global variables SBVERSMAJ and SBVERSMIN, as well as SBVERSSTR.
}
VAR i : WORD;
    t : WORD;
    s : STRING[2];
BEGIN
  wr_dsp_sb16($E1);                     { $E1 = Version query      }
  SbVersMaj := SbReadByte;
  SbVersMin := SbReadByte;
  str(SbVersMaj, SbVersStr);
  SbVersStr := SbVersStr + ‘.’;
  str(SbVersMin, s);
  if SbVersMin > 9 then
    SbVersStr := SbVersStr +       s
  else
    SbVersStr := SbVersStr + ‘0’ + s;
END;

The following table describes the other Sound Blaster DSP commands:

PCPCun
de

rg
ro

un
d

The function
SbReadByte is part

of the MOD_SB.PAS file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure
SbGetDSPVersion is part
of the MOD_SB.PAS file

on the companion CD-ROM



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

315

Command Function

10h 8 bit output direct

14h 8 bit output through DMA

16h Output of 2 bit comp. samples using DMA

17h Output of 2 bit comp. samples with reference byte using DMA

20h Direct digitalization

24h Digitalization of 8 bit samples through DMA

30h Direct MIDI input

31h MIDI input through interrupt

32h Direct MIDI input with timestamp

33h MIDI input through interrupt with timestamp

34h MIDI UART mode, direct

35h MIDI UART mode through interrupt

37h MIDI UART through interrupt with timestamp

38h Send MIDI code

40h Set sample rate

45h DMA multiblock continue SB16

48h Set block size

74h Output of 4 bit comp. samples using DMA

75h Output of 4 bit comp. samples with ref. byte using DMA

76h Output of 2.6 bit comp. samples using DMA

77h Output of 2.6 bit comp. samples with ref. byte using DMA

80h Define silence block

91h 8 bit output through DMA in high speed

99h 8 bit input through DMA in high speed

B6h Output 16 bit data on SB16 using DMA

B9h Digitalize 16 bit data on SB16 using DMA

C6h Output 8 bit data on SB16 using DMA

C9h Digitalize 8 bit data on SB16 using DMA



316

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Command Function

D0h Stop DMA

D1h Turn loudspeaker on

D3h Turn loudspeaker off

D4h Continue DMA

D8h Check loudspeaker status

E1h Version number inquiry

Let's take a closer look at the individual commands:

10h   8 bit output direct

To output data periodically, for instance through the timer interrupt, you can use the function 10h. The two
steps must be repeated at a constant rate!

1. Send the command 10h.

2. Send the data byte.

14h  8 bit output through DMA

The output over DMA is fairly complex, especially if you’re unfamiliar with the process. It's important to
program the DMA controller correctly. Otherwise, you'll have many different results, but not the desired
one: The output of the sample data. You'll find more information on the DMA controller and how to
program it in Chapter 11.

If you want to output data through the DMA, you'll first need to divert the Sound Blaster interrupt to a
separate procedure and then program the DMA controller correctly. First, you'll need to determine and set
the sample rate. Then perform the following steps:

1. Send the command 14h.

2. Send the low byte of the sample length -1.

3. Send the high byte of the sample length -1.

The output will begin when you've completed Step 3. Please note that you cannot output blocks larger than
64K. Such blocks must be divided into several sub-blocks.

In practice you should proceed like this: First, calculate the physical address of the block you want to output.
You can use the following formula:

Physpos := 16*sgm(Block^)+ofs(Block^).

The upper word of the physical address is then the page which you'll need to pass to the DMA controller.
The lower word contains the offset that you'll need to set. First, lock the DMA channel to prevent unwanted
accesses. Then clear the flip flop and output the write mode of the DMA controller.



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

317

The $28+number mode of the DMA channel is required to output data. In other words, $49 if you're using
DMA channel 1. Next, you'll set the low byte, followed by the high byte of the offset of the physical address.
Then you need to send the low byte followed by the high byte of the block size of the block you wish to
transfer, before sending the page of the physical address. With this, the DMA controller is now ready for
the transfer, and we can turn to the programming of the Sound Blaster card. First, send the command $14
for 8 bit output through the DMA. Send the low byte and then the high byte of the size of the block that is
to be transferred. The Sound Blaster is now also programmed. Once you unlock the DMA channel, the
sound output will start.

The procedure Games_Sb is an example of how this process
works correctly. The first parameter required by the procedure
is the page of the physical address of the sample block. The
second parameter consists of the offset portion of the physical
address of the sample block, while the third contains its length.

procedure Games_Sb(Segm,Offs,dsz,dsize : word);
{
 This procedure plays back the block addressed from Segm:Offs with
 the size dsize. Remember, the DMA controller CANNOT
 transfer more than one page ...
}
var li : word;
begin;
  port[$0A] := dma_ch+4;                { lock DMA channel          }
  Port[$0c] := 0;                       { Buffer address   }
  Port[$0B] := $48+dma_ch;                     { for sound output           }
  Port[dma_addr[dma_ch]] := Lo(offs);    { to DMA controller          }
  Port[dma_addr[dma_ch]] := Hi(offs);
  Port[dma_wc[dma_ch]] := Lo(dsz-1);  { size of block (block-  }
  Port[dma_wc[dma_ch]] := Hi(dsz-1);  { size) to DMA controller }
  Port[dma_page[dma_ch]] := Segm;
  wr_dsp_sb16($14);
  wr_dsp_sb16(Lo(dsize-1));             { size of block to       }
  wr_dsp_sb16(Hi(dsize-1));             { DSP                    }
  Port[$0A] := dma_ch;                  { release DMA channel       }
end;

16h  output of 2-bit comp. samples using DMA

The output of 2-bit compressed samples is similar to the output of 8-bit samples. You only need to replace
the command $14 for programming the Sound Blaster with the command 16h.

17h  output of 2-bit comp. samples with reference byte using DMA

The same basic information for the command 16h applies to command 17h. The only difference is the first
byte is interpreted as a reference byte. In other words, it's the starting value from which the differences are
calculated. Command 17h should is usually used to first output a block with a reference byte, followed by
clocks without reference bytes.

20h  direct digitizing

20h allows you to directly record 8-bit sample data. Follow these steps to record data using this command:

PCPCun
de

rg
ro

un
d

The procedure
Games_Sb is part

of the MOD_SB.PAS file
on the companion CD-ROM



318

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

1. Send the command 20h

2. Read a sample byte

Note that both steps must be repeated periodically and at a constant rate. This method will only work for
digitizing at a low sampling rate. Use the DMA method for higher-quality recordings.

24h  digitize 8-bit samples through DMA

To record data through the DMA, first change the Sound Blaster interrupt to a separate procedure and then
program the DMA controller appropriately. Afterwards, set the sample rate and do the following:

1. Send the command 24h

2. Send the low byte of the sample length -1

3. Send the high byte of the sample length -1

The recording will begin when you've completed the third step. Note that you cannot record blocks longer
than 64K. These blocks must be divided into several sub-blocks.

In practice you should proceed like this: First, calculate the physical address of the block to record. Use the
following formula:

Physpos := 16*sgm(Block^)+ofs(Block^)

The high word of the physical address is the page which you'll need to pass to the DMA controller. The lower
word contains the offset which you'll need to set. First, lock the DMA channel to prevent unwanted accesses.
Then clear the flip flop and output the write mode of the DMA controller.

A value equal to $44+DMA channel number is used to output data. For example, $45 if you're using DMA
channel 1. Next, set the low byte, followed by the high byte of the offset of the physical address. Then send
the low byte followed by the high byte of the block size of the block to transfer, before sending the page of
the physical address.

Now, the DMA controller is ready for the transfer. We can now begin programming the Sound Blaster card.
First, send the command $24 for 8-bit output through the DMA. Send the low byte and then the high byte
of the size of the block to be transferred. The Sound Blaster is now also programmed. The recording will
start once you unlock the DMA channel.

Procedure Games_SbPro is an example of how this process
works. The first parameter is the page of the physical address of
the sample block. The second parameter is the offset portion of
the physical address of the sample block. The third parameter
contains its length.

procedure Games_SbPro(Segm,Offs,dsz,dsize : word);
{
 This procedure plays back the block addressed from Segm:Offs with the
 size dsize. Remember the DMA controller CANNOT
 transfer more than one page ...
}
var li : word;
begin;

PCPCun
de

rg
ro

un
d

The procedure
Games_SbPro is part

of the MOD_SB.PAS file
on the companion CD-ROM



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

319

  port[$0A] := dma_ch+4;                  { lock DMA channel          }
  Port[$0c] := 0;                         { Buffer address  }
  Port[$0B] := $48+dma_ch;                { for sound output           }
  Port[dma_addr[dma_ch]] := Lo(offs);     { to DMA controller          }
  Port[dma_addr[dma_ch]] := Hi(offs);
  Port[dma_wc[dma_ch]] := Lo(dsz-1);      { size of block (block-  }
  Port[dma_wc[dma_ch]] := Hi(dsz-1);      { size) to DMA controller }
  Port[dma_page[dma_ch]] := Segm;

  wr_dsp_sb16($48);
  wr_dsp_sb16(Lo(dsize-1));               { size of block to       }
  wr_dsp_sb16(Hi(dsize-1));               { DSP                    }
  wr_dsp_sb16($91);
  Port[$0A] := dma_ch;                  { release DMA channel        }
end;

30h  direct MIDI input

Command 30h is for the direct recording of MIDI data. Do this as follows:

1. Write 30h to the DSP

2. Read the status port until bit 7 is set

3. Read data from the data port

If bit 7 in the data byte is set, it is a control byte. In this case, steps 2 and 3 are repeated to record the actual
note; otherwise, the byte is the note.

31h  MIDI input through interrupt

Command 31h reads MIDI data triggered by an interrupt.

First, change the Sound Blaster interrupt to your own procedure. Then send the command 31h. If there is
any MIDI data, the Sound Blaster interrupt is triggered, and you can process the MIDI data. Use the
following three steps:

1. Read and store the data byte from the data port

2. Read the status port

3. End the interrupt

32h  direct MIDI input with timestamp

To time MIDI data precisely, capture the data using a timestamp. A timestamp is a 24-bit value that indicates
the number of milliseconds that have passed since the command 32h was triggered. Follow these steps:

1.  Send the command 32h

2.  Check whether bit 7 of the status port is set (has the value 1)

3.  Read the low byte of the timestamp

4.  Read the middle byte of the timestamp



320

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

5.  Read the high byte of the timestamp

6.  Read the MIDI code

Repeat steps 2 through 6 as needed.

33h  MIDI input with timestamp through interrupt

This command works similar to 31h except you must first read the three timestamp bytes using command
33h before you can read the MIDI code.

34h   MIDI UART mode, direct

After you've switched to this mode, use command 34h to read and write MIDI data. You can write directly
to the DSP with this command.

35h  MIDI UAR mode through interrupt

This command is basically the same as 34h, except that it is controlled by an interrupt. Refer to the
description for command 32h for an example of how to apply the command.

37h  MIDI UART through interrupt with timestamp

MIDI data is controlled by this interrupt. This procedure is similar to command 35h, except that you'll also
need to read the three timestamp bytes.

38h  Send MIDI code

Use the following method to send a MIDI code to control one of the connected devices:

1.  Send command 38h

2.  Read the command port until bit 7 is no longer set (=0).

3.  Write the desired MIDI code

40h  Set sample rate

This command sets the sampling rate of the Sound Blaster card. Use this command in any program that uses
digital output. Follow these steps:

 1.  Send the command 40h

 2.  Send the TC constant

This TC constant is calculated differently for normal speed modes and for high speed modes (starting with
SBPro). For normal speed modes use the following formula:

  TC := 256 - (1.000.000 DIV frequency)

And, for high speed mode, use the following formula:

  TC := 65536 - (256.000.000 DIV frequency)

Note than only the upper byte of the TC constant is sent. The lower byte is ignored.



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

321

45h  DMA Multi block continue Sound Blaster 16

Use this command to continue the transmission of a Sound Blaster 16 block rather than using commands
B6h, B9h, C6h, and C9h. In this case, you don't have to retransmit the length and the transfer mode but
instead send the command 45h directly. Another block of the same length as the previously transmitted
block is then sent.

48h  Set block size

Command 48h sets the block size of the sample block transmitted in high speed mode. You'll need to do the
following three steps:

1.  Send the command 48h

2.  Send the low byte of the block size -1

3.  Send the upper byte of the block size -1

74h  output of 4-bit compressed samples using DMA

The same method applies to the output of 4-bit compressed samples as the method described for command
14h.

75h  output of 4-bit comp. samples with reference byte using DMA

See the instructions for command 17h.

76h  output of 2.6-bit compressed samples vie DMA

See command 74h.

77h  output of 2.6-bit comp. samples with reference byte using DMA

See command 75h.

80h  define silence block

Command 80h defines and sends a "silence block". Follow these steps:

1.  Set the Sound Blaster  interrupt to your own routine.

2.  Set the desired sample rate (command 40h)

3.  Send the command 80h

4.  Send the low byte of the block size -1

5.  Send the high byte of the block size -1

The Sound Blaster card will generate an interrupt once the silence block has been completely sent.

91h  8-bit output through DMA in high speed mode

Command 91h plays sample data with a sampling rate up to 44 KHz. You'll need to follow similar steps as
for regular output:



322

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

 1.  Divert the Sound Blaster interrupt to your own routine.

 2.  Initialize the DMA controller.

 3.  Set the desired sample rate using the command 40h.

 4.  Send 48h to set the block size.

 5.  Send the low byte of the block size -1.

 6.  Send the high byte of the block size -1.

 7.  Send the command 91h.

Data will be output immediately after command 91h is sent. At the end of the output the Sound Blaster card
will generate an interrupt.

99h  8-bit input through DMA in high speed mode

Command 99h records data in high speed mode. The only difference is that you must send command 99h
instead of 91h as the last step.

B6h  output 16-bit data using DMA with SB16

Command B6h plays 16-bit samples on a Sound Blaster 16. The method is the same as the conventional
playback through the DMA. However, with SB16 you need not specify whether mono or stereo data is to
be processed through the mixer chip. Instead, information can is passed to the DSP during the initialization.
Perform the following steps:

1.  Change the SB interrupt to your own routine

2.  Initialize the DMA controller

3.  Send command B6h

4.  Send 00h to play mono data or 20h for stereo data

5.  Send the low byte of the block size -1

6.  Send the high byte of the block size -1

Playback will start immediately after you've sent the block length. After the data is played, the Sound
Blaster generates an interrupt.

B9h  Record 16-bit data through DMA on SB16

Command B9h records 16-bit samples. The technique is similar to playback except that you send command
B9h instead of B6h.

C6h  output 8-bit data through DMA on SB16

Command C6h plays 8-bit samples on a Sound Blaster 16. The technique is similar to playback of 16-bit
samples except that you send command C6h.



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

323

C9h  Record 8-bit data through DMA on SB16

Command C9h records 8-bit samples on a Sound Blaster 16.

D0h  Stop DMA

Command D0h pauses data transfer using DMA. You can continue the transfer using command D4h.

D1h  switch loudspeaker on

Command D1h switches on the Sound Blaster loudspeaker.

D3h  switch loudspeaker off

Command D3h switches off the Sound Blaster loudspeaker.

D4h  continue DMA

Command D4h continues DMA transfer that was interrupted by command D0h.

D8h  check loudspeaker status

Command D8h checks the loudspeaker status if a Sound Blaster Pro. Send command D8h and then read
a byte from the DSP. If it has the value 0, the loudspeaker is switched on. If it has the value 1 it is switched
off.

E1h  version inquiry

Command E1h identifies the version number of a Sound Blaster card. Do this as follows:

1.  Send E1h

2.  Read the main version number of the Sound Blaster

3.  Read the sub-version number of your Sound Blaster

Detecting the Sound Blaster card

When you install a Sound Blaster card, the installation program adds the BLASTER environment variable
to your AUTOEXEC.BAT. You can normally specify the Sound Blaster card parameters using this variable.

However, this environment variable may not always be set. In this case, the card through hardware.
Unfortunately, performing such a card-check is not entirely risk-free. Some network cards or S3 chips
installed in your computer system react unpredictably when you write to their registers. Therefore, be very
careful when performing hardware checks. Although you won't physically damage the hardware, it's very
likely you'll crash the computer.

While determining the base port of the Sound Blaster is rather easy, you'll need to use a trick or two to
identify the interrupt. With the DMA channel, however, there's not much you can do other than let the user
specify their channel number if the Sound Blaster is not set to 1 (which is most often the case).

Recognizing the base port of the Sound Blaster is actually quite simple. The possible addresses of the Sound
Blaster range from 200h to 280h in increments of 10h. Check these addresses to see whether a Sound Blaster
is present. If one is present, even at 280h, either there is no Sound Blaster card in the PC (perhaps it's a GUS



324

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

with SBOS) or maybe our detection routine is faulty. This won't happen unless the DMA channel is
incorrect.

To determine whether a Sound Blaster is at a specific address, we'll try to reset the card. If the reset is
successful, then we can conclude that there's a Sound Blaster at this address. Otherwise, we'll need to check
another address.

You've already encountered the two procedures that we'll use to detect a card: Reset_SBCard and
Detect_SBReg .

Once you know the Sound Blaster base address, you can attempt to identify the card's interrupt as follows:
Whenever a block is transferred over the DMA, an interrupt is triggered at the end of the transfer. A small
text procedure transfers a short block using DMA and waits a moment to give the Sound Blaster enough
time to send an interrupt. This procedure is repeated in a loop. For each interrupt to be checked, the
corresponding vector is changed and handled by your procedure. If the procedure is accessed, a flag is set
indicating the interrupt has been identified. If the flag is set, you can jump out of the loop; otherwise you
continue to check the next interrupt.

Procedure detect_sbIRQ  demonstrates this approach. Make
certain to save the original interrupt vectors and to restore them
once the procedure is finished. You may want to turn the
loudspeaker off before the block is transmitted; you probably
won't want to listen to the test data during the routine.

procedure detect_sbIRQ;
{
 This routine detects the IRQ of the SoundBlaster card. To achieve this,
 the routine tests all possible interrupts. For this purpose, short blocks are
 output via DMA. It has found the right one if the routine jumps to the set interrupt at the end of
 output.
}
const possible_irqs : array[1..5] of byte = ($2,$3,$5,$7,$10);
var i : integer;
    h : byte;
begin;
 getintvec($8+dsp_irq,intback);         { Store values !            }•
 port21 := port[$21];
 fillchar(buffer1^,1200,128);
 set_Timeconst_sb16(211);
 wr_dsp_sb16($D3);                      { Speaker off           }
 i := 1;
 interrupt_check := true;
 while (i <= 5) and (not IRQDetected) do
   begin;
     dsp_irq := possible_irqs[i];      { IRQ to be tested           }
     getintvec($8+dsp_irq,oldint);      { Deflect/Bend interrupt       }
     setintvec($8+dsp_irq,@Dsp_Int_sb16);
     irqmsk := 1 shl dsp_irq;
     port[$21] := port[$21] and not irqmsk;
     Sampling_Rate := 211;
     blocksize := 1200;                { test output          }
     dsp_block_sb16(blocksize,blocksize,buffer1,true,false);
     delay(150);
     setintvec($8+dsp_irq,oldint);      { Interrupt back again    }
     port[$21] := Port[$21] or irqmsk;
     h := port[dsp_addr+$E];

PCPCun
de

rg
ro

un
d

The procedure detect_sbIRQ
is part of the

MOD_SB.PAS file
on the companion CD-ROM



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

325

     Port[$20] := $20;
     inc(i);
   end;
 interrupt_check := false;
 wr_dsp_sb16($D1);                      { Speaker back on    }
 setintvec($8+dsp_irq,intback);         { Old values back !!!      }
 port[$21] := port21;
 dsp_rdy_sb16 := true;
end;

Mixing sound data: The mixer chip

The Sound Blaster Pro also includes a mixer chip. This mixer regulates the inputs and outputs of the card.
It also controls the volume level and balance.

The mixer is addressed through the two registers at 2x4h (the mixer's selection port) and 2x5h (the mixer's
data port).

To program the mixer, first select the register to be changed through the selection port. Then read or write
the desired data through the data port.

Let's take a look at the SBPro mixer chip:

Register 00h - Reset

This register returns the default settings of the mixer. Follow these steps:

1.  Write the value 0 to the index register

2.  Wait about 100 ms

3.  Write the value 0 to the data register

Register 02h - DSP volume level

This register sets the volume level of the DSP. Bits 7-5 control the left channel volume level. The volume level
can range from 0 to 7. Bits 3-1 are for the right channel volume level. Do the following to set the desired
volume level:

1.  Write the value 02h to the index register

2.  Determine the volume for the SBPro according the formula:

volume := (left shl 5) + (right shl 1);

3.  Write the volume level to the data register

Register 0Ah - microphone volume level

This register sets the microphone volume level. The value can range from 0 to 3. The microphone level is
adjusted in the following steps:

1.  Write the value 0Ah to the index register

2.  Determine the microphone level according to the formula



326

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

volume := (value shl 1);

3.  Write the volume level to the data register

Register 0Ch - input filter settings

This register controls the settings for recording. You select a filter and an input source. The filter is turned
on if bit 5 is reset, otherwise it's off. Bit 3 controls the transparency level of the filter. It's low if bit 3 is set,
otherwise it's high. Bits 2-1 control the input source. A value of 0 specifies microphone input, 1 specifies CD
ROM input, and 3 specifies line input. You set the registers as follows:

1.  Write the value $0C to the index register.

2.  Determine the setting value:

      If filter on, then  Ew := (1 shl 5)
      If transparency = low, then Ew := Ew + (1 shl 3)
      Ew := Ew + (Quelle shl 1)

3.  Write the setting value to the data register.

Register 0Eh - output filter and stereo selection

This register has two functions. The first selects the output filter. The second function selects mono or stereo
output.

If bit 5 is 1, the output filter is not selected. If bit 5 is 0, the output filter is selected. The register is controlled
with the following steps:

1. Write the value $0Eh to the index register

If with filter, then Reg-Wert := (1 shl 5)
If stereo, then Reg-Wert := Reg-Wert + (1 shl 1)

2. Write the register value to the data register

Register 22h - master volume level

This register sets the overall volume level. Bits 7-5 control the volume of the left stereo channel. The volume
level ranges between 0 and 7. Bits 3-1 control the volume for the right channel. Set the volume levels as
follows:

1.  Write the value 22h to the index register

2. Determine the volume level

      volume = (left shl 5) + (right shl 1)

3.  Write the volume level to the data register

Register 26h - FM volume level

This register sets the volume level of the FM channel. It controls the volume levels the same way as
command 22h. Set the FM channel volume levels as follows:

1.  Write the value 26h to the index register



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

327

2.  Determine the volume level using the formula

volume = (left shl 5) + (right shl 1)

3.  Write the volume level to the data register

Register 28h - CD volume level

This register sets the volume level of the CD channel. It works the same as command 22h. Set the CD channel
volume levels as follows:

1.  Write the value 28h to the index register

2. Determine the volume level for the SBPro:

      volume = (left shl 5) + (right shl 1)

3.  Write the volume level to the data register

Register 2Eh - Line volume level

This register sets the volume level of the line-in channel. It works the same as command 22h. Follow these
steps:

1.  Write the value 2Eh to the index register

2.  Determine the volume level:

      volume = (left shl 5) + (right shl 1)

3.  Write the volume level to the data register

SB16 (ASP) mixer chip registers

Now that you're familiar with the SBPro mixer chip, you'll be able to understand the SB16's improved mixer.
The following tables show an overview of its registers:

Register 48: Left Master Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: Master Volume 0

Bit 4: Master Volume 0

Bit 5: Master Volume 0

Bit 6: Master Volume 1

Bit 7: Master Volume 1

Register 49: Right Master Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: Master Volume 0

Bit 4: Master Volume 0

Bit 5: Master Volume 0

Bit 6: Master Volume 1

Bit 7: Master Volume 1



328

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Register 50: Left Voice Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 1

Bit 7: Volume 1

Register 51: Right Voice Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 1

Bit 7: Volume 1

Register 52: Left MIDI Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: MIDI Volume 0

Bit 5: MIDI Volume 0

Bit 6: MIDI Volume 1

Bit 7: MIDI Volume 1

Register 53: Right MIDI Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: MIDI Volume 0

Bit 5: MIDI Volume 0

Bit 6: MIDI Volume 1

Bit 7: MIDI Volume 1

Register 54: Left CD Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 0

Bit 7: Volume 0

Register 55: Right CD Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 0

Bit 7: Volume 0



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

329

Register 56: Left Line Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 0

Bit 7: Volume 0

Register 57: Right Line Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 0

Bit 7: Volume 0

Register 58: Mic Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 0

Bit 7: Volume 0

Register 59: PC Speaker Volume

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: - - - 0

Bit 5: - - - 0

Bit 6: Volume 0

Bit 7: Volume 0

Register 60: Output Control Register

Bit number Function Default value

Bit 0: Mic 1

Bit 1: CD right 1

Bit 2: CD left 1

Bit 3: Line right 1

Bit 4: Line left 1

Bit 5: - - - 0

Bit 6: - - - 0

Bit 7: - - - 0

Register 61: Left-In Control Register

Bit number Function Default value

Bit 0: Mic 1

Bit 1: CD right 0

Bit 2: CD left 1

Bit 3: Line right 0

Bit 4: Line left 1

Bit 5: MIDI right 0

Bit 6: MIDI left 0

Bit 7: - - - 0



330

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Register 62: Right-In Control Register

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 1

Bit 7: Volume 1

Register 63: Left Input Gain Factor

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Volume 0

Bit 5: Volume 0

Bit 6: Volume 1

Bit 7: Volume 1

Register 64: Right Input Gain Factor

Bit number Function Default value

Bit 0-5: - - - 0

Bit 6: Gain Factor

Bit 7: Gain Factor

Register 65: Left Output Gain Factor

Bit number Function Default value

Bit 0-5: - - - 0

Bit 6: Gain Factor

Bit 7: Gain Factor

Register 66: Right Output Gain Factor

Bit number Function Default value

Bit 0-5: - - - 0

Bit 6: Gain Factor

Bit 7: Gain Factor

Register 67: AGC ON/OFF
(Automatic Gain Control)

Bit number Function Default value

Bit 0: AGC On/Off 0

Bit 1-7: - - - 0



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

331

Register 68: Left Treble

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Treble Control 0

Bit 5: Treble Control 0

Bit 6: Treble Control 1

Bit 7: Treble Control 1

Register 69: Right Treble

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Treble Control 0

Bit 5: Treble Control 0

Bit 6: Treble Control 1

Bit 7: Treble Control 1

Register 70: Left Bass

Bit number Function

Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Bass Control 0

Bit 5: Bass Control 0

Bit 6: Bass Control 0

Bit 7: Bass Control 1

Register 71: Right Bass

Bit number Function Default value

Bit 0: - - - 0

Bit 1: - - - 0

Bit 2: - - - 0

Bit 3: - - - 0

Bit 4: Bass Control 0

Bit 5: Bass Control 0

Bit 6: Bass Control 0

Bit 7: Bass Control 1

Playing VOC Files

Normally VOC files are played using one of the Sound Blaster drivers. For those of you interested, we'll
show you how to program the card directly. This section shows you how to build a small VOC player.

The procedures described here also form the basis for the Sound Blaster MOD player (see Chapter 15).

The player uses the procedures introduced in this chapter. The complete source code is on the companion
CD-ROM. Here, we'll only talk about the most important procedures for VOC playback.



332

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

Let's start with the Init_Voc  procedures. This procedure requires the file name and, if necessary, the path
of the file you wish to play. The file's header is then verified and the first block of the VOC file is interpreted.
The procedures can determine from this block the sample rate and output mode (mono or stereo).

Next, the data from the VOC file is read and transferred to a double buffer. Playback starts by transferring
the buffer contents using DMA. The interrupt procedure handles sending additional data.

Writing a VOC player isn't very difficult. You might consider
adding the capability for the interrupt to handle additional
blocks. However, VOC files are usually recorded as one piece
and are also played back as such.

procedure Init_Voc(filename : string);
const VOCid : string = 'Creative Voice File'+#$1A;
var ch : char;
    IDstr : string;
    ct : byte;
    h : byte;
    error : integer;
    srlo,srhi : byte;
    SR : word;
    Samplinsz : word;
    stereoreg : byte;
begin;
  PLAYING_MOD := false;
  PLAYING_VOC := true;
  VOC_READY   := false;
  vocsstereo := stereo;
  stereo := false;

  assign(vocf,filename);
  reset(vocf,1);
  if filesize(vocf) < 5000 then begin;
    VOC_READY   := true;
    exit;
  end;
  blockread(vocf,voch,$19);
  IDstr := voch.IDstr;
  if IDstr <> VOCid then begin;
    VOC_READY   := true;
    exit;
  end;

  Blockread(vocf,inread,20);
  vblock.ID := inread[2];

  if vblock.ID = 1 then begin;
    vblock.SR := inread[6];
  end;

  if vblock.ID = 8 then begin;
    SR := inread[6]+(inread[7]*256);
    Samplinsz := 256000000 div (65536 - SR);
    if inread[9] = 1 then begin; {stereo}
      if sb16detected then samplinsz := samplinsz shr 1;
      stereo := true;
    end;
    vblock.SR := 256 - longint(1000000 DIV samplinsz);
  end;

PCPCun
de

rg
ro

un
d

The following procedures
are part of the

MOD_SB.PAS file
on the companion CD-ROM



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

333

  if vblock.ID = 9 then begin;
    Samplinsz := inread[6]+(inread[7]*256);
    if inread[11] = 2 then begin; {stereo}
      stereo := true;
      if sbprodetected then samplinsz := samplinsz * 2;
      vblock.SR := 256 - longint(1000000 DIV (samplinsz));
    end else begin;
      vblock.SR := 256 - longint(1000000 DIV samplinsz);
    end;
  end;

  if vblock.SR < 130 then vblock.SR := 166;
  set_timeconst_sb16(vblock.SR);

  blocksz := filesize(vocf) - 31;
  if blocksz > 2500 then blocksz := 2500;
  blockread(vocf,vocb1^,blocksz);

  ch := #0;
  fsz := filesize(vocf) - 32;
  fsz := fsz - blocksz;
  Block_active := 1;
  if fsz > 1 then begin;
    blockread(vocf,vocb2^,blocksz);
    fsz := fsz - blocksz;
  end;

  wr_dsp_sb16($D1);
 lastone := false;

 if not sb16Detected then begin;
   if Stereo then begin;
     stereoreg := Read_Mixer($0E);
     stereoreg := stereoreg OR 2;
     Write_Mixer($0E,stereoreg);
   end else begin;
     stereoreg := Read_Mixer($0E);
     stereoreg := stereoreg AND $FD;
     Write_Mixer($0E,stereoreg);
   end;
 end;
 pause_voc := false;
 dsp_block_sb16(blocksz,blocksz,vocb1,false,true);
end;

procedure voc_done;
var h : byte;
begin;
 lastone := true;
{ repeat until dsp_rdy_sb16;}
 close(vocf);
 Reset_Sb16;
 stereo := vocsstereo;
end;

procedure voc_pause;
begin;
  pause_voc := true;
end;

procedure voc_continue;



334

Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

begin;
  pause_voc := false;
  if block_active = 1 then begin
    dsp_block_sb16(blocksz,blocksz,vocb2,false,true);
    block_active := 2;
  end else begin;
    dsp_block_sb16(blocksz,blocksz,vocb1,false,true);
    block_active := 1;
  end;
end;

{
 **************************************************************************
 ***                                                                    ***
 ***    More SB Routines                                                ***
 ***                                                                    ***
 **************************************************************************
}

procedure dsp_int_sb16; interrupt;
{
 The interrupt generated at the end of a block transfer jumps to this
 procedure. If the last_output flag is not set, new output begins
}
var h : byte;
begin;
  if interrupt_check then begin;
    IRQDetected := true;
  end else begin;
    if PLAYING_MOD then begin;
      h := port[dsp_addr+$E];
      dsp_rdy_sb16 := true;

      if not last_output then begin;
        if bsw then
          dsp_block_sb16(blocksize,blocksize,buffer1,true,false)
        else
          dsp_block_sb16(blocksize,blocksize,buffer2,true,false);
        bsw := not bsw;
        phase_1 := false;
        phase_2 := true;
      end;
    end;

    IF PLAYING_VOC then begin;
      h := port[dsp_addr+$E];
      if (fsz > blocksz) and not lastone then begin
        lastone := false;
        if block_active = 1 then begin
          if not pause_voc then
            dsp_block_sb16(blocksz,blocksz,vocb2,false,true);
          blockread(vocf,vocb1^,blocksz);
          fsz := fsz - blocksz;
          block_active := 2;
        end else begin;
          if not pause_voc then
            dsp_block_sb16(blocksz,blocksz,vocb1,false,true);
          blockread(vocf,vocb2^,blocksz);
          fsz := fsz - blocksz;
          block_active := 1;
        end;
      end else begin;



Experience Sonic Worlds: The Sound Blaster Card

Chapter 12

PCPC
underground

335

        if not lastone then begin;
          if block_active = 1 then begin
            if not pause_voc then
              dsp_block_sb16(blocksz,blocksz,vocb2,false,true);
            lastone := true;
          end else begin;
            if not pause_voc then
              dsp_block_sb16(blocksz,blocksz,vocb1,false,true);
            lastone := true;
          end;
        end else begin;
          dsp_rdy_sb16 := true;
          wr_dsp_sb16($D0);
          VOC_READY := true;
        end;
      end;
    end;
  end;
  Port[$20] := $20;
end;





337

13. Sound Support For Your Programs

Virtually all demos and computer games being produced have sound accompaniment - in fact, some of the
most successful games also have great sound. In this chapter we'll describe some of the important aspects
of sound programming and the various sound file formats.

We'll also present MOD players for the two most popular sound cards, the Sound Blaster and the GUS
sound card from Gravis UltraSound on the companion CD-ROM.

The MOD File Format

The MOD file format, developed originally for the Commodore Amiga, was introduced to the PC world
with the Sound Blaster card. This format is used for digital music using relatively modest storage
requirements.

A MOD file is a series of natural sound samples which can be replayed as various instruments. The sampling
method produces more realistic sound than the Sound Blaster’s FM synthesis.

The MOD format

In the early days of MOD format development each programmer tended to "do his own thing." Therefore,
several different types of the MOD format exist today. We’ll talk about what is usually regarded as the
standard format. This MOD file format is divided into three parts:

1. The MOD header

The header is 1084 bytes long and contains information about the sound clip that follows:

BYTE 0-19 Song name

The first 20 bytes of the header contain the song name. It's stored as a C-string in ASCII format (the last byte
must be zero).

BYTE 20-41 First instrument name

These 22 bytes contain the name of the first instrument. It is stored as a C-string in ASCII format (the last
byte must be zero).

Sound Support 
For Your 

Programs

Chapter 13

PCPC
underground



338

Sound Support For Your Programs

Chapter 13

PCPC
underground

BYTE 42-43 First instrument length

These two bytes contain the length of the first instrument in words. The value must be multiplied by 2 to
obtain the number of bytes. Because the MOD format was first developed on the Amiga, the high and low
bytes must be reversed when using MOD files on the PC. This is because the 68000 processor uses the
sequence high/low as opposed to the low/high sequence of 80x86 processors.

BYTE 44 Fine tune

Only the lower four bits are used. This field represents a value from -8 to 8 for fine tuning the instrument.
This option is seldom used.

BYTE 45 Volume

This byte contains the default volume of the instrument. Acceptable values range from 0 to 64.

BYTE 46-47 Loop start

Loop (repeat) MOD file playback. These two bytes indicate start of a loop. These bytes are reversed high/
low.

BYTE 48-49 Loop length

These two bytes indicate the length of the loop, high/low.

The information in bytes 20 through 49 are repeated for additional instruments (30 in the new format, 14
in the old). We assume the new MOD format here.

BYTE 950 Song length

This byte indicates the length of the song in patterns (the actual song length, not the number of patterns
defined).

BYTE 951 CIAA speed

This byte is Amiga-specific and is not used for PC applications.

BYTE 952-1079 Song arrangement

Each of the 128 bytes can have a value from 0 to 63, designating the pattern to be played. From these 128
bytes and the song length, you derive the song arrangement.

BYTE 1080-1083 Ident

These four bytes contain a MOD-file identifier. The values M.K. and FLT4 indicate a 4-voice MOD file with
31 instruments. PC files may also contain newer formats, such as 6CHN for 6-voice and 8CHN for 8-voice
MOD files.



339

Sound Support For Your Programs

Chapter 13

PCPC
underground

2. The MOD patterns

BYTE 1084-2107

These bytes contain the first pattern. Each note of a pattern consists of four bytes. A pattern has 64 lines of
four notes per line, yielding a total pattern length of 1024 bytes.

To determine the number of patterns, perform the following: First, subtract the header length from the size
of the MOD file. Then add the lengths of the individual samples and subtract this total from the file size.
Divide the remainder by the pattern size (1024) to arrive at the number of patterns. Now you can read the
patterns in without a problem.

3. The MOD sample data

BYTE n1-nx

After the patterns, you’ll find the sample data in signed raw-data format. This 8-bit format can have values
can ranging from -127 to 128. However, a PC defines the range as 0 to 255 so the sample data must be
converted prior to output.

The format of a MOD note

Although the format of a MOD note may at first seem complicated, it’ll become clearer as you continue
reading.

BYTE 1

The upper four bits (7-4) are the high bits of the instrument number. The lower four bits (3-0) are part of the
pitch.

BYTE 2

Byte 2, with bits 3-0 of Byte 1, indicate the pitch (in samples per minute).

The following table shows the standard sample rates:



340

Sound Support For Your Programs

Chapter 13

PCPC
underground

$036 B-4 $071 B-3 $0E2 B-2 $1C5 B-1 $386 B-0

$039 A#4 $078 A#3 $0F0 A#2 $1E0 A#1 $3C1 A#0

$03C A-4 $07F A-3 $0FE A-2 $1FC A-1 $3FA A-0

$040 G#4 $087 G#3 $10d G#2 $21A G#1 $436 G#0

$043 G-4 $08F G-3 $11d G-2 $23A G-1 $477 G-0

$047 F#4 $097 F#3 $12E F#2 $25C F#1 $4BB F#0

$04C F-4 $0A0 F-3 $140 F-2 $280 F-1 $503 F-0

$055 E-4 $0AA E-3 $153 E-2 $2A6 E-1 $54F E-0

$05A D#4 $0B4 D#3 $168 D#2 $2D0 D#1 $5A0 D#0

$05F D-4 $0BE D-3 $17d D-2 $2FA D-1 $5F5 D-0

$065 C#4 $0CA C#3 $194 C#2 $328 C#1 $650 C#0

$06B C-4 $0D6 C-3 $1AC C-2 $358 C-1 $6B0 C-0

BYTE 3

The upper four bits (7-4) are the low bits of the instrument number. The lower four bits contain the effect
command.

BYTE 4

Byte 4 contains the operands of the effect command.

Effects

Effect 00 Arpeggio (two operands)

The arpeggio effect causes a note to be played as a sequence of three different pitches, rather than one
continuous pitch. The first parameter indicates the difference in half-steps between the first pitch and the
second pitch; the second parameter indicates the difference in half-steps between the second pitch and the
third pitch.

Effect 01 Portamento Up (one operand)

This effect causes a continuous increase in pitch. The operand determines the rate of increase.

Effect 02 Portamento Down (one operand)

This effect causes a continuous decrease in pitch. The operand determines the rate of decrease.

Effect 03 Portamento To Note (one operand)

Similar to Effects 01 and 02, but includes a target pitch. The operand determines the rate of change.



341

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 04 Vibrato (two operands)

Creates a vibrato effect. The first operand indicates the rate of the vibrato and the second operand indicates
its depth.

Effect 05 Portamento To Note + Volume String (two operands)

This combines the two effects Portamento To Note and Volume Sliding. The upper part of the operand (Xx)
gives the portamento rate; the lower part (xX) gives the volume reduction rate.

Effect 06 Vibrato + Volume String (two operands)

This combines the two effects Vibrato and Volume Sliding. The first operand (Xx) gives the rate of the
vibrato; the second operand (xX) gives the volume reduction rate.

Effect 07 Tremolo (two operands)

The tremolo effect is very similar to the vibrato but the vibration involves a change of volume rather than
pitch. Since this technique is frequently used to simulate a vibrato, the playback routines for the two effects
are often the same. The first operand (Xx) gives the tremolo rate; the second operand (xX) gives its depth.

Effect 08 Not yet defined

This is the only undefined command. It is available for use in custom routines.

Effect 09 Set Sample Offset (one operand)

This effect lets you play a sample from a given offset position within the sample data, rather than from the
beginning. The value of the operand refers to the first two digits of the sample length.

Effect 10 Volume Sliding (one operand)

This effect increases or decreases the volume of an instrument. An operand of the type n0 increases the
volume at rate n; an operand of the type 0n decreases the volume at rate n.

Effect 11 Position Jump (one operand)

Interrupts playback of the current pattern and continues with the pattern specified by the operand. The
operand gives the line where output should be resumed.

Effect 12 Set Note Volume (one operand)

This effect sets the volume of a note. The value of the operand is a volume setting from 0 to 63.

Effect 13 Pattern break (no operands)

This effect interrupts playback of the current pattern and continues with the next pattern.



342

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 14 Various commands (two operands)

Effect 14 has several subfunctions, each producing a different effect. The first operand specifies the
subfunction; the second serves as a parameter for the subfunction.

Effect 14.1 Fineslide Up

This effect is similar to the Portamento Up. Instead of a continuous rise in pitch, however, there is just one
initial slide. The new pitch is sustained after this initial slide.

Effect 14.2 Fineslide Down

This effect works like Effect 14.1, except the pitch slides down instead of up.

Effect 14.3 Glissando Control

Glissando works with the Portamento commands. If Glissando is enabled, the change in pitch occurs in half-
step intervals instead of a continuous gradient. The value 1 in the operand enables the effect, 0 disables it.

Effect 14.4 Vibrato Waveform

This effect lets you select the waveform for a vibrato. The default operand value of 0 designates a sine wave.
Other values are 1 for continuously decreasing, 2 for a rectangular wave and 3 for a random form.

Effect 14.5 Set Finetune

This function lets you change the Finetune value, as indicated by the following table:

Finetune: + + + + + + + 0 -1 -2 -3 -4 -5 -6 -7 -8

Value: 7 6 5 4 3 2 1 0 15 14 13 12 11 10 09 08

Effect 14.6 Pattern Loop

This effect lets you loop a specified part of a pattern. The parameter 0 indicates the loop start; each
subsequent parameter (n) plays the loop from the start position to the current position n times, before
continuing.

Effect 14.7 Tremolo Waveform

This effect lets you select the waveform for a tremolo. The default operand value of 0 designates a sine wave;
other values are 1 for continuously decreasing, 2 for a rectangular wave and 3 for a random form.

Effect 14.10 Fine Volume Sliding Up

This effect produces an initial volume increase. The new volume is sustained after this initial volume
increase. It’s similar to normal volume sliding, but the increase in volume is a one-time change rather than
a continuous change.



343

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 14.11 Fine Volume Sliding Down

This effect is like Effect 14.10, but the volume slides down instead of up.

Effect 14.12 Note Cut

This effect shortens the sounding of a note. The operand gives the number of ticks for which the note is
sustained. The Set Speed command determines the normal speed in ticks, where F06 means six ticks, for
example. The value 4, in that case, sustains the note for 2/3 its normal time.

Effect 14.13 Note Delay

This effect produces a delay before sounding a note. The operand gives the delay time in ticks. The technique
is useful for creating echo effects.

Effect 14.14 Pattern Delay

This effect delays the sounding of a pattern for the amount of time specified in the operand.

Effect 15 Set Speed (one operand)

This effect sets the playback speed for the MOD file. Valid values for the operand range from 0 through 31.

The 669 format

In addition to the standard MOD format, there are several others, most of which have been established by
the leading demo crews. The 669 format comes from Renaissance. It resembles the MOD standard, but is
somewhat more compact. Like the standard format, it has three parts:

The 669 header

Unlike the standard fixed-length header, the 669 header is variable. Its length depends on the number of
samples defined.

BYTE 0-1 Ident

These two bytes identify the file as a 669 file. They contain the value $6669.

BYTE 2-110 Song message

These 108 bytes contain informational text about the song, in three lines of 36 characters each. This feature
is unique to the 669 format.

BYTE 111 Number of samples

This byte contains the number of samples stored. Valid values are from 0 to 64, allowing a maximum sample
count of double that of the standard MOD file.



344

Sound Support For Your Programs

Chapter 13

PCPC
underground

BYTE 112 Number of patterns

This byte contains the number of patterns stored. It is a convenient addition and eliminates the need to
derive the number by calculation.

BYTE 113 Repeat start

This byte indicates the pattern where a repeat loop begins.

BYTE 114-242 Song arrangement

This 128-byte array contains the song arrangement. Each entry acts as an index for the pattern to be played.
Valid values are from 0 to 128.

BYTE 243-371 Tempo list

This 128-byte array contains the tempos at which the corresponding patterns should be played.

BYTE 372-500 Break Position List

This 128-byte array contains the break positions within the individual patterns. An entry in the list indicates
the line where pattern processing should end. Valid values are from 1 to 64.

BYTE 501-501+(Sample number *$19) Sample information

The next section contains the sample information. The length of the section depends on the number of
samples declared. The record length is $19 bytes for each sample. It has the following structure:

  13 bytes File name of the instrument as an ASCII string
   1 dword (= longint) Instrument length
   1 dword Start position of instrument loop, from Inst.-Start
   1 dword End of instrument loop, from Inst.-Start

The 669 pattern

BYTE 501+(Sample number *$19)

BYTE 501-501+(Sample number *$19)+(Pattern number*$600) Sample information

The next part defines the individual patterns. A pattern consists of 64 lines of 8 notes each. A note is 3 bytes
long, giving a total length of 1536 bytes per pattern. The information in these three bytes is packed and
crosses byte boundaries. The individual bits have the following meanings:

BYTE 0 BYTE 1 BYTE 2

76543210 76543210 76543210

Byte 0, Bit 7 to Byte 0, Bit 2 Note value

These 6 bits designate the note to be played. You can compute it with the following formula:



345

Sound Support For Your Programs

Chapter 13

PCPC
underground

NOTE VALUE = (12*Octave)+Note

The note D1 therefore has the note value 12*1+2 = 14. Five octaves can be addressed in this way.

Byte 0, Bit 1 to Byte 1, Bit 4 Instrument number

These six bits give the number of the instrument to be played.

Byte 1, Bit 3 to Byte 1, Bit 0 Volume

These four bits give the volume of the note to be played. The resulting range of only 16 possible volume
levels is normally quite adequate, since the ear can barely distinguish finer differences.

Byte 2, Bit 7 to Byte 2, Bit 4 Command

These four bits give the command to be executed. The following values are used:

Value Description Value Description

0 Portamento Up 3 Pattern Break

1 Portamento Down 4 Vibrato

2 Portamento To Note 5 Set Speed

Note the command operand for the vibrato can be interpreted according to the following formula:

VIBRATO VALUE = Operand SHL 4 + 1.

Byte 2, Bit 3 to Byte 2, Bit 0 Command operand

The last four bits store the operand values for the effect.

Special values

The following byte combinations have a special meaning:

Byte 0 = $FE: No note, only volume change

Byte 0 = $FF: No note and no volume change

Byte 2 = $FF: No command

The Scream Tracker file format

Another very popular format is the Scream Tracker format from Future. Unfortunately, information about
this format is difficult to obtain. In Scream Tracker format, a distinction is made between songs and
modules, based on whether the instruments are also saved. A module includes the instruments, while a
song does not. Since only the module is in widespread use, we consider this form primarily in our
discussion.



346

Sound Support For Your Programs

Chapter 13

PCPC
underground

The STM header

The header of an STM file created with Scream Tracker V2.24 is as follows:

BYTE 0-19 Song name

The first 20 bytes contain the song name in ASCIIZ format. You use Array of char to reference the name for
processing.

BYTE 20-27 Tracker name

These 8 bytes contain the name of the Tracker that created the song. The string is not 0-terminated.

BYTE 28 Version

This byte contains the version number, which is presently $1A.

BYTE 29 File type

This byte indicates the file type, 1 for a song (without samples), 2 for a module (with samples).

BYTE 30-32 Version number

These two bytes contain the version number, with the main number in Byte 30 and the subversion number
in Byte 31.

BYTE 32 Tempo

This byte indicates the tempo at which the file should be played.

BYTE 33 Pattern count

This byte contains the number of patterns stored, which is needed later for loading the patterns. You don’t
have to compute it like you do for a standard MOD file.

BYTE 34 Global volume

This byte gives the volume at which the file should be played. Valid values are from 0 to 63.

BYTE 36-47 Reserved

Bytes 36 through 47 are reserved for internal use by the Scream Tracker program.

BYTE 48-80 Instrument number 1

The next 32 bytes contain data for the first instrument. The instrument data is divided as follows:

BYTE 48-59 Instrument name

Bytes 48 through 59 contain the name of the first instrument as ASCII text.



347

Sound Support For Your Programs

Chapter 13

PCPC
underground

BYTE 60 Instrument name zero

Byte 60 is always 0 and terminates the instrument name (ASCIIZ).

BYTE 61 Instrument drive

This byte indicates the drive where the instrument is stored. Songs (which do not include samples) require
this information.

BYTE 62-63 Reserved

These two bytes are reserved and are used internally for the segment address.

BYTE 64-65 Instrument length

These two bytes give the length of the instrument, expressed in bytes.

BYTE 66-67 Loop start

Bytes 66 and 67 give the start position of the loop within the sample data where the instrument can be
played.

BYTE 68-69 Loop end

These two bytes contain the end position of the loop within the sample data.

BYTE 70 Volume

This byte gives the default volume of the instrument. The value can be from 0 to 63 and can be overwritten
at run time.

BYTE 71 Reserved

This byte is reserved.

BYTE 72-73 Speed for C1

These two bytes are supposed to contain the speed for C1. They usually contain the value 0.

BYTE 74-77 Reserved

These four bytes are reserved for internal use.

BYTE 78-79 Segment address / length in paragraphs

These bytes contain the internal segment address in a song. In the much more common module, they contain
the length in paragraphs (length in bytes DIV 16). The same information now repeats for the remaining 30
instruments. Then the structure continues as follows:



348

Sound Support For Your Programs

Chapter 13

PCPC
underground

BYTE 1028-1091 Arrangement

This 64-byte array contains the arrangement of the piece. Each entry indicates the number of the
corresponding pattern.

BYTE 1092-2115 Pattern 1

Bytes 1092 through 2115 contain the first pattern. It consists of 64 lines of 4 notes each. A note contains 4
bytes. The resulting pattern size is therefore 1024 bytes (64*4*4). Notes are constructed as follows:

BYTE 0, Bits 7 to 4 Octave

These four bits contain the octave number of the note to be played.

BYTE 0, Bits 3 to 0 Note

This is the note to be played; 0 = C, 1 = C#, 2 = D etc.

BYTE 1, Bits 7 to 3 Instrument

These five bits give the number of the instrument to be played.

BYTE 1, Bit 2 to BYTE 2, Bit 4 Volume

These bits contain the current volume for the instrument.

BYTE 2, Bits 3 to 0 Effect

These four bits contain the effect number. Effects are numbered as explained in the standard MOD-file
layout.

BYTE 3 Operands

This byte contains the effect operands. Subsequent patterns follow the same structure. There are as many
patterns as indicated by the pattern count in the header. If the file is a module, the sample data follows the
patterns. Its length is also given in the header.

The S3M format

The S3M format is the one currently used by Future. It originated with Scream Tracker 3.0 and is one of the
most flexible sound formats. AdLib pieces as well as sample modules can be stored in this format. Again,
a distinction is made between modules, which include samples, and songs, which contain only the
arrangement.

The S3M header

BYTE $00-$1B Song name

The header begins with the name of the piece, terminated in 0.



349

Sound Support For Your Programs

Chapter 13

PCPC
underground

BYTE $1C Ident $1A

This byte always contains the value $1A. It is for identification only and has no other function.

BYTE $1D File type

This indicates whether the file is a module or a song. The value 16 indicates a module; the value 17 indicates
a song.

BYTE $1E-$1F Not used

BYTE $20-$21 Arrangement length

This word contains the variable arrangement length. It must be an even number.

BYTE $22-$23 Number of instruments

This word contains the number of instruments used in the piece.

