
this print for content only—size & color not accurate spine = 1.5015" 800 page count

Books for professionals By professionals®

Expert C# 2008 Business Objects
Dear Reader,

This book is about application architecture, design, and development using
object-oriented concepts in .NET. Specifically, I’ll show how to build business-
focused objects called business objects and how to use them to build applica-
tions with Windows Presentation Foundation (WPF), Web Forms, Windows
Communication Foundation (WCF), Windows Forms, Windows Workflow
Foundation (WF), and other types of application. While this book is about the
creation of the CSLA .NET development framework, that framework is the codi-
fication of an underlying architecture, which helps provide order to the chaos
and enables productive application of the architectural concepts.

You may agree or disagree with my views, and that is fine. In the end, having
an architecture that withstands the tests of time and technological change is
the key. At a minimum, the concepts, ideas, and techniques in this book will
help inform your understanding of architecture and will enable you to put all
the new and changing technologies into perspective.

The CSLA .NET framework itself is one of the most widely used development
frameworks on the .NET platform. In reading this book, you will see the design
decisions that enable the framework to support the many technologies listed
previously—all based on the same set of business objects. You’ll also learn how
the framework abstracts the concept of data access, enabling an application to
use nearly any data access technology available on the .NET platform.

Over the past eight years, CSLA .NET has evolved, and it continues to evolve
to support new capabilities of the .NET platform. The underlying architecture
of using object-oriented design in a distributed computing environment has
remained consistent all this time, and it continues to be critical looking forward
to Silverlight, Windows Azure, and beyond.

I hope you enjoy this book and find it challenging and educational. Code
well, have fun!

Rockford Lhotka

Author of

Expert C# 2005
Business Objects

US $59.99

Shelve in
Programming Languages/C#

User level:
Advanced

C# 2008

The eXperT’s Voice® in .neT

Expert

C# 2008
Business Objects

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Rockford Lhotka

Companion
eBook Available

THE APRESS ROADMAP

Beginning C# 2008, 2e Pro ASP.NET 3.5
in C# 2008, 3e

Expert C# 2008
Business Objects

Pro C# 2008 and the
.NET 3.5 Platform, 4e

Pro WPF in C# 2008, 2e

Beginning
C# 2008 Objects

Illustrated C# 2008

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Architect, design, and develop highly scalable and
maintainable object-oriented business applications

ISBN 978-1-4302-1019-1

9 781430 210191

55999

Expert

Business
Objects

Lhotka

Expert C# 2008
Business Objects

■ ■ ■

Rockford Lhotka

Lhotka_1019-1FRONT.fm Page i Thursday, November 20, 2008 5:04 PM

Expert C# 2008 Business Objects

Copyright © 2009 by Rockford Lhotka

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1019-1

ISBN-13 (electronic): 978-1-4302-1020-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Editor: Matthew Moodie
Technical Reviewers: James Miller, Andrés Villanueva, Joe Fallon
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editors: Nicole Abramowitz, Jennifer Whipple
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Susan Glinert
Proofreader: Nancy Bell
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Lhotka_1019-1FRONT.fm Page ii Thursday, November 20, 2008 5:04 PM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To my Mom and Dad. Thank you for all you’ve taught me through the years!

Lhotka_1019-1FRONT.fm Page iii Thursday, November 20, 2008 5:04 PM

Lhotka_1019-1FRONT.fm Page iv Thursday, November 20, 2008 5:04 PM

v

Contents at a Glance

About the Author . xix

About the Technical Reviewers . xxi

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 Distributed Architecture . 1

■CHAPTER 2 Framework Design . 37

■CHAPTER 3 Object-Oriented Application Design . 101

■CHAPTER 4 CSLA .NET Object Stereotypes . 143

■CHAPTER 5 CSLA .NET Object Templates . 173

■CHAPTER 6 Business Framework Implementation . 207

■CHAPTER 7 Property Declarations . 241

■CHAPTER 8 Object Status Management . 263

■CHAPTER 9 Parent-Child Relationships . 273

■CHAPTER 10 Data Binding . 287

■CHAPTER 11 Business and Validation Rules . 331

■CHAPTER 12 Authentication and Authorization . 353

■CHAPTER 13 N-Level Undo . 369

■CHAPTER 14 LINQ to CSLA . 399

■CHAPTER 15 Persistence and the Data Portal . 419

■CHAPTER 16 Other Framework Features . 487

■CHAPTER 17 Business Object Implementation . 517

■CHAPTER 18 Example Data Access . 547

■CHAPTER 19 Windows Presentation Foundation UI . 583

■CHAPTER 20 Web Forms UI . 619

■CHAPTER 21 WCF Service Interface . 675

■INDEX . 719

Lhotka_1019-1FRONT.fm Page v Thursday, November 20, 2008 5:04 PM

Lhotka_1019-1FRONT.fm Page vi Thursday, November 20, 2008 5:04 PM

vii

Contents

About the Author . xix

About the Technical Reviewers . xxi

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 Distributed Architecture . 1

Logical and Physical Architecture . 1

N-Tier and SOA . 3

Complexity . 4

Relationship Between Logical and Physical Models 4

A 5-Layer Logical Architecture . 9

Applying the Logical Architecture . 14

The Way Ahead . 19

Managing Business Logic . 19

Potential Business Logic Locations . 20

Business Objects . 23

Mobile Objects . 26

Architectures and Frameworks . 34

Conclusion . 35

■CHAPTER 2 Framework Design . 37

Basic Design Goals . 38

Validation and Business Rules . 39

Tracking Whether the Object Has Changed . 41

Integrated Authorization . 41

Strongly Typed Collections of Child Objects 42

N-Level Undo Capability . 42

Simple and Abstract Model for the UI Developer 45

Supporting Data Binding . 50

Object Persistence and Object-Relational Mapping 54

Custom Authentication . 60

Lhotka_1019-1FRONT.fm Page vii Thursday, November 20, 2008 5:04 PM

viii ■CO N T E N T S

Designing the Framework . 61

Business Object Creation . 61

N-Level Undo Functionality . 69

Data Binding Support . 72

Business and Validation Rules . 74

Data Portal . 77

Custom Authentication . 91

Integrated Authorization . 92

Helper Types and Classes . 93

Namespace Organization . 96

Conclusion . 98

■CHAPTER 3 Object-Oriented Application Design . 101

Responsibility-Driven Design . 102

Use-Case or Story-Based Analysis . 102

Objects with Responsibilities. 102

Objects Exist for Use Cases . 103

Normalization of Behavior . 103

Application Requirements . 104

Use Cases . 105

Object Design . 108

Initial Design . 108

Revising the Design . 110

Custom Authentication . 122

Using CSLA .NET . 123

Database Design . 126

Creating the Databases . 127

PTracker Database . 129

Security Database. 139

Conclusion . 140

Lhotka_1019-1FRONT.fm Page viii Thursday, November 20, 2008 5:04 PM

■C ON TE N TS ix

■CHAPTER 4 CSLA .NET Object Stereotypes . 143

Basic Terminology and Object Graph Structure 144

Business Object Life Cycle . 147

Object Creation . 147

Object Retrieval. 152

Updating Editable Objects . 156

Disposing and Finalizing Objects . 162

Business Class Structure . 163

The Serializable or DataContract Attribute . 164

Common Regions . 166

Non-public Default Constructor. 170

Conclusion . 171

■CHAPTER 5 CSLA .NET Object Templates . 173

Business Class Structure . 174

Editable Root Business Objects . 174

Editable Child Business Objects . 180

Switchable Objects . 184

Editable Root Collection . 187

Editable Child Collection . 190

Read-Only Business Objects . 191

Read-Only Child Objects . 193

Read-Only Collection . 194

Read-Only Child Collection . 196

Command Objects . 197

Name/Value List Objects . 198

Dynamic Editable Collection . 199

Dynamic Editable Root Objects . 201

Criteria Objects . 202

Conclusion . 205

Lhotka_1019-1FRONT.fm Page ix Thursday, November 20, 2008 5:04 PM

x ■CO N T E N T S

■CHAPTER 6 Business Framework Implementation 207

CSLA .NET Project Structure . 208

Project Directory Structure . 208

Project Settings . 209

Project Signing . 210

Supporting Localization . 211

Csla Namespace . 212

ApplicationContext . 214

BusinessBase . 219

BusinessListBase . 221

CommandBase . 223

CriteriaBase . 223

DataPortal . 224

EditableRootListBase . 224

NameValueListBase . 225

PropertyInfo . 226

ReadOnlyBase . 227

ReadOnlyListBase . 228

SingleCriteria . 229

SmartDate . 229

Utilities . 230

Csla.Core Namespace . 230

BusinessBase . 232

ExtendedBindingList . 232

IBusinessObject Interface . 232

ICommandObject Interface . 233

IEditableBusinessObject Interface. 233

IEditableCollection Interface . 233

IReadOnlyObject Interface . 234

IReadOnlyCollection Interface . 234

ISavable Interface . 234

ISmartField Interface . 235

ISupportUndo Interface . 235

ITrackStatus Interface . 236

IUndoableObject Interface . 236

ObjectCloner Class . 237

ReadOnlyBindingList . 238

Conclusion . 239

Lhotka_1019-1FRONT.fm Page x Thursday, November 20, 2008 5:04 PM

■C ON TE N TS xi

■CHAPTER 7 Property Declarations . 241

Declaring Properties . 241

Property Declaration Options. 245

RegisterProperty and Inheritance . 248

PropertyInfoManager . 250

Field Manager . 252

FieldManager Property . 253

FieldDataManager Class . 253

Conclusion . 261

■CHAPTER 8 Object Status Management . 263

Object Status Properties . 263

ITrackStatus Interface . 264

IsNew . 264

IsSelfDirty . 265

IsDirty . 268

IsSelfValid . 269

IsValid . 269

IsSavable . 270

IsDeleted . 271

Conclusion . 272

■CHAPTER 9 Parent-Child Relationships . 273

Parent Editable Object . 273

Parent-Child Interaction . 274

IParent Interface . 279

Declaring Child Properties . 279

Parent Editable Collection . 283

Parent-Child Interaction . 283

Conclusion . 286

■CHAPTER 10 Data Binding . 287

Windows Forms . 287

Object Data Binding . 288

Collection Data Binding . 294

Controls and Helper Objects . 295

Working with Multiple Root Objects . 310

Lhotka_1019-1FRONT.fm Page xi Thursday, November 20, 2008 5:04 PM

xii ■CO N T E N T S

WPF . 312

Object Data Binding . 312

Collection Data Binding . 314

Controls and Helper Objects . 315

Web Forms . 327

Controls and Helper Objects . 327

Conclusion . 329

■CHAPTER 11 Business and Validation Rules . 331

Types of Rules . 331

Csla.Validation Namespace . 332

RuleHandler Delegate. 332

RuleArgs Class . 333

DecoratedRuleArgs Class. 334

RuleMethod Class . 334

RuleDescription Class. 336

ValidationRules Class . 337

BrokenRule Class . 343

BrokenRulesCollection Class . 344

ValidationException . 346

Common Validation Rules . 347

CommonRules . 347

Conclusion . 351

■CHAPTER 12 Authentication and Authorization . 353

Authentication . 353

Csla.ApplicationContext.User Property . 354

Windows Authentication . 355

Custom Authentication . 355

Authorization . 360

Type Level Authorization . 361

Property and Method Level Authorization . 364

Conclusion . 368

Lhotka_1019-1FRONT.fm Page xii Thursday, November 20, 2008 5:04 PM

■C ON TE N TS xiii

■CHAPTER 13 N-Level Undo . 369

Using Undo . 370

Implementing Undo . 370

ISupportUndo Interface . 372

NotUndoableAttribute Class . 372

UndoableBase Class . 373

BusinessBase Class . 382

BusinessListBase Class . 385

Conclusion . 397

■CHAPTER 14 LINQ to CSLA . 399

Reducing Code with LINQ . 399

Overview of LINQ to CSLA .NET . 400

Binding to Results from LINQ to Objects . 400

Indexed LINQ Queries . 400

LINQ and Projection . 401

Identity Projections and LinqBindingList<T> 401

Understanding LinqBindingList . 401

Overview of Indexed Search Using CSLA .NET . 403

Serialization and Indexing . 403

Index Mode . 403

The IQueryable Implementation for CSLA .NET . 404

Understanding Expression Trees. 405

Digging into IQueryProvider . 406

LinqBindingList . 408

Indexed LINQ and CSLA .NET . 408

Managing the Index Set . 409

Expression Evaluation . 410

The Indexing Object Model . 411

Conclusion . 417

Lhotka_1019-1FRONT.fm Page xiii Thursday, November 20, 2008 5:04 PM

xiv ■CO N T E N T S

■CHAPTER 15 Persistence and the Data Portal . 419

Data Portal Design . 420

Separation of Business Logic and Data Access 420

Consistent Coding Model for Root and Child Objects 421

Channel Adapter and Message Router Patterns 421

Distributed Transaction Support . 427

Context and Location Transparency . 428

Authorizing Server Calls . 431

Asynchronous Behaviors . 432

Object Factories . 433

Base Class Support . 434

Factory Methods and Criteria . 436

Save Methods . 437

Updating Child Objects with the Field Manager 441

Updating Editable Collections . 441

Reflection and Dynamic Method Invocation . 442

The MethodCaller Class . 443

The LateBoundObject Class. 445

Channel Adapter . 445

The RunLocal Attribute . 445

The DataPortal Class . 446

The DataPortal<T> Class . 455

The IDataPortalServer Interface . 457

The IDataPortalProxy Interface . 458

The LocalProxy Class . 458

The WcfProxy Class . 459

The WcfPortal Class . 460

Distributed Transaction Support . 462

The Transactional Attribute . 462

The Csla.Server.DataPortal Object . 462

The ServicedDataPortal Class . 466

The TransactionalDataPortal Class . 467

Message Router . 468

The DataPortalSelector Class . 469

The SimpleDataPortal Class . 470

The FactoryDataPortal Class . 476

The FactoryLoader Property . 476

The ChildDataPortal Class . 479

Lhotka_1019-1FRONT.fm Page xiv Thursday, November 20, 2008 5:04 PM

■C ON TE N TS xv

Context and Location Transparency . 480

The DataPortalContext Class . 480

The DataPortalResult Class . 484

Csla.Server.DataPortalException. 484

Conclusion . 485

■CHAPTER 16 Other Framework Features . 487

Date Handling with SmartDate . 488

Initializing the Struct. 490

Supporting Empty Dates . 491

Conversion Functions . 491

Text Functions. 492

Date Functions . 493

Database Format . 494

Data Access . 494

Managing Database Connections and Contexts 495

SafeDataReader . 499

DataMapper . 503

Windows Workflow Foundation . 508

Starting a Workflow from an Object . 510

WorkflowManager Class . 510

Conclusion . 516

■CHAPTER 17 Business Object Implementation . 517

ProjectTracker Objects . 517

Setting Up the Project . 518

Business Class Implementation . 519

Project . 520

ProjectResources . 530

ProjectResource . 532

Assignment . 534

RoleList . 536

Resource and Related Objects . 536

ProjectList and ResourceList . 538

Roles . 539

Role . 541

Implementing Exists Methods . 543

Lhotka_1019-1FRONT.fm Page xv Thursday, November 20, 2008 5:04 PM

xvi ■CO N T E N T S

Custom Authentication . 543

PTPrincipal. 543

PTIdentity . 545

Conclusion . 546

■CHAPTER 18 Example Data Access . 547

Data Access Layer Design . 547

Data Access Models . 548

Balancing Design Issues . 554

Data Access Objects . 556

Using LINQ to SQL . 556

The ProjectTracker.DalLinq Project . 557

Business Class Implementation . 559

Project . 560

ProjectResources . 569

ProjectResource . 571

RoleList . 574

ProjectList and ResourceList . 575

Roles . 577

Implementing Exists Methods . 579

Conclusion . 581

■CHAPTER 19 Windows Presentation Foundation UI 583

Custom Authentication in WPF . 584

Interface Design . 585

User Control Framework . 587

Value Converters . 591

Application Configuration . 593

PTWpf Project Setup . 596

The MainForm Window . 596

The Login Window . 600

The RolesEdit Form . 602

The ResourceList Form . 609

The ProjectList Form . 611

The ProjectEdit Form . 612

Conclusion . 617

Lhotka_1019-1FRONT.fm Page xvi Thursday, November 20, 2008 5:04 PM

■C ON TE N TS xvii

■CHAPTER 20 Web Forms UI . 619

Web Development and Objects . 619

State Management . 622

State on the Web Server . 622

Transferring State to or from the Client . 625

State in a File or Database. 626

Interface Design . 627

Application Configuration . 629

PTWeb Site Setup . 633

Master Page . 634

Login Page . 638

Business Functionality . 646

RolesEdit Form . 646

ProjectList Form . 656

ProjectEdit Form . 661

Conclusion . 673

■CHAPTER 21 WCF Service Interface . 675

Choosing Between Client/Server and SOA . 675

Overview of WCF Services . 677

Elements of a WCF Service . 679

Custom Authentication . 685

Designing a WCF Service Interface . 701

Service Design . 702

Application Configuration . 703

PTWcfService Site Setup . 705

Service Contract and Implementation . 706

Web Service Consumer Implementation . 711

Generating a WCF Information Page . 711

A Simple Smart Client . 713

Conclusion . 718

■INDEX . 719

Lhotka_1019-1FRONT.fm Page xvii Thursday, November 20, 2008 5:04 PM

Lhotka_1019-1FRONT.fm Page xviii Thursday, November 20, 2008 5:04 PM

xix

About the Author

■ROCKFORD LHOTKA is the author of numerous books. He is a Microsoft
Regional Director, a Microsoft Most Valuable Professional (MVP), and an
INETA speaker. He contributes to several major magazines and presents
regularly at major conferences around the world, including Microsoft Tech Ed
and VS Live. Rockford is the Principal Technology Evangelist for Magenic
(www.magenic.com), one of the nation’s premier Microsoft Gold Certified
Partners that is focused on delivering business value through applied tech-
nology. For more information, go to www.lhotka.net.

Lhotka_1019-1FRONT.fm Page xix Thursday, November 20, 2008 5:04 PM

http://www.magenic.com
http://www.lhotka.net

Lhotka_1019-1FRONT.fm Page xx Thursday, November 20, 2008 5:04 PM

xxi

About the Technical Reviewers

■JAMES MILLER is a senior architect and technical evangelist specializing in enterprise solutions. He
has worked in multiple industries and capacities in both the public and private sectors, and he has
more than 25 years of programming experience under his belt. He has embraced CSLA since 2002
and has been an active proponent of the framework in his career and on the CSLA forums. He is
currently working with an ISV, leading an international group of developers to upgrade their products to
the latest .NET technologies, practices, tools, and techniques, while espousing the virtues of OOP,
SOA, TDD, agile development, and CSLA. Jim is a proud graduate of the University of Michigan, is
Microsoft certified in both VB .NET and C# for Windows and Web-based applications, and jumped at
the chance to contribute to the next version of the CSLA framework.

Jim lives in a rural area outside Ann Arbor, Michigan, with his wife, five children, four cats, and
three dogs. He fills much of his limited free time as the head coach of his local high school’s junior
varsity boys’ lacrosse team. Jim still has an electric guitar plugged in over in a corner, a bookshelf
filled with tech books, and a comfortable chair on the deck, perfect for viewing the deer as they
meander by.

■ANDRÉS VILLANUEVA is a consultant/developer living in Argentina. After a start in IT at age 15, he
moved to the software industry, coding with Visual FoxPro and Visual Basic 6. In 2004, Andrés moved
on to .NET and hasn’t looked back. His early software experiences were in the banking industry, where
he quickly rose as a leader, helping his firm improve consistency by implementing the CSLA framework.
Since those days, he has made the leap into the consulting world and now provides software services
from his office in Argentina to various clients around the world. He is an open source software fan
and the current lead on the CslaGenerator project—an open source code-generation tool that targets
development on the CSLA framework. In his little free time, Andrés enjoys playing soccer and relaxing
with jazz music.

■JOE FALLON is the Director of Framework Development at PurchasingNet, Inc., and is responsible
for the development and implementation of the.NET Framework for PNet products. Prior to joining
PurchasingNet, he worked at Nestle Chocolate and Confection as an assistant plant engineer after
completing five years of service in the U.S. Army as a captain in the field artillery. During his tenure
at Nestle USA, he held various positions in industrial engineering and IT.

Joe graduated from the United States Military Academy at West Point, New York, and was the 1981
recipient of the General Omar Bradley Award as the Academy's no. 1 mathematics major. He has
been a Microsoft MVP for eight years in a row.

Lhotka_1019-1FRONT.fm Page xxi Thursday, November 20, 2008 5:04 PM

Lhotka_1019-1FRONT.fm Page xxii Thursday, November 20, 2008 5:04 PM

xxiii

Acknowledgments

This book is a major update to the previous edition. This book, and CSLA .NET 3.6, exist thanks to a
lot of work from many people.

I need to acknowledge the support, patience, and love from my wife and sons over the past many
years. Without you, this would have been impossible.

I’d also like to thank Greg Frankenfield and Paul Fridman for making Magenic such an awesome
place to work. The support that you and the rest of Magenic have provided has been great, and I
appreciate it very much. It is an honor to work with everyone there.

CSLA .NET 3.6 is the result of a lot of work by several Magenic colleagues, including Sergey Barskiy,
Justin Chase (now at Microsoft), Aaron Erickson, and Nermin Dibek. Jon Stonecash, Mark Steinberg,
Grant Breems, and Chris Williams contributed as well. Sandy Fougerousse created the CSLA .NET for
Silverlight logo.

A number of people outside Magenic also contributed to CSLA .NET 3.6, including Ricky Supit,
Mark Chesney, and Miguel Castro. The CSLA .NET for Windows logo was contributed by Chris Russi.

The Apress editorial team went above and beyond to help shape this book into what you see here
and to help get it done as rapidly as possible. I owe them all a debt of gratitude for their fine work.

Finally, I’d like to thank the scores of people who’ve sent me emails, posted on the forum and
my blog with messages of support and encouragement, or just plain asked when the book would
be done. The great community that has grown around these books and the CSLA .NET framework is
wonderful, and I thank you all. I hope you find this book to be as rewarding to read as it has been for
me to write.

Code well and have fun!

Lhotka_1019-1FRONT.fm Page xxiii Thursday, November 20, 2008 5:04 PM

Lhotka_1019-1FRONT.fm Page xxiv Thursday, November 20, 2008 5:04 PM

xxv

Introduction

I have a passion for frameworks. In more than 20 years as a professional developer, I’ve never worked
on a computing platform that did everything I needed it to do to build applications productively. The
Microsoft .NET platform is wonderful, but it doesn’t always do quite what I want or need. To address
those needs, I’m always looking for tools and frameworks, and sometimes I end up creating them myself.

A framework is simply the codification of an architecture or design pattern. Before you can have
a good framework, you need to have an architecture. That means you need to have a vision and a set
of goals both for the architecture and the kinds of applications it should enable.

This book is about application architecture, design, and development in .NET using object-oriented
concepts. The focus is on creating business objects and implementing them to work in various distributed
environments, including web and client/server configurations. The book makes use of a great many
.NET technologies, object-oriented design and programming concepts, and distributed architectures.

Much of the book walks through the thought process I used in designing and creating the CSLA
.NET framework to support object-oriented application development in .NET. This includes a lot of
architectural concepts and ideas. It also involves some in-depth use of advanced .NET techniques to
create the framework.

The book also shows how to make use of the framework to build a sample application with several
different interfaces. If you wish, you could skip the framework design chapters and simply make use
of the framework to build object-oriented applications.

One of my primary goals in creating the CSLA .NET framework was to simplify .NET development.
Developers using the framework in this book don’t need to worry about the details of underlying
technologies such as remoting, serialization, or reflection. All of these are embedded in the frame-
work, so that a developer using it can focus almost entirely on business logic and application design
rather than on getting caught up in “plumbing” issues.

This book is a major update to the previous edition, Expert C# 2005 Business Objects. This updated
book takes advantage of new features of .NET 3.5 and applies lessons learned by using .NET 2.0 and 3.0
over the past few years.

This book is the most recent expression of concepts I’ve been working on for more than a dozen
years. My goal all along has been to enable the productive use of object-oriented design in distrib-
uted n-tier applications. Over the years, both the technologies and my understanding and expression
of the concepts have evolved greatly.

From CSLA .NET 2.0 to 3.6
Over the past eight years, the CSLA .NET framework has become one of the most widely used devel-
opment frameworks on the Microsoft .NET platform. Since I introduced the .NET version in 2001, the
framework has grown and evolved quite a lot, in part due to changes to the .NET platform itself, and
in part due to feedback from the vibrant community surrounding CSLA .NET.

The CSLA .NET framework is a reflection of an underlying architecture I call CSLA, for component-
based, scalable, logical architecture. Over the years, I’ve received hundreds of emails from people who
have used CSLA as a basis for their own architectures, as they’ve built applications ranging from small,
single-user programs to full-blown enterprise applications that power major parts of their businesses.

Lhotka_1019-1FRONT.fm Page xxv Thursday, November 20, 2008 5:04 PM

xxvi ■IN TR O D U CT IO N

This framework addresses two primary areas of object-oriented software development:

• How to use business objects to efficiently build Windows, web, and service-oriented applications

• How to enable the use of object-oriented design in a distributed computing environment

While .NET supports the use of objects, the author of an object has to do a lot of work to fully
support important .NET concepts such as data binding. Much of the focus of CSLA .NET and of this
book is on enabling objects to fully support data binding, as well as on other important concepts
such as validation and authorization. For most users of CSLA .NET, these are the primary benefits
that the framework provides.

Many people build distributed n-tier or service-oriented applications. Using object-oriented
design and business objects in a distributed environment has its own challenges, and CSLA .NET
uses various techniques to overcome those challenges. For n-tier client/server applications, the
framework supports the idea of mobile objects—objects that actually move between computers in an
n-tier environment. Mobile objects provide a powerful way to implement object-oriented designs in
distributed environments. For service-oriented applications, CSLA .NET can be used to build both
edge applications and services. The framework is compelling for edge application creation and is
often useful for creating services or workflow activities as well.

As the .NET platform and the CSLA .NET framework have evolved, I’ve made a great many changes
and added many new features. In some cases, using the new concepts and features has required
making changes to existing business objects and user interface code. I don’t take backward compat-
ibility lightly, yet it is important to advance the concepts to keep up with both changes in technology
and my views on both object-oriented and distributed computing.

When possible, I have minimized the impact on existing code, so the transition shouldn’t be
overly complex for most applications. Although there are a few breaking changes from version 3.0
to 3.6, most existing code should upgrade easily. Even version 2.1 code should upgrade with relative
ease. Business classes written with CSLA .NET versions 1.x or 2.0 will require quite a bit of effort to
bring forward.

Over the years, I’ve received a handful of emails from people for whom CSLA .NET wasn’t
successful, but this isn’t surprising. To use CSLA .NET effectively, you must become versed in object-
oriented design, understand the concept of mobile objects, and develop a host of other skills. The
mobile object architecture has many benefits, but it’s not the simplest or the easiest to understand.

However, over that same period of time, I’ve received countless emails from people who have
had tremendous success in building applications using CSLA .NET. These applications range from
Windows to web, from small to enterprise, from retail to manufacturing to military environments. I
am amazed, pleased, and humbled by these emails and by all the cool places where CSLA .NET has
helped organizations and individuals around the world.

Designing CSLA .NET
One of the characteristics of .NET is that it often provides several ways to solve the same problem.
Some of the available approaches are better than others, but the best one for a given problem may
not be immediately obvious. Over the past eight years, I’ve spent a lot of time researching many of
these options and techniques. Although a variety have proven to work, in the end I’ve arrived at the
one that best matches my original goals.

I have a specific set of goals for the architecture and the book. These goals are important, because
they’re key to understanding why I made many of the choices I did in terms of which .NET technol-
ogies to use and how to use them. The goals are as follows:

Lhotka_1019-1FRONT.fm Page xxvi Thursday, November 20, 2008 5:04 PM

■I N T R OD U C T I ON xxvii

• To support a fully object-oriented programming model

• To allow the developer to use the architecture without jumping through hoops

• To enable high scalability

• To enable high performance

• To enable developer productivity when using business objects, including:

• Support for data binding in Windows and Web Forms

• Support for many types of UIs based on the same objects

• Management of validation rules

• Management of authorization rules

• N-level undo on a per-object basis (edit, cancel, apply)

• Integration with distributed transaction technologies such as Enterprise Services and
System.Transactions

• To support the use of object-oriented design in a distributed environment through the use of
mobile objects

• To simplify .NET by handling complex issues such as serialization, reflection, and network
communication

• To use the tools provided by Microsoft—notably IntelliSense and the Autocomplete feature in
Visual Studio .NET

Of these, saving the developer from jumping through hoops—that is, allowing him or her to do
“normal” programming—has probably had the largest impact. To meet all these goals without a
framework, the developer would have to write a lot of extra code to track business rules, implement
n-level undo, and support serialization of object data. All this code is important, but it adds nothing
to the business value of the application.

Fortunately, .NET offers some powerful technologies that help to reduce or eliminate much of
this “plumbing” code. If those technologies are then wrapped in a framework, a business developer
shouldn’t have to deal with them at all. In several cases, this goal of simplicity drove my architectural
decisions. The end result is that the developer can, for the most part, simply write a standardized C# class
and have it automatically enjoy all the benefits of n-level undo, business rule tracking, and so forth.

It has taken a great deal of time and effort, but I’ve certainly enjoyed putting this architecture
and this book together, and I hope that you will find both valuable during the development of your
own applications.

Framework License
LICENSE AND WARRANTY
The CSLA .NET framework is Copyright 2008 by Rockford Lhotka.
You can use this Software for any noncommercial purpose, including distributing derivative works.
You can use this Software for any commercial purpose other than you may not use it, in whole or in
part, to create a commercial framework product.
In short, you can use CSLA .NET and modify it to create other commercial or business software, you
just can’t take the framework itself, modify it and sell it as a product.
In return, the owner simply requires that you agree:
This Software License Agreement (“Agreement”) is effective upon your use of CSLA .NET (“Software”).

Lhotka_1019-1FRONT.fm Page xxvii Thursday, November 20, 2008 5:04 PM

xxviii ■IN TR O D U CT IO N

1. Ownership.
The CSLA .NET framework is Copyright 2008 by Rockford Lhotka, Eden Prairie, MN, USA.

2. Copyright Notice.
You must not remove any copyright notices from the Software source code.

3. License.
The owner hereby grants a perpetual, non-exclusive, limited license to use the Software as
set forth in this Agreement.

4. Source Code Distribution.
If you distribute the Software in source code form you must do so only under this License
(i.e. you must include a complete copy of this License with your distribution).

5. Binary or Object Distribution.
You may distribute the Software in binary or object form with no requirement to display
copyright notices to the end user. The binary or object form must retain the copyright notices
included in the Software source code.

6. Restrictions.
You may not sell the Software. If you create a software development framework based on the
Software as a derivative work, you may not sell that derivative work. This does not restrict the
use of the Software for creation of other types of non-commercial or commercial applications or
derivative works.

7. Disclaimer of Warranty.
The Software comes “as is”, with no warranties. None whatsoever. This means no express,
implied, statutory or other warranty, including without limitation, warranties of merchant-
ability or fitness for a particular purpose, noninfringement, or the presence or absence of
errors, whether or not discoverable. Also, you must pass this disclaimer on whenever you dis-
tribute the Software.

8. Liability.
Neither Rockford Lhotka nor any contributor to the Software will be liable for any of those
types of damages known as indirect, special, consequential, incidental, punitive or exemplary
related to the Software or this License, to the maximum extent the law permits, no matter
what legal theory it’s based on. Also, you must pass this limitation of liability on whenever
you distribute the Software.

9. Patents.
If you sue anyone over patents that you think may apply to the Software for a person’s use of
the Software, your license to the Software ends automatically. The patent rights, if any, licensed
hereunder only apply to the Software, not to any derivative works you make.

10. Termination.
Your rights under this License end automatically if you breach it in any way. Rockford Lhotka
reserves the right to release the Software under different license terms or to stop distributing
the Software at any time. Such an election will not serve to withdraw this Agreement, and this
Agreement will continue in full force and effect unless terminated as stated above.

11. Governing Law.
This Agreement shall be construed and enforced in accordance with the laws of the state of
Minnesota, USA.

12. No Assignment.
Neither this Agreement nor any interest in this Agreement may be assigned by Licensee
without the prior express written approval of Developer.

Lhotka_1019-1FRONT.fm Page xxviii Thursday, November 20, 2008 5:04 PM

■I N T R OD U C T I ON xxix

13. Final Agreement.
This Agreement terminates and supersedes all prior understandings or agreements on the
subject matter hereof. This Agreement may be modified only by a further writing that is duly
executed by both parties.

14. Severability.
If any term of this Agreement is held by a court of competent jurisdiction to be invalid or
unenforceable, then this Agreement, including all of the remaining terms, will remain in full
force and effect as if such invalid or unenforceable term had never been included.

15. Headings.
Headings used in this Agreement are provided for convenience only and shall not be used to
construe meaning or intent.

What You Need to Use This Book
The code in this book has been verified to work against Microsoft Visual Studio 2008 Professional
Edition SP1 and against version 3.5 SP1 of the .NET Framework. The database is a SQL Server Express
database, which is included with Visual Studio 2008 Professional. The Enterprise version of Visual
Studio 2008 and the full version of SQL Server are useful but not necessary.

In order to run the tools and products listed previously, you’ll need at least one PC with Windows
Vista, Windows XP SP2 (or higher), Windows Server 2003, or Windows Server 2008 installed. To test
CSLA .NET’s support for multiple physical tiers, of course, you’ll need an additional PC (or you can
use Virtual PC or a similar tool) for each tier that you wish to add.

How This Book Is Structured
This book covers the thought process behind the CSLA .NET for Windows version 3.6 architecture. It
describes the construction of the framework that supports the architecture, and it demonstrates how
to create WPF, Web Forms, and WCF service applications based on business objects written using
the framework.

If you are reading this book to understand the process of designing and constructing a develop-
ment framework for the .NET platform, then you should read all chapters. If you are reading this book to
understand how to use the CSLA .NET framework and are less interested in how the framework itself
is designed and implemented, then you should read Chapters 1 through 5 and Chapters 17 through 21.

Chapter 1 introduces some of the concepts surrounding distributed architectures, including
logical and physical architectures, business objects, and distributed objects. Perhaps more importantly,
this chapter sets the stage, showing the thought process that results in the remainder of the book.

Chapter 2 takes the architecture described at the end of Chapter 1 and uses it as the starting
point for a code framework that enables the goals described earlier. By the end of the chapter, you’ll
have seen the design process for the objects that will be implemented in Chapters 6 through 16; but
before that, there’s some other business to attend to.

In Chapter 3, I discuss the basics of responsibility-driven object-oriented design. As an example,
this chapter lays out the requirements and design for a sample application.

Chapters 4 and 5 discuss how to use each of the primary base classes in the CSLA .NET frame-
work to create your own business objects. I discuss in detail the object-oriented stereotypes supported
by the CSLA .NET base classes, along with the code structure for editable and read-only objects, and
collections and name/value lists.

Chapters 6 through 16 are all about the construction of the CSLA .NET framework itself. If you’re
interested in the code behind property declarations, validation rules, authorization rules, n-level
undo, mobile object support, and object persistence, then these are the chapters for you. In addition,

Lhotka_1019-1FRONT.fm Page xxix Thursday, November 20, 2008 5:04 PM

xxx ■IN TR O D U CT IO N

they make use of some of the more advanced and interesting parts of the .NET Framework, including
data binding, serialization, reflection, dynamic method invocation, WCF, .NET security, Enterprise
Services, System.Transactions, strongly named assemblies, dynamically loaded assemblies, applica-
tion configuration files, and more.

Chapters 17 and 18 create the business objects for the application. These chapters illustrate how
you can use the framework to create a powerful set of business objects rapidly and easily for an appli-
cation. The end result is a set of objects that not only model business responsibilities, but also support
data binding, validation, authorization, n-level undo, and various physical configurations that can
optimize performance, scalability, security, and fault tolerance, as discussed in Chapter 1.

Chapter 19 demonstrates how to create a WPF interface to the business objects. Chapter 20 covers
the creation of an ASP.NET Web Forms interface with comparable functionality.

Chapter 21 shows how to build WCF services using business objects. This approach enables
service-oriented development by providing a programmatic interface to the business objects that
any web service or WCF client can call.

By the end, you’ll have a framework that supports object-oriented application design in a prac-
tical, pragmatic manner. The framework implements a logical model that you can deploy in various
physical configurations to optimally support Windows, web, and XML service clients.

Downloading the Code
The code that reflects the contents of this book is available in the Source Code/Download area of the
Apress website (www.apress.com). For the latest version of the framework and the example applica-
tion, visit www.lhotka.net/cslanet/download.aspx.

Contacting the Author
You may reach Rockford Lhotka on his website, www.lhotka.net, which contains his blog, information
about the framework and book, and his contact information.

Lhotka_1019-1FRONT.fm Page xxx Thursday, November 20, 2008 5:04 PM

http://www.apress.com
http://www.lhotka.net/cslanet/download.aspx
http://www.lhotka.net

1

■ ■ ■

C H A P T E R 1

Distributed Architecture

Object-oriented design and programming are big topics—entire books are devoted solely to the
process of object-oriented design or to using object-oriented programming in various languages
and on various programming platforms. My focus in this book isn’t to teach the basics of object-
oriented design or programming, but rather to show how you may apply them to the creation of
distributed .NET applications.

It can be difficult to apply object-oriented design and programming effectively in a physically
distributed environment. This chapter is intended to provide a good understanding of the key issues
surrounding distributed computing as it relates to object-oriented development. I’ll cover a number
of topics, including the following:

• How logical n-layer architectures help address reuse and maintainability

• How physical n-tier architectures impact performance, scalability, security, and fault tolerance

• The difference between data-centric and object-oriented application models

• How object-oriented models help increase code reuse and application maintainability

• The effective use of objects in a distributed environment, including the concepts of anchored
and mobile objects

• The relationship between an architecture and a framework

This chapter provides an introduction to the concepts and issues surrounding distributed
object-oriented architecture. Then, throughout this book, I’ll be exploring an n-layer architecture
that may be physically distributed across multiple machines. I’ll show how to use object-oriented
design and programming techniques to implement a framework supporting this architecture. I’ll
create a sample application that demonstrates how the architecture and the framework support
development efforts.

Logical and Physical Architecture
In today’s world, an object-oriented application must be designed to work in a variety of physical
configurations. Even the term application has become increasingly blurry due to all the hype around
service-oriented architecture (SOA). If you aren’t careful, you can end up building applications by
combining several applications, which is obviously confusing.

When I use the term application in this book, I’m referring to a set of code, objects, or components
that’s considered to be part of a single, logical unit. Even if parts of the application are in different
.NET assemblies or installed on different machines, all the code will be viewed as being part of a
singular application.

Lhotka_1019-1C01.fm Page 1 Wednesday, October 22, 2008 9:48 AM

2 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

This definition works well when describing most traditional application models, such as single-
tier or 2-tier rich client applications, n-tier smart client applications, web applications, and so forth.
In all those cases, the application consists of a set of objects or components that are designed to work
together within the context of the application.

You can contrast this with an SOA model, where multiple services (each essentially a separate
application) interact through message-based communication. In an SOA model, the idea is to build
an enterprise system that is composed of applications and services. In this context, both applications
and services are stand-alone, autonomous units of functionality, which means they both meet the
definition of an application. Confusingly enough, this means a service is merely an application that
has an XML interface instead of an HTML or graphical interface.

If you’re thinking about service-oriented systems as you read this book, the term application
means one of two things. First, it may refer to a service implementation. Second, it may refer to an
application on the edge of the system that allows users to interact with the system. Edge applications
are much like traditional applications, except they typically interact with services instead of data-
bases for retrieving and storing data.

You can contrast the traditional and SOA models with a workflow model, which you’re likely to
encounter when using Windows Workflow Foundation (WF). In this environment, an application is
often implemented (in whole or part) in the form of a workflow. However, the workflow itself merely
orchestrates a set of activities, and each activity should be an autonomous, stand-alone unit of func-
tionality. This means that an activity must meet the definition of an application. An activity is merely
an application that has no real user interface beyond the data-binding infrastructure built into WF.

Traditional, service-oriented and workflow applications might run on a single machine. However,
it’s very likely that they will run on multiple machines, such as a web server or a smart client and an
application server. Given these varied physical environments, you’re faced with the following questions:

• Where do the objects reside?

• Are the objects designed to maintain state, or should they be stateless?

• How is object-relational mapping handled when retrieving or storing data in the database?

• How are database transactions managed?

Before discussing some answers to these questions, it’s important that you fully understand the
difference between a physical architecture and a logical architecture. After defining these terms, I’ll
define objects and mobile objects, and show you how they fit into the architectural discussion.

When most people talk about n-tier applications, they’re talking about physical models in which
the application is spread across multiple machines with different functions: a client, a web server, an
application server, a database server, and so on. And this isn’t a misconception—these are indeed
n-tier systems. The problem is that many people tend to assume there’s a one-to-one relationship
between the layers (tiers) in a logical model and the tiers in a physical model, when in fact that’s not
always true.

A physical n-tier architecture is quite different from a logical n-layer architecture. An n-layer
architecture has nothing to do with the number of machines or network hops involved in running
the application. Rather, a logical architecture is all about separating different types of functionality.
The most common logical separation is into an Interface layer, a Business layer, and a Data layer.
These may exist on a single machine or on three separate machines—the logical architecture doesn’t
define those details.

■Note There is a relationship between an application’s logical and physical architectures: the logical architecture
always has at least as many layers as the physical architecture has tiers. There may be more logical layers than
physical tiers (because one physical tier can contain several logical layers), but never fewer.

Lhotka_1019-1C01.fm Page 2 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 3

The sad reality is that many applications have no clearly defined logical architecture. Often the
logical architecture merely defaults to the number of physical tiers. This lack of a formal, logical design
causes problems because it reduces flexibility. If a system is designed to operate in two or three phys-
ical tiers, then changing the number of physical tiers at a later date is typically very difficult. However,
if you start by creating a logical architecture of three layers, you can switch more easily between one,
two, or three physical tiers later on.

Additionally, having clean separation between these layers makes your application more main-
tainable, because changing one layer often has minimal impact on the other layers. Nowhere is this
more true than with the Interface layer (sometimes called the UI or Presentation layer), where the
ability to switch between Windows Presentation Foundation (WPF), Windows Forms, Web Forms,
ASP.NET MVC, and workflow and service-based interfaces is critical.

The flexibility to choose your physical architecture is important because the benefits gained by
employing a physical n-tier architecture are different from those gained by employing a logical n-
layer architecture. A properly designed logical n-layer architecture provides the following benefits:

• Logically organized code

• Easier maintenance

• Better reuse of code

• Better team-development experience

• Higher clarity in coding

On the other hand, a properly chosen physical n-tier architecture can provide the following
benefits:

• Performance

• Scalability

• Fault tolerance

• Security

It goes almost without saying that if the physical or logical architecture of an application is
designed poorly, there will be a risk of damaging the things that would have been improved had the
job been done well.

N-Tier and SOA
It is important to realize that a physical service-oriented architecture is not the same as an n-tier
architecture. In fact, the two concepts can be complementary. It is also important to know that the
concept of a logical n-layer architecture is the same in SOA as in any other type of application model.

In logical n-layer models, a service should have the same layers as any other application: Inter-
face, Business, and Data. In a logical n-layer model, the Interface layer consists of XML messages, but
that’s not a lot different from the HTML used in a web-based Interface layer. The Business layer is
much the same as in any other application; it contains the business logic and behaviors that make
the service useful. The data layer is also much the same as in any other application, in that it stores
and retrieves data as necessary.

However, the physical n-tier model might not appear to translate to the SOA world at all. Some
people would say that SOA makes n-tier concepts totally obsolete, but I disagree. SOA has an important
set of goals around loose coupling, reuse of functionality, and open communication. An n-tier client/
server architecture has a complementary set of goals around performance, avoiding duplication of
code, and targeted functionality. The reality is that both models are useful, and they complement
each other.

Lhotka_1019-1C01.fm Page 3 Wednesday, October 22, 2008 9:48 AM

4 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

For example, you might use a service-oriented model to create a service that is available on the
Internet. However, the service implementation might be n-tier, with the service interface on the web
server and parts of the business implementation running on a separate application server. The result
is a reusable service that enjoys high performance and security and avoids duplication of code.

Complexity
Experienced designers and developers often view a good n-tier architecture as a way of simplifying
an application and reducing complexity, but this isn’t necessarily the case. It’s important to recog-
nize that n-tier designs are typically more complex than single-tier designs. Even novice developers
can visualize the design of a form or a page that retrieves data from a file and displays it to the user,
but novice developers often struggle with 2-tier designs and are hopelessly lost in an n-tier environment.

With sufficient experience, architects and developers do typically find that the organization and
structure of an n-tier model reduces complexity for large applications. However, even a veteran n-tier
developer will often find it easier to avoid n-tier models when creating a simple form to display some
simple data.

The point here is that n-tier architectures only simplify the process for large applications or
complex environments. They can easily complicate matters if all you’re trying to do is create a small
application with a few forms that will be running on someone’s desktop computer. (Of course, if that
desktop computer is one of hundreds or thousands in a global organization, then the environment
may be so complex that an n-tier solution provides simplicity.)

In short, n-tier architectures help to decrease or manage complexity when any of these are true:

• The application is large or complex.

• The application is one of many similar or related applications that, when combined, may be
large or complex.

• The environment (including deployment, support, and other factors) is large or complex.

On the other hand, n-tier architectures can increase complexity when all of these are true:

• The application is small or relatively simple.

• The application isn’t part of a larger group of enterprise applications that are similar or related.

• The environment isn’t complex.

Something to remember is that even a small application is likely to grow, and even a simple
environment often becomes more complex over time. The more successful your application, the
more likely that one or both of these will happen. If you find yourself on the edge of choosing an
n-tier solution, it’s typically best to go with it. You should expect and plan for growth.

This discussion illustrates why n-tier applications are viewed as relatively complex. A lot of factors—
both technical and nontechnical—must be taken into account. Unfortunately, it isn’t possible to say
definitively when n-tier does and doesn’t fit. In the end, it’s a judgment call that you, as an applica-
tion architect, must make, based on the factors that affect your particular organization, environment,
and development team.

Relationship Between Logical and Physical Models
Some architectures attempt to merge logical n-layer and physical n-tier concepts. Such mergers
seem attractive because they seem simpler and more straightforward, but typically they aren’t good
in practice—they can lead people to design applications using a logical or physical architecture that
isn’t best suited to their needs.

Lhotka_1019-1C01.fm Page 4 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 5

The Logical Model

When you’re creating an application, it’s important to start with a logical architecture that clarifies
the roles of all components, separates functionality so that a team can work together effectively, and
simplifies overall maintenance of the system. The logical architecture must also include enough
layers so that you have flexibility in choosing a physical architecture later on.

Traditionally, you would devise at least a 3-layer logical model that separates the interface, the
business logic, and the data-management portions of the application. Today that’s rarely sufficient,
because the “interface” layer is often physically split into two parts (browser and web server), and the
“logic” layer is often physically split between a client or web server and an application server. Addi-
tionally, various application models have been used to break the traditional Business layer into multiple
parts—model-view-controller (MVC) and facade-data-logic being two of the most popular at the
moment.

This means that the logical layers are governed by the following rules:

• The logical architecture includes layers in order to organize components into discrete roles.

• The logical architecture must have at least as many layers as the anticipated physical deploy-
ment will have tiers.

Following these rules, most modern applications have four to six logical layers. As you’ll see, the
architecture used in this book includes five logical layers.

Cross-Layer Communication

Just because an application is organized into layers doesn’t mean those layers can be deployed arbi-
trarily on different tiers. The code in one layer communicates with the layer immediately above or
below it in the architecture. If you don’t design that communication properly, it may be impossible
to put a network (tier) boundary between the layers.

For example, the boundary between the Business layer and the Data layer is often highly opti-
mized. Most applications have a network boundary between the Data layer and the rest of the
application, so modern data access technologies are good at optimizing cross-network communication
in this scenario.

The boundary between the Interface layer and the Business layer is often not optimized for this
purpose. Many applications make use of data binding, which is a “chatty” technology involving
many property, method, and event calls between these two layers. The result is that it is often
impractical and undesirable to put a network boundary between these layers.

Not all layer boundaries should be designed to enable a tier boundary. You should design an
architecture up front to enable the potential for tier boundaries in certain locations and to disallow
them in other cases. If done properly, the result is a balance between flexibility and capability.

The Physical Model

By ensuring that the logical model has enough layers to provide flexibility, you can configure your
application into an appropriate physical architecture that will depend on your performance, scalability,
fault tolerance, and security requirements. The more physical tiers included, the worse the perfor-
mance will be; however, there is the potential to increase scalability, security, and/or fault tolerance.

Performance and Scalability

The more physical tiers there are, the worse the performance? That doesn’t sound right, but if you
think it through, it makes perfect sense: performance is the speed at which an application responds
to a user. This is different from scalability, which is a measure of how performance changes as load
(such as increased users) is added to an application. To get optimal performance—that is, the fastest

Lhotka_1019-1C01.fm Page 5 Wednesday, October 22, 2008 9:48 AM

6 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

possible response time for a given user—the ideal solution is to put the client, the logic, and the data
on the user’s machine. This means no network hops, no network latency, and no contention with
other users.

If you decide that you need to support multiple users, you might consider putting application
data on a central file server. (This is typical with Access and dBASE systems, for example.) However,
this immediately affects performance because of contention on the data file. Furthermore, data access
now takes place across the network, which means you’ve introduced network latency and network
contention, too. To overcome this problem, you could put the data into a managed environment
such as SQL Server or Oracle. This will help to reduce data contention, but you’re still stuck with the
network latency and contention problems. Although improved, performance for a given user is still
nowhere near what it was when everything ran directly on that user’s computer.

Even with a central database server, scalability is limited. Clients are still in contention for the
resources of the server, with each client opening and closing connections, doing queries and updates,
and constantly demanding the CPU, memory, and disk resources that other clients are using. You
can reduce this load by shifting some of the work to another server. An application server, possibly
running Enterprise Services or Internet Information Services (IIS), can provide database connection
pooling to minimize the number of database connections that are opened and closed. It can also perform
some data processing, filtering, and even caching to offload some work from the database server.

■Note It is important to realize that modern database servers can often easily handle hundreds of concurrent users
in a 2-tier architecture. For most applications, scalability is not a good reason to move from a 2- to 3-tier model.

These additional steps provide a dramatic boost to scalability, but again at the cost of perfor-
mance. The user’s request now has two network hops, potentially resulting in double the network
latency and contention. For a single user, the system gets slower; however, it is able to handle many
times more users with acceptable performance levels.

In the end, the application is constrained by the most limiting resource. This is typically the
speed of transferring data across the network—but if the database or application server is underpow-
ered, it can become so slow that data transfer across the network won’t be an issue. Likewise, if the
application does extremely intense calculations and the client machines are slow, then the cost of
transferring the data across the network to a relatively idle high-speed server can make sense.

Security

Security is a broad and complex topic, but by narrowing the discussion solely to consider how it’s
affected by physical n-tier decisions, it becomes more approachable. The discussion is no longer
about authentication or authorization as much as it is about controlling physical access to the machines
on which portions of the application will run. The number of physical tiers in an application has no
impact on whether users can be authenticated or authorized, but physical tiers can be used to increase
or decrease physical access to the machines on which the application executes.

For instance, in a 2-tier Windows Forms or ASP.NET application, the machine running the
interface code must have credentials to access the database server. Switching to a 3-tier model in
which the data access code runs on an application server means that the machine running the inter-
face code no longer needs those credentials, potentially making the system more secure.

Security requirements vary radically based on the environment and the requirements of your
application. A Windows Forms application deployed only to internal users may need relatively little
security, but an ASP.NET application exposed to anyone on the Internet may need extensive security.

To a large degree, security is all about surface area: how many points of attack are exposed from
the application? The surface area can be defined in terms of domains of trust.

Lhotka_1019-1C01.fm Page 6 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 7

Security and Internal Applications Internal applications are totally encapsulated within a domain of
trust: the client and all servers are running in a trusted environment. This means that virtually every
part of the application is exposed to a potential hacker (assuming that the hacker can gain physical
access to a machine on the network in the first place). In a typical organization, hackers can attack
the client workstation, the web server, the application server, and the database server if they so choose.
Rarely are there firewalls or other major security roadblocks within the context of an organization’s
local area network (LAN).

■Note Obviously, there is security. It is common to use Windows domain or Active Directory security on the
clients and servers, but there’s nothing stopping someone from attempting to communicate directly with any of
these machines. Within a typical LAN, users can usually connect through the network to all machines due to a lack
of firewall or physical barriers.

Many internal applications are coming under increasing security requirements due to govern-
ment regulations and other business pressures. The idea of having the database credentials on a client
workstation is rapidly becoming unacceptable, and this is driving organizations to adopt a 3-tier
architecture simply to move those credentials to a separate application server. This is an easy way to
quickly improve an application’s security.

Of course, the result is that the clients have the credentials to the application server. If they know
how to find and call the application server’s services, they can use an application’s own services to
access its servers in invalid ways. This problem was particularly acute with DCOM, because there
were browsers that end users could use to locate and invoke server-side services. Thanks to COM,
users could use Microsoft Excel to locate and interact with server-side COM components, thereby
bypassing the portions of the application that were supposed to run on the client. This meant that the
applications were vulnerable to power users who could use server-side components in ways their
designers never imagined.

This problem is rapidly transferring to XML-based services, as Microsoft Office and other end-
user applications start to allow power users to call XML-based services from within macros. I expect
to find power users calling XML-based services in unexpected ways in the very near future.

The services in this book are designed to prevent casual usage of the objects, even if a power
user were to gain access to the service from his application.

In summary, security has replaced scalability as the primary driver for moving from 2- to 3-tier
architectures. But you must be careful when designing your services to ensure you haven’t simply
shifted the problem down a level.

Security and External Applications For external applications, things are entirely different. This is really
where SOA comes into play. Service orientation (SO) is all about assembling a system that spans
trust boundaries. When part of your system is deployed outside your own network, it certainly crosses at
least a security (trust) boundary.

In a client/server model, this would be viewed as a minimum of two tiers, since the client work-
station is physically separate from any machines running behind the firewall. But really, SO offers a
better way to look at the problem: there are two totally separate applications. The client runs one
application, and another application runs on your server. These two applications communicate with
each other through clearly defined messages, and neither application is privy to the internal imple-
mentation of the other.

This provides a good way to deal with not only the security trust boundary, but also with the
semantic trust boundary. What I mean by this is that the server application assumes that any data
coming from the client application is flawed: either maliciously or due to a bug or oversight in the
client. Even if the client has security access to interact with your server, the server application cannot
assume that the semantic meaning of the data coming from the client is valid.

Lhotka_1019-1C01.fm Page 7 Wednesday, October 22, 2008 9:48 AM

8 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

In short, because the client workstations are outside the domain of trust, you should assume
that they’re compromised and potentially malicious. You should assume that any code running on
those clients will run incorrectly or not at all; in other words, the client input must be completely vali-
dated as it enters the domain of trust, even if the client includes code to do the validation.

■Note I’ve had people tell me that this is an overly paranoid attitude, but I’ve been burned too many times: any
time an interface is exposed (Windows, web, XML, and so on) so that clients outside your control can use it, you
should assume that the interface will be misused. Often, this misuse is unintentional—for example, someone may
write a buggy macro to automate data entry. That’s no different than if they made a typo while entering the data by
hand, but user-entered data is always validated before being accepted by an application. The same must be true for
automated data entry as well, or your application will fail.

This scenario occurs in three main architectures: Windows smart clients, rich Internet applica-
tions (RIAs), and SOA systems.

If you deploy a WPF or Windows Forms client application to external workstations, you should
design it as a stand-alone application that calls your server application through services. Chapter 21
shows how you can do this with the object-oriented concepts in this book.

You may create an RIA with Asynchronous JavaScript and XML (Ajax) technologies or newer
technologies such as Silverlight. In either case, the RIA often validates data or otherwise provides a
richer experience for the user, but your server code should assume that the RIA didn’t do anything it
was supposed to. It is far too easy for a user to subvert your client-side JavaScript or otherwise bypass
client-side processing—as such, nothing running in an RIA can be trusted. The code running in the
browser should be viewed as a separate application that is not trusted by the server application.

Service-oriented systems imply that there’s one or more (potentially unknown) applications out
there consuming your services. The very nature of SOA means that you have no control over those
applications, so it would be foolish to assume they’ll provide valid input to your services. A healthy
dose of paranoia is critical when building any service for an SOA system.

As you’ll see, you can use the object-oriented concepts and techniques shown in this book to
create smart client applications that call services on your servers. You can use the same concepts to
create the services themselves. You can also use them to create web applications ranging from simple
Web Forms to Ajax to Silverlight.

Fault Tolerance

You can achieve fault tolerance by identifying points of failure and providing redundancy. Typically,
applications have numerous points of failure. Some of the most obvious are as follows:

• The network feed to your user’s buildings

• The power feed to your user’s buildings

• The network feed and power feed to your data center

• The primary DNS host servicing your domain

• Your firewall, routers, switches, etc.

• Your web server

• Your application server

• Your database server

• Your internal LAN

Lhotka_1019-1C01.fm Page 8 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 9

In order to achieve high levels of fault tolerance, you need to ensure that if any one of these fails,
some system will instantly kick in and fill the void. If the data center power goes out, a generator will
kick in. If a bulldozer cuts your network feed, you’ll need to have a second network feed coming in
from the other side of the building, and so forth.

Considering some of the larger and more well-known outages of major websites in the past couple
of years, it’s worth noting that most of them occurred due to construction work cutting network or
power feeds, or because their ISP or external DNS provider went down or was attacked. That said,
there are plenty of examples of websites going down due to local equipment failure. The reason why
the high-profile failures are seldom due to this type of problem is because large sites make sure to
provide redundancy in these areas.

Clearly, adding redundant power, network, ISP, DNS, or LAN hardware will have little impact on
application architecture. Adding redundant servers, on the other hand, will affect the n-tier applica-
tion architecture—or at least the application design. Each time you add a physical tier, you need to
ensure that you add redundancy to the servers in that tier. Thus, adding a fault-tolerant physical tier
always means adding at least two servers to the infrastructure.

The more physical tiers, the more redundant servers there are to configure and maintain. This
is why fault tolerance is typically expensive to achieve.

Not only that, but to achieve fault tolerance through redundancy, all servers in a tier must also
be logically identical at all times. For example, at no time can a user be tied to a specific server, so no
single server can ever maintain any user-specific information. As soon as a user is tied to a specific
server, that server becomes a point of failure for that user. The result is that the user loses fault tolerance.

Achieving a high degree of fault tolerance isn’t easy. It requires a great deal of thought and effort
to locate all points of failure and make them redundant. Having fewer physical tiers in an architec-
ture can assist in this process by reducing the number of tiers that must be made redundant.

To summarize, the number of physical tiers in an architecture is a trade-off between performance,
scalability, security, and fault tolerance. Furthermore, the optimal configuration for a web applica-
tion isn’t the same as the one for an intranet application with smart client machines. If an application
framework is to have any hope of broad appeal, it needs flexibility in the physical architecture so that
it can support web and smart clients effectively, as well as provide both with optimal performance
and scalability. Beyond that, it needs to work well in a service-oriented environment to create both
client and server applications that interact through message-based communication.

A 5-Layer Logical Architecture
This book will explore a 5-layer logical architecture and show how you can implement it using object-
oriented concepts. Once you learn how to create the logical architecture, you’ll discover how to
configure it into various physical architectures in order to achieve optimal results for WPF, Windows
Forms, ASP.NET, and service-oriented and workflow interfaces.

■Note If you get any group of architects into a room and ask them to describe their ideal architecture, each one
will come up with a different answer. I make no pretense that this architecture is the only one out there, nor do I
intend to discuss all the possible options. My aim here is to present a coherent, distributed, object-oriented archi-
tecture that supports all these different interfaces.

In the framework used in this book, the logical architecture comprises the five layers shown in
Figure 1-1.

Lhotka_1019-1C01.fm Page 9 Wednesday, October 22, 2008 9:48 AM

10 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Figure 1-1. The 5-layer logical architecture

Remember that the benefit of a logical n-layer architecture is the separation of functionality into
clearly defined roles or groups, in order to increase clarity and maintainability. Let’s define each of
the layers more carefully.

Interface

The Interface layer is often referred to as the UI or Presentation layer. I am using the more generic
term Interface, because this architecture supports service-oriented applications that have no user,
as well as WPF, Web Forms, Windows Forms, and other application types that do have a user.

At first, it may not be clear why I’ve separated Interface from Interface Control. Certainly, from
a smart client perspective, the interface and the control of the interface are one and the same: they
are graphical user interface (GUI) forms with which the user can interact.

From a web perspective, the distinction is probably quite clear. Typically, the browser merely
provides an interface for the user, displaying data and collecting user input. In that case, all of the
actual interaction logic—the code written to control the interface, to generate the output, or to interpret
user input—runs on the web server (or mainframe) and not on the client machine.

Of course, in today’s world, the browser might run Ajax or Silverlight. But as discussed earlier in
the chapter, none of this code can be trusted. It must be viewed as being a separate application that
interacts with your application as it runs on the server. So even with code running in the browser,
your application’s interface code is running on your web server.

The same is true for an SOA system, where the consuming application is clearly separate and
thus can’t be trusted. Your application’s interface is composed of XML messages, and your interface
control code (the service implementation) is running on your server.

Knowing that the logical model must support both smart and web-based clients (along with even
more limited clients, such as cell phones or other mobile devices), it’s important to recognize that in
many cases, the interface will be physically separate from the interface control logic. To accommo-
date this separation, you need to design the applications around this concept.

■Note The types of interface technologies continue to multiply, and each comes with a new and relatively incom-
patible technology with which you must work. It’s virtually impossible to create a programming framework that entirely
abstracts interface concepts. Because of this, the architecture and framework will merely support the creation of varied
interfaces, not automate their creation. Instead, the focus will be on simplifying the other layers in the architecture,
for which technology is more stable.

Interface Control

Now that I’ve addressed the distinction between the Interface and the Interface Control layers, the
latter’s purpose is probably fairly clear. This layer includes the logic to decide what the user sees, the

Lhotka_1019-1C01.fm Page 10 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 11

navigation paths, and how to interpret user input. In a WPF or Windows Forms application, this is
the code behind the form. Actually, it’s the code behind the form in a Web Forms application, too, but
here it can also include code that resides in server-side controls; logically, that’s part of the same layer.

In an ASP.NET MVC application, the view and controller are both part of the Interface Control
layer. The HTML, JavaScript, and other content produced by the view comprise the Interface. Finally, the
Business layer is the model.

In many applications, the interface control code is very complex. For starters, it must respond
to the user’s requests in a nonlinear fashion. (It is difficult to control how users might click controls
or enter or leave the forms or pages.) The interface control code must also interact with logic in the
Business layer to validate user input, to perform any processing that’s required, or to do any other
business-related action.

Basically, the goal is to write interface control code that accepts user input and then provides it
to the Business layer, where it can be validated, processed, or otherwise manipulated. The interface
control code must then respond to the user by displaying the results of its interaction with the Business
layer. Was the user’s data valid? If not, what was wrong with it? And so forth.

In .NET, the interface control code is almost always event-driven. WPF and Windows Forms code is
all about responding to events as the user types and clicks the form, and ASP.NET code is all about
responding to events as the browser round-trips the user’s actions back to the web server. Although
WPF, Windows Forms, and ASP.NET technologies make heavy use of objects, the code that is typi-
cally written for the Interface Control isn’t object-oriented as much as procedural and event-based.

That said, there’s great value in creating frameworks and reusable components that support a
particular type of interface. When creating a WPF or Windows Forms interface, developers can make
use of numerous object-oriented techniques to simplify the creation, display, and management of
the forms. When creating a web interface, developers can use ASP.NET master pages, user controls,
and custom server controls to provide reusable components that simplify page development.

Because there’s such a wide variety of interface styles and approaches, I won’t spend much time
dealing with interface development or frameworks in this book. Instead, I’ll focus on simplifying the
creation of the business logic and data access layers, which are required for any type of interface.

Business Logic

Business logic includes all business rules, data validation, manipulation, processing, and authoriza-
tion for the application. One definition from Microsoft, which has since been taking down from
MSDN, is as follows: “The combination of validation edits, login verifications, database lookups,
policies, and algorithmic transformations that constitute an enterprise’s way of doing business.”

■Note Again, while you may implement validation logic to run in a browser or other external client, you can’t trust
that code. You must view the logic that runs under your control in the Business layer as being the only real validation logic.

The business logic must reside in a separate layer from the interface code. While you may choose to
duplicate some of this logic in your interface control code to provide a richer user experience, the
Business layer must implement all the business logic, because it is the only point of central control
and maintainability.

I believe that this particular separation between the responsibilities of the Business layer and
Interface Control layer is absolutely critical if you want to gain the benefits of increased maintain-
ability and reusability. This is because any business logic that creeps into the Interface or Interface
Control layers will reside within a specific interface and will not be available to any other interfaces
that you might create later.

Any business logic written into, say, a WPF interface is useless to a web or service interface, and
must therefore be written into those as well. This instantly leads to duplicated code, which is a

Lhotka_1019-1C01.fm Page 11 Wednesday, October 22, 2008 9:48 AM

12 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

maintenance nightmare. You can separate these two layers through techniques such as clearly defined
procedural models or object-oriented design and programming. In this book, I’ll show how to use
object-oriented concepts to help separate the business logic from the interface.

It is important to recognize that a typical application will use business logic in a couple of different
ways. Most applications have some user interaction, such as forms in which the user views or enters
data into the system. Most applications also have some very non-interactive processes, such as posting
invoices, relieving inventory, or calculating insurance rates.

Ideally, the Business layer will be used in a very rich and interactive way when the user is entering
data directly into the application. For instance, when a user is entering a sales order, she expects that
the validation of data, the calculation of tax, and the subtotaling of the order will happen literally as
she types. This implies that the Business layer can be physically deployed on the client workstation
or on the web server to provide the high levels of interactivity users desire.

To support non-interactive processes, on the other hand, the Business layer often needs to be
deployed onto an application server, or as close to the database server as possible. For instance, the
calculation of an insurance rate can involve extensive database lookups along with quite a bit of
complex business processing. This is the kind of thing that should occur behind the scenes on a
server, not on a user’s desktop.

Fortunately, it is possible to deploy a logical layer on multiple physical tiers. Doing this does
require some up-front planning and technical design, as you’ll see in Chapter 2. The end result,
however, is a single Business layer that is potentially deployed on both the client workstation (or web
server) and on the application server. This allows the application to provide high levels of interac-
tivity when the user is working directly with the application, and efficient back-end processing for
non-interactive processes.

Data Access

Data access code interacts with the Data Storage and Management layer to retrieve, insert, update,
and remove information. The Data Access layer doesn’t actually manage or store the data; it merely
provides an interface between the business logic and the database.

Data access gets its own logical layer for much the same reason that the interface is split from
interface control. In some cases, data access will occur on a machine that’s physically separate from
the one on which the interface and/or business logic is running. In other cases, data access code will
run on the same machine as the business logic (or even the interface) in order to improve perfor-
mance or fault tolerance.

■Note It may sound odd to say that putting the Data Access layer on the same machine as the business logic can
increase fault tolerance, but consider the case of web farms, in which each web server is identical to all the others.
Putting the data access code on the web servers provides automatic redundancy of the Data Access layer along with
the Business and Interface layers.

Adding an extra physical tier just to do the data access makes fault tolerance harder to implement, because it
increases the number of tiers in which redundancy needs to be implemented. As a side effect, adding more physical tiers
also reduces performance for a single user, so it’s not something that should be done lightly.

Logically defining data access as a separate layer enforces a separation between the business
logic and any interaction with a database (or any other data source). This separation provides the
flexibility to choose later whether to run the data access code on the same machine as the business
logic, or on a separate machine. It also makes it much easier to change data sources without affecting
the application. This is important because it enables switching from one database vendor to another
at some point.

Lhotka_1019-1C01.fm Page 12 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 13

This separation is useful for another reason: Microsoft has a habit of changing data access tech-
nologies every three years or so, meaning that it is necessary to rewrite the data access code to keep
up (remember DAO, RDO, ADO 1.0, ADO 2.0, ADO.NET, and now LINQ and the ADO.NET Entity
Framework?). By isolating the data access code into a specific layer, the impact of these changes is
limited to a smaller part of the application.

Data access mechanisms are typically implemented as a set of services; each service is a proce-
dure that the business logic calls to retrieve, insert, update, or delete data. Although these services
are often constructed using objects, it’s important to recognize that the designs for an effective Data
Access layer are really quite procedural in nature. Attempts to force more object-oriented designs for
relational database access often result in increased complexity or decreased performance. I think the
best approach is to implement the data access as a set of methods, but encapsulate those methods
within objects to keep them organized logically.

■Note If you’re using an object database instead of a relational database, then of course the data access code
may be very object-oriented. Few of us get such an opportunity, however, because almost all data is stored in rela-
tional databases.

Sometimes the Data Access layer can be as simple as a series of methods that use ADO.NET
directly to retrieve or store data. In other circumstances, the Data Access layer is more complex,
providing a more abstract or even metadata-driven way to get at data. In these cases, the Data Access
layer can contain a lot of complex code to provide this more abstract data access scheme. The frame-
work created in this book doesn’t restrict how you implement your Data Access layer. The examples
in the book use LINQ to SQL, but you could also use ADO.NET or use some other metadata-driven
Data Access layer directly if you prefer.

Another common role for the Data Access layer is to provide mapping between the object-
oriented business logic and the relational data in a data store. A good object-oriented model is
almost never the same as a good relational database model. Objects often contain data from multiple
tables, or even from multiple databases; or conversely, multiple objects in the model can represent
a single table. The process of taking the data from the tables in a relational model and getting it into
the object-oriented model is called object-relational mapping (ORM), and I’ll have more to say on
the subject in Chapter 2.

Data Storage and Management

Finally, there’s the Data Storage and Management layer. Database servers such as SQL Server and
Oracle often handle these tasks, but increasingly, other applications may provide this functionality,
too, via technologies such as XML-based services.

What’s key about this layer is that it handles the physical creation, retrieval, update, and deletion of
data. This is different from the Data Access layer, which requests the creation, retrieval, update, and
deletion of data. The Data Storage and Management layer actually implements these operations
within the context of a database or a set of files, and so on.

The business logic (via the Data Access layer) invokes the Data Storage and Management layer, but
the layer often includes additional logic to validate the data and its relationship to other data. Some-
times, this is true relational data modeling from a database; other times, it’s the application of business
logic from an external application. What this means is that a typical Data Storage and Management
layer will include business logic that is also implemented in the Business layer. This time the replication
is unavoidable because relational databases are designed to enforce data integrity, and that’s just
another form of business logic.

In summary, whether you’re using stored procedures in SQL Server, or service calls to another
application, you typically handle data storage and management by creating a set of services or

Lhotka_1019-1C01.fm Page 13 Wednesday, October 22, 2008 9:48 AM

14 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

procedures that you can call as needed. Like the Data Access layer, it’s important to recognize that
the designs for data storage and management are typically very procedural.

Table 1-1 summarizes the five layers and their roles.

Everything I’ve talked about to this point is part of a logical architecture. Now it’s time to move
on and see how you can apply it in various physical configurations.

Applying the Logical Architecture
Given this 5-layer logical architecture, it should be possible to configure it into one, two, three, four,
or five physical tiers in order to gain performance, scalability, security, or fault tolerance to various
degrees, and in various combinations.

■Note In this discussion, I assume that you have total flexibility to configure which logical layer runs where. In
some cases, technical issues may prevent the physical separation of some layers. As I noted earlier, you need to
strike a balance between flexibility and capability.

I want to discuss a few physical configurations to illustrate how the logical model works. These
are common and important setups that are encountered on a day-to-day basis.

Optimal Performance Smart Client

When so much focus is placed on distributed systems, it’s easy to forget the value of a single-tier
solution. Point of sale, sales force automation, and many other types of applications often run in
stand-alone environments. However, the benefits of the logical n-layer architecture are still desir-
able in terms of maintainability and code reuse.

It probably goes without saying that everything can be installed on a single client workstation.
An optimal performance smart client is usually implemented using WPF or Windows Forms for the
interface, with the business logic and data access code running in the same process and talking to a
Microsoft SQL Server Express or a Microsoft SQL Server Compact Edition database. The fact that the

Table 1-1. The Five Logical Layers and the Roles They Provide

Layer Roles

Interface Renders display and collects user input.

Interface Control Acts as an intermediary between the user and the business
logic, taking user input and providing it to the business
logic, then returning results to the user.

Business Logic Provides all business rules, validation, manipulation,
processing, and security for the application.

Data Access Acts as an intermediary between the business logic and
data management. Also encapsulates and contains all
knowledge of data access technologies (such as LINQ to
SQL), databases, and data structures.

Data Storage and Management Physically creates, retrieves, updates, and deletes data in a
persistent data store.

Lhotka_1019-1C01.fm Page 14 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 15

system is deployed on a single physical tier doesn’t compromise the logical architecture and separa-
tion, as shown in Figure 1-2.

Figure 1-2. The five logical layers running on a single machine

It’s important to remember that n-layer systems can run on a single machine in order to support
the wide range of applications that require stand-alone machines. It’s also worth pointing out that
this is basically the same as a 2-tier, “fat-client” physical architecture; the only difference is that in a
2-tier physical architecture, the Data Storage and Management layer would be running on a central
database server, such as SQL Server or Oracle, as shown in Figure 1-3.

Figure 1-3. The five logical layers with a separate database server

Other than the location of the data storage, this is identical to the single-tier configuration, and
typically the switch from single-tier to 2-tier revolves around little more than changing the database
connection string.

High-Scalability Smart Client

Single-tier configurations are good for stand-alone environments, but they don’t scale well. To support
multiple users, it is common to use 2-tier configurations. I’ve seen 2-tier configurations support
more than 350 concurrent users against SQL Server with very acceptable performance.

Going further, it is possible to trade performance to gain scalability by moving the Data Access
layer to a separate machine. Single-tier or 2-tier configurations give the best performance, but they
don’t scale as well as a 3-tier configuration would. A good rule of thumb is that if you have more than
50 to 100 concurrent users, you can benefit by making use of a separate server to handle the Data
Access layer.

Lhotka_1019-1C01.fm Page 15 Wednesday, October 22, 2008 9:48 AM

16 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Another reason for moving the Data Access layer to an application server is security. Since the
Data Access layer contains the code that interacts directly with the database, the machine on which
it runs must have credentials to access the database server. Rather than having those credentials on
the client workstation, they can be moved to an application server. This way, the user’s computer
won’t have the credentials to interact directly with the database server, thus increasing security.

It is also possible to put the Business layer on the application server. This is useful for non-
interactive processes such as batch updates or data-intensive business algorithms. Yet, at the same
time, most applications allow for user interaction, so there is a definite need to have the Business
layer running on the client workstation to provide high levels of interactivity for the user.

As discussed earlier in the chapter, it is possible to deploy the same logical layer onto multiple
physical tiers. Using this idea, you can put the Data Access layer on an application server, and the
Business layer on both the client workstation and the application server, as shown in Figure 1-4.

Figure 1-4. The five logical layers with separate application and database servers

Putting the Data Access layer on the application server centralizes all access to the database on
a single machine. In .NET, if the connections to the database for all users are made using the same
user ID and password, you’ll get the benefits of connection pooling for all your users. What this means
immediately is that there will be far fewer connections to the database than there would have been
if each client machine had connected directly. The actual reduction depends on the specific appli-
cation, but often it means supporting 150 to 200 concurrent users with just two or three database
connections.

Of course, all user requests now go across an extra network hop, thereby causing increased latency
(and therefore decreased performance). This performance cost translates into a huge scalability
gain, however, because this architecture can handle many more concurrent users than a 2-tier
physical configuration.

With the Business layer deployed on both the client and server, the application is able to fully
exploit the strengths of both machines. Validation and a lot of other business processing can run on
the client workstation to provide a rich and highly interactive experience for the user, while non-
interactive processes can efficiently run on the application server.

If well designed, such an architecture can support thousands of concurrent users with adequate
performance.

Lhotka_1019-1C01.fm Page 16 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 17

Optimal Performance Web Client

As with WPF or Windows Forms applications, the best performance is received in web-based appli-
cations by minimizing the number of physical tiers. However, the trade-off in a web scenario is
different: in this case, it is possible to improve performance and scalability at the same time, but at
the cost of security, as I will demonstrate.

To get optimal performance in a web application, it is desirable to run most of the code in a
single process on a single machine, as shown in Figure 1-5.

Figure 1-5. The five logical layers as used for web applications

The Interface layer must be physically separate because it’s running in a browser, but the Inter-
face Control, Business, and Data Access layers can all run on the same machine, in the same process.
In some cases, you might even put the Data Storage and Management layer on the same physical
machine, though this is only suitable for smaller applications.

This minimizes network and communication overhead and optimizes performance. Figure 1-6
shows how it is possible to get good scalability, because the web server can be part of a web farm in
which all the web servers are running the same code.

Figure 1-6. The five logical layers deployed on a load-balanced web farm

Lhotka_1019-1C01.fm Page 17 Wednesday, October 22, 2008 9:48 AM

18 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

This setup provides good database-connection pooling, because each web server will be (poten-
tially) servicing hundreds of concurrent users, and all database connections on a web server are pooled.

Unless the database server is getting overwhelmed with connections from the web servers in the
web farm, a separate application server will rarely provide gains in scalability. If a separate applica-
tion server is needed, there will be a reduction in performance because of the additional physical
tier. (Hopefully, there will be a gain in scalability, because the application server can consolidate
database connections across all the web servers.) It is important to consider fault tolerance in this
case, because redundant application servers may be needed in order to avoid a point of failure.

Another reason for implementing an application server is to increase security, and that’s the
topic of the next section.

High-Security Web Client

As discussed in the earlier section on security, you’ll have many projects that dictate that a web server
can never talk directly to a database. The web server must run in a demilitarized zone (DMZ), sand-
wiched between the external firewall and a second internal firewall. The web server must communicate
with another server through the internal firewall in order to interact with the database or any other
internal systems.

As with the 3-tier Windows client scenario, there is tremendous benefit to also having the Business
layer deployed on both the web server and the application server. Such a deployment allows the web
interface control code to interact closely with the business logic when appropriate, while non-
interactive processes can simply run on the application server. This deployment is illustrated in
Figure 1-7, in which the dashed lines represent the firewalls.

Figure 1-7. The five logical layers deployed in a secure web configuration

Splitting out the Data Access layer and running it on a separate application server increases the
security of the application. However, this comes at the cost of performance—as discussed earlier,
this configuration will typically cause a performance degradation of around 50 percent. Scalability,
on the other hand, is fine: like the first web configuration, you can achieve scalability by implementing a
web farm in which each web server runs the same interface control and business logic code, as shown in
Figure 1-8.

Lhotka_1019-1C01.fm Page 18 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 19

Figure 1-8. The five logical layers in a secured environment with a web farm

The Way Ahead
After implementing the framework to support this 5-layer architecture, I’ll create a sample applica-
tion with three different interfaces: WPF, web, and XML-based Windows Communication Foundation
(WCF) services. This will give you the opportunity to see firsthand how the framework supports the
following models:

• High-scalability smart client

• Optimal performance web client

• Optimal performance web service

Due to the way the framework is implemented, switching to any of the other models just discussed
will require only configuration file changes. The result is that you can easily adapt your application
to any of the physical configurations without having to change your code.

Managing Business Logic
At this point, you should have a good understanding of logical and physical architectures and how
you can configure a 5-layer logical architecture into various n-tier physical architectures. In one way
or another, all of these layers will use or interact with the application’s data. That’s obviously the
case for the Data Storage and Management and Data Access layers, but the Business layer must vali-
date, calculate, and manipulate data; the Interface Control layer transfers data between the Business
and Interface layers (often performing formatting or using the data to make navigational choices);
and the Interface layer displays data to the user and collects new data as it’s entered.

In an ideal world, all of the business logic would exist in the Business layer, but in reality, this is
virtually impossible to achieve. In a web-based application, validation logic is often included in the
Interface layer, so that the user gets a more interactive experience in the browser. Unfortunately, any
validation that’s done in the web browser is unreliable, because it’s too easy for a malicious user to
bypass that validation. Thus, any validation done in the browser must be rechecked in the Business
layer as well.

Lhotka_1019-1C01.fm Page 19 Wednesday, October 22, 2008 9:48 AM

20 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Similarly, most databases enforce data integrity, and often some other rules, too. Furthermore,
the Data Access layer often includes business logic to decide when and how data should be stored or
retrieved from databases and other data sources. In almost any application, to a greater or a lesser
extent, business logic gets scattered across all the layers.

There’s one key truth here that’s important: for each piece of application data, there’s a fixed set
of business logic associated with that data. If the application is to function properly, the business
logic must be applied to that data at least once. Why “at least”? Well, in most applications, some of
the business logic is applied more than once. For example, a validation rule applied in the Interface
layer can be reapplied in the Interface Control layer or Business layer before data is sent to the data-
base for storage. In some cases, the database includes code to recheck the value as well.

Now, I’d like to look at some of the more common options. I’ll start with three popular (but flawed)
approaches. Then I’ll discuss a compromise solution that’s enabled through the use of mobile objects,
such as the ones supported by the framework I’ll create later in the book.

Potential Business Logic Locations
Figure 1-9 illustrates common locations for validation and manipulation business logic in a typical
application. Most applications have the same logic in at least a couple of these locations.

Figure 1-9. Common locations for business logic in applications

Business logic is put in a web Interface layer to give the user a more interactive experience—and
put into a Windows Interface layer for the same reason. The business logic is rechecked on the web
server because the browser isn’t trustworthy. And database administrators put the logic into the
database (via stored procedures and other database constructs) because they don’t trust any appli-
cation developers.

The result of all this validation is a lot of duplicated code, all of which has to be debugged, main-
tained, and somehow kept in sync as the business needs (and thus logic) change over time. In the real
world, the logic is almost never really kept in sync, and so developers must constantly debug and
maintain the code in a near-futile effort to make all of these redundant bits of logic agree with each
other.

One solution is to force all of the logic into a single layer, thereby making the other layers as
“dumb” as possible. There are various approaches to this, although (as you’ll see) none of them
provide an optimal solution.

Another solution is to dynamically generate the validation logic for the Interface or Interface
Control layer based on metadata provided from the Business layer. This requires more work in the
interface layers, but can increase maintainability overall.

Lhotka_1019-1C01.fm Page 20 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 21

Business Logic in the Data Storage and Management Layer

The classic approach is to put all logic into the database as the single, central repository. The inter-
face then allows the user to enter absolutely anything (because any validation would be redundant),
and the Business layer now resides inside the database. The Data Access layer does nothing but
move the data into and out of the database, as shown in Figure 1-10.

Figure 1-10. Validation and business logic in the Data Storage and Management layer

The advantage of this approach is that the logic is centralized, but the drawbacks are plentiful.
For starters, the user experience is totally non-interactive. Users can’t get any results, or even confir-
mation that their data is valid, without round-tripping the data to the database for processing. The
database server becomes a performance bottleneck, because it’s the only thing doing any actual
work. Unfortunately, the hardest physical tier to scale up for more users is the database server, since
it is difficult to use load-balancing techniques on it. The only real alternative is to buy bigger and
bigger server machines.

Business Logic in the Interface Control Layer

Another common approach is to put all of the business logic into the interface control code. The
data is validated and manipulated by the interface control code, and the Data Storage and Manage-
ment layer just stores the data. This approach, as shown in Figure 1-11, is common in both Windows
and web environments, and has the advantage that the business logic is centralized into a single tier
(and of course, one can write the business logic in a language such as C# or VB .NET).

Figure 1-11. Business logic deployed with only the Interface Control layer

Lhotka_1019-1C01.fm Page 21 Wednesday, October 22, 2008 9:48 AM

22 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Unfortunately, in practice, the business logic ends up being scattered throughout the applica-
tion, thereby decreasing readability and making maintenance more difficult. Even more
importantly, business logic in one form or page isn’t reusable when subsequent forms or pages are
created that use the same data. Furthermore, in a web environment, this architecture also leads to a
totally non-interactive user experience, because no validation can occur in the browser. The user
must transmit his data to the web server for any validation or manipulation to take place.

■Note ASP.NET validation controls at least allow for basic data validation in the interface, with that validation
automatically extended to the browser by the ASP.NET technology itself. Though not a total solution, this is a
powerful feature that does help.

Business Logic in the Middle (Merged Business and Data Access Layers)

Still another option is the classic UNIX client/server approach, whereby the Business and Data Access
layers are merged, keeping the Interface, Interface Control, and Data Storage and Management
layers as “dumb” as possible (see Figure 1-12).

Figure 1-12. Business logic deployed only on the application server

Unfortunately, once again, this approach falls afoul of the non-interactive user experience
problem: the data must round-trip to the Business/Data Access layer for any validation or manipu-
lation. This is especially problematic if the Business/Data Access layer is running on a separate
application server, because then you’re faced with network latency and contention issues, too. Also,
the central application server can become a performance bottleneck, because it’s the only machine
doing any work for all the users of the application.

Sharing Business Logic Across Tiers

I wish this book included the secret that allows you to write all your logic in one central location, thereby
avoiding all of these awkward issues. Unfortunately, that’s not possible with today’s technology:
putting the business logic only on the client, application server, or database server is problematic,
for all the reasons given earlier. But something needs to be done about it, so what’s left?

What’s left is the possibility of centralizing the business logic in a Business layer that’s deployed
on the client (or web server), so that it’s accessible to the Interface Control layer, and in a Business
layer that’s deployed on the application server, so that it’s able to interact efficiently with the Data
Access layer. The end result is the best of both worlds: a rich and interactive user experience and effi-
cient high-performance back-end processing when interacting with the database (or other data source).

Lhotka_1019-1C01.fm Page 22 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 23

In the simple cases in which there is no application server, the Business layer is deployed only
once: on the client workstation or web server, as shown in Figure 1-13.

Ideally, this business logic will run on the same machine as the interface control code when
interacting with the user, but on the same machine as the data access code when interacting with the
database. (As discussed earlier, all of this could be on one machine or a number of different machines,
depending on your physical architecture.) It must provide a friendly interface that the interface
developer can use to invoke any validation and manipulation logic, and it must also work efficiently
with the Data Access layer to get data in and out of storage.

Figure 1-13. Business logic centralized in the Business layer

The tools for addressing this seemingly intractable set of requirements are mobile business
objects that encapsulate the application’s data along with its related business logic. It turns out that
a properly constructed business object can move around the network from machine to machine with
almost no effort on your part. The .NET Framework itself handles the details, and you can focus on
the business logic and data.

By properly designing and implementing mobile business objects, you allow the .NET Frame-
work to pass your objects across the network by value, thereby copying them automatically from one
machine to another. This means that with little extra code, you can have your business logic and
business data move to the machine where the Interface Control layer is running, and then shift to the
machine where the Data Access layer is running when data access is required.

At the same time, if you’re running the Interface Control and Data Access layers on the same
machine, then the .NET Framework won’t move or copy your business objects. They’re used directly
by both tiers with no performance cost or extra overhead. You don’t have to do anything to make this
happen, either—.NET automatically detects that the object doesn’t need to be copied or moved, and
thus takes no extra action.

The Business layer becomes portable, flexible, and mobile, and adapts to the physical environ-
ment in which you deploy the application. Due to this, you’re able to support a variety of physical
n-tier architectures with one code base, whereby your business objects contain no extra code to support
the various possible deployment scenarios. What little code you need to implement to support the
movement of your objects from machine to machine will be encapsulated in a framework, leaving
the business developer to focus purely on the development of business logic.

Business Objects
Having decided to use business objects and take advantage of .NET’s ability to move objects around
the network automatically, it’s now time to discuss business objects in more detail. I will discuss
exactly what they are and how they can help you to centralize the business logic pertaining to your data.

Lhotka_1019-1C01.fm Page 23 Wednesday, October 22, 2008 9:48 AM

24 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

The primary goal when designing any kind of software object is to create an abstract represen-
tation of some entity or concept. In ADO.NET, for example, a DataTable object represents a tabular
set of data. DataTables provide an abstract and consistent mechanism by which you can work with
any tabular data. Likewise, a Windows Forms TextBox control is an object that represents the concept
of displaying and entering data. From the application’s perspective, there is no need to have any
understanding of how the control is rendered on the screen, or how the user interacts with it. It’s just
an object that includes a Text property and a handful of interesting events.

Key to successful object design is the concept of encapsulation. This means that an object is a
black box: it contains logic and data, but the user of the object doesn’t know what data or how the
logic actually works. All the user can do is interact with the object.

■Note Properly designed objects encapsulate both behavior or logic and the data required by that logic.

If objects are abstract representations of entities or concepts that encapsulate both data and its
related logic, what then are business objects?

■Note Business objects are different from regular objects only in terms of what they represent.

Object-oriented applications are created to address problems of one sort or another. In the
course of doing so, a variety of different objects are often used. Some of these objects will have no
direct connection with the problem at hand (DataTable and TextBox objects, for example, are just
abstract representations of computer concepts). However, others will be closely related to the area
or domain in which you’re working. If the objects are related to the business for which you’re devel-
oping an application, then they’re business objects.

For instance, if you’re creating an order entry system, your business domain will include things
such as customers, orders, and products. Each of these will likely become business objects within
your order entry application—the Order object, for example, will provide an abstract representation
of the order being placed by a customer.

■Note Business objects provide an abstract representation of entities or concepts that are part of the business
or problem domain.

Business Objects As Smart Data

I’ve already discussed the drawbacks of putting business logic into the Interface Control layer, but I
haven’t thoroughly discussed the drawback of keeping the data in a generic representation such as
a DataSet or data transfer object (DTO). The data in a DataSet (or a DTO, array, or XML document) is
unintelligent, unprotected, and generally unsafe. There’s nothing to prevent anyone from putting
invalid data into any of these containers, and there’s nothing to ensure that the business logic behind
one form in the application will interact with the data in the same way as the business logic behind
another form.

A DataSet or an XML document with an XSD (XML Schema Definition) might ensure that text
cannot be entered where a number is required, or that a number cannot be entered where a date is
required. At best, it might enforce some basic relational-integrity rules. However, there’s no way to
ensure that the values match other criteria, or that calculations or other processing is done properly
against the data, without involving other objects. The data in a DataSet, array, or XML document isn’t

Lhotka_1019-1C01.fm Page 24 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 25

self-aware; it’s not able to apply business rules or handle business manipulation or processing of
the data.

The data in a business object, however, is what I like to call smart data. The object not only contains
the data, but it also includes all the business logic that goes along with that data. Any attempt to work
with the data must go through this business logic. In this arrangement, there is much greater assur-
ance that business rules, manipulation, calculations, and other processing will be executed consistently
everywhere in the application. In a sense, the data has become self-aware and can protect itself against
incorrect usage.

In the end, an object doesn’t care whether it’s used by a WPF interface, a batch-processing
routine, or a web service. The code using the object can do as it pleases; the object itself will ensure
that all business rules are obeyed at all times.

Contrast this with a DataSet or an XML document, in which the business logic doesn’t reside
in the data container, but somewhere else—typically, a Windows or web form. If multiple forms or
pages use this DataSet, there is no assurance that the business logic will be applied consistently. Even
if you adopt a standard that says that interface developers must invoke methods from a centralized
class to interact with the data, there’s nothing preventing them from using the DataSet directly. This
may happen accidentally, or because it was simply easier or faster to use the DataSet than to go through
some centralized routine.

■Note With consistent use of business objects, there’s no way to bypass the business logic. The only way to the
data is through the object, and the object always enforces the rules.

So, a business object that represents an invoice will include not only the data pertaining to the
invoice, but also the logic to calculate taxes and amounts due. The object should understand how to
post itself to a ledger and how to perform any other accounting tasks that are required. Rather than
passing raw invoice data around and having the business logic scattered throughout the application,
it is possible to pass an Invoice object around. The entire application can share not only the data, but
also its associated logic. Smart data through objects can dramatically increase the ability to reuse
code and can decrease software maintenance costs.

Anatomy of a Business Object

Putting all of these pieces together, you get an object that has an interface (a set of properties and
methods), some implementation code (the business logic behind those properties and methods),
and state (the data). This is illustrated in Figure 1-14.

Figure 1-14. A business object composed of state, implementation, and interface

Lhotka_1019-1C01.fm Page 25 Wednesday, October 22, 2008 9:48 AM

26 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

The hiding of the data and the implementation code behind the interface are keys to the successful
creation of a business object. If the users of an object are allowed to “see inside” it, they will be tempted
to cheat and to interact with the logic or data in unpredictable ways. This danger is the reason why
it is important to take care when using the public keyword as you build your classes.

Any property, method, event, or field marked as public is available to the users of objects created
from the class. For example, you might create a simple class such as the following:

public class Project
{
 private Guid _id = Guid.NewGuid();
 public Guid Id
 {
 get { return _id; }
 }

 private string _name = string.Empty;
 public string Name
 {
 get { return _name; }
 set
 {
 if (value == null) value = string.Empty;
 if(value.Length > 50)
 throw new Exception("Name too long");
 _name = value;
 }
 }
}

This defines a business object that represents a project of some sort. All that is known at the
moment is that these projects have an ID value and a name. Notice, though, that the fields containing
this data are private—you don’t want the users of your object to be able to alter or access them directly.
If they were public, the values could be changed without the object’s knowledge or permission. (The
_name field could be given a value that’s longer than the maximum of 50 characters, for example.)

The properties, on the other hand, are public. They provide a controlled access point to the
object. The Id property is read-only, so the users of the object can’t change it. The Name property
allows its value to be changed, but enforces a business rule by ensuring that the length of the new
value doesn’t exceed 50 characters.

■Note None of these concepts are unique to business objects—they’re common to all objects and are central to
object-oriented design and programming.

Mobile Objects
Unfortunately, directly applying the kind of object-oriented design and programming I’ve been
talking about so far is often difficult in today’s complex computing environments. Object-oriented
programs are almost always designed with the assumption that all the objects in an application can
interact with each other with no performance penalty. This is true when all the objects are running
in the same process on the same computer, but it’s not at all true when the objects might be running
in different processes or even on different computers.

Lhotka_1019-1C01.fm Page 26 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 27

Earlier in this chapter, I discussed various physical architectures in which different parts of an
application might run on different machines. With a high-scalability smart client architecture, for
example, there will be a client, an application server, and a data server. With a high-security web
client architecture, there will be a client, a web server, an application server, and a data server. Parts
of the application will run on each of these machines, interacting with each other as needed.

In these distributed architectures, you can’t use a straightforward object-oriented design, because
any communication between classic fine-grained objects on one machine and similar objects on
another machine will incur network latency and overhead. This translates into a performance problem
that simply can’t be ignored. To overcome this problem, most distributed applications haven’t used
object-oriented designs. Instead, they consist of a set of procedural code running on each machine,
with the data kept in a DataSet, an array, or an XML document that’s passed around from machine
to machine.

This isn’t to say that object-oriented design and programming are irrelevant in distributed
environments—just that it becomes complicated. To minimize the complexity, most distributed appli-
cations are object-oriented within a tier, but between tiers they follow a procedural or service-based
model. The end result is that the application as a whole is neither object-oriented nor procedural, but a
blend of both.

Perhaps the most common architecture for such applications is to have the Data Access layer
retrieve the data from the database into a DataSet. The DataSet is then returned to the client (or the
web server). The code in the forms or pages then interacts with the DataSet directly, as shown in
Figure 1-15.

Figure 1-15. Passing a DataSet between the Business and Data Access layers

This approach has the maintenance and code-reuse flaws that I’ve talked about, but the fact is
that it gives pretty good performance in most cases. Also, it doesn’t hurt that most programmers are
pretty familiar with the idea of writing code to manipulate a DataSet, so the techniques involved are
well understood, thus speeding up development.

A decision to stick with an object-oriented approach should be undertaken carefully. It’s all too
easy to compromise the object-oriented design by taking the data out of the objects running on one
machine, sending the raw data across the network, and allowing other objects to use that data outside
the context of the objects and business logic. Such an approach would break the encapsulation
provided by the logical Business layer.

Lhotka_1019-1C01.fm Page 27 Wednesday, October 22, 2008 9:48 AM

28 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Mobile objects are all about sending smart data (objects) from one machine to another, rather
than sending raw data.

Through its WCF, serialization, and deployment technologies, the .NET Framework contains
direct support for the concept of mobile objects. Given this ability, you can have your Data Access
layer (running on an application server) create a business object and load it with data from the data-
base. You can then send that business object to the client machine (or web server), where the interface
control code can use the object (as shown in Figure 1-16).

Figure 1-16. Using a business object to centralize business logic

In this architecture, smart data (in the form of a business object), rather than raw data, is sent
to the client. Then the interface control code can use the same business logic as the data access code.
This reduces maintenance, because you’re not writing some business logic in the Data Access layer,
and some other business logic in the Interface Control layer. Instead, all of the business logic is
consolidated into a real, separate layer composed of business objects. These business objects will
move across the network just like the DataSet did earlier, but they’ll include the data and its related
business logic—something the DataSet can’t easily offer.

■Note In addition, business objects will typically move across the network more efficiently than the DataSet.
The approach in this book will use a binary transfer scheme that transfers data that is about 30 percent of the size
of data transferred using the DataSet. Also, the business objects will contain far less metadata than the DataSet,
further reducing the number of bytes transferred across the network.

Effectively, you’re sharing the Business layer between the machine running the Data Access
layer and the machine running the Interface Control layer. As long as there is support for mobile
objects, this is an ideal solution: it provides code reuse, low maintenance costs, and high performance.

A New Logical Architecture

Being able to access the Business layer from both the Data Access layer and the Interface Control
layer directly opens up a new way to view the logical architecture. Though the Business layer remains
a separate concept, it’s directly used by and tied into both the Interface Control and Data Access
layers, as shown in Figure 1-17.

Lhotka_1019-1C01.fm Page 28 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 29

Figure 1-17. The Business layer tied to the Interface Control and Data Access layers

The Interface Control layer can interact directly with the objects in the Business layer, thereby
relying on them to perform all validation, manipulation, and other processing of the data. Likewise,
the Data Access layer can interact with the objects as the data is retrieved or stored.

If all the layers are running on a single machine (such as a smart client), then these parts will run
in a single process and interact with each other with no network or cross-processing overhead. In
more distributed physical configurations, the Business layer will run on both the client and the
application server, as shown in Figure 1-18.

Figure 1-18. Business logic shared between the Interface Control and Data Access layers

Local, Anchored, and Mobile Objects

Normally, one might think of objects as being part of a single application, running on a single machine
in a single process. A distributed application requires a broader perspective. Some of the objects
might only run in a single process on a single machine. Others might run on one machine, but might
be called by code running on another machine. Still others might be mobile objects, moving from
machine to machine.

Local Objects

By default, .NET objects are local. This means that ordinary .NET objects aren’t accessible from outside
the process in which they were created. Without taking extra steps in your code, it isn’t possible to
pass objects to another process or another machine (a procedure known as marshaling), either by
value or by reference.

Lhotka_1019-1C01.fm Page 29 Wednesday, October 22, 2008 9:48 AM

30 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Anchored Objects

In many technologies, objects are always passed by reference. This means that when you “pass” an
object from one machine or process to another, what actually happens is that the object remains in
the original process, and the other process or machine merely gets a pointer, or reference, back to
the object, as shown in Figure 1-19.

Figure 1-19. Calling an object by reference

By using this reference, the other machine can interact with the object. Because the object is still
on the original machine, however, any property or method calls are sent across the network, and the
results are returned back across the network. This scheme is only useful if the object is designed so
it can be used with very few method calls; just one is ideal.

The recommended designs for Enterprise Services objects call for each method on the object to
do all its work in a single method call for precisely this reason, thereby sacrificing “proper” object-
oriented design in order to reduce latency. The same is effectively true for objects exposed to the
network through WCF. Each method on a service object should do all its work, not relying on the
client to have called other methods before or after calling this method.

These types of objects are stuck, or anchored, on the original machine or process where they
were created. An anchored object never moves; it’s accessed via references.

In .NET, you can create an anchored object in a couple different ways. If you’re using WCF, the
object will implement a service contract:

[ServiceContract]
public interface IMyService
{
 [OperationContract]
 void MyOperation();
}

public class MyServiceImplementation : IMyService
{
}

If you’re using the older .NET Remoting technology, you create an anchored object by having it
inherit from MarshalByRefObject:

public class MyAnchoredClass: MarshalByRefObject
{
}

Either way, the .NET Framework takes care of the details. Code running in another process or
on another machine across the network can call the anchored object.

Lhotka_1019-1C01.fm Page 30 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 31

Mobile Objects

The concept of mobile objects relies on the idea that an object can be passed from one process to
another, or from one machine to another, by value. This means that the object is physically copied
from the original process or machine to the other process or machine, as shown in Figure 1-20.

Figure 1-20. Passing a physical copy of an object across the network

The object starts on the left (instance 1) and is copied, or cloned, across the network to the right
(instance 2).

Because the other machine gets a copy of the object, it can interact with the object locally. This
means that there’s effectively no performance overhead involved in calling properties or methods on
the object—the only cost was in copying the object’s data across the network in the first place.

■Note One caveat here is that transferring a large object across the network can cause a performance problem.
Returning a DataSet that contains a great deal of data can take a long time. This is true of all mobile objects,
including business objects. You need to be careful in your application design in order to avoid retrieving very large
sets of data.

Objects that can move from process to process or from machine to machine are mobile objects.
Examples of mobile objects include the DataSet and the business objects created in this book. Mobile
objects aren’t stuck in a single place, but can move to where they’re most needed.

To create one in .NET, add the [Serializable] attribute to your class definition. You may also
optionally implement the ISerializable interface. I’ll discuss this further in Chapter 2, but the following
illustrates the start of a class that defines a mobile object:

[Serializable]
public class MyMobileClass
{
 private string _data;
}

When using WCF, you might choose instead to use the DataContract and DataMember attributes:

[DataContract]
public class MyMobileClass
{
 [DataMember]
 private string _data;
}

Lhotka_1019-1C01.fm Page 31 Wednesday, October 22, 2008 9:48 AM

32 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Either approach works, but the Serializable attribute is often better for this scenario because
it uses an opt-out approach. All fields of the object are serialized unless you explicitly prevent the
serialization. The DataContract approach is opt-in, so you must remember to mark every field for
serialization. Forget one, and you’ve just introduced a hard-to-find bug.

Again, the .NET Framework takes care of the details, so an object of this type can be simply
passed as a parameter to a method call or as the return value from a function. The object will be
copied from the original machine to the machine where the method is running.

It is important to understand that the code for the object isn’t moved across the network auto-
matically. Before an object can move from machine to machine, both machines must have the .NET
assembly containing the object’s code installed. Only the object’s serialized data is moved across the
network by .NET. Installing the required assemblies is often handled by ClickOnce or other .NET
deployment technologies.

When to Use Which Mechanism

The .NET Framework supports all the mechanisms just discussed, so you can choose to create your
objects as local, anchored, or mobile, depending on the requirements of your design. As you might
guess, there are good reasons for each approach.

WPF, Windows Forms, and ASP.NET objects are all local—they’re inaccessible from outside the
processes in which they were created. The assumption is that other applications shouldn’t be allowed to
just reach into your program and manipulate your interface objects.

Anchored objects are important because they will always run on a specific machine. If you write
an object that interacts with a database, you’ll want to ensure that the object will always run on a
machine that has access to the database. Because of this, anchored objects are typically used on
application servers.

Many business objects, on the other hand, will be more useful if they can move from the appli-
cation server to a client or web server, as needed. By creating business objects as mobile objects, you
can pass smart data from machine to machine, thereby reusing your business logic anywhere the
business data is sent.

Typically, anchored and mobile objects are used in concert. Later in the book, I’ll show how to
use an anchored object on the application server to ensure that specific methods are run on that
server. Then mobile objects will be passed as parameters to those methods, which will cause those
mobile objects to move from the client to the server. Some of the anchored server-side methods will
return mobile objects as results, in which case the mobile object will move from the server back to
the client.

Passing Mobile Objects by Reference

There’s a piece of terminology here that can get confusing. So far, I’ve loosely associated anchored
objects with the concept of passing by reference, and mobile objects as being passed by value. Intu-
itively, this makes sense, because anchored objects provide a reference, though mobile objects
provide the actual object (and its values). However, the terms by reference and by value have come to
mean other things over the years.

The original idea of passing a value by reference was that there would be just one set of data—
one object—and any code could get a reference to that single entity. Any changes made to that entity
by any code would therefore be immediately visible to any other code.

The original idea of passing a value by value was that a copy of the original value would be made. Any
code could get a copy of the original value, but any changes made to that copy weren’t reflected in the
original value. That makes sense, because the changes were made to a copy, not to the original value.

Lhotka_1019-1C01.fm Page 32 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 33

In distributed applications, things get a little more complicated, but the previous definitions
remain true: an object can be passed by reference so that all machines have a reference to the same
object on a server. And an object can be passed by value, so that a copy of the object is made. So far,
so good. However, what happens if you mark an object as Serializable or DataContract (that is,
mark it as a mobile object) and then intentionally pass it by reference? It turns out that the object is
passed by value, but the .NET Framework attempts to provide the illusion that the object was passed
by reference.

To be more specific, in this scenario, the object is copied across the network just as if it were
being passed by value. The difference is that the object is then returned back to the calling code when
the method is complete, and the reference to the original object is replaced with a reference to this
new version, as shown in Figure 1-21.

Figure 1-21. Passing a copy of the object to the server and getting a copy back

The original object (instance 1) starts on the left and is copied (cloned) to the right (instance 2).
The right-hand process or machine has full access to a local copy of the object and can interact with
it freely. When that’s done, the object is “returned” to the left, meaning it is copied back across the
network into a new object on the left (instance 3).

This is potentially very dangerous, since other references to the original object continue to point
to that original object—only this one particular reference is updated. You can end up with two different
versions of the same object on the machine, with some references pointing to the new one and some
to the old one.

■Note If you pass a mobile object by reference, you must always make sure to update all references to use the
new version of the object when the method call is complete.

You can choose to pass a mobile object by value, in which case it’s passed one way: from the
caller to the method. Or you can choose to pass a mobile object by reference, in which case it’s
passed two ways: from the caller to the method and from the method back to the caller. If you want
to get back any changes the method makes to the object, use by reference. If you don’t care about or
don’t want any changes made to the object by the method, use by value.

Note that passing a mobile object by reference has performance implications—it requires that the
object be passed back across the network to the calling machine, so it’s slower than passing by value.

Lhotka_1019-1C01.fm Page 33 Wednesday, October 22, 2008 9:48 AM

34 CH AP T E R 1 ■ D IS TR I B U T E D AR C HI TE CT U R E

Complete Encapsulation

Hopefully, at this point, your imagination is engaged by the potential of mobile objects. The flexi-
bility of being able to choose between local, anchored, and mobile objects is very powerful, and
opens up new architectural approaches.

I’ve already discussed the idea of sharing the Business layer across machines, and it’s probably
obvious that the concept of mobile objects is exactly what’s needed to implement such a shared
layer. But what does this all mean for the design of the layers? In particular, given a set of mobile
objects in the Business layer, what’s the impact on the Interface Control and Data Access layers with
which the objects interact?

Impact on the Interface Control Layer

What it means for the Interface Control layer is simply that the business objects will contain all the
business logic. The interface developer can code each form, page, service, or workflow activity using
the business objects, thereby relying on them to perform any validation or manipulation of the data.
This means that the interface code can focus entirely on displaying the data, interacting with the
user, and providing a rich, interactive experience.

More importantly, because the business objects are mobile, they’ll end up running in the same
process as the interface control code. Any property or method calls from the interface control code
to the business object will occur locally without network latency, marshaling, or any other perfor-
mance overhead.

Impact on the Data Access Layer

A traditional Data Access layer consists of a set of methods or services that interact with the database
and with the objects that encapsulate data. The data access code itself is typically outside the objects,
rather than being encapsulated within the objects. This, however, breaks encapsulation, since it
means that the objects’ data must be externalized to be handled by the data access code.

The framework created in this book allows for the data access code to be encapsulated within
the business objects, or externalized into a separate set of objects. As you’ll see in Chapter 7, there
are both performance and maintainability benefits to including the data access code directly inside
each business object. However, there are security and manageability benefits to having the code
external.

Either way, the concept of a Data Access layer is of key importance. Maintaining a strong logical
separation between the data access code and business logic is highly beneficial, as discussed earlier
in this chapter. Obviously, having a totally separate set of data access objects is one way to clearly
implement a Data Access layer.

Architectures and Frameworks
The discussion so far has focused mainly on architectures: logical architectures that define the sepa-
ration of responsibilities in an application, and physical architectures that define the locations where
the logical layers will run in various configurations. I’ve also discussed the use of object-oriented
design and the concepts behind mobile objects.

Although all of these are important and must be thought through in detail, you really don’t want
to have to go through this process every time you need to build an application. It would be preferable
to have the architecture and design solidified into reusable code that could be used to build all your
applications. What you want is an application framework. A framework codifies an architecture and
design in order to promote reuse and increase productivity.

Lhotka_1019-1C01.fm Page 34 Wednesday, October 22, 2008 9:48 AM

C H AP TE R 1 ■ D I ST R I B U TE D A R CH I TE C TU R E 35

The typical development process starts with requirements gathering and analysis, followed by
a period of architectural discussion and decision making. Next comes the application design: first,
the low-level concepts to support the architecture, and then the business-level concepts that actu-
ally matter to the end users. With the design completed, developers typically spend a fair amount of
time implementing the low-level functions that support the business coding that comes later.

All of the architectural discussions, decision making, designing, and coding can be a lot of fun.
Unfortunately, it doesn’t directly contribute anything to the end goal of writing business logic and
providing business functionality. This low-level supporting technology is merely “plumbing” that
must exist in order to create actual business applications. It’s an overhead that in the long term you
should be able to do once and then reuse across many business application–development efforts.

In the software world, the easiest way to reduce overhead is to increase reuse, and the best way
to get reuse out of an architecture (both design and coding) is to codify it into a framework.

This doesn’t mean that application analysis and design are unimportant—quite the opposite!
People typically spend far too little time analyzing business requirements and developing good
application designs to meet those business needs. Part of the reason is that they often end up spending
substantial amounts of time analyzing and designing the plumbing that supports the business appli-
cation, and then run out of time to analyze the business issues themselves.

What I’m proposing here is to reduce the time spent analyzing and designing the low-level
plumbing by creating a framework that you can use across many business applications. Is the frame-
work created in this book ideal for every application and every organization? Certainly not! You’ll
have to take the architecture and the framework and adapt them to meet your organization’s needs.
You may have different priorities in terms of performance, scalability, security, fault tolerance, reuse,
or other key architectural criteria. At the very least, though, the remainder of this book should give
you a good start on the design and construction of a distributed, object-oriented architecture and
framework.

Conclusion
In this chapter, I’ve focused on the theory behind distributed systems—specifically, those based on
mobile objects. The key to success in designing a distributed system is to keep clear the distinction
between a logical and a physical architecture.

Logical architectures exist to define the separation between the different types of code in an
application. The goal of a good logical architecture is to make code more maintainable, understand-
able, and reusable. A logical architecture must also define enough layers to enable any physical
architectures that may be required.

Physical architectures define the machines on which the application will run. An application
with several logical layers can still run on a single machine. You also might configure that same
logical architecture to run on various client and server machines. The goal of a good physical archi-
tecture is to achieve the best trade-off between performance, scalability, security, and fault tolerance
within your specific environment.

The trade-offs in a physical architecture for a smart client application are very different from
those for a web application. A Windows application will typically trade performance against scalability,
and a web application will typically trade performance against security.

In this book, I’ll be using a 5-layer logical architecture consisting of the Interface, Interface
Control, Business, Data Access, and Data Storage and Management layers. Later in the book, I’ll
show you how to use this architecture to create Windows, web, and service-oriented applications,
each with a different physical architecture. The next chapter will start the process of designing the
framework that will make this possible.

Lhotka_1019-1C01.fm Page 35 Wednesday, October 22, 2008 9:48 AM

Lhotka_1019-1C01.fm Page 36 Wednesday, October 22, 2008 9:48 AM

37

■ ■ ■

C H A P T E R 2

Framework Design

In Chapter 1, I discussed some general concepts about physical and logical n-tier architecture,
including a 5-layer model for describing systems logically. In this chapter, I take that 5-layer logical
model and expand it into a framework design. Specifically, this chapter will map the logical layers
against the technologies illustrated in Figure 2-1.

The CSLA .NET framework itself will focus on the Business Logic and Data Access layers. This is
primarily due to the fact that there are already powerful technologies for building Windows, web
(browser-based and XML-based services), and mobile interface layers. Also, there are already powerful
data-storage options available, including SQL Server, Oracle, DB2, XML documents, and so forth.

Recognizing that these preexisting technologies are ideal for building the Presentation and UI
layers, as well as for handling data storage, allows business developers to focus on the parts of the
application that have the least technological support, where the highest return on investment occurs
through reuse. Analyzing, designing, implementing, testing, and maintaining business logic is incredibly
expensive. The more reuse achieved, the lower long-term application costs become. The easier it is
to maintain and modify this logic, the lower costs will be over time.

Figure 2-1. Mapping the logical layers to technologies

■Note This is not to say that additional frameworks for UI creation or simplification of data access are bad ideas.
On the contrary, such frameworks can be very complementary to the ideas presented in this book; and the combi-
nation of several frameworks can help lower costs even further.

Lhotka_1019-1C02.fm Page 37 Tuesday, November 4, 2008 10:36 AM

38 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

When I set out to create the architecture and framework discussed in this book, I started with
the following set of high-level guidelines:

• The task of creating object-oriented applications in a distributed .NET environment should
be simplified.

• The interface developer (Windows, web service, or workflow) should never see or be aware of
SQL, ADO.NET, or other raw data concepts but should instead rely on a purely object-oriented
model of the problem domain.

• Business object developers should be able to use “natural” coding techniques to create their
classes—that is, they should employ everyday coding using fields, properties, and methods.
Little or no extra knowledge should be required.

• The business classes should provide total encapsulation of business logic, including valida-
tion, manipulation, calculation, and authorization. Everything pertaining to an entity in the
problem domain should be found within a single class.

• It should be possible to achieve clean separation between the business logic code and the
data access code.

• It should be relatively easy to create code generators, or templates for existing code genera-
tion tools, to assist in the creation of business classes.

• An n-layer logical architecture that can be easily reconfigured to run on one to four physical
tiers should be provided.

• Complex features in .NET should be used, but they should be largely hidden and automated
(WCF, serialization, security, deployment, etc.).

• The concepts present in the framework from its inception should carry forward, including
validation, authorization, n-level undo, and object-state tracking (IsNew, IsDirty, IsDeleted).

In this chapter, I focus on the design of a framework that allows business developers to make use
of object-oriented design and programming with these guidelines in mind. After walking through the
design of the framework, Chapters 6 through 16 dive in and implement the framework itself, focusing
first on the parts that support UI development and then on the providing of scalable data access and
object-relational mapping for the objects. Before I get into the design of the framework, however,
let’s discuss some of the specific goals I am attempting to achieve.

Basic Design Goals
When creating object-oriented applications, the ideal situation is that any nonbusiness objects already
exist. This includes UI controls, data access objects, and so forth. In that case, all developers need
to do is focus on creating, debugging, and testing the business objects themselves, thereby ensuring
that each one encapsulates the data and business logic needed to make the application work.

As rich as the .NET Framework is, however, it doesn’t provide all the nonbusiness objects
needed in order to create most applications. All the basic tools are there but there’s a fair amount of
work to be done before you can just sit down and write business logic. There’s a set of higher-level
functions and capabilities that are often needed but aren’t provided by .NET right out of the box.

These include the following:

• Validation and maintaining a list of broken business rules

• Standard implementation of business and validation rules

• Tracking whether an object’s data has changed (is it “dirty”?)

• Integrated authorization rules at the object and property levels

Lhotka_1019-1C02.fm Page 38 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 39

• Strongly typed collections of child objects (parent-child relationships)

• N-level undo capability

• A simple and abstract model for the UI developer

• Full support for data binding in WPF, Windows Forms, and Web Forms

• Saving objects to a database and getting them back again

• Custom authentication

• Other miscellaneous features

In all of these cases, the .NET Framework provides all the pieces of the puzzle, but they must be
put together to match your specialized requirements. What you don’t want to do, however, is to have
to put them together for every business object or application. The goal is to put them together once
so that all these extra features are automatically available to all the business objects and applications.

Moreover, because the goal is to enable the implementation of object-oriented business systems,
the core object-oriented concepts must also be preserved:

• Abstraction

• Encapsulation

• Polymorphism

• Inheritance

The result is a framework consisting of a number of classes. The design of these classes is discussed
in this chapter and their implementation is discussed in Chapters 6 through 16.

■Tip The Diagrams folder in the Csla project in the code download includes FullCsla.cd, which shows
all the framework classes in a single diagram. You can also get a PDF document showing that diagram at
www.lhotka.net/cslanet/download.aspx.

Before getting into the details of the framework’s design, let’s discuss the desired set of features
in more detail.

Validation and Business Rules
A lot of business logic involves the enforcement of validation rules. The fact that a given piece of data
is required is a validation rule. The fact that one date must be later than another date is a validation
rule. Some validation rules involve calculations and others are merely toggles. You can think about
validation rules as being either broken or not. And when one or more rules are broken the object is
invalid.

A similar concept is the idea of business rules that might alter the state of the object. The fact that
a given piece of text data must be all uppercase is a business rule. The calculation of one property
value based on other property values is a business rule. Most business rules involve some level of
calculation.

Because all validation rules ultimately return a Boolean value, it is possible to abstract the concept
of validation rules to a large degree. Every rule is implemented as a bit of code. Some of the code might
be trivial, such as comparing the length of a string and returning false if the value is zero. Other code
might be more complex, involving validation of the data against a lookup table or through a numeric
algorithm. Either way, a validation rule can be expressed as a method that returns a Boolean result.

Lhotka_1019-1C02.fm Page 39 Tuesday, November 4, 2008 10:36 AM

http://www.lhotka.net/cslanet/download.aspx

40 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Business rules typically alter the state of the object and usually don’t enforce validation at the
same time. Still, every business rule is implemented as a bit of code, and that code might be trivial or
very complex.

The .NET Framework provides the delegate concept, making it possible to formally define a
method signature for a type of method. A delegate defines a reference type (an object) that repre-
sents a method. Essentially, delegates turn methods into objects, allowing you to write code that
treats the method like an object; and of course they also allow you to invoke the method.

I use this capability in the framework to formally define a method signature for all validation
and business rules. This allows the framework to maintain a list of validation rules for each object,
enabling relatively simple application of those rules as appropriate. With that done, every object can
easily maintain a list of the rules that are broken at any point in time and has a standardized way of
implementing business rules.

■Note There are commercial business rule engines and other business rule products that strive to take the busi-
ness rules out of the software and keep them in some external location. Some of these are powerful and valuable.
For most business applications, however, the business rules are typically coded directly into the software. When
using object-oriented design, this means coding them into the objects.

A fair number of validation rules are of the toggle variety: required fields, fields that must be a
certain length (no longer than, no shorter than), fields that must be greater than or less than other
fields, and so forth. The common theme is that validation rules, when broken, immediately make the
object invalid. In short, an object is valid if no rules are broken but is invalid if any rules are broken.

Rather than trying to implement a custom scheme in each business object in order to keep track
of which rules are broken and whether the object is or isn’t valid at any given point, this behavior can
be abstracted. Obviously, the rules themselves are often coded into an application, but the tracking
of which rules are broken and whether the object is valid can be handled by the framework.

■Tip Defining a validation rule as a method means you can create libraries of reusable rules for your application.
The framework in this book includes a small library with some of the most common validation rules so you can use
them in applications without having to write them.

The result is a standardized mechanism by which the developer can check all business objects
for validity. The UI developer should also be able to retrieve a list of currently broken rules to display
to the user (or for any other purpose).

Additionally, this provides the underlying data required to implement the System.
ComponentModel.IDataErrorInfo interface defined by the .NET Framework. This interface is used by
the data binding infrastructure in WPF and Windows Forms to automate the display of validation
errors to the user.

Some validation rules may interact with the database or could be very complex in other ways.
In these cases, you may want to allow the user to move on to editing other data while a validation rule
is running in the background. To this end, you can choose to implement a validation rule (though
not a business rule) to run asynchronously on a background thread.

The reason this only works with validation rules is that an async rule method won’t have access
to the real business object. For thread safety reasons, it is provided with a copy of the property values
to be validated so it can do its work. Since a business rule manipulates the business object’s data, I
don’t allow them to be implemented as an async operation.

Lhotka_1019-1C02.fm Page 40 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 41

Tracking Whether the Object Has Changed
Another concept is that an object should keep track of whether its state data has been changed. This
is important for the performance and efficiency of data updates. Typically, data should only be
updated into the database if the data has actually changed. It’s a waste of effort to update the data-
base with values it already has. Although the UI developer could keep track of whether any values
have changed, it’s simpler to have the object take care of this detail and it allows the object to better
encapsulate its behaviors.

This can be implemented in a number of ways, ranging from keeping the previous values of all
fields (allowing comparisons to see if they’ve changed) to saying that any change to a value (even
“changing” it to its original value) will result in the object being marked as having changed.

Rather than having the framework dictate one cost over the other, it will simply provide a generic
mechanism by which the business logic can tell the framework whether each object has been changed.
This scheme supports both extremes of implementation, allowing you to make a decision based on
the requirements of a specific application.

Integrated Authorization
Applications also need to be able to authorize the user to perform (or not perform) certain opera-
tions or view (or not view) certain data. Such authorization is typically handled by associating users
with roles and then indicating which roles are allowed or disallowed for specific behaviors.

■Note Authorization is just another type of business logic. The decisions about what a user can and can’t do or
can and can’t see within the application are business decisions. Although the framework will work with the .NET
Framework classes that support authentication, it’s up to the business objects to implement the rules themselves.

Later, I discuss authentication and how the framework supports both integrated Windows and
AD authentication and custom authentication. Either way, the result of authentication is that the
application has access to the list of roles (or groups) to which the user belongs. This information can
be used by the application to authorize the user as defined by the business.

While authorization can be implemented manually within the application’s business code, the
business framework can help formalize the process in some cases. Specifically, objects must use the
user’s role information to restrict what properties the user can view and edit. There are also common
behaviors at the object level—such as loading, deleting, and saving an object—that are subject to
authorization.

As with validation rules, authorization rules can be distilled to a set of fairly simple yes/no
answers. Either a user can or can’t read a given property. Either a user can or can’t delete the object’s
data. The business framework includes code to help a business object developer easily restrict which
object properties a user can or can’t read or edit and what operations the user can perform on the
object itself. In Chapter 12, you’ll also see a common pattern that can be implemented by all business
objects to control whether an object can be retrieved, deleted, or saved.

Not only does this business object need access to this authorization information but the UI does
as well. Ideally, a good UI will change its display based on how the current user is allowed to interact
with an object. To support this concept, the business framework will help the business objects expose the
authorization rules such that they are accessible to the UI layer without duplicating the authoriza-
tion rules themselves.

Lhotka_1019-1C02.fm Page 41 Tuesday, November 4, 2008 10:36 AM

42 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Strongly Typed Collections of Child Objects
The .NET Framework includes the System.Collections.Generic namespace, which contains a number
of powerful collection objects, including List<T>, Dictionary<TKey, TValue>, and others. There’s
also System.ComponentModel.BindingList<T>, which provides collection behaviors and full support
for data binding, and the less capable System.ComponentModel.ObservableCollection<T>, which
provides support only for WPF data binding.

A Short Primer on Generics

Generic types are a feature introduced in .NET 2.0. A generic type is a template that defines a set of
behaviors but the specific data type is specified when the type is used rather than when it is created.
Perhaps an example will help.

Consider the ArrayList collection type. It provides powerful list behaviors but it stores all its
items as type object. While you can wrap an ArrayList with a strongly typed class or create your own
collection type in many different ways, the items in the list are always stored in memory as type object.

The new List<T> collection type has the same behaviors as ArrayList but it is strongly typed—
all the way to its core. The type of the indexer, enumerator, Remove(), and other methods are all defined
by the generic type parameter, T. Even better, the items in the list are stored in memory as type T, not
type object.

So what is T? It is the type provided when the List<T> is created:

List<int> myList = new List<int>();

In this case, T is int, meaning that myList is a strongly typed list of int values. The public properties
and methods of myList are all of type int, and the values it contains are stored internally as int values.

Not only do generic types offer type safety due to their strongly typed nature, but they typically
offer substantial performance benefits because they avoid storing values as type object.

Strongly Typed Collections of Child Objects

Sadly, the basic functionality provided by even the generic collection classes isn’t enough to integrate
fully with the rest of the framework. The business framework supports a set of relatively advanced
features such as validation and n-level undo capabilities. Supporting these features requires that
collections of child objects interact with the parent object and the objects contained in the collec-
tion in ways not implemented by the basic collection and list classes provided by .NET.

For example, a collection of child objects needs to be able to indicate if any of the objects it
contains have been changed. Although the business object developer could easily write code to loop
through the child objects to discover whether any are marked as dirty, it makes a lot more sense to
put this functionality into the framework’s collection object. That way the feature is simply available
for use. The same is true with validity: if any child object is invalid, the collection should be able to
report that it’s invalid. If all child objects are valid, the collection should report itself as being valid.

As with the business objects themselves, the goal of the business framework is to make the creation
of a strongly typed collection as close to normal .NET programming as possible, while allowing the
framework to provide extra capabilities common to all business objects. What I’m defining here are
two sets of behaviors: one for business objects (parent and/or child) and one for collections of busi-
ness objects. Though business objects will be the more complex of the two, collection objects will
also include some very interesting functionality.

N-Level Undo Capability
Many Windows applications provide users with an interface that includes OK and Cancel buttons
(or some variation on that theme). When the user clicks an OK button, the expectation is that any

Lhotka_1019-1C02.fm Page 42 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 43

work the user has done will be saved. Likewise, when the user clicks a Cancel button, he expects that
any changes he’s made will be reversed or undone.

Simple applications can often deliver this functionality by saving the data to a database when
users click OK and discarding the data when they click Cancel. For slightly more complex applica-
tions, the application must be able to undo any editing on a single object when the user presses the
Esc key. (This is the case for a row of data being edited in a DataGridView: if the user presses Esc, the
row of data should restore its original values.)

When applications become much more complex, however, these approaches won’t work. Instead
of simply undoing the changes to a single row of data in real time, you may need to be able to undo
the changes to a row of data at some later stage.

■Note It is important to realize that the n-level undo capability implemented in the framework is optional and is
designed to incur no overhead if it is not used.

Consider the case of an Invoice object that contains a collection of LineItem objects. The
Invoice itself contains data that the user can edit plus data that’s derived from the collection. The
TotalAmount property of an Invoice, for instance, is calculated by summing up the individual Amount
properties of its LineItem objects. Figure 2-2 illustrates this arrangement.

Figure 2-2. Relationship between the Invoice, LineItems, and LineItem classes

The UI may allow the user to edit the LineItem objects and then press Enter to accept the changes
to the item or Esc to undo them. However, even if the user chooses to accept changes to some LineItem
objects, she can still choose to cancel the changes on the Invoice itself. Of course, the only way to
reset the Invoice object to its original state is to restore the states of the LineItem objects as well,
including any changes to specific LineItem objects that might have been “accepted” earlier.

As if this isn’t enough, many applications have more complex hierarchies of objects and subobjects
(which I’ll call child objects). Perhaps the individual LineItem objects each has a collection of Component
objects beneath it. Each Component object represents one of the components sold to the customer
that makes up the specific line item, as shown in Figure 2-3.

Lhotka_1019-1C02.fm Page 43 Tuesday, November 4, 2008 10:36 AM

44 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Figure 2-3. Class diagram showing a more complex set of class relationships

Now things get even more complicated. If the user edits a Component object, the changes ultimately
impact the state of the Invoice object itself. Of course, changing a Component also changes the state
of the LineItem object that owns the Component.

The user might accept changes to a Component but cancel the changes to its parent LineItem
object, thereby forcing an undo operation to reverse accepted changes to the Component. Or in an
even more complex scenario, the user may accept the changes to a Component and its parent LineItem
only to cancel the Invoice. This would force an undo operation that reverses all those changes to the
child objects.

Implementing an undo mechanism to support such n-level scenarios isn’t trivial. The applica-
tion must implement code to take a snapshot of the state of each object before it’s edited so that
changes can be reversed later on. The application might even need to take more than one snapshot
of an object’s state at different points in the editing process so that the object can revert to the appro-
priate point, based on when the user chooses to accept or cancel any edits.

■Note This multilevel undo capability flows from the user’s expectations. Consider a typical word processor,
where the user can undo multiple times to restore the content to ever earlier states.

Lhotka_1019-1C02.fm Page 44 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 45

And the collection objects are every bit as complex as the business objects themselves. The
application must handle the simple case in which a user edits an existing LineItem, but it must also
handle the case in which a user adds a new LineItem and then cancels changes to the parent or
grandparent, resulting in the new LineItem being discarded. Equally, it must handle the case in
which the user deletes a LineItem and then cancels changes to the parent or grandparent, thereby
causing that deleted object to be restored to the collection as though nothing had ever happened.

Things get even more complex if you consider that the framework keeps a list of broken valida-
tion rules for each object. If the user changes an object’s data so that the object becomes invalid but
then cancels the changes, the original state of the object must be restored. The reverse is true as well:
an object may start out invalid (perhaps because a required field is blank), so the user must edit data
until it becomes valid. If the user later cancels the object (or its parent, grandparent, etc.), the object
must become invalid once again because it will be restored to its original invalid state.

Fortunately, this is easily handled by treating the broken rules and validity of each object as part
of that object’s state. When an undo operation occurs, not only is the object’s core state restored but
so is the list of broken rules associated with that state. The object and its rules are restored together.

N-level undo is a perfect example of complex code that shouldn’t be written into every business
object. Instead, this functionality should be written once, so that all business objects support the
concept and behave the way we want them to. This functionality will be incorporated directly into
the business object framework—but at the same time, the framework must be sensitive to the different
environments in which the objects will be used. Although n-level undo is of high importance when
building sophisticated Windows user experiences, it’s virtually useless in a typical web environment.

In web-based applications, users typically don’t have a Cancel button. They either accept the
changes or navigate away to another task, allowing the application to simply discard the changed
object. In this regard, the web environment is much simpler, so if n-level undo isn’t useful to the web
UI developer, it shouldn’t incur any overhead if it isn’t used. The framework design takes into account
that some UI types will use the concept while others will simply ignore it.

Simple and Abstract Model for the UI Developer
At this point, I’ve discussed some of the business object features that the framework will support.
One of the key reasons for providing these features is to make the business object support Windows
and web-style user experiences with minimal work on the part of the UI developer. In fact, this should be
an overarching goal when you’re designing business objects for a system. The UI developer should
be able to rely on the objects to provide business logic, data, and related services in a consistent
manner.

Beyond all the features already covered is the issue of creating new objects, retrieving existing
data, and updating objects in some data store. I discuss the process of object persistence later in the
chapter, but first this topic should be considered from the UI developer’s perspective. Should the UI
developer be aware of any application servers? Should he be aware of any database servers? Or should
he simply interact with a set of abstract objects? There are three broad models to choose from:

• UI-in-charge

• Object-in-charge

• Class-in-charge

To a greater or lesser degree, all three of these options hide information about how objects are
created and saved and allow us to exploit the native capabilities of .NET. In the end, I settle on the
option that hides the most information (keeping development as simple as possible) and best allows
you to exploit the features of .NET.

Lhotka_1019-1C02.fm Page 45 Tuesday, November 4, 2008 10:36 AM

46 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

■Note Inevitably, the result will be a compromise. As with many architectural decisions, there are good argu-
ments to be made for each option. In your environment, you may find that a different decision would work better.
Keep in mind though that this particular decision is fairly central to the overall architecture of the framework, so
choosing another option will likely result in dramatic changes throughout the framework.

To make this as clear as possible, the following discussion assumes the use of a physical n-tier
configuration, whereby the client or web server is interacting with a separate application server,
which in turn interacts with the database. Although not all applications will run in such configura-
tions, it is much easier to discuss object creation, retrieval, and updating in this context.

UI in Charge

One common approach to creating, retrieving, and updating objects is to put the UI in charge of the
process. This means that it’s the UI developer’s responsibility to write code that will contact the
application server in order to retrieve or update objects.

In this scheme, when a new object is required, the UI will contact the application server and ask
it for a new object. The application server can then instantiate a new object, populate it with default
values, and return it to the UI code. The code might be something like this:

Customer result = null;
var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
try
{
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 result = proxy.CreateNewCustomer();
 }
}
finally
{
 factory.Close();
}

Here the object of type IBusinessService is anchored, so it always runs on the application server.
The Customer object is mobile, so although it’s created on the server, it’s returned to the UI by value.

■Note This code example uses Windows Communication Foundation to contact an application server and have
it instantiate an object on the server. In Chapter 15, you’ll see how CSLA .NET abstracts this code into a much
simpler form, effectively wrapping and hiding the complexity of WCF.

This may seem like a lot of work just to create a new, empty object, but it’s the retrieval of default
values that makes it necessary. If the application has objects that don’t need default values, or if
you’re willing to hard-code the defaults, you can avoid some of the work by having the UI simply
create the object on the client workstation. However, many business applications have configurable

Lhotka_1019-1C02.fm Page 46 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 47

default values for objects that must be loaded from the database; and that means the application
server must load them.

Retrieving an existing object follows the same basic procedure. The UI passes criteria to the
application server, which uses the criteria to create a new object and load it with the appropriate data
from the database. The populated object is then returned to the UI for use. The UI code might be
something like this:

Customer result = null;
var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
try
{
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 result = proxy.GetCustomer(criteria);
 }
}
finally
{
 factory.Close();
}

Updating an object happens when the UI calls the application server and passes the object to
the server. The server can then take the data from the object and store it in the database. Because the
update process may result in changes to the object’s state, the newly saved and updated object is
then returned to the UI. The UI code might be something like this:

Customer result = null;
var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
try
{
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 result = proxy.UpdateCustomer(customer);
 }
}
finally
{
 factory.Close();
}

Overall, this model is straightforward—the application server must simply expose a set of services
that can be called from the UI to create, retrieve, update, and delete objects. Each object can simply
contain its business logic without the object developer having to worry about application servers or
other details.

The drawback to this scheme is that the UI code must know about and interact with the appli-
cation server. If the application server is moved, or some objects come from a different server, the UI
code must be changed. Moreover, if a Windows UI is created to use the objects and then later a web
UI is created that uses those same objects, you’ll end up with duplicated code. Both types of UI will
need to include the code in order to find and interact with the application server.

Lhotka_1019-1C02.fm Page 47 Tuesday, November 4, 2008 10:36 AM

48 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

The whole thing is complicated further if you consider that the physical configuration of the
application should be flexible. It should be possible to switch from using an application server to
running the data access code on the client just by changing a configuration file. If there’s code scattered
throughout the UI that contacts the server any time an object is used, there will be a lot of places
where developers might introduce a bug that prevents simple configuration file switching.

Object in Charge

Another option is to move the knowledge of the application server into the objects themselves. The
UI can just interact with the objects, allowing them to load defaults, retrieve data, or update them-
selves. In this model, simply using the new keyword creates a new object:

 Customer cust = new Customer();

Within the object’s constructor, you would then write the code to contact the application server
and retrieve default values. It might be something like this:

 public Customer()
 {
 var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
 try
 {
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 var tmp = proxy.GetNewCustomerDefaults();
 _field1 = tmp.Field1Default;
 _field2 = tmp.Field2Default;
 // load all fields with defaults here
 }
 }
 finally
 {
 factory.Close();
 }
 }

Notice that the previous code does not take advantage of the built-in support for passing an
object by value across the network. In fact, this technique forces the creation of some other class that
contains the default values returned from the server.

Given that both the UI-in-charge and class-in-charge techniques avoid all this extra coding, let’s
just abort the discussion of this option and move on.

Class-in-Charge (Factory Pattern)

The UI-in-charge approach uses .NET’s ability to pass objects by value but requires the UI developer
to know about and interact with the application server. The object-in-charge approach enables a
very simple set of UI code but makes the object code prohibitively complex by making it virtually
impossible to pass the objects by value.

The class-in-charge option provides a good compromise by providing reasonably simple UI
code that’s unaware of application servers while also allowing the use of .NET’s ability to pass objects
by value, thus reducing the amount of “plumbing” code needed in each object. Hiding more information

Lhotka_1019-1C02.fm Page 48 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 49

from the UI helps create a more abstract and loosely coupled implementation, thus providing better
flexibility.

■Note The class-in-charge approach is a variation on the Factory design pattern, in which a “factory” method is
responsible for creating and managing an object. In many cases, these factory methods are static methods that
may be placed directly into a business class—hence the class-in-charge moniker.1

In this model, I make use of the concept of static factory methods on a class. A static method
can be called directly without requiring an instance of the class to be created first. For instance,
suppose that a Customer class contains the following code:

 [Serializable()]
 public class Customer
 {
 public static Customer NewCustomer()
 {
 var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
 try
 {
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 return = proxy.CreateNewCustomer ();
 }
 }
 finally
 {
 factory.Close();
 }
 }
 }

The UI code could use this method without first creating a Customer object, as follows:

 Customer cust = Customer.NewCustomer();

A common example of this tactic within the .NET Framework itself is the Guid class, whereby a
static method is used to create new Guid values, as follows:

 Guid myGuid = Guid.NewGuid();

This accomplishes the goal of making the UI code reasonably simple; but what about the static
method and passing objects by value? Well, the NewCustomer() method contacts the application server
and asks it to create a new Customer object with default values. The object is created on the server and
then returned back to the NewCustomer() code, which is running on the client. Now that the object has
been passed back to the client by value, the method simply returns it to the UI for use.

1. Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995) by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides

Lhotka_1019-1C02.fm Page 49 Tuesday, November 4, 2008 10:36 AM

50 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Likewise, you can create a static method in the class in order to load an object with data from
the data store as shown:

 public static Customer GetCustomer(string criteria)
 {
 var factory =
 new ChannelFactory<BusinessService.IBusinessService>("BusinessService");
 try
 {
 var proxy = factory.CreateChannel();
 using (proxy as IDisposable)
 {
 return = proxy.GetCustomer (criteria);
 }
 }
 finally
 {
 factory.Close();
 }
 }

Again, the code contacts the application server, providing it with the criteria necessary to load
the object’s data and create a fully populated object. That object is then returned by value to the
GetCustomer() method running on the client and then back to the UI code.

As before, the UI code remains simple:

 Customer cust = Customer.GetCustomer(myCriteria);

The class-in-charge model requires that you write static factory methods in each class but
keeps the UI code simple and straightforward. It also takes full advantage of .NET’s ability to pass
objects across the network by value, thereby minimizing the plumbing code in each object. Overall,
it provides the best solution, which is used (and refined further) in the chapters ahead.

Supporting Data Binding
For more than a decade, Microsoft has included some kind of data binding capability in its develop-
ment tools. Data binding allows developers to create forms and populate them with data with almost no
custom code. The controls on a form are “bound” to specific fields from a data source (such as an
entity object, a DataSet, or a business object).

Data binding is provided in WPF, Windows Forms, and Web Forms. The primary benefits or
drivers for using data binding in .NET development include the following:

• Data binding offers good performance, control, and flexibility.

• Data binding can be used to link controls to properties of business objects.

• Data binding can dramatically reduce the amount of code in the UI.

• Data binding is sometimes faster than manual coding, especially when loading data into list
boxes, grids, or other complex controls.

Of these, the biggest single benefit is the dramatic reduction in the amount of UI code that must
be written and maintained. Combined with the performance, control, and flexibility of .NET data
binding, the reduction in code makes it a very attractive technology for UI development.

Lhotka_1019-1C02.fm Page 50 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 51

In WPF, Windows Forms, and Web Forms, data binding is read-write, meaning that an element
of a data source can be bound to an editable control so that changes to the value in the control will
be updated back into the data source as well.

Data binding in .NET is very powerful. It offers good performance with a high degree of control
for the developer. Given the coding savings gained by using data binding, it’s definitely a technology
that needs to be supported in the business object framework.

Enabling the Objects for Data Binding

Although data binding can be used to bind against any object or any collection of homogeneous
objects, there are some things that object developers can do to make data binding work better.
Implementing these “extra” features enables data binding to do more work for you and provide a
superior experience. The .NET DataSet object, for instance, implements these extra features in order
to provide full data binding support to WPF, Windows Forms, and Web Forms developers.

The IEditableObject Interface

All editable business objects should implement the interface called System.ComponentModel.
IEditableObject. This interface is designed to support a simple, one-level undo capability and is
used by simple forms-based data binding and complex grid-based data binding alike.

In the forms-based model, IEditableObject allows the data binding infrastructure to notify the
business object before the user edits it so that the object can take a snapshot of its values. Later, the
application can tell the object whether to apply or cancel those changes based on the user’s actions.
In the grid-based model, each of the objects is displayed in a row within the grid. In this case, the
interface allows the data binding infrastructure to notify the object when its row is being edited and
then whether to accept or undo the changes based on the user’s actions. Typically, grids perform an
undo operation if the user presses the Esc key, and an accept operation if the user presses Enter or
moves off that row in the grid by any other means.

The INotifyPropertyChanged Interface

Editable business objects need to raise events to notify data binding any time their data values change.
Changes that are caused directly by the user editing a field in a bound control are supported
automatically—however, if the object updates a property value through code, rather than by direct
user editing, the object needs to notify the data binding infrastructure that a refresh of the display is
required.

The .NET Framework defines System.ComponentModel.INotifyPropertyChanged, which should
be implemented by any bindable object. This interface defines the PropertyChanged event that data
binding can handle to detect changes to data in the object.

The INotifyPropertyChanging Interface

In .NET 3.5, Microsoft introduced the System.ComponentModel.INotifyPropertyChanging interface so
business objects can indicate when a property is about to be changed. Strictly speaking, this interface is
optional and isn’t (currently) used by data binding. For completeness, however, it is recommended
that this interface be used when implementing INotifyPropertyChanged.

The INotifyPropertyChanging interface defines the PropertyChanging event that is raised before
a property value is changed, as a complement to the PropertyChanged event that is raised after a
property value has changed.

Lhotka_1019-1C02.fm Page 51 Tuesday, November 4, 2008 10:36 AM

52 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

The IBindingList Interface

All business collections should implement the interface called System.ComponentModel.IBindingList.
The simplest way to do this is to have the collection classes inherit from System.ComponentModel.
BindingList<T>. This generic class implements all the collection interfaces required to support
data binding:

• IBindingList

• IList

• ICollection

• IEnumerable

• ICancelAddNew

• IRaiseItemChangedEvents

As you can see, being able to inherit from BindingList<T> is very valuable. Otherwise, the busi-
ness framework would need to manually implement all these interfaces.

This interface is used in grid-based binding, in which it allows the control that’s displaying the
contents of the collection to be notified by the collection any time an item is added, removed, or
edited so that the display can be updated. Without this interface, there’s no way for the data binding
infrastructure to notify the grid that the underlying data has changed, so the user won’t see changes
as they happen.

Along this line, when a child object within a collection changes, the collection should notify the
UI of the change. This implies that every collection object will listen for events from its child objects
(via INotifyPropertyChanged) and in response to such an event will raise its own event indicating
that the collection has changed.

The INotifyCollectionChanged Interface

In .NET 3.0, Microsoft introduced a new option for building lists for data binding. This new option
only works with WPF and Silverlight and is not supported by Windows Forms or Web Forms. The
System.ComponentModel.INotifyCollectionChanged interface defines a CollectionChanged event that
is raised by any list implementing the interface. The simplest way to do this is to have the collection
classes inherit from System.ComponentModel.ObservableCollection<T>. This generic class implements
the interface and related behaviors.

When implementing a list or a collection you must choose to use either IBindingList or
INotifyCollectionChanged. If you implement both, data binding in WPF will become confused,
as it honors both interfaces and will always get duplicate events for any change to the list.

You should only choose to implement INotifyCollectionChanged or use
ObservableCollection<T> if you are absolutely certain your application will only need to support
WPF or Silverlight and never Windows Forms.

Because CSLA .NET supports Windows Forms and Web Forms along with WPF, the list and
collection types defined in the framework implement IBindingList by subclassing BindingList<T>.

Events and Serialization

The events that are raised by business collections and business objects are all valuable. Events
support the data binding infrastructure and enable utilization of its full potential. Unfortunately,
there’s a conflict between the idea of objects raising events and the use of .NET serialization via the
Serializable attribute.

When an object is marked as Serializable, the .NET Framework is told that it can pass the
object across the network by value. As part of this process, the object will be automatically converted
into a byte stream by the .NET runtime. It also means that any other objects referenced by the object

Lhotka_1019-1C02.fm Page 52 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 53

will be serialized into the same byte stream, unless the field representing it is marked with the
NonSerialized attribute. What may not be immediately obvious is that events create an object reference
behind the scenes.

When an object declares and raises an event, that event is delivered to any object that has a
handler for the event. WPF forms and Windows Forms often handle events from objects, as illus-
trated in Figure 2-4.

Figure 2-4. A Windows form referencing a business object

How does the event get delivered to the handling object? It turns out that behind every event is
a delegate—a strongly typed reference that points back to the handling object. This means that any
object that raises events can end up with bidirectional references between the object and the other
object/entity that is handling those events, as shown in Figure 2-5.

Figure 2-5. Handling an event on an object causes a back reference to the form.

Even though this back reference isn’t visible to developers, it’s completely visible to the .NET
serialization infrastructure. When serializing an object, the serialization mechanism will trace this
reference and attempt to serialize any objects (including forms) that are handling the events. Obvi-
ously, this is rarely desirable. In fact, if the handling object is a form, this will fail outright with a
runtime error because forms aren’t serializable.

■Note If any nonserializable object handles events that are raised by a serializable object, you’ll be unable to serialize
the object because the .NET runtime serialization process will error out.

Solving this means marking the events as NonSerialized. It turns out that this requires a bit of
special syntax when dealing with events. Specifically, a more explicit block structure must be used to
declare the event. This approach allows manual declaration of the delegate field so it is possible to mark
that field as NonSerialized. The BindingList<T> class already declares its event in this manner, so this
issue only pertains to the implementation of INotifyPropertyChanged and INotifyPropertyChanging (or
any custom events you choose to declare in your business classes).

Lhotka_1019-1C02.fm Page 53 Tuesday, November 4, 2008 10:36 AM

54 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

The IDataErrorInfo Interface

Earlier I discussed the need for objects to implement business rules and expose information about
broken rules to the UI. The System.ComponentModel.IDataErrorInfo interface is designed to allow
data binding to request information about broken validation rules from a data source.

We will already have the tools needed to easily implement IDataErrorInfo, given that the object
framework already helps the objects manage a list of all currently broken validation rules. This inter-
face defines two methods. The first allows data binding to request a text description of errors at the
object level, while the second provides a text description of errors at the property level.

By implementing this interface, the objects will automatically support the feedback mechanisms
built into the Windows Forms DataGridView and ErrorProvider controls.

Object Persistence and Object-Relational Mapping
One of the biggest challenges facing a business developer building an object-oriented system is that
a good object model is almost never the same as a good relational data model. Because most data is
stored in relational databases using a relational model, we’re faced with the significant problem of
translating that data into an object model for processing and then changing it back to a relational
model later on to persist the data from the objects back into the data store.

■Note The framework in this book doesn’t require a relational model, but since that is the most common data
storage technology, I focus on it quite a bit. You should remember that the concepts and code shown in this chapter
can be used against XML files, object databases, or almost any other data store you are likely to use.

Relational vs. Object Modeling

Before going any further, let’s make sure we’re in agreement that object models aren’t the same as
relational models. Relational models are primarily concerned with the efficient storage of data, so
that replication is minimized. Relational modeling is governed by the rules of normalization, and
almost all databases are designed to meet at least the third normal form. In this form, it’s quite likely
that the data for any given business concept or entity is split between multiple tables in the database
in order to avoid any duplication of data.

Object models, on the other hand, are primarily concerned with modeling behavior, not data.
It’s not the data that defines the object but the role the object plays within your business domain.
Every object should have one clear responsibility and a limited number of behaviors focused on
fulfilling that responsibility.

■Tip I recommend the book Object Thinking by David West (DV-Microsoft Professional, 2004) for some good
insight into behavioral object modeling and design. Though my ideas differ somewhat from those in Object Thinking,
I use many of the concepts and language from that book in my own object-oriented design work and in this book.

For instance, a CustomerEdit object may be responsible for adding and editing customer data. A
CustomerInfo object in the same application may be responsible for providing read-only access to
customer data. Both objects will use the same data from the same database and table, but they provide
different behaviors.

Similarly, an InvoiceEdit object may be responsible for adding and editing invoice data. But
invoices include some customer data. A naïve solution is to have the InvoiceEdit object make use of
the aforementioned CustomerEdit object. That CustomerEdit object should only be used in the case

Lhotka_1019-1C02.fm Page 54 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 55

where the application is adding or editing customer data—something that isn’t occurring while
working with invoices. Instead, the InvoiceEdit object should directly interact with the customer
data it needs to do its job.

Through these two examples, it should be clear that sometimes multiple objects will use the
same relational data. In other cases, a single object will use relational data from different data entities. In
the end, the same customer data is being used by three different objects. The point, though, is that
each one of these objects has a clearly defined responsibility that defines the object’s behavior. Data
is merely a resource the object needs to implement that behavior.

Behavioral Object-Oriented Design

It is a common trap to think that data in objects needs to be normalized like it is in a database. A
better way to think about objects is to say that behavior should be normalized. The goal of object-
oriented design is to avoid replication of behavior, not data.

At this point, most people are struggling. Most developers have spent years programming their
brains to think relationally, and this view of object-oriented design flies directly in the face of that
conditioning. Yet the key to the successful application of object-oriented design is to divorce object
thinking from relational or data thinking.

Perhaps the most common objection at this point is this: if two objects (e.g., CustomerEdit and
InvoiceEdit) both use the same data (e.g., the customer’s name), how do you make sure that consis-
tent business rules are applied to that data? And this is a good question.

The answer is that the behavior must be normalized. Business rules are merely a form of behavior.
The business rule specifying that the customer name value is required, for instance, is just a behavior
associated with that particular value.

Earlier in the chapter I discuss the idea that a validation rule can be reduced to a method defined
by a delegate. A delegate is just an object that points to a method, so it is quite possible to view the
delegate itself as the rule. Following this train of thought, every rule then becomes an object.

Behavioral object-oriented design relies heavily on the concept of collaboration. Collaboration
is the idea that an object should collaborate with other objects to do its work. If an object starts to
become complex, you can break the problem into smaller, more digestible parts by moving some
of the sub-behaviors into other objects that collaborate with the original object to accomplish the
overall goal.

In the case of a required customer name value, there’s a Rule object that defines that behavior.
Both the CustomerEdit and InvoiceEdit objects can collaborate with that Rule object to ensure that
the rule is consistently applied. As you can see in Figure 2-6, the actual rule is only implemented once
but is used as appropriate—effectively normalizing that behavior.

Figure 2-6. Normalizing the customer name required behavior

It could be argued that the CustomerName concept should become an object of its own and that this
object would implement the behaviors common to the field. While this sounds good in an idealistic

Lhotka_1019-1C02.fm Page 55 Tuesday, November 4, 2008 10:36 AM

56 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

sense, it has serious performance and complexity drawbacks when implemented on development plat-
forms such as .NET. Creating a custom object for every field in your application can rapidly
become overwhelming, and such an approach makes the use of technologies such as data binding
very complex.

My approach of normalizing the rules themselves provides a workable compromise: providing
a high level of code reuse while still offering good performance and allowing the application to take
advantage of all the features of the .NET platform.

In fact, the idea that a string value is required is so pervasive that it can be normalized to a
general StringRequired rule that can be used by any object with a required property anywhere in an
application. In Chapter 11, I implement a CommonRules class containing several common validation
rules of this nature.

Object-Relational Mapping

If object models aren’t the same as relational models (or some other data models that we might
be using), some mechanism is needed by which data can be translated from the Data Storage and
Management layer up into the object-oriented Business layer.

■Note This mismatch between object models and relational models is a well-known issue within the object-
oriented community. It is commonly referred to as the impedance mismatch problem, and one of the best discussions of
it can be found in David Taylor’s book, Object-Oriented Technology: A Manager’s Guide (Addison-Wesley, 1991).

Several object-relational mapping (ORM) products from various vendors, including Microsoft,
exist for the .NET platform. In truth, however, most ORM tools have difficulty working against object
models defined using behavioral object-oriented design. Unfortunately, most of the ORM tools tend
to create “superpowered” DataSet equivalents, rather than true behavioral business objects. In other
words, they create a data-centric representation of the business data and wrap it with business logic.

The differences between such a data-centric object model and what I am proposing in this book
are subtle but important. Responsibility-driven object modeling creates objects that are focused on
the object’s behavior, not on the data it contains. The fact that objects contain data is merely a side
effect of implementing behavior; the data is not the identity of the object. Most ORM tools, by contrast,
create objects based around the data, with the behavior being a side effect of the data in the object.

Beyond the philosophical differences, the wide variety of mappings that you might need and the
potential for business logic driving variations in the mapping from object to object make it virtually
impossible to create a generic ORM product that can meet everyone’s needs.

Consider the CustomerEdit object example discussed earlier. While the customer data may come
from one database, it is totally realistic to consider that some data may come from SQL Server while
other data comes through screen scraping a mainframe screen. It’s also quite possible that the busi-
ness logic will dictate that some of the data is updated in some cases but not in others. Issues such
as these are virtually impossible to solve in a generic sense, and so solutions almost always revolve
around custom code. The most a typical ORM tool can do is provide support for simple cases, in
which objects are updated to and from standard, supported, relational data stores. At most, they
provide hooks by which you can customize their behavior. Rather than trying to build a generic ORM
product as part of this book, I’ll aim for a much more attainable goal.

The framework in this book defines a standard set of four methods for creating, retrieving, updating,
and deleting objects. Business developers will implement these four methods to work with the under-
lying data management tier by using the ADO.NET Entity Framework, LINQ to SQL, raw ADO.NET,
the XML support in .NET, XML services, or any other technology required to accomplish the task. In
fact, if you have an ORM (or some other generic data access) product, you’ll often be able to invoke
that tool from these four methods just as easily as using ADO.NET directly.

Lhotka_1019-1C02.fm Page 56 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 57

■Note The approach taken in this book and the associated framework is very conducive to code generation.
Many people use code generators to automate the process of building common data access logic for their objects,
thus achieving high levels of productivity while retaining the ability to create a behavioral object-oriented model.

The point is that the framework will simplify object persistence so that all developers need to do
is implement these four methods in order to retrieve or update data. This places no restrictions on
the object’s ability to work with data and provides a standardized persistence and mapping mecha-
nism for all objects.

Preserving Encapsulation

As I noted at the beginning of the chapter, one of my key goals is to design this framework to provide
powerful features while following the key object-oriented concepts, including encapsulation. Encapsula-
tion is the idea that all of the logic and data pertaining to a given business entity is held within the
object that represents that entity. Of course, there are various ways in which one can interpret the
idea of encapsulation—nothing is ever simple.

One approach is to encapsulate business data and logic in the business object and then encap-
sulate data access and ORM behavior in some other object: a persistence object. This provides a nice
separation between the business logic and data access and encapsulates both types of behavior, as
shown in Figure 2-7.

Figure 2-7. Separation of ORM logic into a persistence object

Although there are certainly some advantages to this approach, there are drawbacks, too. The
most notable of these is that it can be challenging to efficiently get the data from the persistence
object into or out of the business object. For the persistence object to load data into the business
object, it must be able to bypass business and validation processing in the business object and
somehow load raw data into it directly. If the persistence object tries to load data into the object
using the object’s public properties, you’ll run into a series of issues:

• The data already in the database is presumed valid, so a lot of processing time is wasted
unnecessarily revalidating data. This can lead to a serious performance problem when
loading a large group of objects.

• There’s no way to load read-only property values. Objects often have read-only properties for
things such as the primary key of the data, and such data obviously must be loaded into the
object, but it can’t be loaded via the normal interface (if that interface is properly designed).

• Sometimes properties are interdependent due to business rules, which means that some
properties must be loaded before others or errors will result. The persistence object would
need to know about all these conditions so that it could load the right properties first. The
result is that the persistence object would become very complex, and changes to the business
object could easily break the persistence object.

On the other hand, having the persistence object load raw data into the business object breaks
encapsulation in a big way because one object ends up directly tampering with the internal fields of

Lhotka_1019-1C02.fm Page 57 Tuesday, November 4, 2008 10:36 AM

58 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

another. This could be implemented using reflection or by designing the business object to expose
its private fields for manipulation. But the former is slow and the latter is just plain bad object design:
it allows the UI developer (or any other code) to manipulate these fields, too. That’s just asking for
the abuse of the objects, which will invariably lead to code that’s impossible to maintain.

What’s needed is a workable compromise, where the actual data access code is in one object
while the code to load the business object’s fields is in the business object itself. This can be accom-
plished by creating a separate data access layer (DAL) assembly that is invoked by the business
object. The DAL defines an interface the business object can use to retrieve and store information,
as shown in Figure 2-8.

Figure 2-8. Business object interacting with a data access layer

This is a nice compromise because it allows the business object to completely manage its own
fields and yet keeps the code that communicates with the database cleanly separated into its own
location.

There are several ways to implement such a DAL, including the use of raw ADO.NET and the use
of LINQ to SQL. The raw ADO.NET approach has the benefit of providing optimal performance. In
this case the DAL simply returns a DataReader to the business object and the object can load its fields
directly from the data stream.

Creating the DAL using LINQ to SQL or the ADO.NET Entity Framework provides a higher level
of abstraction and simplifies the DAL code. However, this approach is slower, because the data must
pass through a set of data transfer objects (DTOs) or entity objects as it flows to and from the busi-
ness object.

■Note In many CSLA .NET applications, the data access code is directly embedded within the business object.
While this arguably blurs the boundary between layers, it often provides the best performance and the simplest code.

The examples in this book use a formal data access layer created using LINQ to SQL, but the
same architecture supports creation of a DAL that uses raw ADO.NET or many other data access
technologies.

Supporting Physical N-Tier Models

The question that remains then is how to support physical n-tier models if the UI-oriented and data-
oriented behaviors reside in one object.

UI-oriented behaviors almost always involve a lot of properties and methods, with a very fine-
grained interface with which the UI can interact in order to set, retrieve, and manipulate the values
of an object. Almost by definition, this type of object must run in the same process as the UI code
itself, either on the Windows client machine with WPF or Windows Forms or on the web server with
Web Forms.

Lhotka_1019-1C02.fm Page 58 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 59

Conversely, data-oriented behaviors typically involve very few methods: create, fetch, update,
delete. They must run on a machine where they can establish a physical connection to the data store.
Sometimes this is the client workstation or web server, but often it means running on a physically
separate application server.

This point of apparent conflict is where the concept of mobile objects enters the picture. It’s
possible to pass a business object from an application server to the client machine, work with the
object, and then pass the object back to the application server so that it can store its data in the data-
base. To do this, there needs to be some black-box component running as a service on the application
server with which the client can interact. This black-box component does little more than accept the
object from the client and then call methods on the object to retrieve or update data as required. But
the object itself does all the real work. Figure 2-9 illustrates this concept, showing how the same physical
business object can be passed from application server to client, and vice versa, via a generic router
object that’s running on the application server.

In Chapter 1, I discussed anchored and mobile objects. In this model, the business object is mobile,
meaning that it can be passed around the network by value. The router object is anchored, meaning
that it will always run on the machine where it’s created.

In the framework, I’ll refer to this router object as a data portal. It will act as a portal for all data
access for all the objects. The objects will interact with this portal in order to retrieve default values
(create), fetch data (read), update or insert data (update), and remove data (delete). This means that
the data portal will provide a standardized mechanism by which objects can perform all create, read,
update, delete (CRUD) operations.

The end result will be that each business class will include a factory method that the UI can call
in order to load an object based on data from the database, as follows:

 public static Customer GetCustomer(string customerId)
 {
 return DataPortal.Fetch<Customer>(
 new SingleCriteria<Customer, string>(customerId));
 }

Figure 2-9. Passing a business object to and from the application server

Lhotka_1019-1C02.fm Page 59 Tuesday, November 4, 2008 10:36 AM

60 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Notice how the data portal concept abstracts the use of WCF, and so this code is far simpler than
the WCF code used earlier in the chapter.

The actual data access code will be contained within each of the business objects. The data
portal will simply provide an anchored object on a machine with access to the database server and
will invoke the appropriate CRUD methods on the business objects themselves. This means that the
business object will also implement a method that will be called by the data portal to actually load
the data. That method will look something like this:

 private void DataPortal_Fetch(SingleCriteria<Customer, string> criteria)
 {
 // Code to load the object's fields with data goes here
 }

The UI won’t know (or need to know) how any of this works, so in order to create a Customer
object, the UI will simply write code along these lines:

 var cust = Customer.GetCustomer("ABC");

The framework, and specifically the data portal, will take care of all the rest of the work, including
figuring out whether the data access code should run on the client workstation or on an application
server.

Using the data portal means that all the logic remains encapsulated within the business objects,
while physical n-tier configurations are easily supported. Better still, by implementing the data
portal correctly, you can switch between having the data access code running on the client machine
and placing it on a separate application server just by changing a configuration file setting. The
ability to change between 2- and 3-tier physical configurations with no changes to code is a powerful
and valuable feature.

Custom Authentication
Application security is often a challenging issue. Applications need to be able to authenticate the
user, which means that they need to verify the user’s identity. The result of authentication is not only
that the application knows the identity of the user but that the application has access to the user’s
role membership and possibly other information about the user. Collectively, I refer to this as the
user’s profile data. This profile data can be used by the application for various purposes, most notably
authorization.

CSLA .NET directly supports integrated security. This means that you can use objects within the
framework to determine the user’s Windows identity and any domain or Active Directory (AD) groups to
which they belong. In some organizations, this is enough; all the users of the organization’s applica-
tions are in AD, and by having users log in to a workstation or a website using integrated security, the
applications can determine the user’s identity and roles (groups).

In other organizations, applications are used by at least some users who are not part of the orga-
nization’s NT domain or AD. They may not even be members of the organization in question. This is
very often the case with web and mobile applications, but it’s surprisingly common with Windows
applications as well. In these cases, you can’t rely on Windows integrated security for authentication
and authorization.

To complicate matters further, the ideal security model would provide user profile and role
information not only to server-side code but also to the code on the client. Rather than allowing the
user to attempt to perform operations that will generate errors due to security at some later time, the
UI should gray out the options, or not display them at all. This requires that the developer has consis-
tent access to the user’s identity and profile at all layers of the application, including the UI, Business,
and Data Access layers.

Lhotka_1019-1C02.fm Page 60 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 61

Remember that the layers of an application may be deployed across multiple physical tiers. Due
to this fact, there must be a way of transferring the user’s identity information across tier boundaries.
This is often called impersonation.

Implementing impersonation isn’t too hard when using Windows integrated security, but it’s
often problematic when relying on roles that are managed in a custom SQL Server database, an LDAP
store, or any other location outside of AD.

The CSLA .NET framework will provide support for both Windows integrated security and
custom authentication, in which you define how the user’s credentials are validated and the user’s
profile data and roles are loaded. This custom security is a model that you can adapt to use any
existing security tables or services that already exist in your organization. The framework will rely on
Windows to handle impersonation when using Windows integrated or AD security and will handle
impersonation itself when using custom authentication.

Designing the Framework
So far, I have focused on the major goals for the framework. Having covered the guiding principles,
let’s move on to discuss the design of the framework so it can meet these goals. In the rest of this
chapter, I walk through the various classes that will combine to create the framework. After covering
the design, in Chapters 6 through 16 I dive into the implementation of the framework code.

A comprehensive framework can be a large and complex entity. There are usually many classes
that go into the construction of a framework, even though the end users of the framework—the business
developers—only use a few of those classes directly. The framework discussed here and implemented in
Chapters 6 through 16 accomplishes the goals I’ve just discussed, along with enabling the basic
creation of object-oriented n-tier business applications. For any given application or organization, this
framework will likely be modified and enhanced to meet specific requirements. This means that
the framework will grow as you use and adapt it to your environment.

The CSLA .NET framework contains a lot of classes and types, which can be overwhelming if
taken as a whole. Fortunately, it can be broken down into smaller units of functionality to better
understand how each part works. Specifically, the framework can be divided into the following func-
tional groups:

• Business object creation

• N-level undo functionality

• Data binding support

• Validation and business rules

• A data portal enabling various physical configurations

• Transactional and nontransactional data access

• Authentication and authorization

• Helper types and classes

For each functional group, I’ll focus on a subset of the overall class diagram, breaking it down
into more digestible pieces.

Business Object Creation
First, it’s important to recognize that the key classes in the framework are those that business devel-
opers will use as they create business objects but that these are a small subset of what’s available. In
fact, many of the framework classes are never used directly by business developers. Figure 2-10 shows
only those classes the business developer will typically use.

Lhotka_1019-1C02.fm Page 61 Tuesday, November 4, 2008 10:36 AM

62 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Figure 2-10. Framework classes used directly by business developers

Obviously, the business developer may periodically interact with other classes as well, but these
are the ones that will be at the center of most activity. Classes or methods that the business developer
shouldn’t have access to will be scoped to prevent accidental use.

Table 2-1 summarizes each class and its intended purpose.

Table 2-1. Business Framework Base Classes

Class Purpose

BusinessBase<T> Inherit from this class to create a single editable business object
such as Customer, Order, or OrderLineItem.

BusinessListBase<T,C> Inherit from this class to create an editable collection of business
objects such as PaymentTerms or OrderLineItems.

EditableRootListBase<C> Inherit from this class to implement a collection of business objects,
where changes to each object are committed automatically as
the user moves from object to object (typically in a data bound
grid control).

CommandBase Inherit from this class to implement a command that should
run on the application server, such as implementation of a
Customer.Exists or an Order.ShipOrder command.

ReadOnlyBase<T> Inherit from this class to create a single read-only business object
such as OrderInfo or ProductStatus.

Lhotka_1019-1C02.fm Page 62 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 63

These base classes support a set of object stereotypes. A stereotype is a broad grouping of objects
with similar behaviors or roles. The supported stereotypes are listed in Table 2-2.

Let’s discuss each stereotype in a bit more detail.

ReadOnlyListBase<T,C> Inherit from this class to create a read-only collection of objects
such as CustomerList or OrderList.

NameValueListBase<K,V> Inherit from this class to create a read-only collection of key/value
pairs (typically for populating drop-down list controls) such as
PaymentTermsCodes or CustomerCategories.