BYTE $24-$25 Number of patterns

This is the number of patterns defined. The value is also needed for determining the length of the pattern
parapointer.

BYTE $26-$27 Flags

The flags affect the initialization of various effects. The bit meanings are as follows:

Bit Meaning Bit Meaning

1 ST2 vibrato 2 ST2 tempo

3 Using Amiga sliding 4 Optimize 0 volumes

5 Observe Amiga boundaries 6 Enable filter and sound effects

BYTE $28-$29 Version information

These two bits contain the version information. The Tracker number is in the upper four bits, and the version
number is in the lower twelve. The value for Scream Tracker 3.0 is $1300.

BYTE $2A-$2B Version of file format

There are currently two versions of the file format. The value 1 denotes the original format. The value 2
indicates the samples are in unsigned format, as used by the PC.

BYTE $2C-$2F Ident

These bytes contain the identifier ‘SCRM’, indicating the Scream Tracker format.



350

Sound Support For Your Programs

Chapter 13

PCPC
underground

Byte $30 Master volume

This byte contains the initial master volume.

Byte $31 Start speed

This byte contains the initial speed (Command A).

Byte $32 Start temp

This byte contains the initial tempo (Command T).

Byte $33 Master multiplier

The value of the master multiplier is contained in the lower four bits. You use AND $0F to evaluate it. A
value <> 0 in the upper four bits indicates that stereo is used.

Byte $34-$3F Not used

Byte $40-$5F Channel settings

These 32 bytes contain the settings for up to 32 channels. Each byte is interpreted as follows:

Value Meaning Value Meaning

0 Sample on left channel (S1) 1 Sample on left channel (S2)

2 Sample on left channel (S3) 3 Sample on left channel (S4)

4 Sample on right channel (S5) 5 Sample on right channel (S6)

6 Sample on right channel (S7) 7 Sample on right channel (S8)

8 AdLib Melody voice, left (A1) 9 AdLib Melody voice, left (A2)

10 AdLib Melody voice, left (A3) 11 AdLib Melody voice, left (A4)

12 AdLib Melody voice, left (A5) 13 Adlib Melody voice, left (A6)

14 AdLib Melody voice, left (A7) 15 AdLib Melody voice, left (A8)

16 AdLib Melody voice, left (A9) 17 AdLib Melody voice, right (B1)

18 AdLib Melody voice, right (B2) 19 AdLib Melody voice, right (B3)

20 AdLib Melody voice, right (B4) 21 AdLib Melody voice, right (B5)

22 AdLib Melody voice, right (B6) 23 AdLib Melody voice, right (B7)



351

Sound Support For Your Programs

Chapter 13

PCPC
underground

Value Meaning Value Meaning

24 AdLib Melody voice, right (B8) 25 AdLib Melody voice, right (B9)

26 AdLib Basedrum, left (AB) 27 AdLib Snare, left (AS)

28 AdLib Tom, left (AT) 29 AdLib Cymbal, left (AC)

30 AdLib Hihat, left (AH) 31 AdLib Basedrum, right (BB)

32 AdLib Snare, right (BS) 33 AdLib Tom, right (BT)

34 AdLib Cymbal, right (BC) 35 AdLib Hihat, right (BH)

> 128 Not active

Bytes $60-($60+Arrangement length) Arrangement

Here again is the arrangement of the piece. The entry values indicate the patterns to be played.

Bytes xxxx Instrument parapointers

Following the arrangement you’ll find the parapointers (paragraph pointers) to the individual instruments.
The value of a parapointer is the offset from the beginning of the header DIVided by 16. Each parapointer
is one word long, so the total length of the instrument parapointers is (Number of instruments) * 2.

Bytes xxxx Pattern parapointers

After the instrument parapointers are the parapointers to the individual patterns. They indicate where each
pattern begins within the file. The total length of the pattern parapointers is (Number of patterns) * 2.

The S3M patterns

The length of a pattern is determined as follows:

Number of channels used * 320 bytes per channel

The notes of the individual lines are stored consecutively. Each note consists of five bytes. Their meanings
are as follows:

Byte Meaning

Byte 0 Note, Bit7-4 = Octave
         Bit4-0 = Note
         255 = Empty
         254 = Key Off (for AdLib)

Byte 1 Instrument #, 255 = Empty

Byte 2 Volume, 255 = Empty

Byte 3 Command, 255 = Empty

Byte 4 Command parameters



352

Sound Support For Your Programs

Chapter 13

PCPC
underground

The S3M instruments

The S3M format distinguishes between two types of instruments. One type is the sample instrument that
we have already seen with the standard MOD file. The other type supported is the AdLib instrument. Both
types start with a $40-byte header. This is followed by the sample data for sample instruments. We’ll look
first at the structure of the header for a sample instrument:

Byte $0 Instrument type

The value 1 in this byte indicates a sample instrument. Otherwise the instrument is an AdLib instrument.

Byte $1-$C DOS file name

The name of the sample file is stored in these bytes. This is not a 0-terminated string!

Byte $D-$F Storage segment

This field contains the paragraph position (Offset DIV 16) of the sample data.

Byte $10-$13 Sample length

This double word contains the length of the sample data. We recommend checking whether the length
exceeds the Word area and if necessary, working with Word variables.

Byte $14-$17 Loop start

This double word contains the loop start position within the sample data.

Byte $18-$1B Loop end

This double word contains the loop end position within the sample data.

Byte $1C Volume

This byte contains the default volume of the instrument.

Byte $1D Disk

This byte indicates the disk where the instrument resides.

Byte $1E Pack type

This byte tells whether the sample data is packed. The value 0 indicates unpacked 8-bit data; 1 indicates the
use of the DP30ADPCM1 packing algorithm.

Byte $1F Flags

The flags give additional information about the sample data. If Bit 1 is set, looping is enabled. Bit 2 indicates
stereo data, and Bit 3 denotes a 16-bit sample in Intel format.



353

Sound Support For Your Programs

Chapter 13

PCPC
underground

Byte $20-23 C2 Speed

This value is used for tuning the instrument. It indicates the speed at which the sample must be played to
obtain the tone C2.

Byte $24-$27 Not used

Byte $2B-$29 Position in GRAVIS RAM

This word is used only for Scream Tracker 3.0. It gives the position of the sample in the Gravis UltraSound
RAM DIV 32.

Byte $2a-$2f Unknown

Byte $30-$4B Instrument name

This is the name of the instrument as a 0-terminated ASCII string of up to 28 characters.

Byte $4C-4F Ident

This is the identifier "SCRS" for Scream Tracker Sample.

Now we look at the AdLib instruments. The header is much the same as that of the sample instruments:

Byte 0 Instrument type

This gives the instrument type, as follows:

Value Meaning

2 AdLib Melody

3 AdLib Basedrum

4 AdLib Snare

5 AdLib Tom

6 AdLib Cymbal

7 AdLib Hihat

Byte $1-$C DOS file name

The DOS file name of the AdLib instrument is found here.

Byte $D-$F Empty bytes

Bytes $D through $F contain the value 0



354

Sound Support For Your Programs

Chapter 13

PCPC
underground

Byte $10-$1B FM synthesis table

Bytes $10 through $19 describe first the modulator and then the carrier for the FM synthesis. Unfortunately,
some of the information given here is technically incomplete.

The byte values derive from the following formulas:

Bytes $10 & $11 = (Frequency multiplier) + (Sustain * 32) + (Pitch vibrato * 64) + (Volume vibrato
* 128)
Bytes $12 & $13 = (63 - Volume) + ((Levelscale AND 1) * 128) + ((Levelscale AND 2) * 64)
Bytes $14 & $15 = (Attack * 16) + decay
Bytes $16 & $17 = ((15 - Sustain) * 16) + Release
Bytes $18 & $19 = Wave select
Byte $1A = (Modulation feedback * 2) + Additive sythesis
Byte $1B = Not used
Byte $1C - Volume

This byte contains the default volume for the instrument.

Byte $1D Disk

This byte gives the disk where the instrument resides.

Byte $1E-$1F Not used

Byte $20-$23 C2 Speed

This value is used for tuning the instrument. It indicates the speed at which the instrument must be played
to obtain the tone C2.

Byte $24-$2F Not used

Byte $30-$4B Instrument speed

This contains the name of the instrument as a 0-terminated ASCII string of up to 28 characters.

Byte $4C-$4F Ident

This contains the identifier "SCRI" for Scream Tracker Instrument.

A MOD Player For The Sound Blaster Card

One way to bring your programs to life is to add sound. The easiest approach is to use a VOC player. With
up to 16,000 bytes of data to process per second, however, a 2.5 minute demo uses 2.3 Meg of sound data.
Even with looping and compressing data, the size cannot be reduced sufficiently to make VOC files
practical except for CD-ROM applications.

We'll need an alternative way to produce high quality sound but which has a much smaller storage
requirement. Although a MOD file is acceptable, these players are highly hardware-dependent. In this
section we'll look at a player for the Sound Blaster card. The next section describes a player for the Gravis
UltraSound, which is much better suited to this purpose.



355

Sound Support For Your Programs

Chapter 13

PCPC
underground

The Sound Blaster is the most widely used sound card. This card is remains a "standard", and although it
may take some work, you'll want to support it as much as your CPU speed and storage space allow.

You'd think that playing MODs on the Sound Blaster should be trouble-free. After all, sample output using
DMA is much simpler and takes virtually no computing time. Unfortunately, this is only partly true. Let's
look at the Amiga where the MOD format originated. It has four DACs for sound output. MOD playing was
trouble-free with these four channels because the only manipulations needed were for volume and
frequency control. However, it's different for the Sound Blaster. It has only one DAC (two with the stereo
models). As a result, we can’t simply "play" the data...everything has to be calculated. And with an output
frequency of 22 KHz, this means 22,000 "pieces" of data per second.

Therefore, we'll need a truly fast player to handle background sound for a graphics demo without affecting
its performance. This presents us with the next limitation: Because of speed requirements, we’re forced to
use fixed-point arithmetic, while the 16-bit register width of a 286 cannot accommodate this requirement
for 24-bit resolution. True, a few tricks can get us around this problem, but they take extra resources and
impact performance accordingly. Since the 286 is a "dinosaur", this approach is really not justified.

Writing the player in Turbo Pascal, the language in which many demos are programmed, brings up the next
question, namely, how to effectively handle 32-bit instructions. Unfortunately, 32-bit code is not supported
in Turbo Pascal before Version 8, and native Pascal is much too slow. Our only choice is to incorporate an
external assembler module. This can give us all the capabilities and the complete instruction set of the 386
processor.

Basic principles of a MOD player

Let's see how a MOD player works. How do we get different pitches?

The data in a MOD file represents the changing amplitude of the sampled oscillation. On the Amiga, this
data takes on values from -128 to 127, while the corresponding PC range is from 0 to 255. The value for a
period of silence, when no oscillation is present, is 0 on the Amiga and 127 on the PC. To convert a sample
from Amiga to PC format, we increase each value by 127. By storing only the amplitude, we simplify the
task. To produce differences in pitch, we use a principle from the days of the old record player. If you play
a recording too fast, it sounds too high. Played too slow, a soprano becomes a bass. This is exactly what we
do with the samples. Controlling the speed of playback controls the pitch.

In practice we cannot constantly adjust the sample rate for the Sound Blaster card. This works for a single
voice, but not for the four or more voices that a MOD file is likely to contain. So, we’ll need to use a little
trick. Suppose we play our MOD file at a frequency of 16 KHz. This means that if we play a 16 KHz sample,
we will hear a tone at its original pitch. We simply advance byte by byte in our sample to output a total of
16000 bytes. However, now if we want to play the sample at 32 KHz, we have to double the speed. This
means that we can no longer process all the bytes in the time available, so we take only every other byte.
To play at 8 KHz, we have extra time available, so we play each byte twice.

Now for a little music theory: For any half-step interval, the frequency ratio is always the 12th root of 2.
Consequently, to play a tone that is one half-step higher than its predecessor, the playback rate must be
1.059463094 times as fast. To go a half-step lower, the rate is reduced by a factor of 0.943874312. Our program
will have to make use of this information. But instead of performing the necessary calculations for each
interval during execution, we reference the appropriate values from a predefined table. The factor by which
the values differ is always the 12th root of 2.



356

Sound Support For Your Programs

Chapter 13

PCPC
underground

Volume is the next characteristic to consider. We've already mentioned the sample values represent
oscillation amplitudes. An amplitude of 0 (or 127) denotes silence and the stronger the amplitude, the
louder the sound. The volume values for the voices in a MOD file range from 0 to 63. So we simply take the
sample byte and multiply it by the volume, then divide by the maximum volume of 64. Since 64 equals 26,
the division can be performed by a SHR 6 instruction, which saves 13 clock cycles each time.

A vibrato effect can be produced by manipulating the volume. Here again we read values from a table and
apply them to the base volume to alternately lower or raise it. A similar effect can be obtained by periodically
alternating the sample speed. You can choose whichever method you prefer. The volume method requires
slightly less computing time (you work only with bytes), but it sounds a little less clean. It can also lead to
problems when used with such other effects as volume sliding.

Mixing sound data: Building a mixing procedure

Now that we understand a little sound theory, let's turn our attention to the player program. The main work
is performed by a mixing procedure. For a single output byte, this procedure must be executed once for each
active voice. If a voice is inactive, we can skip this processing or call a dummy procedure. The following
illustration shows how the mixing procedure looks schematically:

Yes

Yes No

No

Voice position < End position for voice ?

Does voice loop?

Add to mixbuffer

Increment voice position by Incfactors

Load byte from sample

Adjust value for correct volume

Position of 
start value

Load mixingproc to 
emptyproc and emptybyte

Output of mixing procedure

At the start of the procedure, we check to see if the end of the voice has been reached. Rather than looking
for the very end, we look for a value just before it. The few bytes that are lost will not be noticed. Otherwise,
we almost always overshoot the exact end which will mix extraneous data into our output, producing a
clicking noise.

If the end of the voice has not been reached, we can proceed with normal processing. If it has been reached,
we must check to see if the voice loops. If so, we reposition the voice to the start of the loop. Otherwise, we
load an empty byte (amplitude = 0) and call the dummy procedure we've mentioned already instead of the
mixing procedure.

For normal processing, we get a new byte from the sample. Next we adjust the value as described to arrive
at the correct volume. Now the byte can be added to the mixer buffer. The buffer is then divided by the
number of voices to interpolate the correct overall volume.



357

Sound Support For Your Programs

Chapter 13

PCPC
underground

Finally, to advance to the next position within the sample, we increment the current position by the value
of Inc . The position and the Inc factor should be 32-bit values, giving the computation a precision of 16.16
bits.

The Sound Blaster MOD player

Developing a MOD player is a major undertaking. Even experienced programmers can be intimidated by
such a time-consuming and error-prone project. To prevent these problems, we've included a fairly flexible
unit called MOD_SB which you can incorporate into your programs.

One way to "drive" the program is by timer interrupts. You call the procedure 50 times per second using
this method. Output is controlled by the SB interrupt. This is the most efficient solution and works on any
card that can handle the SB DMA transfer.

An alternative method is by polling. Computation occurs here at a precise time (as in the case of a retrace)
and not periodically. This method is less efficient, since the SB interrupt may execute before the sound data
computation is ready. Still there are areas in a demo that require polling, so we include it although the
quality is not as good.

The unit is quite fast. To output an 8-voice MOD file at 22 KHz on a 486DX-33, it requires less than 15%
computing time. For a 4-voice MOD file, this figure drops to about 13%. Depending on how computation-
intensive your program is, you can use either 4-voice or 8-voice files. If you don’t use all channels of an 8-
voice file, the output will be correspondingly faster.

As a bonus, the unit also contains a routine to play VOC files. So here's a universal player for the Sound
Blaster card.

The MOD386 program shows how the unit is used. It’s a small MOD and VOC playing program that lets
you type the name of the file to be played or select it from a menu. Use the -r parameter on the command
line to start the program and in Repeat mode. You can play different music clips (MOD and VOC) in
succession in Repeat mode.

To see how much computing time you have left for a MOD file, press P for Performance. The program then
displays the remaining time and system performance (it takes about 3 seconds).

The system performance is determined by checking how much time the system has left before a vertical
retrace. If it’s simply waiting for the retrace and incrementing the test variable, the available performance
is 100%. This test is performed every time the program starts.

When the performance test is called again, the loop seems to do nothing more than wait for the retrace. The
difference, however, is the MOD file plays in the background through the timer. Processing the sound data
takes from 10% to 30% of system performance, depending on the computer and the sample rate. This
accordingly lowers the value that is counted in the loop and used to derive the performance.



358

Sound Support For Your Programs

Chapter 13

PCPC
underground

Variables required for the MOD player

Now you should have a basic idea on what to expect from the MOD_SB unit. To take full advantage of the
unit and perhaps extend it (a track for sound effects would be one possibility), you can become familiar with
its data and procedures. Therefore, we’ll describe the essential variables and their functions before
proceeding with the actual programming.

First, we look at the types provided by the unit:

VocHeader

Basic information about a VOC file is stored in VocHeader. This begins with the 20-byte identifier "Creative
Voice File"+1Ah. This is followed by the position offset for the start of the sample data as a word. Next is
the VOC file version number, first the byte with the high number, then the byte with the low number. The
encoded version number at the end is unimportant to our work.

VoiceBlock

A VOC file is divided into blocks. Each block begins with a header, which is read into this datatype. The
first byte contains the identifier, the next three bytes the length, the next byte the sample rate, and the last
byte the packing type.

Pt

Pt is a simple data type that facilitates working with pointers. It includes first the word ofs, the offset portion
of the pointer, then sgm, the segment portion.

These are all the types used. Now we'll need to describe the constants:

Incfacts : array[1..99] of longint;

Incfacts is a table of precalculated factors containing tone intervals as fixed-point values. The lower 16 bits
contain the fractional portion of the interval, and the upper 16 bits contain the integral portion.

outfading : boolean = FALSE;

If you don't want the MOD file to end abruptly, set this variable to TRUE. The output volume is then reduced
gradually until it reaches 0.

outvolume : byte = 63;

Outvolume specifies the volume at which the MOD file will be played. The maximum value is 63, the
minimum is 0 (= silence). This variable can change, as when outfading is set to TRUE, for example.



359

Sound Support For Your Programs

Chapter 13

PCPC
underground

moddatsize : longint = 0;

This variable is intended especially for using the unit in demos or games. There you'll want to have several
MOD files packed into a single large sound file. Since you must be able to recognize each MOD file
individually, this variable is set to the size of the MOD file after packing occurs. A value of 0 indicates the
MOD file is not part of a packed file.

Mastervolume : byte = 29;

Mastervolume is a variable that is used for cards starting with SB Pro. These cards include a mixer chip that
allows volume control at the hardware level. The maximum volume is 31, the minimum is 0.

Startport : word = $200;

The SoundBlaster card is recognized automatically. This is done by testing the ports from Startport to
Endport in increments of $10. If you don't want a port tested (this can cause problems with a network card,
for example), you can set the Startport and/or Endport values accordingly. Similarly, if you know which
port to use and don't need to test any others, set the Startport and Endport both to this value.

Endport : word = $280;

See Startport.

force_irq : boolean = FALSE;

When this variable is set to TRUE, interrupt detection does not occur. The default value of 5 is then used.

force_base : boolean = FALSE;

You can turn off base port detection by setting this variable to TRUE. The default value of 220h is then
assumed.

interrupt_check : boolean = FALSE;

This global constant tells the SB-Interrupt procedure not to output the next block, because an interrupt
check is in progress.

timer_per_second : word = 50;

The timer_per_second variable contains the number of timer calls to be executed per second.



360

Sound Support For Your Programs

Chapter 13

PCPC
underground

 In_retrace : boolean = FALSE;

This variable is set to TRUE when the mod_waitretrace procedure is active. This is necessary to turn off the
Mixing procedure when synchronizing with the vertical retrace. Otherwise, the Mixing procedure would
be called during the wait, making synchronization impossible.

dsp_irq : byte = $5;

The variable dsp_irq contains the number of the SB-IRQ. This interrupt must be diverted to a custom
handling routine. When IRQ detection is disabled, you can preassign an interrupt by setting this variable
to the desired value.

dma_ch : byte = 1;

This is the number of the DMA channel used. You must change this variable if the Sound Blaster card is
using a channel other than 1.

dsp_addr : word = $220;

This variable contains the base address of the Sound Blaster card. It's set to the proper value automatically
by the initialization procedure. If you disable this initialization, you must set the correct value manually.

SbVersMin,SbVersMaj : BYTE = 0;

The Detect routine uses these two variables to save the version number of the Sound Blaster card that it
finds. SbVersMaj contains the major version number, and SbVersMin contains the minor number. The
major number is more important; you'll use it to identify the card.

SbRegDetected : Boolean = FALSE;

The Initialization procedure modifies this variable. If it is set to TRUE, a Sound Blaster card was found.
Otherwise, you can abandon further processing of the SB routines, since no Sound Blaster is installed.

SbProDetected : Boolean = FALSE;

This variable is also set by the Initialization procedure. If an SB Pro or an SB 16 card is found, it is set to TRUE.

Sb16Detected : Boolean = FALSE;

If an SB 16 (ASP) is installed in the computer, the Initialization procedure sets this to TRUE. In this case,
SbProDetected also is TRUE.



361

Sound Support For Your Programs

Chapter 13

PCPC
underground

MixerDetected : Boolean = FALSE;

Sound Blaster cards (starting with the SB Pro) include a mixer chip. If such a card is installed, this variable
is set to TRUE.

Voices : integer = 4;

Voices contains the number of voices used in the MOD file. In this version of the unit, the variable can have
a value of 4 or 8.

Modoctave : array[1..60] of word;

The values in this array correspond to the pitches stored in the MOD file. To determine the pitch value for
a note, you use the note's position within the array.

dma_page : array[0..3] of byte;

DMA channels 0 through 3 are supported. This variable is needed for direct programming of DMA transfer
and avoids having to link another unit.

dsp_addr,dma_wc : array[0..3] of byte;

See dma_page.

sb16_outputlength : word = 0;

When you output data to an SB 16 using a DMA transfer, you should use the DMA Continue command
starting with the second data block. This minimizes crackling. The method works only with fixed-length
blocks, however. The size of the last block that was output will be found in this variable. If the next block
to be output agrees with this size, the DMA Continue command can be used.

last_output : boolean = FALSE;

You set this variable to TRUE to halt DMA output. Then when the Interrupt procedure runs, it will not
initiate output of a new block.

Those were the constants used in the unit. Now we finally come to the variables. We'll only talk in detail
about the most important variables (those that are not used as counters or buffers).

blocksize : word;

The size of the block to be output is stored here. This data is always computed during an interrupt execution.



362

Sound Support For Your Programs

Chapter 13

PCPC
underground

dsp_rdy_sb16 : boolean;

This flag is set to TRUE when data transfer via DMA is finished. While data is being transferred, its value
is FALSE. The somewhat misleading sb16 suffix exists for historical reasons. The variable is also used for
other cards in addition to the SB16.

OldInt : pointer;

The variable OldInt saves the address of the old timer interrupt, so it can be reset at the end of the program.
You can also use this variable to call the old interrupt.

IRQMSK : Byte;

This variable is needed for masking the Sound Blaster interrupt.

Mix_proc,nmw_proc,inside_proc : pointer;

Different procedures are called depending on whether a MOD file has four or eight voices. The decision of
which procedures to use is made only once at which time the above pointers are initialized to the appropriate
procedure addresses. This will make the program simpler and faster. The procedures are subsequently
accessed through the pointers.

Note_struck : array[1..8] of integer;

This variable is used to control a simple equalizer. The values in the array represent the amplitude of the
associated channels. This is set to 500 each time a new note is struck.

Rm  : array[0..128] of Pointer;

This array manages the individual patterns. The pointers index the start positions of the corresponding
patterns in memory.

Song : array[1..128] of byte;

You should be able to understand this name even if all the other names are unfamiliar. The arrangement of
the song is found here. The individual patterns will be played in the sequence indicated by this arrangement.

Samp : array[1..64] of pointer;

This is an array of pointers to the individual MOD samples in RAM.

Sam_l : array[1..64] of word;

This field gives the length of each sample.



363

Sound Support For Your Programs

Chapter 13

PCPC
underground

loop_s,loop_l : array[1..64] of word;

These fields contain the loop start position and loop length for a voice.

In_St : array[1..8] of byte;

This field gives the currently instrument for each voice.

pat_num:byte;

This is the pattern count of the MOD file. This is not the song length, but rather the number of patterns
defined.

Sound_loops : byte;

This tells how many time the Mixing procedure is executed per call.

music_off : boolean;

When this variable is set to TRUE, the Interrupt procedure stops music computation and playback.

Notvol : array[1..8] of byte;

Notvol contains the volumes of the respective channels. Values are from 0 to 64.

Old_TCounter : word;

This variable is needed for synchronizing the old timer interrupt, which, as always, must be called 18 times
per second.

Old_TCounter is now needed for counting purposes in the new timer interrupt to determine how long it
takes until the call of the old interrupt.

songname : string[20];

The name of the MOD file is stored here.

Instnames : array[1..31] of string[22];

The names of the individual instruments within the MOD file are contained here. The field is often used for
brief messages as well.

Inst_vol : array[1..31] of byte;

This contains the default volumes of the MOD-file instruments.



364

Sound Support For Your Programs

Chapter 13

PCPC
underground

Songlength : byte;

This variable holds the length of the song in patterns. The arrangement contains the corresponding number
of defined entries.

vocf : file;

The unit can also play VOC files. VOC files are accessed using this file handle.

voch : vocheader;

This variable is used to access the VOC-file header. We talked about its structure in the Types section.

vblock : voiceblock;

This references the active block within a VOC file.

SaveExitProc : pointer;

The Unit uses a custom exit procedure, which resets variables that have been changed and releases allocated
memory. This variable saves the address of the old ExitProc. Don't forget to also call this variable.

Portamento_Up_Voice : array[1..8] of longint;

The fixed-point value for a possible Portamento Up is stored here.

Portamento_Do_Voice : array[1..8] of longint;

The fixed-point value for a possible Portamento Down is stored here.

Mixing_Proc : array[1..8] of pointer;

Each voice has its own mixing procedure. This procedure is called according to the active effect. Referencing
the procedure through a pointer simplifies its access.

EmptyVoice : pointer;

This is a pointer to a procedure that does nothing. When no tone is currently playing for a voice, this dummy
procedure is called instead of the Mixing procedure.

Effect_Voice : array[1..8] of byte;

A different effect can be active for each voice. The number of the currently active effect for each voice is saved
here.



365

Sound Support For Your Programs

Chapter 13

PCPC
underground

Voice_Length : array[1..8] of word;

The voice lengths are stored here. They're required for comparing positions in the assembler module.

loop_length_voice : array[1..8] of word;

The lengths of the voice loops are saved in Voice_loop_length. A loop is only recognized if it spans more
than ten bytes.

loop_start_voice : array[1..8] of word;

This indicates the position within the sample where looping begins. The end position is obtained by adding
the loop length to this position.

position_voice : array[1..8] of longint;

The positions within the voices are stored here as fixed-point values. The upper 16 bits give the position
within the sample. The lower 16 bits are the fractional position.

segment_voice : array[1..8] of word;

To access the sample we need the appropriate segment. This word variable is loaded into the segment
register used for accessing the sample.

notvol_voice : array[1..8] of word;

This variable is used in the assembler module for accessing the individual voice volumes.

incval_voice : array[1..8] of longint;

These are the increment values to be added to the sample positions for the voices as the sample is read. They
are fixed-point values.

This completes the list of main variables used in the unit. It should serve as a reference to help you
understand how the unit works.

Controlling the MOD player timing: The timer routines

A MOD player is a "cyclic" program. The routines for voice mixing and output are called at regular intervals.
The output routine is controlled through the SB interrupt. Although the same method could theoretically
be used to control the mixing, it's too slow and would lead to problems such as erratic scrolling.

How can we guarantee, however, that processing will be done when the SB interrupt occurs? The answer
is to use the timer interrupt. First, we divert the interrupt handler to our own routine. Rather than 18 calls
per second, we need a frequency between 200 and 1000 interrupts, so the timer chip must be reprogrammed.
To do this, we compute a value to be passed to the chip as follows:



366

Sound Support For Your Programs

Chapter 13

PCPC
underground

Value := 1193180 DIV calls_per_second

First, we write the value 3h to port 43h to indicate that a new timer value is being written. Then we send
first the low byte and then the high byte of the computed value to port 40h. This programs the timer to its
new frequency. Now we change the normal timer routine to our
own interrupt handler, initialize certain variables that will be
used there, and we're ready to go. This is the procedure:

procedure SetTimerOn(Proc : pointer; Freq : word);
var ICounter : word;
    OlDv : pointer;
begin;
 asm cli end;
 ICounter  := 1193180 DIV Freq;
 Port[$43] := $36;
 Port[$40] := Lo(ICounter);
 Port[$40] := Hi(ICounter);

 Getintvec(8,OldV);
 setintvec(OldTimerInt,OldV);
 SetIntVec(8,Proc);
 Old_tCounter := 1;
 SecCounter  := 0;
 OldintCounter := 0;
 asm sti end;
end;

When we're finished using the timer, it needs to be reset to its original frequency. First, we write the value
36h to port 43h to inform the timer that it is getting a new frequency. Then we write the value 0 to port 40h
twice. The default frequency is then restored. Finally, we redirect the timer interrupt handler back to its
original routine.

procedure SetTimerOff;
var OldV : pointer;
begin;
  asm cli end;
  Port[$43] := $36;
  Port[$40] := 0;
  Port[$40] := 0;
  GetIntVec(OldTimerInt,OldV);
  SetIntVec(8,OldV);
  asm sti end;
end;

Now that we've reprogrammed the timer, let's proceed to the actual work that our interrupt handler needs
to do. First, we must take care of the old timer interrupt. It must still be called 18.2 times per second. This
means that if our new interrupt frequency is 1050, the old timer routine must be called every 58th interrupt.
We check for this value in Oldintcounter . As an extra feature, we also measure the run time for the song
here. Finally, the most important procedure of the interrupt is called: The procedure that performs the
calculations for music output. The retrace check is necessary because exact synchronization is not possible
when these calculations are taking place during the wait.

function Notes_Nr(height : word) : integer;
var nct : byte;
    found : boolean;
begin;
 nct := 1;

PCPCun
de

rg
ro

un
d

The procedures/functions
on this page are from

MOD_SB.PAS file
on the companion CD-ROM



367

Sound Support For Your Programs

Chapter 13

PCPC
underground

 found := FALSE;
 while (nct <= 70) and not found do   { until found or last  }
 begin;                               { value in table            }
   if height > Modoctave[nct] then
     found := TRUE;
   inc(nct);
 end;
 if found then begin;
   Notes_nr := nct-1;
 end else begin;
   Notes_nr := -1;
 end;
end;

Sound routines

You may be familiar with the routines for controlling the Sound Blaster card from the section on Sound
Blaster programming. We won't talk about these routines again but only point out the most important
procedures and functions.

procedure wr_dsp_sb16(v : byte);

This procedure outputs a byte to the Sound Blaster command port.

Function SbReadByte : Byte;

This reads a data byte from the Sound Blaster card.

Function Reset_Sb16 : boolean;

This resets the Sound Blaster card. If the reset was successful, TRUE is returned, else FALSE. This function
can be used to get the base address of the SB.

Function Detect_Reg_Sb16 : boolean;M

This function takes over the determination of the base address mentioned above. It sets the variable dsp_adr
to this address. If a base address was found, TRUE is returned, else FALSE.

Procedure Write_Mixer(Reg,Val : Byte);

This procedure writes the value of Val to the mixer register Reg. It runs only on the SB Pro and subsequent
cards.

Function Read_Mixer(Reg : Byte) : byte;

This function reads a value from the mixer register Reg.



368

Sound Support For Your Programs

Chapter 13

PCPC
underground

Procedure Filter_On;

On SB Pro and later cards, this procedure enables accentuation of the bass range.

Procedure Filter_Mid;

This procedure enables normal sound filtering on the SB Pro and later cards.

Procedure Filter_Off;

This procedure accentuates the treble range.

Procedure Set_Balance(Value : byte);

This procedure sets the output balance on stereo cards. Value can be from 0 to 15, with 0 for full left and 15
for full right.

procedure Set_Volume(Value : byte);

This procedure sets the volume at which the MOD file is played. For the SB Pro and later cards, this occurs
using the hardware-level mixer. On the normal SB, volume is controlled at the software level with the
outvolume variable

procedure Reset_Mixer;

Like the DSP, the SB mixer must be reset to its default value. This procedure performs the task by passing
the value 0 to the mixer's reset register 0.

function Detect_Mixer_sb16 : boolean;

This function detects the mixer chip. It returns TRUE if a mixer chip was found, else FALSE. The function
is important because it lets you determine the type of card installed. A return value of TRUE indicates the
SB Pro or later.

procedure SbGetDSPVersion;

The version number of the card is used to distinguish between the SB Pro and the SB 16. If the version is less
than 4, the card is an SB Pro, else it is an SB 16.

procedure Set_Timeconst_sb16(tc : byte);

You need this function to set the timer constant on the Sound Blaster. The constant is computed as follows:

  tc := 256 - (1,000,000 / Sample-frequency).

The derived constant is transferred using the $40 command. You pass the constant to the procedure.



369

Sound Support For Your Programs

Chapter 13

PCPC
underground

procedure Exit_Sb16;

Make absolutely certain to call this procedure at the end of the program. It resets the SB interrupt to its initial
value and restores the interrupt masking.

procedure Play_SB _SbPro _Sb16(Segm,Offs,dsize : word);

This procedure starts the output of the block addressed by Segm and Offs . Segm is the page number in
memory and Offs  is the offset. The size of the block is given in dsize. Depending on which card is installed
(SB, SB Pro or SB16), control branches to the appropriate procedure. Refer to the section on the Sound Blaster
for more information.

procedure dsp_block_sb16(sz : word; bk : pointer; b1,b2 : boolean);

This function is for DMA transfer. It outputs the block of size sz  referenced by the pointer bk  via DMA.
The values of b1  and b2  depend on the type of output desired. If you are playing a MOD file, set b1  = TRUE
and b2  = FALSE; for a sample or VOC file, set b1  = FALSE and b2  = TRUE.

Handling MOD files

The unit plays a MOD file as follows: The procedure periodic_on  diverts the timer interrupt to the
custom routine and reprograms it to 50 calls per second. The new routine increments some variables and
calls the procedure calculate_music . This makes sure that another routine is not still processing and
then calls the Sound_handler , which checks to see whether the next block must be calculated. If so, the
procedure inner_proc   performs the calculation. Otherwise a test determines whether the calculated
block has been transferred. If it has, a new block can be processed.

First, however, new parameters must be loaded. This is accomplished with procedures nmw_proc  and
Initialize_mixer . Procedure nmw_proc  processes the MOD file line by line and controls any sound
effects.

Now that you know the general logic of the unit, it's time for some hands-on work. To make it easier to
follow the source code, we'll discuss the procedures in the same order as you'll encounter them in the
program.

The first procedure of interest to us is get_pctunel . It
determines the interval for the next pitch to be played. First, we
search an array for the pitch that has been read from the MOD
file. The position within the pitch table then serves as an index
to a table of increment factors (intervals).

procedure get_pctunel(height : word;Var vk : longint);
{
 The procedure determines the places before and after the decimal point
 required for frequency manipulation from the passed pitch
 (as it is in the MOD file).
}
var nct : byte;

PCPCun
de

rg
ro

un
d

The procedure
get_pctune1 is part

of the MOD_SB.PAS file
on the companion CD-ROM



370

Sound Support For Your Programs

Chapter 13

PCPC
underground

    found : boolean;
begin;
 nct := 1;
 found := FALSE;
 while (nct <= 70) and not found do   { until found or last  }
 begin;                               { value in table            }
   if height > Modoctave[nct] then
     found := TRUE;
   inc(nct);
 end;
 if found then begin;
   vk  := Incfacts[nct-tpw+12];
 end else begin;
   vk  := 0;                          { get values from table.   }
 end;
end;

Function Notes_Nr  works similar to get_pctunel . It
references the pitch table to obtain information needed for
effects.

function Notes_Nr(height : word) : integer;
var nct : byte;
    found : boolean;
begin;
 nct := 1;
 found := FALSE;
 while (nct <= 70) and not found do   { until found or last  }
 begin;                               { value in table            }
   if height > Modoctave[nct] then
     found := TRUE;
   inc(nct);
 end;
 if found then begin;
   Notes_nr := nct-1;
 end else begin;
   Notes_nr := -1;
 end;
end;

Now we come to two very important procedures called inner_loop_4  and inner_loop_4_stereo .
They do the actual mixing of the MOD file voices. The size to be calculated is determined first. This is taken
from blocksize  because we always do one playback block at a time. Because we're working with double
buffering, we next determine the current target buffer.

Next the mixer buffer is cleared of any content remaining from the previous mixing process. Then the
assembler mixing procedure is called for all the voices. This adds the sample data for each voice to the mixer
buffer. After placing the sample data into the mixer buffer in this manner, we must still transfer it to the
output buffer. First, however, we divide its value by the number of voices, because the SB can output only
8-bit data. This step can be skipped on the SB 16, but true 16-bit
DMA transfer of the data is then required. Just before the
procedure writes to the output buffer, the current outvolume is
computed. This can be repeatedly lowered to produce a fading-
out effect.

The following is the source code for this procedure:

PCPCun
de

rg
ro

un
d

The function
Notes_Nr is part

of the MOD_SB.PAS file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure
inside_loop_4 is part

of the MOD_SB.PAS file
on the companion CD-ROM



371

Sound Support For Your Programs

Chapter 13

PCPC
underground

procedure inside_loop_4;
{
 The actual mixing of data takes place here. The buffer
 is filled with the calculated data. This is the MONO
 version of the routine.
}
begin;
  calc_size := blocksize;
  if Proc then
    destination := pt(buffer1)
  else
    destination := pt(buffer2);
  fillchar(mixed_data^,8000,128);
asm

    mov cx,1
@Voices_loop:
    mov mixed_posi,0
    mov current_Voice,cx
    mov si,cx
    dec si
    shl si,2
    call dword ptr Mixingprocs[si]

    inc cx
    cmp cx,Voices
    jbe @Voices_loop

    mov mixed_posi,0
    mov cx,calc_size
@Mixed_2_blk:
    les di,mixed_data
    add di,mixed_posi
    mov ax,es:[di]
    push cx
    mov cx,shiftfactor
    shr ax,cl
    pop cx
    add mixed_posi,2

    mov bx,destination.sgm { write byte to destination    }
    mov es,bx
    mov bx,destination.ofs
    mul outvolume
    shr ax,6
    mov es:[bx],al
    inc destination.ofs

    loop @mixed_2_blk
end;
end;

Procedure inside_loop_4_stereo  works almost the same as inside_loop_4 . It needs two mixer
buffers, however: One for the left channel and one for the right. The existing buffer mixed_data  is used
for the left channel and a new one called mixed_data_st  is used for the right channel. The mixing of voices
occurs as usual. The allocation of each voice to the appropriate
buffer is controlled by nmw_proc . When transferring the data
from the mixer buffer to the output buffer, remember the SB
requires alternating values for the left and then the right channel.
The values must be taken alternately from the two buffers. PCPCun

de
rg

ro
un

d

The procedure
inside_loop_4_stereo is part

of the MOD_SB.PAS file
on the companion CD-ROM



372

Sound Support For Your Programs

Chapter 13

PCPC
underground

procedure inside_loop_4_stereo;
{
 This is where the actual mixing of the data takes place. The buffer
 is filled with the calculated data. This is the MONO
 version of the routine.
}
begin;
  calc_size := blocksize;
  if Proc then
    destination := pt(buffer1)
  else
    destination := pt(buffer2);
  fillchar(mixed_data^,8000,128);
  fillchar(mixed_data_st^,8000,128);
asm
    mov cx,1
@Voices_loop:
    mov mixed_posi,0
    mov current_Voice,cx
    mov si,cx
    dec si
    shl si,2
    call dword ptr Mixingprocs[si]

    inc cx
    cmp cx,Voices
    jbe @Voices_loop

    mov mixed_posi,0
    mov cx,calc_size
@Mixed_2_blk:
    les di,mixed_data
    add di,mixed_posi
    mov ax,es:[di]
    push cx
    mov cx,shiftfactor_stereo
    shr ax,cl
    pop cx

    mov bx,destination.sgm { write byte to destination   }
    mov es,bx
    mov bx,destination.ofs
    mul outvolume
    shr ax,6
    mov es:[bx],al
    inc destination.ofs

    les di,mixed_data_st
    add di,mixed_posi
    mov ax,es:[di]
    push cx
    mov cx,shiftfactor_stereo
    shr ax,cl
    pop cx
    add mixed_posi,2

    mov bx,destination.sgm { write byte to destination     }
    mov es,bx
    mov bx,destination.ofs
    mul outvolume
    shr ax,6
    mov es:[bx],al



373

Sound Support For Your Programs

Chapter 13

PCPC
underground

    inc destination.ofs

    loop @mixed_2_blk
end;
end;

Mixing itself occurs in the unit's assembler module. It's necessary to swap out/relocate the routines, since
386 code for fixed point values is required. The mixing procedure works as follows: First, the number of the
current voice is loaded to the SI register. It serves as an index to the various voice fields. Next the variable
calc_size is loaded to the CX register. It gives the amount of data to be calculated.

The loop that loads the data always checks to see if the end of the voice has been reached. If not, loading
the sample bytes can proceed directly. Otherwise we must check to see if the sample is to be "looped". If this
is the case, we set the position back to the start of the voice. Otherwise we are at the end, and the mixing
procedure is redirected to the dummy procedure Empty_voice , which does nothing except return. The
volume for the current voice is also set to 0, and the procedure jumps to the end of the loop.

When we have positioned the sample at a new byte to be processed, the data from the sample is loaded. The
sample segment is moved to ES and the high word of the position within the voice is moved to BX. We load
the high word because a position variable is a fixed-point variable, whose low word represents only the
fractional portion of the number.

Now the sample byte can be loaded into AL via es:[bx]. Bit 7 of the byte must be inverted, since the SB
outputs unsigned data (0 to 255), as opposed to the signed data (-127 to 128) of the Amiga and the Gravis
UltraSound. Next we adjust the volume of the voice. This is done by multiplying the byte in AL by the
appropriate value found in Voice_notvol , followed by a SHR 6 instruction to divide the result by 64.

With the sample byte therefore adjusted, we can move it to the mixer buffer. First, we load the mixer buffer
address to es:[di]. Then we add the relative position within the mixer buffer, found in mixed_posi . This
variable is always set to 0 before the procedure is called. Now the calculated byte value can be added to the
mixer buffer (a mov would overlay the existing data).

All that remains is to increment the pointers. We increment
mixed_posi  by 2, and the sample position by the fixed-point
value in Voice_incval .

public voice_normal
voice_normal proc pascal ;current_voice : word;
 pusha
 mov si,current_voice
 dec si
 shl si,2                    ; for dword accessw

 mov cx,calc_size

@load_loop:

;{ Is voice at the end ? }
  mov bx,w length_voice[si]
  sub bx,20
  cmp bx,word ptr position_voice[si+2]
  ja  @voice_not_at_end

;{ Voice at end, is it looped ? }
  cmp loop_length_voice[si],10

PCPCun
de

rg
ro

un
d

The following procedure
is part of the

MOD386.PAS file
on the companion CD-ROM



374

Sound Support For Your Programs

Chapter 13

PCPC
underground

  jae @voice_is_looped

;{Voice is at the end and not looped => out}
  mov eax,emptyvoice
  mov mixingprocs[si],eax
  mov notvol_voice[si],0
  jmp @end_voice_normal

; {Parameter for voice1 at start of loop }
@voice_is_looped:
  mov bx,w loop_start_voice[si]
  mov word ptr position_voice[si + 2],bx

; {Load byte from sample of voice1 }
@voice_not_at_end:
  mov bx,w segment_voice[si]
  mov es,bx
  mov bx,word ptr position_voice[si + 2]
  mov al,es:[bx]
  sub al,128
  mul b notvol_voice[si]
  shr ax,6

@voice_output:
  les di,mixed_data
  add di,mixed_posi
  add es:[di],ax
  add mixed_posi,2

; {Increment pointer}
  mov ebx,Incval_voice[si]
  add dword ptr position_voice[si],ebx

  loop @load_loop

@end_voice_normal:
  popa
  ret
voice_normal endp

The procedure responsible for the mixing is calculate_music . It checks to see whether another
procedure is running. If this is the case, variable mycli  has the value 1, and we jump to procedure end . Also,
if music_out  is does not equal 0 (<> 0), we jump to the end. Otherwise, Sound_handler  is called to
perform the actual mixing.

This procedure checks to see whether the next block has already been calculated (Loop_pos is in this case
greater than Speed ). If not, it does the calculation. These calculations are complete when another check is
made to see whether the SB interrupt procedure has set a flag
indicating successful output of the old block. Only at this point
are procedures nmw_proc  and Initialize_mixer  called.
They advance the MOD one line. If outfading is TRUE, the
output volume is decremented. In any case, Note_attack
(used for equalizing and other effects) is decremented.

PCPCun
de

rg
ro

un
d

The procedure
Sound_handler is part

of the MOD_SB.PAS file
on the companion CD-ROM



375

Sound Support For Your Programs

Chapter 13

PCPC
underground

procedure Sound_handler;
var li : integer;
begin;
 if mycli <> 0 then exit;
 mycli := 1;
 if (Loop_pos > Speed) then begin;
   if phase_2 then begin;
     Nothin_done_count := 0;
     asm
       call [nmw_proc]
     end;
     Initialize_Mix;
     Loop_pos := 0;
     phase_2 := false;
     phase_1 := true;
     if outfading then
       if outvolume >= 2 then dec(outvolume,2);
     for li := 1 to 8 do
       if Notes_Struck[li] > 50 then dec(Notes_Struck[li],50);
   end;
 end else begin;
     asm call [inside_proc] end;
   Loop_pos := Speed+2;
 end;
 mycli := 0;
end;

procedure calculate_music; assembler;
asm
 cmp mycli,0
 jne  @end_stop
 cmp  music_Off,0
 jne   @end_stop
 pusha
 call Sound_handler
 popa
 @end_stop:
end;

Before mixing can proceed, values must be provided for the necessary variables. In addition to nmw_proc ,
procedure mix_start_4  provides the values. Here the pitch
interval is determined for each voice of the note to be played.
Looping parameters are also set. If the program calls for a
portamento, the pitch interval is raised or lowered accordingly.

procedure mix_start_4;
var rdiff : real;
    dummy : byte;
    var li : integer;
begin;
 for li := 1 to voices do begin;
   if note[li] <> 0 then begin;
     pitch_voice[li] := (Rm_Song[mli,li,1] and $0F)*256+Rm_Song[mli,li,2];
     get_pctunel(pitch_voice[li],Incval_voice[li]);
   end;

   ls[li] := loop_s[In_st[li]];
   ll[li] := loop_l[In_st[li]];
   if ll[li] > 30 then inl[li] := ll[li]+ls[li];
   Loop_Length_voice[li] := ll[li];

PCPCun
de

rg
ro

un
d

The procedure
mix_start_4 is part

of the MOD_SB.PAS file
on the companion CD-ROM



376

Sound Support For Your Programs

Chapter 13

PCPC
underground

   Loop_Start_voice[li]  := ls[li];
   case effect_voice[li] of
     1 : begin;
            inc(Incval_voice[li],Portamento_up_voice[li]);
         end;
     2 : begin;
            inc(Incval_voice[li],Portamento_do_voice[li]);
         end;
   end;
 end;
end;

Now we come to the procedure that advances our position within the MOD file. It controls line-by-line
processing of the data and initializes the variables needed by the mixing procedure. Any effects encountered
are handled by effect_handling .

As a parameter to this procedure, we pass the number of the voice to be processed. The procedure
determines whether there is an effect for the voice. If so, it gets the effect parameters, checks the type of effect
and processes it appropriately.

Effect 01 is portamento up and Effect 02 is portamento down. We start both by determining the speed of the
portamento. Then we get the start increment and end increment for the current pitch. To determine the
incremental (or decremental) value for the voice, we divide by the number of ticks per line (playspeed).

Effect 09 controls the sample offset. The position is calculated from the following formula:

Position := Effect_value * 256;

Effect 11 allows jumping within the arrangement. The procedure terminates the current pattern and reads
the new target number.

Effect 12 is one of the most important and frequently used effects. It sets the channel volumes. The value
of the operand is assigned to Voice_notvol .

Effect 13 terminates the current pattern and resumes playback with the next one. This is another frequently
used effect. Here we set the current line to the end of the MOD file, and the next pattern loads automatically
with the subsequent execution.

Effect 14 includes several sub-effects. The upper four bits of the operand specify the sub-effect, and the
lower four bits serve as the actual operand. This player only handles Sub-effect 12, which is the notecut. To
achieve this, we simply set all playback parameters to 0. We'll talk later about programming the others.

The last effect is Effect 15, which sets the speed. If the value of the operand is less than or equal to 15, it
indicates ticks per line (Playspeed). Here the value can be assigned directly to the associated variable. If the
operand is greater than 15, it refers to beats per minute (BPM). This affects the size of the output sample
block, which is computed as

  Size := Speed * (SamplingFrequency div (BPM * 4));

The value for the Sound_loops  must be reset accordingly.
Make certain this value is within reasonable limits. The player
will crash if the new size exceeds the reserved memory.
Sometimes MOD files contain invalid data here to make illegal
copying or pirating more difficult.

PCPCun
de

rg
ro

un
d

The procedure
effect_handling is part

of the MOD_SB.PAS file
on the companion CD-ROM



377

Sound Support For Your Programs

Chapter 13

PCPC
underground

procedure effect_handling(li : integer);
var idx : word;
    Portamento_Speed : word;
    Startnote,
    endnote : word;
    startinc,
    endinc : longint;

begin;
 if Rm_Song[mli,li,3] and $0F <= 15 then begin;
   Eff[li] := 0;
   case (Rm_Song[mli,li,3] and $0F) of
      01 : begin;
             effect_Voice[li] := 1;
             Portamento_Speed := Rm_Song[mli,li,4];
             Startnote := Notes_nr(pitch_Voice[li]);
             Endnote   := Startnote+Portamento_Speed;
             get_pctunel(Modoctave[Startnote],Startinc);
             get_pctunel(Modoctave[Endnote],Endinc);
             Portamento_up_Voice[li] := round((Endinc - Startinc) / playspeed);
           end;
      02 : begin;
             effect_Voice[li] := 2;
             Portamento_Speed := Rm_Song[mli,li,4];
             Startnote := Notes_nr(pitch_Voice[li]);
             Endnote   := Startnote-Portamento_Speed;
             get_pctunel(Modoctave[Startnote],Startinc);
             get_pctunel(Modoctave[Endnote],Endinc);
             Portamento_do_Voice[li] := round((Endinc - Startinc) / playspeed);
           end;
       9 : begin;  { Sample offset }
             Position_Voice[li] := longint(Rm_Song[mli,li,4]) shl 24;
           end;
      13 : begin;

       mli := 64;
     end;

      11 : begin;
       mli := 64;

 mlj := Rm_Song[mli,li,4];
     end;

      12 : begin;
             Notvol_Voice[li]  := Notevolumes(li);
           end;
      14 : begin;
             case (Rm_Song[mli,li,4] shr 4) of
                12 : begin;
                       inl[li]    := 0;
                       Notvol_Voice[li]   := 0;
                       inp[li]    := 0;
                       Pnk[li]    := 0;
                     end;
             end;
           end;
      15 : begin;
             idx := Rm_Song[mli,li,4];
             if idx <= $f then begin;
               Playspeed    := idx;
               Speed := Playspeed*105 div 10;
               blocksize := Speed * Sound_Loops;
             end else begin;
               bpm := idx;
               mod_SetLoop(Sampling_Frequency div (BPM * 4));



378

Sound Support For Your Programs

Chapter 13

PCPC
underground

               Speed := Playspeed*105 div 10;
               blocksize := Speed * Sound_Loops;
             end;
             if blocksize < 40 then blocksize := 40;
             if blocksize > 4000 then blocksize := 4000;

     end;
    end;
  end;
end;

Finally, we come to procedure nmw_all_4 , which is referenced through pointer nmw_proc . It begins with
a definition for the stereo procedures. Two voices are assigned to the left channel and two voices to the right.
You can easily change these assignments by modifying the mixing procedure according to your own needs.