Table 2-2. Supported Object Stereotypes

Stereotype Description Base Class

Editable root Object containing read-write properties;
object can be retrieved/stored directly
to database

BusinessBase<T>

Editable child Object containing read-write properties;
object is contained within another object
and cannot be retrieved/stored directly to
database

BusinessListBase<T,C>

Editable root list List object containing editable child
objects; list can be retrieved/stored
directly to database

BusinessBase<T>

Editable child list List object containing editable child objects;
list is contained within another object
and cannot be retrieved/stored directly
to database

BusinessListBase<T,C>

Dynamic root list List object containing editable root objects;
list is retrieved directly from database

EditableRootListBase<C>

Command Object that executes a command on the
application server and reports back with
the results

CommandBase

Read-only root Object containing read-only properties; object
can be retrieved directly from database

ReadOnlyBase<T>

Read-only child Object containing read-only properties;
object is contained within another object and
cannot be retrieved directly from database

ReadOnlyBase<T>

Read-only root list List containing read-only child objects; list
can be retrieved directly from database

ReadOnlyListBase<T,C>

Read-only child list List containing read-only child objects;
list is contained within another object and
cannot be retrieved directly from database

ReadOnlyListBase<T>

Name/value list List object containing read-only
name/value objects

NameValueListBase<K,V>

Table 2-1. Business Framework Base Classes

Class Purpose

Lhotka_1019-1C02.fm Page 63 Tuesday, November 4, 2008 10:36 AM

64 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Editable Root

The BusinessBase class is the base from which all editable (read-write) business objects will be created.
In other words, to create a business object, inherit from BusinessBase, as shown here:

 [Serializable]
 public class CustomerEdit : BusinessBase<CustomerEdit>
 {
 }

When creating a subclass, the business developer must provide the specific type of new business
object as a type parameter to BusinessBase<T>. This allows the generic BusinessBase type to expose
strongly typed methods corresponding to the specific business object type.

Behind the scenes, BusinessBase<T> inherits from Csla.Core.BusinessBase, which implements
the majority of the framework functionality to support editable objects. The primary reason for pulling
the functionality out of the generic class into a normal class is to enable polymorphism. Polymorphism
is what allows you to treat all subclasses of a type as though they were an instance of the base class.
For example, all Windows Forms—Form1, Form2, and so forth—can be treated as type Form. You can
write code like this:

Form form = new Form2();
form.Show();

This is polymorphic behavior, in which the variable form is of type Form but references an object
of type Form2. The same code would work with Form1 because both inherit from the base type Form.

It turns out that generic types are not polymorphic like normal types.
Another reason for inheriting from a non-generic base class is to make it simpler to customize

the framework. If needed, you can create alternative editable base classes starting with the function-
ality in Core.BusinessBase.

Csla.Core.BusinessBase and the classes from which it inherits provide all the functionality
discussed earlier in this chapter, including n-level undo, tracking of broken rules, “dirty” tracking,
object persistence, and so forth. It supports the creation of root objects (top-level) and child objects.
Root objects are objects that can be retrieved directly from and updated or deleted within the data-
base. Child objects can only be retrieved or updated in the context of their parent object.

■Note Throughout this book, it is assumed that you are building business applications, in which case almost all
objects are ultimately stored in the database at one time or another. Even if an object isn’t persisted to a database,
you can still use BusinessBase to gain access to the n-level undo and business, validation, and authorization rules
and change tracking features built into the framework.

For example, an InvoiceEdit is typically a root object, though the LineItem objects contained by
an InvoiceEdit object are child objects. It makes perfect sense to retrieve or update an InvoiceEdit,
but it makes no sense to create, retrieve, or update a LineItem without having an associated
InvoiceEdit.

The BusinessBase class provides default implementations of the data access methods that exist
on all root business objects.

■Note The default implementations are a holdover from a very early version of the framework. They still exist
to preserve backward compatibility to support users who have been using CSLA .NET for many years and over
many versions.

Lhotka_1019-1C02.fm Page 64 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 65

These methods will be called by the data portal mechanism. These default implementations all
raise an error if they’re called. The intention is that the business objects can opt to override these
methods if they need to support, create, fetch, insert, update, or delete operations. The names of
these methods are as follows:

• DataPortal_Create()

• DataPortal_Fetch()

• DataPortal_Insert()

• DataPortal_Update()

• DataPortal_DeleteSelf()

• DataPortal_Delete()

Though virtual implementations of these methods are in the base class, developers will typically
implement strongly typed versions of DataPortal_Create(), DataPortal_Fetch(), and DataPortal_
Delete(), as they all accept a criteria object as a parameter. The virtual methods declare this param-
eter as type object, of course; but a business object will typically want to use the actual data type of
the criteria object itself. This is discussed in more detail in Chapters 15 and 18.

The data portal also supports three other (optional) methods for pre- and post-processing and
exception handling. The names of these methods are as follows:

• DataPortal_OnDataPortalInvoke()

• DataPortal_OnDataPortalInvokeComplete()

• DataPortal_OnDataPortalException()

Editable root objects are very common in most business applications.

Editable Child

Editable child objects are always contained within another object and they cannot be directly retrieved
or stored in the database. Ultimately there’s always a single editable root object that is retrieved
or stored.

BusinessBase includes a method that can be called to indicate that the object is a child object:
MarkAsChild(). Normally this method is invoked automatically by CSLA .NET as the object instance
is created by the data portal. This means that a child object might look like this:

 [Serializable]
 public class Child : BusinessBase<Child>
 {
 }

Notice that there’s no different from the previous root object. If for some reason you do not use
the data portal (discussed later in the “Data Portal” section) to create instances of your objects, you
may need to call MarkAsChild() manually in the object’s constructor:

 [Serializable]
 public class Child : BusinessBase<Child>
 {
 private Child()
 {
 MarkAsChild();
 }
 }

Lhotka_1019-1C02.fm Page 65 Tuesday, November 4, 2008 10:36 AM

66 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

The data access methods for a child object are different from those of a root object. The names
of these methods are as follows:

• Child_Create()

• Child_Fetch()

• Child_Insert()

• Child_Update()

• Child_DeleteSelf()

The BusinessBase class does not provide virtual implementations of these methods; they must
be explicitly declared by the author of the child class. These methods are called by the data portal to
notify each child object when it should perform its data persistence operations.

BusinessBase provides a great deal of functionality to the business objects, whether root or child.
Chapter 6 covers the implementation of BusinessBase itself, and Chapters 17 and 18 show how to
create business objects using BusinessBase.

Editable Root List

The BusinessListBase class is the base from which all editable collections of business objects are
created. Given an InvoiceEdit object with a collection of LineItem objects, BusinessListBase is the
base for creating that collection:

[Serializable]
public class LineItems : BusinessListBase<LineItems, LineItem>
{
}

When creating a subclass, the business developer must provide the specific types of his
new business collection, and the child objects the collection contains, as type parameters to
BusinessListBase<T,C>. This allows the generic type to expose strongly typed methods corresponding
to the specific business collection type and the type of the child objects.

The result is that the business collection automatically has a strongly typed indexer, along with
strongly typed Add() and Remove() methods. The process is the same as if the object had inherited
from System.ComponentModel.BindingList<T>, except that this collection will include all the function-
ality required to support n-level undo, object persistence, and the other business object features.

■Note BusinessListBase inherits from System.ComponentModel.BindingList<T>, so it starts with all
the core functionality of a data-bindable .NET collection.

The BusinessListBase class also defines the data access methods discussed previously in the
section on BusinessBase. This allows retrieval of a collection of objects directly (rather than a single
object at a time), if that’s what is required by the application design. Typically only the following
methods are implemented in a list:

• DataPortal_Create()

• DataPortal_Fetch()

There is a DataPortal_Update() method, but BusinessListBase provides a default implementa-
tion that is usually sufficient to save all objects contained in the list.

Lhotka_1019-1C02.fm Page 66 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 67

Editable Child List

The BusinessListBase class also defines the MarkAsChild() method discussed in the previous “Editable
Child” section. This is typically called automatically when an instance of the class is created by the
data portal and indicates that the list is a child of some other object.

When creating a child list, the developer will typically implement the following data access methods:

• Child_Create()

• Child_Fetch()

There is a Child_Update() method but BusinessListBase provides a default implementation
that is usually sufficient to save all objects contained in the list.

Dynamic Root List

The EditableRootListBase class is the base from which collections of editable root business objects
can be created. This stereotype and base class exist to support a very specific scenario where the list
is data bound to a Windows Forms grid control, allowing the user to do in-place editing of the data
in the grid.

In that data bound grid scenario, when using a dynamic root list, all changes to data on a row in
the grid are committed as soon as the user moves off that row. If the user deletes a row, the object is
immediately deleted. If the user edits a value and moves up or down to another row, that change
is immediately saved.

This is fundamentally different from an editable root list, where the user’s changes to items in
the list aren’t committed to the database until the UI saves the entire list.

Given a CategoryList object with a collection of CategoryEdit objects, EditableRootListBase
will be the base for creating that collection:

[Serializable]
public class CategoryList : EditableRootListBase<CategoryEdit>
{
}

When creating a subclass, the business developer must provide the specific type of the objects
the collection contains. The contained objects should be editable root objects, with one variation.
Rather than implementing DataPortal_Fetch(), they will typically implement Child_Fetch() so they
can be loaded into memory by the containing collection.

Like BusinessListBase, EditableRootListBase inherits from BindingList<T> and so supports all
the rich data binding behaviors provided by .NET.

A dynamic root list will usually implement only one data access method: DataPortal_Fetch().
Again, this stereotype and base class exist to serve a very specific function; but when dynamic in-place
editing of data in a Windows Forms grid is required, this is a very useful approach.

Command

Most applications consist not only of interactive forms or pages (which require editable objects and
collections) but also of non-interactive processes. In a one- or two-tier physical model, these processes
run on the client workstation or web server, of course. But in a three-tier model, they should run on
the application server to have optimal access to the database server or other back-end resources.

Common examples of non-interactive processes include tasks as simple as checking to see if a
specific customer or product exists and as complex as performing all the back-end processing required
to ship and order or post an invoice.

The CommandBase class provides a clear starting point for implementing these types of behaviors.
A command object is created on the client and initialized with the data it needs to do its work on the

Lhotka_1019-1C02.fm Page 67 Tuesday, November 4, 2008 10:36 AM

68 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

server. It is then executed on the server through the data portal. Unlike other objects, however, command
objects implement a special execute method:

DataPortal_Execute()

The optional pre-, post-, and exception data portal methods can also be implemented if desired.
But the DataPortal_Execute() method is the important one, since that is where the business devel-
oper writes the code to implement the non-interactive back-end processing.

I make use of CommandBase in Chapter 17 when implementing the sample application objects.

Read-Only Root and Child

Sometimes applications don’t want to expose an editable object. Many applications have objects
that are read-only or display-only. Read-only objects need to support object persistence only for
retrieving data, not for updating data. Also, they don’t need to support any of the n-level undo or
other editing-type behaviors because they’re created with read-only properties.

For editable objects, there’s BusinessBase, which has a property that can be set to indicate
whether it’s a parent or child object. The same base supports both types of objects, allowing dynamic
switching between parent and child at runtime.

Making an object read-only or read-write is a bigger decision because it impacts the interface of
the object. A read-only object should only include read-only properties as part of its interface, and
that isn’t something you can toggle on or off at runtime. You can make objects read-only, and conse-
quently more specialized and with less overhead, by implementing a specific base class.

The ReadOnlyBase class is used to create read-only objects, as follows:

[Serializable]
public class StaticContent : ReadOnlyBase<StaticContent>
{
}

Classes shouldn’t implement any read-write properties. If this were to happen, it would be
entirely up to the code in the object to handle any undo, persistence, or other features for dealing
with the changed data. If an object has editable properties, it should subclass from BusinessBase.

Read-only objects include authorization rules so the object can control which users can view
each property. Obviously they don’t implement business or validation rules because such rules are
only invoked when a property changes, and that won’t happen with read-only properties.

ReadOnly Root and Child List

Not only do applications sometimes need read-only business objects, they also commonly require
immutable collections of objects. The ReadOnlyListBase class lets you create strongly typed collec-
tions of objects, whereby the object and collection are both read-only:

[Serializable]
public class StaticList : ReadOnlyListBase<StaticList, ChildType>
{
}

As with ReadOnlyBase, this object supports only the retrieval of data. It has no provision for updating
data or handling changes to its data. While the child objects in such a collection may inherit from
ReadOnlyBase, they don’t have to. More commonly, the child objects in a read-only collection are just
simple .NET objects that merely expose read-only properties.

Lhotka_1019-1C02.fm Page 68 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 69

Name/Value List

The NameValueListBase class is designed specifically to support the idea of lookup tables or lists of
read-only key/value data such as categories, customer types, product types, and so forth. The goal of
this class is to simplify the process of retrieving such data and displaying it in common controls such
as drop-down lists, combo boxes, and other list controls. The following shows the beginnings of a
custom name/value list:

[Serializable]
public class CodeList : NameValueListBase<int, string>
{
}

While the business developer does need to create a specific class for each type of name/value
data, inheriting from this base class largely trivializes the process.

There are a couple similar types in the System.Collections.Specialized namespace:
NameObjectCollectionBase and NameValueCollection. These types don’t automatically integrate with the
rest of the CSLA .NET framework for tasks such as object persistence and don’t fully support data binding.

N-Level Undo Functionality
The implementation of n-level undo functionality is quite complex and involves heavy use of reflection.
Fortunately, you can use inheritance to place the implementation in a base class so that no business
object needs to worry about the undo code. In fact, to keep things cleaner, this code is in its own base
class, separate from any other business object behaviors, as shown in Figure 2-11.

Figure 2-11. Separating n-level undo into Core.UndoableBase

Lhotka_1019-1C02.fm Page 69 Tuesday, November 4, 2008 10:36 AM

70 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

At first glance, it might appear that you could use .NET serialization to implement undo func-
tionality: what easier way to take a snapshot of an object’s state than to serialize it into a byte stream?
Unfortunately, this isn’t as easy as it might sound, at least when it comes to restoring the object’s state.

Taking a snapshot of a Serializable object is easy and can be done with code similar to this:

[Serializable]
public class Customer
{
 public byte[] Snapshot()
 {
 using (var buffer = new MemoryStream())
 {
 var formatter = new BinaryFormatter();

 formatter.Serialize(buffer, this);
 buffer.Position = 0;
 return buffer.ToArray();
 }
 }
}

This converts the object into a byte stream, returning that byte stream as an array of type byte.
That part is easy—it’s the restoration that’s tricky. Suppose that the user now wants to undo the
changes, requiring that the byte stream be restored back into the object. The code that deserializes
a byte stream looks like this:

[Serializable]
public class Customer
{
 public Customer Deserialize(byte[] state)
 {
 using (var buffer = new MemoryStream(state))
 {
 var formatter = new BinaryFormatter();

 return (Customer) formatter.Deserialize(buffer);
 }
 }
}

Notice that this function returns a new customer object. It doesn’t restore the existing object’s
state; it creates a new object. Somehow, you would have to tell any and all code that has a reference
to the existing object to use this new object. In some cases, that might be easy to do, but it isn’t always
trivial. In complex applications, it’s hard to guarantee that other code elsewhere in the application
doesn’t have a reference to the original object; and if you don’t somehow get that code to update its
reference to this new object, it will continue to use the old one.

What’s needed is some way to restore the object’s state in place, so that all references to the
current object remain valid but the object’s state is restored. This is the purpose of the UndoableBase class.

UndoableBase

The BusinessBase class inherits from UndoableBase and thereby gains n-level undo capabilities.
Because all business objects inherit from BusinessBase, they too gain n-level undo. Ultimately, the
n-level undo capabilities are exposed to the business object and to UI developers via three methods:

Lhotka_1019-1C02.fm Page 70 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 71

• BeginEdit() tells the object to take a snapshot of its current state, in preparation for being
edited. Each time BeginEdit() is called, a new snapshot is taken, allowing the state of the
object to be trapped at various points during its life. The snapshot will be kept in memory
so the data can be easily restored to the object if CancelEdit() is called.

• CancelEdit() tells the object to restore the object to the most recent snapshot. This effectively
performs an undo operation, reversing one level of changes. If CancelEdit() is called the
same number of times as BeginEdit(), the object will be restored to its original state.

• ApplyEdit() tells the object to discard the most recent snapshot, leaving the object’s current
state untouched. It accepts the most recent changes to the object. If ApplyEdit() is called the
same number of times as BeginEdit(), all the snapshots will be discarded, essentially making
any changes to the object’s state permanent.

Sequences of BeginEdit(), CancelEdit(), and ApplyEdit() calls can be combined to respond to
the user’s actions within a complex Windows Forms UI. Alternatively, you can totally ignore these
methods, taking no snapshots of the object’s state. In such a case, the object will incur no overhead
from n-level undo, but it also won’t have the ability to undo changes. This is common in web appli-
cations in which the user has no option to cancel changes. Instead, the user simply navigates away
to perform some other action or view some other data.

The Csla.Core.ISupportUndo interface exists to allow UI developers and framework authors to
polymorphically invoke these three methods on any object that supports the concept. The BusinessBase
and BusinessListBase classes already implement this interface.

Supporting Child Objects

As it traces through a business object to take a snapshot of the object’s state, UndoableBase may
encounter child objects. For n-level undo to work for complex objects as well as simple objects, any
snapshot of object state must extend down through all child objects as well as the parent object.

I discussed this earlier with the InvoiceEdit and LineItem example. When BeginEdit() is called
on an InvoiceEdit, it must also take snapshots of the states of all its LineItem objects because they’re
technically part of the state of the InvoiceEdit object itself. To do this while preserving encapsulation,
each individual object takes a snapshot of its own state so that no object data is ever made available
outside the object, thus preserving encapsulation for each object.

However, to complicate matters, a BeginEdit() call on a parent object does not cascade to its
child objects when BeginEdit() is called through the IEditableObject interface. This is because data
binding, which uses IEditableObject, gets confused if that happens and the child objects will end up
out of sync with the parent, resulting in very hard to debug issues with data bound interfaces.

In that case, UndoableBase simply calls a method on the child object to cascade the BeginEdit(),
CancelEdit(), or ApplyEdit() call to that object. It is then up to the individual child object to take a
snapshot of its own data. In other words, each object is responsible for managing its own state, including
taking a snapshot and potentially restoring itself to that snapshot later.

UndoableBase implements Core.IUndoableObject, which simplifies the code in the class. This
interface defines the methods required by UndoableBase during the undo process.

A child object could also be a collection derived from BusinessListBase. Notice that
BusinessListBase implements the Core.IEditableCollection interface, which inherits from the
Core.IUndoableObject interface.

NotUndoableAttribute

The final concept to discuss regarding n-level undo is the idea that some data might not be subject
to being in a snapshot. Taking a snapshot of an object’s data takes time and consumes memory;
there’s no reason to take a snapshot if the object includes read-only values. Because the values can’t
be changed, there’s no benefit in restoring them to the same value in the course of an undo operation.

Lhotka_1019-1C02.fm Page 71 Tuesday, November 4, 2008 10:36 AM

72 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

To accommodate this scenario, the framework includes a custom attribute named
NotUndoableAttribute, which you can apply to fields within your business classes, as follows:

 [NotUndoable]
 private string _readonlyData;

The code in UndoableBase simply ignores any fields marked with this attribute as the snapshot
is created or restored, so the field will always retain its value regardless of any calls to BeginEdit(),
CancelEdit(), or ApplyEdit() on the object.

You should be aware that the n-level undo implementation doesn’t handle circular references,
so if you have a field that references another object in a way that would cause a circular reference,
you must mark the field as NotUndoable to break the circle.

Data Binding Support
As I discuss earlier in the chapter, the .NET data binding infrastructure directly supports the concept
of data binding to objects and collections. However, an object can provide more complete behaviors
by implementing a few interfaces in the framework base classes. Table 2-3 lists the interfaces and
their purposes.

Table 2-3. .NET Data Binding Interfaces

Interface Purpose

IBindingList Defines data binding behaviors for collections, including
change notification, sorting, and filtering (implemented by
BindingList<T>)

ICancelAddNew Defines data binding behaviors for collections to allow data
binding to cancel addition of a new child object (implemented
by BindingList<T>)

IRaiseItemChangedEvents Indicates that a collection object will raise a ListChanged
event to show that one of its child objects has raised a
PropertyChanged event (implemented by BindingList<T>)

INotifyCollectionChanged Defines a CollectionChanged event to be raised by a list
when the list or its items have changed (implemented by
ObservableCollection<T>)

IEditableObject Defines single-level undo behavior for a business object,
allowing the object to behave properly with in-place editing
in a DataGridView

INotifyPropertyChanged Defines an event allowing an object to notify data binding when
a property has been changed

INotifyPropertyChanging Defines an event allowing an object to notify listeners when a
property is about to be changed

IDataErrorInfo Defines properties used by the DataGridView and ErrorProvider
controls to automatically show descriptions of broken valida-
tion rules within the object

Lhotka_1019-1C02.fm Page 72 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 73

The IBindingList interface is a well-defined interface that (among other things) raises a single
event to indicate that the contents of a collection have changed. Fortunately, there’s the System.
ComponentModel.BindingList<T> base class that already implements this interface, so virtually no
effort is required to gain these benefits.

As mentioned earlier, INotifyCollectionChanged and the corresponding ObservableCollection<T>
class are WPF-only replacements for IBindingList and BindingList<T>. You should only implement
one or the other solution, and CSLA .NET uses BindingList<T> to gain support for Windows Forms
as well as WPF.

The System.ComponentModel.INotifyPropertyChanged and INotifyPropertyChanging interface
members are a bit more complex. These interfaces define events that a business object should raise
any time a property value is changing or changed. As discussed earlier, in a serializable object, events
must be declared using a more explicit syntax than normal so the delegate references can be marked
as NonSerialized.

The BindableBase class exists to encapsulate this event declaration and related functionality.
This acts as the ultimate base class for BusinessBase<T>, while BindingList<T> is the base class for
BusinessListBase<T,C>, as shown in Figure 2-12.

Figure 2-12. Class diagram with BindableBase and BindingList<T>

Combined with implementing System.ComponentModel.IEditableObject and System.
ComponentModel.IDataErrorInfo in BusinessBase, the objects can fully support data binding in WPF,
Windows Forms, and Web Forms.

The CSLA .NET list base classes don’t support sorting of a collection through IBindingList. They
do provide support for LINQ, however, which means you can use LINQ to CSLA queries to sort or
filter the items in any CSLA list.

Lhotka_1019-1C02.fm Page 73 Tuesday, November 4, 2008 10:36 AM

74 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

■Note CSLA .NET does include SortedBindingList and FilteredBindingList classes that provide sorted
and filtered views against any collection derived from IList<T> (which in turn means any BindingList<T>).
These solutions are obsolete with LINQ but remain in the framework for backward compatibility.

ExtendedBindingList Class

The list base classes inherit from ExtendedBindingList<T>, which is a specialized subclass of
BindingList<T> that adds a couple important features “missing” from the standard .NET base class.

Most notably, it adds the RemovingItem event, which notifies a business object author that a
child object is being removed, including providing a reference to the child object. The standard
ListChanged event is useful, but it is raised after the child has been removed, and so there’s no way
to get a reference to the removed child.

This class also implements a ChildChanged event. Unlike the PropertyChanged or ListChanged
events, the ChildChanged event bubbles up through all parent objects to the root object. This means
the UI developer can handle the ChildChanged event on any editable root object to be notified when
any child object has been changed.

The ExtendedBindingList class also adds an AddRange() method, which makes it easier for a
business developer to add multiple items to a collection. This feature is particularly useful when
using LINQ to SQL or LINQ to Entities to initialize a collection with data from the data store.

Finally, the class implements the IsSelfBusy and IsBusy properties and related functionality
required to support the asynchronous object persistence behaviors discussed in Chapter 15. The
IsBusy property returns true while any asynchronous operation is in progress for this object or objects
contained in the collection. The IsSelfBusy property returns true while any asynchronous operation
is in progress for this object (but not the child objects it contains).

While BindingList<T> does nearly everything required to support data binding, the
ExtendedBindingList<T> adds some important features that improve the usability of all CSLA .NET
collection base classes.

Business and Validation Rules
Recall that one of the framework’s goals is to simplify and standardize the creation of business and
validation rules. It also automates the tracking of broken validation rules. An important side benefit
of this is that the UI developer will have read-only access to the list of broken rules, which means that
the descriptions of the broken rules can be displayed to the user in order to explain what’s making
the object invalid.

The support for tracking broken business rules is available to all editable business objects, so it’s
implemented at the BusinessBase level in the framework. To provide this functionality, each business
object has an associated collection of broken business rules. Additionally, a rule is defined as a method
that returns a Boolean value indicating whether the business requirement is met. In the case that the
result is false (the rule is broken), a rule also returns a text description of the problem for display to
the user.

To automate this process, each business object has an associated list of rule methods for each
property in the object.

Figure 2-13 illustrates all the framework classes required to implement both the management
of rule methods and maintenance of the list of broken rule descriptions.

Lhotka_1019-1C02.fm Page 74 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 75

Figure 2-13. Classes implementing the validation rules behavior

A business object taps into this functionality through methods exposed on BusinessBase. The
end result is that a business property is always coded in a consistent manner. In the following
example, the highlighted line of code triggers the validation rules behavior:

private static PropertyInfo<string> NameProperty =
 RegisterProperty<string>(new PropertyInfo<string>(typeof(Customer), "Name"));
public string Name
{
 get { return GetProperty<string>(NameProperty); }
 set { SetProperty<string>(NameProperty, value); }
}

Behind the scenes, the SetProperty() method calls a ValidationRules.CheckRules() method to
trigger all rules associated with this property. You can call that method directly if you need to force
rules to be checked at other times during the object’s life cycle.

You’ll see more complete use of the validation rules functionality in Chapter 17, during the
implementation of the sample application.

There are three types of functionality displayed in Figure 2-13. The ValidationRules, RuleHandler,
RuleArgs, and ValidationException classes manage the rule methods associated with the properties
of an object. The BrokenRulesCollection and BrokenRule classes maintain a list of currently broken
validation rules for an object. Finally, the CommonRules class implements a set of commonly used vali-
dation rules, such as StringRequired.

Managing Rule Methods

Business rules are defined by a specific method signature as declared in the RuleHandler delegate:

 public delegate bool RuleHandler(object target, RuleArgs e);

Lhotka_1019-1C02.fm Page 75 Tuesday, November 4, 2008 10:36 AM

76 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

There are also two generic variations on this signature:

public delegate bool RuleHandler<T>(T target, RuleArgs e);
public delegate bool RuleHandler<T, R>(T target, R e);

Each business object contains an instance of the ValidationRules object, which in turn maintains
a list of rules for each property in the business object. Within ValidationRules there is an optimized
data structure that is used to efficiently store and access a list of rules for each property. This allows
the business object to request that validation rules for a specific property be executed, or that all
rules for all properties be executed.

Each rule method returns a Boolean value to indicate whether the rule is satisfied. If a rule is
broken, it returns false. A RuleArgs object is passed to each rule method. This object includes a
Description property that the rule can set to describe the nature of a broken rule.

As ValidationRules executes each rule method, it watches for a response. When it gets a nega-
tive response, it adds an item to the BrokenRulesCollection for the business object. On the other
hand, a positive response causes removal of any corresponding item in BrokenRulesCollection.

Finally, there’s the ValidationException class. A ValidationException is not thrown when
a rule is broken, since the broken rule is already recorded in BrokenRulesCollection. Instead,
ValidationException is thrown by BusinessBase itself in the case that there’s an attempt to save the
object to the database when it’s in an invalid state.

Maintaining a List of Broken Rules

The ValidationRules object maintains a list of rule methods associated with an object. It also executes
those methods to check the rules, either for a specific property or for all properties. The end result of
that process is that descriptions for broken rules are recorded into the BrokenRulesCollection asso-
ciated with the business object.

The BrokenRulesCollection is a list of BrokenRule objects. Each BrokenRule object represents a
validation rule that is currently broken by the data in the business object. These BrokenRule objects
are added and removed from the collection by ValidationRules as part of its normal processing.

The BusinessBase class uses its BrokenRulesCollection to implement an IsValid property. IsValid
returns true only if BrokenRulesCollection contains no items. If it does contain items, the object is
in an invalid state.

The primary point of interest with the BusinessRulesCollection is that it is designed to not only
maintain a list of current broken rules but also to provide read-only access to the UI. This is the reason
for implementing a specialized collection object that can change its own data but is seen by the UI
as being read-only. On top of that, the base class implements support for data binding so that the UI
can display a list of broken rule descriptions to the user by simply binding the collection to a list or
grid control.

Additionally, the implementation of IDataErrorInfo makes use of the BrokenRulesCollection to
return error text for the object or for individual properties. Supporting this interface allows WPF data
binding and the Windows Forms DataGridView and ErrorProvider controls to automatically display
validation error text to the user.

Implementing Common Rules

If you consider the validation rules applied to most properties, there’s a set of common behaviors
that occur time and time again. For example, there’s the idea that a string value is required, or that a
string has a maximum length.

Lhotka_1019-1C02.fm Page 76 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 77

Rather than requiring every business application to implement these same behaviors over and
over again, you can have them be supplied by the framework. As you’ll see in Chapter 11, the imple-
mentation makes use of reflection—so there’s a performance cost. If you find in your particular
application that performance cost to be too high, you can always do what you would have done
anyway—that is, write the rule implementation directly into the application. In most cases, however,
the benefit of code reuse will outweigh the small performance cost incurred by reflection.

Data Portal
Supporting object persistence—the ability to store and retrieve an object from a database—can be
quite complex. This is covered earlier in the chapter during the discussion about basic persistence
and the concept of ORM.

As you’ll see in Chapter 18, data access logic is encapsulated within the formal data access layer
assembly, which is invoked by the business objects. This data access assembly must be deployed to
the physical tier that will execute the data access code.

At the same time, however, you don’t want to be in a position in which a change to your physical
architecture requires every business object in the system to be altered. The ability to easily switch
between having the data access code run on the client machine and having it run on an application
server is the goal, with that change driven by a configuration file setting.

On top of this, when using an application server, not every business object in the application
should be directly exposed by the server. This would be a maintenance and configuration nightmare
because it would require updating configuration information on all client machines any time a busi-
ness object is added or changed.

■Note This is a lesson learned from years of experience with DCOM and MTS/COM+. Exposing large numbers of
components, classes, and methods from a server almost always results in a tightly coupled and fragile relationship
between clients and the server.

Instead, it would be ideal if there were one consistent entry point to the application server so
that every client could simply be configured to know about that single entry point and never have to
worry about it again. This is exactly what the data portal concept provides, as shown in Figure 2-14.

The data portal provides a single point of entry and configuration for the server. It manages
communication with the business objects while they’re on the server running their data access code.
Additionally, the data portal concept provides the following other key benefits:

• Centralized security when calling the application server

• A consistent object-persistence mechanism (all objects persist the same way)

• Abstraction of the network transport between client and server (enabling support for WCF,
remoting, web services, Enterprise Services, and custom protocols)

• One point of control to toggle between running the data access code locally or on a remote
application server

Lhotka_1019-1C02.fm Page 77 Tuesday, November 4, 2008 10:36 AM

78 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Figure 2-14. The data portal provides a consistent entry point to the application server.

The data portal functionality is designed in several parts, as shown in Table 2-4.

Let’s discuss each area of functionality in turn.

Client-Side DataPortal

The client-side DataPortal is implemented as a static class, which means that any public methods
it exposes become available to business object code without the need to create a DataPortal object.
The methods it provides are Create(), Fetch(), Update(), Delete(), and Execute(). Business objects

Table 2-4. Parts of the Data Portal Concept

Area Functionality

Client-side DataPortal Functions as the primary entry point to the data portal infrastructure,
for use by code in business objects

Client-side proxy classes Implements the channel adapter pattern to abstract the underlying
network protocol from the application

Message objects Transfers data to and from the server, including security information,
application context, the business object’s data, the results of the call, or
any server-side exception data

Server-side host classes Exposes single points of entry for different server hosts, such as WCF,
remoting, .asmx web services, and Enterprise Services

Server-side data portal Implements transactional and nontransactional data access behaviors,
delegating all actual data access to appropriate business objects

Server-side child data portal Implements data access behaviors for objects that are contained
within other objects

Object factory Provides an alternate model for the data portal, where the data portal
creates and invokes a factory object instead of interacting directly
with the business object

Lhotka_1019-1C02.fm Page 78 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 79

and collections use these methods to retrieve and update data, or in the case of a CommandBase-derived
object, to execute server code on the server.

The client-side DataPortal has a great deal of responsibility, however, since it contains the code
to read and act on the client’s configuration settings. These settings control whether the “server-
side” data portal components will actually run on the server or locally on the client. It also looks at
the business object itself, since a RunLocal attribute can be used to force persistence code to run on
the client, even if the configuration says to run it on the server.

Either way, the client-side DataPortal always delegates the call to the server-side data portal,
which handles the actual object-persistence behaviors. However, if the client configuration indi-
cates that the server-side data portal really will run on a server, the configuration will also specify
which network transport should be used. It is the client-side DataPortal that reads that configuration
and loads the appropriate client-side proxy object. That proxy object is then responsible for handling
the network communication.

As an object is implemented, its code will use the client-side DataPortal to retrieve and update
the object’s information. An automatic result is that the code in the business object won’t need to
know about network transports or whether the application is deployed into a 1-, 2-, or n-tier physical
environment. The business object code always looks something like this:

 public static Customer GetCustomer(string id)
 {
 return DataPortal.Fetch<Customer>(new SingleCriteria<Customer, string>(id));
 }

An even more important outcome is that any UI code using these business objects will look
something like this:

 var cust = Customer.GetCustomer(myId);

Neither of these code snippets changes, regardless of whether you’ve configured the server-side
data portal to run locally or on a remote server via WCF, remoting, web services, or Enterprise Services.
All that changes is the application’s configuration file.

Client-Side Proxies

While it is the client-side DataPortal that reads the client configuration to determine the appropriate
network transport, the client-side proxy classes actually take care of the details of each network
technology. There is a different proxy class for each technology: WCF, remoting, web services, and
Enterprise Services.

The design also allows for a business application to provide its own proxy class to use other
protocols. This means you can write your own TCP sockets protocol if you are so inclined.

The WCF proxy can use any synchronous channel supported by WCF. The data portal requires
synchronous communication between client and server but otherwise doesn’t care which WCF
channel is actually used (HTTP, TCP, etc.). Additionally, you can configure WCF using any of its
normal options, such as encryption.

The remoting and web services proxies use the HTTP protocol for communication across the
network. This makes both of them firewall and Internet friendly. The Enterprise Services proxy uses
DCOM for communication across the network. This is often faster than HTTP but harder to configure for
firewalls or the Internet. Both HTTP and DCOM can be configured to encrypt data on the wire and
so provide quite high levels of security if needed.

Every client-side proxy has a corresponding server-side host class. This is because each trans-
port protocol requires that both ends of the network connection use the same technology.

The client-side DataPortal simply creates an instance of the appropriate client-side proxy and
then delegates the request (Create, Fetch, Update, Delete, or Execute) to the proxy object. The proxy

Lhotka_1019-1C02.fm Page 79 Tuesday, November 4, 2008 10:36 AM

80 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

object is responsible for establishing a network connection to the server-side host object and dele-
gating the call across the network.

The proxy must also pass other message data, such as security and application context, to the
server. Similarly, the proxy must receive data back from the server, including the results of the oper-
ation, application context information, and any exception data from the server.

To this last point, if an exception occurs on the server, the full exception details are returned to
the client. This includes the nature of the exception, any inner exceptions, and the stack trace related
to the exception. This exception information will often be used on the client to rethrow the excep-
tion, giving the illusion that the exception flows naturally from the code on the server back to the
code on the client.

Message Objects

When the client-side DataPortal calls the server-side data portal, several types of information are
passed from client to server. Obviously, the data method call (Create, Update, Insert, etc.) itself is
transferred from client to server. But other information is also included, as follows:

• Client-side context data (such as the client machine’s culture setting)

• Application-wide context data (as defined by the application)

• The user’s principal and identity security objects (if using custom authentication)

Client-side context data is passed one way, from the client to the server. This information may
include items such as the client workstation’s culture setting, thus allowing the server-side code to
also use that context when servicing requests for that user. This can be important for localization of
an application when a server may be used by workstations in different nations.

Application-wide context data is passed both from client to server and from server back to client.
You may use this context data to pass arbitrary application-specific data between client and server
on each data portal operation. This can be useful for debugging, as it allows you to build up a trace
log of the call as it goes from client to server and back again.

CSLA .NET also includes the concept of local context, which is not passed from client to server
or server to client. Local context exists on the client and the server, but each has its own separate
context.

If the application is using custom authentication, the custom principal and identity objects
representing the user are passed from client to server. This means the code on the server will run
under the same security context as the client. If you are using Windows integrated or AD security, you
must configure your network transport technology (WCF, remoting, etc.) to handle the impersonation.

When the server-side data portal has completed its work, the results are returned to the client.
Other information is also included, as follows:

• Application-wide context data (as defined by the application)

• Details about any server-side exception that may have occurred

Again, the application-wide context data is passed from client to server and from server to
client. If an exception occurs on the server, the details about that exception are returned to the client.
This is important for debugging, as it means you get the full details about any issues on the server.
It is also important at runtime, since it allows you to write exception handling code on the client to
gracefully handle server-side exceptions—including data-oriented exceptions such as duplicate key
or concurrency exceptions.

The preceding information is passed to and from the server on each data portal operation.
Keeping in mind that the data portal supports several verbs, it is important to understand what infor-
mation is passed to and from the server to support each verb. This is listed in Table 2-5.

Lhotka_1019-1C02.fm Page 80 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 81

Notice that the Create, Fetch, and Delete operations all use criteria information about the object
to be created, retrieved, or removed. A criteria object contains any data you need to describe your
particular business object. A criteria object can be created one of three ways:

• By using the SingleCriteria class provided by CSLA .NET

• By creating a nested class within your business class

• By creating a class that inherits from CriteriaBase

The SingleCriteria class is a generic type that passes a single criteria value to the server. You
specify the type of the value and the value itself. Since most objects are identified by a single unique
value, this class can be used to create, fetch, and delete most objects.

If your object has more complex criteria, perhaps a compound key in the database or a set
of filter values, you’ll need to create your own custom criteria class, either as a nested class or by
subclassing CriteriaBase.

When a criteria class is nested within a business class, the .NET type system can be used to easily
determine the type of class in which the criteria is nested. The CriteriaBase class, on the other hand,
directly includes a property you must set, indicating the type of the business object.

In either case, your custom criteria class should include properties containing any specific
information you need in order to identify the specific object to be created, retrieved, or removed.

Server-Side Host Objects

I’ve already discussed the client-side proxy objects and how each one has a corresponding server-
side host object. In Chapter 15, I show how the WCF host object is created. You can look at the CSLA
.NET code to see how the other three host objects work for remoting, web services, and Enterprise
Services. It is also possible to add new host objects without altering the core framework, providing
broad extensibility. Any new host object would need a corresponding client-side proxy, of course.

Server-side host objects are responsible for two things: first, they must accept inbound requests
over the appropriate network protocol from the client, and those requests must be passed along to
the server-side data portal components; second, the host object is responsible for running inside the
appropriate server-side host technology.

Microsoft provides server-side host technologies for hosting application server code: Windows
Activation Service (WAS), Internet Information Services (IIS), and Enterprise Services.

Table 2-5. Data Passed to and from the Server for Data Portal Operations

Verb To Server From Server

Create Type of object to create and (optional)
criteria about new object

New object loaded with default values

Fetch Type of object to retrieve and criteria
for desired object

Object loaded with data

Update Object to be updated Object after update (possibly containing
changed data)

Delete Type of object to delete and criteria
for object to be deleted

Nothing

Execute Object to be executed (must derive
from CommandBase)

Object after execution (possibly containing
changed data)

Lhotka_1019-1C02.fm Page 81 Tuesday, November 4, 2008 10:36 AM

82 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

It is also possible to write your own Windows service that could act as a host technology, but I
strongly recommend against such an approach. By the time you write the host and add in security,
configuration, and management support, you’ll have recreated most or all of WAS, IIS, or Enterprise
Services. Worse, you’ll have opened yourself up for unforeseen security and stability issues.

The WCF host object is designed to run within the WAS or IIS hosts. This way, it can take advantage
of the management, stability, and security features inherent in those server hosting technologies. Both
WAS and IIS provide a robust process model and thread management and so supply very high levels
of scalability.

Server-Side Data Portal

At its core, the server-side data portal components provide an implementation of the message router
design pattern. The server-side data portal accepts requests from the client and routes those requests to
an appropriate handler—either a business object or a factory object.

■Note I say “server-side,” but keep in mind that the server-side data portal components may run on either the
client workstation or on a remote server. Refer to the “Client-Side DataPortal” section of this chapter regarding how
this selection is made. The data portal is implemented to minimize overhead as much as possible when configured
to run locally or remotely, so it is appropriate for use in either scenario.

For Create, Fetch, and Delete operations, the server-side data portal requires type information
about your business object. For update and execute operations, the business object itself is passed
to the server-side data portal.

But the server-side data portal is more than a simple message router. It also provides optional
access to the transactional technologies available within .NET, namely the new System.Transactions
namespace and Enterprise Services (MTS/COM+).

The business framework defines a custom attribute named TransactionalAttribute that can be
applied to methods within business objects. Specifically, you can apply it to any of the data access
methods that your business object might implement to create, fetch, update, or delete data, or to
execute server-side code. This allows you to use one of three models for transactions, as listed in
Table 2-6.

Table 2-6. Transaction Options Supported by Data Portal

Option Description Transactional Attribute

Manual You are responsible for implement-
ing your own transactions using
ADO.NET, stored procedures, etc.

None or [Transactional
(TransactionalTypes.Manual)]

Enterprise
Services

Your data access code will run
within a COM+ distributed
transactional context, providing
distributed transactional support.

[Transactional(TransactionalTypes.
EnterpriseServices)]

System.
Transactions

Your data access code will run
within a TransactionScope from
System.Transactions, automatically
providing basic or distributed
transactional support as required.

[Transactional(TransactionalTypes.
TransactionScope)]

Lhotka_1019-1C02.fm Page 82 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 83

So in the business object there may be an update method (overriding the one in BusinessBase)
marked to be transactional:

[Transactional(TransactionalTypes.TransactionScope)]
protected override void DataPortal_Update()
{
 // Data update code goes here
}

At the same time, the object might have a fetch method in the same class that’s not transactional:

private void DataPortal_Fetch(Criteria criteria)
{
 // Data retrieval code goes here
}

Or if you are using an object factory (discussed in the next section), the Transactional attribute
would be applied to the Update() method in the factory class:

public class MyFactory : Csla.Server.ObjectFactory
{
 [Transactional(TransactionalTypes.TransactionScope)]
 public object Update()
 {
 // Data update code goes here
 }
}

This facility means that you can control transactional behavior at the method level rather than
at the class level. This is a powerful feature because it means that you can do your data retrieval
outside of a transaction to get optimal performance and still do updates within the context of a trans-
action to ensure data integrity.

The server-side data portal examines the appropriate method on the business object
before it routes the call to the business object itself. If the method is marked with [Transactional
(TransactionalTypes.TransactionScope)], the call is routed to a TransactionalDataPortal object
that is configured to run within a System.Transactions.TransactionScope. A TransactionScope is
powerful because it provides a lightweight transactional wrapper in the case that you are updating
a single database; but it automatically upgrades to a distributed transaction if you are updating
multiple databases. In short, you get the benefits of COM+ distributed transactions if you need
them, but you don’t pay the performance penalty if you don’t need them.

If the method is marked as [Transactional(TransactionalTypes.EnterpriseServices)], the
call is routed to a ServicedDataPortal object that is configured to require a COM+ distributed trans-
action. The ServicedDataPortal then calls the SimpleDataPortal, which delegates the call to your
business object, but only after it is running within a distributed transaction. Either way, your code is
transactionally protected.

If the method doesn’t have the attribute, or is marked as [Transactional(TransactionalTypes.
Manual)], the call is routed directly to the SimpleDataPortal, as illustrated in Figure 2-15.

Lhotka_1019-1C02.fm Page 83 Tuesday, November 4, 2008 10:36 AM

84 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Figure 2-15. Routing calls through transactional wrappers

Object Factory Model

By default, the server-side data portal components route calls to methods of an instance of the busi-
ness object itself. In other words, the business object becomes responsible for initializing itself with
new data, loading itself with existing data, and inserting, updating, or deleting its data.

That approach is very simple and efficient but may not offer the best separation between busi-
ness and data access logic. The ObjectFactory attribute and ObjectFactory base class provide an
alternative, where the data portal creates an instance of an object factory class and interacts with that
factory object, instead of the business object.

In the default model, the data portal does a lot of work on behalf of the business developer. It
creates instances of the business object, manages the object’s state values, and generally shepherds
the object through the data persistence process.

In the object factory model, the data portal leaves all those details to the factory object, which is
created by the business developer. The result is that the business developer has a lot of flexibility but
assumes a lot more responsibility. If the business developer doesn’t properly manage the business
object’s state, other areas of CSLA .NET (such as data binding or n-level undo) may not function
correctly.

I discuss the details around object factories in Chapters 4 and 5 and the underlying implemen-
tation in Chapter 15.

Data Portal Behaviors

Now that you have a grasp of the areas of functionality required to implement the data portal concept,
let’s discuss the specific data behaviors the data portal will support. The behaviors were listed earlier
in Table 2-5.

Create

The create operation is intended to allow the business objects to load themselves with values that
must come from the database. Business objects don’t need to support or use this capability, but if
they do need to initialize default values, this is the mechanism to use.

Lhotka_1019-1C02.fm Page 84 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 85

There are many types of applications for which this is important. For instance, order entry
applications typically have extensive defaulting of values based on the customer. Inventory manage-
ment applications often have many default values for specific parts, based on the product family to
which the part belongs. Medical records also often have defaults based on the patient and physician
involved.

When the Create() method of the DataPortal is invoked, it’s passed a criteria object. As I’ve
explained, the data portal will either use reflection against the criteria object or will rely on the type
information in CriteriaBase to determine the type of business object to be created. Using that infor-
mation, the data portal uses reflection to create an instance of the business object itself. However,
this is a bit tricky because all business objects have private or protected constructors to prevent
direct creation by code in the UI:

 [Serializable]
 public class Employee : BusinessBase<Employee>
 {
 private Employee()
 { /* prevent direct creation */ }
 }

Business objects will expose static factory methods to allow the UI code to create or retrieve
objects. Those factory methods will invoke the client-side DataPortal. (I discuss this “class-in-charge”
concept earlier in the chapter.) As an example, an Employee class may have a static factory method,
such as the following:

 public static Employee NewEmployee()
 {
 return DataPortal.Create<Employee>();
 }

Notice that no Employee object is created on the client here. Instead, the factory method asks the
client-side DataPortal for the Employee object. The client-side DataPortal passes the call to the server-
side data portal. If the data portal is configured to run remotely, the business object is created on the
server; otherwise, the business object is created locally on the client.

Even though the business class has only a private constructor, the server-side data portal uses
reflection to create an instance of the class. The alternative is to make the constructor public, in
which case the UI developer will need to learn and remember that they must use the static factory
methods to create the object. Making the constructor private provides a clear and direct reminder
that the UI developer must use the static factory method, thus reducing the complexity of the inter-
face for the UI developer. Keep in mind that not implementing the default constructor won’t work
either, because in that case, the compiler provides a public default constructor on your behalf.

Once the server-side data portal has created the business object, it calls the business object’s
DataPortal_Create() method, optionally passing a criteria object as a parameter. At this point, code
inside the business object is executing, so the business object can do any initialization that’s appro-
priate for a new object. Typically, this will involve going to the database to retrieve any configurable
default values.

When the business object is done loading its defaults, the server-side data portal returns the
fully created business object back to the client-side DataPortal. If the two are running on the same
machine, this is a simple object reference; but if they’re configured to run on separate machines, the
business object is serialized across the network to the client (i.e., it’s passed by value), so the client
machine ends up with a local copy of the business object.

The UML sequence diagram in Figure 2-16 illustrates this process.

Lhotka_1019-1C02.fm Page 85 Tuesday, November 4, 2008 10:36 AM

86 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

Figure 2-16. UML sequence diagram for the creation of a new business object

You can see how the UI interacts with the business object class (the static factory method), which
then creates a criteria object and passes it to the client-side DataPortal. The client-side DataPortal
then delegates the call to the server-side data portal (which may be running locally or remotely,
depending on configuration). The server-side data portal then creates an instance of the business
object itself and calls the business object’s DataPortal_Create() method so it can populate itself with
default values. The resulting business object is then ultimately returned to the UI.

Alternatively, the DataPortal_Create() method could request the default data values from a
persistence object in another assembly, thus providing a clearer separation between the Business
Logic and Data Access layers.

In a physical n-tier configuration, remember that the criteria object starts out on the client
machine and is passed by value to the application server. The business object itself is created on the
application server where it’s populated with default values. It’s then passed back to the client machine
by value. This architecture truly takes advantage of the mobile object concept.

Fetch

Retrieving a preexisting object is very similar to the creation process just discussed. Again, a criteria
object is used to provide the data that the object will use to find its information in the database. The
criteria class is nested within the business object class and/or inherits from CriteriaBase, so the
server-side data portal code can determine the type of business object desired and then use reflec-
tion to create an instance of the class.

The UML sequence diagram in Figure 2-17 illustrates all of this.
The UI interacts with the factory method, which in turn creates a criteria object and passes it to the

client-side DataPortal code. The client-side DataPortal determines whether the server-side data portal
should run locally or remotely and then delegates the call to the server-side data portal components.

The server-side data portal uses reflection to determine the assembly and type name for
the business class and creates the business object itself. After that, it calls the business object’s
DataPortal_Fetch() method, passing the criteria object as a parameter. Once the business object has
populated itself from the database, the server-side data portal returns the fully populated business
object to the UI.

Lhotka_1019-1C02.fm Page 86 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 87

Figure 2-17. UML sequence diagram for the retrieval of an existing business object

Alternatively, the DataPortal_Fetch() method could delegate the fetch request to a persistence
object from another assembly, thus providing a clearer separation between the Business Logic and
Data Access layers.

As with the create process, in an n-tier physical configuration, the criteria object and business
object move by value across the network as required. You don’t have to do anything special beyond
marking the classes as Serializable; the .NET runtime handles all the details on your behalf.

You may also choose to use the DataContract and DataMember attributes instead of Serializable,
but only if you exclusively use WCF for serialization. I discuss this in Chapter 6 but generally recom-
mend using Serializable as the simplest option.

Update

The update process is a bit different from the previous operations. In this case, the UI already has a
business object with which the user has been interacting, and this object needs to save its data into
the database. To achieve this, all editable business objects have Save() and BeginSave() methods (as
part of the BusinessBase class from which all business objects inherit). The save methods call the
DataPortal to do the update, passing the business object itself, this, as a parameter.

The Save() method is synchronous, while the BeginSave() method is asynchronous and reports
that it is completed by raising an event. This event is automatically raised on the UI thread in WPF
and Windows Forms. In Web Forms or other technologies you’ll need to provide your own thread
synchronization if you use BeginSave().

The thing to remember when doing updates is that the object’s data will likely change as a result
of the update process. Any changed data must be placed back into the object.

There are two common scenarios illustrating how data changes during an update. The first is
when the database assigns the primary key value for a new object. That new key value needs to be put
into the object and returned to the client. The second scenario is when a time stamp is used to imple-
ment optimistic first-write-wins concurrency. In this case, every time the object’s data is inserted or
updated, the time stamp value must be refreshed in the object with the new value from the database.
Again, the updated object must be returned to the client. This means that the update process is
bidirectional. It isn’t just a matter of sending the data to the server to be stored but also a matter of

Lhotka_1019-1C02.fm Page 87 Tuesday, November 4, 2008 10:36 AM

88 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

returning the object from the server after the update has completed so that the UI has a current, valid
version of the object.

Due to the way .NET passes objects by value, it may introduce a bit of a wrinkle into the overall
process. When passing the object to be saved over to the server, .NET makes a copy of the object from
the client onto the server, which is exactly what is desired. However, after the update is complete, the
object must be returned to the client. When an object is returned from the server to the client, a new
copy of the object is made on the client, which isn’t really the desired behavior.

Figure 2-18 illustrates the initial part of the update process.

Figure 2-18. Sending a business object to the data portal to be inserted or updated

The UI has a reference to the business object and calls its Save() method. This causes the busi-
ness object to ask the data portal to save the object. The result is that a copy of the business object is
made on the server, where it can save itself to the database. So far, this is pretty straightforward.

The business object has a Save() method, but the data portal infrastructure has methods named
Update(). Although this is a bit inconsistent, remember that the business object is being called by UI
developers; and I’ve found that it’s more intuitive for the typical UI developer to call Save() than
Update(), especially since the Save() call can trigger an Insert, Update, or even Delete operation.
However, once this part is done, the updated business object is returned to the client and the UI
must update its references to use the newly updated object instead, as shown in Figure 2-19.

This is fine, too—but it’s important to keep in mind that you can’t continue to use the old busi-
ness object; you must update all object references to use the newly updated object. Figure 2-20 is a
UML sequence diagram that shows the overall update process.

You can see that the UI calls the Save() or BeginSave() method on the business object, which
results in a call to the client-side DataPortal’s Update() method, passing the business object as a
parameter. As usual, the client-side DataPortal determines whether the server-side data portal is
running locally or remotely and then delegates the call to the server-side data portal. The server-side
data portal then simply calls the DataPortal_Update() method on the business object so that the
object can save its data into the database. DataPortal_Insert() would be called if the object is a new
object; DataPortal_DeleteSelf() would be called if the object is marked for deletion.

These methods may implement the code to insert, update, or delete the object directly within
the business class, or they may delegate the call to a persistence object in another assembly.

At this point, two versions of the business object exist: the original version on the client and the
newly updated version on the application server. However, the best way to view this is to think of
the original object as being obsolete and invalid at this point. Only the newly updated version of the
object is valid.

Lhotka_1019-1C02.fm Page 88 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 89

Figure 2-19. Data portal returning the inserted or updated business object to the UI

Figure 2-20. UML sequence diagram for the updating of a business object

Once the update is done, the new version of the business object is returned to the UI. The UI can
then continue to interact with the new business object as needed.

Lhotka_1019-1C02.fm Page 89 Tuesday, November 4, 2008 10:36 AM

90 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

■Note The UI must update any references from the old business object to the newly updated business object as
soon as the new object is returned from the data portal.

In a physical n-tier configuration, the business object is automatically passed by value to the
server and the updated version is returned by value to the client. If the server-side data portal is
running locally, however, the object is cloned and the clone is updated and returned to the calling
code. This is necessary because it is possible for the update process to fail halfway through. If your
business object contains other business objects, some might have been changed during the update
process, while others are unchanged. The database transaction will ensure that the database is in a
consistent state, but your object model can be left in an inconsistent state. By saving a clone, if the
update fails, the UI is left referencing the original unchanged object, which is still in a consistent state.

Delete

The final operation, and probably the simplest, is to delete an object from the database. The frame-
work actually supports two approaches to deleting objects.

The first approach is called deferred deletion. In this model, the object is retrieved from the data-
base and is marked for deletion by calling a Delete() method on the business object. Then the Save()
or BeginSave() method is called to cause the object to update itself to the database (thus actually
doing the Delete operation). In this case, the data is deleted by the DataPortal_DeleteSelf() method.

The second approach, called immediate deletion, consists of simply passing criteria data to the
server, where the object is deleted immediately within the DataPortal_Delete() method. This
second approach provides superior performance because you don’t need to load the object’s data
and return it to the client. Instead, you simply pass the criteria fields to the server, where the object
deletes its data.

The framework supports both models, providing you with the flexibility to allow either or both
in your object models, as you see fit.

Deferred deletion follows the same process as the update process I just discussed, so let’s
explore immediate deletion. In this case, a criteria object is created to describe the object to be
deleted and the data portal is invoked to do the deletion. Figure 2-21 is a UML diagram that illus-
trates the process.

Figure 2-21. UML sequence diagram for immediate deletion of a business object

Lhotka_1019-1C02.fm Page 90 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 91

Because the data has been deleted at this point, you have nothing to return to the UI, so the
overall process remains pretty straightforward. As usual, the client-side DataPortal delegates the call
to the server-side data portal. The server-side data portal creates an instance of the business object
and invokes its DataPortal_Delete() method, providing the criteria object as a parameter.

The business logic to do the deletion itself is encapsulated within the business object, along with
all the other business logic relating to the object. Alternatively, the business object could delegate the
deletion request to a persistence object in another assembly.

Custom Authentication
As discussed earlier in the chapter, many environments include users who aren’t part of a Windows
domain or AD. In such a case, relying on Windows integrated security for the application is problem-
atic at best, and you’re left to implement your own security scheme. Fortunately, the .NET Framework
includes several security concepts, along with the ability to customize them to implement your own
security as needed.

The following discussion applies to you only in the case that Windows integrated security doesn’t
work for your environment. In such a case, you’ll typically maintain a list of users and their roles in
a database, or perhaps in an LDAP server. The custom authentication concepts discussed here will
help you integrate the application with that preexisting security database.

Custom Principal and Identity Objects

The .NET Framework includes a couple of built-in principal and identity objects that support Windows
integrated security or generic security. You can also create your own principal and identity objects
by creating classes that implement the IPrincipal and IIdentity interfaces from the System.
Security.Principal namespace.

Implementations of principal and identity objects will be specific to your environment and
security requirements. However, CSLA .NET includes a BusinessPrincipalBase class to streamline
the process.

When you create a custom principal object, it must inherit from BusinessPrincipalBase. Code
in the data portal ensures that only a WindowsPrincipal or BusinessPrincipalBase object is passed
between client and server, depending on the application’s configuration.

In many cases, your custom principal object will require very little code. The base class already
implements the IPrincipal interface, and it is quite likely that you’ll only need to implement the
IsInRole() method to fit your needs.

However, you will need to implement a custom identity object that implements IIdentity.
Typically, this object will populate itself with user profile information and a list of user roles from a
database. Essentially, this is just a read-only business object, and so you’ll typically inherit from
ReadOnlyBase. Such an object might be declared like this:

[Serializable]
public class CustomIdentity : ReadOnlyBase<CustomIdentity>, IIdentity
{
 // implement here
}

You’ll also need to implement a Login method that the UI code can call to initiate the process of
authenticating the user’s credentials (username and password) and loading data into the custom
identity object. This is often best implemented as a static factory method on the custom principal
class. In many cases, this factory method will look something like this:

Lhotka_1019-1C02.fm Page 91 Tuesday, November 4, 2008 10:36 AM

92 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

public static void Login(string username, string password)
{
 CustomIdentity identity = CustomIdentity.GetIdentity(username, password);
 if (identity.IsAuthenticated)
 {
 IPrincipal principal = new CustomPrincipal(identity);
 Csla.ApplicationContext.User = principal;
 }
}

The GetIdentity method is a normal factory method in CustomIdentity that just calls the data
portal to load the object with data from the database. A corresponding Logout method may look like
this:

public static void Logout()
{
 CustomIdentity identity = CustomIdentity.UnauthenticatedIdentity();
 IPrincipal principal = new CustomPrincipal(identity);
 Csla.ApplicationContext.User = principal;
}

The UnauthenticatedIdentity() method is actually a variation on the factory concept, but in
this case, it probably doesn’t use the data portal. Instead, it merely needs to create an instance of
CustomIdentity, in which IsAuthenticated returns false.

Integrated Authorization
Virtually all applications rely on some form of authorization. At the very least, there is typically
control over which users have access to the application at all. But more commonly, applications
need to restrict which users can view or edit specific bits of data at either the object or property level.
This is often accomplished by assigning users to roles and then specifying which roles are allowed to
view or edit various data.

To help control whether the current user can view or edit individual properties, the business
framework allows the business developer to specify the roles that are allowed or denied the ability to
view or edit each property. Typically, these role definitions are set up as the object is created, and
they may be hard-coded into the object or loaded from a database, as you choose.

With the list of allowed and denied roles established, the framework is able to implement
authentication in the GetProperty() and SetProperty() helper methods. Behind the scenes there are
CanReadProperty() and CanWriteProperty() methods that are called to do the actual authentication.
Rather than using the GetProperty() and SetProperty() helper methods, you could choose to make
explicit calls to the authentication and validation subsystems in CSLA .NET. The result would be a
property that looks like this:

private string _name = string.Empty;
public string Name
{
 get
 {
 CanReadProperty("Name", true);
 return _name;
 }

Lhotka_1019-1C02.fm Page 92 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 93

 set
 {
 CanWriteProperty("Name", true);
 if (string.IsNullOrEmpty(value)) value = string.Empty;
 if (_name != value)
 {
 _name = value;
 PropertyHasChanged("Name");
 }
 }
}

Obviously the helper methods discussed earlier in the chapter result in a lot less code and are
the preferred approach for coding properties.

The CanReadProperty() and CanWriteProperty() methods check the current user’s roles against
the list of roles allowed and denied read and write access to this particular property. If the authorization
rules are violated, a security exception is thrown; otherwise, the user is allowed to read or write the
property.

The CanReadProperty() and CanWriteProperty() methods are public in scope. This is important
because it allows code in the UI layer to ask the object about the user’s permissions to read and write
each property. The UI can use this information to alter its display to give the user visual cues as
appropriate. In Chapter 19, you’ll see how this capability can be exploited by a custom WPF control
to eliminate most authorization code in a typical application. While the story isn’t quite as compel-
ling in Web Forms, Chapter 20 demonstrates how to leverage this capability in a similar manner.

Helper Types and Classes
Most business applications require a set of common behaviors not covered by the concepts discussed
thus far. These behaviors are a grab bag of capabilities that can be used to simplify common tasks
that would otherwise be complex. These include the items listed in Table 2-7.

Let’s discuss each of these in turn.

Table 2-7. Helper Types and Classes

Type or Class Description

ConnectionManager Enables easy reuse of an open database connection, making the use of
TransactionScope transactions more practical

ContextManager Enables easy reuse of a LINQ to SQL data context, making the use of
TransactionScope transactions more practical

SafeDataReader Wraps any IDataReader (such as SqlDataReader) and converts all null
values from the database into non-null empty or default values

DataMapper Maps data from an IDictionary to an object’s properties, or from one
object’s properties to another object’s properties

SmartDate Implements a DateTime data type that understands both how to translate
values transparently between DateTime and string representations and the
concept of an empty date

Lhotka_1019-1C02.fm Page 93 Tuesday, November 4, 2008 10:36 AM

94 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

ConnectionManager

The TransactionScope class from System.Transactions is typically the preferred technology for
implementing data update transactions because it results in simpler code and good performance.
Unfortunately, TransactionScope automatically invokes the Distributed Transaction Coordinator
(DTC) if your code opens more than one database connection and that results in a substantial
performance penalty (often around 15 percent). If you avoid opening multiple database connections,
TransactionScope uses a lightweight transaction scheme that is just as safe but is much faster.

The result is that you should reuse one open database connection across all your objects when
using a TransactionScope object for transactional support. This means you must write code to open
the connection object and then make it available to all objects that will be interacting with the data-
base within the transaction. That can unnecessarily complicate what should be simple data access
code.

The Csla.Data.ConnectionManager class is intended to simplify this process by managing and
automatically reusing a single database connection object. The result is that all data access code that
uses a database connection object has the following structure:

 using (var ctx = ConnectionManager<SqlConnection>.GetManager("DatabaseName"))
 {
 // ctx.Connection is now an open connection to the database
 // save your data here
 // call any child objects to save themselves here
 }

If the connection isn’t already open, a connection object is created and opened. If the connec-
tion is already open it is reused. When the last nested using block completes, the connection object
is automatically disposed of.

ContextManager

When using LINQ to SQL, your code won’t typically interact with the underlying database connec-
tion object directly. To share an open database connection you must really share the LINQ data
context object. Csla.Data.ContextManager is intended to simplify this process by managing and
automatically reusing a single data context object. The result is that all data access code that uses a
data context object has the following structure:

 using (var ctx = ContextManager<SqlConnection>.GetManager("DatabaseName"))
 {
 // ctx.Context is now an open data context object
 // save your data here
 // call any child objects to save themselves here
 }

If the connection isn’t already open, a connection object is created and opened. If the data
context is already open, it is reused. When the last using block completes, the data context object
is automatically disposed of.

SafeDataReader

Most of the time, the difference between a null value and an empty value (such as an empty string
or a zero) is not important in regard to applications, though it is in databases. When retrieving data
from a database, an application needs to handle the occurrence of unexpected null values with code
such as the following:

Lhotka_1019-1C02.fm Page 94 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 95

 if(dr.IsDBNull(idx))
 myValue = string.Empty;
 else
 myValue = dr.GetString(idx);

Clearly, doing this over and over again throughout the application can get very tiresome. One
solution is to fix the database so that it doesn’t allow nulls when they provide no value, but this is
often impractical for various reasons.

■Note Here’s one of my pet peeves: allowing nulls in a column in which you care about the difference between
a value that was never entered and the empty value ("", or 0, or whatever) is fine. Allowing nulls in a column where
you don’t care about the difference merely complicates your code for no good purpose, thereby decreasing developer
productivity and increasing maintenance costs.

As a more general solution, CSLA .NET includes a utility class that uses SqlDataReader (or any
IDataReader implementation) in such a way that you never have to worry about null values again.
Unfortunately, the SqlDataReader class isn’t inheritable; it can’t be subclassed directly. Instead, it
is wrapped using containment and delegation. The result is that your data access code works the
same as always, except that you never need to write checks for null values. If a null value shows up,
SafeDataReader will automatically convert it to an appropriate empty value.

Obviously, if you do care about the difference between a null and an empty value, you can just
use a regular SqlDataReader to retrieve the data. Starting in .NET 2.0, you can use the Nullable<T>
generic type that helps manage null database values. This new type is very valuable when you do
care about null values: when business rules dictate that an “empty” value such as 0 is different from null.

DataMapper

In Chapter 20, you will see how to implement an ASP.NET Web Forms UI on top of business objects.
This chapter makes use of the data binding capabilities introduced in Web Forms 2.0. In this technology,
the Insert and Update operations provide the data from the form in IDictionary objects (name/value
pairs). The values in these name/value pairs must be loaded into corresponding properties in the
business object. You end up writing code much like this:

cust.Name = e.Values["Name"].ToString();
cust.Address1 = e.Values["Address1"].ToString();
cust.City = e.Values["City"].ToString();

Similarly, in Chapter 21, you’ll see how to implement a WCF service interface on top of business
objects. When data is sent or received through a web service, it goes through a proxy object, an object
with properties containing the data but no other logic or code. Since the goal is to get the data into
or out of a business object, this means copying the data from one object’s properties to the other. You
end up writing code much like this:

cust.Name = message.Name;
cust.Address1 = message.Address1;
cust.City = message.City;

In both cases, this is repetitive, boring code to write. One alternative, though it does incur a
performance hit, is to use reflection to automate the copy process. This is the purpose of the DataMapper
class: to automate the copying of data to reduce all those lines of code to one simple line. It is up to
you whether to use DataMapper in your applications.

Lhotka_1019-1C02.fm Page 95 Tuesday, November 4, 2008 10:36 AM

96 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

SmartDate

Dates are a perennial development problem. Of course, there’s the DateTime data type, which provides
powerful support for manipulating dates, but it has no concept of an “empty” date. The trouble is
that many applications allow the user to leave date fields empty, so you need to deal with the concept
of an empty date within the application.

On top of this, date formatting is problematic—rather, formatting an ordinary date value is easy,
but again you’re faced with the special case whereby an “empty” date must be represented by an
empty string value for display purposes. In fact, for the purposes of data binding, you often want any
date properties on the objects to be of type string so that the user has full access to the various data
formats as well as the ability to enter a blank date into the field.

Dates are also a challenge when it comes to the database; the date data types in the database
don’t recognize an empty date any more than .NET does. To resolve this, date columns in a database
typically do allow null values, so a null can indicate an empty date.

■Note Technically, this is a misuse of the null value, which is intended to differentiate between a value that
was never entered and one that’s empty. Unfortunately, you’re typically left with no choice because there’s no way
to put an empty date value into a date data type.

You may be able to use DateTime? (Nullable<DateTime>) as a workable data type for your date
values. But even that isn’t always perfect because DateTime? doesn’t offer specialized formatting and
parsing capabilities for working with dates, nor does it really acknowledge an empty date; it isn’t
possible to compare actual dates with empty dates, yet that is often a business requirement.

The SmartDate type is an attempt to resolve this issue. Repeating the problem with SqlDataReader,
the DateTime data type isn’t inheritable, so SmartDate can’t just subclass DateTime to create a more
powerful data type. Instead, it uses containment and delegation to create a new type that provides
the capabilities of the DateTime data type while also supporting the concept of an empty date.

This isn’t as easy at it might at first appear, as you’ll see when the SmartDate class is implemented in
Chapter 16. Much of the complexity flows from the fact that applications often need to compare an
empty date to a real date, but an empty date might be considered very small or very large. You’ll see
an example of both cases in the sample application in Chapter 17.

The SmartDate class is designed to support these concepts and to integrate with the SafeDataReader
so that it can properly interpret a null database value as an empty date.

Additionally, SmartDate is a robust data type, supporting numerous operator overloads, casting,
and type conversion. Better still, it works with both DateTime and the new DateTimeOffset type.

Namespace Organization
At this point, I’ve walked through many of the classes that make up CSLA .NET. Given that there are
quite a few classes and types required to implement the framework, there’s a need to organize them
into a set of namespaces for easier discovery and use. Namespaces allow you to group classes together
in meaningful ways so that you can program against them more easily. Additionally, namespaces
allow different classes to have the same name as long as they’re in different namespaces. From a
business perspective, you might use a scheme such as the following:

MyCompany.MyApplication.FunctionalArea.Class

A convention like this immediately indicates that the class belongs to a specific functional area
within an application and organization. It also means that the application could have multiple classes
with the same names:

Lhotka_1019-1C02.fm Page 96 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 97

MyCompany.MyApplication.Sales.Product
MyCompany.MyApplication.Manufacturing.Product

It’s quite likely that the concept of a “product” in sales is different from that in manufacturing,
and this approach allows reuse of class names to make each part of the application as clear and self-
documenting as possible. The same is true when you’re building a framework. Classes should be
grouped in meaningful ways so that they’re comprehensible to the end developer. Additionally, use
of the framework can be simplified for the end developer by putting little-used or obscure classes in
separate namespaces. This way, the business developer doesn’t typically see them via IntelliSense.

Consider the UndoableBase class, which isn’t intended for use by a business developer; it exists
for use within the framework only. Ideally, when business developers are working with the frame-
work, they won’t see UndoableBase via IntelliSense unless they go looking for it by specifically navigating
to a specialized namespace. The framework has some namespaces that are to be used by end devel-
opers and others that are intended for internal use.

All the namespaces in CSLA .NET are prefixed with Csla. Table 2-8 lists the namespaces used in
the CSLA .NET framework.

Table 2-8. Namespaces Used in the CSLA .NET Framework

Namespace Description

Csla Contains the types most commonly used by business developers

Csla.Core Contains the types that provide core functionality for the framework;
not intended for use by business developers

Csla.Data Contains the optional types used to support data access operations;
often used by business developers, web UI developers, and web
service developers

Csla.DataPortalClient Contains the types that support the client-side DataPortal behaviors;
used when creating a custom data portal proxy

Csla.Linq Contains types that implement the LINQ to CSLA functionality;
not intended for use by business developers

Csla.Properties Contains code generated by Visual Studio for the Csla project; not
intended for use by business developers

Csla.Reflection Contains types that abstract and enhance the use of reflection; not
intended for use by business developers

Csla.Security Contains the types supporting authorization; used when creating a
custom principal object

Csla.Serialization Contains code to abstract the use of the .NET BinaryFormatter or
NetDataContractSerializer serialization technologies

Csla.Server Contains the types supporting the server-side data portal behaviors;
not intended for use by business developers

Csla.Server.Hosts Contains the types supporting server-side data portal hosts; used
when creating a custom data portal host

Csla.Validation Contains the types supporting validation and business rules; often
used when creating rule methods

Csla.Web Contains the CslaDataSource control; used by web UI developers

Lhotka_1019-1C02.fm Page 97 Tuesday, November 4, 2008 10:36 AM

98 CH AP T E R 2 ■ F R AM E W O R K DE S I G N

The primary base classes intended for use by business developers go into the Csla namespace
itself. They are named as follows:

• Csla.BusinessBase<T>

• Csla.BusinessListBase<T,C>

• Csla.ReadOnlyBase<T>

• Csla.ReadOnlyListBase<T,C>

• Csla.NameValueListBase<K,V>

• Csla.CommandBase

The rest of the classes and types in the framework are organized into the remaining namespaces
based on their purpose. You’ll see how they all fit and are implemented in Chapters 6 through 16.

The end result is that a typical business developer can simply use the Csla namespace as follows:

using Csla;

All they’ll see are the classes intended for use during business development. All the other classes
and concepts within the framework are located in other namespaces and therefore won’t appear in
IntelliSense by default, unless the developer specifically imports those namespaces.

When using custom authentication, you’ll likely import the Csla.Security namespace. But if
you’re not using that feature, you can ignore those classes and they won’t clutter up the development
experience. Similarly, Csla.Data and Csla.Validation may be used in some cases, as you’ll see in
Chapters 17 and 18. If the types they contain are useful, they can be brought into a class with a using
statement; otherwise, they are safely out of the way.

Conclusion
This chapter examines some of the key design goals for the CSLA .NET business framework,
including the following:

• Validation and maintaining a list of broken business rules

• Standard implementation of business and validation rules

• Tracking whether an object’s data has changed (is it “dirty”?)

Csla.Web.Design Contains the supporting types for the CslaDataSource control; not
intended for use by business developers

Csla.WebServiceHost Contains the web services data portal host; not intended for use by
business developers

Csla.Windows Contains controls to assist with Windows Forms data binding; used
by Windows UI developers

Csla.Workflow Contains types to assist with the use of Windows Workflow
Foundation (WF); used by workflow developers

Csla.Wpf Contains controls to assist with WPF data binding; used by
WPF UI developers

Table 2-8. Namespaces Used in the CSLA .NET Framework (Continued)

Namespace Description

Lhotka_1019-1C02.fm Page 98 Tuesday, November 4, 2008 10:36 AM

C H AP TE R 2 ■ FR A M E W O R K D E S IG N 99

• Integrated authorization rules at the object and property levels

• Strongly typed collections of child objects (parent-child relationships)

• N-level undo capability

• A simple and abstract model for the UI developer

• Full support for data binding in WPF, Windows Forms, and Web Forms

• Saving objects to a database and getting them back again

• Custom authentication

• Other miscellaneous features

You’ve also walked through the design of the framework itself, providing a high-level glimpse
into the purpose and rationale behind each of the classes that make it up. With each class, I discuss
how it relates back to the key goals to provide the features and capabilities of the framework.

The chapter closes by defining the namespaces that contain the framework classes. This way
they’re organized so that they’re easily understood and used.

Chapter 3 covers some important object-oriented design concepts. Though you can use the
ideas in this book in many ways, Chapter 3 describes the thought process I use and the one I’m trying
to support by creating the CSLA .NET framework.

Then Chapters 4 and 5 provide details on how a business developer can use CSLA .NET to build
business classes based on the stereotypes in Table 2-2.

Chapters 6 through 16 detail the implementation of the concepts discussed in this chapter.
If you are interested in the thought process and key implementation techniques used to build the
framework, these chapters are for you.

Then Chapters 17 to 21 walk through the design and implementation of a sample application
using object-oriented concepts and the CSLA .NET framework. These chapters, combined with
Chapters 3 through 5, explore how the framework functions and how it meets the goals set forth in
this chapter.

Lhotka_1019-1C02.fm Page 99 Tuesday, November 4, 2008 10:36 AM

Lhotka_1019-1C02.fm Page 100 Tuesday, November 4, 2008 10:36 AM

101

■ ■ ■

C H A P T E R 3

Object-Oriented Application Design

Chapters 1 and 2 discussed the concepts behind distributed, object-oriented systems and the .NET
technologies that make them practical to implement with reasonable effort. They also introduced
the concepts and goals for the CSLA .NET framework. Before getting into the implementation details
of the CSLA .NET framework, I think it is important to discuss the object-oriented design philosophy
the framework is intended to support, and this is the focus of this chapter.

Chapters 4 and 5 will give you a quick preview of the types of business objects you’ll be able to
create with the framework. Being aware of the OO design philosophy and types of objects the frame-
work is intended to help you create will make Chapters 6 through 16 easier to digest.

While it is possible to discuss OO design purely in theoretical terms, I find that most people
understand it best in the context of a more concrete example. This chapter will cover a little theory,
but will primarily focus on the object-oriented application design process, using a sample scenario
and application that will be implemented in Chapters 17 through 21. The design process in this chapter
will result in a design for the business objects and for an underlying database.

Obviously, the challenge faced in designing and building a sample application in a book like this
is that the application must be small enough to fit into the space available, yet be complex enough
to illustrate the key features I want to cover. To start with, here’s a list of the key features that I want
to focus on:

• Creation of a business object

• Implementation of business validation rules

• Implementation of business authorization rules

• Transactional and nontransactional data access

• Parent-child relationships between objects

• Many-to-many relationships between objects

• Use of name/value lists

• Use of custom CSLA .NET authentication

In this chapter, I’ll focus on the design of the application by using some example user scenarios,
which are generally referred to as use cases. Based on those use cases, I’ll develop a list of potential
business objects and relationships. I’ll refine this information to develop a class design for the appli-
cation. Based on the scenarios and object model, I’ll design a relational database to store the data.

As I mentioned in Chapter 2, object-oriented design and relational design aren’t the same
process, and you’ll see in this case how they result in two different models. To resolve these models,
the business objects will include ORM when they are implemented in Chapters 17 and 18. This ORM
code will reside in a specific data access assembly (project), created using LINQ to SQL. The business

Lhotka_1019-1C03.fm Page 101 Monday, October 27, 2008 9:36 AM

102 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

objects will invoke that data access code to retrieve and update the objects’ data. This chapter will
not focus on the data access mechanism; instead, it will leave those details for Chapter 18.

Responsibility-Driven Design
Object-oriented design has been around for many years. Unfortunately, there is no unified approach
to doing OO design, and this often leads to confusion. Just because someone says he’s doing OO
design doesn’t necessarily mean he’s following a similar process to another person who also says
he’s doing OO design.

Many people want to use objects primarily so they can use dot notation to get at their database.
They want to write code like this:

int qty = Customer[9].Order[4].LineItem[11].Product.Inventory.Quantity;

Each “object” here is actually some table or data entity that is hopefully loaded automatically
and efficiently when it is used. The dot-notation motivation for using objects is not a bad one, but it
is not what most people consider object-oriented.

Use-Case or Story-Based Analysis
Ideally, your objects exist to serve the needs of a specific use case, or user story, or user scenario. In
many cases, this means that the objects exist to provide the required business logic and data for each
form the user will use to complete a task. That user task is the use case.

Following this approach first means that you need to identify the use cases for your application.
This is an analysis process where you interview the business stakeholders and end users of the appli-
cation to identify the specific tasks that the application must accomplish for the users.

Each task is a use case. Of course, some tasks are big and some are small. If a task is big and
complex, you might need to subdivide it into a set of smaller tasks, each of which is a use case. This
means that some use cases may rely on, or interact with, other use cases. Your ultimate goal, however, is
for each low-level use case to be a stand-alone task—a scenario you can clearly describe.

What I’m describing here is the basic concept of decomposition, where complex problems are
decomposed into simpler subproblems. Eventually, you get to the point that the individual subproblems
(low-level use cases) are simple enough that you can design and implement them without getting
lost in the overall complexity.

Objects with Responsibilities
Once you have a low-level use case, you can start to identify the objects that are required to imple-
ment that use case. One important thing to remember is that you should not focus on data at this
time. Don’t worry about the data in each object. Instead, focus on what the object does. What is its job
or role within the use case?

Some objects are responsible for collecting data from the user. Others may be responsible for
validating data or calculating values. Notice how I’m phrasing this: each object is responsible for
doing something. Objects are not passive; they are actors that have a job to do within the use case.

In fact, objects should have a single responsibility. This is called single-responsibility design
and is the goal for this object design technique. Each object should have exactly one job—one
responsibility—within the use case. An object may have numerous behaviors (properties, methods,
and so on), but all those behaviors should exist so the object can meet its responsibility.

Lhotka_1019-1C03.fm Page 102 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 103

Objects Exist for Use Cases
An important side effect of what I’m talking about here is that objects are designed for use cases—
not for an enterprise, not even for an application. They are designed for a specific use case.

This might appear to be a problem, because it could reduce reuse. I suggest that this is not a
problem. Reuse is not a goal for software; it is one tool we use to achieve the real goals of maintain-
ability and lower cost of development.

In fact, reuse is often counterproductive. Most reuse causes a side effect called coupling, where
code becomes overly dependent on other code. Coupling is perhaps the ultimate enemy of maintain-
ability, and it’s a primary driver for increasing the cost of software development. Figure 3-1 illustrates
how reuse causes code to become interdependent.

Figure 3-1. Object A reusing code in object B

Let’s imagine that objects A and B from Figure 3-1 are in different use cases within the same
application. Then let’s imagine that object B has some useful behavior that object A also needs. It is
natural to have object A reuse the behavior provided by object B.

Unfortunately, there is a very real risk that object B might change at some point in the future,
probably due to a change in the use case to which it belongs. And changing object B will very likely
break object A, often in a way that you may catch only if you have extensive unit and integration
testing in place. Coupling leads to unintended consequences and fragile code.

■Tip You should only pursue reuse if you can avoid coupling.

Designing objects for specific use cases might eliminate some reuse, but it also helps minimize
coupling, and thus it helps reduce the cost of development by increasing maintainability.

Please note, however, that I am not suggesting that reuse itself is bad. All I’m saying is that you
can’t blindly pursue reuse. Instead, you should reuse code whenever you can do so without causing
tight coupling. It is important to realize that you can’t have reuse without coupling, so it isn’t like you
can avoid coupling. All you can do is control the coupling.

Normalization of Behavior
One powerful technique you can use to achieve reuse and control coupling is normalization of behavior.
The idea is to move the code to be reused into its own object, so objects that contain reusable code
are somewhat isolated from most other objects.

Figure 3-2 illustrates how you can use normalization of behavior to accomplish the same result
as Figure 3-1, but with controlled coupling.

Lhotka_1019-1C03.fm Page 103 Monday, October 27, 2008 9:36 AM

104 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Figure 3-2. Common behavior normalized into object C

In this case, the behavior originally contained in object B that is needed by object A is moved to
a new object called C. Object C only contains the common behavior required by both objects B and
A, and both A and B collaborate with C to use that behavior.

This requires more work than simply having A call B, but it is better, because it avoids having A
depend on B. Instead, the dependency is shifted so both A and B are dependent upon C. More work
is required, because some refactoring of B is required to achieve this result.

This is a better solution because C is highly focused, in that it only contains the code common
to both A and B. While coupling still exists, the coupling is clearer and more easily managed.

Object-oriented design works best when objects are designed for a specific use case and when
each object has a single responsibility within that use case. To achieve reuse, utilize normalization
of behavior by refactoring common code into its own object and have other objects collaborate with
this new object to leverage the behavior.

Given this brief conceptual background, I’ll put the ideas into practice by walking through the
design of a reference application called Project Tracker.

Application Requirements
There are many ways to gather application requirements, but in general, you can choose from these
three main areas of focus:

• Data analysis and data flow

• UI design and storyboarding

• Business concept and process analysis

The first option is the oldest of the three. It’s the idea that an application can be designed by
understanding the data it requires and how that data must flow through the system. While this approach
can work, it isn’t ideal when trying to work with object-oriented concepts, because it focuses less on
business ideas and more on raw data. It’s often a good analysis approach when building applications
that follow a data-centric architecture.

■Note The data-focused analysis approach often makes it hard to relate to users well. Few users understand
database diagrams and database concepts, so there’s a constant struggle as the business language and concepts
are translated into and out of relational, data-oriented language and concepts.

The idea of basing application analysis around the UI came into vogue in the early-to-mid 1990s
with the rise of rapid application development (RAD) tools such as Visual Basic, PowerBuilder, and

Lhotka_1019-1C03.fm Page 104 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 105

Delphi. It was subsequently picked up by the web development world, though in that environment
the term storyboarding was often used to describe the process. UI-focused analysis has the benefit of
being accessible to end users, who find it easy to relate to the UI and how it flows.

The drawback to this approach is that there’s a tendency for business validation and processing
to end up being written directly into the UI. This doesn’t always happen, but it’s a very real problem—
primarily because UI-focused analysis frequently revolves around a UI prototype, which includes
more and more business logic as the process progresses, until developers decide just to use the
prototype as the base for the application, since so much work has been done already.

■Tip Obviously, people can resist this trend and make UI-focused design work, but it takes a great deal of discipline.
The reality is that a lot of great applications end up crippled because this technique is used.

Another drawback to starting with the UI is that users often see the mocked-up UI in a demon-
stration and assume that the application is virtually complete. They don’t realize that the bulk of the
work comes from the business and data access logic that must still be created and tested behind the
UI. The result is that developers are faced with tremendous and unrealistic time pressure to deliver
on the application, since from the user’s perspective, it’s virtually complete already.

The third option is to focus on business concepts and process flow. This is the middle road in
many ways, since it requires an understanding of how the users will interact with the system, the
processes that the system must support, and (by extension) the data that must flow through the
system to make it all happen. The benefit of this approach is that it’s very business focused, allowing
both the analyst and the end users to talk the language of business, thereby avoiding computer concepts
and terminology. It also lends itself to the creation of object-oriented designs, because the entities
and concepts developed during analysis typically turn into objects within the application.

The drawback to this approach is that it doesn’t provide users with the look and feel of the UI or
the graphical reinforcement of how the system will actually work from their perspective, nor does it
produce a clear database design. It leaves the database analyst to do more work in order to design the
database.

Personally, I use a blend of the business concept and UI approaches. I place the strongest emphasis
on the business concept and process flow, while providing key portions of the UI via a prototype, so
that the user can get the feel of the system. Since end users have such a hard time relating to database
diagrams, I almost never use data-focused analysis techniques, instead leaving the database design
process to flow from the other analysis techniques.

In this chapter, I’ll make use of the business concept and process-flow techniques. It’s difficult
to storyboard the application at this stage, because we’ll be developing both WPF and Web Forms
user interfaces, along with a WCF service application interface. The starting point, then, is to create
a set of use case descriptions based on how the users (or other applications) will interact with the system.

Use Cases
Let’s create a set of imaginary use cases for the project-tracking system. In a real application, you
would develop these by interviewing key users and other interested parties. The use cases here are
for illustration purposes.

■Note This application is relatively simple. A real project-tracking system would undoubtedly be more complex,
but it is necessary to have something small enough to implement within the context of this book. Remember that
my focus is on illustrating how to use CSLA .NET to create business objects, child objects, and so forth.

Lhotka_1019-1C03.fm Page 105 Monday, October 27, 2008 9:36 AM

106 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Though not mentioned specifically in the following use cases, I’m designing this system to
accommodate large numbers of users. In Chapter 19, for instance, the WPF UI will use the mobile
object features of CSLA .NET to run the application in a physical n-tier deployment with an applica-
tion server. This physical architecture will provide for optimum scalability. In Chapter 20, the Web
Forms UI will make use of the CSLA .NET framework’s ability to run the application’s UI, business
logic, and data access all on the web server. Again, this provides the highest scaling and best-performing
configuration, because you can easily add more web servers as needed to support more users.

Project Maintenance

Since this is a project-tracking system, there’s no surprise that the application must work with projects.
Here are some use cases describing the users’ expectations.

Adding a Project

A project manager can add projects to the system. Project data must include key information, including
the project’s name, description, start date, and end date. A project can have a unique project number,
but this isn’t required, and the project manager shouldn’t have to deal with it. The project’s name is
the field by which projects are identified by users, so every project must have a name.

The start and end dates are optional. Many projects are added to the system so that a list of them
can be kept, even though they haven’t started yet. Once a project has been started, it should have a
start date but no end date. When the project is complete, the project manager can enter an end date.
These dates will be used to report on the average lengths of the projects, so obviously the end date
can’t be earlier than the start date.

Every project also has a list of the resources assigned to it (see the “Assigning a Resource” section
later in this chapter).

Editing a Project

Project managers can edit any existing projects. Managers choose from a list of projects and can
then edit that project. They need the ability to change the project’s start and end dates, as well as its
description. They also need to be able to change the resources assigned to the project (see the “Assigning
a Resource” section later in this chapter).

Removing a Project

Project managers or administrators must be able to remove projects. There is no need to keep histor-
ical data about deleted projects, so such data should be removed completely from the system. Users
should just choose from a list of projects and confirm their choice, and the project should be removed.

Resource Maintenance

At this point, the system not only tracks projects, but also tracks the resources assigned to each project.
For the purposes of this simple example, the only project resources tracked are the people assigned
to the projects. With further questioning of the users, a set of use cases revolving around the resources
can be developed, without reference (yet) to the projects in which they may be involved.

Adding a Resource

We don’t want to replicate the Human Resources (HR) database, but we can’t make use of the HR
database because the HR staff won’t give us access. We just want to be able to keep track of the people
we can assign to our projects. All we care about is the person’s name and employee ID. Obviously,
each person must have an employee ID and a valid name.

Lhotka_1019-1C03.fm Page 106 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 107

Project managers or supervisors can add resources. It would be nice to be able to assign a person
to a project at the same time as the person is being added to the application (see the “Assigning a
Resource” section later in this chapter).

Editing a Resource

Sometimes, a name is entered incorrectly and needs to be fixed, so project managers and supervisors
need to be able to change the name.

Removing a Resource

When an employee is let go or moves to another division, we want to be able to remove him from the
system. Project managers, supervisors, and administrators should be able to do this. Once they’re
gone, we don’t need any historical information, so they should be totally removed.

Assigning a Resource

As we were talking to the users to gather information about the previous use cases, the users walked
through the requirements for assigning resources to projects. Since this process is common across
several other processes, we can centralize it into a use case that’s referenced from the others.

The project managers and supervisors need to be able to assign a resource to a project. When
we do this, we need to indicate the role that the resource is playing in the project. We have a list of
the roles, but we might need to change the list in the future. We also want to know when the resource
was assigned to the project.

Sometimes, a resource will switch from one role to another, so we need to be able to change the
role at any time. Equally, a resource can be assigned to several projects at one time. (We often have
people working part-time on several projects at once.)

Last, we need to be able to remove an assignment. This happens when an employee is let go or
moves to another division (see the “Removing a Resource” section earlier in this chapter); people
also often move around from project to project. There’s no need to keep track of who used to be on
a project, because we only use this system for tracking current projects and the resources assigned
to them right now.

Maintaining a List of Roles

Resources are assigned to projects to fill a specific role. The list of possible roles needs to be main-
tainable by end users, specifically administrators.

External Access

During conversations with users, we discovered that a number of them are highly technical and are
already skeptical of our ability to create all the UI options they desire. They indicated high interest in
having programmatic access to the database, or to our business objects. In other words, we have
some power users who are used to programming in Access and know a bit of VBA, and they want to
write their own reports and maybe their own data entry routines.

■Note This same scenario would play out if there were a requirement to provide access to the application to busi-
ness partners, customers, vendors, or any external application outside our immediate control.

Lhotka_1019-1C03.fm Page 107 Monday, October 27, 2008 9:36 AM

108 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Obviously, there are serious issues with giving other people access to the application’s
database—especially read-write access. Unless all the business logic is put into stored procedures,
this sort of access can’t be provided safely.

Likewise, there are issues with providing direct access to the business objects. This is safer in
some ways, because the objects implement the business logic and validation, but it’s problematic
from a maintenance perspective. If other people are writing code to interact directly with the busi-
ness objects, then the objects can’t be changed without breaking their code. Since the other people
are outside of our control, it means that the Project Tracker application can never change its object
model.

Of course, this is totally unrealistic. It is a virtual guarantee that there will be future enhance-
ments and requests for changes to the system, which will undoubtedly require changes to the business
objects. Fortunately, XML services offer a clean solution. If XML services are treated just like any
another interface (albeit a programmatic one) to the application, they can be used to easily provide
access to the application without allowing external programs to interact directly with the applica-
tion’s database or business objects.

In Chapter 21, I’ll revisit these ideas, showing how to implement a set of XML services using
WCF so that external applications can safely interact with the application in a loosely coupled manner.

Object Design
At this point, the key requirements for the application have been gathered from the use cases. Based
on these use cases, it is possible to create an object-oriented design. There are a variety of techniques
used in object-oriented design; you may have heard of Class Responsibility Collaborator (CRC) cards
and decomposition, in addition to others. In this chapter, I’ll use ideas from both decomposition
and CRC cards. A form of decomposition will be used to identify the “nouns” in the use cases and
then narrow down which of these are actual business objects. These objects will be described in
terms of their CRC.

Initial Design
The first step in the process, then, is to assemble a list of the nouns in the use case write-ups. By
using a bit of judgment, you can eliminate a few nouns that are obviously not objects, but still end
up with a good-sized list of potential business objects or entities, as shown in Table 3-1.

Table 3-1. Potential Entities Discovered in the Initial Design

Project manager Project Project number

Project name Start date End date

Administrator List of projects Employee

Resource Employee name Employee ID

Supervisor List of assignments Role

List of roles Assignment Date assigned

List of resources List of assigned resources

Lhotka_1019-1C03.fm Page 108 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 109

Using your understanding of the business domain (and probably through further discussion
with business users and fellow designers), you can narrow the options. Some of these entities aren’t
objects, but rather data elements or security roles. These include the following:

• Project manager

• Administrators

• Supervisor

■Tip I am assuming there’s already an object to deal with a user’s role. Such an object will be created by subclassing
the Csla.Security.BusinessPrincipalBase class later in the chapter. However, these security roles should
not be confused with the role a resource (person) plays on a project—they’re two very different concepts.

Pulling out these nouns, along with those that are likely to be just data fields (such as project
name and employee ID), you can come up with a smaller list of likely business objects, allowing you
to start creating a basic class diagram or organizing the classes using CRC cards. Table 3-2 lists the
high-level CRC data for each potential object.

One key aspect of CRC-based design is that an object’s responsibility should be short and to the
point. Long, complex responsibility descriptions are an indication that the object model is flawed
and that the complicated object should probably be represented by a set of simpler objects that
collaborate to achieve the goal.

Table 3-2. Potential Objects and Their Associated Class Names

Potential Class Responsibility Collaborators

Project Adds and edits a valid project ProjectResources

Resource Adds and edits a valid resource ResourceAssignments,
Employee

Employee Adds and edits a valid employee None

ProjectList Gets a read-only list of projects Project

ResourceList Gets a read-only list of resources Resource

ProjectResources Maintains a list of resources assigned to
a project

Resource, RoleList

ResourceAssignments Maintains a list of projects to which a
resource is assigned

Project, RoleList

RoleList Gets a read-only list of roles Role

Role Provides read-only role data None

RoleEditList Maintains a list of roles in the system RoleEdit

RoleEdit Adds and edits a valid role None

Lhotka_1019-1C03.fm Page 109 Monday, October 27, 2008 9:36 AM

110 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

The diagram should also include relationships between the entities in the diagram. For the most
part, these relationships can be inferred from the use case descriptions—for instance, we can infer
that a “list of projects” will likely contain Project objects, and that a Project object will likely contain
a “list of assigned resources,” which in turn will likely contain Resource objects.

Note that I use the word likely here, rather than will. We’re still very much in a fluid design stage
here, so nothing is certain yet. We have a list of potential objects, and we’re inferring a list of potential
relationships.

Figure 3-3 illustrates how these objects relate to each other. Looking at the CRC list and this
diagram, there is some indication that there’s more work to do. You should look for and address
several issues, including duplicate objects, trivial objects, objects that have overly complex relation-
ships in the diagram, and places that can be optimized for performance.

Figure 3-3. Possible class diagram for the Project Tracker application

Revising the Design
The following list indicates some of the things to address:

• Resource and Employee could be duplicates. It isn’t clear that Resource adds anything to
Employee, so the two can probably be merged into one class.

• Based on the use case description, we know that RoleList is a name/value list, which directly
implies the Role is just a name/value placeholder. Given Csla.NameValueListBase, this can be
simplified.

• The relationship between Project, ProjectResources, Resource, and ResourceAssignments is
very complex. In fact, it forms a loop of references, which is always a danger sign.

• The RoleList object isn’t used by any other objects in the model. Given that the use cases
indicate that resources are assigned to projects based on a specific role, this is suspicious.

Lhotka_1019-1C03.fm Page 110 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 111

• The use cases for ProjectList and ResourceList indicate that they’re used primarily for selec-
tion of objects, not for editing all the projects or resources in the system. Actually loading all
the Project or Resource objects just so the user can make a simple selection is expensive,
performance-wise, so this design should be reviewed.

• It is clear that when the list of roles is edited, any RoleList objects need to know about the
changes so they can read the new data. This is not explicitly stated in a use case, but is an
inferred requirement.

In the early stages of any object design process, there will be duplicate objects or potential objects
that end up being mere data fields in other objects. Usually, a great deal of debate will ensue during
the design phase, as all the people involved in the design process thrash out which objects are real,
which are duplicates, and which should be just data fields. This is healthy and important, though
obviously some judgment must be exercised to avoid analysis paralysis, whereby the design stalls
entirely due to the debate.

Let’s discuss this in a bit more detail.

Duplicate Objects

First, you should identify duplicate objects that have basically the same data and relationships (like
Resource and Employee). In this case, Employee can be eliminated in favor of Resource, since that term
is used most often in the use case descriptions (and thus, presumably, most used by the end users).

In most scenarios, the end users will have numerous terms for some of their concepts. It’s your
job, as part of the analysis process, to identify when multiple terms really refer to the same concepts
(objects) and to clarify and abstract the appropriate meaning.

Trivial Objects

The Role object may not be required either. Fundamentally, a Role is just a string value, presumably
with an associated key value. This is the specific scenario for which the NameValueListBase class in
the CSLA .NET framework is designed. That base class makes it easy to implement name/value lists.

■Tip My characterization of the Role value is based on the use cases assembled earlier. If you intuitively feel that
this is overly simplistic or unrealistic, then you should revisit the use cases and your users to make sure that you
haven’t missed something. For the purposes of this book, I’ll assume that the use cases are accurate and that the
Role field really is a simple name/value pair.

Note that I’m not suggesting the elimination of the RoleEdit class. While you can use
NameValueListBase to create read-only name/value lists, you use RoleEdit and RoleEditList to
edit the role data. They can’t be automated away like a simple name/value pair.

Like the process of removing duplicates, the process of finding and removing trivial objects is as
much an art as it is a science. It can be the cause of plenty of healthy debate!

Overly Complex Relationships

Although it’s certainly true that large and complex applications often have complex relationships
between classes and objects, those complex relationships should always be reviewed carefully.

As a general rule, if relationship lines are crossing each other or wrapping around each other in
a diagram like Figure 3-3, you should review those relationships to see if they need to be so complex.
Sometimes, it’s just the way things have to be, but more often, this is a sign that the object model

Lhotka_1019-1C03.fm Page 111 Monday, October 27, 2008 9:36 AM

112 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

needs some work. Though relying on the aesthetics of a diagram may sound a bit odd, it is a good rule
of thumb.

In this case, there’s a pretty complex relationship between Project, ProjectResources, Resource,
and ResourceAssignments. It is, in fact, a circular relationship, in which all these objects refer to the
other objects in an endless chain. In a situation like this, you should always be looking for a way to
simplify the relationships. What you’ll often find is that the object model is missing a class: one that
doesn’t necessarily flow directly from the use cases, but is required to make the object model workable.

The specific problem caused by the circular relationship in Figure 3-3 becomes apparent when
an object is to be loaded from the database. At that time, it will typically also load any child objects it
contains. With an endless loop of relationships, that poses a rather obvious problem. There must be
some way to short-circuit the process, and the best way to do this is to introduce another object into
the mix.

In the object model thus far, what’s missing is a class that actually represents the assignment of
a resource to a project. At this point, there’s no object responsible for assigning a resource to a project, so
an entire behavior from the use cases is missing in the object model.

Additionally, data described in the use cases isn’t yet reflected in the object model, such as the
role of a resource on a particular project, or the date that the resource was assigned to a project. These
data fields can’t be kept in the Project object, because a project will have many resources filling many
different roles at different times. Similarly, they can’t be kept in the Resource object, because a resource
may be assigned to many projects at different times and in different roles.

Adding an Assignment Class

The need for another object—an Assignment object—is clear. This object’s responsibility is to assign
a resource to a project.

Figure 3-4 shows an updated diagram, including the changes thus far.
However, we’re still not done. The Assignment class itself just became overly complex, because

it’s used within two different contexts: from the list of resources assigned to a project, and from the
list of projects to which a resource is assigned. This is typically problematic. Having a single object
as a child of two different collections makes for very complicated implementation and testing, and
should be avoided when possible.

Beyond that, think about its responsibility in the diagram in Figure 3-4. Assignment is now respon-
sible for assigning a resource to a project and for associating a project with a resource. When used
from ProjectResources, it has the first responsibility, and when used from ResourceAssignments, it
has the second responsibility. Sure, the responsibilities are similar, but they are different enough
that it matters.

There’s also an issue with data. A Project object uses the ProjectResources collection to get a
list of resources assigned to the project. This implies that the Assignment object contains information
about the resource assigned to the project. Yet a Resource object uses the ResourceAssignments
collection to get a list of projects to which the resource is assigned. This implies that the Assignment
object contains information about the project to which the resource is assigned. The fact that both
behavioral and data conflicts exist means that the object model remains flawed.

There are two possible solutions. You could combine the list objects (ProjectResources and
ResourceAssignments) into a single list of Assignment objects, or you could have two different objects
representing assignments. To resolve this, you need to think about the different behaviors that are
required when approaching the concept of assignments from Project and from Resource.

Lhotka_1019-1C03.fm Page 112 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 113

Figure 3-4. Revised class diagram for the Project Tracker application

Assigning a Resource to a Project

Based on the use cases, you can assign resources to projects. This implies that the user has identified
the project and wishes to assign a resource to it. It also implies that a project has a collection of assigned
resources: hence, the ProjectResources collection in the object model.

But what behavior and information would a user expect from the items in the ProjectResources
collection?

Certainly, one behavior is to return the list of resources assigned to the project. Another behavior
is to allow a new resource to be assigned to the project, implying something like an Assign() method
that accepts the Id property from a Resource.

It is also worth considering what information should be provided to the user. When viewing or
editing a Project, the list of assigned resources should probably show something like this:

• Resource ID

• Resource name

• Date assigned to the project

• Role of the resource on the project

Lhotka_1019-1C03.fm Page 113 Monday, October 27, 2008 9:36 AM

114 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

This means that ProjectResources, and the items returned by ProjectResources, might look
something like Figure 3-5.

Figure 3-5. The ProjectResources collection and the ProjectResource child object

Though not visible in Figure 3-5, the Assign() method accepts a resourceId parameter to identify
the resource being assigned to the project.

Given this analysis, let’s consider the behaviors and information required to assign a project to
a resource—basically the same process, but starting with a Resource instead of a Project.

Assigning a Project to a Resource

The use cases provide for the idea that a user could start by identifying a resource rather than a project.
In this case, the user can still associate a project with the resource by selecting a project. This implies
that the Resource object has a collection of projects to which the resource is assigned. The object
model thus far represents this collection as ResourceAssignments.

Let’s consider the behaviors and information for the ResourceAssignments collection and the
items it would contain.

In this case, the user starts with a Resource and wishes to assign the resource to a project. So the
ResourceAssignments object will have a couple of behaviors: listing the projects to which the resource
is assigned, and assigning the resource to a new project. This can probably be handled by an AssignTo()
method that accepts the Id property of a Project.

The items in ResourceAssignments have the behavior of returning information about the project
assigned to the resource. The information of value to a user is likely the following:

• Project ID

• Project name

• Date assigned to the project

• Role of the resource on the project

Figure 3-6 shows the potential ResourceAssignments object and what its items might look like.

Figure 3-6. The ResourceAssignments collection and the ResourceAssignment child object

Lhotka_1019-1C03.fm Page 114 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 115

The AssignTo() method accepts a projectId parameter to identify the project to which the
resource should be assigned.

Can the Classes Be Merged?

It is important to notice that the objects described by Figure 3-5 and Figure 3-6 are similar, but they
are not the same. Yet they do share at least some common information, if not behavior. Both child
classes contain Assigned and Role properties, implying that there’s commonality between them.

Such commonality is not justification for combining the two classes into one, because their
behaviors are distinctly different. The items in ProjectResources have one responsibility: managing
information about a resource assigned to a project. The items in ResourceAssignments have a different
responsibility: managing information about a project to which a resource is assigned. While this
difference may seem subtle, it is a difference nonetheless.

It is tempting to consider that the two classes could be merged into one, as shown in Figure 3-7.
Of course, ProjectName isn’t valid if the user got to this object from a Project object, but it is valid if
she got here through a Resource object. The same is true for several other properties.

Figure 3-7. Merged child items with assignment information

Perhaps business logic could be added to properties to throw exceptions if they were called from
an inappropriate context. But the obvious complexity of this sort of logic should give you pause. The
problem is that one object is trying to handle more than one responsibility. Such a scenario means
that the object model is flawed. Going down such a path will lead to complex, hard-to-maintain code.

■Note Historically, this sort of complex code was referred to as spaghetti code. It turns out that with improper
object design, it is very possible to end up with spaghetti code in business objects. The result is terrible, and is
exactly what good object design is intended to prevent.

It should be quite clear at this point that merging the two collections or their child objects into
a single set of objects isn’t the right answer. They have different responsibilities, and so they should
be separate objects.

But this leaves one glaring issue: what about the common properties and any common business
logic they might require? How can two objects use the same data without causing duplication of
business logic?

Lhotka_1019-1C03.fm Page 115 Monday, October 27, 2008 9:36 AM

116 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Dealing with Common Behaviors and Information

When designing relational databases, it is important to normalize the data. There are many aspects
to normalization, but one of the most basic and critical is avoiding redundant data. A given data
element should exist exactly once in the data model. And that’s great for relational modeling.

Unfortunately, many people struggle with object design because they try to apply relational
thinking to objects. But object design is not the same as relational design. Where the goal with rela-
tional design is to avoid duplication of data, the goal of object design is quite different.

There’s no problem with a data field being used or exposed by different objects. I realize this
may be hard to accept. We’ve all spent so many years being trained to think relationally that it is often
hard to break away and think in terms of objects. Yet creating a good object model requires changing
this mode of thought.

■Caution Object design isn’t about normalizing data. It is about normalizing behavior.

The goal in object design is to ensure that a given behavior exists only once within the object
model. Simple examples of behavior include the idea of a string being required, or one value being
larger than another. More complex behaviors might be the calculation of a tax or discount amount.
Each behavior should exist only once in the object model, though it may be used from many different
objects.

This is why collaboration is so critical to good object design. For example, one object—the
DiscountCalculator—will implement the complex calculation for a discount. Many other objects
may need to determine the discount, so they collaborate with DiscountCalculator to find that value.
In this manner, the behavior exists exactly once in the model.

Dealing with Common Information

So the real question isn’t whether the Assigned and Role properties can be put into a common object—
that’s relational thinking. Instead, the question is whether those properties have common behaviors
(business rules or logic) that can be put into a common object.

As it turns out, the Role property must be validated to ensure any new value is a real role. Since
the Role property can be set in both ProjectResource and ResourceAssignment, that behavior could
be duplicated.

A better answer is to normalize that behavior, putting it into a central object. Let’s call this
new object Assignment, since it will be responsible for centralizing the code common to
assignments of projects to resources, and resources to projects. Then both ProjectResource and
ResourceAssignment can collaborate with Assignment to ensure that the Role property is validated.

This means that Assignment will contain the rule method that implements the role-validation
behavior. In Chapter 6, you’ll see how the CSLA .NET framework defines the RuleHandler delegate to
support exactly this type of scenario.

Given a ValidRole() rule method in Assignment, both ProjectResource and ResourceAssignment
merely have to associate that rule method with their Role properties to share the common behavior.
Figure 3-8 illustrates this relationship.

Lhotka_1019-1C03.fm Page 116 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 117

Figure 3-8. ProjectResource and ResourceAssignment collaborating with Assignment

In Chapter 17, I discuss the code to do exactly this.

Dealing with Common Behaviors

The responsibility of the Assignment object from Figure 3-8 is to manage the association between a
project and a resource.

This means that the Assignment object’s behavior could include the idea of associating a project
with a resource. This is a broader behavior than that provided by ProjectResources, which assigns a
resource to a project, or by ResourceAssignments, which assigns a project to a resource. In fact, the
behavior of Assignment is more general and encompasses the needs of both other objects.

Of course, the ProjectResource and ResourceAssignment classes handle the real work of dealing
with a resource assigned to a project, or a project associated with a resource. The collection classes
really just add and remove these child objects, leaving it to the child objects to handle the details.

The end result is that ProjectResource, to fulfill its behavior, can ask Assignment to do the actual
work, as shown in Figure 3-9. The same is true of ResourceAssignment. The implication is that Assignment
could have a method such as AddAssignment() that accepts a project’s Id property and a resource’s
Id property, along with the role the resource will play on the project.

■Tip Object models should be simple and intuitive, even when underlying behaviors are complex. By centralizing
common behaviors using objects internal to the business layer, a simpler and more tailored public interface can be
exposed to the UI developer.

Lhotka_1019-1C03.fm Page 117 Monday, October 27, 2008 9:36 AM

118 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Similarly, ProjectResource and ResourceAssignment have behaviors that involve removing a
resource from a project or removing a project from a resource. Assignment, then, will have a more
general behavior to remove an association between a project and a resource.

Figure 3-9 shows the full extent of Assignment, including all the methods that implement behaviors
common to both ProjectResource and ResourceAssignment.

Figure 3-9. Objects collaborating with Assignment

At this point, all the common behaviors from ProjectResource and ResourceAssignment have
been normalized into a single location in the object model.

Optimizing for Performance

Part of object design includes reviewing things to ensure that the model won’t lead to poor perfor-
mance. This isn’t really a single step in the process, but rather something you should do on a continual
basis during the whole process. However, once you think the object model is complete, you should
always pause to review it for performance issues.

One primary performance issue with many object models deals with the use of relational thinking
when designing the objects. Normalizing data within the object model is perhaps the most common
flaw causing performance issues. Due to the design of ProjectResource, ResourceAssignment, and
Assignment, the object model has already eliminated this issue by normalizing behavior instead of
data. This helps avoid loading entire business objects just to display a couple of common data elements.

There is, however, another performance issue in the model. The ProjectList and ResourceList
collection objects, as modeled, retrieve collections of Project and Resource business objects so that

Lhotka_1019-1C03.fm Page 118 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 119

some of their data can be displayed in a list. Based on the use cases, the user then selects one of the
objects and chooses to view, edit, or remove that object.

From a purely object-oriented perspective, it’s attractive to think that you could just load a
collection of Project objects and allow the user to pick the one he wants to edit. However, this could
be very expensive, because it means loading all the data for every Project object, including each
project’s list of assigned resources, and so forth. As the user adds, edits, and removes Project objects,
you would potentially have to maintain your collection in memory too.

Practical performance issues dictate that you’re better off creating a read-only collection that
contains only the information needed to create the user interface. (This is one of the primary reasons
why CSLA .NET includes the ReadOnlyListBase class, which makes it easy to create such objects.)

This stems from behavioral design. The responsibility of a Resource object is to add and edit a
valid resource. The responsibility of a ResourceList object is to get a read-only list of resources. It is
clear that these responsibilities are in conflict. To use a Resource object as a child of ResourceList, it
would need to be read-only—yet its whole purpose is to add and edit data!

Obviously, ResourceList and ProjectList must contain child objects other than Resource and
Project. They should contain child objects that contain only the data to be displayed, in read-only
format. These new child objects will have responsibilities appropriate to their purpose. ResourceInfo, for
instance, will be responsible for returning read-only information about a resource.

■Tip As discussed earlier, if there are common business rules or logic for properties exposed in such read-only
objects, the common behaviors should be normalized into another object.

Figure 3-10 shows the two collection objects with their corresponding read-only child objects.

Figure 3-10. The read-only collection objects, ProjectList and ResourceList

Lhotka_1019-1C03.fm Page 119 Monday, October 27, 2008 9:36 AM

120 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

The ProjectInfo object is responsible for providing read-only information about a project, while the
ResourceInfo object provides read-only information about a resource. By loading the minimum
amount of data required to meet these responsibilities, these objects provide a high-performance
solution and follow good behavioral object design.

Inter-Object Collaboration

The object model has a RoleList object, responsible for providing a read-only list of role data. It also
has a Roles object, responsible for editing the list of roles in the application. While these two objects
have very distinct responsibilities, they do have a point of interaction that should be addressed.

Though not required by any use case from a user, the RoleList object can, and probably should,
be cached. The list of roles won’t change terribly often, yet the RoleList object will be used frequently
to populate UI controls and to validate data from the user. There’s no sense hitting the database
every time to get the same data over and over.

You’ll see how to easily implement the caching in Chapters 17 and 18, but first, there’s a design
issue to consider: what happens when the user edits the list of roles using the Roles object? In such
a case, the RoleList object will be inaccurate.

■Note There’s a related issue too, which is when another user edits the list of roles. That issue is harder to solve,
and requires either periodic cache expiration or some mechanism by which the database can notify the client that
the roles have changed. Solving this problem is outside the scope of this discussion.

It is relatively trivial to have the Roles object notify RoleList to tell it that the data has changed.
In such a case, RoleList can simply invalidate its cache so the data is reloaded on the next request.
Again, the implementation of this behavior is shown in Chapter 18.

From an object model perspective, however, this means that there is interaction between Roles
and RoleList. From a CRC perspective, this means that Roles collaborates with RoleList to expire
the cache when appropriate.

Reviewing the Design

The final step in the object design process is to compare the new class diagram with the original use
case descriptions to ensure that everything described in each use case can be accomplished through the
use of these objects. Doing so helps to ensure that the object model covers all the user requirements.
Figure 3-11 shows the complete object model, and Table 3-3 shows the updated CRC information.

The solid-lined arrows in Figure 3-11 indicate collaboration between objects, illustrating how
many of them work together to provide the required functionality. The dashed lines show navigation
between objects. For instance, if you have a ProjectInfo object, it is possible to navigate from there
to a Project, typically by calling a GetProject() method.

While navigation between objects isn’t strictly necessary, it is often of great benefit to UI devel-
opers. Consider that a UI developer will get access to a ProjectInfo object when the user selects a
project from a control in the UI. In most cases, the next step is to load the associated Project so that
the user can view or edit the data. Providing navigational support directly in the object model makes
this trivial to implement within the UI.

Lhotka_1019-1C03.fm Page 120 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 121

Figure 3-11. Final Project Tracker object model

Table 3-3. Final List of Objects and Their Responsibilities

Potential Class Responsibility Collaborators

Project Adds and edits a valid project ProjectResources,
CommonRules

ProjectResources Maintains a list of resources assigned
to a project

ProjectResource

ProjectResource Manages assignment of a resource to
a project

Assignment, CommonRules,
Resource

Resource Adds and edits a valid resource ResourceAssignments,
CommonRules

ResourceAssignments Maintains a list of projects to which a
resource is assigned

ResourceAssignment

ResourceAssignment Manages a project to which a resource
is assigned

Assignment, CommonRules,
Project

Assignment Manages association of a project and
a resource

RoleList

ProjectList Gets a read-only list of projects ProjectInfo

ProjectInfo Provides read-only information for
a project

Project

ResourceList Gets a read-only list of resources ResourceInfo

Lhotka_1019-1C03.fm Page 121 Monday, October 27, 2008 9:36 AM

122 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

If you review the use cases, you should find that the objects can be used to accomplish all of the
tasks and processes described in the following list:

• Users can get a list of projects.

• Users can add a project.

• Users can edit a project.

• Users can remove a project.

• Users can get a list of resources.

• Users can add a resource.

• Users can edit a resource.

• Users can remove a resource.

• Users can assign a resource to a project (and vice versa).

• When a resource is assigned to a project, users can specify the role the resource will play on
the project.

Custom Authentication
Though the objects required to service the business problem have been designed, there’s one area
left to address. For this application, I want to show how to use custom authentication. Perhaps this
requirement became clear due to a user requirement to support users external to our organization:
users that aren’t in our corporate domain or Active Directory (AD).

The topic of authentication has been discussed several times in the book thus far, and you
should remember that CSLA .NET supports Windows integrated (AD) authentication—in fact, that’s
the default. But it also supports custom authentication, allowing the business developer to create
custom .NET principal and identity objects that authenticate the user using credentials stored in a
database, LDAP server, or other location.

To this end, the object model will include two objects: PTPrincipal and PTIdentity. They are
shown in Figure 3-12.

Figure 3-12. The PTPrincipal and PTIdentity objects

ResourceInfo Provides read-only information for
a resource

Resource

RoleList Gets a read-only list of roles None

Roles Maintains a list of roles in the system Role, RoleList

Role Adds and edits a valid role None

Table 3-3. Final List of Objects and Their Responsibilities (Continued)

Potential Class Responsibility Collaborators

Lhotka_1019-1C03.fm Page 122 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 123

PTPrincipal is a .NET principal object and acts as the primary entry point for custom authenti-
cation and role-based authorization. PTIdentity is a .NET identity object and is responsible for
representing the user’s identity.

At this point, the object model can be considered complete.

Using CSLA .NET
The class diagrams created so far have focused entirely on the business domain—which is a good
thing. Ideally, you should always start by focusing on business issues and deferring much of the
technical design to a later stage in the process. Users typically don’t understand (or care about) the
technical issues behind the scenes, such as how you are going to implement the Cancel buttons or
how to retrieve data from the database.

Of course, the business developer cares about these issues—but these issues can be dealt with
after the basic object modeling is complete, once you have a good understanding of the business
issues and confidence that your model can meet the requirements laid out in the use cases.

Going forward in this book, I’ll be assuming the use of the CSLA .NET framework described in
Chapter 2. Using this framework (or any comparable framework) means spending less time figuring
out how to design or implement the features included in the framework. By relying on CSLA .NET,
developers gain the benefits listed in Table 3-4.

Table 3-4. Benefits Gained by Using CSLA .NET

Feature Description

Smart data Business data is encapsulated in objects along with
its associated business logic, so developers are never
working with raw, unprotected data, and all business
logic is centralized for easy maintenance.

Easy object creation Developers use standard .NET object-oriented
programming techniques to create business objects.

Flexible physical configuration Data access runs locally or on an application server, without
changing business code.

Object persistence Clearly defined methods contain all data access code.

Optimized data access Objects only persist themselves if their data has been
changed. It’s easy to select between various transaction
technologies to balance between performance and features.

Optional n-level undo capabilities Support for complex WPF or Windows Forms interfaces
is easy, while also supporting high-performance web
interfaces.

Business rule management This reduces the code required to implement business and
validation rules.

Authorization rule management This reduces the code required to implement per-property
authorization.

Simple UI creation With full support for WPF, Windows Forms, and Web
Forms data binding, minimal code is required to create
sophisticated user interfaces (see Chapters 19 and 20).

Lhotka_1019-1C03.fm Page 123 Monday, October 27, 2008 9:36 AM

124 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

To use CSLA .NET, developers merely need to determine which base classes to inherit from
when creating each business class. For example, some business objects will be editable objects that
can be loaded directly by the user. These need to inherit from BusinessBase, as shown in Figure 3-13.

Figure 3-13. Business objects subclassing BusinessBase

By subclassing BusinessBase, all of these objects gain the full set of business object capabilities
implemented in Chapters 6 through 16.

The model also includes objects that are collections of business objects, and they should inherit
from BusinessListBase, as shown in Figure 3-14.

BusinessListBase supports the undo capabilities implemented for BusinessBase; the two base
classes work hand in hand to provide this functionality.

As shown in Figure 3-15, the two objects that list read-only data for the user inherit from
ReadOnlyListBase. This base class provides the support objects need for retrieving data from the
database without the overhead of supporting undo or business rule tracking. Those features aren’t
required for read-only objects.

The ProjectInfo and ResourceInfo classes don’t inherit from any CSLA .NET base classes. As
you’ll see in Chapters 17 and 18, they must be marked with the Serializable attribute, but they don’t
need to inherit from a special base class just to expose a set of read-only properties.

Web service support Developers can readily create a web service interface for
the application, so that other applications can tap into the
application’s functionality directly (see Chapter 21).

Custom authentication This makes it easy to select between Windows integrated
security and CSLA .NET custom security. It’s also easy to
customize CSLA .NET custom security to use preexisting
security databases. In either case, standard .NET security
objects are used, providing a standard way to access user
security information.

Table 3-4. Benefits Gained by Using CSLA .NET (Continued)

Feature Description

Lhotka_1019-1C03.fm Page 124 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 125

Figure 3-14. Business objects subclassing BusinessListBase

Figure 3-15. Read-only list objects subclassing ReadOnlyListBase

Next, there’s the RoleList object, which is a read-only list of name/value data. Although this
could be implemented using ReadOnlyListBase, Chapter 6 will describe the NameValueListBase class,
as shown in Figure 3-16. This class provides a better alternative for building name/value lists and is
designed to make it as easy as possible to create read-only lists of text values, so it’s ideal for building
the RoleList class.

Figure 3-16. RoleList subclassing NameValueListBase

Lhotka_1019-1C03.fm Page 125 Monday, October 27, 2008 9:36 AM

126 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Finally, there are the two custom authentication objects: PTPrincipal and PTIdentity. Figure 3-17
shows these objects along with their CSLA .NET base classes.

Figure 3-17. Objects supporting custom authentication

PTPrincipal inherits from Csla.Security.BusinessPrincipalBase, ensuring that it implements
the System.Security.Principal.IPrincipal interface and also that it will work with the data portal,
as implemented in Chapter 4. A required property from the IPrincipal interface is Identity, which
provides a reference to a .NET identity object—in this case, PTIdentity. The PTIdentity object inherits
from ReadOnlyBase. It exposes only read-only data, so this is a natural fit.

All of these classes will be implemented in Chapters 17 and 18. During that process, you’ll see
how to use the CSLA .NET framework to simplify the process of creating business objects.

Database Design
It’s a rare thing to be able to design a database specifically for an application. More often than not,
the database already exists, and developers must deal with its existing design. At best, you might be
able to add some new tables or columns.

This is one reason why ORM is a key concept for object-oriented development. The object model
designed earlier in the chapter matches the business requirements without giving any consideration
to the database design. An important step in the development process is to create code that translates
the data from the databases into the objects, and vice versa. That code will be included in Chapters 17
and 18 as the business objects are implemented.

In this chapter, let’s create a database for use by the project-tracking application. One thing to
note is that even though the database is created specifically for this application, the data model will
not match the object model exactly. A good relational model and a good object model are almost
never the same thing.

Lhotka_1019-1C03.fm Page 126 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 127

■Tip Speaking of good relational models, I strongly recommend that database design be done by a professional
DBA, not by software developers. While many software developers are reasonably competent at database design, DBAs
are better at making the many optimizations and design choices. The database design shown here is that of a soft-
ware developer, and I’m sure a DBA would see numerous ways to improve or tweak the results to work better in a
production setting.

To make development and testing relatively easy, this will be a SQL Server 2008 Express data-
base. As you’ll see in Chapter 18, you write the data access code for each object, so neither CSLA .NET
nor your business objects are required to use SQL Server 2008 Express or any other specific database.
You can use any data storage technology you choose behind your objects. In most cases, your appli-
cations will use production database servers such as SQL Server 2008 Enterprise Edition, Oracle, or
DB2, rather than the more limited Express Edition used here.

The database will include tables, along with some stored procedures to enable database access
from code. Additionally, there will be a second database to contain security information for use by
the PTIdentity object.

■Tip If you’re using a database other than SQL Server 2008 Express, you should translate the table creation
and stored procedures to fit with your environment. You can find the database, table, and stored procedure scripts
in the PTData project in the Source Code/Download area on the Apress website (www.apress.com) and from
www.lhotka.net/cslanet/download.aspx.

While stored procedures may or may not offer any performance benefits, I believe they are a
critical part of any business application. Stored procedures provide an abstract, logical interface to
the database. They provide a level of indirection between the business objects and the underlying
table structures, and thus they reduce coupling between the data management and business layers
in your application. In short, stored procedures help make applications more maintainable over time.

That said, you’ll notice that none of these stored procedures are complex, and every effort has
been made to keep business logic out of the database and in the business objects. Putting the busi-
ness logic in both the objects and the database is just another way to duplicate business logic, which
increases maintenance costs for the application as a whole.

Creating the Databases
The PTracker database will contain tables and stored procedures to persist the data for the business
objects in the object model designed earlier in the chapter. This is a SQL Server 2008 Express data-
base, so you can think of it as being just another file in your project.

To create the database, open Visual Studio and create a new Class Library project named PTDB.
I won’t have you build this project at any point, so you can ignore the project settings and Class1.cs
file. The purpose of this project is just so you can use Visual Studio to set up the database.

Choose Project ➤ Add New Item, and choose the Service-based Database option. As shown in
Figure 3-18, name the file and click Add.

Lhotka_1019-1C03.fm Page 127 Monday, October 27, 2008 9:36 AM

http://www.apress.com
http://www.lhotka.net/cslanet/download.aspx

128 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Figure 3-18. Adding the PTracker database in Visual Studio

Visual Studio will force you to walk through the process of creating a DataSet for the new database.
You can walk through or cancel that wizard as you choose. It is not required for anything covered in
this book.

Repeat the process to add a Security.mdf database as well. The end result is that you’ll have two
databases in the project—and more importantly, in the Server Explorer window, as shown in Figure 3-19.

Figure 3-19. The PTracker and Security databases in Server Explorer

You can also create tables within Server Explorer: just right-click the Tables node under the
database, and choose New Table. This will bring up a table designer in VS .NET, with which you can
define the columns for the new table.

Lhotka_1019-1C03.fm Page 128 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 129

Once the columns, keys, and indexes have been set up, save the changes by closing the designer
or clicking the Save button in the toolbar. At this point, you’ll be prompted to provide a name for the
table, and it will be added to the database.

PTracker Database
Follow this process to add each of the following four tables to the database.

Roles

The Roles table will store the list of possible roles a resource can fill when assigned to a project—it
simply contains an Id value and the name of the role. Figure 3-20 shows the VS .NET designer with
these columns added and the Id column configured as the primary key.

Figure 3-20. Design of the Roles table

Notice that none of the columns allow null values. There’s no business requirement to differen-
tiate between an empty value and one that was never entered, so null values would make no sense.

The table also has a LastChanged column, which will be used to implement otimistic, first-write-
wins concurrency in Chapter 18. It is of type timestamp, so it provides a unique, auto-incrementing
value every time a row is inserted or updated. All the tables in the PTracker database will have this
type of column.

Projects

The Projects table will contain the data for each project in the system. The columns for this table are
shown in Figure 3-21.

Figure 3-21. Design of the Projects table

The Id column is set up as the primary key, and it’s of type uniqueidentifier, which is a Guid
type in .NET.

Lhotka_1019-1C03.fm Page 129 Monday, October 27, 2008 9:36 AM

130 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

There are many ways to create primary key columns in tables, including using auto-incrementing
numeric values or user-assigned values. However, the use of a uniqueidentifier is particularly powerful
when working with object-oriented designs. Other techniques don’t assign the identifier until the
data is added to the database, or they allow the user to provide the value, which means that you can’t
tell if it collides with an existing key value until the data is added to the database. With a uniqueidentifier,
however, the business developer can write code to assign the primary key value to an object as the
object is created. There’s no need to wait until the object is inserted into the database to get or confirm
the value. If the value isn’t assigned ahead of time, the database will supply the value.

Notice that the two datetime fields allow null values. The null value is used here to indicate an
empty value for a date. The Description column is also allowed to be null. This isn’t because of any
business requirement, but rather because it is quite common for database columns to allow null
values in cases in which they’re meaningless. Chapter 18 will illustrate how to easily ignore any null
values in this column.

The Description column is of type varchar(MAX) so that it can hold a blob of text data. This field
allows the user to enter a lengthy description of the project, if so desired.

Resources

The Resources table will hold the data for the various resources that can be assigned to a project. The
columns for this table are shown in Figure 3-22.

Once again, the Id column is the primary key—it’s an int that is configured as an identity column
using the Column Properties window. This table has now been given an identity key; the code in
Chapter 18 will demonstrate how to support this concept within your business objects.

As with the Description field in the Projects table, the LastName and FirstName columns allow
null values even though they have no business meaning. Again, this is merely to illustrate how to
build business objects to deal with real-world database designs and their intrinsic flaws.

Figure 3-22. Making the Id column an identity column

Assignments

Finally, there’s the Assignments table. A many-to-many relationship exists between projects and
resources—a project can have a number of resources assigned to it, and a resource can be assigned
to a number of projects.

The way you can represent this relationally is to create a link table that contains the primary
keys of both tables. In this case, it will also include information about the relationship, including the
date of the assignment and the role that the resource plays in the project, as shown in Figure 3-23.

The first two columns here are the primary keys from the Projects and Resources tables; when
combined, they make up the primary key in the link table. Though the Assigned column is of datetime
type, null values are not allowed. This is because this value can’t be empty—a valid date is always
required. The Role column is also a foreign key, linking back to the Roles table. The data in this table
will be used to populate the ProjectResource and ResourceAssignment objects discussed earlier in
the chapter.

Lhotka_1019-1C03.fm Page 130 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 131

Figure 3-23. Design for the Assignments table

This really drives home the fact that a relational model isn’t the same as an object-oriented
model. The many-to-many relational design doesn’t match up to the object model that represents
much of the same data. The objects are designed around normalization of behavior, while the data
model is designed around normalization of data.

Database Diagrams

Server Explorer in Visual Studio supports the creation of database diagrams, which are stored in the
database. These diagrams not only illustrate the relationships between tables, but also tell SQL Server
how to enforce and work with those relationships.

Under the PTracker.mdf node in Server Explorer, there’s a node for Database Diagrams. Right-
click this entry and choose New Diagram. Visual Studio will prompt you for the tables to be included
in the diagram. Highlight all of them, and click Add and Close.

The result is a designer window in which the tables are shown as a diagram. You can drag and
drop columns from tables to other tables in order to indicate relationships. For example, drag and
drop the Id field from Projects to the ProjectID field in the Assignments table. This will bring up a
Tables and Columns dialog box, in which you can specify the nature of this relationship, as shown in
Figure 3-24. Click OK to create the relationship.

Figure 3-24. Creating a relationship between Assignments and Projects

Lhotka_1019-1C03.fm Page 131 Monday, October 27, 2008 9:36 AM

132 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Do the same to link the Resources table to Assignments. You can also link the Roles table’s Id
column to the Role column in Assignments, thereby allowing the database to ensure that only valid
roles can be added to the table.

The resulting diagram should appear in a way that’s similar to Figure 3-25.
Save the diagram to the database, naming it PTrackerRelationships. VS .NET will then ask whether

to update the tables. Remember that these relationships are reflected as formal constraints within
the database itself, so this diagram directly impacts the database design.

Figure 3-25. Database diagram for the PTracker database

Stored Procedures

Whenever possible, database access should be performed through stored procedures. Stored proce-
dures offer powerful security control over the database and—perhaps most importantly—provide
an abstraction layer between the physical structure of the database and the logical way in which it is
used. The business objects created in Chapters 17 and 18 will make use of stored procedures for their
database interaction.

I think this is true, even though you may use LINQ to SQL or other technologies to access the
database. At the same time, technologies like LINQ to SQL offer flexible query capabilities that are
nice to use. So I typically compromise, using LINQ to SQL to query for data, and using stored proce-
dures (called through LINQ to SQL) for insert, update, and delete operations.

You can use Server Explorer to add the stored procedures to the database by right-clicking the
Stored Procedures node under the database and choosing Add New Stored Procedure. This brings
up a designer window in which you can write the stored procedure code. When you close the designer,
the stored procedure will be added to the database.

Let’s look at the stored procedures we’ll need, starting with addProject.

Lhotka_1019-1C03.fm Page 132 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 133

addProject

The addProject procedure is called to add a record to the Projects table, as follows:

CREATE PROCEDURE addProject
 (
 @id uniqueidentifier,
 @name varchar(50),
 @started datetime,
 @ended datetime,
 @description varchar(MAX),
 @newLastChanged timestamp output
)
AS
 INSERT INTO Projects
 (Id,Name,Started,Ended,Description)
 VALUES
 (@id,@name,@started,@ended,@description)

 SELECT @newLastChanged = LastChanged
 FROM Projects WHERE Id=@id
 RETURN

Note that this only adds the record to the Projects table; a separate stored procedure adds
records to the Assignments table.

This stored procedure not only includes an INSERT statement, but also a SELECT statement that
loads an output parameter value. This is required to support concurrency. Recall that all the tables
in the database include a timestamp column, which is incremented automatically each time a row is
inserted or updated. As you’ll see in Chapter 18, the business object must keep track of this value.
Since the value changes any time the row changes, the value is returned as the result of any INSERT
or UPDATE operation.

updateProject

Not only are records added to the Projects table, but the application must allow them to be changed.
The updateProject procedure provides this capability, as shown here:

CREATE PROCEDURE updateProject
 (
 @id uniqueidentifier,
 @name varchar(50),
 @started datetime,
 @ended datetime,
 @description varchar(MAX),
 @lastChanged timestamp,
 @newLastChanged timestamp output
)
AS
 UPDATE Projects
 SET
 Name=@name,
 Started=@started,
 Ended=@ended,
 Description=@description

Lhotka_1019-1C03.fm Page 133 Monday, October 27, 2008 9:36 AM

134 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

 WHERE Id=@id
 AND LastChanged=@lastChanged
 IF @@ROWCOUNT = 0
 BEGIN
 RAISERROR('Row has been edited by another user', 16, 1)
 RETURN
 END

 SELECT @newLastChanged = LastChanged
 FROM Projects WHERE Id=@id
 RETURN

Again, this procedure only updates the record in the Projects table; the related records in the
Assignments table are updated separately.

Notice the @lastChanged parameter required by the procedure. This represents the last known
timestamp value for the row. In Chapter 18, you’ll see how this value is maintained by the business
object.

When the object attempts to update the row, it provides the last known value for the LastChanged
column. If that value hasn’t changed in the database, then no other user has updated the row since the
object read its data. But if the value has changed in the database, then some other user did change the
data in the row since the object read the data. First-write-wins optimistic concurrency specifies that
this second update can’t be allowed, because it could overwrite changes made by that other user.

The UPDATE statement itself uses this parameter in the WHERE clause to ensure that the row is only
updated if the value matches. The procedure then checks to see if the row was actually updated. If
no rows were updated, it raises an error, which shows up as a database exception in the data access
code of the business object.

On the other hand, if the update goes through and the row is changed, then a SELECT statement
is executed to return the new value of the LastChanged column as an output parameter, so that the
object can maintain the new value to allow possible future updates.

deleteProject

The deleteProject procedure deletes the appropriate record from the Projects table, and it removes
any related records from the Assignments table. When creating the relationships between tables in
the database diagram, the default is to not automatically cascade deletions to child tables.

CREATE PROCEDURE deleteProject
 (
 @id uniqueidentifier
)
AS
 DELETE Assignments
 WHERE ProjectId=@id

 DELETE Projects
 WHERE Id=@id
 RETURN

If you set up your table relationships to cascade deletes automatically, then obviously the preceding
stored procedure would only delete the data in the Projects table.

Though this procedure updates multiple tables, it does not include transactional code. Although
you could manage the transaction at this level, you can gain flexibility by allowing the business object
to manage the transaction.

Lhotka_1019-1C03.fm Page 134 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 135

Using the CSLA .NET framework, you have the option to run the data access code within a
System.Transactions transactional context, to run it within an Enterprise Services distributed trans-
action, or to manage the transaction manually. When using either System.Transactions or Enterprise
Services, transactional statements in the stored procedures will cause exceptions to occur. If you opt
to handle the transactions manually, you can choose to put the transactional statements here in the
stored procedure, or use an ADO.NET Transaction object within the business object’s data access
code.

addAssignment

When adding or editing a project or a resource, the user may also add or change the associated data
in the Assignments table. The addAssignment procedure adds a new record as follows:

CREATE PROCEDURE addAssignment
 (
 @projectId uniqueidentifier,
 @resourceId int,
 @assigned datetime,
 @role int,
 @newLastChanged timestamp output
)
AS
 INSERT INTO Assignments
 (ProjectId,ResourceId,Assigned,Role)
 VALUES
 (@projectId,@resourceId,@assigned,@role)

 SELECT @newLastChanged = LastChanged
 FROM Assignments
 WHERE ProjectId=@projectId AND ResourceId=@resourceId
 RETURN

This procedure may be called during the adding or editing of either a Project or a Resource
object in the application.

Like addProject, this procedure ends with a SELECT statement that returns the new value of the
LastChanged column for the row as an output parameter. The business object must maintain this
value to allow for future updates of the row using the updateAssignment stored procedure.

updateAssignment

Likewise, there’s a requirement to update records in the Assignments table:

CREATE PROCEDURE updateAssignment
 (
 @projectId uniqueidentifier,
 @resourceId int,
 @assigned datetime,
 @role int,
 @lastChanged timestamp,
 @newLastChanged timestamp output
)
AS
 UPDATE Assignments

Lhotka_1019-1C03.fm Page 135 Monday, October 27, 2008 9:36 AM

136 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

 SET
 Assigned=@assigned,
 Role=@role
 WHERE ProjectId=@projectId AND ResourceId=@resourceId
 AND LastChanged=@lastChanged
 IF @@ROWCOUNT = 0
 RAISERROR('Row has been edited by another user', 16, 1)

 SELECT @newLastChanged = LastChanged
 FROM Assignments
 WHERE ProjectId=@projectId AND ResourceId=@resourceId
 RETURN

As with addAssignment, this may be called when updating data from either a Project or a
Resource object.

Notice the @lastChanged parameter. It is used in the same way the parameter was used in
updateProject: to implement first-write-wins optimistic concurrency. If the UPDATE statement succeeds,
the new value of the LastChanged column is returned as a result through an output parameter so the
business object can maintain the new value.

deleteAssignment

As part of the process of updating a project or resource, it is possible that a specific record will be
deleted from the Assignments table. An assignment is a child entity beneath a project or resource,
and a user can remove a resource from a project, or a project from a resource. In either case, that
specific assignment record must be removed from the database.

CREATE PROCEDURE deleteAssignment
 (
 @projectId uniqueidentifier,
 @resourceId int
)
AS
 DELETE Ass ignments
 WHERE ProjectId=@projectId AND ResourceId=@resourceId
 RETURN

This completes the operations that can be performed on the Assignments data. Notice that there’s
no getAssignments procedure. This is because assignments are always children of a project and a
resource. The business objects never retrieve just a list of assignments, except as part of retrieving a
project or resource. The getProject procedure, for instance, also retrieves a list of assignments asso-
ciated with the project.

addResource

When a new Resource object is created and saved, its data needs to be inserted into the Resources
table.

CREATE PROCEDURE addResource
 (
 @lastName varchar(50),
 @firstName varchar(50),
 @newId int output,
 @newLastChanged timestamp output
)

Lhotka_1019-1C03.fm Page 136 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 137

AS
 INSERT INTO Resources
 (LastName,FirstName)
 VALUES
 (@lastName,@firstName)

 SELECT @newId = Id, @newLastChanged = LastChanged
 FROM Resources WHERE Id=SCOPE_IDENTITY()
 RETURN

Remember that the Id column in the Resource table is an identity column. This means its value
is automatically assigned by the database when a new row is inserted. The built-in SCOPE_IDENTITY()
function is used to retrieve the generated key value, and that value is returned in an output param-
eter as a result of the stored procedure. In Chapter 18, you’ll see how this value is retrieved by the
Resource object so that the object becomes aware of the new value. Also, as in addProject, the new
value for the LastChanged column is returned to the object.

The associated addAssignment procedure, which can be used to add related records to the
Assignments table, was created earlier.

updateResource

Likewise, there’s a need to update data in the Resources table, as shown here:

CREATE PROCEDURE updateResource
 (
 @id int,
 @lastName varchar(50),
 @firstName varchar(50),
 @lastChanged timestamp,
 @newLastChanged timestamp output
)
AS
 UPDATE Resources
 SET
 LastName=@lastName,
 FirstName=@firstName
 WHERE Id=@id
 AND LastChanged=@lastChanged
 IF @@ROWCOUNT = 0
 RAISERROR('Row has been edited by another user', 16, 1)

 SELECT @newLastChanged = LastChanged
 FROM Resources WHERE Id=@id
 RETURN

This procedure will be called when an existing Resource object is edited and saved.

deleteResource

A Resource object can be removed from the system. This means removing not only the record from
the Resources table, but also the associated records from the Assignments table, as shown here:

Lhotka_1019-1C03.fm Page 137 Monday, October 27, 2008 9:36 AM

138 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

CREATE PROCEDURE deleteResource
 (
 @id int
)
AS
 DELETE Assignments
 WHERE ResourceId=@id

 DELETE Resources
 WHERE Id=@id
 RETURN

This procedure works the same as deleteProject.

getRoles

The getRoles procedure will return the list of roles to populate the RoleList and Roles objects as follows:

CREATE PROCEDURE [dbo].[getRoles]
AS
 SELECT Id,Name,LastChanged
 FROM Roles
 RETURN

All the role data is returned as a result of this procedure. Though RoleList and Roles use the data
differently, they both use the same set of values.

addRole

The addRole procedure adds a new entry to the Roles table.

CREATE PROCEDURE [dbo].[addRole]
 (
 @id int,
 @name varchar(50),
 @newLastChanged timestamp output
)
AS
 INSERT INTO Roles
 (Id,Name)
 VALUES
 (@id,@name)

 SELECT @newLastChanged = LastChanged
 FROM Roles WHERE Id=@id
 RETURN

The Role object calls this stored procedure when it needs to insert its data into the database. As
with the other add procedures, this one returns the new value of the LastChanged column for use by
the business object.

Lhotka_1019-1C03.fm Page 138 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 139

updateRole

The updateRole procedure updates an existing entry in the Roles table.

CREATE PROCEDURE [dbo].[updateRole]
 (
 @id int,
 @name varchar(50),
 @lastChanged timestamp,
 @newLastChanged timestamp output
)
AS
 UPDATE Roles
 SET
 Name=@name
 WHERE Id=@id
 AND LastChanged=@lastChanged
 IF @@ROWCOUNT = 0
 RAISERROR('Row has been edited by another user', 16, 1)

 SELECT @newLastChanged = LastChanged
 FROM Roles WHERE Id=@id
 RETURN

The Role object calls this stored procedure when it needs to update the data in the database.

deleteRole

The deleteRole procedure removes an entry from the Roles table.

CREATE PROCEDURE [dbo].[deleteRole]
 (
 @id int
)
AS
 DELETE Roles
 WHERE Id=@id
 RETURN

The Role object calls this stored procedure when it needs to remove a row of data from the database.
At this point, stored procedures exist to do every bit of data access. In Chapter 18, the business

objects will implement data access code using LINQ to SQL that makes use of these stored procedures.

Security Database
With the PTracker database complete, let’s wrap up the chapter by creating the tables and stored
procedures for the Security database. The PTIdentity object will use this database to perform custom
authentication of a user’s credentials. Assuming the user is valid, the user’s roles will be loaded into
the business object so they can be used for authorization as the application is used.

The PTPrincipal and PTIdentity objects will be implemented in Chapter 17. In most cases, you’ll
be creating similar custom security objects—but designed to use your preexisting security database
tables. The database created in this chapter and the objects created in Chapters 17 and 18 exist primarily
to demonstrate the basic process required for creating your own objects.

Lhotka_1019-1C03.fm Page 139 Monday, October 27, 2008 9:36 AM

140 CH AP T E R 3 ■ O B J E CT - O R IE N TE D A P PL I CA T I O N D E S I G N

Figure 3-26 shows the two tables in the database, along with their relationship.

Figure 3-26. Database diagram for the Security database

In the Users table, Username and Password are both varchar(20) columns, as is the Role column
in the Roles table. Only the Password column allows null values. All other values are required. Of
course, a password should be required as well, but for this simple example, it is left as optional.

Finally, there’s a Login stored procedure.

CREATE PROCEDURE Login
 (
 @user varchar(20),
 @pw varchar(20)
)
AS
 SELECT Username
 FROM Users
 WHERE Username=@user AND Password=@pw;

 SELECT R.Role
 FROM Users AS U INNER JOIN Roles AS R ON
 R.UserName = U.UserName
 WHERE U.Username = @user and U.Password = @pw
 RETURN

PTIdentity calls this procedure to authenticate the user and retrieve the user’s list of roles. As
you’ll see in Chapter 17, PTIdentity determines whether the user’s credentials are valid or not by
finding out whether any data is returned from this stored procedure. If no data is returned, then the
user’s credentials are assumed to be invalid and the user is not authenticated.

On the other hand, if the stored procedure does return data, then PTIdentity stores that data,
especially the list of roles to which the user belongs. This list of security roles (not to be confused with
the project roles from the PTracker database) is then used for authorization throughout the applica-
tion. The CanReadProperty() and CanWriteProperty() methods on each business object rely on this data.

Conclusion
This chapter has started the process of building a sample application that will make use of the CSLA
.NET framework. It’s a simple project-tracking application that maintains a list of projects and a list
of resources, and allows the resources to be assigned to the projects.

The application’s design used an object-oriented analysis technique that involved creating use
cases that described the various ways in which the users need to interact with the system. Based on
the use cases, and by using elements of CRC-style design, a list of potential business objects was
created and refined.

Lhotka_1019-1C03.fm Page 140 Monday, October 27, 2008 9:36 AM

C HA P TE R 3 ■ O B J E C T- O R IE N T E D AP P L IC AT IO N D E S IG N 141

That object list was then used to create a preliminary class diagram that showed the classes,
their key data fields, and their relationships. Based on the diagram, our understanding of the busi-
ness domain, and the use cases, we were able to refine the design to arrive at a final class diagram
that describes the business classes that will make up the application.

The next step was to determine the appropriate CSLA .NET base classes from which each busi-
ness object should inherit. The editable business objects inherit from BusinessBase, and the collections
of editable child objects inherit from BusinessListBase. The lists of read-only data inherit from
ReadOnlyListBase, each of which contain simple child objects that don’t inherit from a CSLA .NET
base class at all. The list of simple name/value role data inherits from NameValueListBase.

Finally, a simple relational database was created to store the data for the application. In most
applications, the database already exists, but in this case, we had the luxury of creating a database
from scratch. Even so, it’s interesting to note the differences between the object model and the rela-
tional model, thus highlighting the fact that a good object-oriented model and a good relational
model are almost never the same.

Chapters 4 and 5 will discuss the basic structure of each type of business object directly
supported by CSLA .NET. These chapters will also walk through a code template for each type. Later
in the book, after walking through the implementation of CSLA .NET itself, Chapters 17 and 18 will
implement the business objects designed in this chapter. Chapter 19 will show how to build a WPF
UI based on those objects. In Chapter 20, a comparable Web Forms UI will be built, and Chapter 21
will walk through the construction of a WCF service interface that reuses the exact same objects.

Lhotka_1019-1C03.fm Page 141 Monday, October 27, 2008 9:36 AM

Lhotka_1019-1C03.fm Page 142 Monday, October 27, 2008 9:36 AM

143

■ ■ ■

C H A P T E R 4

CSLA .NET Object Stereotypes

Chapters 6 through 16 cover the implementation of the CSLA .NET framework as described in
Chapter 2. I think it is useful to get a good idea of the types of business objects the framework is designed
to support before looking at the implementation itself. In this chapter and in Chapter 5, I discuss the
primary types of objects supported by the framework and walk through the basic code structure of
each object type.

In object-oriented design terms, objects that share a broad set of behavioral characteristics and
play a similar role in the application architecture are said to belong to a stereotype. A stereotype is a
way of categorizing or describing a broad set of similar objects. This chapter covers in detail the object
stereotypes directly supported by CSLA .NET. You may extend or enhance CSLA .NET to support
other stereotypes as required by your application but the stereotypes supported out of the box do
cover the needs of most business applications.

This chapter covers the life cycle of each type of business object in general terms. Then in
Chapter 5, I get into code, creating a basic template showing the structure of each stereotype:

• Editable root

• Editable child

• Editable, “switchable” (i.e., root or child) object

• Editable root collection

• Editable child collection

• Read-only root

• Read-only root collection

• Read-only child

• Read-only child collection

• Command object

• Name/value list

• Dynamic editable list

• Dynamic editable root

• Criteria

Though the templates are not complete business object implementations, each one illustrates
the basic structure you need to follow when creating that type of business object. You can use this
information to create class templates or code snippets for use in Visual Studio to make your devel-
opment experience more productive.

Lhotka_1019-1C04.fm Page 143 Monday, October 27, 2008 9:38 AM

144 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Basic Terminology and Object Graph Structure
Most frameworks and application models have their own jargon and terminology, and CSLA .NET is
no exception. To discuss the stereotypes supported by CSLA .NET, I think it is important to first define
some common terms. These are listed in Table 4-1.

When working with CSLA .NET, there is always one object that is identified as the root object.
This object may be a parent, in which case it contains other child objects, or it may simply be a single
object, as shown in Figure 4-1.

Figure 4-1. Simplest object graph

Figure 4-2 illustrates a more complex object graph where the root object is also a parent containing
two other objects.

Notice that the child list is also a parent containing other child objects. The important thing to
remember is that an object graph can only have exactly one root object. That root object may contain
many child or child list objects, and some of those child objects may also be parent objects. In other
words, the CSLA .NET stereotypes have rich support for the concept of containment, where objects
contain other objects.

Table 4-1. CSLA .NET Common Terms

Term Definition

Object graph One or more objects that reference each other

Root object An object that can be directly retrieved from the database; each object
graph has exactly one root object

Child object An object that is only retrieved from the database as part of another
object (its parent)

Parent object An object that contains child objects (a parent may also be a root)

Editable object An object that implements public read-write properties, or methods that
allow manipulation of data; editable objects can be retrieved and saved
to the database; these may be root, parent, or child objects

Read-only object An object that implements only read-only properties and does not expose
methods that allow manipulation of data; read-only objects can be retrieved
from the database but not saved; these may be root, parent, or child objects

Collection or list An object that contains other objects; may be editable or read-only; may
be a root or child, but is always a parent

Criteria object An object that contains criteria or key information necessary to identify
and create, retrieve, or delete another object

Lhotka_1019-1C04.fm Page 144 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 145

Figure 4-2. Object graph illustrating containment

A common example of containment is a sales order, which contains a list of line item objects.
Typically the SalesOrder object is a root and a parent; the LineItemList object is a child and a parent;
and each LineItem object is a child.

It is also possible for a list to be a root, as shown in Figure 4-3.

Figure 4-3. Object graph with a root list object

Another important object-oriented concept is the using relationship, where one object uses or
interacts with another object but does not contain that object. This is a fundamentally different type
of relationship, but it is quite common to accidentally confuse a using relationship with containment.

For example, the previously mentioned SalesOrder object might use a CustomerInfo object, but
it makes no sense to think that a sales order contains or owns a customer, even though it may require
information from a customer information object. Figure 4-4 illustrates how a using relationship can
exist between two root objects.

Lhotka_1019-1C04.fm Page 145 Monday, October 27, 2008 9:38 AM

146 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Figure 4-4. A using relationship between two objects

There are many variations on the using relationship, including a root using a child, a child using
a root, or a child using another child. But the key to understanding the using relationship is to remember
that neither object owns or contains or controls the other object. Editing or saving one object does
not edit or save the other object.

This is fundamentally different from containment, where each parent owns its children and
controls their lifetimes, and ultimately the root object owns all the objects in the object graph and
their lifetimes are determined by the root object.

By combining these various concepts you can see how the stereotypes fit together. Table 4-2
lists the stereotypes and provides a definition for each. Additionally, the table lists the CSLA .NET
base class you will inherit from to implement each stereotype.

Table 4-2. CSLA .NET Object Stereotypes

Stereotype Acronym Base Class Definition

Editable root object ER BusinessBase A root object with read-
write properties

Editable child object EC BusinessBase A child object with read-
write properties

Switchable object None BusinessBase A specialized editable
object that can act as a root
or child depending on how
it is created

Editable root list ERL BusinessListBase A root list containing
editable child objects

Editable child list ECL BusinessListBase A child list containing
editable child objects

Read-only root object ROR ReadOnlyBase A root object with read-only
properties

Read-only child object ROC ReadOnlyBase A child object with read-
only properties

Read-only root list RORL ReadOnlyListBase A root list containing read-
only child objects

Read-only child list ROCL ReadOnlyListBase A child list containing read-
only child objects

Name/value list NVL NameValueListBase A specialized read-only root
list containing name/value
read-only child objects

Command object None CommandBase A root object capable of
executing code on the
client, then the application
server, then the client

Lhotka_1019-1C04.fm Page 146 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 147

By combining objects based on these stereotypes in various ways, it is possible to meet the needs of
most business application use cases by using the object-oriented design techniques discussed in
Chapter 3.

Business Object Life Cycle
Before getting into the code structure for the business objects, it’s worth spending some time to
understand the life cycle of those objects. By life cycle, I mean the sequence of methods and events
that occur as the object is created and used. Although it isn’t always possible to predict the business
properties and methods that might exist on an object, there’s a set of steps that occur during the life-
time of every business object.

Typically, an object is created by UI code, whether that’s WPF, Windows Forms, Web Forms, a
WCF service, or a Windows Workflow Foundation activity. Sometimes an object may be created by
another object, which will happen when there’s a using relationship between objects, for instance.

Object Creation
Whether editable or read-only, all root objects go through the same basic creation process. (Root
objects are those that can be directly retrieved from the database, while child objects are retrieved
within the context of a root object, though never directly.)

It’s up to the root object to invoke methods on its child objects and child collections so that they
can load their own data from the database. Usually, the root object actually calls the database and
gets all the data back and then provides that data to the child objects and collections so that they can
populate themselves. From a purely object-oriented perspective, it might be ideal to have each object
encapsulate the logic to get its own data from the database, but in reality it’s not practical to have
each object independently contact the database to retrieve one row of data.

Dynamic editable root None BusinessBase A specialized editable root
object that is retrieved as
a “child” of a dynamic
editable list but is saved
individually

Dynamic editable list ERLB EditableRootListBase A specialized root list
containing editable
dynamic editable root
objects, which are retrieved
as a group but are saved
individually

Criteria None CriteriaBase An object that contains
criteria or key information
necessary to identify and
create, retrieve, or delete
another object

Table 4-2. CSLA .NET Object Stereotypes

Stereotype Acronym Base Class Definition

Lhotka_1019-1C04.fm Page 147 Monday, October 27, 2008 9:38 AM

148 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Root Object Creation

Root objects are created by calling a factory method, which is a method that’s called in order to create an
object. Factory methods will typically be static methods on the class. The factory method uses the
CSLA .NET data portal to load the object with default values. The data portal is a CSLA .NET tech-
nology that abstracts communication with the application server (if there is one), enabling the mobile
object concept described in Chapter 1.

I am often asked why you would need to communicate with the database to create a new object.
Why not just use the constructor and be done with it? The reason is that business applications often
need to load new objects with default values, and those values are often in database tables. While
some simple objects can be directly created, it is quite common for an object to require data from the
database as it is created.

The following steps outline the process of creating a new root object:

1. The factory method is called.

2. The factory method calls DataPortal.Create() to get the business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 15; the result is that the data portal creates a new instance of the business object.

4. The data portal does one of the following:

a. If no ObjectFactory attribute is specified, the DataPortal_Create() method is called and
this is where the business object implements data access code to load its default values.

b. If an ObjectFactory is specified, the data portal will create an instance of a factory object
and will invoke a specified create method on that factory object. This method is respon-
sible for creating an instance of the business object and implementing data access code
to load its default values.

5. The business object is returned.

With no ObjectFactory attribute, from the business object’s perspective, two methods are called, as
follows:

• The default constructor

• DataPortal_Create()

This is illustrated in Figure 4-5.
If the object doesn’t need to retrieve default values from the database, the RunLocal attribute can

be used to short-circuit the data portal so the object initialization occurs in the same location as the
calling code.

If an object doesn’t require any initialization, the DataPortal_Create() method doesn’t need to
be overridden. The CSLA .NET base classes provide a default implementation decorated with RunLocal.

With an ObjectFactory attribute, the business developer will have defined two classes: the object
factory class and the business class. From the object factory’s perspective, two methods are called,
as follows:

• The default constructor

• The create method specified by the ObjectFactory attribute

As illustrated in Figure 4-6, it is then entirely up to the object factory to create and initialize the
business object.

Lhotka_1019-1C04.fm Page 148 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 149

Figure 4-5. Creating a root object

Figure 4-6. Creating a root object with an object factory

The RunLocal attribute can be applied to methods of an object factory and will have the same
effect as it would on DataPortal_Create(), assuming the assembly containing the object factory
class is deployed to the client workstation.

To the UI code, of course, there’s no difference; that code just calls the factory method and gets
an object back:

var root = Root.NewRoot();

Lhotka_1019-1C04.fm Page 149 Monday, October 27, 2008 9:38 AM

150 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

For the business object, most of the work occurs in the DataPortal_Create() method, where the
object’s values are initialized.

The use of a criteria object is optional; the DataPortal.Create() method is overloaded to accept
no parameter or criteria object parameter.

Child Object Creation

Child objects are usually created when the UI code calls an Add() method on the collection object
that contains the child object. Ideally, the child class and the collection class will be in the same
assembly, so the static factory methods on a child object can be scoped as internal, rather than
public. This way, the UI can’t directly create the object, but the collection object can create the child
when the UI calls the collection’s Add() method.

The CSLA .NET framework doesn’t actually dictate this approach. Rather, it’s a design choice on
my part because I feel that it makes the use of the business objects more intuitive from the UI developer’s
perspective. It’s quite possible to allow the UI code to create child objects directly by making the child
factory methods public; the collection’s Add() method would then accept a prebuilt child object as
a parameter. I think that’s less intuitive, but it’s perfectly valid, and you can implement your objects
that way if you choose.

■Note Child objects can optionally be created through data binding, in which case the addition is handled by
overriding the AddNewCore() method in the collection class.

Another way child objects are sometimes created is through lazy loading. In that case, the parent
object creates the child object on demand, typically in the property get block for the child object. For
example, the following code may be in the parent object:

 public ChildType Child
 {
 get
 {
 if (!FieldManager.FieldExists(ChildProperty))
 LoadProperty(ChildProperty, ChildType.NewChild());
 return GetProperty(ChildProperty);
 }
 }

Notice how the NewChild() factory method is invoked to create an instance of the child object,
but only if the UI code ever retrieves the value of the Child property.

As with the root objects, you may or may not need to load default values from the database when
creating a child object.

■Tip If you don’t need to retrieve default values from the database, you could have the collection object create
the child object directly, using the new keyword. For consistency, however, it’s better to stick with the factory method
approach so that all objects are created the same way.

The steps to create a child object that doesn’t need to load itself with default values from the
database are as follows:

Lhotka_1019-1C04.fm Page 150 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 151

1. The factory method (internal scope) is called.

2. The factory method calls DataPortal.CreateChild(), which creates an instance of the child
object and marks it as a child.

3. The child object does any initialization in the Child_Create() method.

4. The child object is returned.

5. From the child object’s perspective, two methods are called, as follows:

• Default constructor

• Child_Create()

This is illustrated in Figure 4-7.

Figure 4-7. Child object creation process with no data access

Notice the use of the CreateChild() method on the data portal. This method tells the data portal
to create an instance of the object, as a child, without making a call to a remote application server.
This means the child object is created in the same location as the calling code, and the Child_Create()
method runs in that location as well.

Once the child object is created and added to the parent, the UI code can access the child via the
parent’s interface. Typically, the parent provides an indexer that allows the UI to access child objects
directly.

If the object needs to load itself with default values from the database, the process is a little
different because the Create() method of the data portal must be invoked so the call is transferred
to the application server (if there is one):

1. The factory method (internal scope) is called.

2. The factory method calls DataPortal.Create() to get the child business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 15; the result is that the data portal creates a new instance of the business object.

Lhotka_1019-1C04.fm Page 151 Monday, October 27, 2008 9:38 AM

152 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

4. The DataPortal_Create() method is called and this is where the child object implements
data access code to load its default values.

5. The child object must call MarkAsChild() in the DataPortal_Create() implementation to
mark the object as a child.

6. The child object is returned. Again, the factory method is called by the collection object
rather than the UI, but the rest of the process is the same as with a root object.

7. From the child object’s perspective, two methods are called, as follows:

• The default constructor

• DataPortal_Create()

This is illustrated in Figure 4-8.

Figure 4-8. Creating a child object using data access

Note that in either of these cases, the UI code is the same: it calls the Add() method on the parent
object and then interacts with the parent’s interface to get access to the newly added child object.
The UI is entirely unaware of how the child object is created (and possibly loaded with default values).

Also note that the parent object is unaware of the details. All it does is call the factory method on
the child class and receive a new child object in return. All the details about how the child object got
loaded with default values are encapsulated within the child class.

Finally, as with creating a root object, the use of a criteria object is optional.

Object Retrieval
Retrieving an existing object from the database is similar to the process of creating an object that
requires default values from the database. Only a root object can be retrieved from the database
directly by code in the user interface. Child objects are retrieved along with their parent root object,
not independently.

Lhotka_1019-1C04.fm Page 152 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 153

Root Object Retrieval

To retrieve a root object, the UI code simply calls the static factory method on the class, providing
the parameters that identify the object to be retrieved. The factory method calls DataPortal.Fetch(),
which in turn creates the object and calls DataPortal_Fetch(), as follows:

1. The factory method is called.

2. The factory method calls DataPortal.Fetch() to get the business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 15; the result is that the data portal creates a new instance of the business object.

4. The business object can do basic initialization in the constructor method.

5. The data portal does one of the following:

a. If no ObjectFactory attribute is specified, the DataPortal_Fetch() method is called; this
is where the business object implements data access code to retrieve the object’s data
from the database.

b. If an ObjectFactory is specified, the data portal will create an instance of a factory object
and will invoke a specified fetch method on that factory object. This method is responsible
for creating an instance of the business object and implementing data access code to
load it with data from the database.

6. The business object is returned.

If there is no ObjectFactory attribute on the business class, from the business object’s perspective,
two methods are called, as follows:

• The default constructor

• DataPortal_Fetch()

Figure 4-9 illustrates the process.

Figure 4-9. Retrieving an existing root object

Lhotka_1019-1C04.fm Page 153 Monday, October 27, 2008 9:38 AM

154 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

With an ObjectFactory attribute, the business developer will have defined two classes: the object
factory class and the business class. From the object factory’s perspective, two methods are called,
as follows:

• The default constructor

• The fetch method specified by the ObjectFactory attribute

As illustrated in Figure 4-10, it is then entirely up to the object factory to create an instance of
the business class and to load it with data from the database.

Figure 4-10. Creating a root object with an object factory

The RunLocal attribute can be applied to methods of an object factory and will have the same
effect as it would on DataPortal_Fetch(), assuming the assembly containing the object factory class
is deployed to the client workstation.

It’s important to note that the root object’s DataPortal_Fetch() or factory object’s fetch method
is responsible not only for loading the business object’s data but also for starting the process of loading
the data for its child objects.

The key thing to remember is that the data for the entire object, including its child objects, is
retrieved when the root object is retrieved. This avoids having to go back across the network to retrieve
each child object’s data individually. Though the root object gets the data, it’s up to each child object
to populate itself based on that data.

The exception to this is if you choose to use lazy loading to load a child object or collection later
in the root object’s lifetime. In that case you would not load the child in the root object’s DataPortal_
Fetch() or factory object’s fetch method. Instead you’d leave the child field with a null value at this point.

Let’s dive one level deeper and discuss how child objects load their data.

Lhotka_1019-1C04.fm Page 154 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 155

Child Object Retrieval

The retrieval of a child object can be done in two different ways. You can use the data portal’s support for
loading child objects, or you can have your parent objects call methods on the child objects to create
and load those objects however you choose.

The advantage to using the data portal to load the child objects is that it enables a simple and
consistent approach for loading data into any object. However, there is some overhead to using the
data portal in this manner, so it may not be appropriate in very performance-intensive scenarios.

The advantage to writing the code yourself is that you can design an optimized approach for
your particular objects, and that may be very fast. However, you lose the benefits of standardization
and simplicity provided by the data portal. Also, you must remember to have each child object manually
call MarkAsChild() as it is created, typically in its constructor.

■Note I believe it is important, when possible, to offer choices between performance and maintainability/simplicity.
This allows individual application designers to make choices based on the needs of their specific organization and
application. This type of choice, enabling you to trade off one cost/benefit for another, can be found in many places
throughout CSLA .NET.

Either way the steps are basically the same. As stated earlier, the root object’s DataPortal_
Fetch() method or factory fetch method is responsible for loading not only the root object’s data but
also the data for all child objects. It then calls either the data portal or methods on the child objects
themselves, passing the preloaded data as parameters so the child objects can load their fields with
data. The sequence of events goes like this:

1. The root object’s DataPortal_Fetch() creates the child collection using a factory method on
the collection class (scoped as internal) and it passes an object containing the child data as
a parameter.

2. The child collection’s constructor loops through the list of child data provided by the parent,
performing the following steps for each record:

a. The child collection creates a child object by calling a factory method on the child class,
passing the data for that particular child as a parameter.

b. The collection object adds the child object to its collection.

3. At the end of the list of child data, the child collection and all child objects are fully
populated.

Figure 4-11 is a sequence diagram that illustrates how this works using the data portal. Note that
this diagram occurs during the process of loading the root object’s data. This means that this diagram
is really an expansion of Figure 4-8, the sequence diagram for retrieving a root object.

Lhotka_1019-1C04.fm Page 155 Monday, October 27, 2008 9:38 AM

156 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Figure 4-11. Loading child objects with data

Updating Editable Objects
For read-only objects, retrieval is the only data-access concept required. Editable business objects
and editable collections (those deriving from BusinessBase and BusinessListBase) support update,
insert, and delete operations as well.

Adding and Editing Root Objects

After an object is created or retrieved, the user will work with the object, changing its values by inter-
acting with the user interface. At some point, the user may click the OK or Save button, thereby
triggering the process of updating the object into the database. The sequence of events at that point
is as follows:

1. The UI calls the Save() or BeginSave() method on the business object.

2. The Save() and BeginSave() methods call DataPortal.Update() to start the data portal
process.

3. The data portal does one of the following:

a. If no ObjectFactory attribute is specified, the data portal calls a DataPortal.Update(),
DataPortal_Insert(), or DataPortal_DeleteSelf() method on the business object as
appropriate; those methods contain the data access code needed to update, insert, or
delete the data in the database.

b. If an ObjectFactory attribute is specified, the data portal creates an instance of the specified
factory class and calls the specified update method on the factory object. That update
method is responsible for inserting, updating, or deleting the business object’s data and
returning an updated object as a result.

Lhotka_1019-1C04.fm Page 156 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 157

4. During the update process, the business object’s data may change.

5. The updated business object is returned as a result of the Save() method.

If no ObjectFactory attribute is specified on the business class, from the business object’s
perspective, two methods are called:

• Save()

• One of DataPortal_Update(), DataPortal_Insert(), or DataPortal_DeleteSelf()

Figure 4-12 illustrates this process.

Figure 4-12. Adding or updating a root object

If an ObjectFactory attribute is specified on the business class, the business developer is responsible
for creating two classes: the object factory class and the business class. Figure 4-13 illustrates that the
object factory class must implement an update method that manages all insert, update, and delete
operations for the business object type.

The Save() and BeginSave() methods are implemented in BusinessBase and BusinessListBase
and typically require no change or customization. The framework’s save methods include checks to
ensure that objects can only be saved if the object is valid, has been changed, and isn’t currently being
edited and the user is authorized to do the update. This helps to optimize data access by preventing
the update of an object that clearly can’t be updated.

■Tip If you don’t like this behavior, your business class can override the framework’s Save() and BeginSave()
methods and replace that logic with other logic.

Lhotka_1019-1C04.fm Page 157 Monday, October 27, 2008 9:38 AM

158 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Figure 4-13. Adding or updating a root object with an object factory class

When not using ObjectFactory, all the data access code that handles the saving of the object is
located in DataPortal_Update(), DataPortal_Insert(), and DataPortal_DeleteSelf(). All editable
objects automatically maintain IsNew and IsDeleted properties, and the data portal includes logic to
check these properties to route any save operation to the appropriate DataPortal_XYZ method.

■Note It’s important to understand that the updated root object returned to the UI is a new object. The UI must
update its references to use this new object in lieu of the original root object.

The DataPortal_XYZ methods are responsible not only for saving the object’s data but also for
starting the process of saving all the child object data.

This is true when the ObjectFactory attribute is used as well. In that case the factory object is
responsible for saving the business object’s data and all child object data, as shown in Figure 4-13.

Adding, Editing, and Deleting Child Objects

Child objects are inserted, updated, or deleted as part of the process of updating a root parent object.
As with retrieving child objects, you can use the data portal or your own custom methods to perform
this task. Using the data portal incurs a certain amount of overhead but is simple and standardized,
while implementing your own internal methods is often faster but harder to write and maintain.

When using the data portal, the parent object calls a CSLA .NET method to update its child objects,
and the data portal automatically invokes Child_Update(), Child_Insert(), or Child_DeleteSelf()
based on the child object’s IsNew and IsDeleted properties. If you have a child collection, it will auto-
matically cascade this call down to the objects contained in the collection. The basic process is the
same as when you update a root object.

Lhotka_1019-1C04.fm Page 158 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 159

It is important to realize that all child object references are managed using a CSLA .NET feature
called the field manager. The field manager helps manage child relationships and the state of child
objects. It also simplifies the process of updating child objects when using the data portal.

If you want to manually write and call your own methods, your child collections will typically
implement an internal method named Update(). This Update() method must loop through all the
objects in the collection and in the DeletedList collection to tell each child object to update itself.
Child objects within a collection typically implement internal methods, named Insert(), Update(),
and DeleteSelf(), that can be called by the collection during the update process. It is helpful for
related root, child, and child collection classes to be placed in the same project (assembly) so that
they can use internal scope in this manner.

Because the manual approach is much more complex and bug-prone, I recommend using the
data portal if at all possible. The sequence of events to add, edit, or delete a child object using the data
portal is as follows:

1. The root object’s DataPortal_XYZ method calls FieldManager.UpdateChildren(), which uses
the data portal to update all child objects; typically the parent object is passed as a parameter so
that child objects can use root object property values as needed (such as for foreign key values).

2. The data portal calls each child object’s Child_Update(), Child_Insert(), or Child_DeleleSelf()
method based on the child object’s state.

3. At this point, all the child object data has been inserted, updated, or deleted as required.

Figure 4-14 illustrates this process. Remember that this diagram is connected with the previous
diagram showing the update of a root object. The events depicted in this diagram occur as a result of
the root object’s DataPortal_Insert(), DataPortal_Update(), or DataPortal_DeleteSelf() being
called, as shown earlier in Figure 4-12.

Figure 4-14. Adding, updating, and deleting child objects in a collection

Typically the business object author will only need to write the Child_XYZ methods in editable
child objects. The field manager and data portal take care of most details, including a prebuilt imple-
mentation of Child_Update() for editable list objects.

The Child_Insert() and Child_Update() methods often accept parameters. The root object’s
primary key value is often a required piece of data when saving a child object (since it would be a
foreign key in the table) and so a reference to the root object is usually passed as a parameter to the

Lhotka_1019-1C04.fm Page 159 Monday, October 27, 2008 9:38 AM

160 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

FieldManager.UpdateChildren() method, and that value is automatically passed as a parameter to
each child object’s Child_Insert(), Child_Update(), or Child_DeleteSelf() method.

Passing a reference to the root object is better than passing any specific property value because
it helps to decouple the root object from the child object. Using a reference means that the root object
doesn’t know or care what actual data is required by the child object during the update process; that
behavior is encapsulated within the child class.

Deleting Root Objects

While child objects are deleted within the context of the root object that’s being updated, deletion of
root objects is a bit different. The data portal supports two ways of deleting objects: immediate and
deferred deletion.

Immediate Deletion

Immediate deletion occurs when the UI code calls a static delete method on the business class,
providing parameters that define the object to be deleted: typically, the same criteria that would be
used to retrieve the object.

Most applications will use immediate deletion for root objects. The sequence of events flows
like this:

1. The static delete method is called.

2. The static delete method calls DataPortal.Delete().

3. The data portal does one of the following:

a. If no ObjectFactory attribute is specified, the data portal creates an instance of the business
class and calls the DataPortal_Delete() method on the business object, which contains
the code needed to delete the object’s data (and any related child data, etc.).

b. If an ObjectFactory attribute is specified, the data portal creates an instance of the spec-
ified object factory class and calls the specified delete method on the factory object, which
contains the code needed to delete the business object’s data (and any related child
data, etc.).

When not using an ObjectFactory, from the business object’s perspective, two methods are
called, as follows:

• The default constructor

• DataPortal_Delete()

Figure 4-15 illustrates the process of immediate deletion.
Since this causes the deletion of a root object, the delete process must also remove any data for

child objects. This can be done through LINQ to SQL, ADO.NET data access code, a stored procedure, or
by the database (if cascading deletes are set up on the relationships). In the example application for
this book, child data is deleted by the stored procedures created in Chapter 3.

When using the ObjectFactory attribute, the business developer is responsible for authoring
two classes: the factory class and the business class. The factory class must implement a delete method
that deletes the data for the business object and any child objects.

Lhotka_1019-1C04.fm Page 160 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 161

Figure 4-15. Immediate deletion of a root object

Deferred Deletion

Deferred deletion occurs when the business object is loaded into memory and the UI calls a method
on the object to mark it for deletion. Then when the Save() method is called, the object is deleted
rather than being inserted or updated.

The sequence of events flows like this:

1. The object is loaded by the UI.

2. The UI calls a method to mark the object for deletion (that method must call MarkDeleted()).

3. The UI calls the object’s Save() or BeginSave() method.

4. The save method invokes the data portal just like it does when doing an insert or an update
(as discussed earlier in this chapter).

5. The data portal does one of the following:

a. When not using an ObjectFactory attribute, typically, the DataPortal_DeleteSelf() method
calls the object’s DataPortal_Delete() method, which contains the code needed to delete
the object’s data (and any related child data, etc.).

b. When using an ObjectFactory attribute, the data portal creates an instance of the speci-
fied object factory class and invokes the specified delete method. This delete method
contains the code needed to delete the business object’s data, along with any related
child data.

When not using an ObjectFactory attribute, from the business object’s perspective, one method
is called: DataPortal_DeleteSelf().

Earlier in the chapter, Figure 4-12 showed the process of saving a root object; it also depicts
deferred deletion.

When an ObjectFactory attribute is specified on the business class, the business developer must
provide both a factory class and the business class. The factory class must implement a delete method
that removes the business object’s data, along with any child object data.

The CSLA .NET framework supports both deletion models to provide flexibility for the UI devel-
oper. It is up to the business object author to decide which model to support by implementing either
a static or instance delete method on the object.

Lhotka_1019-1C04.fm Page 161 Monday, October 27, 2008 9:38 AM

162 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Disposing and Finalizing Objects
Most business objects contain moderate amounts of data in their fields. For these, the default .NET
garbage collection behavior is fine. With that behavior, you don’t know exactly when an object will
be destroyed and its memory reclaimed. But that’s almost always OK because it is exactly what garbage
collection is designed to do.

However, the default garbage collection behavior may be insufficient when objects hold onto
“expensive” or unmanaged resources until they’re destroyed. These resources include things such as
open database connections, open files on disk, synchronization objects, handles, and any other objects
that already implement IDisposable. These are things that need to be released as soon as possible in
order to prevent the application from wasting memory or blocking other users who might need to
access a file or reuse a database connection. If business objects are written properly, most of these
concerns should go away. Data access code should keep a database connection open for the shortest
amount of time possible, and the same is true for any files the object might open on disk. However,
there are cases in which business objects can legitimately contain an expensive resource—
something like a multimegabyte image in a field, perhaps.

Implementing IDisposable

In such cases, the business object should implement the IDisposable interface, which will allow the
UI code to tell the business object to release its resources. This interface requires that the object
implement a Dispose() method to actually release those resources:

[Serializable]
public class MyBusinessClass :
 BusinessBase<MyBusinessClass>,
 IDisposable
{
 private bool _disposedValue;

 protected void Dispose(bool disposing)
 {
 if (!_disposedValue)
 if (disposing)
 {
 // free unmanaged resources
 }
 // free shared unmanaged resources
 _disposedValue = true;
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 ~MyBusinessClass()
 {
 Dispose(false);
 }
}

Lhotka_1019-1C04.fm Page 162 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 163

The UI code can now call the object’s Dispose() method (or employ a using statement) when it
has finished using the object, at which point the object will release its expensive resources.

Careful Object Disposal

If a business object is retrieved using a remote data portal configuration, the business object will be
created and loaded on the server. It’s then returned to the client. The result, however, is that there’s
a copy left in memory on the server. Because of this, there’s no way to call the business object’s
Dispose() method on the server. To avoid this scenario, any time that the data portal may be config-
ured to run outside of the client process, the business object designs must avoid any requirement for
a Dispose() method.

■Note If you’re calling a remote data portal, you must avoid object designs that require IDisposable. Alternatively,
you can modify the SimpleDataPortal class to explicitly call Dispose() on your business objects on the server.

Also, if a business object is retrieved using a local data portal configuration, the business object
will be cloned, and the clone is what is actually saved and returned to the client. The result is that
there’s a copy left in memory on the client.

If you implement IDisposable in your business object and use a local data portal configuration,
your UI code must call Dispose() on the original object if the Save() call is successful, and you’ll have
to modify the client-side DataPortal class to call Dispose() on the clone if an exception occurs during
the update process. Happily, these are almost never issues you’ll face with a properly designed busi-
ness object because all database connections or open files should be closed in the same method
from which they were opened.

Business Class Structure
As you’ve seen, business objects follow the same sequence of events for creation, retrieval, and updates.
Because of this, there’s a structure and a set of features that are common to all of them. Although the
structure and features are common, the actual code varies for each business object. Due to the
consistency in structure, however, there’s great value in providing some foundations that make it
easier for the business developer to know what needs to be done.

Also, there are differences between editable and read-only objects and between root and child
objects. After discussing the features common to all business objects, which I do next, I’ll create
“templates” to illustrate the structure of each type of business object that you can create based on
CSLA .NET.

There are some common features or conventions that should be followed when coding any
business classes that will inherit from the CSLA .NET base classes. These are as follows:

• Serializable or DataContract attribute

• Common regions

• Non-public default constructor

Let’s briefly discuss each of these requirements.

Lhotka_1019-1C04.fm Page 163 Monday, October 27, 2008 9:38 AM

164 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

The Serializable or DataContract Attribute
All business objects must be unanchored so that they can move across the network as needed. This
means that they must be marked as serializable by using the Serializable attribute, as shown here:

[Serializable]
public class MyBusinessClass
{
}

This is required for all business classes that inherit from any of the CSLA .NET base classes. It’s
also required for any objects that are referenced by business objects. If a business object references
an object that isn’t serializable, you must be sure to mark its field with the NonSerialized attribute to
prevent the serialization process from attempting to serialize that object. If you don’t do this, the
result will be a runtime exception from the .NET Framework.

Alternately you can use the DataContract attribute, as shown here:

[DataContract]
public class MyBusinessClass
{
}

The DataContract attribute is part of WCF. WCF includes two serialization engines:
DataContractSerializer and NetDataContractSerializer (NDCS). Both of these engines support
two new attributes: DataContract and DataMember.

DataContractSerializer can be thought of as the replacement for the older XmlSerializer. This
serializer is primarily designed to support service-oriented scenarios by creating and consuming
SOAP-compliant XML blobs. Not all types or object graphs can be serialized using this component.

NetDataContractSerializer can be thought of as the replacement for the older
BinaryFormatter. This serializer is primarily designed to support client/server or n-tier scenarios by
providing full fidelity for even complex .NET data types. Any Serializable or DataContract type (or
object graph of Serializable or DataContract types) can be serialized using this component. Only
the NDCS is pertinent to this discussion because CSLA .NET uses the BinaryFormatter and only
NDCS provides comparable functionality in WCF.

The DataContract attribute is somewhat like the Serializable attribute, in that it marks an object as
being eligible for serialization by one of the new serializers. The Serializable attribute uses an opt-
out model, where all fields are serialized unless you explicitly mark the field with the NonSerialized
attribute. DataContract, on the other hand, uses an opt-in model, where fields (or properties) are
only serialized if you explicitly mark them with the DataMember attribute.

The BinaryFormatter, of course, only understands the Serializable attribute. If you only mark
a class with DataContract, the BinaryFormatter will throw an exception because it views the object as
not being serializable.

The NDCS understands both the DataContract and Serializable attributes. This means that
you can use NDCS to serialize objects that are Serializable, objects that are a DataContract, and
even object graphs composed of both types of objects at once. This makes sense because all the core
.NET types to date are Serializable, not DataContract. They can’t be changed without massive
repercussions throughout the existing .NET Framework itself. Any serializer intended to replace the
BinaryFormatter must do what the BinaryFormatter does, and then do more.

Lhotka_1019-1C04.fm Page 164 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 165

When to Use DataContract

Given that DataContract and Serializable provide the same functionality, though with an opt-in or
opt-out philosophy, the obvious question is when to use each option. Or to be blunt: when should
anyone use DataContract?

In general, I don’t recommend switching from Serializable to DataContract. For most business
objects, the desired behavior is to include all fields when an object is serialized, and so the opt-out
model used by Serializable is better.

If you use the opt-in model of DataContract, it is too easy to forget to put the DataMember attribute on
a field, in which case that field is ignored when the object is serialized. The resulting bug can be diffi-
cult to discover and debug.

You should also be aware that WF uses the BinaryFormatter to serialize objects when a workflow
is suspended. If you intend to use your business objects within a workflow, you should avoid using
DataContract to ensure that your objects can be serialized if necessary.

The DataContract and DataMember attributes are designed to support service-oriented design. In
Chapter 21, I show how you can build service-oriented WCF services. That is the appropriate place
for using these attributes.

Serialization in CSLA .NET

CSLA .NET directly uses the BinaryFormatter in only a few places: when cloning an object graph, in
the n-level undo implementation, and in some of the data portal channels.

CSLA .NET does support the optional use of DataContract when cloning an object graph and
when using n-level undo. To do this, CSLA .NET must use the NDCS instead of the BinaryFormatter
to do any explicit serialization.

Configuring CSLA .NET to Use NetDataContractSerializer

You must configure CSLA .NET to use NDCS rather than the BinaryFormatter. Because I believe the
opt-out model is better for business object development, the default is to use the BinaryFormatter.

■Tip I recommend that you only configure CSLA .NET to use the NDCS if you use the DataContract attribute
instead of the Serializable attribute in your business classes.

To configure CSLA .NET to use the NDCS you must add an element to the appSettings of your
app.config or web.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaSerializationFormatter" value="NetDataContractSerializer"/>

This will cause both the clone and n-level undo implementations in CSLA .NET to use NDCS.
The result is that you can use the DataContract attribute instead of or in combination with the
Serializable attribute in your business classes.

Lhotka_1019-1C04.fm Page 165 Monday, October 27, 2008 9:38 AM

166 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

Note that only the WCF data portal channel uses the NDCS, so if you use the DataContract
attribute in your business objects you cannot use any of the older data portal channels.

■Caution If you are using the DataContract and DataMember attributes in your business classes, you can
only use the local or WCF data portal channels. The Remoting, Web Services, and Enterprise Services channels will
all throw serialization exceptions if you attempt to use them.

The important thing to remember is that all business classes must use Serializable or DataContract
to work with CSLA .NET. Throughout the rest of the book I assume the use of the Serializable attribute.

Common Regions
When writing code in VS .NET, the #region directive can be used to place code into collapsible regions.
This helps organize the code and allows you to look only at the code pertaining to a specific type of
functionality.

All business collection classes have a common set of regions, as follows:

• Factory Methods

• Data Access

And so classes derived from BusinessListBase and ReadOnlyListBase follow this basic structure:

[Serializable]
public class MyCollectionClass : Csla.baseclass<MyCollectionClass, MyChildType>
{
 #region Factory Methods

 #endregion

 #region Data Access

 #endregion
}

The one exception to this is when you use the ObjectFactory attribute on the business class, in
which case there would be no Data Access region because that code would be in a separate object
factory class.

All noncollection (editable and read-only) classes have the following set of regions:

• Business Methods

• Business and Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

This means that the skeletal structure of a business object, with these regions, is as follows:

Lhotka_1019-1C04.fm Page 166 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 167

 [Serializable]
public class MyBusinessClass : Csla.baseclass<MyBusinessClass>
{
 #region Business Methods

 #endregion

 #region Business and Validation Rules

 #endregion

 #region Authorization Rules

 #endregion

 #region Factory Methods

 #endregion

 #region Data Access

 #endregion
}

The one exception to this is when you use the ObjectFactory attribute on the business class, in
which case there would be no Data Access region because that code would be in a separate object
factory class.

Command objects that inherit from CommandBase have the following regions:

• Authorization Rules

• Factory Methods

• Client-side Code

• Server-side Code

[Serializable]
public class MyCommandClass : Csla.CommandBase
{
 #region Authorization Rules

 #endregion

 #region Factory Methods

 #endregion

 #region Client-side Code

 #endregion

 #region Server-side Code

 #endregion
}

Lhotka_1019-1C04.fm Page 167 Monday, October 27, 2008 9:38 AM

168 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

The one exception to this is when you use the ObjectFactory attribute on the business class, in
which case there would be no Server-side Code region because that code would be in the update method
of a separate object factory class.

Name/value list objects that inherit from NameValueListBase will typically have the following
regions:

• Factory Methods

• Data Access

[Serializable]
public class MyListClass : Csla.NameValueListBase<KeyType, ValueType>
{
 #region Factory Methods

 #endregion

 #region Data Access

 #endregion
}

The one exception to this is when you use the ObjectFactory attribute on the business class, in
which case there would be no Data Access region because that code would be in a separate object
factory class.

And objects that inherit from EditableRootListBase will typically have the following regions:

• Factory Methods

• Data Access

[Serializable]
public class MyListClass : Csla.EditableRootListBase<MyRootType>
{
 #region Factory Methods

 #endregion

 #region Data Access

 #endregion
}

Again, the one exception is when you use the ObjectFactory attribute on the business class;
there would be no Data Access region in this case either.

The Business Methods region contains the methods that are used by UI code (or other client code)
to interact with the business object. This includes any properties that allow retrieval or changing of values
in the object as well as methods that operate on the object’s data to perform business processing.

The Business Rules region contains the AddBusinessRules() method and any custom validation
or business rule methods required by the object.

The Authorization Rules region contains the AddAuthorizationRules() and
AddObjectAuthorizationRules() methods.

The Factory Methods region contains the static factory methods to create or retrieve the object,
along with the static delete method (if the object is an editable root object). It also contains the
default constructor for the class, which must be scoped as non-public (i.e., private or protected) to
force the use of the factory methods when creating the business object.

Lhotka_1019-1C04.fm Page 168 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 169

The Data Access region contains the DataPortal_XYZ or Child_XYZ methods, unless you use the
ObjectFactory attribute, in which case any code that would have been in the DataPortal_XYZ methods is
in a separate object factory class.

Your business objects may require other code that doesn’t fit neatly into these regions, and you
should feel free to add extra regions if needed. But these regions cover the vast majority of code required
by typical business objects, and in most cases they’re all you’ll need.

Object Factory Classes

Any root business object can specify an ObjectFactory attribute, which causes the data portal to
change its behavior. Rather than directly interacting with the business object, the data portal creates
an instance of an object factory class and it interacts with that factory object.

Applying the ObjectFactory attribute is straightforward:

[ObjectFactory("Factories.MyFactory,Factories")]
[Serializable]
public class MyBusinessClass : Csla.baseclass<MyBusinessClass>

The parameter passed to the attribute is an assembly-qualified type name for the object factory
class. An instance of this class is created by the data portal.

■Note It is possible to provide an object factory loader, which is a class you implement to create the factory
object. If you do this, your object factory loader can interpret the string parameter to ObjectFactory in any way
you choose. Use the CslaObjectFactoryLoader configuration setting in appSettings to specify the assembly-
qualified type of your object factory loader, which must implement Csla.Server.IObjectFactoryLoader. The
default object factory loader is Csla.Server.ObjectFactoryLoader.

You may also specify, as string values, the names of the create, fetch, update, and delete methods
that should be invoked on the factory object. By default, the data portal invokes methods named
Create(), Fetch(), Update() and Delete(), which must be implemented in the object factory class.

An object factory class looks like this:

 public class MyFactory : Csla.Server.ObjectFactory
 {
 public object Create()
 {
 }

 public object Fetch(SingleCriteria<MyBusinessClass, int> criteria)
 {
 }

 public object Update(object obj)
 {
 }

 public void Delete(SingleCriteria<MyBusinessClass, int> criteria)
 {
 }
 }

As with the DataPortal_Create(), DataPortal_Fetch(), and DataPortal_Delete() methods, you
may implement multiple overloads of the Create(), Fetch(), and Delete() methods, and the data

Lhotka_1019-1C04.fm Page 169 Monday, October 27, 2008 9:38 AM

170 CH AP T E R 4 ■ CS L A . N E T O B J E CT ST E R E O T Y P E S

portal will invoke the correct overload based on the parameters provided when the data portal is
first called.

Inheriting from the ObjectFactory base class is optional but useful. The factory object is respon-
sible for creating and manipulating the business object, including managing the business object’s
state values as I discuss in Chapter 18. The ObjectFactory base class provides the protected methods
listed in Table 4-3 to assist in this process.

See Chapter 7 for a detailed discussion of these terms and concepts. For now you should under-
stand that inheriting from ObjectFactory makes these methods available, and if you choose not to
inherit from ObjectFactory, you’ll have to develop your own mechanism for managing the states of
your business objects.

Non-public Default Constructor
All business objects will be implemented to make use of the class-in-charge scheme discussed in
Chapter 1. Factory methods are used in lieu of the new keyword, which means that it’s best to prevent
the use of new, thereby forcing the UI developer to use the factory methods instead.

The data portal mechanism requires business classes to include a default constructor. As I
reviewed the create, fetch, update, and delete processes for each type of object earlier in this chapter,
each sequence diagram showed how the server-side data portal created an instance of the business
object. This is done using a technique that requires a default constructor.

By making the default constructor private or protected (and by not creating other public
constructors), you ensure that UI code must use the factory methods to get an instance of any object:

 // ...
 #region Factory Methods

 private MyBusinessClass()
 { /* require use of factory methods */ }

 #endregion
 // ...

This constructor both prevents the new keyword from being called by code outside this class and
provides the data portal with the ability to create the object via reflection. Your classes might also
include other non-public constructors, but this one is required for all objects.

Table 4-3. Protected Methods Supplied by ObjectFactory

Method Description

MarkNew() Marks the business object as being a new object

MarkOld() Marks the business object as being an old (preexisting) object

MarkAsChild() Marks the business object as a child object

Lhotka_1019-1C04.fm Page 170 Monday, October 27, 2008 9:38 AM

CH A PT E R 4 ■ C SL A . N E T O B J E CT S TE R E OT Y P E S 171

Conclusion
This chapter discussed the basic concepts and requirements for all business classes based on CSLA
.NET. I discussed the life cycle of business objects and walked through the creation, retrieval, update,
and delete processes.

The basic structure of each type of business class was covered at a high level. There are common
requirements, including making all the classes Serializable, implementing a common set of code
regions for clarity of code, and including a non-public constructor. I continue that discussion in
Chapter 5 by walking through the kind of code that goes into each code region for the different object
stereotypes. Then Chapters 6 through 16 cover the implementation of the CSLA .NET framework that
supports these stereotypes.

 Finally, Chapters 17 through 21 show how to use these stereotypes and the framework to construct
the Project Tracker application described in Chapter 3.

Lhotka_1019-1C04.fm Page 171 Monday, October 27, 2008 9:38 AM

Lhotka_1019-1C04.fm Page 172 Monday, October 27, 2008 9:38 AM

173

■ ■ ■

C H A P T E R 5

CSLA .NET Object Templates

In Chapter 4, I discussed the common object stereotypes directly supported by CSLA .NET, as well
as many of the high-level details about the structure and life cycle of the different types of business
object.

In this chapter, I’ll continue that discussion, but at a lower level of detail. This chapter will walk
through each of the stereotypes, providing a generalized code template to show the detailed code
structure of each one. As a refresher, these are the stereotypes that CSLA .NET supports directly:

• Editable root

• Editable child

• Editable, switchable (i.e., root or child) object

• Editable root collection

• Editable child collection

• Read-only root

• Read-only root collection

• Read-only child

• Read-only child collection

• Command object

• Name/value list

• Dynamic editable collection

• Dynamic editable root

• Criteria

If your application requires other stereotypes, you can usually extend CSLA .NET to accommo-
date those requirements, but these stereotypes are sufficient for the majority of business applications
I’ve encountered in my career.

The templates I’ll create in this chapter aren’t complete business object implementations, but
they do illustrate the basic structure you need to follow when creating that type of business object.
This information will help you create class templates or code snippets for use in Visual Studio and
will make your development experience more productive.

Lhotka_1019-1C05.fm Page 173 Monday, October 27, 2008 9:39 AM

174 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

Business Class Structure
The flow of this chapter will be straightforward. I’ll discuss each stereotype in turn, focusing on the
coding template for each type of object.

Editable Root Business Objects
The most common type of object is the editable root business object, since any object-oriented
system based on CSLA .NET typically has at least one root business object or root collection. (Examples
of this type of object include the Project and Resource objects discussed in Chapter 3.) These objects
often contain collections of child objects, as well as their own object-specific data.

In addition to being common, an editable object that’s also a root object is the most complex
object type, so its code template covers all the possible code regions discussed in Chapter 4. The
basic structure for an editable root object, with example or template code in each region, is as follows:

 [Serializable]
 public class EditableRoot : BusinessBase<EditableRoot>
 {
 #region Business Methods

 // TODO: add your own fields, properties and methods

 // example with private backing field
 private static PropertyInfo<int> IdProperty =
 RegisterProperty(typeof(EditableRoot), new PropertyInfo<int>("Id"));
 private int _Id = IdProperty.DefaultValue;
 public int Id
 {
 get { return GetProperty(IdProperty, _Id); }
 set { SetProperty(IdProperty, ref _Id, value); }
 }

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(typeof(EditableRoot), new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

 #endregion

 #region Validation Rules

 protected override void AddBusinessRules()
 {
 // TODO: add validation rules
 //ValidationRules.AddRule(RuleMethod, NameProperty);
 }

 #endregion

 #region Authorization Rules

Lhotka_1019-1C05.fm Page 174 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 175

 protected override void AddAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowWrite(NameProperty, "Role");
 }

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowEdit(typeof(EditableRoot), "Role");
 }

 #endregion

 #region Factory Methods

 public static EditableRoot NewEditableRoot()
 {
 return DataPortal.Create<EditableRoot>();
 }

 public static EditableRoot GetEditableRoot(int id)
 {
 return DataPortal.Fetch<EditableRoot>(
 new SingleCriteria<EditableRoot, int>(id));
 }

 public static void DeleteEditableRoot(int id)
 {
 DataPortal.Delete(new SingleCriteria<EditableRoot, int>(id));
 }

 private EditableRoot()
 { /* Require use of factory methods */ }

 #endregion

 #region Data Access

 [RunLocal]
 protected override void DataPortal_Create()
 {
 // TODO: load default values
 // omit this override if you have no defaults to set
 base.DataPortal_Create();
 }

 private void DataPortal_Fetch(SingleCriteria<EditableRoot, int> criteria)
 {
 // TODO: load values
 }

Lhotka_1019-1C05.fm Page 175 Monday, October 27, 2008 9:39 AM

176 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Insert()
 {
 // TODO: insert values
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Update()
 {
 // TODO: update values
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_DeleteSelf()
 {
 DataPortal_Delete(new SingleCriteria<EditableRoot, int>(this.Id));
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 private void DataPortal_Delete(SingleCriteria<EditableRoot, int> criteria)
 {
 // TODO: delete values
 }

 #endregion

}

You must define the class, which includes making it serializable, giving it a name, and having it
inherit from BusinessBase.

The Business Methods region includes all member or instance field declarations, along with any
business-specific properties and methods. These properties and methods typically interact with the
instance fields, performing calculations and other manipulation of the data based on the business logic.

I have included examples for the two most common types of property declaration. The first
example uses a private backing field, which you declare directly in code:

 // example with private backing field
 private static PropertyInfo<int> IdProperty =
 RegisterProperty(typeof(EditableRoot), new PropertyInfo<int>("Id"));
 private int _Id = IdProperty.DefaultValue;
 public int Id
 {
 get { return GetProperty(IdProperty, _Id); }
 set { SetProperty(IdProperty, ref _Id, value); }
 }

This approach performs better than the alternative, but does require slightly more complex
code. Additionally, if you intend on using CSLA .NET for Silverlight to create a Silverlight version of
your application, this approach will require extra coding to support that environment.

Lhotka_1019-1C05.fm Page 176 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 177

■Note While this book does not explicitly cover CSLA .NET for Silverlight, I will comment, where appropriate, on
choices you can make in CSLA .NET for Windows that could make it easier or harder to reuse your code in CSLA
.NET for Silverlight.

The second example uses a managed backing field, meaning that CSLA .NET manages the field
value, so you don’t need to declare your own field:

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(typeof(EditableRoot), new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

This approach does incur a performance penalty, because the field value is stored in a data
structure instead of a simple field. However, it requires less code and works automatically with CSLA
.NET for Silverlight in the Silverlight environment.

The Validation Rules region, at a minimum, overrides the AddBusinessRules() method. In this
method, you call ValidationRules.AddRule() to associate rule methods with properties. This region
may also include custom rule methods for rules that aren’t already available in Csla.Validation.
CommonRules or in your own library of rule methods.

The Authorization Rules region overrides the AddAuthorizationRules() method and implements
the static AddObjectAuthorizationRules() method.

The AddAuthorizationRules() method should include calls to methods on the AuthorizationRules
object: AllowRead(), AllowWrite(), DenyRead(), DenyWrite(), AllowExecute(), and DenyExecute().
Each one associates a property or method with a list of roles that are to be allowed read and write
access to that element.

The AddObjectAuthorization() method allows you to specify the roles that can interact with the
object itself. You can specify the roles that area allowed to create, get, edit, and delete the object. You
do this by calling the AllowCreate(), AllowGet(), AllowEdit(), and AllowDelete() methods on the
Csla.Security.AuthorizationRules type.

The purpose of this object-level authorization is to allow the UI developer to easily determine
whether the current user can get, add, update, or delete this type of object. That way, the UI can
enable, disable, or hide controls to provide appropriate visual cues to the end user. Additionally, the
data portal uses these rules to ensure that only authorized users are able to perform a requested action.

In the Factory Methods region, static factory methods create, retrieve, and delete the object. Of
course, these are just examples that you must change as appropriate. You must tailor the accepted
parameters to match the identifying criteria for your particular business object.

The example code uses the CSLA .NET SingleCriteria class. As discussed in Chapter 4, if your
object requires more complex criteria, you’ll need to create your own criteria class. The criteria
stereotype is discussed later in this chapter.

Finally, the Data Access region includes the DataPortal_XYZ methods. These methods must include
the code to load defaults, retrieve object data, and insert, update, and delete object data, as appro-
priate. In most cases, you do this through ADO.NET, but you could just as easily implement this code
to read or write to an XML file, call a web service, or use any other data store you can imagine.

Lhotka_1019-1C05.fm Page 177 Monday, October 27, 2008 9:39 AM

178 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

You can safely omit the DataPortal_Create() method if your object doesn’t require any initial-
ization when you create it. If your object does require default values to be loaded into properties
(hard-coded from a config file or from a database table), then you should implement the method to
initialize those values.

Notice the RunLocal attribute on the DataPortal_Create() method.

 [RunLocal]
 protected override void DataPortal_Create()

This attribute is used to force the data portal to run the method locally. You use this attribute for
methods that do not need to interact with server-side resources (like the database) when they are
executed. Typically, you would only use this attribute on DataPortal_Create(), and only if you don’t
need to load default values from a database table into a new object. The use of the RunLocal attribute
is optional, and when you use this attribute, the decorated DataPortal_XYZ method must not access
the database, because it may not be running in a physical location where the database is available.

The Transactional attributes on the methods that insert, update, or delete data specify that
those methods should run within a System.Transactions.TransactionScope transactional context.

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Update()

You may opt instead to use the TransactionTypes.EnterpriseServices setting to run within a
COM+ distributed transaction, or the TransactionTypes.Manual setting to handle your own transac-
tions using ADO.NET or stored procedures.

■Tip Many organizations use an abstract, metadata-driven Data Access layer. In environments like this, the business
objects don’t use ADO.NET directly. This works fine with CSLA .NET, since the data access code in the DataPortal_XYZ
methods can interact with an abstract Data Access layer just as easily as it can interact with ADO.NET directly.

The key thing to note about this code template is that there’s very little code in the class that’s
not related to the business requirements. Most of the code implements business properties, valida-
tion, and authorization rules or data access. The bulk of the nonbusiness code (code not specific to
your business problem) is already implemented in the CSLA .NET framework.

Immediate or Deferred Deletion

As implemented in the template, the UI developer can delete the object by calling the static delete
method and providing the criteria to identify the object to be deleted. Another option is to implement
deferred deletion, whereby the object must be retrieved, marked as deleted, and then updated in
order for it to be deleted. The object’s data is then deleted as part of the update process.

To support deferred deletion, simply remove the static delete method.

// public static void DeleteEditableRoot(int id)
// {
// DataPortal.Delete(new Criteria(id));
// }

Then, the only way to delete the object is by calling the Delete() method on an instance of the
object and updating that object to the database by calling Save(). You would use this UI code:

 var root = EditableRoot.GetEditableRoot(123);
 root.Delete();
 root.Save();

Lhotka_1019-1C05.fm Page 178 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 179

Because immediate deletion is the more common model, that is what I chose to show in
the template.

Object State Management

The data portal automatically manages the state of the business object. Table 5-1 shows the state of
the object after each DataPortal_XYZ method.

Because the data portal takes care of these details, you can simply use the state properties
without worrying about maintaining them yourself.

Using an Object Factory

You can also choose to use the ObjectFactory attribute on the business class to indicate that the data
portal should use an object factory rather than interact with the business object directly.

In that case, you need to make some slight alterations to the template. You need to add the
ObjectFactory attribute to the class.

 [ObjectFactory("MyFactories.MyFactory, MyFactories")]
 [Serializable]
 public class EditableRoot : BusinessBase<EditableRoot>

You also need to eliminate the entire Data Access region from the template. The data portal will
not invoke any DataPortal_XYZ methods if the class has an ObjectFactory attribute. Instead, the data
portal will create an instance of the specified object factory type and will invoke methods on that object.

The following illustrates the basic structure of an object factory class:

 public class MyFactory : Csla.Server.ObjectFactory
 {
 public object Create()
 {
 EditableRoot result = new EditableRoot();
 // initialize the new object with default data
 MarkNew(result);
 return result;
 }

Table 5-1. Object State After Data Portal Methods Complete

Method Object State After Method Completes

DataPortal_Create() IsNew is true; IsDirty is true; IsDeleted is false

DataPortal_Fetch() IsNew is false; IsDirty is false; IsDeleted is false

DataPortal_Insert() IsNew is false; IsDirty is false; IsDeleted is false

DataPortal_Update() IsNew is false; IsDirty is false; IsDeleted is false

DataPortal_DeleteSelf() IsNew is true; IsDirty is true; IsDeleted is false

DataPortal_Delete() Not applicable; object not returned

Lhotka_1019-1C05.fm Page 179 Monday, October 27, 2008 9:39 AM

180 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 public object Fetch(SingleCriteria<EditableRoot, int> criteria)
 {
 EditableRoot result = new EditableRoot();
 // load the new object with data based on the criteria
 MarkOld(result);
 return result;
 }

 public object Update(object obj)
 {
 // insert, update or delete the data for obj
 MarkOld(obj);
 return obj;
 }

 public void Delete(SingleCriteria<EditableRoot, int> criteria)
 {
 // delete data based on the criteria
 }
 }

The object factory assumes complete responsibility for creating and interacting with the business
object, including setting the object’s state by calling the protected methods from the ObjectFactory
base class: MarkNew() and MarkOld().

While the object factory model requires more code and effort, it does provide more flexibility,
and it can provide better separation between the business and data access logic.

Editable Child Business Objects
Most applications will have some editable child objects, or even grandchild objects. Examples of
these include the ProjectResource and ResourceAssignment objects from the Project Tracker refer-
ence application. In many cases, the child objects are contained within a child collection object,
which I’ll discuss later. In other cases, the child object might be referenced directly by the parent
object. Either way, the basic structure of a child object is the same; in some ways, this template is
similar to the editable root:

 [Serializable]
 public class EditableChild : BusinessBase<EditableChild>
 {
 #region Business Methods

 // TODO: add your own fields, properties, and methods

 // example with private backing field
 private static PropertyInfo<int> IdProperty =
 RegisterProperty(typeof(EditableChild), new PropertyInfo<int>("Id"));
 private int _Id = IdProperty.DefaultValue;
 public int Id
 {
 get { return GetProperty(IdProperty, _Id); }
 set { SetProperty(IdProperty, ref _Id, value); }
 }

Lhotka_1019-1C05.fm Page 180 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 181

 // example with managed backing field
 private static PropertyInfo<string> NameProperty =
 RegisterProperty(typeof(EditableChild), new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

 #endregion

 #region Validation Rules

 protected override void AddBusinessRules()
 {
 // TODO: add validation rules
 //ValidationRules.AddRule(RuleMethod, NameProperty);
 }

 #endregion

 #region Authorization Rules

 protected override void AddAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowWrite(NameProperty, "Role");
 }

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowEdit(typeof(EditableChild), "Role");
 }

 #endregion

 #region Factory Methods

 internal static EditableChild NewEditableChild()
 {
 return DataPortal.CreateChild<EditableChild>();
 }

 internal static EditableChild GetEditableChild(object childData)
 {
 return DataPortal.FetchChild<EditableChild>(childData);
 }

 private EditableChild()
 { /* Require use of factory methods */ }

 #endregion

Lhotka_1019-1C05.fm Page 181 Monday, October 27, 2008 9:39 AM

182 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 #region Data Access

 protected override void Child_Create()
 {
 // TODO: load default values
 // omit this override if you have no defaults to set
 base.Child_Create();
 }

 private void Child_Fetch(object childData)
 {
 // TODO: load values
 }

 private void Child_Insert(object parent)
 {
 // TODO: insert values
 }

 private void Child_Update(object parent)
 {
 // TODO: update values
 }

 private void Child_DeleteSelf(object parent)
 {
 // TODO: delete values
 }

 #endregion
}

As with all business classes, this one is serializable and inherits from a CSLA .NET base class. The
fact that it is a child object is specified by the data portal calls to CreateChild() and FetchChild() in
the factory methods. Behind the scenes, the data portal calls the MarkAsChild() method so the object
is explicitly marked as a child, and if you choose not to use the data portal to create your child objects,
you’ll need to ensure manually that MarkAsChild() is called.

The Business Methods region is the same as with a root object: it simply implements the proper-
ties and methods required by the business rules. Similarly, the Validation Rules and Authorization
Rules regions are the same as with a root object.

The Factory Methods region is a bit different. The factory methods are internal rather than
public, as they should be called only by the parent object, not by the UI code. Also, there’s no
need for a static delete method, because BusinessBase implements a DeleteChild() method that
BusinessListBase calls automatically when the child is removed from a collection. Perhaps most
importantly, notice the data portal calls to CreateChild() and FetchChild() (rather than to Create()
and Fetch()) in the factory methods.

Also, notice how the GetEditableChild() method accepts a parameter containing child data.
This parameter is passed from the parent and includes the data necessary to load this child object’s
field values. Normally this value will be a LINQ to SQL or ADO.NET Entity Framework entity object,
an ADO.NET DataReader that is already pointing to the correct row of data, or something similar. And
normally the parameter won’t be of type object, but will be strongly typed.

The biggest difference from a root object comes in the Data Access region. Instead of DataPortal_XYZ
methods, a child object implements Child_XYZ methods. The Child_Create() method is implemented to

Lhotka_1019-1C05.fm Page 182 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 183

support the loading of default values on the creation of a new child object. Please note that this method
doesn’t run on the application server, so Child_Create() cannot talk to the database. It is only useful
for loading default values that are hard-coded, from some other object, or from a client-side config-
uration file.

The Child_Fetch() method typically accepts a parameter containing the data that should be
used to load the object’s field values. Normally the parent object loads all the data for its children and
provides that data through a parameter. A less efficient approach is to have each child object contact
the database independently to load its data.

The Child_Insert(), Child_Update(), and Child_Delete() methods typically accept a reference
to the parent object as a parameter. The assumption is that any child object will need data from the
parent while being inserted or updated into the database. Most often, the parent contains a foreign
key value required by the child object during data access.

■Note Typically, the parent parameter will be strongly typed based on the class of the parent object itself.

In Project Tracker, for example, the ProjectResource child object needs the Id property from its
parent Project object so that it can store it as a foreign key in the database. By getting a reference to
its parent Project object, the ProjectResource gains access to that value as needed.

Loading Default Values from a Data Store

If you need to load default values from the database into a child object, the NewEditableChild() factory
method must call DataPortal.Create(), and the object must implement a DataPortal_Create() method
just like an editable root object. Because this is a child object, the DataPortal_Create() method would
need to call MarkAsChild(), as shown here:

 protected override void DataPortal_Create()
 {
 MarkAsChild();
 // TODO: load default values here
 base.DataPortal_Create();
 }

The rest of the Child_XYZ methods (Fetch, Insert, Update, and DeleteSelf) will all run on the
application server and can assume they have access to the database.

You can choose to use the ObjectFactory with a child object as well, if you want to supply an
object factory class. In this case, you would not implement a DataPortal_Create() method in the
business class, but instead would implement a Create() method in the object factory class.

The object factory class would look like this:

 public class MyChildFactory : Csla.Server.ObjectFactory
 {
 public object Create()
 {
 EditableChild result = new EditableChild();
 // initialize the new object with default data
 MarkNew(result);
 MarkAsChild(result);
 return result;
 }
}

Lhotka_1019-1C05.fm Page 183 Monday, October 27, 2008 9:39 AM

184 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

This is mostly the same as the code I described earlier for an editable root. The differences here
are that only the Create() method is implemented, and the MarkAsChild() method is called to mark
the new business object as a child object.

Object State Management

The data portal manages the state of the business object automatically. Table 5-2 shows the state of
the object after each Child_XYZ method.

The only exception is that if you use the ObjectFactory attribute to initialize a new child object
with values from the database, then the object factory will be responsible for setting the business
object’s state as it is created. Even in that case, the data portal will still manage the child object’s state
for fetch, insert, update, and delete operations.

Because the data portal takes care of these details, you can simply use the state properties
without worrying about maintaining them yourself.

Switchable Objects
It’s possible that some classes must be instantiated as root objects on some occasions and as child
objects on others. You can handle this by implementing a set of static factory methods for the root
model, and another set for the child model. You also need to implement both the DataPortal_XYZ
and Child_XYZ methods in the Data Access region.

■Tip In most cases, the need for a switchable object indicates a flawed object model. Although there are excep-
tions for this that make sense, you should examine your object model carefully to see if there’s a simpler solution
before implementing a switchable object.

The template for creating a switchable object is the same as the editable root template, with the
following exceptions:

• Dual factory methods

• Dual data access methods

Let’s discuss each change in turn.

Table 5-2. Object State After Data Portal Methods Complete

Method Object State After Method Completes

Child_Create() IsNew is true; IsDirty is true; IsDeleted is false

Child_Fetch() IsNew is false; IsDirty is false; IsDeleted is false

Child_Insert() IsNew is false; IsDirty is false; IsDeleted is false

Child_Update() IsNew is false; IsDirty is false; IsDeleted is false

Child_DeleteSelf() IsNew is true; IsDirty is true; IsDeleted is false

Lhotka_1019-1C05.fm Page 184 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 185

Dual Factory Methods

Instead of single factory methods to create and retrieve the object, you will need two methods for
each operation: one public, the other internal. To keep this organized, you may consider creating
separate code regions for each. For example, one region may have the root factories.

 #region Root Factory Methods

 public static SwitchableObject NewSwitchableObject()
 {
 return DataPortal.Create<SwitchableObject>();
 }

 public static SwitchableObject GetSwitchableObject(int id)
 {
 return DataPortal.Fetch<SwitchableObject>(
 new SingleCriteria<SwitchableObject, int>(id));
 }

 public static void DeleteSwitchableObject(int id)
 {
 DataPortal.Delete(new SingleCriteria<SwitchableObject, int>(id));
 }

 #endregion

Notice that this region is no different from the factory region in an editable root. Then there’s a
whole other set of factory methods to support the object’s use as a child.

 #region Child Factory Methods

 internal static SwitchableObject NewSwitchableChild()
 {
 return DataPortal.CreateChild<SwitchableObject>();
 }

 internal static SwitchableObject GetSwitchableChild(object childData)
 {
 return DataPortal.FetchChild<SwitchableObject>(childData);
 }

 private SwitchableObject()
 { /* Require use of factory methods */ }

 #endregion

This set of factory methods is the same as what you’d see in an editable child.
The key here is that the UI can call the public factory methods directly to interact with the object

as a root, while only a parent object can call the internal factory methods to use the object as a child.

Dual Data Access Methods

Because the public factory methods call the Create() and Fetch() methods on the data portal, those
calls are routed to DataPortal_XYZ methods. In those cases, the object is a root, so you can call the
Save() method, which also routes to the DataPortal_XYZ methods.

Lhotka_1019-1C05.fm Page 185 Monday, October 27, 2008 9:39 AM

186 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

At the same time, the internal factory methods call CreateChild() and FetchChild() on the data
portal, which route to Child_XYZ methods. In those cases, the object would be a child, so its parent
would be responsible for saving the child object; that is also handled through Child_XYZ methods.

The end result is that the object must implement both sets of data access code to handle both
the root and child scenarios. It is often simpler to create two data access regions—one for each set of
methods. For example, here’s the region for the root methods:

 #region Root Data Access

 [RunLocal]
 protected override void DataPortal_Create()
 {
 // TODO: load default values
 // omit this override if you have no defaults to set
 base.DataPortal_Create();
 }

 private void DataPortal_Fetch(SingleCriteria<SwitchableObject, int> criteria)
 {
 // TODO: load values
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Insert()
 {
 // TODO: insert values
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Update()
 {
 // TODO: update values
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_DeleteSelf()
 {
 DataPortal_Delete(new SingleCriteria<SwitchableObject, int>(this.Id));
 }

 [Transactional(TransactionalTypes.TransactionScope)]
 private void DataPortal_Delete(SingleCriteria<SwitchableObject, int> criteria)
 {
 // TODO: delete values
 }

 #endregion

This is the same code you’d see in an editable root object. You’ll also need a region for the child
scenario.

Lhotka_1019-1C05.fm Page 186 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 187

 #region Child Data Access

 protected override void Child_Create()
 {
 // TODO: load default values
 // omit this override if you have no defaults to set
 base.Child_Create();
 }

 private void Child_Fetch(object childData)
 {
 // TODO: load values
 }

 private void Child_Insert(object parent)
 {
 // TODO: insert values
 }

 private void Child_Update(object parent)
 {
 // TODO: update values
 }

 private void Child_DeleteSelf(object parent)
 {
 // TODO: delete values
 }

 #endregion

Again, this is the same code you’d see in an editable child.
The result is that the object is treated as a root object when the public factory methods are

called, and as a child when the internal factory methods are called. The data portal takes care of
calling MarkAsChild() and managing the object’s state, as shown previously in Tables 5-1 and 5-2.

Editable Root Collection
At times, applications need to retrieve a collection of child objects directly. To do this, you need to
create a root collection object. For instance, the application may have a WPF UI consisting of a ListBox
control that displays a collection of Contact objects. If the root object is a collection of child Contact
objects, the UI developer can simply bind the collection to the ListBox (with an appropriate data
template), and the user can edit all the objects in the list.

This approach means that all the child objects are handled as a single unit in terms of data access.
They are loaded into the collection to start with, so the user can interact with all of them and then
save them as a batch when all edits are complete. This is only subtly different from having a regular
root object that has a collection of child objects. Figure 5-1 shows the regular root object approach
on the left, and the collection root object approach on the right.

Lhotka_1019-1C05.fm Page 187 Monday, October 27, 2008 9:39 AM

188 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

Figure 5-1. Comparing simple root objects (left) and collection root objects (right)

This approach isn’t recommended when there are large numbers of potential child objects,
because the retrieval process can become too slow. However, it can be useful in cases where you can
specify criteria to limit the number of objects returned. To create an editable root collection object,
use a template like this:

 [Serializable]
 public class EditableRootList :
 BusinessListBase<EditableRootList, EditableChild>
 {
 #region Authorization Rules

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowGet(typeof(EditableRootList), "Role");
 }

 #endregion

 #region Factory Methods

 public static EditableRootList NewEditableRootList()
 {
 return DataPortal.Create<EditableRootList>();
 }

 public static EditableRootList GetEditableRootList(int id)
 {
 return DataPortal.Fetch<EditableRootList>(
 new SingleCriteria<EditableRootList, int>(id));
 }

Lhotka_1019-1C05.fm Page 188 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 189

 private EditableRootList()
 { /* Require use of factory methods */ }

 #endregion

 #region Data Access

 private void DataPortal_Fetch(
 SingleCriteria<EditableRootList, int> criteria)
 {
 RaiseListChangedEvents = false;
 // TODO: load values into memory
 object childData = null;
 foreach (var item in (List<object>)childData)
 this.Add(EditableChild.GetEditableChild(childData));
 RaiseListChangedEvents = true;
 }

 #endregion
 }

The Authorization Rules region implements the AddObjectAuthorizationRules() method to
define the roles that can interact with the object. This is the same as with an editable root object, and
the UI developer can use this information to enable and disable UI elements accordingly. Also, the
data portal uses these rules to ensure only authorized users are able to create, get, edit, or delete the
collection object. The one difference is that this AddObjectAuthorizationRules() method only needs
to define the roles allowed to get the object.

The Factory Methods region implements factory methods to create, retrieve, and (optionally)
delete the collection. The methods rely on the data portal to do much of the work, ultimately dele-
gating the call to the appropriate DataPortal_XYZ method.

In the Data Access region, the DataPortal_Fetch() method is responsible for getting the data
from the database using whatever data access technology you choose. This is often LINQ to SQL, the
ADO.NET Entity Framework, or raw ADO.NET. In any case, the Data Access layer must return the
child data as a result so it can use it to load each individual child object with data.

You load each child object by calling the child object’s factory method, passing the object’s data
as a parameter. The resulting child object is added to the collection. The DataPortal_Fetch() method
sets the RaiseListChanged Events property to false before changing the collection, and then restores
it to true once the operation is complete. Setting this property to false tells the base BindingList<T>
class to stop raising the ListChanged event. When doing batches of updates or changes to a collec-
tion, this can increase performance.

The BusinessListBase class includes a default implementation of the DataPortal_Update()
method, which loops through all child objects (and deleted child objects) to ensure the appropriate
Child_XYZ method is called on each when the collection is being saved. Normally this is the desired
behavior, but you can override DataPortal_Update() if you need to take control of the update process
for some unusual scenario.

As with the editable root stereotype, you can use the ObjectFactory attribute to have the data
portal invoke an object factory rather than invoke the DataPortal_XYZ methods directly in the busi-
ness class.

Collection objects that inherit from BusinessListBase automatically support data binding in
WPF, Windows Forms, and Web Forms. However, if you bind a collection to a Windows Forms
DataGrid control, you may be surprised to find that the user can’t just add new items by going to the
bottom of the grid. You need to write a bit of extra code in your collection to enable this behavior.

Lhotka_1019-1C05.fm Page 189 Monday, October 27, 2008 9:39 AM

190 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

In the constructor, you need to give data binding permission to add new items to the collection
by setting the AllowNew property.

 private EditableRootList()
 {
 /* Require use of factory methods */
 AllowNew = true;
 }

When you do this, you also must override the AddNewCore() method. This method is defined by
the .NET collection base class from which BusinessListBase inherits, and it is this method that is
responsible for creating a new child object and adding it to the collection when requested by data
binding.

The override looks like this:

 protected override EditableChild AddNewCore()
 {
 var item = EditableChild.NewEditableChild();
 Add(item);
 return item;
 }

The method must perform three tasks: create the object, add it to the collection, and return the
object as a result. Notice that no parameter is provided to AddNewCore(). This means that you must
be able to create new child objects without providing any criteria or other information. Usually this
is not a problem, but if the only way to create your new child object is with some criteria information,
then you won’t be able to enable this feature of data binding.

Editable Child Collection
The most common type of collection is one that is contained within a parent object to manage a
collection of child objects for that parent—for example, ProjectResources and ResourceAssignments
in the sample application.

■Tip Note that the parent object here might be a root object, or it might be a child itself. Child objects can be
nested, if that’s what the business object model requires. In other words, this concept supports not only root-to-
child, but also child-to-grandchild and grandchild-to-great-grandchild relationships.

A child collection class inherits from BusinessListBase and has factory methods that use the
CreateChild() and FetchChild() data portal methods, so the object is marked as a child when it is
created. If you choose to avoid the data portal for creating the child object, you must make sure
MarkAsChild() is called during the object’s creation process to indicate that it’s operating in child mode.

Remember that child objects are not retrieved or updated directly by the UI, but instead are
retrieved or updated by the child object’s parent object.

 [Serializable]
 public class EditableChildList :
 BusinessListBase<EditableChildList, EditableChild>
 {
 #region Factory Methods

Lhotka_1019-1C05.fm Page 190 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 191

 internal static EditableChildList NewEditableChildList()
 {
 return DataPortal.CreateChild<EditableChildList>();
 }

 internal static EditableChildList GetEditableChildList(
 object childData)
 {
 return DataPortal.FetchChild<EditableChildList>(childData);
 }

 private EditableChildList()
 { }

 #endregion

 #region Data Access

 private void Child_Fetch(object childData)
 {
 RaiseListChangedEvents = false;
 foreach (var child in (IList<object>)childData)
 this.Add(EditableChild.GetEditableChild(child));
 RaiseListChangedEvents = true;
 }

 #endregion
 }

As you can see, this code is similar to a root collection in structure, though there is no Authorization
Rules region.

The factory methods are somewhat different, because they are scoped as internal and call the
child data portal methods. Notice that the GetEditableChildList() method requires that the parent
provide a preloaded object containing the data for the list’s child objects. It is less efficient, but possible,
for the child list to go directly to the database in its Child_Fetch() method and load its own data, but
typically the parent object provides this data, as mocked up here.

The Data Access region contains a Child_Fetch() method, which is responsible for creating all
child objects by calling their factory methods, and adding those objects to the collection. As with any
collection, the RaiseListChangedEvents property is set to false first, and to true when complete to
prevent a flood of unnecessary ListChanged events during the data-retrieval process.

The BusinessListBase class contains a default implementation for Child_Update() that automat-
ically calls the right Child_XYZ method on all child objects of the list when the list is saved. Normally
this implementation is sufficient, but you can override Child_Update() to customize that behavior if
required for some unusual edge case.

As with an editable root collection, you can set AllowNew to true and override AddNewCore() if you
want data binding to add new items to the collection automatically.

Read-Only Business Objects
Sometimes, an application may need an object that provides data in a read-only fashion. For a read-
only list of data, there’s ReadOnlyListBase; however, if the requirement is for a single object containing
read-only data, it should inherit from ReadOnlyBase. This is one of the simplest types of objects to
create, since it does nothing more than retrieve and return data, as shown here:

Lhotka_1019-1C05.fm Page 191 Monday, October 27, 2008 9:39 AM

192 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 [Serializable]
 public class ReadOnlyRoot : ReadOnlyBase<ReadOnlyRoot>
 {
 #region Business Methods

 // TODO: add your own fields, properties and methods

 // example with managed backing field
 private static PropertyInfo<int> IdProperty =
 RegisterProperty(typeof(ReadOnlyRoot), new PropertyInfo<int>("Id", "Id"));
 public int Id
 {
 get { return GetProperty(IdProperty); }
 }

 // example with private backing field
 private static PropertyInfo<string> NameProperty =
 RegisterProperty(typeof(ReadOnlyRoot),
 new PropertyInfo<string>("Name", "Name"));
 private string _name = NameProperty.DefaultValue;
 public string Name
 {
 get { return GetProperty(NameProperty, _name); }
 }

 #endregion

 #region Authorization Rules

 protected override void AddAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowRead("Name", "Role");
 }

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowGet(typeof(ReadOnlyRoot), "Role");
 }

 #endregion

 #region Factory Methods

 public static ReadOnlyRoot GetReadOnlyRoot(int id)
 {
 return DataPortal.Fetch<ReadOnlyRoot>(
 new SingleCriteria<ReadOnlyRoot, int>(id));
 }

 private ReadOnlyRoot()
 { /* require use of factory methods */ }

Lhotka_1019-1C05.fm Page 192 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 193

 #endregion

 #region Data Access

 private void DataPortal_Fetch(SingleCriteria<ReadOnlyRoot, int> criteria)
 {
 // TODO: load values
 }

 #endregion
 }

Like other business objects, a read-only object will have either managed or private fields that
contain its data. Typically, it will also have read-only properties or methods that allow client code to
retrieve values. As long as they don’t change the state of the object, these may even be calculated
values.

The AddAuthorizationRules() method only needs to add roles for read access, since no properties
should be implemented to allow altering of data. Similarly, the AddObjectAuthorizationRules()
method only needs to define the roles allowed to get the object.

In the Factory Methods region, there’s just one factory method that retrieves the object by calling
DataPortal.Fetch(). The Data Access region just contains DataPortal_Fetch(). Of course, there’s no
need to support updating or deleting a read-only object.

As with the editable root stereotype, you can use the ObjectFactory attribute to have the data
portal invoke a Fetch() method from an object factory rather than invoke the DataPortal_Fetch()
method in the business class directly.

Read-Only Child Objects
You create a read-only child object using the same code as that for a read-only root object. The only
difference is how you handle the data portal and data access.

 [Serializable]
 public class ReadOnlyChild : ReadOnlyBase<ReadOnlyChild>
 {
 #region Business Methods

 // TODO: add your own fields, properties, and methods

 // example with managed backing field
 private static PropertyInfo<int> IdProperty =
 RegisterProperty(typeof(ReadOnlyRoot),
 new PropertyInfo<int>("Id", "Id"));
 public int Id
 {
 get { return GetProperty(IdProperty); }
 }

 // example with private backing field
 private static PropertyInfo<string> NameProperty =
 RegisterProperty(typeof(ReadOnlyRoot),
 new PropertyInfo<string>("Name", "Name"));
 private string _name = NameProperty.DefaultValue;

Lhotka_1019-1C05.fm Page 193 Monday, October 27, 2008 9:39 AM

194 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 public string Name
 {
 get { return GetProperty(NameProperty, _name); }
 }

 #endregion

 #region Factory Methods

 internal static ReadOnlyChild GetReadOnlyChild(object childData)
 {
 return DataPortal.FetchChild<ReadOnlyChild>(childData);
 }

 private ReadOnlyChild()
 { /* require use of factory methods */ }

 #endregion

 #region Data Access

 private void Child_Fetch(object childData)
 {
 // TODO: load values from childData
 }

 #endregion
 }

As with a root object, a read-only child object should only have read-only properties. And as
with an editable child, the factory method and data access method assume the parent object will be
providing the pre-retrieved data needed to load the object’s fields.

Read-Only Collection
Applications commonly retrieve read-only collections of objects. The CSLA .NET framework includes
the ReadOnlyListBase class to help create read-only collections. It throws an exception any time there’s
an attempt to change which items are in the collection by adding or removing objects.

■Note The template shown here is for the most common scenario: a read-only root collection. You can adapt this
to provide a read-only child collection if desired.

However, there’s no way for the collection object to stop client code from interacting with the
child objects themselves. Typically, the items in the collection expose only read-only properties and
methods. If read-write objects are put into the collection, the client code will be able to alter their
data. A read-only collection only guarantees that objects can’t be added or removed from the collection.

The child objects may be derived from ReadOnlyBase, but they could just as easily be simple objects
that don’t inherit from any CSLA .NET base class. The only requirements for these child objects are
that they are implemented with read-only properties and that they are marked as Serializable.

The code for a typical read-only collection object looks like this:

Lhotka_1019-1C05.fm Page 194 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 195

 [Serializable]
 public class ReadOnlyList :
 ReadOnlyListBase<ReadOnlyList, ReadOnlyChild>
 {
 #region Authorization Rules

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowGet(typeof(ReadOnlyList), "Role");
 }

 #endregion

 #region Factory Methods

 public static ReadOnlyList GetReadOnlyList(string filter)
 {
 return DataPortal.Fetch<ReadOnlyList>(
 new SingleCriteria<ReadOnlyList, string>(filter));
 }

 private ReadOnlyList()
 { /* require use of factory methods */ }

 #endregion

 #region Data Access

 private void DataPortal_Fetch(
 SingleCriteria<ReadOnlyList, string> criteria)
 {
 RaiseListChangedEvents = false;
 IsReadOnly = false;
 // TODO: load values
 object objectData = null;
 foreach (var child in (List<object>)objectData)
 Add(ReadOnlyChild.GetReadOnlyChild(child));
 IsReadOnly = true;
 RaiseListChangedEvents = true;
 }

 #endregion
 }

The Authorization Rules region contains only the AddObjectAuthorizationRules() method, which
only needs to define the roles allowed to get the object.

The Factory Methods region has a factory method to return a collection loaded with data. It calls
DataPortal.Fetch() and often passes in some criteria or filter value to restrict the results of the list.

Finally, the DataPortal_Fetch() method loads the object with data from the database. To do
this, the IsReadOnly flag is set to false, the data is loaded from the database, and then IsReadOnly is
set to true. When IsReadOnly is set to true, any attempt to add or remove items from the collection
results in an exception being thrown. Temporarily setting it to false allows the code to insert all the
appropriate child objects into the collection.

Lhotka_1019-1C05.fm Page 195 Monday, October 27, 2008 9:39 AM

196 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

Also note that RaiseListChangedEvents is set to false and then true in a similar manner. To improve
performance, this suppresses the raising of ListChanged events while the data is being loaded.

Read-Only Child Collection
A read-only child collection is virtually identical to a read-only root collection. The differences are in
the factory methods and data access.

 [Serializable]
 public class ReadOnlyChildList :
 ReadOnlyListBase<ReadOnlyChildList, ReadOnlyChild>
 {
 #region Authorization Rules

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowGet(typeof(ReadOnlyChildList), "Role");
 }

 #endregion

 #region Factory Methods

 internal static ReadOnlyChildList GetReadOnlyChildList(object childData)
 {
 return DataPortal.FetchChild<ReadOnlyChildList>(childData);
 }

 private ReadOnlyChildList()
 { /* require use of factory methods */ }

 #endregion

 #region Data Access

 private void Child_Fetch(object childData)
 {
 RaiseListChangedEvents = false;
 IsReadOnly = false;
 // TODO: load values
 foreach (var child in (List<object>)childData)
 Add(ReadOnlyChild.GetReadOnlyChild(child));
 IsReadOnly = true;
 RaiseListChangedEvents = true;
 }

 #endregion
 }

The internal factory method calls the FetchChild() data portal method, which in turn calls
Child_Fetch(). Notice that the parent object is assumed to be providing some object containing all
the data necessary to load the collection’s child objects.

Lhotka_1019-1C05.fm Page 196 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 197

Command Objects
Command objects can be used in many ways. They may be called directly by UI code to execute arbi-
trary code on the application server, but even more often they are used within other business objects
to execute code on the application server. A primary example is when a normal editable business
object wants to implement an Exists() command. You’ll see an example of this concept in the Project
and Resource objects in the Project Tracker reference application.

If the UI is to use the object directly, the class will be public. On the other hand, if the UI is to
use the object within the context of another business object, the class will be a private nested class
within that business object. Either way, the structure of a command object is the same, as shown here:

 [Serializable]
 public class CommandObject : CommandBase
 {
 #region Factory Methods

 public static bool Execute()
 {
 CommandObject cmd = new CommandObject();
 cmd.BeforeServer();
 cmd = DataPortal.Execute<CommandObject>(cmd);
 cmd.AfterServer();
 return cmd.Result;
 }

 private CommandObject()
 { /* require use of factory methods */ }

 #endregion

 #region Client-side Code

 // TODO: add your own fields and properties
 bool _result;

 public bool Result
 {
 get { return _result; }
 }

 private void BeforeServer()
 {
 // TODO: implement code to run on client
 // before server is called
 }

 private void AfterServer()
 {
 // TODO: implement code to run on client
 // after server is called
 }

 #endregion

Lhotka_1019-1C05.fm Page 197 Monday, October 27, 2008 9:39 AM

198 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 #region Server-side Code

 protected override void DataPortal_Execute()
 {
 // TODO: implement code to run on server
 // and set result value(s)
 _result = true;
 }

 #endregion
 }

This class structure is quite a bit different from anything you’ve seen so far.
The Factory Methods region is similar to many of the other templates thus far in structure, but

its implementation is different. Rather than passing a criteria object to the server, the Execute()
method creates and initializes an instance of the command object itself. That instance is then sent
to the server through the data portal, which invokes the DataPortal_Execute() method on the server.

The Execute() method also calls BeforeServer() and AfterServer() methods, which are found
in the Client-side Code region. The idea behind this is that the command object can be initialized on
the client with any data required to perform the server-side processing. In fact, the object could do
some processing or data gathering on the client before or after it is transferred to the server through
the data portal. The client-side code may be as complex as needed to prepare to run the server-side code.

Then the data portal moves the object to the application server and calls the DataPortal_Execute()
method in the Server-side Code region. The code in this method runs on the server and can do any
server-side work. This might be something as simple as doing a quick database lookup, or it might
be a complex server-side workflow. The code in this method can create and interact with other busi-
ness objects (all on the server, of course). It can interact directly with the database or any other server-
side resources, such as the server’s file system or third-party software installed on the server.

As with the editable root stereotype, you can use the ObjectFactory attribute to have the data
portal invoke an Update() method from an object factory rather than invoke the DataPortal_Execute()
method in the command object directly.

Command objects are powerful because they provide high levels of flexibility for running both
client and server code in a coordinated manner.

Name/Value List Objects
Perhaps the simplest business object to create is a name/value list that inherits from the
NameValueListBase class in the CSLA .NET framework. The base class provides almost all the function-
ality needed, except the actual data access and factory method.

Because name/value list data is often static and changes rarely, it is often desirable to cache the
data. You can do this in the factory method, as shown in this template:

 [Serializable]
 public class NameValueList : NameValueListBase<int, string>
 {
 #region Factory Methods

 private static NameValueList _list;

 public static NameValueList GetNameValueList()
 {
 if (_list == null)
 _list = DataPortal.Fetch<NameValueList>();

Lhotka_1019-1C05.fm Page 198 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 199

 return _list;
 }

 public static void InvalidateCache()
 {
 _list = null;
 }

 private NameValueList()
 { /* require use of factory methods */ }

 #endregion

 #region Data Access

 private void DataPortal_Fetch()
 {
 RaiseListChangedEvents = false;
 IsReadOnly = false;
 // TODO: load values
 //object listData = null;
 //foreach (var item in listData)
 // Add(new NameValueListBase<int, string>.
 // NameValuePair(item.Key, item.Value));
 IsReadOnly = true;
 RaiseListChangedEvents = true;
 }

 #endregion
 }

The Factory Methods region declares a static field to hold the list once it is retrieved. Notice how
the factory method returns the cached list if it is present; it only calls the data portal to retrieve the
data if the list is null. You can also call an InvalidateCache() method to force a reload of the data
if needed.

This caching behavior is optional—if it doesn’t fit your need, then use a factory method, like this:

 public static NameValueList GetNameValueList()
 {
 return DataPortal.Fetch<NameValueList>();
 }

The Data Access region contains only a DataPortal_Fetch() method, which calls the Data
Access layer to retrieve the name/value data. The NameValueListBase class defines a strongly typed
NameValuePair class, which is used to store each element of data. For each row of data from the data-
base, a NameValuePair object is created and added to the collection.

Notice the use of the IsReadOnly property to temporarily unlock the collection and then relock
it so it becomes read-only once the data has been loaded. The RoleList class in the Project Tracker
reference application illustrates a complete implementation of a name/value list.

Dynamic Editable Collection
The dynamic editable collection stereotype is designed to support a narrow and focused scenario in
which the UI is a Windows Forms grid control that is data bound to the collection, and in which the
user wants his changes to each row saved as soon as he moves off each row.

Lhotka_1019-1C05.fm Page 199 Monday, October 27, 2008 9:39 AM

200 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

This behavior is conceptually similar to some old Visual Basic behavior when using a DAO
dynaset. In that case, changes made by the user to a row of data were automatically committed when
the user navigated off that row in the UI.

The CSLA .NET base class used in this stereotype is the EditableRootListBase (ERLB). A collec-
tion that inherits from ERLB contains editable root objects (though with a twist), so each object can
be saved individually rather than in a batch. While a collection that inherits from BusinessListBase
saves all its child objects at once, a collection inheriting from ERLB saves each “child” one at a time.

At a high level, the collection is responsible for containing a list of editable root objects. It is also
responsible for retrieving all those objects at once, but then saving them individually as the user
inserts, updates, or deletes items in the list.

The ERLB base class handles most of the hard work itself, so the template code is focused prima-
rily on retrieving the objects and adding them to the collection. When looking at this code, remember
that the child objects are a modified editable root stereotype called dynamic editable root objects.

 [Serializable]
 public class DynamicRootList :
 EditableRootListBase<DynamicRoot>
 {
 #region Business Methods

 protected override object AddNewCore()
 {
 DynamicRoot item = DynamicRoot.NewDynamicRoot();
 Add(item);
 return item;
 }

 #endregion

 #region Authorization Rules

 private static void AddObjectAuthorizationRules()
 {
 // TODO: add authorization rules
 //AuthorizationRules.AllowGet(typeof(DynamicRootList), "Role");
 //AuthorizationRules.AllowEdit(typeof(DynamicRootList), "Role");
 }

 #endregion

 #region Factory Methods

 public static DynamicRootList NewDynamicRootList()
 {
 return DataPortal.Create<DynamicRootList>();
 }

 public static DynamicRootList GetDynamicRootList()
 {
 return DataPortal.Fetch<DynamicRootList>();
 }

Lhotka_1019-1C05.fm Page 200 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 201

 private DynamicRootList()
 {
 // require use of factory methods
 AllowNew = true;
 }

 #endregion

 #region Data Access

 private void DataPortal_Fetch()
 {
 // TODO: load values
 RaiseListChangedEvents = false;
 object listData = null;
 foreach (var item in (List<object>)listData)
 Add(DynamicRoot.GetDynamicRoot(item));
 RaiseListChangedEvents = true;
 }

 #endregion
 }

As with an editable root collection, you can set AllowNew to true and override AddNewCore() if you
want data binding to automatically add new items to the collection. This template includes that
functionality, because the typical use of a dynamic collection is to allow the user to add, edit, and
remove objects.

The Authorization Rules region is the same as you’ve seen in the other root templates. The Factory
Methods region allows creation of an empty collection, or retrieval of existing data through two
different factories. The Data Access region includes the DataPortal_Fetch() method, which is respon-
sible for calling the Data Access layer to get all the data for the objects that will be in the collection.
This is the same kind of code you saw for the editable root collection stereotype.

What is interesting here is that the “child” objects being loaded are actually editable root objects.
In the next section, I’ll discuss the dynamic editable root stereotype. You’ll be able to see how the
GetDynamicRoot() factory method is implemented.

Dynamic Editable Root Objects
The dynamic editable root stereotype is virtually identical to the editable root stereotype, with one
slight twist. Remember that this stereotype is designed to create the “child” objects contained within
a dynamic editable collection. While these editable objects are saved individually, they are loaded all
at once by the parent collection.

■Note In this section, I assume you are familiar with the editable root template, and I only discuss the few
changes required to meet the dynamic editable root stereotype.

This means that the objects must implement an internal factory for use by the parent collection.
This factory usually replaces the normal public factory that calls DataPortal.Fetch(). The factory
looks like this:

Lhotka_1019-1C05.fm Page 201 Monday, October 27, 2008 9:39 AM

202 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

 internal static DynamicRoot GetDynamicRoot(object rootData)
 {
 return new DynamicRoot(rootData);
 }

Unlike most factories, this one doesn’t call the data portal. This code is being invoked from
within the DataPortal_Fetch() of the parent collection object, so there’s no need to call the data
portal again. And since this is going to be a root object, you can’t call the FetchChild() method like
you would for a normal child object.

Instead, a constructor is called, and the object’s data is passed as a parameter. Notice that the
object’s data is assumed to have been loaded by the parent collection and passed into this factory
method as a parameter. That object may be an entity object from LINQ to SQL or the ADO.NET Entity
Framework, or it may be an ADO.NET DataReader or other data object. Normally the parameter value
would be strongly typed to match your particular data access mechanism.

This new constructor is in addition to the non-public default constructor that exists in all the
templates. It looks like this:

 private DynamicRoot(object rootData)
 {
 Fetch(rootData);
 }

All it does is call a private method named Fetch(), which does the real work of loading the
object with data.

 private void Fetch(object rootData)
 {
 // TODO: load values from rootData
 MarkOld();
 }

This Fetch() method is much the same as a Child_Fetch() method for a child object. It gets the
data necessary to load the object’s fields as a parameter, and it simply sets the field values.

However, because the data portal didn’t call this Fetch() method, the object isn’t automatically
marked as a child. This is good, because it is a root object, not a child.

The call to MarkOld() is necessary because the object isn’t automatically marked as “old” either.
In Chapter 7, I’ll discuss how business objects manage state such as being “new” or “old.” For now,
it is enough to know that when an object is retrieved from the database, it is marked as old by the data
portal. Since the data portal didn’t create this object directly, the business object must do this manually.

Because the object is a root object, at least in terms of being saved, you do need to implement
the DataPortal_Insert(), DataPortal_Update(), and DataPortal_DeleteSelf() methods. This object
will be saved individually as a root object.

You do not need to implement DataPortal_Delete(), because the ERLB base class does not use
immediate deletion to delete its objects, so that method would never be invoked.

Criteria Objects
The root object templates shown in this chapter have all used the SingleCriteria class provided by
CSLA .NET. Most objects can be identified by a single criteria value, and that type makes it easy to
send any single criteria value through the data portal.

Some objects are more complex, however, and may require more complex criteria. For example,
some tables use compound keys, so multiple criteria values are required to match the parts of the
database key. As another example, many collections have complex and optional criteria. The user
might specify a Name value sometimes, a Region value at other times, and both values at yet other times.

Lhotka_1019-1C05.fm Page 202 Monday, October 27, 2008 9:39 AM

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 203

If your object has multiple criteria values, you’ll need to create a custom criteria class. Your
custom criteria class must simply contain the data that’s required to identify the specific object to be
retrieved or the default data to be loaded. Since it’s passed by value to the data portal, this class must
be marked as Serializable.

Criteria classes can be nested classes within the business class, or they can inherit from Csla.
CriteriaBase. In most cases, it is simplest to nest the class within the business class. The Csla.
CriteriaBase approach is intended primarily for use with code-generation tools.

■Tip Technically, the criteria class can have any name, as long as it’s Serializable and is either nested in the
business class, implements ICriteria, or inherits from CriteriaBase. Some objects may have more than one
criteria class, each one defining a different set of criteria that can be used to retrieve the object.

Since a criteria class is no more than a way to ferry data to the data portal, it doesn’t need to be
fancy. Typically, it’s implemented with a constructor to make it easier to create and populate the
object all at once. For example, here’s a nested criteria class that includes an EmployeeID field:

[Serializable]
public class MyBusinessClass : Csla.baseclass<MyBusinessClass>
{
 // ...
 #region Data Access

 [Serializable]
 private class Criteria
 {
 private string _employeeId;
 public string EmployeId
 {
 get { return _employeeId; }
 }

 public Criteria(string employeeId)
 { _employeeId = employeeId; }
 }
 // ...

You can create an equivalent criteria class by subclassing CriteriaBase.

 [Serializable]
 Internal class MyBusinessClassCriteria : Csla.CriteriaBase
 {
 private string _employeeId;
 public string EmployeId
 {
 get { return _employeeId; }
 }

 public MyBusinessClassCriteria(string employeeId)
 : base(typeof(MyBusinessClass))
 { _employeeId = employeeId; }
 }

Lhotka_1019-1C05.fm Page 203 Monday, October 27, 2008 9:39 AM

204 CH AP T E R 5 ■ CS L A . N E T O B J E CT T E M P L AT E S

All criteria classes are constructed by using one of these two schemes or by creating a class that
implements the ICriteria interface directly.

Nested criteria classes are scoped as private, because they are only needed within the context
of the business class. The ICriteria interface and CriteriaBase class are typically used by code-
generation tools, in which case the class is typically scoped more broadly so that it is available either
project-wide or even to the UI.

■Note Code generation is outside the scope of this book. For good information on code generation, including the
rationale behind CriteriaBase, please refer to Code Generation in Microsoft .NET by Kathleen Dollard (Apress, 2004),
and the index of CSLA .NET–compliant code-generation tools at www.lhotka.net/cslanet/codegen.aspx.

The criteria classes shown thus far include a constructor that accepts the criteria data value.
This is done to simplify the code that will go into the business object’s factory methods. Rather than
forcing the business developer to create a criteria object and then load its values, this constructor
allows the criteria object to be created and initialized in a single statement. In many cases, this means
that a factory method will contain just one line of code—for instance:

public static Project GetProject(Guid id, Date start)
{
 return DataPortal.Fetch<Project>(new Criteria(id, start));
}

Many criteria classes contain a set of simple values (as in the examples here), but they can also
be more complex, providing for more control over the selection of the object to be retrieved. If you
have a root collection in which you’re directly retrieving a collection of child objects, the criteria class
may not define a single object, but rather may act as a search filter that returns the collection popu-
lated with all matching child objects.

Another interesting variation is to use BusinessBase as the base class for a public criteria class.
In this case, the class must also implement the ICriteria interface so it can act as a proper criteria
object. The value of this approach is that you can easily use data binding to create a UI so the user
can enter values into the criteria object. The object can even have validation and authorization rules.
Here’s an example of such a class:

 [Serializable]
 public class MyCriteria : BusinessBase<MyCriteria>, ICriteria
 {
 #region Business Methods

 private static PropertyInfo<int> IdProperty =
 RegisterProperty<int>(typeof(Project), new PropertyInfo<int>("Id"));
 public int id
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

 #endregion

 #region ICriteria Members

Lhotka_1019-1C05.fm Page 204 Monday, October 27, 2008 9:39 AM

http://www.lhotka.net/cslanet/codegen.aspx

CH A PT E R 5 ■ C SL A . N E T O B J E CT T E M P L AT E S 205

 public Type ObjectType
 {
 get { return typeof(MyBusinessClass); }
 }

 #endregion
 }

This use of BusinessBase doesn’t follow all the same rules as an editable root or child. For example,
there’s no need for the Factory Methods or Data Access regions and related code, because this object
is never persisted like a normal editable object. It is just a fancy container for criteria values that supports
data binding, validation, and authorization.

Conclusion
This chapter provides detailed code templates for each of the object stereotypes directly supported
by CSLA .NET. These templates include the outline for the code necessary to implement properties,
methods, validation rules, business rules, authorization, and data access.

These templates illustrate the implementation of the concepts discussed in Chapter 3, such as
the life cycle of business objects and the process of creating, retrieving, updating, and deleting objects.
Additionally, these templates are the basis on which the business objects for the Project Tracker
reference application are built, so you can look at the templates and compare them to the fully oper-
ational objects in Project Tracker to see the evolution from high-level coding structure to actual
implementation.

In Chapters 6–16, you’ll learn how to implement the CSLA .NET framework that supports these
stereotypes. In Chapters 17–21, you’ll see how to use these stereotypes and the framework to create
the Project Tracker application described in Chapter 3.

Lhotka_1019-1C05.fm Page 205 Monday, October 27, 2008 9:39 AM

Lhotka_1019-1C05.fm Page 206 Monday, October 27, 2008 9:39 AM

207

■ ■ ■

C H A P T E R 6

Business Framework Implementation

In Chapter 1, I discuss the concepts behind the use of business objects and distributed objects. In
Chapter 2, I explored the design of the business framework. Chapters 3 through 5 cover object-oriented
design in general and then focus more around the specific stereotypes directly supported by CSLA
.NET. In this chapter, I start walking through the implementation of the CSLA .NET framework by
providing an overview of the namespaces and project structure of the framework. Then in Chapters 7
through 16, I provide detail about the implementation of each of the major features of the frame-
work as discussed in Chapter 2.

The focus in this chapter is on the overall project structure and namespaces used to organize all
the framework code and a walkthrough of the structure of the major types in the Csla and Csla.Core
namespaces.

CSLA .NET has existed since around the year 2001 and has been steadily evolving since then,
based on feedback from the user community and to keep up with the many changes Microsoft has
made to the Microsoft .NET Framework. The result is that CSLA .NET is now a large and complex
framework.

My goal, however, is to take complexity out of the application and place it into CSLA .NET so
developers who use the framework don't need to deal with the complexity. In other words, CSLA
.NET solves some pretty complicated issues and tries to expose its solutions in an easy-to-use manner.

As discussed in Chapters 4 and 5, business developers primarily interact with a limited set of
base classes provided by CSLA .NET:

• Csla.BusinessBase<T>

• Csla.BusinessListBase<T,C>

• Csla.ReadOnlyBase<T>

• Csla.ReadOnlyListBase<T,C>

• Csla.NameValueListBase<K,V>

• Csla.CommandBase

• Csla.EditableRootListBase<T>

• Csla.CriteriaBase

These base classes are the primary classes from which most business objects inherit. Almost all the
other classes in CSLA .NET exist to support the functionality provided by these base classes. In particular,
BusinessBase<T> relies on quite a number of other classes. For instance, Csla.BusinessBase<T> inherits
from Csla.Core.BusinessBase, which inherits from Csla.Core.UndoableBase. It also makes use of the
ValidationRules and AuthorizationRules classes, among others.

Lhotka_1019-1C06.fm Page 207 Thursday, October 30, 2008 2:13 PM

208 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

I’ll start by describing the overall structure of the Csla project and then discuss each of the
namespaces and the functionality each contains, with some extra emphasis on the Csla and Csla.Core
namespaces. Most of the namespaces contain implementations of major CSLA .NET features that
are covered in detail in subsequent chapters.

Obviously, there is a lot to cover, and this book will only include the critical code from each
class. You’ll want to download the code for the book at www.apress.com/book/view/1430210192 or
www.lhotka.net/cslanet/download.aspx so you can see each complete class or type as it is discussed.

CSLA .NET Project Structure
The current version of CSLA .NET requires the use of Visual Studio 2008 and the Microsoft .NET
Framework version 3.5 SP1. Earlier versions of CSLA .NET exist that support Microsoft .NET 1.0
through 3.0 and are also available from the download website.

CSLA .NET is implemented as a Class Library project named Csla. This means it builds as a DLL,
which can be referenced by your business application projects.

Project Directory Structure
To keep all the source files in the project orderly, the project’s code is organized into a set of folders.
Table 6-1 lists the folders in the project.

Table 6-1. Folders in the CSLA Project

Folder Purpose

\ These are the types most commonly used by developers as they build
business objects based on CSLA .NET.

\Core These types are used by other framework classes and often extend the
.NET Framework or enable extension of CSLA .NET.

\Data These types provide functionality to simplify writing data access code.

\DataPortalClient These types are part of the data portal functionality (see Chapter 15).

\Linq These types are required by the LINQ to CSLA functionality.

\Reflection These are a set of helper types that abstract the use of reflection.

\Security These are the types that implement authorization and help implement
custom authentication.

\Serialization These are a set of helper types that abstract the serialization of objects.

\Server These types implement the server-side data portal functionality (see
Chapter 15).

\Silverlight These types enable interaction with CSLA .NET for Silverlight.

\Validation These are the types that implement the business and validation rules
support for editable business objects.

\Web These are types and controls used to assist in the creation of Web Forms
user interfaces.

\Windows These are types and controls used to assist in the creation of Windows
Forms user interfaces.

Lhotka_1019-1C06.fm Page 208 Thursday, October 30, 2008 2:13 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 209

By organizing the various files into folders and related namespaces, the project is far easier to
understand. There’s an additional Diagrams folder in the code download, containing many of the
diagrams (or pieces of them at least) used to create the figures in this book.

Project Settings
The Csla project is a Class Library and it targets the .NET Framework 3.5 SP1. You can see these
settings in Visual Studio by double-clicking the Properties node under the Csla project in Solution
Explorer and looking at the Application tab as shown in Figure 6-1.

Figure 6-1. Visual Studio Application tab

You can also see the assembly information shown in Figure 6-2 by clicking the Assembly Infor-
mation button.

\Workflow These are types used to assist in the creation of Windows Workflow
Foundation workflows.

\Wpf These contain types and controls used to assist in the creation of WPF
user interfaces.

Table 6-1. Folders in the CSLA Project

Folder Purpose

Lhotka_1019-1C06.fm Page 209 Thursday, October 30, 2008 2:13 PM

210 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

Figure 6-2. Assembly Information dialog

■Note The copyright information here must be preserved based on the license agreement. The license is avail-
able in the code download at www.apress.com/book/view/1430210192 or www.lhotka.net/cslanet/
license.aspx.

Project Signing
The Csla.dll file is a signed assembly. This means that the assembly has a strong name and so can
be identified uniquely. This is required because CSLA .NET optionally can use Enterprise Services,
which requires that assemblies be signed. Additionally, there are many scenarios where applications
desire strongly named assemblies so they can ensure that they are really interacting with the assembly
they referenced at development time.

Figure 6-3 shows the Signing tab in the project’s properties window, where you can see that the
CslaKey.snk file is being used to sign the assembly.

The CslaKey.snk file is included as a file in the project and contains a public/private key pair.
The public key is available to any code consuming the assembly and can be used to ensure that the
private key (which should be kept private) was used to sign the DLL.

Lhotka_1019-1C06.fm Page 210 Thursday, October 30, 2008 2:13 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 211

Figure 6-3. Visual Studio Signing tab

Normally, when you sign your assemblies you would want to protect your key file to ensure that
the private key remains private. The CslaKey.snk file included in the download is there for convenience
so you can easily build the project. You may wish to replace this with your own key file if you want
your application to only use the Csla.dll assembly you built.

Supporting Localization
The CSLA .NET framework supports localization. For a framework, the key to supporting localization is
to avoid using any string literal values that might be displayed to the end user. The .NET Framework
and Visual Studio 2008 offer features to assist in this area through the use of resources.

To see the resource editor in Visual Studio, double-click the Properties node under the Csla
project in Solution Explorer to bring up the project’s properties window. Click the Resources tab to
navigate to the built-in resource editor. Figure 6-4 shows this editor with several of the string resources
from Resources.resx.

The complete set of resources is available in the Resources.resx file in the download. Additionally,
a number of people around the world have been kind enough to translate the resources to various
languages. As this is an ongoing process, refer to www.lhotka.net/cslanet/download.aspx for updates
to the framework and resource files.

Lhotka_1019-1C06.fm Page 211 Thursday, October 30, 2008 2:13 PM

http://www.lhotka.net/cslanet/download.aspx

212 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

Figure 6-4. Visual Studio resource editor

Now that you understand the basic project structure, let’s walk through each folder (and thus
each namespace) in turn, so you have a high-level picture of the functionality contained in each one.

Csla Namespace
The Csla namespace contains the types that are most commonly used by business developers as
they create business objects using CSLA .NET. The files in this namespace are in the top-level folder
in the project: \.

The primary classes in this namespace are the base classes used to support the stereotypes
discussed in Chapters 4 and 5. Figure 6-5 illustrates these classes.

As you can see, these base classes implement a great many interfaces. Some of the interfaces are
standard .NET interfaces, such as ICloneable, but most of them are defined in the Csla.Core namespace
and are part of CSLA .NET.

CSLA .NET is an inheritance-based framework, which means that the primary way developers
use the framework is by inheriting from one of the framework’s base classes. That is a powerful
model because it allows a developer to tap into predefined functionality with very little effort. Much
like inheriting from Form instantly gives you a fully functional window in Windows, inheriting from
BusinessBase instantly gives you a fully functional business object that supports data binding, vali-
dation, authorization, and so forth.

However, inheritance is not terribly flexible. A class can only inherit from one thing, while it can
implement many interfaces. So for the normal scenarios, the base classes are ideal, but for advanced
scenarios such as building a UI framework on top of CSLA business objects, these interfaces are
invaluable. I discuss these more in the section on the Csla.Core namespace later in the chapter.

Lhotka_1019-1C06.fm Page 212 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 213

Figure 6-5. Primary classes in the Csla namespace

Table 6-2 lists primary classes in the Csla namespace.

Table 6-2. Primary Classes in the Csla Namespace

Type Description

ApplicationContext Class that provides access to important application context
information; used by the framework, business classes, and UI code

BusinessBase Base class from which editable root, child, and switchable objects
inherit

BusinessListBase Base class from which editable root and child list objects inherit

CommandBase Base class from which command objects inherit

CriteriaBase Base class from which custom criteria objects inherit

DataPortal Class that exposes the data portal functionality to the client

EditableRootListBase Base class from which dynamic list objects inherit

NameValueListBase Base class from which name/value list objects inherit

PropertyInfo Class that defines metadata for each business object property

ReadOnlyBase Base class from which read-only root and child objects inherit

ReadOnlyListBase Base class from which read-only root and child list objects inherit

SingleCriteria Class that provides a single value criteria for any object

Lhotka_1019-1C06.fm Page 213 Thursday, October 30, 2008 2:13 PM

214 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

I’ll discuss each of these types at a high level.

ApplicationContext
The ApplicationContext class is a central location from which application context information can
be accessed. Some of this context comes from the application’s configuration file, some from in-
memory settings, and some from ambient environmental values in .NET.

Table 6-3 lists the context information available through ApplicationContext.

SmartDate Type that extends DateTime to add the concept of an empty date and
other features

Utilities Type that includes utility methods used by other classes

Table 6-3. Context Data Contained Within ApplicationContext

Context Data Description

GlobalContext Collection of context data that flows from client to server and
then from server back to client; changes on either end are carried
across the network

ClientContext Collection of context data that flows from client to server; changes
on the server are not carried back to the client

LocalContext Collection of context data that exists only in the current location
(client or server)

User Current .NET security (principal) object; safely accesses this value
independent of runtime (ASP.NET, WPF, etc.)

AuthenticationType Authentication setting from CslaAuthentication config value

DataPortalProxy Data portal proxy provider setting from CslaDataPortalProxy
config value

DataPortalUrl Data portal URL value for Remoting proxy from
CslaDataPortalUrl config value

IsInRoleProvider IsInRole provider type name from CslaIsInRoleProvider
config value

AutoCloneOnUpdate Setting indicating whether objects are cloned before update through
local data portal, setting from CslaAutoCloneOnUpdate config value

SerializationFormatter Serialization provider type name from CslaSerializationFormatter
config value

PropertyChangedMode Setting indicating how the PropertyChanged event should be
raised (different for Windows Forms or WPF), setting from
CslaPropertyChangedMode config value

ExecutionLocation Value indicting whether the code is currently executing on the
client or server side of the data portal

Table 6-2. Primary Classes in the Csla Namespace (Continued)

Type Description

Lhotka_1019-1C06.fm Page 214 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 215

These context values can be grouped into three areas: configuration settings, ambient values,
and context dictionaries.

Configuration Settings

The configuration settings include items read from the config file. This is done using the standard
.NET System.Configuration.ConfigurationManager class. In this case ApplicationContext is simply
wrapping existing functionality to provide a more abstract way to access the config values.

Ambient Values

The ambient values include the User and ExecutionLocation properties. Each one is different and is
worth discussing.

User Property

When code is running outside ASP.NET, it relies on System.Threading.Thread.CurrentPrincipal to
maintain the user’s principal object. On the other hand, when code is running inside ASP.NET, the
only reliable way to find the user’s principal object is through HttpContext.Current.User. Normally,
this would mean that you would have to write code to detect whether HttpContext.Current is null,
and only use System.Threading if HttpContext isn’t available. The User property automates this process
on your behalf:

 public static IPrincipal User
 {
 get
 {
 if (HttpContext.Current == null)
 return Thread.CurrentPrincipal;
 else
 return HttpContext.Current.User;
 }
 set
 {
 if (HttpContext.Current != null)
 HttpContext.Current.User = value;
 Thread.CurrentPrincipal = value;
 }
 }

In general, Csla.ApplicationContext.User should be used in favor of either System.Threading or
HttpContext directly because it automatically adjusts to the environment in which your code is running.
With CSLA .NET–based applications, this is particularly important because your client code could be
a Windows Forms application but your server code could be running within ASP.NET. Remember
that your business objects run in both locations and so must behave properly both inside and outside
ASP.NET.

ExecutionLocation Property

The ExecutionLocation property can be used by business code to determine whether it is currently
executing on the client or on the server. This is particularly useful when writing data access code
because that code could run on either the client or the server, depending on whether the channel
adapter uses LocalProxy or one of the remote proxies. Remember that LocalProxy is designed such
that the “server-side” code runs on the client.

Lhotka_1019-1C06.fm Page 215 Thursday, October 30, 2008 2:13 PM

216 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

The property value is of type ExecutionLocations, defined by the following enumerated type:

 public enum ExecutionLocations
 {
 Client,
 Server
 }

The ExecutionLocation value is global to both the client and server, so it is stored in a static
field. This is shared by all threads on the server, but that’s OK because it will always return the Server
value when on the server, and Client when on the client:

 private static ExecutionLocations _executionLocation =
 ExecutionLocations.Client;

 public static ExecutionLocations ExecutionLocation
 {
 get { return _executionLocation; }
 }

The value defaults to Client. This is fine, as it should only be set to Server in the case that the
Csla.Server.DataPortal class explicitly sets it to Server. Recall that in that DataPortal class there’s a
SetContext() method that only runs when the server-side components really are running on the server.
In that case, it calls the SetExecutionLocation() method on ApplicationContext:

 internal static void SetExecutionLocation(ExecutionLocations location)
 {
 _executionLocation = location;
 }

This way, the value is set to Server only when the code is known to physically be executing in a
separate AppDomain, process, and probably computer from the client.

Context Dictionaries

Finally, let’s discuss the three context dictionaries: LocalContext, ClientContext, and GlobalContext.
On the surface, it seems like maintaining a set of globally available information is easy—just use a
static field and be done with it. Unfortunately, things are quite a bit more complex when building a
framework that must operate in a multithreaded server environment.

CSLA .NET supports client/server architectures through the data portal. The server-side compo-
nents of the data portal may run in ASP.NET on an IIS server or within the Windows Activation Service
(WAS) under Windows Server 2008.

In these cases, the server may be supporting many clients at the same time. All the client requests
are handled by the same Windows process and by the same .NET AppDomain. It turns out that static
fields exist at the AppDomain level: meaning that a given static field is shared across all threads in an
AppDomain. This is problematic because multiple client requests are handled within the same AppDomain
but on different threads. So static fields aren’t the answer.

The solution is different in ASP.NET and in any other .NET code. Either way, the .NET Frame-
work illustrates the right answer. Look at CurrentPrincipal; it is associated with the current Thread
object, which provides an answer for any code running outside of ASP.NET. Within ASP.NET, there’s
the HttpContext object, which is automatically maintained by ASP.NET itself.

So, when outside ASP.NET, the answer is to associate the context data directly with the current
Thread object, and when inside ASP.NET, the context data can be stored using the HttpContext.

Let’s discuss the Thread option first. While the .NET Thread object already has a property for
CurrentPrincipal, it doesn’t have a property for the concept of LocalContext. But it does have a
concept called named slots. Every Thread object has a collection associated with it. Each entry in this

Lhotka_1019-1C06.fm Page 216 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 217

collection is referred to as a slot. Slots can be referred to by a key, or a name—hence the term named
slot. The GetNameDataSlot() method on the Thread object returns access to a specific slot as an object
of type LocalDataStoreSlot. You can then use the Thread object’s GetData() and SetData() methods
to get and set data in that slot.

While this is a bit more complex than dealing with a conventional collection, you can think of
named slots as being like a collection of arbitrary values associated with a Thread object.

When running in ASP.NET, things are a bit simpler because HttpContext has an Items collection.
This is a dictionary of name/value pairs that is automatically maintained by ASP.NET and is available
to your code. Within ASP.NET, this is the only safe place to put shared data such as context data
because ASP.NET may switch your code to run on different threads in certain advanced scenarios.
This gets interesting when the application needs to know if it is running under ASP.NET or some other
environment so it can store the values in the right location. When running under ASP.NET, thread-
local storage isn’t safe and HttpContext must be used. When running outside of ASP.NET, HttpContext
isn’t even available and thread-local storage is the right answer.

The reason thread-local storage isn’t safe under ASP.NET is that under some circumstances
with custom HttpModule types, ASP.NET may change the thread on which your code is executing. If
that happens, any values attached to thread-local storage will be lost (because they are on the old
thread, not the one your code is switched to by ASP.NET). So in ASP.NET, the HttpContext is the only
safe location to store context values.

■Note The context dictionaries I discuss here do not replace Session in ASP.NET. These context values are only
available for the lifetime of a single server call. If you want to store values across pages or server calls, you should
use Session.

I’ll use the ClientContext to illustrate the solution. The context dictionary will be stored in either
HttpContext or thread-local storage, based on the environment within which the code is running.
And because this code may run in a multithreaded environment, it must employ locking to ensure
thread safety.

First, there’s the public property that exposes the value:

 private static object _syncClientContext = new object();
 private const string _clientContextName = "Csla.ClientContext";

 public static ContextDictionary ClientContext
 {
 get
 {
 lock (_syncClientContext)
 {
 ContextDictionary ctx = GetClientContext();
 if (ctx == null)
 {
 ctx = new ContextDictionary();
 SetClientContext(ctx);
 }
 return ctx;
 }
 }
 }

Lhotka_1019-1C06.fm Page 217 Thursday, October 30, 2008 2:13 PM

218 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

When ClientContext is accessed, a lock is used to ensure thread safety. Within that lock, the
GetClientContext() method is called to retrieve the context dictionary from its storage location:

 internal static ContextDictionary GetClientContext()
 {
 if (HttpContext.Current == null)
 {
 if (ApplicationContext.ExecutionLocation == ExecutionLocations.Client)
 lock (_syncClientContext)
 return (ContextDictionary)
 AppDomain.CurrentDomain.GetData(_clientContextName);
 else
 {
 LocalDataStoreSlot slot =
 Thread.GetNamedDataSlot(_clientContextName);
 return (ContextDictionary)Thread.GetData(slot);
 }
 }
 else
 return (ContextDictionary)
 HttpContext.Current.Items[_clientContextName];
 }

This method detects whether the code is running in ASP.NET and retrieves the dictionary from
HttpContext or thread-local storage as appropriate.

If the dictionary does not yet exist, it is created, then stored using the SetClientContext()
method:

 private static void SetClientContext(ContextDictionary clientContext)
 {
 if (HttpContext.Current == null)
 {
 if (ApplicationContext.ExecutionLocation == ExecutionLocations.Client)
 lock (_syncClientContext)
 AppDomain.CurrentDomain.SetData(
 _clientContextName, clientContext);
 else
 {
 LocalDataStoreSlot slot =
 Thread.GetNamedDataSlot(_clientContextName);
 Thread.SetData(slot, clientContext);
 }
 }
 else
 HttpContext.Current.Items[_clientContextName] = clientContext;
 }

This method works much the same way, checking to see if the code is running in ASP.NET and
storing the value in the correct location.

Lhotka_1019-1C06.fm Page 218 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 219

Notice that both of these methods use internal scope. This is because they are invoked not only
from the LocalContext property but also from the data portal. The ClientContext and GlobalContext
values flow to and from the client and server through the data portal. Chapter 15 provides more details
about the data portal.

At this point you should have an understanding about how the ApplicationContext class provides
access to application context values to the rest of the application.

BusinessBase
The BusinessBase<T> class exposes most of the functionality for a single editable object and combines
support for data binding, validation rules, authorization rules, and n-level undo. I discuss each of
these feature areas in Chapters 7 through 16.

Like all base classes, this class must be Serializable and abstract. Much of its behavior flows
from its base classes, or from other objects it contains. Here is the declaration of the class:

namespace Csla
{
 [Serializable]
 public abstract class BusinessBase<T> :
 Core.BusinessBase, Core.ISavable where T : BusinessBase<T>

The generic type T is constrained to be the type of business object being created, so a business
class is declared like this:

[Serializable]
public class CustomerEdit : BusinessBase<CustomerEdit>
{
}

The BusinessBase<T> class inherits from Csla.Core.BusinessBase, where most of the imple-
mentation resides. The reason for this is that BusinessBase<T> is generic and thus doesn’t support
polymorphism. The BusinessBase base class is not generic and so provides a common base class for
all editable objects that is polymorphic:

 [Serializable]
 public abstract class BusinessBase :
 Csla.Core.UndoableBase, IEditableBusinessObject,
 System.ComponentModel.IEditableObject,
 System.ComponentModel.IDataErrorInfo,
 ICloneable, Csla.Security.IAuthorizeReadWrite,
 IParent, Server.IDataPortalTarget,
 IManageProperties

As you can see, BusinessBase inherits from UndoableBase and then implements a lot of different
interfaces. Some of these are standard .NET interfaces to support things such as data binding, while
others are defined by CSLA .NET and are used within the framework itself or as extensibility points
for users of the framework.

Lhotka_1019-1C06.fm Page 219 Thursday, October 30, 2008 2:13 PM

220 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

This class pulls together a lot of functionality. The goal is to abstract all this functionality into a
set of easily understood behaviors that simplify the creation of business objects. Table 6-4 lists the
functional areas.

Figure 6-6 shows the inheritance hierarchy of BusinessBase<T>, illustrating the base classes that
work together to provide some of this functionality.

Figure 6-6. Inheritance hierarchy for BusinessBase<T>

Table 6-4. Functional Areas Implemented in BusinessBase

Functional Area Description

Data binding Provides support for Windows Forms, WPF, and Web Forms data
binding against editable business objects

Business rules Provide abstract access to the business and validation rules behavior
and implement the IDataErrorInfo interface

Authorization rules Provide abstract access to the authorization rules behavior

Object status tracking Keeps track of whether the object is new, old, dirty, clean, or marked
for deletion

Root, parent, and child
behaviors

Implement behaviors so the object can function as a root object,
a parent object, or a child of another object or collection

N-level undo Provides access to the underlying n-level undo functionality imple-
mented in UndoableBase and implements the IEditableObject interface

Cloning Implements the ICloneable interface

Persistence Provides access to the data portal and supports necessary data portal
interaction for object persistence

Lhotka_1019-1C06.fm Page 220 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 221

These base classes are covered in Chapters 7 through 14 as each functional area is discussed.

■Note MobileObject exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileObject has no impact
on how CSLA .NET works within the .NET runtime.

BusinessBase<T> also contains objects that it relies on to implement various behaviors, as illus-
trated in Figure 6-7.

Figure 6-7. Objects contained by BusinessBase<T>

By combining inheritance, containment, and collaboration, BusinessBase<T> consolidates a
great deal of functionality without becoming overly complex itself.

Editable objects are perhaps the most common business object used in most applications, and
BusinessBase<T> combines a great deal of functionality. Because of this, the majority of Chapters 7
through 14 provide detail around this class and its behaviors.

BusinessListBase
The BusinessListBase<T, C> class provides the functionality to support editable root and child collec-
tions. It works closely with BusinessBase<T> to support data binding, parent-child relationships, n-level
undo, and object persistence.

The class is Serializable and abstract:

BusinessBase
AbstractClass

UndoableBase

IEditableBusinessObject
IEditableObject
IDataErrorInfo
ICloneable
IAuthorizeReadWrite
IParent
IDataPortalTarget
IManageProperties ISavable

IUndoableObject
IMobileObject

ValidationRules
Class

MobileObject

BusinessBase<T>
Generic AbstractClass

BusinessBase

AuthorizationRules
Class

FieldDataManager
Class

DataPortal
Class

Lhotka_1019-1C06.fm Page 221 Thursday, October 30, 2008 2:13 PM

222 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

namespace Csla
{
 [Serializable]
 public abstract class BusinessListBase<T, C> :
 Core.ExtendedBindingList<C>,
 Core.IEditableCollection, Core.IUndoableObject, ICloneable,
 Core.ISavable, Core.IParent, Server.IDataPortalTarget,
 IQueryable<C>, Linq.IIndexSearchable<C>, Core.IPositionMappable<C>
 where T : BusinessListBase<T, C>
 where C : Core.IEditableBusinessObject

Like BusinessBase, BusinessListBase inherits from a base class and implements quite a number
of interfaces. It also collaborates with other framework objects to implement the behaviors listed in
Table 6-4.

Figure 6-8 shows the inheritance hierarchy of BusinessListBase:

Figure 6-8. Inheritance hierarchy for BusinessListBase<T>

■Note MobileList<T> exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileList<T> has no impact
on how CSLA .NET works within the .NET runtime.

Ultimately, the BusinessListBase inherits from BindingList<T> in the System.ComponentModel
namespace. This is the .NET base class that provides support for collections that support data binding in
Windows Forms and WPF.

Lhotka_1019-1C06.fm Page 222 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 223

■Note WPF does include ObservableCollection<T> as a base class to support data binding. While that base
class is useful in WPF, it is not recognized by Windows Forms or Web Forms data binding. Fortunately, BindingList<T>
is recognized by all current UI technologies, including WPF, so is the best choice for any collection that needs to
support any UI.

ExtendedBindingList<T> extends BindingList<T> by adding a RemovingItem event and an AddRange()
method to all collections.

Editable collections are very common in most business applications. Chapters 7 through 14
expand on the implementation of the various features supported by BusinessListBase.

CommandBase
The CommandBase class supports the creation of command objects. As discussed in Chapter 5, command
objects allow you to write code that runs on the client, the application server, and again on the client.
This is the simplest of the base classes because all it needs to do is provide basic support for use of
the data portal.

The class is defined like this:

 [Serializable]
 public abstract class CommandBase : Core.MobileObject,
 Core.ICommandObject, Server.IDataPortalTarget

As with all base classes, it is Serializable and abstract. It implements several interfaces, most
notably IDataPortalTarget so the data portal can interact with the object as needed.

■Note MobileObject exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileObject has no impact
on how CSLA .NET works within the .NET runtime.

Chapter 15 provides detail about how the data portal interacts with command objects.

CriteriaBase
The CriteriaBase class supports the creation of custom criteria objects as described in Chapter 5.
Custom criteria classes must implement the ICriteria interface, and CriteriaBase merely simplifies
that process. The ICriteria interface ensures that a custom criteria object can provide the data portal
with the Type object representing the type of business object to be created, retrieved, or deleted.

SingleCriteria is a subclass of CriteriaBase. I discuss it later in this chapter.
The Criteria class is defined like this:

 [Serializable]
 public class CriteriaBase : Csla.Core.MobileObject, ICriteria

■Note MobileObject exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileObject has no impact
on how CSLA .NET works within the .NET runtime.

Lhotka_1019-1C06.fm Page 223 Thursday, October 30, 2008 2:13 PM

224 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

The primary job of CriteriaBase is to provide a default implementation of ICriteria, making it
easy to create a custom criteria class by simply subclassing CriteriaBase:

 [Serializable]
 public class MyCriteria : CriteriaBase
 {
 public string Value1 { get; set; }
 public string Value2 { get; set; }

 public MyCriteria(string value1, string value2)
 : base(typeof(MyBusinessClass))
 {
 this.Value1 = value1;
 this.Value2 = value2;
 }
 }

The highlighted line of code indicates the key point of interaction between this subclass and the
base class. The CriteriaBase class needs to know the type of business object being created, retrieved,
or deleted. It gets this Type object as a parameter to its constructor, and that value is typically provided
directly by the subclass.

DataPortal
The data portal is covered in Chapter 15. One part of the data portal is the DataPortal classes in the
Csla namespace. There are two classes: DataPortal and DataPortal<T>.

The DataPortal class is a static class, and it exposes a set of public methods that can be used
for synchronous interaction with the data portal. It is declared like this:

 public static class DataPortal

The most common way to use the data portal is through these synchronous static methods,
and most business classes use the DataPortal class.

In WPF you can use the CslaDataProvider control from the Csla.Wpf namespace to asynchro-
nously retrieve business objects. In other types of application, such as Windows Forms, you can use
the .NET BackgroundWorker component to do the same thing, but that requires extra work on the part
of the UI developer.

To minimize that effort, you can use the DataPortal<T> class, which provides asynchronous
access to the data portal. This class is defined like this:

 public class DataPortal<T>

Notice that this is not a static class, and in fact you must create an instance of the class to call
its methods.

The data portal is a large and relatively complex part of CSLA .NET and is covered in Chapter 15.

EditableRootListBase
The EditableRootListBase class supports the creation of dynamic collections. As discussed in Chapter 5,
these collections are designed specifically to support in-place editing of data in a Windows Forms
DataGrid-style interface, where changes to each row of data should be saved immediately as the user
moves off that row.

This base class exists primarily to support data binding and to abstract the interaction with the
editable root objects it contains. It is declared like this:

Lhotka_1019-1C06.fm Page 224 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 225

 [Serializable]
 public abstract class EditableRootListBase<T> :
 Core.ExtendedBindingList<T>, Core.IParent, Server.IDataPortalTarget
 where T : Core.IEditableBusinessObject, Core.IUndoableObject, Core.ISavable

Like BusinessListBase, this class inherits from ExtendedBindingList and thus BindingList<T>.
It gains support for data binding in WPF and Windows Forms from BindingList<T>. You can get an
idea of the inheritance hierarchy for this class by looking at Figure 6-8.

It also implements numerous interfaces, enabling it to act as a parent object, interact with the
data portal, and so forth. Chapters 7 through 14 detail the implementation of the various major
subsystems used by EditableRootListBase.

NameValueListBase
The NameValueListBase class supports a specific type of read-only collection, where the items in the
collection are simple name/value pairs. The class is defined like this:

 [Serializable]
 public abstract class NameValueListBase<K, V> :
 Core.ReadOnlyBindingList<NameValueListBase<K, V>.NameValuePair>,
 ICloneable, Core.IBusinessObject, Server.IDataPortalTarget

Notice how there are two type parameters: K and V. These are used to specify the types of the key
and value elements in each item contained in the collection.

Also notice that the collection inherits from ReadOnlyBindingList in the Csla.Core namespace.
Figure 6-9 illustrates the inheritance hierarchy for NameValueListBase.

Figure 6-9. Inheritance hierarchy for NameValueListBase<K,V>

The ReadOnlyBindingList class extends BindingList<T>, adding the ability to have a read-only
collection that fully supports data binding in WPF, Windows Forms, and Web Forms.

■Note MobileList<T> exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileList<T> has no impact
on how CSLA .NET works within the .NET runtime.

Lhotka_1019-1C06.fm Page 225 Thursday, October 30, 2008 2:13 PM

226 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

The most interesting thing about NameValueListBase is that it contains a nested class called
NameValuePair. NameValuePair is a simple class that exposes Key and Value properties, of types K and
V respectively. It is declared like this:

 [Serializable]
 public class NameValuePair

This class uses a clever side effect of generics, because while NameValuePair itself isn’t generic,
it is able to use the generic type parameters of NameValueListBase because it is a nested class.

Combined, NameValueListBase and NameValuePair make it very easy to create read-only name/
value collections that support data binding. These collections are often used to populate combo box
or list controls and to implement validation logic where a value is required to exist in a list of known
values.

PropertyInfo
The PropertyInfo<T> class supports the storage of metadata about the properties declared in a business
class. When you declare a normal property in a business class it looks something like this:

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

In an editable business object, you’ll typically also need to have the property check authoriza-
tion, run business rules, and do other work. To help simplify this process, CSLA .NET allows you to
declare the property using GetProperty() and SetProperty() helper methods:

 public string Name
 {
 get { return GetProperty("Name"); }
 set { SetProperty("Name", _value) }
 }

The problem with this code is that the GetProperty() and SetProperty() methods need to know
what property is being accessed or set so the correct authorization and business rules can be applied.
Passing the property name in as a string literal is a maintenance issue. If someone refactors the prop-
erty name to something like FirstName, the string literals won’t be automatically updated. In fact, a
detailed manual search through a lot of code might be required to find all the places where that string
literal is used.

PropertyInfo objects help consolidate this string literal into one location, where the PropertyInfo
object is created. Throughout CSLA .NET, any place where a property name is required, you can
provide a PropertyInfo object instead:

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, _value) }
 }

Unfortunately, there’s no way to entirely eliminate the string literal, but this technique allows
the literal value to exist exactly one time in your entire class, minimizing the maintenance issue.

Lhotka_1019-1C06.fm Page 226 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 227

■Note This technique is very similar to the DependencyProperty concept used by WPF and WF.

The PropertyInfo class is declared like this:

 public class PropertyInfo<T> : Core.IPropertyInfo, IComparable

Notice that it implements an IPropertyInfo interface from the Csla.Core namespace. Techni-
cally, CSLA .NET accepts IPropertyInfo parameters everywhere, and this PropertyInfo class is just
one possible implementation. This is an intentional extensibility point for CSLA .NET, allowing you
to create other IPropertyInfo implementations (or subclasses of PropertyInfo) that store other metadata
about each property.

One scenario where you might do this is if you want to store data access metadata, such as the
database, table, and column name where the property value is stored.

ReadOnlyBase
The BusinessBase and BusinessListBase classes provide the tools needed to build editable objects
and collections. However, most applications also include a number of read-only objects and collec-
tions. An application might have a read-only object that contains system configuration data, or a
read-only collection of ProductType objects that are used just for lookup purposes.

The ReadOnlyBase class provides a base on which business developers can build read-only root
and child objects. By definition, a read-only object is quite simple: it’s just a container for data, possibly
with authorization or formatting logic to control how that data is accessed. It doesn’t support editing
of the data, so there’s no need for n-level undo, change events, or much of the other complexity built
into BusinessBase.

ReadOnlyBase supports read-only properties, authorization, and persistence.
Like all base classes, this one is Serializable and abstract. It also implements Csla.Core.

IBusinessObject to provide some level of polymorphic behavior even though this is a generic class:

 [Serializable]
 public abstract class ReadOnlyBase<T> : Core.MobileObject,
 ICloneable, Core.IReadOnlyObject,
 Csla.Security.IAuthorizeReadWrite, Server.IDataPortalTarget,
 Core.IManageProperties
 where T : ReadOnlyBase<T>

Like BusinessBase, the generic type T is constrained to be the type of business object being
created, so a business class is declared like this:

[Serializable]
public class DefaultCustomerData : ReadOnlyBase<DefaultCustomerData>
{
}

Presumably, any business object based on this class would consist entirely of read-only proper-
ties or methods that just return values. ReadOnlyBase supports data binding, authorization, and
persistence. Figure 6-10 illustrates the inheritance hierarchy for ReadOnlyBase.

■Note MobileObject exists to support serialization through the MobileFormatter, which is part of CSLA
.NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and MobileObject has no impact
on how CSLA .NET works within the .NET runtime.

Lhotka_1019-1C06.fm Page 227 Thursday, October 30, 2008 2:13 PM

228 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

Figure 6-10. Inheritance hierarchy for ReadOnlyBase<T>

Because ReadOnlyBase provides such little functionality, it doesn’t need a complex base class. It
contains an AuthorizationRules object like BusinessBase and interacts with the DataPortal class, but
otherwise it doesn’t need most of the advanced features of CSLA .NET required by BusinessBase.

Read-only objects are common in most business applications, and the features supported by
ReadOnlyBase are fully explored in Chapters 7 through 14.

ReadOnlyListBase
Like the ReadOnlyBase class, ReadOnlyListBase is quite simple. It is designed to make it easy for a
business developer to create a business collection that doesn’t allow items to be added or removed.
Presumably, it will be used to contain read-only child objects, but any type of child object is allowed.
Read-only collections do support data binding, authorization, and persistence.

The ReadOnlyListBase class is defined like this:

 [Serializable]
 public abstract class ReadOnlyListBase<T, C> :
 Core.ReadOnlyBindingList<C>, Csla.Core.IReadOnlyCollection,
 ICloneable, Server.IDataPortalTarget
 where T : ReadOnlyListBase<T, C>

Like BusinessListBase, it accepts two generic type parameters. Type T is constrained to be a
subclass of this base class and refers to the type of the collection being created. Type C is the type of
the child object to be contained within the collection, and it can be any type. Again, it would make
the most sense for the child type to be some form of read-only object, but that’s not required by the
collection class. A business collection would be declared like this:

[Serializable]
public class CustomerList : Csla.ReadOnlyListBase<CustomerList, CustomerInfo>
{
}

This indicates that the collection contains child objects of type CustomerInfo.

Lhotka_1019-1C06.fm Page 228 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 229

Like NameValueListBase, this class inherits from ReadOnlyBindingList in the Csla.Core namespace.
Look at Figure 6-9 to see how the inheritance hierarchy works for this class.

Read-only collections are very common in most business applications, and ReadOnlyListBase
supports the root and child collection stereotypes discussed in Chapter 5.

SingleCriteria
The SingleCriteria<B, C> class is a subclass of CriteriaBase and provides an implementation of the
most common criteria class, where a business object can be identified by a single criteria value.

The SingleCriteria class is defined like this:

 [Serializable()]
 public class SingleCriteria<B, C> : CriteriaBase

The B type parameter is the type of business object to create, retrieve, or delete. The C type parameter
is the type of the criteria value being passed through the data portal.

Of course the interesting part about inheriting from CriteriaBase is that it requires the type of
business object to be retrieved, so the constructor in SingleCriteria uses the B type parameter:

 public SingleCriteria(C value)
 : base(typeof(B))
 {
 _value = value;
 }

The end result is that most business objects can be created, retrieved, or deleted using
SingleCriteria by writing code like this:

 return DataPortal.Fetch<CustomerEdit>(new SingleCriteria<CustomerEdit, int>(id));

If you need more extensive criteria objects, you can create your own subclasses of CriteriaBase,
as discussed in Chapter 5.

SmartDate
The SmartDate type is a struct that contains and extends a DateTime value. It is discussed in Chapter 2
from a design perspective. The type is declared like this:

 [Serializable]
 [System.ComponentModel.TypeConverter(
 typeof(Csla.Core.TypeConverters.SmartDateConverter))]
 public struct SmartDate : Csla.Core.ISmartField,
 IComparable, IConvertible, IFormattable,
 Csla.Serialization.Mobile.IMobileObject

■Note The IMobileObject interface exists to support serialization through the MobileFormatter, which is
part of CSLA .NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and IMobileObject
has no impact on how CSLA .NET works within the .NET runtime.

Not only is this type Serializable but it has a custom type converter, specified by the TypeConverter
attribute. In fact, SmartDate is a very complex type because it implements operators, type converters,
and various other .NET features to act as closely as possible to the DateTime type.

Lhotka_1019-1C06.fm Page 229 Thursday, October 30, 2008 2:13 PM

230 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

■Note The ISmartField interface, defined in Csla.Core, is used to allow the rest of the CSLA .NET frame-
work to interact with any “smart” data types such as this that add string parsing and the concept of being “empty”
to a type. You can implement ISmartField to create your own “smart” types such as SmartInt or SmartDouble,
but be aware that your type will also need to override many operators and provide type converters much like SmartDate
in order to act as a first-class type in .NET.

The implementation of SmartDate is covered in more detail in Chapter 16.

Utilities
The Utilities class contains utility methods that are used by other parts of the CSLA .NET frame-
work. Many of these methods abstract the use of the .NET type system and reflection. Table 6-5 lists
the methods in this class.

While these methods exist primarily to support the CSLA .NET framework itself, they are public
and can be used by business or UI code as well. In particular, IsNumeric(), CallByName(), and
CoerceValue() can be useful in many scenarios.

The Csla namespace includes other types beyond those discussed in this chapter. The classes
discussed here, and all the rest of the classes, exist to support important features such as data binding,
business and validation rules, authorization rules, the data portal, LINQ to CSLA, and so forth. As I
discuss each subsystem in Chapters 7 through 14, you’ll get a full understanding of all the types.

Csla.Core Namespace
The Csla.Core namespace contains types that are not intended for daily use by business developers.
Rather, these types are intended for use by the CSLA .NET framework itself and to enable advanced
scenarios such as extending or customizing CSLA .NET. This is a primary motivation for putting them
into their own namespace—to help keep them out of sight of business developers during normal
development.

Table 6-5. Public Methods in the Utilities Class

Method Description

IsNumeric Provides functionality comparable to the VB runtime IsNumeric()
function; determines whether a value can be converted to a number

CallByName Provides functionality comparable to the VB runtime CallByName()
function; calls a property or method by name, using reflection

GetPropertyType Gets the type returned by a property, returning the primitive type even
if the value is Nullable<T>

GetChildItemType Gets the type of the items contained in a list or collection

CoerceValue Coerces a value from one type into another type; somewhat like doing a
cast but far more aggressive and powerful

Lhotka_1019-1C06.fm Page 230 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 231

One primary use for the types in Csla.Core is to allow people to extend the framework. For
instance, Core.BusinessBase could easily act as a starting point for creating some different or more
advanced BusinessBase-style class. Likewise, Core.ReadOnlyBindingList is useful as a base for creating
any type of read-only collection that supports data binding.

There are also numerous interfaces in Csla.Core, which are very useful if you are building a UI
framework that interacts with business objects. The base classes exposed by CSLA .NET are generic
types, such as BusinessBase<T>. While generics are a powerful tool, they have a major drawback in
that generic types are not polymorphic. For example, a List<string> and List<int> are two different
types that do not inherit from List<T>. In fact, their common base type is IList, which is not a generic
type.

The same thing is true for BusinessBase<Customer> and BusinessBase<Product>. If you want to
write code that can work with either type, you need to fall back to Csla.Core.BusinessBase, which is
not a generic type. But if you want more focused behavior, such as the ability to save any editable
object, you’d want to use the Csla.Core.ISavable interface. That interface is implemented by both
BusinessBase and BusinessListBase because both support editable objects that can be saved.
Table 6-6 lists the most commonly used classes and interfaces in Csla.Core.

There are many more types in the Csla.Core namespace, but they are designed for internal use by
CSLA .NET and are not intended for use by code outside the framework. However, several of these types
are important to understanding the structure of other framework classes, and so I’ll walk through them.

Table 6-6. Commonly Used Classes and Interfaces in Csla.Core

Interface Purpose

BusinessBase Used to create code that can interact with any editable root or child
object; base class for BusinessBase<T>

ExtendedBindingList Used to add a RemovingItem event and an AddRange() method to
BindingList<T>; base class for most collection types

IBusinessObject Implemented by all base classes to provide one common type for all
business objects

ISavable Implemented by all editable base classes; used to create code that can
polymorphically save any editable object

ISmartField Implemented by all “smart” types such as SmartDate; can be used to
create other “smart” types such as SmartInt, SmartDouble, etc.

ISupportUndo Implemented by all undoable base classes; used to create UI frameworks
that polymorphically implement form-level cancel buttons

ITrackStatus Implemented by base classes that maintain object status such as IsDirty,
IsValid, etc.; used to write code that polymorphically monitors or reacts
to business object status

ObjectCloner Contains code to clone any object decorated with the Serializable
attribute (or DataContract attribute if CSLA is configured to use WCF
serialization)

ReadOnlyBindingList Can be used as a base class to create your own read-only collections
that support data binding; base class for all read-only collection types

Lhotka_1019-1C06.fm Page 231 Thursday, October 30, 2008 2:13 PM

232 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

BusinessBase
Earlier in the chapter I discuss BusinessBase<T> and its base class, BusinessBase. The BusinessBase
class is the non-generic base class for all editable root and child objects.

ExtendedBindingList
Most collection types in CSLA .NET inherit from ExtendedBindingList, including BusinessListBase,
ReadOnlyBindingList, and ReadOnlyListBase.

ExtendedBindingList extends the BindingList<T> class from the System.ComponentModel namespace
by adding a RemovingItem event and an AddRange() method.

The BindingList<T> already raises a ListChanged event, but that occurs after an item has been
removed from the collection and doesn’t provide a reference to the item that is removed. The new
RemovingItem event occurs while the item is being removed from the list and provides a reference to
the item that is being removed.

The AddRange() method allows you to add a range of items to the collection. It accepts an
IEnumerable<T> and adds the items in that list to the end of the collection. This method can be
used to merge two collections or to add more data to a collection over time.

Finally, ExtendedBindingList implements the IsSelfBusy and IsBusy properties and other function-
ality that is required for asynchronous object persistence, as I discuss in Chapter 15.

IBusinessObject Interface
Generic types such as BindingList<T> are very powerful because they allow a developer to easily
create a strongly typed instance of the generic type. The following defines a strongly typed collection
of type string:

BindingList<string> myStringList;

Similarly, the following defines a strongly typed collection of type int:

BindingList<int> myIntList;

Since both myStringList and myIntList are “of type” BindingList<T>, you might think they are
polymorphic—that you could write one method that could act on both fields. But you can’t. Generic
types are not inherited and thus do not come from the same type. This is highly counterintuitive at
first glance but nonetheless is a fact of life when working with generic types.

Since CSLA .NET makes use of generic types (BusinessBase<T>, BusinessListBase<T,C>, etc.),
this is a problem. There are cases in which a UI developer will want to treat all business objects the
same—or at least be able to use the .NET type system to determine whether an object is a business
object.

In order to treat instances of a generic type polymorphically, or to do type checks to see if those
instances come from the same type, the generic type must inherit from a non-generic base class
or implement a non-generic interface. In the case of BindingList<T>, the generic type implements
IBindingList. So both myStringList and myIntList can be treated as IBindingList types.

To provide this type of polymorphic behavior to CSLA .NET business objects, all business base
classes implement Csla.Core.IBusinessObject. This, then, is the ultimate base type for all business
objects. Here’s the code for IBusinessObject:

namespace Csla.Core
{
 public interface IBusinessObject
 {
 }
}

Lhotka_1019-1C06.fm Page 232 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 233

Notice that this interface has no members (methods, properties, etc). This is because there are
no common behaviors across both read-only and editable business objects. The interface remains
useful, however, because it allows code to easily detect whether an object is a business object, through
code like this:

if (theObject is Csla.Core.IBusinessObject)
{
 // theObject is a business object
}

The next couple of interfaces will have more members.

ICommandObject Interface
The final common interface is ICommandObject. Like IBusinessObject, this is an empty interface:

 interface ICommandObject : IBusinessObject
 {
 }

Again, you can use this interface to easily determine whether a business object inherits from
CommandBase within your business or UI code.

IEditableBusinessObject Interface
Editable business objects must provide a set of basic behaviors so the parts of CSLA .NET can interact
with each other properly. These behaviors are defined by the IEditableBusinessObject interface.
This interface is designed for internal use within CSLA .NET and should not be used by code outside
the framework:

 public interface IEditableBusinessObject :
 IBusinessObject, ISupportUndo, IUndoableObject, ITrackStatus

This interface is implemented by BusinessBase and ensures that behaviors related to n-level
undo and parent-child relationships exist in that class. These features are discussed in more detail
in Chapter 13.

IEditableCollection Interface
While a BusinessListBase<T,C> is both a business object and an editable object, it is also a collec-
tion. It turns out that collections need one extra behavior beyond a simple editable object, so the
IEditableCollection interface adds that extra method:

 public interface IEditableCollection : IUndoableObject
 {
 void RemoveChild(Core.BusinessBase child);
 }

The RemoveChild() method will be important later in the chapter during the implementation
of BusinessBase and BusinessListBase, and specifically for the implementation of the System.
ComponentModel.IEditableObject interface. This interface has some tricky requirements for interac-
tion between a child object in a collection and the collection itself.

Lhotka_1019-1C06.fm Page 233 Thursday, October 30, 2008 2:13 PM

234 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

IReadOnlyObject Interface
In the same way that IBusinessObject provides a form of polymorphism and commonality across all
business objects, IReadOnlyObject does the same thing for read-only business objects—specifically
those that inherit from ReadOnlyBase<T>.

It turns out that all read-only objects support a method for authorization: CanReadProperty().
This method is defined in the interface as follows:

 public interface IReadOnlyObject : IBusinessObject
 {
 bool CanReadProperty(string propertyName);
 }

The CanReadProperty() method is discussed in Chapter 12 when I discuss authorization.

IReadOnlyCollection Interface
The IReadOnlyCollection interface exists purely to support polymorphism for read-only collection
objects that inherit from ReadOnlyListBase<T, C>. As such, it is an empty interface:

 interface IReadOnlyCollection : IBusinessObject
 {
 }

You can use this interface to easily determine whether a business object is a read-only collection
as needed within your business or UI code.

ISavable Interface
Editable root objects in CSLA .NET implement a Save() method. This includes objects that inherit
from both BusinessBase and BusinessListBase. The ISavable interface formalizes the concept of a
savable object, which really means an editable root object. You can use this interface to create a UI
framework that can save any editable root object:

 public interface ISavable
 {
 object Save();
 void SaveComplete(object newObject);
 event EventHandler<SavedEventArgs> Saved;
 }

■Caution The SaveComplete() method exists for internal use by CSLA .NET only and should never be used
by business or UI code.

The ISavable interface defines a common Save() method and a Saved event. The Saved event is
raised after an object has successfully saved itself by calling the data portal. This event follows the
standard EventHandler pattern, passing two parameters to the event handler: a reference to the sender
and a SavedEventArgs parameter. This SavedEventArgs parameter contains a reference to the new
object that is returned as a result of the Save() method call.

The Saved event is intended to address the complexity that occurs when your business object is
referenced in numerous locations throughout your application, by multiple forms in the UI, for instance.
If you call Save() on the object in one location, all the other places where that object is referenced
must be updated to use the new object returned as a result of Save().

Lhotka_1019-1C06.fm Page 234 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 235

The Saved event provides a solution because it is a standard, centralized, event that provides this
notification. Any code holding a reference to a business object can handle the Saved event. That code
will be notified when that object has been saved. The code can then update its reference to use the
new object returned as a result of the Save() call.

ISmartField Interface
The SmartDate type extends DateTime to provide the concept of an empty date. It also adds the ability
to convert the value into and out of a string representation to simplify binding the value to a TextBox
type control in the UI.

■Note SmartDate is discussed in depth in Chapter 16.

Members of the community have created other “smart” data types such as SmartInt or SmartDouble
that provide the same concepts to those other data types. To standardize and simplify the creation
of those types, CSLA .NET defines the ISmartField interface.

This interface allows CSLA .NET to interact with any “smart” data type in a consistent manner:

 public interface ISmartField
 {
 string Text { get; set; }
 bool IsEmpty { get; }
 }

As you can see, the interface enables both the concept of an empty value and the ability to convert
the value into and out of a text representation.

Creating a new data type, especially one that extends an existing type such as DateTime or int
requires a lot of work. The goal is to have the new type work as much like the original as possible,
which means overriding many (if not all) operators and providing support for type conversion and
cast operations. I discuss some of these challenges in Chapter 16 when I cover the implementation
of SmartDate.

ISupportUndo Interface
Many smart client UI frameworks enable cancel buttons or similar concepts and thus interact with
the n-level undo support provided by CSLA .NET objects. The ISupportUndo interface is designed to
make creating these UI frameworks easier, by providing a polymorphic interface the UI can use to
interact with the objects:

 public interface ISupportUndo
 {
 void BeginEdit();
 void CancelEdit();
 void ApplyEdit();
 }

I discuss n-level undo in detail in Chapter 13, but you can infer from the method names that the
UI can call BeginEdit() before allowing the user to interact with the object, and then can call either
CancelEdit() or ApplyEdit() to roll back or accept any changes the user has made to the object.

Lhotka_1019-1C06.fm Page 235 Thursday, October 30, 2008 2:13 PM

236 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

■Caution When building a Windows Forms UI, it is critical that these methods be called only when the object is
not data bound to the UI.

Using these methods, a UI developer or UI framework can allow users to edit an object and then
click a cancel button to completely undo any changes they’ve made to the object.

ITrackStatus Interface
Editable objects maintain several status values about the state of the object. These status values
are discussed in detail in Chapter 8, which covers their implementation in BusinessBase and
BusinessListBase. The ITrackStatus interface allows a UI framework to get these status values in
a polymorphic manner, regardless of the type of the editable object:

 public interface ITrackStatus
 {
 bool IsValid { get; }
 bool IsSelfValid { get; }
 bool IsDirty { get; }
 bool IsSelfDirty { get; }
 bool IsDeleted { get; }
 bool IsNew { get; }
 bool IsSavable { get; }
 }

A UI framework often uses these status values to enable or disable various UI elements to give
the user cues about what actions are possible at any point in time. As you’ll see in Chapter 10, the
CslaDataProvider automatically handles these details in a WPF interface.

IUndoableObject Interface
In the same way that IBusinessObject provides a form of polymorphism and commonality across all
business objects, IUndoableObject does the same thing for any object that supports n-level undo.
This includes those that inherit from BusinessBase<T> and BusinessListBase<T,C>, among others.

This polymorphic ability is of critical importance in the implementation of UndoableBase, as
discussed in Chapter 13. UndoableBase needs to be able to treat all editable objects the same in order
to implement the n-level undo functionality.

Here’s the code for IUndoableObject:

 public interface IUndoableObject
 {
 int EditLevel { get; }
 void CopyState(int parentEditLevel, bool parentBindingEdit);
 void UndoChanges(int parentEditLevel, bool parentBindingEdit);
 void AcceptChanges(int parentEditLevel, bool parentBindingEdit);
 }

The n-level undo support implemented by UndoableBase requires that every object implements
the property and three methods listed in this interface.

Putting these methods in an interface is a double-edged sword. On one hand it clearly defines
the methods and will make it easier to implement UndoableBase. On the other hand, these methods
are now potentially available to any code using a business object. In other words, a UI developer

Lhotka_1019-1C06.fm Page 236 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 237

could write code to call these methods—almost certainly causing nasty bugs and side-effects because
these methods aren’t designed for public use.

This is a difficult design decision when building frameworks. In this case the benefits of having
a common interface for use by UndoableBase appears to outweigh the potential risk of a UI developer
doing something foolish by calling the methods directly.

To help minimize this risk, the actual implementation methods in the base classes will keep these
methods private. That way, they can only be called by directly casting the object to the IUndoableObject
type.

ObjectCloner Class
All read-only and editable objects implement the System.ICloneable interface. This interface defines a
Clone() method that returns an exact copy of the original object. Also remember that all business
objects are mobile objects: marked with the Serializable attribute.

Creating a clone of a Serializable object is easily accomplished through the use of the
BinaryFormatter object in the System.Runtime.Serialization.Formatters.Binary namespace.

Alternately you can configure CSLA .NET to use the NDCS provided as part of WCF. In that case,
ObjectCloner can clone both Serializable and DataContract objects. I discuss the pros and cons of
using the NDCS in Chapter 4, and as stated there, I recommend using the BinaryFormatter in most cases.

The implementation of cloning is a few lines of code. Rather than replicating this code in every
base class, it can be centralized in a single object. All the base classes can then collaborate with this
object to perform the clone operation.

The class contains the following code:

namespace Csla.Core
{
 public static class ObjectCloner
 {
 public static object Clone(object obj)
 {
 using (MemoryStream buffer = new MemoryStream())
 {
 ISerializationFormatter formatter =
 SerializationFormatterFactory.GetFormatter();
 formatter.Serialize(buffer, obj);
 buffer.Position = 0;
 object temp = formatter.Deserialize(buffer);
 return temp;
 }
 }
 }
}

This class is static, as there is no reason to create an instance of the class.
The Clone() method itself uses a .NET formatter to serialize the object’s state into an in-memory

buffer. All objects referenced by the business object are also automatically serialized into the same
buffer. The combination of an object and all the objects it references, directly or indirectly, is called
an object graph.

The SerializationFormatterFactory.GetFormatter() method returns an object that invokes
either a BinaryFormatter or NDCS based on how CSLA .NET is configured. The default is to use the
BinaryFormatter, but you can use the CslaSerializationFormatter configuration setting in the
application’s config file to use the NDCS if desired.

Lhotka_1019-1C06.fm Page 237 Thursday, October 30, 2008 2:13 PM

238 CH AP T E R 6 ■ B U S IN E SS FR A M E W O R K I M P L E M E N TA T IO N

The in-memory buffer is immediately deserialized to create a copy of the original object graph.
The buffer is then disposed, as it could consume a fair amount of memory, depending on the size of
the fields in your objects.

The resulting copy is returned to the calling code.

ReadOnlyBindingList
The ReadOnlyBindingList<C> class implements a read-only collection based on System.
ComponentModel.BindingList<T>. The standard BindingList<T> class implements a read-write
collection that supports data binding, but there are numerous cases in which a read-only collection
is useful. For example, ReadOnlyBindingList is the base class for Csla.ReadOnlyListBase, Csla.
NameValueListBase and Csla.Validation.BrokenRulesCollection.

This class inherits from BindingList<T>. It is also Serializable and abstract, like all the frame-
work base classes:

 [Serializable]
 public abstract class ReadOnlyBindingList<C> :
 System.ComponentModel.BindingList<C>, Core.IBusinessObject
 {
 }

All the basic collection and data binding behaviors are already implemented by BindingList.
Making the collection read-only is a matter of overriding a few methods to prevent alteration of the
collection. Of course, the collection has to be read-write at some point in order to get data into the
collection at all. To control whether the collection is read-only, there’s a field and a property:

 private bool _isReadOnly = true;

 public bool IsReadOnly
 {
 get { return _isReadOnly; }
 protected set { _isReadOnly = value; }
 }

Notice that while the IsReadOnly property is public for reading, it is protected for changing. This
way, any code can determine whether the collection is read-only or read-write, but only a subclass
can lock or unlock the collection.

The class contains a constructor that turns off the options to edit, remove, or create items in the
collection by setting some properties in the BindingList base class:

 protected ReadOnlyBindingList()
 {
 AllowEdit = false;
 AllowRemove = false;
 AllowNew = false;
 }

The rest of the class overrides the methods in BindingList that control alteration of the collec-
tion. Each override checks the IsReadOnly property and throws an exception when an attempt is
made to change the collection when it is in read-only mode.

The only complicated overrides are ClearItems() and RemoveItem(). This is because AllowRemove is
typically set to false and must be temporarily changed to true to allow the operation (when the
collection is not in read-only mode). For instance, here’s the ClearItems() method:

Lhotka_1019-1C06.fm Page 238 Thursday, October 30, 2008 2:13 PM

C H AP TE R 6 ■ B U S I N E S S F R AM E W OR K I M P L E M E N T A T I ON 239

 protected override void ClearItems()
 {
 if (!IsReadOnly)
 {
 bool oldValue = AllowRemove;
 AllowRemove = true;
 base.ClearItems();
 DeferredLoadIndexIfNotLoaded();
 _indexSet.ClearIndexes();
 AllowRemove = oldValue;
 }
 else
 throw new NotSupportedException(Resources.ClearInvalidException);
 }

The original AllowRemove value is restored after the operation is complete.
Notice the call to DeferredLoadIndexIfNotLoaded(), which triggers recreation of any indexes

being maintained by LINQ to CSLA. LINQ to CSLA is discussed in Chapter 14.
This completes all the types in the Csla.Core namespace. You can look at the full implementation of

each type by downloading the code from www.apress.com/book/view/1430210192 or www.lhotka.net/
cslanet/download.aspx. Also, Chapters 7 through 16 cover many of the concepts and code in more detail.

Conclusion
In this chapter I started discussing the implementation of the CSLA .NET framework. This chapter
walked through the overall project structure, including the folders and namespaces used to organize
the code and types in the framework. It also provided some detail around the types in the Csla and
Csla.Core namespaces. You can start to see how the framework supports features such as the following:

• Data binding

• Business and validation rules

• Authorization rules

• Object status tracking

• Parent-child object relationships

• Editable and read-only objects

• N-level undo

• Object persistence and the data portal

Chapters 7 through 16 provide more detail about the implementation of each major framework
feature. From Chapter 17 on, the focus is on building the simple business application designed in
Chapter 3 to illustrate how the classes in the framework can be used to build applications based on
business objects.

Lhotka_1019-1C06.fm Page 239 Thursday, October 30, 2008 2:13 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net

Lhotka_1019-1C06.fm Page 240 Thursday, October 30, 2008 2:13 PM

241

■ ■ ■

C H A P T E R 7

Property Declarations

Chapter 6 introduced the idea of the PropertyInfo<T> class from the Csla namespace. This type
allows a business object to declare metadata about the object’s properties, and most importantly, it
helps eliminate the use of a string literal to reference the property name throughout the business class.

While a business developer could use standard .NET property declaration syntax, it would
require him to invoke the authorization, business, and validation rules; processing; and data binding
behaviors of CSLA .NET manually in each property.

To simplify the code required to utilize all these behaviors, CSLA .NET supports a coding model
that is more abstract, allowing the framework to do much of the work automatically. The syntax is
similar to that of a dependency property in WPF or WF, but the implementation behind the scenes is
quite different.

This chapter will focus on how CSLA .NET manages property metadata and helps a business
object manage its property values to simplify and standardize business object code.

Declaring Properties
You have quite a few options for declaring a property in a CSLA .NET business object, and I’ll walk
you through all the details. You can choose to declare your own private backing fields, or you can
allow CSLA .NET to manage the values of your properties. Before getting into those options in detail,
I’ll briefly walk through one common option so you get a feel for the overall structure.

Most properties are declared like this:

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

The RegisterProperty() method registers the property’s metadata with CSLA .NET, so the
framework is aware of the property. Internally, CSLA .NET maintains a list of all the IPropertyInfo
objects for each business object type. These values are static, so all instances of the type share one list.

The field manager subsystem in the Csla.Core.FieldManager namespace maintains the list of
IPropertyInfo objects. I’ll discuss the field manager later in the chapter.

The GetProperty() and SetProperty() methods help minimize the code you would otherwise
have to write to trigger authorization, business, and validation rules; status tracking; and data binding.

Lhotka_1019-1C07.fm Page 241 Wednesday, October 29, 2008 10:41 AM

242 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

Looking at BusinessBase in Csla.Core, you can see that GetProperty() has many overloads, but
ultimately does the following:

 protected P GetProperty<P>(
 PropertyInfo<P> propertyInfo, Security.NoAccessBehavior noAccess)
 {
 P result = default(P);
 if (CanReadProperty(propertyInfo.Name, noAccess ==
 Csla.Security.NoAccessBehavior.ThrowException))
 result = ReadProperty<P>(propertyInfo);
 else
 result = propertyInfo.DefaultValue;
 return result;
 }

■Note This technique is similar to the DependencyProperty concept that WPF and WF use.

The method calls CanReadProperty(), which is part of the authorization rules subsystem I’ll
discuss in Chapter 10. That method checks to see if the current user is allowed to read this property.
If the user is not authorized, the method will either throw an exception or return false, depending
on the value of the noAccess parameter.

Assuming no exception is thrown (which is the default), then either the value or a dummy default
value will be returned. If the user is authorized to read the value, she gets the real value; otherwise,
she gets a dummy value.

The ReadProperty() method is used to get the real value if appropriate. ReadProperty() is a
protected method of BusinessBase, so it’s available in your business class as well. You should use
GetProperty() when you want authorization rules to apply, and ReadProperty() when you want to
read the property regardless of authorization rules.

Normally, the UI disables the display of values that the user is not authorized to see, so even if a
dummy value is returned here, the user will never see it. In fact, this is why the default behavior is to
return a dummy value if the user isn’t authorized to see the real value. Both Windows Forms and
WPF data binding typically read the value, even if the control isn’t visible to the user. If the property
get throws an exception, then data binding will not work properly.

Looking at the SetProperty() method in BusinessBase, you can see that it is even more complex:

 protected void SetProperty<P>(
 PropertyInfo<P> propertyInfo, P newValue,
 Security.NoAccessBehavior noAccess)
 {
 if (CanWriteProperty(propertyInfo.Name, noAccess ==
 Security.NoAccessBehavior.ThrowException))
 {
 try
 {
 P oldValue = default(P);
 var fieldData = FieldManager.GetFieldData(propertyInfo);

Lhotka_1019-1C07.fm Page 242 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 243

 if (fieldData == null)
 {
 oldValue = propertyInfo.DefaultValue;
 fieldData = FieldManager.LoadFieldData<P>(propertyInfo, oldValue);
 }
 else
 {
 var fd = fieldData as FieldManager.IFieldData<P>;
 if (fd != null)
 oldValue = fd.Value;
 else
 oldValue = (P)fieldData.Value;
 }
 LoadPropertyValue<P>(propertyInfo, oldValue, newValue, true);
 }
 catch (Exception ex)
 {
 throw
 new PropertyLoadException(
 string.Format(Properties.Resources.PropertyLoadException,
 propertyInfo.Name, ex.Message));
 }
 }
 }

While there’s a lot of code here, the process flow can be distilled down to what you see in Figure 7-1.

Figure 7-1. SetProperty() process flow

The CanWriteProperty() method takes care of the authorization; I’ll discuss this in Chapter 10.
The LoadPropertyValue() method is a private helper method that takes care of actually setting

the property value. It also does a lot of work, as shown in Figure 7-2.

Lhotka_1019-1C07.fm Page 243 Wednesday, October 29, 2008 10:41 AM

244 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

Figure 7-2. LoadPropertyValue() process flow

The LoadProperty() method sets a property’s value by ultimately calling LoadPropertyValue().
It is protected, and your business code can use it. You should use SetProperty() when you want to

Lhotka_1019-1C07.fm Page 244 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 245

trigger authorization, business, and validation rules, and you should use LoadProperty() when you
want to simply set a property value without triggering any of those behaviors.

Table 7-1 lists the methods you can use to get and set property values in your business code.

Now that you have a high-level understanding of the way properties work, I’ll dig into the
specific options.

Property Declaration Options
Property values must be stored somewhere. In a typical object property, values are stored in backing
fields, which are simply private fields declared in the class—for example:

 private string _name = string.Empty;
 private int _id;

If you use the compact property declaration syntax, the compiler will create a hidden private
backing field on your behalf.

 public string Name { get; set; }

In this case, you don’t know or care about the field name, but the field is there nonetheless.
CSLA .NET allows you to use private backing fields if you would like, or you can allow CSLA

.NET to manage the field values automatically.
Using private backing fields offers better performance, but it does require that you declare and

initialize the backing field in your code. Managed backing fields incur a performance penalty, because
CSLA .NET is actually storing the field values in a collection on your behalf, but they require less code
in your business class.

■Note When using CSLA .NET for Silverlight, managed backing fields are serialized automatically. However, you
must write extra code to coordinate the serialization of all private backing fields.

You can use private backing fields for any field value required by your object. However, when
it comes to storing references to child objects, I strongly recommend using managed backing fields.
I’ll discuss storing child references later in the chapter, as they are relatively complex. If you choose
to store child references in private backing fields, then you’ll have to deal with all that complexity
yourself. On the other hand, a managed backing field takes care of everything automatically.

Table 7-1. Methods That Get and Set Property Values

Method Description

GetProperty() Gets a property value after checking authorization

ReadProperty() Gets a property value without checking authorization

SetProperty() Sets a property value after checking authorization, then triggers business
and validation rules and data binding behaviors

LoadProperty() Sets a property value without checking authorization or triggering business
or validation rules or data binding behaviors

Lhotka_1019-1C07.fm Page 245 Wednesday, October 29, 2008 10:41 AM

246 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

As with many features of CSLA .NET, you can choose which technique suits your needs best. In
general, I typically use managed backing fields and only switch to private backing fields when dealing
with large collections of objects where performance is a bigger issue.

Private Backing Fields

The four property helper methods have overloads that accept private backing fields as parameters.
For example, you can call GetProperty() like this:

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(new PropertyInfo<string>("Name"));
 private string _name = NameProperty.DefaultValue;
 public string Name
 {
 get { return GetProperty(NameProperty, _name); }
 set { SetProperty(NameProperty, ref _name, value); }
 }

The bold lines indicate the differences with the previous example code. Notice that a field is now
declared explicitly and is initialized to a default value.

■Caution You must initialize string fields to a non-null value. Other fields may be optionally initialized, but I
recommend initializing all fields as shown.

Also notice how the field is passed as a parameter to GetProperty(). As you can imagine,
GetProperty() simply returns the value as a result, but only after checking authorization rules.

The SetProperty() method is more interesting, because the field is passed as a parameter using
the ref qualifier. This means the field is passed by reference, so any changes you make to the field
inside the SetProperty() method will actually change the value of the field itself.

In this case, SetProperty() still performs the steps shown in Figures 7-1 and 7-2, but if the
property’s value is ultimately changed, the new value will be put directly into that field, which is
passed by reference.

Private Backing Fields with Type Conversion

There are variations on the four property helper methods that can be used to help convert a field
from one type to another. For example, you may maintain the field value as an enum or SmartDate
type, but declare the property itself to be of type string. This is useful when the user wants to see a
friendly name, but the object wants a more computer-friendly data type for the property.

 private static PropertyInfo<SmartDate> BirthDateProperty =
 RegisterProperty(new PropertyInfo<SmartDate>("BirthDate"));
 private SmartDate _birthDate = BirthDateProperty.DefaultValue;
 public string BirthDate
 {
 get { return GetPropertyConvert<SmartDate, string>(
 BirthDateProperty, _birthDate); }
 set { SetProperty<SmartDate, string>(
 BirthDateProperty, ref _birthDate, value); }
 }

Lhotka_1019-1C07.fm Page 246 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 247

Rather than calling GetProperty(), this code calls GetPropertyConvert(), which takes two type
parameters. The first is the type of the backing field, and the second is the type of the property. The
GetPropertyConvert() method is implemented in BusinessBase like this:

 protected P GetPropertyConvert<F, P>(PropertyInfo<F> propertyInfo, F field)
 {
 return Utilities.CoerceValue<P>(
 typeof(F), null,
 GetProperty<F>(
 propertyInfo.Name, field, propertyInfo.DefaultValue,
 Security.NoAccessBehavior.SuppressException));
 }

This method delegates the task of getting the field value to the GetProperty() method you’ve
already seen. However, it then uses Utilities.CoerceValue() to coerce the value to the specified
property type.

You might wonder how this differs from just using a cast to change the value type. The
CoerceValue() method attempts to perform a cast, but it’s more aggressive and attempts other tech-
niques of type conversion as well, including using .NET type converters. It also includes functionality
to convert enum types into and out of text representations.

The end result is that these versions of the four property helper methods can save you a lot of
code and complexity in cases where the property type and backing field type do not match.

Managed Backing Fields

My first property example illustrated how to declare a property that uses a managed backing field.

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(new PropertyInfo<string>("Name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

Notice that no private field is declared, so there’s no field to pass to the GetProperty() or
SetProperty() method. Behind the scenes, the field manager stores and retrieves the value from a
data structure. I’ll discuss the field manager in more detail later.

Managed Backing Fields with Type Conversion

As with private backing fields, four methods get and set managed property values while converting
the value to different types. The syntax is similar to what you’ve already seen.

 private static PropertyInfo<CategoryEnum> CategoryProperty =
 RegisterProperty(new PropertyInfo<CategoryEnum>("Category"));
 public string Category
 {
 get { return GetPropertyConvert<CategoryEnum, string>(CategoryProperty); }
 set { SetPropertyConvert<CategoryEnum, string>(CategoryProperty, value); }
 }

Again, rather than calling GetProperty() or SetProperty(), similar methods are called such as
GetPropertyConvert(). These methods take two type parameters; the first is the type of the field
value, and the second is the type of the property. The GetPropertyConvert() overload looks like this:

Lhotka_1019-1C07.fm Page 247 Wednesday, October 29, 2008 10:41 AM

248 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

 protected P GetPropertyConvert<F, P>(
 PropertyInfo<F> propertyInfo, Security.NoAccessBehavior noAccess)
 {
 return Utilities.CoerceValue<P>(
 typeof(F), null, GetProperty<F>(propertyInfo, noAccess));
 }

As with the earlier overload, this one gets the value and then passes it to Utilities.CoerceValue() to
coerce the value to a different type.

Child Object Reference Fields

Business objects can contain other business objects. As discussed in Chapter 4, the containing object
is a parent object, and the contained object is a child object. In this case, the parent object maintains
a reference to the child object.

I’ll discuss the issues around parent-child relationships in Chapter 9. For now, you should know
that the normal way to create a property that references a child object is to write code like this in your
parent object:

 private static PropertyInfo<ChildType> ChildProperty =
 RegisterProperty(new PropertyInfo<ChildType>("Child"));
 public ChildType Child
 {
 get
 {
 if (!FieldManager.FieldExists(ChildProperty))
 LoadProperty(ChildProperty, ChildType.NewChild());
 return GetProperty(ChildProperty);
 }
 }

This stores the child reference in a managed backing field, which allows the field manager to
automatically take care of all the housekeeping details involved with a child reference.

The RegisterProperty() and GetProperty() calls should be familiar by this point. But these two
lines are new:

 if (!FieldManager.FieldExists(ChildProperty))
 LoadProperty(ChildProperty, ChildType.NewChild());

The first line uses the FieldManager to determine if this child object has been created. If it has
not, then the second line uses LoadProperty() to add a new instance of the object as a child. The call
to ChildType.NewChild() is invoking the child object’s factory method, which is a concept I discussed
in Chapters 4 and 5.

This relatively simple-looking code is hiding some fairly complex object interactions, and I’ll
discuss them later in Chapter 9 when I cover parent-child relationships.

RegisterProperty and Inheritance
If you look closely at the way RegisterProperty() is called in the example code in this chapter, you’ll
see that it is called while initializing a static field.

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(new PropertyInfo<string>("Name"));

It makes sense that your properties need to be registered with CSLA .NET before they can be
used, and if your business class inherits directly from BusinessBase or ReadOnlyBase, then this will

Lhotka_1019-1C07.fm Page 248 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 249

happen automatically. The reason is that any attempt to get or set a property will call the GetProperty()
or SetProperty() method, which accepts the PropertyInfo field as a parameter—for example:

 return GetProperty(NameProperty);

Any attempt to access a static field forces .NET to initialize all the static fields declared in
that class.

However, if you use inheritance such that your business class inherits from a class that, in turn,
inherits from BusinessBase or ReadOnlyBase, then things will get more complex. This is because of the
way .NET initializes static fields, which turns out to be complex and counterintuitive.

The .NET runtime only initializes the static fields for a class when one of the static fields on
that class is accessed (read or changed), or if the class has a static constructor. To be very clear, this
means that instance methods and properties can be called before the static fields are initialized.

Unless you are absolutely sure that a static field from every class in the inheritance hierarchy has
been accessed, you can’t be sure that all the static fields have been initialized. The end result is that
your properties might be accessed before they have all been registered, which will ultimately cause
the field manager to throw an exception.

■Note Remember that this is only an issue if your business classes don’t inherit directly from a CSLA .NET base class.

You can use one of two techniques to prevent this issue. You can add a static constructor to
each of your custom base classes, or you can ensure that some static field is initialized as each
object instance is created.

Adding a static Constructor

Adding a static constructor is easy—for example:

 [Serializable]
 public abstract class CustomBase<T> : BusinessBase<T>
 where T : CustomBase<T>
 {
 static CustomBase()
 { }
 }

All static fields are initialized before the static constructor executes, so adding this bit of code
ensures that the static fields in this class will be initialized before an instance of this class, or a
subclass, can be created.

The downside to this is a performance impact. When you declare a static constructor in a class,
the compiler injects code everywhere any method of this class is accessed, checking to ensure that
the static constructor has been run before any other code. Obviously, all this extra checking can
have a negative impact on performance.

It is actually slightly worse than this, because the compiler also injects code to ensure that the
static constructor is only called exactly once, even in a multithreaded environment. So the code it
injects is relatively complex and involves potential locking.

Initializing a Dummy static Field

An alternative to declaring a static constructor is to ensure that at least one static field is accessed
in each class before an instance of that class, or a subclass, is created. You can do this by declaring a
static field in every class and initializing it any time an instance of the object is created.

Lhotka_1019-1C07.fm Page 249 Wednesday, October 29, 2008 10:41 AM

250 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

The trick is to remember that the .NET Framework creates instances two ways. Normal creation
of an instance invokes the constructor of each class in the inheritance hierarchy, but deserialization
(when using the BinaryFormatter or NetDataContractSerializer) doesn’t invoke any constructors.

Fortunately, the BusinessBase and ReadOnlyBase classes include code, so they are notified when
they are deserialized. In that case, they invoke a protected method called OnDeserialized(), which a
business class can override to be notified that it has been deserialized.

Using this capability, you can force initialization of the static fields in a class by adding the
following code to all your business and base classes when using a custom base class:

 [Serializable]
 public abstract class CustomBase<T> : BusinessBase<T>
 where T : CustomBase<T>
 {
 private static int _forceInit;

 public CustomBase()
 {
 _forceInit = 1;
 }

 protected override void OnDeserialized(StreamingContext context)
 {
 _forceInit = 1;
 }
 }

When an instance of this class, or a subclass, is created normally, the constructor is invoked. The
constructor accesses the static field and ensures that all static fields are initialized. When an instance
is created through deserialization, OnDeserialized() is invoked, which again accesses the static
field and ensures that all static fields are initialized.

This technique requires a bit more code, but it doesn’t incur the performance penalty of imple-
menting a static constructor.

Regardless of which technique you use, the end result is that the static fields declared in each
class are initialized before any properties can be accessed. This ensures that all the RegisterProperty()
calls occur and that all properties are registered early in the process.

PropertyInfoManager
The PropertyInfoManager is responsible for managing all the properties that have been registered for
each business object type using the RegisterProperty() method. This type is found in the Csla.Core.
FieldManager namespace. Each time RegisterProperty() is called, it is associating an IPropertyInfo
object with a specific business object type.

For each business object type, PropertyInfoManager maintains a list of IPropertyInfo objects
that describe the properties registered for that type. This means that it also has a list of all the business
object types, which is maintained in a Dictionary, as you can see in the PropertyInfoManager code:

 private static Dictionary<Type, List<IPropertyInfo>> _propertyInfoCache;

This Dictionary is indexed by a Type object, representing the type of each business object with
registered properties. The value is a List of IPropertyInfo objects, each containing metadata about
a property registered to that type.

Lhotka_1019-1C07.fm Page 250 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 251

The hard part about this class is that its methods need to be thread-safe. In many cases, it will
be used in a multithreaded environment, such as in ASP.NET, so access to this Dictionary and to
each individual List object must be wrapped with locking code.

The PropertyInfoCache property does this for the Dictionary itself:

 private static object _cacheLock = new object();

 private static Dictionary<Type, List<IPropertyInfo>> PropertyInfoCache
 {
 get
 {
 if (_propertyInfoCache == null)
 {
 lock (_cacheLock)
 {
 if (_propertyInfoCache == null)
 _propertyInfoCache = new Dictionary<Type, List<IPropertyInfo>>();
 }
 }
 return _propertyInfoCache;
 }
 }

The private field _cacheLock is used to lock the region of code that creates the Dictionary if it
doesn’t already exist. Notice how the code checks the existence of the Dictionary both before and
after the lock statement. This avoids a race condition, where multiple threads could wait on the lock
and run the code inside the lock, even though the first thread to reach that point would have already
created the Dictionary.

Similarly, the GetPropertyListCache() method protects both the use of the Dictionary and the
creation of individual List objects for each business object type.

 public static List<IPropertyInfo> GetPropertyListCache(Type objectType)
 {
 var cache = PropertyInfoCache;
 List<IPropertyInfo> list = null;
 if (!(cache.TryGetValue(objectType, out list)))
 {
 lock (cache)
 {
 if (!(cache.TryGetValue(objectType, out list)))
 {
 list = new List<IPropertyInfo>();
 cache.Add(objectType, list);
 }
 }
 }
 return list;
 }

This method uses the PropertyInfoCache property to safely get a reference to the Dictionary. It
then uses the TryGetValue() method to attempt to retrieve the specific List<IPropertyInfo> for the
business object type. If that is unsuccessful, a lock statement is used to ensure that only one thread can
run the code that creates and adds the new List object to the Dictionary. Notice how the TryGetValue()
is called inside the lock statement to prevent multiple threads from getting that far and creating
duplicate List objects.

Lhotka_1019-1C07.fm Page 251 Wednesday, October 29, 2008 10:41 AM

252 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

The RegisterProperty() method is used to register properties for a business object type by
adding an IPropertyInfo object to the correct List. This method also employs locking to avoid
threading issues.

 public static PropertyInfo<T> RegisterProperty<T>(
 Type objectType, PropertyInfo<T> info)
 {
 var list = GetPropertyListCache(objectType);
 lock (list)
 {
 list.Add(info);
 list.Sort();
 }
 return info;
 }

In this case, the GetPropertyListCache() method is used to safely get a reference to the List
object, then a lock statement is used to block access to that specific List object so only one property
can be registered at a time.

Notice that the list is sorted as each item is added. This ensures that the list is sorted when all
properties have been registered and guarantees that the values are in the same order each time. Later
in the chapter, I’ll discuss how these values provide a numeric index into the list of managed field
values for each business object. The order of the properties is very important.

Of course, the RegisterProperty() methods are called when .NET does its initialization of the
static fields on each class. You might expect that those method calls would occur in the same order
all the time, thanks to .NET. Unfortunately, I don’t trust that to be the case across C# and VB, or
between the 32- and 64-bit .NET runtimes. As you’ll see later, these values must be in the same order
in a client/server situation, even if the client is 32-bit .NET in VB and the server is 64-bit .NET in C#.
Sorting the property objects ensures that they’re in the same order in the list, regardless of the program-
ming language or the .NET runtime version.

Finally, the GetRegisteredProperties() method returns a list of properties registered for a busi-
ness object type. Since this method is public, there’s no way to know what the calling code will do
with the result, so this method doesn’t return the actual List. Instead, it returns a copy of the data in
a new List.

 public static List<IPropertyInfo> GetRegisteredProperties(Type objectType)
 {
 var list = GetPropertyListCache(objectType);
 lock (list)
 return new List<IPropertyInfo>(list);
 }

The original List object is locked to block any RegisterProperty() calls from changing the list
while the items are being copied to the result.

BusinessBase and ReadOnlyBase use the PropertyInfoManager to manage all the details around
tracking the properties registered for each business type.

Field Manager
The field manager is responsible for storing the values of all managed fields for each object instance.
Each BusinessBase and ReadOnlyBase object contains an instance of FieldDataManager, which is
the object responsible for storing the managed field values. These two base classes expose the
FieldDataManager object as a protected property named FieldManager.

Lhotka_1019-1C07.fm Page 252 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 253

FieldManager Property
The BusinessBase and ReadOnlyBase classes expose a protected property named FieldManager to
make the FieldDataManager available to the business object’s code. For example, this code is in
BusinessBase:

 protected FieldManager.FieldDataManager FieldManager
 {
 get
 {
 if (_fieldManager == null)
 {
 _fieldManager = new FieldManager.FieldDataManager(this.GetType());
 UndoableBase.ResetChildEditLevel(
 _fieldManager, this.EditLevel, this.BindingEdit);
 }
 return _fieldManager;
 }
 }

This property is designed to only create an instance of the FieldDataManager on demand. The
idea is that if your business class never uses any managed backing fields, no FieldDataManager object
will be created. I chose to do this to minimize the overhead involved in creating a business object
when managed fields aren’t used.

This does complicate the use of the FieldManager property throughout the rest of BusinessBase
and ReadOnlyBase. For example, BusinessBase includes this code:

 public virtual bool IsDirty
 {
 get {
 return IsSelfDirty || (_fieldManager != null && FieldManager.IsDirty());
 }
 }

A parent object is considered dirty, or changed, if it or any of its child objects have been changed. To
know if the object has been changed, the IsDirty property checks the FieldManager to find out if any
managed fields or child objects have been changed. But before accessing the FieldManager property, it
checks to see if the _fieldManager field is null. This prevents accidental creation of a FieldDataManager
instance when there are no managed fields in the business object.

Getting back to the FieldManager property, you should see that a method called UndoableBase.
ResetChildEditLevel() is called after the FieldDataManager instance is created. Technically, the
FieldDataManager is a child object contained within the business object. Because it is a child object,
its edit level for n-level undo must be kept in sync with the business object itself.

I’ll discuss the concept of edit levels in Chapter 11. For now, it is enough to know that the
ResetChildEditLevel() call ensures that the new child object is in sync with its parent.

FieldDataManager Class
The FieldDataManager class itself is relatively complex. Each instance of this class is a child of a business
object. Also, because the field manager is responsible for storing the values of the business object’s
properties, it must participate in the n-level undo process discussed in Chapter 11. Here’s the decla-
ration of the class:

 [Serializable()]
 public class FieldDataManager : IUndoableObject, IMobileObject

Lhotka_1019-1C07.fm Page 253 Wednesday, October 29, 2008 10:41 AM

254 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

The class is Serializable, because the data it contains may be serialized when the business
object is cloned or moved across the network between a client and application server. It implements
the IUndoableObject interface because it must participate in the n-level undo behaviors covered in
Chapter 11.

■Note The IMobileObject interface exists to support serialization through the MobileFormatter, which is
part of CSLA .NET for Silverlight. CSLA .NET for Silverlight is outside the scope of this book, and IMobileObject
has no impact on how CSLA .NET works within the .NET runtime.

The field manager’s primary job is to maintain the values of all properties that use managed
backing fields. Simplistically, it might seem that you could store these values in a Dictionary, keyed
off the property name. That would work technically, but accessing elements in a Dictionary turns
out to be a relatively slow operation.

■Note My first implementation of the field manager did use a Dictionary, but the performance was too poor,
so I shifted to the implementation I’m discussing here to address the issue.

Instead, the field values are maintained in an array of IFieldData objects.

 private IFieldData[] _fieldData;

I’ll discuss the IFieldData interface later. For now, I want to discuss how the property values are
indexed into this array.

Generating a Consolidated Property List

What algorithm is used to set and get property values from this array in a meaningful manner? In
short, each property is assigned a numeric index value between 0 and the number of properties regis-
tered for the business object type. Assigning these index values is the challenge, and it is complicated
by inheritance.

Earlier in the chapter, I discussed the PropertyInfoManager and how it maintains a list of
IPropertyInfo objects for each business object type. Remember that a business object type might be
a subclass of some other type. It turns out that any level in the inheritance hierarchy might declare a
property and register it by calling RegisterProperty().

This means that to get a consolidated list of all properties declared by a business object, it is
necessary to walk through all the types in the inheritance hierarchy, getting the list of IPropertyInfo
objects for each of the types. Obviously, that process could be relatively expensive, so it is done only
once and the result is cached. FieldDataManager includes a GetConsolidatedList() method that retrieves
the consolidated list of properties if it has already been generated, or calls CreateConsolidatedList()
to create the list.

The CreateConsolidatedList() method is the interesting part of this process, because it
assembles the consolidated list and assigns the numeric index values. Here is the method from
the FieldDataManager class:

Lhotka_1019-1C07.fm Page 254 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 255

 private static List<IPropertyInfo> CreateConsolidatedList(Type type)
 {
 List<IPropertyInfo> result = new List<IPropertyInfo>();
 // get inheritance hierarchy
 Type current = type;
 List<Type> hierarchy = new List<Type>();
 do
 {
 hierarchy.Add(current);
 current = current.BaseType;
 } while (current != null && !current.Equals(typeof(BusinessBase)));
 // walk from top to bottom to build consolidated list
 for (int index = hierarchy.Count - 1; index >= 0; index--)
 result.AddRange(
 PropertyInfoManager.GetPropertyListCache(hierarchy[index]));
 // set Index properties on all unindexed PropertyInfo objects
 int max = -1;
 foreach (var item in result)
 {
 if (item.Index == -1)
 {
 max++;
 item.Index = max;
 }
 else
 {
 max = item.Index;
 }
 }
 // return consolidated list
 return result;
 }

There’s a lot going on here, so let’s break it down. The first step is to get a list of all the types in
this object’s inheritance hierarchy.