First, the procedure increments the current line. If this exceeds 64, the pattern is ended, and the variable
must be reset to 1. The arrangement position is incremented at the same time. If this exceeds the song length,
the MOD file is ended, and playing starts over. Otherwise, we determine the number of the pattern to be
played. This pattern is then loaded to the pattern hold area, which the other procedures reference directly.

Once the MOD is correctly positioned and the current pattern loaded, we can start processing the individual
voices. The flag for the current effect is initialized to 0 for each voice since effects always refer to individual
lines within the pattern. Next, we receive the note from the MOD and insert it in the variable called note.
A non-zero value indicates a note to be played, so we continue to process it. The mixing procedure to be used
for the voice is obtained from the Stereoprocs  constant if in stereo mode. Otherwise, we always use the
assembler procedure Voice_normal .

Note_attack  is set to 500, because a new note is being struck. This variable can be used to achieve a simple
equalizer.

The variable Vc_In  (for voice instrument) is used to access instrument-related values. It's assigned the
value of  Note  and then used to pass the sample pointer to inst . Next the length of the sample is
determined and saved in Voice_length . The position within the sample is set to 0, the start position. The
default sample volume is placed in Voice_notvol . Finally, the sample segment for the voice is placed in
Voice_segment .

This concludes the handling of the voices, however, any effects
must still be considered. This task is accomplished by the
procedure effect_handling  which we talked about earlier.

procedure nmw_all_4;
const stereoprocs : array[1..8] of pointer =
  (@Voice_normal,@Voice_normal,@Voice_normal_st,@Voice_normal_st,
   @Voice_normal,@Voice_normal,@Voice_normal_st,@Voice_normal_st);
var idx : byte;
    li : integer;
begin;
   inc(mli);
   if mli > 64 then mli := 1;
   if mli = 1 then begin;
     inc(mlj);
     if mlj > Songlength then begin;
       if mloop then begin;
         mlj := 1;
         move(rm[song[mlj]] ^,Rm_Song,2048);
       end else begin;

PCPCun
de

rg
ro

un
d

The procedure
nmw_all_4 is part

of the MOD_SB.PAS file
on the companion CD-ROM



379

Sound Support For Your Programs

Chapter 13

PCPC
underground

         asm
           call [periodic_pause]
         end;
         music_Off := TRUE;
         Mod_At_End := TRUE;
       end;
     end else begin;
         move(rm[song[mlj]] ^,Rm_Song,2048);
     end;
   end;
  for li := 1 to Voices do begin;
   effect_Voice[li] := 0;
   note[li]:=(Rm_Song[mli,li,1] AND $F0)+((Rm_Song[mli,li,3] AND $F0) shr 4);
    if note[li] <> 0 then begin;
      if stereo then begin;
        Mixingprocs[li] := stereoprocs[li];
      end else begin;
        Mixingprocs[li] := @Voice_normal;
      end;
      Notes_Struck[li] := 500;
      In_St[li]  := note[li];
      inst[li]  := Ptr(pt(Samp[In_St[li]]).sgm,pt(Samp[In_St[li]]).ofs);
      Length_Voice[li]      := sam_l[In_St[li]];
      Position_Voice[li]    := 0;
      Notvol_Voice[li]      := inst_vol[in_St[li]];
      Segment_Voice[li]     := seg(inst[li]^);
    end;
    effect_handling(li);
  end;

end;

We can't do anything with our MOD processing, of course, until we get the MOD data into memory. So, first,
we must take care of loading the MOD file. A load procedure called from the main program makes various
checks before calling init_Song . This is the procedure that actually loads the MOD file into memory. The
global variable  Mod_Name is used as an index for this process.

We start by setting the variables for the instruments to be played, as well as the complete arrangement
(Song), to 0. Then the MOD file is opened. If an error occurs here, the routine aborts and returns FALSE.
The routine allows for loading a MOD file that is part of a larger file. This is of interest especially in demos.

To use the feature, you must first supply the size of the MOD file in bytes, in the variable  modfilesize .
If this is 0, the size is assumed to be that of the file opened. The variable msp (for MOD start position) gives
the start position within the MOD file. The default value for this variable is 0.

Once the file has been successfully opened, we must make certain it is in fact a MOD file that we can process.
Our player can play four-voice and eight-voice MOD files. This means we must check the header for one
of the MOD identifiers 'M.K.', 'FLT4' or '8CHN'. For 31-voice files, the identifier is at position 1080. If we
don't find one of the expected values here, the file could be a 15-voice MOD file, a MOD file without an
identifier, or some other format entirely.

After determining how many voices are in the MOD file (31 or 15), we read them in one at a time. The loop
to accomplish this starts at the corresponding position within the MOD file and reads the two bytes that
indicate the size of the instrument sample. This field represents a word count in Amiga word format, which
must be converted to a byte count in PC format. To do this, the Swap function reverses the byte order and
multiplies by 2.



380

Sound Support For Your Programs

Chapter 13

PCPC
underground

Now the internal variable Inststart  is decremented by the instrument size. It is initially set to the file
length and allows us to determine the number of patterns. As you may recall, the pattern count must be
derived by calculation because it is not included anywhere in the file. After the total file length is reduced
by the size of the header and all the instrument data, what remains is the size of the pattern data. Dividing
this by either 1024 or 2048 bytes (the size of one pattern) gives us the number of patterns.

After reading the sample length for the current instrument, we get its default volume. This is a one-byte field
that does not require conversion. The next two values to be read, however, are two-byte fields in Amiga
word format that must be converted as described above. They represent the instrument's loop length and
loop start position within the sample data.

Once the base parameters for the instruments have been obtained, we check to see whether the MOD file
has four or eight voices. The test is made by comparing the header Ident to the value '8CHN'. A match
indicates an eight-voice file, so Voices  is set to 8, and Pattsize is set to 2048. Otherwise, these variables
are assigned the values 4 and 1024. The pointer for the mixing procedure is then set to reference either the
mono or stereo version of the routine, depending on the output mode desired.

Next the samples are loaded. After reserving the amount of memory needed for all instruments, we read
the sample data from the disk into memory.

Finally, we come to loading the patterns. We determine the number of patterns in the file, then enter a loop
to load them one at a time. Note that an 8-voice pattern takes twice the space of a 4-voice pattern. We end
this procedure by loading the 128-byte arrangement (found at offset position 952) and the song length
(found at offset position 950).

Now we have managed to get the MOD data into memory. So everything is absolutely complete, we should
set the song and instrument names, too. Remember, a user-friendly program will display song and
instrument names simply for informational purposes even if they're not needed for playing. The song name
is at the very beginning of the file. Each instrument name is at the beginning of that instrument's data. The
names are stored as 0-terminated strings, which must be
converted to Pascal format. The function ConvertString
does this. If the process is successful, the function returns the
value TRUE. The variables for the current line and pattern
position are both initialized at the beginning.

FUNCTION ConvertString(Source : Pointer; Size : BYTE):String;
VAR
   WorkStr : String;
BEGIN
   Move(Source^,WorkStr[1],Size);
   WorkStr[0] := CHR(Size);
   ConvertString := WorkStr;
END;

function init_Song : boolean;
const ID1 : string = 'FLT4';
      ID2 : string = 'M.K.';
      ID3 : string = '8CHN';
var rmod : file;
    ssz : word;                         { size of a sample        }
    inststart : longint;                { position in file where}
                                        { sample data begin }
    filsz : longint;                    { size of the MOD file  }
    Mdt : array[1..4] of char;          { for Mode type - detection     }

PCPCun
de

rg
ro

un
d

The function
ConvertString is part

of the MOD_SB.PAS file
on the companion CD-ROM



381

Sound Support For Your Programs

Chapter 13

PCPC
underground

    helpp : ^byte;
    strptr : pointer;
    IDch : array[1..4] of char;
    IDstr : string;
    instance : byte;
    idx : integer;
begin;
 In_St[1] := 0;
 In_St[2] := 0;
 In_St[3] := 0;
 In_St[4] := 0;
 In_St[5] := 0;
 In_St[6] := 0;
 In_St[7] := 0;
 In_St[8] := 0;
 for mlj := 0 to 128 do
   Song[mlj] := 0;
 {$I-}
 assign(rmod,Mod_Name);
 reset(rmod,1);
 {$I+}
 if IOresult <> 0 then begin;
   init_song := FALSE;
   exit;
 end;
 if moddatsize <> 0 then filsz := moddatsize else
 filsz := filesize(rmod);
 inststart := filsz;
 seek(rmod,1080);
 blockread(rmod,IDch,4);
 IDstr := IDch;
 if (IDstr <> ID1) and (IDstr <> ID2)
 and (IDstr <> ID3) then begin;
   instance := 15;
 end else begin;
   instance := 31;
 end;

 if instance = 31 then begin;           { 31 Voices detected from ID     }
 for mlj := 1 to 31 do begin;
  idx := mlj;
  seek(rmod,msp+42+(idx-1)*30);
  blockread(rmod,ssz,2);
  ssz := swap(ssz) * 2;
  if ssz <> 0 then inststart := inststart - ssz;
  Sam_l[idx] := ssz;
  seek(rmod,msp+45+(idx-1)*30);
  blockread(rmod,inst_vol[idx],1);
  blockread(rmod,loop_s[idx],2);
  blockread(rmod,loop_l[idx],2);
  loop_s[idx] := swap(loop_s[idx])*2;
  loop_l[idx] := swap(loop_l[idx])*2;
 end;

 seek(rmod,msp+1080);
 blockread(rmod,Mdt,4);
 if pos('8CHN',Mdt) <> 0 then begin;
   Pattsize    := 2048;
   Voices        := 8;
   shiftfactor        := 3;
   shiftfactor_stereo := 3;
 end else begin;



382

Sound Support For Your Programs

Chapter 13

PCPC
underground

 { 4-channel MOD-File }
   Pattsize    := 1024;
   Voices        := 4;
   shiftfactor        := 2;
   shiftfactor_stereo := 2;
 end;
 Mix_Proc := @mix_start_4;
 nmw_Proc       := @nmw_all_4;
 if stereo then
   inside_proc     := @inside_loop_4_stereo
 else
   inside_proc     := @inside_loop_4;

 seek(rmod,msp+inststart);
 for mlj := 1 to 31 do begin;
  idx := mlj;
  getmem(Samp[idx],Sam_l[idx]);
  blockread(rmod,Samp[idx]^,sam_l[idx]);
 end;

 filsz := inststart - 1083;
 pat_num := filsz div Pattsize;
 for mlj := 0 to pat_num-1 do begin;
   getmem(rm[mlj],2048);
   fillchar(rm[mlj]^,2048,0);
   seek(rmod,msp+1084+mlj*Pattsize);
   helpp := ptr(seg(rm[mlj]^),ofs(rm[mlj]^));
   for mli := 0 to 63 do begin;
     helpp := ptr(seg(rm[mlj]^),ofs(rm[mlj]^)+mli*32);

 blockread(rmod,helpp^,Pattsize div 64);
   end;
 end;
 seek(rmod,msp+952);
 blockread(rmod,Song,128);

 getmem(strptr,25);
 for i := 0 to 30 do begin;
   seek(rmod,msp+20+i*30);
   blockread(rmod,strptr^,22);
   instnames[i+1] := convertstring(strptr,22);
 end;
 seek(rmod,msp);
 blockread(rmod,strptr^,20);
 songname := convertstring(strptr,20);
 freemem(strptr,25);

 seek(rmod,msp+950); { von 470}
 blockread(rmod,Songlength,1);
 end else begin;
 for mlj := 1 to 15 do begin;
  seek(rmod,msp+42+(mlj-1)*30);
  blockread(rmod,ssz,2);
  ssz := swap(ssz) * 2;
  if ssz <> 0 then inststart := inststart - ssz;
  Sam_l[mlj] := ssz;
  seek(rmod,msp+45+(mlj-1)*30);
  blockread(rmod,inst_vol[mlj],1);
  blockread(rmod,loop_s[mlj],2);
  blockread(rmod,loop_l[mlj],2);
  loop_s[mlj] := swap(loop_s[mlj])*2;
  loop_l[mlj] := swap(loop_l[mlj])*2;
 end;



383

Sound Support For Your Programs

Chapter 13

PCPC
underground

 for mlj := 16 to 31 do begin;
  Sam_l[mlj] := 0;
  loop_s[mlj] := 0;
  loop_l[mlj] := 0;
 end;
 if pos('8CHN',Mdt) <> 0 then begin;
   Pattsize    := 2048;
   Voices        := 8;
   shiftfactor        := 3;
   shiftfactor_stereo := 3;
 end else begin;
 { 4-channel MOD-File }
   Pattsize    := 1024;
   Voices        := 4;
   shiftfactor        := 2;
   shiftfactor_stereo := 2;
 end;
 Mix_Proc := @mix_start_4;
 nmw_Proc       := @nmw_all_4;
 if stereo then
   inside_proc     := @inside_loop_4_stereo
 else
   inside_proc     := @inside_loop_4;

 seek(rmod,msp+inststart);
 for mlj := 1 to 15 do begin;
   getmem(Samp[mlj],Sam_l[mlj]);
   blockread(rmod,Samp[mlj]^,sam_l[mlj]);
 end;

 filsz := inststart - 603;
 pat_num := filsz div Pattsize;
 for mlj := 0 to pat_num-1 do begin;
   getmem(rm[mlj],2048);
   fillchar(rm[mlj]^,2048,0);
   seek(rmod,msp+1084+mlj*Pattsize);
   helpp := ptr(seg(rm[mlj]^),ofs(rm[mlj]^));
   for mli := 0 to 63 do begin;
     helpp := ptr(seg(rm[mlj]^),ofs(rm[mlj]^)+mli*32);

 blockread(rmod,helpp^,Pattsize div 64);
   end;
 end;
 seek(rmod,msp+472);
 blockread(rmod,Song,128);

 getmem(strptr,25);
 for i := 0 to 14 do begin;
   seek(rmod,msp+20+i*30);
   blockread(rmod,strptr^,22);
   instnames[i+1] := convertstring(strptr,22);
 end;

 for i := 15 to 30 do begin;
   instnames[i+1] := '';
 end;
 seek(rmod,msp);
 blockread(rmod,strptr^,20);
 songname := convertstring(strptr,20);
 freemem(strptr,25);

 seek(rmod,msp+470);



384

Sound Support For Your Programs

Chapter 13

PCPC
underground

 blockread(rmod,Songlength,1);
 end;

 mlj := 0;
 mli := 0;
 close(rmod);
 init_song := TRUE;
end;

Several variables must also be initialized when the MOD file is loaded. This is done by using function
load_modfile . It takes the name of the file as the first parameter (including the complete path, if needed).
For the second and third parameters, we simply code AUTO. The last parameter is the output frequency.
You'll get best results with a value of 22, which plays the MOD file at a frequency of 22 KHz. If your computer
is a 16 MHz 386SX, however, you'll have to be satisfied with 16 KHz playback.

The function first validates the file name. The error message -1 appears here if a problem is detected. Then
output must be mono (force_mono = TRUE), Stereo is set to FALSE. If the installed card is the SBPro, the
correct output mode must be enabled. After stereo handling is complete, procedure init_data  takes care
of initializing some data fields for us.

The MOD file is loaded into memory using init_song . Next, the desired output frequency and the default
output speed are set. Then the proper sampling rate is sent to the Sound Blaster and the speakers are turned
on. For a Sound Blaster with stereo capability, the balance is set
to mid-range and the output volume is set to the value stored in
SoundMastervolume . The procedure ends with a function
result of 0.

function load_modfile(modname : string;ispeed,iloop : integer;freq : byte)
         : integer;
var df : file;
    sterreg : byte;
    fsz : longint;
begin;
 Playing_MOD := TRUE;
 Playing_VOC := FALSE;
 outfading := FALSE;
 outvolume := 63;
 Mod_Name := modname;
 {$I-}
 assign(df,Mod_name);
 reset(df,1);
 {$I+}
 if IOResult <> 0 then begin;
   {$I-}
   close(df);
   load_modfile := -1;                  { File not found !     }
   exit;
 end;
 {$I-}
 fsz := filesize(df);
 close(df);
 music_played := TRUE;
 music_Off := FALSE;
 Mod_At_End := FALSE;

 if ispeed <> AUTO then Speed3 := ispeed;
 if iloop <> AUTO then Loop3  := iloop;

PCPCun
de

rg
ro

un
d

The function
load_modfile is part

of the MOD_SB.PAS file
on the companion CD-ROM



385

Sound Support For Your Programs

Chapter 13

PCPC
underground

 if force_mono then stereo := FALSE;
 if force_sb then begin;
   if Sb16Detected then stereo := FALSE;
   Sb16Detected := FALSE;
 end;

 if SBProdetected then begin;
   if stereo then begin;
     sterreg := Read_Mixer($0e);
     write_Mixer($0e,sterreg OR 2);
   end else begin;
     sterreg := Read_Mixer($0e);
     write_Mixer($0e,sterreg AND $FD);
   end;
 end;
 init_data;
 if init_song then begin;
   phase_1 := FALSE;
   phase_2 := TRUE;
   mycli := 0;

   mod_Samplefreq(freq);
   Playspeed    := 6;
   Speed := Playspeed*105 div 10;
   bpm := 125;
   mod_SetLoop(Sampling_Frequency div (BPM * 4));
   blocksize := Speed * Sound_Loops;
   if blocksize < 100 then blocksize := 100;
   if blocksize > 4000 then blocksize := 4000;
   asm call [nmw_proc] end;
   set_timeconst_sb16(Sampling_Rate);
   Initialize_Mix;
   Runsec := 0;
   Runmin := 0;
   wr_dsp_sb16($D1);
   if sb16detected or sbprodetected then begin;

   filter_Mid;
     Set_Balance(Balance);
     Set_Volume(Mastervolume);
   end;
   Load_Modfile := 0;
 end else begin;
   Load_Modfile := -3;                  { Error loading song }
 end;
end;

Now we can actually play the MOD file. Procedure periodic_on  is called. It initializes the last_output
flag (signaling the end of play) to FALSE, and begins playing the file immediately. The data block calculated
in the procedure load  is output through DMA. Inverting the Boolean variable bsw then switches to the next
block of the double buffer. After this, the values for the next line must be loaded, which is accomplished in
turn by the procedures nmw_proc  and Initialize_mixer .

The final step is most important: The timer interrupt must be
diverted to a custom procedure and its frequency reset. For this
task, procedure SetTimerOn  takes the parameters NewTimer
and timer_per_second  (whose value is 50). A simple call is
all you need to start the player.

PCPCun
de

rg
ro

un
d

The procedure
periodic_on is part

of the MOD_SB.PAS file
on the companion CD-ROM



386

Sound Support For Your Programs

Chapter 13

PCPC
underground

Procedure periodic_on;
Begin
 outvolume := 64;
 last_output := FALSE;
{ for Loop_pos := 1 to Speed do begin;}
   asm call [inside_proc] end;
{ end;}
 dsp_block_sb16(blocksize,blocksize,buffer1,TRUE,FALSE);
 Proc := not Proc;
 Loop_pos := 0;
 asm
   call [nmw_proc]
 end;
 Initialize_Mix;
 init_sbperiod(@periodic_off);
 music_played := TRUE;
 SetTimerOn(@NewTimer,timer_per_second);
End;

Congratulations, you've started playing the MOD file. You'll
need eventually to stop the MOD file. This is as easy as starting
the MOD file. You simply call procedure periodic_off . This
sets last_output  to TRUE, so no more blocks are sent out by
the interrupt procedure. Then the timer interrupt is restored to
its normal value by SetTimerOff .

Procedure periodic_off;
Begin
  last_output := true;
  SetTimerOff;
End;

Now that you know how to play MOD files with our player unit, let's look at playing VOC files. You need
only two procedures to play VOC files: Init_Voc  to start the output and Voc_Done to end it. We'll talk
about Init_Voc first.

This procedure takes the name of the VOC file to be played as a parameter (including the complete path,
if needed). It sets the flags Playing_MOD  to FALSE and Playing_VOC  to TRUE. This tells the interrupt
procedure that a VOC file, not a MOD file, is being played. By default, stereo output is disabled. For a stereo
VOC file, it must be re-enabled. Now the program opens the VOC file and reads the header. To be
considered valid here, the header identifier must be 'Creative Voice File'+#1A.

Next, the first voice block is read in. Its type identifier is at position 2 of the data fields. Three voice block
types are important to us here. The first is type 1, the simplest block type. There the sampling rate can be
obtained directly at position 6 and sent to the DSP.

Working with block type 8 is not quite so straightforward. Because Creative Labs expanded the internal
sampling constant from 8 to 16 bits, we must calculate the true sampling frequency. We read the new
sampling rate, then use it to calculate the actual frequency as follows:

Frequency := 256000000 div (65536 - SR)

Next we determine whether the sample uses stereo mode. If so, stereo output must be re-enabled and the
sampling frequency divided by 2. Then we apply the following formula:

SB_SR := 256 - (10000000 DIV Sampling-Frequency)

PCPCun
de

rg
ro

un
d

The procedure
periodic_off is part

of the MOD_SB.PAS file
on the companion CD-ROM



387

Sound Support For Your Programs

Chapter 13

PCPC
underground

to obtain the frequency to be sent to the Sound Blaster.

The last voice block type we'll talk about is type 9. This type was introduced with the SB 16. This type finally
contains the true sampling frequency for the file (located in bytes 6 and 7). For a stereo sample, byte 11 has
the value 2. In this case, stereo output must be re-enabled. Next we check for the SBpro. The sampling
frequency is doubled for this card (and only this card). Otherwise, the sampling frequency is not changed.
Now the Sound Blaster frequency is again computed as follows:

SB_SR := 256 - (10000000 DIV Sampling-Frequency)

For a MONO block, the frequency can be computed directly using this formula.

After finally extracting the proper sampling rate from the VOC file, we still must pass it to the Sound Blaster.
We'll use the procedure set_timeconst_sb16  for this; we simply pass the frequency to it as a parameter.

Now we read the first block of sample data. The standard block size is 2500 bytes. The first block is read into
Buffer1. If the remaining data exceeds the buffer size, the second block is read into Buffer2.

Next we must turn on the speaker. This has to be done at the beginning of every VOC file or nothing will
play. For sound cards other than the SB16, the mixer chip for mono and stereo output must also be
reprogrammed. Then output of the blocks can finally begin through the procedure dsp_block_sb16 . The
SB interrupt takes care of everything else.

To stop VOC file output, call procedure Voc_Done . It sets the
variable lastone  to TRUE, telling the interrupt procedure
there is nothing more to play. Now the VOC file can be closed
and the Sound Blaster card reset. The reset ensures that other
Sound Blaster routines will find the card in its original status.

procedure Init_Voc(filename : string);
const VOCid : string = 'Creative Voice File'+#$1A;
var ch : char;
    IDstr : string;
    ct : byte;
    h : byte;
    error : integer;
    srlo,srhi : byte;
    SR : word;
    Samplinsz : word;
    stereoreg : byte;
begin;
  Playing_MOD := FALSE;
  Playing_VOC := TRUE;
  VOC_READY   := FALSE;
  vocsstereo := stereo;
  stereo := FALSE;

  assign(vocf,filename);
  reset(vocf,1);
  if filesize(vocf) < 5000 then begin;
    VOC_READY   := TRUE;
    exit;
  end;
  blockread(vocf,voch,$19);
  IDstr := voch.IDstr;
  if IDstr <> VOCid then begin;

PCPCun
de

rg
ro

un
d

The procedure
Init_Voc is part

of the MOD_SB.PAS file
on the companion CD-ROM



388

Sound Support For Your Programs

Chapter 13

PCPC
underground

    VOC_READY   := TRUE;
    exit;
  end;

  Blockread(vocf,inread,20);
  vblock.ID := inread[2];

  if vblock.ID = 1 then begin;
    vblock.SR := inread[6];
  end;

  if vblock.ID = 8 then begin;
    SR := inread[6]+(inread[7]*256);
    Samplinsz := 256000000 div (65536 - SR);
    if inread[9] = 1 then begin; {stereo}
      if sb16detected then samplinsz := samplinsz shr 1;
      stereo := TRUE;
    end;
    vblock.SR := 256 - longint(1000000 DIV samplinsz);
  end;

  if vblock.ID = 9 then begin;
    Samplinsz := inread[6]+(inread[7]*256);
    if inread[11] = 2 then begin; {stereo}
      stereo := TRUE;
      if sbprodetected then samplinsz := samplinsz * 2;
      vblock.SR := 256 - longint(1000000 DIV (samplinsz));
    end else begin;
      vblock.SR := 256 - longint(1000000 DIV samplinsz);
    end;
  end;

  if vblock.SR < 130 then vblock.SR := 166;
  set_timeconst_sb16(vblock.SR);
  blocksz := filesize(vocf) - 31;
  if blocksz > 2500 then blocksz := 2500;
  blockread(vocf,vocb1^,blocksz);

  ch := #0;
  fsz := filesize(vocf) - 32;
  fsz := fsz - blocksz;
  Block_active := 1;

  if fsz > 1 then begin;
    blockread(vocf,vocb2^,blocksz);
    fsz := fsz - blocksz;
  end;
  wr_dsp_sb16($D1);
 lastone := FALSE;
 if not sb16Detected then begin;
   if Stereo then begin;
     stereoreg := Read_Mixer($0E);
     stereoreg := stereoreg OR 2;
     Write_Mixer($0E,stereoreg);
   end else begin;
     stereoreg := Read_Mixer($0E);
     stereoreg := stereoreg AND $FD;
     Write_Mixer($0E,stereoreg);
   end;
 end;
 pause_voc := FALSE;
 dsp_block_sb16(blocksz,blocksz,vocb1,FALSE,TRUE);



389

Sound Support For Your Programs

Chapter 13

PCPC
underground

end;
procedure voc_done;
var h : byte;
begin;
 lastone := TRUE;
{ repeat until dsp_rdy_sb16;}
 close(vocf);
 Reset_Sb16;
 stereo := vocsstereo;
end;

Now we arrive at a extremely important procedure: The SB interrupt procedure. Control branches to this
procedure every time the Sound Blaster reports that a DMA transfer is finished. The procedure first
determines whether this is a Sound Blaster hardware interrupt check, in which case the IRQDetected  flag
is set to TRUE. The detection routine then knows the correct interrupt has been found.

For a normal interrupt, however, we check to see whether the file being played is a MOD file or a VOC file.
If it is a MOD file, we first read a byte from the SB data port. This is required to regain access to the Sound
Blaster. Next, Boolean variable dsp_rdy_sb16  is set to TRUE, indicating the entire block has been output.
Now we check to see if last_output  has the value FALSE, meaning that output should continue. If so,
output is started for the newly active block using a call to dsp_block_sb16 . Finally, a flag is set to indicate
the timer procedure can advance the MOD file by one line.

The process is a little different if a VOC file is being played. Here also, we start by "reading" the Sound
Blaster. Next, however, we check for the end of the VOC file. If there is more data to be played, the active
block is output to the Sound Blaster through  dsp_block_sb16 . Then new sample data is loaded from
the VOC file into the other buffer and the active and passive indicators are switched. On the other hand,
if the end of the file has been reached or play is to be stopped, dsp_rdy_sb16 is set to TRUE, and the
speaker is turned off.

Finally, the Boolean variable VOC_READY is set to TRUE. Note that you must write the value 20h to port 20h
at the end of the interrupt procedure, or no more interrupts will be executed.

Tips for programming effects

Our unit does not implement all the available Protracker effects. About 80% of all MOD files will play with
this version. To enhance the unit to handle other effects, or even write an improved player of your own,
you'll need to know how the effects are programmed.

Since reliable information in this area is hard to come by, we can only briefly describe the handling of
additional effects here. When we mention the X parameter, we mean the upper four bits of the effect
operand. The Y parameter is the lower four bits of the operand. XY stands for the entire operand. The effects
are programmed as follows:

Arpeggio

Arpeggio plays a note using three pitches in rapid succession: The first is the original pitch, then pitch +
X and then pitch + Y. You perform voice calculations as normal but activate the three tones successively,
one tick at a time.



390

Sound Support For Your Programs

Chapter 13

PCPC
underground

Portamento Up/Portamento Down

These portamento effects are also fairly easy to program. For each tick, the interval specified by XY is either
added or subtracted. Other calculations are performed normally.

Portamento To Note

Portamento To Note is slightly more involved than Portamento Up/Down. With this effect, the note given
in the pattern line is not the note to be played initially, but the target note of a portamento. Based on this
note, you must determine whether a Portamento Up or a Portamento Down is required. Then you increase
or decrease the interval at each tick by the XY value. XY determines the speed of the portamento. The effect
continues until the target note is reached. If this doesn't happen within the line, it continues into the next
line if no other effect is present. If the note field in this line is empty, the last note given is still considered
the target. Otherwise, the new note becomes the target.

Vibrato

The vibrato effect is rather complex. It requires three tables representing the three possible wave forms.
These forms are a normal sine wave, a rectangular wave and a "ramp down" sawtooth wave. Table entries
must range from 255 to -255. One half oscillation (the portion of a wave between two consecutive points of
intersection with the Y axis) must encompass 32 entries. The whole wave, then, consists of 64 entries.

You must increment the table index for each tick by the X parameter. The resulting table value is then
multiplied by the Y parameter, and this result is divided by 256. The resulting value is added to the
increment value for the note. If the XY field is 0, use the values from the previous vibrato. The effect
continues until a new note is struck. Be careful not to reset the vibrato when you jump to the next line of the
song.

Portamento and Volume Sliding

This combination of two effects can be easily handled as two separate commands. For each tick, you must
first apply the appropriate volume reduction to the voice, and then change its pitch as we described earlier.

Vibrato and Volume Sliding

For this effect, proceed as for a simple vibrato, but also adjust the volume as required.

Tremolo

This effect is closely related to the vibrato. The one difference is that here it is the volume of a voice, not its
frequency, that is changed. The effect is also called a volume vibrato. In fact, it is often used instead of a
normal vibrato. You implement it in much the same way, even using the same tables. Make certain not to
exceed the maximum volume.

Volume Sliding

Volume sliding can go either up (using the X parameter to increase the volume) or down (using the Y
parameter to decrease the volume). For each tick, change the volume by the amount specified in the
parameter. Continue until you reach the end of the line or the end of the volume range.



391

Sound Support For Your Programs

Chapter 13

PCPC
underground

Position Jump

This effect is easy to handle. You simply jump to the position within the arrangement indicated by XY. To
do this, go to the end of the current pattern, and then assign the value of XY to the variable representing the
arrangement position.

Set Volume

The meaning of this effect is very simple...just set the current voice volume to the value given in XY.

Pattern Break

Although this effect is also very easy to achieve, not all MOD players handle it correctly (for example, DMP
2.92). First, you must stop playing the current pattern and go to the next one. Everyone usually gets this part
right. However, some players ignore the XY value. This parameter is 0 for 90% of all MOD files. However,
if a value is specified, it indicates the line within the pattern where playing should resume. In this case, you
must jump to the specified line, not to the beginning of the pattern.

Set Speed

This effect sets the MOD playing speed. Normal speed is 6 ticks or 125 beats per minute (BPM). If the XY
value is not greater than 0Fh, it refers to the number of ticks. Otherwise, it refers to the number of beats per
minute.

In addition to the normal effects we've talked about so far, there are several extended effects that should be
supported by a first-class player.

Set Filter

This is the easiest effect to program but it is specific to the Amiga and, therefore, cannot be used for our
purposes.

Fine Portamento Up/Down

This effect works like a normal portamento, but the pitch is changed only once initially. It remains the same
for subsequent ticks.

Glissando

You program a glissando as follows: Generate a table of all possible whole notes. Then program a normal
portamento. However, for each pitch value obtained, round to the nearest value in the table.

Set Vibrato Waveform

This effect allows you to choose one of the three waveform tables for the vibrato. We recommend using a
pointer for referencing the current table. Then you can implement this effect by simply setting the pointer
to the address of the table requested.

Set Loop

Save the current position (line) of the pattern. Looping will go back to this position.



392

Sound Support For Your Programs

Chapter 13

PCPC
underground

Jump To Loop

Jump To Loop is the second part of the Loop command. You change to the position marked by Set Loop.
Repeat this as often as specified in Y.

Set Tremolo Waveform

This is used similar to Set Vibrato Waveform.

Retrigger Note

When the current tick equals the Y parameter, the sample position must be reset to the start position.

Fine Volume Slide Up/Down

Raise or lower the volume of the voice initially, by the value given in Y. Do not apply additional volume
changes with subsequent ticks.

Note Cut

Cut off the playing of a voice. The Y parameter gives the number of ticks after which playing should stop.
You achieve the effect by a corresponding change to the voice length or position.

Note Delay

The Y parameter gives the number of ticks by which the start of a voice's output should be delayed.

Pattern Delay

This effect resembles Note Delay. The delay is applied to all voices, however, instead of one.

Invert Loop

Because we have yet to find a MOD file that uses this command or a player that supports it, we can only
speculate on this effect. We assume the pattern plays backwards from the current position to that indicated
by Set Loop.

The MOD player MOD386

We'll use an example called MOD386 to show how to use the MOD_SB unit. It plays both MOD and VOC
files. If you start the program without parameters, you get a file selection menu where you can select a sound
file from the current directory. If you use the -r parameter, you'll be in Repeat mode. Here you can choose
a new sound file when the current one is finished playing. To stop, press q.

The program uses the unit Design  which contains general functions for windowing and file selection. We
won't discuss it in detail here, but you can find it on the companion CD-ROM.

The various procedures of the program can be summarized as follows:

Procedure Scale_Box;

This procedure draws the player window. It is fairly self-explanatory.

Procedure Scal;



393

Sound Support For Your Programs

Chapter 13

PCPC
underground

Scale  is responsible for outputting runtime information. It shows the volume bars, the current position
within the song and the active instruments. It updates them continually. This procedure should also be self-
explanatory.

Procedure Play_the_mod (s:String);

This is the most important procedure for us. It plays a MOD file and responds to user input.

We must first reset the Sound Blaster card since we cannot be sure of its current condition. Next, certain
parameters needed for the output are initialized. Unless you have a 386SX-16 or slower processor, Samfreq
can be set to 22 (KHz). Then load_modfile  loads the MOD file into memory. If problems occur, this
function returns a non-zero value, and the program displays an error message and terminates. Otherwise,
interrupt-controlled playing of the MOD file begins with periodic_on .

Now the screen can be drawn. The loop checks for the q key or certain other predefined keys. If one of
them is detected, it responds accordingly.

When the q key is pressed, outfading  is set to TRUE and
playing becomes gradually softer. When outvolume  falls below
1, no more sound is heard. To this point, Scale  continues to
update the screen. Then periodic_off  sets the timer interrupt
back to its old value. Finally, end_mod releases the memory
occupied by the MOD file and the Sound Blaster is reset to its original state.

procedure Play_the_Mod(s : string);
var h : byte;
    error : integer;
    li : integer;
begin;
 Reset_Sb16;
 mod_SetSpeed(66);
 mod_Samplefreq(Samfreq);
 dsp_rdy_sb16 := true;
 error := load_modfile(s,AUTO,AUTO,Samfreq);
 if error <> 0 then begin;
   clrscr;
   writeln('Error loading MOD file ! ');
   if error = -1 then writeln('File not found !');
   if error = -2 then writeln('Insufficient memory available !');
   halt(0);
 end;
 periodic_on;   { Turns on periodic playing }

 Scale_window;
 ch := #255;
 while not (ch=#27) and not (upcase(ch)='X')
   and not (upcase(ch)='N') do begin;
  Scale;
  if keypressed then ch := readkey;
  case ch of
    #0  : begin;
            dch := readkey;
            case dch of
              #61 : begin; { F3 }
                       if Mastervolume > 0 then dec(Mastervolume);
                       Set_Volume(Mastervolume);
                       textbackground(black);

PCPCun
de

rg
ro

un
d

The procedure Play_the_Mod
is part of the

MOD386.PAS file
on the companion CD-ROM



394

Sound Support For Your Programs

Chapter 13

PCPC
underground

                       textcolor(lightblue);
                       writexy(47,2,'Volume: ');
                       textcolor(lightcyan);
                       write(Mastervolume:2);
                       ch := #255;
                     end;
              #62 : begin; { F4 }
                       if Mastervolume < 31 then inc(Mastervolume);
                       Set_Volume(Mastervolume);
                       textbackground(black);
                       textcolor(lightblue);
                       writexy(47,2,'Volume: ');
                       textcolor(lightcyan);
                       write(Mastervolume:2);
                       ch := #255;
                     end;
              #63 : begin; { F5 }
                       if Balance > 0 then dec(Balance);
                       Set_Balance(Balance);
                       textcolor(lightblue);
                       textbackground(black);
                       writexy(58,2,'Balance ');
                       textcolor(14);
                       writexy(66,2,'•••••••••••••');
                       textcolor(4);
                       writexy(78-Balance DIV 2,2,'•');
                       ch := #255;
                     end;
              #64 : begin; { F6 }
                       if Balance < 24 then inc(Balance);
                       Set_Balance(Balance);
                       textcolor(lightblue);
                       textbackground(black);
                       writexy(58,2,'Balance ');
                       textcolor(14);
                       writexy(66,2,'•••••••••••••');
                       textcolor(4);
                       writexy(78-Balance DIV 2,2,'•');
                       ch := #255;
                     end;
              else begin;
                     ch := #255;
                   end;
             end;
          end;
    '6' : begin;
            inc(mli);
            ch := #255;
          end;
    'f' : begin;
            filter_activ := not filter_activ;
            if filter_activ then begin;

  Filter_On;
              textcolor(lightblue);
              textbackground(black);
              writexy(36,2,'Filter');
              textcolor(lightcyan);
              write(' ON ');
            end else begin;

  filter_mid;
              textcolor(lightblue);
              textbackground(black);



395

Sound Support For Your Programs

Chapter 13

PCPC
underground

              writexy(36,2,'Filter');
              textcolor(lightcyan);
              write(' OFF');
            end;
            ch := #255;
          end;
    '4' : begin;
            if mli > 0 then
              dec(mli)
            else begin;
              if mlj > 0 then begin;
                dec(mlj);
                mli := 63
              end else begin;
                mli := 0;
                mlj := 0;
              end;
            end;
            ch := #255;
           end;
    '3' : begin;
            mli := 0;
            inc(mlj);
            ch := #255;
          end;
    '1' : begin;
            if mlj > 0 then begin;
              dec(mlj);
              mli := 0;
            end;
            ch := #255;
           end;
    'N',
    'n' : begin;
            next_song := 1;
          end;
    'x' : begin;
            next_song := 255;
          end;
    #27 : begin;
            next_song := 255;
          end;
    else begin;
           ch := #255;
    end;
   end;
 end;
 outfading := true;
 while outvolume > 1 do begin;
   Scale;
 end;
 periodic_off;
 end_mod;
 Reset_Sb16;
end;

The next important procedure is play_sound. This procedure determines if the file is a MOD file. If so, it
calls procedure Play_the_Mod. Otherwise, the file is a VOC file. This requires resetting the Sound Blaster
card. Then a short information text is displayed before Init_Voc starts the VOC file output. Now we must
wait until the variable Voc_ready is TRUE or the user presses a key. Playing can be paused with voc_pause



396

Sound Support For Your Programs

Chapter 13

PCPC
underground

and resumed with voc_continue. When playing is finished (the
end of the VOC file is reached) or the user quits during play,
Voc_done is called. This procedure is called to terminate output
and close the file.

procedure write_vocmessage;
begin;
  clrscr;
  writexy(10,08,'Warning !  VOC looping relentlessly !!!');
  writexy(10,10,'To exit, press >>  Q  <<');
  writexy(10,14,'If possible, remove Smartdrv, because it is slooooooow !');
  writexy(10,21,'                            E N J O Y');
end;

procedure play_sound(datname : string);
var li : integer;
    ch : char;
begin;
  for li := 1 to length(datname) do
     datname[li] := upcase(Datname[li]);
  if pos('.MOD',datname) <> 0 then begin;
    Play_The_Mod(datname);
    exit;
  end;
  if pos('.VOC',datname) <> 0 then begin;
  repeat
    Reset_Sb16;
    write_vocmessage;
    Init_Voc(datname);
    ch := #0;
    repeat
      if keypressed then ch := readkey;
      if ch = 'p' then begin;
        voc_pause;
        repeat
          ch := readkey;
        until ch = 'c';
        voc_continue;
      end;
    until VOC_READY or (ch = 'n') or (upcase(ch) = 'Q');
    VOC_DONE;
  until upcase(ch) = 'Q';
  end;
end;

Make certain to call Init_the_mod  before trying to use any
sound output routines. Otherwise, the Sound Blaster card will
not be properly initialized, which will most likely cause an
abort.

begin;
 Samfreq := 22;
 clrscr;
 test_systemspeed;
 cursor_off;
 interpret_commandline;
 if (Nummods = 0) and not repeatmode then begin;
   textcolor(15);
   textbackground(1);

PCPCun
de

rg
ro

un
d

The procedure write_vocmessage
is part of the

MOD386.PAS file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure write_vocmessage
is part of the

MOD386.PAS file
on the companion CD-ROM



397

Sound Support For Your Programs

Chapter 13

PCPC
underground

   clrscr;
   Nummods := 1;
   modd[1] := ''+select_file('*.?o?','*.?o?','','Please select MOD file');
   if modd[1] = 'xxxx' then begin;
     clrscr;

 writeln('You must already have ''as a MOD file !');
     Cursor_on;
     halt(0);
   end;
 end;
 for i := 1 to Nummods do begin;
   if pos('.',modd[i]) = 0 then modd[i] := modd[i]+'.mod';
 end;
 Init_The_Mod;
 stereo := false;
 next_song := random(Nummods)+1;
 textcolor(lightgray);
 textbackground(black);
 write_sbconfig;
 writeln;
 writeln;
 write('                     ENTER  to continue ...');
 readln;
 repeat
   if repeatmode then begin;
     textcolor(15);
     textbackground(1);
     clrscr;
     modd[1] := ''+select_file('*.?o?','*.?o?','','');
     if modd[1] = 'xxxx' then next_song := 255
     else Play_Sound(modd[1]);
   end else
     Play_Sound(modd[next_song]);
   if next_song <> 255 then next_song := random(Nummods)+1;
 until next_song = 255;
 cursor_on;
 textmode(3);
end.

We hope you have a firm understanding about Sound Blaster programming. We wish you luck and fun
exploring and improving these examples. There are many ways you can optimize these programs and
integrate them into your programs. Maybe you'll use the unit for your next game or demo, or even write
your own MOD editor.

Programming A MOD Player For The Gravis UltraSound

The Gravis UltraSound (GUS) card is perfect for playing MOD files. It allows you to load complete samples
from the module into the card's own RAM and to play the voices directly from the arrangement in the MOD.
No manual mixing is required as this is handled by the GUS.

How can we take advantage of these features? With the control unit called gus_mod, you can easily handle
all the basic functions required to play a MOD file, including initializing the card, loading the MOD and
outputting the sound. We'll talk about what you need to interface this unit to your own programs in this
section. We'll also describe the structures and procedures used for each of the basic functions.



398

Sound Support For Your Programs

Chapter 13

PCPC
underground

The MOD player structure

Playing a MOD file is a simple process. First, we have to initialize the Gravis UltraSound. We start by calling
function _gus_init_env  to get the base port of the GUS. It returns TRUE if the port was successfully
determined using the environment variable Ultrasnd . Otherwise, it returns FALSE. If the function was
successful, we initialize the card with _gus_initialize .

Now the card is ready to accept data. We pass the name of the file to be opened to the function called
_gus_modload . If the file opens and loads into memory successfully, it returns TRUE. Otherwise, if it isn't
opened or loaded successfully, it returns FALSE. Once the MOD is loaded, we can start play by calling
_gus_modstart . The MOD file automatically loops back when reaching the end. To stop play, we call
_gus_mod_end . This procedure halts output and removes the MOD file from memory. This is all you really
need to know to integrate a MOD player for the Gravis UltraSound into your programs.

Key variables of the GUS MOD player

You'll want your MOD player to do more than just play MOD files. It should also provide visual information
to the user and be subject to some interaction during play.

The unit provides variables for these purposes. Let's take a closer look at the global variables:

Play_Channel : array[1..14] of byte;

The entries in the Play_Channe l array have values of 1 (indicates the corresponding channel will play) or
0 (turns the channel off). This is an easy way mute a channel.

Channels : array[0..31] of PChannelInfo;

This array stores information for the individual channels. The array consists of pointers that point to the
corresponding channel structures. A channel structure would appear similar to the following:

 TChannelInfo = record
   InstNr     : byte;             { Hardware-related variables       }
   Mempos     : longint;
   End        : longint;
   Loop_Start : longint;
   Loop_End   : longint;

   Volume     : integer;          { MOD-related variables            }
   Frequency  : word;
   Looping    : byte;
   Tone       : integer;
   Start_Tone : integer;
   Targ_Tone  : integer;
   Effect     : byte;
   Operand    : byte;

   Effectx,                       { Effect-related variables         }
   Effecty      : integer;
   Arpegpos     : integer;
   slidespeed   : integer;
   vslide       : integer;



399

Sound Support For Your Programs

Chapter 13

PCPC
underground

   retrig_count : byte;
   vibpos       : byte;
   vibx         : byte;
   viby         : byte;
 end;

The individual fields have the following meanings:

InstNr
InstNr contains the number of the instrument to be played, as found in the MOD file. Values are from 1 to
31.

Mempos
The start position of the active voice in GUS-RAM is found in Mempos.

End
End denotes the end position of the voice in GUS-RAM.

Loop_Start
A voice can be looped. If so, the start position of the looping in GUS-RAM is stored here.

Loop_End
This variable contains the corresponding loop end position, also relative to GUS-RAM.

Volume
The volume at which the voice is played is found here. This is the volume used in the MOD file, which ranges
from 0 to 63.

Frequency
The frequency of the voice as stored in the MOD file is found here. It is not the actual output frequency,
which must still be calculated. This is mostly needed for various effects.

Looping
This variable indicates whether the voice is looped. The value 8 indicates looping, 0 indicates no looping.
You need this indicator for programming the GUS. If the third bit of the voice start command is set, the voice
is looped.

Tone, Start_Tone, Targ_Tone
These variables are needed for MOD file calculations. We need more than one because some values have
to be stored temporarily.

Effect
The current effect from the MOD file is stored here.

Operand
This holds the operand for the MOD effect.

Effectx,Effecty
Effectx contains the upper four bits of the operand, and Effecty contains the lower four bits.

Arpegpos
An Arpeggio effect plays three different pitches in succession. This variable indicates which of the three
pitches is currently active.



400

Sound Support For Your Programs

Chapter 13

PCPC
underground

slidespeed
This variable is needed for frequency sliding. It gives the speed with which the slide occurs.

vslide
Similar to slidespeed, this variable gives the speed of volume sliding.

retrig_count
This variable is needed to execute the Retriggering effect. It gives the position for the voice restart.

vibpos
This holds the current position within the Vibrato table.

vibx,viby
These variables hold the X and Y parameters for the Vibrato effect.

Instruments : array[0..31] of PInstrumentInfo

This is used for referencing information about the 31 instruments of a MOD file. The array contains pointers
to the following structure:

PInstrumentInfo = ^TInstrumentInfo;
 TInstrumentInfo = record
   Name       : string[22];
   Mempos     : longint;
   End        : longint;
   l_Start    : longint;
   l_end      : longint;
   Size       : word;
   Loop_Start : word;
   Loop_End   : word;
   Volume     : word;
   Looping    : byte;
 end;

The fields have the following meanings:

Name
This is the name of the corresponding instrument.

Mempos
Mempos references the position of the instrument's sample data within the GUS-RAM.

End
End references the end position of the instrument in GUS-RAM.

L_Start
An instrument can be looped. If so, this variable contains the start position of the instrument looping in
GUS-RAM

L_End
The corresponding end position of the instrument looping in GUS-RAM is stored here.

Size
The instrument length found in the MOD file is stored here (in bytes).



401

Sound Support For Your Programs

Chapter 13

PCPC
underground

Loop_Start
Loop_Start references the offset (within the instrument's sample data) where looping begins.

Loop_End
This is the offset (within the instrument's sample data) where looping ends.

Volume
The volume of the instrument is stored here. It can range from 0 to 63.

Looping
This variable indicates whether the instrument is looped. The value 8 indicates looping, 0 indicates no
looping. You need this indicator for programming the GUS.

MOD_Voices : word

Depending on how many voices the song has, this variable contains the value 4 or 8.

Mod_Patternsize : word

The size of a pattern is stored here. It is computed as MOD_Voices * 256. A four-voice pattern is therefore
1024 bytes long.

Stop_TheVoice : array[1..8] of boolean;

This array is used to stop certain voices. You stop a voice by setting the corresponding indicator to TRUE.

Modinf : Modinfo;

Modinfo  contains global information about the MOD.

Title

The title of the song is stored here.

Patt_cnt

This count refers to the number of patterns defined.

Runinf : Runinfo

This area contains run-time information needed while playing the MOD. The following fields are defined:

Attack [1..8]

This is used to simulate an equalizer for the voices. The value is set to 63 each time a new note is struck. Then
it is repeatedly decremented on subsequent ticks.



402

Sound Support For Your Programs

Chapter 13

PCPC
underground

Line

Line  references the current line in the pattern that is being played. Values are from 1 to 64.

Pattnr

This variable hold the position within the arrangement. When it's used with the Line  variable, it is effective
for synchronizing certain events or animation with the music.

Volumes [1..8]

The current volume for each voice is found here.

Speed, BMP

The MOD speed is stored here. Speed  has a value from 1 to 15 and specifies a ratio to the current base speed
in BPM (default: 125).

chpos : array[1..8] of byte

This array is used for arranging the voice (channel) positions. Values range from 0 for far left to 15 for far
right.

VibratoTable : array[0..63] of integer;

This table holds entries needed for the Vibrato effect. The 64 entries describe one oscillation, where positions
15 and 47 represent the extreme values, and positions 0 and 32 have the value 0. The same table is used for
the Tremolo effect.

Core routines of the MOD player

Now we're at the more interesting part of the unit: The procedures. What procedures do we need for a MOD
player? Well, first there is one for loading the MOD from disk to memory. Then the sample data must be
sent to the Gravis UltraSound card. After that, we need some routines to perform the playing.

Loading the MOD

Let's look first at how a MOD is loaded. In our unit, function _gus_modload  does this. You pass it the
complete name of the MOD file to be loaded. If loading is successful, the function returns TRUE, otherwise
it ends immediately and returns FALSE. The function starts by reserving memory for the channel structures
and instrument information. Then it initializes two values in Runinf: Line  is set to 0 and Pattnr  is set
to -1. This ensures the playback routine starts at the beginning of the MOD.

Now the file can be opened. The procedure saves this amount and displays a graphic to indicate the MOD
file being loaded using Save_Screen  and display_loading . You can omit these calls or replace them
with your own screen processing.



403

Sound Support For Your Programs

Chapter 13

PCPC
underground

Restlength  is then set to the file size minus 1084 (the size of the MOD file without the header). We'll use
this later to determine the number of patterns in the MOD. Next we check the identifier in the header to
validate the file type and determine the number of voices. Variables MOD_Voices  and MOD_Patternsize
are set accordingly. Now the complete header can be read. We start with the name of the MOD file. This
is a null-terminated string and cannot be processed directly in Pascal. To convert it to Pascal format, we use
function ConvertString , passing it a pointer to the string's location in memory and its maximum length.
The function returns the Pascal string ready for use in our program.

Next we get the song length, that is, the number of validly defined entries in the arrangement. This song
length has nothing to do with the number of patterns stored in the MOD. Finally, before reading in the
instrument data, we must get the 128-byte arrangement.

The problem of file compatibility must be addressed here. A MOD can currently have up to 31 instruments,
but the old format allowed for only 15. Separate code sections could have been written for the two formats.
We chose instead to have one routine that is controlled by two variables. One is called vh.Num_Inst . It
contains the number of instruments found in the MOD file. The other we call ias  (for instrument-
dependent start position). For 31 instruments this has the value 0. For 15 instruments it has the value -16*30,
because there are 16 fewer instruments, each requiring 30 bytes of information. Since we work internally
with the offset for 31 instruments, we must reduce the offset accordingly with fewer instruments.

After we have these two variables, we can use a loop to read in the data for all the instruments. The process
is as follows: First, we read the 22-byte long instrument name. This is a 0-terminated string, which we must
convert to a Pascal string using function ConvertString . Then we must get the size of the sample in bytes.
The size value we read in is not exactly what we need, however. First, it's in Amiga format, so we must swap
the high and low bytes to get PC format. Second, it is a word count, so we must multiply by 2 to get bytes.

The same conversion procedure is used for several other data items expressed as Amiga words. The next
field, however, is a single byte that needs no conversion. Its value, from 0 to 63, specifies the instrument's
volume. Now follow the start position (expressed as an offset) and loop length for sample looping. Both are
Amiga word values and must be converted. We add them to derive the end position of the sample, which
we will need later.

Next the load function checks to see whether the instrument is looped. If the difference between loop start
and loop end is greater than or equal to 10, variable Looping  for the instrument is assigned the value
with_loop  (= 8). Otherwise, it's set to no_loop . Finally, Restlength  is decremented by the length of the
MOD. As a result, after reading in the data for all the instruments, this variable will reflect the size of the
pattern data in bytes. By dividing it by the size of one pattern, we get the number of patterns defined. These
are then read in by another loop.

The instruments (samples) are loaded last and in a loop. Here we use the procedure Load_Instrument ,
which we'll soon look at closer. After the procedure call, the loop manipulates the screen memory, which
is referenced by variable Screen . The result is a continual change to the foreground color of the progress
bar. This feature is needed only for the MOD player TCP. You can omit it or replace it with your own
graphics handling.

At this point, the entire MOD file has been loaded into memory and can be closed. There are just a few more
important variables to be initialized. First, all the GUS voices are properly set. Then the channels are
arranged to simulate a semicircle, giving a sort of "concert hall" effect. To do this, we assign values from 0
to 15 to the array of variables chpos[1]  through chpos[Mod_Voices] .



404

Sound Support For Your Programs

Chapter 13

PCPC
underground

These variables are distributed to the individual voices by using
_gus_set_channelpos . In conclusion, the interrupt speed is
set to the standard value of 125, and the screen is restored by the
procedure restore_screen . This screen processing can also
be omitted in your own load routine, since it is needed only for
TCP.

function _gus_modload(name : string) : boolean;
{
 Loads the MOD file passed in name. Requirements are that the
 specified file in the path exists and is not write protected.
}
var dummya : array[0..30] of byte;{ For string handling       }
    daptr : pointer;              { Pointer to dummya                }
    dumw : word;                  { Dummy variables for reading/inputting }
    dumb : byte;
    Restlength1 : longint;         { For determining the pattern number     }
    li : integer;
    ID : array[1..4] of char;{ ID of the MOD file         }
    ias : integer;                { Instrument dependent start position  }
begin;
  U_Ram_freepos := 32;
  for li := 0 to 15 do begin;
    new(Channels[li]);
    channels[li]^.vibpos := 0;
  end;
  for li := 0 to 31 do begin;
     new(Instruments[li]);
     Instruments[li]^.Name := '';
  end;

  runinf.Line := 0;
  runinf.Pattnr := -1;
  tickcounter := 0;
  ticklimit := 6;
  runinf.speed := 6;
  runinf.bpm := 125;
  ias := 0;
  daptr := @dummya;

  assign(gusmf,name);             { open file + initialize length}
  reset(gusmf,1);

  save_screen;
  display_loading(name);

  Restlength1 := filesize(gusmf);
  Restlength1 := Restlength1  - 1084;

  seek(gusmf,1080);               { check whether MOD with 15/31 voices  }
  Blockread(gusmf,ID,4);
  if pos(ID,ModIDs) = 0 then begin;
    { 15 voices ? }
    seek(gusmf,600);
    Blockread(gusmf,ID,4);
    if pos(ID,ModID) = 0 then begin;
      { Not a valid .MOD file }
      writeln('Not a valid .MOD file !!!');
      halt(0);

PCPCun
de

rg
ro

un
d

The function _gus_modload
is part of the

GUS_MOD.PAS file
on the companion CD-ROM



405

Sound Support For Your Programs

Chapter 13

PCPC
underground

    end else begin;
      Modinstance := 15;
      ias := -16*30;
    end;
  end;

  if (ID = MODId[1]) or      { Voice number of MOD file ?       }
     (ID = MODId[2]) or
     (ID = MODId[3])
  then begin;
    MOD_Voices := 4;
    MOD_Patternsize := 4*256;
  end else
    if (ID = CHn6) then begin;
      _gus_modload := false;
      exit;
    end else
      if (ID = CHn8) then begin;
        MOD_Voices := 8;
        MOD_Patternsize := 8*256;
      end;

  seek(gusmf,0);
  Blockread(gusmf,dummya,20);     { get name of file         }
  vh.SongName := ConvertString(daptr,20);
  seek(gusmf,950+ias);            { get song length in Pattern              }
  Blockread(gusmf,vh.Songlength,1);
  seek(gusmf,952+ias);            { read in arrangement              }
  Blockread(gusmf,vh.Arrang,128);

  vh.Num_Inst := Modinstance;      { read in instruments (15/31)      }
  seek(gusmf,20+ias);

  for li := 1 to 32 do Instruments[li]^.Name := '';

  for li := 1 to vh.Num_Inst do begin;
    Blockread(gusmf,dummya,22);   { Instruments - Name               }
    Instruments[li]^.Name := ConvertString(daptr,22);

    Blockread(gusmf,dumw,2);      { Length of sample                 }
    Instruments[li]^.Size := swap(dumw) * 2;

    Blockread(gusmf,dumb,1);      { read in volume               }
    Blockread(gusmf,dumb,1);
    Instruments[li]^.Volume := dumb;

    Blockread(gusmf,dumw,2);      { read in start of loop           }
    Instruments[li]^.Loop_Start := swap(dumw) * 2;
    Blockread(gusmf,dumw,2);

    dumw := swap(dumw) * 2;       { read in loop end from Start+Length }
    Instruments[li]^.Loop_End := Instruments[li]^.Loop_Start+dumw;

    if (Instruments[li]^.Loop_End -      { looping in instrument ?           }
        Instruments[li]^.Loop_Start) >= 10 then begin;
      Instruments[li]^.Looping := with_loop;
    end else begin;
      Instruments[li]^.Looping := no_loop;
    end;
    Dec(Restlength1,Instruments[li]^.Size);
  end;



406

Sound Support For Your Programs

Chapter 13

PCPC
underground

  Vh.Num_Patts := Restlength1 DIV MOD_Patternsize ; { Pattern number ?    }
  seek(gusmf,1084+ias);

  for li := 1 to Vh.Num_Patts do begin; { read in pattern            }
    dos_getmem(Pattern[li],MOD_Patternsize );
    Blockread(gusmf,Pattern[li]^,MOD_Patternsize );
  end;

  for li := 1 to vh.Num_Inst do begin; { read in instruments         }
    Load_Instrument(li);
    screen[16,23+li].a := 5;
  end;

  close(gusmf);

  for i := 1 to 31 do begin; { initialize channel variables         }
    u_VoiceBalance (i,7) ;
    u_VoiceVolume (i,0) ;
    u_VoiceFreq (i,12000);
    U_StartVoice(i,Stop_Voice);
    u_Voicedata(0,0,0,i);
  end;
  runinf.Line := 0;                     { runtime - init. variables }
  runinf.Pattnr := -1;
  tickcounter := 0;
  ticklimit := 6;
  runinf.speed := 6;
  runinf.bpm := 125;
  if MOD_Voices = 4 then begin;  { arrrange channels in semicircle      }
    chpos[1] := 2;
    chpos[2] := 5;
    chpos[3] := 9;
    chpos[4] := 12;
    _gus_set_chanelpos;;
  end;
  if MOD_Voices = 8 then begin;
    chpos[1] := 1;
    chpos[2] := 3;
    chpos[3] := 5;
    chpos[4] := 7;
    chpos[5] := 7;
    chpos[6] := 9;
    chpos[7] := 11;
    chpos[8] := 13;
    _gus_set_chanelpos;;
  end;

  new_interrupt_Speed(runinf.bpm);
  restore_screen;
  Modinf.Voices  := MOD_Voices;  { constant MOD info in structure   }
  Modinf.Title   := vh.Songname;  { to be passed                      }
  Modinf.Patt_num := Vh.Songlength;
  _gus_modload    := true;
end;

Now let's look at the procedure Load_Instrument  for loading the instruments. You assign it the number
of the instrument to be loaded. If greater than 10 bytes, the data is loaded into GUS-RAM (a smaller size
indicates there is no valid data for this instrument). The procedure begins by reading the sample into a 64K
buffer. Then it searches for the next paragraph address (divisible by 16) in GUS-RAM. This represents the
sample start position and is assigned to the instrument variable Mempos. The procedure Ultra_Mem2Gus



407

Sound Support For Your Programs

Chapter 13

PCPC
underground

then transfers the sample to GUS-RAM, after which the reserved
buffer is released. Finally, the loop start position and the voice
end position in GUS-RAM are saved in the instrument
information. The following shows how the coding list appears:

procedure Load_Instrument(Nr : byte);
{
 Loads the instrument with the number nr into GUS RAM
}
var gr : longint;
    samp : pointer;
begin;
   gr := Instrument[nr]^.Size;
   if gr > 10 then begin;      { Load only if  > 10, otherwise not worth it ! }
     dos_getmem(samp,gr);
     Blockread(gusmf,samp^,gr);
     U_Ram_freepos := U_Ram_freepos + (16-(U_Ram_freepos MOD 16));
     Instruments[nr]^.Mempos := U_Ram_freepos;
     Ultra_Mem2Gus(samp,Instruments[nr]^.Mempos,gr);
     dos_freemem(samp);           { initialize variables for Voices  }
     Instruments[nr]^.l_start :=
        Instruments[nr]^.Mempos + Instruments[nr]^.Loop_Start;
     if Instruments[nr]^.Looping = With_loop then begin;
       Instruments[nr]^.end :=
         Instruments[nr]^.Mempos + Instruments[nr]^.Loop_End;
     end else begin;
       Instruments[nr]^.end := Instruments[nr]^.Mempos + gr - 25;
     end;
     Inc(U_Ram_Freepos,gr);       { continue setting management pointer   }
   end;
end;

Playing the loaded Mod

Now the MOD is loaded, we can play it by using one of many methods. One method is to use a loop to
increment a variable, or synchronize with the graphic card's vertical retrace. There is another method,
however, that is not only more precise, but also much more flexible. This method uses the timer interrupt.

We program the interrupt with a new frequency and redirect the handling routine to our own procedure.
This procedure increments a counter with every tick (every call). When the counter reaches the value
specified as Speed  in the MOD file, the MOD advances one line. At the end, we send an EOI (end of
interrupt) by writing the value 20h to port 20h.

Our procedure for starting the MOD is  _gus_modstart . It uses the value of BPM (beats per minute) to
calculate a new frequency for the timer. This is programmed over ports 43h and 40h. Before redirecting the
timer interrupt handler to our own procedure, we must save the old interrupt so we can restore it when
we're finished. This is done by the procedure timerint_reset . It resets the timer to its original frequency
and returns the interrupt to the proper handling routine.

By using the timer interrupt, we can also construct a simple Pause  function. To suspend play, we divert
the timer interrupt handler to a routine that does nothing except
to send an EOI. First, however, we set the individual channel
volumes to 0. To resume play, we set the interrupt back to the
player routine and turn on the voices again.

PCPCun
de

rg
ro

un
d

The procedure Load_Instrument
is part of the

GUS_MOD.PAS file
on the companion CD-ROM

PCPCun
de

rg
ro

un
d

The procedure mytimer
is part of the

GUS_MOD.PAS file
on the companion CD-ROM



408

Sound Support For Your Programs

Chapter 13

PCPC
underground

{$F+}
procedure mytimer; interrupt;
{
 My Timer Interrupt
}
begin;
  tick_effects;
  inc(tickcounter);
  if tickcounter >= ticklimit then begin;
    Tickcounter := 0;
    Play_Pattern_gus;
  end;
  Port[$20] := $20;
end;

procedure do_nothing; interrupt;
{
 Dummy interrupt. Program switches to this interrupt when output is paused/stopped.
}
begin;
  port[$20] := $20;
end;

procedure _gus_modstart;
{
 Starts output of MOD file via the timer interrupt. MOD file
 must already be loaded !
}
var counter : word;
    loc,hic : byte;
begin;
 counter := 1193180 DIV interrupt_speed;
 loc := lo(counter);
 hic := hi(counter);
 asm
  cli
  mov dx,43h
  mov al,36h
  out dx,al
  mov dx,40h
  mov al,loc
  out dx,al
  mov al,hic
  out dx,al
 end;
 getintvec(8,oldtimer);
 setintvec(8,@Mytimer);
 asm sti end;
end;

procedure _gus_player_pause;
{
 Pauses output via the timer interrupt
}
var li : integer;
begin;
 setintvec(8,@Do_nothing);
 for li := 0 to 31 do
   u_VoiceVolume (li,0) ;
end;

procedure _gus_player_continue;



409

Sound Support For Your Programs

Chapter 13

PCPC
underground

{
 Continues output via the timer interrupt.
}
var li : integer;
begin;
 setintvec(8,@Mytimer);
 for li := 1 to 31 do
   Voice_Rampin(li,Channels[li]^.volume);
end;

procedure timerint_reset;
{
 Resets the timer interrupt to its original value.
}
begin;
 asm
  cli
  mov dx,43h
  mov al,36h
  out dx,al
  xor ax,ax
  mov dx,40h
  out dx,al
  out dx,al
 end;
 setintvec(8,oldtimer);
 asm sti end;
end;

Playing the MOD file now advances one line for each call to the procedure play_pattern_gus . It
interprets the arrangement and patterns to produce the appropriate tones. It begins by incrementing the line
number by 1. If the resulting line number exceeds 64, it is reset to 1 for the start of the next pattern. If the
next pattern number (the position within the arrangement) exceeds the song length, the pattern number in
turn is reset to 1. Then the current line is read from the pattern to an array called The_Line . This facilitates
access to the individual bytes.

Now the line is processed. For each voice, we first check to see if there is something to be played. If so, the
corresponding entry in play_channel  will be 1. From the information in the line, we then obtain the
required tone, instrument, and effect.

If the tone entry is not 0, a frequency will be given. To handle the frequency properly, we must first check
for Effect = 3. In this case, the frequency refers to the target tone of a slide. In all other cases, the frequency
refers to the tone that is to be played immediately. The channel variables Tone  and Start_Tone  or
Targ_Tone  are set accordingly.

If the instrument entry is not 0, we must reload the channel variables for the instrument parameters. We first
pass the new instrument number, then use it to set the relevant positions in GUS-RAM, the volume and the
looping indicator.

Next the effects can be handled. Since this requires complex special instructions, effect-handling is done in
a separate procedure, which we will discuss in detail shortly.

Finally, if Tone  doesn't equal 0 (<> 0), we can actually play the note. First, we calculate the frequency for
the channel, dividing the base frequency for the number of voices by the frequency in the MOD file. Then
we set the frequency with procedure u_VoiceFreq . We also set the volume once it has been validated (it



410

Sound Support For Your Programs

Chapter 13

PCPC
underground

must be in the range 1 to 63). We then stop the playing of the
previous voice. Now the new voice can be started with the
newly programmed data.

procedure play_pattern_gus;
{
 This procedure is called periodically. It plays back a line of the MOD
 file.
}
var li        : integer;
    dumw      : word;
    The_Line : array[1..8,0..3] of Byte;
    Effect    : byte;
    Ton       : word;
    Inst      : byte;
begin;
{
 **************************************************************************
 ***   Move forward in Mod                                                 ***
 **************************************************************************
}
  inc(runinf.Line);              { Move forward one line              }
  if runinf.Line > 64 then runinf.Line := 1;
  if runinf.Line = 1 then begin; { New Pattern ?                   }
    inc(runinf.Pattnr);
    if runinf.Pattnr > vh.Songlength then runinf.Pattnr := 1;
  end;
                                  { load notes                       }
  move(ptr(seg(pattern[vh.Arrang[runinf.Pattnr]+1]^),
       ofs(pattern[vh.Arrang[runinf.Pattnr]+1]^)+
          (runinf.Line-1)*4*Mod_Voices)^,
       Die_Line,4*8);

{
 **************************************************************************
 ***   Process voices                                           ***
 **************************************************************************
}
  for li := 1 to MOD_Voices do begin;
    if play_chanel[li] = 1 then begin;
      stop_Thevoice[li] := false;

      Tone  := ((The_Line[li,0] AND $0f) shl 8)+The_Line[li,1];
      Inst := (The_Line[li,0] AND $f0)+((The_Line[li,2] AND $F0) SHR 4);
      Channels[li]^.Effect   := The_Line[li,2] AND $0f;
      Channels[li]^.Operand := The_Line[li,3];

      Channels[li]^.Start_Tone := oldv[li];

      if Tone <> 0 then begin;  { Tone entered ??? }
        if Channels[li]^.Effect = 3 then begin;
          Channels[li]^.Destination_Tone := Tone;
        end else begin;
          Channels[li]^.Tone := Tone;
          Channels[li]^.Start_Tone := Tone;
          oldv[li] := Channels[li]^.Start_Tone;
        end;
      end;

      If Inst <> 0 then begin; { use new instrument ??? }
        Channels[li]^.InstNr     := Inst;

PCPCun
de

rg
ro

un
d

Procedure play_pattern_gus
is part of the

GUS_MOD.PAS file
on the companion CD-ROM



411

Sound Support For Your Programs

Chapter 13

PCPC
underground

        Channels[li]^.Mempos     := Instruments[Channels[li]^.InstNr]^.Mempos;
        Channels[li]^.Loop_Start := Instruments[Channels[li]^.InstNr]^.l_start;
        Channels[li]^.End       := Instruments[Channels[li]^.InstNr]^.end;
        Channels[li]^.volume     := Instruments[Channels[li]^.InstNr]^.volume;
        Channels[li]^.Looping    := Instruments[Channels[li]^.InstNr]^.Looping;
        u_Voicedata(Channels[li]^.Mempos,Channels[li]^.Loop_Start,
                    Channels[li]^.End,li);
      end;
      Channels[li]^.Retrig_count := 0;
      Initialize_Effects(li);

      If (Tone <> 0) then begin; { Note struck }
        Channels[li]^.Frequency := longint(Voice_Base[14] div Channels[li]^.Start_Tone);
        u_VoiceFreq(li,Channels[li]^.Frequency); { set frequency }

        if Channels[li]^.Effect = $c then begin; { Extra, because otherwise too early ! }
          if Channels[li]^.Operand > 63 then Channels[li]^.Operand := 63;
          if Channels[li]^.Operand < 1 then
          begin
            Channels[li]^.volume := 0;
            u_VoiceVolume(li,0);
            U_StartVoice(li,Stop_Voice);
            stop_Thevoice[li] := true;
          end else begin
            Channels[li]^.volume := Channels[li]^.Operand;
            u_VoiceVolume(li,Channels[li]^.volume);
            Runinf.Volumes[li] := 63;
          end;
        end else begin;
          if Channels[li]^.volume > 63 then Channels[li]^.volume := 63;
           voice_rampin(li,Channels[li]^.volume);
           Runinf.Volumes[li] := 63;
        end;

        U_StartVoice(li,Stop_Voice); { stop old voice }
        u_Voicedata(Channels[li]^.Mempos,Channels[li]^.Loop_Start,
                    Channels[li]^.End,li);
        if not stop_Thevoice[li] then begin; { start new voice }
          U_StartVoice(li,Play_Voice+Bit8+Channels[li]^.Looping+Unidirect);
          Runinf.Amplitude[li] := Channels[li]^.volume * 4; { For Equalizer }
        end;
      end; { Note struck }
    end else begin;
      u_VoiceVolume(li,0);
    end;
  end; {for}
end;

The interesting part is handling the effects when we must distinguish between a procedure for initializing
the effects and a procedure for updating them with every tick. Let's look first at the initialization procedure.
This is called from play_pattern_gus .

If no effect is specified, the procedure terminates immediately. Otherwise, a Case instruction checks the
effect type. We could have used a jump table with the addresses of individual effect procedures instead.
However, since the GUS allows us to use a somewhat slower player, we prefer the case structure for its
readability.

According to the effect specified, we make the necessary changes to the parameters for the current channel.
We will look at each one in turn:



412

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 0  -  Arpeggio

This effect plays three pitches in quick succession, starting with
the pitch in Start_Ton . The X-nibble is the first increment for
raising the pitch, the Y-nibble the second. A new frequency
must be calculated and set with each tick.

procedure Initialize_Effects(nr : byte);
var swaplong      : longint;
    vibswap       : integer;
begin;
  if Channels[nr]^.Effect = 0 then exit;
  case Channels[nr]^.Effect of
    0 : begin; { Arpeggio }
          Channels[nr]^.Arpegpos := 0;
          Channels[nr]^.Effectx := Channels[nr]^.Operand shr 4;
          Channels[nr]^.Effecty := Channels[nr]^.Operand and $0f;

          inc(Channels[nr]^.Arpegpos);
          case (Channels[nr]^.Arpegpos MOD 3) of
            0 : begin; {ap = 3 !}
                  Channels[nr]^.Start_Tone :=
                  Channels[nr]^.Tone + Channels[nr]^.Effecty;
                end;
            1 : begin; {ap = 1 !}
                  Channels[nr]^.Start_Tone :=
                  Channels[nr]^.Tone;
                end;
            2 : begin; {ap = 2 !}
                  Channels[nr]^.Start_Tone :=
                  Channels[nr]^.Tone + Channels[nr]^.Effectx;
                end;
          end;
          if Channels[nr]^.Start_Tone < 1 then
            Channels[nr]^.Start_Tone := 1;
          Channels[nr]^.Frequency :=
            longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
          u_VoiceFreq(nr,Channels[nr]^.Frequency);
        end;

Effect 1  -  Portamento Up

For Portamento Up, the frequency is incremented by the value in the operand with each tick.

    1 : begin;  { Portamento up }
          dec(Channels[nr]^.Start_Tone,Channels[nr]^.Operand);
          if Channels[nr]^.Start_Tone < 1 then
            Channels[nr]^.Start_Tone := 1;
          Channels[nr]^.Frequency :=
            longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
          u_VoiceFreq(nr,Channels[nr]^.Frequency);
        end;

Effect 2  -  Portamento Down

This effect is similar to Portamento Up but the frequency is decremented instead of incremented.

    2 : begin;  { Portamento down }
          inc(Channels[nr]^.Start_Tone,Channels[nr]^.Operand);
          if Channels[nr]^.Start_Tone < 1 then

PCPCun
de

rg
ro

un
d

The program listings on
pages 412-421 are from

GUS_MOD.PAS file
on the companion CD-ROM



413

Sound Support For Your Programs

Chapter 13

PCPC
underground

            Channels[nr]^.Start_Tone := 1;
          Channels[nr]^.Frequency :=
            longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
          u_VoiceFreq(nr,Channels[nr]^.Frequency);
        end;

Effect 3  -  Tone Portamento

We must first determine whether the target pitch for this effect is lower or higher than the current pitch.
Then we increment or decrement the frequency accordingly, at a speed determined by the operand. The
frequency is changed and reset on the GUS with each tick. Here the initialization is implemented in the case
query by a separate procedure.

    3 : begin; { Tone Portamento }
          EI_toneportamento(nr);
        end;
{
 --------------------------------------------
procedure EI_toneportamento(nr : byte);
{
 Init for effect-handling Tone Portamento procedure
}
begin;
  { Determine Inc factor }
  if Channels[nr]^.Operand <> 0 then
  begin;
    if Channels[nr]^.Start_Tone > Channels[nr]^.Targ_Tone then
    begin;
      Channels[nr]^.slidespeed := -(Channels[nr]^.Operand);
    end else begin;
      Channels[nr]^.slidespeed := (Channels[nr]^.Operand);
    end;
  end;
  if Channels[nr]^.Start_Tone < 1 then
    Channels[nr]^.Start_Tone := 1;
  Channels[nr]^.Frequency :=
    longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
  u_VoiceFreq(nr,Channels[nr]^.Frequency);
  oldv[nr] := Channels[nr]^.Start_Tone;
end;
 --------------------------------------------
}

Effect 4  -  Vibrato

For a vibrato, we first get the speed and depth from the X and Y nibbles of the operand. Then the Vibrato
procedure is called. It increments a pointer in the Vibrato table. If this becomes greater than 64, it is
decremented by 64 to bring it back into range. Using the pointer, we get a value from the Vibrato table,
which we then multiply by the depth and divide by 256. We then increment the frequency by the value
obtained. This procedure is called and the frequency reset with every tick.

    4 : begin;  { Vibrato  *new* }
          Channels[nr]^.vibx := Channels[nr]^.Operand shr 4;
          Channels[nr]^.viby := Channels[nr]^.Operand and $0f;
          effect_vibrato(nr);
        end;
{
 --------------------------------------------
procedure effect_vibrato(nr : byte);



414

Sound Support For Your Programs

Chapter 13

PCPC
underground

{
 From the effect-handling Vibrato procedure
}
var vibswap : integer;
begin;
  inc(Channels[nr]^.vibpos,Channels[nr]^.vibx);
  if Channels[nr]^.vibpos > 64 then
    dec(Channels[nr]^.vibpos,64);
  vibswap :=
    (VibratoTable[Channels[nr]^.vibpos] * Channels[nr]^.viby) div 256;
  inc(Channels[nr]^.Start_Tone,vibswap);
  if Channels[nr]^.Start_Tone < 1 then
    Channels[nr]^.Start_Tone := 1;
  Channels[nr]^.Frequency :=
    longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
  u_VoiceFreq(nr,Channels[nr]^.Frequency);
end;
 --------------------------------------------
}

Effect 5  -  Note & Volume sliding

This effect can be divided into two parts: Volume sliding and Portamento. We first determine whether the
operand is greater than 0fh. If not, the effect is a Sliding down and we compute the speed by the formula
speed := Operand AND $0f. Otherwise, the effect is a Sliding up and we determine the speed by a 4-bit right
shift of the operand. We then change the voice volume and verify the new volume is within range. The
frequency is also validated. Volume and frequency are then set on the GUS.

    5 : begin; {NOTE SLIDE + VOLUME SLIDE:   *new* }
          { init }
          if Channels[nr]^.Operand <= $0f then
          begin;
            Channels[nr]^.vslide := -(Channels[nr]^.Operand AND $0f);
            Channels[nr]^.slidespeed := -(Channels[nr]^.Operand AND $0f);
          end else begin;
            Channels[nr]^.vslide := (Channels[nr]^.Operand shr 4);
            Channels[nr]^.slidespeed := (Channels[nr]^.Operand shr 4);
          end;
          { volume slide }
          inc(Channels[nr]^.volume,Channels[nr]^.vslide);
          if Channels[nr]^.volume < 0 then Channels[nr]^.volume := 0;
          if Channels[nr]^.volume > 63 then Channels[nr]^.volume := 63;
          u_VoiceVolume(Nr,Channels[nr]^.volume);
          { Note slide }
          inc(Channels[nr]^.Start_Tone,Channels[nr]^.slidespeed);
          if Channels[nr]^.Start_Tone < 1 then
            Channels[nr]^.Start_Tone := 1;
          Channels[nr]^.Frequency :=
            longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
          u_VoiceFreq(nr,Channels[nr]^.Frequency);
        end;

Effect 6  -  Vibrato & Volume sliding.

This effect also has two parts. See Effect 5 for Volume sliding and Effect 4 for the Vibrato routine.

    6 : begin;  { Vibrato & Volume slide  *new* }
          { init }
          Channels[nr]^.vibx := Channels[nr]^.Operand shr 4;
          Channels[nr]^.viby := Channels[nr]^.Operand and $0f;



415

Sound Support For Your Programs

Chapter 13

PCPC
underground

          if Channels[nr]^.Operand <= $0f then
          begin;
            Channels[nr]^.vslide := -(Channels[nr]^.Operand AND $0f);
          end else begin;
            Channels[nr]^.vslide := (Channels[nr]^.Operand shr 4);
          end;
          { volume slide }
          inc(Channels[nr]^.volume,Channels[nr]^.vslide);
          if Channels[nr]^.volume < 0 then Channels[nr]^.volume := 0;
          if Channels[nr]^.volume > 63 then Channels[nr]^.volume := 63;
          u_VoiceVolume(Nr,Channels[nr]^.volume);
          { vibrato }
          effect_vibrato(nr);
        end;

Effect 7  -  Tremolo

The Tremolo effect works like the Vibrato. Here, however, the volume is manipulated instead of the
frequency.

    7 : begin; { tremolo  *new* }
           Channels[nr]^.vibx := Channels[nr]^.Operand shr 4;
           Channels[nr]^.viby := Channels[nr]^.Operand and $0f;
           inc(Channels[nr]^.vibpos,Channels[nr]^.vibx);
           if Channels[nr]^.vibpos > 64 then
             dec(Channels[nr]^.vibpos);
           vibswap :=
             (VibratoTable[Channels[nr]^.vibpos] * Channels[nr]^.viby) div 256;
           inc(Channels[nr]^.Volume,vibswap);
           if Channels[nr]^.Volume < 0 then Channels[nr]^.Volume := 0;
           if Channels[nr]^.Volume > 63 then Channels[nr]^.Volume := 63;
           u_VoiceVolume(nr,Channels[nr]^.volume);
        end;

Effect 8  -  Not used

This effect is not used. You can use it for your own effects or graphic synchronizations.

    8 : begin; { not used !!! }
          {
           Not officially used. Can be used to synchronize
           certain events in a demo ...
          }
        end;

Effect 9  -  Sample-Offset

In the Sample-Offset command, the operand represents the high byte of an offset within the sample.
Multiply the operand by 256 to obtain the offset. We then add the result to the position of the sample in GUS-
RAM and set the channel to this position.

    9 : begin;  { Sample - Offset *new* }
          swaplong := longint((Channels[nr]^.Operand+1)) * 256;
          Channels[nr]^.Mempos := Channels[nr]^.Mempos+swaplong;
          u_Voicedata(Channels[nr]^.Mempos,Channels[nr]^.Loop_Start,
                    Channels[nr]^.Ende,nr);
          U_StartVoice(nr,Play_Voice+Bit8+Channels[nr]^.Looping+Unidirect);
        end;



416

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 0ah  -  Volume sliding

This is one of the easiest effects to achieve. If the operand is less than 16, we must subtract its lower four bits
from the current volume with each tick. Otherwise, we shift it right by 4 bits and add the result to the volume
with each tick. Again, make certain the new volume is within range.

   $a : begin;  { Volume sliding  *new* }
          if Channels[nr]^.Operand <= $0f then
          begin;
            Channels[nr]^.vslide := -(Channels[nr]^.Operand AND $0f);
          end else begin;
            Channels[nr]^.vslide := (Channels[nr]^.Operand shr 4);
          end;
          inc(Channels[nr]^.volume,Channels[nr]^.vslide);
          if Channels[nr]^.volume < 0 then Channels[nr]^.volume := 0;
          if Channels[nr]^.volume > 63 then Channels[nr]^.volume := 63;
          u_VoiceVolume(Nr,Channels[nr]^.volume);
        end;

Effect 0bh  -  Position Jump

Here the operand specifies the next desired position within the arrangement. We set the line number to 64
(the end of the current pattern) so the new pattern will start automatically with the next execution.

   $b : begin; { Position Jump *ok* }
          runinf.Line := 64;
          runinf.Pattnr := Channels[nr]^.Operand;
        end;

Effect 0ch  -  Set Note Volume

This effect sets the volume of a voice. We simply assign the operand value to the voice volume and make
sure it is within range.

   $c : begin; { Set Note Volume *ok* }
          if Channels[nr]^.Operand > 63 then Channels[nr]^.Operand := 63;
          if Channels[nr]^.Operand < 1 then
          begin
            Channels[nr]^.volume := 0;
            u_VoiceVolume(nr,0);
            U_StartVoice(nr,Stop_Voice);
            stop_Thevoice[nr] := true;
          end else begin
            Channels[nr]^.volume := Channels[nr]^.Operand;
            u_VoiceVolume(Nr,Channels[nr]^.volume);
            Runinf.Volumes[nr] := 63;
          end;
        end;

Effect 0dh  -  Pattern Break

This effect jumps to the next pattern of the MOD. Strictly speaking, to program it correctly we would set
the line number to the value of the operand, and set a Boolean variable to TRUE to trigger the jump. It's
easier, however, to set the line to the end of the current pattern for the jump to be triggered automatically.

   $d : begin; { Patterm Break *ok* }
          runinf.Line := 64;
        end;



417

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 0eh  -  Extended effect commands

Effect 0eh defines several subeffects. The subeffect is specified by the upper four bits of the operand. The
following are of interest:

Subeffect 1  -  Fine Sliding Up

This effect works like Portamento-Up. Instead of updating with every tick, however, we change the
frequency only once initially.

   $e : begin;  { Extended effect command }
          case (Channels[nr]^.Operand shr 4) of
            1 : begin; { Fine slide up }
                  inc(Channels[nr]^.Start_Tone,Channels[nr]^.Operand and $0f);
                  if Channels[nr]^.Start_Tone < 1 then Channels[nr]^.Start_Tone := 1;
                  Channels[nr]^.Frequency :=
                    longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
                  u_VoiceFreq(nr,Channels[nr]^.Frequency);
                end;

Subeffect 2  -  Fine Sliding Down

This is like Subeffect 1, but corresponds to Portamento down.

            2 : begin; { Fine slide down }
                  dec(Channels[nr]^.Start_Tone,Channels[nr]^.Operand and $0f);
                  if Channels[nr]^.Start_Tone < 1 then Channels[nr]^.Start_Tone := 1;
                  Channels[nr]^.Frequency :=
                    longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
                  u_VoiceFreq(nr,Channels[nr]^.Frequency);
                end;

Subeffect 9  -  Retriggering Note

This effect plays the note again after the number of ticks specified in the operand. This simply means the
sample starts over from the beginning.

            9 : begin; { Retriggering !!! *new* }
                  Channels[nr]^.Retrig_count :=
                    Channels[nr]^.Operand and $0f;
                end;

Subeffect 0ah  -  Fine Volume Slide Up

The volume of the channel is increased by the amount specified in the lower four bits of the operand. The
volume does not change with subsequent ticks.

           $a : begin; { fine volume slide up }
                  Channels[nr]^.vslide := (Channels[nr]^.Operand AND $0f);
                  inc(Channels[nr]^.volume,Channels[nr]^.vslide);
                  if Channels[nr]^.volume < 0 then Channels[nr]^.volume := 0;
                  if Channels[nr]^.volume > 63 then Channels[nr]^.volume := 63;
                  u_VoiceVolume(Nr,Channels[nr]^.volume);
                end;



418

Sound Support For Your Programs

Chapter 13

PCPC
underground

Subeffect 0bh  -  Fine Volume Slide Down

The volume of the channel is decreased by the amount specified in the lower four bits of the operand. The
volume does not change with subsequent ticks.

           $b : begin; { fine volume slide down }
                  Channels[nr]^.vslide := (Channels[nr]^.Operand AND $0f);
                  dec(Channels[nr]^.volume,Channels[nr]^.vslide);
                  if Channels[nr]^.volume < 0 then Channels[nr]^.volume := 0;
                  if Channels[nr]^.volume > 63 then Channels[nr]^.volume := 63;
                  u_VoiceVolume(Nr,Channels[nr]^.volume);
                end;

Subeffect 0ch  -  Cut Voice

This effect stops the playing of a channel. In our player, we simply set Stop_TheVoice to TRUE.

           $c : begin;  { Cut Voice *ok* }
                  stop_Thevoice[nr] := true;
                end;
           end;
        end;

Effect 0fh  -  Set Speed

This effect sets the MOD speed. If the operand value is less than 16, it represents the speed directly and is
assigned to the variable ticklimit. Otherwise, it is a BPM (beats per minute) value, and procedure
new_interrupt_speed  must be called.

   $f : begin; { Set Speed  *ok* }
          if Channels[nr]^.Operand <= $f then begin;
            ticklimit := Channels[nr]^.Operand;
            runinf.speed := ticklimit;
          end else begin;
            runinf.bpm := Channels[nr]^.Operand;
            new_interrupt_Speed(Channels[nr]^.Operand);
          end;
        end;
  end;
end;

Remember the effects must not only be initialized, but updated with each tick. The algorithms required here
are essentially the same as we have just seen, but without the initializing of most of the variables. The
procedure is as follows:

procedure tick_effects;
var li : integer;
    vibswap : integer;
begin;
  for li := 1 to MOD_Voices do begin;
    if runinf.volumes[li] > 0 then
      dec(runinf.volumes[li]);
    case Channels[li]^.Effect of { Process runtime effects         }
      0 : begin;
            inc(Channels[li]^.Arpegpos);
            case (Channels[li]^.Arpegpos MOD 3) of
              0 : begin; {ap = 3 !}
                    Channels[li]^.Start_Tone :=
                    Channels[li]^.Tone + Channels[li]^.Effecty;



419

Sound Support For Your Programs

Chapter 13

PCPC
underground

                  end;
              1 : begin; {ap = 1 !}
                    Channels[li]^.Start_Tone :=
                    Channels[li]^.Tone;
                  end;
              2 : begin; {ap = 2 !}
                    Channels[li]^.Start_Tone :=
                    Channels[li]^.Tone + Channels[li]^.Effectx;
                  end;
             end;
          end;
      1 : begin;
          {!"! new }
            Channels[li]^.Operand := Channels[li]^.Operand and $0F;
          {!"! new end }
            dec(Channels[li]^.Start_Tone,Channels[li]^.Operand);
            if Channels[li]^.Start_Tone < 1 then
              Channels[li]^.Start_Tone := 1;
            Channels[li]^.Frequency :=
              longint(Voice_Base[14] div Channels[li]^.Start_Tone);
            u_VoiceFreq(li,Channels[li]^.Frequency);
          end;
      2 : begin;
          {!"! new }
            Channels[li]^.Operand := Channels[li]^.Operand and $0F;
          {!"! new end }
            inc(Channels[li]^.Start_Tone,Channels[li]^.Operand);
            if Channels[li]^.Start_Tone < 1 then
              Channels[li]^.Start_Tone := 1;
            Channels[li]^.Frequency :=
              longint(Voice_Base[14] div Channels[li]^.Start_Tone);
            u_VoiceFreq(li,Channels[li]^.Frequency);
          end;
      3 : begin; { Tone Portamento }
            E_toneportamento(li);
{
 --------------------------------------------
procedure E_toneportamento(nr : byte);
{
 From the effect-handling TonePortamento procedure
}
begin;
  if Channels[nr]^.slidespeed < 0 then
  begin
    inc(Channels[nr]^.Start_Tone,Channels[nr]^.slidespeed);
    if Channels[nr]^.Start_Tone < Channels[nr]^.Targ_Tone then
      Channels[nr]^.Start_Tone := Channels[nr]^.Targ_Tone;
  end else begin
    inc(Channels[nr]^.Start_Tone,Channels[nr]^.slidespeed);
    if Channels[nr]^.Start_Tone > Channels[nr]^.Targ_Tone then
      Channels[nr]^.Start_Tone := Channels[nr]^.Targ_Tone;
  end;
  if Channels[nr]^.Start_Tone < 1 then
    Channels[nr]^.Start_Tone := 1;
  Channels[nr]^.Frequency :=
    longint(Voice_Base[14] div Channels[nr]^.Start_Tone);
  u_VoiceFreq(nr,Channels[nr]^.Frequency);
  oldv[nr] := Channels[nr]^.Start_Tone;
end;
 --------------------------------------------
}
          end;



420

Sound Support For Your Programs

Chapter 13

PCPC
underground

      4 : begin;  { vibrato  *new* }
            effect_vibrato(li);
          end;
     5 : begin;
           { volume slide }
           inc(Channels[li]^.volume,Channels[li]^.vslide);
           if Channels[li]^.volume < 0 then Channels[li]^.volume := 0;
           if Channels[li]^.volume > 63 then Channels[li]^.volume := 63;
           u_VoiceVolume(li,Channels[li]^.volume);
           { Note slide }
           inc(Channels[li]^.Start_Tone,Channels[li]^.slidespeed);
            if Channels[li]^.Start_Tone < 1 then
              Channels[li]^.Start_Tone := 1;
           Channels[li]^.Frequency :=
             longint(Voice_Base[14] div Channels[li]^.Start_Tone);
           u_VoiceFreq(li,Channels[li]^.Frequency);
         end;
     6 : begin;
           { volume slide }
           inc(Channels[li]^.volume,Channels[li]^.vslide);
           if Channels[li]^.volume < 0 then Channels[li]^.volume := 0;
           if Channels[li]^.volume > 63 then Channels[li]^.volume := 63;
           u_VoiceVolume(li,Channels[li]^.volume);
           { vibrato }
           inc(Channels[li]^.vibpos,Channels[li]^.vibx);
           if Channels[li]^.vibpos > 64 then
             dec(Channels[li]^.vibpos);
           vibswap :=
             (VibratoTable[Channels[li]^.vibpos] * Channels[li]^.viby) div 256;
           inc(Channels[li]^.Start_Tone,vibswap);
            if Channels[li]^.Start_Tone < 1 then
              Channels[li]^.Start_Tone := 1;
           Channels[li]^.Frequency :=
             longint(Voice_Base[14] div Channels[li]^.Start_Tone);
           u_VoiceFreq(li,Channels[li]^.Frequency);
         end;
     7 : begin; { tremolo  *new* }
            inc(Channels[li]^.vibpos,Channels[li]^.vibx);
            if Channels[li]^.vibpos > 64 then
              dec(Channels[li]^.vibpos);
            vibswap :=
              (VibratoTable[Channels[li]^.vibpos] * Channels[li]^.viby) div 256;
            inc(Channels[li]^.Volume,vibswap);
            if Channels[li]^.Volume < 0 then Channels[li]^.Volume := 0;
            if Channels[li]^.Volume > 63 then Channels[li]^.Volume := 63;
            u_VoiceVolume(li,Channels[li]^.volume);
         end;
    8 : begin; { not used !!! }
        end;
    $a : begin; { Volume sliding   **new* }
           inc(Channels[li]^.volume,Channels[li]^.vslide);
           if Channels[li]^.volume < 0 then Channels[li]^.volume := 0;
           if Channels[li]^.volume > 63 then Channels[li]^.volume := 63;
           u_VoiceVolume(li,Channels[li]^.volume);
         end;
    $e : begin;  { Extended effect command }
          case (Channels[li]^.Operand shr 4) of
              9: begin; { Retriggering !!! }
                   if Channels[li]^.Operand and $0f <> 0 then begin;
                     dec(Channels[li]^.Retrig_count);
                     if Channels[li]^.Retrig_count = 0 then begin;
                       Channels[li]^.Retrig_count := Channels[li]^.Operand and $0f;



421

Sound Support For Your Programs

Chapter 13

PCPC
underground

                       u_Voicedata(Channels[li]^.Mempos,Channels[li]^.Loop_Start,
                              Channels[li]^.Ende,li);
                       U_StartVoice(li,Play_Voice+Bit8+Channels[li]^.Looping+Unidirect);
                     end;
                   end;
                 end;
           end;
        end;
    end;
  end;
end;

These are the essential procedures of the GUS_MOD unit. You have seen how to load and play a MOD. When
playing is finished, we use procedure _gus_mod_end  to remove the MOD from memory. This first calls
procedure timerint_reset , which we have already discussed. The memory is then released by
procedure dispose_mod . This procedure first stops all GUS channels. Then it loops to free the memory
occupied by the patterns, channel information, and instrument data.

procedure dispose_mod;
{
 Removes a loaded MOD from main memory. The samples are NOT deleted from the GUS.
}
begin;
  for i := 0 to 31 do begin;
    U_StartVoice(i,Stop_Voice);
  end;
  for i := 1 to Vh.Num_Patts do begin;
    dos_freemem(Pattern[i]);
  end;
  for i := 0 to 15 do begin;
    dispose(Channels[i]);
  end;
  for i := 0 to 31 do begin;
     dispose(Instruments[i]);
  end;
end;

procedure _gus_mod_end;
{
 Ends MOD output
}
begin;
  timerint_reset;
  dispose_mod;
end;

We hope we've covered everything you need to know for programming a MOD player for the GUS. You
can add your own enhancements as required. A track for sound effects or a graphic-mode player are two
ideas you might have fun developing.

The GUS TCP Player from CoExistence

We start here with a GUS player in text mode. To fit as much information on the screen as possible, we use
a 50-line screen mode.

The player works rather simply. First, _gu_init_env  initializes the GUS. If no GUS is found, or if errors
occur during initialization, an error message is displayed. This message is created using "The Draw" and



422

Sound Support For Your Programs

Chapter 13

PCPC
underground

saved in PASCAL object format, which is essentially a snapshot of video memory. You can link the object
into your own Pascal program and reference the screen by its procedure name. For example, if you have
saved the text under the procedure name helptxt , you can displays the ANSI screen with the following
instructions:

move (@helptxt^,ptr($B800,0)^,80*50*2)

If initialization was successful, memory is reserved for the file-handling structure. This is a component of
the fselect  unit, located on the companion CD-ROM. Function check_commandline  now checks to see
whether a file name was given on the command line. If so, it returns the value TRUE. Otherwise, the
fselect unit can be used to select one or more files.

Next, _gus_initialize  performs additional setup work for the MOD unit, and the ANSI code for the
main screen is displayed. Then procedure  write_phunliners  is called. This procedure reads three lines
from the PHUN.TXT file and places them at the bottom of the screen. The lines in the PHUN.TXT file are
from BBS-On-Line. The file is a standard editable file.

After outputting the Phunlines, the program loads the MOD file using _gus_modload . You have already
learned about this function in detail. Once the MOD is loaded, the file name and other important
information (instrument names) are displayed on the screen. When the graphic operations are completed,
MOD output begins through _gus_modstart .

Next procedure User  is called, This procedure periodically updates the volume bars on the screen and
handles any input from the user. When the procedure exits, the current MOD is removed from memory.
If the user initially selected the file from the selection menu, the
menu is redisplayed. Otherwise, the player stops.