 Type current = type;
 List<Type> hierarchy = new List<Type>();
 do
 {
 hierarchy.Add(current);
 current = current.BaseType;
 } while (current != null && !current.Equals(typeof(BusinessBase)));

Since the FieldDataManager and the RegisterProperty() methods are declared in the BusinessBase
class, there’s no sense going any higher than that class. The result of this code is that the hierarchy
field has a list of the types in this inheritance hierarchy, with the top-most base class being the last
item in the list.

The next step is to loop through all those types, getting the list of any registered properties for
each type. This is done from top to bottom, so the deepest base class is processed first.

 for (int index = hierarchy.Count - 1; index >= 0; index--)
 result.AddRange(
 PropertyInfoManager.GetPropertyListCache(hierarchy[index]));

Lhotka_1019-1C07.fm Page 255 Wednesday, October 29, 2008 10:41 AM

256 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

Remember that the registered properties for each type are stored in sorted order, so this algo-
rithm guarantees that you end up with a consolidated list in the result field, where the IPropertyInfo
objects are sorted within each type, and where the list starts with the deepest base type and moves
out to end with the actual business object type.

Since the order is known and consistent in all cases, it is then possible to loop through all the
IPropertyInfo objects and assign them a numeric index value, starting at 0 and counting up.

 int max = -1;
 foreach (var item in result)
 {
 if (item.Index == -1)
 {
 max++;
 item.Index = max;
 }
 else
 {
 max = item.Index;
 }
 }

Of course, the value is only set if it hasn’t been set to start with. In the PropertyInfo class, the
index value is initialized to -1, and this loop only changes the value if it is still set to that initial default.
This is important, because a given base class could be the base class for numerous business classes,
and the index values for that base class should only be set once.

The end result of this work is that there’s a consolidated list of all registered properties for the
business object type, that those properties are in a consistent order, and that each IPropertyInfo
object has a unique numeric index value that you can use to index into the array of IFieldData objects
where the actual object’s field data is stored.

IFieldData and IFieldData<T> Interfaces

Each field value is stored in an object that implements the IFieldData interface. In other words, each
field value is stored in an object that maintains the field value, along with some metadata about the
field value.

That interface is declared like this:

 public interface IFieldData : ITrackStatus
 {
 string Name { get; }
 object Value { get; set; }
 void MarkClean();
 }

This interface ensures that each field is stored in an object that exposes the name of the field and
the field’s value and allows the field to be marked as being unchanged.

This interface inherits from ITrackStatus, which I’ll discuss in Chapter 6 and will cover in depth
in Chapter 8. The result is that any IFieldData is guaranteed to expose status tracking properties
such as IsDirty and IsValid.

There’s also a generic version of the interface.

 public interface IFieldData<T> : IFieldData
 {
 new T Value { get; set; }
 }

Lhotka_1019-1C07.fm Page 256 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 257

This generic interface simply extends the interface with a strongly typed Value property that
replaces the loosely typed one.

The reason for the generic interface is performance. Most field values are value types, such as
int, float, and DateTime. If you store such values in a field of type object, .NET will do what is called
boxing and unboxing, meaning that the value will be converted into and out of being an object rather
than being a simple value type.

The field manager always attempts to store values in an IFieldData<T> first, only falling back to
an IFieldData if necessary. This helps avoid the cost of boxing and unboxing value types.

FieldData<T> Class

Now that you’ve seen the IFieldData and IFieldData<T> interfaces, it should come as no surprise
that the framework includes a default implementation. Only IFieldData<T> is implemented in the
framework, because the field manager always stores values using a strongly typed approach.

The primary purpose of the FieldData class is to store a field value, along with important meta-
data about that field. In particular, it also stores the field’s name, type, and a flag indicating whether
the field has been changed.

The implementation provided by FieldData is designed for performance over advanced func-
tionality. For example, it determines whether a field has been changed by maintaining a simple flag
that is set to true any time the value is changed.

 public virtual T Value
 {
 get
 {
 return _data;
 }
 set
 {
 _data = value;
 _isDirty = true;
 }
 }

Even if the field is reset later to its original value, it is considered to have changed. While this is
somewhat simplistic, it is also fast and minimizes resource overhead. The primary alternative would
be for the object to maintain a copy of the field’s original value so it can compare any new value to
that original value to decide whether IsDirty should return true or false. Obviously, that would
double the amount of memory required by each FieldData object and would double the amount of
data transferred across the network in client/server scenarios.

■Note As an extensibility point, it is possible to create your own implementations of IFieldData or IFieldData<T>
to replace the default behaviors shown here. For example, you might do this if you want to store the original value
of a field and replace the default IsDirty behavior to compare against that value.

You should now understand that the FieldDataManager maintains a list of field values in an array
of IFieldData, where the objects are of type FieldData<T>. To conclude this topic, I want to discuss
how framework classes retrieve and set the field values.

Lhotka_1019-1C07.fm Page 257 Wednesday, October 29, 2008 10:41 AM

258 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

Getting Field Values

The FieldDataManager class exposes a GetFieldData() method that other framework classes can use
to retrieve field values.

 internal IFieldData GetFieldData(IPropertyInfo prop)
 {
 try
 {
 return _fieldData[prop.Index];
 }
 catch (IndexOutOfRangeException ex)
 {
 throw new InvalidOperationException(Resources.PropertyNotRegistered, ex);
 }
 }

This method simply uses the index from the IPropertyInfo parameter to find and return the
IFieldData object from the array.

The interesting part of this method is the exception handling. Notice how any
IndexOutOfRangeException is converted into the more useful InvalidOperationException, with the
default message text of “One or more properties are not registered for this type.” The most common
issue people face when using managed fields is that they register the property incorrectly. The normal
result would be an unintuitive IndexOutOfRangeException, so this code ensures that the business
developer will get a more useful exception and message.

A field value is retrieved because BusinessBase or ReadOnlyBase needs the value. This means that
GetFieldData() is invoked from a GetProperty() or ReadProperty() method in one of those classes.
For example, here’s the ReadProperty() method in BusinessBase, with the call to GetFieldData() and
related code highlighted:

 protected P ReadProperty<P>(PropertyInfo<P> propertyInfo)
 {
 P result = default(P);
 FieldManager.IFieldData data = FieldManager.GetFieldData(propertyInfo);
 if (data != null)
 {
 FieldManager.IFieldData<P> fd = data as FieldManager.IFieldData<P>;
 if (fd != null)
 result = fd.Value;
 else
 result = (P)data.Value;
 }
 else
 {
 result = propertyInfo.DefaultValue;
 FieldManager.LoadFieldData<P>(propertyInfo, result);
 }
 return result;
 }

The GetFieldData() method is called to get the IFieldData object from the field manager. Assuming
there is a corresponding field, the code then attempts to cast the result to an IFieldData<P> to use the
strongly typed interface.

Lhotka_1019-1C07.fm Page 258 Wednesday, October 29, 2008 10:41 AM

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 259

 FieldManager.IFieldData<P> fd = data as FieldManager.IFieldData<P>;
 if (fd != null)
 result = fd.Value;

This is always the case when using the default FieldData<T> type provided by CSLA .NET, so the
field value will be returned without boxing or unboxing.

If a person has implemented his own IFieldData that doesn’t use the generic interface, then the
boxed value must be converted to the right type and returned.

 else
 result = (P)data.Value;

BusinessBase and ReadOnlyBase use this technique when they need to retrieve managed field values.

Setting Field Values

FieldDataManager has two SetFieldData() methods: one generic and one not. The default is to use
the generic overload, which looks like this:

 internal void SetFieldData<P>(IPropertyInfo prop, P value)
 {
 var field = GetOrCreateFieldData(prop);
 var fd = field as IFieldData<P>;
 if (fd != null)
 fd.Value = value;
 else
 field.Value = value;
 }

This code retrieves (or creates) the IFieldData object from the array, then attempts to cast it to
an IFieldData<T>. Normally this will succeed, because the storage object is a FieldData<T>. It’s then
possible to store the field value without boxing or unboxing.

The other overload is loosely typed, so it would incur boxing and unboxing costs. Even more, it
will do type coercion if needed.

 internal void SetFieldData(IPropertyInfo prop, object value)
 {
 Type valueType;
 if (value != null)
 valueType = value.GetType();
 else
 valueType = prop.Type;
 value = Utilities.CoerceValue(prop.Type, valueType, null, value);
 var field = GetOrCreateFieldData(prop);
 field.Value = value;
 }

This overload accepts the input value, then uses the CoerceValue() method to convert the value
to the type expected by the field. Normally, you would expect that the inbound value is the same type
(in which case CoerceValue() would do no work), but it is possible for a business object author to
provide a value of some other type. This helps ensure that the value is converted to the right type
before it is stored.

Only BusinessBase supports read-write properties, so only BusinessBase calls these methods.
For example, here’s the LoadProperty() method from BusinessBase:

Lhotka_1019-1C07.fm Page 259 Wednesday, October 29, 2008 10:41 AM

260 CH AP T E R 7 ■ P R O PE R TY DE C L AR A T I O N S

 protected void LoadProperty<P>(PropertyInfo<P> propertyInfo, P newValue)
 {
 try
 {
 P oldValue = default(P);
 var fieldData = FieldManager.GetFieldData(propertyInfo);
 if (fieldData == null)
 {
 oldValue = propertyInfo.DefaultValue;
 fieldData = FieldManager.LoadFieldData<P>(propertyInfo, oldValue);
 }
 else
 {
 var fd = fieldData as FieldManager.IFieldData<P>;
 if (fd != null)
 oldValue = fd.Value;
 else
 oldValue = (P)fieldData.Value;
 }
 LoadPropertyValue<P>(propertyInfo, oldValue, newValue, false);
 }
 catch (Exception ex)
 {
 throw new PropertyLoadException(
 string.Format(Properties.Resources.PropertyLoadException,
 propertyInfo.Name, ex.Message));
 }
 }

The majority of this method is centered around retrieving the value from the field manager. It
calls GetFieldData() to get the IFieldData object, and then it sets the oldValue field either to some
default value or to the value retrieved from the field manager.

All that work is in preparation for a call to LoadPropertyValue(), which does the real work. The
complex LoadPropertyValue() method implements the flowchart shown earlier in Figure 7-2. You
can look at the full code from the Source Code/Download area of the Apress website
(www.apress.com). The key thing to recognize is that it ultimately calls the SetFieldData() method
from the field manager:

 FieldManager.SetFieldData<P>(propertyInfo, newValue);

Throughout the entire process, the input value is strongly typed, including during the call to the
field manager and storage in the FieldData<T> object.

You may be wondering, then, where that non-generic SetFieldData() overload is invoked. It is
invoked from a non-generic overload of SetProperty() implemented in BusinessBase.

 protected void SetProperty(IPropertyInfo propertyInfo, object newValue)
 {
 FieldManager.SetFieldData(propertyInfo, newValue);
 }

This overload of SetProperty() exists to support scenarios in which the business developer is
loading the fields of the object from an external data source, such as an XML file or database. In that
case, the developer might be looping through all the registered properties, loading the field data for
each one, and would be unable to use a generic method in that case. Additionally, the input values

Lhotka_1019-1C07.fm Page 260 Wednesday, October 29, 2008 10:41 AM

http://www.apress.com

CH A PT E R 7 ■ P R O P E R TY DE CL A R AT IO N S 261

may or may not be an exact match for the type of the field, which is why it is so important that the
SetFieldData() method call CoerceValue() to convert the value to the right type.

At this point, you should have an understanding of how managed backing fields are implemented,
including their storage in IFieldData objects, which are managed by the FieldDataManager and
consumed in BusinessBase and ReadOnlyBase.

Conclusion
In this chapter, I discussed the options available for declaring and working with properties on your
editable and read-only business objects. You should now understand how the framework handles
both private backing fields and managed backing fields.

Chapters 8–16 will continue the implementation discussion by providing more detail about the
implementation of each major framework feature. From Chapter 17 on, the focus will be on building
the simple business application designed in Chapter 3, to illustrate how you can use the classes in the
framework to build applications based on business objects.

Lhotka_1019-1C07.fm Page 261 Wednesday, October 29, 2008 10:41 AM

Lhotka_1019-1C07.fm Page 262 Wednesday, October 29, 2008 10:41 AM

263

■ ■ ■

C H A P T E R 8

Object Status Management

The next topic I want to discuss in the implementation of CSLA .NET is how editable objects manage
status information. Editable business objects maintain a set of consistent status information. Manage-
ment of these values is mostly automated by BusinessBase, BusinessListBase, and the data portal.

Object Status Properties
All editable business objects should keep track of whether the object has just been created, whether
its data has been changed, or whether it has been marked for deletion. Using the validation rules
functionality, the object can also keep track of whether it’s valid. Table 8-1 lists the object status
properties in BusinessBase and BusinessListBase.

Table 8-1. Object Status Properties

Property Description

IsNew Indicates whether the object’s primary identifying value in memory
corresponds to a primary key in a database—if not, the object is new

IsSelfDirty Indicates whether the object’s data in memory is known to be different from
data in the database—if different, the object is dirty

IsDirty Indicates whether the object itself has been changed, or if any of its child
objects have been changed

IsSelfValid Indicates whether the object currently has any broken validation rules—
if so, the object is not valid

IsValid Indicates whether the object itself is valid, and whether all its child objects
are also valid

IsSavable Indicates whether the object can be saved by combining IsValid, IsDirty,
authorization, and edit level, and whether there are any outstanding async
validation rules running

IsDeleted Indicates whether the object is marked for deletion

Lhotka_1019-1C08.fm Page 263 Wednesday, October 29, 2008 10:42 AM

264 CH AP T E R 8 ■ O B J E CT S TA TU S M A N AG E M E N T

ITrackStatus Interface
In Chapter 6 I briefly discussed the ITrackStatus interface from the Csla.Core namespace. This interface
is implemented by BusinessBase and BusinessListBase, allowing your code to gain access to the
object status values without worrying about the specific object type:

 public interface ITrackStatus
 {
 bool IsValid { get; }
 bool IsSelfValid { get; }
 bool IsDirty { get; }
 bool IsSelfDirty { get; }
 bool IsDeleted { get; }
 bool IsNew { get; }
 bool IsSavable { get; }
 }

This interface is used within CSLA .NET itself, but is also available to business object and UI
framework authors.

I will now discuss the concepts behind an object being new, dirty, valid, and marked for deletion.

IsNew
When an object is “new,” it means that the object exists in memory but not in the database or other
persistent store. If the object’s data resides in the database, the object is considered to be “old.” I
typically think of it this way: if the primary key value in the object corresponds to an existing primary
key value in the database, the object is old; otherwise it is new.

The value behind the IsNew property is stored in an _isNew field. When an object is first created,
this value defaults to the object being new:

 private bool _isNew = true;

The IsNew property simply exposes this value:

 [Browsable(false)]
 public bool IsNew
 {
 get { return _isNew; }
 }

The property is adorned with the Browsable attribute from the System.ComponentModel namespace.
This attribute tells data binding not to automatically bind this property. Without this attribute, data
binding would automatically display this property in grids and on forms, and typically, this property
shouldn’t be displayed. This attribute is used on other properties in BusinessBase as well.

MarkOld Method

If the object is then loaded with data from the database, the _isNew field is set to false, through a
protected MarkOld() method:

 protected virtual void MarkOld()
 {
 _isNew = false;
 MarkClean();
 }

Lhotka_1019-1C08.fm Page 264 Wednesday, October 29, 2008 10:42 AM

CH AP T E R 8 ■ OB J E CT ST AT U S M AN AG E M E N T 265

Notice that this process also sets the object to a “clean” status—a concept discussed later in this
chapter when we look at the IsDirty property. When an object’s data has just been loaded from the
database, it is safe to assume that the object’s data matches the data in the database and has not been
changed and thus is “clean.”

MarkNew Method

There’s also a corresponding MarkNew() method:

 protected virtual void MarkNew()
 {
 _isNew = true;
 _isDeleted = false;
 MarkDirty();
 }

These methods are normally called automatically by the data portal through the IDataPortalTarget
interface, but since they are protected they are available to the business object author as well. This
allows the business object to change its own state to handle those rare cases where the default behavior
is inappropriate.

Knowing whether an object is new or old allows for implementation of the data portal in Chapter 15.
The IsNew property will control the choice of whether to insert or update data into the database.

Sometimes, the IsNew property can be useful to the UI developer as well. Some UI behaviors
may be different for a new object than for an existing object. The ability to edit the object’s primary
key data is a good example; this is often editable only up to the point that the data has been stored in
the database. When the object becomes “old,” the primary key is fixed.

IsSelfDirty
An object is considered to be “dirty,” or changed, when the values in the object’s fields do not match
the values in the database. If the values in the object’s fields do match the values in the database, the
object is not dirty. It is virtually impossible to always know whether the object’s values match those
in the database, so the implementation shown here acts on a “best guess.” The implementation relies on
the business developer to indicate when an object has been changed and thus has become dirty.

A similar but related concept is that an object is considered dirty if it or any of its child objects
have been changed. That concept is reflected by the IsDirty property, which is different from
IsSelfDirty that reflects the status of only this specific object (not counting its child objects).

The current status of the value is maintained in a field:

 private bool _isDirty = true;

The value is then exposed as a property:

 [Browsable(false)]
 public virtual bool IsSelfDirty
 {
 get { return _isDirty; }
 }

Notice that this property is marked as virtual. This is important because sometimes a business
object isn’t simply dirty because its data has changed. In this case, the business developer will need
to override the IsSelfDirty property to provide a more sophisticated implementation.

Lhotka_1019-1C08.fm Page 265 Wednesday, October 29, 2008 10:42 AM

266 CH AP T E R 8 ■ O B J E CT S TA TU S M A N AG E M E N T

■Note While changing the behavior of IsSelfDirty is a rare scenario, the feature was requested numerous
times by the community and so the property was made virtual.

The IsSelfDirty property defaults to true because a new object’s field values won’t correspond
to values in the database.

MarkClean Method

If the object’s values are subsequently loaded from the database, the _isDirty value is changed to
false when MarkOld() is called because MarkOld() calls a MarkClean() method:

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected void MarkClean()
 {
 _isDirty = false;
 if (_fieldManager != null)
 FieldManager.MarkClean();
 OnUnknownPropertyChanged();
 }

This method not only sets the _isDirty value to false but also calls MarkClean() on the FieldManager
to mark all the fields it contains as being unchanged. Once the object and its fields are marked as
unchanged, this method calls the OnUnknownPropertyChanged() method implemented in Csla.Core.
BindableBase to raise the PropertyChanged event for all object properties. This notifies data binding
that the object has changed, so WPF and Windows Forms can refresh the display for the user. I discuss
the BindableBase class and data binding in Chapter 10.

MarkDirty Method

There’s a corresponding MarkDirty() method as well. This method is called from various points in
an object’s lifetime, including any time a property value is changed or when the MarkNew() method
is called. When a property value is changed, a specific PropertyChanged event is raised for that property.

If MarkDirty() is called at other times, when a specific property value isn’t changed, the
PropertyChanged event for all object properties should be raised. That way, data binding is notified
of the change if any object property is bound to a UI control.

To be clear, the goal is to ensure that at least one PropertyChanged event is raised any time the
object’s state changes. If a specific property is changed, the PropertyChanged event should be raised
for that property. But if there’s no way to tell which properties are changed (like when the object is
persisted to the database), there’s no real option but to raise PropertyChanged for every property.

Implementing this requires a couple of overloads of the MarkDirty() method:

 protected void MarkDirty()
 {
 MarkDirty(false);
 }

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected void MarkDirty(bool suppressEvent)
 {
 _isDirty = true;
 if (!suppressEvent)
 OnUnknownPropertyChanged();
 }

Lhotka_1019-1C08.fm Page 266 Wednesday, October 29, 2008 10:42 AM

CH AP T E R 8 ■ OB J E CT ST AT U S M AN AG E M E N T 267

The first overload can be called by a business developer if she wants to manually mark the object
as changed. This is intended for use when unknown properties may have changed.

PropertyHasChanged Method

The second overload is called by the PropertyHasChanged() method:

 protected virtual void PropertyHasChanged(string propertyName)
 {
 MarkDirty(true);
 var propertyNames = ValidationRules.CheckRules(propertyName);
 if (ApplicationContext.PropertyChangedMode ==
 ApplicationContext.PropertyChangedModes.Windows)
 OnPropertyChanged(propertyName);
 else
 foreach (var name in propertyNames)
 OnPropertyChanged(name);
 }

The PropertyHasChanged() method is called by the SetProperty() methods discussed in Chapter 7
to indicate that a specific property has changed. Notice that in this case, any validation rules for the
property are checked (the details on this are discussed in Chapter 11).

■Tip This method is virtual, allowing you to add extra steps to the process if needed. Additionally, this means
you can override the behavior to implement field-level dirty tracking if desired.

Then the object is marked as being dirty by raising the PropertyChanged event for the specific
property that is changed. This isn’t as simple as I would like because the code needs to behave differ-
ently when used by WPF as opposed to any other UI technology such as Windows Forms or Web
Forms. Since there’s no way to automatically detect whether this object is being used by WPF, there’s
a configuration switch the business developer can set to indicate how this method should behave.

Configuring the PropertyChangedMode

The Csla.ApplicationContext.PropertyChangedMode setting can be configured through the applica-
tion’s config file or in code.

In code, the UI developer will typically set the value by running the following line of code exactly
once as the application starts up:

 Csla.ApplicationContext.PropertyChangedMode =
 Csla.ApplicationContext.PropertyChangedModes.Xaml;

This only needs to be done in a WPF application, as the default is Windows, which is the correct
setting for any non-WPF application.

The value can also be set in the application’s app.config file by adding the following element to
the <appSettings> element:

 <add key="CslaPropertyChangedMode" value="Xaml" />

Either way, the result is that the PropertyChanged events are raised as required by WPF rather
than as needed for Windows Forms or Web Forms.

Lhotka_1019-1C08.fm Page 267 Wednesday, October 29, 2008 10:42 AM

268 CH AP T E R 8 ■ O B J E CT S TA TU S M A N AG E M E N T

Raising Events for WPF

In WPF, when a PropertyChanged event is handled by data binding, only the control(s) bound to that
specific property are refreshed in the UI. This makes a lot of sense but causes a bit of complexity.

When a property is changed it triggers the execution of the business and validation rules asso-
ciated with that property (see Chapter 11 for details). It also triggers the execution of rules associated
with dependent properties. This means that changing one property can execute rules for multiple
properties.

When a validation rule fails, the UI will display something to the user indicating that the value
is invalid. WPF data binding knows to change the display for a control because it handles the
PropertyChanged event for the property to which the control is data bound.

If the only PropertyChanged event raised is for the property that is changed, any broken valida-
tion rules for dependent properties will be ignored by data binding and won’t be visible to the user.

Notice that the CheckRules() method call returns an array containing the names of all the properties
for which business or validation rules are executed. This allows the PropertyHasChanged() method to
raise PropertyChanged events for all those property names, not just for the property that is actually
changed. The result is that broken validation rules are reflected in the UI, even for properties other
than the one that is actually changed.

Raising Events for Windows Forms

In Windows Forms, data binding works differently. When a PropertyChanged event is handled by
Windows Forms data binding, all controls bound to this business object are refreshed in the UI.
Any single PropertyChanged event refreshes all the controls in the UI. This means that the fewer
PropertyChanged events raised the better because each one causes a refresh of the UI.

For other technologies, such as Web Forms, the PropertyChanged event isn’t used by data binding
at all. But it is still important to raise the event because custom UI code often listens for this event so
it knows that the object has been changed. Since most of this custom UI code was written before
WPF, it tends to expect the Windows Forms–friendly behavior rather than the WPF-friendly behavior.

To this end, the default behavior is to raise only one PropertyChanged event for the property that
is actually changed. This is true even if multiple properties have their validation rules run as a result
of the change.

The final result is that the property’s validation rules are checked, the IsDirty property is set to
true, and the appropriate PropertyChanged events are raised.

IsDirty
You’ve seen how each individual business object manages its own IsSelfDirty property. When an
object is a parent, things are slightly more complex. This is because a parent is considered to be
changed if its fields have changed or if any of its child objects have been changed.

This is important because the IsDirty property is used by the data portal to optimize which
objects to update into the database. If an object hasn’t been changed, there’s no sense trying to
update the database with the values it already has. But consider the case of something like a parent
SalesOrder object that contains a list of child LineItem objects. Even if users do not change the SalesOrder
itself, if they change the LineItem objects, the object graph as a whole must be considered to have
changed. When the UI code calls _salesOrder.Save(), it is reasonable to expect that the changed
LineItem object (a child of the SalesOrder object) will be saved.

The IsDirty property makes it easy for the data portal code to determine whether the object
graph has been changed because it consolidates the object’s IsSelfDirty value with the IsDirty
values of all child objects:

Lhotka_1019-1C08.fm Page 268 Wednesday, October 29, 2008 10:42 AM

CH AP T E R 8 ■ OB J E CT ST AT U S M AN AG E M E N T 269

 [Browsable(false)]
 public virtual bool IsDirty
 {
 get { return IsSelfDirty || (_fieldManager != null && FieldManager.IsDirty()); }
 }

As discussed in Chapter 7, the FieldManager is used to determine whether any child objects
contained by this object have been changed.

■Note If you do not use managed backing fields to store your child object references, you’ll need to override this
method to also check the IsDirty status of your child objects. I recommend always using managed backing fields
for child references so you don’t need to worry about this issue.

Where IsSelfDirty provides the status for one object, IsDirty is often more useful because it
provides the status for the object and all its child objects.

IsSelfValid
An object is considered to be valid if it has no currently broken validation rules. The Csla.Validation
namespace is covered in Chapter 11 and provides management of the business rules. The IsSelfValid
property merely exposes a flag indicating whether the object currently has broken rules or not.

There’s also an IsValid property that reflects whether the current object, or any of its child objects,
are invalid.

Here’s the IsSelfValid code, which returns a value for only this object, not counting its child
objects:

 [Browsable(false)]
 public virtual bool IsSelfValid
 {
 get { return ValidationRules.IsValid; }
 }

As with IsSelfDirty, this property is marked with the Browsable attribute so data binding defaults
to ignoring the property.

There are no methods to directly control whether an object is valid. The validity of an object is
managed by the business and validation rules subsystem discussed in Chapter 11. However, this
method is virtual, so it is possible to replace or extend the way CSLA .NET manages the concept of
validity if you so desire.

IsValid
While IsSelfValid indicates the validity of a specific object, the true validity of an object must also
include the validity of any child objects. Even if an object itself is valid, if it contains invalid child
objects, the object graph as a whole must be considered invalid.

The IsValid property combines the IsSelfValid result with the IsValid results of any child
objects contained by this object:

Lhotka_1019-1C08.fm Page 269 Wednesday, October 29, 2008 10:42 AM

270 CH AP T E R 8 ■ O B J E CT S TA TU S M A N AG E M E N T

 [Browsable(false)]
 public virtual bool IsValid
 {
 get
 {
 return IsSelfValid && (_fieldManager == null || FieldManager.IsValid());
 }
 }

Again, the FieldManager is used to determine whether any child objects are invalid. The result is
that a business object is considered valid only if it, and all its child objects, are valid.

IsSavable
An object should only be saved to the database if it is valid and its data has changed and there are no
outstanding asynchronous validation rules executing and the current user is authorized to update
the object.

The IsValid property indicates whether the object is valid, and the IsValidating property indicates
whether there are any outstanding asynchronous validation rules executing. The IsDirty property indi-
cates whether the object’s data has changed. The authorization rules subsystem is discussed in
Chapter 12.

The IsSavable property is a simple helper to combine these concepts into a single property:

 [Browsable(false)]
 public virtual bool IsSavable
 {
 get
 {
 bool auth;
 if (IsDeleted)
 auth = Csla.Security.AuthorizationRules.CanDeleteObject(this.GetType());
 else if (IsNew)
 auth = Csla.Security.AuthorizationRules.CanCreateObject(this.GetType());
 else
 auth = Csla.Security.AuthorizationRules.CanEditObject(this.GetType());
 return (auth && IsDirty && IsValid && !ValidationRules.IsValidating);
 }
 }

The authorization code is interesting because it relies on the state of the object to decide which
type of authorization is required. For example, if the IsDeleted property returns true, the object is
marked for deletion and so the delete authorization is checked.

Assuming the user is authorized, the code makes sure the object has been changed and is valid
and that there are no outstanding asynchronous validation rules executing.

The primary purpose for this property is to allow a UI developer to enable or disable a Save
button (or similar UI element) such that the button is only enabled if the object can be saved. For
example, it is used by the CslaDataProvider control to automatically enable and disable controls in
WPF, as discussed in Chapter 19.

Lhotka_1019-1C08.fm Page 270 Wednesday, October 29, 2008 10:42 AM

CH AP T E R 8 ■ OB J E CT ST AT U S M AN AG E M E N T 271

IsDeleted
The CSLA .NET framework provides for deferred or immediate deletion of an object. The immediate
approach directly deletes an object’s data from the database without first loading the object into
memory. It requires prior knowledge of the object’s primary key value(s) and is discussed in Chapters 4
and 5.

The deferred approach requires that the object is loaded into memory. The user can then view
and manipulate the object’s data and may decide to delete the object, in which case the object is
marked for deletion. The object is not immediately deleted but rather it is deleted if and when the
object is saved to the database. At that time, instead of inserting or updating the object’s data, it is
deleted from the database.

This approach is particularly useful for child objects in a collection. In such a case, the user may
be adding and updating some child objects at the same time as deleting others. All the insert, update,
and delete operations occur in a batch when the collection is saved to the database.

Whether an object is marked for deletion is tracked by the _isDeleted field and exposed through
an IsDeleted property:

 private bool _isDeleted;

 [Browsable(false)]
 public bool IsDeleted
 {
 get { return _isDeleted; }
 }

Like the other status properties, this one cannot be data bound.

MarkDeleted Method

As with IsSelfDirty, there’s a protected method to allow the object to be marked for deletion when
necessary:

 protected void MarkDeleted()
 {
 _isDeleted = true;
 MarkDirty();
 }

Of course, marking the object as deleted is another way of changing its data, so the MarkDirty()
method is called to indicate that the object’s state has been changed.

Delete and DeleteChild Methods

The MarkDeleted() method is called from the Delete() and DeleteChild() methods. The Delete()
method is used to mark a non-child object for deferred deletion, while DeleteChild() is called by a
parent object (such as a collection) to mark the child object for deferred deletion:

 public void Delete()
 {
 if (this.IsChild)
 throw new NotSupportedException(Resources.ChildDeleteException);

 MarkDeleted();
 }

Lhotka_1019-1C08.fm Page 271 Wednesday, October 29, 2008 10:42 AM

272 CH AP T E R 8 ■ O B J E CT S TA TU S M A N AG E M E N T

 internal void DeleteChild()
 {
 if (!this.IsChild)
 throw new NotSupportedException(Resources.NoDeleteRootException);

 MarkDeleted();
 }

Both methods do the same thing: call MarkDelete(). But Delete() is scoped as public and can
only be called if the object is not a child object (a topic covered in the discussion about parent and
child object behaviors in Chapter 9). Conversely, DeleteChild() can only be called if the object is a
child. Since it is intended for use by BusinessListBase, it is scoped as internal.

At this point, you should have a good understanding of the various object status values managed by
BusinessBase and BusinessListBase.

Conclusion
In this chapter, I continued discussing the implementation of the CSLA .NET framework. This chapter
covered the object status values maintained by editable objects, allowing the rest of CSLA .NET, your
business code, and your UI code to interact with your objects in a standardized manner.

All editable objects maintain the following status values:

• IsSelfDirty

• IsDirty

• IsSelfValid

• IsValid

• IsNew

• IsSavable

• IsDeleted

Some of these values are important to parent-child relationships, as discussed in Chapter 9.
Others rely on validation and authorization, as discussed in Chapters 11 and 12. And many of them
are used by the data portal as discussed in Chapter 15.

Lhotka_1019-1C08.fm Page 272 Wednesday, October 29, 2008 10:42 AM

273

■ ■ ■

C H A P T E R 9

Parent-Child Relationships

In Chapter 6, I started walking through the framework implementation. Chapter 7 covers how to
declare properties, including properties that reference child objects, and Chapter 8 focuses on how
object status values are tracked, including some interaction with child objects.

The idea of child objects is introduced in Chapter 3. A child object is contained by a parent object.
Conversely, a parent object is an object that contains one or more child objects. The top-most parent
of a group of objects is the root object, and that is the object that can be directly retrieved or updated
into the database. Any child objects contained by that root object are retrieved or updated at the same
time, a topic I cover in Chapter 15.

While many of the details of parent and child objects are covered in other chapters, this chapter
recaps the concepts, consolidating them into one location for easy reference. First I talk about child
properties of an editable object, then I talk about how editable collections work because they contain
an entire list of child objects.

Parent Editable Object
One common scenario is to have an editable object be a parent of other objects. In many cases, the
root object is also an editable object, as shown in Figure 9-1.

Figure 9-1. Parent with single child

A parent object may also contain a child collection, as shown in Figure 9-2.
In Figure 9-2 there are actually two parent objects. The Root object is the parent of ChildList,

which is the parent of several Child objects. I discuss parent collections later in the chapter in the
“Parent Editable Collection” section. For now let’s focus on the editable object as a parent.

Lhotka_1019-1C09.fm Page 273 Tuesday, November 4, 2008 3:45 PM

274 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

Figure 9-2. Parent with single collection

Parent-Child Interaction
In Chapter 7, I discuss the various options for declaring properties, including the use of private and
managed backing fields. When declaring a property that contains a reference to a child object I strongly
recommend always using a managed backing field, even if you are using private backing fields for
your other properties. The reason for this is that using a managed backing field allows CSLA .NET to
help you properly handle the child reference.

Table 9-1 lists the details managed for you by CSLA .NET.

If you don’t use a managed backing field, you assume responsibility for handling all these details.

Table 9-1. Parent-Child Details Managed by CSLA .NET

Method Description

IsValid A parent object is only valid if it and all its child objects are also valid.

IsDirty A parent object is dirty (changed) if it or any of its child objects are dirty.

IsBusy A parent object is busy (has an asynchronous operation running) if it or
any of its child objects are busy.

Changed events When a child object is changed, its changed event (PropertyChanged or
ListChanged) results in the parent raising a ChildChanged event, which
cascades up through the parent-child chain and is raised by every object,
including the root object.

Parent reference All child objects have a reference to their parent, which must be
established when the child is attached to the parent and when the
object graph is deserialized.

N-level undo The edit levels of the parent and child interact with each other as discussed
in Chapter 11.

Lhotka_1019-1C09.fm Page 274 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 275

■Note You can handle all these details manually. Prior to CSLA .NET 3.5, it was necessary to do this in all parent
objects. Forgetting to do one of these steps (or doing one incorrectly) was one of the primary causes of bugs in
pre-3.5 objects.

Each item in Table 9-1 deserves a little discussion.

IsValid and IsDirty Properties

In Chapter 8, I discussed object status values. One important concept is that a parent object is
considered valid or changed based on a combination of its state and the state of its child object(s).

Each editable object has an IsSelfValid property that gets a value, indicating whether that
particular object is valid. The concept of validity is discussed further in Chapter 11.

However, each editable object also has an IsValid property that gets a value indicating whether the
object and its child objects are valid. For IsValid to return true, the object and all its child objects must
be valid. This is handled through the implementation of IsValid and IsSelfValid in BusinessBase,
combined with the FieldDataManager (discussed in Chapter 7), which interrogates all managed
backing fields to find out if they are all valid.

Here’s the IsValid implementation in FieldDataManager:

 public bool IsValid()
 {
 foreach (var item in _fieldData)
 if (item != null && !item.IsValid)
 return false;
 return true;
 }

The validity of simple fields, such as a string or int value, is managed by the business object’s
validation rules, not the specific IsValid value for the field itself. The FieldData object simply returns
true for IsValid at all times. But if the field is a reference to a child object, FieldData delegates the
IsValid call to the actual child object, and so the child object’s validity is what matters.

Here’s the IsValid implementation in FieldData:

 protected virtual bool IsValid
 {
 get
 {
 ITrackStatus child = _data as ITrackStatus;
 if (child != null)
 {
 return child.IsValid;

 }
 else
 {
 return true;
 }
 }
 }

Notice how the ITrackStatus interface is used to detect whether the field’s value is an object
capable of representing its own status values. If the field value can be cast to ITrackStatus, the child
object’s IsValid value is returned; otherwise, true is returned.

Lhotka_1019-1C09.fm Page 275 Tuesday, November 4, 2008 3:45 PM

276 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

The IsDirty property of BusinessBase works exactly the same way, but the rule is slightly different.
An object is considered to be changed, or dirty, if its data has changed or if any one of its child objects
has been changed.

As with IsValid, the IsDirty property in BusinessBase works with FieldDataManager to deter-
mine whether any child objects have been changed. I won’t walk through that code because it is
essentially the same as the IsValid code shown here. You can look in the code from the download to
see how IsDirty is implemented.

ChildChanged Event

When a property of an object is changed, a PropertyChanged event is raised. I discuss the PropertyChanged
event and how it supports data binding in Chapter 10. For now it is enough to know that changing a
property value in an object results in this event being raised.

If the child object is a collection or a list, inheriting from a BusinessListBase, a ListChanged
event is raised when the list changes. This includes changes to properties of child objects contained
in the list. In other words, when an object in the list changes, it raises a PropertyChanged event, which
is handled by the list and results in a ListChanged event being raised. Again, I discuss ListChanged
and data binding more in Chapter 10.

There are cases where the parent of an object needs to know that its child has been changed. For
example, sometimes you’ll have business or validation rules that must run in the parent when a child
is changed.

To address this, BusinessBase includes code to handle the PropertyChanged or ListChanged events
raised by any child objects. When such an event is handled, the result is a call to OnChildChanged(),
which raises a ChildChanged event from the parent.

This means that the author of a parent business object can either override OnChildChanged() or
handle the parent object’s ChildChanged event. Either technique will result in notification that a child
has changed.

The key is that BusinessBase includes code in the LoadPropertyValue() method (discussed in
Chapter 7) to hook the PropertyChanged or ListChanged event of any child object when a reference to
the child object is loaded into a managed backing field.

Also, when an object is serialized and deserialized (which occurs when it is cloned or flows
through the data portal) all event hookups are lost. They must be reestablished when the object is
deserialized, and that occurs in BusinessBase in the FieldDataDeserialized() method, which is
called from the OnDeserializedHandler() method.

In both cases, the events are handled by these two methods in BusinessBase:

 private void Child_PropertyChanged(
 object sender, PropertyChangedEventArgs e)
 {
 OnChildChanged(sender, e, null);
 }

 private void Child_ListChanged(object sender, ListChangedEventArgs e)
 {
 OnChildChanged(sender, null, e);
 }

As you can see, they both call the OnChildChanged() method, which is protected and virtual:

Lhotka_1019-1C09.fm Page 276 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 277

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void OnChildChanged(
 object source,
 PropertyChangedEventArgs propertyArgs,
 ListChangedEventArgs listArgs)
 {
 Csla.Core.ChildChangedEventArgs args =
 new Csla.Core.ChildChangedEventArgs(source, propertyArgs, listArgs);
 if (_childChangedHandlers != null)
 _childChangedHandlers.Invoke(this, args);
 }

This method uses the provided parameter values to create an instance of ChildChangedEventArgs,
which is then used to raise the ChildChanged event.

The event itself is declared using the custom event declaration form:

 [NonSerialized]
 [NotUndoable]
 private EventHandler<Csla.Core.ChildChangedEventArgs>
 _childChangedHandlers;

 public event EventHandler<Csla.Core.ChildChangedEventArgs> ChildChanged
 {
 add
 {
 _childChangedHandlers = (EventHandler<Csla.Core.ChildChangedEventArgs>)
 System.Delegate.Combine(_childChangedHandlers, value);
 }
 remove
 {
 _childChangedHandlers = (EventHandler<Csla.Core.ChildChangedEventArgs>)
 System.Delegate.Remove(_childChangedHandlers, value);
 }
 }

This is substantially more code than a simple event declaration such as this:

 public event EventHandler<Csla.Core.ChildChangedEventArgs> ChildChanged;

The reason for all the extra code is that the backing field for the event needs to be marked as
NonSerialized and NotUndoable. All events on a Serializable object must be marked with NonSerialized.
Failure to do this will result in serialization errors if the event is being handled by a nonserializable
object such as a WPF Form or a Windows Forms Form or a Web Forms Page object. Similarly, any event
declared in an undoable object (one that inherits from UndoableBase or implements IUndoableObject
as discussed in Chapter 13) must mark the backing field as NotUndoable. Failure to do this will result
in undo errors during data binding.

This long form for declaring events allows explicit declaration of the backing field (which is
otherwise autogenerated by the compiler):

 [NonSerialized]
 [NotUndoable]
 private EventHandler<Csla.Core.ChildChangedEventArgs>
 _childChangedHandlers;

Lhotka_1019-1C09.fm Page 277 Tuesday, November 4, 2008 3:45 PM

278 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

This declares a delegate field to manage the event handler references and is normally done by the
compiler. However, since this code is explicit, the declaration can be decorated with the NonSerialized
and NotUndoable attributes. The result is that the ChildChanged event won’t cause problems during
serialization, n-level undo, or data binding.

You should now understand how BusinessBase handles all child PropertyChanged and ListChanged
events and raises a ChildChanged event in response.

Parent Reference

All child objects maintain a reference to their immediate parent object. This reference is declared in
BusinessBase as NonSerialized and NotUndoable:

 [NotUndoable()]
 [NonSerialized()]
 private Core.IParent _parent;

The BinaryFormatter and NetDataContractSerializer can handle circular references in an object
graph, so I could get away without the NonSerialized attribute. However, it has been observed that
circular references in an object graph cause a substantial increase in the size of the byte stream that
contains the serialized data. By using the NonSerialized attribute, I am reducing the size of the seri-
alized data that is often transferred over the network in client/server scenarios.

The NotUndoable attribute is absolutely required. As you’ll see in Chapter 13, the n-level undo
support in CSLA .NET doesn’t handle circular references, so if this attribute is missing, n-level undo
would go into an infinite loop, resulting in a stack overflow exception.

Notice that the field type is IParent from the Csla.Core namespace. All parent objects are required
to implement the IParent interface to enable interaction between the child and the parent. I discuss
IParent later in this chapter.

The Parent property in BusinessBase is of this type as well:

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected Core.IParent Parent
 {
 get { return _parent; }
 }

There’s also a SetParent() method, which is invoked by the parent object to set the reference:

 internal void SetParent(Core.IParent parent)
 {
 _parent = parent;
 }

This method is invoked by LoadPropertyValue() when the child object is set into a managed
backing field. And it is invoked when the parent object is deserialized. Remember that the _parent field
is NonSerialized, so when the child is deserialized the value is null. It must be restored to a meaningful
value once deserialization is complete, and that occurs in the parent object’s FieldDataDeserialized()
method, which is invoked by the OnDeserializedHandler() method.

The result is that a child object can always get a reference to its immediate parent through its
Parent property. This reference is used automatically in some cases, as I discuss later in the "Parent
Editable Collection" section.

Lhotka_1019-1C09.fm Page 278 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 279

N-Level Undo

The n-level undo functionality of CSLA .NET is discussed in detail in Chapter 13. It is also discussed
to some degree in Chapter 10 because n-level undo is used to provide important functionality for
data binding.

There are several points in n-level undo and data binding, where parent and child objects must
interact with each other. I won’t discuss the details here; you can refer to Chapters 10 and 13.

IParent Interface
The IParent interface, declared in Csla.Core, allows a child object to interact with its parent:

 public interface IParent
 {
 void RemoveChild(Core.IEditableBusinessObject child);
 void ApplyEditChild(Core.IEditableBusinessObject child);
 }

The RemoveChild() method is used by the data binding functionality discussed in Chapter 10.
There are scenarios where data binding informs a child object that it has been removed or deleted
and the child then must ask its parent to remove its reference to the child object.

The ApplyEditChild() method is used for interaction with the EditableRootListBase class, again
triggered by data binding, so the parent collection can be notified that a child object’s changes
should be committed.

Perhaps more important than these two methods is the fact that the IParent interface provides
a consistent type that is used by any child object when maintaining a reference to its immediate
parent object.

At this point, you should have a high-level understanding of the features that CSLA .NET auto-
matically provides when a child object reference is contained in a managed backing field. If you
choose to use a private backing field to maintain a child object reference, you should make sure you
replicate these behaviors as part of your implementation. Again, I recommend using managed
backing fields to avoid having to do all that work.

Declaring Child Properties
There are several ways to use a managed backing field to reference a child object, depending on the
specific features you desire. The variations center on how and when the child object is to be created.

You can create the child object as the parent object is created or retrieved from the database.
Alternately you can create the child object on demand, meaning it is created the first time the UI (or
other calling code) accesses the property that exposes the child object. Finally, you can use lazy loading
to retrieve an existing child object in an on-demand manner.

Next I’ll walk through each variation.

Create Child in DataPortal_XYZ Methods

The simplest property declaration is as follows:

 private static PropertyInfo<ChildType> ChildProperty =
 RegisterProperty(new PropertyInfo<ChildType>("Child"));
 public ChildType Child
 {
 get { return GetProperty(ChildProperty); }
 }

Lhotka_1019-1C09.fm Page 279 Tuesday, November 4, 2008 3:45 PM

280 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

This stores the child reference in a managed backing field, which allows the field manager to
automatically take care of all the housekeeping details involved with a child reference.

You should be wondering how the child object is actually created. This code simply returns a
value, but that value must be initialized somewhere.

In Chapter 15 I discuss the data portal and object persistence. One feature of the data portal is
that a root object is created or retrieved in methods you write, named DataPortal_Create() and
DataPortal_Fetch().

The DataPortal_Create() method is invoked by the data portal when your object should initialize
itself with values appropriate for a new object. In many cases, this is where you’d also create a new,
empty instance of your child object:

 protected override void DataPortal_Create()
 {
 LoadProperty(ChildProperty, Child.NewChild());
 base.DataPortal_Create();
 }

The call to ChildType.NewChild() is invoking the child object’s factory method, which is a concept I
discuss in Chapters 4 and 5. It returns a new instance of the child object, which is then loaded into
the property’s managed backing field using the LoadProperty() method.

Similarly, the DataPortal_Fetch() method is invoked by the data portal when your object should
load itself with data from the database. In most cases, this is where you’d also load any child objects
with data from the database as well:

 protected void DataPortal_Fetch(SingleCriteria<RootType, int> criteria)
 {
 using (var ctx = ContextManager<DataContext>.GetManager("MyDatabase"))
 {
 // load root object with data here
 // get data for child here
 LoadProperty(ChildProperty, Child.GetChild(childData));
 }
 }

There’s a lot going on here, much of which is covered in Chapter 15. The important thing to realize
is that the Child.GetChild() method is calling a factory method that creates an instance of the
child object and loads that child object with data from the database. In many cases the data for the child
object(s) is already loaded from the database by the code here in the parent, but that’s not required.

Again, a LoadProperty() method is used to put the resulting child object into the managed backing
field for the property.

The result is that when your root object is created or retrieved, DataPortal_Create() or DataPortal_
Fetch() are invoked, and they both load a child object into the property using the LoadProperty()
method. That value is then available to other business objects and the UI through the public property.

Additionally, any calls to the parent object’s IsValid and IsDirty properties automatically take
into account the IsValid and IsDirty status of your child object. And any change to the child object
that results in a PropertyChanged or ListChanged will cause a ChildChanged event to be raised by
the parent.

Create Child on Demand

It is very common to create a child object in the DataPortal_Fetch() method, so it can be efficiently
loaded with data from the database as the parent object’s data is also loaded. And that’s a great approach.
However, it seems unfortunate that you have to create a DataPortal_Create() method just to create
an empty instance of a new child object. Many objects don’t need to initialize values as they are

Lhotka_1019-1C09.fm Page 280 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 281

created, and so you wouldn’t need to implement DataPortal_Create() at all in that case (because
there’s a default implementation of DataPortal_Create() already provided by BusinessBase).

For the purpose of creating a new child object, you might choose to just create the child object
on demand. In this case, you would not call LoadProperty() in the DataPortal_Create() method, as
shown in the previous section. Instead, you’d enhance the property declaration itself like this:

 private static PropertyInfo<ChildType> ChildProperty =
 RegisterProperty(new PropertyInfo<ChildType>("Child"));
 public ChildType Child
 {
 get
 {
 if (!FieldManager.FieldExists(ChildProperty))
 LoadProperty(ChildProperty, ChildType.NewChild());
 return GetProperty(ChildProperty);
 }
 }

The FieldExists() method returns a value indicating whether this particular managed backing
field exists yet. If it does not yet exist, the LoadProperty() method is called to load the backing field
with a new child, created by the NewChild() factory method. On the other hand, if the managed
backing field does already exist, the existing value is simply returned by the property.

The result of this approach is that a new child object is only created if and when this property is
called the first time. It is created on demand.

This approach is also totally compatible with the idea of loading the child object in DataPortal_
Fetch(). If the child object is created, initialized, and loaded in DataPortal_Fetch(), it will already
exist by the time the property is invoked, and so that existing value is simply returned.

Lazy Load Child

There’s one more variation you can use, which is on-demand retrieval of a child object. This is often
called lazy loading of the child object. The idea here is that you would not create or load the child
object in either DataPortal_Create() or DataPortal_Fetch(). Instead, you create or fetch the child
object on demand in the property itself. There are wider implications here, especially in terms of
how the child class is coded.

Before getting into the child class though, here’s the property declaration in the parent:

 private static PropertyInfo<ChildType> ChildProperty =
 RegisterProperty(new PropertyInfo<ChildType>("Child"));
 public ChildType Child
 {
 get
 {
 if (!FieldManager.FieldExists(ChildProperty))
 if (this.IsNew)
 LoadProperty(ChildProperty, ChildType.NewChild());
 else
 LoadProperty(ChildProperty, ChildType.GetChild(this));
 return GetProperty(ChildProperty);
 }
 }

The basic concept is the same, in that the FieldExists() method is used to detect whether the
child object already exists. If it does not already exist, the child object is created and loaded. But that
process is a little different.

Lhotka_1019-1C09.fm Page 281 Tuesday, November 4, 2008 3:45 PM

282 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

Notice that the parent object’s IsNew property is used to determine whether the parent is a new
object. If the parent is a new object, the child must be new as well, so the NewChild() factory method
is invoked.

However, if the parent object is not new, it was loaded from the database, so it is reasonable to
assume that there is child data in the database as well. So in this case the GetChild() factory method
is called and the parent object is provided as a parameter to that factory.

■Caution Remember that the child object is created the first time the property is accessed. It is easy to acci-
dentally access a property, for example, by data binding the property to a UI. So if you want to use lazy loading, it is
critical that you be very careful about how and when this property is accessed to avoid prematurely triggering lazy
load process.

I won’t fully discuss object persistence, factory methods, and the data portal until Chapter 15,
so you may want to skip ahead and review those concepts, then return to the following discussion.

Enabling Lazy Loading in the Child Class

When using lazy loading, the code in a child class is different from normal. In fact, the child object
will implement the same kind of factory and DataPortal_Fetch() as a root object. And you’ll need to
call MarkAsChild() manually because the data portal won’t know to call it automatically on your behalf.

The child factory method will look like this:

 internal ChildType GetChild(ParentType parent)
 {
 return DataPortal.Fetch<ChildType>(
 new SingleCriteria<ChildType, int>(parent.Id));
 }

The data portal is invoked to retrieve the child object, using properties from the parent object
as criteria. In many cases a child object is loaded based on the parent object’s unique ID value, which
can be used as a foreign key, but the actual criteria values you use will depend on your specific object
and data models.

■Tip Notice that a reference to the parent object is provided as a parameter rather than specific parent properties.
This provides good decoupling between the parent and child because this way the parent has no idea what data is
required by the child’s factory method.

As you’ll see in Chapter 15, the data portal ultimately creates an instance of the object and invokes
the DataPortal_Fetch() method. Normally, a child object wouldn’t implement this method at all,
but when using lazy loading you do implement this method. The method is responsible for loading
the child object with data from the database:

 private void DataPortal_Fetch(SingleCriteria<ChildType, int> criteria)
 {
 MarkAsChild();
 // load child with data from database
 }

Lhotka_1019-1C09.fm Page 282 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 283

The important thing to remember in this case is that you must call MarkAsChild() to indicate
that this is a child object. You must do this manually because the data portal is being used to load the
object here as though it were a root object. The data portal doesn’t know to mark the object as a child
automatically, so you must do it explicitly.

The end result is that the child object is created or retrieved on demand, using lazy loading.
At this point you should understand how an editable object can act as a parent or a child and

how a parent object manages the references to its child objects. In the next section, I discuss how this
works when the parent object is an editable collection.

Parent Editable Collection
Editable collections are created by inheriting from BusinessListBase, as discussed in Chapters 4
and 5. By definition, a collection is a parent because it contains the items in the collection.

To a large degree, the interactions between parent and child objects discussed already in this
chapter also apply when the parent is a collection. For example, the BusinessListBase class imple-
ments the IParent interface. And BusinessListBase calls SetParent() as each child object is added to
the collection or when the collection is deserialized. The same benefits and features I’ve already
discussed apply to collections as well as editable objects.

However, editable collections provide some different behaviors as well, most notably around
how items are deleted from the collection and how child events are cascaded up as ListChanged
events from the collection (especially after deserialization of the collection).

Parent-Child Interaction
The BusinessListBase class provides the same set of behaviors in Table 9-1, earlier in the chapter.
The primary difference in the implementation is that a collection has no intrinsic state of its own.
Instead, its state comes from its child objects. In other words, the collection’s IsValid and IsDirty
properties simply reflect the underlying state of the child objects. For example, a collection is valid
only if all the child objects it contains are valid.

The one big difference between an editable object and an editable collection is in terms of how
ChildChanged events are handled.

ListChanged Event

Whereas an editable object handles any PropertyChanged or ListChanged events from its child objects
and raises a ChildChanged event, an editable collection works a little differently.

An editable collection can only contain editable child objects so only needs to worry about those
objects raising PropertyChanged and ChildChanged events. Any time a child object raises PropertyChanged,
the collection raises a ListChanged event. This is automatic behavior provided by the BindingList<T>
class from the System.ComponentModel namespace. Any time a child object raises a ChildChanged event,
the collection raises its own ChildChanged event, effectively cascading the ChildChanged event up to
each parent until it is raised by the editable root object.

Unfortunately, BindingList<T> doesn’t automatically handle the case where the collection is
serialized and deserialized, which happens when the object is cloned or transferred over the network
in a client/server scenario. When a collection is deserialized, the ListChanged event is no longer auto-
matically raised in response to a child object’s PropertyChanged event.

To overcome this issue, BusinessListBase includes code to hook the PropertyChanged events
from its child objects on deserialization and to raise the ListChanged event just like its base class did
before serialization.

Lhotka_1019-1C09.fm Page 283 Tuesday, November 4, 2008 3:45 PM

284 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

When the collection is deserialized, the formatter invokes OnDeserializedHandler(), which is
implemented in ExtendedBindingList and includes code to hook the PropertyChanged events from
all child objects in the list:

 foreach (T item in this)
 OnAddEventHooksInternal(item);

The OnAddEventHooksInternal() method includes code to hook a number of child object events,
most notably PropertyChanged:

 INotifyPropertyChanged c = item as INotifyPropertyChanged;
 if (c != null)
 c.PropertyChanged += Child_PropertyChanged;

The OnChildChangedInternal() method in BusinessListBase handles each child PropertyChanged
event and raises a corresponding ListChanged event:

 protected internal override void OnChildChangedInternal(
 object sender, ChildChangedEventArgs e)
 {
 if (RaiseListChangedEvents && e.PropertyChangedArgs != null)
 {
 DeferredLoadIndexIfNotLoaded();
 if (_indexSet.HasIndexFor(e.PropertyChangedArgs.PropertyName))
 ReIndexItem((C)sender, e.PropertyChangedArgs.PropertyName);

 int index = IndexOf((C)sender);
 if (index >= 0)
 {
 PropertyDescriptor descriptor =
 GetPropertyDescriptor(e.PropertyChangedArgs.PropertyName);
 if (descriptor != null)
 OnListChanged(new ListChangedEventArgs(
 ListChangedType.ItemChanged,
 index, GetPropertyDescriptor(e.PropertyChangedArgs.PropertyName)));
 else
 OnListChanged(new ListChangedEventArgs(
 ListChangedType.ItemChanged, index));
 return;
 }
 }
 }

There’s code in here for LINQ to CSLA as well, which I discuss in Chapter 14. This method is
invoked by the ExtendedBindingList base class, which contains the code to hook and unhook child
object events as necessary.

I’ve highlighted the code relevant to the event discussion. You might expect that raising a
ListChanged event would be easy, but it turns out to be quite complex. The reason is that the ListChanged
event needs to provide both the index of the changed item and a PropertyDescriptor object for the child
property that is changed.

Lhotka_1019-1C09.fm Page 284 Tuesday, November 4, 2008 3:45 PM

CH AP T E R 9 ■ P AR E N T- C H I L D R E L A T I ON SH IP S 285

Once the index value has been found, a GetPropertyDescriptor() method is called to find the
PropertyDescriptor for the changed child property. Here’s that method:

 private static PropertyDescriptorCollection _propertyDescriptors;

 private PropertyDescriptor GetPropertyDescriptor(string propertyName)
 {
 if (_propertyDescriptors == null)
 _propertyDescriptors = TypeDescriptor.GetProperties(typeof(C));
 PropertyDescriptor result = null;
 foreach (PropertyDescriptor desc in _propertyDescriptors)
 if (desc.Name == propertyName)
 {
 result = desc;
 break;
 }
 return result;
 }

The PropertyDescriptor concept comes from System.ComponentModel and is used extensively by
Windows Forms data binding. This part of .NET is related to reflection but is a separate type system
from reflection itself. Like reflection, however, the type descriptor functionality has a pretty high
performance cost. To minimize the impact, the PropertyDescriptorCollection for the child object
type is cached in a static field, so it is only retrieved once per AppDomain (typically once each time the
application is run).

The PropertyChanged event only provides the name of the changed property, so it is necessary
to loop through all the items in the PropertyDescriptorCollection to find the matching property
name, at which point the resulting PropertyDescriptor can be returned. If no match is found, a null
is returned.

While all this behavior is automatically handled by the BindingList<T> base class, this code is
necessary because BindingList<T> doesn’t handle the case where the collection has been serialized
and deserialized.

Removing Child Objects from the Collection

It is possible to remove an item from the collection. The basic process is handled automatically by
the BindingList<T> base class. However, there are some complications that must be handled by
BusinessListBase. Specifically, any LINQ to CSLA index must be updated and there’s interaction
with the n-level undo behaviors, discussed in Chapter 13.

This last point about n-level undo is the most complex. If changes to a collection can be rolled
back, any removed items must be restored and any newly added items removed.

I’ll leave detailed discussions of LINQ to CSLA and n-level undo to their respective chapters. For
now it is enough to know that the RemoveItem() method, which is a protected method provided by
BindingList<T>, is invoked when a child item is to be removed. This method contains important
code necessary for both LINQ to CSLA and n-level undo.

You should now have an understanding about how an editable collection provides not only the
same parent functionality as an editable object but how it handles the child PropertyChanged events
and must interact with the LINQ to CSLA and n-level undo functionality.

Lhotka_1019-1C09.fm Page 285 Tuesday, November 4, 2008 3:45 PM

286 CH AP T E R 9 ■ P AR E N T- C H I L D R E L AT I ON SH IP S

Conclusion
In this chapter I discussed how CSLA .NET supports important parent-child interactions, including
the following:

• IsValid

• IsDirty

• Change events

• Parent reference

• N-level undo

Chapters 10 through 16 continue the coverage of the implementation of CSLA .NET. Then, from
Chapter 17 on, the focus is on building the simple business application designed in Chapter 3 to illustrate
how the classes in the framework can be used to build applications based on business objects.

Lhotka_1019-1C09.fm Page 286 Tuesday, November 4, 2008 3:45 PM

287

■ ■ ■

C H A P T E R 1 0

Data Binding

Data binding is a powerful concept that is supported by WPF, Windows Forms, and Web Forms. It
is a Microsoft technology that provides an abstract and formal communication layer between the
user interface and the business objects, or between the Interface Control layer and Business layer, to
use the terms from Chapter 1.

It is important to maintain clear separation of concerns between the Interface Control and Busi-
ness layers to avoid having business logic creep into the UI, or UI logic creep into the business objects. If
either of those things occurs, the maintainability of your application will go down, and the cost of
development and maintenance will go up. Having a prebuilt technology like data binding, which
provides a powerful abstraction boundary between the two layers, can help a great deal.

At a very basic level, all .NET objects support data binding. However, to take full advantage of
everything data binding has to offer, objects need to implement a set of interfaces and behaviors,
some of which can be quite complex. I believe the end result is worth it, however, because this complex
behavior can be implemented in a framework like CSLA .NET, so it doesn’t impact your business
objects directly. And with full support for data binding, you’ll need to write a lot less code in the UI,
and that increases the maintainability of any application.

I’ve been referring to data binding as though it were one technology. In reality, it is one concept,
but the technology is somewhat different in WPF, Windows Forms, and Web Forms. Each type of UI
has its own variation of data binding, though in each case the goal and end result are the same: to
provide a clean, abstract way to connect the UI to the underlying business objects.

Of the three, Windows Forms data binding is the most mature and powerful. It turns out that if
your objects support Windows Forms data binding, they automatically do almost everything required by
WPF and Web Forms.

In this chapter, I’ll discuss how the CSLA .NET framework supports data binding, first for Windows
Forms and then for WPF. I’ll wrap up with Web Forms, because it’s the least demanding.

Windows Forms
Windows Forms data binding can interact with nearly any .NET object. However, there is a set of
interfaces that an object can implement to fully support the data binding features. In fact, there’s
one set of interfaces for a simple object, and another set for a collection or list.

I’ll discuss supporting data binding for a single object first, and then I’ll discuss data binding
support for collections and lists. I’ll wrap up this section by discussing some custom controls provided
by CSLA .NET to simplify the use of data binding in Windows Forms.

Object Data Binding
The .NET Framework defines three interfaces in support of data binding that an object should imple-
ment to fully support it. Table 10-1 lists the interfaces for a simple object.

Lhotka_1019-1C10.fm Page 287 Thursday, November 20, 2008 10:41 AM

288 CH AP T E R 1 0 ■ D AT A B IN D I N G

There’s also an INotifyPropertyChanging interface, which is part of LINQ to SQL. It defines a
PropertyChanging event that should be raised directly before a property is changed. Although data
binding doesn’t use this interface, CSLA .NET implements it, because the concept of an event that is
raised before a property is changed can be useful in general.

Not all of these interfaces are implemented directly by BusinessBase itself. Figure 10-1 shows
the inheritance hierarchy for BusinessBase.

Figure 10-1. Inheritance hierarchy for BusinessBase

The INotifyPropertyChanged and INotifyPropertyChanging interfaces are implemented by
BindableBase. The IEditableObject and IDataErrorInfo interfaces are implemented by BusinessBase.

I’ll discuss each of the interfaces in turn.

Table 10-1. Data Binding Interfaces for a Simple Object

Interface Description

INotifyPropertyChanged Defines a PropertyChanged event that should be raised when a
property of the object has changed

IEditableObject Defines three methods that are used to undo or accept changes to
the object

IDataErrorInfo Defines properties that data binding can use to ask the object if it is
valid and if each of its properties is valid

Lhotka_1019-1C10.fm Page 288 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 289

The INotifyPropertyChanged Interface

The most basic interface, and the one that should be considered the least that any object author
should implement, is INotifyPropertyChanged. This interface defines a PropertyChanged event that
the business object should raise any time one of its properties is changed.

■Caution The PropertyChanged event is handled differently in Windows Forms and WPF, and your object
needs to implement the correct behaviors depending on the UI technology. I’ll discuss the details later in this chapter.

This interface is implemented in BindableBase.

 [Serializable()]
 public abstract class BindableBase : MobileObject,
 System.ComponentModel.INotifyPropertyChanged,
 System.ComponentModel.INotifyPropertyChanging

This requires that the class declare the PropertyChanged event. This event is implemented using
the longer custom event declaration syntax.

 [NonSerialized]
 private PropertyChangedEventHandler _nonSerializableChangedHandlers;
 private PropertyChangedEventHandler _serializableChangedHandlers;

 public event PropertyChangedEventHandler PropertyChanged
 {
 add
 {
 if (value.Method.IsPublic &&
 (value.Method.DeclaringType.IsSerializable ||
 value.Method.IsStatic))
 _serializableChangedHandlers = (PropertyChangedEventHandler)
 System.Delegate.Combine(_serializableChangedHandlers, value);
 else
 _nonSerializableChangedHandlers = (PropertyChangedEventHandler)
 System.Delegate.Combine(_nonSerializableChangedHandlers, value);
 }
 remove
 {
 if (value.Method.IsPublic &&
 (value.Method.DeclaringType.IsSerializable ||
 value.Method.IsStatic))
 _serializableChangedHandlers = (PropertyChangedEventHandler)
 System.Delegate.Remove(_serializableChangedHandlers, value);
 else
 _nonSerializableChangedHandlers = (PropertyChangedEventHandler)
 System.Delegate.Remove(_nonSerializableChangedHandlers, value);
 }
 }

Before declaring the event itself, the code declares two delegate fields. These fields will hold
delegate references to all event handlers registered to receive the PropertyChanged event.

Lhotka_1019-1C10.fm Page 289 Thursday, November 20, 2008 10:41 AM

290 CH AP T E R 1 0 ■ D AT A B IN D I N G

 [NonSerialized()]
 private PropertyChangedEventHandler _nonSerializableHandlers;
 private PropertyChangedEventHandler _serializableHandlers;

Notice that one is declared with the NonSerialized attribute, while the other is not. The
BinaryFormatter ignores the first one and all objects referenced by that delegate field. Objects
referenced by the second field are serialized as normal.

The event declaration uses a block structure, including add and remove sections. Notice how the
code in both sections checks to see if the event handler is contained within a serializable object.

 if (value.Method.IsPublic && (value.Method.DeclaringType.IsSerializable ||
 value.Method.IsStatic))

If the event handler is contained in a serializable object, it will be added or removed from the
serializable delegate; otherwise, it will be added or removed from the nonserialized delegate.

The thing about events and inheritance is that an event can only be raised by code in the class
in which it is declared. This is because the event member can only be accessed directly from the class
in which it is defined. It can’t be raised by code in classes that inherit from this class. This means that
business objects can’t raise the PropertyChanged event directly, even though that is the goal. To solve
this problem, the code follows a standard .NET design pattern by creating a protected method that
in turn raises the event.

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (_nonSerializableHandlers != null)
 _nonSerializableHandlers.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 if (_serializableHandlers != null)
 _serializableHandlers.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

Any classes that inherit from the base class can call this method when they want to raise the
event.

This method is marked with the EditorBrowsable attribute, indicating that this is an advanced
method. In C#, this means that the method won’t appear in IntelliSense unless the IDE is set to show
advanced members. In VB, this means that the method appears in the All tab in IntelliSense, but
won’t appear in the Common tab.

The OnUnknownPropertyChanged() method covers a special case, different from the
OnPropertyChanged() method. Where OnPropertyChanged() raises the PropertyChanged event for a
single property, OnUnknownPropertyChanged() raises the event for a property with no name.

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void OnUnknownPropertyChanged()
 {
 OnPropertyChanged(string.Empty);
 }

There are a number of cases in which the object’s state will change in such a way that it isn’t
possible to know which properties actually changed. In that case, this blanket notification approach
ensures that data binding is aware that something changed, so the UI updates as needed. Passing a
property name of string.Empty or null is a “magic value” that tells data binding to refresh all bound
property values.

The result is a base class that allows business objects to raise the PropertyChanged event, thereby
supporting data binding and serialization.

Lhotka_1019-1C10.fm Page 290 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 291

The INotifyPropertyChanging Interface

The INotifyPropertyChanging interface is almost identical to INotifyPropertyChanged. The only real
difference is the timing of when the PropertyChanging event is raised as opposed to the PropertyChanged
event.

When a property value is about to be changed, the PropertyChanging event is raised first.
Then the value is actually changed, and then the PropertyChanged event is raised. The methods in
BusinessBase, such as the LoadPropertyValue() method, handle this. That method contains this code:

 OnPropertyChanging(propertyInfo.Name);
 FieldManager.SetFieldData<P>(propertyInfo, newValue);
 PropertyHasChanged(propertyInfo.Name);

You can see the steps here clearly, including how both events are raised
I won’t walk through the code for INotifyPropertyChanging here, because it is so similar to

INotifyPropertyChanged. You can look at the code in BindableBase on your own.

The IEditableObject Interface

The IEditableObject interface allows data binding to tell your object to undo recent changes, or
accept recent changes to the object’s properties. It is used in many scenarios by Windows Forms
data binding, including when an object is bound to a form using a BindingSource control, and when
a collection of objects is bound to any grid control that supports in-place editing of the data.

The IEditableObject interface appears simple on the surface, but it’s actually the most complex
interface I’ll discuss in this chapter. This is because there are a number of subtle idiosyncrasies in
how this interface is called by data binding, and any object implementing the interface must deal
with all the resulting edge cases.

The interface defines the three methods listed in Table 10-2.

This doesn’t sound that hard, until you read the fine print in the documentation and start using
the interface and then discover the even finer print that isn’t actually in the documentation at all.

■Note Many of the lessons I’ve learned and the issues I’ve solved in the data binding implementation in CSLA
.NET are due to a lot of hard work and research by the CSLA .NET community at http://forums.lhotka.net.
Without the strong support and involvement by numerous people, many of the hard challenges would likely still
be unsolved.

Table 10-2. Methods Defined by IEditableObject

Method Description

BeginEdit Called by data binding to tell the object to take a snapshot of its property values

CancelEdit Called by data binding to tell the object to undo any changes, restoring the
property values to the snapshot taken when BeginEdit() was called

EndEdit Called by data binding to tell the object to accept any changes, effectively
discarding the snapshot taken when BeginEdit() was called

Lhotka_1019-1C10.fm Page 291 Thursday, November 20, 2008 10:41 AM

http://forums.lhotka.net

292 CH AP T E R 1 0 ■ D AT A B IN D I N G

For example, it turns out that BeginEdit() may be called any number of times by data binding,
but your implementation should only honor the first call. That first call to BeginEdit() must be balanced
out by a subsequent call to either CancelEdit() or EndEdit(), at which point the next BeginEdit() call
should be honored.

It is also the case that EndEdit() can be called multiple times, though only the first call should
be honored. Worse yet, there are scenarios where neither CancelEdit() nor EndEdit() are called at
all, leaving the object under the impression that it is still in the process of being edited.

This interface is implemented in BusinessBase. The implementation of this interface is related
to the implementation of n-level undo, which I’ll discuss in Chapter 13. The n-level undo feature
already has the capability of taking a snapshot of the object’s property values (actually its field values)
and restoring them later if an undo is requested. The only difference is that IEditableObject is a
single level of undo, while the n-level undo feature obviously supports multiple levels of undo.

The DisableIEditableObject Property

Some people have found the IEditableObject interface to be extremely challenging, especially if
they are trying to create a UI that doesn’t want to use all the data binding features. Windows Forms
data binding uses this interface in numerous scenarios, and it can sometimes make life harder rather
than easier.

To minimize this pain, it is possible to disable the interface by setting a DisableIEditableObject
property on a specific business object.

■Caution I don’t recommend disabling the interface. If you disable it, data binding will not be able to interact
with your object as it expects, and you may have to write extra UI code to compensate.

The BindingEdit Property

In addition to the DisableIEditableObject property, the BindingEdit property is used as a flag to
indicate whether the n-level undo behavior was invoked through the BeginEdit() method from the
IEditableObject interface. This flag allows the BeginEdit() method to only honor the first call.

The BindingEdit property is implemented in the UndoableBase class, because it is also used by
some of the n-level undo behaviors I’ll discuss in Chapter 13.

The BeginEdit Method

The BeginEdit() method uses the DisableIEditableObject and BindingEdit properties to determine
whether to do any work. Here’s the BeginEdit() code:

 void System.ComponentModel.IEditableObject.BeginEdit()
 {
 if (!_disableIEditableObject && !BindingEdit)
 {
 BindingEdit = true;
 BeginEdit();
 }
 }

This method only performs real work if the interface is enabled (which it is by default) and if this
is the first call to the method when BindingEdit is false. In that case, it sets BindingEdit to true
to indicate that the object is reacting to the IEditableObject interface, and it calls the n-level undo

Lhotka_1019-1C10.fm Page 292 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 293

BeginEdit() method that I’ll discuss in Chapter 13. For now, it is enough to know that this call
to BeginEdit() takes a snapshot of the object’s current state so it can be restored later if necessary.

The CancelEdit Method

The CancelEdit() implementation works in a similar manner, first checking the properties to deter-
mine whether it should do any work.

 void System.ComponentModel.IEditableObject.CancelEdit()
 {
 if (!_disableIEditableObject && BindingEdit)
 {
 CancelEdit();
 if (IsNew && _neverCommitted && EditLevel <= EditLevelAdded)
 {
 if (Parent != null)
 Parent.RemoveChild(this);
 }
 }
 }

If this method does do work, it calls another CancelEdit() method, which is part of the n-level
undo functionality I’ll discuss in Chapter 13. That method restores the object’s state to the most
recent snapshot—the snapshot taken when BeginEdit() was called.

The next block of code is a bit complex and is necessary to support parent-child relationships.
If this object is a child of some other object, then it is possible that it was just added as a child when
BeginEdit() was called. If that’s the case, then when CancelEdit() is called, this object should be
removed as a child.

Consider this from the user’s perspective. The user adds an item to a collection and starts editing
that item. The user then realizes he doesn’t really want to add it, so he presses Esc or performs some
other UI gesture to cancel what he’s doing. In this case, this new item’s state isn’t rolled back, because the
user expects the new item to just go away entirely.

The call to Parent.RemoveChild() tells the parent object to remove this child entirely, which
meets the user’s expectation.

The best way to see this is to bind a collection to a DataGrid control, move to the last row so a
new item is added, and then press Esc. Notice how the new item just disappears? This code enables
that behavior.

■Note In reality, this shouldn’t be a common occurrence. Windows Forms 2.0 and higher uses a new interface,
ICancelAddNew, that is implemented by BindingList<T>. This interface notifies the collection that the child
should be removed, rather than notifying the child object itself. The code in the RemoveItem() method takes care
of the ICancelAddNew case automatically, so this code is really here to support backward compatibility for anyone
explicitly calling the IEditableObject interface on child objects.

The EndEdit Method

The final method is EndEdit(), which data binding calls when the changes to the object should be
accepted. In other words, the snapshot taken by BeginEdit() can be discarded at this point, because
there’s no going back.

This is the simplest of the three methods:

Lhotka_1019-1C10.fm Page 293 Thursday, November 20, 2008 10:41 AM

294 CH AP T E R 1 0 ■ D AT A B IN D I N G

 void System.ComponentModel.IEditableObject.EndEdit()
 {
 if (!_disableIEditableObject && BindingEdit)
 {
 ApplyEdit();
 }
 }

It checks the two property values to see if it should do any work. If so, it calls the ApplyEdit()
method from the n-level undo subsystem, telling n-level undo to discard the most recent snapshot
of the object’s state—the one taken when BeginEdit() was called.

At this point, you should understand how IEditableObject is implemented. This interface is
used extensively by data binding, and it enables behaviors widely expected by end users of a Windows
Forms application.

The IDataErrorInfo Interface

Windows Forms data binding uses the IDataErrorInfo interface to interrogate a data source for valida-
tion errors. This interface allows a data source, such as a business object, to provide human-readable
descriptions of errors at the object and property levels. This information is used by grid controls and
the ErrorProvider control to display error icons and tooltip descriptions.

The validation subsystem discussed in Chapter 11 provides a list of broken rules for each property
on the object, making it relatively easy to implement IDataErrorInfo.

 string IDataErrorInfo.Error
 {
 get
 {
 if (!IsSelfValid)
 return ValidationRules.GetBrokenRules().ToString(
 Csla.Validation.RuleSeverity.Error);
 else
 return String.Empty;
 }
 }

 string IDataErrorInfo.this[string columnName]
 {
 get
 {
 string result = string.Empty;
 if (!IsSelfValid)
 {
 Validation.BrokenRule rule =
 ValidationRules.GetBrokenRules().GetFirstBrokenRule(columnName);
 if (rule != null)
 result = rule.Description;
 }
 return result;
 }
 }

The Error property returns a text value describing the validation errors for the object as a whole.

Lhotka_1019-1C10.fm Page 294 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 295

The indexer returns a text value describing any validation error for a specific property. In this
implementation, only the first validation error in the list is returned. In either case, if there are no
errors, an empty string value is returned—telling data binding that there are no broken rules to report.

It is important to realize that the rules are not checked when this interface is invoked. The rules
are checked when a property changes or when the business developer explicitly runs the rules. When
IDataErrorInfo is invoked, the rules have already been checked, so this implementation simply returns
the precalculated results.

This is important because the IDataErrorInfo interface is invoked frequently. Each time data
binding refreshes the UI or receives a PropertyChanged event from the object, it loops through all the
bound properties to see if they’re valid. You can expect IDataErrorInfo to be invoked dozens or
hundreds of times during the lifetime of a single user interaction.

At this point, you should understand the four interfaces implemented by editable objects to
support data binding. Some of these interfaces—INotifyPropertyChanged and IEditableObject, in
particular—interact with any parent collection that might contain the object. I’ll discuss data
binding and collections next.

Collection Data Binding
Collections need to implement a set of interfaces to fully participate in data binding, and these inter-
faces are quite complex. Fortunately, Microsoft provides the BindingList<T> class in the System.
ComponentModel namespace, which already implements all the interfaces. To help you fully understand
the benefit provided by this class, Table 10-3 lists the interfaces you would otherwise have to imple-
ment by hand.

There’s also an IBindingListView interface, which is optional. This interface extends IBindingList
with extra features such as multicolumn sorting and filtering. By using LINQ, it is typically not neces-
sary to rely on lists or collections to sort or filter themselves, as it is simpler to use a LINQ query to
manipulate the data. Due to this, the IBindingListView interface is not as important as it was in older
versions of the .NET Framework.

■Note IBindingListView is not implemented in CSLA .NET, but you can find an implementation in the
CSLAcontrib library at www.codeplex.com/CSLAcontrib.

Because BusinessListBase and the other CSLA .NET collection base classes ultimately inherit
from BindingList<T>, they automatically provide full support for data binding.

Table 10-3. Data Binding Interfaces for Collections and Lists

Interface Description

IBindingList Defines a ListChanged event that should be raised when the list
changes, along with methods to support in-place editing in a
grid, sorting, and other features

ICancelAddNew Defines methods used for in-place editing in a grid

IRaiseItemChangedEvents Indicates that the list will raise a ListChanged event when its child
items raise PropertyChanged events

Lhotka_1019-1C10.fm Page 295 Thursday, November 20, 2008 10:41 AM

http://www.codeplex.com/CSLAcontrib

296 CH AP T E R 1 0 ■ D AT A B IN D I N G

It is important to realize, however, that BindingList<T> doesn’t do everything necessary for a
collection to work within the CSLA .NET framework. For example, BusinessListBase implements
extra features to support n-level undo and abstract persistence, as discussed in Chapters 13 and 15.

Also, as I discussed in Chapter 9, BusinessListBase includes code to raise a ListChanged event
when one of its child objects raises a PropertyChanged event. This is used after the deserialization of
the collection, and is necessary because BindingList<T> doesn’t handle the deserialization scenario.

By implementing the interfaces listed in Table 10-1 and inheriting from BindingList<T>, the
CSLA .NET base classes provide full support for all the features of Windows Forms data binding. This
includes the drag-and-drop concepts in the Visual Studio designer, along with the runtime behaviors
for interacting with a BindingSource control and supporting in-place editing in grid controls.

Controls and Helper Objects
Though the interfaces and base classes I’ve discussed so far provide support for data binding, it
turns out that the UI often still contains quite a bit of code to make data binding really work. Some
of this code works around quirks in the behavior of data binding itself or in how it interacts with edit-
able business objects. And some extends the UI to deal with the concept of per-property authorization—
a feature I’ll discuss in Chapter 12.

To minimize the code required in the UI, CSLA .NET includes three custom controls for Windows
Forms that address the most common issues. These controls are a type of control called an extender
control.

Extender controls are added to a form, and they in turn add properties and behaviors to other
controls on the form, thus extending those other controls. A good example of this is the ErrorProvider
control, which extends other controls by adding the ability to display an error icon with a tooltip
describing the error.

The ReadWriteAuthorization Control

In Chapter 12, I will discuss the authorization feature supported by CSLA .NET business objects that
makes them aware of whether each property can be read or changed. A key part of that implementa-
tion is the IAuthorizeReadWrite interface defined in Csla.Core. This interface defines CanReadProperty()
and CanWriteProperty() to make it possible to determine whether the current user is allowed to get
or set each property on the object.

One primary user of this functionality is the UI, which can decide to alter its appearance to give
users clues as to whether they’re able to view or alter each piece of data. While you could do this by
hand for each control on every form, the ReadWriteAuthorization control helps automate the process of
building a UI that enables or disables controls based on whether properties can be read or changed.

If a control is bound to a property, and the user does not have read access to that property due
to authorization rules, the ReadWriteAuthorization control will disable that control. It also adds a
handler for the control’s Format event to intercept the value coming from the data source, substi-
tuting an empty value instead. The result is that data binding is prevented from displaying the data
to the user.

Similarly, if the user doesn’t have write access to a property, ReadWriteAuthorization will attempt
to mark any controls bound to that property as being read-only (or failing that, disabled), ensuring
that the user can’t attempt to alter the property value.

Like all Windows Forms components, extender controls inherit from System.ComponentModel.
Component. Additionally, to act as an extender control, the ReadWriteAuthorization control must
implement the IExtenderProvider interface.

 [DesignerCategory("")]
 [ProvideProperty("ApplyAuthorization", typeof(Control))]
 public class ReadWriteAuthorization : Component, IExtenderProvider

Lhotka_1019-1C10.fm Page 296 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 297

 {
 public ReadWriteAuthorization(IContainer container)
 { container.Add(this); }
 }

The ProvideProperty attribute is important. It specifies that ReadWriteAuthorization extends
components of type Control by adding an ApplyAuthorization property to them. In other words,
when a ReadWriteAuthorization control is on a form, all other controls on the form get a dynamically
added ApplyAuthorization property. Figure 10-2 shows a text box control’s Properties window with
the dynamically added ApplyAuthorization property.

The UI developer can set this property to true or false to indicate whether the
ReadWriteAuthorization control should apply authorization rules to that particular control. You’ll
see how this works as the control is implemented.

The DesignerCategory attribute is just used to help Visual Studio decide what kind of visual
designer to use when editing the control. The value used here specifies that the default designer
should be used.

Figure 10-2. ApplyAuthorization property added to NameTextBox

The class also implements a constructor that accepts an IContainer parameter. This constructor is
required for extender controls and is called by Windows Forms when the control is instantiated.
Notice that the control adds itself to the container as required by the Windows Forms infrastructure.

The IExtenderProvider Interface

The IExtenderProvider interface defines just one method: CanExtend().Windows Forms calls this
method to ask the extender control whether it wishes to extend any given control. Windows Forms
calls CanExtend()automatically for every control on the form.

 public bool CanExtend(object extendee)
 {
 if (IsPropertyImplemented(extendee, "ReadOnly")
 || IsPropertyImplemented(extendee, "Enabled"))
 return true;
 else
 return false;
 }

Lhotka_1019-1C10.fm Page 297 Thursday, November 20, 2008 10:41 AM

298 CH AP T E R 1 0 ■ D AT A B IN D I N G

The ReadWriteAuthorization control can extend any control that implements either a ReadOnly
or Enabled property. This covers most controls, making ReadWriteAuthorization broadly useful. If
the potential target control implements either of these properties, a true result will be returned to
indicate that the control will be extended.

The IsPropertyImplemented() method is a helper that uses reflection to check for the existence
of the specified properties on the target control.

 private static bool IsPropertyImplemented(
 object obj, string propertyName)
 {
 if (obj.GetType().GetProperty(propertyName,
 BindingFlags.FlattenHierarchy |
 BindingFlags.Instance |
 BindingFlags.Public) != null)
 return true;
 else
 return false;
 }

The ApplyAuthorization Property

The ProvideProperty attribute on ReadWriteAuthorization specified that an ApplyAuthorization
property would be dynamically added to all controls extended by ReadWriteAuthorization. Of
course, the controls being extended really have no knowledge of this new property or what to do
with it. All the behavior associated with the property is contained within the extender control itself.

The extender control manages the ApplyAuthorization property by implementing both the
GetApplyAuthorization() and SetApplyAuthorization() methods. Windows Forms calls these methods
to get and set the property value for each control that has been extended. Windows Forms prepends
Get and Set automatically to call these methods.

To manage a list of the controls that have been extended, a Dictionary object is used.

 private Dictionary<Control, bool> _sources =
 new Dictionary<Control, bool>();

 public bool GetApplyAuthorization(Control source)
 {
 bool result;
 if (_sources.TryGetValue(source, out result))
 return result;
 else
 return false;
 }

 public void SetApplyAuthorization(Control source, bool value)
 {
 if (_sources.ContainsKey(source))
 _sources[source] = value;
 else
 _sources.Add(source, value);
 }

When Windows Forms indicates that the ApplyAuthorization property has been set for a partic-
ular extended control, the SetApplyAuthorization() method is called. This method records the value
of the ApplyAuthorization property for that particular control, using the control itself as the key
value within the Dictionary.

Lhotka_1019-1C10.fm Page 298 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 299

Conversely, when Windows Forms needs to know the property value of ApplyAuthorization for
a particular control, it calls GetApplyAuthorization(). The value for that control is retrieved from the
Dictionary object and returned. If the control can’t be found in the Dictionary, then false is returned,
since that control is obviously not being extended.

The end result here is that the ReadWriteAuthorization control maintains a list of all the controls
it extends, along with their ApplyAuthorization property values. In short, it knows about all the controls
it will affect, and whether it should be affecting them or not.

Applying Authorization Rules

At this point, the extender control’s basic plumbing is complete. It gets to choose which controls to
extend, and it maintains a list of all the controls it does extend, along with the ApplyAuthorization
property value for each of those controls.

When the UI developer wants to enforce authorization rules for the whole form, she can
do so by triggering the ReadWriteAuthorization control. To allow this, the control implements a
ResetControlAuthorization() method. This method is public, so it can be called by code in the form
itself. Typically, this method will be called immediately after a business object has been loaded and
bound to the form, or immediately after the user has logged into or out of the application. It is also a
good idea to call it after adding a new business object to the database, since some objects will change
their authorization rules to be different for an old object than for a new object.

The ResetControlAuthorization() method loops through all the items in the list of extended
controls. This list is the Dictionary object maintained by Get/SetApplyAuthorization, as discussed
earlier. The ApplyAuthorization value for each control is checked, and if it is true, then the authori-
zation rules are applied to that control.

 public void ResetControlAuthorization()
 {
 foreach (KeyValuePair<Control, bool> item in _sources)
 {
 if (item.Value)
 {
 // apply authorization rules
 ApplyAuthorizationRules(item.Key);
 }
 }
 }

To apply the authorization rules, the code loops through the target control’s list of data bind-
ings. Each Binding object represents a connection between a property on the control and a data
source, so it is possible to get a reference to the data source through the DataSource property.

 private void ApplyAuthorizationRules(Control control)
 {
 foreach (Binding binding in control.DataBindings)
 {
 // get the BindingSource if appropriate
 if (binding.DataSource is BindingSource)
 {
 BindingSource bs =
 (BindingSource)binding.DataSource;
 // get the BusinessObject if appropriate
 Csla.Security.IAuthorizeReadWrite ds =
 bs.Current as Csla.Security.IAuthorizeReadWrite;

Lhotka_1019-1C10.fm Page 299 Thursday, November 20, 2008 10:41 AM

300 CH AP T E R 1 0 ■ D AT A B IN D I N G

 if (ds != null)
 {
 // get the object property name
 string propertyName =
 binding.BindingMemberInfo.BindingField;

 ApplyReadRules(
 control, binding,
 ds.CanReadProperty(propertyName));
 ApplyWriteRules(
 control, binding,
 ds.CanWriteProperty(propertyName));
 }
 }
 }
 }

If the data source implements IAuthorizeReadWrite, then both ApplyReadRules() and
ApplyWriteRules() methods are called to change the target control’s state based on whether the
current user is authorized to read and write the property.

Notice that both ApplyReadRules() and ApplyWriteRules() accept the target control, the Binding
object, and a Boolean indicating whether the user is authorized to perform the particular operation
(read or write). This ensures that these methods have all the information they need to know to alter
the target control’s appearance.

The ApplyReadRules Method

Finally, we get to the heart of the matter: altering the target control. If the user is not allowed to read
the property value, the target control must not display the value. To prevent display of the value, two
things are done to the target control: it is disabled, and any values coming from the data source to
the control are intercepted and replaced with an empty value.

Disabling the control is easily accomplished by setting its Enabled property to false. All controls
have an Enabled property, so this is not an issue. Intercepting all values from the data source before
they reach the control is more complex. Fortunately, data binding offers a solution through the Format
event. All Binding objects have both Format and Parse events, which can be used to alter data as it
moves from the data source to the control and then back to the data source.

The Format event is raised after the data value has been read from the data source, but before the
value is provided to the control. The idea is that a UI developer can handle this event and use it to
format the value for display. In this case, however, the value will simply be replaced with a default
empty value instead, thus ensuring that the control never gets the real value that the user isn’t autho-
rized to see.

To handle the Format event, a method is required.

 private void ReturnEmpty(
 object sender, ConvertEventArgs e)
 {
 e.Value = GetEmptyValue(e.DesiredType);
 }

Lhotka_1019-1C10.fm Page 300 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 301

 private object GetEmptyValue(Type desiredType)
 {
 object result = null;
 if (desiredType.IsValueType)
 result = Activator.CreateInstance(desiredType);
 return result;
 }

The ReturnEmpty() method handles the Format event. It then calls GetEmptyValue() to get an
empty value appropriate for the data type of the value read from the data source. That empty value
is returned through e.Value. The result is that data binding puts this empty value into the control
rather than the original value from the data source.

Within the ApplyReadRules() method, if the user is not authorized to read the property, the
control will be disabled and the event handler will be set up.

 ctl.Enabled = false;
 binding.Format += new ConvertEventHandler(ReturnEmpty);

 // clear the value displayed by the control
 PropertyInfo propertyInfo =
 ctl.GetType().GetProperty(binding.PropertyName,
 BindingFlags.FlattenHierarchy |
 BindingFlags.Instance |
 BindingFlags.Public);
 if (propertyInfo != null)
 {
 propertyInfo.SetValue(ctl,
 GetEmptyValue(Utilities.GetPropertyType(propertyInfo.PropertyType)),
 new object[] { });
 }

Of course, the control might have already contained a value, and if so, that value must be removed.
To do this, the type of the property value is retrieved using reflection, and the GetEmptyValue()
method is called to get an appropriate empty value. This value is then placed into the control, over-
writing any previous value the control may have had.

The reverse of the process occurs if the user is allowed to read the property. In that case, the
control is enabled and the Format event handler is removed.

 bool couldRead = ctl.Enabled;
 ctl.Enabled = true;
 binding.Format -=
 new ConvertEventHandler(ReturnEmpty);
 if (!couldRead) binding.ReadValue();

Additionally, if the control was disabled before this code was run, it is assumed that the control
doesn’t contain a valid value. The ReadValue() method on the Binding object is called to force data
binding to reload the control with the value from the data source.

The ApplyWriteRules Method

The ApplyWriteRules() method is similar to ApplyReadRules() but takes a slightly different approach. In
this case, users may be able to view the data, but they certainly can’t be allowed to edit the data. If
the control implements a ReadOnly property, then it can be set to false; otherwise, the control must
be entirely disabled through the use of its Enabled property.

Lhotka_1019-1C10.fm Page 301 Thursday, November 20, 2008 10:41 AM

302 CH AP T E R 1 0 ■ D AT A B IN D I N G

As an optimization, if the control is a Label, the method will exit immediately. Because Label
controls are so common, and they are read-only by definition, it is worth this special check.

The preference is to use the control’s ReadOnly property if it is implemented by the control.
Reflection is used to get a PropertyInfo object corresponding to the control’s ReadOnly property.

 // enable/disable writing of the value
 PropertyInfo propertyInfo =
 ctl.GetType().GetProperty("ReadOnly",
 BindingFlags.FlattenHierarchy |
 BindingFlags.Instance |
 BindingFlags.Public);
 if (propertyInfo != null)
 {
 bool couldWrite = (!(bool)propertyInfo.GetValue(
 ctl, new object[] { }));
 propertyInfo.SetValue(ctl, !canWrite, new object[] { });
 if ((!couldWrite) && (canWrite))
 binding.ReadValue();
 }

If a ReadOnly property is found, then it is set to true or false depending on whether the user is
allowed or denied write access to the business object property.

 propertyInfo.SetValue(ctl, !canWrite, new object[] { });

First, though, the value of the control’s ReadOnly property is retrieved. If it is false, that means
that the user was already able to edit the control—the user could write, so couldWrite is true. This is
important, because if the user was unable to edit the control and now is able to edit the control, data
binding needs to be told to reload the data from the data source into the control.

 if ((!couldWrite) && (canWrite))
 binding.ReadValue();

Otherwise, it is possible for the user to be placed into an empty control even though there really
is a value in the business object’s property.

If the control doesn’t have a ReadOnly property, then the Enabled property is used as a fallback.
The same procedure is used, just with the Enabled property instead.

 bool couldWrite = ctl.Enabled;
 ctl.Enabled = canWrite;
 if ((!couldWrite) && (canWrite))
 binding.ReadValue();

The end result is that when the user is denied write access to a business object’s property, controls
bound to that property are either set to ReadOnly or are disabled. And if the user is denied read access
to a business object’s property, controls bound to that property are disabled and empty values are
placed in the control rather than any real values from the business object.

The BindingSourceRefresh Control

The BindingSourceRefresh control is also an extender control, but its purpose is quite different from
the ReadWriteAuthorization control. It turns out that there’s a quirk in the way Windows Forms data
binding works. The BindingSourceRefresh control helps work around this quirk.

The quirk is that when data is changed in a business object, data binding doesn’t always display
the changes in the controls on the form. This occurs in the following sequence of events:

Lhotka_1019-1C10.fm Page 302 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 303

1. The user edits a value in a bound control.

2. Data binding puts the user’s new value into the business object.

3. The business object alters the value in the property set block.

4. The business object raises its PropertyChanged event.

You would expect that data binding would handle the PropertyChanged event, realize that the
property’s data has changed, and then update the control with the new value. And that does happen
for all controls except the current control. In other words, the PropertyChanged event causes data
binding to refresh all other controls on the form except the control that initiated the change in the
first place.

Obviously, this can be problematic. Consider a TextBox control that is bound to a business
object property that uses a SmartDate. I’ll discuss SmartDate in Chapter 16, but one of its features is
to accept the + character as input and to replace it with tomorrow’s date. Due to this data binding
quirk, when the user enters a + character, that value is put into the business object, which translates
it to tomorrow’s date—but that new value is not displayed to the user. The user continues to see the
+ character.

What’s even more confusing for users is that if they edit a different control, then the date text box
control will be updated with tomorrow’s date. Remember that data binding updates everything
except the current control when it gets a PropertyChanged event.

This is the problem BindingSourceRefresh is intended to solve. It does so by interacting
with the BindingSource control that manages the data binding for a given business object. While
ReadWriteAuthorization extends controls like TextBox and Label, BindingSourceRefresh extends
BindingSource controls.

The plumbing code in this control is virtually identical to ReadWriteAuthorization, so I won’t
walk through all the details of the control.

This control only extends BindingSource controls, and if it is enabled, it hooks the BindingComplete
event raised by the BindingSource control. This event is raised by a BindingSource control after all
controls have had their values updated through data binding—well, all controls except the current
one, of course. The Control_BindingComplete() method takes the extra step of forcing the BindingSource
control to refresh the value for the current binding as well.

 private void Control_BindingComplete(
 object sender, BindingCompleteEventArgs e)
 {
 switch (e.BindingCompleteState)
 {
 case BindingCompleteState.Exception:
 if (BindingError != null)
 {
 BindingError(this, new BindingErrorEventArgs(e.Binding, e.Exception));
 }
 break;
 default:
 if ((e.BindingCompleteContext ==
 BindingCompleteContext.DataSourceUpdate)
 && e.Binding.DataSource is BindingSource
 && GetReadValuesOnChange((BindingSource)e.Binding.DataSource))
 {
 e.Binding.ReadValue();
 }
 break;
 }
 }

Lhotka_1019-1C10.fm Page 303 Thursday, November 20, 2008 10:41 AM

304 CH AP T E R 1 0 ■ D AT A B IN D I N G

The BindingComplete event includes a BindingCompleteEventArgs parameter, and that parameter
includes a property indicating whether the binding process completed with an exception or normally.

In the case of an exception, the BindingSourceRefresh control raises its own BindingError event,
so the UI developer can be informed that an exception occurred and can take steps. By default,
exceptions during binding are silently swallowed by data binding, and the only place you’ll see them
is in the output window of the debugger in Visual Studio. By raising this event when an error occurs,
the control enables the UI developer to more easily detect and troubleshoot data binding issues.

The normal case, however, is that the binding succeeds. In that case, the e parameter includes
a reference to the currently active Binding object. It is this Binding object that isn’t refreshed auto-
matically when data binding gets a PropertyChanged event from the underlying data source. By calling its
ReadValue() method, this code forces data binding to read the value from the data source and update
the current control’s display as well.

The BindingSourceRefresh control should be used to force data refreshes for all BindingSource
controls bound to detail forms. It isn’t necessary when only complex controls such as a GridView or
ListBox are bound to the object.

The CslaActionExtender Control and Associated Components

When an object is bound to a BindingSource control, the BindingSource control assumes it has full
and exclusive control over the object. This means that when an object is data bound, the only inter-
action with the object should be through the BindingSource control. This includes doing things like
saving the object, which is a concept the BindingSource doesn’t understand. So how do you save an
object? You must first unbind it; you need to disconnect it from the BindingSource.

This is also true for any explicit calls to BeginEdit(), CancelEdit(), or ApplyEdit(). I discuss
these n-level undo methods in Chapter 13. The UI commonly calls these methods when it includes
a top-level Cancel button on the form.

Unfortunately, unbinding an object from a BindingSource control is not as easy as setting the
DataSource property to null. While that breaks the reference from the control to the object, it doesn’t
end any current edit session where the BindingSource has called BeginEdit() through the
IEditableObject interface.

The next thing you might consider is simply calling EndEdit() or CancelEdit() on the BindingSource
before setting the value to null.

 bindingSource.EndEdit();
 bindingSource.DataSource = null;

However, this won’t work either, because as soon as you call EndEdit(), the BindingSource
immediately calls BeginEdit(). You need to disconnect the object first, then end the edit session.
This helper method demonstrates the process:

 protected void UnbindBindingSource(
 BindingSource source, bool apply, bool isRoot)
 {
 System.ComponentModel.IEditableObject current =
 source.Current as System.ComponentModel.IEditableObject;
 if (isRoot)
 source.DataSource = null;
 if (current != null)
 if (apply)
 current.EndEdit();
 else
 current.CancelEdit();
 }

Lhotka_1019-1C10.fm Page 304 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 305

While you could include this code in each form or create a base form from which you inherit,
that’s complexity that would be nice to avoid.

The complexity is even worse if you have a master-detail display in your form. In that case, you
must remember to unbind all child BindingSource controls first, and then unbind the root (master)
BindingSource last.

To avoid all this complexity, CSLA .NET includes the CslaActionExtender control. This control
extends any control that implements IbuttonControl, so the control automatically understands how
to unbind the objects before interacting with them. Like the other controls I’ve discussed so far, this
is an extender control, so it adds extra behaviors to existing controls—in this case, button-style controls.

Behind the scenes, CslaActionExtender uses BindingSourceHelper and BindingSourceNode
objects to do the actual work. This is important, because you can use BindingSourceHelper and
BindingSourceNode directly to get the same behavior if you’re not using a button-style control. For
example, if you implement your Save and Cancel buttons on a ToolBar, you’ll be unable to use
CslaActionExtender, but you’ll still be able to use BindingSourceHelper and BindingSourceNode to
simplify your UI code.

The BindingSourceNode Class

The BindingSourceNode class is designed to wrap a BindingSource component, which sits on your
Windows form. The name of this class is due to the fact that it represents a node in what can be a tree
of binding sources.

When binding a form to a business object that is a parent to one or more child objects or
collections, the form requires a BindingSource component for each object or collection. This hier-
archical set of BindingSource components is represented by a set of BindingSourceNode objects. The
BindingSourceNode class has a recursive design. Not only does it contain a property to hold the corre-
sponding BindingSource component, but it also contains a property that contains a list of other
BindingSourceNode objects. Each instance also holds a reference to its parent.

It is through this design that a tree of BindingSource components can be represented like this:

 private BindingSource _Source;
 private List<BindingSourceNode> _Children;
 private BindingSourceNode _Parent;

These member variables are exposed through public properties. The BindingSourceNode class
also provides methods to assist you in any of the following tasks that involves binding or unbinding:

• Bind

• Unbind

• SetEvents

• ResetBindings

These methods wrap standard functionality that you need to perform in the case of saving a
bound business object or invoking n-level undo functionality on a bound business object. As I
mentioned earlier, when saving or undoing a business object that is participating in Windows Forms
data binding, you must first properly unbind the object before acting upon it. The methods exposed
by the BindingSourceNode class help you by performing this functionality for you and, more impor-
tantly, by taking into account any child BindingSource components that it may contain. Since the
BindingSourceNode class uses a recursive design, the helper methods can be called from within any
level of the tree, but more often than not, you will be addressing the top-level node. In fact, to avoid
any potential n-level undo parent-to-child mismatches, this is the recommended practice.

Lhotka_1019-1C10.fm Page 305 Thursday, November 20, 2008 10:41 AM

306 CH AP T E R 1 0 ■ D AT A B IN D I N G

Because the act of saving or invoking an undo operation involves more than one of the helper
operations exposed by the BindingSourceNode object, additional methods are typically used from the
Windows form.

 public void Apply()
 {
 SetEvents(false);
 Unbind(false);
 }

 public void Cancel(object businessObject)
 {
 SetEvents(false);
 Unbind(true);
 Bind(businessObject);
 }

 public void Close()
 {
 SetEvents(false);
 Unbind(true);
 }

The BindingSourceHelper Class

The tree of BindingSourceNode objects is built using the BindingSourceHelper component. The
BindingSourceHelper component exposes a static method called InitializeBindingSourceTree,
which returns an instance of BindingSourceNode. This method builds the entire tree of BindingSource
components on your form.

The InitializeBindingSourceTree() method accepts two arguments.

 public static BindingSourceNode InitializeBindingSourceTree(
 IContainer container, BindingSource rootSource)

The two arguments correspond to the form’s container property and the BindingSource object on
your form that binds to your root object. You can find the form’s container property in the designer
partial class that gets created along with a form and modified dynamically every time you drop controls
or components onto the form. The components you place on a form that sit in the component tray get
added to the container property, so it is this property that the InitializeBindingSourceTree() method
needs.

The functionality contained in BindingSourceHelper could have resided in BindingSourceNode
as a static method, but it made more sense to separate these two classes out in the interest of main-
taining a strict separation of the node class from the class that creates the actual tree. The design also
allows for future enhancements to be added to the BindingSourceHelper class while maintaining a
clean BindingSourceNode class.

Usage of these classes is quite simple and can save you lots of confusing code. In a conventional
Windows Forms binding situation, you set up your BindingSource components declaratively and
then set the DataSource property of the root BindingSource component to the top-level business
object. This step is taken care of automatically if you’re using the new components, in which case
you obtain an instance of a BindingSourceNode class by calling the InitializeBindingSourceTree()
method from the BindingSourceHelper component. After this, you simply call the Bind method of the
new variable and send your top-level business object into its only argument.

Lhotka_1019-1C10.fm Page 306 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 307

 BindingSourceNode _bindingTree = null;

 private void BindUI()
 {
 _bindingTree = BindingSourceHelper.InitializeBindingSourceTree(
 this.Container, orderBindingSource);
 _bindingTree.Bind(order);
 }

You can now use the instance of the BindingSourceNode class, depicted in the previous code by
the _bindingTree field, to unbind or rebind to assist you while performing save or undo operations.
You use the BindingSourceNode class’s Apply() method just before you save your business object.
After this, you can incorporate the aid of the object’s Bind() method. Use the Cancel method to
invoke an undo operation; it rebinds the object afterwards automatically.

I should reiterate that the BindingSourceNode object contains the entire tree of BindingSource
components as it corresponds to the parent-child object hierarchy you have designed into the busi-
ness object that you will be binding. All actions performed on BindingSourceNode object propagate
properly to the child nodes, and in fact do so in reverse order, so the lowest child gets hit first and the
root gets hit last. Should you have two distinct object hierarchies represented on a Windows form,
thus having two root BindingSource components, you would need two separate instances of the
BindingSourceNode class. And remember, all interaction with your business object should now take
place through these two classes.

The following is a sample of a form’s code that uses all the functionality of these two compo-
nents in a toolbar scenario, with a root object representing an order with some order detail children:

 public partial class OrderMaint2 : Form
 {
 public OrderMaint2()
 {
 InitializeComponent();
 }

 public OrderMaint2(Guid orderId)
 {
 InitializeComponent();
 _order = Order.GetOrderWithDetail(orderId);
 BindUI();
 }

 Order _order = null;
 BindingSourceNode _bindingTree = null;

 private void BindUI()
 {
 _bindingTree = BindingSourceHelper.InitializeBindingSourceTree(
 this.components, orderBindingSource);
 _bindingTree.Bind(_order);
 }

 private void toolSave_Click(object sender, EventArgs e)
 {
 if (Save())
 MessageBox.Show("Order saved.");
 }

Lhotka_1019-1C10.fm Page 307 Thursday, November 20, 2008 10:41 AM

308 CH AP T E R 1 0 ■ D AT A B IN D I N G

 private void toolSaveNew_Click(object sender, EventArgs e)
 {
 if (Save())
 {
 _order = Order.NewOrder();
 BindUI();
 }
 }

 private void toolSaveClose_Click(object sender, EventArgs e)
 {
 if (Save())
 this.Close();
 }

 private void toolCancel_Click(object sender, EventArgs e)
 {
 _bindingTree.Cancel(_order);
 }

 private void toolClose_Click(object sender, EventArgs e)
 {
 _bindingTree.Close();
 }

 private bool Save()
 {
 bool ret = false;
 _bindingTree.Apply();

 try
 {
 _order = _order.Save();
 ret = true;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 BindUI();
 return ret;
 }
 }

You can use the BindingSourceNode and BindingSourceHelper classes to save you a lot of code
and complexity, but you’re still responsible for code involving validation checking, broken rules
reporting, exception handling, and, of course, the actual functionality to save or undo the object.
You’ll need to do this when you’re using toolbars to allow users to interact with your forms, but if
you’re going to be using buttons or links, there is a better way.

Using the CslaActionExtender Control

As stated earlier, the CslaActionExtender component is an extender provider that adds functionality
to any control that implements the IButtonControl interface. This means that you can use it with
any Visual Studio button or link as well as with any third-party button control or link.

Lhotka_1019-1C10.fm Page 308 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 309

The CslaActionExtender makes use of both the BindingSourceNode and the BindingSourceHelper
classes and provides an almost no-code approach to functionality for which you would normally
have to write quite a bit of code. This functionality includes saving a business object, invoking undo
functionality of a business object, and closing a form. Moreover, the saving functionality comes in
three flavors, which I’ll get to in a minute.

The CslaActionExtender component drags onto your form’s component tray just like the
ReadWriteAuthorization and BindingSourceRefresh components—and just like a BindingSource
component, for that matter. You can hit the ground running on this control in just one step. Simply
call the ResetActionBehaviors method of the component and pass your root business object into its
one and only argument. This initializes the component and everything within it, just like the
ResetControlAuthorization() method in the ReadWriteAuthorization component.

You’ll then need some buttons on your form to represent certain actions. The mere presence of
the CslaActionExtender component adds several properties to your buttons, all nicely organized in
the Csla property browser category. The CslaActionExtender component can extend button or
button-like controls to provide save, cancel, or close functionality automatically.

The CslaActionExtender component also includes properties and events of its own, the most
important being the DataSource property, which you would point to a root BindingSource on the
form. Table 10-4 lists other properties.

You can intercept all this functionality using the CslaActionExtender’s event model, which I’ll
describe later.

Besides all these properties, which apply to the component as a whole, there are button-specific
properties as well. The most important one is called ActionType and appears with the others in the
Csla property browser category as ActionType on cslaActionExtender1. cslaActionExtender1 is the
name of the CslaActionExtender component you dropped onto the form.

The default value for this property is None, which means this button provides no extended func-
tionality at all. It also means that this button will not trigger any communication with the associated
CslaActionExtender component. The other three values for this property are Save, Cancel, and Close.
Setting this property to any one of these values assigns that functionality to the control.

When you set the property to Save, you have an additional option for a post-save action, config-
ured by the PostSaveAction extended property. The possible values for this property are None, AndClose,
and AndNew. As you can see, you can provide plenty of functionality for your form with virtually no
code. Table 10-5 lists the other extended properties.

Table 10-4. Properties of CslaActionExtender

Property Description

AutoShowBrokenRules Allows the control to automatically display any broken rules found
on the root object using a standard Windows Forms message box.

WarnIfCloseOnDirty Allows the control to optionally warn you if you press a Close button
while the bound business object is dirty.

DirtyWarningMessage Used with WarnIfCloseOnDirty, this is the message that will display.

WarnOnCancel Allows the control to warn you when you attempt to use a Cancel
button for an undo operation when the bound business object
is dirty.

WarnOnCancelMessage Used with WarnOnCancel, this is the message that will display.

Lhotka_1019-1C10.fm Page 309 Thursday, November 20, 2008 10:41 AM

310 CH AP T E R 1 0 ■ D AT A B IN D I N G

■Note When using the DisableWhenClean property, pay close attention to the Data Source Update mode for
each individual entry control (TextBox, CheckBox, etc.). The default setting of OnValidation in combination
with a true setting on the property causes the button to remain disabled until you tab out of the changed text field,
which may not be a desired behavior. Alternatively, changing the mode to OnPropertyChanged produces a nice
instant enabling effect on the button, but it also updates your BindingSource on every key press, thus setting your
object’s property on every key press and possibly running validation rules on every key press. This also may not be
a desired behavior, depending on the weight of your business rules.

The CslaActionExtender control can keep track of almost everything having to do with your
business object(s) except for how to create a new one. You determine how to create a new object
when you write a factory method that makes a call to DataPortal.Create.

For this reason, if you configure one of your buttons with a Save value on the ActionType prop-
erty and an AddNew value on the PostSaveAction property, you must trap the SetForNew event of the
extender component. It is here where you need to reset your business object variable to a new instance
and call your rebind method. This rebind method sets the BindingSource component’s DataSource
property, calls the ResetControlAuthorization() method on any ReadWriteAuthorization compo-
nents you may be using, and calls ResetActionBehaviors on any CslaActionExtender components.

Table 10-6 lists other events of CslaActionExtender.

Table 10-5. Extended Properties of CslaActionExtender

Property Description

CommandName Uniquely identifies the control so that when an event is raised from the
CslaActionExtender component, the subscriber can determine which
control caused the event to fire

DisableWhenClean Allows the monitoring of the underlying object graph’s “dirty” state and
provides automatic enabling and disabling of the button depending on
the state

RebindAfterSave Rebinds your object after a Save action has finished; this is set to false in
the case of a Close button or a Save-AndNew button

Table 10-6. Events Raised by CslaActionExtender

Event Description

BusinessObjectInvalid Raised when an attempt is made to save an invalid object. Remember
that the validity check on the root object reads into all underlying
child objects in the object graph. Also remember that information
and warning rules do not invalidate an object.

Clicking Raised immediately upon clicking the button, before any action
takes place. The event allows the cancellation of any functionality
that may follow.

Clicked Raised at the very end of the determined action for the button.

ErrorEncountered Raised when an exception is encountered while CslaActionExtender
is executing some behavior.

Lhotka_1019-1C10.fm Page 310 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 311

Working with Multiple Root Objects
If your form requirements are to manage two (or more) distinct root business objects at the same
time, you will require two (or more) CslaActionExtender components, each bound to a different root
BindingSource component. It’s important to note that this will cause every button or link on your
form to display more than one of each of the extender properties. However, they will display along
with the name of each CslaActionExtender component.

 ActionType on cslaActionExtender1
 ActionType on cslaActionExtender2

You can then assign specific buttons to interact with one CslaActionExtender component or the
other, or even both.

■Note CSLA .NET does not propagate broken rules in child objects or child collections up to the root object, so
the interaction with broken rules from the CslaActionExtender only applies to the root object, and only when
that root object is of type BusinessBase. However, the validity check aggregates the entire underlying object
graph when you use managed backing fields for your child objects, or properly overrides the business object’s
IsValid and IsDirty properties.

The CslaActionExtender component will work with a BindingSource hierarchy where the root
business object is either a type of BusinessBase or BusinessListBase, so it can indeed save you a lot
of code and provide for an even cleaner UI.

The following is a sample of a form’s code that uses the CslaActionExtender component to act
upon an order object and its children:

 public partial class OrderMaint : Form
 {
 public OrderMaint()
 {
 InitializeComponent();
 }

 public OrderMaint(Guid orderId)
 {
 InitializeComponent();

 _order = Order.GetOrderWithDetail(orderId);
 BindUI();
 }

HasBrokenRules Raised when an attempt is made to save the object, and the object
has one or more broken validation rules of any rule severity.

ObjectSaving Raised after a successful validity check but before the object gets
saved, allowing you to test for nonfatal rules and also for any broken
rules down the object graph.

ObjectSaved Raised immediately after a successful save operation.

Table 10-6. Events Raised by CslaActionExtender

Event Description

Lhotka_1019-1C10.fm Page 311 Thursday, November 20, 2008 10:41 AM

312 CH AP T E R 1 0 ■ D AT A B IN D I N G

 Order _order = null;

 private void BindUI()
 {
 cslaActionExtender1.ResetActionBehaviors(_order);
 }

 private void cslaActionExtender1_SetForNew(
 object sender, CslaActionEventArgs e)
 {
 _order = Order.NewOrder();
 BindUI();
 }

 private void cslaActionExtender1_ErrorEncountered(
 object sender, ErrorEncounteredEventArgs e)
 {
 MessageBox.Show(e.Ex.Message);
 }
 }

At this point, you should have an understanding of the support provided for Windows Forms
data binding within CSLA .NET. I chose to discuss Windows Forms first, because as a general rule, if
you support Windows Forms data binding, you support everything else. That used to be true, but it’s
becoming less true as WPF matures, so I’ll talk about WPF next.

WPF
WPF is the newest UI technology discussed in this chapter, and it is evolving rapidly. Even from
.NET 3.0 to 3.5, and from 3.5 to 3.5 SP1, there have been substantial changes to the features provided
by data binding in WPF. I expect the changes to continue as WPF rapidly matures toward parity with
the features of Windows Forms data binding.

WPF data binding is similar in some ways to Windows Forms. Both technologies are rich and
interactive, providing immediate, event-driven interaction between the UI and the business objects.
WPF supports some of the same data binding interfaces used by Windows Forms, and it has some
new ones of its own, most of which are optional or redundant.

I’ll discuss supporting data binding for a single object first, and then I’ll discuss data binding
support for collections and lists. I’ll wrap up this section by discussing some custom controls
provided by CSLA .NET to simplify the use of data binding in WPF.

Object Data Binding
Binding to a single object in WPF is largely automatic. You can bind to nearly any object in .NET and
it just works. As with Windows Forms, however, the data binding experience is enhanced if the object
implements the same interfaces listed earlier in Table 10-1.

The INotifyPropertyChanged interface should be considered the bare minimum required to
participate in data binding. It notifies data binding that a property of the object has changed. WPF
handles the PropertyChanged event somewhat differently from Windows Forms—a topic I’ll explore
later in this section.

The WPF data grid control uses the IEditableObject interface to roll back changes to a row of
data if the user presses Esc. The Windows Forms data grid relies on this same behavior.

Lhotka_1019-1C10.fm Page 312 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 313

■Note At the time of this writing, the WPF data grid control is simply a project on CodePlex (www.codeplex.com) and
is not an official part of the product. However, at present, it uses IEditableObject, as described here.

Data binding uses the IDataErrorInfo interface to change the display to visually indicate that
the property to which a control is bound is invalid. Unlike Windows Forms, which uses an ErrorProvider
control to do this, WPF data binding supports this concept natively, and you manage the appearance
of a control with an invalid value by using an Extensible Application Markup Language (XAML) style.

Due to the differences between Windows Forms and WPF, the only interface needing further
discussion is INotifyPropertyChanged.

PropertyChanged Event Handling

When WPF data binding handles a PropertyChanged event from an object, it assumes that only that
specific property has changed. Because of that assumption, data binding only updates controls that
are bound to that specific property. This is fundamentally different from Windows Forms, which
updates all controls bound to the same object even if they are bound to different properties.

This means that when BusinessBase raises a PropertyChanged event, it needs to act differently
for WPF than for Windows Forms. In the case of Windows Forms, even if multiple properties might
have changed, it is most efficient to only raise PropertyChanged for one of the properties, since they’ll
all get refreshed anyway. However, in WPF, it is important to raise PropertyChanged for every prop-
erty that changes. This includes properties changed directly by the user, as well as properties changed
indirectly through business rules or processing. This also includes properties that didn’t actually
change, but may have become valid or invalid because some other property changed. For example,
in an Invoice object, the AmountDue property might become invalid when the CreditLimit property
is changed. If the object only raises PropertyChanged for CreditLimit, the UI won’t display any visual
cue to indicate that AmountDue is now invalid. Figure 10-3 illustrates this.

Figure 10-3. Incorrect WPF display when using the Windows Forms model

In Figure 10-3, the user sets the Total Due to 190 and then changes the Credit Limit from 5,000
to 50. Obviously, the Total Due now exceeds the credit limit and should be invalid, but no visual cue
is provided for the user.

The object also needs to raise a PropertyChanged event for AmountDue, so data binding refreshes
that property’s display. If there’s a PropertyChanged event for CreditLimit and TotalDue, the visual
display will look like Figure 10-4.

Figure 10-4. Correct display when using the WPF data binding model

Lhotka_1019-1C10.fm Page 313 Thursday, November 20, 2008 10:41 AM

http://www.codeplex.com

314 CH AP T E R 1 0 ■ D AT A B IN D I N G

In this case, the user did exactly the same thing, but when she reduced the Credit Limit and
tabbed out of that control, the Total Due immediately showed that it was in error. You can imple-
ment this in BusinessBase, with a configuration setting in Csla.ApplicationContext.

Configuration

There’s no universal way for a business object to know that it is data bound to a WPF form or a
Windows Forms form, so you need to tell CSLA .NET which type of data binding is being used so the
framework can adapt. You can do this by setting a config value in the app.config file in the appSettings
section, as shown here:

 <add key="CslaPropertyChangedMode" value="Xaml" />

or in code, as shown here:

 Csla.ApplicationContext.PropertyChangedMode =
 Csla.ApplicationContext.PropertyChangedModes.Xaml;

If set in code, the value should be set exactly once, as the application starts up.
The default mode is Windows, which is necessary for backward compatibility with existing CSLA

.NET code. This means that all WPF applications should set this property as shown, either in the
config file or in code.

Raising PropertyChanged in BusinessBase

In the BusinessBase class, the code that raises the PropertyChanged event when a property is changed
works differently depending on the PropertyChangedMode setting.

 protected virtual void PropertyHasChanged(string propertyName)
 {
 MarkDirty(true);
 var propertyNames = ValidationRules.CheckRules(propertyName);
 if (ApplicationContext.PropertyChangedMode ==
 ApplicationContext.PropertyChangedModes.Windows)
 OnPropertyChanged(propertyName);
 else
 foreach (var name in propertyNames)
 OnPropertyChanged(name);
 }

If the mode is Windows, then OnPropertyChanged() will be called to raise the event just one time,
for the property that was just changed.

 if (ApplicationContext.PropertyChangedMode ==
 ApplicationContext.PropertyChangedModes.Windows)
 OnPropertyChanged(propertyName);

If the mode is Xaml, then the code will loop through a list of all the properties for which valida-
tion rules were checked.

 foreach (var name in propertyNames)
 OnPropertyChanged(name);

The CheckRules() method, which I’ll discuss in Chapter 11, returns a string array containing
the names of all the properties for which business or validation rules were invoked. This is effectively
the list of all the properties that might need to be refreshed in the WPF interface.

The OnPropertyChanged() method is called for each property name, ensuring that the UI updates
properly, even if changing one property affects the validation status of other properties.

Lhotka_1019-1C10.fm Page 314 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 315

Collection Data Binding
WPF supports two different interfaces for binding to collections: INotifyCollectionChanged and
IBindingList. The INotifyCollectionChanged interface and the associated ObservableCollection<T>
class were introduced with WPF. The INotifyCollectionChanged interface offers a simpler alterna-
tive to the relatively complex IBindingList interface.

It is important to realize that WPF supports both IBindingList and INotifyCollectionChanged.
If a collection implements either interface, it will work fine with WPF data binding. However, for a
collection to be useful in Windows Forms as well as WPF, then IBindingList is the only valid option.

A collection should never implement both interfaces. The IBindingList interface requires
implementation of the ListChanged event, and INotifyCollectionChanged requires implementation
of the CollectionChanged event. If a collection implements both, then it will raise both events, and
WPF will respond to both events. Each action to a list affects data binding twice, so some very unex-
pected and undesired results would occur.

I’ve already discussed how the CSLA .NET collection classes inherit from BindingList<T> and
thus implement IBindingList. This allows them to work properly with WPF, as well as Windows
Forms and Web Forms.

Controls and Helper Objects
WPF data binding is powerful and fun to use. It minimizes the amount of code required in the UI,
and it provides a clean layer of abstraction between the UI and your business layer. However, there
are some areas where repetitive code can still be required in the UI, and to minimize this, CSLA .NET
includes a set of custom WPF controls.

The CslaDataProvider Control

WPF has a data control concept similar to the data source control concept from ASP.NET 2.0. In WPF,
these data controls are called data providers, and they allow declarative data access from your XAML
code, or your code-behind.

Data provider controls are powerful, because they abstract the concept of data access within a
WPF form, and they can support additional behaviors such as providing asynchronous access to data.

As with ASP.NET, WPF provides an ObjectDataProvider control that might, at first glance, appear to
be a good way to work with CSLA .NET–style business objects. Unfortunately, the ObjectDataProvider
has some of the same limitations as the ASP.NET ObjectDataSource control:

• It requires a public constructor.

• It has no way to call a static (or any other type of) factory method.

CSLA .NET–style business objects have non-public constructors, and factory methods are used
to create or retrieve the object. Additionally, CSLA .NET objects intrinsically support n-level undo
and persistence, and the ObjectDataProvider has no knowledge of those capabilities either.

What’s needed is a data provider control that understands how to call static factory methods
and how to manage the object’s lifetime: interacting with n-level undo and CSLA .NET–style object
persistence.

The CslaDataProvider is a WPF data provider control that understands how to interact with
CSLA .NET business objects. This control can not only create or retrieve a business object, but it can
also manage the object’s entire lifetime through to saving (inserting, updating or deleting) the object
into the database or canceling any changes made to the object by the user.

Finally, like many other data provider controls, CslaDataProvider supports asynchronous loading
of the object by implementing an IsAsynchronous property. This can be a powerful feature in many
cases, because it tells the control to create or retrieve the object on a background thread, and the UI
updates automatically when the process is complete.

Lhotka_1019-1C10.fm Page 315 Thursday, November 20, 2008 10:41 AM

316 CH AP T E R 1 0 ■ D AT A B IN D I N G

Declaring the Class

The .NET Framework includes a base class that makes it relatively easy to create a data provider
control, and CslaDataProvider inherits from that class.

 public class CslaDataProvider : DataSourceProvider

In the simplest case, a subclass of DataSourceProvider needs only to override the BeginQuery()
method, where it creates or retrieves the object requested by data binding. The CslaDataProvider
control does that, and quite a bit more.

The BeginQuery Method

A subclass of DataSourceProvider needs to override the BeginQuery() method, which data binding
invokes when it needs the control to create or retrieve an object. This can happen in the following cases:

• When the WPF form is loaded and IsInitialLoadEnabled is true (the default)

• When a property of the data provider control is changed (via data binding or code)

The BeginQuery() method must honor some properties from the base class. First, it must support
the concept of deferred refresh, which allows the UI code to set many properties of the data provider
control and have the query run only once after they’ve all been set. The IsRefreshDeferred property
on the base class controls this. Second, it also must support the IsInitialLoadEnabled property. If
this property is false, then the first time BeginQuery() is invoked, it must return without doing any
work. Finally, the CslaDataProvider control supports an IsAsynchronous property, and if that is true,
then the query is run on a background thread.

Here’s the code:

 protected override void BeginQuery()
 {
 if (this.IsRefreshDeferred)
 return;

 if (_firstRun)
 {
 _firstRun = false;
 if (!IsInitialLoadEnabled)
 return;
 }

 QueryRequest request = new QueryRequest();
 request.ObjectType = _objectType;
 request.FactoryMethod = _factoryMethod;
 request.FactoryParameters = _factoryParameters;
 request.ManageObjectLifetime = _manageLifetime;

 if (IsAsynchronous)
 System.Threading.ThreadPool.QueueUserWorkItem(DoQuery, request);
 else
 DoQuery(request);
 }

You can see how the IsRefreshDeferred, IsInitialLoadEnabled, and IsAsynchronous properties
are used to control the flow of the process.

Ultimately, the DoQuery() method handles the real work, either on a background thread or
synchronously as appropriate.

Lhotka_1019-1C10.fm Page 316 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 317

The DoQuery Method

The DoQuery() method is relatively simple, because it just invokes the specified factory method and
returns the resulting business object.

To invoke the factory method, it uses a bit of public reflection. This is necessary because the
factory method name comes from XAML, so it’s obviously just a string value. If you look at the code,
you’ll see how it first attempts to find a factory method with parameters that match those provided
from the XAML.

 BindingFlags flags = BindingFlags.Static |
 BindingFlags.Public |
 BindingFlags.FlattenHierarchy;
 MethodInfo factory = request.ObjectType.GetMethod(
 request.FactoryMethod, flags,
 null,
 MethodCaller.GetParameterTypes(parameters), null);

Hopefully, that will succeed, and the factory can be invoked. However, if a strongly typed match
can’t be made, another attempt will be made to find any factory with the correct number of
parameters.

 if (factory == null)
 {
 int parameterCount = parameters.Length;
 MethodInfo[] methods = request.ObjectType.GetMethods(flags);
 foreach (MethodInfo method in methods)
 if (method.Name == request.FactoryMethod &&
 method.GetParameters().Length == parameterCount)
 {
 factory = method;
 break;
 }
 }

This covers the case where a factory method is defined to accept parameters of type object, for
example.

Assuming some matching factory method is found, it is invoked.

 result = factory.Invoke(null, parameters);

If the ManageObjectLifetime property is true, then CslaDataProvider is expected to support the
advanced save and cancel features. To do this, it must call the n-level undo BeginEdit() method on
the object before returning it to data binding.

 if (request.ManageObjectLifetime && result != null)
 {
 Csla.Core.ISupportUndo undo = result as Csla.Core.ISupportUndo;
 if (undo != null)
 undo.BeginEdit();
 }

Finally, the result is returned to data binding, along with any exception that may have occurred
during the process.

 base.OnQueryFinished(result, exceptionResult, null, null);

To be clear, if an exception occurs in DoQuery(), it is caught, and the Exception object is returned
as part of this result. The exception isn’t allowed to bubble up as normal. This is important, because

Lhotka_1019-1C10.fm Page 317 Thursday, November 20, 2008 10:41 AM

318 CH AP T E R 1 0 ■ D AT A B IN D I N G

this code could be running on a background thread. In that case, were the exception to simply bubble up,
it would be unavailable to the UI developer, making debugging virtually impossible.

The OnQueryFinished() method returns the resulting object, if any, and the exception, if any, so
they can be provided to the UI through data binding.

The CslaDataProviderCommandManager Class

Most data provider controls only create or retrieve data objects. They have no support for saving the
object or for canceling changes, nor do they know how to add or remove items from a collection.
However, these are common behaviors that are used in many forms, and if the control doesn’t
support them, then the UI developer must write code to do this work.

The CslaDataProvider control does implement these behaviors, which reduces the amount of
code required to create a UI, sometimes even enabling a UI developer to create a fully interactive
data editing form with no code behind.

The support for the save, cancel, add new item, and remove item behaviors is handled through
the WPF concept of commanding. Some WPF controls can send a command to other controls, and
this is often done instead of implementing an event handler. For example, a Button control can send
a command rather than having a Click event handler.

The challenge, in this case, is that commands can only be routed to visual UI elements, and
a data provider is not a visual element. To overcome this limitation and allow commands to
be routed to CslaDataProvider, every instance of CslaDataProvider exposes an instance of
CslaDataProviderCommandManager, which is a visual element (though it is never displayed to the
user). Figure 10-5 shows this relationship.

Figure 10-5. CslaDataProvider and CslaDataProviderCommandManager

This allows controls such as a button to route the appropriate command to the
CslaDataProviderCommandManager, which invokes a method on the CslaDataProvider to do the
actual work.

For example, this XAML defines a Save button:

 <Button
 Command="ApplicationCommands.Save"
 CommandTarget="{Binding Source={StaticResource Project},
 Path=CommandManager,
 BindsDirectlyToSource=True}"
 HorizontalAlignment="Left" IsDefault="True">Save</Button>

Lhotka_1019-1C10.fm Page 318 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 319

Notice how the CommandTarget property is specified. The Source is a CslaDataProvider control,
but the binding path indicates that the command should be routed to the data provider control’s
CommandManager property, which is an instance of CslaDataProviderCommandManager.

In CslaDataProviderCommandManager is a SaveCommand() method that is invoked by the WPF
commanding infrastructure when the Button control is clicked:

 private static void SaveCommand(object target, ExecutedRoutedEventArgs e)
 {
 CslaDataProviderCommandManager ctl =
 target as CslaDataProviderCommandManager;
 if (ctl != null && ctl.Provider != null)
 ctl.Provider.Save();
 }

The CslaDataProviderCommandManager has a Provider property, which is a reference to its parent
CslaDataProvider control. You can see how this code delegates the call to its parent:

 ctl.Provider.Save();

Finally, in CslaDataProvider, the Save() method does the actual work of saving the business
object by calling the object’s Save() method.

 result = savable.Save();

It is important to notice that the Save() method returns a new instance of the business object.
I’ll discuss the details in Chapter 15, but what this means here is that the new object must be provided to
WPF data binding so the UI can update properly.

To do this, data binding must first be cleared and then provided with the new object.

 // clear previous object
 base.OnQueryFinished(null, exceptionResult, null, null);
 // return result to base class
 base.OnQueryFinished(result, null, null, null);

The first OnQueryFinished() call passes a null for the object value. This is necessary, because
if the business object is returned before clearing the value, data binding will think it is the original
object and it won’t update the reference. This is much like the process of clearing and resetting a
BindingSource in Windows Forms for the same reason.

The Undo (cancel), New (add new item), and Remove (remove item) commands are implemented
using the same technique.

The CslaDataProvider control reduces the amount of UI code required to create a data-oriented
WPF form. It can create or retrieve an object so the user can interact with the data. The control allows
the UI developer to use commanding to add or remove items from a collection object. Finally, the
control can be used to save or cancel the changes made by the user, all entirely through XAML.

The PropertyStatus Control

WPF doesn’t have an exact equivalent to the Windows Forms ErrorProvider control or the Web
Forms validation controls. As I discussed earlier and illustrated in Figures 10-3 and 10-4, some basic
support for IDataErrorInfo is built into WPF data binding. It is possible to use XAML styling to
display validation errors from the business object to the user using that technique.

However, that approach still doesn’t allow you to easily display all three severities of validation
errors that I will cover in Chapter 11: error, warning, and information. WPF also doesn’t provide a
simple way to indicate that an asynchronous validation rule is currently running for a property that
is data bound to a UI control.

Lhotka_1019-1C10.fm Page 319 Thursday, November 20, 2008 10:41 AM

320 CH AP T E R 1 0 ■ D AT A B IN D I N G

In Chapter 12, I’ll discuss the authorization support built into CSLA .NET, which includes the
ability to specify whether a user is allowed to read or write to specific properties. Ideally, a UI control
bound to a property would enable or disable (or even become hidden) based on whether the user
was allowed to edit or see the property value. There is no support for such a concept in WPF.

The PropertyStatus control in the Csla.Wpf namespace is designed to address these shortcom-
ings. This control’s default appearance is similar to the Windows Forms ErrorProvider control,
although as shown in Figure 10-6, it displays all three rule severities. Of course, the control is fully
stylable through XAML, so you can change the visual display as needed.

Figure 10-6. PropertyStatus displaying broken validation rules

The PropertyStatus control is typically used in a form along with a TextBox control or other data
bound control. The PropertyStatus control not only has a display of its own for validation errors, but
it can also control the display of the associated UI control for authorization purposes (disabling or
hiding the control as necessary). Here’s an example of using PropertyStatus:

 <StackPanel Orientation="Horizontal">
 <TextBox x:Name="NameTextBox" Text="{Binding Path=Name}" />
 <csla:PropertyStatus Source="{Binding}"
 Property="Name"
 Target="{Binding ElementName=NameTextBox}"/>
 </StackPanel>

The Source and Property properties must be set so the control has access to the business object
property. The Target property must be set for the authorization support to work, and this is optional.
If you don’t want automatic disabling of the UI control based on the business object’s authorization
rules, then don’t set the Target property.

Perhaps the most interesting part of the PropertyStatus control’s implementation is the fact
that it supports visual styling. Its default appearance is defined in the Generic.xaml file contained in
the \Themes folder. WPF defines the name of the folder and file; you must use these names when
building controls. In Generic.xaml, you’ll find a Style element for the PropertyStatus control:

 <Style TargetType="{x:Type csla:PropertyStatus}">

I won’t go through all the XAML in the style, as it is quite extensive and key parts were created using
Expression Blend. However, it’s important to understand that this style references two ControlTemplate
elements that are also defined in Generic.xaml: DefaultPopupTemplate and BrokenRuleTemplate. These

Lhotka_1019-1C10.fm Page 320 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 321

are constituent parts of the overall control UI, and they allow a UI designer to override just parts of
the visual display. For example, a designer could replace DefaultPopupTemplate to change the look
and feel of the popup that is shown when the user hovers his mouse over an error icon.

The PropertyStatus style also uses a number of other named elements such as some StoryBoard
elements and a Grid element. The names of these elements, as defined by x:Key properties, are
important for linking the elements to the code that implements the control itself.

In the PropertyStatus control code, attributes are applied to the class to indicate that the control
makes use of a series of control templates.

 [TemplatePart(Name = "root", Type = typeof(FrameworkElement))]
 [TemplatePart(Name = "popup", Type = typeof(Popup))]
 [TemplatePart(Name = "errorImage", Type = typeof(FrameworkElement))]
 [TemplatePart(Name = "warningImage", Type = typeof(FrameworkElement))]
 [TemplatePart(Name = "informationImage", Type = typeof(FrameworkElement))]
 [TemplatePart(Name = "busy", Type = typeof(BusyAnimation))]
 [TemplatePart(Name = "Valid", Type = typeof(Storyboard))]
 [TemplatePart(Name = "Error", Type = typeof(Storyboard))]
 [TemplatePart(Name = "Warning", Type = typeof(Storyboard))]
 [TemplatePart(Name = "Information", Type = typeof(Storyboard))]
 public class PropertyStatus : ContentControl

The control also defines a set of dependency properties, such as the Target property discussed
earlier. A dependency property is a special way of declaring properties so they are fully available to
data binding in WPF and WF.

 public static readonly DependencyProperty
 TargetProperty = DependencyProperty.Register(
 "Target",
 typeof(DependencyObject),
 typeof(PropertyStatus));

 public DependencyObject Target
 {
 get { return (DependencyObject)GetValue(TargetProperty); }
 set { SetValue(TargetProperty, value); }
 }

As you can see, the declaration of a dependency property is not all that different from a CSLA
.NET property with a managed backing field, as discussed in Chapter 7. In fact, I drew inspiration
from the dependency property syntax when designing the managed backing field syntax for CSLA
.NET.

WPF uses the DependencyProperty field to provide metadata about the dependency property,
and it uses that metadata to support data binding. The use of dependency properties is required to
create bindable properties in any WPF UI component such as a control. It is not required when creating
data sources such as a business object.

The Source property is important, because it provides the control with access to the underlying
data source object. When this property changes, the control must disconnect from any previous data
source and connect to the new data source. This is required because the PropertyStatus control
listens for events from the data source object. The SetSource() method coordinates this process.

 private void SetSource(object oldSource, object newSource)
 {
 DetachSource(oldSource);
 AttachSource(newSource);

Lhotka_1019-1C10.fm Page 321 Thursday, November 20, 2008 10:41 AM

322 CH AP T E R 1 0 ■ D AT A B IN D I N G

 BusinessBase bb = newSource as BusinessBase;
 if (bb != null && !string.IsNullOrEmpty(Property))
 IsBusy = bb.IsPropertyBusy(Property);

 UpdateState();
 }

The UpdateState() method causes an immediate check of the validation status for the bound
property from the data source object. This way, the UI is updated immediately to reflect the status of
the new data source object. I’ll cover the UpdateState() method later in this section of the chapter.

The DetachSource() and AttachSource() methods unhook and hook the event handlers for the
data source object’s BusyChanged and PropertyChanged events. For example, here’s the
AttachSource() method:

 private void AttachSource(object source)
 {
 INotifyBusy busy = source as INotifyBusy;
 if (busy != null)
 busy.BusyChanged += source_BusyChanged;

 INotifyPropertyChanged changed = source as INotifyPropertyChanged;
 if (changed != null)
 changed.PropertyChanged += source_PropertyChanged;
 }

The BusyChanged event is used to turn on and off a busy animation. The result is that the user has
a visual indication that the business object property is currently executing an asynchronous valida-
tion rule. The default visual appearance in this case is to display a BusyAnimation control, which I’ll
discuss later in this chapter.

The PropertyChanged event is used to trigger a check of the source object’s authorization and
validation rules through a call to the UpdateState() method. The UpdateState() method uses the
validation and authorization concepts discussed in Chapters 11 and 12 to ask the business object
whether the property has any associated broken validation rules.

 List<BrokenRule> allRules = new List<BrokenRule>();
 foreach (var r in businessObject.BrokenRulesCollection)
 if (r.Property == Property)
 allRules.Add(r);

The allRules list is then used to update the icon display and populate the popup if the user
hovers his mouse over the icon. This relies on the data source object being a BusinessBase object,
and if it is not, then the broken rules processing will be skipped automatically.

There’s similar functionality for authorization in the HandleTarget() method. This method is
invoked when the control needs to check the authorization rules for the business object property. It
does a cast to see if the object implements IAuthorizeReadWrite from the Csla.Security namespace.
Since BusinessBase and ReadOnlyBase implement this interface, authorization works with both edit-
able and read-only objects.

Here’s the code that determines the read and write authorization for the business object
property:

 var b = Source as Csla.Security.IAuthorizeReadWrite;
 if (b != null)
 {
 bool canRead = b.CanReadProperty(Property);
 bool canWrite = b.CanWriteProperty(Property);

Lhotka_1019-1C10.fm Page 322 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 323

The canRead and canWrite values are then used to change the display of the Target UI control to
ensure that the user can’t edit or see data if he isn’t authorized.

The PropertyStatus control provides simple access to rich functionality around authorization,
validation, and asynchronous rule processing for WPF applications.

The BusyAnimation Control

The data portal and validation rules subsystems in CSLA .NET both support asynchronous opera-
tions. These operations run in the background, and the user is able to interact with the application
while they execute. In many cases, you’ll want to give the user a visual cue that a background opera-
tion is executing; otherwise, the user may be unaware that the application is actually busy doing work.

The PropertyStatus control I discussed earlier in the chapter will automatically display a busy
animation if an asynchronous validation rule is executing for the property that the PropertyStatus
control is monitoring. To show this animation, the PropertyStatus control uses a BusyAnimation
control from the Csla.Wpf namespace.

You can also directly use the BusyAnimation control to indicate other asynchronous operations.
For example, you might bind this control to a CslaDataProvider control’s IsBusy property so the user
is aware that an asynchronous data retrieval operation is executing.

The BusyAnimation control is stylable, much like PropertyStatus. This means that its default
appearance is defined by XAML in the Generic.xaml file from the \Themes folder in the Csla project.
The XAML is quite long and is mostly composed of Storyboard elements to control the animation,
but it does set some default values for properties as well.

 <Style TargetType="{x:Type csla:BusyAnimation}">
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="BorderBrush" Value="Black" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="Foreground" Value="Tan" />
 <Setter Property="StateDuration" Value="0:0:0.125" />

The animation of the storyboards is handled by a DispatchTimer, which is a special timer control
designed to work with WPF UI elements.

 _timer = new DispatcherTimer();
 _timer.Interval = StateDuration;
 _timer.Tick += new EventHandler(timer_Tick);

The state of the storyboard is changed with each Tick event of the timer, moving from one frame
of animation to the next.

 private int _frame = 0;

 void timer_Tick(object sender, EventArgs e)
 {
 _isRunningStoryboard[_frame].Begin(_root);
 _frame = (_frame + 1) % NUM_STATES;
 }

The BusyAnimation control is useful for giving the user an indication that a background task is
executing, and you can use it with the asynchronous data portal and the CslaDataProvider control.
The PropertyStatus control uses the BusyAnimation control automatically. I’ll use this control in
Chapter 19.

Lhotka_1019-1C10.fm Page 323 Thursday, November 20, 2008 10:41 AM

324 CH AP T E R 1 0 ■ D AT A B IN D I N G

The DataDecoratorBase Control

WPF has the concept of a decorator control, which is a control that alters the appearance of the control it
contains. In other words, a decorator control contains another control and “decorates” it by altering
its appearance.

The Authorizer and ObjectStatus controls, which I’ll discuss later, are both decorator controls.
Their behavior requires that they be aware of when the current DataContext changes, and when the
data object raises a changed event (PropertyChanged, ListChanged, or CollectionChanged). Rather
than having those controls implement this behavior separately, the DataDecoratorBase control
handles all those details.

I won’t walk through the code for DataDecoratorBase in detail. It handles the DataContextChanged
event so it is aware of when the data context changes.

 public DataDecoratorBase()
 {
 this.DataContextChanged +=
 new DependencyPropertyChangedEventHandler(Panel_DataContextChanged);
 this.Loaded += new RoutedEventHandler(Panel_Loaded);
 }

When it detects that the context has changed, it unhooks any events from the old context object
and hooks events on the new context object. The goal is to detect when the current data context
object raises a changed event such as PropertyChanged.

When that happens, a virtual method named DataPropertyChanged() is called to notify any
subclass.

 private void DataObject_PropertyChanged(
 object sender, PropertyChangedEventArgs e)
 {
 DataPropertyChanged(e);
 }

The subclass can override DataPropertyChanged(), and can take any appropriate steps in response
to the event. The DataDecoratorBase class exists to consolidate this event handling code so it isn’t
repeated in other controls. It also implements a helper method named FindChildBindings(). This
method walks through all the controls contained within the DataDecoratorBase control, and each
time it finds a control that is data bound it calls a virtual method named FoundBinding(). The subclass
can override FoundBinding(), where it can do any processing necessary related to that binding.

The Authorizer Control

The ReadWriteAuthorization control from the Csla.Windows namespace helps Windows Forms
developers build interfaces where the controls on the form alter their appearance based on whether
the user is authorized to read or write to the underlying business object property.

The Authorizer control in the Csla.Wpf namespace provides similar functionality for WPF. The
Authorizer control is a decorator control and is a subclass of DataDecoratorBase. If you want it to
affect the appearance of multiple controls, you can nest those controls within a panel or other container
control, then put that container control inside the Authorizer control.

In most cases, developers will probably prefer the PropertyStatus control instead of Authorizer,
because it handles not only authorization but also validation and busy status notification. However,
Authorizer does provide an alternative, making it easy to implement authorization for a group of
data bound controls contained within the Authorizer control.

Authorizer uses the IAuthorizeReadWrite interface from the Csla.Security namespace to interact
with the business object. I’ll discuss this interface in more detail in Chapter 13. The control uses this
interface to determine whether the user is authorized to read or write to each business object prop-
erty that is data bound to a control contained within the Authorizer control.

Lhotka_1019-1C10.fm Page 324 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 325

Any time the underlying data object (DataContext) is changed or a Refresh() method is called,
Authorizer scans all the controls it contains, checking each binding to see if the current user is autho-
rized to read and write the associated property. DataDecoratorBase does much of the hard work.

Controlling Readability

If a property is not readable, Authorizer changes the UI control’s Visibility to be Hidden or Collapsed.
An attached property defined by Authorizer called NotVisibleModeProperty is used to choose which
option should be used for each UI control.

 private static readonly DependencyProperty NotVisibleModeProperty =
 DependencyProperty.RegisterAttached(
 "NotVisibleMode",
 typeof(VisibilityMode),
 typeof(Authorizer),
 new FrameworkPropertyMetadata(VisibilityMode.Collapsed),
 new ValidateValueCallback(IsValidVisibilityMode));

The SetRead() method determines whether the user is authorized to read a property, and it
alters the bound control’s Visibility accordingly.

 private void SetRead(Binding bnd, UIElement ctl, IAuthorizeReadWrite source)
 {
 bool canRead = source.CanReadProperty(bnd.Path.Path);
 VisibilityMode visibilityMode = GetNotVisibleMode(ctl);

 if (canRead)
 switch (visibilityMode)
 {
 case VisibilityMode.Collapsed:
 if (ctl.Visibility == Visibility.Collapsed)
 ctl.Visibility = Visibility.Visible;
 break;
 case VisibilityMode.Hidden:
 if (ctl.Visibility == Visibility.Hidden)
 ctl.Visibility = Visibility.Visible;
 break;
 default:
 break;
 }
 else
 switch (visibilityMode)
 {
 case VisibilityMode.Collapsed:
 ctl.Visibility = Visibility.Collapsed;
 break;
 case VisibilityMode.Hidden:
 ctl.Visibility = Visibility.Hidden;
 break;
 default:
 break;
 }
 }

The Visibility property is set back to Visible if the user is authorized to read the value.

Lhotka_1019-1C10.fm Page 325 Thursday, November 20, 2008 10:41 AM

326 CH AP T E R 1 0 ■ D AT A B IN D I N G

Controlling Updates

If a property is not updatable, Authorizer will check to see if the UI control has an IsReadOnly property;
if it does, it will set the value to true. Otherwise, it will set the IsEnabled property to false, because
all controls have that property. The SetWrite() method handles this.

 private void SetWrite(Binding bnd, UIElement ctl, IAuthorizeReadWrite source)
 {
 bool canWrite = source.CanWriteProperty(bnd.Path.Path);

 // enable/disable writing of the value
 PropertyInfo propertyInfo =
 ctl.GetType().GetProperty("IsReadOnly",
 BindingFlags.FlattenHierarchy |
 BindingFlags.Instance |
 BindingFlags.Public);
 if (propertyInfo != null)
 {
 propertyInfo.SetValue(
 ctl, !canWrite, new object[] { });
 }
 else
 {
 ctl.IsEnabled = canWrite;
 }
 }

There is no standard interface you can use to find the IsReadOnly property, so reflection is used.
If the property exists, it will be set; otherwise, the code will fall back to disabling the UI control entirely.

The Authorizer control can save a lot of UI code when building a form for editing details, because it
manages the status of all data bound detail controls with little or no code required in the UI itself. You
can see how this is used in Chapter 19.

The ObjectStatus Control

Editable CSLA .NET business objects that subclass BusinessBase have a set of valuable status properties.
These properties are not available for data binding, because they are marked with the
[Browsable(false)] attribute, and because they don’t raise the PropertyChanged event when they
change. These properties were discussed in Chapter 8 and are listed in Table 8-1.

Sometimes, you may need access to these properties within your XAML code. For example, you
might want to enable or disable certain controls on the form based on whether the object’s IsSavable
property returns true or false.

The ObjectStatus control from the Csla.Wpf namespace exposes these properties as bindable
properties from a WPF control. The ObjectStatus control takes the properties from its current
DataContext and exposes them as dependency properties so they can be used in control-to-control
data binding. Additionally, the ObjectStatus control includes code to detect when each of the status
properties has changed, so it can raise appropriate PropertyChanged events for them.

This control is relatively simple. Any time the DataContext changes or the data object raises a
changed event such as PropertyChanged, it re-reads the object’s status values and updates its own
bindable property values—for example:

 if (IsDeleted != source.IsDeleted)
 IsDeleted = source.IsDeleted;
 if (IsDirty != source.IsDirty)
 IsDirty = source.IsDirty;

Lhotka_1019-1C10.fm Page 326 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 327

 if (IsNew != source.IsNew)
 IsNew = source.IsNew;
 if (IsSavable != source.IsSavable)
 IsSavable = source.IsSavable;
 if (IsValid != source.IsValid)
 IsValid = source.IsValid;

It only updates its own property value if that value differs from the business object’s value. This
is because setting the control’s property value raises a PropertyChanged event from the control, and
that will likely cause some other UI control to refresh based on a trigger or control-to-control data
binding.

The end result is that you can create a control in the UI to display the status of the object. For
example, here’s a CheckBox control bound to the IsSavable property:

 <CheckBox IsEnabled="False"
 IsChecked="{Binding
 RelativeSource={RelativeSource FindAncestor,
 AncestorType=csla:ObjectStatus,
 AncestorLevel=1},
 Path=IsSavable}">IsSavable</CheckBox>

The binding expression is quite complex, but the end result is that the control displays the
current value of the IsSavable property for the business object referred to by the DataContext.

At this point, you should have an understanding of the support provided for WPF data binding
within CSLA .NET. The last technology I’ll cover is Web Forms, which is the simplest from a data
binding perspective.

Web Forms
Of the three UI technologies discussed in this chapter, ASP.NET Web Forms has the fewest require-
ments on business objects. In fact, it imposes no specific requirements on your objects or collections
at all.

Any object with properties can be bound to controls in a page. Any collection, list, or array that
implements IEnumerable (the most basic of all collection interfaces) can be bound to list controls on
a page. In short, it just works.

Controls and Helper Objects
However, there’s one catch, and that is the way the Web Forms data source controls work—specifically,
the ObjectDataSource control. This control imposes some restrictions on the objects it works with,
and those restrictions mean it won’t work with CSLA .NET objects.

To overcome this limitation, the CslaDataSource control is an ASP.NET data source control that
is designed to work with objects containing business logic. This control allows the full use of Web
Forms data binding with rich business objects.

The CslaDataSource Control

Data source controls in ASP.NET have two major areas of functionality: runtime and design time.
Runtime functionality is the actual data binding implementation—it copies data from the data source to
the controls and back again. Design time functionality exists to support Visual Studio 2005 and 2008,
allowing developers to graphically create web pages using common controls like DataGridView and
DetailsView when they are bound to the data source control.

Lhotka_1019-1C10.fm Page 327 Thursday, November 20, 2008 10:41 AM

328 CH AP T E R 1 0 ■ D AT A B IN D I N G

The detailed design issues around building an ASP.NET data source control are outside the scope of
this book. Nonetheless, I’ll walk quickly through the code in these classes to call out the highlights of
the implementation.

It turns out that implementing runtime functionality is relatively straightforward, but providing
design time functionality is more complex. Table 10-7 lists the classes required to implement the
CslaDataSource control’s runtime and design time support.

Figure 10-7 provides a helpful diagram that illustrates how these classes relate to each other.

Figure 10-7. Relationship between the classes in CslaDataSource

Table 10-7. Classes Required to Implement the CslaDataSource Control

Class Description

CslaDataSource The data source control itself; the UI developer uses
this directly

CslaDataSourceView Provides the actual implementation of data binding for
CslaDataSource

CslaDataSourceConfiguration Provides a configuration UI form displayed in Visual Studio
to configure the control

CslaDataSourceDesigner The Visual Studio designer for CslaDataSource

CslaDesignerDataSourceView Provides schema information and sample data for
the designer

ObjectSchema The schema object for a business object, responsible for
returning an instance of ObjectViewSchema

ObjectViewSchema Provides actual information about a business object—
specifically, information about all the business object’s
bindable properties

ObjectFieldInfo Maintains information about a specific field in the
object schema

Lhotka_1019-1C10.fm Page 328 Thursday, November 20, 2008 10:41 AM

C H AP TE R 1 0 ■ DA T A B I N D IN G 329

The UI developer drags a CslaDataSource control onto a Web Form and interacts with it. While
in Visual Studio, CslaDataSourceDesigner coordinates all that interaction, although in reality, all the
hard work is done by CslaDesignerDataSourceView. The CslaDataSourceDesigner may open the
CslaDataSourceConfiguration dialog to allow the user to configure some aspects of the control.

When a control such as GridView is bound to the CslaDataSource, it requests schema informa-
tion about the data source. This schema information is created and returned by the ObjectSchema,
ObjectViewSchema, and ObjectFieldInfo objects.

Finally, at runtime, the web form interacts with CslaDataSource to perform the actual data
binding. All the hard work is actually handled by CslaDataSourceView, an instance of which is managed
by the CslaDataSource control.

The only bit of functionality that a UI developer will see is that CslaDataSource declares and
raises four events. The UI developer must respond to these events to provide the interaction with the
business object. Table 10-8 lists the events.

These four events are directly analogous to the four method names required by the ASP.NET
ObjectDataSource. Rather than using reflection to invoke a set of methods, I opted to raise events, as
I feel that this is an easier programming model. With the ObjectDataSource, the UI developer must
implement four methods (or defer to those in an ADO.NET TableAdapter), while with CslaDataSource,
the developer simply handles these four events.

There is a custom EventArgs class for each of the events: SelectObjectArgs, InsertObjectArgs,
UpdateObjectArgs, and DeleteObjectArgs, respectively. Each one provides properties that are used
within the event handler.

The end result is a fully functional data source control that understands CSLA .NET–style business
objects. UI developers can use this control to leverage the data binding support of ASP.NET Web
Forms when working with rich business objects.

Conclusion
In this chapter, I discussed how CSLA .NET supports data binding for the Windows Forms, WPF, and
Web Forms user interface technologies. For simple objects, this involves the implementation of a
number of interfaces, including

• INotifyPropertyChanging

• INotifyPropertyChanged

• IEditableObject

• IDataErrorInfo

Table 10-8. Events Raised by the CslaDataSource Control

Event Description

SelectObject Requests that the UI provide a reference to the business object that is the
data source

InsertObject Requests that the UI insert a new business object based on the data from
the form

UpdateObject Requests that the UI update a business object with the data from the form,
based on the key value provided

DeleteObject Requests that the UI delete the business object based on the key
value provided

Lhotka_1019-1C10.fm Page 329 Thursday, November 20, 2008 10:41 AM

330 CH AP T E R 1 0 ■ D AT A B IN D I N G

For collections and lists, this involves the use of either BindingList<T> or ObservableCollection<T>.
Since all three UI technologies support BindingList<T>, while only WPF supports
ObservableCollection<T>, the CSLA .NET framework is based on the use of BindingList<T>.

By providing support for data binding in the framework, CSLA .NET ensures that all business objects
created using the framework fully support the features of data binding in all major UI technologies. This
helps reduce the complexity of the business objects as well as the amount of code required to create
a UI that uses the objects.

Chapters 11 through 16 will continue the coverage of the implementation of CSLA .NET. Then,
from Chapter 17 on, the focus will be on building the simple business application designed in
Chapter 3 to illustrate how the classes in the framework can be used to build applications based on
business objects.

Lhotka_1019-1C10.fm Page 330 Thursday, November 20, 2008 10:41 AM

331

■ ■ ■

C H A P T E R 1 1

Business and Validation Rules

I’ve now walked through several aspects of the CSLA .NET implementation, including an overview
of the framework, base classes, property declarations, object status management, parent-child relation-
ships, and data binding.

This chapter will focus on how CSLA .NET supports business and validation rules in a standardized
manner. In several previous chapters, I’ve made reference to the framework’s support for business
and validation rules. The rules are invoked when a property is set on an editable business object
through the SetProperty() helper method. The business developer can also invoke the rules by
explicitly calling the CheckRules() method of the ValidationRules object.

As validation rules are broken and unbroken, they are added to and removed from a list of
broken rules. Each editable business object always has a list of the currently broken rules. If this list
is empty, IsSelfValid is true; otherwise, it is false. Not only is the list used to drive the IsSelfValid
property, but it is also used by the IDataErrorInfo implementation for data binding support. The list
of broken rules is exposed as a property from the business object, so the list itself can be data bound
and displayed to the end user if desired.

The CSLA .NET framework includes the infrastructure necessary to associate business and vali-
dation rules with properties, and to invoke those rules at appropriate points in the object’s life cycle.
That is the focus of this chapter.

Types of Rules
In the CSLA .NET model, business and validation rules are implemented as methods. Each rule is
contained in its own method. Rules are then associated with properties of business objects. The
BusinessBase class includes code to invoke these rules at appropriate points in the object’s lifetime.
For example, rules for a property are invoked when that property is changed, or when a dependent
property is changed. They are also invoked when a new instance of the object is created, and they
can be invoked explicitly by your code.

Normally, rules are associated with business objects on a per-type basis. This means that all
instances of a specific business object type (such as CustomerEdit) will have the same rules associ-
ated with the same properties. This is a good thing, because it means that the work of associating the
rules to properties is done once for that type, and the information is reused across all instances of the
type. That saves both processing time and memory.

As an alternative, it is also possible to associate rules with a business object on a per-instance
basis. This means that each instance of the business object has its own rules. The associations are set
up as the object instance is created, and they are stored in memory for that specific object. Obviously, this
can cause performance and memory-consumption issues if you have many instances of a type, so
you should avoid this approach as a general rule. CSLA .NET supports this concept, because there are
rare cases when rules must vary on a per-instance basis.

Lhotka_1019-1.book Page 331 Tuesday, November 18, 2008 3:42 PM

332 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

Per-type rules must be accessible to all instances of the business object type. Normally, per-type
rule methods are static, so they are always available to any object instance. It is also possible to
implement per-type rule methods as instance methods of a global singleton object, though this is a
more complex technique and offers no clear benefit over the simpler static method approach. In
this book, I implement static rule methods and recommend that approach.

Per-instance rule methods only need to be accessible to the specific object instance where they
are used. Normally, they are implemented as private instance methods in the business class, although
they can also be static methods. I won’t use any per-instance rules in this book, and I recommend
against their use.

Given this basic background on per-type and per-instance rule methods, I’ll now move on to
discuss the business and validation subsystem in CSLA .NET, starting with a deeper exploration of
rule methods and how you implement them.

Csla.Validation Namespace
The Csla.Validation namespace contains types that assist the business developer in implementing
and enforcing business rules. This includes managing a list of business rules for each of the object’s
properties and maintaining a list of currently broken business rules.

Obviously, the framework can’t implement the actual business rules and validation code—that
will vary from application to application. However, business rules follow a very specific pattern in
that they are either broken or not. The result of a rule being checked is a Boolean value and a human-
readable description of why the rule is broken. This makes it possible to check the rules and then
maintain a list of broken rules—including human-readable descriptions of each rule.

RuleHandler Delegate
Given that rules follow a specific pattern, it is possible to define a method signature that covers virtually
all business rules. In .NET, a method signature can be formally defined using a delegate; here’s the
definition for a rule method:

 public delegate bool RuleHandler(object target, RuleArgs e);

Every rule is implemented as a method that returns a Boolean result: true if the rule is satisfied,
false if the rule is broken. The object containing the data to be validated is passed as the first argument,
and the second argument is a RuleArgs object that you can use to pass extra rule-specific information.
This means that a business rule in a business class looks like this:

 private static bool CustNameRequired(object target, RuleArgs e)
 {
 if (string.IsNullOrEmpty(((Customer)target).Name))
 {
 e.Description = "Customer name required";
 return false;
 }
 else
 return true;
 }

If the length of the target object’s Name property is zero, then the rule is not satisfied, so it returns
false. It also sets the Description property of the RuleArgs object to a human-readable description
of why the rule is broken.

This illustrates a rule that you could implement within a single business class. By using reflec-
tion, you could write entirely reusable rule methods that any business class can use. You’ll see some

Lhotka_1019-1.book Page 332 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 333

examples of this in the “Common Validation Rules” section later in this chapter, when I discuss the
CommonRules class.

Rule methods can also be generic and, thus, strongly typed. In that case, they follow this signature:

 public delegate bool RuleHandler<T, R>(T target, R e) where R : RuleArgs;

There are a couple of variations on how to use this delegate type to create a rule method. The
most common is to provide only the type of T.

 private static bool CustNameRequired<T>(T target, RuleArgs e)
 where T : Customer
 {
 if (string.IsNullOrEmpty(target.Name))
 {
 e.Description = "Customer name required";
 return false;
 }
 else
 return true;
 }

The highlighted lines show the differences from the previous implementation. Notice how the
method is generic, and the generic type T is constrained to the type of the business object. This allows
the compiler to realize that the target parameter is of type Customer (or a subclass), so you’re able to
use all the properties of that class in the method implementation.

You can also supply both generic type parameters.

 private static bool CustNameRequired<T, R>(T target, R e)
 where T : Customer, R : MyRuleArgsSubclass
 {
 if (target.Name.Length > e.MaxLength)
 {
 e.Description = "Customer name too long";
 return false;
 }
 else
 return true;
 }

This approach is less common, but it allows you to have strongly typed access to a custom
subclass of RuleArgs that you’ve created for your rule method.

RuleArgs Class
The RuleHandler delegates specify the use of the RuleArgs object as a parameter to every rule method.
This follows the general pattern used throughout .NET of passing an EventArgs parameter to all
event handlers. Business rules aren’t event handlers, so RuleArgs doesn’t inherit from EventArgs, but
it follows the same basic principle.

The goal is to be able to pass data into and out of the rule method in a clearly defined manner.
At a minimum, RuleArgs passes the name of the property to be validated into the rule method, and
it passes any broken rule description back out of the rule method. To do this, it simply contains a
read-only PropertyName property and a read-write Description property.

More important is the fact that the author of a rule method can create a subclass of RuleArgs to
provide extra information. For instance, implementing a maximum value rule implies that the maximum
allowed value could be provided to the rule. To do this, the rule author would create a subclass
of RuleArgs.

Lhotka_1019-1.book Page 333 Tuesday, November 18, 2008 3:42 PM

334 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

DecoratedRuleArgs Class
CSLA .NET includes one subclass of RuleArgs, called DecoratedRuleArgs. This class uses the decorator
design pattern to attach an arbitrary list of name/value pairs to the RuleArgs class.

The intent of DecoratedRuleArgs is to make it possible to write rule methods that accept param-
eters, but without needing a custom RuleArgs subclass for each different rule method. To do this,
DecoratedRuleArgs acts like a Dictionary, so it stores name/value pairs and allows them to be retrieved.

This simplifies the use of code generation for business classes, because all of your rule methods
can accept exactly the same argument type, just with different name/value pairs in the list. For example,
when associating a rule with a property where the rule needs a strongly typed argument, the code in
the business object looks like this:

 ValidationRules.AddRule(MyCustomRule,
 new MyCustomRuleArgs(NameProperty, "Arg1", "Arg2"));

To generate this code, a code generation tool would need to know the type of the custom RuleArgs
subclass and the parameters needed for its constructor.

Using DecoratedRuleArgs, the code is more standardized.

 var parameters = new Dictionary<string, object>();
 parameters.Add("FirstArg", "Arg1");
 parameters.Add("OtherArg", "Arg2");
 ValidationRules.AddRule(MyCustomRule,
 new DecoratedRuleArgs(NameProperty, parameters));

The code generator still needs to know the names of the parameters required by the rule method,
but it doesn’t need to know the type of a custom RuleArgs subclass, nor does it need to worry about
the order of the parameters in a constructor or other details that make code generation difficult.

RuleMethod Class
The ValidationRules class maintains a list of rules for each property. This implies that ValidationRules
has information about each rule method. This is the purpose of the RuleMethod classes. There are
three classes: RuleMethod, RuleMethod<T, R>, and AsyncRuleMethod.

They all work much the same way, with minor variations that I’ll discuss. Here’s the declaration
of the most basic RuleMethod class:

 internal class RuleMethod :
 IRuleMethod, IComparable, IComparable<IRuleMethod>

It stores information about each rule, including a delegate reference to the rule method itself, a
unique name for the rule, and any custom RuleArgs object that should be passed to the rule method.
This information is stored in a set of fields with associated properties. The fields are declared like this:

 private RuleHandler _handler;
 private string _ruleName = String.Empty;
 private RuleArgs _args;
 private int _priority;

The RuleMethod class is scoped as internal, as it is used by other classes in the Csla.Validation
namespace, but shouldn’t be used by code outside the framework.

The unique rule name associated with each rule is derived automatically by generating a URI
with the rule:// prefix. The URI is created by combining the name of the rule method with the string
representation of the RuleArgs object. The rule method is expressed as class/method to provide a
unique value even if the same rule method name is used in different classes. The RuleArgs object, at

Lhotka_1019-1.book Page 334 Tuesday, November 18, 2008 3:42 PM

rule://prefix

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 335

a minimum, includes the target property name with which the rule is associated. It also includes any
other argument values maintained by the RuleArgs object. For instance, a rule will appear as

rule://ruleClass/ruleMethod/targetProperty?arg1=value&arg2=value

When a RuleMethod object is created, it initializes its RuleName property value as follows:

 _ruleName = string.Format(@"rule://{0}/{1}/{2}",
 Uri.EscapeDataString(_handler.Method.DeclaringType.FullName),
 _handler.Method.Name,
 _args.ToString());

The FullName property of the type includes the namespace and type name. Combining this with
the name of the rule method provides unique identification of the specific rule method. Because the
rule name must be unique, any custom subclasses of RuleArgs should be sure to override ToString()
to return a value that includes any custom data that is part of the argument object in the form of

targetProperty?arg1=value&arg2=value&...

■Note The RuleDescription class in the Csla.Validation namespace can be used to parse the rule://
URI string into its constituent parts, much like you’d use System.Uri to parse any other URI.

When the business developer associates a rule method with a property, ValidationRules creates
a RuleMethod object to maintain all this information. This RuleMethod object is what’s actually asso-
ciated with the property, thus providing all the information needed to invoke the rule when appropriate.

One interesting bit of information is a priority value. Each rule association has a priority with a
default value of 0. When rules are invoked by CSLA .NET, they are invoked in priority order, starting
with the lowest value and counting up. So priority 0 rules run first, then priority 1, 2, and so forth.
A business developer can use this priority scheme to gain some control over the order in which the
rules are invoked.

The priority concept is important, because it works in concert with a short-circuiting feature.
This feature allows CSLA .NET to stop invoking rules of a higher priority if any lower-priority rule has
failed. By default, if any priority 0 rule fails, then no priority 1 or higher rules will be invoked. All
priority 0 rules always run in any case.