The coding of the player itself is simple. It consists basically of
the GUS_MOD unit. The following is the source code listing:

{$A+,B-,D+,E+,F+,G+,I+,L+,N-,O-,P-,Q-,R-,S+,T-,V+,X+,Y+}
{$M 16384,0,250000}

program gusdemo;

uses crt,dos,design,fselect, gus_mod;

type
  Pphun = ^TPhun;
  TPhun = array[0..799] of string[80];

const mod_path = '';

const Program_end : boolean = false;

var phun : Pphun;
    phuncount : integer;
    modify_voice : integer;
    i : integer;
    The_files : Pfileselect_struct;
    curr_modnr : integer;

{
  Linking of Ansi screens

PCPCun
de

rg
ro

un
d

You can find
TCP.PAS

on the companion CD-ROM



423

Sound Support For Your Programs

Chapter 13

PCPC
underground

}

{$L tcpans}
procedure tcpans; external;
{$L we_are}
procedure we_are; external;
{$L buy_it}
procedure buy_it; external;
{$L call}
procedure call; external;
{$L helptxt}
procedure helptxt; external;

function file_exists(fname : string) : boolean;
{
 Checks to see if requested file exists
}
var dumf : file;
begin;
  {$I-}
  assign(dumf,fname);
  reset(dumf,1);
  {$I+}
  if IOResult <> 0 then
    file_exists := false
  else begin;
    file_exists := true;
    close(dumf);
  end;
end;

procedure color_writeln(s : string);
{
 Outputs a string in the TC colors
}
var colpos,li : integer;
begin;
  colpos := 1;
  for li := 1 to length(s) do begin;
    if s[li] = ' ' then colpos := 0;
    inc(colpos);
    case colpos of
        1..2 : begin;
                 textcolor(8);
               end;
        3..4 : begin;
                textcolor(2);
               end;
      5..$ff : begin;
                 textcolor(10);
               end;
    end;
    write(s[li]);
  end;
end;

procedure write_filename(s : string);
{
 Writes song file name, centered
}
var li,slen : integer;



424

Sound Support For Your Programs

Chapter 13

PCPC
underground

begin;
  gotoxy(33,13);
  while pos('\',s) <> 0 do begin;
    delete(s,1,pos('\',s));
  end;
  slen := length(s);
  slen := (15 - slen) div 2;
  for li := 1 to slen do s := ' '+s;
  write(s);
end;

procedure write_phunliners;
{
 Reads three lines from the file "Phun.txt" and displays them.
 "Phun.txt" is a normal text file that you can edit as you wish.
}
var tf : text;
begin;
  randomize;
  if not file_exists('phun.txt') then exit;
  assign(tf,'phun.txt');
  reset(tf);
  phuncount := 0;
  {$I+}
  if ioresult = 0 then begin;
    while not eof(tf) do begin;
      readln(tf,phun^[phuncount]);
      inc(phuncount);
    end;
    close(tf);
    gotoxy(3,43);
    color_writeln(phun^[random(phuncount)]);
    gotoxy(3,44);
    color_writeln(phun^[random(phuncount)]);
    gotoxy(3,45);
    color_writeln(phun^[random(phuncount)]);
  end;
  {$I-}
end;

procedure display_modinfo;
{
 Displays instrument names of current module
}
var li : integer;
begin;
  textcolor(14);
  textbackground(black);
  for li := 1 to 16 do begin;
    gotoxy(6,17+li);
    color_writeln(Instruments[li]^.name);
    gotoxy(50,17+li);
    color_writeln(Instruments[li+16]^.name);
  end;
end;

procedure exit_program;
{
 Before leaving the program, a plug for TC WHQ,
 the Farpoint Station (04202 76145) ...
}
begin;



425

Sound Support For Your Programs

Chapter 13

PCPC
underground

  display_ansi(@call,co80+font8x8);
  cursor_off;
  repeat until keypressed;
  while keypressed do readkey;
  cursor_on;
  asm mov ax,03; int 10h; end;
  halt;
end;

procedure next_mod;
{
 Starts output of next selected MOD
}
begin;
  _gus_mod_end;
  inc(curr_modnr);
  if curr_modnr > The_Files^.nofiles then
    curr_modnr := 1;
  if not _gus_modload(The_Files^.fn[curr_modnr]) then begin;
    clrscr;
    gotoxy(10,10);
    write('Sorry, dude, can't handle this MOD file');
    delay(1200);
    exit_program;
  end;
  display_ansi(@tcpans,co80+font8x8);
  cursor_off;
  write_phunliners;
  write_Filenames(The_Files^.fn[curr_modnr]);
  display_modinfo;
  fillchar(Play_Channel,14,1);
  _gus_modstart;
end;

procedure display_we_are;
{
 ANSI output with info about the group THE COEXISTENCE
}
begin;
  display_ansi(@we_are,co80+font8x8);
  cursor_off;
  repeat until keypressed;
  while keypressed do readkey;
  display_ansi(@tcpans,co80+font8x8);
  cursor_off;
  write_phunliners;
  write_filenames(The_Files^.fn[curr_modnr]);
  display_modinfo;
end;

procedure display_buy_it;
{
 Advertises the book PC Underground
}
begin;
  display_ansi(@buy_it,co80+font8x8);
  cursor_off;
  repeat until keypressed;
  while keypressed do readkey;
  display_ansi(@tcpans,co80+font8x8);
  cursor_off;
  write_phunliners;



426

Sound Support For Your Programs

Chapter 13

PCPC
underground

  write_filenames(The_Files^.fn[curr_modnr]);
  display_modinfo;
end;

procedure handle_keys(key1,key2 : char);
{
 Reacts to keyboard input from user
}
var pchan : byte;
begin;
  case key1 of
    #00 : begin;
            case key2 of
              #45 : begin;
                      Program_end := true;
                    end;
              #72 : begin;
                      if modify_voice > 1 then
                        dec(modify_voice);
                    end;
              #80 : begin;
                      if modify_voice < Modinf.Voices then
                        inc(modify_voice);
                    end;
              #75 : begin; { cursor left  }
                      runinf.Line := 64;
                      dec(runinf.Pattnr,2);
                      if runinf.Pattnr < -1 then runinf.Pattnr := -1;
                    end;
              #77 : begin; { cursor right  }
                      runinf.Line := 64;
                      inc(runinf.Pattnr);
                    end;
            end;
          end;
    #27 : begin;
            Program_end := true;
          end;
    #32,
    'W',
    'w',
    'I',
    'i' : begin;
            display_we_are;
          end;
    'D',
    'd',
    'b',
    'B' : begin;
            display_buy_it;
          end;
    'L',
    'l' : begin;
            chpos[modify_voice] := 1;
            _gus_set_channelpos;
          end;
    'R',
    'r' : begin;
            chpos[modify_voice] := 15;
            _gus_set_channelpos;
          end;
    'M',



427

Sound Support For Your Programs

Chapter 13

PCPC
underground

    'm' : begin;
            chpos[modify_voice] := 7;
            _gus_set_channelpos;
          end;
    'U',
    'u' : begin;
            if Modinf.Voices = 4 then
            begin
              chpos[1] := 2;
              chpos[2] := 5;
              chpos[3] := 9;
              chpos[4] := 12;
            end;
            if Modinf.Voices = 8 then
            begin
              chpos[1] := 1;
              chpos[2] := 3;
              chpos[3] := 5;
              chpos[4] := 7;
              chpos[5] := 7;
              chpos[6] := 9;
              chpos[7] := 11;
              chpos[8] := 13;
            end;
            _gus_set_channelpos;
          end;
    ',' : begin; { to left }
            if chpos[modify_voice] > 1 then
              dec(chpos[modify_voice]);
            _gus_set_channelpos;
          end;
    '.' : begin; { to right }
            if chpos[modify_voice] < 15 then
              inc(chpos[modify_voice]);
            _gus_set_channelpos;
          end;
    '1'..
    '8' : begin;
            pchan := ord(key1)-48;
            if Play_Channel[pchan] = 1 then begin;
              Play_Channel[pchan] := 0;
              textcolor(10);   gotoxy(77,2+pchan);
              write('M');      textcolor(2);
              write('UTE');
            end else begin;
              Play_Channel[pchan] := 1;
              textcolor(10);   gotoxy(77,2+pchan);
              write('C');      textcolor(2);
              write('H  ');
            end;
          end;
    'n',
    'N' : begin;
            next_mod;
          end;
  end;
end;

procedure screen_update;
const colvals : array[1..35] of byte =
   (08,08,08,08,08,02,02,02,02,10,10,10,10,10,10,10,10,
    10,10,10,10,10,10,10,10,10,10,10,10,10,05,05,05,05,05);



428

Sound Support For Your Programs

Chapter 13

PCPC
underground

var volstr : string[66];
    li : integer;
    outs : integer;
begin;
  { Update volume bars }
  for li := 1 to Modinf.Voices do begin;
    for outs := 1 to round(Runinf.Volumes[li] / 1.78) do begin;
      screen[li+2,37+outs].a := colvals[outs];
    end;
    for outs := round(Runinf.Volumes[li] / 1.78)  to 36 do begin;
      screen[li+2,38+outs].a := 7;
    end;
  end;

  { Sets proper background color for arrow }
  for li := 1 to 8 do begin;
    if li = modify_voice then begin;
      screen[2+li,34].a := 05;
      screen[2+li,35].a := 05;
      screen[2+li,36].a := 05;
      screen[2+li,37].a := 05;
    end else begin;
      screen[2+li,34].a := 07;
      screen[2+li,35].a := 07;
      screen[2+li,36].a := 07;
      screen[2+li,37].a := 07;
    end;
  end;

  { Shows runtime MOD information }
  gotoxy(18,14);
  color_writeln(Modinf.Title);

  textcolor(7);
  gotoxy(18,16);
  write(runinf.pattnr:3);

  gotoxy(64,16);
  write(runinf.line:3);

  gotoxy(64,15);
  write(64:3);

  gotoxy(18,15);
  write(modinf.Patt_cnt:3);

  gotoxy(60,14);
  write(runinf.speed,' / ',runinf.bpm);
end;

procedure user;
{
 Checks keyboard input and updates screen
}
var ch1,ch2 : char;
begin;
  repeat
    ch1 := #255;
    ch2 := #255;
    if keypressed then begin;
      ch1 := readkey;
      if keypressed then ch2 := readkey;



429

Sound Support For Your Programs

Chapter 13

PCPC
underground

      handle_keys(ch1,ch2);
    end;
   screen_update;
  until Program_end;
end;

procedure display_help;
{
 Displays help text. Also shown if no GUS found
}
begin;
  display_ansi(@helptxt,co80+font8x8);
  cursor_off;
  repeat until keypressed;
  while keypressed do readkey;
  exit_program;
end;

function check_commandline : boolean;
{
 Returns true if a module name was given
}
var pst : string;
    is_mod : boolean;
    li : integer;
    retval : boolean;
begin;
  retval := false;
  for li := 1 to 9 do begin;
    pst := paramstr(li);
    is_mod := true;

    if (pos('-h',pst) <> 0) or (pos('-H',pst) <> 0) or
       (pos('-?',pst) <> 0) then
    begin;
      is_mod := false;
      display_help;
    end;

    if (pst <> '') and is_mod then begin;
      if pos('.',pst) = 0 then pst := pst + '.mod';
      if file_exists(pst) then  { vaalid mod }
      begin
        inc(The_Files^.nofiles);
        The_Files^.fn[The_Files^.nofiles] := pst;
        retval := true;
      end;
    end;
  end;
  check_commandline := retval;
end;

begin;
  cursor_off;
  clrscr;
  if not _gus_init_env then display_help;

  new(The_Files);
  new(phun);
  The_Files^.path := mod_path;



430

Sound Support For Your Programs

Chapter 13

PCPC
underground

  The_Files^.Mask := '*.mod';
  The_Files^.sx   := 24;
  The_Files^.sy   := 10;
  The_Files^.nofiles := 0;

  The_Files^.Title := 'Select MOD file !!!';
  modify_voice := 1;

  for i := 1 to 30 do
    The_Files^.fn[i] := '---';
  save_screen;
  if not check_commandline then begin;
    select_packfiles(The_Files);
    repeat
      restore_screen;

      if The_Files^.fn[1] = '---' then exit_program;

        _gus_initialize;

      display_ansi(@tcpans,co80+font8x8);
      cursor_off;
      write_phunliners;

      curr_modnr := 1;
      if not _gus_modload(The_Files^.fn[1]) then begin;
        clrscr;
        gotoxy(10,10);
        write('Sorry, dude, can't handle this MOD file');
        delay(1200);
        exit_program;
      end;
      write_filenames(The_Files^.fn[1]);
      display_modinfo;
      fillchar(Play_Channel,14,1);
      _gus_modstart;

      user;
      _gus_mod_end;
      dispose(The_Files);
      new(The_Files);
      The_Files^.path := Mod_path;
      The_Files^.Mask := '*.mod';
      The_Files^.sx   := 24;
      The_Files^.sy   := 10;
      The_Files^.nofiles := 0;
      for i := 1 to 30 do
        The_Files^.fn[i] := '---';
      Program_end := false;
      select_packfiles(The_Files);
    until The_Files^.fn[1] = '---';

      dispose(The_Files);
    dispose(phun);
    exit_program;
  end else begin;
  restore_screen;

  if The_Files^.fn[1] = '---' then exit_program;

  _gus_initialize;



431

Sound Support For Your Programs

Chapter 13

PCPC
underground

  display_ansi(@tcpans,co80+font8x8);
  cursor_off;
  write_phunliners;

  curr_modnr := 1;
  _gus_modload(The_Files^.fn[1]);
  write_filenames(The_Files^.fn[1]);
  display_modinfo;
  fillchar(Play_Channel,14,1);
  _gus_modstart;

  user;
  _gus_mod_end;
  dispose(The_Files);
  dispose(phun);
  exit_program;

  end;
end.

XM - The sound format of the new generation

Because of its features, XM format is rather complex in structure.

It is divided into the following parts:

The XM header

Bytes 0 - 16 XM-ID

These bytes contain ID 'Extended module: '. You can identify an XM by this ID.

Bytes 17 - 36 Song name

These bytes contain the name of the song. It will be filled up with 0 bytes if it doesn't exceed the full 20
characters or isn't even specified.

Byte 37 ID 1Ah

Byte 37 serves as another ID and always has the value 1Ah.

Bytes 38 - 57 Name of tracker

The name of the tracker with which the XM was generated is located here. Like the song name, the name
of the tracker is also filled with 0 bytes.

Bytes 58 - 59 Bytes 58 - 59

Byte 58 contains the main version number, while the sub version number of the XM is stored in byte 59. The
current XM format is 1.3, so you will find the value 0103h here.



432

Sound Support For Your Programs

Chapter 13

PCPC
underground

Bytes 60 - 63 Size of the header

The 4 bytes are to be interpreted as a DWord. They indicate the size of the header in bytes. This number of
bytes must be read when reading(in) the header.

The following position specifications apply to the size of the header relative to the position of the value. This
structure pervades the entire XM format and makes a higher flexibility possible.

+4 - Word Length of the song

This is where the number of the defined pattern in the arrangement (pattern table) is specified.

+6 - Word Restart Position

The restart position indicates the place in the arrangement to jump to when the song reaches the end.

+8 - Word Number of Channels

The number of channels of the song is defined in this word. Between 2 and 32 channels are possible.

+10 - Word Number of Patterns

This word contains the number of defined patterns. This number is very important, because a corresponding
number of patterns must be read subsequently. A maximum of 256 patterns can be defined.

+12 - Word Number of Instruments

This word is also quite important. It contains the number of defined instruments. We'll go into the structure
of these instruments a bit later. They must also be read from the XM.

+14 - Word Flags

At present only bit 0 is defined in the flags. If this bit has the value 0, it means only Amiga frequencies are
to be used. Otherwise a linear frequency structure is used.

+16 - Word Default Speed

This word contains the starting speed of the song.

+18 - Word Default BPM

This word contains the BPM starting value of the XM.

+20 - 256 Bytes Arrangement

The sequence in which the patterns are to be played is stored in the arrangement, or pattern table. The
maximum length of an XM song amounts to 256 patterns.



433

Sound Support For Your Programs

Chapter 13

PCPC
underground

Individual patterns

The individual patterns follow the header. They don't have a fixed length since the information is
compressed by a simple, but effective compression system, and the number of lines in the pattern are
specified per pattern. A pattern always consists of a pattern header with the necessary head information
and the subsequent compressed data. The following shows the structure of a pattern:

+0 - DWord Pattern size

The size of the pattern header in bytes.

+4 - Byte Compression Type

At present Compression Type always has the value 0. If you find a different value, it means that the gurus
at Triton have integrated a new compression type or else you've got an error in the read procedure.

+5 - Word Number of Lines

This word contains the number of lines in this pattern. This is important during runtime of the player.
Between 1 and 256 lines are possible.

+7 - Word Size of compressed data

This word contains the size of the compressed data in bytes. These must be read after the header.

+9 - ?? Byte Compressed data

You will find the pattern in compressed form here. We recommend that you always wait until runtime
before unpacking it, since this will save you some disk space.

Structure of the compressed data

If the highest bit (MSB) is set in the read value byte, interpret the byte as compression information. In this
case, the following applies:

Bit 0 is set Note follows Bit 3 is set Effect follows

Bit 1 is set Instrument follows Bit 4 is set Effect parameter follows

Bit 2 is set Byte for volume column follows

Otherwise the read byte is a note, and the four values from Instrument to Effect parameter follow. The
individual bytes can have the following values:

Note:  0 - 71, 0 stands for C-0 Effect Between 0 and "T", see below

Instrument Between 0 and 128 Effect Parameter Between 0 and FFh

Volume column You'll find between 0 and FFh an
exact breakdown in the description
of the effects.



434

Sound Support For Your Programs

Chapter 13

PCPC
underground

The Instruments

The patterns in XM are followed by the instruments. An instrument consists of a header (general header
data) and, if any samples are available, of general instrument data and sample data.

Here is the structure of the instrument header:

+0 - DWord Instrument Size

This DWord contains the size of the instrument in bytes. It applies to the pure instrument without the
sample data.

+4 - 22 Char Instrument Name

Contains the name of the instrument. If the name doesn't take up the entire length, the 22 bytes are filled
with 0 bytes.

+26 - Byte Instrument Type

At present the instrument type always has a value of 0. It is conceivable that other instrument types will be
added, especially in view of Midi or parallel operated sound cards.

+27 - Word Number of Samples

This word contains the number of samples in the instrument. If it is greater than 0, general instrument
header data follows, and then one or more samples. Only then do the following bytes get read, otherwise
you have to continue with the next instrument.

+29 - DWord Size of Additional Instrument Info

The value gives the size of additional info on the instrument in bytes.

+33 - 96 Bytes Sample Table

This table contains the sample numbers for each pitch. For example, each octave can have its own assigned
sample. Perhaps you are already familiar with this principle from the patches of the GRAVIS ULTRASOUND.

+129 - 12 EnvPoints Volume Envelope

Definition of the volume envelopes. An EnvPoint is made up of two words. The first word stores the x-
position of the point, while the second word stores its (Y) value.

+177 - 12 EnvPoints Panning Envelope

Here are the points for the panning envelope. While the values of 0 to 64 for the volume envelope are to be
understood as the volume, the panning values are to be seen in their relation to the middle (32). That is, a
value of 0 means a sound all the way to the left, while 64 is a sound all the way to the right.



435

Sound Support For Your Programs

Chapter 13

PCPC
underground

+225 - Byte Number of Volume Points

Only in rare cases are all of the volume points used. You will find the number of points that were used here.

+226 - Byte Number of Panning Points

Contains the number of panning points.

+227 - Byte Volume Sustain Point

This byte specifies the point at which processing of the envelope stops until a Key Off note is struck for the
instrument.

+228 - Byte Volume Loop Starting Point

It's possible to have a loop within the envelope. This point specifies the starting point within the loop. The
value is the number of the envelope point to use, and does not specify the x-position.

+229 - Byte Volume Loop End Point

This point specifies the end of the loop within the envelope.

+230 - Byte Panning Sustain Point

The same as what we said for Volume Sustain Point, only for the Panning Sustain Point.

+231 - Byte Panning Loop Starting Point

This value behaves similar to the way the Volume Loop Starting Point acts.

+232 - Byte Panning Loop End Point

This value is similar to the Volume Loop End Point.

+233 - Byte Volume Type

This byte defines whether a volume envelope is to be used and whether it contains a sustain point or
looping. The following applies:

Bit 0 set Use envelope

Bit 1 set Use sustain point

Bit 2 set Use envelope looping

+234 - Byte Panning Type

This byte defines whether a panning envelope is to be used, as well as whether it contains a sustain point
or looping. The following applies:



436

Sound Support For Your Programs

Chapter 13

PCPC
underground

Bit 0 set Use envelope

Bit 1 set Use sustain point

Bit 2 set Use envelope looping

+235 - Byte Vibrato Type

You can set a general vibrato type here.

+236 - Byte Vibrato sweep

Sweeping of general vibrato

+237 - Byte Vibrato depth

This byte specifies the intensity of the general vibrato.

+238 - Byte Vibrato Rate

The speed of the general vibrato

+239 - Word Volume fadeout

The speed at which the struck instrument fades out is stored here.

+241 - Word Reserved

Sample header

After the additional info about the instruments comes the sample data. The sample data has the same
structure - first the header, then the data. If you have several samples, you must first load all the sample
headers and then the sample data.

The sample headers have the following structure:

+0 - DWord Sample Length

You will find the length of the sample data in bytes here. This specification also applies to 16 bit data, which
aren't stored in word lengths.

+4 - DWord Loop Start

If the sample is looped the start position of the loop will be located in this DWord. Keep in mind that this
is a DWord value, since the samples can be even larger than 64K.

+8 - DWord Loop Length

This value specifies the length of the loop. The end position of the loop is calculated from the Loop Start and
Loop Length.



437

Sound Support For Your Programs

Chapter 13

PCPC
underground

+12 - Byte Volume

The default volume of the instrument is stored here. Values can range between 0 and 64.

+13 - Byte Fine Tune

You can set the fine tuning of the instrument here. Values range between -16 and +15

+14 - Byte Sample Type

The sample type indicates whether the sample is looped and whether the data is 8-bit or 16-bit.

Bit 0-1 = 0 No looping

Bit 0-1 = 1 Normal forward looping

Bit 0-1 = 2 Ping Pong looping (forward and back)

Bit 4 = 1 16 bit data, otherwise 8 bit data

+15 - Byte Panning

The panning value specifies the default panning position. Possible values range between 0 and 255.

+16 - Byte Relative Note

Specifies which pitch the sample applies to. The value is used to adapt samples to each other.

+17 - Byte Reserved

+18 - 22 Char Sample Name

Name of the sample, if necessary, filled with 0 bytes.

Sample data

After the sample headers comes the actual sample data. You can't immediately play back this data, instead,
it is Delta compressed. That means that you have an initial value, and then the differences to the next value.
This has the advantage of generating more redundant data that can be compressed better.

SFX Pro

SFX Pro is one of the first XM players published. One very important concept during its development was
that SFX Pro was not to be just another player. Instead, it was to serve as the basis of a sound system for
games and for demos. That's also why the timing module works with a constantly running timer and not
with variable BPMs. This greatly simplifies handling, and there won't be any speed differences between
slow and high BPM rates.



438

Sound Support For Your Programs

Chapter 13

PCPC
underground

However, that means that synchronization by means of a constantly incremented Sync Counter would no
longer be possible. And it is precisely synchronization that is most important for a demo, since a good demo
must run on a slow computer at the same speed as on a Pentium 90MHz.

The programming language was another important point. Until now we've concentrated in Pascal and
assembly. However, SFX Pro is not written in either Pascal or assembly for many reasons. The most
important reason may be that with Pascal, you can only manage 64K segments. However, XMs have
samples that can be larger than 64K.

If you write a true GUS player, you may still be able to get around this problem. SFX Pro is designed in such
a way that you can integrate support for other sound cards with a minimum of time and effort. For example,
for the SoundBlaster all you need to do is integrate a mixing procedure and fine tune the frequency and
volume handling of the GUS procedures accordingly. If you're working with 64K segments, you'll
encounter problems since the management overhead is tremendous.

Another point was the question "which language are all the serious game developers now using?". A
frequency answer is Watcom C because it's probably the best compiler for DOS systems, both with regard
to optimization as well as memory management. The P-MODE interface from TRAN is also good and saves
you the trouble of using the Rational Systems DOS Extender. Although Watcom C may not enjoy the
extensive distribution of a language like Borland C, the compiler is very affordable (under $300).

Determining frequency in the XM Module

Enough of the introduction, now let's take a closer look at what
makes SFX Pro tick. First on the agenda is the question: How are
the frequencies determined? We'll use Triton's formula for
determining the current period as a basis. The function
getlinearperiod calculates the period to be used.

unsigned int getlinearperiod(char note,unsigned int fine)
{
  return((10L*12*16*4)-((unsigned int)note*16*4)-(fine/2)+128);
}

When you have determined the period to use (and if necessary, changed it with effects), you can define the
frequency to be played. We'll use GetFreq2 to determine the frequency we actually need. This solution,
devised by MikMak, is somewhat faster than calculation according to the original Triton formula, which
is based on powers.

int GetFreq2(int period)
{
  int okt;

long frequency;
  period=7680-period;
  okt=period/768;
  frequency=lintab[period%768];

frequency<<=2;
  return(frequency>>(7-okt));
}

In the player itself, the get_freq function is used mainly. First the function determines the note to be used.
The reason this is so important is that the note can be 0 in XM (since we're in the next line) and we must then

PCPCun
de

rg
ro

un
d

The program listings
on pages 438-461

are from SFXPRO.C
on the companion CD-ROM



439

Sound Support For Your Programs

Chapter 13

PCPC
underground

resort to the last used note. Then getlinearperiod determines the period and GetFreq2 gets the frequency.
Then the function returns the frequency.

unsigned int get_freq(unsigned short int channel1)
{
  unsigned short int note;
  int RealNote,period,FineTune,Frequency;

  if (Channel[channel].note == 0) {
    RealNote = Channel[channel].last_note +
insts[Channel[channel].inst_no].sheader[Channel[channel].smpno]->relative_note;
  }
  else {
    RealNote = Channel[channel].note +
insts[Channel[channel].inst_no].sheader[Channel[channel].smpno]->relative_note;
  }

  FineTune = Channel[channel].finetune;

  period = getlinearperiod(RealNote,FineTune);
  Frequency = GetFreq2(period);
  return(Frequency);
}

Converting XM samples

Another basic routine is convert_sample  or convert_sample16 . This routine translates the Delta
compressed sample data (wave information) into the "genuine" sample data required by sound cards. To
do this, the routine uses the following procedure: it gets the first value, which is the base value for further
calculations. To get the genuine data, add the next value from the read sample data to this base value. The
value resulting from the addition becomes the new base value and can be written back.

void convert_sample(signed char *s,unsigned int length)
{
 unsigned int n;
 int new,ltmp;
 signed char old,tmp;
 signed char *tmpptr;

 tmpptr = s;

 old = *tmpptr;
 tmpptr++;
 for (n = 1; n <= length; n++) {
   tmp  = *tmpptr;
   ltmp = tmp;
   new  = ltmp + old;
   tmp  = new;

   *tmpptr = tmp;
   old = tmp;

   tmpptr++;
 }
}



440

Sound Support For Your Programs

Chapter 13

PCPC
underground

XM load routine

Now let's get to the interesting part, namely the load routine for XMs. If an error occurs during loading, SFX
Pro displays an error message. The texts that are output are defined in the sfxerror  function.

The function first opens the XM file and then reads in the XM header. Next it reads in the pattern. In so doing,
the routine allocates memory for the compressed pattern data and reads the data, without converting it. The
data is unpacked at runtime to save memory.

The instruments can be loaded once the patterns are in memory. There's one point to remember: First, the
instrument header, 29 bytes in size, is read. The remaining data must be read if the number of the available
samples is greater than zero. Otherwise, read in the rest of the header and continue with the next instrument.
If you have sample data, read the complete header and then complete the samples.

First, read the sample headers in a loop. It's possible that not every sample will be allocated. For example,
may be only the 2nd, 4th and 5th samples will be allocated. These are the ones you need to intercept. Load
the sample data in a loop. After reading the actual wave data, the load procedure gets the loop type of the
sample (none, normal, ping pong ?) and the type of sample data (8/16 bit ?). convert_sample  (if the data
is 8-bit) or convert_sample16  (if the data is 16-bit) transforms the data into the data format required by
the sound card. Then the data is transferred to the GUS RAM.

Finally, the routine initializes the song position and sets the pattern to be played to the first position in the
song. The following is the source code for the routine:

void load_module(char *modulename)
{
 int slength;
 char far *tmpptr;
 char buffer[80];

 GusDramStart = 0;

 if((file = fopen(modulename,"rb")) == NULL)
   {
    sfxerror(1);
   }

  fread(&xmh,sizeof(xmh),1,file);
  xmh.xm_id[16] = 0;
  xmh.module_name[19] = 0;
  xmh.tracker_name[19] = 0;

  //  ======================================================================
  //    Read in Pattern
  //  ======================================================================
  for (i = 0; i < xmh.num_patterns; i++) {
    fread(&patts[i],9,1,file);
    if (patts[i].packed_size > 0) {
      if(( patts[i].packed_data = malloc(patts[i].packed_size+64)) == NULL)
        {
          sfxerror(2);
        }
      fread(patts[i].packed_data,patts[i].packed_size,1,file);
    }
    memset(buffer,0,80);
    sprintf(buffer,"[SFXPRO] Pattern %d loaded ...        ",i);



441

Sound Support For Your Programs

Chapter 13

PCPC
underground

    myprint(buffer,7,22,40);
  }

  //  ======================================================================
  //    Load Instruments
  //  ======================================================================
  for (i = 0; i < xmh.num_instruments; i++) {
    memset(buffer,0,80);
    sprintf(buffer,"[SFXPRO] Loading Instrument  %d ...      ",i);
    myprint(buffer,7,22,40);

    fread(&insts[i],29,1,file);
    if (insts[i].num_samples == 0) {
      memset(buffer,0,80);
      sprintf(buffer,"[SFXPRO] no instrument data          ");
      myprint(buffer,7,22,40);
        if ((insts[i].iheader = malloc(insts[i].inst_size-29+64)) == NULL) {
            sfxerror(3);
          }
        fread(insts[i].iheader,1,insts[i].inst_size-29,file);
    }
    else {
      //  ======================================================================
      //    Allocate & read instrument header
      //  ======================================================================
      if ((insts[i].iheader = malloc(insts[i].inst_size-29+64)) == NULL) {
          sfxerror(3);
        }
      fread(insts[i].iheader,1,insts[i].inst_size-29,file);

      for (j = 0; j < insts[i].num_samples; j++) {
        //  ======================================================================
        //    Sample - allocate & read instrument header
        //  ======================================================================
        if (insts[i].iheader->inst_hsize == 0) {
          memset(buffer,0,80);
          sprintf(buffer,"[SFXPRO] no sample - data                 ");
          myprint(buffer,7,22,40);
        }
        else
        {
          if ((insts[i].sheader[j] = malloc(sheadersize+64)) == NULL) {
            sfxerror(3);
          }
          fread(insts[i].sheader[j],insts[i].iheader->inst_hsize,1,file);
        } // End reading sample header
      } // End For loop

      for (j = 0; j < insts[i].num_samples; j++) {
        //  ======================================================================
        //    Allocate & read sample instrument data
        //  ======================================================================
        if (insts[i].sheader[j]->sample_length == 0) {
          memset(buffer,0,80);
          sprintf(buffer,"[SFXPRO] sample-data of 0 Byte length... ");
          myprint(buffer,7,22,40);
        }
        else {
          slength = insts[i].sheader[j]->sample_length + 64;
          if ((sampdata[i][j] = malloc(slength)) == NULL){
             sfxerror(4);



442

Sound Support For Your Programs

Chapter 13

PCPC
underground

          };

          fread(sampdata[i][j],insts[i].sheader[j]->sample_length,1,file);

          insts[i].sheader[j]->Loop_Mode = 0;

          // Get loop type
          switch (insts[i].sheader[j]->type & 3) {
            case 0: break;
            case 1: insts[i].sheader[j]->Loop_Mode += 8;
                    break;
            case 2: insts[i].sheader[j]->Loop_Mode += 8;
                    insts[i].sheader[j]->Loop_Mode += 16;
                    break;
          }

          if ((insts[i].sheader[j]->type & 16) == 16) {
            insts[i].sheader[j]->Loop_Mode += 4;
            convert_sample16(sampdata[i][j],insts[i].sheader[j]->sample_length);
            insts[i].sheader[j]->Is_16Bit = 1;
          }
          else {
            convert_sample(sampdata[i][j],insts[i].sheader[j]->sample_length);
            insts[i].sheader[j]->Is_16Bit = 0;
          }

          insts[i].sheader[j]->Gus_Start = GusDramStart;

          if (insts[i].sheader[j]->Loop_Mode > 0) {  // looped
            mem_2_gus(i,j,insts[i].sheader[j]->sample_length,insts[i].sheader[j]-
>sample_loop_start);
          }
          else {
            mem_2_gus(i,j,insts[i].sheader[j]->sample_length,0);
          }
        } // End reading data
      } // end for
    }  // end load instrument
  }

  Songpos = 0;
  NewPattern(xmh.pat_table[Songpos]);
}

Playing (back ) XM patterns

First, we need a pointer that points to the packed data. Move this pointer forward during playback. Now
process the pattern, row by row by using a loop. It should run for all the defined channels (2 to 32). Read
the first byte and determine if there is packed data or if you can read 5 bytes in a row. The
process_patternrow  routine determines which bytes are to be read (note, instrument, volume, effect,
parameter) and sets the appropriate info flags (p_note to p_para). If the data is not compressed, simply set
all the flags and the position pointer remains at its initial value.

Depending on the flags, the bytes to be used are determined and the pointer is moved up accordingly. In
this case, the handling of the note values is the only important item. A keyoff note is a value greater than
or equal to 95. The keyoff flag for the channel must be modified accordingly.



443

Sound Support For Your Programs

Chapter 13

PCPC
underground

Also, check whether effect 3 or effect 5 is active (Portamento to Note). In this case, don't play the note
directly. Instead, interpret it as a destination frequency. The replay_note  and replay_freq  flags
govern if a note is to be played and if its frequency is to be changed. If these flags have a value of 1, the voice
parameters are reset or the frequency is changed.

The next step after specifying the bytes for the current channel is to handle the values of the volume column
and the effects by using process_volume_effects  and process_effects . We'll explain these two
functions later. After calling these two functions, if necessary you can reset the parameters for the voice and
change the frequency.

This completes the actual loop. Now all you have to do is move the row forward. Load the next pattern (or
end the song) if the row lands at the end of the pattern or if you have a pattern break.

void process_patternrow()
{
 char Note;
 char dummy;
 int  tmpp;
 unsigned long begin;    /* start location in ultra DRAM */
 unsigned long start;    /* start loop location in ultra DRAM */
 unsigned long end;      /* end location in ultra DRAM */
 unsigned char mode;     /* mode to run the voice (loop etc) */
 char s_note;
 char s_inst;
 char s_vol;
 char s_eff;
 char s_para;

 for (i = 0; i < xmh.num_channels; i++) {
    Channel[i].note = 0;
    Channel[i].param = 0;
    Channel[i].veffect = 0;
    Channel[i].effect = 255;
    p_note = 0;           // Set Defaults
    p_inst = 0;
    p_vol  = 0;
    p_eff  = 0;
    p_para = 0;
    replay_note = 0;
    replay_freq = 0;

    Note = *pos_patt;
    pos_patt ++;

    if (Note >= 128) {                // Pack - Info
      if ((Note & 1) == 1) {            // Note follows
        p_note = 1;
      }
      if ((Note & 2) == 2) {            // Instrument follows
        p_inst = 1;
      }
      if ((Note & 4) == 4) {            // Volume follows
        p_vol = 1;
      }
      if ((Note & 8) == 8) {            // Effect follows
        p_eff = 1;
      }
      if ((Note & 16) == 16) {           // Parameter follows



444

Sound Support For Your Programs

Chapter 13

PCPC
underground

        p_para = 1;
      }
    }
    else
    {
        pos_patt --;
        p_note = 1;
        p_inst = 1;
        p_vol  = 1;
        p_eff  = 1;
        p_para = 1;
    }

   if (p_note == 1) {
     s_note = *pos_patt;
     pos_patt ++;
   }

   if (p_inst == 1) {

     if (*pos_patt <= xmh.num_instruments) {
       Channel[i].inst_no = *pos_patt -1;
       pos_patt ++;

       if (insts[Channel[i].inst_no].num_samples > 0) {
         Channel[i].smpno = insts[Channel[i].inst_no].iheader->samp_numbers[s_note-1];
         Channel[i].volume = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->volume;
         Channel[i].finetune = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->finetune;
         Channel[i].vibpos = 0;
         Channel[i].Wait_Keyoff = 0;
         Channel[i].is_pan_env = (insts[Channel[i].inst_no].iheader->pan_type & 1);
         if (Channel[i].is_pan_env == 1) {
           Channel[i].is_pan_sus = (insts[Channel[i].inst_no].iheader->pan_type & 2) - 1;
           Channel[i].is_pan_loop = (insts[Channel[i].inst_no].iheader->pan_type & 4) - 3;
           Channel[i].pan_pt1 = 0;
           Channel[i].pan_pt2 = 1;
           Channel[i].pan_pos = 0;
           Channel[i].pan_val = insts[Channel[i].inst_no].iheader->pan_envelope[1];
         }
         else {
           Channel[i].pan_val = 32;
         }

         Channel[i].is_vol_env = (insts[Channel[i].inst_no].iheader->vol_type & 1);
         if (Channel[i].is_vol_env == 1) {
           Channel[i].is_vol_sus = (insts[Channel[i].inst_no].iheader->vol_type & 2) - 1;
           Channel[i].is_vol_loop = (insts[Channel[i].inst_no].iheader->vol_type & 4) - 3;
           Channel[i].vol_pt1 = 0;
           Channel[i].vol_pt2 = 1;
           Channel[i].vol_pos = 0;
           Channel[i].vol_val = insts[Channel[i].inst_no].iheader->vol_envelope[1];
         }
         else {
           Channel[i].vol_val = 64;
         }
       }
       else { // no sample data
         Channel[i].smpno = 0;
         Channel[i].volume = 0;
         Channel[i].finetune = 0;
         Channel[i].vibpos = 0;



445

Sound Support For Your Programs

Chapter 13

PCPC
underground

         Channel[i].Wait_Keyoff = 0;
         Channel[i].is_pan_env = 0;
         Channel[i].pan_val = 32;
         Channel[i].is_vol_env = 0;
         UltraSetDirectVolume(i,0);
         replay_note = 0;
         replay_freq = 0;
       }
     }
     else {
       pos_patt ++;
     }
   }

   if (p_vol == 1) {
     Channel[i].veffect = *pos_patt;
     pos_patt ++;
   }

   if (p_eff == 1) {
     Channel[i].effect = *pos_patt;
     pos_patt ++;
   }

   if (p_para == 1) {
     Channel[i].param = *pos_patt;
     pos_patt ++;
   }

   if (p_note == 1) {
     Channel[i].dest_note = Channel[i].last_note;
     Channel[i].note = s_note-1;

     if (Channel[i].note >= 95) {
       if (Channel[i].is_vol_sus == 1) {   //  Keyoff active ?
         Channel[i].is_vol_sus = 0;
         Channel[i].Wait_Keyoff = 0;
       }
       else {
         Channel[i].vol_val = 0;
         UltraSetDirectVolume(i,0);
         replay_note = 0;
         replay_freq = 0;
       }
     }
     else {
       if ((Channel[i].effect == 3) || (Channel[i].effect == 5)) {
         tmpp = Channel[i].period;
         Channel[i].dest_period = get_freq(i);
         Channel[i].note = Channel[i].dest_note;
         Channel[i].period = tmpp;
       }
       else {
         Channel[i].period = get_freq(i);
       }
       Channel[i].last_note = Channel[i].note;
       Channel[i].ret_count = Channel[i].param & 0x0f;
       replay_note = 1;
       replay_freq = 1;
     }
   }



446

Sound Support For Your Programs

Chapter 13

PCPC
underground

   process_volume_effects(i);
   process_effects(i);

   if ((Channel[i].note < 120) && (Channel[i].note > 0)) {
     if (replay_note == 1) {
       begin = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start;
       start = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
                 + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_start;
       if (insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length > 0) {
         end = start
               + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length;
       }
       else {
         end = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
               + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_length;
       }
       mode = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Loop_Mode;
       UltraPrimeVoice(i, begin,start,end,mode,Channel[i].volume * Channel[i].vol_val /
64,insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Is_16Bit);
     }

     if (replay_freq == 1) {
       UltraPrimeVoice(i, begin,start,end,mode,Channel[i].volume * Channel[i].vol_val /
64,insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Is_16Bit);
       UltraSetFrequency(i,GetFreq2(Channel[i].period));
     }

   }
 } // end for

 Row ++;

 if (Break_The_Pattern == 1) {
   if (Songpos > xmh.song_length-1) {
    Songpos = xmh.restart_position;
   }
   NewPattern(xmh.pat_table[Songpos]);
 }

 if (Row > (maxrows -1)) {
   Songpos ++;
   if (Songpos > xmh.song_length-1) {
    Songpos = xmh.restart_position;
   }
   NewPattern(xmh.pat_table[Songpos]);
 }

 Break_The_Pattern = 0;
 row_changed = 1;
}



447

Sound Support For Your Programs

Chapter 13

PCPC
underground

Volume effects

One special feature of XM format is that it doesn't just offer the "normal" effects, you can also enter effects
in the Volume Column. These effects are handled in the player by the process_volume_effects
function. Its effect is determined by the size of the value.

Now the routine checks which value range the entry is in and executes the corresponding effect. Since the
internal handling of the effects runs the way it does with other players, we'll only discuss some special
features. First, let's look at what each of the values means:

10h - 50h Set Volume

A value between 10h and 50h is not an "effect" in the true sense of the word. Instead, the value indicates the
volume at which the voice is to be played.

60h - 6Fh Volume slide down

Normal volume sliding is called at each tick. The volume is decreased by the value in the range.

70h - 7Fh Volume slide up

Similar to volume slide down, here the volume is increased with each tick by the specified value. Remember
not to exceed the maximum value for the volume (64).

80h - 8Fh Fine volume slide down

Unlike normal volume sliding, fine volume sliding isn't called with each tick but only once.

90h - 9Fh Fine volume slide up

Increases the volume once by the specified value. Remember not to exceed the maximum value.

A0h - AFh Set vibrato speed

Use this value to set the vibrato speed for the channel. Assign a value of A0h through AFh to the speed.

B0h - BFh Vibrato

This effect executes a vibrato with the specified depth. The depth is calculated according to the value in this
range.

C0h - CFh Panning

Panning sets the current panning position. Since the player works internally with values from 0 to 64, you
have to multiply the value for C0h - CFh times 4 to get the correct panning position.



448

Sound Support For Your Programs

Chapter 13

PCPC
underground

D0h - DFh Panning slide left

Panning slide left is well suited for stereo effects. It causes the panning position to shift to the left by the
specified value - D0h. For a panning slide to the left you have to subtract the passed value from the current
panning value.

E0h - EFh Panning slide right

Like panning slide left, this effect causes the current panning position to shift to the right.

F0h - FFh Tone Portamento

In addition to normal portamento, you can also execute a portamento to note using this effect. Use the
passed value for the range F0h - FFh to calculate the speed of the portamento.

void process_volume_effects(unsigned short int i)
// i = Channel - Number
{
  char param;

  // Set volume
  if ((Channel[i].veffect >= 0x10) && (Channel[i].veffect <= 0x50)) {
    Channel[i].volume = Channel[i].veffect-0x10;
//      UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
  }

  // Volume slide down
  if ((Channel[i].veffect >= 0x60) && (Channel[i].veffect <= 0x6f)) {
    param = Channel[i].veffect - 0x60;
    Channel[i].volume -= param;
    if (Channel[i].volume < 0) {
      Channel[i].volume = 0;
    }
    UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
  }

  // Volume slide up
  if ((Channel[i].veffect >= 0x70) && (Channel[i].veffect <= 0x7f)) {
    param = Channel[i].veffect - 0x70;
    Channel[i].volume += param;
    if (Channel[i].volume > 64) {
      Channel[i].volume = 64;
    }
    UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
  }

  // FINE Volume slide down
  if ((Channel[i].veffect >= 0x80) && (Channel[i].veffect <= 0x8f)) {
    param = Channel[i].veffect - 0x80;
    Channel[i].volume -= param;
    if (Channel[i].volume < 0) {
      Channel[i].volume = 0;
    }
    UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
    Channel[i].veffect = 0;
  }

  // FINE Volume slide up



449

Sound Support For Your Programs

Chapter 13

PCPC
underground

  if ((Channel[i].veffect >= 0x90) && (Channel[i].veffect <= 0x9f)) {
    param = Channel[i].veffect - 0x90;
    Channel[i].volume += param;
    if (Channel[i].volume > 64) {
      Channel[i].volume = 64;
    }
    UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
    Channel[i].veffect = 0;
  }

  // Set vibrato speed
  if ((Channel[i].veffect >= 0xa0) && (Channel[i].veffect <= 0xaf)) {
  }

  // vibrato
  if ((Channel[i].veffect >= 0xb0) && (Channel[i].veffect <= 0xbf)) {
  }

  // panning
  if ((Channel[i].veffect >= 0xc0) && (Channel[i].veffect <= 0xcf)) {
    param = Channel[i].veffect - 0xc0;
    Channel[i].pan_val = param << 2;
    UltraSetPanning(i,Channel[i].pan_val);
    Channel[i].veffect = 0;
  }

  // panning slide left
  if ((Channel[i].veffect >= 0xd0) && (Channel[i].veffect <= 0xdf)) {
    param = Channel[i].veffect - 0xd0;
    if ((Channel[i].pan_val - param) > 0) {
      Channel[i].pan_val -= param;
    }
    else {
      Channel[i].pan_val = 0;
    }
    UltraSetPanning(i,Channel[i].pan_val);
    Channel[i].veffect = 0;
  }

  // panning slide right
  if ((Channel[i].veffect >= 0xe0) && (Channel[i].veffect <= 0xef)) {
    param = Channel[i].veffect - 0xe0;
    if ((Channel[i].pan_val + param) < 64) {
      Channel[i].pan_val += param;
    }
    else {
      Channel[i].pan_val = 64;
    }
    UltraSetPanning(i,Channel[i].pan_val);
    Channel[i].veffect = 0;
  }

  // tone portamento
  if ((Channel[i].veffect >= 0xf0) && (Channel[i].veffect <= 0xff)) {
  }
  }



450

Sound Support For Your Programs

Chapter 13

PCPC
underground

XM Module effects

Next we'll talk about the default effects which are handled by process_effects  in the player.

Effect 01h Portamento up

Increases the pitch during portamento, thus reducing the value for the current period. The value specified
in the parameter is the intensity of this change.

Effect 02h Portamento down

This effect is like portamento up, only with the opposite sign.

Effect 03h Tone Portamento

Executes a change in the pitch which starts from the current note to the note specified with the effect. The
DoTonePortamento  function controls this effect.

void DoTonePortamento(char i)
{
 int dtp;
 char para;

 if (Channel[i].param != 0) {
   para = Channel[i].param << 2;
   Channel[i].last_param = Channel[i].param;
 }
 else {
   para = Channel[i].last_param << 2;
 }

 dtp = Channel[i].period - Channel[i].dest_period;

 if ((dtp == 0) || (para > abs(dtp))) {
   Channel[i].period = Channel[i].dest_period;
 }
 else {
   if (dtp > 0) {
     Channel[i].period -= para;
   }
   else {
     Channel[i].period += para;
   }
 }
}

Effect 04h Vibrato

Executes a vibrato for the current voice. The speed at which the vibrato is to be executed is located in the
upper 4 bits of the parameter. The lower 4 bits contain the depth (amplitude) with which the vibrato is to
be sounded.

If one of the two values is zero, the last specified value will be used. The DoVibrato  function executes the
actual vibrato. This function changes the period of the voice accordingly.



451

Sound Support For Your Programs

Chapter 13

PCPC
underground

void DoVibrato(char i)
{
  char q;
  int tmp;

  q = (Channel[i].vibpos >> 2) & 64;
  tmp=VibratoTable[q];

  tmp = tmp * Channel[i].vib_depth;
  tmp>>=7;
  tmp<<=2;

  Channel[i].period += tmp;
  Channel[i].vibpos += Channel[i].vib_rate;
}

Effect 05h Tone Portamento & Volume Slide

Combines effects 3 and 0Ah. The parameter specifies the speed and direction of volume sliding. The effect
uses the DoTonePortamento  function and adopts the function of effect 0Ah.

Effect 06h Vibrato & Volume Slide

This is also a combined effect. The parameters also apply to volume sliding. The vibrato runs at its set values
with the help of the DoVibrato  function.

Effect 07h Tremolo

Basically, a vibrato effect except it doesn't apply to the pitch, but rather to the volume. The DoTremolo
function, whose structure is similar to the DoVibrato  function, produces a tremolo.

void DoTremolo(char i)
{
  char q;
  int tmp;

  q = (Channel[i].vibpos >> 2) & 64;
  tmp=VibratoTable[q];

  tmp = tmp * Channel[i].vib_depth;
  tmp>>=6;

  Channel[i].volume += tmp;
  if (Channel[i].volume < 0) {
    Channel[i].volume = 0;
  }
  if (Channel[i].volume > 64) {
    Channel[i].volume = 64;
  }
  Channel[i].vi bpos += Channel[i].vib_rate;
}

Effect 08h Set Panning

Sets the current panning position in the channel. Since we're working internally with 64 panning positions,
we have to divide the specified parameter by 4.



452

Sound Support For Your Programs

Chapter 13

PCPC
underground

Effect 09h Play sample at offset

Effect 9 doesn't play the sample from its normal starting position, but instead, plays it from a passed offset.
The offset results from the formula Parameter * 100h . Remember, this effect cannot be repeated with
every tick and the sample cannot be started after the effect procedure.

Effect 0Ah Volume sliding

The direction of volume sliding depends on the passed parameter. If it has a value <= 0Fh, the volume is
reduced by the specified value, otherwise it is increased by the parameter DIV 16.

Effect 0Bh Position Jump

Jumps to the position in the pattern table passed in the parameter.

Effect 0Ch Set Volume

Sets the volume of the channel. More than anything else, this effect was integrated into the XM format for
compatibility reasons, since, if at all possible, the volume should be set using the volume column.

Effect 0Dh Pattern Break

Ends the current pattern so the following pattern is played. Simply set the break flag here.

Effect 0Eh Extended effects

The player handles the extended effects using the do_e_effects  function. We'll describe this function
later.

Effect 0Fh Set speed

If this effect has a parameter greater than or equal to 20h, the specification applies to the BPM, otherwise
the speed is changed. Only execute this effect once and not with every tick.

The following lists the entire effect handling function:

void process_effects(unsigned short int i)
// i = Channel - Number
{
  char para;
  unsigned int begin;
  unsigned int start;
  unsigned int end;
  unsigned char mode;

   switch (Channel[i].effect) {
     case 0x01 : /// Portamento UP
                 if (Channel[i].param != 0) {
                   Channel[i].period -= Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   Channel[i].period -= Channel[i].last_param;
                 }



453

Sound Support For Your Programs

Chapter 13

PCPC
underground

                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;
     case 0x02 : /// Portamento DOWN
                if (Channel[i].param != 0) {
                   Channel[i].period += Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   Channel[i].period += Channel[i].last_param;
                 }
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;
     case 0x03 :  // Tone Portamento
                 DoTonePortamento(i);

                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;

     case 0x04 :  // Vibrato
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }

                 if (para & 0x0f) Channel[i].vib_depth = para & 0x0f;
                 if (para & 0xf0) Channel[i].vib_rate = (para & 0xf0) >> 4;
                 DoVibrato(i);
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;

     case 0x05 :  // Tone Portamento & Volume Slide
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }

                 DoTonePortamento(i);

                 if (para <= 0x0f) {
                   if ((Channel[i].volume - para) < 0) {
                     Channel[i].volume = 0;
                   }
                   else {
                     Channel[i].volume -= para;
                   }
                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 else {
                   Channel[i].volume += (para >> 4);
                   if (Channel[i].volume > 64) {
                     Channel[i].volume = 64;
                     }



454

Sound Support For Your Programs

Chapter 13

PCPC
underground

                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;

     case 0x06 : /// Vibrato & Volume Slide
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }

                 if (para <= 0x0f) {
                   if ((Channel[i].volume - para) < 0) {
                     Channel[i].volume = 0;
                   }
                   else {
                     Channel[i].volume -= para;
                   }
                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 else {
                   Channel[i].volume += (para >> 4);
                   if (Channel[i].volume > 64) {
                     Channel[i].volume = 64;
                   }
                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 DoVibrato(i);
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 break;

     case 0x07 :  // Tremolo
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }

                 if (para & 0x0f) Channel[i].vib_depth = para & 0x0f;
                 if (para & 0xf0) Channel[i].vib_rate = (para & 0xf0) >> 4;
                 DoTremolo(i);
                 UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 break;
     case 0x08 : /// Set Panning
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }
                 Channel[i].pan_val = para >> 2;
                 UltraSetPanning(i,Channel[i].pan_val);
                 break;
     case 0x09 : /// Play with Offsett



455

Sound Support For Your Programs

Chapter 13

PCPC
underground

                 begin = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start;
                 start = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
                   + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_start;
                 if (insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length > 0) {
                   end = start
                         + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length;
                 }
                 else {
                   end = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
                         + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_length;
                 }

                 begin += Channel[i].param * 0x100;
                 mode = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Loop_Mode;
                 UltraPrimeVoice(i, begin,start,end,mode,Channel[i].volume * Channel[i].vol_val /
64,
                                 insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Is_16Bit);
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_note = 0;
                 replay_freq = 0;
                 Channel[i].effect = 255;
                 break;
     case 0x0a : /// Volume Slide
                if (Channel[i].param != 0) {
                   para = Channel[i].param;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   para = Channel[i].last_param;
                 }

                 if (para <= 0x0f) {
                   if ((Channel[i].volume - para) < 0) {
                     Channel[i].volume = 0;
                   }
                   else {
                     Channel[i].volume -= para;
                   }
                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 else {
                   Channel[i].volume += (para >> 4);
                   if (Channel[i].volume > 64) {
                     Channel[i].volume = 64;
                   }
                   UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 break;
     case 0x0b : // Position Jump
                 Break_The_Pattern = 1;
                 Songpos = Channel[i].param;
                 break;
     case 0x0c : /// Set Volume
                 if (Channel[i].param <= 0x40) {
                   Channel[i].volume = Channel[i].param;
                     UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                 }
                 Channel[i].effect = 255;
                 break;
     case 0x0d : // Pattern Break
                 Break_The_Pattern = 1;
                 Songpos ++;



456

Sound Support For Your Programs

Chapter 13

PCPC
underground

                 Channel[i].effect = 255;
                 break;
     case 0x0e : // Pattern Break
                 do_e_effects(i);
                 break;
     case 0x0f : // Set speed
                 if (Channel[i].param >= 0x20) {
                   Set_BPM(Channel[i].param-1);
                 }
                 else {
                   Set_Speed(Channel[i].param-1);
                 }
                 Channel[i].effect = 255;
                 break;
   }

}

Extended effects

Not all the effects were implemented in the player here. We'll only cover the incorporated effects here, they
are the same ones as with the default MOD format:

Extended Effect 01h Fine Portamento up

The effect functions like the normal portamento except the function is only called once, not with every tick.

Extended Effect 02h Fine Portamento down

The same as fine portamento up, only down.

Extended Effect 09h Retriggering

Retriggering is the multiple striking of a note. This is especially interesting for percussion instruments. You
have to run a counter that you initialize with the value passed in the parameter and decrement each tick.
If the counter reaches the value 0, start the sample over again.

Extended Effect 0Ah Fine volume slide up

This effect runs similar to normal volume sliding. The only difference is the volume is updated only once
instead of with each tick.

Extended Effect 0Bh Fine volume sliding down

Similar to volume sliding up, only for volume sliding down.

void  do_e_effects(char i)
{
 char param;

 unsigned long begin;    /* start location in ultra DRAM */
 unsigned long start;    /* start loop location in ultra DRAM */
 unsigned long end;      /* end location in ultra DRAM */
 unsigned char mode;     /* mode to run the voice (loop etc) */



457

Sound Support For Your Programs

Chapter 13

PCPC
underground

  switch (Channel[i].param >> 4) {
    case 0x00 : //
                break;
    case 0x01 : /// FINE Portamento UP
                 if ((Channel[i].param & 0x0f) != 0) {
                   Channel[i].period -= (Channel[i].param & 0x0f)<<2;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   Channel[i].period -= (Channel[i].last_param & 0x0f)<<2;
                 }
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 Channel[i].effect = 255;
                 break;
    case 0x02 : /// FINE Portamento DOWN
                if ((Channel[i].param & 0x0f) != 0) {
                   Channel[i].period += (Channel[i].param & 0x0f)<<2;
                   Channel[i].last_param = Channel[i].param;
                 }
                 else {
                   Channel[i].period += (Channel[i].last_param & 0x0f)<<2;
                 }
                 UltraSetFrequency(i,GetFreq2(Channel[i].period));
                 replay_freq = 0;
                 Channel[i].effect = 255;
                 break;
    case 0x03 : //
                break;
    case 0x04 : //
                break;
    case 0x05 : //
                break;
    case 0x06 : //
                break;
    case 0x07 : //
                break;
    case 0x08 : //
                break;
    case 0x09 : // retriggering
                if ((Channel[i].param & 0x0f) != 0) {
                  Channel[i].ret_count --;
                  if (Channel[i].ret_count == 0) {
                    Channel[i].ret_count = Channel[i].param & 0x0f;

                    begin = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start;
                    start = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
                          + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_start;
                    if (insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length >
0) {
                      end = start
                      + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_loop_length;
                    }
                    else {
                      end = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Gus_Start
                      + insts[Channel[i].inst_no].sheader[Channel[i].smpno]->sample_length;
                    }
                    mode = insts[Channel[i].inst_no].sheader[Channel[i].smpno]->Loop_Mode;
                    UltraRestartVoice(i, begin,start,end,mode,Channel[i].volume *
Channel[i].vol_val / 64,
                                      insts[Channel[i].inst_no].sheader[Channel[i].smpno]-
>Is_16Bit);



458

Sound Support For Your Programs

Chapter 13

PCPC
underground

                  }
                }
                break;
    case 0x0a : // fine volume slide up
                if ((Channel[i].param & 0x0f) != 0) {
                  Channel[i].last_param = Channel[i].param;
                }
                param = Channel[i].last_param & 0x0f;
                Channel[i].volume += param;
                if (Channel[i].volume > 64) {
                  Channel[i].volume = 64;
                }
                UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                Channel[i].effect = 255;
                break;
    case 0x0b : // fine volume slide down
                if ((Channel[i].param & 0x0f) != 0) {
                  Channel[i].last_param = Channel[i].param;
                }
                param = Channel[i].last_param & 0x0f;
                Channel[i].volume -= param;
                if (Channel[i].volume < 0) {
                  Channel[i].volume = 0;
                }
                UltraSetDirectVolume(i,Channel[i].volume * Channel[i].vol_val / 64);
                Channel[i].effect = 255;
                break;
    case 0x0c : //
                break;
    case 0x0d : //
                break;
    case 0x0e : //
                break;
    case 0x0f : //
                break;
  }
}

Envelopes

The handling routine for envelopes is called by the timer consistently and does not depend on the set speed
or the BPMs. This is how the routine works: The current position within the envelope is incremented with
each call. In doing so, it's necessary to check the following:

Ø Whether the function is waiting for a keyoff (do not shift any further).