There’s also a generic version of RuleMethod, which is declared like this:

 internal class RuleMethod<T, R>
 : IRuleMethod, IComparable, IComparable<IRuleMethod>
 where R : RuleArgs

It does the same thing as RuleMethod, but it stores strongly typed values based on the generic
type parameters.

And there’s the asynchronous version, which is declared like this:

 internal class AsyncRuleMethod
 : IAsyncRuleMethod, IComparable, IComparable<IRuleMethod>

This is the same as RuleMethod, but it is designed to store a reference to an asynchronous rule
method. That’s a rule method that runs code on a background thread and calls back into ValidationRules
when it is complete to report on whether the condition is met or the rule is broken.

All RuleMethod classes implement IRuleMethod, so CLSA .NET can treat them polymorphically.
In particular, as rules are associated with properties of a business object, the IRuleMethod objects are
maintained in a list for each property, and that list uses the IRuleMethod type to do this.

Lhotka_1019-1.book Page 335 Tuesday, November 18, 2008 3:42 PM

rule://ruleClass/ruleMethod/targetProperty?arg1=value&arg2=value
rule://URI
rule://URI

336 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

Any type of RuleMethod object handles the invocation of the rule method itself by exposing an
Invoke() method.

 public bool Invoke(object target)
 {
 return _handler.Invoke(target, _args);
 }

When ValidationRules is asked to check the business rules, it merely loops through its list of
RuleMethod objects, asking each one to invoke the rule it represents. As you can see, the Invoke()
method simply invokes the method via the delegate reference, passing in a reference to the object to
be validated (the business object) and the RuleArgs object associated with the rule.

If you look at the declarations of RuleMethod and RuleMethod<T, R>, you’ll see that they both
implement IComparable<T>. This interface is a standard .NET interface that you can implement to
control how your objects are compared for operations such as sorting.

This is important for these objects, because they will be sorted, and that sorting must be based
on the value of the Priority property. To this end, here’s the implementation of the interface:

 int IComparable.CompareTo(object obj)
 {
 return Priority.CompareTo(((IRuleMethod)obj).Priority);
 }

 int IComparable<IRuleMethod>.CompareTo(IRuleMethod other)
 {
 return Priority.CompareTo(other.Priority);
 }

This ensures that when the rules are sorted, they’ll be sorted in ascending order by priority.

RuleDescription Class
As I discussed earlier, rules are described by use of a URI. A rule URI looks like this:

rule://ruleClass/ruleMethod/targetProperty?arg1=value&arg2=value

The RuleDescription class understands how to parse a rule:// URI for easier use. Rather than
manually writing code to parse the URI, or using the more generic System.Uri class, you can use the
RuleDescription class to easily get at the parts of the URI.

 Csla.Validation.RuleDescription desc = new Csla.Validation.RuleDescription(
 "rule://typeName/methodName/propertyName?arg1=value&arg2=value");
 string scheme = desc.Scheme;
 string methodTypeName = desc.MethodTypeName;
 string methodName = desc.MethodName;
 string propertyName = desc.PropertyName;
 List<string> args = new List<string>();
 foreach (var item in desc.Arguments)
 args.Add(item.Key + ", " + item.Value);

Table 11-1 lists the properties available from RuleDescription.
This class is particularly useful to UI framework authors, as it allows a UI framework to easily

parse the rules associated with a business object.

Lhotka_1019-1.book Page 336 Tuesday, November 18, 2008 3:42 PM

rule://ruleClass/ruleMethod/targetProperty?arg1=value&arg2=value
rule://URI
rule://typeName/methodName/propertyName?arg1=value&arg2=value

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 337

ValidationRules Class
The ValidationRules class is the primary class in the Csla.Validation namespace. Every business
object that uses the validation rules functionality will contain its own ValidationRules object.
ValidationRules relies on the other classes in Csla.Validation to do its work. Together, these classes
maintain the list of rules for each property and the list of currently broken rules.

ValidationRulesManager and SharedValidationRulesManager Classes

You’ve already seen how a business rule is defined based on the RuleHandler delegate. A key part of what
ValidationRules does is to keep a list of such rule methods for each of the business object’s properties.
To do this, it relies on two other classes: ValidationRulesManager and SharedValidationRulesManager.

The ValidationRulesManager keeps a list of rules for each property. One way that
ValidationRulesManager is used is to keep a list of rules that is unique for each instance of a business
object. This means that each time a business object is created, a set of rules can be associated with
the properties of that particular instance. This has a pretty big impact on performance and memory
consumption, and it’s usually not the right approach. However, sometimes objects really do need
unique rules, and this class enables that scenario.

Another way ValidationRulesManager is used is by the SharedValidationRulesManager, as it
keeps a list of rules for each business type. The SharedValidationRulesManager keeps a list of rules for
each property that is common across all instances of a business object type. This means that the first
time an instance of a given business class is created, the rules are associated with the properties of
that type. The resulting associations are cached for the lifetime of the application and are shared by
all instances of that business class. This has good performance and minimal memory consumption,
and it’s the recommended approach.

■Note CLSA .NET version 2.1 introduced the shared rules concept in response to performance and memory
issues caused by the original per-instance rule technique.

As you’ll see in Chapter 17 when I create the example business library, I typically only use
shared rules.

Shared Rules and Threading

The big challenge with sharing a list of validation rules across all instances of a business type is that
those instances could be running in parallel on different threads. In particular, on a web or application

Table 11-1. Properties Available from RuleDescription

Property Description

Scheme Returns the URI scheme, which is always rule://

MethodTypeName Returns the type that implements the rule method

MethodName Returns the rule method name specified in the URI

PropertyName Returns the name of the business object property with which this rule
is associated

Arguments Returns a Dictionary of name/value pairs representing the arguments
passed to the rule method

Lhotka_1019-1.book Page 337 Tuesday, November 18, 2008 3:42 PM

rule://MethodTypeName
rule://MethodTypeName

338 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

server, many client requests may be running simultaneously, and they all need access to that same
set of cached RuleMethod objects.

Within SharedValidationRules, a Dictionary is used to cache all the rules for all the business
object types.

 private static Dictionary<Type, ValidationRulesManager> _managers =
 new Dictionary<Type, ValidationRulesManager>();

It is indexed by Type, which is the type of the business objects used by the application. Each
business object type has its own ValidationRulesManager, which stores the rules for that particular
business type.

To safely gain access to the ValidationRulesManager object for a type, the GetManager() method
is used.

 internal static ValidationRulesManager GetManager(
 Type objectType, bool create)
 {
 ValidationRulesManager result = null;
 if (!_managers.TryGetValue(objectType, out result) && create)
 {
 lock (_managers)
 {
 if (!_managers.TryGetValue(objectType, out result))
 {
 result = new ValidationRulesManager();
 _managers.Add(objectType, result);
 }
 }
 }
 return result;
 }

This method implements a simple but effective locking scheme. Remember that multiple threads
may be executing this code at exactly the same time, and those threads may all attempt to get a value
from the Dictionary.

 if (!_managers.TryGetValue(objectType, out result) && create)

If this succeeds, then there’s no problem. Multiple threads can read from the Dictionary at once
without causing an issue. Things get more complex if the result field comes back as null, because
that means a new ValidationRulesManager must be added to the Dictionary. Only one thread can be
allowed to do this, so the lock statement is used to ensure that only one thread can run the next bit
of code at a time.

Note my careful choice of words: only one at a time. Many threads may run the code inside
the lock statement, because many threads may have gotten a null value in result. So the code in the
lock statement must ensure that only the first thread does any real work. It does this by rechecking
to see if the value is in the Dictionary.

 if (!_managers.TryGetValue(objectType, out result))
 {
 result = new ValidationRulesManager();
 _managers.Add(objectType, result);
 }

Only the first thread gets a null value for result here, and then it add a new value to the
Dictionary. Every subsequent thread gets a non-null value for result, which is the desired outcome.

Lhotka_1019-1.book Page 338 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 339

Of course, the lock statement is hit only when the application is first run. Once this process
completes for a business type, that first TryGetValue()always returns the requested value, so no
locking occurs for the rest of the application’s lifetime.

Associating Rules with Properties

The ValidationRulesManager stores the actual relationships between rules and properties for a
specific business object type or instance. These values are stored in a Dictionary, which is indexed
by the property name and contains a list of rules for each property.

 private Dictionary<string, RulesList> _rulesList;

The RulesList object contains a list of IRuleMethod objects associated with the property, and a
list of properties that are dependent on this property. A dependent property is one where its rules are
checked any time this property’s rules are checked. For example, if property B is dependent on property
A, and you check the rules for property A, then the rules for property B are also checked automatically.

In RulesList then, there are two lists.

 private List<IRuleMethod> _list = new List<IRuleMethod>();
 private List<string> _dependentProperties;

When a rule is associated with a property, the IRuleMethod object for that association is added
to _list. When a dependent property is added to this property, the name of the dependent property
is added to _dependentProperties.

While the rules may be added in any order, you must sort them before you use them. This is
important, because you must invoke them in priority order, from priority 0 to 1 to 2 and so forth. This
allows the business developer to have some control over the order in which the rules execute, and it
enables the concept of short-circuiting.

Short-circuiting is a feature that stops the processing of rules partway through. The result is that
not all rules for a property are invoked. There are two ways to short-circuit rule processing for a property:
a rule method can stop the processing explicitly, or CLSA .NET can be told to stop processing rules if
any previous (higher-priority) rule has already returned false.

This feature is useful, because it allows the business developer to check all the inexpensive, easily
checked rules first and only invoke expensive rules (such as those that might hit the database) if all
previous rules were satisfied (returned true). The rule priority feature is a key part of this capability,
because it allows the business developer to control the order in which rules are invoked.

When the list of rules is retrieved, a flag is checked to see if the list has been sorted. If it has not
been sorted, the list is sorted and the flag is set to true. Since multiple threads could request the list
at the same time, this code is protected with a lock scheme similar to the one I discussed earlier.

 public List<IRuleMethod> GetList(bool applySort)
 {
 if (applySort && !_sorted)
 {
 lock (_list)
 {
 if (applySort && !_sorted)
 {
 _list.Sort();
 _sorted = true;
 }
 }
 }
 return _list;
 }

Lhotka_1019-1.book Page 339 Tuesday, November 18, 2008 3:42 PM

340 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

The result is that the ValidationRules object always gets a list of IRuleMethod objects for a property,
sorted by priority.

The combination of the RuleMethod class, the Dictionary and List object combination, and the
AddRule() methods covers the management of the rules associated with each property.

Checking Validation Rules

Once a set of rule methods has been associated with the properties of a business object, there needs
to be a way to invoke those rules. Typically, when a single property is changed on a business object,
only the rules for that property need to be checked. At other times, the rules for all the object’s prop-
erties need to be checked. This is true when an object is first created, for instance, since multiple
properties of the object could start out with invalid values.

To cover these two cases, ValidationRules implements two CheckRules() methods.

Checking Rules for One Property

The first checks the rules for a specific property.

 public void CheckRules(Csla.Core.IPropertyInfo propertyInfo)
 {
 CheckRules(propertyInfo.Name);
 }

 public string[] CheckRules(string propertyName)
 {
 if (_suppressRuleChecking)
 return new string[] {};

 var result = new List<string>();
 result.Add(propertyName);

 // get the rules dictionary
 ValidationRulesManager rules = RulesToCheck;
 if (rules != null)
 {
 // get the rules list for this property
 RulesList rulesList = rules.GetRulesForProperty(propertyName, false);
 if (rulesList != null)
 {
 // get the actual list of rules (sorted by priority)
 List<IRuleMethod> list = rulesList.GetList(true);
 if (list != null)
 CheckRules(list);
 List<string> dependencies = rulesList.GetDependencyList(false);
 if (dependencies != null)
 {
 for (int i = 0; i < dependencies.Count; i++)
 {
 string dependentProperty = dependencies[i];
 result.Add(dependentProperty);
 CheckRules(rules, dependentProperty);
 }

Lhotka_1019-1.book Page 340 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 341

 }
 }
 }
 return result.ToArray();
 }

There’s a lot going on here, so I’ll break it down.
There are two overloads: one takes an IPropertyInfo, and the other is a simple string. When a

business object calls this method directly, the business developer will typically provide an IPropertyInfo,
but internally all the work is done based on the property name as a string value.

■Note The only reason the overload accepting a string parameter is public is for backward compatibility with
older versions of CLSA .NET.

The first thing the method does is check to see if rule checking is suppressed:

 if (_suppressRuleChecking)
 return new string[] {};

A business object can set ValidationRules.SuppressRuleChecking to true to prevent CheckRules()
from doing any work. This is often useful when a lot of interdependent properties must be loaded all
at once (such as behind a web page or XML service). In that case, an explicit call to CheckRules() is
typically made after all property values have been loaded so the rules can be executed in a more effi-
cient manner.

The methods return a string array. That array contains a list of the property names for which
rules were checked. If a rule has dependent properties, then this call may check the rules for more
than one property. The code in BusinessBase uses this string array to determine what PropertyChanged
events should be raised, as I discussed in Chapter 10.

Of course, it is clear that at least the requested property’s rules will be checked.

 var result = new List<string>();
 result.Add(propertyName);

This method gets the list of rules for this property by calling the RulesToCheck property.

 ValidationRulesManager rules = RulesToCheck;
 if (rules != null)

The RulesToCheck property is interesting, because it provides a consolidated list of the rules for
this property. The list is a combination of the per-instance and per-type rules. Usually only per-type
rules exist, but if there are per-instance rules, they are merged into the list as well, and the list is
sorted by priority. Look at the property in the ValidationRules class to see how this is done.

Obviously, CheckRules() only continues to do work if the rules field is not null; if it is null, then
no rules are associated with this property and the method can just exit. Assuming there are rules for
this property, the list of rules is retrieved from the ValidationRulesManager, and the GetList() method
is used to get the sorted list of IRuleMethod objects.

 RulesList rulesList = rules.GetRulesForProperty(propertyName, false);
 if (rulesList != null)
 {
 // get the actual list of rules (sorted by priority)
 List<IRuleMethod> list = rulesList.GetList(true);
 if (list != null)
 CheckRules(list);

Lhotka_1019-1.book Page 341 Tuesday, November 18, 2008 3:42 PM

342 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

The sorted list is passed to another overload of CheckRules(). That overload is responsible for
looping through the list and invoking each rule. It is also responsible for adding and removing items
from the list of broken rules, which I’ll discuss later in this chapter.

Finally, if there are any dependent properties associated with the current property, their rules
are checked too.

 for (int i = 0; i < dependencies.Count; i++)
 {
 string dependentProperty = dependencies[i];
 result.Add(dependentProperty);
 CheckRules(rules, dependentProperty);
 }

Another overload of CheckRules() is called here. It simply checks the rules for one specific prop-
erty, without doing further checks for dependent properties. In other words, the dependent property
concept isn’t recursive. That’s important because otherwise this code would have to check for circular
dependency loops, and it would become too easy for a business developer to accidentally trigger
checking too many properties when one property is changed.

Checking Rules for All Properties

The other public overload of CheckRules() allows the business developer to request that the rules for
all properties be invoked. This method is commonly called when an object is first created and some-
times right after an object is loaded with data from the database. It is also commonly called when
rule checking is suppressed, as a lot of properties are loaded. All rules are checked when the load
process is complete.

This method is relatively short.

 public void CheckRules()
 {
 if (_suppressRuleChecking)
 return;

 ValidationRulesManager rules = RulesToCheck;
 if (rules != null)
 {
 foreach (KeyValuePair<string, RulesList> de in rules.RulesDictionary)
 CheckRules(de.Value.GetList(true));
 }
 }

Like the property-specific overload, this one honors the SuppressRuleChecking property and
immediately exits if rule checking is suppressed.

If rule checking is enabled, which is the default, then it retrieves all the rules for the entire object
by calling RulesToCheck, and it loops through each entry in the Dictionary, executing the list of rules
for each property.

At this point, it should be clear how ValidationRules associates rule methods with properties
and is then able to check those rules for a specific property or for the business object as a whole.

Maintaining a List of Broken Rules

The ValidationRules object also maintains a list of currently broken validation rules for the object.
This is used to implement IDataErrorInfo in BusinessBase, allowing each business object to easily
indicate whether the object is valid. Because the broken rule objects in the list include the property
name that is invalid, the broken rules list is also used to determine whether each individual property
is valid or invalid.

Lhotka_1019-1.book Page 342 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 343

The BrokenRulesCollection class maintains the list of broken rules for a business object, and is
declared in ValidationRules like this:

 private BrokenRulesCollection _brokenRules;

 private BrokenRulesCollection BrokenRulesList
 {
 get
 {
 if (_brokenRules == null)
 _brokenRules = new BrokenRulesCollection();
 return _brokenRules;
 }
 }

Notice that the _brokenRules field is not adorned with either the NotUndoable or NonSerialized
attributes. The list of currently broken rules is directly part of a business object’s state, so it is subject
to n-level undo operations and to being transferred across the network along with the business object.

This way, if a business developer transfers an invalid object across the network or makes a clone,
the object will remain invalid, with its list of broken rules intact.

The BrokenRulesList value is also exposed via a public method on BusinessBase. To any external
consumer, such as code in the UI, this is a read-only collection.

 [Browsable(false)]
 [EditorBrowsable(EditorBrowsableState.Advanced)]
 public virtual Validation.BrokenRulesCollection BrokenRulesCollection
 {
 get { return ValidationRules.GetBrokenRules(); }
 }

The reason the collection is exposed publicly is to allow UI developers to use the list of broken
rules as they see fit. Remember that a broken rule includes a human-readable description of the rule,
so it is perfectly reasonable to display this list to the end user in some circumstances.

BrokenRule Class
When a rule method is invoked by the CheckRules() method, it returns true or false. If it returns
false, the broken rule will be recorded into a BrokenRulesCollection. Here’s the code from CheckRules()
that implements this behavior:

 lock (BrokenRulesList)
 {
 if (ruleResult)
 {
 // the rule is not broken
 BrokenRulesList.Remove(rule);
 }
 else
 {
 // the rule is broken
 BrokenRulesList.Add(rule);
 if (rule.RuleArgs.Severity == RuleSeverity.Error)
 previousRuleBroken = true;
 }
 }

Lhotka_1019-1.book Page 343 Tuesday, November 18, 2008 3:42 PM

344 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

The BrokenRulesCollection object exposed by the BrokenRulesList property contains a list of
BrokenRule objects, each representing a single broken business rule. The Add() and Remove() methods
accept an IRuleMethod and create the BrokenRule object internally.

The BrokenRule object exposes read-only properties for the rule name, a human-readable
description of the broken rule, and the name of the property that is broken. The class is available
in the code download for the book, available at both www.apress.com/book/view/1430210192 and
www.lhotka.net/cslanet/download.aspx.

BrokenRulesCollection Class
The BrokenRulesCollection class is used by ValidationRules to maintain the list of currently broken
rules. Each broken rule is represented by a BrokenRule object. The collection inherits from Csla.
Core.ReadOnlyBindingList and so is a read-only collection.

 [Serializable()]
 public class BrokenRulesCollection : Core.ReadOnlyBindingList<BrokenRule>

Though the collection is read-only, it does provide some internal methods to allow
ValidationRules to add and remove items. These methods are used in the CheckRules() methods
to ensure that broken rules are only in the list when appropriate.

The Add() methods are pretty straightforward.

 internal void Add(IAsyncRuleMethod rule, AsyncRuleResult result)
 {
 Remove(rule);
 IsReadOnly = false;
 BrokenRule item = new BrokenRule(rule, result);
 IncrementCount(item);
 Add(item);
 IsReadOnly = true;
 }

 internal void Add(IRuleMethod rule)
 {
 Remove(rule);
 IsReadOnly = false;
 BrokenRule item = new BrokenRule(rule);
 IncrementCount(item);
 Add(item);
 IsReadOnly = true;
 }

Both overloads do essentially the same thing, but for asynchronous and synchronous rule methods.
To avoid possible duplicate object issues, they first ensure that the broken rule isn’t already in

the list by calling the Remove() method. Then they change the collection to be read-write, add the rule
to the collection, and set the collection back to be read-only.

While they could just see if the collection contains the broken rule, removing and re-adding the
rule is better, because it ensures that the human-readable description for the rule is current. The rule
method could have changed the description over time.

The IncrementCount() method is used to maintain counters for the number of Error, Warning,
and Information severity rules that are broken. Each broken rule has one of these severities, and as
an optimization, BrokenRulesCollection maintains a running count of the number of each severity
that is broken at any point in time.

Lhotka_1019-1.book Page 344 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 345

The Remove() method is a bit more complex.

 internal void Remove(IRuleMethod rule)
 {
 IsReadOnly = false;
 for (int index = 0; index < Count; index++)
 if (this[index].RuleName == rule.RuleName)
 {
 DecrementCount(this[index]);
 RemoveAt(index);
 break;
 }
 IsReadOnly = true;
 }

It has to scan through the collection to find a rule with the same rule name. Notice that no
exception is thrown if the item isn’t in the collection. If it isn’t there, that’s fine—then there’s just no
need to remove it.

The DecrementCount() method is used to maintain counters for the number of Error, Warning,
and Information severity rules that are broken. Each broken rule has one of these severities, and as
an optimization, BrokenRulesCollection maintains a running count of the number of each severity
that is broken at any point in time.

There are a few other methods in BrokenRulesCollection worth mentioning. They provide
information about the contents of the collection and are listed in Table 11-2.

Table 11-2. Methods and Properties Providing Information About Broken Rules

Property/Method Description

ErrorCount Returns the current number of Error severity
broken rules

WarningCount Returns the current number of Warning severity
broken rules

InformationCount Returns the current number of Information
severity broken rules

GetFirstMessage(string) Scans the list and returns the first broken rule of
any severity (if any) for a specified property

GetFirstMessage(string, RuleSeverity) Scans the list and returns the first broken rule
of the specified severity (if any) for a specified
property

GetFirstBrokenRule(string) Scans the list and returns the first broken rule of
Error severity (if any) for a specified property; this
method is used in BusinessBase to implement the
IDataErrorInfo interface

ToArray() Returns an array of broken rule descriptions for
the business object

ToArray(RuleSeverity) Returns an array of broken rule descriptions
for a specific severity of broken rules in the
business object

Lhotka_1019-1.book Page 345 Tuesday, November 18, 2008 3:42 PM

346 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

All of these methods are available to the business and UI developer, and provide a great deal of
flexibility for use of the broken rules information.

ValidationException
The ValidationException class allows CLSA .NET to throw a custom exception to indicate that a vali-
dation problem has occurred. This exception is thrown by the Save() method in BusinessBase.

This exception class doesn’t add any new information to the base Exception class from the .NET
Framework. Thus, its code is very simple, since it merely declares a set of constructors, each of which
delegates to the Exception base class. You can look at the class in the code download for the book.

The reason ValidationException exists is to allow UI code to easily catch a ValidationException
as being separate from other exceptions that might be thrown by the Save() method. For instance,
UI code might look like this:

 try
 {
 customer = customer.Save();
 }
 catch (ValidationException ex)
 {
 // handle validation exceptions
 }
 catch (Exception ex)
 {
 // handle other exceptions
 }

Even if they offer no extra information, custom exceptions are often valuable in this way.
You should now have a high-level understanding of how ValidationRules consolidates the

association of rules with properties, and the tracking of broken rules. It provides a single entry point
for use of the business and validation rule subsystem. You’ll see this used in Chapter 17, and you’ll
see examples of some rule methods in the next section of this chapter.

ToString() Concatenates the human-readable descriptions
of all broken rules into a single string value, using
Environment.NewLine as a separator; this too is used
in the IDataErrorInfo implementation to return all
the errors for the entire object

ToString(string) Concatenates the human-readable descriptions
of all broken rules into a single string value, using
the string parameter as a separator; this is used in
the IDataErrorInfo implementation to return all the
errors for the entire object

ToString(string, RuleSeverity) Concatenates the human-readable descriptions
of all broken rules of the specified severity into a
single string value, using the string parameter as a
separator

Table 11-2. Methods and Properties Providing Information About Broken Rules (Continued)

Property/Method Description

Lhotka_1019-1.book Page 346 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 347

Common Validation Rules
Most applications use a relatively small, common set of validation rules—such as that a string value
is required or has a maximum length, or that a numeric value has a minimum or maximum value.
Using reflection, it is possible to create highly reusable rule methods—which is the purpose behind
the Csla.Validation.CommonRules class.

Obviously, using reflection incurs some performance cost, so these reusable rule methods may
or may not be appropriate for every application. However, the code reuse offered by these methods
is powerful, and most applications won’t be adversely affected by this use of reflection. In the end,
whether you decide to use these rule methods or not is up to you.

■Tip If reflection-based rules are problematic for your application, you can implement hard-coded rule methods
on a per-type basis.

If you find the idea of these reusable rules appealing and useful, you may opt to create your own
library of reusable rules as part of your application. In that case, you can add a class to your project
similar to CommonRules, and you can use the rule methods from CommonRules as a guide for building
your own reusable rule methods.

CommonRules
The RuleHandler delegate specifies that every rule method accepts two parameters: a reference to
the object containing the data, and a RuleArgs object that is used to pass extra information into and
out of the rule method.

The base RuleArgs object has a PropertyName property that provides the rule method with the
name of the property to be validated. It also includes a Description property that the rule method
should set for a broken rule to describe why the rule was broken.

Table 11-3 lists the methods in the CommonRules class.

You can look at the code for each of these in the code download, but I do want to walk through
a couple of them to explain how these methods work.

Table 11-3. Methods in the CommonRules Class

Method Description

StringRequired Ensures a string value is non-null and has a length greater than zero

StringMinLength Ensures a string value has a minimum length

StringMaxLength Ensures a string value doesn’t exceed a maximum length

IntegerMinValue Ensures an int value meets a minimum value

IntegerMaxValue Ensures an int value doesn’t exceed a maximum value

MinValue Ensures any numeric value meets a minimum value

MaxValue Ensures any numeric value doesn’t exceed a maximum value

RegEx Ensures a string value matches a regular expression

Lhotka_1019-1.book Page 347 Tuesday, November 18, 2008 3:42 PM

348 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

StringRequired

The simplest type of rule method is one that doesn’t require any information beyond that provided
by the basic RuleArgs parameter. For instance, the StringRequired() rule method only needs a refer-
ence to the object containing the value and the name of the property to be validated.

 public static bool StringRequired(object target, RuleArgs e)
 {
 string value = (string)Utilities.CallByName(
 target, e.PropertyName, CallType.Get);
 if (string.IsNullOrEmpty(value))
 {
 e.Description = string.Format(
 Resources.StringRequiredRule, RuleArgs.GetPropertyName(e));
 return false;
 }
 return true;
 }

A CallByName() helper method is used to abstract the use of reflection to retrieve the property
value based on the property name. It simply uses reflection to get a PropertyInfo object for the spec-
ified property, and then uses it to retrieve the property value.

If the property value is null or is an empty string, then the rule is broken, so the Description
property of the RuleArgs object is set to describe the nature of the broken rule. Then false is returned
from the rule method to indicate that the rule is broken. Otherwise, the rule method simply returns
true to indicate that the rule is not broken.

Notice the use of the GetPropertyName() method on the RuleArgs class to retrieve the property
name. While you can get the property name itself through e.PropertyName, the GetPropertyName()
helper method will return the friendly name associated with the property if one exists, or the property
name if there is no friendly name. In many cases, a friendly name such as Product name is a better
value to show the user than the actual property name (like ProductName).

This rule is used within a business object by associating it with a property. A business object
does this by overriding the AddBusinessRules() method defined by BusinessBase. Such code would
look like this (assuming the developer adds a using statement for Csla.Validation to the top of the code):

 [Serializable]
 public class Customer : BusinessBase<Customer>
 {
 protected override void AddBusinessRules()
 {
 ValidationRules.AddRule(CommonRules.StringRequired, NameProperty);
 }
 // rest of class...
 }

This associates the rule method with the property defined by the NameProperty field (a
PropertyInfo<string> value) so that the SetProperty() call within the property’s set block will
invoke the rule automatically. You’ll see this and other rule methods used in Chapter 17 within
the sample application’s business objects.

StringMaxLength

A slightly more complex variation is where the rule method needs extra information beyond that
provided by the basic RuleArgs parameter. In these cases, the RuleArgs class must be subclassed to
create a new object that adds the extra information. A rule method to enforce a maximum length on
a string, for instance, requires the maximum length value.

Lhotka_1019-1.book Page 348 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 349

Custom RuleArgs Class

I recommend using DecoratedRuleArgs, which is a subclass of RuleArgs. I say this because
DecoratedRuleArgs stores the custom argument values in a Dictionary, and thus provides a stan-
dardized way by which the code in AddBusinessRules() can create the RuleArgs parameter. This is
particularly useful if you use code generation for your business classes, as standardization is critical
when building code generation templates.

The custom RuleArgs classes in CommonRules are a hybrid approach. I do implement custom
classes, but they subclass DecoratedRuleArgs. This means that the code in AddBusinessRules() can
use either the strongly typed custom class, or DecoratedRuleArgs. Either approach works, so you can
use StringMaxLength like this:

 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringMaxLength,
 new Csla.Validation.CommonRules.MaxLengthRuleArgs(NameProperty, 5));

or like this:

 var args = new Csla.Validation.DecoratedRuleArgs(NameProperty);
 args["MaxLength"] = 5;
 ValidationRules.AddRule(Csla.Validation.CommonRules.StringMaxLength, args);

You get the same end result. The first approach is better for hand-coding, because it is strongly
typed. The second approach is better for code generation, because it is a standard approach that
works with any rule method that accepts a DecoratedRuleArgs parameter. By implementing a custom
subclass of DecoratedRuleArgs in CommonRules, I enable both scenarios.

■Tip You don’t need to create a custom subclass like this. It is possible to just use DecoratedRuleArgs directly
and avoid all this work, though the code in AddBusinessRules() will then be loosely typed.

Here’s a subclass of DecoratedRuleArgs that provides the maximum length value:

 public class MaxLengthRuleArgs : DecoratedRuleArgs
 {
 public int MaxLength
 {
 get { return (int)this["MaxLength"]; }
 }

 public MaxLengthRuleArgs(
 string propertyName, int maxLength)
 : base(propertyName)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = string.Empty;
 }

 public MaxLengthRuleArgs(Core.IPropertyInfo propertyInfo, int maxLength)
 : base(propertyInfo)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = string.Empty;
 }

Lhotka_1019-1.book Page 349 Tuesday, November 18, 2008 3:42 PM

350 CH AP T E R 1 1 ■ B U S IN E SS AN D V AL I DA T I O N R U L E S

 public MaxLengthRuleArgs(
 string propertyName, string friendlyName, int maxLength)
 : base(propertyName, friendlyName)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = string.Empty;
 }

 public MaxLengthRuleArgs(
 string propertyName, int maxLength, string format)
 : base(propertyName)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = format;
 }

 public MaxLengthRuleArgs(
 Core.IPropertyInfo propertyInfo, int maxLength, string format)
 : base(propertyInfo)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = format;
 }

 public MaxLengthRuleArgs(
 string propertyName, string friendlyName, int maxLength, string format)
 : base(propertyName, friendlyName)
 {
 this["MaxLength"] = maxLength;
 this["Format"] = format;
 }
 }

All the custom RuleArgs subclasses in CommonRules follow this basic structure.

Rule Method

With the custom RuleArgs class defined, you can use it to implement a rule method. The
StringMaxLength() rule method looks like this:

 public static bool StringMaxLength(
 object target, RuleArgs e)
 {
 DecoratedRuleArgs args = (DecoratedRuleArgs)e;
 int max = (int)args["MaxLength"];
 string value = (string)Utilities.CallByName(
 target, e.PropertyName, CallType.Get);
 if (!String.IsNullOrEmpty(value) && (value.Length > max))
 {
 string format = (string)args["Format"];
 string outValue;
 if (string.IsNullOrEmpty(format))
 outValue = max.ToString();

Lhotka_1019-1.book Page 350 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 1 ■ B U S IN E SS AN D V AL ID A T I ON R U L E S 351

 else
 outValue = max.ToString(format);
 e.Description = String.Format(
 Resources.StringMaxLengthRule,
 RuleArgs.GetPropertyName(e), outValue);
 return false;
 }
 return true;
 }

This is similar to the StringRequired() rule method, except that it casts the RuleArgs parameter
to the DecoratedRuleArgs type so that it can retrieve the MaxLength value. That value is then compared
to the length of the specified property from the target object to see if the rule is broken or not.

■Note It might seem like the RuleArgs parameter should just be of type DecoratedRuleArgs or
MaxLengthRuleArgs, using the generic RuleHandler delegate. That would be ideal, but it would break
backward compatibility with older versions of CLSA .NET, so I’ve chosen to take the approach shown here.

The CommonRules class includes other similar rule method implementations as listed in Table 11-3.
You may choose to use them as they are, or as the basis for creating your own library of reusable rules
for an application.

Conclusion
This chapter covered the business and validation rules subsystem of CLSA .NET. This is one of the
most important parts of the framework, as it provides a standardized way by which you can imple-
ment business rules and have them execute as your object’s properties are changed.

Chapter 12 will cover the important authorization subsystem, which provides similar capabili-
ties for the authorization of property, method, and object access. Chapters 13 through 16 will continue
discussing the implementation of CLSA .NET features, and then Chapters 17 through 21 will cover
the implementation of the Project Tracker reference application.

Lhotka_1019-1.book Page 351 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 352 Tuesday, November 18, 2008 3:42 PM

353

■ ■ ■

C H A P T E R 1 2

Authentication and Authorization

Most applications have some form of authorization, where they allow or disallow a user access to
certain forms, pages, or application functions. Before any authorization can occur, the application
must know the identity of the user, so most applications also use some type of authentication.

There are several types of authentication available to a .NET application, including the following:

• Integrated Windows domain or Active Directory

• ASP.NET membership provider

• Custom database tables or LDAP server

In every case, the user’s identity and roles are maintained in a .NET principal object, which is
available to all code in your application. The support for authorization provided by .NET is role-based.
The current user has a set of roles and your code can determine whether the user is in a specified role
by calling the IsInRole() method on the current principal object. This capability can be used by the
UI developer to decide whether to allow a user access to each form or page in the application and is
the underlying technology used by ASP.NET for this purpose.

CSLA .NET uses the standard .NET model as well, allowing a business developer to specify roles
that are allowed to create, retrieve, update, and delete a business object. But CSLA .NET goes a step
further and also allows the developer to specify which roles are allowed to read or write to a property
and to call specific methods.

By default, CSLA .NET calls the standard IsInRole() method to check the user’s roles, and so it
automatically works with any .NET authentication model.

Authentication
CSLA .NET supports either integrated Windows authentication (Active Directory or AD) or custom
authentication. Using the ASP.NET MembershipProvider is considered a form of custom authentication
because CSLA .NET can be used totally outside of ASP.NET but you can still choose to authenticate using
that model. In all cases, the current thread should have a valid principal object and associated iden-
tity object, allowing the authorization code discussed later in this chapter to verify the user’s roles as
appropriate.

You should also be aware that when using custom authentication, the data portal requires that
the custom principal object inherit from the Csla.Security.BusinessPrincipalBase class. A business
application implements its own principal and identity classes so it can authenticate the user and
load the user’s roles as appropriate for the application.

In the .NET security model used by CSLA .NET, the user is always identified by a principal object,
which must implement the IPrincipal interface from the System.Security.Principal namespace.
Every principal object contains exactly one identity object, which must implement the IIdentity
interface from that same namespace.

Lhotka_1019-1.book Page 353 Tuesday, November 18, 2008 3:42 PM

354 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

If you are using integrated Windows authentication, the .NET environment automatically has
WindowsPrincipal and WindowsIdentity objects initialized for you to use. They contain the user’s
identity and groups, based on the username entered when logging into the Windows workstation or
website. In other words, your application has to do almost nothing in this case because Windows and
.NET have done most of the work.

If you are using custom authentication (including using the ASP.NET MembershipProvider model),
you must create your own custom principal and identity classes and you must get the username/
password (or other credentials) from the user to create those objects. This is obviously more work
but allows you the flexibility of authenticating the user in any way you choose.

The CSLA .NET framework includes the Csla.Security namespace, where you can find several
classes to help in the implementation of custom authentication. Before I get into that namespace,
however, you should understand how CSLA .NET manages and exposes the current .NET principal
object in different environments.

I’ll first discuss the Csla.ApplicationContext.User property, which manages and exposes the
principal object in Windows, web, and WPF applications. Then I’ll show you how to configure CSLA
.NET to use either integrated Windows authentication or custom authentication. Once you under-
stand those issues, I dig into the Csla.Security namespace.

Csla.ApplicationContext.User Property
When code is running outside ASP.NET, it relies on System.Threading.Thread.CurrentPrincipal to
maintain the user’s principal object. On the other hand, when code is running inside ASP.NET, the
only reliable way to find the user’s principal object is through HttpContext.Current.User. Normally,
this would mean that you would have to write code to detect whether HttpContext.Current is null
and only use System.Threading if HttpContext isn’t available.

The User property of the Csla.ApplicationContext class automates this process on your behalf:

 public static IPrincipal User
 {
 get
 {
 if (HttpContext.Current == null)
 return Thread.CurrentPrincipal;
 else
 return HttpContext.Current.User;
 }
 set
 {
 if (HttpContext.Current != null)
 HttpContext.Current.User = value;
 Thread.CurrentPrincipal = value;
 }
 }

In general, Csla.ApplicationContext.User should be used in favor of System.Threading or
HttpContext because it automatically adjusts to the environment in which your code is running.
With CSLA .NET–based applications, this is particularly important, because your client code could
be a Windows Forms application but your server code could be running within ASP.NET. Remember
that your business objects run in both locations, so must behave properly both inside and outside
ASP.NET.

Lhotka_1019-1.book Page 354 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 355

Windows Authentication
When using integrated Windows authentication, your application and .NET relies on the underlying
Windows operating system to take care of the authentication and to provide information about the
user. While most of the work is done for you by Windows and .NET, you do need to configure the
environment, including both CSLA .NET and .NET itself.

Configuring CSLA .NET

CSLA .NET has one configuration option to control authentication and it is set in the application’s
app.config or web.config file in the appSettings block:

 <add key="CslaAuthentication" value="Windows" />

This instructs CSLA .NET to rely on the .NET Framework and Windows to manage the current
principal and identity objects. In other words, this tells CSLA .NET it doesn't have to deal with authenti-
cation and to just assume it has all been taken care of behind the scenes.

Configuring WPF and Windows Forms

If the application is running on a client workstation, the user who logged into the workstation defines the
Windows identity of the user for all interactive applications. Within .NET, the default is to not use
this value but rather to provide an unauthenticated GenericPrincipal from the System.Security.
Principal namespace. You can change that by running this line of code as your application starts up:

 AppDomain.CurrentDomain.SetPrincipalPolicy(
 System.Security.Principal.PrincipalPolicy.WindowsPrincipal);

This tells the .NET Framework to use the underlying WindowsPrincipal and WindowsIdentity
objects as the current .NET principal and identity.

Configuring ASP.NET

In an ASP.NET environment, the process is controlled by web.config and your IIS virtual root settings.
Your web server’s virtual root must be configured to disallow anonymous access. The result is that
the user must log into the website using his Windows credentials to access any pages. Obviously, this
means the web server is authenticating the user’s credentials.

You also need to configure ASP.NET to use Windows authentication and impersonation:

 <authentication mode="Windows" />
 <identity impersonate="true" />

If you only tell ASP.NET to use Windows authentication, it relies on the web server to do the
work but doesn’t change the current principal and identity to match that user on every page request.
By setting both values, ASP.NET relies on the web server to handle authentication and then imper-
sonates the identity of that user.

In many ways, integrated Windows authentication is the simplest approach. But it isn’t always
practical because many applications allow users that aren’t in the Windows domain or Active Directory
to log in, and so some form of custom authentication is required.

Custom Authentication
Custom authentication means that you are responsible for getting the user’s credentials (often a
username and password) and ensuring they are valid. The most common way to check the credentials is
by comparing them to values in a database table. People also use the ASP.NET MembershipProvider

Lhotka_1019-1.book Page 355 Tuesday, November 18, 2008 3:42 PM

356 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

model (which is also typically just a database table lookup), LDAP servers, Active Directory Application
Mode (ADAM), and many other security data stores.

Configuring CSLA .NET

You must set the CslaAuthentication configuration option to Csla to instruct CSLA .NET to use
custom authentication, relying on the developer to create a custom principal and identity and to
make that custom principal the current principal on the client:

 <add key="CslaAuthentication" value="Csla" />

The data portal, discussed in Chapter 15, is affected by this setting as well because when using
custom authentication the data portal automatically serializes the current principal from the client
to the application server on every data portal call. This means that the application server imperson-
ates the client’s custom identity.

Authentication Classes in Csla.Security

CSLA .NET is designed to support easier implementation of custom authentication with a set of
classes. Table 12-1 lists these base classes.

A developer can use these classes to implement custom authentication against almost any security
store and to create custom principal and identity objects that can be used by .NET and CSLA .NET
for authorization.

Table 12-1. Principal and Identity Classes in Csla.Security

Class Description

BusinessPrincipalBase Base class for all custom principal objects

CslaIdentity Base class for custom identity objects

ICheckRoles Interface that a custom identity class can implement so
BusinessPrincipalBase knows to delegate IsInRole() to
that identity object

IdentityFactory Data portal factory class containing methods to authenticate
credentials against the ASP.NET MembershipProvider; used by
MembershipIdentity

MembershipIdentity Base class to assist in using the ASP.NET MembershipProvider
to create a custom identity object

UsernameCriteria Criteria class for passing a username and password to a
custom identity object

UnauthenticatedIdentity Simple subclass of CslaIdentity to provide a generic,
unauthenticated identity object

UnauthenticatedPrincipal Simple subclass of BusinessPrincipalBase to provide a generic,
unauthenticated principal object

Lhotka_1019-1.book Page 356 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 357

You can look at the code in these classes in the code download for this book (www.apress.com/
book/view/1430210192 or www.lhotka.net/cslanet/download.aspx). Here, I focus on the issues they
are designed to address.

Creating a Custom Principal Class

The data portal, which I discuss in Chapter 15, can only deal with Serializable objects. And when
CSLA .NET is configured to use custom authentication, it automatically serializes the client principal
and identity objects and copies them to the application server on each data portal call. The result is
that the application server is able to impersonate the client’s identity.

■Note While CSLA .NET for Silverlight is not the topic of this book, it also has a data portal that serializes objects,
and BusinessPrincipalBase is designed to work with CSLA .NET for Silverlight as well.

The BusinessPrincipalBase class is a very basic implementation of the IPrincipal interface
from System.Security.Principal that is compatible with the data portal. The goal of this class is to
make it easier for a business developer to create her own custom principal by subclassing
BusinessPrincipalBase.

The simplest approach is a subclass like this:

 [Serializable]
 public class CustomPrincipal : BusinessPrincipalBase
 {
 private CustomPrincipal(IIdentity identity)
 : base(identity)
 { }

 public static void Login(string username, string password)
 {
 var identity = CustomIdentity.GetIdentity(username, password);
 Csla.ApplicationContext.User =
 new CustomPrincipal(identity);
 }

 public static void Logout()
 {
 var identity = new UnauthenticatedIdentity();
 Csla.ApplicationContext.User = new CustomPrincipal(identity);
 }
 }

The Login() method calls the factory method on a CustomIdentity class (which I show in the
next section) to get back an identity object. That identity object may or may not be authenticated,
but it is a valid object either way. The identity object is passed as a parameter to the constructor of
CustomPrincipal, which passes it to the BusinessPrincipalBase base class.

The important thing is that the resulting principal object, containing its identity object (either
authenticated or not), is set as the current principal by setting the User property of
Csla.ApplicationContext. This ensures that the principal is available to the current thread and/or
the current HttpContext as appropriate.

Lhotka_1019-1.book Page 357 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192orwww.lhotka.net/cslanet/download.aspx
http://www.apress.com/book/view/1430210192orwww.lhotka.net/cslanet/download.aspx

358 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

As BusinessPrincipalBase implements IPrincipal, it has an Identity property that returns the
identity object created in the Login() method. Its IsInRole() method calls the identity object contained
by this principal, assuming that identity object is a subclass of CslaIdentity. Here’s the IsInRole()
implementation from BusinessPrincipalBase:

 public virtual bool IsInRole(string role)
 {
 var cslaIdentity = _identity as CslaIdentity;
 if (cslaIdentity != null)
 return cslaIdentity.IsInRole(role);
 else
 return false;
 }

The method is virtual, so a subclass can replace the implementation, but if the identity object
is a subclass of CslaIdentity, this implementation does the work automatically.

As you’ll see in the next section of this chapter, I recommend having the identity object authen-
ticate the user’s credentials and (if successful) load the user’s roles, all in one trip to the security
store. Also, take a look at the Logout() method. Notice how it creates a CustomPrincipal object but
with an UnauthenticatedIdentity as its identity. The UnauthenticatedIdentity object has no user-
name and no roles and its IsAuthenticated property returns false.

You’ll see a more complete example in Chapter 17 when I walk through the ProjectTracker
reference application’s business object implementation.

Creating a Custom Identity Class

Every principal object contains an identity object. In fact, the identity object is the object that contains
information about the user, such as the username, how the user was authenticated, and so forth. Iden-
tity objects implement IIdentity from the System.Security.Principal namespace, and CslaIdentity
is a base class that makes it easy to create custom identity classes that work with the data portal.

When a user logs in using custom authentication, the typical model is to authenticate his credentials
using a read-only root object (see the stereotype discussion in Chapters 4 and 5). The CslaIdentity
class inherits from ReadOnlyBase so it is not only an identity object but can handle the authentication
process in its DataPortal_Fetch() method:

 [Serializable]
 public abstract partial class CslaIdentity :
 ReadOnlyBase<CslaIdentity>, IIdentity

By subclassing CslaIdentity, the developer can focus more directly on authenticating the user’s
credentials and (if successful) loading the user’s list of roles. Here’s a very simple subclass:

 [Serializable]
 public class CustomIdentity : CslaIdentity
 {
 private CustomIdentity()
 { /* require use of factory method */ }

 public static void GetIdentity(string username, string password)
 {
 return DataPortal.Fetch<CustomIdentity>(
 new UsernameCriteria(username, password));
 }

Lhotka_1019-1.book Page 358 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 359

 private void DataPortal_Fetch(UsernameCriteria criteria)
 {
 // authenticate credentials here
 if (authenticated)
 {
 base.Name = username;
 base.IsAuthenticated = true;
 base.Roles = roles; // list of roles from security store
 }
 else
 {
 base.Name = string.Empty;
 base.IsAuthenticated = false;
 base.Roles = null;
 }
 }
 }

This is just an example, and to make this work, the DataPortal_Fetch() method needs to be
finished, so it talks to the security store to validate the user’s credentials and loads the user’s list of roles.

The UsernameCriteria class is used to easily pass the username and password credentials from
the factory method through the data portal and to the DataPortal_Fetch() method. If an application
uses credentials other than a username/password pair, the developer needs to create her own custom
criteria class, as described in Chapter 5.

MembershipProvider Authentication

Creating a custom identity object that validates the user’s credentials against the ASP.NET
MembershipProvider component follows the same basic process I’ve discussed thus far. The developer
needs to create a custom principal and custom identity class as shown previously.

However, CSLA .NET includes the MembershipIdentity class to simplify the process of validating the
username and password against the ASP.NET security store. So instead of subclassing CslaIdentity, a
developer can subclass MembershipIdentity because it already includes the code necessary to do the
credential validation.

This means creating a subclass that looks like this:

 [Serializable]
 public class CustomIdentity : MembershipIdentity
 {
 protected override void LoadCustomData()
 {
 // load roles and any custom properties here
 }
 }

The MembershipIdentity base class takes care of validating the username and password but
doesn’t attempt to load any roles for the user. It does call the LoadCustomData() method shown here
so the developer can override that method to load the user’s roles and any other user-related data.
By the time LoadCustomData() is invoked, the identity object is already loaded with the username,
IsAuthenticated is true, and the identity object is essentially ready for use.

If the user’s credentials are invalid, no exception is thrown. Instead, an unauthenticated
instance of MembershipIdentity is returned, with an IsAuthenticated value of false. In this case,
the LoadCustomData() method is not invoked because the identity doesn’t represent a valid user.

Lhotka_1019-1.book Page 359 Tuesday, November 18, 2008 3:42 PM

360 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

You should now have an understanding of the difference between Windows and custom authenti-
cation. And you should understand how the BusinessPrincipalBase and various identity base classes
can be used to create custom principal and identity objects that provide user and role information
to .NET and CSLA .NET for authorization.

In the rest of the chapter I discuss how CSLA .NET supports authorization at the type and
property levels.

Authorization
Authorization supports the idea that each business object property and method can have a list of
roles that are allowed and denied access. I already touched on some of these concepts when I discussed
how properties are declared in Chapter 7. Behind the scenes, those methods make use of an
AuthorizationRules object from the Csla.Security namespace.

Every business object that uses authorization rules has an associated AuthorizationRules object
that manages the list of roles associated with each property and method. The AuthorizationRules
class also maintains a list of roles allowed to create, get, update, and delete each business object type.

To do this work, AuthorizationRules relies on a number of other classes. Table 12-2 lists the
types required for authorization.

I’ll discuss how these types are used to implement authorization at the business object type
level and at the property level.

Table 12-2. Types Used to Implement the Authorization Subsystem

Type Description

AccessType Lists access types for properties and methods

AuthorizationRules Coordinates the functionality of the authorization subsystem

AuthorizationRulesManager Maintains list of roles for a business object or business object
type

IAuthorizeReadWrite Defines methods for use by UI components such as Csla.
Wpf.Authorizer

IsInRoleProvider Defines a delegate signature for the method that resolves whether
the current user is in a specific role

ObjectAuthorizationRules Maintains the cache of all object type level authorization roles
for all business object types

NoAccessBehavior Lists options describing what step should be taken when a user
attempts an action but does not have access

RolesForProperty Maintains a list of roles allowed and denied access to a property

RolesForType Maintains a list of roles allowed and denied access to a business
object type

SharedAuthorizationRules Maintains the cache of all per-type property authorization roles
defined for all business object types

Lhotka_1019-1.book Page 360 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 361

Type Level Authorization
A business developer can specify what roles are allowed to create, get, update, and delete each business
object type. This behavior is not at the object instance level but is at the type level. In other words,
these roles are defined and can be accessed without ever creating an instance of a business object.

The intent of this functionality is to allow a UI developer to determine whether the user could
create, retrieve, update, or delete an object. Ideally, the UI developer would do these checks before
ever creating an instance of a business object, so the various buttons, menu items, and links the user
would use to perform each action can be disabled if they don’t work anyway.

The AuthorizationRules class uses the ObjectAuthorizationRules type to manage this behavior.

AddObjectAuthorizationRules Method

Inside a business class, a developer can write code like this to define these roles:

 private static void AddObjectAuthorizationRules()
 {
 Csla.Security.AuthorizationRules.AllowGet("Supervisor");
 }

This indicates that the users in the Supervisor role should be allowed to retrieve instances of this
business object type. Notice that the AddObjectAuthorizationRules() method is static, so it can be
invoked without needing to first create an instance of the business object. Table 12-3 lists the static
methods from the AuthorizationRules class available to the business object developer.

The AddObjectAuthorizationRules() method is invoked by ObjectAuthorizationRules the first
time an attempt is made to get the list of roles for a business object type. Because all these values are
maintained in a static cache, multithreading issues must be managed, just as I discuss in Chapter 11 in
regard to validation.

Here’s the GetRoles() method and the declaration of the static cache it uses:

 private static Dictionary<Type, RolesForType> _managers =
 new Dictionary<Type, RolesForType>();

 internal static RolesForType GetRoles(Type objectType)
 {
 RolesForType result = null;
 if (!_managers.TryGetValue(objectType, out result))
 {
 lock (_managers)
 {

Table 12-3. Per-Type Authentication Methods

Method Description

AllowCreate() Specifies the roles allowed to create a new object

AllowGet() Specifies the roles allowed to get an existing object

AllowEdit() Specifies the roles allowed to edit and save (insert or update) an object

AllowDelete() Specifies the roles allowed to delete an object

Lhotka_1019-1.book Page 361 Tuesday, November 18, 2008 3:42 PM

362 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

 if (!_managers.TryGetValue(objectType, out result))
 {
 result = new RolesForType();
 _managers.Add(objectType, result);
 // invoke method to add auth roles
 var flags = BindingFlags.Static |
 BindingFlags.Public |
 BindingFlags.NonPublic |
 BindingFlags.FlattenHierarchy;
 MethodInfo method = objectType.GetMethod(
 "AddObjectAuthorizationRules", flags);
 if (method != null)
 method.Invoke(null, null);
 }
 }
 }
 return result;
 }

The same kind of lock scheme I discuss in Chapter 11 is used here. The result is that the first
thread to attempt to access this property and get through the lock statement will use reflection to
invoke the AddObjectAuthorizationRules() method on the business class. This only happens once
per AppDomain, and the roles are cached for use throughout the remainder of the application’s lifetime.

The methods called by the business developer are defined in the AuthorizationRules class. For
example, here’s the AllowGet() method:

 public static void AllowGet(Type objectType, params string[] roles)
 {
 var typeRules = ObjectAuthorizationRules.GetRoles(objectType);
 typeRules.AllowGet(roles);
 }

There’s no locking here because this method is intended for use only within the
AddObjectBusinessRules() method, and that method is only invoked within the context of a lock
statement, so it is already thread-safe.

Using Type Level Roles

Now that you understand how the type level roles are added and cached, it is important to under-
stand how they are used. Any code in the business or UI layer can determine whether the current
user is authorized to create, get, update, or delete a type of business object with code such as this:

 bool canGet = Csla.Security.AuthorizationRules.CanGetObject(typeof(MyObject));

There are CanCreateObject(), CanEditObject(), and CanDeleteObject() methods as well, and
they work the same way. For example, here’s the CanGetObject() method:

 public static bool CanGetObject(Type objectType)
 {
 bool result = true;
 var principal = ApplicationContext.User;
 var allow = Csla.Security.AuthorizationRules.GetAllowGetRoles(objectType);
 if (allow != null)
 {

Lhotka_1019-1.book Page 362 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 363

 if (!Csla.Security.AuthorizationRulesManager.PrincipalRoleInList(
 principal, allow))
 result = false;
 }
 else
 {
 var deny = Csla.Security.AuthorizationRules.GetDenyGetRoles(objectType);
 if (deny != null)
 {
 if (Csla.Security.AuthorizationRulesManager.PrincipalRoleInList(
 principal, deny))
 result = false;
 }
 }
 return result;
 }

The GetAllowGetRoles() and GetDenyGetRoles() methods are helper methods that retrieve the
list of roles allowed and denied access to the get operation for the specified type:

 internal static List<string> GetAllowGetRoles(Type objectType)
 {
 var typeRules = ObjectAuthorizationRules.GetRoles(objectType);
 return typeRules.AllowGetRoles;
 }

The PrincipalRoleInList() method loops through the list of roles to determine whether the
current user is in any of the roles in the list. This method is just a simple loop, but it calls a private
method named IsInRole() rather than calling the IsInRole() method on the current principal object.

Here’s the IsInRole() method:

 private static bool IsInRole(IPrincipal principal, string role)
 {
 if (mIsInRoleProvider == null)
 {
 string provider = ApplicationContext.IsInRoleProvider;
 if (string.IsNullOrEmpty(provider))
 mIsInRoleProvider = IsInRoleDefault;
 else
 {
 string[] items = provider.Split(',');
 Type containingType = Type.GetType(items[0] + "," + items[1]);
 mIsInRoleProvider =
 (IsInRoleProvider)(Delegate.CreateDelegate(
 typeof(IsInRoleProvider),
 containingType, items[2]));
 }
 }
 return mIsInRoleProvider(principal, role);
 }

This method abstracts the IsInRole() concept so it isn’t necessarily tied to checking with the
current principal object. If the application’s config file contains an entry for an IsInRoleProvider()
method, that method is used instead of the default. The config entry would go in the <appSettings>
element and would look like this:

Lhotka_1019-1.book Page 363 Tuesday, November 18, 2008 3:42 PM

364 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

 <add key="CslaIsInRoleProvider" value="Namespace.Class.Method,Assembly" />

The default IsInRoleProvider() exists in the AuthorizationRules class and looks like this:

 private static bool IsInRoleDefault(IPrincipal principal, string role)
 {
 return principal.IsInRole(role);
 }

The reason for all this work is to allow an advanced business developer to replace how the
IsInRole() operation is performed by substituting his own method for this one.

At this point you should understand how business type level authorization roles are stored in
ObjectAuthorizationRules and how the AuthorizationRules class makes the behaviors available
both to the business object developer and any other code that needs to check the rules.

Property and Method Level Authorization
It is quite common for a user to have access to a form or a page but not to all the data on that form.
Or a user may be allowed to view some data but not change it, based on her role. CSLA .NET supports
this concept by allowing a business developer to specify which roles are allowed or denied read and
write access to each property on a business object. The developer can do the same thing for methods
exposed by the object by specifying which roles are allowed to execute the method.

Per-property authorization is implemented by the GetProperty() and SetProperty() methods
I discuss in Chapter 7. These two methods call CanReadProperty() and CanWriteProperty(), which
actually perform the role checks with the help of the AuthorizationRules object.

Per-method authorization requires that the method implementation make an explicit call to
CanExecuteMethod() before doing any actual work. The CanExecuteMethod() does the role check with
the help of the AuthorizationRules object.

Table 12-4 lists the AuthorizationRules methods available to a business developer to specify
roles that are allowed or denied access to properties and methods.

The default implementation provided by CSLA .NET is permissive. This means that by default,
all users are allowed to read and write to all properties and to execute all methods. However, if one
or more roles are allowed to read, write, or execute, all other roles are denied access. Alternately, you
can choose to deny access to specific roles, in which case all other roles continue to have access.

Not only does each object enforce its rules but the rules are exposed publicly to the rest of the
application. This is primarily so a UI developer can enable and disable UI controls to give the user
visual cues about what she can and can’t do. The IAuthorizeReadWrite interface in the Csla.Security

Table 12-4. Property and Method Authorization Options

Method Description

AllowRead() Specifies the roles allowed to read a property

DenyRead() Specifies the roles not allowed to read a property

AllowWrite() Specifies the roles allowed to write to a property

DenyWrite() Specifies the roles not allowed to write to a property

AllowExecute() Specifies the roles allowed to execute a method

DenyExecute() Specifies the roles not allowed to execute a method

Lhotka_1019-1.book Page 364 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 365

namespace provides a standardized way to access this information, and it is used by the UI controls
discussed in Chapter 10.

IAuthorizeReadWrite Interface

The IAuthorizeReadWrite interface defines a public interface for use by UI frameworks or other code
that needs to determine what a user can do to an object’s properties or methods. It looks like this:

 public interface IAuthorizeReadWrite
 {
 bool CanWriteProperty(string propertyName);
 bool CanReadProperty(string propertyName);
 bool CanExecuteMethod(string methodName);
 }

This interface is implemented by BusinessBase and ReadOnlyBase and can be used against any
business object with properties and methods.

Per-Type Authorization Rules

A business object developer must specify the roles that are allowed and denied access to each prop-
erty and method. The AuthorizationRules class maintains two lists of the roles. One list is shared
across all instances of each business object type and the other list is maintained for each individual
object instance.

The list maintained across all instances of a type is far more efficient in terms of memory and
performance and should be the preferred approach. A business object developer must override the
AddAuthorizationRules() method to associate shared per-type roles with properties and methods.
The code in the business object looks like this:

 protected override void AddAuthorizationRules()
 {
 AuthorizationRules.AllowRead(NameProperty, "Supervisor", "Guest");
 AuthorizationRules.DenyWrite(NameProperty, "Guest");
 AuthorizationRules.AllowExecute("DoWork", "Supervisor");
 }

This specifies that the Supervisor and Guest roles are allowed to read the Name property, but the
Guest role is specifically not allowed to alter the property. And the Supervisor role is allowed to execute
the business object’s DoWork() method.

The list of allowed and denied roles for each property and method is maintained within the
AuthorizationRules object, which uses the types listed in Table 12-5 to store and retrieve the
information.

Table 12-5. Types Used to Maintain the Roles for an Object Type

Type Description

SharedAuthorizationRules Maintains a cache with an AuthorizationRulesManager object for
each business object type

AuthorizationRulesManager Maintains a list of RolesForProperty objects, each one containing
the roles for a specific property

RolesForProperty Maintains the lists of allowed and denied roles for reading and
writing a specific property

Lhotka_1019-1.book Page 365 Tuesday, November 18, 2008 3:42 PM

366 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

I’m not going to walk through the code for these classes. They use the same multithreaded
locking scheme I discuss in Chapter 11 and earlier in this chapter. The roles are maintained in static
fields and so are shared across each AppDomain and they are initialized once as the AppDomain starts
up. This means they are initialized once for the lifetime of an application.

Per-Instance Authorization Rules

A business object can also have a list of roles for just that one instance. This is expensive in terms of
memory and performance: memory because the lists of roles are maintained for each instance of the
business type; performance because the lists of roles are initialized as each business object instance
is created.

The reason for using this approach is if you have authorization rules that must vary on a per-
instance basis. Such scenarios are fortunately rare because the overhead to associating the rules with
each instance can be quite high.

If you want to use this model, the business developer must override
AddInstanceAuthorizationRules() like this:

 protected override void AddInstanceAuthorizationRules()
 {
 AuthorizationRules.InstanceAllowRead(NameProperty, "Supervisor", "Guest");
 AuthorizationRules.InstanceDenyWrite(NameProperty, "Guest");
 AuthorizationRules.InstanceAllowExecute("DoWork", "Supervisor");
 }

These roles are maintained in an AuthorizationRulesManager object that is created for each
business object instance.

CanReadProperty, CanWriteProperty, and CanExecuteMethod Methods

The BusinessBase class implements three virtual methods that are used to determine whether the
current user is allowed to read, write, or execute individual properties and methods. The ReadOnlyBase
class implements only CanReadProperty() because it is designed to support read-only objects.

These methods are virtual so a business developer can override and extend their behavior. By
default, these methods simply check the list of allowed and denied roles associated with each property
or method.

To enhance performance, the result of a role check is cached and is only rechecked if the current
principal object changes. This is particularly valuable in a WPF or Windows Forms application, where
the principal will only change if the user logs in or out of the application (when using custom authen-
tication). It has less value in web applications because the server is typically stateless and so the business
object (and thus its cache) is destroyed at the end of each page or service request.

For example, here’s the CanReadProperty() method from BusinessBase:

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 public virtual bool CanReadProperty(string propertyName)
 {
 bool result = true;

 VerifyAuthorizationCache();

 if (!_readResultCache.TryGetValue(propertyName, out result))
 {
 result = true;

Lhotka_1019-1.book Page 366 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON 367

 if (AuthorizationRules.HasReadAllowedRoles(propertyName))
 {
 // some users are explicitly granted read access
 // in which case all other users are denied
 if (!AuthorizationRules.IsReadAllowed(propertyName))
 result = false;
 }
 else if (AuthorizationRules.HasReadDeniedRoles(propertyName))
 {
 // some users are explicitly denied read access
 if (AuthorizationRules.IsReadDenied(propertyName))
 result = false;
 }
 // store value in cache
 _readResultCache.Add(propertyName, result);
 }

 return result;
 }

The VerifyAuthorizationCache() method does two things. First, it ensures that the cache of
authorization values is initialized, and, second, it reinitializes the cache if the current principal has
changed. In other words, this method makes sure the cache is ready for use and also that cached
values for one user aren’t used for a different user.

The TryGetValue() method is used to efficiently retrieve any cached value for a property from
the cache. If there is no cached value for this property, the authorization rules are checked for this
property.

The default authorization rules used by CSLA .NET are permissive. In other words, by default all
users are allowed to read and write all properties (and to execute all methods). Table 12-6 lists the
results of allowing or denying specific roles access.

Ultimately, the IsReadAllowed() and IsReadDenied() methods use the same IsInRole() provider
scheme I discuss earlier in the chapter. This means that by default the current principal object’s
IsInRole() method is called but an advanced business developer could replace that behavior.

The CanWriteProperty() and CanExecuteMethod() methods follow the same approach and the
same default behavior as described in Table 12-6. Together, these methods allow per-property and
per-method authorization on all business objects.

Table 12-6. Results of Allowing or Denying roles

Allow Deny Result

None None All users have access.

Any None Only allowed roles have access.

None Any All roles except denied roles have access.

Any Any Only allowed roles have access.

Lhotka_1019-1.book Page 367 Tuesday, November 18, 2008 3:42 PM

368 CH AP T E R 1 2 ■ A U TH E N T I CAT I ON AN D A U TH O R IZ A T I ON

Conclusion
This chapter covered the authorization subsystem provided by CSLA .NET. The authorization behaviors
leverage the standard .NET principal and identity object model, which enables a role-based autho-
rization scheme.

Using this scheme, a business developer can specify which roles are allowed to create, get, edit,
and delete each type of business object. They can also control which roles are allowed or denied read
and write access to each property on a business object. The same is true for methods implemented
by a business object.

In Chapters 13 through 16 I discuss the rest of the major framework features. Then, starting with
Chapter 17, I walk through the ProjectTracker reference application implementation.

Lhotka_1019-1.book Page 368 Tuesday, November 18, 2008 3:42 PM

369

■ ■ ■

C H A P T E R 1 3

N-Level Undo

There are scenarios where an application requires the ability to undo changes made to an object.
Data binding is one example because implementing the IEditableObject interface requires that an
object be able to take a snapshot of its state, be edited, and then be able to return its state to that
snapshot later. Another example is where the UI has a Cancel button that doesn’t close the form or
page, in which case the user expects that clicking Cancel will revert the form’s data (and thus the
business object) to a previous state.

Implementing an undo feature is challenging, especially when you consider parent-child object
relationships. When undoing changes to an Invoice object, for example, it is necessary to remove all
newly added line items, re-add all removed line items, and undo all edited line items—all that in
addition to undoing changes to the Invoice object itself. It is important to remember that all child
objects are part of the object’s state.

Of course, it is also important to follow good object-oriented programming (OOP) practices,
and a key tenet of OOP is to preserve encapsulation. This means one object can’t directly manipulate
the state (fields) of another object. So the Invoice object can’t directly manipulate the state of its
LineItemList collection or the LineItem objects it contains. Instead, it must ask each of those objects
to manage its own state individually.

The undo functionality provided by CSLA .NET is n-level undo. This means that you can cause
the object to take multiple snapshots of its state and then cancel or accept each level of changes:

 _customer.BeginEdit(); // take a snapshot
 _customer.Name = "ABC Corp";
 _customer.BeginEdit(); // take a snapshot
 _customer.Name = "RDL Corp";
 _customer.BeginEdit(); // take a snapshot
 _customer.Name = "XYZ Corp";
 _customer.CancelEdit(); // undo to previous snapshot
 _customer.CancelEdit(); // undo to second snapshot
 _customer.ApplyEdit(); // keep first set of property changes

The end result is that the Name property has the value of ABC Corp because the second two sets of
property changes were discarded by calls to CancelEdit().

Not all applications use n levels of undo. In fact, most web applications don’t use undo at all,
and the implementation in CSLA .NET is designed so no overhead is incurred if the feature isn’t used.

Most WPF and Windows Forms applications use at least one level of undo because data binding
uses the IEditableObject interface, which does take a snapshot of the object’s state. If your WPF or
Windows Forms interface also includes a Cancel button that doesn’t close the form, you’ll almost
certainly use two levels of undo: one for IEditableObject and another for the form-level Cancel button.

Some WPF and Windows Forms UI designs may use modal windows to allow editing of child
objects. If you don’t use in-place editing in a grid control, it is quite common to pop up a modal

Lhotka_1019-1.book Page 369 Tuesday, November 18, 2008 3:42 PM

370 CH AP T E R 1 3 ■ N - L E V E L U N D O

window so the user can edit the details of each row in a grid. If those modal windows have a Cancel
button, you’ll almost certainly use n-level undo to implement the UI.

While the n-level undo functionality described in this chapter can’t handle every type of UI, it
does enable a wide range of UI styles, including the most widely used styles. If you don’t use undo,
no overhead is incurred. If you do use undo, it is designed to be relatively easy and as transparent as
possible.

Using Undo
The undo functionality in CSLA .NET is designed to support two primary scenarios: data binding
and manual invocation.

• Data binding uses the undo feature through the IEditableObject interface from the System.
ComponentModel namespace. I discuss this interface in Chapter 10, but in this chapter I focus
specifically on how it is supported through the undo functionality.

• Manual invocation of the undo functionality allows the developer to create various types of
user experiences, including forms with Cancel buttons and nested modal forms for editing
child or grandchild objects.

The behavior of the undo functionality is different for each of these scenarios. This is because
data binding expects any IEditableObject implementation to work exactly the way it is implemented by
the ADO.NET DataSet and DataTable objects. Those objects implement undo with some limitations:

• There is only one level of undo per object or row.

• Master-detail (parent-child) objects are independent.

• Only the first call to BeginEdit() is honored; subsequent calls are ignored.

The rules for manual invocation are the exact opposite of data binding:

• Any object can have any level of undo operations (n-level undo).

• Calling BeginEdit() on a parent also takes a snapshot of child object states.

• Each call to BeginEdit() takes another snapshot.

The implementation of undo provided by CSLA .NET supports both models and even allows
them to be combined (within limits). For example, if you want to implement a form-level Cancel
button, you can manually call BeginEdit() on an editable root object to take a snapshot of the entire
object graph. Then you can bind the objects to the UI and allow data binding to interact with the
objects following its rules. After unbinding the objects from the UI, you can then manually call
CancelEdit() or ApplyEdit() to reject or accept all the changes done to any objects while they are
bound to the UI.

The rest of the chapter focuses on the implementation of the undo functionality. Keep in mind
that it supports both the data binding and manual invocation models.

Implementing Undo
The undo functionality provided by CSLA .NET preserves encapsulation, while providing powerful
capabilities for objects and object graphs in a parent-child relationship. The UndoableBase, BusinessBase,
and BusinessListBase classes work together to provide this functionality. The undo behaviors are
exposed both through the implementation of IEditableObject and directly through BeginEdit(),
CancelEdit(), and ApplyEdit() methods.

Lhotka_1019-1.book Page 370 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 371

Figure 13-1 illustrates the relationship between the types that are used to implement the n-level
undo functionality.

Figure 13-1. Types used to implement undo functionality

Most of the work occurs in UndoableBase, but BusinessBase and BusinessListBase also include
important code for undo functionality.

Table 13-1 lists the key types involved in the process.

In the rest of the chapter, I walk through the implementation of several of these types and the
primary functionality they provide.

Table 13-1. Key Types Required by N-Level Undo

Type Description

ISupportUndo Provides public and polymorphic access to the n-level undo functionality;
for use by UI developers and other framework authors

IUndoableObject Allows UndoableBase to polymorphically interact with objects that support
the undo functionality; not for use by code outside CSLA .NET

NotUndoableAttribute Allows a business developer to specify that a field should be ignored by
n-level undo

UndoableBase Implements most undo functionality

UndoException Is thrown when an undo-related exception occurs

Lhotka_1019-1.book Page 371 Tuesday, November 18, 2008 3:42 PM

372 CH AP T E R 1 3 ■ N - L E V E L U N D O

ISupportUndo Interface
When you need to manually invoke n-level undo methods, you’ll often want to do so polymorphically,
without worrying about the specific type of the business object. This is quite common when building
reusable UI code or UI controls and enabling this scenario is the purpose behind the ISupportUndo
interface. For example, the CslaDataProvider in the Csla.Wpf namespace uses ISupportUndo to call
the n-level undo methods on any object that implements the interface.

The ISupportUndo interface defines the three n-level undo methods listed in Table 13-2.

These three methods encapsulate the functionality provided by n-level undo. The ISupportUndo
interface is implemented by all editable objects, both single objects and collections.

NotUndoableAttribute Class
As discussed in Chapter 2, editable business objects and collections support n-level undo function-
ality. Sometimes, however, objects may have values that shouldn’t be included in the snapshot that’s
taken before an object is edited. (These may be read-only values, or recalculated values, or values—
large images, perhaps—that are simply so big you choose not to support undo for them.)

The custom attribute NotUndoable is used to allow a business developer to indicate that a field
shouldn’t be included in the undo operation.

The UndoableBase class, which implements the n-level undo operations, detects whether this
attribute has been placed on any fields. If so, it will simply ignore that field within the undo process,
neither taking a snapshot of its value nor restoring it in the case of a cancel operation.

■Note Since the NotUndoable attribute is used by business developers as they write normal business code, it
is in the Csla namespace along with all the other types intended for use by business developers.

The NotUndoableAttribute class contains the following code:

namespace Csla
{
 [AttributeUsage(AttributeTargets.Field)]
 public sealed class NotUndoableAttribute : Attribute
 {

 }
}

Table 13-2. N-Level Undo Methods Defined by ISupportUndo

Method Description

BeginEdit() Takes a snapshot of the business object’s state

CancelEdit() Rolls the object’s state back to the most recent snapshot taken by BeginEdit()

ApplyEdit() Discards the most recent snapshot taken by BeginEdit(), leaving the object’s
state alone

Lhotka_1019-1.book Page 372 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 373

AttributeUsage specifies that this attribute can be applied only to fields. Beyond that, the
NotUndoable attribute is merely a marker to indicate that certain actions should (or shouldn’t) be
taken by the n-level undo implementation, so there’s no real code here at all.

UndoableBase Class
The UndoableBase class is where most of the work to handle n-level undo for an object takes place.
This is pretty complex code that makes heavy use of reflection to find all the fields in each business
object, take snapshots of their values, and then (potentially) restore their values later, in the case of
an undo operation.

Remember, nothing requires the use of n-level undo. In many web scenarios there’s no need to
use these methods at all. A flat UI with no Cancel button has no requirement for undo functionality,
so there’s no reason to incur the overhead of taking a snapshot of the object’s data. On the other
hand, when creating a complex WPF or Windows Forms UI that involves modal dialog windows to
allow editing of child objects (or even grandchild objects), it is often best to call these methods to
provide support for OK and Cancel buttons on each of the dialog windows.

■Tip Typically, a snapshot of a business object’s fields is taken before the user or an application is allowed to
interact with the object. That way, you can always undo back to that original state. The BusinessBase and
BusinessListBase classes include a BeginEdit() method that triggers the snapshot process, a CancelEdit()
method to restore the object’s state to the last snapshot, and an ApplyEdit() method to commit any changes
since the last snapshot.

The reason this snapshot process is so complex is that the values of all fields in each object must
be copied, and each business object is essentially composed of several classes all merged together
through inheritance and aggregation. This causes problems when classes have fields with the same
names as fields in the classes they inherit from, and it causes particular problems if a class inherits
from another class in a different assembly.

Since UndoableBase is a base class from which BusinessBase will ultimately derive, it must be
marked as Serializable. It is also declared as abstract, so that no one can create an instance of this
class directly. All business objects need to utilize the INotifyPropertyChanged interface implemented
in BindableBase so they inherit from that, too. Finally, the n-level undo functionality relies on the
IUndoableObject interface from the Csla.Core namespace, so that is implemented in this class (and
in BusinessListBase, discussed later in its own section):

 [Serializable]
 public abstract class UndoableBase : Csla.Core.BindableBase,
 Csla.Core.IUndoableObject
 {
 }

With that base laid down, I can start to discuss how to implement the undo functionality. There
are three operations involved: taking a snapshot of the object state, restoring the object state in case
of an undo, and discarding the stored object state in case of an accept operation.

Additionally, if this object has child objects that implement IUndoableObject, those child objects
must also perform the store, restore, and accept operations. To achieve this, any time the algorithm
encounters a field that’s derived from either of these types, it cascades the operation to that object
so it can take appropriate action.

Lhotka_1019-1.book Page 373 Tuesday, November 18, 2008 3:42 PM

374 CH AP T E R 1 3 ■ N - L E V E L U N D O

The three operations are implemented by a set of three methods:

• CopyState()

• UndoChanges()

• AcceptChanges()

CopyState

The CopyState() method takes a snapshot of the object’s current data and stores it in a Stack object.

Stacking the Data

Since UndoableBase is an implementation of n-level undo capability, each object could end up storing a
number of snapshots. As each undo or accept operation occurs, it gets rid of the most recently stored
snapshot; this is the classic behavior of a “stack” data structure. Fortunately, the .NET Framework
includes a prebuilt Stack<T> class that implements the required functionality. It is declared as follows:

 [NotUndoable]
 private Stack<byte[]> _stateStack = new Stack<byte[]>();

This field is marked as NotUndoable to prevent taking a snapshot of previous snapshots. CopyState()
should just record the fields that contain actual business data. Once a snapshot has been taken of the
object’s data, the snapshot is serialized into a single byte stream. That byte stream is then put on the
stack. From there, it can be retrieved and deserialized to perform an undo operation if needed.

Taking a Snapshot of the Data

The process of taking a snapshot of each field value in an object is a bit tricky. Reflection is used to
walk through all the fields in the object. During this process, each field is checked to determine whether
it has the NotUndoable attribute. If so, the field is ignored.

The big issue is that field names may not be unique within an object. To see what I mean,
consider the following two classes:

namespace Test
{
 public class BaseClass
 {
 int _id;
 }

 public class SubClass : BaseClass
 {
 int _id;
 }
}

Here, each class has its own field named _id, and in most circumstances it’s not a problem.
However, when using reflection to walk through all the fields in a SubClass object, it will return two
_id fields: one for each of the classes in the inheritance hierarchy.

To get an accurate snapshot of an object’s data, CopyState() needs to accommodate this scenario.
In practice, this means prefixing each field name with the full name of the class to which it belongs.
Instead of two _id fields, the result is Test.BaseClass!_id and Test.SubClass!_id. The use of an
exclamation point for a separator is arbitrary, but some character is necessary to separate the class
name from the field name.

Lhotka_1019-1.book Page 374 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 375

As if this weren’t complex enough, reflection works differently with classes that are subclassed
from other classes in the same assembly than with classes that are subclassed from classes in a
different assembly. If in the previous example, BaseClass and SubClass are in the same assembly, one
technique can be used; but if they’re in different assemblies, a different technique is necessary. Of
course, CopyState() should deal with both scenarios so the business developer doesn’t have to worry
about these details.

■Note Not all the code for UndoableBase is listed in this book. I only cover the key parts of the algorithm. For
the rest of the code, refer to the download at www.apress.com/book/view/1430210192 or
www.lhotka.net/cslanet/download.aspx.

The following method deals with all of the preceding issues. I walk through how it works after
the listing:

 [EditorBrowsable(EditorBrowsableState.Never)]
 protected void CopyState()
 {
 CopyingState();

 Type currentType = this.GetType();
 HybridDictionary state = new HybridDictionary();
 FieldInfo[] fields;

 if (this.EditLevel + 1 > parentEditLevel)
 throw new UndoException(string.Format(
 Resources.EditLevelMismatchException, "CopyState"));

 do
 {
 // get the list of fields in this type
 fields = currentType.GetFields(
 BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Public);

 foreach (FieldInfo field in fields)
 {
 // make sure we process only our variables
 if (field.DeclaringType == currentType)
 {
 // see if this field is marked as not undoable
 if (!NotUndoableField(field))
 {
 // the field is undoable, so it needs to be processed.
 object value = field.GetValue(this);

 if (typeof(Csla.Core.IUndoableObject).
 IsAssignableFrom(field.FieldType))
 {
 // make sure the variable has a value

Lhotka_1019-1.book Page 375 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx

376 CH AP T E R 1 3 ■ N - L E V E L U N D O

 if (value == null)
 {
 // variable has no value - store that fact
 state.Add(GetFieldName(field), null);
 }
 else
 {
 // this is a child object, cascade the call
 ((Core.IUndoableObject)value).
 CopyState(this.EditLevel + 1, BindingEdit);
 }
 }
 else
 {
 // this is a normal field, simply trap the value
 state.Add(GetFieldName(field), value);
 }
 }
 }
 }
 currentType = currentType.BaseType;
 } while (currentType != typeof(UndoableBase));

 // serialize the state and stack it
 using (MemoryStream buffer = new MemoryStream())
 {
 ISerializationFormatter formatter =
 SerializationFormatterFactory.GetFormatter();
 formatter.Serialize(buffer, state);
 _stateStack.Push(buffer.ToArray());
 }
 CopyStateComplete();
 }

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void CopyingState()
 {
 }

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void CopyStateComplete()
 {
 }

The CopyState() method is scoped as protected because BusinessBase subclasses UndoableBase,
and the BeginEdit() method in BusinessBase will need to call CopyState().

To take a snapshot of data, there needs to be somewhere to store the various field values before
they are pushed onto the stack. A HybridDictionary is ideal for this purpose, as it stores name-value
pairs. It also provides high-speed access to values based on their names, which is important for the
undo implementation. Finally, the HybridDictionary object supports .NET serialization, which
means that it can be serialized and passed by value across the network as part of a business object.

The CopyState() routine is essentially a big loop that starts with the outermost class in the object’s
inheritance hierarchy and walks back up through the chain of classes until it gets to UndoableBase. At
that point, it can stop—it knows that it has a snapshot of all the business data.

Lhotka_1019-1.book Page 376 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 377

At the start and end of the process, methods are called so a subclass can do pre- and post-processing.
Notice that CopyingState() and CopyStateComplete() are virtual methods with no implementation.
The idea is that a subclass can override these methods if additional actions should be taken before
or after the object’s state is copied. They provide an extensibility point for advanced business developers.

Getting a List of Fields

It’s inside the loop where the real work occurs. The first step is to get a list of all the fields corresponding
to the current class:

 // get the list of fields in this type
 fields = currentType.GetFields(
 BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Public);

It doesn’t matter whether the fields are public—they all need to be recorded regardless of scope.
What’s more important is to only record instance fields, not those declared as static. The result of
this call is an array of FieldInfo objects, each of which corresponds to a field in the business object.

Avoiding Double-Processing of Fields

As discussed earlier, the FieldInfo array could include fields from the base classes of the current
class. Due to the way the JIT compiler optimizes code within the same assembly, if some base classes
are in the same assembly as the actual business class, the same field name may be listed in multiple
classes. As the code walks up the inheritance hierarchy, it could end up processing those fields twice.
To avoid this, the code only looks at the fields that directly belong to the class currently being processed:

 foreach(FieldInfo field in fields)
 {
 // make sure we process only our variables
 if(field.DeclaringType == currentType)

Skipping NotUndoable Fields

At this point in the proceedings, it is established that the current FieldInfo object refers to a field
within the object that’s part of the current class in the inheritance hierarchy. However, a snapshot of
the field should only be taken if it doesn’t have the NotUndoable attribute:

 // see if this field is marked as not undoable
 if(!NotUndoableField(field))

Having reached this point, it is clear that the field value needs to be part of the snapshot, so there
are two possibilities: this may be a regular field or it may be a reference to a child object that imple-
ments Csla.Core.IUndoableObject.

Cascading the Call to Child Objects or Collections

If the field is a reference to a Csla.Core.IUndoableObject, the CopyState() call must be cascaded to
that object so that it can take its own snapshot:

 if (typeof(Csla.Core.IUndoableObject).
 IsAssignableFrom(field.FieldType))
 {
 // make sure the variable has a value

Lhotka_1019-1.book Page 377 Tuesday, November 18, 2008 3:42 PM

378 CH AP T E R 1 3 ■ N - L E V E L U N D O

 if (value == null)
 {
 // variable has no value - store that fact
 state.Add(GetFieldName(field), null);
 }
 else
 {
 // this is a child object, cascade the call
 ((Core.IUndoableObject)value).
 CopyState(this.EditLevel + 1, BindingEdit);
 }
 }

If a field has a null value, a placeholder is put into the state dictionary so UndoChanges() can
restore the value to null if needed.

Non-null values represent a child object, so the call is cascaded to that child. Notice that the
parent object doesn’t directly manipulate the state of its children because that would break encap-
sulation. Instead, it is up to the child object to manage its own state. Keep in mind that if the child
object is derived from BusinessListBase, the call will automatically be cascaded down to each individual
child object in the collection.

■Tip Of course, the GetValue() method returns everything as type object, so the value is cast to
IUndoableObject in order to call the CopyState() method.

I want to call your attention to the BindingEdit property that is passed as a parameter to the
child’s CopyState() method. The BindingEdit property indicates whether this object is currently
data bound to a UI or not. If BindingEdit is true, the object is currently bound to the UI and data
binding has called BeginEdit() through the IEditableObject interface.

Because this parameter is included, the code is calling the following overload of CopyState():

 void IUndoableObject.CopyState(int parentEditLevel, bool parentBindingEdit)
 {
 if (!parentBindingEdit)
 CopyState(parentEditLevel);
 }

This overload is obviously not complex. It simply ensures that the child object only takes a snap-
shot of its own state when the parent is not using data binding. The idea is to provide the behaviors
required by data binding and the behaviors for manual invocation, as I discussed earlier in the chapter.

You might wonder why the parent even tries to cascade the call to the child if BindingEdit is
true. The reason is that it is the child object’s decision whether it should take a snapshot of its state
or not. This approach preserves encapsulation by letting the child object determine its own behavior.
Some child objects, such as a BusinessBase child, will ignore the call. But other child objects such as
FieldDataManager always take a snapshot of their state. In the case of FieldDataManager this is impor-
tant, because it contains field values that are directly part of the containing object, so it isn’t really a
“child” in the same sense as an editable child that inherits from BusinessBase.

Later in this chapter you’ll see that the methods to undo or accept any changes will work the
same way—that is, they’ll cascade the calls to any child objects. This way, all objects handle undo
without breaking encapsulation.

Lhotka_1019-1.book Page 378 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 379

Taking a Snapshot of a Regular Field

With a regular field, the code simply stores the field value into the HybridDictionary object, associ-
ating that value with the combined class name and field name:

 // this is a normal field, simply trap the value
 state.Add(GetFieldName(field), value);

Note that these “regular” fields might actually be complex types in and of themselves. All that is
known is that the field doesn’t reference an editable business object because the value didn’t imple-
ment IUndoableObject. It could be a simple value such as an int or a string, or it could be a complex
object (as long as that object is marked as Serializable).

Having gone through every field for every class in the object’s inheritance hierarchy, the
HybridDictionary contains a complete snapshot of all the data in the business object.

■Note This snapshot includes some fields put into the BusinessBase class to keep track of the object’s status
(such as whether it’s new, dirty, deleted, etc.). The snapshot also includes the collection of broken rules that will be
implemented later. An undo operation restores the object to its previous state in every way.

Serializing and Stacking the HybridDictionary

At this point, the object’s field values are recorded but the snapshot is in a complex data type:
a HybridDictionary. To further complicate matters, some of the elements contained in the
HybridDictionary might be references to more complex objects. In that case, the HybridDictionary
just has a reference to the existing object, not a copy or a snapshot at all.

Fortunately, there’s an easy answer to both issues. The BinaryFormatter or
NetDataContractSerializer can be used to convert the HybridDictionary to a byte stream, reducing
it from a complex data type to a very simple one for storage. Better yet, the very process of serializing
the HybridDictionary automatically serializes any objects to which it has references.

This does require that all objects referenced by any business object must be marked as Serializable
so that they can be included in the byte stream. If referenced objects aren’t serializable, the serializa-
tion attempt results in a runtime error. Alternatively, any nonserializable object references can be
marked as NotUndoable so that the undo process simply ignores them.

The code to do the serialization is fairly straightforward:

 // serialize the state and stack it
 using (MemoryStream buffer = new MemoryStream())
 {
 ISerializationFormatter formatter =
 SerializationFormatterFactory.GetFormatter();
 formatter.Serialize(buffer, state);
 _stateStack.Push(buffer.ToArray());
 }

The SerializationFormatterFactory uses the CslaSerializationFormatter config setting to
determine whether to use the BinaryFormatter (the default) or the NetDataContractSerializer. This
is set in the app.config or web.config file in the appSettings element:

 <add key="CslaSerializationFormatter" value="NetDataContractSerializer" />

Either formatter works with Serializable objects, but only NetDataContractSerializer works
with DataContract objects.

Lhotka_1019-1.book Page 379 Tuesday, November 18, 2008 3:42 PM

380 CH AP T E R 1 3 ■ N - L E V E L U N D O

Regardless of which formatter is used, the formatter object serializes the HybridDictionary (and
any objects to which it refers) into a stream of bytes in an in-memory buffer. The byte stream is simply
extracted from the in-memory buffer and pushed onto the stack:

 _stateStack.Push(buffer.ToArray());

Converting a MemoryStream to a byte array is not an issue because the MemoryStream is imple-
mented to store its data in a byte array. The ToArray() method simply returns a reference to that
existing array, so no data is copied.

The act of conversion to a byte array is important, however, because a byte array is serializable,
while a MemoryStream object is not. If the business object is passed across the network by value while
it is being edited, the stack of states needs to be serializable.

■Tip Passing objects across the network while they’re being edited is not anticipated, but since business objects
are Serializable, you can’t prevent the business developer from doing just that. If the stack were to reference a
MemoryStream, the business application would get a runtime error as the serialization fails, and that’s not acceptable.
Converting the data to a byte array avoids accidentally crashing the application on the off chance that the business
developer does decide to pass an object across the network as it’s being edited.

At this point, we’re a third of the way through implementing n-level undo support. It is now
possible to create a stack of snapshots of an object’s data. It is time to move on and discuss the undo
and accept operations.

UndoChanges

The UndoChanges() method is the reverse of CopyState(). It takes a snapshot of data off the stack,
deserializes it back into a HybridDictionary, and then takes each value from the HybridDictionary
and restores it into the appropriate object field. Like CopyState(), there are virtual methods called
before and after the process to allow subclasses to take additional actions.

The hard issues of walking through the types in the object’s inheritance hierarchy and finding
all the fields in the object are solved in the implementation of CopyState(). The structure of
UndoChanges() is virtually identical, except that it restores field values rather than takes a snapshot
of them.

Since the overall structure of UndoChanges() is essentially the reverse of CopyState(), I won’t
show the entire code here. Rather, I’ll focus on the key functionality.

EditLevel

It is possible for a business developer to accidentally trigger a call to UndoChanges() when there is no
state to restore. If this condition isn’t caught, it will cause a runtime error. To avoid such a scenario,
the first thing the UndoChanges() method does is to get the “edit level” of the object by retrieving the
Count property from the stack object. If the edit level is 0, there’s no state to restore, and UndoChanges()
just exits without doing any work.

This edit level concept is even more important in the implementation of BusinessListBase, so
you’ll notice that the value is implemented as a property.

Also notice that the edit level is checked to make sure it is in sync with this object’s parent object
(if any):

 if (this.EditLevel - 1 < parentEditLevel)
 throw
 new UndoException(string.Format(
 Resources.EditLevelMismatchException, "UndoChanges"));

Lhotka_1019-1.book Page 380 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 381

All three of the undo methods do this check, and these exceptions help the business developer
debug her code when using n-level undo.

The most common place where these exceptions occur is when using Windows Forms data
binding because it is very easy for a UI developer to forget to properly unbind an object from the UI,
leaving the object in a partially edited state. These exceptions help identify those situations so the
developer can fix the UI code.

Re-Creating the HybridDictionary Object

Where CopyState() serializes the HybridDictionary into a byte array at the end of the process, the first
thing UndoChanges() needs to do is pop the most recently added snapshot off the stack and deserialize it
to re-create the HybridDictionary object containing the detailed values:

 HybridDictionary state;
 using (MemoryStream buffer = new MemoryStream(_stateStack.Pop()))
 {
 buffer.Position = 0;
 ISerializationFormatter formatter =
 SerializationFormatterFactory.GetFormatter();
 state = (HybridDictionary)formatter.Deserialize(buffer);
 }

This is the reverse of the process used to put the HybridDictionary onto the stack in the first
place. The result of this process is a HybridDictionary containing all the data that was taken in the
original snapshot.

Restoring the Object’s State Data

With the HybridDictionary containing the original object values restored, it is possible to loop through
the fields in the object in the same manner as CopyState().

When the code encounters a child business object that implements IUndoableObject, it cascades
the UndoChanges() call to that child object so that it can do its own restore operation. Again, this is done
to preserve encapsulation—only the code within a given object should manipulate that object’s data.

With a “normal” field, its value is simply restored from the HybridDictionary:

 // this is a regular field, restore its value
 field.SetValue(this, state[GetFieldName(field)]);

At the end of this process, the object is reset to the state it was in when the most recent snapshot
was taken. All that remains is to implement a method to accept changes, rather than to undo them.

AcceptChanges

AcceptChanges() is actually the simplest of the three methods. If changes are being accepted, it
means that the current values in the object are the ones that should be kept, and the most recent
snapshot is now meaningless and can be discarded. Like CopyState(), once this method is complete,
a virtual AcceptChangesComplete() method is called to allow subclasses to take additional actions.

In concept, this means that all AcceptChanges() needs to do is discard the most recent snapshot:

 _stateStack.Pop();

However, it is important to remember that the object may have child objects, and they need to know
to accept changes as well. This requires looping through the object’s fields to find any child objects that
implement IUndoableObject. The AcceptChanges() method call must be cascaded to them, too.

The process of looping through the fields of the object is the same as in CopyState() and
UndoChanges(). The only difference is where the method call is cascaded:

Lhotka_1019-1.book Page 381 Tuesday, November 18, 2008 3:42 PM

382 CH AP T E R 1 3 ■ N - L E V E L U N D O

 // the field is undoable so see if it is a child object
 if (typeof(Csla.Core.IUndoableObject).
 IsAssignableFrom(field.FieldType))
 {
 object value = field.GetValue(this);
 // make sure the variable has a value
 if (value != null)
 {
 // it is a child object so cascade the call
 ((Core.IUndoableObject)value).AcceptChanges(
 this.EditLevel, BindingEdit);
 }
 }

Simple field values don’t need any processing. Remember that the idea is that the current values
have been accepted—so there’s no need to change those current values at all.

You should now understand how the three undo methods in UndoableBase are able to take and
restore a snapshot of an object’s state, and how the calls are cascaded to child objects in a way that
preserves encapsulation while supporting the needs of both data binding and manual invocation of
the undo functionality.

BusinessBase Class
The UndoableBase class does the majority of the work to support the undo functionality. However,
BusinessBase does include some methods that allow an editable object to participate in the undo
process.

In particular, it is BusinessBase that implements ISupportUndo, and so it is BusinessBase that
implements methods such as BeginEdit(). These methods are public to enable the manual invoca-
tion of the undo functionality.

BeginEdit Method

I’ll start by discussing the simplest of the three methods. Here’s the BeginEdit() method:

 public void BeginEdit()
 {
 CopyState(this.EditLevel + 1);
 }

When the business or UI developer explicitly calls BeginEdit() the object takes a snapshot of its
state and cascades that call to its child objects. You’ve already seen how this is done in the CopyState()
method implemented in UndoableBase, and BeginEdit() relies on that preexisting behavior.

Remember that the undo methods in UndoableBase throw an exception if the object’s edit level
gets out of sync with its parent object. The parent’s edit level is passed in as a parameter to each undo
method, such as CopyState().

When manually invoking CopyState(), it is necessary to pass in a parameter indicating the future
state of the edit level. When taking a snapshot, the future edit level is one higher than the current
edit level.

In other words, this would cause an exception:

 CopyState(this.EditLevel);

The reason is that CopyState() would see that it is about to raise the object’s edit level above the
value passed in as a parameter, so it would throw an exception. By passing in EditLevel + 1, the
BeginEdit() method is effectively giving permission for the object to take a snapshot of its state.

Lhotka_1019-1.book Page 382 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 383

CancelEdit Method

The CancelEdit() method is a little more complex. Actually, it isn’t CancelEdit() that’s more complex
but the required post-processing implemented in an override of UndoChangesComplete() that is complex:

 public void CancelEdit()
 {
 UndoChanges(this.EditLevel - 1);
 }

 protected override void UndoChangesComplete()
 {
 BindingEdit = false;
 ValidationRules.SetTarget(this);
 InitializeBusinessRules();
 OnUnknownPropertyChanged();
 base.UndoChangesComplete();
 }

Like BeginEdit(), the CancelEdit() method lets UndoableBase do the hard work. But when the
UndoChanges() method is complete, there is some housekeeping that must be done by BusinessBase,
and that is handled by the UndoChangesComplete() override.

When either CancelEdit() or ApplyEdit() is called, that call ends any data binding edit currently
in effect, so the BindingEdit property is set to false. If data binding calls BeginEdit() through
IEditableObject, BindingEdit will be set to true again, but any cancel or accept operation ends that
edit process.

An UndoChanges() operation effectively deserializes some data that is stored in the Stack object,
as discussed earlier in the chapter. This means it is necessary to ensure that all the internal references
between objects are correct. For example, the ValidationRules.SetTarget() method ensures that
this object’s ValidationRules object has the correct reference as the target for all business rules.

It is also the case that an undo operation probably changed one or more property values. Most
likely, the user has changed some property values and the undo reset them to some previous values.
The call to OnUnknownPropertyChanged() raises a PropertyChanged event so data binding knows that
the UI needs to be refreshed to reflect the changes.

ApplyEdit Method

The ApplyEdit() method is also a little complex. It also does some processing beyond that provided
by UndoableBase:

 public void ApplyEdit()
 {
 _neverCommitted = false;
 AcceptChanges(this.EditLevel - 1);
 BindingEdit = false;
 }

 protected override void AcceptChangesComplete()
 {
 if (Parent != null)
 Parent.ApplyEditChild(this);
 base.AcceptChangesComplete();
 }

Again, when either CancelEdit() or ApplyEdit() are called, that call ends any data binding edit
currently in effect, so the BindingEdit property is set to false.

Lhotka_1019-1.book Page 383 Tuesday, November 18, 2008 3:42 PM

384 CH AP T E R 1 3 ■ N - L E V E L U N D O

There’s also a _neverCommitted flag that is used to track whether the ApplyEdit() method on this
object has ever been called. This field is used in the IEditableObject implementation to support the
automatic removal of child objects from a list but is only used for Windows Forms 1.0 style data
binding (so is nearly obsolete at this point in time).

The most interesting bit of code here is in AcceptChangesComplete(), where a
Parent.ApplyEditChild() method is called. This occurs if this object is a child of some other object
and the ApplyEditChild() method is used to tell the parent object that its child’s ApplyEdit() is
invoked. The EditableRootListBase class uses this to determine that the user has completed editing
a particular child object in the list, so it knows to trigger an immediate save of that child object’s data.
I discuss EditableRootListBase in more detail in Chapter 16.

At this point you’ve seen the code for the public methods that support the undo functionality.
There are also three similar methods that support data binding through the IEditableObject interface.

IEditableObject Interface

The IEditableObject interface is used by data binding to interact with an object. As I discuss earlier
in the chapter, data binding expects a single level of undo and that each object is independent of
other objects (so no cascading of undo calls from parent to children).

The BeginEdit() method must detect whether the developer has disabled IEditableObject
support and must also only honor the first call to BeginEdit() by data binding. It is important to
realize that data binding may make many calls to BeginEdit() and only the first one should have
any effect:

 void System.ComponentModel.IEditableObject.BeginEdit()
 {
 if (!_disableIEditableObject && !BindingEdit)
 {
 BindingEdit = true;
 BeginEdit();
 }
 }

The BindingEdit property is set to true to indicate that the object is now bound to a UI. As
you’ve already seen, this property is used to alter the behavior of other undo features and most
importantly prevents cascading of method calls to child objects.

The CancelEdit() method is more complex because it supports the automatic removal of
certain new objects when they are a child of a list:

 void System.ComponentModel.IEditableObject.CancelEdit()
 {
 if (!_disableIEditableObject && BindingEdit)
 {
 CancelEdit();
 if (IsNew && _neverCommitted && EditLevel <= EditLevelAdded)
 {
 // we're new and no EndEdit or ApplyEdit has ever been
 // called on us, and now we've been cancelled back to
 // where we were added so we should have ourselves
 // removed from the parent collection
 if (Parent != null)
 Parent.RemoveChild(this);
 }
 }
 }

Lhotka_1019-1.book Page 384 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 385

This call to Parent.RemoveChild() is only useful for Windows Forms 1.0 data binding when using
the Windows Forms 1.0 grid control. When using modern data binding and grid controls, this code
is unused because BindingList<T> handles the removal of child objects by itself.

The simplest of the three methods is ApplyEdit():

 void System.ComponentModel.IEditableObject.EndEdit()
 {
 if (!_disableIEditableObject && BindingEdit)
 {
 ApplyEdit();
 }
 }

Assuming IEditableObject isn’t disabled and that the object is currently data bound, this method
simply delegates to the ApplyEdit() method I discussed earlier.

As you can see, the BusinessBase class exposes the undo functionality in three ways:

• Through public methods for manual invocation

• Through the ISupportUndo interface for manual invocation

• Through the IEditableObject interface for data binding

It also interacts with its UndoableBase base class to do most of the work, including interacting
with child objects, such as editable collections. This means BusinessListBase must also participate
in the undo functionality.

BusinessListBase Class
The BusinessListBase class combines some of what UndoableBase does and some of what you’ve
seen in BusinessBase. Like UndoableBase, the BusinessListBase class implements IUndoableObject,
and like BusinessBase it implements ISupportUndo and the three public undo methods.

The implementation of this functionality in a collection isn’t as complex as it is for editable
objects, however, because a collection is primarily responsible for cascading the method calls to all
the child objects it contains.

Edit Level Tracking

The hardest part of implementing n-level undo functionality is that not only can child objects be
added or deleted but they can be “undeleted” or “unadded” in the case of an undo operation. Csla.
Core.BusinessBase and UndoableBase use the concept of an edit level. The edit level allows the object
to keep track of how many BeginEdit() calls have been made to take a snapshot of its state without
corresponding CancelEdit() or ApplyEdit() calls. More specifically, it tells the object how many
states have been stacked up for undo operations.

BusinessListBase needs the same edit level tracking as in BusinessBase. However, a collection
won’t actually stack its states. Rather, it cascades the call to each of its child objects so that they can
stack their own states. Because of this, the edit level can be tracked using a simple numeric counter.
It merely counts how many unpaired BeginEdit() calls have been made:

 // keep track of how many edit levels we have
 private int _editLevel;

The implementations of CopyState(), UndoChanges(), and AcceptChanges() alter this value
accordingly.

Lhotka_1019-1.book Page 385 Tuesday, November 18, 2008 3:42 PM

386 CH AP T E R 1 3 ■ N - L E V E L U N D O

Reacting to Insert, Remove, or Clear Operations

Collection base classes don’t implement Add() or Remove() methods directly because those are
implemented by Collection<T>, which is the base class for BindingList<T>. However, they do need
to perform certain operations any time that an insert or remove operation occurs. To accommodate
this, BindingList<T> invokes certain virtual methods when these events occur. These methods can
be overridden to respond to the events.

Child objects also must have the ability to remove themselves from the collection. Remember
the implementation of System.ComponentModel.IEditableObject in Clsa.Core.BusinessBase—that
code included a parent reference to the collection object and code to call a RemoveChild() method. This
RemoveChild() method is part of the IEditableCollection interface implemented by BusinessListBase.

The important thing to realize is that BusinessListBase does extra processing in addition to the
default behavior of the BindingList base class:

• It moves “deleted” items to and from a DeletedList so items can be “undeleted.”

• It completely removes deleted items that are new (and thus not “undeleted” in an undo
operation).

• It maintains any LINQ to CSLA indexes (as discussed in Chapter 14).

• It ensures that newly added child objects have an edit level corresponding to the collection’s
edit level.

To do this, the methods listed in Table 13-3 are implemented.

The RemoveChild() method is called by a child object contained within the collection. This is
called when a Windows Forms grid control requests that the child remove itself from the collection
via the System.ComponentModel.IEditableObject interface.

■Note In reality, this shouldn’t be a common occurrence. Windows Forms 2.0 uses a new interface, ICancelAddNew,
that is implemented by BindingList<T>. This interface notifies the collection that the child should be removed
rather than notifying the child object itself. The code in the RemoveItem() method takes care of the ICancelAddNew
case automatically, so this code is really here to support backward compatibility for anyone explicitly calling the
IEditableObject interface on child objects.

The RemoveItem() method is called when an item is being removed from the collection. To support
the concept of undo, the object isn’t actually removed because it might need to be restored later.
Rather, a DeleteChild() method is called, passing the object being removed as a parameter. You’ll
see the implementation of this method shortly. For now, it’s enough to know that it keeps track of the
object in case it must be restored later.

The InsertItem() method is called when an item is being added to the collection. The
EditLevelAdded property is changed when a new child object is added to the collection, thus telling

Table 13-3. Methods Implemented for Insert, Remove, and Clear Operations

Method Source Description

RemoveChild() IEditableCollection Removes a child object from the list

RemoveItem() base Removes an item (by index) from the list

InsertItem() base Inserts a new child into the list

Lhotka_1019-1.book Page 386 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 387

the child object the edit level at which it’s being added. Recall that this property was implemented in
BusinessBase to merely record the value so that it can be checked during undo operations. This value
will be used in the collection’s UndoChanges() and AcceptChanges() methods later on.

Also notice that the child object’s SetParent() method is called to make sure its parent reference
is correct. This way, if needed, it can call the collection’s RemoveChild() method to remove itself from
the collection.

Deleted Object Collection

To ensure that the collection can properly “undelete” objects in case of an undo operation, it needs
to keep a list of the objects that have been “removed.” The first step in accomplishing this goal is to
maintain an internal list of deleted objects.

Along with implementing this list, there needs to be a ContainsDeleted() method so that the
business or UI logic can find out whether the collection contains a specific deleted object.

BindingList already includes a Contains() method so that the UI code can ask the collection
whether it contains a specific item. Since a BusinessListBase collection is unusual in that it contains
two lists of objects, it’s appropriate to allow client code to ask whether an object is contained in the
deleted list as well as in the nondeleted list.

The list of deleted objects is kept as a List<C>—a strongly typed collection of child objects. That
list is then exposed through a protected property so it is available to subclasses. Subclasses have
access to the nondeleted items in the collection, so this just follows the same scoping model. The list
object is created on demand to minimize overhead in the case that no items are ever removed from
the collection.

Given the list for storing deleted child objects, it is possible to implement the methods to delete
and undelete objects as needed.

Deleting a child object is really a matter of marking the object as deleted and moving it from the
active list of child objects to DeletedList. Undeleting occurs when a child object has restored its state
so that it’s no longer marked as deleted. In that case, the child object must be moved from DeletedList
back to the list of active objects in the collection.

The permutations here are vast. The ways in which combinations of calls to BeginEdit(), Add(),
Remove(), CancelEdit(), and ApplyEdit() can be called are probably infinite. Let’s look at some rela-
tively common scenarios though to get a good understanding of what happens as child objects are
deleted and undeleted.

First, consider a case in which the collection has been loaded with data from a database and the
database includes one child object: A. Then, the UI calls BeginEdit() on the collection and adds a
new object to the collection: B. Figure 13-2 shows what happens if these two objects are removed and
then CancelEdit() is called on the collection object.

■Tip In Figure 13-2, EL is the value of _editLevel in the collection; ELA is the _editLevelAdded value in
each child object; and DEL is the IsDeleted value in each child object.

After both objects are removed from the collection, they’re marked for deletion and moved to
the DeletedList collection. This way they appear to be gone from the collection, but the collection
still has access to them if needed.

After the CancelEdit() call, the collection’s edit level goes back to 0. Since child A came from the
database, it was “added” at edit level 0, so it sticks around. Child B on the other hand was added at
edit level 1, so it goes away. Also, child A has its state reset as part of the CancelEdit() call (remember
that CancelEdit() causes a cascade effect, so each child object restores its snapshot values). The
result is that because of the undo operation, child A is no longer marked for deletion.

Lhotka_1019-1.book Page 387 Tuesday, November 18, 2008 3:42 PM

388 CH AP T E R 1 3 ■ N - L E V E L U N D O

Figure 13-2. Edit process in which objects are removed and CancelEdit is called

Another common scenario follows the same process but with a call to ApplyEdit() at the end,
as shown in Figure 13-3.

Figure 13-3. Edit process in which objects are removed and ApplyEdit is called

Lhotka_1019-1.book Page 388 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 389

The first two steps are identical, of course, but after the call to ApplyEdit(), things are quite
different. Since changes to the collection are accepted rather than rejected, the changes become
permanent. Child A remains marked for deletion, and if the collection is saved back to the database,
the data for child A is deleted from the database. Child B is totally gone at this point. It is a new object
added and deleted at edit level 1, and all changes made at edit level 1 are accepted. Since the collection
knows that B was never in the database (because it was added at edit level 1), it can simply discard
the object entirely from memory.

Let’s look at one last scenario. Just to illustrate how rough this gets, this will be more complex.
It involves nested BeginEdit(), CancelEdit(), and ApplyEdit() calls on the collection. This can easily
happen if the collection contains child or grandchild objects and they are displayed in a Windows
Forms UI that uses modal dialog windows to edit each level (parent, child, grandchild, etc.).

Again, child A is loaded from the database and child B is added at edit level 1. Finally, C is added
at edit level 2. Then all three child objects are removed, as shown in Figure 13-4.

Figure 13-4. The result after loading, adding, and removing objects

Suppose ApplyEdit() is now called on the collection. This applies all edits made at edit level 2,
putting the collection back to edit level 1. Since child C was added at edit level 2, it simply goes away,
but child B sticks around because it was added at edit level 1, which is illustrated in Figure 13-5.

Both objects remain marked for deletion because the changes made at edit level 2 were applied.
Were CancelEdit() called now, the collection would return to the same state as when the first
BeginEdit() was called, meaning that only child A (not marked for deletion) would be left.

Lhotka_1019-1.book Page 389 Tuesday, November 18, 2008 3:42 PM

390 CH AP T E R 1 3 ■ N - L E V E L U N D O

Figure 13-5. Result after calling ApplyEdit

Alternatively, a call to ApplyEdit() would commit all changes made at edit level 1: child A would
continue to be marked for deletion, and child B would be totally discarded because it was added and
deleted at edit level 1. Both of these possible outcomes are illustrated in Figure 13-6.

Figure 13-6. Result after calling either CancelEdit or ApplyEdit

Having gone through all that, let’s take a look at the code that implements these behaviors. The
DeleteChild() and UnDeleteChild() methods deal with marking the child objects as deleted and
moving them between the active items in the collection and the DeletedList object:

Lhotka_1019-1.book Page 390 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 391

 private void DeleteChild(C child)
 {
 // set child edit level
 Core.UndoableBase.ResetChildEditLevel(child, this.EditLevel, false);
 // remove from the index
 RemoveIndexItem(child);
 // remove from the position map
 RemoveFromMap(child);
 // mark the object as deleted
 child.DeleteChild();
 // and add it to the deleted collection for storage
 DeletedList.Add(child);
 }

 private void UnDeleteChild(C child)
 {
 // since the object is no longer deleted, remove it from
 // the deleted collection
 DeletedList.Remove(child);

 // we are inserting an _existing_ object so
 // we need to preserve the object's editleveladded value
 // because it will be changed by the normal add process
 int saveLevel = child.EditLevelAdded;
 InsertIndexItem(child);
 Add(child);
 child.EditLevelAdded = saveLevel;
 }

On the surface, this doesn’t seem too complicated—but look at the code that deals with the child’s
EditLevelAdded property in the UnDeleteChild() method. In the InsertItem() method I discussed
earlier, the assumption is that any child being added to the collection is a new object and therefore
InsertItem() sets its edit level value to the collection’s current value. However, the InsertItem()
method is run when this preexisting object is reinserted into the collection, altering its edit level.
That would leave the child object with an incorrect edit level value.

The problem is that in this case, the child object isn’t a new object; it is a preexisting object that
is just being restored to the collection. To solve this, the object’s edit level value is stored in a tempo-
rary field, the child object is re-added to the collection, and then the child object’s edit level value is
reset to the original value, effectively leaving it unchanged.

CopyState

Everything has so far laid the groundwork for the n-level undo functionality. All the pieces now exist
to make it possible to implement the CopyState(), UndoChanges(), and AcceptChanges() methods,
and then the BeginEdit(), CancelEdit() and ApplyEdit() methods.

The CopyState() method needs to take a snapshot of the collection’s current state. It is invoked
when the BeginEdit() method is called on the root object (either the collection itself or the collection’s
parent object). At that time, the root object takes a snapshot of its own state and calls CopyState() on any
child objects or collections so they can take snapshots of their states as well:

Lhotka_1019-1.book Page 391 Tuesday, November 18, 2008 3:42 PM

392 CH AP T E R 1 3 ■ N - L E V E L U N D O

 void Core.IUndoableObject.CopyState(
 int parentEditLevel, bool parentBindingEdit)
 {
 if (!parentBindingEdit)
 CopyState(parentEditLevel);
 }

 private void CopyState(int parentEditLevel)
 {
 if (this.EditLevel + 1 > parentEditLevel)
 throw new Core.UndoException(
 string.Format(Resources.EditLevelMismatchException, "CopyState"));

 // we are going a level deeper in editing
 _editLevel += 1;

 // cascade the call to all child objects
 foreach (C child in this)
 child.CopyState(_editLevel, false);

 // cascade the call to all deleted child objects
 foreach (C child in DeletedList)
 child.CopyState(_editLevel, false);
 }

There are technically two CopyState() methods—one for the Csla.Core.IUndoableObject inter-
face and the other a private implementation for use within BusinessListBase itself. The interface
implementation merely delegates to the private implementation.

As CopyState() takes a snapshot of the collection’s state, it increases the edit level by one. Remember
that UndoableBase relies on the Stack object to track the edit level, but this code just uses a simple
numeric counter. A collection has no state of its own, so there’s nothing to add to a stack of states.
Instead, a collection is only responsible for ensuring that all the objects it contains take snapshots of
their states. All it needs to do is keep track of how many times CopyState() has been called, so the
collection can properly implement the adding and removing of child objects, as described earlier.

Notice that the CopyState() call is also cascaded to the objects in DeletedList. This is important
because those objects might at some point get restored as active objects in the collection. Even though
they’re not active at the moment (because they’re marked for deletion), they need to be treated the
same as regular nondeleted objects.

Overall, this process is fairly straightforward: the CopyState() call is just cascaded down to the
child objects. The same can’t be said for UndoChanges() or AcceptChanges().

UndoChanges

The UndoChanges() method is more complex than the CopyState() method. It too cascades the call
down to the child objects, deleted or not, but it also needs to find any objects added since the latest
snapshot. Those objects must be removed from the collection and discarded because an undo oper-
ation means that it must be as though they were never added. Furthermore, it needs to find any objects
deleted since the latest snapshot. Those objects must be re-added to the collection.

Here’s the complete method:

Lhotka_1019-1.book Page 392 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 393

 void Core.IUndoableObject.UndoChanges(
 int parentEditLevel, bool parentBindingEdit)
 {
 if (!parentBindingEdit)
 UndoChanges(parentEditLevel);
 }

 private bool _completelyRemoveChild;

 private void UndoChanges(int parentEditLevel)
 {
 C child;

 if (this.EditLevel - 1 < parentEditLevel)
 throw new Core.UndoException(
 string.Format(Resources.EditLevelMismatchException, "UndoChanges"));

 // we are coming up one edit level
 _editLevel -= 1;
 if (_editLevel < 0) _editLevel = 0;

 bool oldRLCE = this.RaiseListChangedEvents;
 this.RaiseListChangedEvents = false;
 try
 {
 // Cancel edit on all current items
 for (int index = Count - 1; index >= 0; index--)
 {
 child = this[index];

 DeferredLoadIndexIfNotLoaded();
 _indexSet.RemoveItem(child);

 child.UndoChanges(_editLevel, false);

 _indexSet.InsertItem(child);

 // if item is below its point of addition, remove
 if (child.EditLevelAdded > _editLevel)
 {
 bool oldAllowRemove = this.AllowRemove;
 try
 {
 this.AllowRemove = true;
 _completelyRemoveChild = true;
 RemoveIndexItem(child);
 RemoveAt(index);
 }

Lhotka_1019-1.book Page 393 Tuesday, November 18, 2008 3:42 PM

394 CH AP T E R 1 3 ■ N - L E V E L U N D O

 finally
 {
 _completelyRemoveChild = false;
 this.AllowRemove = oldAllowRemove;
 }
 }
 }

 // cancel edit on all deleted items
 for (int index = DeletedList.Count - 1; index >= 0; index--)
 {
 child = DeletedList[index];
 child.UndoChanges(_editLevel, false);
 if (child.EditLevelAdded > _editLevel)
 {
 // if item is below its point of addition, remove
 DeletedList.RemoveAt(index);
 }
 else
 {
 // if item is no longer deleted move back to main list
 if (!child.IsDeleted) UnDeleteChild(child);
 }
 }
 }
 finally
 {
 this.RaiseListChangedEvents = oldRLCE;
 OnListChanged(new ListChangedEventArgs(ListChangedType.Reset, -1));
 }
 }

First of all, _editLevel is decremented to indicate that one call to CopyState() has been coun-
tered.

Notice that the loops going through the collection itself and the DeletedList collections go from
bottom to top, using a numeric index value. This is important because it allows safe removal of items
from each collection. Neither a foreach loop nor a forward-moving numeric index would allow removal
of items from the collections without causing a runtime error.

UndoChanges() is called on all child objects in the collection so that they can restore their indi-
vidual states. After a child object’s state is restored, the child object’s edit level is checked to see when
it was added to the collection. If the collection’s new edit level is less than the edit level when the
child object was added, it is a new child object that now must be discarded:

 // if item is below its point of addition, remove
 if (child.EditLevelAdded > _editLevel)
 {
 bool oldAllowRemove = this.AllowRemove;
 try
 {
 this.AllowRemove = true;
 _completelyRemoveChild = true;
 RemoveIndexItem(child);
 RemoveAt(index);
 }

Lhotka_1019-1.book Page 394 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 395

 finally
 {
 _completelyRemoveChild = false;
 this.AllowRemove = oldAllowRemove;
 }
 }

The same process occurs for the objects in DeletedList; again, UndoChanges() is called on each
child object. Then there’s a check to see if the child object is a newly added object that can now
be discarded:

 if (child.EditLevelAdded > _editLevel)
 {
 // if item is below its point of addition, remove
 DeletedList.RemoveAt(index);
 }

A bit more work is required when dealing with the deleted child objects. It is possible that the
undo operation needs to undelete an object. Remember that the IsDeleted flag is automatically
maintained by UndoChanges(), so it is possible that the child object is no longer marked for deletion.
In such a case, the object must be moved back into the active list:

 else
 {
 // if item is no longer deleted move back to main list
 if (!child.IsDeleted) UnDeleteChild(child);
 }

At the end of the process, the collection object and all its child objects will be in the state they
were when CopyState() was last called. Any changes, additions, or deletions will have been undone.

AcceptChanges

The AcceptChanges() method isn’t nearly as complicated as UndoChanges(). It also decrements the
_editLevel field to counter one call to CopyState(). The method then cascades the AcceptChanges()
call to each child object so that each child object can accept its own changes. The only complex bit
of code is that the “edit level added” value of each child must also be altered:

 void Core.IUndoableObject.AcceptChanges(
 int parentEditLevel, bool parentBindingEdit)
 {
 if (!parentBindingEdit)
 AcceptChanges(parentEditLevel);
 }

 private void AcceptChanges(int parentEditLevel)
 {
 if (this.EditLevel - 1 < parentEditLevel)
 throw new Core.UndoException(
 string.Format(Resources.EditLevelMismatchException, "AcceptChanges"));

 // we are coming up one edit level
 _editLevel -= 1;
 if (_editLevel < 0) _editLevel = 0;

Lhotka_1019-1.book Page 395 Tuesday, November 18, 2008 3:42 PM

396 CH AP T E R 1 3 ■ N - L E V E L U N D O

 // cascade the call to all child objects
 foreach (C child in this)
 {
 child.AcceptChanges(_editLevel, false);
 // if item is below its point of addition, lower point of addition
 if (child.EditLevelAdded > _editLevel) child.EditLevelAdded = _editLevel;
 }

 // cascade the call to all deleted child objects
 for (int index = DeletedList.Count - 1; index >= 0; index--)
 {
 C child = DeletedList[index];
 child.AcceptChanges(_editLevel, false);
 // if item is below its point of addition, remove
 if (child.EditLevelAdded > _editLevel)
 DeletedList.RemoveAt(index);
 }
 }

While looping through the collection and DeleteList, the code makes sure that no child object
maintains an EditLevelAdded value that’s higher than the collection’s new edit level.

Think back to the LineItem example and suppose the collection is at edit level 1 and the changes
are accepted. In this case, the newly added LineItem object is to be kept—it’s valid. Because of this,
its EditLevelAdded property needs to be the same as the collection object, so it needs to be set to 0 as well.

This is important because there’s nothing to stop the user from starting a new edit session and
raising the collection’s edit level to 1 again. If the user then cancels the operation, the collection
shouldn’t remove the previous LineItem object accidentally. It was already accepted once, and it
should stay accepted.

This method won’t remove any items from the collection as changes are accepted, so the simpler
foreach looping structure can be used rather than the bottom-to-top numeric looping structure
needed in the UndoChanges() method.

When looping through the DeletedList collection, however, the bottom-to-top approach is still
required. This is because DeletedList may contain child items newly added to the collection and
then marked for deletion. Since they are new objects, they have no corresponding data in the data-
base, so they can simply be dropped from the collection in memory. In such a case, those child
objects are removed from the list based on their edit level value.

This completes all the functionality needed to support n-level undo, allowing BusinessListBase
to integrate with the code in the UndoableBase class.

BeginEdit, CancelEdit, and ApplyEdit

With the n-level undo methods complete, it is possible to implement the methods that the UI needs
to control the edit process on a collection. Remember, though, that this control is only valid if the
collection is a root object. If it’s a child object, its edit process should be controlled by its parent object.
This requires a check to ensure that the object isn’t a child before allowing these methods to operate:

 public void BeginEdit()
 {
 if (this.IsChild)
 throw new NotSupportedException(Resources.NoBeginEditChildException);

 CopyState(this.EditLevel + 1);
 }

Lhotka_1019-1.book Page 396 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 3 ■ N - L E V E L U N D O 397

 public void CancelEdit()
 {
 if (this.IsChild)
 throw new NotSupportedException(Resources.NoCancelEditChildException);

 UndoChanges(this.EditLevel - 1);
 }

 public void ApplyEdit()
 {
 if (this.IsChild)
 throw new NotSupportedException(Resources.NoApplyEditChildException);

 AcceptChanges(this.EditLevel - 1);
 }

All three methods are very straightforward and allow developers to create a UI that starts editing
a collection with BeginEdit(), let the user interact with the collection, and then either cancel or
accept the changes with CancelEdit() or ApplyEdit().

These methods also provide the implementation for ISupportUndo, allowing a UI developer or
other framework author to polymorphically interact with n-level undo on any editable object.

Conclusion
The n-level undo functionality provided by CSLA .NET is very flexible and powerful. It is also designed to
incur no overhead if it isn’t used. Many web applications or service-oriented applications don’t need
this feature so pay no cost in terms of performance.

Virtually all Windows Forms and WPF applications use at least the support provided for data
binding and can choose to leverage the more powerful features for certain types of user interface.

Although the implementation of undo is quite complex and must deal with many edge cases,
thanks to data binding and changes to the .NET Framework over the years, the complexity is encap-
sulated within CSLA .NET. Business object and UI developers can use the abstract API exposed by
ISupportUndo or simply use data binding to interact with the undo functionality.

You may have noticed that there are numerous points in BusinessListBase where methods are
called to maintain index maps. This is required for LINQ to CSLA, which is the topic of Chapter 14.

Lhotka_1019-1.book Page 397 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 398 Tuesday, November 18, 2008 3:42 PM

399

■ ■ ■

C H A P T E R 1 4

LINQ to CSLA

With the introduction of LINQ, the entire language for how we interact with collections of objects,
data, XML files, and any other IEnumerable<T> structure has been updated. LINQ provides a unified
language—a single syntax for dealing with diverse structures. It opens many exciting possibilities for
reducing the volume of source code.

In this chapter, I will show you how to take advantage of the features in LINQ to CSLA in order
to reduce the amount of source code you write dealing with CSLA .NET collections. I will then explain
the implementation of features in LINQ to CSLA, including indexing and making the results of LINQ
queries bindable.

Reducing Code with LINQ
Consider the following code, written without using LINQ:

List<Project> lateProjects = new List<Project>();
foreach(Project project in allProjects)
{
 if (project.DueDate < DateTime.Now)
 {
 lateProjects.Add(project);
 }
}

LINQ replaces the previous eight lines of code with four lines of code that reveal the intent more
clearly:

var lateProjects =
 from project in allProjects
 where project.DueDate < DateTime.Now
 select project;

Since a goal of CSLA .NET is to reduce the amount of code that you have to write, making CSLA
.NET work well with LINQ is a requirement for CSLA .NET 3.5 and higher.

In the first example, not only are you stating what you want, but you’re also writing exactly how
those objects are going to be found. Using LINQ, by contrast, you’re writing code at a higher level and
specifying what you want (projects where the due date is earlier than now). However, you leave to
the collection how you want the query to be handled. By having business code focus on the what
rather than on the how, you can allow for further optimizations by the framework.

In fact, one optimization in CSLA .NET is a new Indexable attribute on properties of a child class.
The Indexable attribute provides hints to the CSLA .NET collection classes about where they might
create indexes. The collection classes, in turn, create and maintain indexes on properties in their

Lhotka_1019-1.book Page 399 Tuesday, November 18, 2008 3:42 PM

400 CH AP T E R 1 4 ■ L I N Q TO C SL A

child classes that are marked Indexable. Any code written the old way—because it specified not only
what but how—would not be able to take advantage of that optimization without recoding. The
latter example, by contrast, requires no updates when you decide to use indexes with your collection.
I’ll discuss indexes more in the next section.

Overview of LINQ to CSLA .NET
While LINQ provides some great opportunities, it also presents special challenges to the implementers
of frameworks. One of the chief reasons for implementing a business object framework is the reduc-
tion of UI code you need to write to implement a solution. Therefore, the ability to bind collections
that inherit from BusinessListBase is a critical component of a framework like CSLA .NET.

Binding to Results from LINQ to Objects
Just as collections that inherit from BusinessListBase should work properly with binding, so should
the result of LINQ queries that are run over collections of BusinessListBase objects. Unfortunately,
the result of a standard query from LINQ to Objects is a type called Sequence<U>. As shown in
Figure 14-1, this new collection doesn’t have awareness of the collection from which it is generated.
This means that operations on the result of the query, such as change tracking and collection-level
validation, will fail to work as expected, due to the fact that the new collection has no awareness of
the old one.

Figure 14-1. Binding from a projection

The overall goal in the development of LINQ to CSLA .NET is to make it possible to use LINQ
with CSLA .NET collections and have data binding behavior work as expected. Namely, the goal is to
make it so that you can bind to the result of a LINQ query performed against a CSLA .NET collection
and have all the behavior you would expect when binding to the entire collection itself. Later in this
chapter, I’ll provide more detail about how this works.

Indexed LINQ Queries
Unlike most standard collections in the .NET Framework, such as List<T> and Dictionary<K,V>,
collections in CSLA .NET are aware of changes that occur in the objects they contain. Because of this,

Lhotka_1019-1.book Page 400 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 401

my colleague Aaron Erickson and I have added the ability for business collections to optimize queries
through the implementation of indexes. Let’s say you’re using LINQ to query against CSLA .NET
collections under CSLA .NET 3.5 or higher. If you’ve marked fields as indexable using the Indexable
attribute, then the implementation of Where()—the method that makes filtering work in the query—
will take advantage of indices internal to the collection.

LINQ and Projection
Running a query against any IEnumerable<T> and generating a Sequence<U> of results using LINQ to
Objects is called projection. The execution of a simple LINQ to Objects query has two main parts: a
where clause, which applies criteria (in the form of an anonymous delegate or lambda) to find items,
and a select clause, which transforms each result into something else. Let’s start with a typical LINQ
query, such as this one that selects numbers equal to 42 from an array of numbers and returns the
square of the result:

var coolNumbers = from n in allNumbers where n == 42 select n * n;

The LINQ query syntax is merely syntactic sugar that you can rewrite in more traditional form
as follows:

var coolNumbers = allNumbers.Where(n => n == 42).Select(n => n*n);

This core mechanism—filter and project—is at the heart of every LINQ query. The filter (where)
determines which items from the collection matter, and the projection (select) transforms each
result from one thing into another thing.

■Note The term projection refers to the collection you can generate from the result of the Select() method.

Not all projections are equivalent. For example, let’s say you call Select() like this: .Select(n =>
n*0). In this case, it is impossible to determine how a change in the projected object should be reflected
in the original. Since each result of n*0 is always 0, there is no information in the resulting object that
would allow you to know which object it maps back to in the source collection. Because of the lack
of a definitive mapping, synchronization of any individual item is impossible.

That said, in certain cases—such as the projection of the same object type you started with in
the original collection (an identity projection) where you’re operating on exactly the same object type
you started with—you don’t have to worry about trying to figure out how changes in the projection
reflect back to changes in the original. You can map an object in the projected collection back to the
source collection in a way that is deterministic. This fact makes it possible for CSLA .NET to allow for
binding to this type of projection.

Identity Projections and LinqBindingList<T>
An identity projection is a query in which the result of the query contains items of the same type as
the source collection. In CSLA .NET 3.5 and higher, identity projections are handled in a special way
that allows for binding to the projection. CSLA .NET changes the behavior of queries such that if you
run an identity projection over BusinessListBase, you will get a result known as a LinqBindingList<T>.

Understanding LinqBindingList
The best way to understand LinqBindingList is to think about it as a filter over BusinessListBase.
When you remove an item from a LinqBindingList, it not only removes the item from the list, but

Lhotka_1019-1.book Page 401 Tuesday, November 18, 2008 3:42 PM

402 CH AP T E R 1 4 ■ L I N Q TO C SL A

it removes the item from the source list, and it removes any other LinqBindingList instances from
queries generated earlier from the same source BusinessListBase, as shown in Figure 14-2. If you
change a property in an item from within the LinqBindingList, the n-level undo mechanism in
BusinessListBase will track the change.

Figure 14-2. Relationships between BusinessListBase and derived instances of LinqBindingList

Adding an item to a LinqBindingList is possible, but only items that meet the criteria that were
present upon creating the list using LINQ will appear in the LinqBindingList. On the other hand,
adding an item to a LinqBindingList adds the item to the original list as well as any other LinqBindingList
instances that resulted from queries against the original collection of business objects.

In the event that you decide to do a query from a LinqBindingList, another list of type
LinqBindingList will be generated. It will act as though it were generated from the original list—not
the sublist—and will exhibit all the behaviors described previously.

LinqBindingList is a class that is only ever meant to be produced from an identity projection
performed over a class that derives from BusinessListBase. In this respect, it is similar to the Sequence
class that LINQ to Objects provides, in that it is strictly the result of a LINQ query and not a structure
that you would ever create outside of this context.

Lhotka_1019-1.book Page 402 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 403

Overview of Indexed Search Using CSLA .NET
When searching for items in a BusinessListBase- or ReadOnlyListBase-based list, CSLA .NET is capable
of doing an optimized search using an internal index if your child class marks the properties you are
searching on as Indexable.

When either of the main collection classes in CSLA .NET encounters a child class with an Indexable
attribute on a property, an internal index is built the first time a search using LINQ is conducted
on that class. In cases where the property that is considered Indexable is IComparable, the indexing
mechanism is a red-black tree. In cases where the property to be indexed is not IComparable (such as
Color), the indexing mechanism is based on Dictionary<T>. Common IComparable property types
that tend to be indexed are String, int, and DateTime, although others with custom IComparable
implementations are possible.

■Note CSLA .NET supports the ability to plug in your own indexing provider via the IndexingProvider property
on BusinessListBase and ReadOnlyListBase. Note that doing so is not for the faint of heart. I provide more
information about how to implement such a provider at the end of this chapter.

In either case, it is important to understand that all optimizations come at a cost. By imple-
menting indexing on your objects, you are making add, remove, and update operations slower on
your objects, and, in exchange, gaining tremendous benefits for optimization of searches. When you
use indexing properly on large collections of business objects in memory on fields where compar-
ison is a costly operation (such as strings), you can gain performance improvements that are several
orders of magnitude faster. However, using indexing on fields that are not searched frequently and/or
are updated frequently can actually cause performance to degrade. It is critical to have a sense for
how you’re going to use your child class when you start to use the Indexable attribute on properties
within it, just like you would be careful about how you apply an index to a database table.

Serialization and Indexing
When a CSLA .NET collection is serialized, the indices within the collection do not pass the serializa-
tion boundary. This would be possible in theory, but the performance implications of having not
only the objects themselves but all the indices on those objects get passed over the wire are not insig-
nificant. In addition, the indexing mechanism depends on hash-code generation of objects that is
only consistent at the scope of a physical machine—that is, hash codes are not guaranteed to be
equivalent on, say, a 64-bit operating system and a 32-bit operating system—so it would be imprac-
tical to translate the index values during serialization in the absence of a generic hash code generator
that could guarantee durability across machine boundaries.

While the index itself is not passed over the serialization boundary, the index is re-created
according to the options specified on the child class. This typically happens upon the first instance
of a query that utilizes the index on the other side of the serialization boundary.

Index Mode
When marking a child class using the Indexable attribute, you can further specify the behavior of the
index. In some cases, you might think it is desirable to force the creation of an index for a child class.
For example, if you know for sure that you are going to use the index and you don’t want to take the
performance hit the first time you use it, you would use the IndexModeAlways option on the attribute.
This way, when items are added, they’re indexed immediately rather than the first time a query needs it.
On the other hand, if it is important to optimize for load time on the collection, and if it is acceptable

Lhotka_1019-1.book Page 403 Tuesday, November 18, 2008 3:42 PM

404 CH AP T E R 1 4 ■ L I N Q TO C SL A

to take the hit on index creation the first time you do a query that may take advantage of the index,
you would use IndexModeOnDemand. The IndexModeNever option is provided to mark cases in which
you want to ensure that indexes are never created on a field.

Table 14-1 summarizes the parameters of the Indexable attribute.

The following example illustrates the use of the Indexable attribute on a child class:

class Student : BusinessBase {
 [Indexable(IndexModeEnum.IndexModeNever)]
 public byte[] Photo {get; set; } //we never search by photo
 [Indexable(IndexModeEnum.IndexModeAlways)]
 public string SSN {get; set; } //we search by SSN all the time
 [Indexable(IndexModeEnum.IndexModeOnDemand)]
 public string FirstName {get; set; } //not as common of a search
 [Indexable]
 public string LastName {get; set; } // default is IndexModeOnDemand
}

The IQueryable Implementation for CSLA .NET
When fully implemented, the IQueryable interface is the mechanism by which anyone can provide his
own implementation of LINQ. LINQ to XML, LINQ to SQL, and dozens of other LINQ providers all
implement this interface. Thus, in order to provide the expected behavior when you run a LINQ query
against BusinessListBase, IQueryable has been implemented for BusinessListBase.

The IQueryable interface mandates only three members be implemented. Table 14-2 shows
which members are required for an IQueryable implementation.

Table 14-1. Index Modes

Parameter Description

IndexModeEnum.IndexModeOnDemand Load an index only when needed.

IndexModeEnum.IndexModeAlways Always load and maintain an index for this property.

IndexModeEnum.IndexModeNever Never create an index for this property.

Table 14-2. IQueryable Members

Member Description

ElementType Provides the source type for the implementation

Expression The most recent expression tree associated with the collection

Provider The IQueryProvider implementation used by IQueryable

Lhotka_1019-1.book Page 404 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 405

ElementType and Expression both have reasonably simple implementations. In CSLA .NET,
ElementType simply returns an instance of the child type as follows:

 public Type ElementType
 {
 get { return typeof(C); }
 }

The Expression property is also fairly simple. It returns the expression tree associated with the
collection (I’ll cover expression trees in the next section). In BusinessListBase, this represents the
entire collection, because you use LinqBindingList rather than BusinessListBase to represent the
result of a query. In BusinessListBase, Expression returns a private backing field where the current
expression is held.

 public Expression Expression
 {
 get {
 if (_expression == null)
 _expression = Expression.Constant(this);
 return _expression;
 }
 }

The last member in any IQueryable implementation is the Provider property. The Provider is
where the core of any IQueryable implementation really occurs. The property itself is fairly simple,
returning a new instance of the CslaQueryProvider:

 public IQueryProvider Provider
 {
 get {
 return new Linq.CslaQueryProvider<T, C>(this);
 }
 }

CslaQueryProvider is the CSLA .NET implementation of the IQueryProvider interface, which
defines a custom implementation of LINQ. Of course, the devil is in the details, and understanding
how an IQueryProvider works is key to understanding what LINQ to CSLA .NET is doing behind the
scenes.

Understanding Expression Trees
The key to understanding LINQ is to understand the role of expression trees in the implementation
of LINQ. Expression trees are representations of source code as data. Consider the following code
passed to the Where() method in LINQ:

var result = someCollection.Where(x => x.SomeVal == 42);

The parameter provided to the Where() method is a lambda function—a more compact syntax
for an anonymous method. However, when Where() is invoked, the lambda function is converted
into a data structure in the form of an expression tree that looks like Figure 14-3.

Lhotka_1019-1.book Page 405 Tuesday, November 18, 2008 3:42 PM

406 CH AP T E R 1 4 ■ L I N Q TO C SL A

Figure 14-3. A simple expression tree

Expression trees allow for code to be executed by alternative means—that is, the code can be
translated to other forms, such as SQL. For example, in LINQ to SQL, the previous expression will get
converted into the following SQL query:

SELECT * FROM someCollection WHERE SomeVal = 42

What the expression gets converted to in other LINQ providers will vary according to the provider.
For example, LINQ to XML could convert the expression to an XPath expression that ordinary code
in the System.Xml namespace could execute.

In CSLA .NET, the key differences in how expressions are handled occur in two areas. First, the opti-
mization of Where takes advantage of indexing (which I cover in detail later in this chapter). Second, CSLA
.NET makes sure that LINQ queries against BusinessListBase return a LinqBindingList that synchro-
nizes with the collection from which it was originally queried, rather than a Sequence that features no such
synchronization. The indexing code analyzes the expression passed to the Where clause to determine if
indexing is possible. The synchronization code analyzes the expression passed to the Select clause to
determine if the projection is an identity projection, and thus, able to be synchronized.

Digging into IQueryProvider
The IQueryProvider interface contains, surprisingly, only four members, as shown in Table 14-3.

Table 14-3. IQueryProvider Members

Member Description

CreateQuery() Handles LINQ methods that return an IQueryable result

CreateQuery<TResult>() CreateQuery(), but with a known return type

Execute() Handles LINQ methods that return an IQueryable result

Execute<TResult>() Execute(), but with a known return type

Lhotka_1019-1.book Page 406 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 407

Of course, within this somewhat simple interface lies a great deal of complexity. The parameter
provided to CreateQuery() or Execute() is an object of type Expression, which we must evaluate in a
manner that returns an expected result. To further complicate this, when you choose to implement
your own IQueryProvider, you give up the default LINQ to Objects implementation and are required
to implement the entire range of possible Expression objects that might be passed in.

Evaluating Expression for Synchronization Support

To support synchronization, you must first determine whether you’re handling an identity projection.
That test, which is in CreateQuery(), is surprisingly simple. This only applies to the generic overload
of CreateQuery() (CreateQuery<TResult>()), because in that version, it is known what type of IQueryable
needs to be returned.

typeof(TElement) == typeof(C)

If this test passes, then you have an identity projection, because you’ll be returning a collection
that is of the same type as the source collection. In this case, you can return a LinqBindingList<C>
object that will have all the appropriate information to allow for further query execution.

_filter = new LinqBindingList<C>(_parent, this, expression);
_filter.BuildFilterIndex();
return (IQueryable<TElement>)_filter;

Because there are corner cases in which the LinqBindingList needs to be referenced by the
CslaQueryProvider object later on, you store it as a private field. The LinqBindingList needs to
store three critical values, so the constructor takes three parameters: the original collection, the
IQueryProvider instance, and the expression. The original collection is the _parent parameter.
The IQueryProvider instance, which holds query execution state, is the this parameter. The expression,
which allows the LinqBindingList to continue query execution when query results are requested, is
the expression parameter.

Handling Non-Identity Projections

When the query does not return an identity projection, the CslaQueryProvider still needs to return
the expected result. Also, non-identity projections still should be able to take advantage of the indexing
features of CSLA .NET. In such cases, control of the query, outside of handling for the Where() method, is
passed to the default implementation provided in LINQ to Objects.

Passing Control to the Default Handler

CreateQuery() and Execute() are called not only when a query is being established or filtered, but
also when other LINQ extension methods are invoked, such as Count(), First(), and many others.
To understand why the implementation of IQueryProvider works the way it does, you need to under-
stand how LINQ to Objects injects itself into any IEnumerable.

All the methods in LINQ to Objects are implemented as static extension methods on the IEnumerable
interface, defined in the Enumerable and Queryable classes in the System.Linq namespace. In fact, this
is the reason why only upon including the System.Linq namespace do the LINQ extension methods
come into scope. Implementation of IQueryable on a custom class changes this relationship. It is, by
default, an all-or-nothing relationship, which means that once you implement your own IQueryProvider,
you’re expected to handle the entire set of extension methods defined on Enumerable (or at least, pass
back a NonSupportedException).

However, in a case like CSLA .NET, a special problem is presented. Because you’re overriding
only part of LINQ, you have no desire to re-implement the other more than 100 members that consti-
tute LINQ. To help with this, CSLA .NET matches the Expression passed to CreateQuery() or Execute()

Lhotka_1019-1.book Page 407 Tuesday, November 18, 2008 3:42 PM

408 CH AP T E R 1 4 ■ L I N Q TO C SL A

against one of the static methods on the Enumerable class. The following snippet from the CreateQuery()
implementation shows an example of this:

MethodCallExpression mex = (MethodCallExpression) expression;
Type listType = typeof(Enumerable);
MethodInfo[] listMethods = listType.GetMethods();
foreach (MethodInfo method in listMethods)
 if (MethodsEquivalent(mex,method))
 {
 Type[] genericArguments = mex.Method.GetGenericArguments();
 MethodInfo genericMethodInfo = method.MakeGenericMethod(genericArguments);
 var testObject = genericMethodInfo.Invoke(null, paramList.ToArray());
 IQueryable<TElement> objectQuery =
 ((IEnumerable<TElement>)testObject).AsQueryable<TElement>();
 return objectQuery;
 }

The code is fairly straightforward, with MethodsEquivalent() doing most of the work to deter-
mine whether a given MethodCallExpression (which all calls to CreateQuery() or Execute() pass) is
logically equivalent to a given reflected method definition that comes from the Enumerable static
class.

Once the correct MethodInfo from Enumerable is found, it is converted into a generic method call,
which is then invoked dynamically via reflection and returned to the caller. The process is similar
regardless of whether CreateQuery() or Execute() is being called.

This technique that CSLA .NET uses to match the Expression to the correct implementation
using the MethodsEquivalent() function should continue to work even in the event that Microsoft
adds more extension methods to IEnumerable<T> and implements them in the static Enumerable
class. However, if Microsoft were to update the class name that holds the LINQ to Objects extension
methods, a change to CSLA .NET would be required to support it.

LinqBindingList
The LinqBindingList<C> holds the details of the query generated by it (the expression and the
IQueryProvider) and a reference to the parent list, so that changes, additions, and deletions
in LinqBindingList<C> can be propagated to the parent list, and in turn, to other instances of
LinqBindingList<C> that are derived from the same source.

LinqBindingList<C> itself implements the IQueryable<T> interface, allowing for subqueries
against it that generate further LinqBindingList<C> instances. These subsequent LinqBindingList<C>
instances are not children of the source LinqBindingList<C>. rather, they all have the same relation-
ship to the original BusinessListBase<T, C>.

Indexed LINQ and CSLA .NET
Having the ability to analyze the expression tree that is passed to the Where() method in CSLA .NET
provides an opportunity to optimize the query. Any indexing implementation is going to require

• Building and maintaining an index

• Intercepting the normal query operation such that the query can utilize the index

Lhotka_1019-1.book Page 408 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 409

Managing the Index Set
Indices are maintained on fields that are marked with the Indexable property under circumstances
described earlier in this chapter. These indices are managed through the _indexSet field, which is an
object that conforms to the IIndexSet interface.

The index set hooks into the collection by being made aware of all changes, additions, and
removals that can affect the index. Calls to methods on the _indexSet are made throughout
BusinessListBase and ReadOnlyListBase, making it possible for the _indexSet to maintain itself.

Implementations of IIndex

Depending on the nature of your child object, there are several ways you can find items in a list
quickly. As mentioned previously, you can organize those child objects that are comparable—that is,
where someObj.SomeVal < x has meaning and is implemented—in a way that makes that query faster.
CSLA .NET uses a balanced tree structure—a red-black tree—to perform this function. Other child
objects that are not IComparable (such as Color) use a dictionary-based index instead.

One of the responsibilities of the index set is to choose an appropriate implementation of IIndex
based on the type of object being indexed. An ideal indexing strategy allows not only for equality-
based queries to use the index, but also for range-based queries to use the index.

Indices on IComparable Properties: Red-Black Tree

The red-black tree structure allows you to infer the order of the items. All items to the left of a given
node in the tree are guaranteed to be lower. All items to the right of a given node in the tree are guar-
anteed to be higher. In the less-than operation, the key to making a ranged query work becomes
enumerating through the left subtree of the node that either matches or is the lowest value that is
higher than the value being compared. In a greater-than operation, it is the exact reverse: enumer-
ating through the right subtree of the node that either matches or is the highest value that is lower
than the value being compared.

The performance of lookup over balanced trees, such as red-black trees, is typically log(N) + 2,
while retaining a good deal of memory efficiency and the ability to quickly find those items higher or
lower than a given item. The performance characteristics of this lookup are good. Because CSLA
.NET uses a red-black tree—a tree that guarantees that the depth is no deeper than log(N) + 2—you
know that finding one item out of one million will take, at most, 22 comparison operations. Depending
on where the item is, that same item without an index can take up to a million comparison opera-
tions, since without an index, each object has to be compared.

Indices on Other Properties: Dictionary

When the property you’re building an index on does not implement IComparable, you can’t use
those structures in any kind of tree implementation, since placement of an item in a tree depends on
item comparison. Therefore, to implement an index on a non-IComparable property, you need to use
a Dictionary to enable fast lookup for equality-based queries.

The performance characteristics of the Dictionary are actually a little bit faster than a red-black
tree most of the time, assuming that the GetHashCode() implementation generates a high probability
that calls on different objects of your child type generate unique values. However, because there is a
chance, however small, that two different objects can generate the same hash code, you may require
more than the single compare operation that is typical with Dictionary. If you were to override
GetHashCode() in a manner where you return the same number for all instances of your object, you
would end up with zero benefit to using indexing at all.

Lhotka_1019-1.book Page 409 Tuesday, November 18, 2008 3:42 PM

410 CH AP T E R 1 4 ■ L I N Q TO C SL A

■Caution Implementation of GetHashCode() on your own is almost always a bad idea unless you really know
what you’re doing.

Expression Evaluation
The ability to evaluate the expression passed to the Where() extension method is the key that makes
any indexing implementation in LINQ possible. LINQ to CSLA .NET evaluates the query to see if it
can possibly use an index. If it is unable to use an index, it searches for the item using the same method
that LINQ does by itself—namely, it compares each item and returns those items that match.

LINQ does not allow the Where() method to have a LambdaExpression parameter whose Body is
anything other than a BinaryExpression—that is, something that eventually returns a true or false
result. The nature of the Where() operation itself is the application of a test of an object for set inclu-
sion. All BinaryExpression objects have Left and Right properties that represent either side of an
expression. For example, consider the following expression:

 x.MyProperty == 42

In this case, the Left of the BinaryExpression is x.MyProperty, and the Right of the BinaryExpression
is 42. You can also evaluate the NodeType of the BinaryExpression to learn that it is ExpressionType.
Equal, indicating that this is an equality test.

Left Evaluation

The left side of the expression is evaluated to determine whether you’re doing a query on a child
property that has an index. Typically, this means that the Left expression is a property lookup, such
as x.MyProperty. In other words, if the expression is a MemberExpression, CSLA .NET will know that
you’re possibly doing a property lookup on an indexed property. It can then check the Name of the
MemberExpression and validate whether there is an index on a child property that matches the Name
from the MemberExpression. If that test passes—that is, if there is a property lookup on the Left side—
then you can continue doing an indexed query.

Right Evaluation

After CSLA .NET has determined that you’re doing a query on an Indexable field, it evaluates the
Right side to determine the value that you’re comparing to. The contents of the right side can be
much more variable, including everything from a ConstantExpression that represents a value (such
as 42) to something more complex, such as another method call.

In the case of a ConstantExpression, CSLA .NET simply casts it back to an object that is compa-
rable to the property on the Left side. Other expressions require a dynamic invocation of the expression.
You do this by calling the Compile() method on the expression, compiling the expression, and subse-
quently calling DynamicInvoke() and executing the expression. The result is an object that should at
least be able to be tested for equality, and possibly other operations depending on the IComparable
status of the property.

Indexed Search

Now that CSLA .NET knows it has an Indexable property and a value to compare, it proceeds to
utilize the index and uses the Dictionary or red-black tree–based implementation of IIndex to
search the index rather than the collection itself,. If the property is not Indexable, CSLA .NET will
simply run the search in the default manner that a typical IEnumerable would use.

Lhotka_1019-1.book Page 410 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 411

The Indexing Object Model
While the current implementation of indexing allows you to do a great deal of optimization, you can
add even more optimization if you want to put forth the effort to do so. The model for indexing, as
illustrated in Figure 14-4, is designed to support the provision of your own indexing mechanism, if
you wish to extend the indexing capabilities of CSLA .NET.

Figure 14-4. The indexing object model

In the next section, I’ll cover the details of this interface and classes. Should you decide to imple-
ment your own indexing provider, you’ll have an understanding of the default one provided with
CSLA .NET.

IIndexSet

IIndexSet<T> is the initial interface you must implement if you wish to implement your own CSLA
.NET indexing provider. Table 14-4 shows the required members for IIndexSet. CSLA .NET base
collection classes such as BusinessListBase<C, T> and ReadOnlyListBase<C, T> know how to leverage
this interface to take advantage of indexing.

Table 14-4. IIndexSet Members

Member Description

InsertItem(T item) The index item on all indexable properties

InsertItem(T item, string property) The index item only on property if it is indexable

RemoveItem(T item) Removes the item from all indices

RemoveItem(T item, string property) Removes the item only from the index specified
by property

Lhotka_1019-1.book Page 411 Tuesday, November 18, 2008 3:42 PM

412 CH AP T E R 1 4 ■ L I N Q TO C SL A

IIndexSet needs to have a reference to the IEnumerable collection that it is indexing, such as
BusinessListBase and other CSLA .NET collection classes. When you write a class that supports
IIndexSet, you are typically managing the set of IIndex objects (individual indices, described in the
following sections) that constitute the index set, and providing the logic for performing the search to
determine whether the query can use an index.

You can think of the classes that implement this interface is coordinators for all indexing activity.
Classes should evaluate the expression tree passed to Search(), determine the correct index to use
(if applicable), and then either use the index (if it is an indexed property) or perform the search on
the original collection (if there is no available index).

IndexSet

The IndexSet concrete class represents the default index provider implementation for CSLA .NET. The
class maintains a set of indices appropriate for the property types that it is indexing. It provides an
implementation of Search() that determines the IComparable status of the property being searched,
determines the operation being used (such as equality and less-than operations), and assures that
the appropriate operation is called on the index.

This class provides an example of most of the expression evaluation techniques I have talked
about previously in this chapter. For example, the following method in the IndexSet class determines
the value on the right side of the expression passed to Search():

 private object GetRightValue(Expression rightSide)
 {
 //rightside is where I get the value...
 switch (rightSide.NodeType)
 {
 //shortcut constants, don't eval these, it will be faster
 case ExpressionType.Constant:
 ConstantExpression constExp = (ConstantExpression)rightSide;
 return (constExp.Value);
 // convert back to lambda and eval to get the value.
 default:
 //Lambdas can be created from expressions...
 LambdaExpression evalRight = Expression.Lambda(rightSide, null);
 //Compile it, invoke it, and get the resulting value
 return (evalRight.Compile().DynamicInvoke(null));
 }
 }

ReindexItem(T item) Removes and adds the item from all indices

ReindexItem(T item, string property) Removes and adds the item from a specific index

ClearIndexes() Clears all the indices for all properties

ClearIndex(string property) Clears a specific index

Search(Expression expr) Performs a search, filtering by expr

this [string property] Returns the IIndex<T> specified by property

Load(string property) Creates an index on property over the source

Table 14-4. IIndexSet Members (Continued)

Member Description

Lhotka_1019-1.book Page 412 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 413

The key to this code is looking at the type of node you’re dealing with. All Expression objects
implement the NodeType property, which gives you clues about the nature of the Expression you’re
dealing with. You now care about only two real cases: whether you have a ConstantExpression, allowing
you to bypass a more expensive call to Compile() and DynamicInvoke(), or whether you do not have
a constant, in which case you’ll have to compile the expression, invoke it, and get the value that it will
ultimately return. In either case, you get back an object that boxes the value you want to use in the
Search() operation.

■Note Compile() and DynamicInvoke() are expensive operations to conduct. You don’t want to be doing
these operations on a per-item basis as you search through a data structure.

Determining whether you have an index or not is much simpler.

 bool IIndexSet<T>.HasIndexFor(string property)
 {
 return _internalIndexSet.ContainsKey(property);
 }
 private bool HasIndexablePropertyOnLeft(Expression leftSide)
 {
 if (leftSide.NodeType == ExpressionType.MemberAccess)
 return (
 this as IIndexSet<T>).HasIndexFor(((MemberExpression)leftSide).Member.Name
);
 else
 return false;
 }

Determining whether you have an index for a given property specified by a string is relatively
simple, as you have an internal field _internalIndexSet that is really just a Dictionary of indices. You
can call ContainsKey() on the _internalIndexSet to determine whether you have the index.

The examination of the expression that represents the left side of the total expression is slightly
more complex. You need for this left-side expression to be a MemberExpression in order to make any
sense of it. Thankfully, this is common, given that it rarely makes sense to have anything other than
a MemberExpression on the left side. Note that this may be possible technically (i.e., x => 1 == 1 can
be passed, which, in theory, would return all results).

The first thing you do is test the NodeType to ensure that it’s a MemberAccess expression. If that is
in fact the case, you know you can cast it to a MemberExpression, which then gives you access to the
name of the property you’re looking at (such as the name SomeProp on the left side, which is in an
expression such as x => x.SomeProp == 42). With this information, you have everything you need to
determine whether or not you have an index on the property.

Once you have established that you have a property that is Indexable and a value to check against
the index, you can test the operation between both sides of the expression to determine which index
operation to perform.

 Func<T, bool> exprCompiled = expr.Compile();
 BinaryExpression binExp = (BinaryExpression)expr.Body;
 object val = GetRightValue(binExp.Right);
 IRangeTestableIndex<T> rangedIndex;
 if (_internalIndexSet[property] is IRangeTestableIndex<T>)
 {
 rangedIndex = (IRangeTestableIndex<T>)_internalIndexSet[property];

Lhotka_1019-1.book Page 413 Tuesday, November 18, 2008 3:42 PM

414 CH AP T E R 1 4 ■ L I N Q TO C SL A

 switch (binExp.NodeType)
 {
 case ExpressionType.Equal:

 foreach (T item in
 _internalIndexSet[property].WhereEqual(val, exprCompiled))
 yield return item;
 break;

 case ExpressionType.LessThan:

 foreach (T item in rangedIndex.WhereLessThan(val))
 yield return item;
 break;
 //and so forth, for other operations...

Based on the NodeType of the BinaryExpression object (shown as binExp), you can determine
whether you have been passed an equality test, a less-than operation, or any other logical test. Of
course, you have to make sure the index is IRangeTestableIndex before you try to use it in the context
of a ranged logical operator such as less-than or greater-than. However, once you know that, you can
handle each operation appropriately. If you can’t handle the operation, pass it back to LINQ to Objects
to handle in the default manner.

IIndex

IIndex represents the expected methods and behavior that an index should provide. Most imple-
mentations of IIndexSet contain one or more IIndex objects per property that is being indexed on T.
IIndex derives from ICollection and adds the members shown in Table 14-5.

Writing an IIndex implementation involves implementing all the methods you typically would
for ICollection and then adding implementation for the members shown in Table 14-5. A typical
implementation wraps an appropriate data structure, such as a red-black tree or dictionary, or possibly
even derives from it, and then adds the implementation of the methods, which make indexed oper-
ations able to work with an IIndexSet.

The only interesting part of building an IIndex implementation is the handling of WhereEqual().
Typically, WhereEqual() takes the object passed to it—which represents a value from a property of
the child object—and uses some mechanism based on that value to find the item in a manner somehow
faster than looking through every single one in the index. Exactly how this is done depends on the

Table 14-5. IIndex Members

Member Description

IndexField Returns the PropertyInfo for the property that this index is indexing

WhereEqual() Returns the items that match the value passed to it

ReIndex() Removes and adds back the given item from the index

Loaded Returns whether the index has been established

InvalidateIndex() Sets the index as not loaded anymore

LoadComplete() Sets the index as loaded

Lhotka_1019-1.book Page 414 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 415

index structure. In a Dictionary-based structure, a hash code is generated from the property, and
then the Where test is performed on each item with a matching hash code. On other structures, such
as a red-black tree, the normal search mechanism for such a tree would be used to locate the appro-
priate key matches.

Index

The Index concrete class represents the default index implementation for child objects in CSLA .NET
that don’t implement IComparable. Like most IIndex implementations in CSLA .NET, the Index class
implements ICollection methods, which then handle the collection operations that are ultimately
handled by a private field where the actual index is kept. The following is typical for most ICollection
methods in the Index implementation:

 void ICollection<T>.Add(T item)
 {
 DoAdd(item);
 }

 private void DoAdd(T item)
 {
 //_theProp is the PropertyInfo this index is indexing
 if (_theProp != null)
 {
 int hashCode = _theProp.GetValue(item, null).GetHashCode();
 if (_index.ContainsKey(hashCode))
 _index[hashCode].Add(item);
 else
 {
 List<T> newList = new List<T>(1);
 newList.Add(item);
 _index.Add(hashCode, newList);
 }
 }
 }

For the most part, this aspect of index design—the implementation of the ICollection members—
is pretty straightforward. More interesting is the implementation of WhereEqual().

 IEnumerable<T> IIndex<T>.WhereEqual(object pivotVal, Func<T, bool> expr)
 {
 var hashCode = pivotVal.GetHashCode();
 LoadOnDemandIndex();
 if (_index.ContainsKey(hashCode))
 foreach (T item in _index[hashCode])
 if (expr(item))
 yield return item;
 }

This method is a little more interesting. Because it uses a Dictionary to implement the index
behind the scenes, it needs to determine the hash code of the value it is comparing against. Since the
index may not be loaded, the method attempts to load the index on demand—a call that will do
nothing if the index is already loaded. Once it knows the index is loaded, it can retrieve the list of
items that match the hash code, which is returned by _index[hashCode]. Only within this list, which
is almost always one or two items unless there is a serious problem with the hash code, does it need
to test using expr to make sure that the test passes.

Lhotka_1019-1.book Page 415 Tuesday, November 18, 2008 3:42 PM

416 CH AP T E R 1 4 ■ L I N Q TO C SL A

This works because of the relationship between the result of GetHashCode() and Equals(). As a
rule, any two objects that are equal must generate the same hash code. The reverse, however, isn’t
true, as two different objects can generate the same hash code.

As you would expect with an index, the result is that the number of comparisons required to find
an item using an index is vastly lower than it would be without an index. In fact, the larger the collec-
tion you’re using an index on, the more benefit there is to using an index.

IRangeTestableIndex

IRangeTestableIndex<T> extends the IIndex<T> interface by adding support for indices that are
capable of optimizing ranged query options, such as those backed by an ordered data structure like
a red-black tree. Table 14-6 shows its members.

While it is not required to use this interface in any given indexing implementation, the built-in
indexing provider, IndexSet<T>, utilizes this interface to specify behavior for those cases where T is
IComparable.

BalancedTreeIndex

The BalancedTreeIndex<T> concrete class implementing IRangeTestableIndex represents the default
index implementation for child objects in CSLA .NET that implement IComparable. It is fundamen-
tally similar to Index in how it manages its internal collection, but it uses a red-black tree rather than
a Dictionary for storage.

One of the methods that IRangeTestableIndex requires is the WhereGreaterThan() method. The
implementation of the index passes control to the internal data structure as follows:

 public IEnumerable<T> WhereGreaterThan(object pivotVal)
 {
 var balancedIndex = (IBalancedSearch<T>)_index;
 return balancedIndex.ItemsGreaterThan(pivotVal);
 }

The red-black tree implementation implements an interface called IBalancedSearch<T>, which
takes advantage of the data structure of a balanced tree in order to efficiently iterate through those
items greater than the value passed to it.

Understanding the internals of how a red-black tree works is best addressed through others who
have written extensively on the subject, notably Robert Sedgewick in his classic, Algorithms in C++
(Addison-Wesley Professional, 2002), which covers the implementation of red-black trees as well as
numerous other useful low-level structures.

Table 14-6. IRangeTestableIndex Members

Member Description

WhereLessThan() Returns the items less than the value passed

WhereLessThanOrEqualTo() Returns the items less than or equal to the value passed

WhereGreaterThan() Returns the items greater than the value passed

WhereGreaterThanOrEqualTo() Returns the items greater than or equal to the value passed

Lhotka_1019-1.book Page 416 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 4 ■ L I N Q TO C SL A 417

Conclusion
In this chapter, I covered how CSLA .NET works with LINQ to Objects. I showed you how to optimize
the LINQ to Objects implementation to make sure it provides the expected behavior, and I explained
how to use the capabilities of CSLA .NET to increase the performance of your in-memory queries.
You should now understand the options for how you can index your collections in CSLA .NET, how
projections work against CSLA .NET collections, and how CSLA .NET implements these features.
Furthermore, you should have a reasonable idea of how you might get started to write your own
indexing provider for CSLA .NET.

I’ll provide information about how to use LINQ to SQL—or other LINQ providers in relation to
data, for that matter—in Chapter 18, where I discuss the data portal and the various techniques you
can use to implement it.

Lhotka_1019-1.book Page 417 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 418 Tuesday, November 18, 2008 3:42 PM

419

■ ■ ■

C H A P T E R 1 5

Persistence and the Data Portal

This chapter will continue walking through the framework implementation by focusing on how
CSLA .NET provides support for mobile objects. Chapter 1 introduced the concept of mobile objects,
including the idea that in an ideal world, business logic would be available both on the client work-
station (or web server) and on the application server. In this chapter, the implementation of data
access is designed specifically to leverage the concept of mobile objects by enabling objects to move
between client and server. When on the client, all the data binding and UI support from Chapters 7
to 13 is available to a UI developer; and when on the server, the objects can be persisted to a data-
base or other data store.

Chapter 2 discussed the idea of a data portal. The data portal combines the channel adapter and
message router design patterns to provide a simple, clearly defined point of entry to the server for all
data access operations. In fact, the data portal entirely hides whether an application server is involved,
allowing an application to switch between 2-tier and 3-tier physical deployments without changing
any code.

A UI developer is entirely unaware of the use of a data portal. Instead, the UI developer will
interact only with the business objects created by the business developer.

The business developer will make use of the DataPortal class from the Csla namespace to
create, retrieve, update, and delete all business object data. This DataPortal class is the single entry
point to the entire data portal infrastructure, which enables mobile objects and provides access to
server-side resources such as distributed transaction support. The key features enabled by the data
portal infrastructure include

• Enabling mobile objects

• Providing a consistent coding model for root and child objects

• Hiding the network transport (channel adapter)

• Exposing a single point of entry to the server (message router)

• Exposing server-side resources (database engine, distributed transactions, etc.)

• Allowing objects to persist themselves or to use an external persistence model

• Unifying context (passing context data to/from client and server)

• Using Windows integrated (AD) security

• Using CSLA .NET custom authentication (including impersonation)

Meeting all those needs means that the data portal is a complex entity. While to a business
developer, it appears to consist only of the simple DataPortal class, there’s actually a lot going on
behind that class.

Lhotka_1019-1.book Page 419 Tuesday, November 18, 2008 3:42 PM

420 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

I’ve already discussed much of the authentication and authorization support in Chapter 12, but
I will discuss some aspects of authentication in this chapter as well. Because the data portal is so
complex, I’ll spend some time discussing its design before walking through the implementation details.

Data Portal Design
One of the primary goals of object-oriented programming is to encapsulate all the functionality
(data and implementation) for a domain object into a single class. This means, for instance, that all
the business logic responsible for editing customer information should be in a CustomerEdit class.

In many cases, the business logic in an object directly supports a rich, interactive user experi-
ence. This is especially true for WPF or Windows Forms applications, in which the business object
implements validation and calculation logic that should be run as the user enters values into each
field on a form. To achieve this, the objects should be running on the client workstation or web server
to be as close to the user as possible.

At the same time, most applications have back-end processing that is not interactive. In an
n-tier deployment, this non-interactive business logic should run on an application server. Yet good
object-oriented design dictates that all business logic should be encapsulated within objects rather
than spread across the application. This can be challenging when an object needs to both interact
with the user and perform back-end processing. Effectively, the object needs to be on the client
sometimes and on the application server other times.

The idea of mobile objects solves this problem by allowing an object to physically move from one
machine to another. This means it really is possible to have an object run on the client to interact with the
user, then move to the application server to do back-end work like interacting with the database.

A key goal of the data portal is to enable the concept of mobile objects. In the end, not only will
objects be able to go to the application server to persist their data to a database, but they will also be
able to handle any other non-interactive back-end business behaviors that should run on the appli-
cation server.

Separation of Business Logic and Data Access
At the same time, as discussed in Chapter 1, it is important to maintain clear logical layers in the
application architecture. This means that the business logic and data access should be logically
separated.

The term logically separated can mean many things. You might consider logical separation to
include putting all your data access code into a limited set of predefined methods, and I think that is
perfectly valid. Or you might consider logical separation to mean putting the data access code into a
separate class or a separate assembly. To me, those are valid as well.

The data portal enables several techniques for logical separation:

• Data access code goes into a limited set of predefined methods.

• Data access code goes into a separate data access class (and optionally separate assembly),
invoked by the business object.

• Data access code goes into a separate object factory class (and optionally separate assembly),
invoked by the data portal.

All of these techniques provide logical separation of layers, though the latter two offer the
psychological benefit of putting the code into a separate class for clarity.

Lhotka_1019-1.book Page 420 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 421

Consistent Coding Model for Root and Child Objects
In Chapters 4 and 5, I walked through the coding model for the various stereotypes directly supported by
CSLA .NET. As you can see from the code templates in Chapter 5, the data portal is used to create,
retrieve, update, and delete both root and child objects, using a relatively consistent coding pattern
for both.

A root object typically implements a set of DataPortal_XYZ methods such as DataPortal_Create()
and DataPortal_Fetch(). These methods are invoked by the data portal in response to the business
object’s factory method calling DataPortal.Create() and DataPortal.Fetch().

Similarly, a child object typically implements a set of Child_XYZ methods such as Child_Create()
and Child_Fetch(). These methods are invoked by the data portal in response to the child object’s
factory method calling DataPortal.CreateChild() and DataPortal.FetchChild().

Additionally, the field manager discussed in Chapter 7 plays a role in the process. In a parent
business object’s DataPortal_Insert() or DataPortal_Update() method, the object must update its
child objects as well. This can be done in a single line of code.

 FieldManager.UpdateChildren();

The field manager loops through all child references and has the data portal update each one by
calling the appropriate Child_XYZ method based on the state of the child object.

BusinessListBase also participates by providing a prebuilt Child_Update() implementation that
updates the collection’s list of deleted items and active items. In fact, this method is useful even for
a root collection, because the collection’s DataPortal_Update() can look like this:

 protected override void DataPortal_Update()
 {
 // open database connection
 Child_Update();
 // close database connection
 }

But what’s even nicer is that for a child collection, the business developer typically has to write
no code at all in the collection. The data portal handles updating a child collection automatically as
long as the child objects implement Child_XYZ methods.

Channel Adapter and Message Router Patterns
The data portal combines two common design patterns: channel adapter and message router.

The channel adapter pattern provides a great deal of flexibility for n-tier applications by allowing
the application to switch between 2-tier and 3-tier models, as well as between various network protocols.

The message router pattern helps to decouple the client and server by providing a clearly defined,
single point of entry for all server interaction. Each call to the server is routed to an appropriate
server-side object.

Channel Adapter

Chapter 1 discussed the costs and benefits of physical n-tier deployments. Ideally, an application
will use as few physical tiers as possible. At the same time, it is good to have the flexibility to switch
from a 2-tier to a 3-tier model, if needed, to meet future scalability or security requirements.

Switching to a 3-tier model means that there’s now a network connection between the client (or
web server) and the application server. The primary technology provided by .NET for such commu-
nication is WCF. However, this is just one (though the recommended one) of several options:

Lhotka_1019-1.book Page 421 Tuesday, November 18, 2008 3:42 PM

422 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

• WCF

• Remoting

• ASP.NET Web Services (ASMX)

• Enterprise Services (DCOM)

To avoid being locked into a single network communication technology, the data portal applies
the channel adapter design pattern.

The channel adapter pattern allows the specific network technology to be changed through
configuration rather than through code. A side effect of the implementation shown in this chapter is
that no network is also an option. Thus, the data portal provides support for 2-tier or 3-tier deploy-
ment. In the 3-tier case, it supports various network technologies, all of which are configurable
without changing any code.

Figure 15-1 illustrates the flow of a client call as it flows through the data portal.

Figure 15-1. Flow of a client call through the data portal

Switching from one channel to another is done by changing a configuration file, not by changing
code. Notice that the LocalProxy channel communicates directly with the DataPortal object (from
the Csla.Server namespace) on the right. This is because it bypasses the network entirely, interacting
with the object in memory on the client. All the other channel proxies use network communication
to interact with the server-side object.

■Tip The data portal also allows you to create your own proxy/host combination so you can support network
channels other than those implemented in this chapter.

Lhotka_1019-1.book Page 422 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 423

Table 15-1 lists the types required to implement the channel adapter portion of the data portal.

Table 15-1. Types Required for the Channel Adapter Pattern

Type Namespace Description

MethodCaller Csla.Reflection Utility class that encapsulates the
use of reflection and dynamic
method invocation to find method
information and invoke methods

CallMethodException Csla.Reflection Exception thrown by the data
portal when an exception occurs
while calling a data access method

RunLocalAttribute Csla Attribute applied to a business
object’s data access methods to
force the data portal to always
run that method on the client,
bypassing the configuration
settings

DataPortalEventArgs Csla EventArgs subclass passed as a
parameter for events raised by
Csla.DataPortal

DataPortal Csla Primary entry point to the data
portal infrastructure; used by
business developers

DataPortal<T> Csla Primary entry point to the
data portal for asynchronous
behaviors; used by business
developers

DataPortal Csla.Server Portal to the message router
functionality on the server; acts
as a single point of entry for all
server communication

IDataPortalServer Csla.Server Interface defining the methods
required for data portal host objects

IDataPortalProxy Csla.DataPortalClient Interface defining the methods
required for client-side data portal
proxy objects

WcfProxy Csla.DataPortalClient Uses WCF to communicate with a
WCF server running in IIS, WAS, or
a custom host (typically a Windows
service)

WcfPortal Csla.Server.Hosts Exposed on the server by IIS, WAS,
or a custom host; called by WcfProxy

LocalProxy Csla.DataPortalClient Loads the server-side data portal
components directly into memory
on the client and runs all “server-
side” operations in the client
process

Lhotka_1019-1.book Page 423 Tuesday, November 18, 2008 3:42 PM

424 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The .NET Remoting, Web Services, and Enterprise Services technologies are supported prima-
rily for backward compatibility with older versions of CSLA .NET. I recommend using the WCF
technology, and that is the technology I’ll focus on in this chapter.

The point of the channel adapter is to allow a client to use the data portal without having to
worry about how that call will be relayed to the Csla.Server.DataPortal object. Once the call makes
it to the server-side DataPortal object, the message router pattern becomes important.

Message Router

One important lesson to be learned from the days of COM and MTS/COM+ is that it isn’t wise to
expose large numbers of classes and methods from a server. When a server exposes dozens or even
hundreds of objects, the client must be aware of all of them in order to function.

■Note Sadly, this lesson doesn’t seem to have informed the designs of many service-oriented systems. Fortunately,
the representational state transfer (REST) movement has picked up on the idea of limiting the entry points to a server
and is helping to shape the industry in this direction.

If the client is aware of every server-side object, we get tight coupling and fragility. Any change
to the server objects typically changes the server’s public API, thus breaking all of the clients, often
including those clients who aren’t even using the object that was changed.

One way to avoid this fragility is to add a layer of abstraction. Specifically, you can implement
the server to have a single point of entry that exposes a limited number of methods. This keeps the
server’s API clear and concise, minimizing the need for a server API change. The data portal will expose
only the five methods listed in Table 15-2.

RemotingProxy Csla.DataPortalClient Uses .NET Remoting to communi-
cate with a remoting server running
in IIS or within a custom host
(typically a Windows service)

RemotingPortal Csla.Server.Hosts Exposed on the server by IIS
or a custom host; called by
RemotingProxy

EnterpriseServicesProxy Csla.DataPortalClient Uses Enterprise Services (DCOM)
to communicate with a server
running in COM+

EnterpriseServicesPortal Csla.Server.Hosts Exposed on the server by
Enterprise Services; called by
EnterpriseServicesProxy

WebServicesProxy Csla.DataPortalClient Uses Web Services to communi-
cate with a service hosted in IIS

WebServicePortal Csla.Server.Hosts Exposed on the server as
a web service by IIS; called
by WebServicesProxy

Table 15-1. Types Required for the Channel Adapter Pattern (Continued)

Type Namespace Description

Lhotka_1019-1.book Page 424 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 425

Of course, the next question is, with a single point of entry, how do your clients get at the dozens
or hundreds of objects on the server? It isn’t like they aren’t needed! That is the purpose of the message
router.

The single point of entry to the server routes all client calls to the appropriate server-side object.
If you think of each client call as a message, then this component routes messages to your server-side
objects. In CSLA .NET, the message router is Csla.Server.DataPortal. Notice that it is also the endpoint
for the channel adapter pattern discussed earlier; the data portal knits the two patterns together into
a useful whole.

For Csla.Server.DataPortal to do its work, all server-side objects must conform to a standard
design so the message router knows how to invoke them. Remember, the message router merely
routes messages to objects—it is the object that actually does useful work in response to the message.

Figure 15-2 illustrates the flow of a call through the message router implementation. The DataPortal
class (on the left of Figure 15-2) represents the Csla.Server.DataPortal—which was the rightmost
entity in Figure 15-1. It relies on a SimpleDataPortal object to do the actual message routing—a fact
that will become important shortly for support of distributed transactions.

Figure 15-2. Flow of a client call through the message router

The SimpleDataPortal object routes each client call (message) to the actual business object that
can handle the message. These are the same business classes and objects that make up the applica-
tion’s business logic layer.

In other words, the same exact objects used by the UI on the client are also called by the data
portal on the server. This allows the objects to run on the client to interact with the user, and to run
on the server to do back-end processing as needed.

The FactoryDataPortal object routes each client call (message) to an object factory that can
handle the message. If a business developer chooses to use this object factory approach, he’ll need

Table 15-2. Methods Exposed by the Data Portal

Method Purpose

Create() Creates a new object, loading it with default values from the database

Fetch() Retrieves an existing object, first loading it with data from the database

Update() Inserts, updates, or deletes data in the database corresponding to an existing object

Delete() Deletes data in the database corresponding to an existing object

Execute() Executes a command stereotype object on the server

Lhotka_1019-1.book Page 425 Tuesday, November 18, 2008 3:42 PM

426 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

to create an object factory for each root business object, so that factory object can create, retrieve,
update, and delete the business object and its data.

Table 15-3 lists the classes needed, in addition to Csla.DataPortal and Csla.Server.DataPortal,
to implement the message router behavior.

Notice that neither the channel adapter nor message router explicitly deal with moving objects
between the client and server. This is because the .NET runtime typically handles object movement
automatically as long as the objects are marked as Serializable or DataContract.

Table 15-3. Types Required for the Message Router

Type Namespace Description

TransactionalDataPortal Csla.Server Creates a System.Transactions.
TransactionScope transaction and then
delegates the call to SimpleDataPortal

ServicedDataPortal Csla.Server Creates a COM+ distributed transaction and
then delegates the call to SimpleDataPortal

DataPortalSelector Csla.Server Determines whether to invoke the managed
data portal (SimpleDataPortal) or object
factory model (FactoryDataPortal)

SimpleDataPortal Csla.Server Entry point to the server, implementing the
message router behavior and routing client
calls to the appropriate business object on
the server

FactoryDataPortal Csla.Server Entry point to the server, implementing the
message router behavior and routing client
calls to the appropriate object factory on
the server

ICriteria Csla Interface that defines the required behavior
for a non-nested criteria class

CriteriaBase Csla Optional base class for use when building
criteria objects; criteria objects contain the
criteria or key data needed to create, retrieve,
or delete an object’s data

SingleCriteria Csla Optional prebuilt criteria class that passes
a single identifying value through the data
portal for use in identifying the object to
create, retrieve, or delete

MethodCaller Csla.Reflection Utility class that encapsulates the use of
reflection and dynamic method invocation
to find method information and to invoke
methods

Lhotka_1019-1.book Page 426 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 427

The ICriteria interface listed in Table 15-3 can be implemented by any criteria class, and must be
implemented by any criteria class that is not nested inside its business class. For example, CriteriaBase
and SingleCriteria implement this interface. During the implementation of SimpleDataPortal later
in the chapter, you’ll see how this interface is used.

Distributed Transaction Support
Several different technologies support database transactions, including transactions in the database
itself, ADO.NET, Enterprise Services, and System.Transactions. When updating a single database
(even multiple tables), any of them will work fine, and your decision will often be based on which is
fastest or easiest to implement.

If your application needs to update multiple databases, however, the options are a bit more
restrictive. Transactions that protect updates across multiple databases are referred to as distributed
transactions. In SQL Server, you can implement distributed transactions within stored procedures.
Outside the database, you can use Enterprise Services or System.Transactions.

Distributed transaction technologies use the Microsoft DTC to manage the transaction across
multiple databases. There is a substantial performance cost to enlisting the DTC in a transaction.
Your application, the DTC, and the database engine(s) all need to interact throughout the transac-
tional process to ensure that a consistent commit or rollback occurs, and this interaction takes time.

Historically, you had to pick one transactional approach for your application. This often meant
using distributed transactions even when they weren’t required—and paying that performance cost.

The System.Transactions namespace offers a compromise through the TransactionScope object.
It starts out using nondistributed transactions (like those used in ADO.NET), and thus offers high
performance for most applications. However, as soon as your code uses a second database within a
transaction, TransactionScope automatically enlists the DTC to protect the transaction. This means
you get the benefits of distributed transactions when you need them, but you don’t pay the price for
them when they aren’t needed.

■Caution The TransactionScope object is a little tricky, because it will enlist the DTC if more than one data-
base connection is opened, even to the same exact database. Later in the chapter, I’ll discuss the ConnectionManager,
ObjectContextManager, and ContextManager classes, which are designed to help you avoid this issue.

The data portal allows the developer to specify which transactional technology to use for each
of a business object’s data access methods. The TransactionalDataPortal and ServicedDataPortal
classes in Figure 15-2 wrap the client’s call in a TransactionScope or COM+ transactional context as
requested.

The Csla.Server.DataPortal object uses the Transactional attribute to determine what type of
transactional approach should be used for each call by the client. Ultimately, all calls end up being
handled by SimpleDataPortal or FactoryDataPortal, which route the call to an appropriate object.
The real question is whether that object will run within a preexisting transactional context or not.

The Transactional attribute is applied to the data access methods on the business object or
factory object. The code in Csla.Server.DataPortal looks at the object’s data access method that will
ultimately be invoked by SimpleDataPortal or FactoryDataPortal, and it finds the value of the
Transactional attribute (if any). Table 15-4 lists the options for this attribute.

Lhotka_1019-1.book Page 427 Tuesday, November 18, 2008 3:42 PM

428 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

By extending the message router concept to add transactional support, the data portal makes it
easy for a business developer to leverage either Enterprise Services or System.Transactions as needed. At
the same time, the complexity of both technologies is reduced by abstracting them within the data
portal. If neither technology is appropriate for your needs, you can always choose to not use the
Transactional attribute, and then you can manage the transactions yourself in your data access code.

Context and Location Transparency
A key goal for the data portal is to provide a consistent environment for the business objects. At a
minimum, this means that both client and server should run under the same user identity (imper-
sonation) and the same culture (localization). The business developer should be able to pass other
arbitrary information between client and server as well.

In addition to context information, exception data from the server should flow back to the client
with full fidelity. This is important both for debugging and at runtime. The UI often needs to know
the specifics about any server-side exceptions in order to properly notify the user about what happened
and then to take appropriate steps.

Figure 15-3 shows the objects used to flow data from the client to the server and back again to
the client.

Figure 15-3. Context and exception data flow to and from the server

Table 15-4. Transactional Options Supported by the Data Portal

Attribute Result

None The business object does not run within a
preexisting transactional context and so
must implement its own transactions using
stored procedures or ADO.NET.

TransactionalTypes.Manual Same as “none” in the previous entry.

TransactionalTypes.EnterpriseServices The business object runs within a COM+ distributed
transactional context.

TransactionalTypes.TransactionScope The business object runs within a TransactionScope
transaction.

Lhotka_1019-1.book Page 428 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 429

The arrows pointing off the left side of the diagram indicate communication with the calling
code—typically the business object’s factory methods. A business object calls Csla.DataPortal to
invoke one of the data portal operations. Csla.DataPortal calls Csla.Server.DataPortal (using the
channel adapter classes not shown here), passing a DataPortalContext object along with the actual
client request.

The DataPortalContext object contains several types of context data, as listed in Table 15-5.

The GlobalContext and ClientContext collections are exposed to both client and server code
through static methods on the Csla.ApplicationContext class. All business object and UI code will
use properties on the ApplicationContext class to access any context data. The LocalContext prop-
erty of ApplicationContext is not transported through the data portal, because it is local to each
individual machine.

When a call is made from the client to the server, the client’s context data must flow to the
server; the data portal does this by using the DataPortalContext object.

The Csla.Server.DataPortal object accepts the DataPortalContext object and uses its data to
ensure that the server’s context is set up properly before invoking the actual business object code.
This means that by the time the business developer’s code is running on the server, the server’s
IPrincipal, culture, and ApplicationContext are set to match those on the client.

■Caution The exception to this is when using Windows integrated (AD) security. In that case, you must configure
the server technology (such as IIS) to use Windows impersonation, or the server will not impersonate the user identity from
the client.

There are two possible outcomes of the server-side processing: either it succeeds or it throws an
exception.

If the call to the business object succeeds, Csla.Server.DataPortal returns a DataPortalResult
object back to Csla.DataPortal on the client. The DataPortalResult object contains the information
listed in Table 15-6.

Csla.DataPortal puts the GlobalContext data from DataPortalResult into the client’s Csla.
ApplicationContext, thus ensuring that any changes to that collection on the server are reflected on
the client. It then returns the ReturnObject value as the result of the call itself.

Table 15-5. Context Data Contained Within DataPortalContext

Context Data Description

GlobalContext Collection of context data that flows from client to server and then from
server back to client; changes on either end are carried across the network

ClientContext Collection of context data that flows from client to server; changes on the
server are not carried back to the client

Principal Client’s IPrincipal object, which flows to the server if custom authentication
is being used

IsRemotePortal A flag indicating whether Csla.Server.DataPortal is actually running on a
server or not

ClientCulture Client thread’s culture, which flows from the client to the server

ClientUICulture Client thread’s UI culture, which flows from the client to the server

Lhotka_1019-1.book Page 429 Tuesday, November 18, 2008 3:42 PM

430 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

You may use the bidirectional transfer of GlobalContext data to generate a consolidated list of
debugging or logging information from the client, to the server, and back again to the client. On the
other hand, if an exception occurs on the server—either within the data portal itself or, more likely,
within the business object’s code—that exception must be returned to the client. Either the business
object or the UI on the client can use the exception information to deal with the exception in an
appropriate manner.

In some cases, it can be useful to know the exact state of the business object graph on the server
when the exception occurred. To this end, the object graph is also returned in the case of an excep-
tion. Keep in mind that it is returned as it was at the time of the exception, so the objects are often in
an indeterminate state.

If an exception occurs on the server, Csla.Server.DataPortal catches the exception and wraps
it as an InnerException within a Csla.Server.DataPortalException object. This DataPortalException
object contains the information listed in Table 15-7.

Again, Csla.DataPortal uses the information in the exception object to restore the
ApplicationContext object’s GlobalContext. Then it throws a Csla.DataPortalException, which is
initialized with the data from the server.

The Csla.DataPortalException object is designed for use by business object or UI code. It provides
access to the business object as it was on the server at the time of the exception. It also overrides the
StackTrace property to append the server-side stack trace to the client-side stack trace, so the result
shows the entire stack trace from where the exception occurred on the server all the way back to the
client code.

■Note Csla.DataPortal always throws a Csla.DataPortalException in case of failure. You must use
either its InnerException or BusinessException properties, or the GetBaseException() method to retrieve the
original exception that occurred.

Table 15-6. Context Data Contained Within DataPortalResult

Context Data Description

GlobalContext Collection of context data that flows from client to server and then from
server back to client; changes on either end are carried across the network

ReturnObject The business object being returned from the server to the client as a result of
the data portal operation

Table 15-7. Context Data Contained Within Csla.Server.DataPortalException

Context Data Description

InnerException The actual server-side exception (which may also have InnerException
objects of its own)

StackTrace The stack trace information for the server-side exception

DataPortalResult A DataPortalResult object (as discussed previously) containing both
GlobalContext and the business object from the server

Lhotka_1019-1.book Page 430 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 431

In addition to Csla.DataPortal and Csla.Server.DataPortal, the types in Table 15-8 are required to
implement the context behaviors discussed previously.

This infrastructure ensures that business code running on the server will share the same key
context data as the client. It also ensures that the client’s IPrincipal object is transferred to the
server when the application is using custom authentication. This is important information, not only
for basic impersonation, but also for enabling authorization on the server.

Authorizing Server Calls
The data portal ensures that the application server will use the same principal object as the client
when using custom authentication. And when using Windows AD authentication, you can configure
your application server to use impersonation, so it runs under the same Windows identity as the
client code.

Either way, because the client principal is available on the server, all the authorization features
described in Chapter 12 are available to the business developer on both the client and the server.
This means the per-property and object-level authorization rules associated with business objects
are enforced whether the code is running on the client or server.

■Note You should be aware that Windows integrated security has limits on how far it can impersonate a user.
Normally, impersonation can only occur across one network hop, which would be from a client workstation to the
application server. Using advanced Windows network configuration options, it may be possible to extend imperson-
ation beyond one hop. Advanced Windows network configuration is outside the scope of this book.

However, some applications may require a higher-level authorization check to decide whether
to allow a client request to be processed on the server at all. This check would occur before any attempt
is made to invoke the data access methods in the business or factory object.

The data portal supports this concept by allowing a business developer to create an object that
implements the IAuthorizeDataPortal interface from the Csla.Server namespace. If you want to use

Table 15-8. Types Required to Implement Context Passing and Location Transparency

Type Namespace Description

ApplicationContext Csla Provides access to the ClientContext and
GlobalContext collection objects, as well as
other context information

DataPortalException Csla Exception thrown by the data portal in case of any
server-side exceptions; the server-side exception is
an InnerException within the DataPortalException

DataPortalContext Csla.Server Transfers context data from the client to the server
on every data portal operation

DataPortalResult Csla.Server Transfers context and result data from the server to
the client on every successful data portal operation

DataPortalException Csla.Server Transfers context and exception data from the
server to the client on every unsuccessful data
portal operation

Lhotka_1019-1.book Page 431 Tuesday, November 18, 2008 3:42 PM

432 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

this feature, the application server’s config file needs to include an entry in the appSettings element,
specifying the assembly qualified name of this class—for example:

 <add key="CslaAuthorizationProvider"
 value="NamespaceName.TypeName, AssemblyName" />

The IAuthorizeDataPortal interface requires that the class implement a single method:
Authorize(). If the client call should not be allowed, this method should throw an exception; otherwise,
the client call will be processed normally.

■Note The data portal creates exactly one instance of the specified type. Because most application servers are
multithreaded, you must ensure that the code you write in the Authorize() method is thread-safe.

This Authorize() method is invoked after the data portal has restored the client’s principal (if
using custom authentication), LocalContext, and GlobalContext onto the server’s thread. The method is
passed a request object containing the values listed in Table 15-9.

Your authorization class would look like this:

 public class CustomAuthorizer : Csla.Server.IAuthorizeDataPortal
 {
 public void Authorize(AuthorizationRequest clientRequest)
 {
 // perform authorization here
 // throw exception to stop processing
 }
 }

This technique allows high-level control over client requests. If a request is allowed to continue
processing, all the normal authorization behaviors described in Chapter 12 continue to apply. This
is an optional feature, and by default, all data portal requests are allowed.

Asynchronous Behaviors
Thus far, I’ve been discussing the data portal in terms of synchronous behaviors. Each call to a
static method of the Csla.DataPortal class is a synchronous operation.

However, the DataPortal<T> class provides asynchronous versions of the static methods on the
non-generic DataPortal class. When performing asynchronous operations, it is necessary to have
a consistent object through which the completion callback can arrive. This means that you must
create an instance of DataPortal<T> to make asynchronous calls, and each instance can only have
one outstanding asynchronous call running at a time.

Table 15-9. Values Provided to the Authorize Method

Property Description

ObjectType Type of business object to be affected by the client request

RequestObject Criteria object or business object provided by the client

Operation Data portal operation requested by the client; member of the
DataPortalOperations enumerated value

Lhotka_1019-1.book Page 432 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 433

Using DataPortal<T> is relatively straightforward.

 var dp = new DataPortal<CustomerEdit>();
 dp.BeginFetch(new SingleCriteria<CustomerEdit, int>(123),
 (s, e) =>
 {
 // process result here
 });

You can use a lambda (as shown), an anonymous delegate, or a delegate reference to another
method to implement the callback. Or you can set up an event handler for the FetchCompleted event
on the DataPortal<T> object before starting the asynchronous call. The important thing is that the
developer remembers that the callback will occur when the asynchronous operation is complete,
and that BeginFetch() is a nonblocking call.

The DataPortal<T> class is really just a wrapper around the Csla.DataPortal class, designed to
make normal synchronous data portal calls but from a background thread. To create the background
threads, the DataPortal<T> methods use the standard .NET BackgroundWorker component.

By using the BackgroundWorker, the data portal gains some important benefits. All the background
operations are executed on threads from the .NET thread pool, and all that work is abstracted by the
BackgroundWorker component. More importantly, the BackgroundWorker component automatically
marshals its asynchronous callback events onto the UI thread when running in WPF or Windows Forms.

This means that the event indicating that the background task is complete is running automat-
ically on the UI thread in those environments, which dramatically simplifies related UI code. Even
better, this reduces bugs that are commonly encountered where the UI developer forgets to marshal
to the UI thread before interacting with visual controls.

Object Factories
Prior to CSLA .NET 3.6, all data portal calls were routed to methods implemented in the business
class itself. These methods are called the DataPortal_XYZ methods—for example, DataPortal_Create().

In CSLA .NET 3.6, the concept of an object factory has been introduced as an option a business
developer can use instead of the traditional data portal behavior. In this case, the developer puts an
ObjectFactory attribute on the business class, which instructs the data portal to use the specified
object factory to handle all persistence operations related to the business object type—for instance:

 [ObjectFactory("MyProject.CustomerFactory, MyProject")]
 public class CustomerEdit : BusinessBase<CustomerEdit>

This instructs the data portal to create an instance of a CustomerFactory class, using the string
parameter as an assembly-qualified type name for the factory. The CustomerFactory object must
implement methods to create, fetch, update, and delete CustomerEdit business objects. By default,
these methods are named Create(), Fetch(), Update(), and Delete().

The factory object may choose to inherit from ObjectFactory in the Csla.Server namespace.
The ObjectFactory class includes protected methods that make it easier to implement typical object
factory behaviors. Here’s the shell of an object factory:

 public class CustomerFactory : ObjectFactory
 {
 public object Create()
 {
 // create object and load with defaults
 MarkNew(result);
 return result;
 }

Lhotka_1019-1.book Page 433 Tuesday, November 18, 2008 3:42 PM

434 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 public object Fetch(SingleCriteria<CustomerEdit, int> criteria)
 {
 // create object and load with data
 MarkOld(result);
 return result;
 }

 public object Update(object obj)
 {
 // insert/update/delete object and its child objects
 MarkOld(obj); // make sure to mark all child objects as old too
 return obj;
 }

 public void Delete(SingleCriteria<CustomerEdit, int> criteria)
 {
 // delete object data based on criteria
 }
 }

The MarkNew() and MarkOld() methods manipulate the status of the business object, as discussed in
Chapter 8. When using the object factory model, the object factory assumes all responsibility for
creating and managing the business object and its state. This includes not only the root object, but
all child objects as well.

While factory objects require more work to implement than the traditional data portal technique,
they enable the use of some external data access technologies that can’t be invoked from inside an
already existing business object instance. For example, you may use a data access tool that creates
business object instances directly. Obviously, you can’t use such a technology from inside an already
existing business object, if that technology will be creating the business object instance!

At this point, you should have a good understanding of the various areas of functionality provided
by the data portal, and the various classes and types used to implement that functionality. The rest
of the chapter will walk through those classes. As with the previous chapters, not all code is shown in
this chapter, so you’ll want to get the code download for the book to follow along. You can download
the code from the Source Code/Download area of the Apress website (www.apress.com/book/view/
1430210192) or from www.lhotka.net/cslanet/download.aspx.

Base Class Support
In order to support persistence—the ability to save and restore from the database—objects need to
implement methods that the UI can call. They also need to implement methods that can be called by
the data portal on the server.

Figure 15-4 shows the basic process flow when the UI code wants to get a new business object
or load a business object from the database.

Lhotka_1019-1.book Page 434 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 435

Figure 15-4. Process flow to create or load a business object

Following the class-in-charge model from Chapter 2, you can see that the UI code calls a factory
method on the business class. The factory method then calls the appropriate method on the Csla.
DataPortal class to create or retrieve the business object. The Csla.Server.DataPortal object then
creates the object and invokes the appropriate data access method (DataPortal_Create() or DataPortal_
Fetch()). The populated business object is returned to the UI, which the application can then use
as needed.

Immediate deletion follows the same basic process, with the exception that no business object
is returned to the UI as a result.

The BusinessBase and BusinessListBase classes implement a Save() method to make the update
process work, as illustrated by Figure 15-5. The process is almost identical to creating or loading an
object, except that the UI starts off by calling the Save() method on the object to be saved, rather than
invoking a factory method on the business class.

Lhotka_1019-1.book Page 435 Tuesday, November 18, 2008 3:42 PM

436 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

Figure 15-5. Process flow for saving a business object

Factory Methods and Criteria
Chapter 2 discussed the class-in-charge model and factory methods. When the UI needs to create or
retrieve a business object, it will call a factory method that abstracts that behavior. You can implement
factory methods in any class you choose as either instance or static methods. I prefer to implement
them as static methods in the business class for the object they create or retrieve, as I think it makes
them easier to find. Some people prefer to create a separate factory class with instance methods.

This means a CustomerEdit class will include static factory methods such as GetCustomer()
and NewCustomer(), both of which return a CustomerEdit object as a result. It may also implement a
DeleteCustomer() method, which would have no return value. The implementation of these methods
would typically look like this:

 public static CustomerEdit NewCustomer()
 {
 return DataPortal.Create<CustomerEdit>();
 }

 public static CustomerEdit GetCustomer(int id)
 {
 return DataPortal.
 Fetch<CustomerEdit>(new SingleCriteria<CustomerEdit, int>(id));
 }

Lhotka_1019-1.book Page 436 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 437

 public static void DeleteCustomer(int id)
 {
 DataPortal.Delete(new SingleCriteria<CustomerEdit, int>(id));
 }

These are typical examples of factory methods implemented for most root objects.
Although I won’t use the following technique in the rest of the book, you can create a factory

class with instance methods if you prefer:

 public class CustomerFactory
 {
 public virtual CustomerEdit NewCustomer()
 {
 return DataPortal.Create<CustomerEdit>();
 }

 public virtual CustomerEdit GetCustomer(int id)
 {
 return DataPortal.
 Fetch<CustomerEdit>(new SingleCriteria<CustomerEdit, int>(id));
 }

 public virtual void DeleteCustomer(int id)
 {
 DataPortal.Delete(new SingleCriteria<CustomerEdit, int>(id));
 }
 }

The methods are virtual, because the primary motivation for using a factory class like this is to
allow subclassing of the factory to customize the behavior.

I’ll be using static factory methods throughout the rest of the book.

Save Methods
The factory methods cover creating, retrieving, and deleting objects. This leaves inserting and updating
(and deferred deletion). In both of these cases, the object already exists in memory, so the Save()
and BeginSave() methods are instance methods on any editable object.

The Save() method allows synchronous save operations and is the simplest to use.

 _customer = _customer.Save();

The BeginSave() method allows asynchronous save operations and is harder to use, because
your code must work in an asynchronous manner, including providing a callback handler that is
invoked when the operation is complete.

 // disable UI elements that can't be used during save
 _customer.BeginSave(SaveComplete);
 // ...

 private void SaveComplete(object sender, SavedEventArgs e)
 {
 if (e.Error != null)
 {
 // handle exception here
 }

Lhotka_1019-1.book Page 437 Tuesday, November 18, 2008 3:42 PM

438 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 else
 {
 _customer = e.NewObject;
 // update the UI or other code to use the result
 // re-enable any disabled UI elements
 }
 }

Notice that the address to SaveComplete() is provided as a parameter to the BeginSave() method.
This means SaveComplete() is invoked when the asynchronous operation completes. In WPF and
Windows Forms, this callback occurs on the UI thread.

Both Save() and BeginSave() ultimately do the same thing in that they insert, update, or delete
the editable root business object.

One Save() method can be used to support inserting and updating an object’s data because all
editable objects have an IsNew property. Recall that the definition of a “new” object is that the object’s
primary key value doesn’t exist in the database. This means that if IsNew is true, then Save() causes
an insert operation; otherwise, Save() causes an update operation.

BusinessBase and BusinessListBase are the base classes for all editable business objects, and
both of these base classes implement Save() methods and BeginSave().

Synchronous Save Methods

Here are the two overloads for Save() in BusinessBase:

 public virtual T Save()
 {
 T result;
 if (this.IsChild)
 throw new NotSupportedException(
 Resources.NoSaveChildException);
 if (EditLevel > 0)
 throw new Validation.ValidationException(
 Resources.NoSaveEditingException);
 if (!IsValid && !IsDeleted)
 throw new Validation.ValidationException(
 Resources.NoSaveInvalidException);
 if (IsDirty)
 result = (T)DataPortal.Update(this);
 else
 result = (T)this;
 OnSaved(result, null);
 return result;
 }

 public T Save(bool forceUpdate)
 {
 if (forceUpdate && IsNew)
 {
 // mark the object as old - which makes it
 // not dirty
 MarkOld();
 // now mark the object as dirty so it can save
 MarkDirty(true);
 }
 return this.Save();
 }

Lhotka_1019-1.book Page 438 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 439

The first Save() method is the primary one that does the real work. It implements a set of common
rules that make sense for most objects. Specifically, it does the following:

• Ensures that the object is not a child (since child objects must be saved as part of their parent)

• Makes sure that the object isn’t currently being edited (a check primarily intended to assist
with debugging)

• Checks to see if the object is valid; invalid objects can’t be saved

• Checks to make sure the object is dirty; there’s no sense saving unchanged data into the database

Notice that the method is virtual, so if a business developer needs a different set of rules for an
object, it is possible to override this method and implement something else.

The second Save() method exists to support stateless web applications and the scenario where
business objects are used to implement XML services. It allows a service author to create a new instance
of the object, load it with data, and then force the object to do an update (rather than an insert) oper-
ation. The reason for this is that when creating a stateless web page or service that updates data, the
web page or application calling the server typically passes all the data needed to update the data-
base; there’s no need to retrieve the existing data just to overwrite it. This optional overload of Save()
enables those scenarios.

This is done by first calling MarkOld() to set IsNew to false, and then calling MarkDirty() to set
IsDirty to true.

In either case, it is the DataPortal.Update() call that ultimately triggers the data portal infra-
structure to move the object to the application server so it can interact with the database.

It is important to notice that the Save() method returns an instance of the business object.
Recall that .NET doesn’t actually move objects across the network; rather, it makes copies of the
objects. The DataPortal.Update() call causes .NET to copy this object to the server so the copy can
update itself into the database. That process could change the state of the object (especially if you are
using primary keys assigned by the database or timestamps for concurrency). The resulting object is
then copied back to the client and returned as a result of the Save() method.

■Note It is critical that the UI updates all its references to use the new object returned by Save(). Failure to do
this means that the UI will be displaying and editing old data from the old version of the object. Do not call Save()
like this:

 _customer.Save();

Do call Save() like this:

 _customer = _customer.Save();

The same basic code can be found in BusinessListBase as well.

Asynchronous BeginSave Methods

There are four overloads of BeginSave(), because it can optionally accept the forceUpdate parameter
like Save(), and it can also optionally accept a delegate reference to a method that will be invoked
when the asynchronous operation is complete.

All the overloads invoke the following method:

Lhotka_1019-1.book Page 439 Tuesday, November 18, 2008 3:42 PM

440 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 public virtual void BeginSave(EventHandler<SavedEventArgs> handler)
 {
 if (this.IsChild)
 {
 NotSupportedException error = new NotSupportedException(
 Resources.NoSaveChildException);
 OnSaved(null, error);
 if (handler != null)
 handler(this, new SavedEventArgs(null, error));
 }
 else if (EditLevel > 0)
 {
 Validation.ValidationException error = new Validation.ValidationException(
 Resources.NoSaveEditingException);
 OnSaved(null, error);
 if (handler != null)
 handler(this, new SavedEventArgs(null, error));
 }
 else if (!IsValid && !IsDeleted)
 {
 Validation.ValidationException error = new Validation.ValidationException(
 Resources.NoSaveEditingException);
 OnSaved(null, error);
 if (handler != null)
 handler(this, new SavedEventArgs(null, error));
 }
 else
 {
 if (IsDirty)
 {
 DataPortal.BeginUpdate<T>(this, (o, e) =>
 {
 T result = e.Object;
 OnSaved(result, e.Error);
 if (handler != null)
 handler(result, new SavedEventArgs(result, e.Error));
 });
 }
 else
 {
 OnSaved((T)this, null);
 if (handler != null)
 handler(this, new SavedEventArgs(this, null));
 }
 }
 }

Like the Save() method, BeginSave() performs a series of checks to see if the object should really
be saved. However, rather than throwing exceptions immediately, the exceptions are routed to the
callback handler and to any code that handles the business object’s Saved event.

I chose to do this because it allows the business developer to put all her exception-handling
code into the callback handler. If BeginSave() actually threw exceptions, the business or UI devel-
oper would need to handle exceptions when calling BeginSave() and also in the callback handler,
because any asynchronous exceptions would always be handled in the callback handler. The approach
taken by this implementation allows the business or UI developer to do all work in one location.

Lhotka_1019-1.book Page 440 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 441

The overall structure and process of BeginSave() is the same as for Save(), except that the
BeginUpdate() method is called on the data portal instead of Update(). A lambda expression is used
to handle the asynchronous callback from the data portal method.

 DataPortal.BeginUpdate<T>(this, (o, e) =>
 {
 T result = e.Object;
 OnSaved(result, e.Error);
 if (handler != null)
 handler(result, new SavedEventArgs(result, e.Error));
 });

When the asynchronous data portal method completes, the OnSaved() method is called to raise
the Saved event on the business object, and the callback handler is also invoked if it isn’t null.

Updating Child Objects with the Field Manager
Editable objects may contain child objects—either editable child objects or editable child collections
(which in turn contain editable child objects). If managed backing fields are used (see Chapter 7) to
maintain the child object references, then the field manager can be used to simplify the process of
saving the child objects.

The FieldDataManager class implements an UpdateChildren() method that can be called by an
editable object’s insert or update data access method. The UpdateChildren() method loops through
all the managed backing fields and uses the data portal to update all child objects. Here’s the code:

 public void UpdateChildren(params object[] parameters)
 {
 foreach (var item in _fieldData)
 {
 if (item != null)
 {
 object obj = item.Value;
 if (obj is IEditableBusinessObject || obj is IEditableCollection)
 Csla.DataPortal.UpdateChild(obj, parameters);
 }
 }
 }

The data portal’s UpdateChild() method is invoked on each child object, which causes the data
portal to invoke the appropriate Child_XYZ method on each child object. I’ll discuss this feature of the
data portal later in this chapter.

Updating Editable Collections
Editable collections contain editable child objects. Updating child objects in an editable collection
must be done in a specific manner, because the collection contains a list of deleted items as well as
a list of active (nondeleted) items.

The deleted item list must be updated first, so those items are deleted before any active items
can be updated. This is because it is quite possible that an active item will replace one of the deleted
items, so updating the active list first could result in primary key collisions in the database.

Rather than having the business developer write the code to update all the child objects in every
collection, BusinessListBase implements a Child_Update() method that does the work. Here’s that
method:

Lhotka_1019-1.book Page 441 Tuesday, November 18, 2008 3:42 PM

442 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 [EditorBrowsable(EditorBrowsableState.Advanced)]
 protected virtual void Child_Update(params object[] parameters)
 {
 var oldRLCE = this.RaiseListChangedEvents;
 this.RaiseListChangedEvents = false;
 try
 {
 foreach (var child in DeletedList)
 DataPortal.UpdateChild(child, parameters);
 DeletedList.Clear();

 foreach (var child in this)
 DataPortal.UpdateChild(child, parameters);
 }
 finally
 {
 this.RaiseListChangedEvents = oldRLCE;
 }
 }

The RaiseListChangedEvents property is set to false to prevent the collection from raising
events during the update process. This helps avoid both performance issues and UI “flickering” as
the update occurs (otherwise, these events may cause data binding to refresh the UI as each item
is updated).

Then the items in DeletedList are updated, which really means they are all deleted. This is handled
by the data portal’s UpdateChild() method, which invokes each child object’s Child_DeleteSelf()
method. Because they’ve been deleted, DeletedList is then cleared so it reflects the state of the
underlying data store.

Now the active items in the collection are updated, which means they are inserted or updated
based on the state of each child object. The data portal’s UpdateChild() method handles those details,
calling the appropriate Child_Insert() or Child_Update() method.

Finally, the RaiseListChangedEvents property is restored to its previous value, so the collection
can continue to be used normally.

A business developer may explicitly call Child_Update() in an editable root collection as I discussed
earlier in this chapter. Normally, a business developer needs to write no code for an editable child
collection, because the data portal will automatically call the Child_Update() method when the
parent object calls FieldManager.UpdateChildren() to update its children (including the editable
child collection).

This completes the features provided by the business object base classes that are required for
the data portal to function. Before covering the data portal implementation in detail, I need to discuss
how the data portal uses (and avoids) reflection.

Reflection and Dynamic Method Invocation
The data portal dynamically invokes methods on business and factory objects. Invoking methods
dynamically requires the use of reflection, and that can cause performance issues when used frequently.
Since the data portal can be used to create, retrieve, update, and delete child objects, it is quite possible
for hundreds of methods to be invoked to save just one object graph.

The .NET Framework supports the concept of dynamic method invocation, where reflection is
used just once to create a dynamic delegate reference to a method. That delegate is used to actually
invoke the method, resulting in performance nearly as good as a strongly typed call to the method.

Lhotka_1019-1.book Page 442 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 443

Of course, that dynamic delegate must be stored somewhere, so we need to cache the delegates
and retrieve them from the cache. The end result is that using dynamic delegates is still slower than
strongly typed method calls, but it’s faster than using reflection on each call.

The Csla.Reflection namespace includes classes used by the data portal (and other parts of
CSLA .NET) to dynamically invoke methods using dynamic delegates. Table 15-10 lists the types in
that namespace.

Creating and using dynamic method delegates is complex and is outside the scope of this book.
You should realize, however, that the MethodCaller and LateBoundObject classes are designed as the
public entry points to this functionality, and they are used by the data portal implementation.

The MethodCaller Class
The heart of the subsystem is the MethodCaller class. This class exposes the methods listed in
Table 15-11; these methods enable the dynamic invocation of methods.

Table 15-10. Types in the Csla.Reflection Namespace

Type Description

CallMethodException Thrown when a method can’t be invoked dynamically

DynamicMethodHandle Maintains a reference to a dynamic method delegate, along
with related metadata

DynamicMethodHandlerFactory Creates a dynamic method delegate

LateBoundObject Provides a wrapper around any object to simplify the
invocation of dynamic methods on that object

MethodCacheKey Defines the key information for a dynamic method, so the
DynamicMethodHandle can be stored and retrieved as necessary

MethodCaller Provides an abstract API for use when dynamically calling
methods on objects

Table 15-11. Public Methods on MethodCaller

Method Description

CreateInstance() Creates an instance of an object

CallMethodIfImplemented() Invokes a method by name, if that method exists on the
target object

CallMethod() Invokes a method by name, throwing an exception if that
method doesn’t exist

GetMethod() Gets a MethodInfo object for a method by name, matching any
supplied parameters using standard overloading rules

FindMethod() Gets a MethodInfo object for a method by name, matching any
supplied parameters using standard overloading rules, with
special behaviors to deal with generic parameters and abstract
base classes

Lhotka_1019-1.book Page 443 Tuesday, November 18, 2008 3:42 PM

444 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The MethodCaller class also includes the code to cache dynamic method delegates, and that
technique is used automatically when CallMethod() and CallMethodIfImplemented() are used. In
other words, MethodCaller uses reflection only to create dynamic method delegates, and it uses
those delegates to make all method calls to the target objects. The method delegates are cached for
the lifetime of the AppDomain, so they’re typically created only once each time an application is run.

The GetObjectType Method

I do want to explore one method in a little more detail. The GetObjectType() method is designed
specifically to support the data portal, and it’s important to understand how it uses criteria objects
to identify the business object type. Both Csla.DataPortal and Csla.Server.DataPortal use this
method to determine the type of business object involved in the data portal request. This method
uses the criteria object supplied by the factory method in the business class to find the type of the
business object itself.

This method supports the two options discussed in Chapter 5: where the criteria class is nested
within the business class, and where the criteria object inherits from Csla.CriteriaBase (and thus
implements ICriteria).

 public static Type GetObjectType(object criteria)
 {
 var strong = criteria as ICriteria;
 if (strong != null)
 {
 // get the type of the actual business object
 // from the ICriteria
 return strong.ObjectType;
 }
 else if (criteria != null)
 {
 // get the type of the actual business object
 // based on the nested class scheme in the book
 return criteria.GetType().DeclaringType;
 }
 else return null;
 }

If the criteria object implements ICriteria, then the code will simply cast the object to type
ICriteria and retrieve the business object type by calling the ObjectType property.

With a nested criteria class, the code gets the type of the criteria object and then returns the
DeclaringType value from the Type object. The DeclaringType property returns the type of the class
within which the criteria class is nested.

GetParameterTypes() Gets a list of Type objects corresponding to the type of parameter
values provided to the method

GetObjectType() Returns a business object type based on a supplied criteria
object, taking into account the ICriteria interface and nested
criteria classes

Table 15-11. Public Methods on MethodCaller (Continued)

Method Description

Lhotka_1019-1.book Page 444 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 445

The LateBoundObject Class
The LateBoundObject class is designed to act as a wrapper around any .NET object, making it easy to
dynamically invoke methods on that object. It is used like this:

 lateBound = new LateBoundObject<CustomerEdit>(_customer);
 lateBound.CallMethod("SomeMethod", 123, "abc");

Behind the scenes, the wrapper object simply delegates all calls to MethodCaller, and you could
choose to use MethodCaller directly. The reason for using LateBoundObject is to write code that is
easier to read.

Now let’s move on and implement the data portal itself, feature by feature. The data portal is
designed to provide a set of core features, including

• Implementing a channel adapter

• Supporting distributed transactional technologies

• Implementing a message router

• Transferring context and providing location transparency

The remainder of the chapter will walk through each functional area in turn, discussing the
implementation of the classes supporting the concept.

Channel Adapter
The data portal is exposed to the business developer through the Csla.DataPortal class. This class
implements a set of static methods to make it as easy as possible for the business developer to
create, retrieve, update, or delete objects. All the channel adapter behaviors are hidden behind the
Csla.DataPortal class.

The RunLocal Attribute
The data portal routes client calls to the server based on the client application’s configuration settings in
its config file. If the configuration is set to use an actual application server, the client call is sent across the
network using the channel adapter pattern. However, there are cases in which the business developer
knows that there’s no need to send the call across the network—even if the application is configured
that way.

The most common example of this is in the creation of new business objects. The DataPortal.
Create() method is called to create a new object, and it in turn triggers a call to the business object’s
DataPortal_Create() method or a factory object’s Create() method. Either way, the target method
loads the business object with default values from the database.

But what if an object doesn’t need to load defaults from the database? In that case, there would
be no reason to go across the network at all, and it would be nice to short-circuit the call so that
particular object’s create method would run on the client.

This is the purpose behind the RunLocal attribute. A business developer can mark a data access
method with this attribute to tell the data portal to force the call to run on the client, regardless of
how the application is configured in general. Such a business method would look like this:

 [RunLocal]
 private void DataPortal_Create(Criteria criteria)
 {
 // set default values here
 }

Lhotka_1019-1.book Page 445 Tuesday, November 18, 2008 3:42 PM

446 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The data portal always invokes this DataPortal_Create() method without first crossing a network
boundary. So if DataPortal.Create() were called on the client, this method would run on the client,
and if DataPortal.Create() were called on the application server, the DataPortal_Create() method
would run on the server.

When using a factory object, the attribute is applied to the factory method.

 public class CustomerFactory : ObjectFactory
 {
 [RunLocal]
 public void Create()
 {
 // create object and
 // set default values here
 }
 }

If the assembly containing the factory has been deployed to the client, the data portal will find
this attribute and will invoke the Create() method on the client. If you don’t deploy your factory
assembly to the client, obviously the code must run on the server, so the data portal would ignore the
RunLocal attribute.

The DataPortal Class
The primary entry point for the entire data portal infrastructure is the Csla.DataPortal class. Busi-
ness developers use the methods on this class to trigger all the data portal behaviors. This class is
involved in both the channel adapter implementation and in handling context information. This
section will focus on the channel adapter code in the class, while I’ll discuss the context-handling
code later in the chapter.

The Csla.DataPortal class exposes five primary methods, described in Table 15-12, that can be
called by business logic to create, retrieve, update, or delete root objects, or to execute command
objects.

The data portal also includes methods used to create, retrieve, update, or delete child objects.
Table 15-13 lists these methods.

Table 15-12. Methods Exposed by the Data Portal for Root Objects

Method Description

Create() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Create() method
(or the Create() method in an object factory)

Fetch() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Fetch() method
(or the Fetch() method in an object factory)

Update() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Insert(),
DataPortal_Update(), or DataPortal_DeleteSelf() methods, as appropriate
(or the Update() method in an object factory)

Delete() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Delete() method
(or the Delete() method in an object factory)

Execute() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Execute() method
(or the Update() method in an object factory)

Lhotka_1019-1.book Page 446 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 447

The class also raises two static events that the business developer or UI developer can handle.
The DataPortalInvoke event is raised before the server is called, and the DataPortalInvokeComplete
event is raised after the server call has returned.

Behind the scenes, each DataPortal method determines the network protocol to be used when
contacting the server in order to delegate the call to Csla.Server.DataPortal. Of course,
Csla.Server.DataPortal ultimately delegates the call to Csla.Server.SimpleDataPortal and then to
the business object on the server.

The Csla.DataPortal class is designed to expose static methods. As such, it is a static class.

 public static class DataPortal
 {
 }

This ensures that instances of the class won’t be created.
Each of the five data portal methods works in a similar manner. I’m not going to walk through

all five; instead, I’ll discuss the Fetch() method in some detail, and I’ll briefly cover the Update()
method (because it is somewhat unique). First, though, you should be aware of the events raised by
the DataPortal class on each call, and how the data portal connects with the server.

DataPortal Events

The DataPortal class defines two events: DataPortalInvoke and DataPortalInvokeComplete.

 public static event Action<DataPortalEventArgs> DataPortalInvoke;
 public static event Action<DataPortalEventArgs> DataPortalInvokeComplete;

 private static void OnDataPortalInvoke(DataPortalEventArgs e)
 {
 Action<DataPortalEventArgs> action = DataPortalInvoke;
 if (action != null)
 action(e);
 }

 private static void OnDataPortalInvokeComplete(DataPortalEventArgs e)
 {
 Action<DataPortalEventArgs> action = DataPortalInvokeComplete;
 if (action != null)
 action(e);
 }

These follow the standard approach by providing helper methods to raise the events.

Table 15-13. Methods Exposed by the Data Portal for Child Objects

Method Description

CreateChild() Calls ChildDataPortal, which then invokes the Child_Create() method on the
child object

FetchChild() Calls ChildDataPortal, which then invokes the Child_Fetch() method on the
child object

UpdateChild() Calls ChildDataPortal, which then invokes the Child_Insert(), Child_Update(),
or Child_DeleteSelf() method on the child object

Lhotka_1019-1.book Page 447 Tuesday, November 18, 2008 3:42 PM

448 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

Also notice the use of the Action<T> generic template. The .NET Framework provides this as a
helper when declaring events that have a custom EventArgs subclass as a single parameter. A corre-
sponding EventHandler<T> template helps when declaring the standard sender and EventArgs pattern for
event methods.

A DataPortalEventArgs object is provided as a parameter to these events. This object includes
information of value when handling the event as described in Table 15-14.

This information can be used by code handling the event to better understand all the informa-
tion being passed to the server as part of the client message.

Creating the Proxy Object

One of the most important functions of Csla.DataPortal is to determine the appropriate network
protocol (if any) to be used when interacting with Csla.Server.DataPortal. Each protocol, or data
portal channel, is managed by a proxy object that implements the IDataPortalProxy interface from
the Csla.DataPortalClient namespace. This interface ensures that all proxy classes implement the
methods required by Csla.DataPortal.

The proxy object to be used is defined in the application’s configuration file. That’s the web.config
file for ASP.NET applications, and myprogram.exe.config for Windows applications (where myprogram is
the name of your program). Within Visual Studio, a Windows configuration file is named app.config,
so I’ll refer to them as app.config files from here forward.

Config files can include an <appSettings> section to store application settings, and it is in this
section that the CSLA .NET configuration settings are located. The following shows how this section
would look for an application set to use WCF:

 <appSettings>
 <add key="CslaDataPortalProxy"
 value="Csla.DataPortalClient.WcfProxy, Csla"/>
 </appSettings>

The CslaDataPortalProxy key defines the proxy class that should be used by the data portal.
Different proxy objects may require or support other configuration data. In this example, you must
also configure WCF itself by including a top-level system.serviceModel element in your app.config
file—for example:

 <system.serviceModel>
 <client>
 <endpoint name="WcfDataPortal"
 address="http://serverName/virtualRoot/WcfPortal.svc"
 binding="wsHttpBinding"
 contract="Csla.Server.Hosts.IWcfPortal" />
 </client>
 </system.serviceModel>

Table 15-14. Properties of the DataPortalEventArgs Class

Property Description

DataPortalContext The data portal context passed to the server

Operation The data portal operation requested by the caller

Exception Any exception that occurred during processing

ObjectType The type of business object

Lhotka_1019-1.book Page 448 Tuesday, November 18, 2008 3:42 PM

http://serverName/virtualRoot/WcfPortal.svc

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 449

Normally only the highlighted line needs to be changed to properly specify the URL to the appli-
cation server.

The GetDataPortalProxy() method uses this information to create an instance of the correct
proxy object.

 private static Type _proxyType;

 private static DataPortalClient.IDataPortalProxy
 GetDataPortalProxy(bool forceLocal)
 {
 if (forceLocal)
 {
 return new DataPortalClient.LocalProxy();
 }
 else
 {
 Csla.DataPortalClient.IDataPortalProxy portal;
 string proxyTypeName = ApplicationContext.DataPortalProxy;
 if (proxyTypeName == "Local")
 portal = new DataPortalClient.LocalProxy();
 else
 {
 if (_proxyType == null)
 {
 _proxyType = Type.GetType(proxyTypeName, true, true);
 }
 portal = (DataPortalClient.IDataPortalProxy)
 Activator.CreateInstance(_proxyType);
 }
 return portal;
 }
 }

The proxy object is created on each call to avoid possible threading issues. Since the data portal
can be used asynchronously, it is important to avoid the use of static fields because they’d be shared
across multiple threads. The alternative is to use instance fields, but then locking code is required,
and locking can lead to performance issues.

Notice that the _proxyType field is static, so it’s shared across all threads. The data portal configura-
tion comes from the config file and is the same for all threads in the application, so this value can be
safely shared.

If the forceLocal parameter is true, then only a local proxy is returned. The LocalProxy object is
a special proxy that doesn’t use any network protocols at all, but rather runs the “server-side” data
portal components directly within the client process. I’ll cover this class later in the chapter.

When forceLocal is false, the real work begins. First, the proxy string is retrieved from the
CslaDataPortalProxy key in the config file by calling the ApplicationContext.DataPortalProxy property.
The property reads the config file and returns the value associated with the CslaDataPortalProxy key.

If that key value is "Local", then again an instance of the LocalProxy class is created and returned.
The ApplicationContext.DataPortalProxy method also returns a LocalProxy object if the key is not
found in the config file. This makes LocalProxy the default proxy.

If some other config value is returned, then it is parsed and used to create an instance of the
appropriate proxy class.

Lhotka_1019-1.book Page 449 Tuesday, November 18, 2008 3:42 PM

450 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 if (_proxyType == null)
 {
 string typeName =
 proxyTypeName.Substring(0, proxyTypeName.IndexOf(",")).Trim();
 string assemblyName =
 proxyTypeName.Substring(proxyTypeName.IndexOf(",") + 1).Trim();
 _proxyType = Type.GetType(typeName + "," + assemblyName, true, true);
 }
 portal = (DataPortalClient.IDataPortalProxy)
 Activator.CreateInstance(_proxyType);

In the preceding <appSettings> example, notice that the value is a comma-separated value with
the full class name on the left and the assembly name on the right. This follows the .NET standard for
describing classes that are to be dynamically loaded.

The config value is parsed to pull out the full type name and assembly name. Then Activator.
CreateInstance() is called to create an instance of the object. The .NET runtime automatically loads
the assembly if needed.

The result is that the appropriate proxy object is returned for use by the data portal in commu-
nicating with the server-side components.

Root Object Data Access Methods

The five data portal methods listed in Table 15-12 are all relatively similar in that they follow the
same basic process. I’ll walk through the Fetch() method in some detail so you can see how it works.
All five methods follow this basic flow:

1. Ensure the user is authorized to perform the action.

2. Get metadata for the business method to be ultimately invoked.

3. Get the data portal proxy object.

4. Create a DataPortalContext object.

5. Raise the DataPortalInvoke event.

6. Delegate the call to the proxy object (and thus to the server).

7. Handle and throw any exceptions.

8. Restore the GlobalContext returned from the server.

9. Raise the DataPortalInvokeComplete event.

10. Return the resulting business object (if appropriate).

Let’s look at the Fetch() method in detail.

The Fetch Method

There are several Fetch() method overloads, all of which ultimately delegate to the actual
implementation.

 public static object Fetch(Type objectType, object criteria)
 {
 Server.DataPortalResult result = null;
 Server.DataPortalContext dpContext = null;
 try
 {
 OnDataPortalInitInvoke(null);

Lhotka_1019-1.book Page 450 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 451

 if (!Csla.Security.AuthorizationRules.CanGetObject(objectType))
 throw new System.Security.SecurityException(
 string.Format(Resources.UserNotAuthorizedException,
 "get",
 objectType.Name));

 var method =
 Server.DataPortalMethodCache.GetFetchMethod(objectType, criteria);

 DataPortalClient.IDataPortalProxy proxy;
 proxy = GetDataPortalProxy(method.RunLocal);

 dpContext =
 new Server.DataPortalContext(GetPrincipal(),
 proxy.IsServerRemote);

 OnDataPortalInvoke(new DataPortalEventArgs(
 dpContext, objectType, DataPortalOperations.Fetch));

 try
 {
 result = proxy.Fetch(objectType, criteria, dpContext);
 }
 catch (Server.DataPortalException ex)
 {
 result = ex.Result;
 if (proxy.IsServerRemote)
 ApplicationContext.SetGlobalContext(result.GlobalContext);
 string innerMessage = string.Empty;
 if (ex.InnerException is Csla.Reflection.CallMethodException)
 {
 if (ex.InnerException.InnerException != null)
 innerMessage = ex.InnerException.InnerException.Message;
 }
 else
 {
 innerMessage = ex.InnerException.Message;
 }
 throw new DataPortalException(
 String.
 Format("DataPortal.Fetch {0} ({1})", Resources.Failed, innerMessage),
 ex.InnerException, result.ReturnObject);
 }

 if (proxy.IsServerRemote)
 ApplicationContext.SetGlobalContext(result.GlobalContext);

 OnDataPortalInvokeComplete(new DataPortalEventArgs(
 dpContext, objectType, DataPortalOperations.Fetch));
 }
 catch (Exception ex)
 {
 OnDataPortalInvokeComplete(new DataPortalEventArgs(
 dpContext, objectType, DataPortalOperations.Fetch, ex));

Lhotka_1019-1.book Page 451 Tuesday, November 18, 2008 3:42 PM

452 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 throw;
 }
 return result.ReturnObject;
 }

The generic overloads simply cast the result so the calling code doesn’t have to.

 public static T Fetch<T>()
 {
 return (T)Fetch(typeof(T), EmptyCriteria);
 }

Remember that the data portal can return virtually any type of object, so the actual Fetch()
method implementation must deal with results of type object.

Looking at the code, you should see all the steps listed in the preceding bulleted list. The first is
to ensure the user is authorized.

 if (!Csla.Security.AuthorizationRules.CanGetObject(objectType))
 throw new System.Security.SecurityException(
 string.Format(Resources.UserNotAuthorizedException,
 "get",
 objectType.Name));

Then the DataPortalMethodCache is used to retrieve (or create) the metadata for the business
method that will ultimately be invoked on the server.

 var method =
 Server.DataPortalMethodCache.GetFetchMethod(objectType, criteria);

The result is a DataPortalMethodInfo object that contains metadata for the business method. At this
point, the most important bit of information is whether the RunLocal attribute has been applied to the
method on the business class. This Boolean value is used as a parameter to the GetDataPortalProxy()
method, which returns the appropriate proxy object for server communication.

 DataPortalClient.IDataPortalProxy proxy;
 proxy = GetDataPortalProxy(method.RunLocal);

Next, a DataPortalContext object is created and initialized. The details of this object and the
means of dealing with context information are discussed later in the chapter.

 dpContext =
 new Server.DataPortalContext(GetPrincipal(),
 proxy.IsServerRemote);

Then the DataPortalInvoke event is raised, notifying client-side business or UI logic that a data
portal call is about to take place.

 OnDataPortalInvoke(new DataPortalEventArgs(
 dpContext, objectType, DataPortalOperations.Fetch));

Finally, the Fetch() call itself is delegated to the proxy object.

 result = proxy.Fetch(objectType, criteria, dpContext);

All a proxy object does is relay the method call across the network to Csla.Server.DataPortal,
so you can almost think of this as delegating the call directly to Csla.Server.DataPortal, which in
turn delegates to either FactoryDataPortal or SimpleDataPortal. The ultimate result is that a factory
object’s Fetch() method or the business object’s DataPortal_Fetch() method is invoked on the server.

Lhotka_1019-1.book Page 452 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 453

■Note Remember that the default is that the “server-side” code actually runs in the client process on the client
workstation (or web server). Even so, the full sequence of events described here occur—just much faster than if
network communication were involved.

An exception could occur while calling the server. Most likely, the exception could occur in the
business logic running on the server, though exceptions can also occur due to network issues or
similar problems. When an exception does occur in business code on the server, it will be reflected
here as a Csla.Server.DataPortalException, which is caught and handled.

 result = ex.Result;
 if (proxy.IsServerRemote)
 ApplicationContext.SetGlobalContext(result.GlobalContext);
 string innerMessage = string.Empty;
 if (ex.InnerException is Csla.Reflection.CallMethodException)
 {
 if (ex.InnerException.InnerException != null)
 innerMessage = ex.InnerException.InnerException.Message;
 }
 else
 {
 innerMessage = ex.InnerException.Message;
 }
 throw new DataPortalException(
 String.
 Format("DataPortal.Fetch {0} ({1})", Resources.Failed, innerMessage),
 ex.InnerException, result.ReturnObject);

The Csla.Server.DataPortalException returns the business object from the server—exactly as
it was when the exception occurred. It also returns the GlobalContext information from the server so
that it can be used to update the client’s context data. Ultimately, the data from the server is used to
create a Csla.DataPortalException that is thrown back to the business object. It can be handled by
the business object or the UI code as appropriate.

Notice that the Csla.DataPortalException object contains not only all the exception details
from the server, but also the business object from the server. This object can be useful when debug-
ging server-side exceptions.

More commonly, an exception won’t occur. In that case, the result returned from the server
includes the GlobalContext data from the server, which is used to update the context on the client.

 if (proxy.IsServerRemote)
 ApplicationContext.SetGlobalContext (result);

The details around context are discussed later in the chapter. With the server call complete, the
DataPortalInvokeComplete event is raised.

 OnDataPortalInvokeComplete(new DataPortalEventArgs(
 dpContext, objectType, DataPortalOperations.Fetch));

Finally, the business object created and loaded with data on the server is returned to the factory
method that called DataPortal.Fetch() in the first place.

Remember that in a physical n-tier scenario, this is a copy of the object that was created on the
server. .NET serialized the object on the server, transferred its data to the client, and deserialized it
on the client. This object being returned as a result of the Fetch() method exists on the client work-
station, so other client-side objects and UI components can use it in an efficient manner.

Lhotka_1019-1.book Page 453 Tuesday, November 18, 2008 3:42 PM

454 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The Create() and Delete() methods are virtually identical. The only meaningful difference is
that the Delete() method has no return value.

The Update Method

The Update() method is similar, but it doesn’t get a criteria object as a parameter. Instead, it gets
passed the business object itself.

 public static object Update(object obj)

This way, it can pass the business object to Csla.Server.DataPortal, which ultimately calls the
factory or business object’s insert, update, or delete method, causing the object’s data to be used to
update the database. It also checks to see if the business object inherits from Csla.CommandBase, and
if so, it invokes the object’s execute method instead (or the factory object’s update method).

The reason the Update() method is so different is because it has to use the business object’s state
to determine what method will be invoked. This information is necessary so the method can be checked
for a RunLocal attribute. To do this, the method must first determine whether the ObjectFactory
attribute has been applied to the business class.

 var factoryInfo =
 ObjectFactoryAttribute.GetObjectFactoryAttribute(objectType);
 if (factoryInfo != null)

When using a factory object, either an update or delete method will be invoked. The actual
method names come from the ObjectFactory attribute as well.

 var factoryType = FactoryDataPortal.FactoryLoader.GetFactoryType(
 factoryInfo.FactoryTypeName);
 if (obj is Core.BusinessBase && ((Core.BusinessBase)obj).IsDeleted)
 {
 if (!Csla.Security.AuthorizationRules.CanDeleteObject(objectType))
 throw new System.Security.SecurityException(
 string.Format(Resources.UserNotAuthorizedException,
 "delete",
 objectType.Name));
 method = Server.DataPortalMethodCache.GetMethodInfo(
 factoryType, factoryInfo.DeleteMethodName, new object[] { obj });
 }
 else
 {
 if (!Csla.Security.AuthorizationRules.CanEditObject(objectType))
 throw new System.Security.SecurityException(
 string.Format(Resources.UserNotAuthorizedException,
 "save",
 objectType.Name));
 method = Server.DataPortalMethodCache.GetMethodInfo(
 factoryType, factoryInfo.UpdateMethodName, new object[] { obj });
 }

Notice that the factory object type is retrieved using a FactoryLoader property from the
FactoryDataPortal class. I’ll discuss this later in the chapter. For now, it is enough to realize that this
property returns an object that can provide the type of the factory that will be invoked.

If the business object is a subclass of BusinessBase, then its IsDeleted property is used to deter-
mine whether the delete or update method will be invoked. The appropriate authorization check is
also made. The end result here is that the method field contains the metadata for the method to be
invoked so the RunLocal attribute’s presence can be determined.

Lhotka_1019-1.book Page 454 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 455

If there’s no ObjectFactory attribute, then the traditional DataPortal_XYZ methods will be invoked
on the business object itself. In this case, the business object’s state is again used to determine whether
DataPortal_Insert(), DataPortal_Update(), DataPortal_DeleteSelf(), or DataPortal_Execute()
will be invoked. And the method field is set to contain the metadata for that method.

The rest of the process is fundamentally the same as Fetch(). The proxy is created, the
DataPortalInvoke event raised, the call is delegated to the proxy, and the result is processed.

Child Object Data Access Methods

The methods listed in Table 15-13 are used to create, retrieve, and update child objects. These methods
are quite different from the methods I just discussed that deal with root objects.

When dealing with root objects, the data portal uses all the features I’ve discussed in this chapter,
including the channel adapter, message router, distributed transaction support, and so forth. However,
when dealing with child objects, the data portal assumes it is already in the process of working with
a root object. So the assumption is that the code is already on the right physical computer and in the
right transactional context. The data portal doesn’t need to worry about any of those details when
dealing with child objects.

This means that the data portal’s only responsibility when dealing with child objects is to refer
the call to the ChildDataPortal class in the Csla.Server namespace. I’ll discuss this class later in the
chapter, but for now it is enough to know that ChildDataPortal will invoke the child object’s Child_
XYZ methods.

Since all three methods listed in Table 15-13 are virtually identical, I’ll show the code for just one
here:

 public static T FetchChild<T>(params object[] parameters)
 {
 Server.ChildDataPortal portal = new Server.ChildDataPortal();
 return (T)(portal.Fetch(typeof(T), parameters));
 }

The method simply creates an instance of ChildDataPortal and delegates the call to that object.
What is interesting about this code is that the FetchChild() method accepts a params parameter.

This means the calling code can pass in virtually any value or list of parameter values, and those
values are passed along to ChildDataPortal and ultimately to the Child_XYZ method.

The DataPortal<T> Class
The data portal supports asynchronous operations through the DataPortal<T> class in the Csla
namespace. This class has the five instance methods shown in Table 15-15, which are similar to the
static methods of Csla.DataPortal.

Table 15-15. Methods on the DataPortal<T> Class

Method Description

BeginCreate() Starts an asynchronous create operation

BeginFetch() Starts an asynchronous fetch operation

BeginUpdate() Starts an asynchronous update operation

BeginDelete() Starts an asynchronous delete operation

BeginExecute() Starts an asynchronous execute operation

Lhotka_1019-1.book Page 455 Tuesday, November 18, 2008 3:42 PM

456 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

Each of these methods delegates to Csla.DataPortal to do the real work, so you’ve already seen
how the complex parts work. These asynchronous methods use the .NET BackgroundWorker compo-
nent to take care of the threading details. This means the asynchronous work runs on a thread from
the .NET thread pool, and that in WPF and Windows Forms applications, the asynchronous callbacks
occur on the UI thread automatically.

Of course, the code calling DataPortal<T> needs to be notified when the asynchronous opera-
tion is complete. For each of the methods in Table 15-15, there is a corresponding event. For example, a
FetchCompleted event corresponds to BeginFetch().

 public event EventHandler<DataPortalResult<T>> FetchCompleted;

Calling code can subscribe to this event and then call the data portal method.

 var dp = new DataPortal<CustomerEdit>();
 dp.FetchCompleted += GotCustomerEdit;
 dp.BeginFetch();

In this case, when the async operation completes, the GotCustomerEdit() method is invoked
automatically.

The BeginFetch() method has two overloads: one to accept a criteria parameter, and the other
without. They both work the same way.

 public void BeginFetch(object criteria)
 {
 var bw = new System.ComponentModel.BackgroundWorker();
 bw.RunWorkerCompleted += Fetch_RunWorkerCompleted;
 bw.DoWork += Fetch_DoWork;
 bw.RunWorkerAsync(new DataPortalAsyncRequest(criteria));
 }

The method creates a BackgroundWorker object, sets up handlers for the RunWorkerCompleted and
DoWork events, and then starts the background task. It is important to realize that this method does
not block; instead, it completes and returns immediately, while the data portal request is being
processed on a background thread.

The DoWork handler executes the background task.

 private void Fetch_DoWork(
 object sender, System.ComponentModel.DoWorkEventArgs e)
 {
 var request = e.Argument as DataPortalAsyncRequest;
 SetThreadContext(request);

 object state = request.Argument;
 T result = default(T);
 if (state is int)
 result = (T)Csla.DataPortal.Fetch<T>();
 else
 result = (T)Csla.DataPortal.Fetch<T>(state);
 e.Result = new DataPortalAsyncResult(
 result, Csla.ApplicationContext.GlobalContext);
 }

This method runs on the background thread and delegates the call to Csla.DataPortal to do the
real work. However, it must deal with context information because ApplicationContext manages its
data on a per-thread basis. In other words, the ClientContext and GlobalContext values must be set
on the background thread before calling Csla.DataPortal, so the data portal can send them to the
application server like normal.

Lhotka_1019-1.book Page 456 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 457

Also notice that GlobalContext is included as part of the result returned through the
DataPortalAsyncResult object. Again, this value must be taken from the background thread and
made available to the calling thread.

The BackgroundWorker component’s RunWorkerCompleted event handler is invoked when DoWork
is complete, either successfully or due to an exception.

 private void Fetch_RunWorkerCompleted(
 object sender, System.ComponentModel.RunWorkerCompletedEventArgs e)
 {
 var result = e.Result as DataPortalAsyncResult;
 if (result != null)
 {
 _globalContext = result.GlobalContext;
 if (result.Result != null)
 OnFetchCompleted(new DataPortalResult<T>((T)result.Result, e.Error));
 else
 OnFetchCompleted(new DataPortalResult<T>(default(T), e.Error));
 }
 else
 OnFetchCompleted(new DataPortalResult<T>(default(T), e.Error));
 }

In a WPF or Windows Forms application, this method will run on the UI thread. In other envi-
ronments, such as ASP.NET, it will run on an indeterminate thread, so an ASP.NET developer must
be aware that her callback will also occur on an indeterminate thread.

This method raises the FetchCompleted event from the DataPortal<T> object by calling
OnFetchCompleted(). That event notifies the calling code that the async operation is complete.

Notice that the GlobalContext returned from the data portal call is placed into a _globalContext
field, and is thus exposed through a GlobalContext property on the DataPortal<T> object. The value
is not used to replace the GlobalContext on the calling thread, because numerous async operations
could be running at once, and they’d each overwrite the GlobalContext values. By providing the resulting
context through a property, it is up to the calling code to decide what to do with any returned context
values.

The other four methods work the same way, essentially wrapping Csla.DataPortal calls so they
occur on a background thread, with the results returned through an event.

At this point, the role of Csla.DataPortal and DataPortal<T> as gateways to the data portal overall
should be clear. The other end of the channel adapter is the Csla.Server.DataPortal class, which is
also the entry point to the message router pattern. I’ll discuss the details of Csla.Server.DataPortal
later in the chapter as part of the message router section.

First, though, I want to walk through the Local and WcfProxy classes, and corresponding host
classes, used to implement the primary data portal channels supported by CSLA .NET.

The IDataPortalServer Interface
Each channel comes in two parts: a proxy on the client and a host on the server. Csla.DataPortal
calls the proxy, which in turn transfers the call to the host by using its channel. The host then delegates
the call to a Csla.Server.DataPortal object. To ensure that all the parts of this chain can reliably
interact, there are two interfaces: Csla.Server.IDataPortalServer and
Csla.DataPortalClient.IDataPortalProxy.

The IDataPortalServer interface defines the methods common across the entire process.

Lhotka_1019-1.book Page 457 Tuesday, November 18, 2008 3:42 PM

458 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 public interface IDataPortalServer
 {
 DataPortalResult Create(
 Type objectType, object criteria, DataPortalContext context);
 DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context);
 DataPortalResult Update(object obj, DataPortalContext context);
 DataPortalResult Delete(
 Type objectType, object criteria, DataPortalContext context);
 }

Notice that these are the same method signatures as implemented in the static methods on
Csla.DataPortal, making it easy for that class to delegate its calls through a proxy and host all the way
to Csla.Server.DataPortal.

The IDataPortalProxy Interface
All the proxy classes implement a common Csla.DataPortalClient.IDataPortalProxy interface so
they can be used by Csla.DataPortal. This interface inherits from Csla.Server.IDataPortalServer,
ensuring that all proxy classes will have the same methods as all server-side host classes.

 public interface IDataPortalProxy : Server.IDataPortalServer
 {
 bool IsServerRemote { get;}
 }

In addition to the four data methods, proxy classes need to report whether they interact with an
actual server-side host or not. As you’ll see, the LocalProxy interacts with a client-side host, while
WcfProxy interacts with a remote host. Recall that in Csla.DataPortal, the IsServerRemote property
was used to control whether the context data was set and restored. If the “server-side” code is running
inside the client process, then much of that work can be bypassed, improving performance.

The LocalProxy Class
The default option for a “network” channel is not to use the network at all, but rather to run the
“server-side” code inside the client process. This option offers the best performance, though
possibly at the cost of security or scalability. The various trade-offs of n-tier deployments were
discussed in Chapter 1.

Even when running the “server-side” code in-process on the client, the data portal uses a proxy
for the local “channel”: Csla.DataPortalClient.LocalProxy. As with all proxy classes, this one imple-
ments the Csla.DataPortalClient.IDataPortalProxy interface, exposing a standard set of methods
and properties for use by Csla.DataPortal.

Because this proxy doesn’t actually use a network protocol, it is the simplest of all the proxies.

 public class LocalProxy : DataPortalClient.IDataPortalProxy
 {
 private Server.IDataPortalServer _portal =
 new Server.DataPortal();

 public DataPortalResult Create(
 Type objectType, object criteria, DataPortalContext context)
 {
 return _portal.Create(objectType, criteria, context);
 }

Lhotka_1019-1.book Page 458 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 459

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 return _portal.Fetch(objectType, criteria, context);
 }

 public DataPortalResult Update(object obj, DataPortalContext context)
 {
 return _portal.Update(obj, context);
 }

 public DataPortalResult Delete(
 Type objectType, object criteria, DataPortalContext context)
 {
 return _portal.Delete(objectType, criteria, context);
 }

 public bool IsServerRemote
 {
 get { return false; }
 }
 }

All this proxy does is directly create an instance of Csla.Server.DataPortal.

 private Server.IDataPortalServer _portal =
 new Server.DataPortal();

Each of the data methods (Create(), Fetch(), etc.) simply delegates to this object. The result is
that the client call is handled by a Csla.Server.DataPortal object running within the client AppDomain
and on the client’s thread. Due to this, the IsServerRemote property returns false.

The WcfProxy Class
More interesting is the WCF channel. This is implemented on the client by the WcfProxy class, and
on the server by the WcfPortal class. When Csla.DataPortal delegates a call into WcfProxy, it uses
WCF to pass that call to a WcfPortal object on the server. That object then delegates the call to a
Csla.Server.DataPortal object.

Because WCF automatically serializes objects across the network, the WcfProxy class is not much
more complex than LocalProxy. It relies on standard WCF configuration to determine how to communi-
cate with the application server. WCF configuration is provided through a system.serviceModel
element in the app.config file, and in this element the developer provides a client endpoint. That
endpoint specifies the address, binding, and contract for the server component.

The client endpoint has a name, which WCF uses to locate the right endpoint in the config file.
That name defaults to WcfDataPortal, but can be overridden by setting the static property named
EndPoint in the WcfProxy class.

 Csla.DataPortalClient.WcfProxy.EndPoint = "CustomDataPortalName";

The data portal methods use the name to retrieve the correct WCF configuration. All the methods
work the same; here’s the Fetch() method:

Lhotka_1019-1.book Page 459 Tuesday, November 18, 2008 3:42 PM

460 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 ChannelFactory<IWcfPortal> cf = new ChannelFactory<IWcfPortal>(_endPoint);
 IWcfPortal svr = cf.CreateChannel();
 WcfResponse response =
 svr.Fetch(new FetchRequest(objectType, criteria, context));
 cf.Close();

 object result = response.Result;
 if (result is Exception)
 throw (Exception)result;
 return (DataPortalResult)result;
 }

Each method gets a ChannelFactory corresponding to the specified endpoint, and uses that
ChannelFactory to create a proxy reference to the server.

 ChannelFactory<IWcfPortal> cf = new ChannelFactory<IWcfPortal>(_endPoint);
 IWcfPortal svr = cf.CreateChannel();

The server is then called.

 WcfResponse response =
 svr.Fetch(new FetchRequest(objectType, criteria, context));

Finally, the result (exception or not) is handled.

 object result = response.Result;
 if (result is Exception)
 throw (Exception)result;
 return (DataPortalResult)result;

The reason this is so simple is that WCF handles virtually all the details. The only limitation on
the use of WCF is that only synchronous bindings are supported. This means the most common
bindings—HTTP and TCP—work fine, as do named pipes or any other synchronous network
protocol.

The WcfPortal Class
You’ve seen the client proxy for the WCF channel. It requires that a WcfPortal object, implementing
an IWcfPortal interface, be hosted by the application server.

The WcfPortal object’s job is simple. It accepts a call from the client and delegates it to an instance
of Csla.Server.DataPortal. Of course, it is a WCF service, so more important than the WcfPortal class
is the IWcfPortal interface that defines the service contract.

 [ServiceContract(Namespace="http://ws.lhotka.net/WcfDataPortal")]
 public interface IWcfPortal
 {
 [OperationContract]
 [UseNetDataContract]
 WcfResponse Create(CreateRequest request);
 [OperationContract]
 [UseNetDataContract]
 WcfResponse Fetch(FetchRequest request);
 [OperationContract]
 [UseNetDataContract]

Lhotka_1019-1.book Page 460 Tuesday, November 18, 2008 3:42 PM

http://ws.lhotka.net/WcfDataPortal

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 461

 WcfResponse Update(UpdateRequest request);
 [OperationContract]
 [UseNetDataContract]
 WcfResponse Delete(DeleteRequest request);
 }

This interface defines the four methods supported by the IDataPortalServer interface, but it
doesn’t actually conform to that interface. The reason is that this is designed as a service-oriented
interface, where each method accepts a request message and returns a response message.

Each message type, such as FetchRequest, is a data contract, described with the DataContract
and DataMember attributes. You can look at the code in the download to see what property values are
passed to and from the data portal through these request and response messages.

Notice the UseNetDataContract attribute on each operation in the interface. By default, WCF
uses a serializer called the DataContractSerializer. Unfortunately, this serializer is not capable of
serializing an object graph such that you can deserialize the byte stream to get an exact clone of the
original graph. Luckily, WCF includes the NetDataContractSerializer that does provide the required
functionality, working with objects marked as Serializable or DataContract.

The UseNetDataContract attribute is a custom attribute provided by CSLA .NET that tells WCF to
use the NetDataContractSerializer instead of the DataContractSerializer when passing data to and
from the server.

The WcfPortal class itself simply implements the IWcfPortal interface. It has a couple of WCF
attributes on the class itself.

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class WcfPortal : IWcfPortal

The InstanceContextMode value is used to specify that each WCF call should be handled by an
independent instance of the WcfPortal object. This helps ensure isolation between data portal calls.

The AspNetCompatibilityRequirements attribute is used to indicate that the service can run in
ASP compatibility mode if requested. This is necessary to allow some Windows identity imperson-
ation scenarios.

The WcfPortal class implements the four data portal methods. Each one works the same way.
Here’s the Fetch() method:

 public WcfResponse Fetch(FetchRequest request)
 {
 Csla.Server.DataPortal portal = new Csla.Server.DataPortal();
 object result;
 try
 {
 result =
 portal.Fetch(request.ObjectType, request.Criteria, request.Context);
 }
 catch (Exception ex)
 {
 result = ex;
 }
 return new WcfResponse(result);
 }

The method simply accepts the client’s call, creates an instance of Csla.Server.DataPortal, and
delegates the call.

Lhotka_1019-1.book Page 461 Tuesday, November 18, 2008 3:42 PM

462 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

It catches all exceptions and returns any exception as part of the response message. This is
important, because this technique allows the entire server-side stack trace and other exception data
to flow back to the calling code on the client. That makes debugging much easier than if all that was
returned were the exception message text.

The proxy and host classes for .NET Remoting, Web Services, and Enterprise Services all work
in a similar manner. As these technologies are all effectively replaced by WCF, I won’t discuss them
in detail in this book.

At this point, you’ve seen the code that implements the channel adapter, including the Csla.
DataPortal class used by business developers and the LocalProxy and WcfProxy implementations,
along with the WCF host. Let’s move on now to discuss the server-side portions of the data portal,
starting with distributed transaction support, and then move on to the message router pattern.

Distributed Transaction Support
Though it may use different network channels to do its work, the primary job of Csla.DataPortal is
to delegate the client’s call to an object on the server. This object is of type Csla.Server.DataPortal,
and its primary responsibility is to route the client’s call to Csla.Server.SimpleDataPortal, which
actually implements the message router behavior.

Csla.Server.DataPortal is involved in this process so it can establish a distributed transactional
context if requested by the business object. The CSLA .NET framework allows a business developer
to choose between handling transactions manually, using Enterprise Services (COM+) transactions,
or using System.Transactions.

The Transactional Attribute
The business developer indicates his preference through the use of the custom Csla.
TransactionalAttribute. Earlier in the chapter, Table 15-4 listed all the possible options when using
this attribute on a DataPortal_XYZ or factory object method.

The TransactionalTypes enumerated list contains all the options that can be specified with the
Transactional attribute when it is applied to a data access method.

 public enum TransactionalTypes
 {
 EnterpriseServices,
 TransactionScope,
 Manual
 }

This type is used to define the parameter value for the constructor in the TransactionalAttribute
class.

The Csla.Server.DataPortal Object
Ultimately, all client calls go through the channel adapter and are handled on the server by an
instance of Csla.Server.DataPortal. This object uses the value of the Transactional attribute (if
any) on the data access method to determine how to route the call to the DataPortalSelector. The
call will go via one of the following three routes:

• The Manual option routes directly to DataPortalSelector.

• The EnterpriseServices option routes through ServicedDataPortal.

• The TransactionScope option routes through TransactionalDataPortal.

Lhotka_1019-1.book Page 462 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 463

The Csla.Server.DataPortal object also takes care of establishing the correct context on the server
based on the context provided by the client. I discuss the details of this process later in the chapter.

Csla.Server.DataPortal implements IDataPortalServer, and thus the four data methods. Each
of these methods follows the same basic flow:

1. Set up the server’s context.

2. Execute any attached IAuthorizeDataPortal object.

3. Get the metadata for the data access method to be invoked.

4. Check the Transactional attribute on that method metadata.

5. Route the call based on the Transactional attribute.

6. Clear the server’s context.

7. Return the result provided by DataPortalSelector.

As with most of the data portal classes, all the methods operate in much the same way. I’ll use
Fetch() and Update() as examples.

The Fetch Method

The Fetch() method implements the steps listed previously.

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 try
 {
 SetContext(context);

 Authorize(new AuthorizeRequest(
 objectType, criteria, DataPortalOperations.Fetch));

 DataPortalResult result;

 DataPortalMethodInfo method =
 DataPortalMethodCache.GetFetchMethod(objectType, criteria);

 IDataPortalServer portal;
 switch (method.TransactionalType)
 {
 case TransactionalTypes.EnterpriseServices:
 portal = new ServicedDataPortal();
 try
 {
 result = portal.Fetch(objectType, criteria, context);
 }
 finally
 {
 ((ServicedDataPortal)portal).Dispose();
 }
 break;
 case TransactionalTypes.TransactionScope:
 portal = new TransactionalDataPortal();
 result = portal.Fetch(objectType, criteria, context);
 break;

Lhotka_1019-1.book Page 463 Tuesday, November 18, 2008 3:42 PM

464 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 default:
 portal = new DataPortalSelector();
 result = portal.Fetch(objectType, criteria, context);
 break;
 }
 return result;
 }
 catch (Csla.Server.DataPortalException ex)
 {
 Exception tmp = ex;
 throw;
 }
 catch (Exception ex)
 {
 throw new DataPortalException(
 "DataPortal.Fetch " + Resources.FailedOnServer,
 ex, new DataPortalResult());
 }
 finally
 {
 ClearContext(context);
 }
 }

After setting the server’s context (a topic I discuss later in the chapter), the Authorize() method
is called. This method uses the value of CslaAuthorizationProvider from the config file to create and
call the Authorize() method on an IAuthorizeDataPortal implementation as discussed earlier in
this chapter. If no value is provided in the config file, a default Authorize() implementation is invoked
that allows all calls to execute.

The metadata for the data access method is then retrieved from the method cache (or loaded
into the cache if this is the first time the method has been called).

 DataPortalMethodInfo method =
 DataPortalMethodCache.GetFetchMethod(objectType, criteria);

This uses the same technique you saw in Csla.DataPortal earlier in the chapter. If the data portal is
running in 2-tier or local mode, then the “client” and “server” code share the same cache. If the data
portal is running in 3-tier or remote mode, then the client and server each maintain their own cache
of method metadata.

The DataPortalMethodInfo object includes a property that returns the Transactional attribute
value for the data access method. If there is no Transactional attribute on the method, then the
Manual type is returned as a default. The resulting value is used in a switch statement to properly
route the call. If EnterpriseServices was specified, then an instance of
Csla.Server.ServicedDataPortal is created and the call is delegated to that object.

 case TransactionalTypes.EnterpriseServices:
 portal = new ServicedDataPortal();
 try
 {
 result = portal.Fetch(objectType, criteria, context);
 }
 finally
 {
 ((ServicedDataPortal)portal).Dispose();
 }
 break;

Lhotka_1019-1.book Page 464 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 465

As with all Enterprise Services objects, a try...finally block is used to ensure that the object is
properly disposed when the call is complete. I’ll cover the details of the ServicedDataPortal class shortly.

If TransactionScope was specified, then an instance of Csla.Server.TransactionalDataPortal is
created and the call is delegated to that object.

 case TransactionalTypes.TransactionScope:
 portal = new TransactionalDataPortal();
 result = portal.Fetch(objectType, criteria, context);
 break;

I’ll cover details of the TransactionalDataPortal class shortly.
Finally, the default is to allow the business developer to handle any transactions manually. In

that case, an instance of Csla.Server.DataPortalSelector is created directly, and the call is dele-
gated to that object.

 default:
 portal = new DataPortalSelector();
 result = portal.Fetch(objectType, criteria, context);
 break;

Both ServicedDataPortal and TransactionalDataPortal delegate their calls to DataPortalSelector
too—so in the end, DataPortalSelector handles all client calls. By calling it directly, without involving
any transactional technologies, this default approach allows the business developer to handle any
transactions as she sees fit.

Once the Fetch() call is complete, the server’s context is cleared (details discussed later), and
the result is returned to the client.

 return result;

If an exception occurs during the processing, it is caught, the server’s context is cleared, and the
exception is rethrown so it can be handled by Csla.DataPortal, as discussed earlier in the chapter.

The Create() and Delete() methods are virtually identical to Fetch(). However, the Update()
method is a little different.

The Update Method

The Update() method is more complex. This is because Update() handles BusinessBase and CommandBase
subclasses differently from other objects. The specific DataPortal_XYZ method to be invoked
varies based on the base class of the business object. This complicates the process of retrieving the
MethodInfo object.

 DataPortalMethodInfo method;

 // ...

 string methodName;
 if (obj is CommandBase)
 methodName = "DataPortal_Execute";
 else if (obj is Core.BusinessBase)
 {
 Core.BusinessBase tmp = (Core.BusinessBase)obj;
 if (tmp.IsDeleted)
 methodName = "DataPortal_DeleteSelf";
 else
 if (tmp.IsNew)
 methodName = "DataPortal_Insert";

Lhotka_1019-1.book Page 465 Tuesday, November 18, 2008 3:42 PM

466 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 else
 methodName = "DataPortal_Update";
 }
 else
 methodName = "DataPortal_Update";

 method = DataPortalMethodCache.GetMethodInfo(
 obj.GetType(), methodName);

The same GetMethodInfo() call is used as in Fetch(), but the name of the method is determined
based on the type and state of the business object itself. If the business object is a subclass of
CommandBase, then the method name is DataPortal_Execute. For any other objects that don’t inherit
from BusinessBase, the method name is DataPortal_Update.

If the business object is a subclass of BusinessBase, however, the object’s state becomes impor-
tant. If the object is marked for deletion, then the method name is DataPortal_DeleteSelf. If the
object is new, the name is DataPortal_Insert; otherwise, it is DataPortal_Update.

Once the MethodInfo object has been retrieved, the rest of the code is essentially the same as in
the other three methods.

Now let’s discuss the two remaining classes that set up an appropriate transaction context.

The ServicedDataPortal Class
The ServicedDataPortal class has one job: to create a distributed COM+ transactional context within
which DataPortalSelector (and thus the business object) will run. When a call is routed through
ServicedDataPortal, a distributed transactional context is created, ensuring that the business object’s
DataPortal_XYZ methods run within that context.

Normally, to run within a COM+ distributed transaction, an object must inherit from System.
EnterpriseServices.ServicedComponent. This is a problem for typical business objects, since you
don’t usually want them to run within COM+, and no one likes all the deployment complexity that
comes with a ServicedComponent.

ServicedDataPortal allows business objects to avoid this complexity. It does inherit from
ServicedComponent, and it includes the appropriate Enterprise Services attributes to trigger the use
of a distributed transaction. But it turns out that when a ServicedComponent running in a transactional
context calls a normal .NET object, that object also runs in the transaction. This is true even when the
normal .NET object doesn’t inherit from ServicedComponent.

Figure 15-6 illustrates the use of this concept.

Figure 15-6. Using ServicedDataPortal to wrap a business object in a transaction

Lhotka_1019-1.book Page 466 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 467

Once the transactional context is established by ServicedDataPortal, all normal .NET objects
invoked from that point forward run within the same context.

ServicedDataPortal itself inherits from ServicedComponent in the System.EnterpriseServices
namespace and includes some key attributes.

 [Transaction(TransactionOption.Required)]
 [EventTrackingEnabled(true)]
 [ComVisible(true)]
 public class ServicedDataPortal : ServicedComponent, IDataPortalServer
 {
 }

The Transaction attribute specifies that this object must run within a COM+ transactional
context. If it is called by another object that already established such a context, this object will run
within that context; otherwise, it will create a new context.

The EventTrackingEnabled attribute indicates that this object will interact with COM+ to enable the
“spinning balls” in the component services management console. This is only important (or even visible)
if the data portal is running within COM+ on the server—meaning that the EnterpriseServicesProxy is
used by the client to interact with the server.

The ComVisible attribute makes this class visible to COM, which is a requirement for any class
that is to be hosted in COM+.

Because ServicedDataPortal inherits from ServicedComponent, the Csla.dll assembly itself
must be configured so it can be hosted in COM+. Specifically, the assembly must be signed with a key
(CslaKey.snk in the project), and the project must have a reference to the System.EntepriseServices
assembly.

The class also implements the IDataPortalServer interface, ensuring that it implements the
four data methods. Each of these methods has another Enterprise Services attribute: AutoComplete.

 [AutoComplete(true)]
 public DataPortalResult Update(
 object obj, DataPortalContext context)
 {
 var portal = new DataPortalSelector();
 return portal.Update(obj, context);
 }

The AutoComplete attribute is used to tell COM+ that this method will vote to commit the trans-
action unless it throws an exception. In other words, if an exception is thrown, the method will vote
to roll back the transaction; otherwise, it will vote to commit the transaction.

This fits with the overall model of the data portal, which relies on the business object to throw
exceptions in case of failure. The data portal uses the exception to return important information
about the failure back to the client. ServicedDataPortal also relies on the exception to tell COM+
to roll back the transaction.

Notice how the Fetch() method simply creates an instance of DataPortalSelector and delegates the
call to that object. This is the same thing that Csla.Server.DataPortal did for manual transactions,
except in this case, DataPortalSelector and the business object are wrapped in a distributed trans-
actional context.

The other three data methods are implemented in the same manner.

The TransactionalDataPortal Class
The TransactionalDataPortal is designed in a manner similar to ServicedDataPortal. Rather than
using Enterprise Services, however, this object uses the transactional capabilities provided by the
System.Transactions namespace, and in particular the TransactionScope object.

Lhotka_1019-1.book Page 467 Tuesday, November 18, 2008 3:42 PM

468 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

This class simply implements IdataPortalServer.

 public class TransactionalDataPortal : IDataPortalServer
 {
 }

This ensures that it implements the four data methods. Each of these methods follows the same
structure: create a TransactionScope object and delegate the call to an instance of DataPortalSelector.
For instance, here’s the Update() method:

 public DataPortalResult Update(
 object obj, DataPortalContext context)
 {
 DataPortalResult result;
 using (TransactionScope tr = new TransactionScope())
 {
 var portal = new DataPortalSelector();
 result = portal.Update(obj, context);
 tr.Complete();
 }
 return result;
 }

The first thing this method does is create a TransactionScope object from the System.
Transactions namespace. Just the act of instantiating such an object creates a transactional context.
It is not a distributed transactional context, but rather a lighter-weight context. If the business object
interacts with more than one database, however, it will automatically become a distributed transaction.

The using block here ensures both that the TransactionScope object will be properly disposed,
and perhaps more importantly, that the transaction will be committed or rolled back as appropriate.
If the object is disposed before the Complete() method is called, then the transaction is rolled back.
Again, this model relies on the underlying assumption that the business code will throw an exception
to indicate failure. This is the same model that is used by ServicedDataPortal, and really by the data
portal infrastructure overall.

Within the using block, the code creates an instance of DataPortalSelector and delegates the
call to that object, which in turn calls the business object. Assuming no exception is thrown by the
business object, the Complete() method is called to indicate that the transaction should be committed.

The other three methods are implemented in the same manner. Regardless of which transactional
model is used, all calls end up being handled by a DataPortalSelector object, which implements the
message router concept.

Message Router
The message router functionality picks up where the channel adapter leaves off. The channel adapter
gets the client call from the client to the server, ultimately calling Csla.Server.DataPortal. Recall
that every host class (LocalPortal, WcfPortal, etc.) ends up delegating every method call to an instance
of Csla.Server.DataPortal. That object routes the call to a DataPortalSelector object, possibly first
setting up a transactional context.

The focus in this section of the chapter will be on the DataPortalSelector, FactoryDataPortal,
and SimplePortal classes, which route the client request to the appropriate object and method
supplied by the business developer. Figure 15-7 shows the relationship between these three types.

The purpose of DataPortalSelector is to route the call to the appropriate object, so
SimpleDataPortal or FactoryDataPortal can call the data access method implemented by
the business developer.

Lhotka_1019-1.book Page 468 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 469

Figure 15-7. DataPortalSelector routes to SimpleDataPortal or FactoryDataPortal

The DataPortalSelector Class
The DataPortalSelector class determines if the business object has an ObjectFactory attribute and
uses that information to route the call. It calls a GetObjectFactoryAttribute() helper method from
the ObjectFactoryAttribute class.

 internal static ObjectFactoryAttribute GetObjectFactoryAttribute(
 Type objectType)
 {
 var result = objectType.GetCustomAttributes(
 typeof(ObjectFactoryAttribute), true);
 if (result != null && result.Length > 0)
 return result[0] as ObjectFactoryAttribute;
 else
 return null;
 }

This is standard reflection code for retrieving an attribute from a type.
The result is used in DataPortalSelector to route the call to the correct object. For example,

here’s the Fetch() method:

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 try
 {
 context.FactoryInfo =
 ObjectFactoryAttribute.GetObjectFactoryAttribute(objectType);
 if (context.FactoryInfo == null)
 {
 var dp = new SimpleDataPortal();
 return dp.Fetch(objectType, criteria, context);
 }

Lhotka_1019-1.book Page 469 Tuesday, November 18, 2008 3:42 PM

470 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 else
 {
 var dp = new FactoryDataPortal();
 return dp.Fetch(objectType, criteria, context);
 }
 }
 catch (DataPortalException)
 {
 throw;
 }
 catch (Exception ex)
 {
 throw new DataPortalException(
 "DataPortal.Fetch " + Resources.FailedOnServer,
 ex, new DataPortalResult());
 }
 }

If an ObjectFactory attribute is present, the call is routed to a FactoryDataPortal; otherwise, it
goes to a SimpleDataPortal.

The exception handling is perhaps the most interesting part of the code. It is possible for code
right here in DataPortalSelector to fail, so that must be handled by wrapping such an exception in
a DataPortalException. However, it is also possible that FactoryDataPortal or SimpleDataPortal
could have already caught and wrapped an exception into a DataPortalException. To avoid double-
wrapping of such exceptions, any DataPortalException is simply rethrown.

The SimpleDataPortal Class
If no ObjectFactory attribute is used, all client calls end up being handled on the server by an instance of
SimpleDataPortal. This class is the counterpart to the client-side Csla.DataPortal, since it is this class
that interacts directly with the business objects designed by the business developer.

SimpleDataPortal implements the four data methods defined by IDataPortalServer: Create(),
Fetch(), Update(), and Delete(). Each of these methods follows the same basic processing flow:

1. Create or get an instance of the business object.

2. Call the object’s DataPortal_OnDataPortalInvoke() method (if implemented).

3. Set the object’s status (new, dirty, etc.) as appropriate.

4. Call the appropriate DataPortal_XYZ method on the object.

5. Call the object’s DataPortal_OnDataPortalInvokeComplete() method (if implemented).

6. In case of exception, call the object’s DataPortal_OnDataPortalException() method (if imple-
mented) and throw a Csla.Server.DataPortalException.

7. Return the resulting business object (if appropriate).

As I’ve done previously in the chapter, I’ll walk through the Fetch() method and also discuss the
Update() method, as they are representative of the overall process.

The Fetch Method

The Fetch() method illustrates every step in the preceding list.

Lhotka_1019-1.book Page 470 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 471

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 LateBoundObject obj = null;
 IDataPortalTarget target = null;
 var eventArgs = new DataPortalEventArgs(
 context, objectType, DataPortalOperations.Fetch);
 try
 {
 // create an instance of the business object.
 obj = new LateBoundObject(objectType);

 target = obj.Instance as IDataPortalTarget;

 if (target != null)
 {
 target.DataPortal_OnDataPortalInvoke(eventArgs);
 target.MarkOld();
 }
 else
 {
 obj.CallMethodIfImplemented("DataPortal_OnDataPortalInvoke", eventArgs);
 obj.CallMethodIfImplemented("MarkOld");
 }

 // tell the business object to fetch its data
 if (criteria is int)
 obj.CallMethod("DataPortal_Fetch");
 else
 obj.CallMethod("DataPortal_Fetch", criteria);

 if (target != null)
 target.DataPortal_OnDataPortalInvokeComplete(eventArgs);
 else
 obj.CallMethodIfImplemented(
 "DataPortal_OnDataPortalInvokeComplete",
 eventArgs);

 // return the populated business object as a result
 return new DataPortalResult(obj.Instance);
 }
 catch (Exception ex)
 {
 try
 {
 if (target != null)
 target.DataPortal_OnDataPortalException(eventArgs, ex);
 else
 obj.CallMethodIfImplemented(
 "DataPortal_OnDataPortalException",
 eventArgs, ex);
 }

Lhotka_1019-1.book Page 471 Tuesday, November 18, 2008 3:42 PM

472 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 catch
 {
 // ignore exceptions from the exception handler
 }
 object outval = null;
 if (obj != null) outval = obj.Instance;
 throw new DataPortalException(
 "DataPortal.Fetch " + Resources.FailedOnServer,
 ex, new DataPortalResult(outval));
 }
 }

The first step is to create an instance of the business object. This is done using a feature of the
LateBoundObject type from the Csla.Reflection namespace. LateBoundObject uses dynamic method
invocation to create an instance of the business object, even if the business class has a non-public
default constructor.

 obj = new LateBoundObject(objectType);

The constructors on business classes are not normally public. They are either private or protected,
thus forcing the UI developer to use the factory methods to create or retrieve business objects.

If it is not already loaded into memory, the .NET runtime will automatically load the assembly
containing the business object class.

■Tip To ensure .NET can find your business assembly, the assembly must be in the same directory as the client
application’s exe file, in the Bin directory. Alternatively, you may install the assembly into the .NET GAC. A more
advanced solution is to handle the current AppDomain object’s AssemblyResolve event, where you would load
the desired assembly and provide it to the .NET runtime.

The objectType parameter is passed from the client. Recall that in Csla.DataPortal, the type of
the object to be created was determined and passed as a parameter to the Fetch() method.

The next step in the process is to tell the business object that it is about to be invoked by the data
portal. To minimize the use of reflection, an attempt is made to cast the object to the IDataPortalTarget
interface. Technically, the data portal can work with nearly any Serializable .NET object, even if
the object isn’t based on a CSLA .NET base class. In such a case, the object might not implement
IDataPortalTarget, so the data portal doesn’t assume that all objects will implement the interface.

If the cast succeeds, the interface is used to invoke the method; otherwise, MethodCaller is used
to invoke the method by name.

 target = obj.Instance as IDataPortalTarget;

 if (target != null)
 {
 target.DataPortal_OnDataPortalInvoke(eventArgs);
 target.MarkOld();
 }
 else
 {
 obj.CallMethodIfImplemented("DataPortal_OnDataPortalInvoke", eventArgs);
 obj.CallMethodIfImplemented("MarkOld");
 }

Lhotka_1019-1.book Page 472 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 473

■Note The IDataPortalTarget interface is scoped as internal to avoid exposing these methods to code outside
the data portal. This interface is implemented by the CSLA .NET base classes, so reflection is not used when inter-
acting with most business objects.

A business developer can override the DataPortal_OnDataPortalInvoke() method to do any
preprocessing prior to an actual DataPortal_XYZ method being called.

Also notice that the object’s status is updated with a call to MarkOld(). Because Fetch() is retrieving
already existing data from the database, the object will meet the definition of being “old” when this
method completes. Object status values were discussed in Chapter 8.

The next step is to call the actual DataPortal_XYZ method.

 if (criteria is int)
 obj.CallMethod("DataPortal_Fetch");
 else
 obj.CallMethod("DataPortal_Fetch", criteria);

Remember that the obj field is a LateBoundObject that wraps the business object. This means
when CallMethod() is used, the business object’s method is invoked using a dynamic delegate.

A criteria object must be some actual object, not a primitive type. But Csla.DataPortal has over-
loads for Fetch() that don’t require any criteria parameter. No parameter at all is not the same as
null, so the data portal uses a “magic value” to indicate whether no parameter was passed. If an int
value is provided as the criteria, that indicates that no value was supplied, not even null.

Consider the following code:

result = DataPortal.Fetch();
result = DataPortal.Fetch(null);
result = DataPortal.Fetch(new SingleCriteria<CustomerEdit, int>(123));

The first call should route to

 private void DataPortal_Fetch()

The second two expect a method that accepts one parameter. Perhaps this:

 private void DataPortal_Fetch(SingleCriteria<CustomerEdit, int> criteria)

Behind the scenes, the data portal uses an int value to specify that no parameter was provided,
so the parameterless call to Fetch() is routed correctly.

Now that the DataPortal_Fetch() method has been invoked, the object is notified that the data
portal processing is complete.

 if (target != null)
 target.DataPortal_OnDataPortalInvokeComplete(eventArgs);
 else
 obj.CallMethodIfImplemented(
 "DataPortal_OnDataPortalInvokeComplete",
 eventArgs);

Finally, the newly created object is wrapped in a Csla.Server.DataPortalResult object
and returned.

 return new DataPortalResult(obj.Instance);

Again, remember that obj is a LateBoundObject, so its Instance property is used to retrieve the
actual business object it contains.

Lhotka_1019-1.book Page 473 Tuesday, November 18, 2008 3:42 PM

474 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

That concludes the normal sequence of events in the method. Of course, it is possible that an
exception occurred during the processing. In that case, the exception is caught and the object is notified
that an exception occurred.

 try
 {
 if (target != null)
 target.DataPortal_OnDataPortalException(eventArgs, ex);
 else
 obj.CallMethodIfImplemented(
 "DataPortal_OnDataPortalException",
 eventArgs, ex);
 }
 catch
 {
 // ignore exceptions from the exception handler
 }

This optional call to DataPortal_OnDataPortalException() is wrapped in its own try...catch
statement. Even if an exception occurs while calling this method, the code needs to continue. There’s
little that can be done if the exception-handling code has an exception, so such an exception is
simply ignored.

In any case, the exception is wrapped in a Csla.Server.DataPortalException, which is thrown
back to Csla.DataPortal.

 object outval = null;
 if (obj != null) outval = obj.Instance;
 throw new DataPortalException(
 "DataPortal.Fetch " + Resources.FailedOnServer,
 ex, new DataPortalResult(outval));

Remember that DataPortalException contains the original exception as an InnerException, and
also traps the stack trace from the server exception so it is available on the client. Also keep in mind
that all the proxy/host channel implementations ensure that the exception is returned to the client
with full fidelity, so Csla.DataPortal gets the full exception detail regardless of the network channel used.

At this point, you should understand how the flow of the data methods is implemented. The
remaining methods the same flow with minor variations, with the Update() method being the most
unique.

The Update Method

The Update() method is more complex. Remember that the Update() process adapts itself to the type
of business object being updated, so it checks to see if the object is a subclass of BusinessBase or
CommandBase and behaves appropriately. Also recall that the actual business object is passed as a
parameter to Update(), so this method doesn’t need to create an instance of the business object at
all.

Processing a BusinessBase Object

It starts right out by attempting to cast the business object as BusinessBase. If the cast succeeds, the
resulting BusinessBase field is used to check the object’s status. Also notice the use of the lb field.
This field is a LateBoundObject instance that wraps the business object, simplifying dynamic calls to
properties and methods.

Lhotka_1019-1.book Page 474 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 475

 var busObj = obj as Core.BusinessBase;
 if (busObj != null)
 {
 if (busObj.IsDeleted)
 {
 if (!busObj.IsNew)
 {
 // tell the object to delete itself
 lb.CallMethod("DataPortal_DeleteSelf");
 }
 if (target != null)
 target.MarkNew();
 else
 lb.CallMethodIfImplemented("MarkNew");
 }
 else
 {
 if (busObj.IsNew)
 {
 // tell the object to insert itself
 lb.CallMethod("DataPortal_Insert");
 }
 else
 {
 // tell the object to update itself
 lb.CallMethod("DataPortal_Update");
 }
 if (target != null)
 target.MarkOld();
 else
 lb.CallMethodIfImplemented("MarkOld");
 }
 }

If the object’s IsDeleted property returns true, then the object should be deleted. It is possible
that the object is also new, in which case there’s actually nothing to delete; otherwise, the DataPortal_
DeleteSelf() method is invoked.

In either case, the MarkNew() method is invoked to reset the object’s state to new and dirty. From
Chapter 8, the definition of a “new” object is that its primary key value isn’t in the database, and since
that data was just deleted, the object certainly meets that criteria. The definition of a “dirty” object
is that its data values don’t match values in the database, and again, the object now certainly meets
that criteria as well.

If the object wasn’t marked for deletion, then it will need to be either inserted or updated. If
IsNew is true, then DataPortal_Insert() is invoked. Similarly, if the object isn’t new, then DataPortal_
Update() is invoked. In either case, the object’s primary key and data values now reflect values in the
database, so the object is clearly not new or dirty. The MarkOld() method is called to set the object’s
state accordingly.

Processing a CommandBase Object

If the business object inherits from Csla.CommandBase, things are simpler. In this case, only the object’s
DataPortal_Execute() method is invoked:

Lhotka_1019-1.book Page 475 Tuesday, November 18, 2008 3:42 PM

476 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 else if (obj is CommandBase)
 {
 operation = DataPortalOperations.Execute;
 // tell the object to update itself
 lb.CallMethod("DataPortal_Execute");
 }

A command object should implement all server-side code in its DataPortal_Execute() method.

Processing All Other Objects

For any other objects (most commonly subclasses of BusinessListBase), the DataPortal_Update()
method is invoked, followed by an optional call to MarkOld().

 lb.CallMethod("DataPortal_Update");
 if (target != null)
 target.MarkOld();
 else
 lb.CallMethodIfImplemented("MarkOld");

As in Fetch(), the DataPortal_OnDataPortalInvoke() method is called before any of this other
processing, and DataPortal_OnDataPortalInvokeComplete() is called once it is all done. The business
object is returned as a result, wrapped in a DataPortalResult object. Any exceptions are handled in
the same way as in Fetch().

That completes the SimpleDataPortal class. Notice how all client calls are automatically routed
to a dynamically created business object based on the type of business object required. SimpleDataPortal
is entirely unaware of the particulars of any business application; it blindly routes client calls to the
appropriate destinations.

The FactoryDataPortal Class
The FactoryDataPortal is invoked when the business object has an ObjectFactory attribute. In some
ways, this is the simpler of the two classes, because it pushes more of the work on the author of the
factory object. Though this means the business developer does more work, it also means the business
developer has more flexibility.

The FactoryLoader Property
Earlier in the chapter, the DataPortalSelector code called a static property named FactoryLoader.
The FactoryLoader property uses the CslaObjectFactoryLoader config setting from the appSettings
element to create an object that can load factory objects.

 public static IObjectFactoryLoader FactoryLoader
 {
 get
 {
 if (_factoryLoader == null)
 {
 string setting =
 ConfigurationManager.AppSettings["CslaObjectFactoryLoader"];
 if (!string.IsNullOrEmpty(setting))
 _factoryLoader =
 (IObjectFactoryLoader)Activator.CreateInstance(
 Type.GetType(setting, true, true));

Lhotka_1019-1.book Page 476 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 477

 else
 _factoryLoader = new ObjectFactoryLoader();
 }
 return _factoryLoader;
 }
 set
 {
 _factoryLoader = value;
 }
 }

This approach provides a level of indirection that can be useful for swapping out data access
layer implementations. CSLA .NET provides a default factory loader, ObjectFactoryLoader, which
interprets the ObjectFactory attribute’s factory name parameter as an assembly qualified type
name—for example:

 [ObjectFactory("Namespace.TypeName, Assembly")]

The default ObjectFactoryLoader uses this text value to create an instance of the specified
type. However, a business developer could create her own factory loader by implementing
IObjectFactoryLoader from the Csla.Server namespace and telling CSLA .NET to use her factory
loader by setting the CslaObjectFactoryLoader config value. Her custom factory loader could interpret
the ObjectFactory parameter value in any way, such as looking up the type name from an XML file.

In any case, the FactoryLoader property returns an IObjectFactoryLoader, which must imple-
ment the two methods listed in Table 15-16.

The other data portal classes you’ve seen in this chapter use the GetFactoryType() method to get
type information about the factory object when necessary. In the end, though, it is the FactoryDataPortal
itself that calls GetFactory() to create an instance of the factory object. That occurs within the various
data portal methods.

As with the other data portal types, FactoryDataPortal implements the Create(), Fetch(),
Update(), and Delete() methods. These methods are all implemented using the same process:

1. Invoke the specified factory method.

2. Wrap any exceptions in a DataPortalException.

3. Return any result.

The Fetch Method

Since all the methods are the same, I’ll only walk through the Fetch() method.

Table 15-16. Methods Defined by IObjectFactoryLoader

Method Description

GetFactoryType() Returns a Type object corresponding to the type of factory object that
will be used

GetFactory() Returns an instance of the factory object to be used

Lhotka_1019-1.book Page 477 Tuesday, November 18, 2008 3:42 PM

478 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

 public DataPortalResult Fetch(
 Type objectType, object criteria, DataPortalContext context)
 {
 try
 {
 DataPortalResult result = null;
 if (criteria is int)
 result = InvokeMethod(
 context.FactoryInfo.FactoryTypeName,
 context.FactoryInfo.FetchMethodName,
 context);
 else
 result = InvokeMethod(
 context.FactoryInfo.FactoryTypeName,
 context.FactoryInfo.FetchMethodName,
 criteria, context);
 return result;
 }
 catch (Exception ex)
 {
 throw new DataPortalException(
 context.FactoryInfo.FetchMethodName + " " + Resources.FailedOnServer,
 ex, new DataPortalResult());
 }
 }

The InvokeMethod() helper is used to make the actual method call on the factory object. There
are two overloads: one with a criteria parameter and one without. Again, the “magic type” of int is
used to indicate that no criteria value was provided by the client code.

Any exception is wrapped into a DataPortalException and thrown back to the caller.

The InvokeMethod Method

The InvokeMethod() method follows these steps:

1. Create an instance of the factory object.

2. Call an Invoke() method (if present).

3. Call the data access method.

4. Call an InvokeComplete() method (if present).

5. If an exception occurs, call an InvokeError() method (if present).

6. Return the result.

The optional Invoke(), InvokeComplete(), and InvokeError() methods may be implemented by
a factory object if the factory wants to do pre- or post-processing.

Here’s the InvokeMethod() code:

 private DataPortalResult InvokeMethod(
 string factoryTypeName, string methodName,
 object e, DataPortalContext context)
 {
 object factory = FactoryLoader.GetFactory(factoryTypeName);
 Csla.Reflection.MethodCaller.CallMethodIfImplemented(
 factory, "Invoke", context);

Lhotka_1019-1.book Page 478 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 479

 object result = null;
 try
 {
 result = Csla.Reflection.MethodCaller.CallMethod(
 factory, methodName, e);
 Csla.Reflection.MethodCaller.CallMethodIfImplemented(
 factory, "InvokeComplete", context);
 }
 catch (Exception ex)
 {
 Csla.Reflection.MethodCaller.CallMethodIfImplemented(
 factory, "InvokeError", ex);
 throw;
 }
 return new DataPortalResult(result);
 }

You can see how each step is implemented by using the MethodCaller component from Csla.
Reflection to dynamically invoke the various methods. Because the names of the create, fetch, update,
and delete methods can be specified as parameters to the ObjectFactory attribute, the actual method
invocation uses the supplied name.

 result = Csla.Reflection.MethodCaller.CallMethod(
 factory, methodName, e);

This particular overload of InvokeMethod() provides a criteria parameter to the method. The
other overload does the same work, but doesn’t provide a criteria parameter.

 result = Csla.Reflection.MethodCaller.CallMethod(
 factory, methodName);

In both overloads, the steps are the same, and the result is that the appropriate data access
method is invoked on the factory object.

Whether the business class has the ObjectFactory attribute or not, the result of a call to
DataPortalSelector is that a business object is created, retrieved, updated, or deleted. The result, or
resulting DataPortalException, is returned to Csla.Server.DataPortal and from there to the client’s
Csla.DataPortal and to the client code itself.

The ChildDataPortal Class
Earlier in the chapter, I discussed how the data portal supports creating, retrieving, and updating
child objects. The Csla.DataPortal class exposes a set of methods that a business class can use to
trigger these behaviors, but those methods ultimately delegate to the ChildDataPortal class where
the real work occurs.

The ChildDataPortal class implements the methods listed in Table 15-17.

Table 15-17. Methods Implemented by ChildDataPortal

Method Description

Create() Creates an instance of the child object and invokes its Child_Create() method

Fetch() Creates an instance of the child object and invokes its Child_Fetch() method

Update() Invokes Child_Insert(), Child_Update(), or Child_DeleteSelf() on the child object
based on the child object’s state

Lhotka_1019-1.book Page 479 Tuesday, November 18, 2008 3:42 PM

480 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The overall behavior of these methods is similar to how the SimpleDataPortal works with root
objects, in that the ChildDataPortal is responsible for calling predefined methods on the child object.
There are even pre- and post-processing methods so the business object developer can be notified
before and after the data access method has been invoked.

The Create() and Fetch() methods are virtually identical. The Update() method does the same
things, but as with the other Update() methods you’ve seen, it uses the child object’s IsNew and
IsDeleted properties to decide which Child_XYZ method to invoke.

Because these methods are so similar to those in SimpleDataPortal, I won’t repeat the code
here. You should understand that each method follows a set of steps:

1. Create or get an instance of the business object.

2. Call the object’s Child_OnDataPortalInvoke() method (if implemented).

3. Set the object’s status (new, dirty, etc.) as appropriate.

4. Call the appropriate Child_XYZ method on the object.

5. Call the object’s Child_OnDataPortalInvokeComplete() method (if implemented).

6. In case of exception, call the object’s Child_OnDataPortalException() method (if imple-
mented) and throw a Csla.DataPortalException.

7. Return the resulting business object (if appropriate).

As you can see, these are the same steps followed by the SimpleDataPortal methods, except
Child_XYZ methods are called instead of DataPortal_XYZ methods. The same dynamic delegate
scheme is used, which means LateBoundObject and MethodCaller are leveraged to call the methods
dynamically.

By supporting child objects, the data portal enables the same coding model for both root and
child objects, which makes it easier to build and maintain business objects.

Context and Location Transparency
The final major area of functionality provided by the data portal is that it manages context informa-
tion to provide a level of location transparency between the client and server. Specifically, it allows
the business application to pass data from the client to the server and from the server to the client on
each data portal call, in addition to the actual call itself. The data portal uses this capability itself to
pass security and culture information from the client to the server.

You’ve already seen most of the code that implements the context-passing behaviors. Csla.
DataPortal is responsible for passing the client context to the server and for updating the client’s
context with any changes from the server. Csla.Server.DataPortal is responsible for setting the
server’s context based on the data passed from the client, and for returning the global context from
the server back to the client.

To maintain the context and pass it between client and server, several objects are used. Let’s
discuss them now.

The DataPortalContext Class
Earlier in the chapter, you saw how the Csla.DataPortal class implements static methods used by
business developers to interact with the data portal. Each of those methods dealt with context data—
creating a DataPortalContext object to pass to the server. On the server, Csla.Server.DataPortal
uses the data in DataPortalContext to set up the server’s context to match the client.

Lhotka_1019-1.book Page 480 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 481

Of course, the phrase “on the server” is relative, since the data portal could be configured to use
the LocalProxy. In that case, the “server-side” components actually run in the same process as your
client code. Obviously, the context data is already present in that case, so there’s no need to transfer
it; and the data portal includes code to short-circuit the process when the server-side data portal
components are running locally.

The DataPortalContext object is created and initialized in Csla.DataPortal within each
data method.

 dpContext =
 new Server.DataPortalContext(GetPrincipal(),
 proxy.IsServerRemote);

The DataPortalContext object is a container for the set of context data to be passed from the
client to the server. The data it contains is defined by the fields declared in DataPortalContext.

 private IPrincipal _principal;
 private bool _remotePortal;
 private string _clientCulture;
 private string _clientUICulture;
 private ContextDictionary _clientContext;
 private ContextDictionary _globalContext;

■Note The ContextDictionary type is a special dictionary type that is compatible with CSLA .NET for Silver-
light. CSLA .NET for Silverlight is outside the scope of this book, but you should understand that ContextDictionary is
a subclass of HybridDictionary, enhanced so it can be serialized to and from Silverlight.

These data elements were described in Table 15-5 earlier in the chapter. The key here is that
DataPortalContext is marked as Serializable, and therefore when it is serialized, all the values in
these fields are also serialized.

The values are loaded when the DataPortalContext object is created. The two culture values are
pulled directly off the client’s current Thread object. The _clientContext and _globalContext values
are set based on the values in Csla.ApplicationContext.

Each of the values is exposed through a corresponding property so they can be used to set up the
context data on the server.

Setting the Server Context

The server’s context is set by Csla.Server.DataPortal as the first step in each of the four data methods.
The work is handled by the SetContext() method in Csla.Server.DataPortal. This method follows
this basic flow:

1. Do nothing if the “server” code is running on the client; otherwise, call ApplicationContext
to set the client and global context collections.

2. Set the server Thread to use the client’s culture settings.

3. If using Windows authentication, set the AppDomain to use the WindowsPrincipal.

Lhotka_1019-1.book Page 481 Tuesday, November 18, 2008 3:42 PM

482 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

4. If using custom authentication, set the server Thread to use the IPrincipal supplied from
the client.

Let’s walk through the code in SetContext() that implements these steps. First is the check to
see if the “server” code is actually running locally in the client process (using the LocalProxy in the
channel adapter).

 if (!context.IsRemotePortal) return;

If the server code is running locally, then there’s no sense setting any context data, because it is
already set up. If the server code really is running remotely, though, the context data does need to be
set up on the server, starting by restoring the client and global context data.

 ApplicationContext.SetContext(
 context.ClientContext, context.GlobalContext);

Remember that the client context comes from the client to the server only, while the global
context will ultimately be returned to the client, reflecting any changes made on the server. The
ApplicationContext also has an ExecutionLocation property that business code can use to deter-
mine whether the code is currently executing on the client or the server. This value must be set to
indicate that execution is on the server.

 ApplicationContext.SetExecutionLocation(
 ApplicationContext.ExecutionLocations.Server);

Like the client context, the two culture values flow from the client to the server. They are used
to set the current Thread object on the server to match the client settings.

 System.Threading.Thread.CurrentThread.CurrentCulture =
 new System.Globalization.CultureInfo(context.ClientCulture);
 System.Threading.Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo(context.ClientUICulture);

Of the two, perhaps the most important is the CurrentUICulture, as this is the setting that dictates
the language used when retrieving resource values such as those used throughout the CSLA .NET
framework.

Finally, if custom authentication is being used, the IPrincipal object representing the user’s
identity is passed from the client to the server. It must be set on the current Thread or HttpContext as the
CurrentPrincipal or User to effectively impersonate the user on the server. Csla.ApplicationContext
handles this.

 if (ApplicationContext.AuthenticationType == "Windows")
 {
 // When using integrated security, Principal must be null
 if (context.Principal != null)
 {
 System.Security.SecurityException ex =
 new System.Security.SecurityException(
 Resources.NoPrincipalAllowedException);
 ex.Action = System.Security.Permissions.SecurityAction.Deny;
 throw ex;
 }
 // Set .NET to use integrated security
 AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);
 }

Lhotka_1019-1.book Page 482 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 483

 else
 {
 // We expect some Principal object
 if (context.Principal == null)
 {
 System.Security.SecurityException ex =
 new System.Security.SecurityException(
 Resources.BusinessPrincipalException + " Nothing");
 ex.Action = System.Security.Permissions.SecurityAction.Deny;
 throw ex;
 }
 ApplicationContext.User = context.Principal;

There’s a lot going on here, so let’s break it down a bit. First, there’s the check to ensure that
custom authentication is being used. If Windows integrated (AD) security is being used, then Windows
itself handles any impersonation, based on the configuration of the host (IIS, WAS, COM+, etc). In
that case, the IPrincipal value passed from the client must be null; otherwise, it will be invalid, and
the code will throw an exception.

■Tip The check of the principal object’s type is done to ensure that both the client and the server are using the
same authentication scheme. If the client is using custom authentication and the server is using Windows integrated
security, this exception will be thrown. Custom authentication was discussed in Chapter 12.

If the server is configured to use custom authentication, however, the rest of the code is executed.
In that case, the first step is to make sure that the client did pass a valid IPrincipal object to the server.
“Valid” in this case means that it isn’t null. Given a valid IPrincipal object, the server’s principal
value is set to match that of the client. An invalid IPrincipal value results in an exception being thrown.

Remember that an IAuthorizeDataPortal implementation can be provided to further authorize
each data portal request, as I discussed earlier in this chapter.

Clearing the Server Context

Once all the server-side processing is complete, the server clears the context values on its Thread
object. This is done to prevent other code from accidentally gaining access to the client’s context
or security information. Csla.Server.DataPortal handles this in its ClearContext() method.

 private static void ClearContext(DataPortalContext context)
 {
 // if the dataportal is not remote then
 // do nothing
 if (!context.IsRemotePortal) return;
 ApplicationContext.Clear();
 if (ApplicationContext.AuthenticationType != "Windows")
 ApplicationContext.User = null;
 }

This method is called at the end of each data method in Csla.Server.DataPortal. Notice that it
calls Csla.ApplicationContext to clear the client and global context values. Then if custom authen-
tication is being used, Csla.ApplicationContext is called to set the principal value to null, removing
the IPrincipal value from the server thread.

Lhotka_1019-1.book Page 483 Tuesday, November 18, 2008 3:42 PM

484 CH AP T E R 1 5 ■ P E R S IS TE N CE AN D T HE D AT A P O R TA L

The DataPortalResult Class
Using the DataPortalContext object, Csla.DataPortal and Csla.Server.DataPortal convey client
context data to the server. That’s great for the client context, client culture, and client IPrincipal,
but the global context data needs to be returned to the client when the server is done. This is handled
by Csla.Server.DataPortalResult on a successful call, and Csla.Server.DataPortalException in the
case of a server-side exception.

The Csla.Server.DataPortalResult object is primarily responsible for returning the business
object that was created, retrieved, or updated on the server back to the client. However, it also contains
the global context collection from the server.

When the DataPortalResult object is created by FactoryDataPortal or SimpleDataPortal, it auto-
matically pulls the global context data from ApplicationContext.

 public DataPortalResult(object returnObject)
 {
 _returnObject = returnObject;
 _globalContext = ApplicationContext.GetGlobalContext();
 }

This way, the global context data is carried back to the client along with the business object.

Csla.Server.DataPortalException
Where Csla.Server.DataPortalResult returns the business object and context to the client for a
successful server-side operation, Csla.Server.DataPortalException returns that data in the case
of a server-side exception. Obviously, the primary responsibility of DataPortalException is to return
the details about the exception, including the server-side stack trace, back to the client. This infor-
mation is captured when the exception is created.

 public DataPortalException(
 string message, Exception ex, DataPortalResult result)
 : base(message, ex)
 {
 _innerStackTrace = ex.StackTrace;
 _result = result;
 }

Notice that a DataPortalResult object is required as a parameter to the constructor. This
DataPortalResult object is returned to the client as part of the exception, thus ensuring that both the
business object (exactly as it was when the exception occurred) and the global context from the server
are returned to the client as well.

At this point, you have walked through all the various types and classes used to implement the
core mobile object and data access functionality in the framework.

Lhotka_1019-1.book Page 484 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 5 ■ P E R S IS TE N CE A N D T HE DA TA P O R TA L 485

Conclusion
This chapter has walked through the various types and classes in the framework that enable both
mobile objects and data access. The details of mobile objects are managed by a concept called the
data portal. You should understand that the data portal incorporates several areas of functionality:

• Logical separation of business and data access layers

• Consistent coding model for root and child objects

• Channel adapter design pattern

• Flexible distributed transactional support

• Message router design pattern

• Context and location transparency

The channel adapter provides for flexibility in terms of how (or if) the client communicates with
an application server to run server-side code. The distributed transactional support abstracts the use
of Enterprise Services or System.Transactions. The message router handles the routing of client calls
to your business components on the server, minimizing the coupling between client and server by
enabling a single point of entry to the server. Behind the scenes, the data portal provides transparent
context flow from the client to the server and back to the client. This includes implementing imper-
sonation when using custom authentication.

At this point, the discussion of the CSLA .NET framework implementation is nearly complete.
Chapter 16 will cover various other features of the framework, and then Chapters 17 onward will
discuss how to use the framework to build applications.

Lhotka_1019-1.book Page 485 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 486 Tuesday, November 18, 2008 3:42 PM

487

■ ■ ■

C H A P T E R 1 6

Other Framework Features

This is the final chapter covering the implementation of the CSLA .NET framework. The framework
is based on the concepts in Chapter 1 and the design in Chapter 2. Chapters 6 through 15 walked
through the implementation of the major features of the framework, including the base classes, vali-
dation, authorization, LINQ to CSLA, data binding, and the concept of mobile objects and support
for object persistence.

This chapter concludes the implementation of the framework by discussing several classes that
are useful when building business applications. The following topic areas will be addressed:

• Date handling

• Data access

• Executing workflows

There are many views on what makes good UI design. One common view holds that the user
should be free to enter arbitrary text and it is up to the application to try and make sense of the entry.
Nowhere is this truer than with date values, and the SmartDate type is designed to simplify how a
business developer uses dates and exposes them to the UI.

When it comes to data access, the .NET Framework provides powerful support through many
technologies, including LINQ to SQL, the ADO.NET Entity Framework, and raw ADO.NET itself.
Even with all these options, dealing with data remains somewhat complex.

It is quite common to use TransactionScope to manage transactions, but to avoid the overhead
of the DTC, you must ensure that only one database connection is opened during the entire transac-
tion. The ConnectionManager, ObjectContextManager, and ContextManager classes help make that
easy to implement in your data access code.

Another common issue when using raw ADO.NET is that database columns often store null
values, but the application requires simpler, empty values (e.g., an empty string instead of a null).
The SafeDataReader eliminates null values from the data, transforming them into appropriate empty
values instead.

Yet another issue when dealing with data, especially in Web Forms and XML services, is that
data must be copied from business objects into and out of other types of objects. This is especially
true when building web services because data coming into a web service is contained in a proxy
object, and that data must be moved into or out of your business objects. The DataMapper class helps
streamline this process, reducing the amount of code you must write and maintain.

You can use business objects with workflows. Workflows consist of activities, and each activity
is a stand-alone piece of functionality that can be implemented using business objects. That doesn’t
require any extra support from CSLA .NET. But business objects, especially using the command
object stereotype, can be used to execute workflows and CSLA .NET includes the WorkflowManager
class to simplify that process.

Lhotka_1019-1.book Page 487 Tuesday, November 18, 2008 3:42 PM

488 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

As you can see, this chapter is a collection of topics that don’t fit neatly into the categories
covered in the chapters thus far. But the elements discussed here are often some of the most widely
used parts of the CSLA .NET framework.

Date Handling with SmartDate
One common view of good UI design holds that the user should be free to enter arbitrary text and it
is up to the application to make sense of the entry. Nowhere is this truer than with date values, and
the SmartDate type is designed to simplify how a business developer uses dates and exposes them to
the UI.

Examples of free-form date entry are easy to find. Just look at widely used applications such as
Microsoft Money or Intuit’s Quicken. In these applications, users are free to enter dates in whatever
format is easiest for them. Additionally, various shortcuts are supported; for example, the plus char-
acter (+) means tomorrow, while the minus (–) means yesterday.

Most users find this approach more appealing than being forced to enter a date in a strict format
through a masked edit control or having to always use the mouse for a graphical calendar control. Of
course, being able to additionally support a calendar control is a great UI design choice.

Date handling is also quite challenging because the standard DateTime data type doesn’t have
any comprehension of an “empty” or “blank” date. Many applications have date values that may be
empty for a time and are filled in later. Consider a sales order in which the shipment date is unknown
when the order is entered. That date should remain blank or empty until an actual date is known.
Without the concept of an empty date, an application will require the user to enter an invalid “place-
holder” date until the real date is known; and that’s just poor application design.

■Tip In the early 1990s, I worked at a company where all “far-future” dates were entered as 12/31/99. Guess
how much trouble the company had around Y2K, when all of its never-to-be-delivered orders started coming due.

It is true that the Nullable<T> type can be applied to a DateTime value like this: Nullable<DateTime>.
This allows a date to be “empty” in a limited sense. Unfortunately, that isn’t enough for many appli-
cations because an actual date value can’t be meaningfully compared to a null value. Is the null
value greater than or less than a given date? With Nullable<T>, the answer is an exception, which is
not a very useful answer.

Additionally, data binding doesn’t deal well with null values, so exposing a null value from a
business object’s property often complicates the UI code.

The Csla.SmartDate type is designed to augment the standard .NET DateTime type to make it
easier to work with date values. In particular, it provides the following key features:

• Automatic translation between string and DateTime types

• Translation of shortcut values to valid dates

• Understanding of the concept of an “empty” date

• Meaningful comparison between a date and an empty date

Creating your own primitive data type turns out to be very complex, and all the details are outside
the scope of this book. When you create a primitive data type you must provide operator overloads
and type converters, support formatting, and implement other .NET concepts. The SmartDate type is
even more complex because it is designed to be as similar as possible to the preexisting DateTime
data type.

Lhotka_1019-1.book Page 488 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 489

The DateTime data type is marked sealed, meaning that a new type can’t inherit from it to create
a different data type. However, it is possible to use containment and delegation to “wrap” a DateTime
value with extra functionality. That’s exactly how the SmartDate type is implemented. Like DateTime
itself, SmartDate is a value type:

 [Serializable]
 [System.ComponentModel.TypeConverter(
 typeof(Csla.Core.TypeConverters.SmartDateConverter))]
 public struct SmartDate : Csla.Core.ISmartField,
 IComparable, IConvertible, IFormattable, Csla.Serialization.Mobile.IMobileObject
 {
 private DateTime _date;
 private bool _initialized;
 private EmptyValue _emptyValue;
 private string _format;
 private static string _defaultFormat;

The type has an associated TypeConverter so it can be converted to and from string, DateTime,
DateTime?, and DateTimeOffset values. It also implements IConvertible and a set of implicit and
explicit operator overloads to enable various type conversion and casting behaviors.

The IComparable interface allows SmartDate values to have meaningful comparisons to values of
type SmartDate, DateTime, DateTime?, DateTimeOffset, and string. The IFormattable interface allows
SmartDate values to be formatted using an IFormatProvider and is implemented to achieve similar
functionality to DateTime. All these interfaces and type conversion concepts are standard parts of
.NET and are things that any primitive type should implement.

The ISmartField interface is unique to CSLA .NET. It exists to allow other people to author similar
primitive types, such that CSLA .NET uses them properly. The CSLA .NET community has created
types such as SmartInt, SmartBool, and so forth, and this interface is designed to allow those types to
integrate smoothly into CSLA .NET.

■Note The IMobileObject interface is for compatibility with CSLA .NET for Silverlight. CSLA .NET for Silverlight
is outside the scope of this book, but this interface allows SmartDate values to properly serialize to and from
Silverlight clients when using CSLA .NET for Silverlight.

The most important field is the _date field, which is the underlying DateTime value of the SmartDate.
Remember that in the end, SmartDate is just a wrapper around a DateTime value.

Supporting empty date values is more complex than it might appear. An empty date still has
meaning and, in fact, it is possible to compare a regular date to an empty date and get a valid result.

Consider a sales order example. If the shipment date of a sales order is unknown, the date will
be empty. But effectively, that empty date is infinitely far in the future. Were you to compare that
empty shipment date to any other date, the shipment date would be the larger of the two. Conversely,
there are cases in which an empty date should be considered to be smaller than the smallest possible
date.

This concept is important, as it allows for meaningful comparisons between dates and empty
dates. Such comparisons make implementation of validation rules and other business logic far
simpler. You can, for instance, loop through a set of Order objects to find all the objects with a ship-
ment date before today, without the need to worry about empty dates:

foreach (Order order in OrderList)
 if (order.ShipmentDate <= DateTime.Today)

Lhotka_1019-1.book Page 489 Tuesday, November 18, 2008 3:42 PM

490 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

Assuming ShipmentDate is a SmartDate, it will work great, and any empty dates will be considered
to be larger than any actual date value.

The _emptyValue field keeps track of whether the SmartDate instance should consider an empty
date to be the smallest or largest possible date value. If it is EmptyValue.MaxDate, an empty date is
considered to be the largest possible value, while EmptyValue.MinDate indicates the reverse.

The _format field stores a .NET format string that provides the default format for converting a
DateTime value into a string representation.

The _defaultFormat is a static field that provides a default value for _format if it hasn’t been
explicitly set on an instance of SmartDate.

The _initialized field keeps track of whether the SmartDate has been initialized. Remember
that SmartDate is a struct not an object. This severely restricts how the type’s fields can be initialized.

Initializing the Struct
As with any struct, SmartDate can be created with or without calling a constructor. This means a
business object could declare SmartDate fields using any of the following:

private SmartDate _date1;
private SmartDate _date2 = new SmartDate(EmptyValue.MinDate);
private SmartDate _date3 = new SmartDate(DateTime.Today);
private SmartDate _date4 = new SmartDate(DateTime.Today, EmptyValue.MaxDate);
private SmartDate _date5 = new SmartDate("1/1/2008", EmptyValue.MaxDate);
private SmartDate _date6 = new SmartDate("",EmptyValue.MaxDate);

In the first two cases, the SmartDate starts out being empty, with empty meaning that it has a
value smaller than any other date.

The _date3 value starts out containing the current date. If it is set to an empty value later, that
empty value will correspond to a value smaller than any other date.

The next two values are initialized to either the current date or a fixed date based on a string
value. In both cases, if the SmartDate is set to an empty value later, that empty value will correspond
to a value larger than any other date.

Finally, _date6 is initialized to an empty date value, where that value is larger than any other date.
Handling this initialization is a bit tricky because the C# compiler requires that all instance fields in

a struct be assigned a value in any constructor before any properties or methods can be called. Yet
the _date5 and _date6 fields in particular require that a method be called to parse the string value
into a date value. Due to this compiler limitation, each constructor sets all instance fields to values
(sometimes dummy values) and then calls properties or methods as needed.

An additional complication is that a struct can’t have a default constructor. Yet even in the
previous case of _date1, some initialization is required. This is the purpose of the _initialized
instance field. It, of course, defaults to a value of false so can be used in the properties of the struct
to determine whether the struct has been initialized. As you’ll see, this allows SmartDate to initialize
itself the first time a property is called, assuming it hasn’t been initialized previously.

All the constructors follow the same basic flow. Here’s one of them:

 public SmartDate(string value, EmptyValue emptyValue)
 {
 _emptyValue = emptyValue;
 _format = null;
 _initialized = true;
 _date = DateTime.MinValue;
 this.Text = value;
 }

Lhotka_1019-1.book Page 490 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 491

Notice that all the instance fields are assigned values. Even the _date field is assigned a value,
though as you’ll see, the Text property immediately changes that value based on the value parameter
passed into the constructor. This includes translation of an empty string value into the appropriate
empty date value.

Supporting Empty Dates
SmartDate already has a field to control whether an empty date represents the largest or smallest
possible date. This field is exposed as a property so that other code can determine how dates are
handled:

 public bool EmptyIsMin
 {
 get { return (_emptyValue == EmptyValue.MinDate); }
 }

SmartDate also implements an IsEmpty property so that code can ask if the SmartDate object
represents an empty date:

 public bool IsEmpty
 {
 get
 {
 if (_emptyValue == EmptyValue.MinDate)
 return this.Date.Equals(DateTime.MinValue);
 else
 return this.Date.Equals(DateTime.MaxValue);
 }
 }

Notice the use of the _emptyValue field to determine whether an empty date is to be considered the
largest or smallest possible date for comparison purposes. If it is the smallest date, it is empty if the date
value equals DateTime.MinValue; if it is the largest date, it is empty if the value equals DateTime.MaxValue.

Conversion Functions
Given this understanding of empty dates, it is possible to create a couple of functions to convert
dates to text (or text to dates) intelligently. For consistency with other .NET types, SmartDate also
includes a Parse() method to convert a string into a SmartDate. These are static methods so that
they can be used even without creating an instance of SmartDate. Using these methods, a developer
can write business logic such as this:

DateTime userDate = SmartDate.StringToDate(userDateString);

Table 16-1 shows the results of this function based on various user text inputs.

Table 16-1. Results of the StringToDate Method Based on Various Inputs

User Text Input EmptyValue Result of StringToDate

string.Empty MinDate (default) DateTime.MinValue

string.Empty MaxDate DateTime.MaxValue

Any text that can be parsed as a date Ignored A date value

Lhotka_1019-1.book Page 491 Tuesday, November 18, 2008 3:42 PM

492 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

StringToDate() converts a string value containing a date into a DateTime value. It knows that an
empty string should be converted to either the smallest or the largest date, based on an optional
parameter.

It also handles translation of shortcut values to valid date values. The characters ., +, and –,
correspond to today, tomorrow, and yesterday, respectively. Additionally, the values t, today, tom,
tomorrow, y, and yesterday work in a similar manner. These text values are defined in the project’s
Resource.resx file and are subject to localization for other languages.

Given a string of nonzero length, StringToDate() attempts to parse it directly to a DateTime
field. If that fails, the various shortcut values are checked. If that fails as well, an exception is thrown
to indicate that the string value can’t be parsed into a date.

SmartDate also implements the Parse() and TryParse() methods, which provide a more standard
API for translating a text value into a non-text type. These methods simply delegate the calls to the
StringToDate() method.

SmartDate can translate dates the other way as well, such as converting a DateTime field into a
string and retaining the concept of an empty date. Again, an optional parameter controls whether
an empty date represents the smallest or the largest possible date. Another parameter controls the
format of the date as it’s converted to a string. Table 16-2 illustrates the results for various inputs.

The DateToString() method functions as a mirror to the StringToDate() method. This means it
is possible to start with an empty string, convert it to a DateTime, and then convert that DateTime
back into an empty string.

This method uses a format string, which defines how the DateTime value is to be formatted as a
string. This is used to create a complete .NET format string such as {0:d}.

Text Functions
Next, let’s implement functions in SmartDate that support both text and DateTime access to the under-
lying DateTime value. When business code needs to expose a date value to the UI, it will often prefer
to expose it as a string. (Exposing it as a DateTime precludes the possibility of the user entering a
blank value for an empty date; and while that’s great if the date is required, it isn’t good for optional
date values.)

Exposing a date as text requires the ability to format the date properly. To make this manage-
able, the _format field is used to control the format used for outputting a date. The default value for
_format is d for the short date format. SmartDate includes a FormatString property so that the busi-
ness developer can alter this format value to override the default.

There’s also a SetDefaultFormatString() method, which is static. This can be used to provide
an application-wide change to the default format string, though the FormatString property can still
override the default on a per-instance basis.

Table 16-2. Results of the DateToString Method Based on Various Inputs

User Date Input EmptyValue Result of DateToString

DateTime.MinValue MinDate (default) string.Empty

DateTime.MinValue MaxDate DateTime.MinValue

DateTime.MaxValue MinDate (default) DateTime.MaxValue

DateTime.MaxValue MaxDate string.Empty

Any other valid date Ignored String representing the date value

Lhotka_1019-1.book Page 492 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 493

Given the FormatString property, the Text property can use the StringToDate() and DateToString()
methods to translate between text and date values. This property can be used to retrieve or set values
using string representations of dates, where an empty string is appropriately handled:

 public string Text
 {
 get { return DateToString(this.Date, FormatString, _emptyValue); }
 set { this.Date = StringToDate(value, _emptyValue); }
 }

This property is used in the constructors as well, meaning that the same rules for dealing with
an empty date apply during object initialization as when setting its value via the Text property.

There’s one other text-oriented method to implement: ToString(). All objects in .NET have a
ToString() method, which ideally returns a useful text representation of the object’s contents. In this
case, it should return the formatted date value:

 public override string ToString()
 {
 return this.Text;
 }

Since the Text property already converts the SmartDate value to a string, this is easy to
implement.

Date Functions
It should be possible to treat a SmartDate like a regular DateTime—as much as possible, anyway. Since
it’s not possible for it to inherit from DateTime, there’s no way for it to be treated just like a regular
DateTime. The best approximation is to implement a Date property that returns the internal value:

 public DateTime Date
 {
 get
 {
 if (!_initialized)
 {
 _date = DateTime.MinValue;
 _initialized = true;
 }
 return _date;
 }
 set
 {
 _date = value;
 _initialized = true;
 }
 }

Notice the use of the _initialized field to determine whether the SmartDate has been initialized. If
the SmartDate instance is declared without explicitly calling one of the constructors, it will not be initial-
ized; so the _date field needs to be set before it can be returned. It is set to DateTime.MinValue because
that is the empty date when _emptyValue is MinDate (which it is by default).

SmartDate also implements numerous conversion methods and operator overloads as well as
the same set of date manipulation functions to add and subtract values as DateTime. The end result
is that you can use a SmartDate instead of a DateTime value in almost any scenario, unless the consuming
code directly expects a DateTime type.

Lhotka_1019-1.book Page 493 Tuesday, November 18, 2008 3:42 PM

494 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

Database Format
The final bit of code in SmartDate exists to help simplify data access. This is done by implementing a
method that allows a SmartDate value to be converted to a format suitable for writing to the database.
Though SmartDate already has methods to convert a date to text and text to a date, it doesn’t have
any good way of getting a date formatted properly to write to a database. Specifically, it needs a way
to either write a valid date or write a null value if the date is empty.

In ADO.NET, a null value is usually expressed as DBNull.Value, so it is possible to implement a
method that returns either a valid DateTime object or DBNull.Value:

 public object DBValue
 {
 get
 {
 if (this.IsEmpty)
 return DBNull.Value;
 else
 return this.Date;
 }
 }

Since SmartDate already implements an IsEmpty() property, the code here is pretty straight-
forward. If the value is empty, DBNull.Value is returned, which can be used to put a null value into a
database via ADO.NET. Otherwise, a valid date value is returned.

At this point, you’ve seen the implementation of the core SmartDate functionality. While using
SmartDate is certainly optional, it does offer business developers an easy way to handle dates that
must be represented as text and to support the concept of an empty date. Later, the section on the
SafeDataReader discusses some data access functionality to make it easy to save and restore a SmartDate
from a database.

This same approach can be used to make other data types “smart” if you so desire. Even with the
Nullable<T> support from the .NET Framework, dealing with empty values often requires extra coding,
which is often most efficiently placed in a framework class such as SmartDate.

Data Access
Almost all applications employ some data access. Obviously, the CSLA .NET framework puts heavy
emphasis on enabling data access through the data portal, as described in Chapter 15. Beyond the
basic requirement to create, read, update, and delete data, however, there are other needs.

One of the most common issues occurs when using the TransactionScope object from the System.
Transactions namespace to provide transactional behaviors. While TransactionScope is very powerful, it
has one big limitation in that it uses the DTC to manage any transaction where the code opens more
than one database connection. If you are only working with a single database, it doesn’t make sense
to pay the performance cost of the DTC, and yet it can be difficult to ensure your code always reuses
the same database connection.

■Note There are other things that can trigger the use of the DTC when using TransactionScope. These include
using a database other than SQL Server 2005 or 2008 or interacting with other resource managers (e.g., MSMQ).
CSLA .NET doesn’t help address these issues.

Lhotka_1019-1.book Page 494 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 495

The ConnectionManager class helps you write consistent data access code, which automatically
reuses the same database connection. Similarly, the ObjectContextManager and ContextManager classes
do the same thing for ADO.NET Entity Framework and LINQ to SQL code, respectively.

During the process of reading data from a database, many application developers find them-
selves writing repetitive code to eliminate null database values. SafeDataReader is a wrapper around
any ADO.NET DataReader object that automatically eliminates any null values that might come
from the database.

When creating many web applications using either Web Forms or Web Services, data must be
copied into and out of business objects. In the case of Web Forms data binding, data comes from the
page in a dictionary of name/value pairs, which must be copied into the business object’s properties.
With Web Services, the data sent or received over the network often travels through simple DTOs.
The properties of those DTOs must be copied into or out of a business object within the web service.
The DataMapper class contains methods to simplify these tasks.

Managing Database Connections and Contexts
The TransactionScope object is a convenient and powerful way to manage transactions in .NET. It
offers the performance of ADO.NET transactions with the coding simplicity of Enterprise Services.
All you need to do is wrap your data access code in a using block:

 using (var tr = new TransactionScope())
 {
 // open database and do data access here
 tr.Commit();
 }

You get the same behavior with the data portal by using the Transactional attribute on your
data access method, as discussed in Chapter 15. The catch is that you can’t open more than one database
connection within that using block or TransactionScope will enlist the DTC to manage the transac-
tion. That typically causes a 15 percent performance cost, which doesn’t make sense if all you are
doing is opening multiple connections to the same database with the same connection string. And
that is quite common, especially when updating an object graph into the database. In many cases,
the simplest way to write your data access code is to put the insert, update, and delete calls in a method
for each business object so your code inserts a sales order, then each line item. And to keep things
simple, each object opens its own connection to the database.

Of course, each object doesn’t really open its own connection to the database because database
connection pooling automatically causes reuse of the same connection. So this technique is simple
and performs well and is very attractive—until you use TransactionScope.

So what’s needed is some way by which the data access methods can appear to open a new
connection each time but in reality use the same already open connection. This is the purpose
behind the types listed in Table 16-3, which are found in the Csla.Data namespace.

Table 16-3. Connection Manager Types

Type Description

ConnectionManager Opens and manages an ADO.NET IDbConnection object

ObjectContextManager Opens and manages an ADO.NET Entity Framework object context

ContextManager Opens and manages a LINQ to SQL data context

Lhotka_1019-1.book Page 495 Tuesday, November 18, 2008 3:42 PM

496 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

All three of these classes use a similar technique and are used in data access code in a similar
manner. If you are using TransactionScope and the ConnectionManager, for example, your root busi-
ness object’s data access method would look like this:

 [Transactional(TransactionTypes.TransactionScope)]
 private void DataPortal_Insert()
 {
 using (var ctx = ConnectionManager<SqlConnection>.GetManager("MyDb"))
 {
 // insert object's data here using ctx.Connection
 // ...
 FieldManager.UpdateChildren(this);
 }
 }

In this example, I’m letting the data portal put the code into a TransactionScope by using the
Transactional attribute. The ConnectionManager creates and opens a SqlConnection object, using
MyDb as the key to look up the connection string from the application’s connectionStrings section in
the config file.

All code inside the using block can use ctx.Connection to access the open connection object.
When the using block exits, the connection is automatically closed.

Notice the UpdateChildren() call though. This causes all child objects contained by this object
to be updated. Each child object needs to insert its own data, too. It is important to realize that
UpdateChildren() is called inside the using block so the connection is open.

A child’s data access method would look like this:

 private void Child_Insert(object parent)
 {
 using (var ctx = ConnectionManager<SqlConnection>.GetManager("MyDb"))
 {
 // insert object's data here using ctx.Connection
 }
 }

The child code also uses the ConnectionManager. This time, however, ConnectionManager deter-
mines that there’s already an open connection for MyDb and so it simply returns that already open
connection. It also increases a reference count so it knows that it is nested within two using blocks.
That way when this using block exists, it does not close the connection. Instead it just decrements the
reference count. Only when the reference count reaches zero does the connection get closed.

The ObjectContextManager and ContextManager classes work in exactly the same way, except
they manage ObjectContext and DataContext objects respectively. Of course each of those object
types contains an open database connection, and the real goal is to reuse that already open database
connection.

ConnectionManager

Because all three classes are so similar, I’ll walk through ConnectionManager in detail and only briefly
discuss the implementation of the other two.

The ConnectionManager class contains a database connection, which is a disposable object. This
means that ConnectionManager must also be disposable, so it implements the IDisposable interface:

 public class ConnectionManager<C> :
 IDisposable where C : IDbConnection, new()

ConnectionManager can decrement the reference count each time Dispose() is called and can
close the connection when the reference count reaches zero. I discuss this later in this section.

Lhotka_1019-1.book Page 496 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 497

Notice that this is a generic type. And moreover, the type parameter, C, is constrained to only
accept types that implement IDbConnection and that have a public default constructor. This works
fine with most connection types such as SqlConnection and is a requirement of the factory method
that must create and open the connection:

 public static ConnectionManager<C> GetManager(
 string database, bool isDatabaseName)
 {
 if (isDatabaseName)
 {
 var conn =
 ConfigurationManager.ConnectionStrings[database].ConnectionString;
 if (string.IsNullOrEmpty(conn))
 throw new ConfigurationErrorsException(
 String.Format(Resources.DatabaseNameNotFound, database));
 database = conn;
 }

 lock (_lock)
 {
 ConnectionManager<C> mgr = null;
 if (ApplicationContext.LocalContext.Contains("__db:" + database))
 {
 mgr = (ConnectionManager<C>)(
 ApplicationContext.LocalContext["__db:" + database]);

 }
 else
 {
 mgr = new ConnectionManager<C>(database);
 ApplicationContext.LocalContext["__db:" + database] = mgr;
 }
 mgr.AddRef();
 return mgr;
 }
 }

The first part of this method determines whether the database parameter is the connection
string or the name of the database. By default it is the name of the database, and the code uses the
.NET ConfigurationManager to retrieve a connection string from the application’s config file.

Once the code has a connection string, it can create and open the database connection. It does
this within a lock statement because this is a static method. By convention, static methods in .NET
should be implemented in a thread-safe manner, and this lock statement ensures that only one
thread at a time can attempt to create an open connection.

The first thing the code does is attempt to retrieve any existing ConnectionManager from a cache.
I am using thread local storage for the cache because TLS is a globally available location for storing
per-thread data:

 if (ApplicationContext.LocalContext.Contains("__db:" + database))
 {
 mgr = (ConnectionManager<C>)(
 ApplicationContext.LocalContext["__db:" + database]);

Not all database connection objects are thread-safe, so ConnectionManager manages its connec-
tion objects on a per-thread basis to avoid accidentally providing a connection object from one thread to
some other thread.

Lhotka_1019-1.book Page 497 Tuesday, November 18, 2008 3:42 PM

498 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

Notice that the database name is used as a key value to store and retrieve the ConnectionManager
object. This allows the ConnectionManager to have many open connections at once, each for a different
database.

If a preexisting ConnectionManager is in TLS, it is retrieved. If there isn’t one in TLS, a new one is
created and put into TLS:

 else
 {
 mgr = new ConnectionManager<C>(database);
 ApplicationContext.LocalContext["__db:" + database] = mgr;

The ConnectionManager has a constructor that creates and opens the connection object:

 private ConnectionManager(string connectionString)
 {
 _connectionString = connectionString;

 // open connection
 _connection = new C();
 _connection.ConnectionString = connectionString;
 _connection.Open();
 }

Here’s where the constraints on C become important. The new constraint ensures that it is possible
to create a new C(), and the IDbConnection constraint ensures the object has a ConnectionString
property and an Open() method.

Back in the static method, either an existing object is retrieved from TLS or a new one is created.
Either way, its AddRef() method is called to increment its reference count (because it is now inside a
using block) and the CommandManager instance is returned to the caller.

In the Dispose() method, the reference count is decremented:

 public void Dispose()
 {
 DeRef();
 }

And in the DeRef() method, when the reference count reaches zero, the connection is closed:

 private void DeRef()
 {
 lock (_lock)
 {
 _refCount -= 1;
 if (_refCount == 0)
 {
 _connection.Dispose();
 ApplicationContext.LocalContext.Remove("__db:" + _connectionString);
 }
 }
 }

That is also the trigger for removing the CommandManager instance from TLS.
You should now understand how calling the GetManager() method creates or retrieves the manager

object and the underlying connection, while incrementing the reference count. And how the Dispose()
method decrements the reference count and cleans everything up when the count reaches zero.

The ObjectContextManager and ContextManager work in exactly the same way, but with different
types of connection objects.

Lhotka_1019-1.book Page 498 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 499

ObjectContextManager

The ObjectContextManager class manages an ADO.NET Entity Framework ObjectContext object in
the same way CommandManager manages ADO.NET connection objects. Here’s the class definition:

 public class ObjectContextManager<C> :
 IDisposable where C : ObjectContext

The constraint on the generic type parameter, C, is that it must be an ObjectContext type. The
new constraint can’t be used because ObjectContext doesn’t have a default public constructor.

In the constructor of ObjectContextManager, the code does create an instance of the
ObjectContext object by using Activator.CreateInstance():

 private ObjectContextManager(string connectionString)
 {
 _connectionString = connectionString;
 _context = (C)(Activator.CreateInstance(typeof(C), connectionString));
 }

There’s a small amount of fragility here in that the code expects that the constructor will accept
a single string parameter that contains the database connection. But this is pretty low-risk because
if Microsoft changes that API, it would break virtually all code that uses the Entity Framework in any
application.

Other than these differences, the ObjectContextManager works just like ConnectionManager, using
reference counting to determine when it can close the context.

ContextManager

The ContextManager class manages a LINQ to SQL DataContext object in the same way CommandManager
manages ADO.NET connection objects. Here’s the class definition:

 public class ContextManager<C> :
 IDisposable where C : DataContext

The constraint on the generic type parameter, C, is that it must be a DataContext type. The new
constraint can’t be used because DataContext doesn’t have a default public constructor.

In the constructor of ContextManager, the code does create an instance of the DataContext object
by using Activator.CreateInstance():

 private ContextManager(string connectionString)
 {
 _connectionString = connectionString;
 _context = (C)(Activator.CreateInstance(typeof(C), connectionString));
 }

This is also a bit fragile because, like ObjectContextManager, the code expects that the constructor
will accept a single string parameter that contains the database connection. There’s a similar low
risk because if Microsoft changes that API it would break almost everything that uses LINQ to SQL.

Apart from those differences, the ContextManager works just like ConnectionManager, counting
references to determine when it can close the context.

SafeDataReader
There are only three reasons null values should be allowed in database columns. The first is to
support foreign key relationships between tables. Ideally, in this case, your key values aren’t real
data values but are actual keys, so you can use null values to indicate that no data exists for a given
foreign key relationship.

Lhotka_1019-1.book Page 499 Tuesday, November 18, 2008 3:42 PM

500 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

The second is when the business rules dictate that the application cares about the difference
between a value that was never entered and a value that is zero (or an empty string). In other words,
the end user actually cares about the difference between "" and null or between 0 and null. There
are applications where this matters—where the business rules revolve around whether a field ever
had a value (even an empty one) or never had a value at all.

The third reason for using a null value is when a data type doesn’t intrinsically support the
concept of an empty field. The most common example is the SQL DateTime data type, which has no
way to represent an empty date value; it always contains a valid date. In such a case, null values in
the database column are used specifically to indicate an empty date.

Of course, these last two reasons are mutually exclusive. When using null values to differentiate
between an empty field and one that never had a value, you need to come up with some other scheme
to indicate an empty DateTime field. The solution to this problem is outside the scope of this book—
but thankfully the problem itself is quite rare.

The reality is that very few applications ever care about the difference between an empty value
and one that was never entered, so the first scenario seldom applies. If it does apply to your applica-
tion, dealing with null values at the database level isn’t an issue because you’ll use nullable types
from the database all the way through to the UI. In this case, you can ignore SafeDataReader entirely,
as it has no value for your application.

But for most applications, the only reason for using null values is the second scenario, and this
one is quite common. Any application that uses date values, and for which an empty date is a valid
entry, will likely use null to represent an empty date.

Unfortunately, a whole lot of poorly designed databases allow null values in columns where
neither scenario applies, and we developers have to deal with them. These are databases that contain
null values even if the application makes no distinction between a 0 and a null.

Writing defensive code to guard against tables in which null values are erroneously allowed can
quickly bloat data access code and make it hard to read. To avoid this, the SafeDataReader class takes
care of these details automatically by eliminating null values and converting them into a set of
default values.

As a rule, DataReader objects are sealed, meaning that you can’t simply subclass an existing
DataReader class (such as SqlDataReader) and extend it. However, like the SmartDate class with
DateTime, it is quite possible to encapsulate or “wrap” a DataReader object.

To ensure that SafeDataReader can wrap any DataReader object, it relies on the root IDataReader
interface from the System.Data namespace that’s implemented by all DataReader objects. Also, since
SafeDataReader is to be a DataReader object, it must implement that interface as well:

 public class SafeDataReader : IDataReader
 {
 private IDataReader _dataReader;

 protected IDataReader DataReader
 {
 get { return _dataReader; }
 }

 public SafeDataReader(IDataReader dataReader)
 {
 _dataReader = dataReader;
 }
 }

The class defines a field to store a reference to the real DataReader that it is encapsulating. That
field is exposed as a protected property as well, allowing for subclasses of SafeDataReader in the future.

There’s also a constructor that accepts the IDataReader object to be encapsulated as a parameter.

Lhotka_1019-1.book Page 500 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 501

This means that ADO.NET code in a business object’s DataPortal_Fetch() method might appear as
follows:

 var dr = new SafeDataReader(cm.ExecuteReader());

The ExecuteReader() method returns an object that implements IDataReader (such as
SqlDataReader) that is used to initialize the SafeDataReader object. The rest of the code in the data
access method can use the SafeDataReader object just like a regular DataReader object because it
implements IDataReader. The benefit, though, is that the business object’s data access code never
has to worry about getting a null value from the database.

The implementation of IDataReader is a lengthy business—it contains a lot of methods—so I’m
not going to go through all of it here. Instead I’ll cover a few methods to illustrate how the overall
class is implemented.

GetString

There are two overloads for each method that returns column data, one that takes an ordinal column
position and the other that takes the string name of the property. This second overload is a conve-
nience but makes the code in a business object much more readable. All the methods that return
column data are “null protected” with code like this:

 public string GetString(string name)
 {
 return GetString(_dataReader.GetOrdinal(name));
 }

 public virtual string GetString(int i)
 {
 if(_dataReader.IsDBNull(i))
 return string.Empty;
 else
 return _dataReader.GetString(i);
 }

If the value in the database is null, the method returns some more palatable value—typically,
whatever passes for “empty” for the specific data type. If the value isn’t null, it simply returns the
value from the underlying DataReader object.

For string values, the empty value is string.Empty; for numeric types, it is 0; and for Boolean
types, it is false. You can look at the full code for SafeDataReader to see all the translations.

Notice that the GetString() method that actually does the translation of values is marked as
virtual. This allows you to override the behavior of any of these methods by creating a subclass of
SafeDataReader.

The GetOrdinal() method translates the column name into an ordinal (numeric) value, which
can be used to actually retrieve the value from the underlying IDataReader object. GetOrdinal() looks
like this:

 public int GetOrdinal(string name)
 {
 return _dataReader.GetOrdinal(name);
 }

Every data type supported by IDataReader (and there are a lot of them) has a pair of methods
that reads the data from the underlying IDataReader object, replacing null values with empty default
values as appropriate.

Lhotka_1019-1.book Page 501 Tuesday, November 18, 2008 3:42 PM

502 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

GetDateTime and GetSmartDate

Most types have empty values that are obvious, but DateTime is problematic as it has no empty value.
The minimum date value is arbitrarily used as the empty value. This isn’t perfect, but it does avoid
returning a null value or throwing an exception.

A better solution may be to use the SmartDate type instead of DateTime. To simplify retrieval
of a date value from the database into a SmartDate, SafeDataReader implements two variations of
a GetSmartDate() method:

 public Csla.SmartDate GetSmartDate(string name)
 {
 return GetSmartDate(_dataReader.GetOrdinal(name), true);
 }

 public virtual Csla.SmartDate GetSmartDate(int i)
 {
 return GetSmartDate(i, true);
 }

 public Csla.SmartDate GetSmartDate(string name, bool minIsEmpty)
 {
 return GetSmartDate(_dataReader.GetOrdinal(name), minIsEmpty);
 }

 public virtual Csla.SmartDate GetSmartDate(
 int i, bool minIsEmpty)
 {
 if (_dataReader.IsDBNull(i))
 return new Csla.SmartDate(minIsEmpty);
 else
 return new Csla.SmartDate(
 _dataReader.GetDateTime(i), minIsEmpty);
 }

Data access code in a business object can choose either to accept the minimum date value as
being equivalent to empty or to retrieve a SmartDate that understands the concept of an empty date:

 SmartDate myDate = dr.GetSmartDate(0);

or

 SmartDate myDate = dr.GetSmartDate(0, false);

GetBoolean

Likewise, there is no empty value for the bool type. GetBoolean() arbitrarily returns a false value in
this case.

Other Methods

The IDataReader interface also includes a number of methods that don’t return column values, such
as the Read() method:

 public bool Read()
 {
 return _dataReader.Read();
 }

Lhotka_1019-1.book Page 502 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 503

In these cases, it simply delegates the method call down to the underlying DataReader object for
it to handle. Any return values are passed back to the calling code, so the fact that SafeDataReader is
involved is entirely transparent.

The SafeDataReader class can be used to simplify data access code dramatically, any time an
object is working with tables in which null values are allowed in columns where the application
doesn’t care about the difference between an empty and a null value. If your application does care
about the use of null values, you can simply use the regular DataReader objects instead.

DataMapper
When Web Forms data binding needs to insert or update data, it provides the data elements to the
ASP.NET data source control in the form of a dictionary object of name/value pairs. The CslaDataSource
control discussed in Chapter 10 simply provides this dictionary object to the UI code as an event
argument.

This means that in a typical Web Forms application that uses the CslaDataSource, the UI code
must copy the values from the dictionary to the business object’s properties. The name is the name
of the property to be updated and the value is the value to be placed into the property of the business
object. Copying the values isn’t hard—the code looks something like this:

 cust.FirstName = e.Values["FirstName"].ToString();
 cust.LastName = e.Values["LastName"].ToString();
 cust.City = e.Values["City"].ToString();

Unfortunately, this is tedious code to write and debug; and if your object has a lot of properties,
this can add up to a lot of lines of code. An alternative is to use reflection to automate the process of
copying the values.

■Tip If you feel that reflection is too slow for this purpose, you can continue to write all the mapping code by hand.
Keep in mind, however, that data binding uses reflection extensively anyway, so this little bit of additional reflection
is not likely to cause any serious performance issues.

A similar problem exists when building web services. Business objects should not be returned
directly as a result of a web service, as that would break encapsulation. In such a case, your business
object interface would become part of the web service interface, preventing you from ever adding or
changing properties on the object without running the risk of breaking any clients of the web service.

Instead, data should be copied from the business object into a DTO, which is then returned to
the web service client. Conversely, data from the client often comes into the web service in the form
of a DTO. These DTOs are often created based on WSDL or an XSD defining the contract for the data
being passed over the web service. The end result is that the code in a web service has to map prop-
erty values from business objects to and from DTOs. That code often looks like this:

 cust.FirstName = dto.FirstName;
 cust.LastName = dto.LastName;
 cust.City = dto.City;

Again, this isn’t hard code to write but it’s tedious and could add up to many lines.
The DataMapper class uses reflection to help automate these data mapping operations, from

either a collection implementing IDictionary or an object with public properties.
In both cases, it is possible or even likely that some properties can’t be mapped. Business objects

often have read-only properties, and obviously it isn’t possible to set those values. Yet the IDictionary or
DTO may have a value for that property. It is up to the business developer to deal on a case-by-case
basis with properties that can’t be automatically mapped.

Lhotka_1019-1.book Page 503 Tuesday, November 18, 2008 3:42 PM

504 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

The DataMapper class will accept a list of property names to be ignored. Properties matching
those names simply won’t be mapped during the process. Additionally, DataMapper will accept a
Boolean flag that can be used to suppress exceptions during the mapping process. This can be used
simply to ignore any failures.

An alternative is to provide DataMapper with a DataMap object that explicitly describes the source
and target properties for the mapping.