Ø The last point has been reached.

Ø If a loop point has been reached so that the position has to be set at the loop start.

If the current point is found, its date value (y-position) is obtained from an interpolation between the two
known envelope points (linear equation). Finally, set the determined volume or the panning position. By
looking at the procedure, you'll discover that you will be able to process quite complex handling quickly,
provided you work in a structured fashion.



459

Sound Support For Your Programs

Chapter 13

PCPC
underground

void Process_Vol_Env()
{
 int pxa;
 int pxb;
 int pva;
 int pvb;
 int dtx;
 int dtv;
 int dtist;
 short int li;

 for (li = 0; li < xmh.num_channels; li++) {
  if ((Channel[li].is_vol_env == 1) && (Channel[li].Wait_Keyoff != 1)) {
   if ((Channel[li].vol_pos < 324) && (insts[Channel[li].inst_no].iheader->num_vol_points > 1)) {
     Channel[li].vol_pos++;
     // Volume point reached ?
     if (Channel[li].vol_pos == insts[Channel[li].inst_no].iheader-
>vol_envelope[Channel[li].vol_pt2*2]) {
       Channel[li].vol_pt1++;
       if (Channel[li].is_vol_sus == 1) {   // Wait for Keyoff ?
         if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->vol_sustain_p) {
           if (Channel[li].is_vol_loop == 1) {  // If at loop point then loop
             if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->vol_loop_endp) {
               Channel[li].vol_pt2++;
             }
             else {
               Channel[li].vol_pt1 = insts[Channel[li].inst_no].iheader->vol_loop_startp;
               Channel[li].vol_pt2 = Channel[li].vol_pt1 + 1;
               Channel[li].vol_pos = insts[Channel[li].inst_no].iheader-
>vol_envelope[Channel[li].vol_pt1*2];
             }
           } // end looping
           else  // no looping
           {
             if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->num_vol_points) {
               Channel[li].vol_pt2++;
             }
           } // end noo loop
         } // end sustain-p reached
         else {
           Channel[li].Wait_Keyoff = 1;
           if (Channel[li].is_vol_loop == 1) {  // If at loop point then loop
             if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->vol_loop_endp) {
               Channel[li].vol_pt2++;
             }
             else {
               Channel[li].vol_pt1 = insts[Channel[li].inst_no].iheader->vol_loop_startp;
               Channel[li].vol_pt2 = Channel[li].vol_pt1 + 1;
               Channel[li].vol_pos = insts[Channel[li].inst_no].iheader-
>vol_envelope[Channel[li].vol_pt1*2];
             }
           } // end looping
           else  // no looping
           {
             if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->num_vol_points) {
               Channel[li].vol_pt2++;
             }
           } // end noo loop
         }
       } // end sustain
       else
       {



460

Sound Support For Your Programs

Chapter 13

PCPC
underground

         if (Channel[li].is_vol_loop == 1) {  // If at loop point then loop
           if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->vol_loop_endp) {
             Channel[li].vol_pt2++;
           }
           else {
             Channel[li].vol_pt1 = insts[Channel[li].inst_no].iheader->vol_loop_startp;
             Channel[li].vol_pt2 = Channel[li].vol_pt1 + 1;
             Channel[li].vol_pos = insts[Channel[li].inst_no].iheader-
>vol_envelope[Channel[li].vol_pt1*2];
           }
         } // end looping
         else {  // no looping
           if (Channel[li].vol_pt2 < insts[Channel[li].inst_no].iheader->num_vol_points) {
             Channel[li].vol_pt2++;
           }
         }
       } // end no sustain
     }
     pva = insts[Channel[li].inst_no].iheader->vol_envelope[Channel[li].vol_pt1*2+1];
     pvb = insts[Channel[li].inst_no].iheader->vol_envelope[Channel[li].vol_pt2*2+1];
     if (pva == pvb) {
       Channel[li].vol_val = pva;
       UltraSetDirectVolume(li,Channel[li].volume * Channel[li].vol_val / 64);
     }
     else {
       pxa = insts[Channel[li].inst_no].iheader->vol_envelope[Channel[li].vol_pt1*2];
       pxb = insts[Channel[li].inst_no].iheader->vol_envelope[Channel[li].vol_pt2*2];
       dtx = pxb - pxa;
       dtv = pvb - pva;
       dtist = Channel[li].vol_pos - pxa;
       if (dtx > 0) {
         Channel[li].vol_val = pva + ((dtist * dtv) / dtx);
         UltraSetDirectVolume(li,Channel[li].volume * Channel[li].vol_val / 64);
       }
     }
   } // end new point
  }
 } // end channel loop
}

SFX Pro main program

In this section we'll look at the main program. First, the program checks whether the name of an XM module
was specified. If not, the program terminates with an error message. Then the sound card is initialized and
the necessary preallocations of the data structures follow.

The program then displays the main ANSI and executes the load procedure. If the module loaded
successfully, the timer can be initialized and the program lands in its main loop. Each time the player is
moved forward one row in the main loop, the screen is updated and the program checks for user input. The
following keys are available:



461

Sound Support For Your Programs

Chapter 13

PCPC
underground

Key Function Purpose

+ Mastervolume Increases the master volume of the system.

- Mastervolume Lowers the master volume of the system.

I Infopage Displays an information page with some info about the sound system and greetings from
the author.

O DOS-Shell If COMMAND.COM is in the same directory as the player, you can start a DOS SHELL
from here. Then the player will still run when you start other (Watcom C) Protected Mode
programs that don't change the GUS or the timer.

V Forward Moves forward in the piece.

Z Back Moves back in the piece.

void main(int argc, char *argv[])
{
 char chchar = 'ä';

 if (argc < 2) {
   sfxerror(0);
 }

 Init_Gus(0x0220);
 speaker_off();
 Break_The_Pattern = 0;
 Init_Instruments();
 Init_Channels();

 memcpy(screen,&SFXMAIN,80*25*2);
 load_module(argv[1]);
 row_changed = 0;

 Set_Timer_Defaults();
 SetTimer(xmh.default_bpm-1,xmh.default_tempo-1);

 for (i = 0; i < 32; i++) {
   UltraSetPanning(i,32);
 }

 init_timer();
 speaker_on();

 cls();
 show_mainscreen();

 while (chchar != 27) {
    if (kbhit()) {
      chchar = getch();
//        process_patternrow();
      switch(chchar) {
       case '+' : if (Mastervolume < 245) {
                    Mastervolume += 10;
                    chchar = 'ä';
                  }
                  break;



462

Sound Support For Your Programs

Chapter 13

PCPC
underground

       case '-' : if (Mastervolume > 10) {
                    Mastervolume -= 10;
                    chchar = 'ä';
                  }
                  break;
       case 'i' : show_info();
                  break;
       case 'o' : spawnl(P_WAIT,"command.com",NULL);
                  break;
       case 'v' : Songpos ++;
                  Break_The_Pattern = 1;
                  chchar = 'ä';
                  break;

       case 'z' : Songpos -= 2;
                  Break_The_Pattern = 1;
                  chchar = 'ä';
                  break;

      };
    }
   if (row_changed == 1) {
     row_changed = 0;
     screen_update();
   }
 }
 reset_timer();
 stop_gus();
}



463

14 The Secrets Behind DOOM

Most computer games are written to perform either fast or realistic. Two games have recently broken this
mold and have generated much excitement with their fast, realistic 3-D graphics and sound. These are the
DOOM and DOOM II games. Even if you're not a DOOM fanatic, you'll be impressed with the programming
techniques behind the game.

Due to the huge success of DOOM, an entire wave of games based on these techniques have followed.

In DOOM, you wander through a labyrinth of rooms and defend yourself against a host of enemies. The
graphic arrangement of the "enemies", the floor, the walls and ceilings and the other objects is drawn in
detailed, complex resolution, produced by the 3-D display.

Before you can begin programming your own DOOM-like games or demos , you must first master 3-D
graphics programming. This is what we'll talk about in this chapter. We'll include some ready-to-use
routines that you can borrow for your own programs. You can then use the routines to develop DOOM-like
games and demos quickly and easily.

Although we've already done some work with three-dimensional computer graphics, in this chapter we'll
show you how to calculate and display vector objects that are even more impressive. The faces of these
objects won't be filled with a single color. Instead, we'll introduce two methods called Gouraud shading and
texture mapping that allow a more realistic display.

Quick Math: Fixed Point Arithmetic

You may think a math coprocessor is necessary to perform all the necessary calculations involved in
displaying vector graphics. Although most PCs manufactured today include a math coprocessor, earlier
models (386DX-40, 486SX-25 or 33) lack a math coprocessor. In addition, the coprocessor for most 386
computers is comparatively slow since it is not integrated in the chip.

However, don't despair if your system lacks a math coprocessor. In fact, we don't always recommend using
the coprocessor, even if you do have a 486DX. The reason is because you often need to convert floating point
numbers to integers which still requires time for the 486 CPU. So, one question is "do you need to buy a
Pentium to run games?". The answer is "NO" because you can get around floating point operations with a
technique that uses fixed point numbers.

Although the technique is rather simple, it increases the execution speed of your computer many times. An
integer (whole number) is used, a portion of which is treated as a decimal. To achieve this, you multiply the
floating point number by a constant factor and then round it off. This makes an integer out of a floating point
number.

The Secrets 
Behind DOOM

Chapter 14

PCPC
underground



464

The Secrets Behind DOOM

Chapter 14

PCPC
underground

As you can easily verify, addition and subtraction operations can be executed immediately. However, you
need to make some corrections with division and multiplication. Here are some sample calculations:

Addition: 1.2*100 + 1.5*100 = 2.7*100
Subtraction: 1.2*100 - 1.5*100 = 0.3*100
Multiplication: 1.2*100 * 1.5*100 = 1.8*100*100

So when you multiply, you still have to divide the result by 100.

Division: 1.2*100 / 1.5*100 = 0.8

When you divide, you still have to multiply the result by 100.

Since it doesn't really matter what kind of a value you multiply/divide by (only the accuracy depends on
it), it is natural to use a power of 2, not a power of 10. The multiplication/division can be replaced by several
speedier shift operations.

256 (8 bit decimal) is ideal for this purpose. However, in the following example, we use the number 512 (9
bit decimal) to get a higher degree of accuracy. In addition, we use 32 bit integer = (Longint) variables.
Naturally, you could also put the same principle into practice with 16 bit (faster, but smaller range of
numbers). Thus, converting a floating point number to a fixed point number is performed according to the
following formula:

  fixed := round(_real * $200)

and a corresponding way to reconvert the number:

  _real := fixed / $200;

Since these conversions require quite a bit of time on a computer that doesn't have a coprocessor, you can
perform the calculations ahead of time so they don't need to be calculated at runtime.

You can easily perform division and multiplication in assembly language using the 32-bit instructions of
the 386. Both routines were written for Turbo Pascal but can also be used under any 16-bit C compiler. Please
note that we used TASM in IDEAL mode syntax; you'll have to make the necessary syntax corrections if
you're using another assembler.

;-------------------------------------------------------------
; function FixMul(A,B :longInt) :LongInt; near; external;
;-------------------------------------------------------------
  PROC FixMul NEAR
       pop    cx
       pop    ebx
       pop    eax

       imul   ebx
       shrd   eax,edx,9

       rol    eax,16
       mov    dx,ax
       rol    eax,16
       push   cx
       ret
  ENDP



465

The Secrets Behind DOOM

Chapter 14

PCPC
underground

To avoid having to set up a stack frame, the return address is removed from the stack first, and then the two
factors. Next, the multiplication is carried out and the result is shifted to the right by 9 bits (= division by
512). Since Turbo Pascal, as a 16 bit compiler, doesn't support 32 bit registers, the return value must be
passed in dx:ax. Remember, the procedure is NEAR declared. So, it cannot be exported by a UNIT. That's
why the procedure headers are declared in an INCLUDE file.

The routine FixSQR  calculates the square of the value that is passed to it:

;---------------------------------------------------------------------; function FixSQR(A :Fixed)
:Fixed; near; external;
;---------------------------------------------------------------------  PROC FixSQR NEAR
       pop    cx
       pop    eax
       imul   eax
       shrd   eax,edx,9
       rol    eax,16
       mov    dx,ax
       rol    eax,16
       push   cx
       ret
  ENDP

The routine for division is similar:

;-------------------------------------------------------------
; function FixDiv(A,B :LongInt) :LongInt; near; external;
;-------------------------------------------------------------
  PROC FixDiv NEAR
       pop    cx
       pop    ebx
       pop    eax

       cdq
       shld   edx,eax,9
       shl    eax,9
       idiv   ebx

       rol    eax,16
       mov    dx,ax
       rol    eax,16
       push   cx
       ret
  ENDP

The dividend in eax is extended to edx:eax. After that, everything is shifted to the left by 9 bits and the
division is executed.

Besides division and multiplication, the trigonometric functions such as sine and cosine (important for
rotation of points) are also very important. Because the calculation of sine and cosine values using rows is
very processor intensive, you need to use tables. Remember, 360° corresponds to the second power. Then
an AND operator can be used, instead of division, to manage multiple rotations (0°=360°=720°).

;-------------------------------------------------------------
; function FixSin(W :Integer) :LongInt; near; external;
;-------------------------------------------------------------
  PROC FixSin NEAR
       pop    cx
       pop    bx



466

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  $$Sin:
       and    bx,1FFh
       cmp    bx,256
       jge    @@21
       cmp    bx,128
       jng    @@11
       neg    bx
       add    bx,256
  @@11:
       shl    bx,1
       mov    ax,[bx+SinTable]
       cwd
       push   cx
       ret
  @@21:
       sub    bx,256
       cmp    bx,128
       jnge   @@22
       neg    bx
       add    bx,256
  @@22:
       shl    bx,1
       mov    ax,[bx+SinTable]
       neg    ax
       cwd
       push   cx
       ret
  ENDP

To prevent the sine table from becoming too large, it contains only values for 0°-90°. The value 360°
corresponds to 512 "fixed". Also, no LongInts were saved, but rather Words which were converted to a
LongInt in dx:ax with cwd.

;--------------------------------------------------------------
; function FixCos(W :Integer) :LongInt; near; external;
;--------------------------------------------------------------
  PROC FixCos NEAR
       pop    cx
       pop    bx
       add    bx,128
       jmp    $$Sin
  ENDP

The cosine routine simply adds 128 (90) and then jumps to the sine routine. Refer to the listing for more
information.

Vector Arithmetic: The Math Behind DOOM

Because of its 3-D display, DOOM is based on fast vector arithmetic. We're going to show you how to program
fast vector arithmetic. After reading the chapter on 3-D graphic programming, you know what vectors are.
If the term matrix doesn't mean anything to you, don't worry about that either. In the following, we will
compile a complete vector/matrix library. This vector/matrix
library is defined in _MATH.ASM and _MATH.PAS.

A 3-dimensional vector is defined there as an array:
PCPCun

de
rg

ro
un

d

You can find 
_MATH.PAS and _MATH.ASM
on the companion CD-ROM



467

The Secrets Behind DOOM

Chapter 14

PCPC
underground

0
0
0

C =

V
V
V

C =
x

y

z

vx = a x

a y

a z

vy = 
vz = 

type
  P3-D = ^T3-D;
  T3-D = array[x..z] of LongInt;

All the vector routines work with this type. The procedure VecZero  sets the vector
passed in C to zero.

;_____________________________________________________________________
; procedure VecZero(var C :T3-D);
;_____________________________________________________________________
  PROC VecZero FAR
       ARG C:DWord = @@return
       enter  0,0
       cld
       les    di,[C]
       xor    eax,eax
       stosd
       stosd
       stosd
       leave
       ret    @@return
  ENDP

The Vec procedure loads the vector passed in C with the components vx,vy and vz.

;_____________________________________________________________________
; procedure Vec(vx,vy,vz :LongInt; var C :T3-D);
;_____________________________________________________________________
  PROC Vec FAR
       ARG C:DWord, vz:DWord, vy:DWord, vx:DWord = @@return
       enter  0,0
       cld
       les    di,[C]
       mov    eax,[vx]
       stosd
       mov    eax,[vy]
       stosd
       mov    eax,[vz]
       stosd
       leave
       ret    @@return
  ENDP

UnVec is the counterpart of Vec.

;_____________________________________________________________________
; procedure UnVec(A :T3-D; var vx,vy,vz :LongInt);
;_____________________________________________________________________
  PROC UnVec FAR
       ARG vz:DWord, vy:DWord, vx:DWord, A:DWord = @@return
       enter  0,0
       cld
       push   ds
       lds    si,[A]
       lodsd
       les    di,[vx]
       mov    [es:di],eax
       lodsd
       les    di,[vy]
       mov    [es:di],eax
       lodsd
       les    di,[vz]



468

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    [es:di],eax
       pop    ds
       leave
       ret    @@return
  ENDP

VecAdd  adds two vectors, A and B. The result is returned in C.

C  =  A  +  B  = 

+ b za z

+ b xa x

+ b ya y

;_____________________________________________________________________
; procedure VecAdd(A,B :T3-D; var C :T3-D);
;_____________________________________________________________________
  PROC VecAdd FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       enter  0,0
       cld
       push   ds
       lds    si,[A]
       lgs    bx,[B]
       les    di,[C]
       lodsd
       add    eax,[gs:bx]
       stosd
       lodsd
       add    eax,[gs:bx+4]
       stosd
       lodsd
       add    eax,[gs:bx+8]
       stosd
       pop    ds
       leave
       ret    @@return
  ENDP

VecSub  subtracts B from A. The result is returned in C.

C  =  A  -  B  = 

- b za z

- b xa x

- b ya y

;_____________________________________________________________________
; procedure VecSub(A,B :T3-D; var C :T3-D);
;_____________________________________________________________________
  PROC VecSub FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       enter  0,0
       cld
       push   ds
       lds    si,[A]



469

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       lgs    bx,[B]
       les    di,[C]
       lodsd
       sub    eax,[gs:bx]
       stosd
       lodsd
       sub    eax,[gs:bx+4]
       stosd
       lodsd
       sub    eax,[gs:bx+8]
       stosd
       pop    ds
       leave
       ret    @@return
  ENDP

VecDot  calculates the scalar product of A and B. The result is returned as a function value.

A   B  = a za x a y+ +b y b zb x

;_____________________________________________________________________
; function VecDot(A,B :T3-D) :LongInt;
;_____________________________________________________________________
  PROC VecDot FAR
       ARG B:DWord, A:DWord = @@return
       enter  0,0
       push   ds
       lds    si,[A]
       les    di,[B]
       lodsd
       imul   [DWORD PTR es:di+4]
       shrd   eax,edx,9
       mov    ecx,eax
       lodsd
       imul   [DWORD PTR es:di+4]
       shrd   eax,edx,9
       add    ecx,eax
       lodsd
       imul   [DWORD PTR es:di+8]
       shrd   eax,edx,9
       add    ecx,eax
       mov    ax,cx
       rol    ecx,16
       mov    dx,cx
       pop    ds
       leave
       ret    @@return
  ENDP

VecCross calculates the cross-product of A and B. The result is returned in C.



470

The Secrets Behind DOOM

Chapter 14

PCPC
underground

b y

b z

b x

a x

a y

a zb z

b x

b y

a y

a z

a x -

-
-C  =  A  x  B  = 

;_____________________________________________________________________
; procedure VecCross(A,B :T3-D; var C :T3-D);
;_____________________________________________________________________
  PROC VecCross FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       enter  0,0
       push   ds
       lds    si,[A]
       les    di,[B]
       lgs    bx,[C]
       mov    eax,[si+4]
       imul   [DWORD PTR es:di+8]
       shrd   eax,edx,9
       mov    ecx,eax
       mov    eax,[si+8]
       imul   [DWORD PTR es:di+4]
       shrd   eax,edx,9
       sub    ecx,eax
       mov    [gs:bx],ecx
       mov    eax,[si+8]
       imul   [DWORD PTR es:di]
       shrd   eax,edx,9
       mov    ecx,eax
       mov    eax,[si]
       imul   [DWORD PTR es:di+8]
       shrd   eax,edx,9
       sub    ecx,eax
       mov    [gs:bx+4],ecx
       mov    eax,[si]
       imul   [DWORD PTR es:di+4]
       shrd   eax,edx,9
       mov    ecx,eax
       mov    eax,[si+4]
       imul   [DWORD PTR es:di]
       shrd   eax,edx,9
       sub    ecx,eax
       mov    [gs:bx+8],ecx
       pop    ds
       leave
       ret    @@return
  ENDP

VecDistance  returns the square of the amount of A as a function value.

d  =  A    = 2
a y

22a x a z
2
2

+ + = a y
22a x a z

2+ + 



471

The Secrets Behind DOOM

Chapter 14

PCPC
underground

;_____________________________________________________________________
; function VecDistance(A :T3-D) :LongInt;
;_____________________________________________________________________
  PROC VecDistance FAR
       ARG A:DWord = @@return
       enter  0,0
       push   ds
       lds    si,[A]
       lodsd
       or     eax,eax
       jns    @@11
       neg    eax
  @@11:
       mul    eax
       shrd   eax,edx,9
       mov    ecx,eax
       lodsd
       or     eax,eax
       jns    @@12
       neg    eax
  @@12:
       mul    eax
       shrd   eax,edx,9
       add    ecx,eax
       lodsd
       or     eax,eax
       jns    @@13
       neg    eax
  @@13:
       mul    eax
       shrd   eax,edx,9
       add    ecx,eax
       mov    ax,cx
       rol    ecx,16
       mov    dx,cx
       pop    ds
       leave
       ret    @@return
  ENDP

VecScalMul  multiplies vector A by scalar k and returns the
result in C.

;_____________________________________________________________________
; procedure VecScalMul(k :LongInt; A :T3-D; var C :T3-D);
;_____________________________________________________________________
  PROC VecScalMul FAR
       ARG C:DWord, A:DWord, k:DWord = @@return
       enter  0,0
       push   ds
       lds    si,[A]
       les    di,[C]
       lodsd
       imul   [k]
       shrd   eax,edx,9
       stosd
       lodsd
       imul   [k]
       shrd   eax,edx,9
       stosd
       lodsd

a z

a x

a y

k

k
kC  =  k   A    = 



472

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       imul   [k]
       shrd   eax,edx,9
       stosd
       pop    ds
       leave
       ret    @@return
  ENDP

In computer graphics, vector objects are described by points (as a point quantity in three-dimensional
Euclidean point space). Thus, to move an object, it is necessary to change these points.

We can describe the position of a point mathematically by linear transformations: Translation (=movement
in space), rotation and scaling. If you transfer all the points of an object in the same way, the object changes
its position in space. It's very easy to describe these linear transformations using matrices. This has the
advantage of letting you combine the various matrices into a single matrix. This makes the task much easier
and less cluttered.

Another important advantage is that you always use the
same amount of time to calculate each transformation (9
multiplications and 16 additions). This is true regardless
of how complicated the transformation is.

We'll delve into math more in the next section. You can
skip it if you only want to use the library functions.

Perhaps you still remember linear equation systems from school.

The y quantities of y1,y2 and y3 are linearly dependent on the x variables of x1,x2 and x3. If you view the
y and x quantities as 3-dimensional vectors, a relationship between x and y is achieved
through the linear equation system mentioned above. For each vector x  there is a
corresponding vector y  (see small illustration on the right).

You may notice this is exactly what we need. A vector (which describes a point of our object) can be assigned
to another point through an assignment. The factors a11..a33 define the type of assignment. So, you combine
the factors a11..a33 to a variable named MATRIX.

A=
y 3

y 2

y 1 a 12

a 22

a 32

a 13

a 23

a 33

a 11

a 21

a 31 x 3

x 2

x 1

y = x

A rectangular number array of x rows and y columns is called an x-y matrix

Now you're probably wondering what the translation matrix (movement in space)
looks like. There is no combination of factors a11..a33 that brings about a translation.
So, there is no 3x3 translation matrix for 3-dimensional vectors.

By introducing what we could call "homogenous coordinates", it becomes possible to
describe even the translation of a single matrix. In so doing, our point is no longer

=A

w

a x

a y

a z

a 11 x 1

a 21 x 1

a 31 x 1

a 12 x 2

a 22 x 2

a 32 x 2

a 13 x 3

a 23 x 3

a 33 x 3y 3

y 2

y 1 = + +

= + +

= + +

yx



473

The Secrets Behind DOOM

Chapter 14

PCPC
underground

described by a three-column vector, but rather, by a four-column vector. Therefore, the linear transformations
are described by a 4x4 matrix. The components of the fourth dimension (w) are set to 1, so our vector object
corresponds to a projection at the level w=1 of 4-dimensional space.

A movement of vector A can now be described by the following translation matrix (see illustration, below
left). The illustration below right shows how the scaling matrix reads:

For rotation, there are three different rotation matrices (one for each axis: x,y,z):

 

You should now be familiar with these matrices from the last section when we introduced them as an
equation system.

Now we're coming to the most important advantage of matrices. All translation matrices can be combined
into a single matrix. We've already saved you some work by defining this total matrix. What is important
here is the sequence in which the matrices are multiplied; the individual transformations will be executed
in this precise sequence. The scaling is executed last, which makes it possible to adapt the vector object to
different screen resolutions easily. The following illustration shows the result of the computation:

This may at first seem like a great deal of work for the PC. However, remember, these calculations only have
to be performed once per image.

A 4x4 matrix in the _MATH unit is declared in the following manner:

type
  PMatrix = ^TMatrix;
  TMatrix = array[0..3, 0..3] of LongInt;

The procedure Zero  sets the total matrix, C, to zero.

;_____________________________________________________________________
; procedure Zero(var C :TMatrix);
;_____________________________________________________________________
  PROC Zero FAR



474

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       ARG C :DWord = @@return
       enter  0,0
       les    di,[C]
       xor    eax,eax
       mov    cx,(4*4*4)/4
       repne  stosd
       leave
       ret    @@return
  ENDP

The procedure Cross  calculates the product of the A and B matrices:

;_____________________________________________________________________
; procedure Cross(var A,B :TMatrix; var C :TMatrix);
;_____________________________________________________________________
  PROC Cross FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       LOCAL i:Word, j :Word = @@local
       enter  @@local,0
       mov    [i],3
  @@11:
       mov    [j],3
  @@21:
       mov    bx,[j]
       shl    bx,2
       les    di,[B]
       add    di,bx
       mov    bx,[i]
       shl    bx,4
       lfs    si,[A]
       add    si,bx
       xor    ebx,ebx
       mov    cx,4
  @@31:
       mov    eax,[fs:si]
       imul   [DWORD PTR es:di]
       shrd   eax,edx,9
       add    ebx,eax
       add    si,4
       add    di,16
       loop   @@31
       les    di,[C]
       mov    ax,[j]
       shl    ax,2
       add    di,ax
       mov    ax,[i]
       shl    ax,4
       add    di,ax
       mov    [es:di],ebx
       dec    [j]
       jns    @@21
       dec    [i]
       jns    @@11
       leave
       ret    @@return
  ENDP

The procedure Transform  multiplies Point A, described by vector A, by Matrix M, achieving a
transformation of Point A. The program simplified certain dimensions here (4th dimension of A always 1;
4th dimension of C ignored, since it's unimportant).



475

The Secrets Behind DOOM

Chapter 14

PCPC
underground

;_____________________________________________________________________
; procedure Transform(A :T3-D; M :TMatrix; var C :T3-D);
;_____________________________________________________________________
  PROC Transform FAR
       ARG C:DWord, M:DWord, A:DWord = @@return
       enter  0,0
       lfs    si,[A]
       lgs    bx,[M]
       les    di,[C]
       mov    cx,3
  @@11:
       push   cx
       mov    eax,[fs:si]
       imul   [DWORD PTR gs:bx]
       shrd   eax,edx,9
       mov    ecx,eax
       mov    eax,[fs:si+4]
       imul   [DWORD PTR gs:bx+4]
       shrd   eax,edx,9
       add    ecx,eax
       mov    eax,[fs:si+8]
       imul   [DWORD PTR gs:bx+8]
       shrd   eax,edx,9
       add    ecx,eax
       add    ecx,[DWORD PTR gs:bx+12]
       mov    [es:di],ecx
       add    di,4
       add    bx,16
       pop    cx
       loop   @@11
       leave
       ret    @@return
  ENDP

Rotate  generates a rotation matrix. This procedure rotates around the x-axis, y-axis and finally the z-axis.

;_____________________________________________________________________
; procedure Rotate(rx,ry,rz :Integer; var R :TMatrix);
;_____________________________________________________________________
  PROC Rotate FAR
       ARG R:DWord, rz:Word, ry:Word, rx:Word = @@return
       LOCAL SinX:DWord, SinY:DWord, SinZ:DWord, CosX:DWord,
             CosY:DWord, CosZ:DWord, A:DWord,B:DWord = @@local
       enter  @@local,0
       les    di,[R]
       push   di
       mov    cx,(4*4*4)/4
       xor    eax,eax
       repne  stosd
       pop    di
       mov    bx,[rx]
       call   FixSin
       mov    [SinX],eax
       mov    bx,[rx]
       call   FixCos
       mov    [CosX],eax



476

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    bx,[ry]
       call   FixSin
       mov    [SinY],eax
       mov    bx,[ry]
       call   FixCos
       mov    [CosY],eax
       mov    bx,[rz]
       call   FixSin
       mov    [SinZ],eax
       mov    bx,[rz]
       call   FixCos
       mov    [CosZ],eax
       imul   [SinY]
       shrd   eax,edx,9
       mov    [A],eax
       mov    eax,[SinZ]
       imul   [SinY]
       shrd   eax,edx,9
       mov    [B],eax
       mov    eax,[CosZ]
       imul   [CosY]
       shrd   eax,edx,9
       mov    [es:di],eax
       mov    eax,[A]
       imul   [SinX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[SinZ]
       imul   [CosX]
       shrd   eax,edx,9
       sub    ebx,eax
       mov    [es:di+4],ebx
       mov    eax,[A]
       imul   [CosX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[SinZ]
       imul   [SinX]
       shrd   eax,edx,9
       add    eax,ebx
       mov    [es:di+8],eax
       mov    eax,[SinZ]
       imul   [CosY]
       shrd   eax,edx,9
       mov    [es:di+16],eax
       mov    eax,[B]
       imul   [SinX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[CosZ]
       imul   [CosX]
       shrd   eax,edx,9
       add    eax,ebx
       mov    [es:di+20],eax
       mov    eax,[B]
       imul   [CosX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[CosZ]
       imul   [SinX]
       shrd   eax,edx,9
       sub    ebx,eax



477

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    [es:di+24],ebx
       mov    eax,[SinY]
       neg    eax
       mov    [es:di+32],eax
       mov    eax,[CosY]
       imul   [SinX]
       shrd   eax,edx,9
       mov    [es:di+36],eax
       mov    eax,[CosY]
       imul   [CosX]
       shrd   eax,edx,9
       mov    [es:di+40],eax
       mov    eax,200h
       mov    [es:di+60],eax
       leave
       ret    @@return
  ENDP

Create  creates a procedure according to Gl. 19. The rotations are executed first (as with Rotate ). Next,
the translation is executed. The scaling is executed last.

;_____________________________________________________________________
; procedure Create(tx,ty,tz,sx,sy,sz:LongInt;rx,ry,rz:Integer;
;                  var M :TMatrix);
;_____________________________________________________________________
  PROC Create FAR
       ARG M:DWord,rz:Word,ry:Word,rx:Word,sz:DWord,sy:DWord,sx:DWord,
                   tz:DWord,ty:DWord,tx:DWord = @@return
       LOCAL SinX:DWord,SinY:DWord,SinZ:DWord,CosX:DWord,
             CosY:DWord,CosZ:DWord,A:DWord,B:DWord = @@local
       enter  @@local,0
       les    di,[M]
       push   di
       mov    cx,(4*4*4)/4
       xor    eax,eax
       repne  stosd
       pop    di
       mov    bx,[rx]
       call   FixSin
       mov    [SinX],eax
       mov    bx,[rx]
       call   FixCos
       mov    [CosX],eax
       mov    bx,[ry]
       call   FixSin
       mov    [SinY],eax
       mov    bx,[ry]
       call   FixCos
       mov    [CosY],eax
       mov    bx,[rz]
       call   FixSin
       mov    [SinZ],eax
       mov    bx,[rz]
       call   FixCos
       mov    [CosZ],eax
       imul   [SinY]
       shrd   eax,edx,9
       mov    [A],eax
       mov    eax,[SinZ]
       imul   [SinY]
       shrd   eax,edx,9



478

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    [B],eax
       mov    eax,[CosZ]
       imul   [CosY]
       shrd   eax,edx,9
       imul   [sx]
       shrd   eax,edx,9
       mov    [es:di],eax
       mov    eax,[SinZ]
       imul   [CosX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[A]
       imul   [SinX]
       shrd   eax,edx,9
       sub    eax,ebx
       imul   [sx]
       shrd   eax,edx,9
       mov    [es:di+4],eax
       mov    eax,[A]
       imul   [CosX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[SinZ]
       imul   [SinX]
       shrd   eax,edx,9
       add    eax,ebx
       imul   [sx]
       shrd   eax,edx,9
       mov    [es:di+8],eax
       mov    eax,[SinZ]
       imul   [CosY]
       shrd   eax,edx,9
       imul   [sy]
       shrd   eax,edx,9
       mov    [es:di+16],eax
       mov    eax,[B]
       imul   [SinX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[CosZ]
       imul   [CosX]
       shrd   eax,edx,9
       add    eax,ebx
       imul   [sy]
       shrd   eax,edx,9
       mov    [es:di+20],eax
       mov    eax,[CosZ]
       imul   [SinX]
       shrd   eax,edx,9
       mov    ebx,eax
       mov    eax,[B]
       imul   [CosX]
       shrd   eax,edx,9
       sub    eax,ebx
       imul   [sy]
       shrd   eax,edx,9
       mov    [es:di+24],eax
       mov    eax,[SinY]
       neg    eax
       imul   [sz]
       shrd   eax,edx,9
       mov    [es:di+32],eax



479

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    eax,[CosY]
       imul   [SinX]
       shrd   eax,edx,9
       imul   [sz]
       shrd   eax,edx,9
       mov    [es:di+36],eax
       mov    eax,[CosY]
       imul   [CosX]
       shrd   eax,edx,9
       imul   [sz]
       shrd   eax,edx,9
       mov    [es:di+40],eax
       mov    eax,[tx]
       imul   [sx]
       shrd   eax,edx,9
       mov    [es:di+12],eax
       mov    eax,[ty]
       imul   [sy]
       shrd   eax,edx,9
       mov    [es:di+28],eax
       mov    eax,[tz]
       imul   [sz]
       shrd   eax,edx,9
       mov    [es:di+44],eax
       mov    eax,200h
       mov    [es:di+60],eax
       leave
       ret    @@return
  ENDP

You should be familiar with the conversion of 3-D coordinates to 2-D coordinates (projection) from Chapter
7 ("The Third Dimension: 3-D Graphics Programming"). The eye-screen distance was set to one:

procedure Project(A :T3-D; var C:T2D);
begin
   if (A[z] div $200) <> 0 then begin
     C[x] := 160+ (A[x] div (A[z] div $200));
     C[y] := 100- (A[y] div (A[z] div $200));
  end;
end;
with
type
  P2D = ^T2D;
  T2D = array[x..y] of Integer;

We'll also need the following two procedures for adding and subtracting 2-dimensional vectors.

;_____________________________________________________________________
; procedure VecAdd2D(A,B :T2D; var C :T2D);
;_____________________________________________________________________
  PROC VecAdd2D FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       enter  0,0
       les    di,[C]
       mov    ax,[WORD PTR A]
       add    ax,[WORD PTR B]
       stosw
       mov    ax,[WORD PTR A+2]
       add    ax,[WORD PTR B+2]
       stosw
       leave



480

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       ret    @@return
  ENDP
;_____________________________________________________________________
; procedure VecSub2D(A,B :T2D; var C :T2D);
;_____________________________________________________________________
  PROC VecSub2D FAR
       ARG C:DWord, B:DWord, A:DWord = @@return
       enter  0,0
       les    di,[C]
       mov    ax,[WORD PTR A]
       sub    ax,[WORD PTR B]
       stosw
       mov    ax,[WORD PTR A+2]
       sub    ax,[WORD PTR B+2]
       stosw
       leave
       ret    @@return
  ENDP

Cast An Impressive Shadow With Gouraud Shading

Now that we've described and moved objects in space and converted a three-dimensional object to the two-
dimensional point coordinates of the screen, we're at another interesting part: Filling the polygons.

We don't want to fill the polygons with a uniform color because that would result in a color gap between
the various surfaces called flatshading. Instead, we want to assign each point a normal vector/color value.
Then the polygons can be displayed using the Phong shading or Gouraud shading technique.

Both techniques are interpolation procedures. The normal vector of the pixel to be drawn is determined in
Phong shading using interpolation (and then the color value is calculated). With Gouraud shading, only the
color values are interpolated.

The Gouraud shading method uses relatively little computation. The greatest disadvantage of Gouraud
shading is that no highlights can be displayed inside the polygon.

For Gouraud shading, each point must be assigned a color value. For this purpose, each point must have
a normal vector (this normal vector represents the mean value of the adjacent surface normal vectors). We'll
explain the calculation of the color value later.

First, the color values for the edges of the polygon are interpolated
and then the color values for each individual point. Here, for the
first time, is the definition of some important structures:

  STRUC TLine
    x     dw ?
    ddy   dw ?
    ddx   dw ?
    icx   dw ?
    error dw ?
    yTo   dw ?
    xTo   dw ?
    Col   dd ?
    icC   dd ?
  ENDS

PCPCun
de

rg
ro

un
d

This section's program listings
are from CXYGPOLY.ASM

and CXYTPOLY.ASM
on the companion CD-ROM



481

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  STRUC TEntry
    x     dw ?
    Col   dd ?
  ENDS

The next listing uses two variables. The first is _VirtualVSeg , which contains the segment address of the
video RAM. This can amount to 0A000h as well as containing the segment address of a single video buffer.
The second variable is xSize , which specifies the x-width of the screen in pixels (with Mode 13h it would
be = 320).

    EXTRN _VirtualVSeg :Word
    EXTRN xSize        :Word
    yi     dw ?
    LL     TLine ?
    RL     TLine ?
    yMin   dw ?
    yMax   dw ?
    min    dw ?
    L      dw ?
    R      dw ?
    K      dw ?
    k1     TEntry ?
    k2     TEntry ?
    DeltaX dw ?
    Cic    dd ?

The screen coordinates of the polygon are passed in P to the routine. The coordinates are passed as "array
[0..Count-1,x..y] of Integer". The color values are passed in C as "array [0..Count-1] of Byte".  Count  specifies
the number of corners in the polygon.

;_____________________________________________________________
;CxyShadedPoly(P :PPoints; C :PBytes; Count :Word);
;_____________________________________________________________
  PROC CxyShadedPoly FAR
       ARG Count:Word, C:DWord, P:DWord = @@return
       enter  0,0

First, the highest and lowest value for y are determined and saved in yMin  and yMax. At the same time, the
position of yMin  in the coordinate array is written in min .

       cld
       mov    [min],-1
       mov    [yMin],200
       mov    [yMax],-1
       xor    cx,cx
       les    si,[P]
       mov    bx,si
       inc    si
       inc    si
  @@11:
       mov    ax,[es:si]
       cmp    ax,[yMin]
       jnl    @@12
       mov    [yMin],ax
       mov    [min],cx
  @@12:
       mov    ax,[es:si]
       cmp    ax,[yMax]
       jnge   @@13



482

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    [yMax],ax
  @@13:
       add    si,4
       inc    cx
       cmp    cx,[Count]
       jb     @@11

If yMin  is greater than 199 or yMax is less than 0, it means the polygon is not visible on the screen.

cmp    [yMin],199
       jg     @@71
       cmp    [yMax],0
       jl     @@71

yi  specifies the current y position of the polygon routine. The polygon routine then goes through all the
rows from yMin  to yMax and draws a corresponding horizontal line. The routine calculates a right and left
line for this purpose. This line determine the starting point and the end point of the horizontal line.

The polygons to be drawn must be convex. A polygon is convex when you can insert a straight line through
the polygon without the line intersecting the polygon more than two times. A triangle and quadrangles, for
example, are convex. Remember this when defining the polygons of your vector object. It's faster to draw
two convex polygons than one concave polygon.

The following code segment loads the initial values for the polygon routine.

       mov    ax,[yMin]
       mov    [yi],ax

L specifies the position of the left line in the coordinate array and R specifies the position of the right line.
Both are loaded with the starting point. LL  contains the data of the "L"eft "L"ine and RL contains the data
of the "R"ight "L"ine. The x values of both lines are loaded with the initial value for x.

       mov    ax,[min]
       mov    [L],ax
       mov    [R],ax
       shl    ax,2
       add    bx,ax
       mov    ax,[es:bx]
       mov    [LL.x],ax
       mov    [RL.x],ax

InitLeft  and InitRight load LL  and RL with the values for the next line segment.

       call   InitLeft
       call   InitRight

We'll talk about InitLeft  and InitRight  before discussing CxyShadedPoly .

;--------------------------------------------------------------
  PROC InitLeft NEAR
;--------------------------------------------------------------
       les    si,[P]
  @@11:

First, the initial value for x of the line is read. The L is placed one position further. For this purpose, L is
decremented by one. If L equals ZERO then L is assigned to Count  and decremented by one.



483

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    bx,[L]
       mov    [K],bx
       shl    bx,2
       mov    ax,[es:si+bx]
       mov    [LL.x],ax
       mov    bx,[L]
       cmp    bx,0
       jne    @@12
       mov    bx,[Count]
  @@12:
       dec    bx
       mov    [L],bx

If L is moved by one, the y end value (=yTo) of the line is loaded and the difference between yTo  and yi
(=current y position) is saved in ddy . After that, the x end value is loaded and saved in xTo.

       shl    bx,2
       mov    ax,[es:si+bx+2]
       mov    [LL.yTo],ax
       sub    ax,[yi]
       jns    @@13
       neg    ax
  @@13:
       inc    ax
       mov    [LL.ddy],ax
       mov    ax,[es:si+bx]
       mov    [LL.xTo],ax

First, the initial color value is loaded, converted to a 16 bit fixed point number and saved in Col .

       les    si,[C]
       mov    bx,[k]
       movzx  ax,[BYTE PTR es:si+bx]
       shl    eax,16
       mov    [LL.Col],eax

The following is where the difference between the x initial value and x end value is formed. icx  is set
according to the sign of the difference. The amount of the difference is saved in ddx .

       mov    [LL.icx],1
       mov    ax,[LL.xTo]
       sub    ax,[LL.x]
       jns    @@14
       neg    [LL.icx]
       neg    ax
  @@14:
       mov    [LL.ddx],ax
       mov    [LL.error],0

This is where the calculation for the interpolation of the edge
color value takes place. The initial and end color values are
loaded and the difference between the two is obtained. Then
the whole thing is divided by ddy . In Cic  you get the value
that you have to add to Col  per y-row to get the color value
for the current edge point in Col .

       mov    bx,[L]
       movzx  ax,[BYTE PTR es:si+bx]
       shl    eax,16

PCPC
underground

NOTE

16-bit fixed point arithmetic 
is used here.



484

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       sub    eax,[LL.Col]
       cdq
       movzx  ebx,[LL.ddy]
       idiv   ebx
       mov    [LL.icC],eax
  @@15:
       ret
  ENDP

InitRight  has a similar structure. The only difference is that R is not decremented but is incremented
instead. The following is the complete source for the procedure:

;-------------------------------------------------------------
  PROC InitRight NEAR
;-------------------------------------------------------------
       les    si,[P]
  @@11:
       mov    bx,[R]
       mov    [K],bx
       shl    bx,2
       mov    ax,[es:si+bx]
       mov    [RL.x],ax
       mov    bx,[R]
       mov    ax,[Count]
       dec    ax
       cmp    bx,ax
       jne    @@12
       mov    bx,-1
  @@12:
       inc    bx
       mov    [R],bx
       shl    bx,2
       mov    ax,[es:si+bx+2]
       mov    [RL.yTo],ax
       sub    ax,[yi]
       jns    @@13
       neg    ax
  @@13:
       inc    ax
       mov    [RL.ddy],ax
       mov    ax,[es:si+bx]
       mov    [RL.xTo],ax
       les    si,[C]
       mov    bx,[k]
       movzx  ax,[BYTE PTR es:si+bx]
       shl    eax,16
       mov    [RL.Col],eax
       mov    [RL.icx],1
       mov    ax,[RL.xTo]
       sub    ax,[RL.x]
       jns    @@14
       neg    [RL.icx]
       neg    ax
  @@14:
       mov    [RL.ddx],ax
       mov    [RL.error],0
       mov    bx,[R]
       movzx  ax,[BYTE PTR es:si+bx]
       shl    eax,16
       sub    eax,[RL.Col]
       cdq



485

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       movzx  ebx,[RL.ddy]
       idiv   ebx
       mov    [RL.icC],eax
  @@15:
       ret
  ENDP

Now we'll continue with CxyShadedPoly . If yMax is greater than 199, yMax is set to 199.

       mov    ax,199
       cmp    [yMax],ax
       jng    @@14
       mov    [yMax],ax
  @@14:
       mov    ax,[yMin]
       mov    [yi],ax
  @@21:

The main loop begins here. A modified version of the Bresenham algorithm is used to draw the left or right
line. If error is greater than or equal to ddx , the routine jumps to label @@33. Otherwise, the routine
compares to determine whether the x end value has been reached. If this is not the case, error is incremented
by ddy  and icx  is added to x . If error is greater than or equal to ddx  or x  is equal to xTo , then the loop is
ended. Otherwise, the routine jumps to label @@31 and starts over from the beginning.

At the end, the modified values from the registers are written back to the variable.

       mov    ax,[LL.x]
       mov    dx,[LL.ddy]
       mov    bx,[LL.error]
       cmp    bx,[LL.ddx]
       jge    @@33
       cmp    ax,[LL.xTo]
       je     @@33
  @@31:
       add    bx,dx
       add    ax,[LL.icx]
       cmp    bx,[LL.ddx]
       jge    @@32
       cmp    ax,[LL.xTo]
       jne    @@31
  @@32:
       mov    [LL.x],ax
  @@33:
       sub    bx,[LL.ddx]
       mov    [LL.error],bx

After that, the routine executes the color value interpolation for the left line.

       mov    eax,[LL.icC]
       add    [LL.Col],eax

The same happens for the right line.

       mov    ax,[RL.x]
       mov    dx,[RL.ddy]
       mov    bx,[RL.error]
       cmp    bx,[RL.ddx]
       jge    @@43
       cmp    ax,[RL.xTo]



486

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       je     @@43
  @@41:
       add    bx,dx
       add    ax,[RL.icx]
       cmp    bx,[RL.ddx]
       jge    @@42
       cmp    ax,[RL.xTo]
       jne    @@41
  @@42:
       mov    [RL.x],ax
  @@43:
       sub    bx,[RL.ddx]
       mov    [RL.error],bx
       mov    eax,[RL.icC]
       add    [RL.Col],eax

The routine tests here whether the line to be drawn is outside the screen. If this is the case, the line doesn't
get drawn.

       cmp    [yi],0
       jl     @@60

Now copies of variables L.x/R.x  and L.Col/R.Col  are generated. GouraudVLine , which draws the
horizontal line in the screen/video buffer, is then called. The routine is declared following this routine.

       mov    ax,[LL.x]
       mov    [k1.x],ax
       mov    eax,[LL.Col]
       mov    [k1.Col],eax
       mov    ax,[RL.x]
       mov    [k2.x],ax
       mov    eax,[RL.Col]
       mov    [k2.Col],eax
       call   GouraudVLine

If yi is equal to L.yTo  or R.yTo , then InitLeft  or InitRight  is called.

  @@60:
       mov    ax,[yi]
       cmp    [LL.yTo],ax
       jne    @@61
       call   InitLeft
       mov    ax,[yi]
  @@61:
       cmp    [RL.yTo],ax
       jne    @@62
       call   InitRight
  @@62:

Then yi  is incremented by one. As long as yi  is less than yMax, the routine jumps to the beginning (label
@@21).

       inc    [yi]
       mov    ax,[yMax]
       cmp    [yi],ax
       jle    @@21
  @@71:
       leave
       ret    @@return
  ENDP



487

The Secrets Behind DOOM

Chapter 14

PCPC
underground

Next comes the routine which draws the horizontal line.
;--------------------------------------------------------------
 PROC GouraudVLine NEAR
;--------------------------------------------------------------
       push   ds

First, the difference from k1.x  and k2.x  is obtained and saved in DeltaX .

       movzx  ebx,[k2.x]
       sub    bx,[k1.x]
       jns    @@01
       neg    bx
  @@01:
       inc    bx
       mov    [DeltaX],bx

Then the color increment is determined.

       xor    edx,edx
       mov    eax,[k2.Col]
       sub    eax,[k1.Col]
       jns    @@02
       neg    eax
  @@02:
       div    ebx
       mov    [Cic],eax

Then the x coordinates are clipped. The routine determines whether k1.x  is greater than k2.x . The color
values must also be determined with the coordinates.

       movzx  ebx,[k1.x]
       movzx  ecx,[k2.x]
       cmp    bx,cx
       jnl    @@13
       cmp    bx,0
       jnl    @@11
       neg    bx
       mov    eax,[Cic]
       imul   ebx
       add    [k1.Col],eax
       xor    bx,bx
  @@11:
       cmp    cx,319
       jng    @@12
       sub    cx,319
       mov    eax,[Cic]
       imul   ecx
       add    [k2.Col],eax
       mov    cx,319
  @@12:
       cmp    bx,cx
       jg     @@40
       jmp    @@16
  @@13:
       cmp    cx,0
       jnl    @@14
       neg    cx
       mov    eax,[Cic]
       imul   ecx
       add    [k1.Col],eax
       xor    cx,cx



488

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  @@14:
       cmp    bx,319
       jng    @@15
       sub    bx,319
       mov    eax,[Cic]
       imul   ebx
       add    [k2.Col],eax
       mov    bx,319
  @@15:
       cmp    cx,bx
       jg     @@40
  @@16:

DeltaX  is recalculated here, since it may have changed on account of clipping.

       mov    [k1.x],bx
       mov    [k2.x],cx
       mov    bx,[k2.x]
       sub    bx,[k1.x]
       jns    @@03
       neg    bx
  @@03:
       inc    bx
       mov    [DeltaX],bx

This is where the low byte of the hi word of DWord Cic  is loaded into the cl register and the low word of
Cic  is loaded into the hi word of ebx (we'll explain why this occurs when we describe the main loop).

       mov    eax,[Cic]
       mov    bx,ax
       rol    ebx,16
       rol    eax,16
       mov    cl,al

The bx register is loaded with the increment by which the offset in the video buffer is increased.

       mov    bx,1
       mov    ax,[k1.x]
       cmp    ax,[k2.x]
       jng    @@10
       neg    bx
  @@10:

Another check is make here to see if k1.Col  is greater than k2.Col .

       mov    eax,[k1.Col]
       cmp    eax,[k2.Col]
       jnle   @@21

Correspondingly, either k1.Col/k1.x or k2.Col/k2.x  is taken as the color/x initial value. The low
word of Col  is loaded into the hi word of edi. The low byte of the hi word of Col  is loaded into the al register.
The offset in the video RAM/video buffer is loaded into the di register.

       mov    di,[WORD PTR k1.Col]
       rol    edi,16
       mov    ax,[xSize]
       mul    [yi]
       mov    di,[k1.x]
       add    di,ax
       mov    al,[BYTE PTR 2+k1.Col]



489

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       jmp    @@22
 @@21:
       mov    di,[WORD PTR k2.Col]
       rol    edi,16
       mov    ax,[xSize]
       mul    [yi]
       mov    di,[k2.x]
       add    di,ax
       mov    al,[BYTE PTR 2+k2.Col]
       neg    bx
 @@22:

The low byte of the hi word of  Cic  which was copied to the cl register is now transferred to the ah register.

       mov    ah,cl

It's better if we work our way through the main loop step by step.

       mov    cx,[DeltaX]
       mov    ds,[_VirtualVSeg]
  @@31:

The color value of the pixel [ds:di] is located in al.

   mov    [di],al

Two things happen simultaneously during the subsequent 32 bit addition. Two 16-bit additions are
combined into one here. di is "increased" by 1 and -1, and at the same time, the decimal portions of Col  and
Cic are added (in the hi word). If there is an overflow, the carry flag is set, otherwise it is cleared.

       add    edi,ebx

The carry flag is now added with the integral part of Cic  to the integral part of Col .

       adc    al,ah

Instead of loop, the dec/jnz instruction sequence is used here. This is faster on 486s than the loop instruction.
However, we're actually just fooling around, since there are far better places to optimize the code.

       dec    cx
       jnz    @@31
  @@40:
       pop    ds
       ret
  ENDP
  END

Using Realistic 3-D Objects: Polygons And Textures

We can improve the display even more by projecting onto a graphic on the vector object. As a result, the
vector object is no longer uniformly shaded but contains a complex structure. By using this process, called
texture mapping, it's possible to create very realistic objects, such as stones, without having to generate very
many surfaces. While it's true that you need more processing time for texture mapping, the objects look
remarkably more realistic.



490

The Secrets Behind DOOM

Chapter 14

PCPC
underground

The polygon routine we'll introduce is similar to the Gouraud
shading routine. There are various approaches for producing
texture mapping. The algorithm we'll introduce uses a very fast
procedure but may generate errors in the display. The error
results from the perspective, which is not taken into account in
this algorithm.

For each horizontal line that is drawn on the screen, a corresponding line is drawn by the graphic (=texture
map). Each point on the line drawn on the screen is assigned a point in the texture map.

Screen Texture map

The texture line is mapped on the screen

Now we need to know how to determine the coordinates (x,y) in the texture map. The vertices of the polygon
are assigned coordinates in the texture map. Similar to Gouraud shading, a twofold interpolation process
is used to determine the intermediate coordinates. The only difference here is that instead of interpolating
one value (the color value with Gouraud shading), the x and y coordinates are also interpolated.

You should now understand why this algorithm cannot function correctly. The interpolation which we're
using here is linear but the perspective is not linear. Therefore, a distortion results that is noticeable as a
bump in the texture map. Look at this distortion closely in the texture mapping parts. You won't be able to
make out the "bend" so easily with the objects used here since the surfaces are relatively small. Therefore,
the flaw isn't as noticeable.

  STRUC TLine
    x     dw ?
    Tx    dd ?
    Ty    dd ?
    Ticx  dd ?
    Ticy  dd ?
    ddy   dw ?
    ddx   dw ?
    icx   dw ?
    error dw ?
    yTo   dw ?
    xTo   dw ?
  ENDS
  STRUC TEntry
    x     dw ?
    Tx    dd ?
    Ty    dd ?
  ENDS

Tx  and Ty  contain the x and y coordinates in the texture map. Ticx  and Ticy  are the increment values for
the texture coordinates.

PCPCun
de

rg
ro

un
d

The program listings
in this section are from 

CXYTPOLY.ASM
on the companion CD-ROM



491

The Secrets Behind DOOM

Chapter 14

PCPC
underground

Also, two variables (TexXSize  and TexYSize ) containing the height and width of the texture map are
new.

    EXTRN _VirtualVSeg :Word
    EXTRN xSize       :Word
    EXTRN TexXSize    :Word
    EXTRN TexYSize    :Word
    LL          TLine ?
    RL          TLine ?
    yMin        dw ?
    yMax        dw ?
    min         dw ?
    L           dw ?
    R           dw ?
    yi          dw ?
    K           dw ?
    k1          TEntry ?
    k2          TEntry ?
    DeltaX      dw ?
    uicx        dd ?
    uicy        dd ?
    TextureSeg  dw ?

As we mentioned, the routine is similar in structure to the Gouraud shading routine. Therefore, we'll only
describe the new material and changes.

;_____________________________________________________________________
; procedure CxyTexturedPoly(P,T :Pointer; Count :Word;
;                           Texture :Pointer);
;_____________________________________________________________________
  PROC CxyTexturedPoly FAR
       ARG Texture:DWord, Count:Word, T:DWord, P:DWord = @@return
       enter  0,0
       cld

The texture must be located at an address divisible by 16 so the offset value of the address can be ignored.
In allocating memory with Getmem, only those addresses are given which are PARA aligned. Therefore,
you won't need to worry when you allocate the texture map on the heap. Next, the highest point is
determined.

       mov    ax,[WORD PTR 2+Texture]
       mov    [TextureSeg],ax
       mov    [min],-1
       mov    [yMin],200
       mov    [yMax],-1
       xor    cx,cx
       les    si,[P]
       mov    bx,si
       inc    si
       inc    si
  @@11:
       mov    ax,[es:si]
       cmp    ax,[yMin]
       jnl    @@12
       mov    [yMin],ax
       mov    [min],cx
  @@12:
       mov    ax,[es:si]
       cmp    ax,[yMax]
       jnge   @@13



492

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    [yMax],ax
  @@13:
       add    si,4
       inc    cx
       cmp    cx,[Count]
       jb     @@11
       cmp    [yMin],199
       jg     @@71
       cmp    [yMax],0
       jl     @@71
       mov    ax,199
       cmp    [yMax],ax
       jle    @@14
       mov    [yMax],ax
  @@14:
       mov    ax,[yMin]
       mov    [yi],ax

LL  and RL are then loaded with the corresponding values similar to the Gouraud shading routine.

       mov    ax,[min]
       mov    [L],ax
       mov    [R],ax
       shl    ax,2
       add    bx,ax
       mov    ax,[es:bx]
       mov    [LL.x],ax
       mov    [RL.x],ax
       call   _InitLeft
       call   _InitRight
       mov    ax,[yMin]
       inc    ax
       cmp    ax,[yMax]
       jg     @@71

This is where the loop, which searches for the individual horizontal lines, begins.

       mov    [yi],ax
@@21:

Determining the x value is the same as with Gouraud shading.

       mov    ax,[LL.x]
       mov    dx,[LL.ddy]
       mov    bx,[LL.error]
       cmp    bx,[LL.ddx]
       jge    @@33
       cmp    ax,[LL.xTo]
       je     @@33
  @@31:
       add    bx,dx
       add    ax,[LL.icx]
       mov    [LL.error],bx
       mov    [LL.x],ax
       cmp    bx,[LL.ddx]
       jge    @@32
       cmp    ax,[LL.xTo]
       jne    @@31
  @@32:
       mov    [LL.x],ax
  @@33:



493

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       sub    bx,[LL.ddx]
       mov    [LL.error],bx

The first step of texture map interpolation occurs here.

       mov    eax,[LL.Ticx]
       add    [LL.Tx],eax
       mov    eax,[LL.Ticy]
       add    [LL.Ty],eax

This is also true for the right line (which doesn't have to be on the right side).

       mov    ax,[RL.x]
       mov    dx,[RL.ddy]
       mov    bx,[RL.error]
       cmp    bx,[RL.ddx]
       jge    @@43
       cmp    ax,[RL.xTo]
       je     @@43
  @@41:
       add    bx,dx
       add    ax,[RL.icx]
       mov    [RL.error],bx
       mov    [RL.x],ax
       cmp    bx,[RL.ddx]
       jge    @@42
       cmp    ax,[RL.xTo]
       jne    @@41
  @@42:
       mov    [RL.x],ax
  @@43:
       sub    bx,[RL.ddx]
       mov    [RL.error],bx
       mov    eax,[RL.Ticx]
       add    [RL.Tx],eax
       mov    eax,[RL.Ticy]
       add    [RL.Ty],eax

TextureVLine  is called after copies of x , Tx  and Ty  are made. It then controls drawing the horizontal line.

       cmp    [yi],0
       jl     @@60
       push   ds
       pop    es
       mov    si,OFFSET LL
       mov    di,OFFSET k1
       movsd
       movsd
       movsw
       mov    si,OFFSET RL
       mov    di,OFFSET k2
       movsd
       movsd
       movsw
       call   TextureVLine

Check to see if an end point has been reached.

  @@60:
       mov    ax,[yi]
       cmp    [LL.yTo],ax



494

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       jne    @@61
       call   _InitLeft
       mov    ax,[yi]
  @@61:
       cmp    [RL.yTo],ax
       jne    @@62
       call   _InitRight
  @@62:

If yi is less than or equal to yMax, then loop.

       inc    [yi]
       mov    ax,[yMax]
       cmp    [yi],ax
       jle    @@21
  @@71:
       leave
       ret    @@return
  ENDP

;---------------------------------------------------------------------
; procedure InitLeft;
;---------------------------------------------------------------------
  PROC _InitLeft NEAR

Here is the beginning, which is familiar.

       les    si,[P]
  @@11:
       mov    bx,[L]
       mov    [K],bx
       shl    bx,2
       mov    ax,[es:si+bx]
       mov    [LL.x],ax
       mov    bx,[L]
       cmp    bx,0
       jne    @@12
       mov    bx,[Count]
  @@12:
       dec    bx
       mov    cx,bx
       mov    [L],bx
       shl    bx,2
       mov    ax,[es:si+bx+2]
       mov    [LL.yTo],ax
       sub    ax,[yi]
       jns    @@13
       neg    ax
  @@13:
       mov    [LL.ddy],ax
       cmp    ax,0
       jne    @@14
       cmp    cx,[min]
       je     @@16
       jmp    @@11
  @@14:
       mov    ax,[es:si+bx]
       mov    [LL.xTo],ax

Tx  and Ty  are loaded with their corresponding values.



495

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       les    si,[T]
       mov    bx,[k]
       shl    bx,2
       mov    ax,[es:si+bx]
       shl    eax,16
       mov    [LL.Tx],eax
       mov    ax,[es:si+bx+2]
       shl    eax,16
       mov    [LL.Ty],eax
       mov    [LL.icx],1
       mov    ax,[LL.xTo]
       sub    ax,[LL.x]
       jns    @@15
       neg    [LL.icx]
       neg    ax
  @@15:
       mov    [LL.ddx],ax
       mov    [LL.error],0

Ticx  and Ticy  are determined by dividing the difference between the old and new Ticx /Ticy by the
number of y rows (ddy ) between them.

       mov    bx,[L]
       shl    bx,2
       mov    ax,[es:si+bx]
       shl    eax,16
       sub    eax,[LL.Tx]
       cdq
       movzx  ecx,[LL.ddy]
       idiv   ecx
       mov    [LL.Ticx],eax
       mov    ax,[es:si+bx+2]
       shl    eax,16
       sub    eax,[LL.Ty]
       cdq
       movzx  ecx,[LL.ddy]
       idiv   ecx
       mov    [LL.Ticy],eax
  @@16:
       ret
  ENDP

The same is true for the right line.

;---------------------------------------------------------------------
; procedure InitRight;
;---------------------------------------------------------------------
  PROC _InitRight NEAR
       les    si,[P]
  @@11:
       mov    dx,[K]
       mov    bx,[R]
       mov    [K],bx
       shl    bx,2
       mov    ax,[es:si+bx]
       mov    [RL.x],ax
       mov    bx,[R]
       mov    ax,[Count]
       dec    ax
       cmp    bx,ax
       jne    @@12



496

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       mov    bx,-1
  @@12:
       inc    bx
       mov    cx,bx
       mov    [R],bx
       shl    bx,2
       mov    ax,[es:si+bx+2]
       mov    [RL.yTo],ax
       sub    ax,[yi]
       jns    @@13
       neg    ax
  @@13:
       mov    [RL.ddy],ax
       cmp    ax,0
       jne    @@14
       cmp    cx,[min]
       je     @@16
       jmp    @@11
  @@14:
       mov    ax,[es:si+bx]
       mov    [RL.xTo],ax
       les    si,[T]
       mov    bx,[k]
       shl    bx,2
       mov    ax,[es:si+bx]
       shl    eax,16
       mov    [RL.Tx],eax
       mov    ax,[es:si+bx+2]
       shl    eax,16
       mov    [RL.Ty],eax
       mov    [RL.icx],1
       mov    ax,[RL.xTo]
       sub    ax,[RL.x]
       jns    @@15
       neg    [RL.icx]
       neg    ax
  @@15:
       mov    [RL.ddx],ax
       mov    [RL.error],0
       mov    bx,[R]
       shl    bx,2
       mov    ax,[es:si+bx]
       shl    eax,16
       sub    eax,[RL.Tx]
       cdq
       movzx  ecx,[RL.ddy]
       idiv   ecx
       mov    [RL.Ticx],eax
       mov    ax,[es:si+bx+2]
       shl    eax,16
       sub    eax,[RL.Ty]
       cdq
       movzx  ecx,[RL.ddy]
       idiv   ecx
       mov    [RL.Ticy],eax
  @@16:
       ret
  ENDP

The most interesting part of the routine is next: The part that draws the horizontal line.



497

The Secrets Behind DOOM

Chapter 14

PCPC
underground

;---------------------------------------------------------------------
; procedure TextureVLine
;---------------------------------------------------------------------
  PROC TextureVLine NEAR
       push   ds
       push   bp

First, the difference is obtained from k1.x  and k2.x  and saved in deltaX .

       movzx  ebx,[k2.x]
       sub    bx,[k1.x]
       jns    @@01
       neg    bx
  @@01:
       inc    bx
       mov    [DeltaX],bx

uicx  and uicy  receive the increment values for Tx  and Ty .

       mov    eax,[k2.Tx]
       sub    eax,[k1.Tx]
       cdq
       idiv   ebx
       mov    [uicx],eax
       mov    eax,[k2.Ty]
       sub    eax,[k1.Ty]
       cdq
       idiv   ebx
       mov    [uicy],eax

Lines outside of the screen get clipped.

       movsx  eax,[k1.x]
       cmp    ax,[k2.x]
       jnl    @@c3
       movsx  eax,[k1.x]
       or     ax,ax
       jnl    @@c1
       push   eax
       imul   [uicx]
       sub    [k1.Tx],eax
       pop    eax
       imul   [uicy]
       sub    [k1.Ty],eax
       mov    [k1.x],0
  @@c1:
       movsx  eax,[k2.x]
       cmp    ax,319
       jng    @@c2
       sub    eax,319
       push   eax
       imul   [uicx]
       sub    [k2.Tx],eax
       pop    eax
       imul   [uicy]
       sub    [k2.Ty],eax
       mov    ax,319
       mov    [k2.x],ax
  @@c2:
       cmp    [k1.x],ax
       jnle   @@40



498

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       jmp    @@c6
  @@c3:
       movsx  eax,[k1.x]
       cmp    ax,319
       jng    @@c4
       sub    eax,319
       push   eax
       imul   [uicx]
       add    [k1.Tx],eax
       pop    eax
       imul   [uicy]
       add    [k1.Ty],eax
       mov    [k1.x],319
  @@c4:
       movsx  eax,[k2.x]
       or     ax,ax
       jnl    @@c5
       push   eax
       imul   [uicx]
       add    [k2.Tx],eax
       pop    eax
       imul   [uicy]
       add    [k2.Ty],eax
       xor    ax,ax
       mov    [k2.x],ax
  @@c5:
       cmp    ax,[k1.x]
       jnle   @@40
  @@c6:

DeltaX  is recalculated here since it may have changed due to clipping.

       mov    bx,[k1.x]
       sub    bx,[k2.x]
       jns    @@11
       neg    bx
  @@11:
       inc    bx
       mov    [DeltaX],bx

Now the main loop is initialized.

       mov    eax,[k2.Tx]
       cmp    eax,[k1.Tx]
       jng    @@21
       movzx  edi,[k1.x]
       mov    ax,[xSize]
       mul    [yi]
       add    di,ax
       mov    ax,[WORD PTR 2+k1.Ty]
       mul    [TexXSize]
       add    ax,[WORD PTR 2+k1.Tx]
       add    ax,[WORD PTR Texture]
       movzx  esi,ax
       mov    eax,[k2.Ty]
       cmp    eax,[k1.Ty]
       jng    @@12
       mov    ax,[TexXSize]
       mul    [WORD PTR 2+uicy]
       mov    bp,[WORD PTR 2+uicx]
       add    bp,ax
       mov    dx,[TexXSize]



499

The Secrets Behind DOOM

Chapter 14

PCPC
underground

       jmp    @@13
  @@12:
       neg    [uicy]
       mov    ax,[TexXSize]
       mul    [WORD PTR 2+uicy]
       mov    bp,[WORD PTR 2+uicx]
       sub    bp,ax
       mov    dx,[TexXSize]
       neg    dx
  @@13:
       push   1
       jmp    @@24
  @@21:
       neg    [uicx]
       movzx  edi,[k2.x]
       mov    ax,[xSize]
       mul    [yi]
       add    di,ax
       mov    ax,[WORD PTR 2+k2.Ty]
       mul    [TexXSize]
       add    ax,[WORD PTR 2+k2.Tx]
       add    ax,[WORD PTR Texture]
       movzx  esi,ax
       mov    eax,[k2.Ty]
       cmp    eax,[k1.Ty]
       jng    @@22
       mov    ax,[TexXSize]
       mul    [WORD PTR 2+uicy]
       mov    bp,[WORD PTR 2+uicx]
       sub    bp,ax
       mov    dx,[TexXSize]
       neg    dx
       jmp    @@23
  @@22:
       neg    [uicy]
       mov    ax,[TexXSize]
       mul    [WORD PTR 2+uicy]
       mov    bp,[WORD PTR 2+uicx]
       add    bp,ax
       mov    dx,[TexXSize]
  @@23:
       push   -1
  @@24:
       movzx  ebx,[WORD PTR uicx]
       rol    ebx,16
       rol    ebp,16
       mov    bp,[WORD PTR uicy]
       rol    ebp,16
       add    edi,ebx
       adc    esi,ebp
       jnc    @@30
       add    si,dx
  @@30:
       pop    bx
       mov    ax,[k1.x]
       cmp    ax,[k2.x]
       jng    @@31
       neg    bx
  @@31:
       mov    cx,[DeltaX]
       mov    es,[_VirtualVSeg]
       mov    ds,[TextureSeg]



500

The Secrets Behind DOOM

Chapter 14

PCPC
underground

You probably weren't expecting the main loop to be so small. If you understood the carry trick in Gouraud
shading, then you shouldn't have any problems understanding what happens here.

  @@32:
       mov    al,[si]
       mov    [es:di],al
       add    edi,ebx
       adc    esi,ebp
       jnc    @@33
       add    si,dx
  @@33:
       dec    cx
       jnz    @@32

The si register contains the offset in the texture map, while di contains the offset in video RAM or in the video
buffer. The hi word of edi contains the decimal part of the x coordinate in the texture. The hi word of ebx
contains the decimal part of the x increment of the texture. Bx is either one or minus one, depending on
whether the line is drawn from right to left or from left to right. In case edi overflows, esi, whose hi word
contains the decimal part of the y coordinate in the texture, is incremented by one. Ebp contains the decimal
part of the y increment in the hi word and the integral part of the x and y increment of the texture coordinates
in the lo word. If esi overflows, dx, which contains the width of the texture, is added to si.

  @@40:
       pop    bp
       pop    ds
       ret
  ENDP

DOOM Has Great 3-D Vector Graphics

In this section we'll see you how to combine all the routines we've introduced so far. You may be surprised
to learn the main program which performs the complete display is written in Pascal (except for the vector
math, Gouraud and texture routines).

You may have expected that it was written entirely in assembly
language. However, routines to load 3-D data or texture maps
don't have to be fast. Also, many places in the program use so
little time that it is makes no difference whether they are written
in assembly language or in Pascal.

Furthermore, the code is much easier to read with a high-level language as a basis. This readability helps
you in two ways:

1. Because the code is easier  to read, you can find areas in the code faster and possibly rework the slow
portions after you've identified them with a profiler. It's harder for errors to sneak into the program,
or if they do, you can detect them relatively quickly.

2. High-level languages normally include an extensive selection of standard routines (Disk IO,
Command Line parsing, etc.). If you don't use a high-level language, you'll have to program the
assembly language routines yourself.

PCPCun
de

rg
ro

un
d

The program listings in 
this section are from the
DOOM/SOURCE folder

on the companion CD-ROM



501

The Secrets Behind DOOM

Chapter 14

PCPC
underground

type
  PPointList = ^TPointList;
  TPointList = array[0..2447] of T3-D;
  PProjectList = ^TProjectList;
  TProjectList = array[0..2447] of T2D;
  PMappingList = ^TMappingList;
  TMappingList = array[0..2447] of T2D;
  PColorList = ^TColorList;
  TColorList = array[0..2447] of Byte;

TFace  is only a prototype. GetMem always requests only as much memory as TFace  needs. For example,
for a rectangle this would be 2+4*2. In this way only as much memory is consumed as is required. You have
to do without Turbo Pascal's range checking (you don't need it anyway).

Count  specifies the number of corner coordinates. List  specifies the index under which the corner point
(vertex) can be found in the point list (TPointList ).

  PFace = ^TFace;
  TFace = RECORD
    Count :Integer;
    List  :array[0..255] of Word;
  end;

So FaceList  is an array of pointers to a TFace .

  PFaceList = ^TFaceList;
  TFaceList = array[0..2447] of PFace;
  PZEntry = ^TZEntry;
  TZEntry = RECORD
    z  :LongInt;
    P  :PFace;
  end;
  PZList = ^TZList;
  TZList = array[0..2047] of TZEntry;

PCount  contains the points of the vector object. VL contains the points that haven't yet been transformed
and TL contains the transformed points. PL receives the projected 3-D coordinates. The corresponding
normal vector in NL represents each point (we'll explain this later). ML contains a corresponding point in
the texture for each point. The color values are saved in CL to prevent the corner color values from being
calculated twice.

var
  PCount  :Integer;
  VL      :PPointList;
  TL      :PPointList;
  PL      :PProjectList;
  NL      :PPointList;
  ML      :PMappingList;
  CL      :PColorList;

ZL is a list containing a distance and a pointer to the object of the distance. The depth-sort algorithm is used
as a hidden surface algorithm. This algorithm sorts the surfaces by their distance from the viewer and then
displays the surfaces. The z values are recalculated for each frame. The list is then sorted with a Q-Sort. After
that, the surfaces can be displayed in the correct sequence by simply running through the list.

  ZL      :PZList;



502

The Secrets Behind DOOM

Chapter 14

PCPC
underground

FCount  contains the number of faces of the object and FL contains pointers to them.

  FCount  :Integer;
  FL      :PFaceList;

Tx ,ty ,tz  contain the current position of the vector object. The angles of rotation are contained in rx ,ry ,rz
contains the angles of rotation.

  tx      :LongInt;
  ty      :LongInt;
  tz      :LongInt;
  rx      :Integer;
  ry      :Integer;
  rz      :Integer;
  Texture :Pointer;
  DAC     :TDACBlock;
  OldExit :Pointer;

One very important technique which will increase the execution speed is to remove rear sides that aren't
visible. If you cannot see into a vector object, you can remove those faces of which the rear side is visible.

Using the screen coordinates, you can determine whether the front or rear side of an object is visible. It is,
however, necessary to have the points defined in the correct sequence for all faces (e.g., rotating to the right
for the front and rotating to the left for the rear side). The formula for this is:

S = (y1-y0)*(x2-x0)-(y2-y0)*(x1-x0)

This corresponds to the z components of the vector cross product. Screen coordinates and color values are
copied in two arrays and passed to CxyShadedPoly   with the number of corner points.

procedure ShowShadedFace(F :PFace);
var
  i      :Integer;
  w      :Word;
  Buffer :array[0..31] of T2D;
  ColBuf :array[0..31] of Byte;
  P2,P1  :T2D;
  A,B    :T3-D;
begin
  for i := 0 to F^.Count-1 do begin
    w:=F^.List[i];
    Buffer[i] := PL^[w];
    ColBuf[i] := Cl^[w];
  end;
  VecSub2D(Buffer[1],Buffer[0],P1);
  VecSub2D(Buffer[2],Buffer[0],P2);
  if LongInt(P1[y])*P2[x]-LongInt(P1[x])*P2[y] <= 0 then begin
    CxyShadedPoly(@Buffer,@ColBuf, 3);
  end;
end;

In the corresponding texture routine, you also have to check whether the texture extends beyond the border.

procedure ShowTextureFace(F :PFace);
var
  i      :Integer;
  w      :Word;
  Buffer :array[0..31] of T2D;
  TexBuf :array[0..31] of T2D;



503

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  P2,P1  :T2D;
  A,B    :T3-D;
  g      :T2D;
  h1     :Boolean;
  h2     :Boolean;
begin
  h1:=false;
  h2:=false;
  for i := 0 to F^.Count-1 do begin
    w:=F^.List[i];
    Buffer[i] := PL^[w];
    g:=ML^[w];
    TexBuf[i] := g;
    if g[0]>128 then h1:=true;
    if g[1]>128 then h2:=true;
  end;
  if h1 then for i:= 0 to F^.Count-1 do
    if TexBuf[i,0]<128 then Inc(TexBuf[i,0],256);
  if h2 then for i:= 0 to F^.Count-1 do
    if TexBuf[i,1]<128 then Inc(TexBuf[i,1],256);
  VecSub2D(Buffer[1],Buffer[0],P1);
  VecSub2D(Buffer[2],Buffer[0],P2);
  if LongInt(P1[y])*P2[x]-LongInt(P1[x])*P2[y] <= 0 then begin
    CxyTexturedPoly(@Buffer,@TexBuf, 3, Texture);
  end;
end;

Project  controls transformation and projection.

procedure Project(M :TMatrix);
var
  i :Integer;
  V :T3-D;
begin
  for i:= 0 to PCount-1 do begin
    Transform(VL^[i],M,V);
    TL^[i]:=V;
    PL^[i,0] := 160+ (LongInt(V[x])*$200) div V[z];
    PL^[i,1] := 100- (LongInt(V[y])*$200) div V[z];
  end;
end;

The distance list is loaded with the pointers to the faces. This is only done once at the beginning.

procedure InitZList;
var
  i :Integer;
begin
  for i := 0 to FCount-1 do ZL^[i].P := FL^[i]
end;

For the distance, UpdateZList  takes the mean value of the z components of the points of the face. Although
this is not entirely correct ( because to do it properly, you would have to take the mean value of the
quantities) this is acceptable for most objects.

procedure UpdateZList;
var
  i,j :Integer;
  _z  :LongInt;
  F   :PFace;



504

The Secrets Behind DOOM

Chapter 14

PCPC
underground

begin
  for i := 0 to FCount-1 do begin
    with ZL^[i].P^ do begin
      _z:=List[0];
      for j:=1 to Count-1 do Inc(_z,TL^[List[j],2]);
      _z:= _z div Count;
    end;
    ZL^[i].z:=_z;
  end;
end;

Perhaps you are familiar with the next procedure. It's Borland's Quicksort sample procedure for this
program.

procedure SortZList(l, r: Integer);
var
  i,
  j :Integer;
  x :LongInt;
  S :TZEntry;
begin
  i := l;
  j := r;
  x := ZL^[(l+r) shr 1].z;
  repeat
    while ZL^[i].z < x do Inc(i);
    while ZL^[j].z > x do Dec(j);
    if i <= j then begin
      S := ZL^[i];
      ZL^[i] := ZL^[j];
      ZL^[j] := S;
      Inc(i);
      Dec(j);
    end;
  until i > j;
  if l < j then SortZList(l, j);
  if i < r then SortZList(i, r);
end;

A normal vector of a face is always vertical to the face. At this point you may be wondering how a normal
vector of a point appears. We simply took the mean value of the normal vectors of the faces that contain the
point. We'll perform the color calculation here slightly easier than we did in the preceding section. We don't
use the cosine between the viewer vector and the normal vector. Instead, the viewer vector is assumed to
be (0,0,1). Although not correct, it looks good because the light falls parallel on the object.

The color value corresponds to the z components of the rotated normal vector. Since 9 bit decimal parts are
being used, the z components must be shifted to the right by one to obtain a color value between 0 and 255.
For this purpose, it's important the quantity, i.e., the length of the normal vector, is 1. Since the normal
vectors are only being rotated and not translated or scaled, this is always guaranteed providing you
calculate the normal vectors correctly.

procedure UpdateColorList(R :TMatrix);
var
  i :Integer;
  N :T3-D;
  w :Word;
begin
  for i := 0 to PCount-1 do begin



505

The Secrets Behind DOOM

Chapter 14

PCPC
underground

    Transform(NL^[i],R,N);
    w:= abs(N[2]) shr 1;
    if w> 255 then CL^[i]:= 255 else CL^[i]:= w;
  end;
end;

The procedure ShowShadedObject  performs all the operations necessary for displaying an object.

First, the procedure clears the screen. The screen here is not the actual screen, but rather a 64K buffer in RAM.
Memory accesses in RAM are twice as fast as access to VGA RAM (at least with the ISA bus).

Create  generates the transformation matrix M. Rotate  builds the rotation matrix R. M is required for the
transformation of the points. R is required for the rotation of the normal vectors (they aren't recalculated
every time, but simply rotated accordingly). The procedure Project  performs these operations. After that,
XL is updated and sorted. The same thing happens to CL.

After that, all the data is calculated and the faces can be displayed. The video buffer is copied to VGA RAM
following the display.

procedure ShowShadedObject;
var
  M :TMatrix;
  R :TMatrix;
  i :Integer;
begin
  ClearScreen(0);
  Create(tx,ty,tz, $200,$1B0,$200, rx,ry,rz, M);
  Rotate(rx,ry,rz, R);
  Project(M);
  UpdateZList;
  SortZList(0,FCount-1);
  UpdateColorList(R);
  for i := FCount-1 downto 0 do ShowShadedFace(ZL^[i].P);
  ShowVBuffer;
  CheckKey;
end;

ShowTexturedObject  is identical except it doesn't call ShowShadedFace . Instead, it calls
ShowTexturedFace .

procedure ShowTexturedObject;
var
  M :TMatrix;
  i :Integer;
begin
  ClearScreen(0);
  Create(tx,ty,tz, $200,$1B0,$200, rx,ry,rz, M);
  Project(M);
  UpdateZList;
  SortZList(0,FCount-1);
  for i := FCount-1 downto 0 do ShowTextureFace(ZL^[i].P);
  ShowVBuffer;
  CheckKey;
end;

The FCE format used here is one that we created. Since it is an ASCII format, no further explanation should
be necessary.



506

The Secrets Behind DOOM

Chapter 14

PCPC
underground

procedure InitVectorData(FCE :String; MM :Word);
var
  i :Integer;
  f :Text;
  s :String;
  r :Real;
  c :Word;
begin
  PCount:=-1;
  New(VL);
  New(TL);
  New(PL);
  New(ML);
  FillChar(ML^,SizeOf(ML^),0);
  New(ZL);
  New(NL);
  New(CL);
  FillChar(NL^,SizeOf(NL^),0);
  FCount:=0;
  New(FL);
  Assign(f,FCE);
  Reset(f);
  if IOResult<>0 then Error('Opening vector data file...');
  while 1=1 do begin
    readln(f,s);
    if s='[END]' then
      break
    else
    if s='[POINT]' then begin
      Inc(PCount);
      for i:=0 to 2 do begin
        readln(f,r);
        if IOResult<>0 then Error('Reading vector data...');
        VL^[PCount,i]:=round(r*$200);
      end;
    end
    else
    if s='[NORMAL]' then begin
      for i:=0 to 2 do begin
        readln(f,r);
        if IOResult<>0 then Error('Reading vector data...');
        NL^[PCount,i]:=round(r*$200);
      end;
    end
    else
    if s='[MAPPING]' then begin
      readln(f,r);
      if IOResult<>0 then Error('Reading vector data...');
      ML^[PCount,0]:=round(r*(TexYSize-1)*MM);
      readln(f,r);
      if IOResult<>0 then Error('Reading vector data...');
      ML^[PCount,1]:=round(r*(TexYSize-1)*MM);
    end
    else
    if s='[FACE]' then begin
      readln(f,c);
      if IOResult<>0 then Error('Reading vector data...');
      GetMem(FL^[FCount],c*2+2);
      FL^[FCount]^.Count:=c;
      for i := 0 to c-1 do begin
        readln(f,c);
        if IOResult<>0 then Error('Reading vector data...');



507

The Secrets Behind DOOM

Chapter 14

PCPC
underground

        FL^[FCount]^.List[i]:=c;
      end;
      Inc(FCount);
      if FL^[0]^.Count <> 3 then begin
        readkey;
      end;
    end
    else
      Error('Bad vector data...');
  end;
  Inc(PCount);
  Close(f);
  tx:=0;
  ty:=0;
  tz:=400*$200;
  rx:=0;
  ry:=0;
  rz:=0;
end;
procedure DoneVectorData;
begin
  PCount:=0;
  Dispose(VL);
  Dispose(TL);
  Dispose(PL);
  Dispose(ML);
  Dispose(ZL);
  Dispose(NL);
  Dispose(CL);
  FCount:=0;
  Dispose(FL);
end;

A size of 256x256 was selected for the textures. This has an important advantage: We can choose texture
coordinates that are greater than 256. Since the texture routine uses only a 16 bit register as an offset, the
texture can repeat itself automatically. To save disk space, the texture loaded here is only 64x64.

procedure InitTEX(TEX :String; var P :Pointer; var DAC :TDACBlock);
var
  f   :file;
  i,j :Word;
begin
  TexXSize:=256;
  TexYSize:=256;
  GetMem(P,$FFFF);
  Assign(f,TEX+'.TEX');
  Reset(f,1);
  for i := 0 to 63 do begin
    BlockRead(f,Mem[Seg(P^):i*256],64);
    for j:= 1 to 3 do
      Move(Mem[Seg(P^):i*256],Mem[Seg(P^):i*256+j*64],64);
  end;
  for j:= 1 to 3 do Move(Mem[Seg(P^):0],Mem[Seg(P^):j*64*256],64*256);
  Close(f);
  Assign(f,TEX+'.PAL');
  Reset(f,1);
  BlockRead(f,DAC,3*256);
  Close(f);
end;
procedure DoneTEX(var P :Pointer);
begin



508

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  FreeMem(P,$FFFF);
end;
procedure LoadPAL(PAL :String; var DAC);
var
  f :file;
begin
  Assign(f,PAL);
  Reset(f,1);
  BlockRead(f,DAC,3*256);
  Close(f);
end;

The position and rotation of the vector object are calculated as a function of the variable FC. FC is started
by a routine that has added itself to the timer interrupt. For detailed descriptions of the timer chip and
interrupts, see the chapter on programming add-on chips.

procedure SHADED_DUCK;
begin
  FillChar(Mem[$A000:0],64000,0);
  LoadPAL('NDUCK.PAL',DAC);
  SetDACBlock(0,256,DAC);
  InitVectorData('NDUCK.FCE',1);
  InitZList;
  FC:=0;
  tz:= 400*$200;
  rx:=-128;
  repeat
    tx:= -200*$200+LongInt(FC) shl 6;
    ry := FC shr 2;
    rz := FC shr 2;
    ShowShadedObject;
  until tx >=0*$200;
  while FC < 4096 do begin
    ry := FC shr 2;
    rz := FC shr 2;
    ShowShadedObject;
  end;
  Dec(FC,4096);
  repeat
    tx:= LongInt(FC) shl 6;
    ry := FC shr 2;
    rz := FC shr 2;
    ShowShadedObject;
  until tx >=200*$200;
  DoneVectorData;
end;
procedure SHADED_FACE;
begin
  FillChar(Mem[$A000:0],64000,0);
  LoadPAL('JFACE.PAL',DAC);
  SetDACBlock(0,256,DAC);
  InitVectorData('JFACE.FCE',1);
  InitZList;
  FC:=0;
  tz:= 300*$200;
  rx:=-128;
  repeat
    tx:= -200*$200+LongInt(FC) shl 6;
    rx := -128+FC shr 2;
    ry := 256+FC shr 2;
    ShowShadedObject;



509

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  until tx >=0;
  while FC < 4096 do begin
    rx := -128+FC shr 2;
    ry := 256+FC shr 2;
    ShowShadedObject;
  end;
  Dec(FC,4096);
  while FC < 2048 do begin
    if tz > 170*$200 then tz:= 300*$200-LongInt(FC) shl 7;
    rx := -128+FC shr 2;
    ry := 256+FC shr 2;
    ShowShadedObject;
  end;
  Dec(FC,2048);
  repeat
    ty:= -(LongInt(FC) shl 6);
    ShowShadedObject;
  until ty<-150*$200;
  DoneVectorData;
end;
procedure SHADED_CHOPPER;
begin
  FillChar(Mem[$A000:0],64000,0);
  LoadPAL('HELI.PAL',DAC);
  SetDACBlock(0,256,DAC);
  InitVectorData('HELI.FCE',1);
  InitZList;
  FC:=0;
  tz:= 600*$200;
  rx:=-108;
  repeat
    tx:= -200*$200+LongInt(FC) shl 6;
    ry := FC shr 3;
    ShowShadedObject;
  until tx >=0*$200;
  while FC < 4096 do begin
    ry := FC shr 3;
    ShowShadedObject;
  end;
  Dec(FC,4096);
  repeat
    tz:= 600*$200+LongInt(FC) shl 9;
    tx:= LongInt(FC) shl 8;
    ry := FC shr 4;
    ShowShadedObject;
  until tx >=700*$200;
  DoneVectorData;
end;
procedure TEXTURE_SPHERE;
begin
  FillChar(Mem[$A000:0],64000,0);
  InitTEX('MSPHERE',Texture,DAC);
  SetDACBlock(0,256,DAC);
  InitVectorData('MSPHERE.FCE',1);
  InitZList;
  FC:=0;
  tz:= 600*$200;
  repeat
    tx := (FC shr 3-300)*$200;
    ty := -30*$200+round((1+Sin(FC/100))*50*$200);
    rx := -FC shr 2;
    rz := -FC shr 2;



510

The Secrets Behind DOOM

Chapter 14

PCPC
underground

    ShowTexturedObject;
  until tx >=300*$200;
  DoneVectorData;
  DoneTEX(Texture);
end;
procedure TEXTURE_TORUS;
begin
  FillChar(Mem[$A000:0],64000,0);
  InitTEX('MTORUS',Texture,DAC);
  SetDACBlock(0,256,DAC);
  InitVectorData('MTORUS.FCE',1);
  InitZList;
  FC:=0;
  repeat
    ty := (FC shr 3-200)*$200;
    rx := FC shr 2;
    ry := FC shr 2;
    ShowTexturedObject;
  until ty >=0;
  while FC<2048 do begin
    rx := FC shr 2;
    ry := FC shr 2;
    ShowTexturedObject;
  end;
  Dec(FC,2048);
  while FC<2048 do begin
    rx := FC shr 2;
    ry := FC shr 2;
    ShowTexturedObject;
  end;
  Dec(FC,2048);
  repeat
    ty := (FC shr 3)*$200;
    rx := FC shr 2;
    ry := FC shr 2;
    ShowTexturedObject;
  until ty >=200*$200;
  DoneVectorData;
  DoneTEX(Texture);
end;

An Exit  procedure is necessary here to make certain the installed timer interrupt is removed.

procedure NewExit; far;
begin
  ExitProc:=OldExit;
  DoneFrameHandler;
end;

Init13h  sets mode 13h. InitVBuffer  sets up a 64K video buffer. The segment address of this buffer is
saved in _VirtualVSeg . InitFrameHandler  installs the timer handler.

var
  i :Integer;
begin
  Init13h;
  InitVBuffer;
  InitFrameHandler;
  OldExit:=ExitProc;
  ExitProc:=@NewExit;
  SHADED_DUCK;



511

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  TEXTURE_SPHERE;
  SHADED_FACE;
  TEXTURE_TORUS;
  SHADED_CHOPPER;
  Done13h;
end.

The following is the source code for the timer unit _FRAME.PAS.

var
  FC :LongInt;
const
  Active     :Boolean = false;
procedure OldHandler; assembler; asm db 0; db 0; db 0 end;
procedure FrameHandler; far; external;
{$L _FRAME.OBJ}
procedure InitFrameHandler;
begin
  GetIntVec($8,Pointer(@OldHandler^));
  SetIntVec($8,@FrameHandler);
  Port[$43]:=$34;
  Port[$40]:=$34;
  Port[$40]:=$12;
  FC := 0;
  Active := true;
end;
procedure DoneFrameHandler;
begin
  if Active then begin
    Port[$43]:=$34;
    Port[$40]:=0;
    Port[$40]:=0;
    SetIntVec($8,Pointer(@OldHandler^));
    Active := false;
  end;
end;

The timer handler is located in a TASM module.

;---------------------------------------------------------------------; procedure FrameHandler;
far;
;---------------------------------------------------------------------  PROC FrameHandler
       push   ds
       push   ax
       mov    ax,@data
       mov    ds,ax
       inc    [FC]
       mov    al,20h
       out    20h,al
       pop    ax
       pop    ds
       iret
  ENDP

For those readers interested in performance comparisons, we've performed a few tests. For the UNEATABLE
demo, we switched from X mode to mode 13h using a video RAM buffer. This doubled the speed.

The doubling of the speed with the same routines has to do with the ISA bus (with a VESA local or PCI bus
you won't notice any great differences in speed). Unfortunately, ISA is extremely slow. Thus it is faster to



512

The Secrets Behind DOOM

Chapter 14

PCPC
underground

keep a buffer in RAM and always copy it to video RAM, which runs rather smoothly because of the REPNE
MOVSD instruction.

As you can imagine, it can go even faster. These routines, developed for the 32-bit WATCOM C
(CONTAGION demo), are about three times as fast. For example, the Gouraud shading routine creates 6510
overlapping "threads" on a 486 DX 66 (and there is no limit to the number of times the objects can intersect
each other), the Gouraud shaded texture routine makes more than 4000. 32 bit protected mode offers a great
advantage in this connection. This type of object requires enormous amounts of memory that no normal MS-
DOS program can provide in a simple, fast manner. You would have to use EMS or Real mode FlatMem
(both will be explained in one of the following chapters). However, to run your programs in 32 bit protected
mode you would have to either program completely in assembly language (PMODE Extender from Tran)
or else purchase a 32 bit compiler such as WATCOM C/C++.

One advantage of these routines that cannot be overlooked is that they are easy to understand. The data
structures that are used are very easy to read and "hacker code" such as self-modifying protected mode code
and the development of loops isn't used. As you can see, we haven't reached the end yet, not by a long shot.
Consider this an opportunity to write your own routines. Invest a little time and you'll be able to do it. In
real time you can even achieve such effects as Phong shading, environment mapping, bump mapping and
many other effects. So there's a lot to be done.

If you attempt to use the routines we've just introduced to you to fly through an object, you probably won't
make it. The program will crash with a "Division by zero" error.

If you take a look at the Project  procedure, the problem is obvious. Since you are dividing by the z
coordinates of the point, they can never be zero. You will also have problems if the z coordinates are
negative.

You can solve this problem easily by clipping all the points whose z coordinates are less than or equal to
zero.

Clipping a line (x,z) view

The gradients can be equated:



513

The Secrets Behind DOOM

Chapter 14

PCPC
underground

This can be transformed to:

If you make the same considerations for y, you get:

So why wasn't Zc  simply set to zero? It's better to set Zc  to a value that is greater than zero. In the following,
a clip removal of 5 will be used.

By clipping, we are now in a position to create a three-dimensional world and move through it.

const
  zClipPlane = $5*$200;

The procedure GetCrossing  controls the clipping.

procedure GetCrossing(A,B :T3-D; var C :T3-D);
var
  L1,L2 :LongInt;
begin
  L1 :=zClipPlane-A[2];
  L2 := B[2]-A[2];
  if L2= 0 then begin
    C := A;
    C[2] :=zClipPlane;
    exit;
  end;
  C[0] := FixDiv(FixMul(L1,B[0]-A[0]),L2) +A[0];
  C[1] := FixDiv(FixMul(L1,B[1]-A[1]),L2) +A[1];
  C[2] := zClipPlane;
end;

var
  OldExit :Pointer;
procedure NewExit; far;
begin
  ExitProc := OldExit;
  DoneFrameHandler;
  Done13h;
end;

Besides the projected coordinates, information about whether the point is visible is also saved.



514

The Secrets Behind DOOM

Chapter 14

PCPC
underground

type
  TProject = RECORD
    P  :T2D;
    Visible :Boolean;
    _res :array[1..3] of Byte;
  end;
  PPointList = ^TPointList;
  TPointList = array[0..2447] of T3-D;
  PProjectList = ^TProjectList;
  TProjectList = array[0..2447] of TProject;
  PMappingList = ^TMappingList;
  TMappingList = array[0..2447] of T2D;
  PColorList = ^TColorList;
  TColorList = array[0..2447] of Byte;

  PFace = ^TFace;
  TFace = RECORD
    Count   :Integer;
    texture :Integer;
    List    :array[0..255] of Word;
  end;
  PFaceList = ^TFaceList;
  TFaceList = array[0..2447] of PFace;

  PZEntry = ^TZEntry;
  TZEntry = RECORD
    z  :LongInt;
    P  :PFace;
  end;
  PZList = ^TZList;
  TZList = array[0..2047] of TZEntry;

This time, the texture coordinates of a surface are equal for each face.

const
  PointDef :array[0..3] of T2D = (
    (0,0),
    (319,0),
    (319,199),
    (0,199)
  );
var
  M         :TMatrix;
  rx,ry,rz  :Integer;
  Textures  :array[0..2] of Pointer;
  DAC       :TDACBlock;
  t      :T3-D;
  PCount :Integer;
  VL     :PPointList;
  TL     :PPointList;
  PL     :PProjectList;
  FCount :Integer;
  FL     :PFaceList;
  ZL     :PZList;

The procedure that draws the surfaces is expanded to handle the clipping. To guarantee the fastest possible
processing, the procedure checks each possible alternative. How the procedure proceeds depends on
whether the first point is visible.

procedure DrawFace(F :PFace);
var



515

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  Buffer  :array[0..15] of T2D;
  i,j,
  p,q,l,h :Integer;
  P2,P1   :T2D;
  V       :T3-D;
  Clip    :Boolean;
  procedure Calc;
  begin
    with F^ do begin
      GetCrossing(TL^[List[i]], TL^[List[h]], V);
      Project(V,Buffer[j]);
    end;
  end;
begin
  Clip := false;
  with F^ do begin
    j := 0;
    i := 0;
    h := Count-1;
    if PL^[List[0]].Visible then begin

Copy all visible points.

      while PL^[List[i]].Visible do begin
        Buffer[j] := PL^[List[i]].P;
        Inc(j);
        Inc(h);
        if h >= Count then h := 0;
        Inc(i);
        if i >= Count then break;
      end;
      if i < Count then begin

If there are still more points, then calculate the point of intersection.

        Clip := true;
        Calc;
        Inc(j);

Skip all points that aren't visible.

        while not PL^[List[i]].Visible do begin
          Inc(i);
          if i >= Count then i := 0;
          Inc(h);
          if h >= Count then h := 0;
        end;

Calculate point of intersection.

        Calc;
        Inc(j);

Still points? If yes, then copy.

        if i <> 0 then begin
          while PL^[List[i]].Visible do begin
            Buffer[j] := PL^[List[i]].P;
            Inc(j);
            Inc(h);
            if h >= Count then h := 0;



516

The Secrets Behind DOOM

Chapter 14

PCPC
underground

            Inc(i);
            if i >= Count then break;
          end;
        end;
      end;
    end
    else begin
      Clip := true;

Skip all points that are not visible.

      while not PL^[List[i]].Visible do begin
        Inc(i);
        if i >= Count then break;
      end;

Face not visible at all?

      if i < Count then begin

If visible, calculate point of intersection.

        h := i-1;
        Calc;
        Inc(j);

And then copy all visible points.

        while PL^[List[i]].Visible do begin
          Buffer[j] := PL^[List[i]].P;
          Inc(j);
          Inc(h);
          if h >= Count then h := 0;
          Inc(i);
          if i >= Count then i := 0;
        end;

And finally, calculate the point of intersection one more time.

        Calc;
        Inc(j);
      end
    end;

Rear side ?

    VecSub2D(Buffer[1],Buffer[0],P1);
    VecSub2D(Buffer[2],Buffer[0],P2);
    if LongInt(P1[y])*P2[x]-LongInt(P1[x])*P2[y] <= 0 then begin
      if not Clip then begin
        CxyTexturedPoly(@Buffer,@PointDef,j,Textures[Texture])
      end;
    end;
  end;
end;

TransformPoints  transforms and projects the coordinates of the points. In addition, the routine stores
information as to whether the point is visible in Visible .



517

The Secrets Behind DOOM

Chapter 14

PCPC
underground

procedure TransformPoints(M :TMatrix);
var
  i :Integer;
  V :T3-D;
begin
  for i := 0 to PCount-1 do begin
    Transform(VL^[i],M,TL^[i]);
    if TL^[i][2]<zClipPlane then PL^[i].Visible:=false
    else begin
      PL^[i].Visible:=true;
      Project(TL^[i],PL^[i].P);
    end;
  end;
end;

The ShowWorld  procedure draws the vector world.  MakeMatrix is defined in _MATRIX.PAS. For this
vector world, it is more advantageous if the translation is executed first, then the y, x and z rotation, and
finally the scaling.

procedure ShowWorld;
var
  i :Integer;
begin
  if KeyPressed then begin
    while KeyPressed do ReadKey;
    halt(0);
  end;
  ShowVBuffer;
  UpdateZList;
  SortZList(0, FCount-1);
  MakeMatrix(t[0],t[1],t[2], $200,$1B0,$200, rx,ry,rz, M);
  TransformPoints(M);
  for i := FCount-1 downto 0 do DrawFace(ZL^[i].P);
end;

This procedure follows Gouraud shading/texture mapping. Position and rotation are determined by FC.
Remember, a different fixed point arithmetic module is used. This new fixed point arithmetic module has
a larger sine table. That means the rotation can be executed in more precise steps.

procedure DOOM_PART;
var
  i :Word;
begin
  t[0] := 0;
  t[1] := -6*$200;
  t[2] := -30*$200;
  rx := 0;
  ry := 0;
  rz := 0;
  FC:= 0;
  i := 0;
  while FC < 512 do begin
    ry := FC shr 2;
    ShowWorld;
  end;
  Dec(FC,512);
  while FC < 1024 do begin
    ry := 512 shr 2-FC shr 2;
    ShowWorld;
  end;



518

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  Dec(FC,1024);
  while FC < 512 do begin
    rz := (FC shr 1);
    ry := -128+FC shr 1;
    rx := FC shr 1;
    ShowWorld;
  end;
  Dec(FC,512);
  rx := 256;
  while FC < 512 do begin
    rz := 256-FC shr 1;
    ry := 128-FC shr 1;
    ShowWorld;
  end;
  Dec(FC,512);
  rz := 0;
  ry := -128;
  while FC < 512 do begin
    rz := -FC;
    rx := 256-FC shr 1;
    ShowWorld;
  end;
  Dec(FC,512);
  rx := 0;
  while FC < 4096-512+256 do begin
    rz := -512-FC;
    t[0] := FC;
    t[2] := -$3C00+FC*$14;
    ShowWorld;
  end;
  Dec(FC,4096-512+256);
  t[0] := 4096-256;
  while FC < 896 do begin
    rz := -256+FC shr 1;
    ry := -128-FC;
    t[2] := -$3C00+(4096-256)*$14+FC*17;
    ShowWorld;
  end;
  t[2] := -$3C00+(4096-256)*$14+896*17;
  Dec(FC,896);
  ry := -1024;
  while FC < 512 do begin
    t[0] := 4096-256+FC*$15*2;
    rz := 192-FC;
    ShowWorld;
  end;
  Dec(FC,512);
  while FC < 1048 do begin
    t[0] := 4096-256+(512+FC)*$15*2;
    t[1] := -6*$200-FC*9;
    rz := 192-512-FC;
    ShowWorld;
  end;
  Dec(FC,1048);
end;

320x320 images are used here as textures.

procedure LoadTexture(TEX :String; var P :Pointer);
var
  f :file;



519

The Secrets Behind DOOM

Chapter 14

PCPC
underground

begin
  GetMem(P,64000);
  Assign(f,TEX);
  Reset(f,1);
  if IOResult <> 0 then begin
    writeln('[ERROR]: File not found...');
    halt(1);
  end;
  BlockRead(f,P^,64000);
  Close(f);
end;
procedure LoadPal(var DAC :TDACBlock; PAL :String);
var
  f :file;
begin
  Assign(f,PAL);
  Reset(f,1);
  BlockRead(f,DAC,3*256);
  Close(f);
end;

As we said, the format is self-explanatory.

procedure LoadVectorData;
var
  f :Text;
  s :String;
  i :Integer;
  r :Real;
  v :Integer;
begin
  PCount:=0;
  FCount:=0;
  New(VL);
  New(TL);
  New(PL);
  New(FL);
  New(ZL);
  Assign(f,'DUNGEON.FCE');
  Reset(f);
  if IOResult <> 0 then begin
    writeln('[ERROR]: Opening vector data failed...');
    halt(1);
  end;
  while not eof(f) do begin
    readln(f,s);
    if s='[POINT]' then begin
      for i:=0 to 2 do begin
        readln(f,r);
        VL^[PCount][i]:=round(r*$200);
      end;
      Inc(PCount);
    end
    else
    if s='[FACE]' then begin
      readln(f,v);
      Getmem(FL^[FCount],4+v*2);
      FL^[FCount]^.Count:=v;
      for i:=0 to v-1 do begin
        readln(f,FL^[FCount]^.List[i]);
      end;



520

The Secrets Behind DOOM

Chapter 14

PCPC
underground

PCPCun
de

rg
ro

un
d

You can find
_MATRIX.PAS

on the companion CD-ROM

      readln(f,s);
      if s='[TEXTURE]' then begin
        readln(f,FL^[FCount]^.Texture);
      end
      else begin
        writeln('[ERROR]: Bad vector data...');
        halt;
      end;
      Inc(FCount);
    end
    else begin
      writeln('[ERROR]: Bad vector data...');
      halt;
    end;
  end;
  Close(f);
  InitZList;
end;

begin
  LoadVectorData;
  TexXSize := 320;
  TexYSize := 200;
  LoadTexture('FLOOR.RAW',Textures[0]);
  LoadTexture('TEXTURE.RAW',Textures[1]);
  GetMem(Textures[2],64000);
  FillChar(Textures[2]^,64000,0);
  LoadPal(DAC,'FLOOR.PAL');
  Init13h;
  InitVBuffer;
  ClearScreen(0);
  SetDACBlock(0,256,DAC);
  InitFrameHandler;
  OldExit := ExitProc;
  ExitProc := @NewExit;
  DOOM_PART;
end.