Setting Values

The core of the DataMapper class is the SetValue() method. This method is ultimately responsible for
putting a value into a specified property of a target object:

 public static void SetValue(
 object target, MemberInfo memberInfo, object value)
 {
 if (value != null)
 {
 object oldValue;
 Type pType;
 if (memberInfo.MemberType == MemberTypes.Property)
 {
 PropertyInfo pInfo = (PropertyInfo)memberInfo;
 pType = pInfo.PropertyType;
 oldValue = pInfo.GetValue(target, null);
 }
 else
 {
 FieldInfo fInfo = (FieldInfo)memberInfo;
 pType = fInfo.FieldType;
 oldValue = fInfo.GetValue(target);
 }
 Type vType =
 Utilities.GetPropertyType(value.GetType());
 value = Utilities.CoerceValue(pType, vType, oldValue, value);
 }
 if (memberInfo.MemberType == MemberTypes.Property)
 ((PropertyInfo)memberInfo).SetValue(target, value, null);
 else
 ((FieldInfo)memberInfo).SetValue(target, value);
 }

A MemberInfo object is passed in as a parameter. This is a reflection object that can describe a
property or a field of the target object that is to receive the new value.

The type of the property or field is retrieved using reflection. But it is important to realize that
this type may be imprecise thanks to generics and the Nullable<T> concept. So the specific type of
the property’s return value is retrieved using a GetPropertyType() helper method in the Utilities
class. That helper method exists to deal with the possibility that the property could return a value of
type Nullable<T>. If that happens, the real underlying data type (behind the Nullable<T> type) must
be returned. Here’s the GetPropertyType() method from the Utilities class:

Lhotka_1019-1.book Page 504 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 505

 public static Type GetPropertyType(Type propertyType)
 {
 Type type = propertyType;
 if (type.IsGenericType &&
 (type.GetGenericTypeDefinition() == typeof(Nullable<>)))
 return Nullable.GetUnderlyingType(type);
 return type;
 }

If Nullable<T> isn’t involved, the original type passed as a parameter is simply returned. But if
Nullable<T> is involved, the underlying type is returned instead:

 return Nullable.GetUnderlyingType(type);

This ensures that the actual data type of the property is used rather than Nullable<T>.
Back in the SetValue() method, the PropertyInfo object has a SetValue() method that sets the

value of the property, but it requires that the new value have the same data type as the property itself.
The CoerceValue() method from the Utilities class is used to coerce the new value to the required type:

 value = Utilities.CoerceValue(pType, vType, oldValue, value);

The CoerceValue() method uses a number of techniques in an attempt to coerce a value to the
new type:

• If the value is already the right type, do nothing.

• If the target type is Nullable<T>, try to convert to T.

• If the target type is an enum, try to parse the value.

• If the target type is a SmartDate, try to cast the value.

• If the target type is a primitive type or decimal and the value is an empty string, set the value
to 0.

• If nothing has worked yet, call Convert.ChangeType() to convert the type.

• If ChangeType() fails, see if there’s a TypeConverter for the target type and if so use the
TypeConverter.

• If nothing has worked yet, throw an exception.

The CoerceValue() method is used in numerous places in CSLA .NET, and it is public so a busi-
ness developer can use it as well.

Back in the SetValue() method, the value has been coerced to the correct type so it can be used
to set the property or field value:

 if (memberInfo.MemberType == MemberTypes.Property)
 ((PropertyInfo)memberInfo).SetValue(target, value, null);
 else
 ((FieldInfo)memberInfo).SetValue(target, value);

The end result is that the specified property or field is set to the new value.

Mapping from IDictionary

A collection that implements IDictionary is effectively a name/value list. The DataMapper.Map()
method assumes that the names in the list correspond directly to the names of properties on the
business object to be loaded with data. It simply loops through all the keys in the dictionary, attempting
to set the value of each entry into the target object.

Lhotka_1019-1.book Page 505 Tuesday, November 18, 2008 3:42 PM

506 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

While looping through the key values in the dictionary, the ignoreList is checked on each entry.
If the key from the dictionary is in the ignore list, that value is ignored.

Otherwise, the SetValue() method is called to assign the new value to the specified property of
the target object.

■Note A DataMap cannot be used when mapping from an IDictionary to an object. This feature is designed
specifically to support Web Forms data binding, and in that model the names of the UI elements and the object prop-
erties must match.

If an exception occurs while a property is being set, it is caught. If suppressExceptions is true,
the exception is ignored; otherwise, it is wrapped in an ArgumentException. The reason for wrapping
it in a new exception object is so the property name can be included in the message returned to the
calling code. That bit of information is invaluable when using the Map() method.

Mapping from an Object

Mapping from one object to another is done in a similar manner. The primary exception is that the
list of source property names doesn’t come from the keys in a dictionary but rather the list must be
retrieved from the source object.

■Note The Map() method can be used to map to or from a business object.

The GetSourceProperties() method retrieves the list of properties from the source object:

 private static PropertyInfo[] GetSourceProperties(Type sourceType)
 {
 List<PropertyInfo> result = new List<PropertyInfo>();
 PropertyDescriptorCollection props =
 TypeDescriptor.GetProperties(sourceType);
 foreach (PropertyDescriptor item in props)
 if (item.IsBrowsable)
 result.Add(sourceType.GetProperty(item.Name));
 return result.ToArray();
 }

This method filters out methods that are marked as [Browsable(false)]. This is useful when the
source object is a CSLA .NET–style business object, as the IsDirty, IsNew, and similar properties from
BusinessBase are automatically filtered out. The result is that GetSourceProperties() returns a list of
properties that are subject to data binding.

First, reflection is invoked by calling the GetProperties() method to retrieve a collection of
PropertyDescriptor objects. These are similar to the more commonly used PropertyInfo objects, but
they are designed to help support data binding. This means they include an IsBrowsable property
that can be used to filter out those properties that aren’t browsable.

A PropertyInfo object is added to the result list for all browsable properties and then that result
list is converted to an array and returned to the calling code.

The calling code is an overload of the Map() method that accepts two objects rather than an
IDictionary and an object:

Lhotka_1019-1.book Page 506 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 507

 public static void Map(
 object source, object target,
 bool suppressExceptions,
 params string[] ignoreList)
 {
 List<string> ignore = new List<string>(ignoreList);
 PropertyInfo[] sourceProperties =
 GetSourceProperties(source.GetType());
 foreach (PropertyInfo sourceProperty in sourceProperties)
 {
 string propertyName = sourceProperty.Name;
 if (!ignore.Contains(propertyName))
 {
 try
 {
 SetValue(
 target, propertyName,
 sourceProperty.GetValue(source, null));
 }
 catch (Exception ex)
 {
 if (!suppressExceptions)
 throw new ArgumentException(
 String.Format("{0} ({1})",
 Resources.PropertyCopyFailed, propertyName), ex);
 }
 }
 }
 }

The source object’s properties are retrieved into an array of PropertyInfo objects:

 PropertyInfo[] sourceProperties =
 GetSourceProperties(source.GetType());

Then the method loops through each element in that array, checking each one against the list
of properties to be ignored. If the property isn’t in the ignore list, the SetValue() method is called to
set the property on the target object. The GetValue() method on the PropertyInfo object is used to
retrieve the value from the source object:

 SetValue(
 target, propertyName,
 sourceProperty.GetValue(source, null));

Exceptions are handled (or ignored) just like they are when copying from an IDictionary.
While the DataMapper functionality may not be useful in all cases, it is useful in many cases and

can dramatically reduce the amount of tedious data-copying code a business developer needs to
write to use data binding in Web Forms or to implement XML services.

Mapping from an Object with a DataMap

You can also create a DataMap to describe the mapping of properties or fields from one object to
another. This DataMap can be passed to the DataMapper object’s Map() method, and in that case the
DataMap is used to determine the source and target properties or fields.

Lhotka_1019-1.book Page 507 Tuesday, November 18, 2008 3:42 PM

508 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

A DataMap is created using code like this:

 var map = new DataMap(typeof(CustomerData), typeof(CustomerEdit));
 map.AddPropertyMapping("Name", "ShortName");

The DataMap constructor requires that the types of the source and target objects be provided.
This is required because it does use reflection behind the scenes to get PropertyInfo or FieldInfo
objects for each property or field you specify. Table 16-4 lists the methods used to load a DataMap with
mappings.

These methods give you the flexibility to map most values from one object to another in a very
flexible manner.

■Caution Reflection against public members is much faster than against non-public members. If you set up
a DataMap that copies to or from non-public properties or fields, you should do careful performance testing to
ensure you are comfortable with the results.

The Map() method works the same as described earlier except that it uses the information in the
DataMap object to determine the source and target properties or fields. Because you are specifying the
map explicitly, no ignoreList parameter is used.

At this point you’ve seen the major classes in the Csla.Data namespace. Most applications use
at least some of these types in their data access code.

Windows Workflow Foundation
WF has been a pillar of the .NET Framework since version 3.0. WF is a basic workflow engine, but it
also comes with a designer that integrates into Visual Studio.

It is important to realize that workflow, in general, is a procedural programming model. You
might think that there’s little need for object-oriented concepts in the workflow world because proce-
dural programming and object-oriented programming are quite different. But that isn’t entirely the case.

Certainly, the workflow itself is procedural: workflows are basically animated flowcharts after
all. But an object-oriented application can invoke a workflow, and workflow activities can be
constructed using objects behind the scenes.

A workflow activity is by definition a self-contained unit of functionality with defined inputs and
outputs. This is also the basic definition of a use case. As a result, you can view a workflow activity as
a use case. This is exciting because creating workflow activities using object-oriented design concepts is

Table 16-4. Methods on DataMap

Method Description

AddPropertyMapping() Sets up a mapping from one property to another property

AddFieldMapping() Sets up a mapping from one field to another field (even if the
fields are non-public)

AddFieldToPropertyMapping() Sets up a mapping from a field to a property

AddPropertyToFieldMapping() Sets up a mapping from a property to a field

Lhotka_1019-1.book Page 508 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 509

as close as most of us will ever get to doing pure object design without all the complexities of user
interaction and so forth.

Figure 16-1 illustrates at a high level one architectural view of using both objects and workflows.

Figure 16-1. Architectural view of using workflows and objects

At the top of the diagram is your normal application, with its presentation, UI, business data
access, and data storage layers. In this case, however, the business layer invokes a workflow through
a command object. The workflow itself (in the lower left of the diagram) executes a series of activities.
Each activity is implemented using business objects, which in turn invoke data access and data
storage layers.

The important thing to keep in mind with Figure 16-1 is the level of encapsulation involved. To
the application’s business layer, the workflow is a black box that performs some useful operation. To
the workflow, each activity is a black box and performs a specific task. Each activity relies on business
objects to implement its task, and the activity should view these objects as black boxes.

Maintaining this level of encapsulation is important, as it provides maximum flexibility and
reuse. It allows you to change the workflow without having an impact (directly at least) on the calling
application. It allows you to change the implementation of an activity without having an impact
(directly) on the workflow or the calling application. Finally, it allows you to change the implemen-
tation of the business objects used by an activity without having an impact on the activity, the workflow,
or the calling application.

Pragmatically, most applications have two general types of functionality. There’s the part that
interacts with the user, displaying and collecting data. Then there’s the part that performs non-
interactive back-end processing, typically once the user is done entering his data.

Generally speaking, workflow can be very useful in implementing that non-interactive back-end
processing. You can use WF to run a workflow on a background thread, and sometimes it is easier to
visualize complex processing using the flowchart-style designer than directly through code.

Lhotka_1019-1.book Page 509 Tuesday, November 18, 2008 3:42 PM

510 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

Starting a Workflow from an Object
Executing a workflow from a business object is not much different from executing a workflow in any
other context. If you add a workflow console application in Visual Studio, the code will include the
basic template for executing your workflow. Any time you execute a workflow, you’ll follow this
basic pattern:

1. Create a thread synchronization object.

2. Create a workflow runtime instance.

3. Set up some event handlers (at least for Completed and Terminated) where you Set() the
synchronization object.

4. Create the workflow instance.

5. Start the workflow instance.

6. Wait on the thread synchronization object until it is Set() by one of the event handlers.

However, there is one important difference when using business objects both to start the work-
flow and to build workflow activities. To use business objects when creating workflow activities, the
workflow project references the business layer. To execute a workflow, you need access to a Type
object for that workflow, which implies that the business layer would have a reference to the work-
flow project. This sort of circular reference between assemblies is not allowed by .NET.

If you look back at Figure 16-1, the workflow is architecturally treated as just another interface
to the business layer. And that’s a good way to think about the workflow. That means that having the
workflow reference the assembly containing the business objects is a good thing, so I don’t recom-
mend changing that.

To avoid a circular reference, the business layer must not reference the workflow assembly. You
can avoid the circular reference by dynamically loading the workflow type. This is done with code
like this:

 Type workflowType = Type.GetType("Namespace.WorkflowClass, Assembly");
 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(workflowType);

The Namespace.WorkflowClass part of the text is the fully qualified type name of the workflow
class, including namespace. The Assembly part of the text is the name of the assembly containing the
workflow class. Notice how the CreateWorkflow() method then accepts the Type object. This allows
the workflow runtime to properly create an instance of the workflow, without this code needing a
reference to the assembly that contains the workflow.

WorkflowManager Class
CSLA .NET provides a WorkflowManager class in the Csla.Workflow namespace to help abstract the
process of executing a workflow. The primary purpose of this class is to help manage the use of
thread synchronization, while maintaining the flexibility provided by the workflow runtime model.

Table 16-5 lists the methods provided by the WorkflowManager object.
Several of these methods allow you to execute a workflow or to resume a suspended workflow.

In both cases, control won’t return to your code until the workflow is completed, terminated, or
suspended.

Other methods allow you to start execution of a workflow on a background thread or to resume
execution of a workflow on a background thread. Your thread remains active and can be used to
perform other tasks while the workflow is running.

Lhotka_1019-1.book Page 510 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 511

Synchronous Execution of a Workflow

In its simplest usage, the WorkflowManager can execute a workflow, by Type or type name, in two lines
of code:

 WorkflowManager mgr = new WorkflowManager();
 mgr.ExecuteWorkflow("PTWorkflow.ProjectWorkflow, PTWorkflow");

In this case, the ExecuteWorkflow() method creates a Type object for the workflow based on the
assembly qualified name of the workflow, such as PTWorkflow.ProjectWorkflow, PTWorkflow. Alterna-
tively, you can just pass a Type object as a parameter rather than the type name:

 WorkflowManager mgr = new WorkflowManager();
 mgr.ExecuteWorkflow(typeof(ProjectWorkflow));

Either way, this synchronously executes the workflow. When ExecuteWorkflow() returns, the
workflow is complete or terminated and the workflow runtime is disposed.

You can examine mgr.Status to determine the final state of the workflow. The possible values
are listed in Table 16-6.

Table 16-5. Methods Provided by WorkflowManager

Method Description

ExecuteWorkflow Synchronously executes a workflow, blocking the calling thread until the
workflow stops

BeginWorkflow Asynchronously starts executing a workflow; the calling thread is not
blocked but must call EndWorkflow() at some point

WaitForEnd Synchronously waits for the workflow to stop; returns immediately if the
workflow has already stopped; this method can optionally dispose the
WF runtime instance

ResumeWorkflow Synchronously resumes execution of a workflow, blocking the calling
thread until the workflow stops

BeginResumeWorkflow Asynchronously resumes execution of a workflow; the calling thread is
not blocked but must call EndWorkflow() at some point

InitializeRuntime Synchronously initializes the WF runtime, allowing the calling code to
manipulate the runtime before calling one of the methods to execute or
resume a workflow

DisposeRuntime Synchronously disposes the workflow runtime

Table 16-6. WorkflowManager Status Property Values

Status Description

Initializing The workflow is being initialized and has not yet started executing.

Executing The workflow is being executed.

Completed The workflow completed properly.

Terminated The workflow was abnormally terminated. Use the Error property to get
the exception.

Suspended The workflow was suspended.

Lhotka_1019-1.book Page 511 Tuesday, November 18, 2008 3:42 PM

512 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

For simple workflows, you can expect Completed or Terminated results once the ExecuteWorkflow()
method has returned.

Dealing with Idled or Suspended Workflows

More complex workflows might use a persistence service to store an idled or suspended workflow to
a database so it can be resumed later. That complicates the code slightly because you need to asso-
ciate a persistence service with the workflow runtime and be more detailed in checking the status of
the workflow when ExecuteWorkflow() returns.

This code shows the basic structure required to execute a workflow that might be idled or
suspended and that will be persisted to a database in both those cases:

 Csla.Workflow.WorkflowManager mgr = new Csla.Workflow.WorkflowManager();
 mgr.InitializeRuntime();

 // associate your persistence service with mgr.RuntimeInstance here

 mgr.ExecuteWorkflow("WorkflowApp.Workflow1, WorkflowApp", false);
 if (mgr.Status == Csla.Workflow.WorkflowStatus.Suspended)
 {
 Guid instanceId = mgr.WorkflowInstance.InstanceId;
 mgr.WorkflowInstance.Unload();
 // store instanceId so you can resume the workflow later
 }
 mgr.DisposeRuntime();

If you expect your workflow might become idled or suspended and you want to store that work-
flow instance in a database to resume later, you need to provide a persistence service to the workflow
runtime.

Associating a Persistence Service with the Runtime

By explicitly calling InitializeRuntime(), the previous code creates and initializes the workflow
runtime, allowing you to then associate a persistence service (or other services) with that runtime.
This is done with code similar to the following:

 Csla.Workflow.WorkflowManager mgr = new Csla.Workflow.WorkflowManager();
 mgr.InitializeRuntime();

 string connectionString =
 @"Data Source=ineroth;Initial Catalog=WorkflowPersistenceStore;
 Persist Security Info=True;User ID=test;Password=test";
 bool unloadOnIdle = true;
 TimeSpan instanceOwnershipDuration = TimeSpan.MaxValue;
 TimeSpan loadingInterval = new TimeSpan(0, 2, 0);

Idled The workflow is idled.

Aborted The workflow was aborted.

Table 16-6. WorkflowManager Status Property Values (Continued)

Status Description

Lhotka_1019-1.book Page 512 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 513

 // Add the SqlWorkflowPersistenceService to the runtime engine.
 SqlWorkflowPersistenceService persistService =
 new SqlWorkflowPersistenceService(
 connectionString, unloadOnIdle,
 instanceOwnershipDuration, loadingInterval);
 mgr.RuntimeInstance.AddService(persistService);

This code creates and configures an instance of SqlWorkflowPersistenceService, a built-in
persistence service provided with WF. This persistence service stores the serialized workflow state in
the SQL Server database specified by the connection string. Before using that database, you need to
run a prebuilt SQL script to set up the required tables and do some other administrative tasks. This
MSDN article describes the required steps: http://msdn2.microsoft.com/en-US/library/aa349366.aspx.

The unloadOnIdle parameter also specifies that an Idled workflow should be automatically
persisted.

Notice the last line of code:

 mgr.RuntimeInstance.AddService(persistService);

This line of code adds the service to the workflow runtime instance being used by the
WorkflowManager.

Unloading a Suspended Workflow

Returning to the original code that executes the workflow, notice that ExecuteWorkflow() is called
with an extra parameter of false. This parameter indicates that the workflow runtime should not be
disposed before ExecuteWorkflow() returns. This is important because if the workflow is suspended,
you need to use the runtime to persist the workflow by calling the workflow’s Unload() method:

 if (mgr.Status == Csla.Workflow.WorkflowStatus.Suspended)
 {
 Guid instanceId = mgr.WorkflowInstance.InstanceId;
 mgr.WorkflowInstance.Unload();
 // store instanceId so you can resume the workflow later
 }

Once this is done, the DisposeRuntime() method of the WorkflowManager is called to dispose the
workflow runtime.

Make special note of the comment in the previous code. If you unload a workflow, you need the
workflow’s InstanceId value, a Guid, to reload and resume the workflow later. Without this value the
workflow can’t be reloaded.

Loading and Resuming a Workflow

The following code reloads and resumes the workflow, assuming the instanceId field contains a
valid workflow ID:

 Csla.Workflow.WorkflowManager mgr = new Csla.Workflow.WorkflowManager();
 mgr.InitializeRuntime();

 // associate your persistence service with mgr.RuntimeInstance here

 mgr.ResumeWorkflow(instanceId);

The ResumeWorkflow() method uses the instanceId value to load the workflow instance from the
persistence service and then resumes the workflow execution.

Lhotka_1019-1.book Page 513 Tuesday, November 18, 2008 3:42 PM

http://msdn2.microsoft.com/en-US/library/aa349366.aspx

514 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

At this point, you should understand how to execute, unload, and resume a workflow that could
become idle or suspended as it runs.

Resuming a Suspended Workflow Without Unloading

You don’t have to unload a suspended workflow. You could keep the workflow instance in memory
and simply resume it. This is often valuable if the workflow requires that the application or user do
something immediately to allow the workflow to continue.

The following code shows how to resume a suspended workflow without unloading it:

 Csla.Workflow.WorkflowManager mgr = new Csla.Workflow.WorkflowManager();

 mgr.ExecuteWorkflow("WorkflowApp.Workflow1, WorkflowApp", false);
 if (mgr.Status == Csla.Workflow.WorkflowStatus.Suspended)
 {
 // perform any actions required before resuming the workflow
 mgr.ResumeWorkflow(false);
 }
 mgr.DisposeRuntime();

Notice that no persistence service is required because the workflow is never unloaded. However, the
ExecuteWorkflow() method is still called such that the workflow runtime is not disposed when it
completes. The Status property is then checked, and if the workflow is suspended, the application
needs to do any work that is required before the workflow is resumed. This is represented by the first
highlighted line of code.

The second highlighted line of code shows how to resume the current workflow. Since the work-
flow wasn’t unloaded, it is still in memory, just suspended. The ResumeWorkflow() method call resumes
the workflow and allows it to run to completion.

Executing a Workflow from a Business Object

You can use the WorkflowManager class to simplify execution of a workflow from within a business
object or you can directly invoke the WF objects yourself. Either way, a workflow is typically executed
from one of the DataPortal_XYZ methods in a business object or the data access method in a factory
object.

Execution of a workflow should fit naturally into your object model. Remember that the UI layer
always interacts with your business objects, never with the database or any other services directly. If
your application makes use of a workflow to perform some back-end processing, that processing
should be represented somehow within your object model.

In many cases, this situation means that the workflow will be represented by a command object,
which is a subclass of CommandBase. For example, you could execute a workflow from a ProjectCloser
object. From the UI perspective, this object is clearly responsible for closing a project, and the fact
that it uses a workflow to do the work is an implementation detail:

 [Serializable]
 public class ProjectCloser : CommandBase
 {
 public static void CloseProject(Guid id)
 {
 ProjectCloser cmd = new ProjectCloser(id);
 cmd = DataPortal.Execute<ProjectCloser>(cmd);
 }

Lhotka_1019-1.book Page 514 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 6 ■ O TH E R F R AM E W OR K F E AT U R E S 515

 private Guid _projectId;

 private ProjectCloser()
 { /* require use of factory methods */ }

 private ProjectCloser(Guid projectId)
 {
 _projectId = projectId;
 }

 protected override void DataPortal_Execute()
 {
 Dictionary<string, object> parameters = new Dictionary<string, object>();
 parameters.Add("ProjectId", _projectId);

 WorkflowManager mgr = new WorkflowManager();
 mgr.ExecuteWorkflow(
 "PTWorkflow.ProjectWorkflow, PTWorkflow", parameters);

 if (mgr.Status == WorkflowStatus.Terminated)
 throw mgr.Error;
 }
 }

The code in DataPortal_Execute() is highlighted, as this is the code that executes the workflow.
Notice the use of a Dictionary to pass in name/value parameters to the workflow. The param-

eter sets the ProjectId dependency property of the workflow. The assumption is that the workflow
will have defined one or more dependency properties, such as ProjectId, that accept inbound
parameter values.

It is also important to note that ExecuteWorkflow() is called using the type name of the work-
flow. This avoids any circular reference that might be caused if activities within the workflow make
use of the same business assembly that contains the ProjectCloser class.

When ExecuteWorkflow() completes, the Status property is checked to see whether the workflow
terminated abnormally. The exception from the workflow is then thrown, indicating to the original
caller of the object that the command failed.

With ProjectCloser implemented this way, any code using the business layer can close a project
like this:

 ProjectCloser.CloseProject(projectId);

The calling code doesn’t need to be concerned with workflows, threading, or any of the details.
Everything is abstracted behind the business object.

Better yet, ProjectCloser is a standard CSLA .NET business object, which means that its call to
DataPortal.Execute() uses the data portal. If the application is configured properly, it means that
the workflow would run on the application server, or if the application is configured to use a local
data portal, the workflow would run on the client machine.

The WorkflowManager is a useful tool when mixing business objects and workflows in the same
application. But it can be useful in any scenario where workflows are used because it abstracts away
many of the more complex aspects involved in executing a workflow.

Lhotka_1019-1.book Page 515 Tuesday, November 18, 2008 3:42 PM

516 CH AP T E R 1 6 ■ O TH E R FR A M E W O R K F E A TU R E S

Conclusion
This chapter concludes creation of the CSLA .NET framework. Over the past several chapters, you
have learned how CSLA .NET delivers a wide variety of functionality to support the development of
business objects. This chapter combined a range of capabilities, including the following:

• Date handling

• Data access

• Executing WF workflows

The remainder of the book focuses on how to use this framework to create business objects, a
data access layer, and a variety of UIs for those objects, including WPF, Web Forms, and XML services.

Lhotka_1019-1.book Page 516 Tuesday, November 18, 2008 3:42 PM

517

■ ■ ■

C H A P T E R 1 7

Business Object Implementation

This chapter will implement the business objects designed in Chapter 3 by following the business
object coding structures from Chapters 4 and 5. This chapter will illustrate how to write code to create
business objects that enjoy all the features and capabilities built into the CSLA .NET framework. The
great thing is that almost all the code in the business objects will be focused on business. Each
business class will largely consist of four areas:

• Class declaration

• Property declarations

• Business and validation rules

• Per-type and per-property authorization rules

I’ll discuss object persistence and data access in Chapter 18. The focus in this chapter is on how
business objects support the UI and other business consumers by providing a rich set of properties
that automatically leverage business, validation, and authorization rules.

The example object model created in Chapter 3 includes editable objects and collections,
parent-child collection relationships, read-only lists, a name/value list, and command objects. It
also makes use of custom authentication, requiring the creation of custom principal and identity
objects. The custom identity object will be a read-only object. In the end, the sample application
makes use of every CSLA .NET base class available.

In this chapter, I won’t walk through all the code in the ProjectTracker business object library.
Instead, I’ll focus on providing examples of how to implement common types of business objects
and how to establish various object relationships. For the complete code, please refer to the code
download for CSLA .NET 3.6, available at www.lhotka.net/cslanet/download.aspx.

ProjectTracker Objects
Chapter 3 covered the creation of an object model for the sample project-tracking application. This
object model, shown in Figure 17-1, includes some editable root business objects (Project and
Resource), some editable child objects (ProjectResource and ResourceAssignment), some collections
of child objects (ProjectResources and ResourceAssignments), and a name/value list (RoleList). It
also includes two read-only collections (ProjectList and ResourceList) and an editable root collec-
tion (Roles).

The solid arrows indicate using relationships, where one object uses another for some purpose—
either as a parent-child relationship or for collaboration. The dashed lines indicate navigation, where
a method exists so the UI developer can easily get a reference to the target object. Of course, Chapter 3
has complete details on the object model.

Lhotka_1019-1.book Page 517 Tuesday, November 18, 2008 3:42 PM

http://www.lhotka.net/cslanet/download.aspx

518 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

By implementing these objects, you should get a good feel for the practical process of taking the
class templates from Chapters 4 and 5 and applying them to the creation of real business classes.

Figure 17-1. ProjectTracker application classes

Setting Up the Project
Technically, business classes can be placed in a Class Library, Windows Application, or website-type
project in Visual Studio. But to get the full advantages of mobile objects and the CSLA .NET frame-
work, they really must be placed in a Class Library project.

By putting the business classes in a DLL, it becomes possible for the business objects to be used
by different front ends. This is important, because Chapters 19 through 21 will use the exact same
business DLL to create WPF, Web Forms, and WCF service interfaces. It’s equally important in real-
world applications, since they too often have multiple interfaces. Even if an application starts with a
single interface, the odds are good that at some time in the future, it will need a new one.

I prefer to collect all my projects under a single Visual Studio solution, including the business
library, the WPF and web UI projects, and the WCF service project. To this end, you’ll find all the code
in a ProjectTrackercs solution in the code download, with each project and website contained inside.

The ProjectTracker.Library Class Library project is a library of business classes based on the
design from Chapter 3. This library contains all the business logic for the Project Tracker application.

The code in ProjectTracker.Library uses the CSLA .NET framework, so the project references
Csla.dll. This is a file reference that is set up through the Add Reference dialog box, as shown in
Figure 17-2. This makes the CSLA .NET framework available for use within the project, and is typi-
cally all that is required.

However, remember that Csla.dll includes code that might run in Enterprise Services (COM+).
In particular, this includes both the ServicedDataPortal and EnterpriseServicesPortal components of
the data portal, as discussed in Chapter 15. If you choose to use the Enterprise Services features, then
you might need to reference System.EnterpriseServices.dll as well.

Lhotka_1019-1.book Page 518 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 519

Figure 17-2. Referencing the Csla.dll assembly

The specific case in which this is required is if you configure the data portal to run locally in the
client process and you mark your DataPortal_XYZ methods with [Transactional(TransactionTypes.
EnterpriseServices)]. This combination causes the direct use of a ServicedComponent within the
client process, so it requires a reference to System.EnterpriseServices.dll. It also has the side effect
of requiring that Csla.dll be registered with COM+, which is handled automatically if the user is an
administrator on the client workstation, but otherwise must be done manually by an administrator
using the regsvcs.exe command line utility (or as part of a standard msi setup process).

■Caution By default, COM+ is not enabled on Windows XP SP2 or later, or Windows Vista. If you attempt to run
your data access code on the client, and you use Enterprise Services, then you will need to enable COM+ on the
client workstations where the application is deployed. This configuration typically has poor performance character-
istics and is not recommended.

If you don’t use the [Transactional(TransactionTypes.EnterpriseServices)] attribute on your
DataPortal_XYZ methods, no code will use Enterprise Services in the client process, so you won’t
have to worry about these details.

Business Class Implementation
The business classes implemented here follow the object-oriented design created in Chapter 3. That
chapter identified not only the classes to be created, but also which CSLA .NET base classes each one
will subclass.

I’ll walk through the first few classes in detail. The other classes will be very similar, so for those
I’ll discuss only the key features. Of course, the complete code for all classes is available in the code
download for the book.

Lhotka_1019-1.book Page 519 Tuesday, November 18, 2008 3:42 PM

520 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

Project
The Project class is an editable root class that represents a single project in the application. It
will follow the EditableRoot template, as discussed in Chapter 5. This means that it inherits from
BusinessBase, as shown in Figure 17-3.

Figure 17-3. The Project class is a subclass of BusinessBase.

Since this is the first business class to be created, I’ll walk through the code in detail. You can
assume that subsequent classes follow a similar structure overall.

The Project class uses a number of CSLA .NET features. To make this easier, it imports a couple
of CSLA .NET namespaces in addition to the standard items in the C# class template.

using System;
using System.Linq;
using Csla;
using Csla.Data;
using Csla.Security;

The class itself is contained within the ProjectTracker.Library namespace and is declared as
follows:

namespace ProjectTracker.Library
{
 [Serializable]
 public class Project : BusinessBase<Project>

The BusinessBase class requires one generic type parameter. This is the type of the business
object itself, and is used to provide strongly typed Save() and Clone() methods for the object as
discussed in Chapter 6.

The class will contain the standard code regions discussed in Chapter 4:

• Business Methods

• Business and Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

In this chapter, I’ll discuss the first three regions, leaving the last two for Chapter 18.
The class also has a region named Exists. This region implements an Exists() method that can

be used to determine if a specific project’s data exists in the database. I’ll discuss the code in the
Exists region in Chapter 18, because it deals mostly with database interaction.

Let’s walk through each region in turn.

Lhotka_1019-1.book Page 520 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 521

Business Methods

The Business Methods region includes the declaration of all instance fields, along with the properties
and methods that implement business logic around those fields. Since Project is a parent class, it
also includes some special code designed to work well with its child objects.

In this class, I am using managed backing fields, as discussed in Chapter 7. If you would like to
look at an example of private backing fields, look at the Resource class. That class is very similar to
the Project class; the only real difference is that it uses private backing fields instead of managed
backing fields as shown momentarily.

■Note The ProjectTracker application intentionally uses different coding models in different classes. The
purpose of this inconsistent coding is to illustrate various concepts within this one application, to meet the needs of
this book. A real-world application should choose one model and use it consistently.

Read-Only Properties

The bulk of the code in the Business Methods region for most objects will be the properties. Some
objects may include complex methods implementing business logic, but virtually all objects include
properties to allow the UI to view or update the object’s values.

The Id property of the Project is read-only. It also represents the object’s unique primary key
value in the database.

 private static PropertyInfo<Guid> IdProperty =
 RegisterProperty(new PropertyInfo<Guid>("Id"));
 [System.ComponentModel.DataObjectField(true, true)]
 public Guid Id
 {
 get { return GetProperty(IdProperty); }
 }

Since this is the primary key for the data in the database, the value can also be considered to be
a unique identifier for the object itself. The DataObjectField attribute is used to specify that the prop-
erty is both a primary key and identity value. This attribute is used by data binding, and in particular
by the CslaDataSource ASP.NET control discussed in Chapter 10. The attribute is optional, but is
useful for helping to identify the nature of primary key properties.

Notice the use of the GetProperty() method in the get block. This helper method was discussed
in Chapter 7, and it automatically checks the authorization rules before returning the value. If the
user is not authorized to read the property, a default value is returned.

The Id property illustrates several things: a read-only property, a primary identity key value, and
the use of the GetProperty() helper method.

Read-Write Properties

Now let’s try something a bit more interesting by creating a read-write property: Name.

 private static PropertyInfo<string> NameProperty =
 RegisterProperty(
 new PropertyInfo<string>("Name", "Project name"));
 public string Name
 {
 get { return GetProperty(NameProperty); }
 set { SetProperty(NameProperty, value); }
 }

Lhotka_1019-1.book Page 521 Tuesday, November 18, 2008 3:42 PM

522 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

Since this is neither a primary key nor an identity value, there’s no immediate need to use the
DataObjectField attribute. You may still opt to use this attribute on your properties to provide this
extra information for other purposes such as automated unit testing.

Notice that the PropertyInfo() object is passed the property name, along with a human-readable
friendly name for the property. That friendly name is provided to all business and validation rule
methods, and is automatically used by the rules in Csla.Validation.CommonRules when generating
broken rule descriptions.

The get block is virtually identical to that in the Id property. In fact, the get block for properties
will always be the same—the only difference is the name of the property.

The set block is similar in that it uses the SetProperty() helper method. As discussed in Chapter 7,
this method does the following:

• Ensures the user is authorized to set the property; if not, it throws an exception

• Ensures the new value is different from the existing value; if not, it exits silently

• Raises the PropertyChanging event

• Replaces the existing value with the new value

• Marks the object as having been changed

• Executes all business and validation rules

• Raises the PropertyChanged event for data binding

Assuming the user is authorized to change the property value, the code checks to see if the
provided value is actually new. If it’s the same as the value already in the object, then there’s no sense
in any work being done.

Additionally, since this is a string value, it is possible to receive a null as the new value. The
SetProperty() method ensures that any null values are converted to empty strings before further
processing.

So, if the user is authorized to change the value, and the value is different from what is already
in the object, then the new value is stored in the object. It is important to realize that this occurs before
any validation code runs. This means that the object could end up storing invalid values. That’s OK,
though, because the object has an IsValid property that can be used to determine whether any vali-
dation rules are currently being violated by values in the object.

Prior to the property value being changed, a PropertyChanging event is raised. This event is only
used by LINQ to SQL and isn’t used by any other part of the .NET Framework. I have chosen to raise
this event from CSLA .NET because it may be useful for business or UI code to be notified that the
property is about to be changed.

The business and validation rules to be checked are associated with the property in the
AddBusinessRules() method, which is implemented later in the chapter. Most rule methods assume
that the value to be validated is already in the object’s property, which is why it is important that the
property be set to the new value before the validation rules are invoked.

The IsDirty property indicates whether the object’s data has been changed. Since a new value
has been put into the object, this property will now return true.

Finally, since the object’s data has changed, any UI bound to the object through data binding
must update its display. This is done by raising a PropertyChanged event, as discussed in Chapter 10.

Most read-write properties look just like the preceding Name property. For instance, here’s the
Description property:

 private static PropertyInfo<string> DescriptionProperty =
 RegisterProperty(new PropertyInfo<string>("Description"));
 public string Description
 {

Lhotka_1019-1.book Page 522 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 523

 get
 {
 return GetProperty(DescriptionProperty);
 }
 set
 {
 SetProperty(DescriptionProperty, value);
 }
 }

Notice that other than having a different property name, it is identical to the Name property. The
vast majority of property methods will look exactly like this. In fact, you can find a code snippet for
both read-only and read-write properties in the Snippets subdirectory in the CSLA .NET code download.

■Tip You can manually install the snippet files for use in Visual Studio 2008. By default, you should copy them to
the Visual C#\My Code Snippets directory under My Documents\Visual Studio 2008\Code Snippets.
I typically put them in a Csla directory beneath My Code Snippets.

SmartDate Properties

So far, you’ve seen how to implement properties for type Guid and string. Most types follow this
same approach, with obvious small variation for formatting of values and so forth. But dates are a
tougher issue.

One way to deal with dates is to expose them as DateTime values directly. This works well for date
values that are required, for which an empty date isn’t an option. And of course, it only works well if
you are binding the property to a date-aware control. Unfortunately, most of the date-aware controls
don’t allow the user to just type a free-form date value, so they aren’t good for any sort of heads-down
data entry scenarios.

The SmartDate class from Chapter 16 is intended to help solve this dilemma by making it easy
for a business class to expose a date value as a string, yet also be able to treat it like a date. Addition-
ally, SmartDate allows for empty date values—it gives you the option of treating an empty date as the
smallest or largest possible date for the purposes of comparison.

The Started and Ended properties utilize the SmartDate data type. Here’s the Started property:

 private static PropertyInfo<SmartDate> StartedProperty =
 RegisterProperty(
 new PropertyInfo<SmartDate>("Started"));
 public string Started
 {
 get
 {
 return GetPropertyConvert<SmartDate, string>(StartedProperty);
 }
 set
 {
 SetPropertyConvert<SmartDate, string>(StartedProperty, value);
 }
 }

Notice that this is a string property, so it can be data bound to any text input control. This
means the user can enter the date value in any format that can be parsed, including the shortcuts
added to SmartDate in Chapter 16 (like + for tomorrow).

Lhotka_1019-1.book Page 523 Tuesday, November 18, 2008 3:42 PM

524 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

The get block uses the GetPropertyConvert() helper method to return the SmartDate value but
convert it into a string value. The SmartDate type automatically converts its value to a string that is
formatted based on the format string in the SmartDate instance (by default it is d, the short date format).

The set block uses the SetPropertyConvert() helper to set the SmartDate with the string value
provided by the user. The type conversion code in SmartDate automatically uses the parsing algorithm
built into SmartDate. That way, the value is stored as a date internal to SmartDate itself. This is impor-
tant because it allows SmartDate values to be compared to each other, as well as to DateTime values.
This comparison capability will be used later when the validation rules are implemented in Project.

The end result is that the UI sees a string property, but all the features and functionality of a
date type are available inside the business class. The Ended property is declared the same way.

You should be aware that this technique can be used to create properties of one type where
the value is stored as another type, as long as the two types can be converted into each other by the
CoerceValue() method in Csla.Utilities. For example, you can create a string property where the
value is stored in an enum, or any other type that can be converted into and out of a string value.

Child Collection Properties

The final business property in this region provides client code with access to the collection of child
objects.

 private static PropertyInfo<ProjectResources> ResourcesProperty =
 RegisterProperty(
 new PropertyInfo<ProjectResources>("Resources"));
 public ProjectResources Resources
 {
 get
 {
 if (!(FieldManager.FieldExists(ResourcesProperty)))
 LoadProperty(
 ResourcesProperty,
 ProjectResources.NewProjectResources());
 return GetProperty(ResourcesProperty);
 }
 }

The collection itself is exposed as a read-only property, but since it is an editable collection
derived from BusinessListBase, the UI code will be able to add and remove child items as needed.

This property is declared using a lazy creation scheme, so the child collection is only created
when it is used. In Chapter 18, you’ll see how it is created when the object is being loaded from a
database, but for a new Project object, the child collection is created on demand the first time this
property is invoked. I discussed lazy creation and lazy loading in Chapter 7.

Because CSLA .NET does a lot of work to simplify the use of child objects, I recommend always
using managed backing fields for child object references, even if you use private backing fields for
your other property values.

Overriding GetIdValue

The BusinessBase class defines a GetIdValue() method. This method was marked as abstract in
earlier versions of CSLA .NET, but is no longer required or recommended. It exists now for backward
compatibility only.

The purpose behind the GetIdValue() method was to allow BusinessBase to automatically
implement the standard System.Object overrides: Equals(), GetHashCode(), and ToString(). It is still
used to provide an override of ToString(), but not Equals() or GetHashCode(). I find it easier to simply
override ToString() than to override GetIdValue(), and that is what I recommend.

Lhotka_1019-1.book Page 524 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 525

 public override string ToString()
 {
 return Id.ToString();
 }

The reason for essentially removing GetIdValue() and the Equals() implementation is that WPF
has a strict interpretation of how Equals() should work, and that implementation does not include
the concept of logical equality.

Logical equality is the idea that one object is equal to another based on some logical comparison
that has meaning for your business logic. For example, you might decide two objects with the same
Id property value are equal, even if other property values are different.

WPF, however, only works properly if Equals() uses one of the following models:

• Two objects are the same if they are the exact same instance; Equals() is effectively the same
as ReferenceEquals().

• Two objects are the same if they have the exact same property values for all properties.

Neither of these definitions is compatible with the idea of logical equality, so CSLA .NET no longer
supports that concept either. If your application requires logical equality, you’ll have to implement
your own Equals() overload in your code, and you won’t be able to data bind your objects to a WPF
interface.

Business and Validation Rules

The Business and Validation Rules region implements the AddBusinessRules() method to associate
validation rules to properties of the business object. As discussed in Chapter 11, validation rules are
implemented as rule methods that conform to the Csla.Validation.RuleHandler delegate.

This region also implements any custom rule methods for the object. The rule methods provided in
Csla.Validation.CommonRules are designed to handle most common validation requirements, but
some objects have rules that aren’t implemented in the CommonRules class.

AddBusinessRules

Let’s look first at the AddBusinessRules() implementation.

 protected override void AddBusinessRules()
 {
 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringRequired,
 new Csla.Validation.RuleArgs(NameProperty));
 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringMaxLength,
 new Csla.Validation.CommonRules.MaxLengthRuleArgs(
 NameProperty, 50));

 ValidationRules.AddRule<Project>(
 StartDateGTEndDate<Project>,
 StartedProperty);
 ValidationRules.AddRule<Project>(
 StartDateGTEndDate<Project>,
 EndedProperty);
 ValidationRules.AddDependentProperty(
 StartedProperty, EndedProperty, true);
 }

Lhotka_1019-1.book Page 525 Tuesday, November 18, 2008 3:42 PM

526 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

This method is automatically invoked by the CSLA .NET framework any time validation rules
need to be associated with the object’s properties. It is invoked just once for the lifetime of the appli-
cation’s AppDomain. For a smart client, this occurs once each time the application is run. On a server,
it occurs once each time the server’s AppDomain is created, often only when the server is rebooted.

The method should contain a series of ValidationRules.AddRule() method calls as shown here.
Each call to AddRule() associates a validation rule with a property. In the simplest case, this means
associating a rule method like StringRequired to a property like Name.

 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringRequired, NameProperty);

With this done, any time the Name property is changed, the rule will be run by executing the
StringRequired method. The implementation for this method was covered in Chapter 11.

■Note The rule will also be applied if ValidationRules.CheckRules() is called with no parameters, as that
causes the validation rules for all properties to be checked. Or you can force the rules for a specific property to be
run with a call such as ValidationRules.CheckRules(NameProperty).

Other rules are a bit more complex, requiring extra parameter values to operate. This is the case
with the StringMaxLength rule, for instance.

 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringMaxLength,
 new Csla.Validation.CommonRules.MaxLengthRuleArgs(
 NameProperty, 50));

Notice that in this case, a MaxLengthRuleArgs object is created, supplying both the PropertyInfo<T>
representing the property against which the rule is to be run and the maximum length for a valid string.

Because MaxLengthArgs is a subclass of DecoratedRuleArgs, you could also accomplish the same
thing with code like this:

 var args = new Csla.Validation.DecoratedRuleArgs(NameProperty);
 args["MaxLength"] = 50;
 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringMaxLength,
 args);

This second approach requires more code, but is friendlier to code generation. I recommend
writing all rule methods to accept their parameter as a DecoratedRuleArgs, because it simplifies the
creation of code generation templates that create this code.

Both of the rules so far have been in the CommonRules class. But Project has a custom rule method as
well: StartDateGTEndDate. This rule is associated with both the Started and Ended properties.

 ValidationRules.AddRule(
 StartDateGTEndDate, StartedProperty);
 ValidationRules.AddRule(
 StartDateGTEndDate, EndedProperty);

As you’ll see, this custom rule compares the two date values to ensure that the project doesn’t
end before it begins.

Interdependent Properties

Sometimes an object will have properties that are interdependent or at least have interdependent
validation logic. The Started and Ended properties are good examples of this case. Later on, you’ll see

Lhotka_1019-1.book Page 526 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 527

how to implement a business validation rule saying that the value of Ended must not be earlier than
the value of Started—a project can’t end before it begins.

This complicates matters slightly, because a change to either property can affect the validity of
the other value. Suppose that Started and Ended begin with valid dates, but then Ended is changed to
a date earlier than Started. At that point, the Ended property is invalid, but so is the Started property.
Because the properties are interdependent, both should become invalid when the interdependent
rule is violated. Similarly, if the interdependent rule later becomes unbroken, both properties should
become valid.

This is the purpose behind the AddDependentProperty() method used in AddBusinessRules().

 ValidationRules.AddDependentProperty(StartedProperty, EndedProperty, true);

This call to the AddDependentProperty() method tells the business rules subsystem in CSLA .NET
that any time the rules for the Started property are checked, the rules for Ended should be checked
too, because the last parameter is true.

The result is that any interdependent business rules are run on both properties, so both prop-
erties will become invalid or valid as appropriate.

Custom Rule Methods

Chapter 11 discussed the CommonRules class and the rule methods it contains. The basic concepts
behind implementing a rule method were discussed at that time. The core requirement for all rule
methods is that they conform to the Csla.Validation.RuleHandler delegate signature. They also
must return true if the rule is unbroken and false if it is broken. Additionally, if the rule is broken,
e.Description should be set to provide a human-readable description of the problem.

None of the rules in CommonRules are designed to ensure that one SmartDate value is greater than
another, so Project implements this as a custom rule.

 private static bool StartDateGTEndDate<T>(
 T target, Csla.Validation.RuleArgs e) where T : Project
 {
 if (target.ReadProperty(StartedProperty) >
 target.ReadProperty(EndedProperty))
 {
 e.Description = "Start date can't be after end date";
 return false;
 }
 else
 {
 return true;
 }
 }

This rule method is comparable to those in the CommonRules class, but it doesn’t use reflection to
do its work. It doesn’t need to because it is inside the Project class and thus has direct access to all
the private and protected members of the object.

Also notice that this is a generic method, and the target parameter is of type T. More importantly, T
is constrained to be of type Project. This means the method can use the target parameter in a strongly
typed manner to access the private or protected members of the object. It is the combination of
being implemented in the business class and of using a constrained generic type for the target
parameter that allows the rule method to be strongly typed like this.

The code accesses the ReadProperty() helper method directly to get the values of each property.
It then uses those values to do the comparison. If the project start date is greater than the project end
date, then the rule is broken and the method returns false; otherwise, it returns true.

Lhotka_1019-1.book Page 527 Tuesday, November 18, 2008 3:42 PM

528 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

This method is invoked any time either the Started or Ended properties are changed, or by an
explicit call to ValidationRules.CheckRules() in the code.

Authorization Rules

The Authorization Rules region implements the AddAuthorizationRules() method to define per-
property authorization rules. It also includes the AddObjectAuthorizationRules() to define per-type
authorization rules.

AddAuthorizationRules

Like AddBusinessRules(), the AddAuthorizationRules() method is called automatically by the CSLA
.NET framework any time the authorization rules for the object need to be configured. This method
contains only a series of calls to AuthorizationRules, specifying which security roles are allowed or
denied read and write access to each property.

 protected override void AddAuthorizationRules()
 {
 AuthorizationRules.AllowWrite(
 NameProperty, "ProjectManager");
 AuthorizationRules.AllowWrite(
 StartedProperty, "ProjectManager");
 AuthorizationRules.AllowWrite(
 EndedProperty, "ProjectManager");
 AuthorizationRules.AllowWrite(
 DescriptionProperty, "ProjectManager");
 }

In this example, there are no restrictions on who can read properties, so there are no calls to
AllowRead() or DenyRead(). Recall from Chapter 12 that if no roles are specified for allow or deny,
then all users are allowed access.

Similarly, there are no restrictions on methods, so AllowExecute() and DenyExecute() are not
used here.

■Tip If the default implementation for authorization as implemented in Chapter 12 doesn’t meet your needs, the
business object can override the CanReadProperty() and CanWriteProperty() methods from BusinessBase
and you can implement your own algorithm.

However, there are restrictions on who can change property values. In particular, only users in
the ProjectManager role are allowed to change any properties on the object, so each property is asso-
ciated with this role—for instance:

 AuthorizationRules.AllowWrite(NameProperty, "ProjectManager");

Remember, the ProjectManager role is a security role, so it is either a Windows domain or Active
Directory group, or a custom security role loaded when the user is authenticated. This sample appli-
cation uses custom authentication, so the user’s roles come from a SQL Server database.

The AllowWrite() method, like all the methods on AuthorizationRules, accepts the property’s
PropertyInfo<T> identifier, followed by a comma-separated list of the roles allowed to alter this
property. The list of roles is a params parameter, making it easy to specify several roles on one line.

Lhotka_1019-1.book Page 528 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 529

AddObjectAuthorizationRules

The business developer can also specify the roles that are allowed to create, retrieve, edit, and delete
Project objects. The data portal uses this information to automatically ensure only authorized users
perform each action. This information is available to the UI developer so he can enable, disable, or
hide UI elements based on the user’s permissions.

The roles are defined by implementing the AddObjectAuthorizationRules() method in the busi-
ness object.

 protected static void AddObjectAuthorizationRules()
 {
 AuthorizationRules.AllowCreate(
 typeof(Project), "ProjectManager");
 AuthorizationRules.AllowEdit(
 typeof(Project), "ProjectManager");
 AuthorizationRules.AllowDelete(
 typeof(Project), "ProjectManager");
 AuthorizationRules.AllowDelete(
 typeof(Project), "Administrator");
 }

The AllowCreate(), AllowGet(), AllowEdit(), and AllowDelete() methods are used to specify
the roles that are allowed to perform each action. If no roles are specified (for example, there’s no call
to AllowGet() here), then all users are allowed to perform that action.

The AddObjectAuthorizationRules() method is a static method. CSLA .NET invokes it
automatically the first time any code attempts to call one of the methods that checks authorization.
Table 17-1 lists the static methods of interest to a UI developer implemented by
Csla.AuthorizationRules.

To use this functionality, each business object can implement AddObjectAuthorizationRules()
to specify the roles allowed to perform each operation.

At this point, you should understand how to define read-only and read-write properties that
utilize the authorization and business rules defined for each property. The Project class also includes
Factory Methods and Data Access regions, which I’ll discuss in Chapter 18. For now, I’ll consider our
discussion of the Project class complete.

Table 17-1. Methods to Check Per-Type Authorization

Method Description

CanCreate() Returns true if the current user is authorized to create an instance of the
specified object type

CanGet() Returns true if the current user is authorized to retrieve an instance of the
specified object type

CanEdit() Returns true if the current user is authorized to edit (insert or update) an
instance of the specified object type

CanDelete() Returns true if the current user is authorized to delete an instance of the
specified object type

Lhotka_1019-1.book Page 529 Tuesday, November 18, 2008 3:42 PM

530 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

ProjectResources
A Project object contains a collection of child objects, each one representing a resource assigned to
the project. The collection is maintained by a ProjectResources collection object, which is created
by inheriting from Csla.BusinessListBase. The ProjectResources class has three regions:

• Business Methods

• Factory Methods

• Data Access

The Business Methods region contains the Assign() method, which assigns a resource to the
project. It also contains some helpful overloads of common methods, such as a Contains() method
that accepts the Id value of a Resource. This is useful because the Contains() method provided by
BusinessListBase() only accepts a ProjectResource object; however, as you’ll see in Chapters 19 and 20,
the UI code needs to see if the collection contains a ProjectResource object based on its Id value.

The Factory Methods region contains a set of internal-scoped factory methods for use by the
Project object in creating and loading the collection with data. Finally, the Data Access region imple-
ments code to load the collection with data and to save the child objects in the collection into the
database.

Before getting into the Business Methods region, let’s take a look at the class declaration.

 [Serializable]
 public class ProjectResources :
 BusinessListBase<ProjectResources, ProjectResource>

Like all business classes, this one is Serializable. It also inherits from a CSLA .NET base class—
in this case, BusinessListBase. The BusinessListBase class requires two generic type parameters.

The first one is the type of the collection itself. That value is used to provide strongly typed
methods such as Clone() and Save().

The second one is the type of the child objects contained within the collection. That value is
used to make the collection itself strongly typed and affects many methods on the collection, including
the indexer, Remove(), Contains(), and others.

Business Methods

The Business Methods region contains a set of methods that provide business functionality for use by
UI code. In many cases, these methods are overloads of methods common to all collections, but they
accept parameters that provide much simpler use for the UI developer. The methods are listed in
Table 17-2.

Table 17-2. Business Methods in ProjectResources

Method Description

Assign Assigns a resource to the project

GetItem Returns a child object based on a resource Id value

Remove Removes a child object based on a resource Id value

Contains Searches for a child object based on a resource Id value

ContainsDeleted Searches for a deleted child object based on a resource Id value

Lhotka_1019-1.book Page 530 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 531

Of all these methods, only Assign() is truly required. All the other methods merely provide
simpler access to the collection’s functionality. Still, that simpler access translates into much less
code in the UI, so it is well worth implementing in the object.

Assign

The Assign() method assigns a resource to the project. It accepts a resource Id value as a parameter,
and adds a new ProjectResource object to the collection representing the assignment of the
resource.

 public void Assign(int resourceId)
 {
 if (!Contains(resourceId))
 {
 ProjectResource resource =
 ProjectResource.NewProjectResource(resourceId);
 this.Add(resource);
 }
 else
 throw new InvalidOperationException(
 "Resource already assigned to project");
 }

A resource can only be assigned to a project one time, so the collection is first checked to see if
it contains an entry with that same resource Id value. Notice that the simpler Contains() overload is
useful already—I’ll get to its implementation shortly.

Assuming the resource isn’t already assigned, a new ProjectResource child object is created and
initialized by calling the NewProjectResource() factory method. Notice that the resource Id value is
passed to the new child object, establishing the proper connection between the project and resource.
The child object is then added to the collection, completing the process.

This means the UI code to add a resource to a project looks like this:

project.Resources.Assign(resourceId);

where resourceId is the primary key of the resource to be assigned.

GetItem

Collections have an indexer that provides access to individual items in the collection based on a
numeric index value. It is also useful to be able to get a specific child object based on other data in
the child objects themselves. In this case, it will be necessary to retrieve a child item based on the Id
property of the resource that was assigned to the project, and this requires a method that accepts the
Id property and returns the corresponding child object.

 public ProjectResource GetItem(int resourceId)
 {
 return this.SingleOrDefault((r) =>
 r.ResourceId == resourceId);
 }

In principle, this method operates much like an indexer—but the default indexer’s parameter is
a positional index, while the GetItem() method’s parameter indicates the Id value of the resource.
Simply overloading the indexer would be a cleaner solution, but this isn’t possible because the default
indexer accepts an int, and so does this new “overload.” The result would be a duplicate method
signature, so this must be a method rather than an overload of the indexer.

Lhotka_1019-1.book Page 531 Tuesday, November 18, 2008 3:42 PM

532 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

Remove, Contains, and ContainsDeleted

Collections that inherit from BusinessListBase automatically have Remove(), Contains(), and
ContainsDeleted() methods. Each of these accepts a reference to a child object as a parameter, and
often that is sufficient.

For this collection, however, it turns out that the UI code in Chapters 19 and 20 is much simpler
if it is possible to remove or check for a child object based on a resource Id property value rather than
a child object reference. To provide this capability, each of these three methods is overloaded with a
different implementation. For instance, here’s the Remove() method:

 public void Remove(int resourceId)
 {
 foreach (ProjectResource res in this)
 {
 if (res.ResourceId == resourceId)
 {
 Remove(res);
 break;
 }
 }
 }

This method accepts the resourceId value as a parameter, and that value is used to locate the
child object (if any) in the collection. The Contains() and ContainsDeleted() overloads follow the
same basic approach.

Not all collections will need overloads of this type, but such overloads are often useful to simplify
the use of the collection and reduce code in the UI.

This completes the ProjectResources collection code, though I’ll revisit this class in Chapter 18
to discuss the Factory Methods and Data Access regions.

ProjectResource
A Project contains a child collection: ProjectResources. The ProjectResources collection contains
ProjectResource objects. As designed in Chapter 3, each ProjectResource object represents a resource
that has been assigned to the project.

Also remember from Chapter 3 that ProjectResource shares some behaviors with
ResourceAssignment, and those common behaviors were factored out into an Assignment object.
As you look through the code in ProjectResource, you’ll see calls to the behaviors in Assignment, as
ProjectResource collaborates with that other object to implement its own behaviors. I’ll discuss the
Assignment class after ProjectResource.

ProjectResource is an editable child object, so that is the template (from Chapter 5) that I’ll
follow here. Editable child objects have the following code regions:

• Business Methods

• Business and Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

The class is declared as follows:

 [Serializable]
 public class ProjectResource :
 BusinessBase<ProjectResource>, IHoldRoles

Lhotka_1019-1.book Page 532 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 533

As with Project, the class inherits from BusinessBase, providing the type of the business object
itself as the type parameter.

The class also implements an interface: IHoldRoles. This interface will be defined in the Assignments
class later in the chapter, and it defines a Role property. This interface will be used by code that vali-
dates the Role property value.

I’ll cover the Factory Methods and Data Access regions in Chapter 18, and I’ll cover the Business
Methods, Business and Validation Rules, and Authorization Rules regions now.

Business Methods

The Business Methods region is constructed in the same manner as Project. It contains read-only
and read-write property declarations that are implemented using managed backing fields. If you
want to see an example of an editable child using private backing fields, you can look at the
ResourceAssignment class.

Because the property declarations are so consistent, I won’t include any code here. As discussed
in Chapter 7, one goal of CSLA .NET is to make property declarations standardized, which means
they all look the same.

The ProjectResource class does include a GetResource() method.

 public Resource GetResource()
 {
 CanExecuteMethod("GetResource", true);
 return Resource.GetResource(GetProperty(ResourceIdProperty));
 }

At first glance, through the use cases in Chapter 3, someone might think that a Project contains
a list of Resource objects that are assigned to the project. That’s a common mistake when doing object
design, because both Project and Resource are clearly root objects. In reality, a Project contains a list
of assigned resources, which are represented by the ProjectResource class.

But a ProjectResource does have a logical relationship with Resource. This is a sort of navigable
using relationship, where you can envision navigating from a ProjectResource child object to a
Resource root object. This is the purpose behind the GetResource() method: to implement this navi-
gation relationship explicitly. A UI developer might use this method to show a modal dialog, so the
user can edit the Resource data associated with a resource assigned to a project.

Notice the use of CanExecuteMethod() at the top of the implementation. This method checks the
current user’s authorization to make sure she’s allowed to execute this method. If the user is not
authorized, CanExecuteMethod() will throw an exception.

Business and Validation Rules

The Business and Validation Rules region is much like that in Project, in that it implements the
AddBusinessRules() method and could include custom rule methods. In this case, however, the one
custom rule required by ProjectResource is also required by ResourceAssignment. Since the rule is a
form of common behavior, its implementation is located in the Assignment class.

 protected override void AddBusinessRules()
 {
 ValidationRules.AddRule<ProjectResource>(
 Assignment.ValidRole, RoleProperty);
 }

The ValidRole rule from the Assignment class is associated with the Role property. That rule is
designed to ensure that the Role property is set to a value corresponding to a role in the RoleList
collection (which I’ll discuss later in the chapter). The IHoldRoles interface will be used to allow the
ValidRule method to access the Role property.

Lhotka_1019-1.book Page 533 Tuesday, November 18, 2008 3:42 PM

534 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

Authorization Rules

The Authorization Rules region implements the AddAuthorizationRules() method, establishing the
roles authorized to read and write each property. For this object, the only restrictions are that the
Role property can only be changed by a ProjectManager, and the Guest role isn’t allowed to invoke
the GetResource() method.

 protected override void AddAuthorizationRules()
 {
 AuthorizationRules.AllowWrite(RoleProperty, "ProjectManager");
 AuthorizationRules.DenyExecute("GetResource", "Guest");
 }

These roles are checked by each property and by the CanExecuteMethod() method.
This completes the ProjectResource class, and really the whole Project object family. Of course,

you don’t quite have the whole picture yet, because ProjectResource collaborates with both Assignment
and RoleList to do its work. I’ll discuss those classes next.

Assignment
The Assignment class contains the behaviors common to both ProjectResource and
ResourceAssignment as designed in Chapter 3. Figure 17-4 shows the collaboration relationship
between these objects.

Figure 17-4. Objects collaborating with Assignment

Since Assignment only implements behaviors and contains no data, it is declared as a static class.

 internal static class Assignment

Notice that it doesn’t inherit from any CSLA .NET base classes. It has no need, since it is merely
a collection of common behaviors. Specifically, it contains a business method, a custom validation
rule, and a set of data access methods.

Lhotka_1019-1.book Page 534 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 535

Business Methods

When a resource is associated with a project, the date of that association is recorded. Though it
may seem somewhat trivial, the code to determine that date value is a common behavior between
ProjectResource and ResourceAssignment, so it is implemented in the Assignment class.

 public static DateTime GetDefaultAssignedDate()
 {
 return DateTime.Today;
 }

This is an example of the concept of normalization of behavior I discussed in Chapter 3.

Business and Validation Rules

Similarly, both ProjectResource and ResourceAssignment have a Role property, allowing the role
of the resource on the project to be changed. When that value is changed, it must be validated. Of
course, this is handled by implementing a rule method conforming to the RuleHandler delegate
defined by CSLA .NET. This is common behavior, so it is implemented in Assignment.

 public static bool ValidRole<T>(T target, RuleArgs e)
 where T : IHoldRoles
 {
 int role = target.Role;

 if (RoleList.GetList().ContainsKey(role))
 {
 return true;
 }
 else
 {
 e.Description = "Role must be in RoleList";
 return false;
 }
 }

This method uses the IHoldRoles interface to retrieve the value of the Role property from the
specified target object. This interface is defined like this:

 internal interface IHoldRoles
 {
 int Role { get; set;}
 }

Notice that the interface is internal in scope. It is only used within this assembly by the ValidRole()
method, so there’s no need to expose it as a public interface. Since both ProjectResource and
ResourceAssignment implement this interface, the ValidRole() method has strongly typed access to
the Role property on both objects.

Using the retrieved role value, the RoleList collection is asked whether it contains an entry with
that value as a key. If it does, then the role is valid; otherwise, it is not valid, so e.Description is set to
indicate the nature of the problem and false is returned as a result.

The RoleList object automatically caches the list of roles, so only the first call to GetList() by
the application goes to the database, and subsequent calls are handled from the in-memory cache.

The Assignment class illustrates how to normalize behavior through collaboration, helping to
ensure that a given behavior is only implemented once within the business layer.

Lhotka_1019-1.book Page 535 Tuesday, November 18, 2008 3:42 PM

536 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

RoleList
The final object used by Project, ProjectResources, ProjectResource, and Assignment is the RoleList
collection. This is a name/value list based on the Roles table from Chapter 3. The name (key) values
are of type int, while the values are the string names of each role.

The CSLA .NET framework includes the NameValueListBase class to help simplify the creation of
name/value list objects. Such objects are so common in business applications that it is worth having
a base class to support this one specialized scenario.

Chapter 5 includes a template for name/value list classes, and RoleList will follow that template. It
includes the Business Methods, Factory Methods, and Data Access regions. The class is declared like this:

 [Serializable]
 public class RoleList : NameValueListBase<int, string>

Notice the generic type parameters. The first specifies the data type of the name or key, while the
second specifies the data type of the value. These data types are used to define the name and value
types of the NameValuePair child objects contained in the collection.

Business Methods

The only business method in this class is DefaultRole(), which returns the default role for a resource
newly assigned to a project. Not all name/value collections will provide a method to specify the default
role, but it is often helpful. Recall that this method is used by ProjectResource as a new ProjectResource
object is created. Here’s the method:

 public static int DefaultRole()
 {
 RoleList list = GetList();
 if (list.Count > 0)
 return list.Items[0].Key;
 else
 throw new NullReferenceException(
 "No roles available; default role can not be returned");
 }

The implementation in this application is very simplistic, as it just returns the first item in the
collection. In a more complex application, the default value might be specified in the database.

The rest of the code in this class deals with loading the list from the database, and will be discussed
in Chapter 18.

This completes the Project object family, including all collaboration objects. Next, I’ll walk
briefly through the Resource object family.

Resource and Related Objects
The other primary root object in the object model is Resource. Like Project, a Resource object can be
directly created, retrieved, or updated. It also contains a list of child objects.

Since I’ve already walked through the creation of an editable root business object in detail, there’s
no need to do the same for the Resource class. However, the Resource and ResourceAssignment
classes use private backing fields for their properties, rather than the managed backing fields I’ve
shown thus far.

For example, here’s the Id property from the Resource class:

Lhotka_1019-1.book Page 536 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 537

 private static PropertyInfo<int> IdProperty =
 RegisterProperty(new PropertyInfo<int>("Id"));
 private int _id = IdProperty.DefaultValue;
 [System.ComponentModel.DataObjectField(true, true)]
 public int Id
 {
 get { return GetProperty(IdProperty, _id); }
 }

In this case, a private field is declared to store the property value:

 private int _id = IdProperty.DefaultValue;

The value is initialized to a default value from the ResourceInfo<T> object. This is absolutely
required for string values, and is optional for other types. This is important for a string value, because
the default for a string is null, but if your property provides a null value to data binding, an excep-
tion may result, as not all UI technologies support null values.

Also notice how the field is passed to the GetProperty() method.

 get { return GetProperty(IdProperty, _id); }

In this case, GetProperty() checks the user’s authorization and returns either a default value
(if the user isn’t authorized) or the value of _id.

The FirstName property is an example of a read-write property.

 private static PropertyInfo<string> FirstNameProperty =
 RegisterProperty(
 new PropertyInfo<string>("FirstName", "First name"));
 private string _firstName = FirstNameProperty.DefaultValue;
 public string FirstName
 {
 get
 {
 return GetProperty(FirstNameProperty, _firstName);
 }
 set
 {
 SetProperty(FirstNameProperty, ref _firstName, value);
 }
 }

Again, the field is declared and initialized.

 private string _firstName = FirstNameProperty.DefaultValue;

The field is provided to GetProperty() just like in the previous example. However, notice how it
is passed to SetProperty().

 set { SetProperty(FirstNameProperty, ref _firstName, value); }

The field is passed by reference, using the ref keyword. This means the SetProperty() method
has a reference to the actual field, so it can set the field with the new value. This overload of SetProperty()
follows the exact same steps I discussed earlier in the chapter for the Name property in the Project
class, but this overload sets the private field value.

Lhotka_1019-1.book Page 537 Tuesday, November 18, 2008 3:42 PM

538 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

The Resource, ResourceAssignments, and ResourceAssignment objects are otherwise totally
comparable to Project, ProjectResources, and ProjectResource, so I won’t cover their code in detail
here. You can look at the code for these classes by downloading the code for the book.

ProjectList and ResourceList
The ProjectList and ResourceList classes are both read-only collections of read-only data. They
exist to provide the UI with an efficient way to get a list of projects and resources for display to the
user.

On the surface, it might seem that you could simply retrieve a collection of Project or Resource
objects and display their data. But that would mean retrieving a lot of data that the user may never
use. Instead, it’s more efficient to retrieve a small set of read-only objects for display purposes, and
then retrieve an actual Project or Resource object once the user has chosen which one to use.

The CSLA .NET framework includes the ReadOnlyListBase class, which is designed specifically
to support this type of read-only list. Such a collection typically contains objects that inherit from
ReadOnlyBase.

Because these two read-only collections are so similar in implementation, I’m only going to
walk through the ResourceList class in this chapter. You can look at the code for ProjectList in the
code download.

The ResourceList class inherits from Csla.ReadOnlyListBase.

 [Serializable]
 public class ResourceList :
 ReadOnlyListBase<ResourceList, ResourceInfo>

ReadOnlyListBase requires two generic type parameters. The first is the type of the collection
object itself and is used to create the strongly typed Clone() method.

The only code in ResourceList deals with data access, and I’ll discuss that in Chapter 18. There’s
no other code, because ReadOnlyListBase handles all the details required for a normal read-only list,
which makes the business object developer’s job easy.

The list contains read-only child objects of type ResourceInfo. This is a separate class that
implements simple read-only properties to expose the resource data.

ResourceInfo

The ResourceList class is a collection of ResourceInfo objects. Each ResourceInfo object provides
read-only access to a subset of data from the Resources table. The class is defined like this:

 [Serializable]
 public class ResourceInfo :
 ReadOnlyBase<ResourceInfo>

It inherits from ReadOnlyBase, which requires one generic type parameter: the type of the busi-
ness object. This type parameter is used to implement the strongly typed Clone() method.

Business Methods

The ResourceInfo object exposes two properties: Id and Name.

 private int _id;
 public int Id
 {
 get { return _id; }
 }

Lhotka_1019-1.book Page 538 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 539

 private string _name;
 public string Name
 {
 get { return _name; }
 }

 public override string ToString()
 {
 return _name;
 }

I’m not using the field manager for this object, and I often don’t use it for simple read-only
objects. While ReadOnlyBase supports the field manager, if your read-only object has no authoriza-
tion rules, then the field manager will provide no real value and you can write code similar to that
shown here.

■Note If you intend to use CSLA .NET for Silverlight, then you should base all your objects off CSLA .NET base
classes, and you should strongly consider using managed backing fields. While CSLA .NET for Silverlight is outside
the scope of this book, it is designed to work best with objects that use the field manager and managed backing fields.

I’ve also chosen to override ToString() so it returns the _name field value. This is important,
because when the collection is data bound to a list control like a ListBox, it is the ToString() value
that will be displayed to the user.

As you can see, creating a read-only list is usually a very simple process.

Roles
The RoleList object provides a read-only, cached list of roles that a resource can hold when assigned
to a project. But that list of roles needs to be maintained, and that is the purpose behind the Roles
collection. This is an editable root collection that contains a list of editable child Role objects.

The Roles class illustrates how to create an editable root collection based on the template code
from Chapter 5. The class inherits from BusinessListBase.

 [Serializable]
 public class Roles :
 BusinessListBase<Roles, Role>

The first generic type parameter specifies the type of the collection itself, while the second
provides the type of the child objects contained in the collection.

An editable root collection has Business Methods, Authorization Rules, Factory Methods, and
Data Access regions. By this point, you’ve seen good examples of each region, so I’ll just focus on the
parts that are unique for a root collection. For instance, the Authorization Rules region includes only
the static authorization rules discussed earlier in the chapter, so I’ll bypass talking about that code
here.

Business Methods

The Roles class implements an overloaded Remove() method that accepts a role’s Id value rather
than a Role object. This simplifies removal of child objects, especially in the Web Forms UI that will
be created in Chapter 20.

Lhotka_1019-1.book Page 539 Tuesday, November 18, 2008 3:42 PM

540 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

 public void Remove(int id)
 {
 foreach (Role item in this)
 {
 if (item.Id == id)
 {
 Remove(item);
 break;
 }
 }
 }

It also implements a GetRoleById() method to retrieve a child Role object based on the role
Id value.

 public Role GetRoleById(int id)
 {
 foreach (Role item in this)
 {
 if (item.Id == id)
 {
 return item;
 }
 }
 return null;
 }

Again, this exists to simplify the creation of the Web Forms UI.
Finally, and probably of most interest, is the AddNewCore() override.

 protected override object AddNewCore()
 {
 Role item = Role.NewRole();
 Add(item);
 return item;
 }

When using WPF or Windows Forms data binding, it is possible to allow grid controls to auto-
matically add new items to a collection when the user moves to the last row of the grid. The collection
object itself controls whether this option is available, and the Roles collection supports the concept.
Turning the option on is done in the collection’s constructor.

 private Roles()
 {
 this.Saved +=
 new EventHandler<Csla.Core.SavedEventArgs>(Roles_Saved);
 this.AllowNew = true;
 }

If AllowNew is set to true, then the object must override AddNewCore(), as shown here. I’ll discuss
the rest of the constructor code in Chapter 18 as part of the data access code.

■Note This option is not enabled for ProjectResources or ResourceAssignments because it isn’t possible
to add a new ProjectResource or ResourceAssignment child object to those collections without first gathering
extra information from the user (specifically the resource or project to be assigned). You can only allow a grid control
to add new child objects if you can implement AddNewCore() to create a new child object with no user interaction.

Lhotka_1019-1.book Page 540 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 541

The AddNewCore() method is called by data binding when a new item needs to be added to the
collection. The method is responsible for creating a new child object, adding it to the collection, and
returning it as a result.

It is important to realize that this puts a serious constraint on the child objects, since it must be
possible to create them without user input. In other words, it must be possible to create a child object
based purely on default values provided by your code or from the database. If your child object has
a parameterless factory method (like the NewRole() method in the preceding AddNewCore() method)
for creating a new object, then you are ready to go.

Role
The Roles object is an editable root collection that contains a list of editable child Role objects. Each
Role object is an editable child, so it is similar in structure to ProjectResource and ResourceAssignment.

The design decision that makes this object unique and interesting is that its key value, Id, is a
user-entered value. Unlike Project (in which the value is generated automatically by the object) or
Resource (in which the value is generated by the database), this object’s key value must be entered
directly by the user.

From a data access perspective, this isn’t overly complex. The Roles table views the Id column
as a primary key, so it already ensures that duplicate values aren’t allowed in the database. Of course,
sending the object all the way to the database to find out about a validation rule being violated is
wasteful. It is far better to detect the condition as soon as a duplicate key value is entered.

Additionally, the user shouldn’t have to guess to find an appropriate value when adding a new
role to the application. When a new Role object is created, it can set its Id property to an appropriate
default value.

Setting a Default Value

The Id property contains code to find a default value if the Id property has never been set to a value:

 private static PropertyInfo<int> IdProperty =
 RegisterProperty(new PropertyInfo<int>("Id"));
 private bool _idSet;
 public int Id
 {
 get
 {
 if (!_idSet)
 {
 _idSet = true;
 SetProperty(IdProperty, GetMax() + 1);1);
 }
 return GetProperty(IdProperty);
 }
 set
 {
 _idSet = true;
 SetProperty(IdProperty, value);
 }
 }

If the Id property is read, and it hasn’t been set prior to this point, the code calls a GetMax()
method to determine the current maximum Id value in the list.

Lhotka_1019-1.book Page 541 Tuesday, November 18, 2008 3:42 PM

542 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

 private int GetMax()
 {
 Roles parent = (Roles)this.Parent;
 return parent.Max(r => r.Id);
 }

This method loops through the objects in the parent Roles collection to find the maximum value
for any existing Id property, and then it returns that value. Back in the Id property’s get code, the
property is set to that value plus one.

 if (!_idSet)
 {
 _idSet = true;
 SetProperty(IdProperty, GetMax() + 1);
 }

Your first thought might be that this should be done in the object’s constructor. The problem
with that is that the Parent property in the base class isn’t set to a valid value when the constructor runs.

■Note Both the data portal and .NET serialization create the object using constructors that can’t provide param-
eters such as the parent object reference. To overcome this limitation, BusinessListBase includes code to call
a SetParent() method on its child objects at key points in the object’s life cycle.

Since the default value can’t be set in the constructor, it is set in the Id property on the first
request for the value—unless the value has been set previously, either through the property set block
or when the data was loaded from the database.

Preventing Duplicate Values

The requirement to have no duplicate Id property values is simply a validation rule, so it is imple-
mented as a rule method in the Role object’s Business and Validation Rules region.

 private static bool NoDuplicates<T>(
 T target, Csla.Validation.RuleArgs e) where T : Role
 {
 Roles parent = (Roles)target.Parent;
 if (parent != null)
 {
 foreach (Role item in parent)
 {
 if (item.Id == target.ReadProperty(IdProperty) &&
 !(ReferenceEquals(item, target)))
 {
 e.Description = "Role Id must be unique";
 return false;
 }
 }
 }
 return true;
 }

Lhotka_1019-1.book Page 542 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 543

When this rule is run, it loops through the list of Role objects in the parent Roles collection to
see if any other child object has the same Id value. If there’s a match, the method returns false;
otherwise, it returns true.

The rule method is associated with the Id property in the AddBusinessRules() method.

 protected override void AddBusinessRules()
 {
 ValidationRules.AddRule<Role>(NoDuplicates, IdProperty);
 ValidationRules.AddRule(
 Csla.Validation.CommonRules.StringRequired, NameProperty);
 }

This custom rule ensures that duplicate Id values are caught as they are entered, so that the data
doesn’t have to be sent to the database to find out about the problem. As you’ll see in Chapter 19, this
is particularly nice in a WPF (or Windows Forms) UI, since the user gets instant and automatic feed-
back about what is wrong.

Implementing Exists Methods
The first object discussed in the chapter was Project, and I covered all the code in that class except
for the Exists() command implementation. Many objects can benefit from the implementation of
an Exists() command, as it allows the UI to quickly and easily determine if a given object’s data is
in the database without having to fully instantiate the object itself. Ideally, a UI developer could
write conditional code like this:

if (Project.Exists(productId))

Implementing an Exists() command also provides an opportunity to make use of Csla.
CommandBase to create a command object. This makes sense, since all an Exists() command needs
to do is run a stored procedure in the database and report on the result. Because the Exists() command
is so data-focused, I’ll cover it in Chapter 18.

At this point, you should understand how the business objects in ProjectTracker.Library are
implemented. The only classes yet to be discussed are the ones supporting custom authentication.

Custom Authentication
Applications may use either Windows integrated (AD) or custom authentication.

Using Windows integrated security requires no extra coding in the business layer, and the only
code required in the UI is to tell .NET to use Windows authentication, by calling AppDomain.
CurrentDomain.SetPrincipalPolicy() in WPF, Windows Forms, or in the web.config file for Web
Forms or a WCF service.

Custom authentication requires some extra code in the business layer, however, because custom
principal and identity classes must be created. The details of the design were discussed in Chapter 3,
so I’ll focus on the implementation here.

PTPrincipal
PTPrincipal is a custom principal object that can be assigned as the current principal on the
Thread object and in the HttpContext. You set the current principal by setting the value of Csla.
ApplicationContext.User, as I discussed in Chapter 12.

Within .NET, the principal object is the centerpiece for authorization. The object must imple-
ment System.Security.Principal.IPrincipal, which defines an Identity property and an IsInRole()

Lhotka_1019-1.book Page 543 Tuesday, November 18, 2008 3:42 PM

544 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

method. CSLA .NET provides a helpful base class you can use when creating a custom principal,
Csla.Security.BusinessPrincipalBase, so PTPrincipal inherits from that class.

 [Serializable]
 public class PTPrincipal : Csla.Security.BusinessPrincipalBase

Principal objects typically have a constructor that accepts the identity object that represents the
user’s identity, and PTPrincipal is no exception.

 private PTPrincipal(IIdentity identity)
 : base(identity)
 { }

The BusinessPrincipalBase class also has a constructor that requires an identity object. This
object is used to implement the Identity property in that base class, so it doesn’t need to be imple-
mented in PTPrincipal.

BusinessPrincipalBase also includes a default IsInRole() implementation that automatically
delegates the IsInRole() request to its identity object, assuming the identity object implements the
ICheckRoles interface defined in Csla.Security. The CslaIdentity class implements this interface,
so it’s an ideal base class to use when creating your own custom identity class.

The identity object actually represents the user’s identity and profile, so it contains the list of
roles for the user as well.

Login and Logout

The UI will need to collect the user’s credentials and initiate any login or logout process. However,
the actual login and logout process can be encapsulated within PTPrincipal to help simplify the
code in the UI. To do this, static methods named Login() and Logout() are implemented in the
class. This allows the UI to write code like this:

 if (PTPrincipal.Login(username, password))
 {
 }

and this:

 PTPrincipal.Logout();

As you’ll see in Chapter 21, there are times when building XML services (and sometimes when
building web applications) when you need to reload a principal object without authenticating the
credentials. In some scenarios, you do the authentication on the initial call, but then just reload the
principal and identity objects from the database on each subsequent call.

Using ASP.NET or WCF features, the application knows that the user was authenticated, but
thanks to the stateless nature of some web architectures, the principal and identity objects must be
re-created on each service or page request.

In this case, it is important to be able to reload the principal with code like this:

 PTPrincipal.LoadPrincipal(username);

The LoadPrincipal() method works much like Login(), but it doesn’t require the password
because it doesn’t authenticate the credentials.

Login and LoadPrincipal

The Login() and LoadPrincipal() methods call a SetPrincipal() helper method. This method
creates an instance of PTIdentity and uses that identity object to create a new PTPrincipal object.

Lhotka_1019-1.book Page 544 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T A T I ON 545

 public static bool Login(string username, string password)
 {
 return SetPrincipal(
 PTIdentity.GetIdentity(username, password));
 }

 public static void LoadPrincipal(string username)
 {
 SetPrincipal(PTIdentity.GetIdentity(username));
 }

 private static bool SetPrincipal(PTIdentity identity)
 {
 if (identity.IsAuthenticated)
 {
 PTPrincipal principal = new PTPrincipal(identity);
 Csla.ApplicationContext.User = principal;
 }
 return identity.IsAuthenticated;
 }

Notice that PTIdentity has a GetIdentity() factory method with two overloads. The first accepts a
username and password and performs authentication. The second accepts only a username and
simply reloads the identity object with data.

With a PTIdentity object created, its IsAuthenticated property can be checked to see if the
user’s credentials were valid. If they were valid, the identity object is used to create a new PTPrincipal
object, and that object is set to be the current principal by using the ApplicationContext object’s User
property, as discussed in Chapter 12.

 PTPrincipal principal = new PTPrincipal(identity);
 Csla.ApplicationContext.User = principal;

If the credentials weren’t valid, then the current principal value is left unchanged.
In any case, the IsAuthenticated value is returned as a result so the UI code can take appropriate

steps based on whether the user was successfully logged in or not.

Logout

The Logout() method is much simpler. All it needs to do is ensure that the current principal value is
set to an unauthenticated principal object—that means a principal object whose identity object has
an IsAuthenticated property that returns false.

 public static void Logout()
 {
 Csla.ApplicationContext.User = new UnauthenticatedPrincipal();
 }

To achieve this result, the User property is set to an instance of UnauthenticatedPrincipal()
from the Csla.Security namespace. This class is designed to provide a simple unauthenticated prin-
cipal and identity.

PTIdentity
As you’ve seen, PTPrincipal isn’t overly complex. It leaves most of the work to PTIdentity, including
verification of the user’s credentials and retrieval of the user’s roles.

Lhotka_1019-1.book Page 545 Tuesday, November 18, 2008 3:42 PM

546 CH AP T E R 1 7 ■ B U S IN E SS O B J E CT I M P L E M E N T AT I ON

PTIdentity inherits from CslaIdentity from the Csla.Security namespace. CslaIdentity is
designed to simplify the creation of a custom identity object.

 [Serializable]
 public class PTIdentity : CslaIdentity

Because CslaIdentity handles most of the details, the only code in PTIdentity is the data access
code required to authenticate the username and password against the database, and to load the list
of roles for the user (assuming the credentials are valid). I’ll discuss that code in Chapter 18.

Conclusion
This chapter implemented the property declarations, business and validation rules, and authoriza-
tion rules for the business objects designed in Chapter 3, using the templates and concepts discussed in
Chapters 4 and 5. The result is ProjectTracker.Library, the business layer for the sample ProjectTracker
application, including the following:

• Project

• ProjectResources

• ProjectResource

• Resource

• ResourceAssignments

• ResourceAssignment

• Assignment

• RoleList

• Roles

• Role

The library also includes classes to support custom authentication:

• PTPrincipal

• PTIdentity

This business library will be used to create WPF, Web Forms, and XML services interfaces in
Chapters 19 through 21. First, though, in Chapter 18, I’ll finish the implementation of these classes
by walking through their factory methods and persistence code.

Lhotka_1019-1.book Page 546 Tuesday, November 18, 2008 3:42 PM

547

■ ■ ■

C H A P T E R 1 8

Example Data Access

In Chapter 17, I walked through the business objects for the ProjectTracker application from
Chapter 3. The focus in Chapter 17 is on how the objects implement properties, along with business,
validation, and authorization rules. In this chapter, I discuss how those same objects implement
persistence and data access, focusing on how their factory methods use the CSLA .NET data portal
and how data is retrieved and updated into the database.

In this chapter, I don’t walk through all the code in the ProjectTracker business object library.
Instead, I focus on providing examples of how to implement common types of business objects and
how to establish various object relationships. For the complete code, refer to the code download for
this book, available at www.lhotka.net/cslanet or www.apress.com/book/view/1430210192.

Before digging into the ProjectTracker code, I will spend some time discussing some of the
options available in terms of designing a data access layer and how your business objects and the
data portal can interact with that layer. The ProjectTracker application uses just one technique, but
there are several techniques to choose from.

Data Access Layer Design
As I discuss in Chapter 1, it is very important that any application use logical layering to organize its
code. The most important area to avoid is mixing UI and business logic, keeping UI code out of the
business layer and business logic out of the UI layer. A close second, in terms of importance, is to
avoid mixing business and data access logic.

Business logic should exist independently of the data storage or data access concepts. In other
words, your application’s business logic should be the same regardless of whether the data is stored
in SQL Server or an XML file. The logic should not change just because you use ADO.NET or LINQ to
SQL to interact with the data store.

Similarly, your choice of data storage technology or data access technique shouldn’t be affected
when you change your business logic. Changing the way you calculate, validate, or authorize your
object properties shouldn’t require a switch from using a DataSet to using the ADO.NET Entity
Framework.

Achieving this level of separation is best done by logically layering your application so you have
a formal business layer that is separate from your data access layer. This allows either layer to change
(within reason) without affecting the other layer.

CSLA .NET supports several different models, each with good and bad points. I’ll discuss the
models first and then the reasoning you might use to choose between them.

Lhotka_1019-1.book Page 547 Tuesday, November 18, 2008 3:42 PM

http://www.lhotka.net/cslanet
http://www.apress.com/book/view/1430210192

548 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Data Access Models
The CSLA .NET data portal supports two models for business object persistence, which means there
are two basic approaches for interacting with a data access layer:

• The data portal calls the business object’s DataPortal_XYZ methods, which call the data
access layer.

• The data portal calls an object factory object, which is either the data access layer or which
calls the data access layer.

Each technique can be used in several different ways. Table 18-1 lists the most common designs
for the data access layer.

I’ll give a brief description of each technique and then follow up with a discussion around the
good and bad points of each.

Using the DataPortal_XYZ Methods

The traditional way to use the data portal is to allow the data portal to invoke DataPortal_XYZ methods
on the business object. This means the business object is in charge of its own persistence. It can
directly encapsulate the data access code or it can invoke some external data access object, but the
business object is in control.

This is a simple, powerful model that typically results in the simplest code. The technique works
with nearly any data access technology, including the following:

• ADO.NET Connection, Command, DataReader objects

• LINQ to SQL

• ADO.NET Entity Framework

• Remote XML services

• XML data files (or other text files)

Because the data portal helps manage the state of the business objects, the code in the DataPortal_
XYZ and Child_XYZ methods can be very focused on interacting with the data source or data access
layer and getting or setting the business object’s fields.

Table 18-1. Common Data Access Layer Designs

Data Portal Mode Data Access Model Description

DataPortal_XYZ Embedded in object The data access code is embedded directly in
the DataPortal_XYZ methods in the business
object.

DataPortal_XYZ In separate assembly The data access code is in a separate assembly,
which is invoked by code in the DataPortal_
XYZ methods.

ObjectFactory Data access in factory The data portal invokes a factory object, which
is the data access layer.

ObjectFactory Data access in
separate assembly

The data portal invokes a factory object, which
then invokes the data access layer which is in a
separate assembly.

Lhotka_1019-1.book Page 548 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 549

Data Access in DataPortal_XYZ Methods

The simplest model is to put the data access code directly into the DataPortal_XYZ methods. When
coupled with direct use of ADO.NET Command and DataReader objects this model also offers superior
performance. However, this model does put the data access code directly in the business class, which
somewhat blurs the separation of business and data access layers. I think there’s still pretty good
logical separation because the data access code is encapsulated in clearly defined DataPortal_XYZ
methods, but the separation isn’t as clean as having the data access code in totally separate objects
or assemblies.

An example of this model could look like this DataPortal_Fetch() method:

 private void DataPortal_Fetch(SingleCriteria<CustomerEdit, int> criteria)
 {
 using (var ctx = ConnectionManager<SqlConnection>.GetManager("MyDb"))
 {
 using (var cm = ctx.Connection.CreateCommand())
 {
 cm.CommandType = CommandTypes.Text;
 cm.CommandText = "SELECT Id, Name FROM Customer WHERE id=@id";
 using (var dr = new SafeDataReader(cm.ExecuteReader()))
 {
 dr.Read();
 LoadProperty(IdProperty, dr.GetInt32("Id"));
 LoadProperty(NameProperty, dr.GetString("Name"));
 }
 }
 }
 }

The code is clean and concise, and performance is about as good as you can get because the
DataReader is the lowest level object used to retrieve data from a database.

It is important to realize that this technique can be used with LINQ to SQL, the ADO.NET Entity
Framework, or virtually any other data access technology. The basic approach is the same in all
cases: get the data from the database and put it into the object’s fields, or take the data from the
object’s fields and put it into the database.

DataPortal_XYZ Methods Invoke Separate Data Access

A slightly more complex model is to separate the data access code into an external object, which
might be in a separate assembly that is referenced by the business assembly. This approach provides
slightly better separation between layers, though it does add some complexity.

In this case, you must give careful thought to the interface that will be exposed by your data
access layer because that is the interface that will be invoked by the business object. The way you
design your data access layer’s interface is often dictated by several factors:

• The data access technology being used (ADO.NET, LINQ to SQL, etc.)

• The need to change from one data access technology to another (e.g., from LINQ to SQL to the
ADO.NET Entity Framework)

• The need to change from one data storage technology to another (e.g., from Oracle to SQL Server)

Detailed exploration of all these design factors is outside the scope of this book, but you should
employ standard concepts such as loose coupling, interfaces, polymorphism, and abstraction to
accomplish these goals.

Lhotka_1019-1.book Page 549 Tuesday, November 18, 2008 3:42 PM

550 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

A DataPortal_Fetch() method, where the data access layer is external but still uses ADO.NET,
might look like this:

 private void DataPortal_Fetch(SingleCriteria<CustomerEdit, int> criteria)
 {
 using (var dal = new CustomerDal())
 {
 using (SafeDataReader dr = dal.GetCustomer(criteria.Value))
 {
 dr.Read();
 LoadProperty(IdProperty, dr.GetInt32("Id"));
 LoadProperty(NameProperty, dr.GetString("Name"));
 }
 }
 }

Notice that the LoadProperty() method calls are the same as in the previous example. The
primary difference is that this code doesn’t open the database nor does it set up or call the Command
object. The interaction with the database is abstracted away into the CustomerDal object and its
GetCustomer() method.

The CustomerDal object is very likely in a separate assembly that is referenced by the business
assembly. That data access assembly only needs to be deployed to the application server (if the data
portal is configured to use a remote application server), so the code that interacts with the database
is not deployed to the client. Arguably, this increases the security of the application to some degree.

The CustomerDal class might look like this:

 public class CustomerDal : IDisposable
 {
 private SqlConnection _cn;
 private SqlCommand _cm;

 public CustomerDal()
 {
 var conn = System.Configuration.ConfigurationManager.
 ConnectionStrings["MyDb"].ConnectionString;
 _cn = new SqlConnection(conn);
 _cn.Open();
 }

 public SafeDataReader GetCustomer(int id)
 {
 _cm = _cn.CreateCommand();
 _cm.CommandType = CommandTypes.Text;
 _cm.CommandText = "SELECT Id, Name FROM Customer WHERE id=@id";
 return new SafeDataReader(_cm.ExecuteReader());
 }

 public void Dispose()
 {
 if (_cm != null)
 _cm.Dispose();
 if (_cn != null)
 _cn.Dispose();
 }
 }

Lhotka_1019-1.book Page 550 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 551

There are many ways you might choose to design your data access objects; this is just one
example. But this example illustrates some important ideas. Your data access objects must encapsu-
late database interaction and must safely dispose of or close all connection, command, context, or
other data access objects. They must define a set of public methods that can be invoked by the busi-
ness object, accepting parameters and returning types that are available to both the business and
data access assemblies.

As you’ll see in the ProjectTracker code later in this chapter, LINQ to SQL is a very nice tech-
nology for creating this sort of data access assembly without having to write any code by hand. The
ADO.NET Entity Framework offers the same simplicity but with more powerful mapping between
the entity objects and the database schema.

However, both technologies incur some overhead when compared to the use of raw ADO.NET
shown here, so you need to choose whether you value simplicity and autogenerated code or maximum
performance.

Using an Object Factory

A business object can be decorated with an ObjectFactory attribute, which causes the data portal to
create an instance of the factory object and to invoke methods on the factory object rather than on
the business object. I discuss this capability in Chapter 15.

Using the ObjectFactory technique essentially reverses the responsibility of the objects, when
compared to the DataPortal_XYZ approach. If you use an ObjectFactory attribute, the factory object
assumes full responsibility for creating the business object, getting or setting it with data, and managing
the object's state (such as IsNew and IsDirty). The data portal abdicates all these responsibilities to
the factory object.

Typically, the factory objects are in a different assembly, separate from the business assembly.
In some cases, the factory assembly directly contains the data access code, while in other cases it
may just coordinate the process, invoking yet another assembly that contains the data access code.

The factory assembly can reference the business assembly and can have access to the business
object types. This is the direct opposite of the DataPortal_XYZ model, where the business assembly
references the data access assembly.

This means that you need to come up with some way for the factory object to load the business
object’s fields with data, ideally without breaking encapsulation. Such a requirement is very challenging
to say the least. Usually factory objects do break encapsulation, using reflection or dynamic method
invocation to cheat and interact with the business object’s internal state directly.

It is better in terms of performance and object-oriented design to avoid cheating, which means
that your business objects need to expose some public interface that can be used by the factory object.
Sadly, such a public interface can be used by the UI or other objects as well, and that can be a problem.
A compromise is to have the factory class in the same assembly as the business classes so you can use
internal methods. And this can work well as long as the data access code is in another assembly.

Data Access in Object Factory

When using a factory object, you may choose to put the data access code directly into the factory
object itself. The data portal will invoke this factory object, and the factory object must manage all
interaction with the business object itself.

This approach is the simplest way to use the object factory model but does restrict flexibility. In
particular, if you want the data access layer to be in its own assembly, the factory classes must be in
that separate assembly. That prevents use of internal scoped methods on the business object to
manage interaction between the factory and business objects.

Assuming the factory object is in a separate assembly, here’s an example of a factory class with
a Fetch() method:

Lhotka_1019-1.book Page 551 Tuesday, November 18, 2008 3:42 PM

552 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

 public class CustomerFactory : ObjectFactory
 {
 public object Fetch(SingleCriteria<Customer, int> criteria)
 {
 using (var ctx = ConnectionManager<SqlConnection>.GetManager("MyDb"))
 {
 using (var cm = ctx.Connection.CreateCommand())
 {
 cm.CommandType = CommandTypes.Text;
 cm.CommandText = "SELECT Id, Name FROM Customer WHERE id=@id";
 cm.Parameters.AddWithValue("@id", criteria.Value);
 using (var dr = new SafeDataReader(cm.ExecuteReader()))
 {
 dr.Read();
 var result = (BusinessLibrary.CustomerEdit)Activator.CreateInstance(
 typeof(BusinessLibrary.CustomerEdit), true);
 MarkNew(result);
 result.LoadData(dr);
 return result;
 }
 }
 }
 }
 }

Inheriting from ObjectFactory (in the Csla.Server namespace) is strictly optional but does provide
access to the MarkNew(), MarkOld(), and MarkAsChild() methods. If you don’t inherit from ObjectFactory,
you’ll need to come up with your own way to invoke these methods on the business objects.

Notice that this implementation requires that CustomerEdit implement a LoadData() method.
That method may look like this:

 public void LoadData(SafeDataReader dr)
 {
 LoadProperty(IdProperty, dr.GetInt32("Id"));
 LoadProperty(NameProperty, dr.GetString("Name"));
 }

The important points are that all the data access code (opening the database, executing any
queries, etc.) are all in the factory class, which is in an assembly that is only deployed to the applica-
tion server (assuming the data portal is configured to use a remote app server). And encapsulation is
preserved because the business object is managing its own internal fields within the LoadData() method.

This is not really ideal though because the business object is tightly coupled to the DataReader
provided by the factory object. And this only works because the DataReader type is shared by both the
business and factory assemblies. If the factory assembly used LINQ to SQL or the ADO.NET Entity
Framework, this model wouldn’t work because the business assembly would not have access to the
entity types defined in the factory assembly, so it would be impossible to write a LoadData() method.
In these cases, you must either use reflection to load the business object with data or switch to the
more complex but flexible model where the factories and data access are in separate assemblies.

Object Factory Invokes Separate Data Access

The more flexible and powerful way to use an object factory is to design the factory objects to interact
with a separate data access layer. In this case, you have three logical elements:

Lhotka_1019-1.book Page 552 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 553

• Business object

• Factory object

• Data access object

The factory object may be in the business assembly, in its own assembly or in the data access
assembly. There’s a strong advantage to having it in the business assembly, however, because then
it can use internal methods of the business object to get and set the business object’s data. This is
the approach I’ll show here.

In the following code, I assume that the factory object is in the business assembly and the data
access code is in a separate assembly. I also assume the use of the ADO.NET Entity Framework to
create the data access assembly. The factory object could look like this:

 public class CustomerFactory : ObjectFactory
 {
 public object Fetch(SingleCriteria<CustomerEdit, int> criteria)
 {
 using (var ctx = ObjectContextManager<MyDbEntities>.GetManager("MyDb"))
 {
 var data = from r in ctx.ObjectContext.Customer
 where r.Id == criteria.Value
 select r;
 var result = (BusinessLibrary.CustomerEdit)Activator.CreateInstance(
 typeof(BusinessLibrary.CustomerEdit), true);
 MarkNew(result);
 result.LoadData(data.Single());
 return result;
 }
 }
 }

This code uses an entity model defined using ADO.NET Entity Framework in another assembly
to interact with the database. To do this, the business assembly must reference the data access assembly
so the factory object (and the business object) has access to the entity types.

The business object’s LoadData() method can be internal and can use the entity types:

 internal void LoadData(Customer data)
 {
 LoadProperty(IdProperty, data.Id);
 LoadProperty(NameProperty, data.Name);
 }

Having the factory class in the same assembly as the business class allows the use of the internal
scope, so LoadData() isn’t visible to UI or other code. However, having the factory class in the business
assembly does reduce the physical separation of the two layers slightly.

You could move the factory class into its own assembly, separate from the data access assembly.
Both the factory and business assemblies would reference the data access assembly, and the code
shown here would work the same way; except the LoadData() method would be public in that case.

As you can see, there are many options for building and using a data access layer with business
objects. The DataPortal_XYZ model puts the business object in charge of the process, while the
ObjectFactory model puts all responsibility on the factory object. Either way, you can choose to put
the data access code into a separate assembly, at the cost of increased complexity.

In fact, these choices are all a matter of balancing competing concerns. I discuss some of these
issues next.

Lhotka_1019-1.book Page 553 Tuesday, November 18, 2008 3:42 PM

554 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Balancing Design Issues
There are several important concepts that must be balanced when designing a data access layer for
business objects, including the following:

• Performance

• Encapsulation

• Layering

• Complexity

Obviously, performance is an important consideration, and the decisions you make concerning
data access can have a major impact on overall application performance.

A primary goal of CSLA .NET is to enable object-oriented principles in design and programming
of the business layer, so those principles should be honored.

As I discuss in Chapter 1 and earlier in this chapter, it is important to maintain clear separation
between the business and data access layers. This increases maintainability and reduces the cost of
the application over its lifetime.

Even layering can’t solve all problems. Sadly, it is quite easy to come up with overly complex
solutions to many problems. Trying to balance performance with layering can lead to some very
complex solutions, and that reduces maintainability and drives up the cost of software. You must be
alert for complexity and try to avoid it when possible.

The core challenge in design is to preserve encapsulation, while not harming performance
(overmuch) or increasing complexity too badly.

Business objects contain their own data, which follows the basic object-oriented principle of
encapsulation. Objects encapsulate behaviors and the data required to implement those behaviors.
Other objects should never be allowed to directly manipulate the data encapsulated within an object
because that would break encapsulation.

However, the data access layer needs access to the data in each business object. The data access
layer needs to get data from the database and put it into the business object and get data from the
object to put into the database. The question of how to do this without breaking encapsulation and
without causing serious performance issues is perhaps the single biggest challenge you’ll face when
designing a data access layer for your business objects.

■Note In this discussion, I assume you are not putting the data access code directly into the DataPortal_XYZ
methods. This approach is the simplest model and avoids most of the trade-offs discussed here but it does have the
drawback of potentially blurring the boundary between the business and data access layers, which is why many
people choose to accept the complexity of having an external data access object and/or assembly.

This issue occurs whether you use private or managed backing fields, as discussed in Chapter 7.
Either way, the management of the object’s field values is private to the business object, and other
objects can’t (and shouldn’t) directly manipulate the business object’s state.

You are left with two primary options:

• Have the business object manipulate its own state data.

• Break encapsulation by having other objects manipulate the business object’s state data.

Lhotka_1019-1.book Page 554 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 555

Preserving Encapsulation

If you choose to preserve encapsulation, your data access layer must accept or provide data to
the business object without manipulating the business object directly. For example, consider this
DataPortal_Fetch() method from a business object:

 private void DataPortal_Fetch(SingleCriteria<CustomerEdit, int> criteria)
 {
 using (var dal = new CustomerDal())
 {
 CustomerData data = dal.GetCustomer(criteria.Value);
 LoadProperty(IdProperty, data.Id);
 LoadProperty(NameProperty, data.Name);
 }
 }

In this example, the data access layer is implemented in an object called CustomerDal, which
exposes a GetCustomer() method. That method doesn’t set the fields of the business object directly
but instead returns some DTO of type CustomerData. The DTO might look like this:

 public class CustomerData
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }

The business object can then load its own field data from that DTO. Each LoadProperty() method
call copies a value from the DTO to the business object’s field. This preserves encapsulation because
no object directly manipulates the internal state of another object.

This technique provides a high level of flexibility and decoupling so is very powerful. It does incur
some overhead, however, because the CustomerDal object copies the data from the database into a
CustomerData object (the DTO) and the data is copied from there into the fields of the business object.

Earlier in the chapter, I discussed some code where the data access layer returns an open DataReader
and that avoids this double copy of the data. The drawback of that technique is that it couples the
data access and business objects to raw ADO.NET, so while it is faster it is less flexible.

There are numerous variations on this theme, for example, using an ObjectFactory and LoadData()
method as shown earlier in the chapter. And you might use LINQ to SQL or the ADO.NET Entity
Framework to create your DTO or entity objects rather than coding them by hand. But the overall
design concept remains consistent and provides good separation of concerns but with some over-
head in terms of performance and complexity.

Breaking Encapsulation

You may choose to break encapsulation, allowing the data access layer to directly manipulate the
data inside each business object. Generally speaking, breaking encapsulation is a bad thing because
it increases coupling and reduces maintainability. However, many ORM technologies are designed
specifically to manipulate the internal states of objects. This is somewhat more acceptable than writing
such code yourself because it is a framework or tool that is breaking encapsulation, not user code.

If you choose to use a preexisting ORM tool that is capable of creating your business object
instances and loading the objects with data, you will probably want to use the ObjectFactory model
discussed earlier in the chapter. In this case, the ObjectFactory acts as a coordinator, invoking the
ORM tool so it can create your business objects and load them with data. When that’s done, the
factory object can return the business object to the data portal.

Lhotka_1019-1.book Page 555 Tuesday, November 18, 2008 3:42 PM

556 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

There are many ORM tools available in the .NET ecosystem, and a detailed discussion of using
them is outside the scope of this book. You should know that the primary motivation for adding the
ObjectFactory concept to CSLA .NET is to open the possibility of using ORM tools in this manner.
Whether any specific ORM tool can or can’t create CSLA .NET business objects will depend on that
tool.

You may choose to break encapsulation yourself by writing your own data access component
that directly loads business objects with data. There are several techniques you can use in this case,
including the following:

• Use reflection to set the private fields of the business object or to call the protected
LoadProperty() methods.

• Use dynamic method invocation to set the private fields of the business object or to call the
protected LoadProperty() methods.

• Create an interface that exposes a duplicate set of the business object properties and imple-
ment this interface to call ReadProperty() and LoadProperty(), thus bypassing authorization
and validation logic.

In all cases, the point is to allow an external object (the data access object) to directly manipu-
late the data of the business object without invoking the normal authorization, business, or validation
rules of the business object.

Ideally, this will be done in a way that doesn’t allow other code, such as UI code, to also break
encapsulation. Breaking encapsulation is a form of cheating, and if it becomes widespread, it can be
the source of many bugs, which will reduce the maintainability and increase the cost of your application.

Unfortunately, the “safe” solutions such as reflection do have negative implications for perfor-
mance, while the “unsafe” solutions such as a public interface can be quite fast but open the door to
abuse by UI code or other application code.

Overall, I recommend that you preserve encapsulation if at all possible. While it may take a little
extra work to do so, the result is a more maintainable application that preserves the core tenets of
object-oriented programming and design.

At this point, you should have an understanding of the flexibility offered by CSLA .NET in terms
of object persistence. The rest of this chapter focuses on the implementation of a data access layer
for the example ProjectTracker objects I discuss in Chapter 17.

Data Access Objects
In Chapter 17, I walk through the implementation of the example ProjectTracker business objects,
following the design from Chapter 3. The focus in Chapter 17 is on property declarations as well as
business, validation, and authorization rules.

The rest of this chapter focuses on those same objects but in terms of persistence. I discuss the
factory and data access methods and how they are implemented.

For this application I have chosen to use LINQ to SQL to create a data access layer in a project
named ProjectTracker.DalLinq. You’ll find this project in the ProjectTracker solution as part of the
code download.

Using LINQ to SQL
LINQ to SQL and the ADO.NET Entity Framework are the newest data access technologies available
in .NET. Many people using the ADO.NET Entity Framework also use LINQ to Entities, which results
in data access code that is very similar to LINQ to SQL code. In other words, you can use LINQ to SQL
or the ADO.NET Entity Framework to accomplish the same task, using almost the same code
shown here.

Lhotka_1019-1.book Page 556 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 557

I chose to use LINQ to SQL because it was released several months ahead of the ADO.NET Entity
Framework, so I have had more experience with this particular technology. Also, I like the way LINQ
to SQL supports the use of stored procedures. The Visual Studio LINQ to SQL designer automatically
wraps stored procedures with a set of strongly typed .NET methods, making them very easy to use.

I like stored procedures a great deal because they offer clean separation between the physical
database structure and the logical interactions I want to have with the database from my application.
This separation maintains a good boundary between the data access and data storage layers discussed
in Chapter 1.

■Note As time goes on, I fully expect to enhance ProjectTracker to use the ADO.NET Entity Framework. If
you download the latest version of CSLA .NET and the ProjectTracker reference application, you will likely find
examples of this technology, alongside LINQ to SQL.

Previous versions of the ProjectTracker reference application (for CSLA .NET 3.0 and older) used
raw ADO.NET Connection, Command, and DataReader objects. Those techniques continue to work as in
the past, and you should feel free to download and examine older versions of the ProjectTracker
code for examples of using that approach. All code is available from www.lhotka.net/cslanet.

The data access code in ProjectTracker is designed following the DataPortal_XYZ model discussed
earlier in this chapter. This means the data portal invokes a DataPortal_XYZ method, which uses the
LINQ to SQL data access objects to interact with the database. The data access objects are in a sepa-
rate assembly, which only needs to be deployed to the server (assuming the data portal is configured
to use a remote application server).

The ProjectTracker.DalLinq Project
The data access code is in a project named ProjectTracker.DalLinq. I use the Visual Studio LINQ to
SQL designer to create the data access layer, only writing one simple class manually.

I added a LINQ to SQL class, shown in Figure 18-1, by adding a new item to the project.

Figure 18-1. Adding a LINQ to SQL class

Lhotka_1019-1.book Page 557 Tuesday, November 18, 2008 3:42 PM

http://www.lhotka.net/cslanet

558 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

The result is a blank designer surface. You can drag and drop items onto this surface from the
Data Connections node in the Server Explorer window in Visual Studio. I chose to drag all the tables
and stored procedures from the PTracker.mdf database onto the designer. The tables go on the left,
the stored procedures on the right. Figure 18-2 shows the resulting designer surface.

Figure 18-2. Populated LINQ to SQL designer surface

It is important to realize that the Visual Studio LINQ to SQL designer does not generate the right
code for stored procedures that return multiple result sets. The getProject and getResource stored
procedures do return multiple result sets but the wrapper code created by LINQ to SQL will only
return the first result set.

■Note This is not a limitation of LINQ to SQL itself but rather of the Visual Studio designer. If you don’t use the
designer, you can create LINQ to SQL wrapper code that does return multiple result sets.

The reason these stored procedures return multiple result sets is because they already exist in
the database from previous versions of ProjectTracker. The older version of ProjectTracker used
direct ADO.NET calls to get a DataReader containing both the parent and child data in a single call to
the database.

Lhotka_1019-1.book Page 558 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 559

While I could have rewritten the stored procedures, splitting each one into two separate stored
procedures, I chose to use this as an opportunity to illustrate how you might deal with similar preexisting
situations. There are limited options:

• Rework the stored procedures and all existing code that uses them.

• Create new, stored procedures (keeping the old ones) and maintain both sets into the future.

• Use the dynamic query features of LINQ to SQL to directly query the database.

Neither of the first two options is attractive, as they require either changes to existing code or
duplication of code into the future. So I have decided, for this example, to use the third option and
avoid those particular stored procedures altogether.

This has the benefit of allowing ProjectTracker to illustrate how to use LINQ to SQL with and
without stored procedures, and you can see examples of both techniques as you look through the code.

The ProjectTracker.DalLinq project also includes Security.dbml, which contains the LINQ to
SQL objects for the security database.

These dbml files represent the LINQ to SQL objects corresponding to the underlying database.
When the project is built, this information is used to generate .NET classes in the shape of each table
and .NET methods that wrap each stored procedure. Effectively, the dbml files define the data access
layer for the application.

Other than dragging and dropping items from the Server Explorer onto the LINQ to SQL designer
surfaces, I wrote absolutely no code to create the data access layer.

The one class I did manually add to the project simply contains the names of the databases,
corresponding to the connection string entries expected in the application’s config file:

 public class Database
 {
 public const string PTracker = "PTracker";
 public const string Security = "Security";
 }

These values are used by the DataPortal_XYZ code so that code doesn’t need to hard-code the
database names. The result is that the code in the ProjectTracker.Library assembly (which is deployed
to the client) doesn’t even know the name of the key needed to find the connection string for the
database. That information is contained in the data access assembly.

Next, I walk through the code for some of the business objects to illustrate how they interact
with these data access objects.

Business Class Implementation
With all the data access logic encapsulated by the LINQ to SQL objects in the ProjectTracker.
DalLinq project, the business objects in ProjectTracker.Library can implement their persistence code.

The ProjectTracker.Library assembly does need a reference to the data access library, as shown in
Figure 18-3.

With this set up, I’ll walk through the first few classes in detail. The other classes are very similar,
so for those I’ll discuss only the key features. Of course, the complete code for all classes is available
in the code download for the book.

Lhotka_1019-1.book Page 559 Tuesday, November 18, 2008 3:42 PM

560 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Figure 18-3. ProjectTracker.Library references ProjectTracker.DalLinq

Project
The Project class is an editable root class that represents a single project in the application. Root
objects are the only objects that can be directly retrieved or updated through the data portal, so this
is a good place to start.

Also, a Project contains a child list named ProjectResources, which contains ProjectResource
child objects. I’ll walk through each of these classes so you can see how a parent-child, or one-to-
many, relationship is handled.

Factory Methods

Creating and retrieving an object is managed by factory methods as discussed in Chapter 1. The
factory design pattern is powerful because it abstracts the creation or retrieval process from both the
caller (typically the UI) and the business object itself.

In a typical CSLA-style business object, the default constructor is declared with non-public scope
(either private or protected) to force the use of the factory methods for creating or retrieving the
object. While this is not strictly necessary, it is a good thing to do. Without making the constructor
private, it is far too easy for a UI developer to forget to use the factory method and to instead use the
new keyword to create the object, leading to bugs in the UI code.
I’ll start by looking at the factory methods:

 public static Project NewProject()
 {
 return DataPortal.Create<Project>();
 }

 public static Project GetProject(Guid id)
 {
 return DataPortal.Fetch<Project>(new SingleCriteria<Project, Guid>(id));
 }

Lhotka_1019-1.book Page 560 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 561

 public static void DeleteProject(Guid id)
 {
 DataPortal.Delete(new SingleCriteria<Project, Guid>(id));
 }

The NewProject() method creates a new instance of Project, which loads default values from
the database if required. To do this, it simply calls DataPortal.Create() to trigger the data portal
process, as discussed in Chapter 15. The data portal automatically checks the per-type authoriza-
tion, as discussed in Chapter 12, to determine whether the user is authorized to add a new Project
to the system. If the user isn’t authorized, there’s no sense even creating a new instance of the object
so an exception is thrown.

■Note Ideally, this authorization exception would never be thrown. Good UI design dictates that the UI should hide
or disable the options that would allow users to add a new object if they aren’t authorized to do so. If that is done
properly, the user should never be able to even attempt to create a new object if they aren’t authorized. The UI
developer can call Csla.Security.AuthorizationRules.CanCreateObject() to determine whether to
disable or hide UI elements.

The GetProject() factory method retrieves an existing Project object, which is populated with
data from the database. This method accepts the primary key value for the data as a parameter and
passes it to DataPortal.Fetch() through a new SingleCriteria object.

The data portal ultimately creates a new Project object and calls its DataPortal_Fetch() method to
do the actual data access. The criteria object is passed through this process, so the DataPortal_Fetch()
method will have access to the Guid key value.

Again, the data portal checks the per-type authorization rules to determine whether the user is
allowed to get an existing object. If not, an exception is thrown.

There’s also a static method to allow immediate deletion of a Project. Authorization is checked
first to ensure that the user is allowed to delete the data. DeleteProject() accepts the primary key
value for the data and uses it to create a SingleCriteria object. It then calls DataPortal.Delete() to
trigger the deletion process, ultimately resulting in the object’s DataPortal_Delete() method being
invoked to do the actual deletion of the data.

Non-Public Constructor

As noted earlier, all business objects should include a default constructor, as shown here:

 private Project()
 { /* require use of factory methods */ }

This is straight out of the template from Chapter 5. It ensures that client code must use the factory
methods to create or retrieve a Project object, and it provides the data portal with a constructor that
it can call via reflection.

Overriding Save

The default implementation for Save() is good—it checks to ensure the object is valid and dirty
before saving. It also checks the per-type authorization rules in Chapter 12 to ensure the user is
allowed to update or delete the object.

In some advanced scenarios, you may need to override Save() to customize its behavior, but
that should not normally be required. If you do override Save(), you should also override the asyn-
chronous BeginSave() equivalent:

Lhotka_1019-1.book Page 561 Tuesday, November 18, 2008 3:42 PM

562 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

 public override void Save()
 {
 // do custom work here
 return base.Save();
 }

 public override void BeginSave(
 EventHandler<Csla.Core.SavedEventArgs> handler,
 object userState)
 {
 // do custom work here
 base.BeginSave(handler, userState);
 }

Like most classes, the Project class has no reason to override these methods. I’m showing this
code here as an example of what you might do if necessary.

The factory methods and Save() method ultimately invoke either DataPortal_XYZ methods on the
business object or methods on a factory object. Since the Project class doesn’t have an ObjectFactory
attribute, the data portal invokes DataPortal_XYZ methods.

Data Access

The Data Access region implements the DataPortal_XYZ methods that support the creation, retrieval,
addition, updating, and deletion of a Project object’s data. Because this is an editable root object, it
implements all the possible methods:

• DataPortal_Create()

• DataPortal_Fetch()

• DataPortal_Insert()

• DataPortal_Update()

• DataPortal_DeleteSelf()

• DataPortal_Delete()

The fetch and delete factory methods pass a SingleCriteria object to the data portal.
SingleCriteria is a CSLA .NET type that contains a single criteria value. As discussed in Chapters 4
and 5, if you need more complex criteria you need to create your own criteria class.

In this sample application, the DataPortal_XYZ methods are relatively straightforward, simply
calling the LINQ to SQL data access objects. Keep in mind, however, that these routines could be
much more complex, interacting with multiple databases, merging data from various sources, and
doing whatever is required to retrieve and update data in your business environment.

Handling Transactions

As discussed in Chapters 2 and 15, the data portal supports three transactional models: manual,
Enterprise Services, and System.Transactions. The preferred model for performance and simplicity
is System.Transactions, and so that is the model used in the sample application.

This means that each method that updates data is decorated with the Transactional
(TransactionTypes.TransactionScope) attribute. Since this tells the data portal to wrap the code in
a TransactionScope object, there’s no need to write any LINQ to SQL, ADO.NET, or stored procedure
transactional code. All the transaction details are handled by the TransactionScope object from
System.Transactions.

Lhotka_1019-1.book Page 562 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 563

As you look at the data access code, notice that it never actually catches any exceptions. The
code leverages using blocks to ensure that the LINQ to SQL context object (and thus any database
connection, command, and DataReader objects) is disposed properly, but no exceptions are caught.
The reasons for this are twofold:

• First, the code uses the Transactional attribute, which causes it to run within a System.
Transactions transactional context. An exception automatically causes the transaction to be
rolled back, which is exactly the desired result. If the exceptions are caught, the transaction
won’t be rolled back and the application would misbehave.

• Second, if an exception occurs, normal processing shouldn’t continue. Instead, the client
code needs to be notified that the operation failed and why. Returning the exception to
the client code allows the client code to know that there was a problem during data access.
The client code can then choose how to handle that the object couldn’t be created, retrieved,
updated, or deleted. Remember that the original exception is wrapped in a DataPortalException,
which includes extra information that can be used by the client when handling the exception.

DataPortal_Create

The DataPortal_Create() method is called by the data portal when it is asked to create a new Project
object. In some cases, this method loads the new object with default values from the database, and
in simpler cases it may load hard-coded defaults or set no defaults at all.

The Project object has no need for loading default values, so the DataPortal_Create() method
simply loads some default, hard-coded values rather than talking to the database:

 [RunLocal]
 protected override void DataPortal_Create()
 {
 LoadProperty(IdProperty, Guid.NewGuid());
 Started = System.Convert.ToString(System.DateTime.Today);
 ValidationRules.CheckRules();
 }

The method is decorated with the RunLocal attribute because it doesn’t do any data access but
rather sets hard-coded or calculated default values. If the method did load default values from the
database, the RunLocal attribute would not be applied, causing the data portal to run the code on
the application server. With the RunLocal attribute on the method, the data portal short-circuits its
processing and runs this method locally.

■Note In a more complex object, in which default values come from the database, this method would call data
access code to retrieve those values and use them to initialize the object’s fields. In that case, the RunLocal attribute
would not be used.

Notice how the code directly alters the state of the object. For instance, the Id property value is set
to a new Guid value by calling LoadProperty(). If your object uses private backing fields, as discussed in
Chapter 7, it would directly set the field values.

Since not all properties can be set, it is best to be consistent and always set fields directly. Setting
a property causes the authorization, business, and validation rules for that property to be checked.
That’s a lot of overhead for data you are simply loading from the database. And it is possible that
values from the database won’t meet the business or validation rules or that the user isn’t allowed to
change the property (even though you want to load it from the database).

In short, you shouldn’t set the properties; you must set the backing field (managed or private).

Lhotka_1019-1.book Page 563 Tuesday, November 18, 2008 3:42 PM

564 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Of course, the default values set in a new object might not conform to the object’s validation
rules. In fact, the Name property starts out as an empty string value, which means it is invalid, since
that is a required property. This is specified in the AddBusinessRules() method in Chapter 17 by asso-
ciating this property with the StringRequired rule method.

To ensure that all validation rules are run against the newly created object’s data, ValidationRules.
CheckRules() is called. Calling this method with no parameters causes it to run all the validation rules
associated with all properties of the object, as defined in the object’s AddBusinessRules() method.

■Tip BusinessBase includes a default DataPortal_Create() implementation that is marked as RunLocal
and calls ValidationRules.CheckRules(). For many simple objects, you do not need to override DataPortal_
Create() at all.

The end result is that the new object is loaded with default values and those values are validated.
The new object is then returned by the data portal to the factory method (NewProject(), in this case),
which typically returns it to the UI code.

DataPortal_Fetch

More interesting and complex is the DataPortal_Fetch() method, which is called by the data portal
to tell the object that it should load its data from the database (or other data source). The sample
method accepts a SingleCriteria object as a parameter, which contains the criteria data needed to
identify the data to load:

 private void DataPortal_Fetch(SingleCriteria<Project, Guid> criteria)
 {
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 // get project data
 var data = (from p in ctx.DataContext.Projects
 where p.Id == criteria.Value
 select p).Single();
 LoadProperty(IdProperty, data.Id);
 LoadProperty(NameProperty, data.Name);
 LoadPropertyConvert<SmartDate, System.DateTime?>(
 StartedProperty, data.Started);
 LoadPropertyConvert<SmartDate, System.DateTime?>(
 EndedProperty, data.Ended);
 LoadProperty(DescriptionProperty, data.Description);
 _timestamp = data.LastChanged.ToArray();

 // get child data
 LoadProperty(
 ResourcesProperty,
 ProjectResources.GetProjectResources(
 data.Assignments.ToArray()));
 }
 }

This method is not marked with either the RunLocal or Transactional attributes. Since it does
interact with the database, RunLocal is inappropriate. That attribute could prevent the data portal

Lhotka_1019-1.book Page 564 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 565

from running this code on the application server, causing runtime errors when the database is inac-
cessible. Also, since this method doesn’t update any data, it doesn’t need transactional protection,
and so there’s no need for the Transactional attribute.

Remember that the data portal, as discussed in Chapter 15, will invoke the appropriate
DataPortal_Fetch() overload based on the type of criteria parameter value. It is possible to have
multiple DataPortal_Fetch() overloads with different criteria parameter types.

You should also notice that no exceptions are caught by this code. If the requested Id value
doesn’t exist in the database, the result will be a SQL exception, which will automatically flow back
through the data portal to the UI code contained within a DataPortalException. This is intentional,
as it allows the UI to have full access to the exception’s details so the UI can decide how to notify the
user that the data doesn’t exist in the database.

The first thing the method does is use the ContextManager to open a LINQ to SQL context object
and connection to the database:

 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))

The ContextManager, ConnectionManager, and ObjectContextManager classes are in the Csla.Data
namespace and provide an abstract way to work with LINQ to SQL context objects, ADO.NET connec-
tion objects, and ADO.NET Entity Framework context objects, respectively. These are discussed in
Chapter 16.

Then, within the using block, a LINQ query is used to retrieve the project data:

 var data = (from p in ctx.DataContext.Projects
 where p.Id == criteria.Value
 select p).Single();

Note the use of the criteria.Value parameter. This is the value that is provided by the code that
calls the factory method. Since this query returns only one row of data, the Single() method is used
to return just the one value rather than a list of values. This means that the data field contains a value
of type ProjectTracker.DalLinq.Project, a type defined by the data access layer.

The data field is then used to populate the object like this:

 LoadProperty(IdProperty, data.Id);
 LoadProperty(NameProperty, data.Name);
 LoadPropertyConvert<SmartDate, System.DateTime?>(
 StartedProperty, data.Started);
 LoadPropertyConvert<SmartDate, System.DateTime?>(
 EndedProperty, data.Ended);
 LoadProperty(DescriptionProperty, data.Description);
 _timestamp = data.LastChanged.ToArray();

There is no need to cast the values, as they are already in .NET types thanks to LINQ to SQL. The
only exceptions are the DateTime? values, which must be converted to a SmartDate. This is handled
by using the LoadPropertyConvert() method instead of LoadProperty(). These helper methods are
discussed in Chapter 7.

Also, notice that the LastChanged column is retrieved and placed into the _timestamp byte array.
This value is never exposed outside the object but is maintained for later use if the object is updated.
LastChanged is a timestamp value in the database table and is used by the updateProject stored proce-
dure to implement first-write-wins optimistic concurrency. The object must be able to provide
updateProject with the original timestamp value that is in the table when the data is first loaded.

Since the _timestamp value is never exposed as a property of the object, it isn’t managed by the
field manager. Instead, I’m storing it using a simple private field.

Lhotka_1019-1.book Page 565 Tuesday, November 18, 2008 3:42 PM

566 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

At this point, the Project object’s fields have been loaded. But Project contains a collection of
child objects and they need to be loaded as well. LINQ to SQL is helpful here because it understands
the relationships between the database tables (see Figure 18-2) that it inferred from the database schema.
This means the data field has an Assignments property which returns a list of Assignment entity objects
from the data access layer. This list is passed to the factory method for the ProjectResources object,
an editable child list:

 LoadProperty(
 ResourcesProperty,
 ProjectResources.GetProjectResources(
 data.Assignments.ToArray()));

It is important to realize that the data.Assignments.ToArray() call causes LINQ to SQL to make
a second query to the database to retrieve the list of assignments. LINQ to SQL uses a lazy loading
scheme and only retrieves data when necessary.

You can force LINQ to SQL to eager load the Assignments data by adding this line of code before
executing the first LINQ query:

 ctx.DataContext.LoadOptions.
 LoadWith<ProjectTracker.DalLinq.Project>(c => c.Assignments);

The LoadWith() method specifies that any time a Project is retrieved, the Assignments data
should be retrieved immediately.

Now that the object contains data loaded directly from the database, it is an “old” object. The
definition of an old object is that the primary key value in the object matches a primary key value in
the database. In Chapter 15, the data portal is implemented to automatically call the object’s MarkOld()
method before DataPortal_Fetch() is invoked. That ensures that the object’s IsNew and IsDirty proper-
ties will return false and that your code in DataPortal_Fetch() can use those properties if desired.

DataPortal_Insert

The DataPortal_Insert() method handles the case in which a new object needs to insert its data
into the database. It is invoked by the data portal as a result of the UI calling the object’s Save()
method when the object’s IsNew property is true.

As with all the methods that change the database, this one is marked with the Transactional
attribute to ensure that the code is transactionally protected:

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_Insert()
 {
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 // insert project data
 System.Data.Linq.Binary lastChanged = null;
 ctx.DataContext.addProject(
 ReadProperty(IdProperty),
 ReadProperty(NameProperty),
 ReadProperty(StartedProperty),
 ReadProperty(EndedProperty),
 ReadProperty(DescriptionProperty),
 ref lastChanged);
 _timestamp = lastChanged.ToArray();

Lhotka_1019-1.book Page 566 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 567

 // update child objects
 FieldManager.UpdateChildren(this);
 }
 }

Like DataPortal_Fetch(), the DataPortal_Insert() method opens a LINQ to SQL context and
thus a connection to the database. It then invokes the addProject stored procedure, using the strongly
typed .NET wrapper created by the LINQ to SQL designer:

 ctx.DataContext.addProject(
 ReadProperty(IdProperty),
 ReadProperty(NameProperty),
 ReadProperty(StartedProperty),
 ReadProperty(EndedProperty),
 ReadProperty(DescriptionProperty),
 ref lastChanged);

Again, there is no need to cast the values because the addProject() method is strongly typed
using .NET types. Any conversion to database types is handled by LINQ to SQL automatically. Even
the SmartDate types work here because the SmartDate type can be cast to DateTime? and the compiler
handles that automatically.

The lastChanged parameter is passed by ref because the stored procedure returns the timestamp
value generated as the data is inserted into the table. This value is then set into the _timestamp field:

 _timestamp = lastChanged.ToArray();

Other stored procedures may return values as well. For example, in the Resource class the
addResource stored procedure not only returns a timestamp but also a database-generated int ID value:

 ctx.DataContext.addResource(
 _lastName, _firstName, ref newId, ref newLastChanged);
 _id = System.Convert.ToInt32(newId);
 _timestamp = newLastChanged.ToArray();

Notice how both parameters are passed by ref.
Back in the Project class, once the call to addProject() is complete, the Project object’s data is

in the database. However, a Project contains child objects, and their data must be added to the
database as well. The field manager is helpful here because it has an UpdateChildren() method that
automatically updates all child objects contained by the current object:

 FieldManager.UpdateChildren(this);

The UpdateChildren() method calls DataPortal.UpdateChild() to update each child object
contained in the Project. In this case, that means the ProjectResources collection is updated. I show
the code for the collection later in the “ProjectResources” section.

The fact that this is passed as a parameter is important because the child objects contained in
the collection have a foreign key relationship to the project. By passing this as a parameter, the child
objects have access to the Project object’s Id property and thus to the foreign key value they require.

■Note You could just pass the Id property value but that would cause tighter coupling between the parent and
its children. By passing a reference to the Project object, the parent doesn’t know or care what information is
required by its children because it has made all the information available. The less one object knows about the
needs of another, the better.

Lhotka_1019-1.book Page 567 Tuesday, November 18, 2008 3:42 PM

568 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Once DataPortal_Insert() is complete, the data portal automatically invokes the MarkOld()
method on the object, ensuring that the IsNew and IsDirty properties are both false. Since the
object’s primary key value in memory now matches a primary key value in the database, it is not new;
and since the rest of the object’s data values match those in the database, it is not dirty.

Once all the objects have inserted their data, the database transaction completes. Recall that the
DataPortal_Insert() method is decorated with the Transactional attribute and the data portal auto-
matically commits the transaction and disposes the TransactionScope object. However, if the object’s
code throws an exception, the transaction is automatically rolled back, so no changes are made to
the database.

DataPortal_Update

The DataPortal_Update() method is almost identical to DataPortal_Insert() but it is called by the
data portal in the case that IsNew is false. It calls the updateProject() method from the data access
layer, which invokes the updateProject stored procedure in the database:

 ctx.DataContext.updateProject(
 ReadProperty(IdProperty),
 ReadProperty(NameProperty),
 ReadProperty(StartedProperty),
 ReadProperty(EndedProperty),
 ReadProperty(DescriptionProperty),
 _timestamp,
 ref lastChanged);
 _timestamp = lastChanged.ToArray();

However, the updateProject stored procedure requires one extra parameter not required by
addProject: the timestamp value for the LastChanged column. This is required for the first-write-wins
optimistic concurrency implemented by the stored procedure. The goal is to ensure that multiple
users can’t overwrite each other’s changes to the data. Other than this one extra parameter, the
DataPortal_Update() method is very similar to DataPortal_Insert().

DataPortal_DeleteSelf

The final method that the data portal may invoke when the UI calls the object’s Save() method is
DataPortal_DeleteSelf(). This method is invoked if the object’s IsDeleted property is true and its
IsNew property is false. In this case, the object needs to delete itself from the database.

Remember that there are two ways objects can be deleted: through immediate or deferred dele-
tion. Deferred deletion is when the object is loaded into memory, its IsDeleted property is set to true,
and Save() is called. Immediate deletion is when a factory method is called and passes criteria iden-
tifying the object to the DataPortal.Delete() method.

In the case of immediate deletion, the data portal ultimately calls DataPortal_Delete(), passing
the criteria object to that method so it knows which data to delete. Deferred deletion calls DataPortal_
DeleteSelf(), passing no criteria object because the object is fully populated with data already.

■Note Implementing the DataPortal_DeleteSelf() method is only required if your object supports deferred
deletion. In the Project object, deferred deletion is not supported, but I am implementing the method anyway to
illustrate how it is done.

The simplest way to implement DataPortal_DeleteSelf() is to create a criteria object and dele-
gate the call to DataPortal_Delete():

Lhotka_1019-1.book Page 568 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 569

 [Transactional(TransactionalTypes.TransactionScope)]
 protected override void DataPortal_DeleteSelf()
 {
 DataPortal_Delete(
 new SingleCriteria<Project, Guid>(ReadProperty(IdProperty)));
 }

You might wonder why the data portal couldn’t do this for you automatically. But remember
that the data portal has no idea what values are required to identify your business object’s data.
Thus, you must create the criteria object and pass it to DataPortal_Delete().

DataPortal_Delete

The final data portal method is DataPortal_Delete(). This method is called from two possible sources; if
immediate deletion is used, the UI will call the static deletion method, which will call DataPortal_
Delete(); and if deferred deletion is used, DataPortal_Delete() is called by DataPortal_DeleteSelf(). A
SingleCriteria object is passed as a parameter, identifying the data to be deleted. Then it’s just a
matter of calling the deleteProject stored procedure as follows:

 [Transactional(TransactionalTypes.TransactionScope)]
 private void DataPortal_Delete(SingleCriteria<Project, Guid> criteria)
 {
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 // delete project data
 ctx.DataContext.deleteProject(criteria.Value);
 // reset child list field
 LoadProperty(ResourcesProperty, ProjectResources.NewProjectResources());
 }
 }

The method just opens a LINQ to SQL context and calls the deleteProject stored procedure.
That stored procedure deletes the project data and any assignment data related to the project.

The ProjectResources child collection is replaced with an empty collection. Since the stored
procedure just removed the data in the database, the collection should be empty as well.

In the downloaded code for this book, you’ll also see a code region for an Exists command,
which I discuss later in the “Implementing Exists Methods” section.

ProjectResources
A Project object contains a collection of child objects, each one representing a resource assigned to
the project.

Child objects follow the same basic structure as a root object, in that they have factory methods
that call the data portal, and the data portal invokes methods to do the data access. Those are called
the Child_XYZ methods.

Factory Methods

The Factory Methods region contains two factory methods and a private constructor, much like the
Project class.

The two factory methods are declared as internal scope since they are not for use by the UI
code. Rather, they are intended for use by the Project object that contains the collection:

Lhotka_1019-1.book Page 569 Tuesday, November 18, 2008 3:42 PM

570 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

 internal static ProjectResources NewProjectResources()
 {
 return DataPortal.CreateChild<ProjectResources>();
 }

 internal static ProjectResources GetProjectResources(
 ProjectTracker.DalLinq.Assignment[] data)
 {
 return DataPortal.FetchChild<ProjectResources>(data);
 }

 private ProjectResources()
 { /* require use of factory methods */ }

In both cases, the factory methods simply call the data portal to create or retrieve the collection
object. The CreateChild() method causes the data portal to invoke a Child_Create() method, while
FetchChild() causes invocation of Child_Fetch(). The advantage of using the data portal in this manner
is that it automatically manages the object state, setting IsChild, IsNew, and IsDirty automatically.

Data Access

The Data Access region in a child collection object is very similar to that of a root object such as Project.
Instead of containing DataPortal_XYZ methods, it contains Child_XYZ methods. These are somewhat
different but are intended to do the same things: create, retrieve, insert, update, and delete the
object’s data.

In the DataPortal_Fetch() method of Project, a call is made to the GetProjectResources() factory
method in ProjectResources. That factory method calls the data portal’s ChildFetch() method,
passing the data access object from the Project object as a parameter:

 private void Child_Fetch(
 ProjectTracker.DalLinq.Assignment[] data)
 {
 this.RaiseListChangedEvents = false;
 foreach (var value in data)
 this.Add(ProjectResource.GetResource(value));
 this.RaiseListChangedEvents = true;
 }

Remember that it is an array of Assignment objects from the data access assembly that is passed
as a parameter. This code loops through the items in that array, adding a child object to the collection
for each item. Each child object is created by calling a GetResource() factory method, which I discuss
later in the chapter.

The RaiseListChangedEvents property is set to false and then true to suppress the ListChanged
events that would otherwise be raised as each item is added. The DataPortal_Insert() and
DataPortal_Update() methods of Project call the field manager’s UpdateChildren() method. That
method finds each child object and calls DataPortal.UpdateChild() on that child object. The data
portal calls Child_Update() on a child collection object, and that method is responsible for updating all
the objects contained in the collection.

The BusinessListBase class already has an implementation of Child_Update() that does all the
work. This means that a normal business collection doesn’t have to be affected; it just works.

You can override Child_Update() if you need to do some extra processing in addition to updating
the items in the collection.

I've now shown all the ProjectResources collection code.

Lhotka_1019-1.book Page 570 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 571

ProjectResource
A Project contains a child collection: ProjectResources. The ProjectResources collection contains
ProjectResource objects. As designed in Chapter 3, each ProjectResource object represents a resource
that has been assigned to the project.

Also remember from Chapter 3 that ProjectResource shares some behaviors with
ResourceAssignment and those common behaviors are factored out into an Assignment object.
As you look through the code in ProjectResource, you’ll see calls to the behaviors in Assignment,
as ProjectResource collaborates with that other object to implement its own behaviors.

Factory Methods

Like ProjectResources, this object has two factory methods scoped as internal. These methods are
intended for use only by the parent object, ProjectResources:

 internal static ProjectResource NewProjectResource(int resourceId)
 {
 return DataPortal.CreateChild<ProjectResource>(
 resourceId, RoleList.DefaultRole());
 }

 internal static ProjectResource GetResource(
 ProjectTracker.DalLinq.Assignment data)
 {
 return DataPortal.FetchChild<ProjectResource>(data);
 }

 private ProjectResource()
 { /* require use of factory methods */ }

The NewProjectResource() factory method accepts a resourceId value as a parameter. That value
is used to retrieve the corresponding Resource object from the database with a call to CreateChild()
that results in invocation of Child_Create().

Two parameters are passed to the CreateChild() method, the resourceId parameter (the ID
of the resource being assigned to the project), and the role the resource will fill on the project. This
second value is provided by calling the DefaultRole() method on the RoleList class from Chapter 17.

The GetResource() factory method is called by ProjectResources as it is being loaded with data
from the database. Recall that ProjectResources gets an array of Assignment data access objects and
loops through all the rows in that array, creating a new ProjectResource for each item. To do this, it
calls the GetResource() factory method, passing the item as a parameter. This parameter is passed to
the FetchChild() method of the data portal, which invokes Child_Fetch().

Using the data portal’s CreateChild() and FetchChild() methods allows the data portal to auto-
matically set the child object's IsChild, IsNew, and IsDirty properties.

Data Access

The Data Access region contains the code to initialize a new instance of the class when created as a
new object or loaded from the database. It also contains methods to insert, update, and delete the
object’s data in the database.

Creating a New Object

When a Resource is assigned to a Project, a new ProjectResource object must be added to the
ProjectResources collection. This process starts with the Assign() method of the ProjectResources

Lhotka_1019-1.book Page 571 Tuesday, November 18, 2008 3:42 PM

572 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

collection, which invokes the NewProjectResource() factory method in the ProjectResource class,
passing the Resource object’s Id value as a parameter.

The NewProjectResource() factory method calls the data portal’s CreateChild() method, which
causes the data portal to create a new object and invoke the Child_Create() method:

 private void Child_Create(int resourceId, int role)
 {
 var res = Resource.GetResource(resourceId);
 LoadProperty(ResourceIdProperty, res.Id);
 LoadProperty(LastNameProperty, res.LastName);
 LoadProperty(FirstNameProperty, res.FirstName);
 LoadProperty(AssignedProperty, Assignment.GetDefaultAssignedDate());
 LoadProperty(RoleProperty, role);
 }

This method is a bit different than the other methods so far because it has to initialize the new
object with existing data, specifically with details about the resource being assigned to the project.
To get these details, it retrieves a Resource object by calling the GetResource() factory method.

■Note Technically, this approach is a misuse of the Resource object. The responsibility of the Resource object
is to edit resource data, and here I’m using it just to retrieve data. In this particular case, I know that there’s no extra
cost to using the existing Resource class because I’m using all its fields. However, if I were just using three out of
dozens of properties, I’d create a read-only root object to retrieve only the data I needed.

The values from the Resource object are used to populate the new ProjectResource object so it
represents the fact that a resource has been assigned to the project.

Loading an Existing Object

When a Project is being loaded from the database, it calls ProjectResources to load all the child
objects. ProjectResources loops through all the items in the Assignment data access object array
supplied by Project, creating a ProjectResource child object for each item. That item is ultimately
passed into the Child_Fetch() method where the object’s fields are set:

 private void Child_Fetch(ProjectTracker.DalLinq.Assignment data)
 {
 LoadProperty(ResourceIdProperty, data.ResourceId);
 LoadProperty(LastNameProperty, data.Resource.LastName);
 LoadProperty(FirstNameProperty, data.Resource.FirstName);
 LoadProperty(AssignedProperty, data.Assigned);
 LoadProperty(RoleProperty, data.Role);
 _timestamp = data.LastChanged.ToArray();
 }

This code is very similar to the code in Project to load the object’s fields from the data access
object. Each property’s value is loaded, along with the timestamp value for this row in the database,
thus enabling implementation of first-write-wins optimistic concurrency for the child objects as well
as the Project object itself.

Once the object has been populated with data directly from the database, it is not new or dirty.
The data portal automatically calls the object’s MarkOld() method to set the IsNew and IsDirty prop-
erty values to false before invoking the Child_Fetch() method to ensure these values are correct and
to allow your object to use the properties if desired.

Lhotka_1019-1.book Page 572 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 573

Inserting Data

When ProjectResources is asked to update its data into the database, it’s Child_Update() method
loops through all the child objects. Any child objects with IsDeleted set to false and IsNew set to true
have their Insert() method called. The child object is responsible for inserting its own data into the
database:

 private void Child_Insert(Project project)
 {
 _timestamp = Assignment.AddAssignment(
 project.Id,
 ReadProperty(ResourceIdProperty),
 ReadProperty(AssignedProperty),
 ReadProperty(RoleProperty));
 }

In Chapter 3, the object design process reveals that ProjectResource and ResourceAssignment
both create a relationship between a project and a resource using the same data in the same way.
Due to this, the Insert() method delegates most of its work to an AddAssignment() method in the
Assignment class.

Looking at the Assignment class, you can see the AddAssignment() method:

 public static byte[] AddAssignment(
 Guid projectId,
 int resourceId,
 SmartDate assigned,
 int role)
 {
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 System.Data.Linq.Binary lastChanged = null;
 ctx.DataContext.addAssignment(
 projectId,
 resourceId,
 assigned,
 role,
 ref lastChanged);
 return lastChanged.ToArray();
 }
 }

This method simply calls the addAssignment stored procedure by using LINQ to SQL. It is
centralized in the Assignment class because this same code is required by both ProjectResource
and ResourceAssignment, so I’ve normalized the behavior into this one location.

I want to call your attention to an important fact: this method uses the ContextManager to get
access to the LINQ to SQL context object. Remember that this method is called because the root
Project object is being inserted or updated and that the field manager’s UpdateChildren() method
is invoked inside the using block for the ContextManager in the Project class.

This is important because this call to the ContextManager returns the preexisting context object,
not a new one. That first call, in the Project class, creates and opens a new context and database
connection. That one context is reused by any other objects until that top-level using block exits and
the context object is disposed.

Lhotka_1019-1.book Page 573 Tuesday, November 18, 2008 3:42 PM

574 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Because the Project object’s DataPortal_Insert() and DataPortal_Update() methods are marked
with the Transactional attribute, sharing the same database connection for all database interaction
is necessary to avoid having System.Transactions accidentally use the DTC. In other words, reusing
the existing context is a major boost to performance.

Updating Data

The method is very similar to Child_Insert(). It delegates the call to the UpdateAssignment()
method in the Assignment class. This is because the data updated by ProjectResource is the
same as ResourceAssignment, so the common behavior is factored out into the Assignment class.

Deleting Data

Finally, there’s the Child_DeleteSelf() method. Like Child_Update() and Child_Insert(), it too
delegates the work to the Assignment class.

This completes the ProjectResource class and really the whole Project object graph. You should
now have an understanding of how to persist an editable root object, a child list, and an editable
child, some of the most common stereotypes in most business applications.

RoleList
The RoleList object is used by Project, ProjectResources, ProjectResource, and Assignment. This is
a name/value list based on the Roles table in Chapter 3. The name (key) values are of type int, while
the values are the string names of each role.

The CSLA .NET framework includes the NameValueListBase class to help simplify the creation of
name/value list objects. Such objects are so common in business applications that it is worth having
a base class to support this one specialized scenario.

Factory Methods

As in the template in Chapter 5, RoleList implements a form of caching to minimize load on the
database. The GetList() factory method stores the collection in a static field and returns it if the
object has already been loaded. It only goes to the database if the cache field is null:

 private static RoleList _list;

 public static RoleList GetList()
 {
 if (_list == null)
 _list = DataPortal.Fetch<RoleList>();
 return _list;
 }

■Note If you need to filter the name/value list results, you’ll need to pass a criteria object as a parameter to the
Fetch() method just like you would with any other root object.

In case the cache needs to be flushed at some point, there’s also an InvalidateCache() method:

 public static void InvalidateCache()
 {
 _list = null;
 }

Lhotka_1019-1.book Page 574 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 575

By setting the static cache value to null, the cache is reset. The next time any code calls the
GetList() method, the collection is reloaded from the database. This InvalidateCache() method will
be called by the Roles collection later in the chapter.

Of course, there’s also a non-public constructor in the class to enforce the use of the factory
method to retrieve the object.

Data Access

Finally, there’s the DataPortal_Fetch() method that loads the data from the database into the
collection:

 private void DataPortal_Fetch()
 {
 this.RaiseListChangedEvents = false;
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 var data = from role in ctx.DataContext.Roles
 select new NameValuePair(role.Id, role.Name);
 IsReadOnly = false;
 this.AddRange(data);
 IsReadOnly = true;
 }
 this.RaiseListChangedEvents = true;
 }

As with the DataPortal_Fetch() method in Project, the code here gets a LINQ to SQL context
object and uses it to define a LINQ query. This query is a bit different, however, because it directly
creates a list of NameValuePair objects, populated with the data from the database. That list of objects
is then added to the RoleList collection by calling the AddRange() method.

Since the collection is normally read-only, the IsReadOnly property is set to false before loading
the data and then restored to true once the data has been loaded.

The result is a fully populated name/value list containing the data from the Roles table in the
database.

At this point you should understand how a name-value list is loaded from the database and how
you can use simple caching with a static field to improve performance.

ProjectList and ResourceList
The ProjectList and ResourceList classes are both read-only collections of read-only data. They
exist to provide the UI with an efficient way to get a list of projects and resources for display to the user.

On the surface, it might seem that you could simply retrieve a collection of Project or Resource
objects and display their data. But that would mean retrieving a lot of data that the user may never
use. Instead, it’s more efficient to retrieve a small set of read-only objects for display purposes and
then retrieve an actual Project or Resource object once the user has chosen which one to use.

The CSLA .NET framework includes the ReadOnlyListBase class, which is designed specifically
to support this type of read-only list. Such a collection typically contains objects that inherit from
ReadOnlyBase.

Because these two read-only collections are so similar in implementation, I’m only going to
walk through the ResourceList class in this chapter. You can look at the code for ProjectList in the
code download for this book.

Lhotka_1019-1.book Page 575 Tuesday, November 18, 2008 3:42 PM

576 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Factory Methods

The ResourceList collection exposes two factory methods, EmptyList() and GetResourceList():

 public static ResourceList EmptyList()
 {
 return new ResourceList();
 }

 public static ResourceList GetResourceList()
 {
 return DataPortal.Fetch<ResourceList>();
 }

 private ResourceList()
 { /* require use of factory methods */ }

The GetResourceList() factory method simply uses the data portal to retrieve the list of data.

Data Access

The GetResourceList() factory method calls the data portal, which in turn ultimately calls the
ResourceList object’s DataPortal_Fetch() method to load the collection with data:

 private void DataPortal_Fetch()
 {
 RaiseListChangedEvents = false;
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 var data = from r in ctx.DataContext.Resources
 select new ResourceInfo(r.Id, r.LastName, r.FirstName);
 IsReadOnly = false;
 this.AddRange(data);
 IsReadOnly = true;
 }
 RaiseListChangedEvents = true;
 }

It gets a LINQ to SQL context object and uses it to define a LINQ query. Similar to the RoleList
class, querying it directly creates a list of ResourceInfo objects. The ResourceInfo class has an internal
constructor to make this easy:

 internal ResourceInfo(int id, string lastname, string firstname)
 {
 _id = id;
 _name = string.Format("{0}, {1}", lastname, firstname);
 }

Those ResourceInfo objects are then added to the ResourceList collection using the AddRange()
method.

Since ResourceList is a read-only collection, the IsReadOnly property is set to false before loading
the data and true once the loading is complete.

The end result is a fully populated list of the resources in the database that can be displayed to
the user by the UI.

Lhotka_1019-1.book Page 576 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 577

Roles
The RoleList object provides a read-only, cached list of roles that a resource can hold when assigned
to a project. But that list of roles needs to be maintained, and that is the purpose behind the Roles
collection. This is an editable root collection that contains a list of editable child Role objects.

Factory Methods

The Factory Methods region implements a GetRoles() factory method, which just calls the data
portal like the other factory methods you’ve seen. It also implements a non-public constructor to
require use of the factory method.

But the constructor contains code that is quite important:

 private Roles()
 {
 this.Saved += Roles_Saved;
 this.AllowNew = true;
 }

AllowNew is a protected property defined by BindingList, the base class of BusinessListBase.
Setting this to true allows WPF and Windows Forms data binding to automatically add new child
objects to the collection. Typically, this happens when the collection is bound to an editable grid
control in the UI. Table 18-2 lists the properties you can use to control the behavior of an editable
collection.

Though a collection can opt to implement a static delete method to delete all the items in the
database, that isn’t a requirement for Roles, so it doesn’t have such a method.

An event handler is also set up for the Saved event. This is so the RoleList cache can be invalidated
any time the Roles collection has been saved. I discuss the Roles_Saved() method in the “Invalidating the
Client-Side Cache” section.

Data Access

The Data Access region has some rather unique code. The reason for this is not that the collection is
an editable root but rather that the Roles collection needs to invalidate the cache of any RoleList
object when the list of roles is changed. In other words, when Save() is called on a Roles collection,
any cached RoleList object must be reloaded from the database to get the new values.

Other than this requirement, the data access code is quite straightforward, so let’s focus on the
cache invalidation code.

Table 18-2. Properties Used to Control an Editable Collection

Property Description

AllowNew If true, data binding can automatically add new child objects to the collection.
It requires that you also override the AddNewCore() method. It defaults to false.

AllowRemove If true, data binding can automatically remove items from the collection.
It defaults to true.

AllowEdit If true, data binding allows in-place editing of child objects in a grid control.
It defaults to true.

Lhotka_1019-1.book Page 577 Tuesday, November 18, 2008 3:42 PM

578 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

Invalidating the Client-Side Cache

In the constructor, the Roles class hooks up the Roles_Saved() method to handle the Saved event.
That event is raised when the Roles object has been saved, thus indicating that the list of role data
has changed. In this event handler, the RoleList cache is invalidated:

 private void Roles_Saved(
 object sender, Csla.Core.SavedEventArgs e)
 {
 RoleList.InvalidateCache();
 }

Obviously, changing the Roles collection also changes RoleList, so invalidating the cache ensures
the application is using current values. This code ensures that the client-side cache is invalidated by
calling RoleList.InvalidatedCache().

Invalidating the Server-Side Cache

It is important to realize that there could be a cached RoleList collection on both the client and the
server. Keep in mind that CSLA .NET enables mobile objects and that means that business object
code can run on the client and on the server. If a business object has server-side code that uses a
RoleList, it will cause a RoleList object to be created and cached on the server.

If you look at the ValidRole() rule method in Assignment, you’ll see that it calls the GetList()
factory on RoleList, loading a list of roles. If any business rule validation occurs for either a
ProjectResource or ResourceAssignment object on the server, it would cause the list to be loaded and
cached on the server. Though this doesn’t occur in ProjectTracker, it is a very common scenario in
many applications.

The great thing about the way the mobile objects work is that caching the RoleList on the client
and server is automatic. You’ll note that there’s no special code to make that happen. But it does
mean a bit of extra work in the Roles collection to ensure that any server-side cache is also flushed.

Recall from Chapter 15 that the data portal optionally invokes DataPortal_OnDataPortalInvoke()
and DataPortal_OnDataPortalInvokeComplete() methods if your business object implements them.
The former is invoked before any DataPortal_XYZ method is called, and the latter is invoked afterward.
You can use this method to run code on the server after the DataPortal_Update() method is complete:

 protected override void DataPortal_OnDataPortalInvokeComplete(
 DataPortalEventArgs e)
 {
 if (ApplicationContext.ExecutionLocation ==
 ApplicationContext.ExecutionLocations.Server &&
 e.Operation == DataPortalOperations.Update)
 {
 RoleList.InvalidateCache();
 }
 }

Of course, the data portal could be configured to run the “server-side” code locally in the client
process, in which case there’s no point invalidating the cache here because the Saved event handler
will take care of it. That’s why the code checks the ExecutionLocation and Operation to see if it’s actually
an Update (which indicates an insert, update, or delete in the list) operation running on an application
server. If so, it calls RoleList.InvalidateCache() to invalidate any server-side cache of role data.

Other than dealing with the RoleList cache, the data access code in Roles and Role is like the
data access code you saw earlier in this chapter.

Lhotka_1019-1.book Page 578 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 579

Implementing Exists Methods
I have covered all the code in the Project class except for the Exists() command implementation.
Many objects can benefit from implementation of an Exists() command, as it allows the UI to quickly
and easily determine whether a given object’s data is in the database without having to fully instan-
tiate the object itself. Ideally, a UI developer could write conditional code like this:

if (Project.Exists(productId))

Implementing an Exists() command also provides an opportunity to make use of Csla.
CommandBase to create a command object. This makes sense because all an Exists() command needs
to do is run a stored procedure in the database and report on the result.

Exists Method

The Project class itself has a static method called Exists(), which is public so it can be called from
UI code:

 public static bool Exists(Guid id)
 {
 return ExistsCommand.Exists(id);
 }

This method simply delegates all its work to a factory method in the ExistsCommand class. What
is interesting is that the ExistsCommand class is private to Project. The only way for the UI or other
code to interact with this command object is through the static method on the Project class. This
allows the application to implement powerful functionality, without expanding its public API.

ExistsCommand Class

The real work occurs in the command object itself: ExistsCommand. The ExistsCommand class inherits
from Csla.CommandBase and is declared as a private nested class within Project:

 [Serializable]
 private class ExistsCommand : CommandBase

Not all command objects are nested within other business classes, but in this case it makes
sense. There’s no need for UI developers to be aware of the ExistsCommand class or its implementa-
tion details; they only need to know about the Project.Exists() method.

In other cases, you may have public command objects that are directly used by the UI. A good
example is a ShipOrder object that is responsible for shipping a sales order. It is quite realistic to
expect that the UI would want to directly ship a sales order, so there’s value in being able to call a
ShipOrder.Ship(orderId) method.

Command objects, whether public or private, tend to be very simplistic in terms of their struc-
ture. ExistsCommand declares some instance fields, one property, and a constructor:

 private Guid _id;
 private bool _exists;

 public bool ProjectExists
 {
 get { return _exists; }
 }

Lhotka_1019-1.book Page 579 Tuesday, November 18, 2008 3:42 PM

580 CH AP T E R 1 8 ■ E X A M P L E D AT A A CC E SS

 public ExistsCommand(Guid id)
 {
 _id = id;
 }

The constructor initializes the _id field so that value is available when the command is executed
on the server. The _exists field is set as a result of the command running on the server and is exposed
through the ProjectExists property.

Factory Methods

The Exists() factory method is much like the other factory methods in this chapter except that it
calls the data portal’s Execute() method:

 public static bool Exists(Guid id)
 {
 ExistsCommand result = DataPortal.Execute<ExistsCommand>(
 new ExistsCommand(id));
 return result.ProjectExists;
 }

The data portal Execute() method invokes the DataPortal_Execute() method on the command
object on the application server.

The parameter passed to the Execute() method is a new instance of ExistsCommand. In other
words, this factory method creates an instance of the command object, sets its _id value through the
constructor, and passes the command object to the application server through the data portal.

The result of Execute() is an updated command object that contains the result value in the
ProjectExists property. That value is returned as the result of the static factory method, indicating
whether the project exists or not.

Data Access

The code that runs on the server is entirely contained within the DataPortal_Execute() method:

 protected override void DataPortal_Execute()
 {
 using (var ctx =
 ContextManager<ProjectTracker.DalLinq.PTrackerDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.PTracker))
 {
 _exists = ((from p in ctx.DataContext.Projects
 where p.Id == _id
 select p).Count() > 0);
 }
 }

Of course, the code in DataPortal_Execute() could be as complex as you require. It might create
and interact with business objects on the server, or it might use server-side resources such as the file
system, a high-powered CPU, or specialized third-party hardware, or software installed on the
server. In this case, the code works directly against the database to determine whether the data exists
in the database:

 _exists = ((from p in ctx.DataContext.Projects
 where p.Id == _id
 select p).Count() > 0);

Lhotka_1019-1.book Page 580 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 8 ■ E X AM P LE D AT A A CC E SS 581

Really, the data portal does most of the hard work with command objects. When DataPortal.
Execute() is called on the client, the command object is copied to the server and its DataPortal_
Execute() method is invoked. Once that method completes, the data portal copies the object back to
the client, thus allowing the client to get any information out of the command object. This means
that all instance fields declared in the class must refer to types that are Serializable.

The Exists() command in the Resource class is implemented in the same manner.
At this point, you should understand how all the business objects in ProjectTracker.Library

are implemented.

Conclusion
This chapter completes the discussion of the ProjectTracker.Library code started in Chapter 17.
The focus in this chapter was on data access and object persistence, exploring the various ways to
use the CSLA .NET data portal, and walking through one sample implementation.

The ProjectTracker.Library business library supports all the interface projects included in the
ProjectTracker solution:

• WPF

• Windows Forms

• Web Forms

• Web Services

• WCF services

• Workflow

This really illustrates the power of CSLA .NET by showing a single business library that supports
all these different application types at the same time. The final chapters in this book focus on the
WPF, Web Forms, and WCF services interfaces.

Lhotka_1019-1.book Page 581 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 582 Tuesday, November 18, 2008 3:42 PM

583

■ ■ ■

C H A P T E R 1 9

Windows Presentation Foundation UI

Chapters 17 and 18 focused on creating business objects and enabling them with data access. The
business objects, and the business logic they contain, are the centerpiece of any application, and
those objects make the behaviors defined in your use cases (from Chapter 3) available for use when
building applications.

But to the end user, the application is really more about the user interface than it is about data
access or object-oriented design. The user experience is absolutely central to the application. So
while the business logic and data access layers implement the majority of the application’s function-
ality, it is the UI that makes or breaks the application.

In .NET 3.0, Microsoft introduced the WPF, which is the next-generation UI technology for the
development of Windows applications.

■Note Closely related to WPF, Silverlight is used for building rich client applications that deploy and execute
within a web browser. You can get more information about CSLA .NET for Silverlight at www.lhotka.net/cslalight.

In this chapter, I assume you have a basic understanding of WPF. This includes the concepts of
XAML programming, how code-behind works in a WPF application, and XML namespaces.

WPF provides many of the best features of both Windows and web development. It is a rich,
interactive, event-driven environment similar to Windows Forms, yet it uses an XML-based, stylable
tag markup language to describe the presentation, much like the Web.

The challenge with WPF is that it has aspects that are similar to both Windows Forms and Web
Forms development, yet it is fundamentally different from both of those technologies. This leads to
a learning curve that you must overcome before you can be productive in the new environment.

Like Windows Forms, WPF provides powerful data binding support, using an event-driven model
for interaction between the UI controls and the business objects. Like Web Forms, WPF uses a data
control model (called a data provider control) to load data into a form. And like its ASP.NET equiva-
lent, the ObjectDataProvider control is too limited to work with CSLA .NET–style business objects.
To address this, CSLA .NET includes a CslaDataProvider control for WPF.

This chapter will cover the basic process of building a WPF UI on top of the business objects created
in Chapters 17 and 18. To do this, I will use data binding, along with several CSLA .NET controls from
the Csla.Wpf namespace. The resulting WPF forms have little code-behind, because most of the work
is done through XAML or by the CSLA .NET controls.

Lhotka_1019-1.book Page 583 Tuesday, November 18, 2008 3:42 PM

http://www.lhotka.net/cslalight

584 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Before getting into the creation of the UI, it is important to discuss one higher-level issue regarding
custom authentication.

Custom Authentication in WPF
WPF is not thread-safe. This means that all UI work must be done on the single UI thread. Neverthe-
less, WPF does use background threads behind the scenes. The security infrastructure in .NET is
driven off the current principal object, which is associated with a specific thread. This means that
you can run into cases where your code is running on a thread that doesn’t have the right principal.

This issue only applies if you’re using custom authentication. If you’re using Windows authen-
tication, then all threads will use the WindowsPrincipal for the user logged into the workstation, and
there’s no issue.

There are a number of possible scenarios with custom authentication and custom principal
objects, but they all have the same issue: one or more threads end up with the incorrect principal.
This is problematic, because the authorization and data portal subsystems of CSLA .NET rely on the
.NET principal object to do their work. If you can’t rely on having a valid principal, authorization is
difficult to implement, and the data portal can’t reliably impersonate the client user identity on the
application server.

The behavior of WPF in this area is intentional; Microsoft is trying to protect the application
from a scenario in which one thread accidentally changes the principal on other threads. The unfor-
tunate side effect of this protection is that it is nearly impossible to build a WPF application that uses
custom authentication.

The core issue is that WPF doesn’t allow a thread to alter the current principal for other threads.
Even if you attempt to do this, the WPF infrastructure will often reset the principal to a default value.

Microsoft’s recommended solution is to set the default principal value on the AppDomain:

 AppDomain.CurrentDomain.SetThreadPrincipal(principal);

Once this line of code runs, all threads created from that point forward will use the new default
principal. However, that’s a serious limitation, because it means you need to execute this line of code
before any background threads are created, including those on the thread pool. This means your login
process can’t use any asynchronous behaviors (no async data portal or service calls), and it must
occur very early in your application’s lifetime to ensure no other async operations have occurred.

Also, this line of code can only be called one time during the application’s lifetime. So if your
application allows the user to log out and then log in later (without closing the application), you
won’t be able to use this technique at all.

The CSLA .NET ApplicationContext object has a partial workaround to this issue that solves the
problem for all CSLA .NET code, as well as code that uses ApplicationContext.User to access the current
principal. It is a partial solution, because CSLA .NET can’t ensure that the actual CurrentPrincipal on
each thread is always correct, so while all CSLA .NET code will work fine, some .NET features—most
notably Code Access Security (CAS)—may not function at all times.

Lhotka_1019-1.book Page 584 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 585

I’m discussing this issue because WPF developers commonly encounter it. While CSLA .NET
addresses this issue to a large degree, you should understand that it exists and that it is caused by
WPF working to prevent one thread from altering the principal used by other threads.

As long as you use Csla.ApplicationContext.User to access the principal, which is what CSLA
.NET itself does, you should be able to alter the principal value during the lifetime of the application
and have a consistent value available to all threads.

Interface Design
The UI application can be found within the ProjectTracker solution. The project is named PTWpf. The
PTWpf interface contains a single main form with a set of navigation links on the left and a content
area on the right. The main form loads user controls into the content area dynamically, displaying
them to the user. Figure 19-1 shows what the main form looks like.

Figure 19-1. Appearance of the main form

Notice that the navigation items on the left deal with projects, resources, roles, and authentica-
tion. When the user clicks a link, a user control is loaded dynamically into the main area of the form.
Figure 19-2 shows the application while the user is editing a project.

Lhotka_1019-1.book Page 585 Tuesday, November 18, 2008 3:42 PM

586 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Figure 19-2. Editing a project

Of course, some dialog windows are used to collect input from the user as well, but the bulk of
the application’s functionality centers around the use of user controls hosted by the main form.

Table 19-1 lists the forms and controls that make up the interface.

Table 19-1. Forms and User Controls in PTWpf

Form/Control Type Description

MainForm Window The main form for the application

EditForm UserControl A custom base class for creating user controls

ListTemplateConverter IValueConverter Converts a Boolean value to a DataTemplate
value

Login Window A login dialog to collect user credentials

RolesEdit EditForm Allows the user to edit the list of roles

ProjectSelect Window A dialog prompting the user to select from a
list of projects

ProjectList EditForm Displays a list of projects

ProjectEdit EditForm Allows the user to view, add, or edit a project

Lhotka_1019-1.book Page 586 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 587

The user control approach taken in this chapter gives you a great deal of flexibility. You can host
the user controls in child forms in an MDI interface, as shown in this chapter, or you can host them
in panes in a multipane interface. In short, by creating your “forms” as user controls, you gain the
flexibility to use them in many different types of UI design.

User Control Framework
Loading a user control dynamically isn’t difficult. The code needs to follow this basic process:

1. Create the EditForm control.

2. Remove any existing EditForm controls from view.

3. Add a new EditForm to the Children collection.

4. Hook the TitleChanged event for a new EditForm.

Although my intent with this chapter isn’t for you to create a full-blown WPF UI framework, you
must do some basic work to provide for a decent user experience.

The steps listed here require some interaction between each UserControl and the hosting MainForm.
To standardize this process, I’ve created an EditForm class, which is a subclass of UserControl. This
class provides some standard behaviors MainForm can count on for each control it hosts.

The EditForm Class

The primary purpose of the EditForm class is to standardize how each control is hosted in MainForm.
However, it also provides some common behaviors that are useful to any data-bound form. Table 19-2
lists the behaviors provided by EditForm.

I’ll discuss each behavior individually.

ResourceSelect Window A dialog prompting the user to select from a
list of resources

ResourceList EditForm Displays a list of resources

ResourceEdit EditForm Allows the user to view, add, or edit a resource

VisibilityConverter IValueConverter Converts a Boolean value to a Visibility
value

Table 19-2. Behaviors Implemented in EditForm

Behavior Description

Principal changed Enables a scheme by which MainForm can notify the active EditForm that
the current .NET principal has changed

Provides a Title
property

Extends UserControl by adding a Title property that can be set through
XAML or code; includes an event so MainForm knows the Title has
changed so it can update the main form caption

Error handling Provides a standard way for any data provider to display exceptions that
occur during data access

Table 19-1. Forms and User Controls in PTWpf

Form/Control Type Description

Lhotka_1019-1.book Page 587 Tuesday, November 18, 2008 3:42 PM

588 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Principal Changed

When the current .NET principal changes, it means that the user has logged in or out of the applica-
tion, so any authorization rules must be reapplied for the currently displayed EditForm. The exact
impact of a user logging in or out is up to the individual EditForm, so the base class simply notifies
the EditForm subclass by invoking a virtual method.

 void EditForm_Loaded(object sender, System.Windows.RoutedEventArgs e)
 {
 ApplyAuthorization();
 }

 void IRefresh.Refresh()
 {
 ApplyAuthorization();
 }

 protected virtual void ApplyAuthorization()
 {
 }

The ApplyAuthorization() method is invoked both when the edit form is first loaded and then
when MainForm calls the Refresh() method because the current principal has changed.