Here is the source code for _MATRIX.PAS:

Procedure Translate  generates a translation matrix.

procedure Translate(tx,ty,tz :LongInt; var C :TMatrix);
var
  i : Integer;
begin
  Zero(C);
  for i := 0 to 3 do C[i,i] := $200;
  C[0,3] := -tx;
  C[1,3] := -ty;
  C[2,3] := -tz
end;

Scale  generates a scaling matrix.

procedure Scale(sx,sy,sz :LongInt; var C :TMatrix);
begin
  Zero(C);
  C[0,0] := sx;
  C[1,1] := sy;
  C[2,2] := sz;



521

The Secrets Behind DOOM

Chapter 14

PCPC
underground

  C[3,3] := $200;
end;

Rotate  generates a rotation matrix. It generates one around the x-axis for m=1, a second around the y-axis
for m=2 and the third rotation matrix around the z-axis for m=3.

procedure Rotate3-D(m : Integer; Theta : Integer; Var A :TMatrix);
var
  m1, m2 : Integer;
  c, s   : LongInt;
begin
  Zero(A);
  A[m-1,m-1] := $200;
  A[3,3] := $200;
  m1 := (m  Mod 3) + 1;
  m2 := (m1 Mod 3);
  m1 := m1 - 1;
  c  := FixCos(-Theta);
  s  := FixSin(-Theta);
  A[m1,m1] :=  c;
  A[m1,m2] :=  s;
  A[m2,m2] :=  c;
  A[m2,m1] := -s
end;

Multiply the two matrices so they are linked. Remember, the second parameter (not the first parameter) is
executed first.

procedure MakeMatrix(Tx,Ty,Tz,Sx,Sy,Sz :LongInt; Rx,Ry,Rz :Integer;
                     var M :TMatrix);
var
  S,Mx,My,Mz,T,M1,M2,M3 :TMatrix;
begin
  Scale(Sx,Sy,Sz,S);
  Rotate3-D(1,Rx,Mx);
  Rotate3-D(2,Ry,My);
  Rotate3-D(3,Rz,Mz);
  Translate(Tx,Ty,Tz,T);
  Cross(Mx,My,M1);
  Cross(Mz,M1,M2);
  Cross(M2,T,M3);
  Cross(S,M3,M);
end;





523

Windows 95 
From The 

Underground

Chapter 15

PCPC
underground

Windows 95 From The Underground

Windows 95 is finally shipping and millions of users are already using environment. Windows 95 is a
genuine operating system, unlike its predecessors Windows 3.x or Windows for Workgroups 3.11. Now
instead of loading DOS before running Windows 3.x, Windows 95 starts up immediately. Although this
new way of starting has many advantages, it also has a few disadvantages.

Using DOS Programs On A Windows 95 System

If you’re planning to use many of your older DOS programs on your Windows 95 PC, you may have to make
adjustments before they can run. Basically, you have three ways to run these older programs.

Starting DOS programs without Windows 95

One way is to press 4 while starting your computer. Then MS-DOS starts instead of Windows 95.
Remember, you cannot press 4 until the message "Starting Windows 95" appears on the screen. Then you
have less than three seconds to press 4. Your earlier version of MS-DOS starts as if Windows 95 was not
installed on your computer.

Both your CONFIG.SYS and AUTOEXEC.BAT files are loaded and executed like before, which makes it
possible to use your old MS-DOS programs, even those ancient programs that run using MS-DOS 3.31.

Of course, you can do this only if you installed Windows 95 on top of your older MS-DOS system. You can
also run Windows 3.1/3.11 if Windows 95 was installed in a separate directory. Refer to your Win 95 manual
under "Installing Win 95 Options."

You can also reboot your PC by choosing Shut Down in the Task Bar. The following screen will appear:



524

Windows 95 From The Underground

Chapter 15

PCPC
underground

Select "Restart the computer in MS-DOS mode" and your PC will restart to the C:> prompt.

Starting the Windows 95 DOS compatibility box

A second way of running older DOS programs is to press 8 while rebooting the PC. When the computer
is finished with the BIOS power on self test (POST), has found, detected and initialized your hardware and
informed you of this with one beep, press or hold down 8.

At this point, the Windows 95 Startup Menu will appear:

Microsoft Windows 95 Startup Menu
==========================

1. Normal
2. Logged (\BOOTLOG.TXT)
3. Safe mode
4. Safe mode with network support
5. Step-by-step confirmation
6. Command prompt only
7. Safe mode command prompt only
8. Previous version of MS-DOS

Enter a choice:  1

F5=Safe mode Shift+F5=Command prompt 
Shift+F8=Step-by-step confirma tion [N]

Windows 95 Startup Menu

Now select "6. Command prompt only"  by pressing 6 or by selecting it with the cursor. Confirm your
selection by pressing e. The computer immediately starts up with the DOS prompt. You are now in the
DOS compatibility box of Windows 95. Both CONFIG.SYS and AUTOEXEC.BAT system configuration
files are executed. However, this time the two files are not exact copies of your originals. Instead, all the



Windows 95 From The Underground

Chapter 15

PCPC
underground

525

MS-DOS driver files required by Windows 95, such as
MSCDEX 2.25 or the MODE command, are loaded from the
Windows 95 directory. Windows 95 also changes the path to
suit its own requirements.

Now you can install, start, delete or rename your MS-DOS
programs and perform all the other familiar tasks in MS-
DOS. You can also change your AUTOEXEC.BAT and
CONFIG.SYS system configuration files.

Starting the DOS box without CONFIG.SYS and
AUTOEXEC.BAT

A third way is to start the DOS compatibility box without executing CONFIG.SYS and AUTOEXEC.BAT,
select "7. Safe mode command prompt only". You'll return to the DOS prompt when you press e to
confirm your choice.

Use this method to boot the DOS compatibility box whenever your DOS program that you want to run or
install does not work with a Windows 95 driver that is ordinarily loaded.

Installing And Starting DOS Programs Under Windows 95

Instead of using the solutions we described above, you can make your own settings under Windows 95.
However, be careful because this can result in so many opened dialog boxes that the Windows 95 desktop
will become too cluttered.

Installing DOOM II

DOOM is one of the most popular games to come out in recent years. We'll show how to install DOOM since
it is very typical of programs requiring that you set many options so it will run under Windows 95.

To install DOOM, you'll need to adjust a lengthy series of Windows 95 settings. Without these changes,
DOOM may run using only a very limited number of features or may not even run at all under Windows
95.

First, copy all the DOOM files to a working directory on your hard drive using the Windows 95 Explorer
or a DOS box. Then start up the installation program and copy DOOM to the desired directory.

Configuring DOOM under Windows 95

Next open the Windows 95 Explorer and change to the DOOM directory. Select the startup file and press
the right mouse button. A small popup menu appears with different options:

PCPC
underground

NOTE

Be very careful when 
modifying or changing 
system configuration files. 
Do not change any lines 
containing the Windows 95

path, for example:

C:\WIN95\COMMAND\MSCDEX.EXE /S 
/D:MTMIDE01 /M:10
mode con codepage prepare=((850) 
C:\WIN95\COMMAND\ega.cpi)

Otherwise, Windows 95 may not start up 
correctly the next time you boot your system.



526

Windows 95 From The Underground

Chapter 15

PCPC
underground

The PopUp menu

Select Properties. As you can see in the illustration, the dialog box is divided into six individual sections,
or pages. The pages are: General, Program, Font, Memory, Screen and Misc.

General information

The first page, General, specifies additional information about the type, the location, the size, the attributes,
the date of creation, date of last change and date the file was last accessed or the object associated with a file.
This information is only displayed; you cannot make any changes on this page.

General Information about the program



Windows 95 From The Underground

Chapter 15

PCPC
underground

527

Program information

On the Program page you can change the title of the program or the association. You can also change the
Command Line which contains the search path for DOOM and command to start the program. The
Working line gives you the option of changing the directory that DOOM considers its working directory.

Program Information

We recommend you don't use this method of specifying the working directory for DOS programs. It's
possible the program may not be able to find the necessary data files. If that happens, the program would
not be able to run.

On the other hand, you should definitely select item Close on exit, so that Windows 95 automatically closes
the DOS window when you exit DOOM. This will free up all the resources used by DOS. This will benefit
any other programs running under Windows 95, since more memory and computing cycles will be
available when the program ends..

Click on the [Advanced...] button to proceed to the advanced program settings. These program settings change
the behavior of Windows 95, thus you should only make changes after careful consideration.



528

Windows 95 From The Underground

Chapter 15

PCPC
underground

The advanced program settings

Some MS-DOS programs will not run under Windows. Either the program immediately terminates or an
error message is displayed. To eliminate this problem, select the option "Prevent MS-DOS-based programs
from detecting Windows" check box. This guarantees that any program that is interfered with by having
Windows in the background will no longer be disturbed.

You can also choose "Suggest MS-DOS mode as necessary". This results in the computer booting and
starting the program directly after booting. Normally, you won’t choose this option. Otherwise, by doing
so, you would be booting DOOM for example.

If, on the other hand, you choose MS-DOS Mode, the program automatically starts directly in MS-DOS
mode and there won't be any prompt. If you select MS-DOS Mode, you can choose from three additional
options. The first is to have the computer warn you by choosing Warning before entering MS-DOS mode,
since the computer will then boot.

In addition, you then have the option of choosing between two different MS-DOS configurations. You can
use your current system files (Use current MS-DOS configuration) or create a new MS-DOS configuration
Specify a new MS-DOS configuration.



Windows 95 From The Underground

Chapter 15

PCPC
underground

529

Custom MS-DOS Configuration

You won’t need to make any changes to the advanced program settings with DOOM since the program is
quite compatible and doesn't have any problems running under Windows 95.

Press the [Configuration...] button to display other MS-DOS configuration options: Expanded memory (EMS),
Mouse, Disk Cache, MS-DOS Command Line Editor (Doskey) as well as Direct Disk Access.

Various MS-DOS Configuration options

These options make it possible to run virtually any program under Windows 95, even ancient ones or those
which use EMS memory.

It's not necessary to use a different MS-DOS configuration for DOOM.



530

Windows 95 From The Underground

Chapter 15

PCPC
underground

Changing the font size for a DOS program

Sometimes you might want a different font size for a DOS program. Under MS-DOS this wasn’t an easy task
to do.

Choose any font size you wish

However, with Windows 95 using a different font size is simple, since you can choose from font sizes
between 4 * 6 pixels to 12 * 16 pixels. By default, this option is set to Auto. Choose the font size from the item
Font Size. Selecting "TrueType only", "Bitmap only" or "Both font types" is a factor in how quickly or slowly
the program executes.

Choosing "Bitmap only" as your font and "8 x 12" as your font size has at least two advantages:

Ø Your DOS program loads faster because Windows 95 doesn't have to provide additional memory for
converting a TrueType font to a bitmap.

Ø The DOS program will appear in the normal size and not reduced on the monitor. This happens if you
use a "4 x 6" font size instead of "8 x 12". As a result, the window would appear only one quarter of
its original size.

Customizing memory requirements

An MS-DOS PC has different types of memory. This leads to an incredibly high number of possible
configurations.



Windows 95 From The Underground

Chapter 15

PCPC
underground

531

System memory configuration for a DOS box

If you're not familiar with memory requirements and memory types used by a particular DOS program,
refer to that program’s documentation.

If you select a wrong settings, in the best-case, the program will simply run a more slowly; in the worst-case,
which is more likely, the program won't run at all.

In a PC, memory is divided into three different areas: conventional memory, expanded memory (EMS) and
extended memory (XTS). You can also specify how much RAM your program gets when it runs in DPMI
mode.

Always start out using the setting Automatic for all memory types. Make changes to the individual memory
allocations only when you notice that the performance of your computer suffers so greatly that the other
programs seem to crawl.

Here are the settings for DOOM:

Memory Value

Conventional Memory Automatic and Protected

Expanded memory (EMS) not required

Extended memory (XMS) Automatic

RAM for MS-DOS protected mode (DPMI) Automatic

The value "Automatic" for memory allocation lets Windows 95 dynamically allocate or deallocate the
memory. Deallocating memory is especially critical when the execution speed of other concurrent
programs is important. When your DOS program releases the memory, these other programs can then use



532

Windows 95 From The Underground

Chapter 15

PCPC
underground

the freed memory. This happens automatically under Windows 95, guaranteeing that each task always runs
at maximum performance.

On the other hand, by using some other value for the size for a type of memory, it means you are changing
the way in which Windows 95 manages memory. Windows 95 now has to consider these requests and can
no longer manage memory with total flexibility. This may mean a gain in speed for your DOS program in
exchange for a loss in performance of the other programs. The degree of loss in performance depends on
the memory type

However, with some DOS programs, this is the only way to get them to run.

If you also select the item Protected, then Windows 95 cannot make the memory used by the DOS program
available to other programs. While this does speed up your DOS program, it does so at the expense of your
other Windows programs.

Using EMS memory

Not very many of today’s new programs require EMS memory. You’ll have difficulties using this type of
memory only when you use older programs. Keep in mind that you won’t be able to change the settings for
EMS memory if the CONFIG.SYS file has the word NOEMS in the EMM386 command line.

You cannot use EMS memory.

When you use EMS memory, Windows 95 is forced to deal with this type of memory. Windows 95 takes
a long time to access EMS memory since only 64K at a time can be moved back and forth. Naturally, this
also means the loss of direct access to a memory area, since the data must first be taken from the EMS
memory.

Avoid using EMS memory if possible. You may be able to upgrade to a newer version of your program or
not starting such programs under Windows 95. Instead, when you boot the computer, select item 6. DOS
Prompt Only. Then change your CONFIG.SYS file in such a way that your program gets enough EMS
memory. Before doing this, be sure to copy the CONFIG.SYS and AUTOEXEC.BAT files to CONFIG.AAA
and AUTOEXEC.AAA, for example, so that you have copies of the original files.

This is the best way to deal with the problem.

Customizing screen display

To change the screen display of a DOS program under Windows 95, use the Screen page.



Windows 95 From The Underground

Chapter 15

PCPC
underground

533

Customizing the screen display

In the Usage field, you can choose between Window and Full-screen. The Initial size item gives you a choice
between/among four different values for the screen lines: Default, 25 Lines, 43 Lines and 50 Lines.

By choosing Default, Windows 95 can use the exact number of screen lines that your DOS program requires.

In the Window field, you can specify whether the toolbar is displayed in the window. To display the toolbar,
enable the Display toolbar check box.

To use the exact same settings for the screen the next time you start up the program, select the Restore
settings on startup check box.

You can change the speed of the screen display using the Performance field. Enable the Fast ROM emulation
check box to insert the ROM of the video card into an area of normal conventional memory. This enables
significantly faster access to the video card because it is now located in faster RAM.

Running The Demo Programs In Windows 95

To install the demo programs from DEMOS directory of the Windows 95 CD-ROM, you'll need to pay
special attention to the DOS Properties Box.

Periscopes-Intro

After copying the Periscopes intro to your hard drive, run PERISCOPE to unpack it.

Next, open the Windows 95 Explorer and select the file named INTRO.EXE. Click the right mouse button.
A menu appears. Select the last item in the menu, Properties. Next, choose the Program page, click on the



534

Windows 95 From The Underground

Chapter 15

PCPC
underground

[Advanced...] button and then select MS-DOS mode. Finally, click the [OK] button to confirm the settings you
have made. You are now finished making the necessary settings for the Periscope intro.

To start the intro, run the file named Intro. You can skip the different sections of the intro by pressing the
z. Have fun!

Incompatible Programs

Despite the complex configuration options Windows 95 offers, you may not be able to start certain
programs. In fact, you even run the risk of destroying the Windows task of the program. In the worst-case
scenario, your whole Windows system might no longer run, or else the PC will simply reboot, thus also
destroying all the data from any other Windows tasks you have running.

If a DOS program requires special entries in your AUTOEXEC.BAT and CONFIG.SYS files under older
versions of MS-DOS, perhaps in connection with a DOS device driver, you can assume that the program
probably either won't run under Windows 95, or else will need a great deal of configuring before it runs.

If you manage to get such a program running despite this, while the configuration will be useful for this
special DOS program, it's possible that the very next DOS program you run will require a completely
different configuration.

As you can see, it's much better to get a new Windows 95 version of such troublesome programs. Only
programs written specially for Windows 95 will be able to take full advantage of Windows 95.



Look What's On 
The Companion 

CD-ROM

Chapter 16

PCPC
underground

535

Look What's On The Companion CD-ROM

Besides the demo programs in the DEMOS directory, you'll also find some demos in the BONUS directory.
The programs are meant to be a stimulus for you and give a small overview of the many possibilities of
sound and graphics programming.

All the graphics programming examples require a 100% compatible VGA card.

The sound programming examples run either on a TRULY 100% compatible SoundBlaster card or on a
Gravis Ultrasound card.

To use all the programs and source texts, first copy them to a directory on your hard drive, then use the MS-
DOS ATTRIB command to clear the Read-Only file attribute, for example::

Attrib -r *.*

Companion CD-ROM files and directories

The directories included on the companion CD-ROM are in the file called CD_DIR.TXT.

Directory Contents

BONUS Contains cool examples of programming techniques

DEMOS More great examples of what you can do

DOOM Directory contains sub-directories which pertain to programming the Doom material

DOOM\EXE_DATA Executable of the programming examples for the Doom material.

DOOM\SOURCE Source code for programming examples for Doom

DOOM\TOOLS Tools to help you create Doom examples

GRAPHIC Contains graphic programming examples discussed in the book

MAGN Example of programming a magnifying glass on you PC

MATH Contains math programming examples discussed in the book.

MEMORY Directory contains sub-directories which pertain to programming Memory

MEMORY\DMA Programming example for DMA Memory

MEMORY\FLAT Programming example for Flat Memory



536

Look What's On The Companion CD-ROM

Chapter 16

PCPC
underground

Directory Contents

MEMORY\XMS Programming example for XMS Memory

NODEBUG Program which shows how to prevent people from using a debugger to 'debug' your
programs.

NORESET Program example which  shows how to disable the [Ctrl] + [C], [Ctrl] + [Break], Etc..

PASSWORD Contains password programming examples discussed in the book.

PORTS Contains examples for direct port programming discussed in the book.

RAIDER Game example that you can train with the included Trainer.

RTCLOCK Programming you Real Time Clock (RTC)

SHARE Shareware

SOUND Directory contains sub-directories which pertain to programming Sound cards

SOUND\GUSMOD Programs relating to the MOD Player for Gravis Ultra Sound cards

SOUND\SBMOD Programs related to the MOD Player for Sound Blaster cards

SOUND\SFXPRO 'C' source for the new XM sound format player

SOUND\VOC Programs related to the VOC player for  Sound Blaster cards.

SPEAKER Program related to programming your PC speaker

TRAINER Source code for a trainer for the included RAIDER game.

We have also added a Windows program called ACROREAD.EXE. Run this program and it will install
Adobe's Acrobat Reader program. You will then be able to see all the files in the ABACUS directory with
the .PDF file extensions including the complete PC UNDERGROUND manuscript.

Installing Acrobat Reader

Follow these steps to install Acrobat Reader 2.0 on your hard drive (Installation requires approximately 2
Meg of free hard drive space). Insert the CD-ROM in your drive and load Windows. From the Windows
Program Manager, choose Run from the File menu. Next, type the following:

[drive]:\acroread.exe

and press e. Then simply follow the instructions and prompts which appear on your screen.

Double-click the Acrobat Reader icon to load it. After the Acrobat Reader is loaded, go to File/Open... and
select PCUNDER.PDF to view/read the book.

A note about shareware and public domain software

There are several shareware and public domain software in the DEMO and BONUS directories. The
shareware concept allows small software companies and program authors to introduce the application
programs they have developed to a wider audience. The programs can be freely distributed and tested for



Look What's On The Companion CD-ROM

Chapter 16

PCPC
underground

537

a specific time period before you have to register them. Registration involves paying registration fees, which
make you a licensed user of the program. Check the documentation or the program itself for the amount
of registration fee and the address where you send the registration form.

After registration you will frequently get the current full version of the program without restrictions and
shareware notes as well as the option of purchasing upgraded versions later for a reduced price. As a rule,
larger applications include a users manual. Shareware programs usually feature the complete performance
range of the full versions. Some programs use special messages to indicate they're shareware versions. The
message usually appears immediately after program startup or can be called from the Help menu.





539

Symbols

16/32 bit access .......................................................... 23
3-D Graphics programming ........................... 161–209

3-D figures in two dimensions .......................... 164
3-D vector graphics ..................................... 500–521
Adding surface to wireframe models ...... 181–192
Bresenham algorithm ................................. 167–181
Glass figures ................................................. 181–192
Hidden lines ................................................. 193–195
Light source shading .................................. 195–200
Mathematics involved ................................ 161–164
Movement (adding to a static picture) .... 165–166
Parallel projection ................................................ 164
Polygons ........................................................ 489–500
Reshaping objects ........................................ 165–166
Rotating objects ............................................ 165–166
Rotating objects (formulas) ........................ 165–166
Shading .......................................................... 195–200
Textures ........................................ 200–209, 489–500
Vector ............................................................. 161–164
Wireframe modeling ................................... 166–181

3-D vector graphics .......................................... 500–521
386 Instructions .................................................... 24–25

IMUL........................................................................ 25
MOVSX.................................................................... 24
MOVZX ................................................................... 24
Set commands ........................................................ 24
SHRD ................................................................. 24–25
SHRL .................................................................. 24–25

A

Acrobat Reader
Installing from companion CD-ROM ...... 536–537

Addition
Assembly language ................................................. 4

All Mask register ...................................................... 295

Arithmetic operations
Assembly language ............................................. 4–8
Fixed point arithmetic ................................ 463–466

Assembly language ............................................... 1–30
3-D Graphics programming ...................... 161–209
Arithmetic operations ......................................... 4–6
Division ..................................................................... 2
Fixed point arithmetic ........................................ 2–8
General information ............................................ 1–2
Multiplication ........................................................... 2
Parallel port (programming) ......................... 27–29
Variables ........................................................... 14–17

Assembly language variables ............................ 14–17
Arrays (accessing) ........................................... 14–15
Circular arrays ................................................. 15–16
Code segment variables ....................................... 15
Pascal variables (accessing) ................................. 14
Records (accessing) ......................................... 14–15
Structure variable .................................................. 15

Attribute Controller (ATC) ................................ 76–80
See also VGA register bits

B

BIOS
Mode 13h .......................................................... 33–34

Bit mask rotation ........................................................ 16
Bresenham algorithm ...................................... 167–181

C

Cathode Ray Tube Controller (CRTC) ............. 58–68
See also VGA register bits

Cathode rays ............................................................... 32
Checksums ................................................................ 244
Circular arrays ...................................................... 15–16
Code segment variables ............................................ 15

Index

Index
PCPC

underground



540

IndexPCPC
underground

Companion CD-ROM ..................................... 535–537
3D_GLASS.PAS ........................................... 181–183
3D_LIGHT.PAS ........................................... 196–197
3D_SOLID.PAS .................................................... 195
3D_WIRE.PAS .............................................. 169–170
3DASM.ASM ................................................ 171–179
Acrobat Reader (installing) ....................... 536–537
BASARITH.PAS ................................................... 4–6
BRES.ASM .................................................... 167–168
COPPER.ASM .............................................. 112–114
COPPER.EXE ....................................................... 111
Directory structure ...................................... 535–536
FADE.ASM ................................................... 129–130
FADE.PAS..................................................... 127–128
FADE_IN.PAS .............................................. 119–120
FADE_OUT.PAS .................................................. 119
FADE_OVE.PAS .......................................... 126–127
FADE_TO.PAS ..................................................... 121
FADE_TXT.PAS ................................................... 131
FLAMES.PAS ............................................... 136–139
FLOW.PAS ............................................................ 109
GIF.ASM ........................................................... 40–45
GIF.PAS ............................................................. 39–40
GRABBER.PAS ................................................ 49–54
GUSASM.ASM............................................. 258–259
Hexcalibur hex editor ................................. 238–240
LINEFCT.PAS ...................................................... 7–8
MEMORY.PAS ............................................. 263–268
MEMTEST.PAS ............................................ 273–276
MOD_SB unit ...................................... 357, 358–365
MOD_SB.PAS .............................................................

................ 312–314, 317–319, 324–325, 332–335
MODEXLIB.ASM ... 86–87, 89–90, 95, 100, 104–

105, 115-118, 134–135
NO_RST.ASM .................................................. 20–22
PALROT.PAS ............................................... 135–136
PAR_TEST.PAS ...................................................... 29
PASSWD1.PAS ............................................ 215–218
PASSWD3.PAS ............................................ 218–220
PASSWGEN.PAS ......................................... 213–214
POLY.ASM .......................................... 180, 183–192
PWMODUL.ASM ........................................ 226–228
QUERY.PAS ................................................. 225–226
RMEM.PAS .................................. 273–276, 279–282
RMEMASM.ASM ........................................ 277–279
ROOT.ASM ....................................................... 11–12
ROOTTEST.PAS .............................................. 12–13
RTC.PAS........................................................ 305–309

SCAL_TST.PAS ............................................ 157–159
SCROLL4.PAS .............................................. 101–102
SCROLLT.PAS ..................................................... 106
SFXPRO.C ..................................................... 438–462
SINTEST.PAS ......................................................... 10
SPLIT.PAS ............................................................... 97
SPRITES.PAS ................................................ 150–153
SPRT_TST.PAS ............................................. 155–156
SQUEEZE.PAS ........................... 105, 109–111, 118
SRL_SPT.PAS ....................................................... 103
STAR.PAS ......................................................... 33–34
STARX.PAS ............................................................ 88
TIMER.PAS ................................................... 289–291
TOOLS.PAS .............................................................. 9
VAR_3D.PAS........................................................ 169
VOXEL.ASM ................................................ 141–144
VOXEL.PAS .................................................. 140–141
WAIT.PAS..................................................... 223–224
Windows 95 demo programs .................... 533–534
WOBBLER.ASM .................................................. 116
WOBBLER.PAS ............................................ 116–117

Compression/decompression programs ... 230, 245
Conventional memory .................................... 257–259

See also Memory Management
Segment registers ........................................ 257–259

Copper bars (programming) .......................... 109–114
Copy protection ............................................... 211–228

Machine language programming ............. 220–224
Pascal programming ................................... 211–220
Password queries ......................................... 211–220
Programming structure .............................. 220–224

CTRL-C
Intercepting ...................................................... 20–23

Custom mathematical functions ......................... 9–13

D

Debug interrupts .............................................. 240–242
Changing ............................................................... 240
Hiding data in interrupt vectors ............... 240–242
Masking interrupts .............................................. 240

Debugger
"Fooling" the debugger ............................... 242–243

Debugging programs ...................................... 230–240
Digital Signal Processor (DSP) ...................... 311–335

Commands ................................................... 315–316
Registers ................................................................ 311
See also Sound Blaster cards



IndexPCPC
underground

541

Digital to Analog Converter (DAC) ................. 80–82
See also VGA register bits

Division
Assembly language ............................................ 2, 4

DMA controller ................................................ 293–299
Adjusting size of DMA transfer ................ 298–299
All Mask register ................................................. 295
Autoinitialization on/off ................................... 296
Channel selection ................................................ 297
DMA flip-flop ...................................................... 297
Masking a DMA channel ........................... 294–295
Mode selection ..................................................... 296
Mode selection (transfer modes) ...................... 296
Real Time Clock (RTC) ............................... 300–309
RTC clock functions ............................................ 301
RTC configuration bytes ............................ 303–305
RTC status registers .................................... 302–303
Single Mask register .................................... 294–295
Specifying data block address ........................... 297
Transfer modes ............................................ 295–297
Transfer selection ................................................ 297

DMA controllers .............................................. 293–309
Types of controllers ..................................... 293–294

DMA flip-flop ........................................................... 297
Specifying data block address ........................... 297

DMA transfer
Adjusting size ............................................... 298–299

Dongle ........................................................................ 212
DOOM ............................................................... 463–521

3-D vector graphics ..................................... 500–521
Arithmetic/formulas used in DOOM ..... 466–480
Gouraud shading ........................................ 480–489
Secrets of DOOM ......................................... 463–521
Vector arithmetic ......................................... 466–480

DOOM II
Windows 95 configuration ........................ 525–533
Windows 95 installation............................. 525–533

Double-scan ................................................................ 32

E

EMM
See Expanded Memory Manager (EMM)

EMS
See Expanded Memory Specification (EMS)

Encryption algorithms ............................................ 244
Expanded Memory Manager (EMM) ........... 259–268

Function 40h ......................................................... 260

Function 41h ......................................................... 260
Function 42h ......................................................... 261
Function 43h ......................................................... 261
Function 44h ......................................................... 261
Function 45h ................................................. 261–262
Function 46h ......................................................... 262
Function 47h ......................................................... 262
Function 48h ......................................................... 262
Function 4Bh ........................................................ 262
Function 4Ch ........................................................ 263
Function 4Dh ........................................................ 263
Functions ....................................................... 260–263
See Expanded Memory Specification (EMS)

Expanded Memory Specification (EMS) ..... 259–268
EMM functions ............................................ 259–263
Using EMS in an example .......................... 263–268

Extended Memory Specification (XMS) ...... 268–276
Error codes ............................................................ 269
Function 00h ......................................................... 270
Function 03h ......................................................... 270
Function 04h ......................................................... 270
Function 05h ......................................................... 270
Function 06h ......................................................... 270
Function 07h ......................................................... 271
Function 08h ......................................................... 271
Function 09h ......................................................... 271
Function 0Ah ................................................ 271–272
Function 0Bh ........................................................ 272
Function 0Ch ........................................................ 272
Function 0Dh ........................................................ 272
Function 0Eh ........................................................ 273
Function 0Fh ................................................. 273–277
Functions ....................................................... 270–273

F

Factoring according to the distributive law ............ 2
Fire (programming) ......................................... 136–139
Fixed point arithmetic ............................ 2–8, 463–466
Flat memory model ......................................... 276–282

Technical information................................. 276–277
Floating point arithmetic ........................................ 2–3
Flowing images (programming) ................... 108–109



542

IndexPCPC
underground

G

Game trainers ................................................... 246–256
GIF file format ...................................................... 34–48

Format ............................................................... 35–37
GIF loader ........................................ 89–90, 100–102
LZW compression ........................................... 37–39
Using GIF in an example ............................... 39–40

GIF loader .......................................................... 100–102
Glass figures

3-D Graphics programming ...................... 181–192
Gouraud shading ............................................. 480–489
Graphic effects .................................. 93–146, 161–209

3-D Graphics programming ...................... 161–209
Basics ................................................................. 93–94
Copper bars .................................................. 109–114
Fade-from effect ........................................... 123–132
Fade-in effect ................................................ 119–120
Fade-out effect .............................................. 118–119
Fade-to effect ................................................ 120–123
Fire on the screen ......................................... 136–139
Flowing images ............................................ 108–109
Palette effects ................................................ 118–136
Palette rotation ............................ 132–136, 141–144
Programming ................................................. 93–146
Scrolling in 4 directions ................................ 98–102
Smooth scrolling (text mode) .................... 105–108
Split screen programming ............................. 94–98
Split-screen with scrolling ......................... 103–104
Sprites (programming) ............................... 147–159
Squeezing images ........................................ 104–105
Voxel spacing ............................................... 139–144
Wobbler ......................................................... 115–118

Graphic formats
GIF ...................................................................... 34–48
PCX .................................................................... 48–55
VGA ................................................................... 56–82

Graphics Data Controller (GDC) ...................... 71–76
See also VGA register bits

Graphic effects .................................................... 93–146
Graphics programming .....................31–82, 161–209

3-D Graphics programming ...................... 161–209
Mode X .............................................................. 83–92

Gravis UltraSound ........................................... 397–437
Loading the MOD player ........................... 402–407
MOD player core routines ......................... 402–421
MOD player structure ........................................ 398
MOD player variables ....................... 398–402, 442

Playing MOD files ....................................... 407–421
TCP Player .................................................... 421–437

GUS
See Gravis UltraSound

H

Hardware interrupts .............................. 283–286, 293
Hardware key (dongle) ........................................... 212
Hex editor .......................................................... 237–240

Hexcalibur hex editor ................................. 238–240
When to use .......................................................... 237

Hexcalibur hex editor ..................................... 238–240
Hidden lines

3-D Graphics programming ...................... 193–195

I

IDEAL mode ............................................................. 464
IMUL ............................................................................ 25
INTERLNK.EXE driver ............................................. 29
Interrupt controllers ............................................ 18–23
Interrupt vector table ...................................... 283–286
Interrupts ..............................................17–23, 283–286

Changing vectors ............................................. 17–18
Disabling interrupts ........................................ 18–19
Hardware interrupts ........................................... 283
Interrupt controllers ........................................ 18–19
Interrupt vector table .......................................... 283
NMI (NonMaskable Interrupt) ......................... 283
Re-entering DOS .................................................... 19
Software interrupts ............................................. 283

L

Light source shading
3-D Graphics programming ...................... 195–200

LIM EMS
See Expanded Memory Specification (EMS)

Loops
16/32 bit access ...................................................... 23
Nesting .................................................................... 23
Programming tips ................................................. 23

LZW compression process
Using with GIF ................................................. 37–39



IndexPCPC
underground

543

M

Machine language
Password protection ................................... 220–224

Maskable interrupts ........................................ 292–293
Masking interrupts .................................................. 240
Math tables .............................................................. 9–13
Mathematical functions

3-D Graphics programming ...................... 161–209
Approximation ................................................ 11–13
Custom functions .............................................. 9–13

Memory management ............................................. 257
Conventional DOS memory ...................... 257–259
Conventional memory ................................ 257–259
EMS (Expanded Memory Specification) . 259–268
Flat memory model ..................................... 276–282
Protected mode .................................................... 276
Segment registers ........................................ 257–259
XMS (Extended Memory Specification) .. 268–276

MOD file format ............................................... 337–354
669 format ..................................................... 343–345
669 header ..................................................... 343–344
669 pattern .................................................... 344–345
Effects ............................................................ 340–343
MOD header ................................................. 337–338
MOD patterns ...................................................... 339
MOD sample files ........................................ 339–340

MOD players
Building a mixing procedure .................... 356–357
Example of using ......................................... 392–397
Gravis UltraSound ...................................... 398–437
Handling MOD files ................................... 369–389
How they work ............................................ 355–356
MOD files ...................................................... 369–389
Polling.................................................................... 357
Programming tips ....................................... 389–392
Routines for Gravis UltraSound ............... 402–421
SFX Pro .......................................................... 437–462
Sound Blaster card ...................................... 354–397
Sound Blaster MOD player ...... 357–397, 403–421
Sound routines ............................................. 367–369
Timer interrupts ................................................... 357
Timer routines .............................................. 365–367
Variables for Gravis UltraSound .............. 398–402
Variables for Sound Blaster card ... 358–365, 403–

421
Mode 13h ........................................................ 33–34, 83

Structure .................................................................. 34

Mode X ...................................................................83–92
DRAW_FON.PAS .................................................. 89
GIF loader ......................................................... 89–90
Higher resolutions ........................................... 86–87
Initializing ............................................................... 84
Setting pixels .......................................................... 88
Structure ............................................................ 84–86
Switching pages ............................................... 88–90
Text scroller ...................................................... 90–92
Text scroller (fonts) ......................................... 91–92
Using Mode X .................................................. 87–89

MOVSX ........................................................................ 24
MOVZX ....................................................................... 24
Multiplication

Assembly language ............................................ 2, 4
IMUL command .................................................... 25

N

Nesting ......................................................................... 23
NMI (NonMaskable Interrupt) ............. 283–286, 293

O

OR comparison ........................................................... 13

P

Palette
Defined .................................................................... 31

Palette effects (programming) ....................... 118–136
Fade-from...................................................... 123–132
Fade-in ........................................................... 119–120
Fade-out ........................................................ 118–119
Fading to the target palette ........................ 120–123
Palette rotation ............................................. 132–136

Panning ...................................................................... 106
See also Smooth scrolling (programming)

Parallel port
Control register ................................................ 28–29
Data register ..................................................... 27–29
INTERLNK.EXE .................................................... 29
Other uses for the parallel port ..................... 29–30
Outputting characters ........................................... 29
Programming in Assembly language .......... 27–29
Registers ............................................................ 27–29
Status register ................................................... 27–29



544

IndexPCPC
underground

Parallel projection .................................................... 164
See also 3-D Graphics programming

Pascal
Password protection ................................... 211–220

Password protection ........................................ 211–220
PCX graphic format ............................................. 48–55

Structure ............................................................ 48–55
Using PCX in an example .............................. 49–55

PIQ technique ........................................................... 245
Pixel .............................................................................. 31
Polling ........................................................................ 357
Polygons .................................................................... 489

Programming ............................................... 489–500
Printer ports

See Parallel port
Programmable Interrupt Controller (PIC) .. 291–293

Hardware interrupts ........................................... 293
Maskable interrupts .................................... 292–293
Nonmaskable interrupts (NMI) ........................ 293
Software interrupts ............................................. 293

Programmable Interval Timer (PIT) ............. 286–291
Control register .................................................... 287
Counter register ................................................... 288
Timer chip ..................................................... 286–287
Using in an example ................................... 289–291

Protected mode ................................................ 276–277
Protecting programs

Machine language ....................................... 220–224
Pascal ............................................................. 211–220

Protecting your programs .............................. 229–256
Checksums ............................................................ 244
Compression/decompression programs 230, 245
Debug interrupts ......................................... 240–242
Encryption algorithms ........................................ 244
Fooling the debugger .................................. 242–243
Game trainers ............................................... 246–256
Hex editors ................................................... 237–240
Interrupt vectors .......................................... 240–242
PIQ technique ....................................................... 245
Self-modifying programs ........................... 244–245
Turbo Debugger .................................................. 230

Pythagorean theorem .............................................. 162

R

Real Time Clock (RTC) ................................... 300–309
Accessing RTC RAM .................................. 300–309
Clock functions .................................................... 301

Configuration bytes .................................... 303–305
Register A.............................................................. 302
Register B .............................................................. 302
Register C .............................................................. 302
Register D .............................................................. 303
Status registers ............................................. 302–303
Using in an example ................................... 305–309

Reset
Intercepting ...................................................... 20–23

Retrace
Defined .................................................................... 32

Rotating objects
3-D Graphics programming ...................... 165–166
Considerations ............................................. 165–166

S

S3M file format ................................................. 348–354
S3m header ................................................... 348–351
S3m instruments .......................................... 352–354
S3m patterns ......................................................... 351

SB16 (ASP) mixer chip .................................... 327–331
Register 48 ............................................................. 327
Register 49 ............................................................. 327
Register 50 ............................................................. 328
Register 51 ............................................................. 328
Register 52 ............................................................. 328
Register 53 ............................................................. 328
Register 54 ............................................................. 328
Register 55 ............................................................. 328
Register 56 ............................................................. 329
Register 57 ............................................................. 329
Register 58 ............................................................. 329
Register 59 ............................................................. 329
Register 60 ............................................................. 329
Register 61 ............................................................. 329
Register 62 ............................................................. 330
Register 63 ............................................................. 330
Register 64 ............................................................. 330
Register 65 ............................................................. 330
Register 66 ............................................................. 330
Register 67 ............................................................. 330
Register 68 ............................................................. 331
Register 69 ............................................................. 331
Register 70 ............................................................. 331
Register 71 ............................................................. 331

SBPro mixer chip .............................................. 325–327
Register 00h .......................................................... 325



IndexPCPC
underground

545

Register 02h .......................................................... 325
Register 0Ah ................................................. 325–326
Register 0Ch ......................................................... 326
Register 0Eh .......................................................... 326
Register 26h .................................................. 326–327
Register 28h .......................................................... 327
Register 2Eh .......................................................... 327

Scream Tracker file format ............................. 345–348
STM header .................................................. 346–348

Scrolling in 4 directions (programming) ....... 98–102
Segment registers

Conventional memory ................................ 257–259
Self-modifying programs ............................... 244–245

Checksums ............................................................ 244
Encryption algorithms ........................................ 244
PIQ technique ....................................................... 245

SET commands ........................................................... 24
SFX Pro .............................................................. 437–462

Envelopes ...................................................... 458–460
Frequencies ................................................... 438–439
Sample conversion .............................................. 439
Volume effects .............................................. 447–449
XM load routines ......................................... 440–442
XM module effects ...................................... 450–458
XM patterns (playing back) ....................... 442–446

Shading
3-D Graphics programming ...................... 195–200

SHRD ........................................................................... 24
SHRL ............................................................................ 24
Single Mask register ........................................ 294–295
Smooth scrolling (programming) ................. 105–108
Software interrupts ................................. 283–286, 293
Sound ................................................................. 337–462

Accompanying your programs ................. 337–462
Experiment placement ........................................ 437
Gravis UltraSound ...................................... 397–437
MOD file format .......................................... 337–354
MOD player for Gravis UltraSound ........ 398–437
MOD player for Sound Blaster cards ....... 354–397
S3M file format ............................................ 348–354
Scream Tracker file format ........................ 345–348
Sound Blaster cards .................... 311–335, 354–397
SFX Pro sound card ..................................... 442–462
VOC files ....................................................... 331–335
See also MOD players

Sound Blaster cards ......................................... 311–335
BLASTER variable ............................................... 323
Chip register 22h ................................................. 326

Components of the Sound Blaster cards . 311–331
Detecting ....................................................... 323–325
Determining base port ................................ 323–325
DSP commands ............................................ 315–316
DSP registers ........................................................ 311
Handling MOD files ................................... 369–389
Mixer chip ..................................................... 325–327
MOD player .................................................. 354–397
MOD player programming tips ................ 389–392
MOD player variables ................................ 358–365
Playing VOC files ........................................ 331–335
Programming the DSP ................................ 311–323
SB16 (ASP) mixer chip registers ............... 327–331
SBPro mixer chip ......................................... 325–327
Sound routines ............................................. 367–369
Timer routines .............................................. 365–367

Sound cards
See specific card name

Split screen (programming) ............................... 94–98
Split-screen with scrolling (programming) . 103–104
Sprites ................................................................. 147–159

Clipping ................................................................ 149
Defined .................................................................... 31
Reading ......................................................... 148–149
Scrolling ........................................................ 156–159
Structure of sprites ...................................... 147–148
Using in an example ................................... 150–156
Writing .......................................................... 148–149

Squeezing images (programming) ............... 104–105
STM (Scream Tracker)

See Scream Tracker file format
String comparisons .................................................... 14
Structure ...................................................................... 15
Subtraction

Assembly language ................................................. 4

T

TASM ......................................................................... 464
Terminology used in this book ......................... 31–33
Texture mapping .............................................. 489–500
Textures ..................................................................... 489

3-D Graphics programming ..... 200–209, 489–500
Texture mapping ......................................... 489–500

Timer interrupts
MOD player .......................................................... 357

Timing sequencer (TS) ........................................ 68–71
See also VGA register bits



546

IndexPCPC
underground

Transfer modes (DMA controller) ................ 295–297
Autoinitialization on/off ................................... 296
Channel selection ................................................ 297
Incrementing/decrementing addresses .......... 296
Mode selection ..................................................... 296
Transfer selection ................................................ 297

Turbo Debugger ............................................... 230–240
Command line parameters ........................ 231–232
Target searches ............................................. 232–237
Using .............................................................. 230–232

V

Variables
Assembly language ......................................... 14–17

Vector
3-D Graphics programming ...................... 161–164
Calculating with vectors ............................ 162–164
Multiplication ............................................... 162–163
Subtraction ............................................................ 162
Vector arithmetic in DOOM ...................... 466–480

Vector graphics
3-D Graphics programming ...................... 500–521

VGA ........................................................................ 56–82
Attribute Controller (ATC) ............................ 76–80
Cathode Ray Tube Controller (CRTC) ........ 58–68
Digital to Analog Converter (DAC) ............. 80–82
Graphics Data Controller (GDC) .................. 71–76
Register bits ...................................................... 56–82
Timing sequencer (TS) .................................... 68–71

VGA register bits ................................................. 56–82
ATC-Register 10h ............................................ 78–79
ATC-Register 11h .................................................. 79
ATC-Register 12h .................................................. 79
ATC-Register 13h ............................................ 79–80
ATC-Register 14h .................................................. 80
Attribute Controller (ATC) ............................ 76–80
Cathode Ray Tube Controller (CRTC) ........ 58–68
CRTC-Register 0 .............................................. 58–59
CRTC-Register 0ah ................................................ 62
CRTC-Register 0bh ................................................ 63
CRTC-Register 0ch ................................................ 63
CRTC-Register 0dh ............................................... 63
CRTC-Register 0eh ................................................ 63
CRTC-Register 0fh ................................................. 64
CRTC-Register 1 .................................................... 59
CRTC-Register 10h ................................................ 64
CRTC-Register 11h .......................................... 64–65

CRTC-Register 12h ................................................ 65
CRTC-Register 13h ................................................ 65
CRTC-Register 14h .......................................... 65–66
CRTC-Register 15h ................................................ 66
CRTC-Register 16h ................................................ 66
CRTC-Register 17h ................................................ 67
CRTC-Register 18h ................................................ 68
CRTC-Register 2 .................................................... 59
CRTC-Register 3 .................................................... 59
CRTC-Register 4 .................................................... 60
CRTC-Register 5 .................................................... 60
CRTC-Register 6 .................................................... 60
CRTC-Register 7 .................................................... 61
CRTC-Register 8 .................................................... 61
CRTC-Register 9 .................................................... 62
Digital to Analog Converter (DAC) ............. 80–82
GDC-Register 0 ...................................................... 72
GDC-Register 1 ...................................................... 72
GDC-Register 2 ................................................ 72–73
GDC-Register 3 ...................................................... 73
GDC-Register 4 ...................................................... 73
GDC-Register 5 ................................................ 74–75
GDC-Register 6 ...................................................... 75
GDC-Register 7 ...................................................... 76
GDC-Register 8 ...................................................... 76
Graphics Data Controller (GDC) .................. 71–76
Input Status Register 1 .......................................... 58
Miscellaneous Output Register ..................... 56–57
Timing sequencer (TS) .................................... 68–71
TS-Register 0 ........................................................... 68
TS-Register 1 ........................................................... 69
TS-Register 2 ..................................................... 69–70
TS-Register 3 ........................................................... 70
TS-Register 4 ........................................................... 71

VOC files ........................................................... 331–335
Voxel spacing (programming) ...................... 139–144

W

Windows 95 ...................................................... 523–534
Demo programs ........................................... 533–534
Incompatible programs ...................................... 534
Installing/starting DOS programs ........... 525–533
Starting DOS programs .............................. 523–525
Using DOS programs .................................. 523–525
Windows 95 DOS compatibility box ....... 524–525

Windows 95 DOS compatibility box ............ 524–525
Wireframe modeling



IndexPCPC
underground

547

3-D Graphics programming ...................... 166–181
Adding surfaces ........................................... 181–192
Bresenham algorithm ................................. 167–181

Wobbler (programming) ................................ 115–118

X

XM players ........................................................ 437–462
Effects of XM module ................................. 450–458
Envelopes ...................................................... 458–460
Frequency ..................................................... 438–439
Sample conversion .............................................. 439
SFX Pro .......................................................... 437–462
Volume effects .............................................. 447–449
XM load routines ......................................... 440–442
XM patterns (playing back) ....................... 442–446

XMS
See Extended Memory Specification (XMS)



Information About PC Underground CD-ROM
Besides the demo programs in the DEMOS directory, you'll also find some demos in the BONUS directory.
The programs are meant to be a stimulus for you and give a small overview of the many possibilities of sound
and graphics programming. All the graphics programming examples require a 100% compatible VGA card.
The sound programming examples run either on a TRULY 100% compatible SoundBlaster card or on a Gravis
Ultrasound card.

To use all the programs and source text, copy them to a directory on your hard drive and use the MS-DOS
ATTRIB command to clear the Read-Only file attribute, for example: ATTRIB -r *.*

Files And Directories On The Companion CD-ROM

The directories included on the companion CD-ROM are in the file called CD_DIR.TXT.

Directory Contents

BONUS Contains cool examples of programming techniques

DEMOS More great examples of what you can do

DOOM Directory contains sub-directories which pertain to programming the Doom material

GRAPHIC Contains graphic programming examples discussed in the book

MAGN Example of programming a magnifying glass on you PC

MATH Contains math programming examples discussed in the book.

MEMORY Directory contains sub-directories which pertain to programming Memory

NODEBUG Program which shows how to prevent people from using a debugger to ‘debug’ your programs.

NORESET Program example which  shows how to disable the [Ctrl] + [C], [Ctrl] + [Break], Etc..

PASSWORD Contains password programming examples discussed in the book.

PORTS Contains examples for direct port programming discussed in the book.

RAIDER Game example that you can train with the included Trainer.

RTCLOCK Programming you Real Time Clock (RTC)

SHARE Shareware

SPEAKER Program related to programming your PC speaker

SOUND Directory contains sub-directories which pertain to programming Sound cards

TRAINER Source code for a trainer for the included RAIDER game.

To view the book on the CD-ROM you must install Adobe’s Acrobat Reader 2.0 for Windows on your
computer. The Adobe Acrobat Reader 2.0 for Windows software gives you instant access to documents in
their original form, independent of computer platforms. By using the Acrobat Reader, you can view, navigate,
print selected files and present Portable Document Format (PDF) files.

Installing Acrobat Reader

Follow these easy steps to install Acrobat Reader 2.0. Insert the CD-ROM in your drive and load Windows.
From the Windows Program Manager, choose Run from the File menu. Next, type the following:

[drive]:\acroread.exe and press Enter

Then simply follow the instructions and prompts which appear on your screen. Double click the Acrobat
Reader icon to load it. After the Acrobat Reader is loaded, go to File/Open... and select MAIN.PDF to view
and read the PC UNDERGROUND book.