Each individual subclass can override ApplyAuthorization() to reapply authorization rules based
on the new .NET principal. I’ll show how this works when I discuss an actual edit form implementation.

Title Property

In this application, I want each edit form to be able to alter the top-level window caption. That caption
is controlled by MainForm, so there needs to be some mechanism by which each edit control can ask
MainForm to change the caption.

In WPF, data-bindable properties of controls are implemented as dependency properties. A
dependency property is similar to a normal property, but it is tied into the WPF (and WF) infrastructure,
so the property can be bound to values through XAML. Here’s the Title property:

 public event EventHandler TitleChanged;

 public static readonly DependencyProperty TitleProperty =
 DependencyProperty.Register("Title", typeof(string),
 typeof(EditForm), null);

 public string Title
 {
 get { return (string)GetValue(TitleProperty); }
 set
 {
 SetValue(TitleProperty, value);
 if (TitleChanged != null)
 TitleChanged(this, EventArgs.Empty);
 }
 }

The TitleChanged event is a standard event, and MainForm handles this event so that it’s notified
when the value has been changed. The property declaration itself is a dependency property, so the
value can be set through XAML. For example, here’s how an EditForm instance is declared:

Lhotka_1019-1.book Page 588 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 589

<local:EditForm x:Class="PTWpf.ProjectEdit"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Edit a Project">

The Title property can be set here in the XAML or in the code behind the form. Either way, the
TitleChanged event is raised, so MainForm can update the main window caption.

Error Handling

When using a WPF data provider for data access, handling exceptions is a little tricky. The reason is
that the data access is triggered by the control, not by your code, so there’s no way for you to wrap
the operation in a try..catch block to handle any exception.

The standard technique is to handle the DataChanged event of the data provider control and to
see if the Error property of the data provider is anything other than null. If it is, then an exception
occurred.

For this sample application, I’ve chosen to simply display the exception details to the user.
Rather than repeating that code in each individual edit form, the EditForm base class provides an
event handler to handle all such exceptions.

 protected virtual void DataChanged(object sender, EventArgs e)
 {
 var dp = sender as System.Windows.Data.DataSourceProvider;
 if (dp.Error != null)
 MessageBox.Show(
 dp.Error.ToString(),
 "Data error",
 MessageBoxButton.OK,
 MessageBoxImage.Exclamation);
 }

Each edit form is responsible for hooking its data provider DataChanged events to this handler,
which can be done through XAML or code-behind. I’ll show how this is done when I discuss indi-
vidual edit form implementations.

The MainForm Window

The other area of common plumbing code is in the MainForm class itself. MainForm acts as the overall
application shell, hosting and coordinating all other windows and edit forms. In this section, I’ll
discuss only the code required for interaction with each EditForm, leaving discussion of the naviga-
tion and authentication for later in the chapter.

The content area of MainForm is a DockPanel control.

 <DockPanel Grid.Column="1" Name="contentArea"
 Margin="5,15,20,15" />

This DockPanel fills all the available space on the right-hand side of the form, maintaining a bit
of a margin to keep the content inside the rounded corners (see Figure 19-1). By naming the control
contentArea, the code behind the form is able to manipulate the control.

Moving from one edit form to another by showing the correct content in contentArea, MainForm
implements a ShowControl() method to enable navigation:

 public static void ShowControl(UserControl control)
 {
 _mainForm.ShowUserControl(control);
 }

Lhotka_1019-1.book Page 589 Tuesday, November 18, 2008 3:42 PM

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

590 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

 private void ShowUserControl(UserControl control)
 {
 UnhookTitleEvent(_currentControl);

 contentArea.Children.Clear();
 if (control != null)
 contentArea.Children.Add(control);
 _currentControl = control;

 HookTitleEvent(_currentControl);
 }

The ShowControl() method is easily accessible to all code in the project, because it is a static
method that is public. However, the actual instance of MainForm must display the user control, so the
static method delegates to an instance method on the actual MainForm instance. The _mainForm field
references the one instance of MainForm, and its value is set in the constructor of MainForm.

The ShowUserControl() method unhooks the TitleChanged event from any existing control.

 private void UnhookTitleEvent(UserControl control)
 {
 EditForm form = control as EditForm;
 if (form != null)
 form.TitleChanged -= new EventHandler(SetTitle);
 }

The ShowUserControl() method then clears the Children collection of contentArea, ensuring the
DockPanel is empty. Then it adds the new user control to the Children collection, effectively displaying the
new content.

Finally, it hooks the TitleChanged event of the new control.

 private void HookTitleEvent(UserControl control)
 {
 SetTitle(control, EventArgs.Empty);
 EditForm form = control as EditForm;
 if (form != null)
 form.TitleChanged += new EventHandler(SetTitle);
 }

This method also immediately sets the main window caption based on the current title of the
new user control. This is done by calling the SetTitle() method.

 private void SetTitle(object sender, EventArgs e)
 {
 EditForm form = sender as EditForm;
 if (form != null && !string.IsNullOrEmpty(form.Title))
 _mainForm.Title =
 string.Format("Project Tracker - {0}", ((EditForm)sender).Title);
 else
 _mainForm.Title = string.Format("Project Tracker");
 }

Notice how MainForm remains in control of the main window caption, using the Title property
from the current user control to alter the overall value. This helps keep the application maintainable,
because the window caption is controlled in a central location.

At this point, you should have an understanding of how MainForm hosts user controls and how
the EditForm base class makes it easier to create standardized user controls for this purpose.

Lhotka_1019-1.book Page 590 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 591

Value Converters
WPF allows you to do a great deal directly through XAML, minimizing code behind each window or
user control. One powerful technique you can use to shift code into XAML is to implement a value
converter control. These controls convert a value of one type, such as bool, to another type or value.

To create a value converter, you create a class that implements the IValueConverter interface
from the System.Windows namespace. This interface requires that you implement the methods listed
in Table 19-3. These methods are invoked by WPF data binding as needed.

One common use of a value converter is to change a DateTime property from a business object
into a properly formatted string for display to the user. That fits into most people’s conception of
how data binding works.

However, in WPF, data binding is far more useful and widespread. You can use data binding to
connect controls to other controls or objects. The potential is amazing. For example, in PTWpf, I use
data binding and value converters so the UI responds to authorization rules automatically. Based on
whether the user is authorized to create or edit the business object, I’ll use data binding to enable
or disable UI controls, hide some controls entirely, and even change the way data is displayed in a
ListBox control.

Doing this requires a couple of value converters to convert a bool value to a DataTemplate (to change
how a ListBox is displayed) or to a Visibility value (to show or hide parts of the UI).

I’ll discuss the VisibilityConverter first, because it is the simpler of the two.

VisibilityConverter

The VisibilityConverter class implements IValueConverter and is designed to convert a bool value
to a Visibility value. It is used when binding part of the UI to an authorization property such as
CanEditObject. This way, when the user can edit the object, the Visibility value can return Visible,
and if the user isn’t allowed to edit the object, the Visibility value will return Collapsed.

 public class VisibilityConverter : System.Windows.Data.IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 if ((bool)value)
 return System.Windows.Visibility.Visible;
 else
 return System.Windows.Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 return false;
 }
 }

Table 19-3. Methods Defined by IValueConverter

Method Description

Convert() Converts a data source value into a UI value

ConvertBack() Converts a UI value into a data source value

Lhotka_1019-1.book Page 591 Tuesday, November 18, 2008 3:42 PM

592 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Only the Convert() method is fully implemented in this case, because the converter is used to
bind from an ObjectStatus control to a UI control. Changes to the UI control don’t bind back to
ObjectStatus.

In the Convert() method, the value parameter is cast to a bool, and that value is used to deter-
mine which Visibility value to return as a result.

You’ll see how this is used when I discuss the RolesEdit form.

ListTemplateConverter

The ListTemplateConverter is a little more complex, because it defines a couple of properties as well
as implements IValueConverter.

 public class ListTemplateConverter : System.Windows.Data.IValueConverter
 {
 public System.Windows.DataTemplate TrueTemplate { get; set; }

 public System.Windows.DataTemplate FalseTemplate { get; set; }

 #region IValueConverter Members

 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 if ((bool)value)
 return TrueTemplate;
 else
 return FalseTemplate;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 return value;
 }

 #endregion
 }

Again, only the Convert() method is fully implemented, because the converter is used to bind
from an ObjectStatus control to a UI control. If there are changes to the UI control, they don’t bind
back to ObjectStatus.

The TrueTemplate and FalseTemplate properties are used to define the DataTemplate values to be
returned based on the input bool value. In your XAML, this converter is defined as a resource, like this:

 <local:ListTemplateConverter x:Key="ListTemplateConverter"
 TrueTemplate="{StaticResource editableTemplate}"
 FalseTemplate="{StaticResource readonlyTemplate}" />

The two properties are set to DataTemplate items defined in that same XAML. You’ll see an example
of this when I discuss the RolesEdit form later in this chapter.

Like the VisibilityConverter, this converter’s logic simply uses the value parameter to deter-
mine which result to return. The value converter concept in WPF is powerful, and you can use it to
shift a lot of code behind each page into reusable controls that can be used from the XAML defining
each page.

Lhotka_1019-1.book Page 592 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 593

Application Configuration
The application needs to provide some basic configuration information through the application’s
configuration file. In the client application configuration file, either you can provide connection
strings so that the application can interact with the database directly, or you can configure the data
portal to communicate with a remote application server. I discussed this basic concept in Chapter 15
when I covered the channel adapter implementation. Recall that the data portal supports several
channels, including WCF, Remoting, Enterprise Services, and Web Services. You can create your
own channels as well if none of these meet your needs.

In Chapter 1, I discussed the trade-offs between performance, scalability, fault tolerance, and
security that come with various physical n-tier configurations. The most scalable solution for an
intelligent client UI is to use an application server to host the data access layer, while the most perfor-
mant solution is to run the data portal locally in the client process. In this chapter, I’ll show first how
to run the data portal locally, and then remotely using the WCF channel.

The configuration is controlled by the application’s configuration file. In the Visual Studio project,
this is named App.config.

■Note Naming the file App.config is important. Visual Studio 2008 will automatically copy the file into the
appropriate bin directory, changing the name to match that of the program. In this case, it will change the name to
PTWin.exe.config as it copies it into the bin directories. This occurs each time the project is built in Visual Studio.

Authentication

CSLA .NET controls authentication through the configuration file.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaPropertyChangedMode" value="Xaml" />
 </appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. Chapter 8
implemented the PTPrincipal and PTIdentity classes specifically to support custom authentication,
and the UI code in this chapter will use custom authentication as well.

If you want to use Windows authentication, change the configuration to the following:

 <add key="CslaAuthentication" value="Windows" />

Of course, this change requires coding changes. To start, remove the PTPrincipal and PTIdentity
classes from ProjectTracker.Library, as they will no longer be needed. Also, the login/logout function-
ality implemented in this chapter will become unnecessary. Specifically, the Login form and the code
to display that form should be removed from the UI project.

The CslaPropertyChangedMode key shown here causes CSLA .NET to use the XAML model for
raising the PropertyChanged event from all business objects. Recall from Chapters 7 and 10 that the
PropertyChanged event must be raised differently for WPF/XAML data binding than for Windows
Forms data binding, because the two data binding infrastructures treat the event a little differently.

It’s important that this value be set for WPF applications; otherwise, data binding won’t update
the UI properly based on underlying changes to the business object.

Lhotka_1019-1.book Page 593 Tuesday, November 18, 2008 3:42 PM

594 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Local Data Portal

The configuration file also controls how the application uses the data portal. To make the client
application interact directly with the database, use the following (with your connection string
changed to the connection string for your database):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaPropertyChangedMode" value="Xaml" />
 </appSettings>
 <connectionStrings>
 <add name="PTracker" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 <add name="Security" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

Because LocalProxy is the default for the data portal’s CslaDataPortalProxy setting, no actual
data portal configuration is required, so the only settings in the configuration file are to control
authentication and to provide the database connection strings.

Remote Data Portal

To make the data portal use an application server and communicate using the WCF channel, use the
following configuration:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaPropertyChangedMode" value="Xaml" />
 <add key="CslaDataPortalProxy"
 value="Csla.DataPortalClient.WcfProxy, Csla"/>
 </appSettings>
 <connectionStrings>
 </connectionStrings>
 <system.serviceModel>
 <client>
 <endpoint name="WcfDataPortal"
 address="http://localhost:4147/WcfHost/WcfPortal.svc"
 binding="wsHttpBinding"
 contract="Csla.Server.Hosts.IWcfPortal" />
 </client>
 </system.serviceModel>
</configuration>

The key lines for the WCF configuration are in bold. Of course, you need to change localhost:4147
to the name of the application server on which the data portal host is installed. Also, the WcfHost text
needs to be replaced with the name of your virtual root on that server.

Before using this configuration, you must create and configure the WCF host virtual root. I’ll
show how you do this in the next section.

Lhotka_1019-1.book Page 594 Tuesday, November 18, 2008 3:42 PM

http://localhost:4147/WcfHost/WcfPortal.svc

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 595

The most important thing to realize about the application configuration is that the data portal
can be changed from local to remote (using any of the network channels) with no need to change any
UI or business object code.

Configuring the Data Portal Server

When using a remote data portal configuration, the client communicates with an application server.
Obviously, this means that an application server must exist and be configured properly. When the
client data portal is configured to use WCF, you must supply a properly configured WCF application
server.

■Note No data portal server is required when the data portal is configured for local mode. In that case, the
“server-side” components run in the client process, and no application server is used or required.

The WcfHost website in the ProjectTracker download is an example of a WCF application server
hosted in IIS. You may also choose to host the WCF server in a custom Windows service, in a custom
EXE, or using WAS. These various hosts are similar to IIS in many ways, but are outside the scope of
this book.

The WcfHost website is simple, because it relies on preexisting functionality provided by CSLA
.NET, as discussed in Chapter 15. Table 19-4 lists the key elements of the website.

Any website containing the elements in Table 19-4 can act as a WCF data portal host. The
web.config file must contain the configuration section for WCF, defining the endpoint for the data
portal—for example:

 <system.serviceModel>
 <services>
 <service name="Csla.Server.Hosts.WcfPortal">
 <endpoint address=""
 contract="Csla.Server.Hosts.IWcfPortal"
 binding="wsHttpBinding"/>
 </service>
 </services>
 </system.serviceModel>

WCF services are defined by their address, binding, and contract.
For a WCF service hosted in IIS, the address is defined by IIS and the name of the svc file, so it is

not specified in the web.config file. As shown here, you may provide a "" address or no address at all.

Table 19-4. Key Elements of the WcfHost Website

Element Description

WcfPortal.svc WCF service endpoint file, referencing the Csla.Server.Hosts.WcfPortal class

bin Standard web bin folder containing Csla.dll, ProjectTracker.Library.dll,
and any other assemblies required by the business library; the important
thing is that your business assemblies and Csla.dll be present in this folder

web.config Standard web.config file, but containing a system.serviceModel element to
configure the WCF endpoint for the data portal

Lhotka_1019-1.book Page 595 Tuesday, November 18, 2008 3:42 PM

596 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

If you use some other hosting technique, such as WAS or a custom Windows service, you may need
to specify the server address.

In the case of a CSLA .NET data portal endpoint, the contract is fixed; it must be Csla.Server.
Hosts.IWcfPortal. The contract is defined by the interface implemented in the data portal, as discussed
in Chapter 15. It may not be different from this value.

The binding can be any synchronous WCF binding. The only requirement imposed by the data
portal is that the WCF binding must be synchronous; beyond that, any binding is acceptable. You
may choose to use HTTP, TCP, named pipes, or other bindings. You may choose to configure the
binding to use SSL, X.509 certificates, or other forms of encryption or authentication. All the features
of WCF are at your disposal.

Remember that the data access code for your business objects will run on the application server.
This means that the application server’s web.config file must define the connection strings required
by your data access code.

 <connectionStrings>
 <add name="PTracker" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 <add name="Security" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

This is the same configuration you’d put in the client’s app.config file when using a local data
portal configuration, but now these values must be on the server, because that is where the data
access code will execute.

The CslaAuthentication value must be the same on both client and server. You can change it to
Windows, as long as you make that change on both sides. If you do change this value to Windows, then
you must ensure that the WCF host website is configured to require Windows authentication and to
impersonate the calling user, because in that case, CSLA .NET will simply use the value provided by
.NET.

At this point, you should understand how to configure the application and how to configure the
data portal for either local (2-tier) or remote (3-tier) operation.

PTWpf Project Setup
The UI application can be found within the ProjectTracker solution. The project is named PTWpf and
references the ProjectTracker.Library project, along with Csla.dll. ProjectTracker.Library is a
project reference, while Csla.dll is a file reference.

When building applications using the CSLA .NET framework, it is best to establish a file refer-
ence to the framework assembly, but use project references between the UI and any business assemblies.
This makes debugging easier overall, because it helps prevent accidental changes to the CSLA .NET
framework project, while enabling fluid changes to both the business objects and UI code.

Let’s go through the creation of the WPF UI. First, I’ll discuss the layout and design of MainForm,
then I’ll cover the process of logging a user in and out.

With the common code out of the way, I’ll discuss the process of maintaining the roles and project
data in detail. At that point, you should have a good understanding of how to create lookup dialogs,
as well as both grid-based and detail forms.

The MainForm Window
The MainForm form is the core of the application in that it provides navigation and hosts the user
controls for display to the user. It coordinates the flow of the entire application.

Lhotka_1019-1.book Page 596 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 597

As you can see from Figure 19-1 earlier in the chapter, the application has a graphic look and
feel. This is implemented in MainForm by using a series of gradient-filled Rectangle and Path objects.
All these graphic elements are contained in a Grid named BackgroundGrid; you can look at how this
is done in the code download, which you can find either in the Source Code/Download area of the
Apress website at www.apress.com/book/view/1430210192 or at www.lhotka.net/cslanet/download.aspx.
My focus in this chapter is not on the graphics and layout concepts of WPF, so I’ll focus on the navi-
gation, data binding, and interaction with the business objects.

Navigation

The Grid named LayoutRoot contains the actual content of the form. This grid defines two columns:
the left one contains the navigation controls, and the right one contains the contentArea control
discussed earlier in this chapter.

Each section of the navigation area is contained in an Expander, which contains a list of
Hyperlink controls—for example:

 <Expander IsExpanded="True" Header="Projects" >
 <ListBox>
 <ListBoxItem>
 <Hyperlink Name="ShowProjectListButton"
 Click="ShowProjectList">Show list</Hyperlink>
 </ListBoxItem>
 <ListBoxItem>
 <Hyperlink Name="NewProjectButton"
 Click="NewProject">Add new</Hyperlink>
 </ListBoxItem>
 <ListBoxItem>
 <Hyperlink Name="CloseProjectButton"
 Click="CloseProject">Close project</Hyperlink>
 </ListBoxItem>
 </ListBox>
 </Expander>

Each Hyperlink control has a Click event handler, which is implemented in the code behind the
form. Each event handler is responsible for implementing the behavior required by the user. For
example, the NewProject() event handler looks like this:

 private void NewProject(object sender, EventArgs e)
 {
 try
 {
 ProjectEdit frm = new ProjectEdit(Guid.Empty);
 ShowControl(frm);
 }
 catch (System.Security.SecurityException ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

Creating a new project is a matter of displaying the ProjectEdit form to the user. You do this by
creating a new instance of ProjectEdit with an empty Guid value (to indicate a new project should
be added) and calling the ShowControl() method to display the form in the content area of MainForm.
Any security exceptions are caught and displayed to the user in a dialog. Another example is the
CloseProject() handler.

Lhotka_1019-1.book Page 597 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx

598 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

 private void CloseProject(object sender, RoutedEventArgs e)
 {
 ProjectSelect frm = new ProjectSelect();
 bool result = (bool)frm.ShowDialog();
 if (result)
 {
 Guid id = frm.ProjectId;
 ProjectCloser.CloseProject(id);
 MessageBox.Show("Project closed",
 "Close project", MessageBoxButton.OK, MessageBoxImage.Information);
 }
 }

This method is a little more complex, because it displays the ProjectSelect dialog to the user
to choose which project to close. If the user chooses a project, the ProjectCloser business class
(a command object stereotype) closes the specified project. This is an example of a navigation link
that executes a behavior without displaying a new edit form to the user.

All the Click handlers for the navigation items work in a similar manner to those shown here.
If you prefer, you could route the click events to some class other than the form itself—possibly a
controller or presenter class that is responsible for implementing the behaviors triggered by the user
clicking each item.

In any case, the code would be similar to what I’m showing here. Regardless of your UI design
pattern, you’ll need some code that is responsible for implementing the requested UI behavior and
does so by leveraging the preexisting functionality in the business objects.

Login and Logout

The final bit of common functionality implemented in MainForm allows the user to log into or out of
the application. It is important to realize that the ProjectTracker application allows unauthorized or
guest users to view certain data, so those users can interact with the application even if they haven’t
logged in.

The login process is triggered when the application first loads and when the user clicks the Login
button on the menu. In both cases, a LogInOut() method is called to handle the actual login/logout
behavior.

 void LogInOut(object sender, EventArgs e)
 {
 if (Csla.ApplicationContext.User.Identity.IsAuthenticated)
 {
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 CurrentUser.Text = "Not logged in";
 LoginButtonText.Text = "Log in";
 }
 else
 {
 Login frm = new Login();
 frm.ShowDialog();
 if (frm.Result)
 {
 string username = frm.UsernameTextBox.Text;
 string password = frm.PasswordTextBox.Password;
 ProjectTracker.Library.Security.PTPrincipal.Login(
 username, password);
 }

Lhotka_1019-1.book Page 598 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 599

 if (!Csla.ApplicationContext.User.Identity.IsAuthenticated)
 {
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 CurrentUser.Text = "Not logged in";
 LoginButtonText.Text = "Log in";
 }
 else
 {
 CurrentUser.Text =
 string.Format("Logged in as {0}",
 Csla.ApplicationContext.User.Identity.Name);
 LoginButtonText.Text = "Log out";
 }
 }

 ApplyAuthorization();
 IRefresh p = _currentControl as IRefresh;
 if (p != null)
 p.Refresh();
 }

If the current principal is authenticated, the following code will log that user out:

 if (Csla.ApplicationContext.User.Identity.IsAuthenticated)
 {
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 CurrentUser.Text = "Not logged in";
 LoginButtonText.Text = "Log in";
 }

On the other hand, if the current principal is not authenticated, then the following code will
display the Login dialog to the user so he can enter his username and password:

 Login frm = new Login();
 frm.ShowDialog();

The Login dialog form is a modal dialog that prompts the user for his credentials and provides
those values to the calling code.

Back in the LogInOut() method, if the user clicks the Login button on the dialog, the username
and password values will call PTPrincipal.Login() to validate the credentials.

 string username = frm.UsernameTextBox.Text;
 string password = frm.PasswordTextBox.Password;
 ProjectTracker.Library.Security.PTPrincipal.Login(
 username, password);

The result is that Csla.ApplicationContext.User will either be an authenticated PTPrincipal or
an UnauthenticatedPrincipal. Then the status of the principal object will be used to determine whether
the user is logged in or not.

 if (!Csla.ApplicationContext.User.Identity.IsAuthenticated)
 {
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 CurrentUser.Text = "Not logged in";
 LoginButtonText.Text = "Log in";
 }

Lhotka_1019-1.book Page 599 Tuesday, November 18, 2008 3:42 PM

600 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

 else
 {
 CurrentUser.Text =
 string.Format("Logged in as {0}",
 Csla.ApplicationContext.User.Identity.Name);
 LoginButtonText.Text = "Log out";
 }

If the user was authenticated, then the button text will be changed to Log out, and the user’s
name will be displayed on the form. Otherwise, the button text will be changed to Log in, and text
indicating that the user isn’t logged in will be displayed.

In any case, an ApplyAuthorization() method is called so that MainForm can update its display
based on the user’s identity (or lack thereof). Then the current user control (if any) is notified that the
principal has changed.

 ApplyAuthorization();
 IRefresh p = _currentControl as IRefresh;
 if (p != null)
 p.Refresh();

Each user control is responsible for handling this event and responding appropriately. Recall
that the EditForm base control defines the ApplyAuthorization() method, so each user control can
override that method as necessary.

The ApplyAuthorization() method in MainForm is responsible for enabling and disabling navi-
gation items.

 private void ApplyAuthorization()
 {
 this.NewProjectButton.IsEnabled =
 Csla.Security.AuthorizationRules.CanCreateObject(typeof(Project));
 this.CloseProjectButton.IsEnabled =
 Csla.Security.AuthorizationRules.CanEditObject(typeof(Project));
 this.NewResourceButton.IsEnabled =
 Csla.Security.AuthorizationRules.CanCreateObject(typeof(Resource));
 }

Notice how the actual authorization check is delegated to the per-type authorization methods
provided by CSLA .NET. These methods, which I discussed in Chapter 12, were implemented specif-
ically to enable scenarios like this. The idea is that MainForm has no idea whether particular users or
roles are authorized to add Project objects. Instead, the Project class itself has that knowledge, and
MainForm simply asks the authorization subsystem whether the current user is authorized.

The end result is good separation of concerns: MainForm is concerned with the UI details of enabling
and disabling controls, while the actual rules are contained within the business layer.

The Login Window
The LogInOut() method in MainForm calls a Login dialog form to collect and authenticate the user’s
credentials. After gathering credentials from the user, this dialog form calls PTPrincipal.Login() to
do the authentication itself.

Figure 19-3 shows the Login form layout.

Lhotka_1019-1.book Page 600 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 601

Figure 19-3. Layout of the Login form

The form defines a Result property, which is a bool that indicates whether the user clicked Login
or not.

 private bool _result;

 public bool Result
 {
 get { return _result; }
 set { _result = value; }
 }

 void LoginButton(object sender, EventArgs e)
 {
 _result = true;
 this.Close();
 }

 void CancelButton(object sender, EventArgs e)
 {
 _result = false;
 this.Close();
 }

When the user clicks either Login or Cancel, the Result property is set to a corresponding value,
and the dialog is closed. Even though the dialog is closed and disappears from the screen, the dialog
object still exists in memory, and its properties are available to code in the application. The LogInOut()
method relies on the Result property, as well as the values in the UserNameTextBox and PasswordTextBox
controls, to do its work.

You’ve seen how the basic structure of the application works, from the MainForm and Login
windows to the EditForm base class. I’ll now move on and show how to implement a couple of the
actual edit forms and dialogs. I won’t cover all the elements in the UI, because they follow some basic
themes; once you’ve seen a couple, you can understand the rest.

Lhotka_1019-1.book Page 601 Tuesday, November 18, 2008 3:42 PM

602 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

The RolesEdit Form
The RolesEdit user control allows an authorized user to edit the roles a resource can hold when
assigned to a project. This is one of the simplest types of UIs to create, because the business objects
and the controls in the Csla.Wpf namespace already handle most of the work.

Figure 19-4 shows the form with an authenticated user editing data.

Figure 19-4. Authenticated user using the RolesEdit form

Most of the effort in building this form is in the XAML. I’ll walk through it in some detail, since
this is the first form I’m discussing.

Form Declaration

To start with, here’s the form declaration:

<local:EditForm x:Class="PTWpf.RolesEdit"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:PTWpf"
 xmlns:csla="clr-namespace:Csla.Wpf;assembly=Csla"
 xmlns:ptracker=
"clr-namespace:ProjectTracker.Library.Admin;assembly=ProjectTracker.Library">

Rather than using a Window or UserControl base class, this uses local:EditForm, which is the
EditForm class from earlier in this chapter. Notice that the local: prefix is defined in this header:

Lhotka_1019-1.book Page 602 Tuesday, November 18, 2008 3:42 PM

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 603

 xmlns:local="clr-namespace:PTWpf"

You can think of this like a using statement, bringing a namespace into scope for use in this form.
That’s true for all the xmlns statements, so you can see the Csla.Wpf and ProjectTracker.Library.Admin
namespaces are also made available.

Form Resources

The next section of XAML defines some global resources that are available to the entire form.

 <local:EditForm.Resources>
 <local:VisibilityConverter x:Key="VisibilityConverter" />
 <csla:IdentityConverter x:Key="IdentityConverter" />
 <csla:CslaDataProvider x:Key="RoleList"
 ObjectType="{x:Type ptracker:Roles}"
 FactoryMethod="GetRoles"
 DataChanged="DataChanged"
 ManageObjectLifetime="True">
 </csla:CslaDataProvider>
 <csla:ObjectStatus x:Key="RoleListStatus"
 DataContext="{StaticResource RoleList}" />
 </local:EditForm.Resources>

I discussed the VisibilityConverter class earlier in the chapter; here you see how it is defined
as a resource. The IdentityConverter, CslaDataProvider, and ObjectStatus classes were discussed in
Chapter 10:

• IdentityConverter: Works around a data refresh issue with WPF data binding

• CslaDataProvider: Provides data binding access to the Roles business object

• ObjectStatus: Elevates the status properties of the business object as dependency properties
so they can be bound to UI elements

CslaDataProvider

I want to focus more on the CslaDataProvider, because this is the first time you’ve seen it in action.
Like the WPF ObjectDataProvider, the CslaDataProvider control allows data binding to access an object
as a data source. However, the CslaDataProvider goes far beyond the simpler ObjectDataProvider. It can
not only create or retrieve a business object, but it can also cancel edits to the object and save the
object—all entirely through XAML. Let’s go through the previous code.

The ObjectType property specifies the type of business object to be retrieved. The ptracker:Roles
type corresponds to the Roles class from the ProjectTracker.Library.Admin namespace.

The FactoryMethod property specifies the name of the static factory method on the Roles class
that should be invoked to create or retrieve the object. In this case, the GetRoles() method is invoked.

The DataChanged property specifies an event handler for the DataChanged event. Remember that
this form inherits from EditForm, which defines a DataChanged() method to handle this event, so the
event is routed to that handler.

Finally, the ManageObjectLifeTime property specifies that the data provider should manage the
lifetime of this business object. Setting this to True tells the CslaDataProvider to enable the abilities
to cancel edits, add new items to the collection, and remove items from the collection through WPF
commanding.

Because IsInitialLoadEnabled is not specified, it defaults to True, which means that the data
provider will invoke the factory method and load the business object when the form is loaded initially.
This means the form will automatically populate with data as it is loaded, which is what we desire.

Lhotka_1019-1.book Page 603 Tuesday, November 18, 2008 3:42 PM

604 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Because IsAsynchronous is not specified, it defaults to False, which means that the data provider
invokes the factory method on the UI thread. Setting that value to True causes the data to load on a
background thread, and the UI displays the values when they have been returned to the UI thread.

ObjectStatus

The ObjectStatus control is bound to the data provider, so its DataContext, or data source, is the business
object returned by the provider. This means it exposes properties such as IsSavable and CanEditObject
from the business object, so you can use those values to control the state of the UI elements as needed.
These properties are used, along with the VisibilityConverter and ListTemplateConverter controls
discussed earlier in this chapter, to control how the UI reacts as the user logs in and out of the
application.

Setting the DataContext

With the CslaDataSource defined as a resource, it can be used to set the DataContext for part or all of
the form. In this case, it is set for all content controls of the form by specifying the DataContext on the
Grid control that contains all other controls.

 <Grid Name="MainGrid"
 DataContext="{Binding Source={StaticResource RoleList}}">

The DataContext property is set to a binding expression, so the source object becomes the
RoleList data provider from the Resources defined earlier. Data binding understands that when a
data source is a data provider control, it should really bind to the Data property of that data provider,
which will be the Roles business object in this case.

Grid Resources

The Grid also defines its own Resources, including two DataTemplate elements and a
ListTemplateConverter. A DataTemplate defines how each row of data in a ListBox (or similar control)
is to be displayed. The default template for a ListBoxItem simply displays the ToString() value of the
data object, which is rarely the desired result. Defining a DataTemplate allows you to control exactly
how each row of data is displayed.

Two templates are defined in order to deal with authorization. If the user is not authorized to edit the
values, a read-only template is used. The read-write template is used if the user is allowed to edit
the values. This technique means that the form can define a single ListBox control, but the actual
display can be easily altered based on the user’s permissions by using the ListTemplateConverter.

Read-Only Template

Each DataTemplate defines a self-contained section of UI. For example, the read-only template looks
like this:

 <DataTemplate x:Key="lbroTemplate">
 <Grid>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Path=Name}" Width="250" />
 </StackPanel>
 </Grid>
 </DataTemplate>

This means that each row of data in the ListBox will be displayed in a Grid control that contains
a StackPanel that displays a TextBlock with a fixed width.

Lhotka_1019-1.book Page 604 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 605

Read-Write Template

The read-write template is more complex, containing a couple of editable TextBox controls and a
Button so the user can remove the item from the list.

 <DataTemplate x:Key="lbTemplate">
 <Grid>
 <StackPanel Orientation="Horizontal">
 <TextBlock>Id:</TextBlock>
 <TextBox x:Name="IdTextBox"
 Text="{Binding Path=Id,
 Converter={StaticResource IdentityConverter}}"
 Width="100" />
 <csla:PropertyStatus Source="{Binding}"
 Property="Id" Grid.Column="1"
 Target="{Binding ElementName=IdTextBox}" />
 <TextBlock>Name:</TextBlock>
 <TextBox x:Name="NameTextBox"
 Text="{Binding Path=Name,
 Converter={StaticResource IdentityConverter}}"
 Width="250" />
 <csla:PropertyStatus Source="{Binding}"
 Property="Name" Grid.Column="1"
 Target="{Binding ElementName=NameTextBox}" />
 <Button
 Command="ApplicationCommands.Delete"
 CommandParameter="{Binding}"
 CommandTarget=
 "{Binding Source={StaticResource RoleList},
 Path=CommandManager,
 BindsDirectlyToSource=True}"
 HorizontalAlignment="Left">Remove</Button>
 </StackPanel>
 </Grid>
 </DataTemplate>

There’s a lot to this template, so I’ll break it down.
Two TextBox controls allow the user to edit the Id and Name properties. Each TextBox has an asso-

ciated PropertyStatus control, which provides visual cues for the authorization and validation rules
associated with those business object properties. Let’s look at the TextBox, which is bound to the Name
property.

TextBox The TextBox bound to the Name property has an explicit name, because the PropertyStatus
control will reference this control by its name. I’ll discuss how that works when I cover the
PropertyStatus control. Here’s the TextBox control declaration:

 <TextBox x:Name="NameTextBox"
 Text="{Binding Path=Name,
 Converter={StaticResource IdentityConverter}}"
 Width="250" />

The Text property is bound to the business object’s Name property using a Binding expression.
Notice that this expression also uses the IdentityConverter. This is required to avoid the field refresh
issue I discussed in Chapter 10, where changes made by the business object to the user-entered value
aren’t always reflected in the UI. Having a value converter on the binding avoids that issue, and

Lhotka_1019-1.book Page 605 Tuesday, November 18, 2008 3:42 PM

606 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

IdentityConverter should be used for any binding where you don’t need a more specific value
converter.

PropertyStatus The NameTextBox has an associated PropertyStatus control.

 <csla:PropertyStatus Source="{Binding}"
 Property="Name" Grid.Column="1"
 Target="{Binding ElementName=NameTextBox}" />

As discussed in Chapter 10, the PropertyStatus control provides visual cues to the user based on
the authorization and validation rules for the business object property. It enables and disables the
target control (NameTextBox, in this case) depending on whether the user has read, write, or no access
to the property. As shown in Figure 19-5, it displays any broken validation rule messages (for all three
severities) for the property. Finally, if any async validation rules are being executed, it will display a
busy animation so the user is aware that some background processing related to this property is
underway.

Figure 19-5. The PropertyStatus control displaying a validation error

Notice how the control is bound to the current DataContext by setting its Source property to
{Binding}, and the business object property name is specified through the Property property.

I typically associate a PropertyStatus control with every detail control bound to a business
object property to gain the visual cues it provides.

Using ValidatesOnDataErrors You should be aware that WPF itself does provide a more limited way to
leverage the validation rules for the business object property. You could choose to declare the TextBox
control’s binding expression using the ValidatesOnDataErrors property.

 Text="{Binding Path=Name,
 Converter={StaticResource IdentityConverter},
 ValidatesOnDataErrors=True}"

The ValidatesOnDataErrors property specifies that WPF should check the IDataErrorInfo inter-
face of the business object, and if any Error severity rules have been broken, it will alter the display
of the TextBox control. By default, it simply adds a thin red border around the control, as shown in
Figure 19-6, but you can override that style as you choose.

Figure 19-6. WPF displaying a validation error with ValidatesOnDataErrors

You can use this feature with or without a PropertyStatus control; the feature and the control
are totally unrelated and compatible.

Lhotka_1019-1.book Page 606 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 607

Button Control with Commanding The Remove button uses WPF commanding to interact with the
CslaDataProvider control. This is controlled through the Command, CommandTarget, and
CommandParameter properties.

 <Button
 Command="ApplicationCommands.Delete"
 CommandParameter="{Binding}"
 CommandTarget=
 "{Binding Source={StaticResource RoleList},
 Path=CommandManager,
 BindsDirectlyToSource=True}"
 HorizontalAlignment="Left">Remove</Button>

These properties work as follows:

• Command: Specifies the command to be sent to the target when the button is clicked

• CommandParameter: Uses a binding expression to pass a reference to the current child object
(the child object representing this one row of data in the ListBox) as a parameter

• CommandTarget: Uses a relatively complex binding expression to direct the command to the
CommandManager of the CslaDataProvider

As discussed in Chapter 10, the CslaDataProvider control understands several standard commands,
including Save, Undo, AddNew, and Delete. Of these, the only one that requires a parameter is Delete,
because the CslaDataProvider needs to know which object to remove from the collection.

Also, recall from Chapter 10 that commands can only be handled by visual elements, and that
a data provider is not a visual element. To support commanding, the CslaDataProvider exposes a
CommandManager property, which is an object that is a visual element and can accept commands. The
binding expression sets the target to this CommandManager object.

The BindsDirectlyToSource property must be set to True, because the RoleList resource is a
data provider. WPF data binding would normally see that the resource is a data provider and would
route all bindings to its Data property. However, in this case, the binding needs to actually go to the
data provider itself, not the business object it is providing. The BindsDirectlyToSource property causes
data binding to work directly against the resource, not the Data property.

You’ll see other examples of Button controls using commanding later in this form.

Form Content

The form’s content consists of a TextBlock label, a ListBox with the items to edit, and some button
controls.

 <StackPanel>
 <TextBlock>Roles:</TextBlock>
 <ListBox Name="RolesListBox"
 ItemsSource="{Binding}"
 ItemTemplate="{Binding Source={StaticResource RoleListStatus},
 Path=CanEditObject,
 Converter={StaticResource ListTemplateConverter}}" />
 <StackPanel Orientation="Horizontal"
 Visibility="{Binding Source={StaticResource RoleListStatus},
 Path=CanEditObject,
 Converter={StaticResource VisibilityConverter}}">

Lhotka_1019-1.book Page 607 Tuesday, November 18, 2008 3:42 PM

608 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

 <Button
 Command="ApplicationCommands.Save"
 CommandTarget="{Binding Source={StaticResource RoleList},
 Path=CommandManager, BindsDirectlyToSource=True}"
 HorizontalAlignment="Left" IsDefault="True">Save</Button>
 <Button
 Command="ApplicationCommands.Undo"
 CommandTarget="{Binding Source={StaticResource RoleList},
 Path=CommandManager, BindsDirectlyToSource=True}"
 HorizontalAlignment="Left" IsCancel="True">Cancel</Button>
 <Button Name="AddItemButton"
 Command="ApplicationCommands.New"
 CommandTarget="{Binding Source={StaticResource RoleList},
 Path=CommandManager, BindsDirectlyToSource=True}"
 HorizontalAlignment="Left" IsCancel="True">Add role</Button>
 </StackPanel>
 </StackPanel>

The core of the UI is the ListBox control, which displays the items from the Roles business
object. It does this by specifying an ItemTemplate, which is a DataTemplate that defines how each item
in the collection is to be displayed on the form.

As you’ve seen, two DataTemplate items are defined in the Grid.Resources element earlier in the
XAML: one for a read-only display, and one for a read-write display. The ListTemplateConverter
switches between those two templates automatically, based on the value of CanEditObject from the
ObjectStatus control declared in the form’s resources dictionary. That ObjectStatus control exposes
the status properties from the business object being used by the form, so the result is that the user is
shown the correct template (read-only or read-write) depending on whether she has permission to
edit the data.

The various Button controls should also only be visible if the user is allowed to edit the data.
Because these controls use WPF commanding to interact with the CslaDataProvider control, they’ll
automatically enable and disable based on whether the business object allows the user to save, cancel,
or add a new item. Take the Save button, for example: the CslaDataProvider control uses the busi-
ness object’s IsSavable property to determine whether the object can be saved, so the button will
only be enabled if the object’s IsSavable property is true.

However, all the buttons are contained in a StackPanel control, and its Visibility property is
bound to the CanEditObject property of the ObjectStatus control defined earlier in the form’s resources.
By using the VisibilityConverter control, the bool value of CanEditObject is converted to a Visibility
value: either Visible or Collapsed.

 <StackPanel Orientation="Horizontal"
 Visibility="{Binding Source={StaticResource RoleListStatus},
 Path=CanEditObject,
 Converter={StaticResource VisibilityConverter}}">

The result is that the user will only see the contents of the StackPanel if she’s authorized to edit
the business object.

Going back to the Button controls, I mentioned that they use WPF commanding to interact with
the CslaDataProvider control, just like the Remove button discussed earlier.

Lhotka_1019-1.book Page 608 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 609

 <Button
 Command="ApplicationCommands.Save"
 CommandTarget="{Binding Source={StaticResource RoleList},
 Path=CommandManager, BindsDirectlyToSource=True}"
 HorizontalAlignment="Left" IsDefault="True">Save</Button>

In this case, the Save command is sent to the CommandManager of the data provider control,
causing any changes to the business object (the Roles collection) to be saved.

At this point, you’ve seen all the XAML that defines the form. Nearly all the behaviors required
for an edit form are handled purely through XAML, with just one bit of code required behind the form.

The ApplyAuthorization Method

The only code required behind the form is an override of the ApplyAuthorization() method. MainForm
calls this method when the user logs in or out of the application, so this is the location where any
changes must be made based on the new user identity.

When the current .NET principal changes, all authorization rules must be rechecked. The XAML
elements handle all the UI changes, but something needs to trigger them to recheck the authoriza-
tion rules. The simplest way to do this is to rebind them to the business object; that’s the purpose of
the Rebind() method on the CslaDataProvider control.

 protected override void ApplyAuthorization()
 {
 var dp = (Csla.Wpf.CslaDataProvider)this.FindResource("RoleList");
 dp.Rebind();
 if (!Csla.Security.AuthorizationRules.CanEditObject(dp.ObjectType))
 dp.Cancel();
 }

There’s one other bit of functionality in this method: a call to the CslaDataProvider control’s
Cancel() method. The Cancel() method is called if the new user is not authorized to edit the business
object.

The reason for doing this is that the user could have been in the middle of editing the data when
he logged out. The business object and UI could have a lot of changed data, but now that the user has
logged out, those changes can’t be saved and shouldn’t be displayed. Calling Cancel() causes the
object to return to an unchanged state, and data binding updates the UI, ensuring that the user isn’t
viewing partially edited and effectively invalid data.

This concludes the RolesEdit form. I’ve covered most of the important concepts required for
any WPF data entry form. In the rest of the chapter, I’ll discuss a couple of other forms in the appli-
cation, focusing on slight variations for different UI requirements.

The ResourceList Form
It is common to build forms that display data, perhaps allowing the user to select an item from a list.
By using data binding, building such a form is easy. The ResourceList form displays a list of resources
from the database, allowing the user to select an item for editing. As with most WPF forms, most of
the work is in the XAML.

Lhotka_1019-1.book Page 609 Tuesday, November 18, 2008 3:42 PM

610 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

The form defines a data provider resource.

 <csla:CslaDataProvider x:Key="ResourceList"
 ObjectType="{x:Type PTracker:ResourceList}"
 FactoryMethod="GetResourceList"
 IsAsynchronous="True"/>

This is different from the one used in RolesEdit, because IsAsynchronous is True, and
IsInitialLoadEnabled isn’t set (so it defaults to True). The result is that the data retrieval is started
as soon as the form is loaded, but the data retrieval occurs on a background thread. To the user, the
form displays almost immediately, and the data appears when it has been retrieved.

In the content of the form, a BusyAnimation control is used to give the user a visual cue that some
background task is executing.

 <csla:BusyAnimation Height="20" Width="20" Margin="5"
 IsRunning="{Binding Source={StaticResource ResourceList},
 Path=IsBusy, BindsDirectlyToSource=True}" />

The IsRunning property is bound to the IsBusy property of the CslaDataProvider control, so,
as shown in Figure 19-7, the animation turns on and off based on whether the data provider has an
active query.

Figure 19-7. Busy animation running while data is loading

You can see part of the animation to the right of the Resources: label text.
The content of the form is displayed in a ListBox control, which has a simple DataTemplate to

display each row. The ListBox control’s MouseDoubleClick event is routed to an event handler, which
is a method in the code behind the form.

 <ListBox Name="listBox1"
 ItemsSource="{Binding}"
 MouseDoubleClick="ShowResource"/>

Here’s the ShowResource() method:

 void ShowResource(object sender, EventArgs e)
 {
 ResourceInfo item =
 (ResourceInfo)this.listBox1.SelectedItem;

 if (item != null)
 {
 ResourceEdit frm = new ResourceEdit(item.Id);
 MainForm.ShowControl(frm);
 }
 }

Lhotka_1019-1.book Page 610 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 611

This is the only code behind the form. It retrieves the selected item (if any) from the ListBox
control, and it passes the item’s Id property to a new instance of the ResourceEdit form. Then it uses
the ShowControl() method on MainForm to change the user’s display to the new form, allowing the
user to view or edit the selected item.

The ProjectList Form
The ProjectList form is nearly identical to ResourceList, with one slight twist. The ProjectList
form allows the user to enter some filter criteria into a TextBox control. This value is used as a param-
eter to the GetProjectList() factory method for the ProjectList business object.

This is worth discussing, because I’m using data binding to connect the TextBox control to the
parameter value in the CslaDataProvider control. In other words, no code behind the form is required
to accept the user’s input and use it as a parameter to the data provider.

Here’s the data provider declaration with the parameter default highlighted:

 <csla:CslaDataProvider x:Key="ProjectList"
 ObjectType="{x:Type PTracker:ProjectList}"
 FactoryMethod="GetProjectList"
 IsAsynchronous="True"
 IsInitialLoadEnabled="False">
 <csla:CslaDataProvider.FactoryParameters>
 <system:String><enter name></system:String>
 </csla:CslaDataProvider.FactoryParameters>
 </csla:CslaDataProvider>

Figure 19-8 shows the form in the Visual Studio designer.

Figure 19-8. ProjectList form in the designer

The IsInitialLoadEnabled property is False, ensuring that the data provider won’t try to load
data from the database using <enter name> as a filter parameter. This also means that the user must
enter some filter value to get any results at all.

The interesting part is the declaration of the TextBox control, because it is the TextBox that binds
its input value to the data provider’s parameter.

 <TextBox Name="NameTextBox" AutoWordSelection="True">
 <TextBox.Text>
 <Binding Source="{StaticResource ProjectList}"
 Path="FactoryParameters[0]"
 BindsDirectlyToSource="true"
 UpdateSourceTrigger="PropertyChanged">
 </Binding>
 </TextBox.Text>

Lhotka_1019-1.book Page 611 Tuesday, November 18, 2008 3:42 PM

612 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

I’ve highlighted the Binding element, because that’s what is unusual in this case. The Text prop-
erty has a binding that connects it to the ProjectList resource (the data provider), with its Path set
to FactoryParameters[0], which is the first parameter in the list of parameters.

As with any binding expression that wants to interact with a data provider control, the
BindsDirectlyToSource property is True. The UpdateSourceTrigger is set to PropertyChanged, which
means the user doesn’t need to tab out of the field for the update to occur. Figure 19-9 shows the
result of a filtered query.

Figure 19-9. ProjectList form displaying filtered results

When the user double-clicks an item in the list, she’s taken to the ProjectEdit form, using code
just like that behind the ResourceList form.

The ProjectEdit Form
The final form I’ll discuss in this chapter is the ProjectEdit form. This form allows the user to edit
the details about a project and the list of resources assigned to the project. This form provides the
opportunity to discuss both detail edit forms and master-detail relationships.

Figure 19-10 shows what the form looks like when the user is editing a project.
This form is constructed much like the others you’ve seen in this chapter. It uses a data provider

control and data binding to enable viewing and editing of the data. It uses the ObjectStatus and
PropertyStatus controls to enable visual cues for the user, and it uses commanding to implement
the buttons.

Lhotka_1019-1.book Page 612 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 613

Figure 19-10. ProjectEdit form

Data Provider Controls and Data Retrieval

However, this form uses two data provider controls: one to populate the ComboBox controls in the
resources list, and one to get the Project business object.

 <csla:CslaDataProvider x:Key="RoleList"
 ObjectType="{x:Type PTracker:RoleList}"
 FactoryMethod="GetList"
 IsAsynchronous="True" />

Lhotka_1019-1.book Page 613 Tuesday, November 18, 2008 3:42 PM

614 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

 <csla:CslaDataProvider x:Key="Project"
 ObjectType="{x:Type PTracker:Project}"
 FactoryMethod="GetProject"
 IsAsynchronous="False"
 IsInitialLoadEnabled="False"
 DataChanged="DataChanged"
 ManageObjectLifetime="True"/>

The way the Project data provider is used is different from what you’ve seen so far. In this case,
the Id value of the business object is passed into the form when it is created. That value is stored in
a field and is then used in the form’s Loaded event handler to retrieve the object. Here’s the code with
the relevant parts highlighted:

 private Guid _projectId;
 private Csla.Wpf.CslaDataProvider _dp;

 public ProjectEdit()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(ProjectEdit_Loaded);
 _dp = this.FindResource("Project") as Csla.Wpf.CslaDataProvider;
 }

 public ProjectEdit(Guid id)
 : this()
 {
 _projectId = id;
 }

 void ProjectEdit_Loaded(object sender, RoutedEventArgs e)
 {
 using (_dp.DeferRefresh())
 {
 _dp.FactoryParameters.Clear();
 if (_projectId.Equals(Guid.Empty))
 {
 _dp.FactoryMethod = "NewProject";
 }
 else
 {
 _dp.FactoryMethod = "GetProject";
 _dp.FactoryParameters.Add(_projectId);
 }
 }
 if (_dp.Data != null)
 SetTitle((Project)_dp.Data);
 else
 MainForm.ShowControl(null);
 }

The constructor puts the id parameter into a field, and that field is then used in the Loaded event
as a parameter to the data provider control.

The fact that all code interacting with the data provider control is wrapped in a using block with
a DeferRefresh() method is important. By default, each time a property of a data provider is changed,

Lhotka_1019-1.book Page 614 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 615

the data provider immediately refreshes its data from the database. If you need to set several prop-
erties at once, as in this case, you only want the control to go to the database once.

The using block with DeferRefresh() allows you to set many properties of the control, and only
at the end of the using block will the control attempt to query the database.

Setting Up Data Binding

As with the other forms you’ve seen, this one uses data binding by setting a DataContext value for all
the content of the form. This is done on the top-level Grid control, which contains all the other content.

 <Grid Name="MainGrid"
 DataContext="{Binding Source={StaticResource Project}}"
 Margin="0 0 20 0">

However, this is a master-detail form. While the detail controls are bound to this DataContext
(the Project object), items in the list of resources are bound to the ProjectResources collection of the
project object.

In other words, the detail controls are bound like this:

 <TextBox Name="NameTextBox" Grid.Column="0"
 Text="{Binding Name,
 Converter={StaticResource IdentityConverter}}" />

This kind of binding is used on the other forms in this chapter. However, the ListBox control
that displays the ProjectResources collection is bound like this:

 <ListBox ItemsSource="{Binding Resources}"
 ItemTemplate="{Binding Source={StaticResource ProjectStatus},
 Path=CanEditObject,
 Converter={StaticResource ListTemplateConverter}}"/>

In the Project class, the ProjectResources collection is exposed through a Resources property.
Since the Project object has a Resources property, you can use that as the target for a binding expres-
sion, making the ListBox control bind to that property.

Each row of data in the ListBox control is one item from the ProjectResources collection: a
single ProjectResource object. A DataTemplate is defined in the form to display the values for read-
only use, and another is defined for read-write scenarios. This is no different from the previous forms
in this chapter.

The only interesting thing in the DataTemplates is the use of a ComboBox control. Remember that
this form has two data provider controls, and one returns the list of roles in the RoleList business
object. This is used to populate the ComboBox control.

 <ComboBox
 ItemsSource="{Binding Source={StaticResource RoleList}}"
 DisplayMemberPath="Value"
 SelectedValuePath="Key"
 SelectedValue="{Binding Path=Role}"
 Width="150" />

As with ComboBox controls in Windows Forms or Web Forms, the control is really bound to two
data sources at once. One data source is used to populate the items in the list by setting the ItemsSource,
DisplayMemberPath, and SelectedValuePath properties. The control is also bound to a single property
on the current DataContext by setting the SelectedValue property—in this case, to the Role property
for the current ProjectResource business object.

Lhotka_1019-1.book Page 615 Tuesday, November 18, 2008 3:42 PM

616 CH AP T E R 1 9 ■ W I N D OW S P R E SE N TA T I O N F OU N DA T I O N U I

Navigation Through Commanding

Each item in the resources list can be clicked, allowing the user to navigate directly to the ResourceEdit
form for that resource. You could do this navigation with a simple event handler, like I did in the
ResourceList and ProjectList forms. In this case, however, I’m using commanding to illustrate a
different technique you may choose.

The FullName property from the business object is bound to a Button control that is styled to
appear like a hyperlink so the user knows to click on it. When the user clicks the control, it sends an
Open command with the ResourceId property as a parameter.

 <Button Style="{StaticResource LinkButton}"
 Margin="0" Width="200"
 Command="ApplicationCommands.Open"
 CommandParameter="{Binding Path=ResourceId}"
 Content="{Binding Path=FullName}" Foreground="Blue" />

The ProjectEdit form itself handles the command, because a CommandBinding has been defined
on the form for this command.

 <UserControl.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Open"
 Executed="OpenCmdExecuted"
 CanExecute="OpenCmdCanExecute" />
 </UserControl.CommandBindings>

A CommandBinding allows you to express, through XAML, that a command should be routed to a
specific method. You also need to provide a CanExecute method that returns a Boolean through its
CanExecuteRoutedEventArgs parameter, indicating whether the command can be executed at any
point in time. If this returns false, the associated Button control is disabled automatically.

In the code behind the form, the two methods are implemented.

 private void OpenCmdExecuted(object sender, ExecutedRoutedEventArgs e)
 {
 if (e.Parameter != null)
 {
 ResourceEdit frm = new ResourceEdit(Convert.ToInt32(e.Parameter));
 MainForm.ShowControl(frm);
 }
 }

 private void OpenCmdCanExecute(
 object sender, CanExecuteRoutedEventArgs e)
 { e.CanExecute = true; }

The CommandParameter value is available in the OpenCmdExecuted() method through e.Parameter.
In the XAML, the ResourceId value was passed as a parameter, so that value is available in the method.
That value is used to create a new instance of the ResourceEdit form, which is then displayed to the
user by calling the ShowControl() method.

This approach doesn’t save any code over handling a Click event directly, but it can provide
more flexibility. A full discussion of WPF commanding is outside the scope of this book, but you
should know that commands can be routed to different locations, making them more flexible than
tightly coupled event handlers.

Using a combination of data binding and the controls in the Csla.Wpf namespace, you can
implement in XAML almost all common behaviors required for building a data display or entry form.
In many cases, very little code is required behind any form, which improves maintainability of the
application.

Lhotka_1019-1.book Page 616 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 1 9 ■ W IN DO W S PR E SE N TA T I O N F OU N DA T I O N U I 617

Conclusion
This chapter has walked through the process of creating a basic WPF UI using the business objects
from Chapters 17 and 18. Obviously, there are many ways to create a UI using WPF, so the goal of this
chapter was to highlight how you can use data binding to easily create forms to view and edit object
data.

The key point to take from this chapter is that when you create your business layer using busi-
ness objects, the UI developer doesn’t need to worry about validation or authorization rules, data
access, or most other complex issues. The UI developer can focus on user interaction, the look and
feel of the application, and so forth. The result is a high degree of separation between the UI layer and
the business layer.

At the same time, because the objects use the data portal mechanism to retrieve and update
data, the application is able to exploit the capabilities of mobile objects: running business logic on
both the client workstation and an application server as appropriate. Better still, you can simply
change the application configuration file to switch between various physical n-tier configurations to
meet different performance, scalability, reliability, and security requirements.

Chapter 20 will cover the implementation of a Web Forms UI based on the same set of business
objects. Although there are obvious differences between the WPF and Web Forms environments,
we’ll achieve total reuse of the business logic and data access code when moving from one UI type
to the next.

Lhotka_1019-1.book Page 617 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 618 Tuesday, November 18, 2008 3:42 PM

619

■ ■ ■

C H A P T E R 2 0

Web Forms UI

Chapter 19 covered the creation of a WPF UI based on the ProjectTracker business objects.
Microsoft .NET also supports web development through the ASP.NET Web Forms technology. In
this chapter, the same business objects are used to create a Web Forms interface with functionality
comparable to the WPF interface.

While Web Forms can be used to create many different user interfaces, web development in
ASP.NET is not the core of this chapter. Instead, I focus on how business objects are used within a
web application, including state management and data binding.

■Tip ASP.NET is the .NET web server component that hosts web forms, web services, and other server-side
handlers in IIS. ASP.NET is a very broad and flexible technology. Web forms are hosted within ASP.NET and provide
one common approach to web development capabilities.

As in the WPF interface in Chapter 19, I won’t cover the details of every web form in the appli-
cation. Instead, I’ll walk through a representative sample to illustrate key concepts.

In particular, I discuss the following:

• Basic site design

• The use of forms-based authentication

• Adding and editing roles

• Adding and editing project data

However, before getting into the design and development of the Web Forms UI itself, I need to
discuss some of the basic concepts around the use of business objects in web development.

Web Development and Objects
Historically, the world of web development has been strongly resistant to the use of “stateful” objects
behind web pages and not without reason. In particular, using such objects without careful forethought
can be very bad for website performance. Sometimes, however, it’s suggested that instead of a stateful
object, you should use a DataSet, which is itself a very large, stateful object. Most people don’t think
twice about using it for web development.

Clearly then, stateful objects aren’t inherently bad—it’s how they’re designed and used that
matters. Business objects can be very useful in web development, but it is necessary to look carefully
at how such objects are conceived and employed.

Lhotka_1019-1.book Page 619 Tuesday, November 18, 2008 3:42 PM

620 CH AP T E R 2 0 ■ W E B F O R M S U I

■Note Objects can work very well in web development if they’re designed and used properly.

In general terms, web applications can choose from three basic data access models, as shown
in Figure 20-1. Notice how all options get their data through an ADO.NET DataReader object. The
DataReader is the lowest level data access object in .NET.

Figure 20-1. The three basic data access models

Using the DataReader directly can be very beneficial if the data set is relatively small and the
page processing is fast because the data is taken directly from the database and put into the page.
There’s no need to copy the data into an in-memory container (such as a DataSet or object) before
putting it into the page output. This is illustrated in Figure 20-2.

Figure 20-2. Data flowing directly from a DataReader into a web form

However, if the data set is large or the page processing is slow, using a DataReader becomes a
less attractive option. Using one requires the database connection to remain open longer, causing an
increase in the number of database connections required on the server overall and thereby decreasing
scalability.

Direct use of a DataReader also typically leads to code that’s harder to maintain. A DataReader
doesn’t offer the ease of use of the DataSet or an object. Nor does it provide any business logic or
protection for the data, leaving it up to the UI code to provide all validation and other business
processing.

Lhotka_1019-1.book Page 620 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 621

■Note In most cases, use of the DataSet or an object offers better scalability when compared to direct use of a
DataReader and will result in code that’s easier to maintain.

Having discounted the use of a DataReader in all but a few situations, the question becomes
whether to use the DataSet, DTO (data transfer object), entity object, or a business object as a stateful, in-
memory data container. These options are similar in that the data is loaded from a DataReader into
the stateful object and from there into the page, as illustrated in Figure 20-3.

Figure 20-3. Data is loaded into an intermediate object, followed by the web form.

This means that in general you can expect similar performance characteristics from a DataSet
and objects. However, objects are often actually more lightweight than the ADO.NET DataSet object.
This is because most objects are specific to the data they contain and don’t need to retain all the
metadata required by the DataSet object.

So the question becomes whether to use data container objects, such as a DTO or entity object,
or a business object. Generally speaking, there is little or no performance difference between these
options because the data is loaded into object fields from a DataReader in all cases. This means the
decision should be based on the functionality provided by the objects.

Data container objects are simple containers for data. They don’t provide any business behav-
iors, only shaped data. In this regard they are much like a DataSet. And if your application has little
or no business or validation logic, these objects are a good choice. However, if your application does
have business logic, these objects leave you with no clear location for that logic. Too often the business
logic ends up in the UI, behind the web forms, which breaks the discipline of layering that I discuss in
Chapter 1.

Business objects provide access not only to the application’s data but also to its business logic.
As discussed in Chapter 1, business objects can be thought of as smart data. They encapsulate the
business logic and the data so that the UI doesn’t need to deal with potential data misuse.

Overall, business objects provide the high-scalability characteristics of the DataSet or data
container objects, though without the overhead of the DataSet. They offer a better use of database
connections than the DataReader, though at the cost of some performance in certain situations.
When compared to both DataSet and DataReader, business objects enable a much higher level of
reuse and easier long-term maintenance, making them the best choice overall.

Lhotka_1019-1.book Page 621 Tuesday, November 18, 2008 3:42 PM

622 CH AP T E R 2 0 ■ W E B F O R M S U I

State Management
The Achilles’ heel of web development is state management. The original design of web technology
was merely for document viewing, not the myriad purposes for which it’s used today. Because of
this, the issue of state management was never thought through in a methodical way. Instead, state
management techniques have evolved over time in a relatively ad hoc manner.

Through this haphazard process, some workable solutions have evolved, though each requires
trade-offs in terms of performance, scalability, and fault tolerance. The primary options at your
disposal are as follows:

• State is maintained on the web server.

• State is transferred from server to client to server on each page request.

• State is stored in temporary files or database tables.

Whether you use a DataSet, a DataReader, or objects to retrieve and update data is immaterial
here; ultimately, you’re left to choose one of these three state management strategies. Table 20-1
summarizes the strengths and weaknesses of each.

As you can see, all of these solutions have more drawbacks than benefits. Unfortunately, in the
many years that the Web has been a mainstream technology, no vendor or standards body has been
able to provide a comprehensive solution to the issue of dealing with state data. All you can do is
choose the solution that has the lowest negative impact on your particular application.

I will now go into some more detail on each of these techniques, in the context of using business
objects behind web pages.

State on the Web Server
First, you can choose to keep state on the web server. This is easily accomplished through the use of
the ASP.NET Session object, which is a name/value collection of arbitrary data or objects. ASP.NET
manages the Session object, ensuring that each user has a unique Session and that the Session object is
available to all Web Forms code on any page request.

Table 20-1. State Management Strategies

Approach Strengths Weaknesses

State stored on
web server

Easy to code and use; works
well with business objects

Use of global fields/data is poor pro-
gramming practice; scalability and
fault tolerance via a web farm requires
increased complexity of infrastructure

State transferred
to/from client

Scalability and fault
tolerance easily achieved
by implementing a web farm

Hard to code; requires a lot of manual
coding to implement; performance a
problem over slow network links

State stored in
file/database

Scalability and fault tolerance
easily achieved by implementing
a web farm; a lot of state data or
very complex data easily stored

Increased load on database server since
state is retrieved/stored on each page hit;
requires manual coding to implement;
data cleanup must be implemented to
deal with abandoned state data

Lhotka_1019-1.book Page 622 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 623

This is by far the easiest way to program web applications. The Session object acts as a global
repository for almost any data that you need to keep from page to page. By storing state data on the
web server, you enable the type of host-based computing that has been done on mainframes and
minicomputers for decades.

■Note The Csla.ApplicationContext object provides ClientContext and LocalContext objects.
Neither of these are a replacement for Session. No data in Csla.ApplicationContext survives between page
requests. If you want to keep values in memory between page requests, Session is the tool you must use.

As I’ve already expressed, there are drawbacks. Session is a global repository for each user, but
as any experienced programmer knows, the use of global fields is very dangerous and can rapidly
lead to code that’s hard to maintain. If you choose to use Session to store state, you must be disci-
plined in its use to avoid these problems.

The use of Session also has scalability and fault tolerance ramifications. Achieving scalability
and fault tolerance typically requires implementation of a web farm: two or more web servers that
are running exactly the same application. It doesn’t matter which server handles each user’s page
request because all the servers run the same code. This effectively spreads the processing load across
multiple machines, thus increasing scalability. You also gain fault tolerance because if one machine
goes down, the remaining server(s) will simply take over the handling of user requests.

What I just described is a fully load-balanced web farm. However, because state data is often
maintained directly on each web server, the preceding scenario isn’t possible. Instead, web farms are
often configured using “sticky sessions.” Once a user starts using a specific server, he remains on that
server because that’s where his data is located. This provides some scalability because the processing
load is still spread across multiple servers but it provides very limited fault tolerance. If a server goes
down, all the users attached to that server also go down.

To enable a fully load-balanced web farm, no state can be maintained on any web server. As
soon as user state is stored on a web server, users become attached to that server to the extent that
only that server can handle their web requests. By default, the ASP.NET Session object runs on the
web server in the ASP.NET process. This provides optimal performance because the state data is
stored in process with the application’s code, but this approach doesn’t allow implementation of a
fully load-balanced web farm.

■Caution When the Session object runs inside the ASP.NET process, you can lose state without warning.
ASP.NET may recycle the website AppDomain for many reasons, and when this happens the Session object
is lost. Other Session configurations avoid this issue.

Instead, the Session object can be run in a separate process on the same web server. This can
help improve fault tolerance because the ASP.NET process can restart and users won’t lose their
state data. However, this still doesn’t result in a fully load-balanced web farm, so it doesn’t help with
scalability. Also, there’s a performance cost because the state data must be serialized and transferred
from the state management process to the ASP.NET process (and back again) on every page request.

As a third option, ASP.NET allows the Session object to be maintained on a dedicated, separate
server rather than on any specific web server. This state server can maintain the state data for all
users, making it equally accessible to all web servers in a web farm. This does mean that you can
implement a fully load-balanced web farm, in which each user request is routed to the least loaded
web server. As shown in Figure 20-4, no user is ever “stuck” on a specific web server.

Lhotka_1019-1.book Page 623 Tuesday, November 18, 2008 3:42 PM

624 CH AP T E R 2 0 ■ W E B F O R M S U I

Figure 20-4. Load-balanced web server farm with centralized state server

With this arrangement, you can lose a web server with minimal impact. Obviously, users in the
middle of having a page processed on that particular server will be affected, but all other users should
be redirected to the remaining live servers transparently. All the users’ Session data will remain avail-
able.

As with the out-of-process option discussed previously, the Session object is serialized so that
it can be transferred to the state server machine efficiently. This means that all objects referenced by
Session are also serialized—which isn’t a problem for CSLA .NET–style business objects because
they’re marked as Serializable.

■Note When using this approach, all state must be maintained in Serializable objects. Using the DataContract
and DataMember attributes is not allowed because ASP.NET uses the BinaryFormatter to serialize the Session
object.

In this arrangement, fault tolerance is significantly improved, but if the state server goes down,
all user state is lost. To help address this, you can put the Session objects into a SQL Server database
(rather than just into memory on the state server) and then use clustering to make the SQL Server
fault-tolerant as well. In many cases, this SQL Server database is an entirely separate database from
the application’s database server.

Obviously, these solutions are becoming increasingly complex and costly, and they also worsen
performance. By putting the state on a separate state server, the application will incur network over-
head on each page request because the user’s Session object must be retrieved from the state server
by the web server so that the Web Forms code can use the Session data. Once each page is complete,
the Session object is transferred back across the network to the state server for storage.

Table 20-2 summarizes these options.

Lhotka_1019-1.book Page 624 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 625

While storing state data on the web server (or in a state server) provides the simplest program-
ming model, you must make some obvious sacrifices with regard to complexity and performance in
order to achieve scalability and fault tolerance.

Transferring State to or from the Client
The second option to consider is transferring all state from the server to the client and back to the
server again on each page request. The idea here is that the web server never maintains any state
data—it gets all state data along with the page request, works with the data, and then sends it back
to the client as part of the resulting page.

This approach provides high scalability and fault tolerance with very little complexity in your
infrastructure: since the web servers never maintain state data, you can implement a fully load-
balanced web farm without worrying about server-side state issues. On the other hand, there are
some drawbacks.

First of all, all the state data is transferred over what is typically the slowest link in the system:
the connection between the user’s browser and the web server. Moreover, that state is transferred
twice for each page: from the server to the browser and then from the browser back to the server.
Obviously, this can have serious performance implications over a slow network link (like a modem)
and can even affect an organization’s overall network performance due to the volume of data being
transferred on each page request.

The other major drawback is the complexity of the application’s code. There’s no automatic
mechanism that puts all state data into each page; you must do that by hand. Often this means
creating hidden fields on each page in which you can store state data that’s required but that the user
shouldn’t see. The pages can quickly become very complex as you add these extra fields.

This can also be a security problem. When state data is sent to the client, that data becomes
potentially available to the end user. In many cases, an application’s state data includes internal
information that’s not intended for direct consumption by the user. Sometimes, this information
may be sensitive, so sending it to the client could create a security loophole in the system. Although
you could encrypt this data, it would incur extra processing overhead and could increase the size of
the data sent to/from the client, so performance would be decreased.

To avoid such difficulties, applications often minimize the amount of data stored in the page by
reretrieving it from the original database on each page request. All you need to keep in the page then
is the key information to retrieve the data and any data values that have changed. Any other data
values can always be reloaded from the database. This solution can dramatically increase the load on
your database server but continues to avoid keeping any state on the web server.

In conclusion, while this solution offers good scalability and fault tolerance, it can be quite
complex to program and can often result in a lot of extra code to write and maintain. Additionally, it
can have a negative performance impact, especially if your users connect over low-speed lines.

Table 20-2. Session Object Storage Locations

Location of State Data Performance, Scalability, and Fault Tolerance

Session in process High performance; low scalability; low fault tolerance; web
farms must use sticky sessions; fully load-balanced web farms
not supported; state is lost when ASP.NET AppDomain recycles

Session out of process Decreased performance; low scalability; improved fault
tolerance (ASP.NET process can reset without losing state
data); web farms must use sticky sessions; fully load-balanced
web farms not supported

Session on state server Decreased performance; high scalability; high fault tolerance

Lhotka_1019-1.book Page 625 Tuesday, November 18, 2008 3:42 PM

626 CH AP T E R 2 0 ■ W E B F O R M S U I

State in a File or Database
The final solution to consider is the use of temporary files (or database tables of temporary data) in
which you can store state data. Such a solution opens the door to other alternatives, including the
creation of data schemas that can store state data so that it can be retrieved in parts, reported against,
and so forth. Typically, these activities aren’t important for state data, but they can be important if
you want to keep the state data for a long period of time.

Most state data just exists between page calls or, at most, for the period of time during which the
user is actively interacting with the site. Some applications, however, keep state data for longer periods
of time, thereby allowing the user’s “session” to last for days, weeks, or months. Persistent shopping
carts and wish lists are examples of long-term state data that’s typically stored in a meaningful
format in a database.

Whether you store state as a single blob of data or in a schema, storing it in a file or a database
provides good scalability and fault tolerance. It can also provide better performance than sending
the state to and from the client workstation because communicating with a database is typically
faster than communicating with the client. In situations like these, the state data isn’t kept on the
client or the web server, so you can create fully load-balanced web farms, as shown in Figure 20-5.

■Tip As I mentioned earlier, one way to implement a centralized state database is to use the ASP.NET Session
object and configure it so that the data is stored in a SQL Server database. If you just want to store arbitrary state
data as a single chunk of data in the database, this is probably the best solution.

Figure 20-5. Load-balanced web farm with centralized state database

Lhotka_1019-1.book Page 626 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 627

The first thing you’ll notice is that this diagram is virtually identical to the state server diagram
discussed earlier, and it turns out that the basic model and benefits are indeed consistent with that
approach. The application gains scalability and fault tolerance because you can implement a web
farm, whereby the web server that’s handling each page request retrieves state from the central data-
base. Once the page request is complete, the data is stored in the central state database. Using
clustering technology, you can make the database server itself fault tolerant, thereby minimizing it
as a single point of failure.

Though this approach offers a high degree of scalability and fault tolerance, if you implement
the retrieval and storage of the state data by hand, it increases the complexity of your code. There are
also performance implications because all state data is transferred across a network and back for
each page request—and then there’s the cost of storing and retrieving the data in the database itself.

In the final analysis, determining which of the three solutions to use depends on the specific
requirements of your application and environment. For most applications, using the ASP.NET Session
object to maintain state data offers the easiest programming model and the most flexibility. You can
achieve optimal performance by running it in process with your pages or achieve optimal scalability
and fault tolerance by having the Session object stored in a SQL Server database on a clustered data-
base server. There are shades of compromise in between.

■Note ASP.NET allows you to switch between three different state-handling models by simply changing the
website’s Web.config file (assuming you already have a SQL Server database server available in your environ-
ment).

The key is that CSLA .NET–style business objects are serializable, so the Session object can serialize
them as needed. Even if you choose to implement your own BLOB-based file or data-storage approach,
the fact that the objects are serializable means that the business objects can be easily converted to a
byte stream that can be stored as a BLOB. If the objects were not serializable, the options would be
severely limited.

For the sample application, I’ll use the Session object to help manage state data; but I’ll use it
sparingly because overuse of global fields is a cardinal sin.

Interface Design
The UI application can be found within the ProjectTracker solution. The project is named PTWeb.
The PTWeb interface uses a master page to provide consistency across all the pages in the site. The
Default.aspx page provides a basic entry point to the website. Figure 20-6 shows what the page
layout looks like.

Notice that the navigation area on the left provides links dealing with projects, resources, and
roles. An authentication link is provided near the top right of the page. When the user clicks a link,
she is directed to an appropriate content page. Figure 20-7 shows the user editing a project.

Lhotka_1019-1.book Page 627 Tuesday, November 18, 2008 3:42 PM

628 CH AP T E R 2 0 ■ W E B F O R M S U I

Figure 20-6. Appearance of Default.aspx

Figure 20-7. Editing a project

Lhotka_1019-1.book Page 628 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 629

Table 20-3 lists the forms and controls that make up the interface.

All of the pages dealing with business data use the exact same objects as the WPF UI in Chapter 19.
The same ProjectTracker.Library assembly created in Chapters 17 and 18 is used for the WPF, Web
Forms, and WCF services interfaces in this book. The web forms using those objects are built using
data binding, relying on the CslaDataSource control discussed in Chapter 10.

Application Configuration
The site needs to provide some basic configuration information through the Web.config file. This
includes configuring the data portal or database connection strings. It also includes configuring the
CslaDataSource control.

In the Web.config file, you can either provide connection strings so that the site can interact with
the database directly, or you can configure the data portal to communicate with a remote application
server. The basic concept was discussed in Chapter 15 when the channel adapter implementation was
covered. Recall that the data portal supports several channels: WCF, Remoting, Enterprise Services,
and Web Services. You can create your own channels as well if none of these meets your needs.

In Chapter 1, I discuss the trade-offs between performance, scalability, fault tolerance, and security
that come with various physical n-tier configurations. In most cases, the optimal solution for a web
UI is to run the data portal locally in the client process. However, for security reasons, it may be desir-
able to run the data portal remotely on an application server.

The Web.config file is an XML file that contains settings to configure the website. You use different
XML depending on how you want the site configured.

CslaDataSource Control

The data binding in this chapter relies on the CslaDataSource control discussed in Chapter 10. In
order to use this control in Web Forms, the site needs to define a control prefix for any controls in
Csla.dll. I’ll use the prefix csla.

This prefix is defined either in each web form or in Web.config. Since most pages use the control,
it is best to define the prefix in Web.config so it is available sitewide. You should add this within the
<pages> element:

 <controls>
 <add tagPrefix="csla" namespace="Csla.Web" assembly="Csla"/>
 </controls>

Table 20-3. Web Forms in PTWeb

Form/Control Description

Default Represents the main page for the application

Login Collects user credentials

RolesEdit Allows the user to edit the list of roles

ProjectList Allows the user to select and delete projects

ProjectEdit Allows the user to view, add, or edit a project

ResourceList Allows the user to select and delete resources

ResourceEdit Allows the user to view, add, or edit a resource

Lhotka_1019-1.book Page 629 Tuesday, November 18, 2008 3:42 PM

630 CH AP T E R 2 0 ■ W E B F O R M S U I

This globally defines the csla prefix to refer to the Csla.Web namespace from Csla.dll. With this
done, all pages in the website can use the prefix like this:

 <csla:CslaDataSource id="MyDataSource" runat="server"/>

Authentication

The way authentication is handled by CSLA .NET is controlled through Web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 </appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. The
ProjectTracker.Library assembly includes the PTPrincipal and PTIdentity classes specifically to
support custom authentication, and the UI code in this chapter uses custom authentication as well.

If you want to use Windows authentication, change the configuration to this:

 <add key="CslaAuthentication" value="Windows" />

Of course, this change would require coding changes. To start, the PTPrincipal and PTIdentity
classes should be removed from ProjectTracker.Library, as they would no longer be needed. Also,
the login/logout functionality implemented in this chapter would become unnecessary. Specifically,
the Login form and the code to display that form would be removed from the UI project.

Local Data Portal

The Web.config file also controls how the application uses the data portal. To have the website interact
directly with the database, use the following (with your connection string changed to the connec-
tion string for your database):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 </appSettings>
 <connectionStrings>
 <add name="PTracker" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 <add name="Security" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Because LocalProxy is the default for the data portal’s CslaDataPortalProxy configuration setting,
no actual data portal configuration is required, so the only settings in the configuration file are to
control authentication and to provide the database connection strings.

■Tip In the code download for this book, the PTracker and Security database files are in the solution direc-
tory, not in the website’s App_Data directory. This means that you can’t use a local data portal from the website
without first copying the database files into the App_Data directory and changing the connection strings accordingly.

Lhotka_1019-1.book Page 630 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 631

Remote Data Portal (with WCF)

To have the data portal use an application server and communicate using the WCF channel, the
configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaDataPortalProxy"
 value="Csla.DataPortalClient.WcfProxy, Csla"/>
 </appSettings>
 <connectionStrings>
 </connectionStrings>
 <system.serviceModel>
 <client>
 <endpoint name="WcfDataPortal"
 address="http://localhost:4147/WcfHost/WcfPortal.svc"
 binding="wsHttpBinding"
 contract="Csla.Server.Hosts.IWcfPortal"/>
 </client>
 </system.serviceModel>

The CslaDataPortalProxy setting indicates that the WcfProxy should be used to communicate
with the application server. This requires that you define a client endpoint in the system.serviceModel
element of the config file.

The only value you need to change in this element is the address property. Here you must change
localhost:4147 to the name of the server on which the data portal host is installed. You also need to
replace the WcfHost text with the name of the virtual root on that server.

■Note You must create and configure the WCF host virtual root before using this configuration. I show how this
is done in the next section.

As noted, the most important thing to realize about the site configuration is that the data portal
can be changed from local to remote (using any of the network channels) with no need to change any
UI or business object code.

Configuring the WCF Data Portal Server

The configuration of the remote data portal is the same for ASP.NET applications as it is for WPF
applications, which is discussed in Chapter 19. For completeness and ease of reference, I’ll cover it
again here.

When using a remote data portal configuration, the client communicates with an application
server. Obviously, this means that an application server must exist and be properly configured.
When the client data portal is configured to use WCF, you must supply a properly configured WCF
application server.

■Note No data portal server is required when the data portal is configured for local mode. In this case, the
“server-side” components run in the website’s process and no application server is used or required.

Lhotka_1019-1.book Page 631 Tuesday, November 18, 2008 3:42 PM

http://localhost:4147/WcfHost/WcfPortal.svc

632 CH AP T E R 2 0 ■ W E B F O R M S U I

The WcfHost website in the ProjectTracker download is an example of a WCF application server
hosted in IIS. You may also choose to host the WCF server in a custom Windows service or a custom
EXE or by using Windows Activation Service (WAS). These various hosts are similar to IIS in many
ways but are outside the scope of this book.

The WcfHost website is very simple because it relies on preexisting functionality provided by
CSLA .NET, as discussed in Chapter 15. Table 20-4 lists the key elements of the website.

Any website containing the elements in Table 20-4 can act as a WCF data portal host. The Web.
config file must contain the configuration section for WCF, defining the endpoint for the data portal:

 <system.serviceModel>
 <services>
 <service name="Csla.Server.Hosts.WcfPortal">
 <endpoint address=""
 contract="Csla.Server.Hosts.IWcfPortal"
 binding="wsHttpBinding"/>
 </service>
 </services>
 </system.serviceModel>

WCF services are defined by their address, binding, and contract.
For a WCF service hosted in IIS, the address is defined by IIS and the name of the svc file, so it

is not specified in the Web.config file. As shown here, you may provide a "" address or provide no
address at all. If you use some other hosting technique, such as WAS or a custom Windows service,
you may need to specify the server address.

In the case of a CSLA .NET data portal endpoint, the contract is fixed; it must be Csla.Server.
Hosts.IWcfPortal. The contract is defined by the interface implemented in the data portal, discussed
in Chapter 15. It may not be different from this value.

The binding can be any synchronous WCF binding. The only requirement imposed by the data
portal is that the WCF binding must be synchronous; beyond that, any binding is acceptable. You
may choose to use HTTP, TCP, named pipes, or other bindings. You may choose to configure the
binding to use SSL, x509 certificates, or other forms of encryption or authentication. All the features
of WCF are at your disposal.

Remember that the data access code for your business objects will run on the application server.
This means that the application server’s Web.config file must define the connection strings required
by your data access code:

Table 20-4. Key Elements of the WcfHost Website

Element Description

WcfPortal.svc WCF service endpoint file, referencing the Csla.Server.Hosts.WcfPortal class

Bin Standard web Bin folder containing Csla.dll, ProjectTracker.Library.dll,
and any other assemblies required by the business library; the important
thing is that your business assemblies and Csla.dll be present in this folder

Web.config Standard Web.config file but containing a system.serviceModel element to
configure the WCF endpoint for the data portal

Lhotka_1019-1.book Page 632 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 633

 <connectionStrings>
 <add name="PTracker" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 <add name="Security" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

This is the same configuration you’d put in the client’s app.config file when using a local data
portal configuration, but now these values must be on the server because that is where the data
access code will execute.

The CslaAuthentication value must be the same on both client and server. You can change it to
Windows as long as you make that change on both sides. If you do change this value to Windows, you
must ensure that the WCF host website is configured to require Windows authentication and imper-
sonate the calling user because in that case CSLA .NET will simply use the value provided by .NET.

At this point you should understand how to configure the application and how to configure the
data portal for either local (2-tier) or remote (3-tier) operation.

PTWeb Site Setup
The UI application can be found within the ProjectTracker solution. The project is named PTWeb.

The site references the ProjectTracker.Library project, as shown in Figure 20-8. This causes
Visual Studio to automatically put the associated ProjectTracker.DalLinq and Csla.dll files into the
Bin directory as well, because those assemblies are referenced by ProjectTracker.Library.

Figure 20-8. Referencing ProjectTracker.Library

The PTWeb website will only run within IIS, not within the ASP.NET Development Server
(commonly known as Cassini or VS Host). The reason for this is explained later in the chapter in the
“Forms-Based Authentication” section.

Lhotka_1019-1.book Page 633 Tuesday, November 18, 2008 3:42 PM

634 CH AP T E R 2 0 ■ W E B F O R M S U I

To host a website in IIS during development, you need to take the following steps:

1. Set up a virtual root in IIS that points to the directory containing the PTWeb project files.

2. Set the virtual root to use ASP.NET 2.0, using the ASP.NET tab of the virtual root properties
dialog in the IIS management console.

3. Set the website’s start options using the project properties dialog in Visual Studio 2008. Change
the setting to use a custom server so it starts up using IIS with a URL such as http://localhost/
PTWeb.

It may seem odd that step 2 sets the virtual root to use ASP.NET 2.0 when this is actually an ASP.
NET 3.5 application. However, .NET 3.5 uses the core .NET 2.0 runtime and it is the core runtime that
is set in step 2.

With the basic website setup complete, let’s go through the creation of the Web Forms UI. First,
I’ll discuss the use of a master page and then I’ll cover the process of logging a user in and out using
forms-based authentication.

With the common code out of the way, I’ll discuss the process of maintaining the roles and
project data in detail. At that point, you should have a good understanding of how to create both
grid-based and detail pages.

Master Page
To ensure that all pages in the site have the same basic layout, navigation, and authentication options, a
master page is used. The master page provides these consistent elements, and all the rest of the
pages in the site are content pages. This means they fit within the context of the master page itself,
adding content where appropriate.

Look back at Figures 20-6 and 20-7 to see the visual appearance of the pages. Both Default.aspx
and ProjectEdit.aspx are content pages, adding their content to that already provided by
MasterPage.master:

<%@ Master Language="C#" CodeFile="MasterPage.master.cs"
 Inherits="MasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
</head>
<body>
 <form id="form1" runat="server">
 <div id="mainTable">
 <div id="header">
 <asp:Label ID="PageTitle" runat="server">
 </asp:Label>
 </div>
 <div id="navigation">
 <div id="navigationContent">

Lhotka_1019-1.book Page 634 Tuesday, November 18, 2008 3:42 PM

http://localhost
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

C HA P TE R 2 0 ■ WE B FO R M S U I 635

 <asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="SiteMapDataSource1"
 ShowExpandCollapse="False" SkipLinkText="" >
 <NodeStyle CssClass="nav" />
 </asp:TreeView>
 </div>
 </div>
 <div id="subnavigation">
 <div id="logout">
 <asp:LoginStatus ID="LoginStatus1"
 runat="server" OnLoggingOut="LoginStatus1_LoggingOut" />
 </div>
 </div>
 <div id="content">
 <asp:ContentPlaceHolder id="ContentPlaceHolder1"
 runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </div>
 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="False" />
 </form>
</body>
</html>

MasterPage.master defines the header/title bar at the top of the page. The area immediately
beneath the header/title bar contains the Login button, and there is a navigation area down the left.
Perhaps most importantly, it also defines a content area containing a ContentPlaceHolder control:

 <asp:ContentPlaceHolder id="ContentPlaceHolder1"
 runat="server">
 </asp:ContentPlaceHolder>

This is the area where content pages provide their content, and it is the main body of the page.
You’ll see how each content page provides content for this area later in the chapter.

Theme Support

ASP.NET supports the concept of the visual appearance of a website being defined by a theme: a
group of files in a theme-specific subdirectory beneath the App_Themes directory in the virtual root.
A theme is a group of style sheets, graphics, and control skins that describe the appearance of a site.
A given site can have many themes, and you can even allow the user to choose between them if you
so desire.

Note how all of the regions in the master page are set up using div tags. No appearance charac-
teristics are specified in the page itself. Instead, the actual appearance is defined by a CSS style sheet
contained within the current theme for the site. The PTWeb site includes and uses a Basic theme. The
use of the Basic theme is set up in Web.config:

 <pages theme="Basic" styleSheetTheme="Basic">

The theme property sets the default runtime theme, while styleSheetTheme sets the theme for
use at design time in Visual Studio. The styleSheetTheme property should be removed when the
website is deployed to a production server.

Lhotka_1019-1.book Page 635 Tuesday, November 18, 2008 3:42 PM

636 CH AP T E R 2 0 ■ W E B F O R M S U I

The files defining this theme are in the App_Themes/Basic folder beneath the virtual root. The
files in this theme are listed in Table 20-5.

Combined, these files define the look and feel of the site. This includes defining the appearance
of the regions in MasterPage.master. For instance, the header region is defined in the css file like this:

#header
{
 background-image: url('images/background.jpg');
 background-repeat: no-repeat;
 height: 64px;
 line-height: 60px;
 text-align: left;
 color: #FFFFFF;
 font-family:
 Verdana, Arial, Helvetica, sans-serif;
 font-size: 36px;
 font-weight: bold;
 font-style: italic;
 padding-left: 10px
}

A control skin defines the appearance of specific controls in the website, such as GridView,
TextBox, and so forth. For instance, the appearance of the Login control is defined in the skin file like
this:

<asp:Login runat="server" BackColor="#DEDEDE" BorderColor="Black"
 BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
 Font-Size="10pt">
 <TitleTextStyle BackColor="Black" Font-Bold="True"
 Font-Names="Verdana" Font-Size="10pt"
 ForeColor="White" />
</asp:Login>

Each type of control in Web Forms has different options you can set in a skin file, allowing you
to set the appearance of each control in many ways.

By making the site theme-enabled, you can easily change the appearance of the site later by
creating a new theme directory and similar theme files and setting the theme property in Web.config
to use the new theme.

Table 20-5. Files in the Basic Theme

File Description

Basic.css The style sheet for the site

Basic.skin The skins for GridView, DetailsView, and Login controls

Images\background.jpg The background graphic for the header region

Images\corner.png The graphic for the rounded corner in the upper left

Lhotka_1019-1.book Page 636 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 637

Header Region

The header region of the page is the title area across the top. It contains a single Label control named
PageTitle. This control displays the title of the current content page, based on the Title property set
for that page. The following code is included in MasterPage.master to load this value:

 protected void Page_Load(object sender, EventArgs e)
 {
 PageTitle.Text = Page.Title;
 }

As each content page loads, not only does the Load event for the content page run but so does
the Load event for the master page. This means that code can be placed in the master page to run
when any content page is loaded—in this case, to set the title at the top of the page.

Navigation Region

The navigation region displays the navigation links down the left side of each page. To do this, a web.
sitemap file and associated SiteMapDataSource control are used to load the overall structure of the
site into memory. This data is then data bound to a TreeView control for display to the user.

The web.sitemap file is an XML file that contains a node for each page to be displayed in the
navigation region:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap
 xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="" description="">
 <siteMapNode url="~/Default.aspx" title="Home"
 description="Main page" />
 <siteMapNode url="~/ProjectList.aspx" title="Project list"
 description="Project list" />
 <siteMapNode url="~/ResourceList.aspx" title="Resource list"
 description="Resource list" />
 <siteMapNode url="~/RolesEdit.aspx" title="Project roles"
 description="Project roles" />
 </siteMapNode>
</siteMap>

The site map concept can be used to define hierarchical website structures, but in this case, I use
it to define a flat structure. Notice how each <siteMapNode> element defines a page—except the first
one. That root node is required in the file, but since I’m defining a flat structure, it really doesn’t
represent a page and is just a placeholder. If you were to define a hierarchical page structure, that
node would typically point to Default.aspx.

Notice that MasterPage.master includes a SiteMapDataSource control:

 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="False" />

This special data control automatically reads the data from the web.sitemap file and makes it
available to controls on the page. The ShowStartingNode property is set to False, indicating that the
root node in web.sitemap is to be ignored. That’s perfect because that node is empty and shouldn’t
be displayed.

In this case, a TreeView control in the navigation region is bound to the SiteMapDataSource, so
it displays the items listed in web.sitemap to the user.

Lhotka_1019-1.book Page 637 Tuesday, November 18, 2008 3:42 PM

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

638 CH AP T E R 2 0 ■ W E B F O R M S U I

LoginStatus Control

In the subnavigation region of MasterPage.master, you’ll see a LoginStatus control:

 <asp:LoginStatus ID="LoginStatus1"
 runat="server" OnLoggingOut="LoginStatus1_LoggingOut" />

This is one of the login controls provided with ASP.NET, and its purpose is to allow the user to
log into and out of the site. The control automatically displays the word Login if the user is logged out
and Logout if the user is logged in. When clicked, it also automatically redirects the user to a login
web page defined in Web.config. I cover the Web.config options later in the “Configuring the Site”
section.

Because the control automatically directs the user to the appropriate login page to be logged in,
no code is required for that process. However, code is required to handle the case in which the user
clicks the control to be logged out. This code goes in the master page:

 protected void LoginStatus1_LoggingOut(
 object sender, LoginCancelEventArgs e)
 {
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 Session["CslaPrincipal"] =
 Csla.ApplicationContext.User;
 System.Web.Security.FormsAuthentication.SignOut();
 }

This code covers a lot of ground.
First, the Logout() method of PTPrincipal is called, which sets the current principal on the current

HttpContext and Thread objects to an UnauthenticatedPrincipal object. This is discussed in Chapter 12
and used in PTWpf in Chapter 19.

However, when users are logged in, their principal object is stored in a Session field so it can be
easily reloaded on every page request. The details on how this works are discussed later in the “Reloading
the Principal” section. When the user logs out, that Session field is updated to reference the new
principal object.

■Note If you want to avoid Session, you can choose to reload the user’s identity and roles from the security
database on every page request. While that avoids the use of Session, it can put a substantial workload on your
security database server. In PTWeb, I have opted to use Session to minimize the load on the database.

The final step is to tell ASP.NET itself that the user is no longer authenticated. This is done by
calling FormsAuthentication.SignOut(). This method invalidates the security cookie used by ASP.NET to
indicate that the user has been authenticated. The result is that ASP.NET sees the user as unauthen-
ticated on all subsequent page requests.

This covers the logout process, but the login process requires some more work. While the
LoginStatus control handles the details of directing the user to a login page, that page must be created.

Login Page
Like the PTWpf smart client, the PTWeb site is designed to use custom authentication, so I can illustrate
the custom authentication support provided by CSLA .NET. In this section, I briefly discuss the use
of Windows integrated security and the ASP.NET membership service.

Lhotka_1019-1.book Page 638 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 639

In Web Forms, when using custom authentication, you need to configure the site appropriately
using Web.config and implement a login web page to collect and validate the user’s credentials. That’s
the purpose behind Login.aspx.

Using Forms-Based Authentication

When using forms-based authentication, users are often automatically redirected to a login form
before being allowed to access any other pages. Alternatively, anonymous users can be allowed to
use the site and they can choose to log into the site to gain access to extra features or functionality.
The specific behaviors are defined by Web.config.

Before moving on, remember that the following implementation only works within IIS. The
ASP.NET Development Server provided with Visual Studio has various limitations; among them is
the inability to load custom security objects from assemblies in the Bin directory. This means you can’t
use the ASP.NET Development Server to test or debug custom principal objects, custom member-
ship providers, or other custom security objects if they’re in an assembly referenced from the project.

Though this is an unfortunate limitation, it can be argued that the ASP.NET Development Server
is not intended for anything beyond hobbyist or casual usage and that IIS should be used for serious
business development.

■Note An alternative solution is to install the assembly containing your custom principal and identity classes
into the .NET GAC. For PTWeb, this would mean giving ProjectTracker.Library a strong name and using the
gacutil.exe command line utility to install the assembly into the GAC. ProjectTracker.Library would need
to be updated in the GAC after each time you build the assembly. I find that using IIS is a far simpler solution than
using the GAC.

Configuring the Site

Using forms-based security in ASP.NET means that Web.config includes elements such as the following:

 <authentication mode="Forms">
 <forms loginUrl="Login.aspx" name="ptracker"/>
 </authentication>
 <authorization>
 <allow users="*"/>
 </authorization>

This tells ASP.NET to use forms-based authentication (mode="Forms"), yet to allow unauthenti-
cated users (<allow users="*"/>).

■Note To require users to log in before seeing any pages, replace <allow users="*"/> with
<deny users="?"/>.

It is important that you also ensure that the security on the virtual root itself (within IIS) is configured
to allow anonymous users. If IIS blocks anonymous users, it doesn’t really matter what kind of secu-
rity you use within ASP.NET.

■Note Remember that IIS security runs first, and then any ASP.NET security is applied.

Lhotka_1019-1.book Page 639 Tuesday, November 18, 2008 3:42 PM

640 CH AP T E R 2 0 ■ W E B F O R M S U I

With the Web.config options shown previously, users can use the site without logging in, but the
concept of logging in is supported. The goal is the same as with PTWpf in Chapter 19: allow all users
to do certain actions, and allow authenticated users to do other actions based on their roles.

When users choose to log in, the <forms> tag specifies that they will be directed to Login.aspx,
which will collect and validate their credentials. Figure 20-9 shows the appearance of Login.aspx.

Figure 20-9. Layout of the Login page

Now this is where things get kind of cool. There is no code behind Login.aspx. This page uses
the ASP.NET Login control:

 <asp:Login ID="Login1" runat="server">
 </asp:Login>

This control is designed to automatically use the default ASP.NET membership provider for the site.

■Caution The user’s credentials flow from the browser to the web server in clear text—they are not automati-
cally encrypted. Due to this, it is recommended that Login.aspx be accessed over an SSL connection so that data
traveling to and from the browser is encrypted during the login process.

You can write code to handle the events of the Login control if you desire, but a membership
provider offers a cleaner solution overall. Of course, the membership provider that comes with
ASP.NET doesn’t understand PTPrincipal and PTIdentity objects, so PTWeb includes its own custom
membership provider.

Implementing a Custom Membership Provider

A membership provider is an object that inherits from System.Web.Security.MembershipProvider to
handle all aspects of membership. These aspects include the following:

Lhotka_1019-1.book Page 640 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 641

• Validating user credentials

• Adding a new user

• Deleting a user

• Changing a user’s password

• More

Of course, PTPrincipal doesn’t understand all these things, and ProjectTracker.Library doesn’t
implement a full set of membership objects either. If you want to support all these capabilities, you
should create your own security library with appropriate objects.

But PTPrincipal does understand how to validate a user’s credentials. Fortunately, it is possible to
implement a subset of the complete membership provider functionality, and that’s what I do in PTWeb.

The PTMembershipProvider class is in the App_Code directory, so ASP.NET automatically compiles it
and makes it available to the website. This class inherits from MembershipProvider and overrides the
ValidateUser() method:

public class PTMembershipProvider : MembershipProvider
{
 public override bool ValidateUser(
 string username, string password)
 {
 bool result = PTPrincipal.Login(username, password);
 HttpContext.Current.Session["CslaPrincipal"] =
 Csla.ApplicationContext.User;
 return result;
 }
 // other methods …
}

All other methods are overridden to throw an exception indicating that they aren’t implemented
by this provider.

Notice how the ValidateUser() method already accepts username and password parameters. This
is convenient because the Login() method of PTPrincipal accepts those parameters as well. The code
simply calls the Login() method and records the result—true if the user is logged in, false otherwise.

The Login() method in PTPrincipal sets the User property of Csla.ApplicationContext, thus
automatically setting both the Thread object’s CurrentPrincipal property and the HttpContext.Current.
User property to an authenticated PTPrincipal if the user’s credentials are valid; otherwise, they are
set to an UnauthenticatedPrincipal.

The code then sets a Session field, CslaPrincipal, to contain this principal value so it will be
available to subsequent pages.

Then the result value is returned. The ASP.NET membership infrastructure relies on this return
value to know whether the user’s credentials are valid or not.

Before this custom membership provider can be used, it must be defined in Web.config as follows:

 <membership defaultProvider="PTMembershipProvider">
 <providers>
 <add name="PTMembershipProvider"
 type="PTMembershipProvider"
 enablePasswordRetrieval="false"
 enablePasswordReset="false"
 requiresQuestionAndAnswer="false"
 applicationName="/"

Lhotka_1019-1.book Page 641 Tuesday, November 18, 2008 3:42 PM

642 CH AP T E R 2 0 ■ W E B F O R M S U I

 requiresUniqueEmail="false"
 passwordFormat="Clear"
 description="Stores and retrieves membership
 data using CSLA .NET business objects."
 />
 </providers>
 </membership>

By making PTMembershipProvider the default provider, this definition tells ASP.NET to automat-
ically use it for any membership activities, including validating a user’s credentials.

Reloading the Principal

At this point, you’ve seen how the user can log in or out using the LoginStatus control on the master
page. And you’ve seen how Login.aspx and the custom membership provider are used to gather and
validate the user’s credentials.

But how does the principal object carry forward from page to page? Remember that the web
technologies are stateless by default, and it is up to the web developer to manually implement state
management as she chooses. Unfortunately, this extends to the user’s identity as well.

The forms-based security infrastructure provided by ASP.NET writes an encrypted cookie to the
user’s browser. That cookie contains a security ticket with a unique identifier for the user, the user’s
name, and an expiration time. This cookie flows from the browser to the web server on each page
request, so that basic information is available.

Notice, however, that the cookie doesn’t include the principal and identity objects. That is
because those objects could be quite large and in some cases might not even be serializable. Though
PTPrincipal and PTIdentity are serializable, they could still be large enough to pose a problem if you
try to write them to the cookie. Cookies have a size limit, and remember that PTIdentity contains an
array with all the role names for the user. Given a large number of roles or lengthy role names, this
could easily add up to a lot of bytes of data.

■Note It is possible to serialize the principal and identity objects into the cookie (if the objects are serializable).
Doing so isn’t recommended, however, due to the size limitations on cookies.

It is quite possible to reload PTPrincipal and PTIdentity from the security database on every
page request. Remember that the ASP.NET security cookie contains the username value, and you
already know that the user was authenticated. You need another stored procedure in the database
that returns the user information based on username alone; no password is provided or checked.
Similarly, another static method such as Login() is required in PTPrincipal to load the objects
based only on the username value. You can see an example of this by looking at the LoadPrincipal()
method in the PTPrincipal class.

There are two drawbacks to this. First, reloading this data from the security database on every
page request could cause a serious performance issue. The security database could get overloaded
with all the requests. Second, there’s an obvious security risk in implementing methods that allow
loading user identities without having to supply the password. While that functionality wouldn’t be
exposed to the end user, it makes it easier for accidental bugs or malicious back-door code to creep
into your website.

This is why I use Session to store the principal object in PTWeb. The user’s credentials are vali-
dated, and the resulting principal object is placed in a Session field named CslaPrincipal. On all
subsequent page requests, this value is retrieved from Session and is used to set both the current
Thread and HttpContext object’s principals.

Lhotka_1019-1.book Page 642 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 643

The work occurs in Global.asax, as this file contains the event handlers for all events leading up
to a page being processed. In this case, it is the AcquireRequestState event that is used:

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Handler is IRequiresSessionState)
 {
 if (Csla.ApplicationContext.AuthenticationType == "Windows")
 return;

 System.Security.Principal.IPrincipal principal;
 try
 {
 principal = (System.Security.Principal.IPrincipal)
 HttpContext.Current.Session["CslaPrincipal"];
 }
 catch
 {
 principal = null;
 }

 if (principal == null)
 {
 if (User.Identity.IsAuthenticated &&
 User.Identity is FormsIdentity)
 {
 // no principal in session, but ASP.NET token
 // still valid - so sign out ASP.NET
 FormsAuthentication.SignOut();
 Response.Redirect(Request.Url.PathAndQuery);
 }
 // didn't get a principal from Session, so
 // set it to an unauthenticated PTPrincipal
 ProjectTracker.Library.Security.PTPrincipal.Logout();
 }
 else
 {
 // use the principal from Session
 Csla.ApplicationContext.User = principal;
 }
 }
 }

The reason for using the AcquireRequestState event, rather than the more obvious
AuthenticateRequest event, is that Session isn’t initialized when AuthenticateRequest is raised, but
it usually is initialized when AcquireRequestState is raised.

The code shown here is relatively complex. This is because it must deal with a number of possible
page request and Session time-out scenarios. Not all page requests are for Web Forms or initialize
Session, so the code first ensures that this particular request requires Session. And if CSLA .NET is
configured to use Windows authentication, there’s no need to do any work to retrieve a custom prin-
cipal. When using Windows authentication, CSLA .NET relies on ASP.NET and IIS to properly set the
principal object based on the user’s Windows credentials.

Lhotka_1019-1.book Page 643 Tuesday, November 18, 2008 3:42 PM

644 CH AP T E R 2 0 ■ W E B F O R M S U I

Assuming the request does use Session, and CSLA .NET is using custom authentication, the
code attempts to retrieve the principal object from Session. This can result in an exception if Session
doesn’t exist (which can happen on some page requests), and so the value would end up being null.
Also, if this is the first page request by the user, the Session field will return null. So the outcome is
either a valid PTPrincipal object or null.

If the resulting principal value is null, the code deals with another possible scenario, where
Session has timed out but the ASP.NET authentication security token is still valid. In other words, to
ASP.NET, the user is still logged in but the user’s Session state is expired. In this case I have chosen
to sign the user out of ASP.NET:

 FormsAuthentication.SignOut();
 Response.Redirect(Request.Url.PathAndQuery);

You could choose instead to simply reload the principal object from the database, based on the
username in the ASP.NET token:

 ProjectTracker.Library.Security.PTPrincipal.LoadPrincipal(
 User.Identity.Name);

This second option keeps the user logged in as long as the ASP.NET authentication security
token remains valid, even if Session expires first.

If no principal is retrieved from Session, and the ASP.NET authentication security token isn’t
active, the user simply hasn’t logged in yet. In this case, PTPrincipal.Logout() is called to set the
current principal as an unauthenticated PTPrincipal, and the HttpContext is set to use that same
principal object. This supports the idea of an unauthenticated anonymous guest user.

Both the web and business library code have access to valid, if unauthenticated, principal objects
and can apply authorization code as needed. Additionally, by having the current principal be a valid
PTPrincipal object, a remote data portal can be invoked and the application server will impersonate
the unauthenticated user identity so that code can apply authorization rules as well. On the other
hand, if a principal object is retrieved from Session, that value is set as the current principal.

Using Windows Integrated Security

If you wanted to use Windows integrated security, you don’t need Login.aspx, the custom member-
ship provider, or the code in Global.asax because the user’s identity is already known. The user
provides his Windows credentials to the browser, which in turn provides them to the web server.

This means that the virtual root in IIS must be configured to disallow anonymous users, thus
forcing the user to provide credentials to access the site. It is IIS that authenticates the user and allows
authenticated users into the site.

To have ASP.NET use the Windows identity from IIS, you must configure Web.config correctly:

 <authentication mode="Windows"/>
 <identity impersonate="true"/>

The authentication mode is set to Windows, indicating that ASP.NET should defer all authentica-
tion to the IIS host. Setting the impersonate property to true tells ASP.NET to impersonate the user
authenticated by IIS.

If you use Windows integrated security and you are using a remote data portal, you must make
sure to change the application server configuration file to also use Windows security. If the data
portal is hosted in IIS, the virtual root must be set to disallow anonymous access, thereby forcing the
client to provide IIS with the Windows identity from the web server via integrated security.

Lhotka_1019-1.book Page 644 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 645

However, you should also remember that Windows will limit how far a user’s identity can go,
from machine to machine. A Windows computer will only allow a user’s identity to impersonate one
network hop away from the user. So if you use Windows security with an application server, you are
already two network hops away from the user. This means your application won’t be able to use the
user’s identity for impersonation when connecting to the database, for example.

There are some advanced networking techniques you can implement to enable more complex
impersonation scenarios. Windows and Active Directory network configuration is outside the scope
of this book.

Fortunately most web applications are 2-tier, with the web server communicating directly with
the database server, so impersonation works as desired.

Using the ASP.NET Membership Service

ASP.NET not only supports the broad concept of membership as used previously but it provides a
complete membership service, including all the code to make it work. The membership service is
most often used with the SQL membership provider that comes with ASP.NET. This provider requires
that you use a predefined database schema along with the membership objects provided by Microsoft to
manage and interact with the database. By default, ASP.NET uses a Microsoft SQL Server 2008 Express
database in the virtual root’s App_Data directory, but you can override that behavior to have it use
another Microsoft SQL Server database if needed.

The other membership provider shipped with ASP.NET is a connector to Active Directory. It
does the same thing but stores the user information in AD instead of a SQL database.

CSLA .NET includes the MembershipIdentity class in the Csla.Security namespace. If you want
to use the membership service to authenticate your users and the associated provider to manage
their roles, you can create a custom identity object by subclassing MembershipIdentity.

Instead of implementing PTIdentity to interact with a custom database table, you could choose
to use the MembershipIdentity class. The Login() method in the PTPrincipal class needs to change
in this case because the factory method provided by MembershipIdentity is slightly different from the
one in the PTIdentity class:

 public static MyPrincipal Login(
 string username, string password)
 {
 var identity =
 MembershipIdentity.GetMembershipIdentity<MembershipIdentity>(
 username, password, true);
 return new MyPrincipal(identity);
 }

The highlighted line of code shows how the MembershipIdentity object is created. The third
parameter to the GetMembershipIdentity() factory method is true, indicating that the membership
provider database is on the same machine where this code is running. In other words, the data portal
shouldn’t be used to move the request to the application server before attempting to access the
membership database.

If you are logging in on a smart client, such as in a WPF application, you’d want to pass false so
the request is transferred to the application server (which would be hosted in IIS) where the membership
database exists.

The PTWeb application does not use the membership provider because PTIdentity uses a custom
security database.

Lhotka_1019-1.book Page 645 Tuesday, November 18, 2008 3:42 PM

646 CH AP T E R 2 0 ■ W E B F O R M S U I

At this point, you should have an understanding of how the website is organized. It references
ProjectTracker.Library and uses a master page and theme to provide a consistent, manageable
appearance for the site. It also uses a mix of ASP.NET login controls and the prebuilt ProjectTracker
security objects to implement custom authentication.

Now let’s move on and discuss the pages that provide actual business behaviors.

Business Functionality
With the common functionality in the master page, Login.aspx, and Global.asax covered, it is possible
to move on to the business functionality itself. As I mentioned earlier, I’ll walk through the RolesEdit,
ProjectList, and ProjectEdit web forms in some detail. ResourceList and ResourcEdit are available
in the download available at www.apress.com/book/view/1430210192 or www.lhotka.net/cslanet/
download.aspx and follow the same implementation approach.

All of these web forms are created using the data binding capabilities built into ASP.NET Web
Forms and the CslaDataSource control discussed in Chapter 10. These capabilities allow the web
developer to easily link controls on the form to business objects and their properties. The developer
productivity gained through this approach is simply amazing.

Other key technologies I’ll use are the MultiView control and the associated View control. These
controls make it easy for a single page to present multiple views to the user and are often very valu-
able when building pages for editing data.

Finally, remember that all these pages are content pages. That means that they fit within the
context of a master page—in this case, MasterPage.master. As you’ll see, the tags in a content page
are a bit different from those in a simple web form.

RolesEdit Form
The RolesEdit.aspx page is a content page, so its Page directive looks like this:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master"
 AutoEventWireup="true" CodeFile="RolesEdit.aspx.cs"
 Inherits="RolesEdit" title="Project Roles" %>

Notice the MasterPageFile property, which points to MasterPage.master. Also notice the Title
property, which sets the page’s title. It is this value that is used in the master page’s Load event handler to
set the title text in the header region of the page.

Figure 20-10 shows what the page looks like in Visual Studio.
The content title bar across the top of the main page body won’t be visible at runtime. It is visible

at design time to remind you that you are editing a content area in the page. If you look at the page’s
source, you’ll see that all the page content is contained within a Content control:

<asp:Content ID="Content1"
 ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 <!-- page content goes here -->
</asp:Content>

The ContentPlaceHolderID property links this content to the ContentPlaceHolder1 control in the
master page. This scheme means that a master page can define multiple content placeholders and a
content page can have multiple Content controls—one for each placeholder.

Lhotka_1019-1.book Page 646 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet

C HA P TE R 2 0 ■ WE B FO R M S U I 647

Figure 20-10. Layout of the RolesEdit page

Using the MultiView Control

The MultiView control contains two View controls named MainView and InsertView. Only one of
these views is active (visible) at any time, so this form really defines two different views for the user.

Within your code, you select the view by setting the ActiveViewIndex property of the MultiView
control to the numeric index of the appropriate View control. Of course, using a numeric value like
this doesn’t lead to maintainable code, so within the page, I define an enumerated type with text
values corresponding to each View control:

 private enum Views
 {
 MainView = 0,
 InsertView = 1
 }

The Views type is used to change the page view as needed.

Using ErrorLabel

Beneath the MultiView control in Figure 20-10 is a Label control with its ForeColor set to Red. The purpose
behind this control is to allow the page to display error text to the user in the case of an exception.

As you’ll see, the data access code uses try...catch blocks to catch exceptions that occur during
any data updates (insert, update, or delete). The text of the exception is displayed in ErrorLabel so it
is visible to the user.

Lhotka_1019-1.book Page 647 Tuesday, November 18, 2008 3:42 PM

648 CH AP T E R 2 0 ■ W E B F O R M S U I

Using a Business Object As a Data Source

In Chapter 10, I discuss the CslaDataSource control and how it overcomes the limitations of the standard
ObjectDataSource control. The RolesEdit page uses this control, making it relatively easy to bind the
Roles collection from ProjectTracker.Library to a GridView control on the page.

The RolesDataSource data source control is defined on the page like this:

 <csla:CslaDataSource ID="RolesDataSource" runat="server"
 TypeName="ProjectTracker.Library.Admin.Roles, ProjectTracker.Library"
 OnDeleteObject="RolesDataSource_DeleteObject"
 OnInsertObject="RolesDataSource_InsertObject"
 OnSelectObject="RolesDataSource_SelectObject"
 OnUpdateObject="RolesDataSource_UpdateObject">
 </csla:CslaDataSource>

The TypeName property defines the type and assembly containing the business class. The
TypeAssemblyName property exists for backward compatibility and should not be used for new code.
The TypeName property provides the control with enough information so that it can load the Roles
type and determine the properties that will be exposed by child objects in the collection.

OnDeleteObject and similar properties link the control to a set of event handlers in the page’s
code. The code in those event handlers interacts with the business object to perform each requested
action.

Of course, to get this data source control onto the web form, you can simply drag the CslaDataSource
control from the toolbox onto the designer surface and set its properties through the Properties window
in Visual Studio.

Then, when the GridView and DetailsView controls are placed on the form, you can use their
pop-up tasks menu to select the data source control, as shown in Figure 20-11.

Figure 20-11. Choosing a data source for a GridView or DetailsView

You can either write the tags yourself or use the designer support built into Visual Studio as you
choose. The one caveat to this is that you cannot use the <New data source…> option to create a
CslaDataSource object using the Data Source Configuration Wizard. Due to some very complex issues
with how this Visual Studio wizard creates the new control, a control added using this wizard won’t work
properly unless you close and reopen the page designer. So I recommend adding the CslaDataSource
control first, then binding it to any UI controls.

Lhotka_1019-1.book Page 648 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 649

Caching the Object in Session

To optimize the performance of the website, business objects are stored in Session. While they could
be retrieved directly from the database when needed, storing them in Session reduces the load on
the database server.

To minimize the number of objects maintained in Session, all pages use the same Session field
to store their business objects: currentObject. This way, only one business object is stored in Session
at any time, and that is the object being actively used by the current page.

Of course, browsers have a Back button, which means that the user could navigate back to some
previous page that expects to be using a different type of object than the current page. For instance,
the user could be editing a Project object and then start editing a Resource object. Session would
have originally contained the Project but then would contain the Resource.

If the user then uses the Back button to return to the ProjectEdit page, Session could still have
the Resource object in the currentObject field. This possibility is very real and must be dealt with by
checking the type of the object retrieved from Session to see if it is the type the page actually needs.
If not, the correct object must be retrieved from the database.

In RolesEdit, the GetRoles() method performs this task:

 private ProjectTracker.Library.Admin.Roles GetRoles()
 {
 object businessObject = Session["currentObject"];
 if (businessObject == null ||
 !(businessObject is ProjectTracker.Library.Admin.Roles))
 {
 businessObject =
 ProjectTracker.Library.Admin.Roles.GetRoles();
 Session["currentObject"] = businessObject;
 }
 return (ProjectTracker.Library.Admin.Roles)businessObject;
 }

The code retrieves the currentObject item from Session. If the result is null, or if the resulting
object isn’t a Roles object, a new Roles object is retrieved by calling the Roles.GetRoles() factory
method. That newly retrieved object is placed in Session, making it the current object.

In any case, a valid Roles object is returned as a result.

Selecting an Object

The SelectObject event is raised when the web page needs data from the data source—the Roles
object in this case. The page must handle the event and return the requested data object:

 protected void RolesDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 ProjectTracker.Library.Admin.Roles obj = GetRoles();
 e.BusinessObject = obj;
 }

The GetRoles() helper method is called to retrieve the Roles collection object. Then the Roles
object is returned to the RolesDataSource control by setting the e.BusinessObject property. The data
source control then provides this object to the ASP.NET data binding infrastructure so it can be used
to populate any UI controls bound to the data control. In this case, that’s the GridView control in
MainView. That control is declared like this:

Lhotka_1019-1.book Page 649 Tuesday, November 18, 2008 3:42 PM

650 CH AP T E R 2 0 ■ W E B F O R M S U I

 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="RolesDataSource"
 DataKeyNames="Id">
 <Columns>
 <asp:BoundField DataField="Id" HeaderText="Id"
 ReadOnly="True" SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:CommandField ShowDeleteButton="True"
 ShowEditButton="True" />
 </Columns>
 </asp:GridView>

The DataSourceID property establishes data binding to the RolesDataSource control.
The DataKeyNames property specifies the name of the property on the business object that acts

as a primary key for the object. For a Role object, this is Id. Remember the use of the DataObjectField
attribute on the Id property in Chapter 17, which provides a hint to Visual Studio that this property
is the object’s unique key value.

The first two columns in the GridView control are bound to properties from the data source: Id
and Name, respectively. The third column is a CommandField, which automatically adds Delete and Edit
links next to each element in the list. The Delete link automatically triggers the DeleteObject event
to delete the specified object. The Edit link puts the row into in-place edit mode, allowing the user to
edit the data in the selected row. If the user accepts the updates, the UpdateObject event is automat-
ically raised. No code beyond that, handling those events, is required to support either of these links.

Of course, you don’t have to deal with all these tags if you don’t want to. Most of the code in the
CslaDataSource control exists to support the graphical designer support in Visual Studio. Look back
at Figure 20-10 and notice how the GridView control displays the Id, Name, and command columns.
I configured the control entirely using the Visual Studio designer and setting properties on the controls.

Figure 20-12 shows the Fields dialog for the GridView control.

Figure 20-12. Fields dialog for a GridView control

Lhotka_1019-1.book Page 650 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 651

Notice that the Available Fields box contains a list of the potentially bound fields from the data
source: Id and Name. The CslaDataSource control’s designer support returns this list by using reflec-
tion against the data source object, as discussed in Chapter 10. You can use this dialog to choose which
columns are displayed, to control the way they are displayed, to rearrange their order, and more.

Inserting an Object

The MainView contains not only a GridView control but also a LinkButton control named AddRoleButton.
This button allows the user to add a new Role object to the Roles collection. To do this, the View is
changed to InsertView:

 protected void AddRoleButton_Click(object sender, EventArgs e)
 {
 this.DetailsView1.DefaultMode = DetailsViewMode.Insert;
 MultiView1.ActiveViewIndex = (int)Views.InsertView;
 }

This changes the page to appear as in Figure 20-13.
Look at the address bar in the browser; see how it is still RolesEdit.aspx even though the display

is entirely different from Figure 20-10. This illustrates the power of the MultiView control, which
allows a user to remain on a single page to view, edit, and insert data.

Figure 20-13. The RolesEdit.aspx page when a new role is being added

The control shown here is a DetailsView control, which is data bound to the same RolesDataSource
control as the GridView earlier. This control is declared in a manner very similar to the GridView:

 <asp:DetailsView ID="DetailsView1" runat="server"
 AutoGenerateRows="False" DataSourceID="RolesDataSource"
 DefaultMode="Insert" Height="50px" Width="125px"
 DataKeyNames="Id" OnItemInserted="DetailsView1_ItemInserted"
 OnModeChanged="DetailsView1_ModeChanged">
 <Fields>
 <asp:BoundField DataField="Id" HeaderText="Id"
 SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name"

Lhotka_1019-1.book Page 651 Tuesday, November 18, 2008 3:42 PM

652 CH AP T E R 2 0 ■ W E B F O R M S U I

 SortExpression="Name" />
 <asp:CommandField ShowInsertButton="True" />
 </Fields>
 </asp:DetailsView>

It is bound to RolesDataSource, and its DataKeyNames property specifies that the Id property is
the unique identifier for the object. The <Fields> elements define the rows in the control much as
columns are defined in a GridView.

If the user enters values for a new role and clicks the Insert link in the DetailsView control, the
InsertObject event is raised by RolesDataSource. This event is handled in the page to add the new
role to the Roles collection:

 protected void RolesDataSource_InsertObject(
 object sender, Csla.Web.InsertObjectArgs e)
 {
 try
 {
 ProjectTracker.Library.Admin.Roles obj = GetRoles();
 ProjectTracker.Library.Admin.Role role = obj.AddNew();
 Csla.Data.DataMapper.Map(e.Values, role);
 Session["currentObject"] = obj.Save();
 e.RowsAffected = 1;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 e.RowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 e.RowsAffected = 0;
 }
 }

This code retrieves the current Roles object and then calls its AddNew() method to add a new
child Role object. Recall that in Chapter 17 the AddNewCore() method was implemented to enable
easy adding of child objects to the collection. The public AddNew() method ultimately results in a call
to AddNewCore(), which adds an empty child object to the collection.

This new child object is populated with data using the DataMapper object from the Csla.Data
namespace:

 Csla.Data.DataMapper.Map(e.Values, role);

All new values entered by the user are provided to the event handler through e.Values. The
Map() method uses dynamic method invocation to copy those values to the corresponding properties
on the object. Dynamic method invocation is only a little slower than directly setting the properties,
but if you want to avoid that small bit of overhead, you can replace the use of DataMapper with code
like this:

 role.Id = Int32.Parse(e.Values["Id"].ToString());
 role.Name = e.Values["Name"].ToString();

Lhotka_1019-1.book Page 652 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 653

For this simple object, this code isn’t too onerous, but for larger objects you could end up writing a
lot of code to copy each value into the object’s properties.

Either way, once the data from e.Values has been put into the object’s properties, the object’s
Save() method is called to update the database.

■Note This follows the typical web model of updating the database any time the user performs any action and
results in a lot more database access than the equivalent WPF implementation from Chapter 19. You could defer the
call to Save() by putting a Save button on the form and having the user click that button to commit all changes.

Once the Save() method is complete, the resulting (updated) Roles object is put into Session.
This is very important because the result of Save() is a new Roles object, and that new object must
be used in place of the previous one on subsequent pages. For instance, the newly added role data
generates a new timestamp value in the database, which can only be found in this new Roles object.

This completes the insert operation, but the MultiView control is still set to display the InsertView.
It needs to be reset to display MainView. That is done by handing the ItemInserted event from the
DetailsView control:

 protected void DetailsView1_ItemInserted(
 object sender, DetailsViewInsertedEventArgs e)
 {
 MultiView1.ActiveViewIndex = (int)Views.MainView;
 this.GridView1.DataBind();
 }

The ActiveViewIndex is changed so that the MainView is displayed when the page refreshes. Also,
the GridView control in MainView is told to refresh its data by calling its DataBind() method.

Calling DataBind() causes the GridView to refresh its display so it shows the newly added Role
object. Behind the scenes, this triggers a call to RolesDataSource, causing it to raise its SelectObject
event.

Figure 20-13 also shows a Cancel link. If the user clicks that link, she likewise needs to be returned to
MainView. When the user clicks Cancel, it triggers a ModeChanged event on the DetailsView control:

 protected void DetailsView1_ModeChanged(
 object sender, EventArgs e)
 {
 MultiView1.ActiveViewIndex = (int)Views.MainView;
 }

So whether users click Insert or Cancel, they end up back at the main display of the list of roles.

Updating an Object

As shown in Figure 20-10, the CommandField column in the GridView control includes both Edit and
Delete links for each row. I’ll get to the Delete link shortly, but for now let’s focus on the Edit link.
When the user clicks the Edit link on a row, the GridView allows the user to edit that row’s data, as
shown in Figure 20-14.

The user can edit the Name column only. The Id column is set to read-only:

 <asp:BoundField DataField="Id" HeaderText="Id"
 ReadOnly="True" SortExpression="Id" />

Lhotka_1019-1.book Page 653 Tuesday, November 18, 2008 3:42 PM

654 CH AP T E R 2 0 ■ W E B F O R M S U I

Figure 20-14. The RolesEdit.aspx page when a role is being edited

When done, users can either click the Update or Cancel links on the row. If they click Update,
the UpdateObject event is raised by RolesDataSource to trigger the data update. This event is handled
in the page:

 protected void RolesDataSource_UpdateObject(
 object sender, Csla.Web.UpdateObjectArgs e)
 {
 try
 {
 ProjectTracker.Library.Admin.Roles obj = GetRoles();
 ProjectTracker.Library.Admin.Role role =
 obj.GetRoleById(int.Parse(e.Keys["Id"].ToString()));
 role.Name = e.Values["Name"].ToString();
 Session["currentObject"] = obj.Save();
 e.RowsAffected = 1;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 e.RowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 e.RowsAffected = 0;
 }
 }

This code is quite similar to that for the insert operation discussed earlier, though in this case,
the specific Role object that is edited is retrieved from the collection:

 ProjectTracker.Library.Admin.Role role =
 obj.GetRoleById(int.Parse(e.Keys["Id"].ToString()));

e.Keys contains all the values from the page that correspond to the properties defined in the
GridView control’s DataKeyNames property. Recall that the only property set in DataKeyNames is Id, so
that’s the only value provided through e.Keys. This value is passed to the GetRoleById() method to
retrieve the correct Role object.

Lhotka_1019-1.book Page 654 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 655

■Note Update and delete operations require that appropriate business object property names be specified in the
GridView or DetailsView control’s DataKeyNames property.

Since only one property can be edited, I opt to not use DataMapper and to set the property value
manually. However, in a more complex edit scenario in which many properties are edited, you may
choose to use DataMapper to simplify the code.

Finally, the Roles object’s Save() method is called to commit the user’s changes to the database.
As with the insert process, the new Roles object returned from Save() is put into Session for use on
all subsequent page requests.

Deleting an Object

Having seen how the update process works, you can probably guess how the delete process works. The
user can click the Delete link next to a row in the GridView control. When they do so, RolesDataSource
raises the DeleteObject event, which is handled in the page:

 protected void RolesDataSource_DeleteObject(
 object sender, Csla.Web.DeleteObjectArgs e)
 {
 try
 {
 ProjectTracker.Library.Admin.Roles obj = GetRoles();
 int id = (int)e.Keys["Id"];
 obj.Remove(id);
 Session["currentObject"] = obj.Save();
 e.RowsAffected = 1;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 e.RowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 e.RowsAffected = 0;
 }
 }

The Id value for the Role object to delete is retrieved from e.Keys and used to call the Remove()
method on the Roles collection. Recall from Chapter 17 that this overload of Remove() accepts the Id
value of the Role object.

Of course, the child object is merely marked for deletion and isn’t removed until the Save() method
is called on the Roles object itself. Again, the resulting Roles object returned from Save() is put into
Session for use on subsequent page requests.

At this point, you should understand the basic process for creating a grid-based data form that
supports viewing, inserting, editing, and deleting data. The only thing left to do in RolesEdit is to add
support for authorization.

Lhotka_1019-1.book Page 655 Tuesday, November 18, 2008 3:42 PM

656 CH AP T E R 2 0 ■ W E B F O R M S U I

Authorization

The RolesEdit authorization code is perhaps the simplest in the application. If the user isn’t autho-
rized to edit the Roles object, the CommandField column in the GridView control shouldn’t be shown;
and if the user can’t add a new role, the LinkButton for adding a new object shouldn’t be shown.

When the page is loaded, an ApplyAuthorizationRules() method is called:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 Session["currentObject"] = null;
 ApplyAuthorizationRules();
 else
 this.ErrorLabel.Text = "";
 }

 private void ApplyAuthorizationRules()
 {
 bool canEdit =
 Csla.Security.AuthorizationRules.CanEditObject(
 typeof(ProjectTracker.Library.Admin.Roles));
 this.GridView1.Columns[
 this.GridView1.Columns.Count - 1].Visible = canEdit;
 this.AddRoleButton.Visible = canEdit;
 }

The ApplyAuthorizationRules() method asks the CSLA .NET authorization subsystem whether
the current user is authorized to edit an object of type Roles. If the user isn’t authorized, the appro-
priate controls’ Visible properties are set to false and the controls are thereby hidden.

Since the user is then unable to put the GridView control into edit mode or ask it to delete an
item, the display effectively becomes read-only. Similarly, without the LinkButton for adding a new
item, the user can’t switch the MultiView to InsertView; so again the page becomes a simple read-
only page.

As you can see, creating a simple grid-based edit page requires relatively little work. You add
a data control, bind the GridView and possibly a DetailsView control to the data, and write a bit of
code. Most of the code in this page exists to react to user actions as they indicate that data is to be
inserted, edited, or deleted.

ProjectList Form
The ProjectList web form is responsible for displaying the list of projects to the user and allowing
the user to choose a specific project to view or edit. From this page, the user can also delete a project
and choose to add a new project. Figure 20-15 shows the layout of ProjectList.

Lhotka_1019-1.book Page 656 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 657

Figure 20-15. Layout of ProjectList

It is important to realize that the GridView control actually has three columns: Id, Name, and the
CommandField column with the Delete links:

 <Columns>
 <asp:BoundField DataField="Id" HeaderText="Id"
 SortExpression="Id" Visible="False" />
 <asp:HyperLinkField DataNavigateUrlFields="Id"
 DataNavigateUrlFormatString="ProjectEdit.aspx?id={0}"
 DataTextField="Name" HeaderText="Name" />
 <asp:CommandField ShowDeleteButton="True"
 SelectText="Edit" />
 </Columns>

The Id column has its Visible property set to False, so it is there but invisible. Also notice that
the Name column is a HyperLinkField not a simple BoundField. This makes each project name appear
to the user as a hyperlink, though in reality it is more like a LinkButton—when the user clicks a project
name, a SelectedIndexChanged event is raised from the GridView control.

Also of importance is the fact that the GridView control’s DataKeyNames property is set to Id, so
the Id property is specified as the unique identifier for each row of data:

 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AutoGenerateColumns="False"
 DataSourceID="ProjectListDataSource" PageSize="4"
 OnRowDeleted="GridView1_RowDeleted"
 DataKeyNames="Id">

Lhotka_1019-1.book Page 657 Tuesday, November 18, 2008 3:42 PM

658 CH AP T E R 2 0 ■ W E B F O R M S U I

Without setting this property, the Delete link can’t work.
The view, edit, and add operations are all handled by ProjectEdit, so ProjectList is really just

responsible for redirecting the user to that other page as appropriate. The delete operation is handled
directly from ProjectList through a CommandField column in the GridView control.

Notice that the GridView control displays paging links near the bottom. This is because paging
is enabled for the control, as shown in Figure 20-16.

Figure 20-16. Enabling paging for the GridView control

You can also set the GridView control’s PageSize property to control how many items are shown
on each page. All the paging work is done by the GridView control itself, which is fine because the
ProjectList business object is maintained in Session, so the user can move from page to page without
hitting the database each time.

Figure 20-17 shows the properties of the CslaDataSource control used on the page.

Figure 20-17. Properties for the ProjectListDataSource control

Like the RolesDataSource control in RolesEdit, the TypeName property is set to point to the
appropriate class within ProjectTracker.Library. This data source control will be used to retrieve
the list of projects and to delete a project if the user clicks a Delete link.

Since the ProjectList business object doesn’t directly support paging or sorting, the
TypeSupportsPaging and TypeSupportsSorting properties are left with False values. Paging and sorting
are still possible but are handled by the GridView control itself, rather than by the business object. If
the business object supports these concepts, the properties can be set to True and ASP.NET will auto-
matically defer any paging or sorting to the business object.

Lhotka_1019-1.book Page 658 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 659

Loading the Data

When the GridView control needs data, it asks the ProjectListDataSource for it. The data source
control in turn raises its SelectObject event, which is handled in the page:

 protected void ProjectListDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 e.BusinessObject = GetProjectList();
 }

As in RolesEdit, this page caches the business object in Session. The details of that process are
handled by GetProjectList():

 private ProjectTracker.Library.ProjectList GetProjectList()
 {
 object businessObject = Session["currentObject"];
 if (businessObject == null ||
 !(businessObject is ProjectTracker.Library.ProjectList))
 {
 businessObject =
 ProjectTracker.Library.ProjectList.GetProjectList();
 Session["currentObject"] = businessObject;
 }
 return (ProjectTracker.Library.ProjectList)businessObject;
 }

This method is the same as the GetRoles() method discussed earlier except that it ensures that
a valid ProjectList object is returned instead of a Roles object.

This code allows the GridView control to populate itself with pages of data for display as needed.

Viewing or Editing a Project

The Name column in the GridView control is set up as a HyperLinkField, meaning that the user sees
the values as a set of hyperlinks. If the user clicks one of the project names, the browser directly navi-
gates to the ProjectEdit.aspx page, passing the selected Id value as a parameter on the URL.

Adding a Project

The ProjectList page contains a LinkButton to allow the user to add a new project. If the user clicks
this button, a Click event is raised:

 protected void NewProjectButton_Click(object sender, EventArgs e)
 {
 // allow user to add a new project
 Response.Redirect("ProjectEdit.aspx");
 }

The ProjectEdit page takes care of viewing, editing, and adding Project objects, so all this code
does is redirect the user to ProjectEdit. Notice that no parameter is provided to the page on the URL
and this is what tells ProjectEdit to create a new Project rather than to view or edit an existing one.

Deleting a Project

The GridView control has a CommandField column, which automatically creates a Delete link for each
row of data. If the user clicks a Delete link, the GridView deletes that row of data by calling its data
source control, ProjectListDataSource. The result is a DeleteObject event handled in the page:

Lhotka_1019-1.book Page 659 Tuesday, November 18, 2008 3:42 PM

660 CH AP T E R 2 0 ■ W E B F O R M S U I

 protected void ProjectListDataSource_DeleteObject(
 object sender, Csla.Web.DeleteObjectArgs e)
 {
 try
 {
 ProjectTracker.Library.Project.DeleteProject(
 new Guid(e.Keys["Id"].ToString()));
 e.RowsAffected = 1;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 e.RowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 e.RowsAffected = 0;
 }
 }

Again, the DataKeyNames property being set in the GridView means that the Id column value from
the row automatically flows into this event handler through e.Keys. The Project object uses a Guid
value for its Id property value, and its factory methods accept a Guid value to identify the object. The
Id column value is a string in the web page, so it is converted to a Guid object so that the static
DeleteProject() method on the Project class can be called. The result is immediate deletion of the
related project data.

Authorization

Having discussed all the core business functionality of the page, let’s look at the authorization code.
Like in RolesEdit, the authorization rules themselves are in the business class, and the UI code simply
uses that information to enable and disable various UI controls as the page loads:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 Session["currentObject"] = null;
 ApplyAuthorizationRules();
 else
 ErrorLabel.Text = string.Empty;
 }

 private void ApplyAuthorizationRules()
 {
 this.GridView1.Columns[
 this.GridView1.Columns.Count - 1].Visible =
 Csla.Security.AuthorizationRules.CanDeleteObject(typeof(Project));
 NewProjectButton.Visible =
 Csla.Security.AuthorizationRules.CanCreateObject(typeof(Project));
 }

Lhotka_1019-1.book Page 660 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 661

When the page is loaded, the ApplyAuthorizationRules() method makes sure that the CommandField
column in the GridView is only visible if the user is authorized to delete Project objects. It also hides
the NewProjectButton control if the user isn’t allowed to add Project objects.

The end result is that users who can’t delete or add data are still allowed to view the list of projects,
and they can even click a project’s name to get more details in the ProjectEdit page.

ProjectEdit Form
At this point, you’ve seen how to create two different types of grid-based web forms. The pages so far
have illustrated in-place editing, adding of new items, and displaying a list of items for selection or
deletion. The final web form I discuss in this chapter is ProjectEdit, which is a detail form that
allows the user to view and edit details about a specific object.

Like RolesEdit, this form uses a MultiView control. Figure 20-18 shows the MainView layout, and
Figure 20-19 shows the AssignView layout. There’s also a Label control and some CslaDataSource
controls on the page itself, below the MultiView. These are shown in Figure 20-20.

Figure 20-18. Layout of MainView in ProjectEdit

MainView includes a DetailsView control to allow display and editing of the Project object’s
properties. This control is data bound to the ProjectDataSource control shown in Figure 20-20, and
so it is effectively data bound to the current Project object.

The Id row is set to read-only because the Project object’s Id property is a read-only property.
The Description row is a TemplateField, which allows the use of a TextBox control with its TextMode
property set to MultiLine:

Lhotka_1019-1.book Page 661 Tuesday, November 18, 2008 3:42 PM

662 CH AP T E R 2 0 ■ W E B F O R M S U I

 <asp:TemplateField HeaderText="Description"
 SortExpression="Description">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" TextMode="MultiLine"
 Width="100%" runat="server"
 Text='<%# Bind("Description") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="TextBox1" TextMode="MultiLine"
 Width="100%" runat="server"
 Text='<%# Bind("Description") %>'></asp:TextBox>
 </InsertItemTemplate>
 <ItemTemplate>
 <asp:TextBox ID="TextBox1" TextMode="MultiLine"
 ReadOnly="true" Width="100%" runat="server"
 Text='<%# Bind("Description") %>'></asp:TextBox>
 </ItemTemplate>
 </asp:TemplateField>

Notice that even the ItemTemplate, which controls what is displayed in view mode, uses a TextBox
control, but with its ReadOnly property set to true. This allows the user to see the entire text of the
Description property, even if it is quite long.

Finally, the DetailsView control has a CommandField row that allows the user to delete, edit, and
add a Project.

Beneath the DetailsView control is a GridView to list the resources assigned to the project. This
control is data bound to the ResourcesDataSource control shown in Figure 20-20. It is effectively data
bound to the Resources property of the current Project object, meaning that it is bound to a collec-
tion of ProjectResource objects. Remember that each type of business object must have its own
CslaDataSource control in order to act as a data source.

The GridView control also has a ResourceId column, which is not visible. Its DataKeyNames property
is set to ResourceId, specifying that the ResourceId column contains the unique identifying value for
each row. The Name and Assigned columns are read-only, while the Role column is a TemplateField:

 <asp:TemplateField HeaderText="Role" SortExpression="Role">
 <EditItemTemplate>
 <asp:DropDownList ID="DropDownList1" runat="server"
 DataSourceID="RoleListDataSource"
 DataTextField="Value" DataValueField="Key"
 SelectedValue='<%# Bind("Role") %>'>
 </asp:DropDownList>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:DropDownList ID="DropDownList2" runat="server"
 DataSourceID="RoleListDataSource"
 DataTextField="Value" DataValueField="Key"
 Enabled="False" SelectedValue='<%# Bind("Role") %>'>
 </asp:DropDownList>
 </ItemTemplate>
 </asp:TemplateField>

Notice how the DropDownList controls are data bound to the RoleListDataSource control shown
in Figure 20-20. This data source control provides access to a RoleList business object, so the
DropDownList controls are populated with the list of roles a resource can play on a project. This way,
ASP.NET does all the hard work of mapping the Key values for each role to the corresponding human-
readable text value. The numeric Key values are stored in the business objects, while the text values
are displayed on the page.

Lhotka_1019-1.book Page 662 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 663

The GridView control also has a CommandField column so the user can edit or remove assignments.
Of course, “remove” in this case really means unassign, but those details are handled by the business
object, not the UI.

Finally, there’s a LinkButton to allow the user to assign a new resource to the project. When
users click that button, the view is switched so that they see AssignView, where they can select the
resource to assign. The layout of that view is shown in Figure 20-19.

Figure 20-19. Layout of AssignView in ProjectEdit

AssignView is comparatively straightforward. It contains a GridView control that is data bound
to the ResourceListDataSource control. Effectively, this means the GridView is bound to a ResourceList
business object, so it displays the list of resources to the user. The CommandField column in the GridView
provides a Select link, so the user can select the resource to be assigned.

There’s also a LinkButton at the bottom to allow the user to cancel the operation and return to
MainView without assigning a resource at all.

Finally, Figure 20-20 shows the bottom of the page, beneath the MultiView control.

Figure 20-20. Other controls in ProjectEdit

The CslaDataSource controls are used by the various DetailsView and GridView controls discussed
previously. And, of course, the ErrorLabel control is a simple Label control that has its ForeColor
property set to Red. The exception-handling code in the form uses this control to display details
about any exceptions to the user.

Working, in the top left corner of Figure 20-20, comes from an UpdateProgress control, to go
along with the UpdatePanel control that wraps the entire MultiView control to provide AJAX support
to the page.

Now let’s go through the implementation of the page. I’ll do this a bit differently than with the
previous pages because by now you should understand how the pieces fit together using data binding.

Lhotka_1019-1.book Page 663 Tuesday, November 18, 2008 3:42 PM

664 CH AP T E R 2 0 ■ W E B F O R M S U I

Caching the Project Object in Session

The RolesEdit and ProjectList forms implement methods to retrieve the central business object
from Session or to retrieve it from the database as necessary. This not only implements a type of
cache to reduce load on the database but it provides support for the browser’s Back button as well.
The same thing is done in ProjectEdit:

 private Project GetProject()
 {
 object businessObject = Session["currentObject"];
 if (businessObject == null ||
 !(businessObject is Project))
 {
 try
 {
 string idString = Request.QueryString["id"];
 if (!string.IsNullOrEmpty(idString))
 {
 Guid id = new Guid(idString);
 businessObject = Project.GetProject(id);
 }
 else
 businessObject = Project.NewProject();
 Session["currentObject"] = businessObject;
 }
 catch (System.Security.SecurityException)
 {
 Response.Redirect("ProjectList.aspx");
 }
 }
 return (Project)businessObject;
 }

As before, if there’s no object in Session, or if the object isn’t a Project, a Project is retrieved
from the database. But the code here is a bit more complex than that in the other forms.

Notice that the Request.QueryString property is used to get the id value (if any) passed in on the
page’s URL. If an id value is passed into the page, that value is used to retrieve an existing Project:

 Guid id = new Guid(idString);
 businessObject = Project.GetProject(id);

Otherwise, a new Project is created for the page:

 businessObject = Project.NewProject();

Either way, the resulting object is placed into Session and is also returned as a result from the
method.

It is possible for a user to navigate directly to ProjectEdit.aspx, providing no id value on the
URL. In such a case, the user might not be authorized to add a Project, and so a SecurityException
would result. In that case, users are simply redirected to the ProjectList page, where they can safely
view the list of projects.

Lhotka_1019-1.book Page 664 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 665

Creating a New Object

If users navigate to this page with no id value and they are authorized to add a new Project, they’d
expect to see default values on the screen. Due to the way Web Forms works, this is harder than you
might think.

It turns out that the DetailsView control, when in insert mode, doesn’t ask its underlying data
source control for any information. The assumption is that the user will enter all new values into an
empty form. No provision is made to automatically load default values into the DetailsView control
for a new object.

To overcome this, your page can handle the DetailsView control’s ItemCreated event, where you
can set default values. This is pretty ugly code because you need to manually index into the DetailsView
control to find the detail controls it contains, so you can set their values:

 protected void DetailsView1_ItemCreated(
 object sender, EventArgs e)
 {
 if (DetailsView1.DefaultMode == DetailsViewMode.Insert)
 {
 Project obj = GetProject();
 ((TextBox)DetailsView1.Rows[1].Cells[1].Controls[0]).Text =
 obj.Name;
 ((TextBox)DetailsView1.Rows[2].Cells[1].Controls[0]).Text =
 obj.Started;
 ((TextBox)DetailsView1.Rows[3].Cells[1].Controls[0]).Text =
 obj.Ended;
 ((TextBox)DetailsView1.FindControl("TextBox1")).Text =
 obj.Description;
 }
 }

This means that you must fully understand the row and column that contains each of the
constituent controls, and you must know the type of each control. While this is not ideal, it is the
solution for setting default values.

Notice how the GetProject() method is called first, so the code has access to a newly created
Project object that automatically contains any required default values. The property values from
that object are then used to set the control values in the web form.

This is not an issue when editing an existing object because the DetailsView control automati-
cally invokes the data source control to retrieve an existing object.

Saving a Project

In this form, the Project object is saved in many scenarios, including the following:

• Inserting the project

• Editing the project

• Assigning a resource

• Unassigning a resource

• Deleting the project

Lhotka_1019-1.book Page 665 Tuesday, November 18, 2008 3:42 PM

666 CH AP T E R 2 0 ■ W E B F O R M S U I

To simplify the code overall, the SaveProject() method handles the common behaviors in all
these cases:

 private int SaveProject(Project project)
 {
 int rowsAffected;
 try
 {
 Session["currentObject"] = project.Save();
 rowsAffected = 1;
 }
 catch (Csla.Validation.ValidationException ex)
 {
 System.Text.StringBuilder message = new System.Text.StringBuilder();
 message.AppendFormat("{0}", ex.Message);
 if (project.BrokenRulesCollection.Count > 0)
 {
 message.Append("");
 foreach (Csla.Validation.BrokenRule rule in project.BrokenRulesCollection)
 message.AppendFormat("{0}: {1}", rule.Property,
 rule.Description);
 message.Append("");
 }
 this.ErrorLabel.Text = message.ToString();
 rowsAffected = 0;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 rowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 rowsAffected = 0;
 }
 return rowsAffected;
 }

This method accepts the Project as a parameter and calls its Save() method. As always, the
resulting object is placed in Session to replace the old version of the object. In case of exception, the
ErrorLabel text is updated.

The code here is the same as in the other pages but it is worth consolidating in this page (and in
ResourceEdit) because of the many places the Project object is saved.

ProjectDataSource

The ProjectDataSource control takes care of data binding that deals with the Project object itself. The
page handles its DeleteObject, InsertObject, SelectObject, and UpdateObject events. For instance,
the SelectObject handler looks like this:

Lhotka_1019-1.book Page 666 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 667

 protected void ProjectDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 e.BusinessObject = GetProject();
 }

Thanks to the GetProject() method discussed earlier, this method is very simple to implement.
The delete, insert, and update events are also comparatively simple due to the SaveProject() method.
For instance, here’s the InsertObject event handler:

 protected void ProjectDataSource_InsertObject(
 object sender, Csla.Web.InsertObjectArgs e)
 {
 Project obj = GetProject();
 Csla.Data.DataMapper.Map(e.Values, obj, "Id");
 e.RowsAffected = SaveProject(obj);
 }

The current Project object is retrieved from Session (or pulled from the database) and the new
values entered by the user are mapped into the object’s properties using the DataMapper from the
Csla.Data namespace.

The Map() method requires two parameters. The first is the source object and the second is the
target object. Any other parameters are the names of properties that should not be copied. So this
code copies all the property values except the Id property. This is important because the Id property
is read-only in the target object and an exception would result if the Map() method tried to copy the
value.

Once the values are copied, the SaveProject() method is called to save the project and update
Session with the newly updated data.

Once a new object is inserted, the user’s display should be refreshed so it switches into edit mode.
To do this, the page handles the DetailsView control’s ItemInserted event:

 protected void DetailsView1_ItemInserted(
 object sender, DetailsViewInsertedEventArgs e)
 {
 Project project = GetProject();
 if (!project.IsNew)
 Response.Redirect("ProjectEdit.aspx?id=" + project.Id.ToString());
 }

If the insert operation succeeds, the object’s IsNew property is false and the user is redirected
to the ProjectEdit web form, passing the newly created Id property as a parameter in the URL. This
not only ensures that the page switches into edit mode (as opposed to insert mode) but the URL in
the browser is also updated to reflect the object’s Id value.

The update operation works in a similar manner, so I won’t detail it here. The one thing I do
want to point out is that once an update is complete, the authorization rules are rechecked:

 protected void DetailsView1_ItemUpdated(
 object sender, DetailsViewUpdatedEventArgs e)
 {
 ApplyAuthorizationRules();
 }

Lhotka_1019-1.book Page 667 Tuesday, November 18, 2008 3:42 PM

668 CH AP T E R 2 0 ■ W E B F O R M S U I

This ensures that the UI properly responds to any changes in authorization rules based on the
object’s state. Some objects may have different authorization rules for a new or existing object.

DeleteObject is a bit different:

 protected void ProjectDataSource_DeleteObject(
 object sender, Csla.Web.DeleteObjectArgs e)
 {
 try
 {
 Project.DeleteProject(new Guid(e.Keys["id"].ToString()));
 Session["currentObject"] = null;
 e.RowsAffected = 1;
 }
 catch (Csla.DataPortalException ex)
 {
 this.ErrorLabel.Text = ex.BusinessException.Message;
 e.RowsAffected = 0;
 }
 catch (Exception ex)
 {
 this.ErrorLabel.Text = ex.Message;
 e.RowsAffected = 0;
 }
 }

If the user clicks the link in the DetailsView control to delete the project, the DeleteObject event
is raised. e.Keys contains the Id row value from the DetailsView because the DataKeyNames property
on the control is set to Id. This value is used to create a Guid, which is then passed to the static
DeleteProject() method to delete the project. Of course, this immediately deletes the Project using
the data portal, and so proper exception handling is implemented to display any exception messages
in ErrorLabel.

Once the Project has been deleted, it makes no sense to leave the user on ProjectEdit. If the
delete operation is successful, the DetailsView control raises an ItemDeleted event:

 protected void DetailsView1_ItemDeleted(
 object sender, DetailsViewDeletedEventArgs e)
 {
 Response.Redirect("ProjectList.aspx");
 }

The user is simply redirected to the ProjectList page, where he should no longer see the deleted
project in the list. That is because the ProjectList page retrieves a new ProjectList business object
each time the page is loaded.

ResourcesDataSource

The ResourcesDataSource control takes care of data binding dealing with the Resources collection
from the Project object. The GridView control in MainView is bound to this control, and the page
handles its DeleteObject, SelectObject, and UpdateObject events.

There’s no need to handle the InsertObject event because the GridView isn’t used to dynami-
cally add ProjectResource objects to the collection. I discuss adding a new child object shortly.

The SelectObject event handler returns the collection of ProjectResource objects for the Project:

Lhotka_1019-1.book Page 668 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 669

 protected void ResourcesDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 Project obj = GetProject();
 e.BusinessObject = obj.Resources;
 }

It first gets the current Project object by calling GetProject(). Then it simply provides the Resources
collection to the data source control, which in turn provides it to any UI controls requiring the data.

The DeleteObject and UpdateObject event handlers are worth exploring a bit. The DeleteObject
handler gets the ResourceId value from the GridView control through e.Keys and uses that value to
remove the ProjectResource object from the collection:

 protected void ResourcesDataSource_DeleteObject(
 object sender, Csla.Web.DeleteObjectArgs e)
 {
 Project obj = GetProject();
 int rid = int.Parse(e.Keys["ResourceId"].ToString());
 obj.Resources.Remove(rid);
 e.RowsAffected = SaveProject(obj);
 }

The current Project object is retrieved, and then the Remove() method is called on the Resources
collection to remove the specified child object. SaveProject() is then called to commit the change.

UpdateObject is a bit more complex:

 protected void ResourcesDataSource_UpdateObject(
 object sender, Csla.Web.UpdateObjectArgs e)
 {
 Project obj = GetProject();
 int rid = int.Parse(e.Keys["ResourceId"].ToString());
 ProjectResource res =
 obj.Resources.GetItem(rid);
 Csla.Data.DataMapper.Map(e.Values, res);
 e.RowsAffected = SaveProject(obj);
 }

In this case, the actual child object is retrieved from the Resources collection. Then the values
entered into the GridView by the user are pulled from e.Values and are mapped into the child object
using DataMapper. And finally, SaveProject() is called to commit the changes.

The GridView isn’t used to insert new ProjectResource child objects, so ResourcesDataSource
will never raise its InsertObject method. Users are allowed to assign a new user to the project by
clicking a LinkButton control. In that case, the MultiView is changed to display AssignView so the user
can select the resource to be assigned:

 protected void AddResourceButton_Click(
 object sender, EventArgs e)
 {
 this.MultiView1.ActiveViewIndex =
 (int)Views.AssignView;
 }

Once AssignView is displayed, users can either select a resource or click the Cancel button. If
they select a resource, the resource is assigned to the project:

Lhotka_1019-1.book Page 669 Tuesday, November 18, 2008 3:42 PM

670 CH AP T E R 2 0 ■ W E B F O R M S U I

 protected void GridView2_SelectedIndexChanged(
 object sender, EventArgs e)
 {
 Project obj = GetProject();
 try
 {
 obj.Resources.Assign(int.Parse(
 this.GridView2.SelectedDataKey.Value.ToString()));
 if (SaveProject(obj) > 0)
 {
 this.GridView1.DataBind();
 this.MultiView1.ActiveViewIndex = (int)Views.MainView;
 }
 }
 catch (InvalidOperationException ex)
 {
 ErrorLabel.Text = ex.Message;
 }
 }

To make the assignment, the current Project object is retrieved. Then the Resources collection’s
Assign() method is called, passing the SelectedDataKey value from the GridView control as a param-
eter. This GridView control, which displays the list of resources, has its DataKeyNames property set to
Id, so SelectedDataKey returns the Id value of the selected resource.

Once the assignment is made, SaveProject() is called to commit the change. If SaveProject()
succeeds, it will return a value greater than 0. And in that case, the GridView control in MainView, which
displays the list of assigned resources, is told to refresh its data by calling DataBind(). Remember that
ASP.NET tries to optimize data access, and so GridView and DetailsView controls don’t refresh their
data from the data source on every postback. You need to explicitly call DataBind() to force this
refresh to occur.

Several things could go wrong during this whole process. The resource might already be assigned or
the SaveProject() method could fail due to some data error. Of course, SaveProject() already does
its own exception handling and displays any exception messages to the user through the ErrorLabel
control.

But if the user attempts to assign a duplicate resource to the project, the Assign() method will
raise an InvalidOperationException. This is caught and the message text is displayed to the user.
Notice that in that case, users are not sent back to MainView but remains on AssignView so that they
can choose a different resource to assign if desired.

The simplest course of action occurs if the user clicks the Cancel LinkButton control:

 protected void CancelAssignButton_Click(
 object sender, EventArgs e)
 {
 this.MultiView1.ActiveViewIndex =
 (int)Views.MainView;
 }

In that case, the user is simply directed back to the MainView display.

RoleListDataSource

The RoleListDataSource is used by the GridView control in MainView. It provides access to the list of
roles a resource can play on a project. This data isn’t cached in the UI because the RoleList object
handles caching automatically (see Chapter 18 for details). Also, because RoleList is read-only, the
only event that needs to be handled is SelectObject:

Lhotka_1019-1.book Page 670 Tuesday, November 18, 2008 3:42 PM

C HA P TE R 2 0 ■ WE B FO R M S U I 671

 protected void RoleListDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 e.BusinessObject = RoleList.GetList();
 }

The GetList() method returns the list of roles, either from the cache or the database. The beauty
of this approach is that the UI code doesn’t know or care whether the database was used to get the
data; it just uses the result.

■Note Because the RoleList object is cached in a static field, the cached object is shared by all users of the
website. A static field is global to the AppDomain, and so is effectively global to the entire website. In this case,
that’s a good thing because it means the RoleList object is retrieved once for all users, but it is a detail you should
keep in mind when working with data that should be per-user instead of shared.

ResourceListDataSource

The ResourceListDataSource is used by the GridView control in AssignView to display a list of resources
in the database. It is bound to the ResourceList business object, which is read-only—meaning that
only the SelectObject event needs to be handled:

 protected void ResourceListDataSource_SelectObject(
 object sender, Csla.Web.SelectObjectArgs e)
 {
 e.BusinessObject =
 ProjectTracker.Library.ResourceList.GetResourceList();
 }

I’m making no special effort to cache the results of GetResourceList(), nor does that method do
caching on its own. This is intentional.

Users will most likely come to ProjectEdit to view a project’s details. A relatively small percentage
of the time will they opt to assign a new resource to a project—so I made a conscious decision here
to keep my code simple and just get the list each time it is needed.

If it turns out later that users are assigning far more resources than anticipated and that retrieving
ResourceList is a performance bottleneck, the implementation can be changed to do some caching—
in the UI, or in ResourceList itself.

Either way, I tend to default to implementing simpler code and only make it more complex when
application usage patterns prove that some other solution is required.

Authorization

At this point, you’ve seen almost all the code in ProjectEdit. The rest of the code primarily deals
with authorization, though there’s a bit of UI magic as well.

When the page loads, an ApplyAuthorizationRules() method is called:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 Session["currentObject"] = null;
 ApplyAuthorizationRules();
 }

Lhotka_1019-1.book Page 671 Tuesday, November 18, 2008 3:42 PM

672 CH AP T E R 2 0 ■ W E B F O R M S U I

 else
 {
 this.ErrorLabel.Text = string.Empty;
 }
 }

 private void ApplyAuthorizationRules()
 {
 Project obj = GetProject();
 // project display
 if (Csla.Security.AuthorizationRules.CanEditObject(typeof(Project)))
 {
 if (obj.IsNew)
 this.DetailsView1.DefaultMode = DetailsViewMode.Insert;
 else
 this.DetailsView1.DefaultMode = DetailsViewMode.Edit;
 this.AddResourceButton.Visible = !obj.IsNew;
 }
 else
 {
 this.DetailsView1.DefaultMode = DetailsViewMode.ReadOnly;
 this.AddResourceButton.Visible = false;
 }
 this.DetailsView1.Rows[
 this.DetailsView1.Rows.Count - 1].Visible =
 Csla.Security.AuthorizationRules.CanEditObject(typeof(Project));

 // resource display
 this.GridView1.Columns[
 this.GridView1.Columns.Count - 1].Visible =
 Csla.Security.AuthorizationRules.CanEditObject(typeof(Project));
 }

As with the previous forms, various controls, GridView columns, and DetailsView rows are made
visible or invisible depending on the authorization values returned from the business objects.

Additionally, the mode of the DetailsView control is set based on the business object’s IsNew
property:

 if (obj.IsNew)
 this.DetailsView1.DefaultMode = DetailsViewMode.Insert;
 else
 this.DetailsView1.DefaultMode = DetailsViewMode.Edit;

This ensures that users get the right set of options in the CommandField row of the DetailsView
control based on whether they are adding or editing the object.

As noted earlier in this chapter, the ResourceEdit and ResourceList forms are very comparable
to ProjectEdit and ProjectList, so I won’t cover them in this chapter. You can look at their code in
the download for this book at www.apress.com/book/view/1430210192 or www.lhotka.net/cslanet/
download.aspx. This completes the PTWeb UI, so you should now have a good understanding of how
to create both WPF and Web Forms interfaces based on business objects.

Lhotka_1019-1.book Page 672 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet

C HA P TE R 2 0 ■ WE B FO R M S U I 673

Conclusion
This chapter discussed the creation of a basic Web Forms UI based on the business objects in
Chapters 17 and 18. As with the WPF technology in Chapter 19, there are many ways to create a Web
Forms interface, and the one I’ve created here is just one of them.

The key is that the business objects automatically enforce all business rules and provide business
processing so that the UI doesn’t need to include any of that code. As you can see, it is very possible
to create two very different user interfaces based on exactly the same set of business objects, data
access code, and database design.

As shown here, the website is configured for optimal performance, running the Session and the
data portal in the same process as the web forms. You could increase scalability and fault tolerance
by moving Session into its own process or onto a state server. You could potentially increase security
by running the data portal server components on a separate application server. In either case, all you
need to do is change some settings in Web.config; the UI code and business objects will work in all
these scenarios.

In Chapter 21, I wrap up the book by showing how you can create another type of interface to
the business objects by using WCF.

Lhotka_1019-1.book Page 673 Tuesday, November 18, 2008 3:42 PM

Lhotka_1019-1.book Page 674 Tuesday, November 18, 2008 3:42 PM

675

■ ■ ■

C H A P T E R 2 1

WCF Service Interface

Like the WPF technology discussed in Chapter 19, WCF is one of the pillars of the Microsoft .NET
platform starting in version 3.0. WCF provides a unified approach to building service-oriented,
client/server, messaging, and other distributed types of application. It effectively replaces or abstracts
several older technologies:

• Web Services (asmx services)

• Remoting

• Enterprise Services

• MSMQ

• WSE

In Chapter 15, I discussed how the CSLA .NET data portal uses WCF to implement a powerful
client/server model based on the mobile object concept. You can use XML services to build either
client/server or service-oriented applications. My recommendation is that, when building an appli-
cation interface using services, you follow a message-based, service-oriented architecture. This will
result in looser coupling between your services and the applications that consume them, which in
turn will increase the maintainability of your overall system and all the applications that interact
using your services.

In this chapter, I’ll provide a short overview of WCF as used to build XML services. Then I’ll
discuss the creation of a WCF service interface for the ProjectTracker business objects in order to
illustrate how business objects can support the creation of XML services. First, however, we need to
discuss the difference between the client/server and SOA models.

Choosing Between Client/Server and SOA
Terminology is important in any meaningful discussion about SOA. Table 21-1 defines the terms I’ll
be using in this chapter.

Lhotka_1019-1.book Page 675 Tuesday, November 18, 2008 3:42 PM

676 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

In short, this means that an application is a self-contained entity. It might be a WPF application,
a web application, or a service. Each application might be deployed using a single-, 2-, or n-tier phys-
ical model, and each application should be implemented using an n-layer logical model, as described
in Chapter 1.

This also means that services are used for communication between applications, not inside
them. Service communication is used to cross a trust boundary from one application to another
application.

When you start connecting different applications to each other using services, you are creating
a system. None of these applications should trust each other; each one has its own trust boundary.
However, they can interact with each other by passing messages, resulting in a loosely coupled envi-
ronment where (within reason) each application can be independently versioned and maintained
without breaking the overall system.

The reality is that few organizations are building XML services or Web Services in a service-
oriented manner. The vast majority of XML services are built using an n-tier client/server mindset.

There’s nothing wrong with using XML services to build client/server applications. (I obviously
think client/server is valuable; look at the data portal.) However, it is important to realize the strong
difference between n-tier and SOA, so you can consciously choose which architecture you want to
pursue.

In Chapter 15, I demonstrated one way to use WCF to implement client/server, so this chapter
will focus on a message-based, service-oriented implementation. In this context, your application is
either a service provider or a service consumer (or it could be both).

Table 21-1. Important Service-Oriented Terms

Term Definition

Application A set of behaviors implemented within a logical trust boundary.
This term includes traditional single-, 2-, and n-tier applica-
tions, as well as applications that consume services, and
applications that provide a service interface.

Edge application An application that provides a user interface and consumes
services from other applications. It sits on the “edge” of
the system.

Logical trust boundary A boundary describing both security and semantic trust. Data
or messages crossing this boundary are going to or coming
from code that is not trusted, either due to security or because
you don’t know if that code follows your semantic rules.

XML service (or just service) An application that implements its interface layer in the form
of XML messages that are received from, or returned to, a
consuming application.

Consuming application An application that interacts with one or more other applica-
tions using XML messages.

System A group of two or more applications that interact with each
other using XML messages.

Lhotka_1019-1.book Page 676 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 677

If your application is a service provider, you should understand that XML services are funda-
mentally just a text format for data interchange, much like HTML is for a web application. To be
clear, I am suggesting that an XML service is merely another type of interface for an application. I’ve
already discussed WPF and Web Forms interfaces, which allow a user to access an application. A
service that accepts and returns XML messages is just another type of interface, as shown in Figure 21-1.

Figure 21-1. Various types of application interface

XML services are simply another type of interface that the application can make available. The
primary difference is that an XML service interface is designed for use by other applications, not by
users directly. Another application can use these services to get or update data in your application.
This other application that’s consuming your data may or may not have users of its own. This concept is
illustrated in Figure 21-2, where you can see a consuming application without an end user, and an
edge application that provides a user interface for some human end user.

Figure 21-2. Consuming a service interface

Overview of WCF Services
At an abstract level, XML services enable one application to call procedures or methods in another
application. On the surface, this is similar to the aims of RPC, DCOM, RMI, IIOP, and .NET Remoting—
all of these technologies enable one application to invoke procedures in another application.

Lhotka_1019-1.book Page 677 Tuesday, November 18, 2008 3:42 PM

678 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

■Note It’s also possible to view these technologies as a way for two components in the same application to interact
with each other. While this is definitely a common use for the other technologies I mention, it isn’t the intended use
of XML services. XML services are designed for cross-application communication, not cross-component communi-
cation. This is because the focus is loosely coupled interoperability. Due to this focus, XML services don’t offer the
same performance or features as the other more platform-specific technologies listed.

The primary technology provided in .NET for creating and consuming XML services is the WCF,
which enables the creation of services and consuming applications using a standardized API. It supports
numerous network transport options, including

• HTTP

• TCP sockets

• Named pipes

• MSMQ

WCF also supports the WS-* standards, including

• Messaging

• Addressing

• Metadata exchange

• Policy

• Security policy

• Security

• Trust

• Secure conversation

• Reliable messaging

• Coordination

• Atomic transaction

WCF is also extremely extensible and continues to evolve. For example, while I use the term XML
services, it is possible to build a service that accepts and returns messages encoded in the JavaScript
Object Notation (JSON) format. Architecturally, there’s no significant difference; the data on the
network is simply in a different format. Another example is support for REST services. There are
some design differences between traditional XML services and REST services, but architecturally
they remain comparable.

Complete coverage of WCF requires entire books, so this chapter won’t discuss all these features
and options. My focus in this chapter is on the architecture and design you should use when building
an XML service interface on top of your business objects.

Lhotka_1019-1.book Page 678 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 679

Elements of a WCF Service
A WCF service consists of several elements. All the elements listed in Table 21-2 work together to
implement the service and to expose it to consuming applications.

I’ll discuss each of these in more detail.

Endpoint Configuration

The three items listed in Table 21-3 define the configuration for a WCF service endpoint.

Of these, the binding and contract are the most complex.
The address is usually an http:// URL, such as

 http://myserver/myroot/myservice.svc

Table 21-2. Elements of a WCF Service

Element Description

Endpoint configuration Configuration settings in web.config defining the address, binding,
and contract for the service

Service contract Definition of the operations, data types, and fault types exposed to
a consuming application

Endpoint definition A svc file connecting the service’s endpoint to a specific class that
contains the service implementation

Service implementation The implementation of the service contract and associated operations

Table 21-3. Definition of a WCF Service

Element Description

Address A URI describing where to find the service. Often this is an http:// URL, but there are
URI formats describing TCP sockets, named pipes, and all other network transports
supported by WCF.

Binding Defines the transport technology and related options used to communicate between
the consumer and provider of the service. The binding describes not only the
transport technology, but also options such as encryption, authentication, and
reliability.

Contract Describes the specific service methods, data formats, and error formats accepted
and returned by the WCF service.

Lhotka_1019-1.book Page 679 Tuesday, November 18, 2008 3:42 PM

http://URL
http://URL
http://myserver/myroot/myservice.svc

680 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

The specific address format will vary slightly if you use a different network transport technology,
but the basic concept is always the same: the address describes the location of the service.

Bindings are complex, because the binding describes the configuration for the technology used
to transport messages to and from the service. Configuring bindings for various technologies, and all
the related options such as security, can be complex and time consuming.

The configuration of bindings is outside the scope of this book. You should know, however, that
the two most common bindings are wsHttpBinding and basicHttpBinding:

• wsHttpBinding: Allows you to use the features of WCF. This is the default binding for most
WCF-to-WCF communication. It employs the WS-* standards, so it may work with other XML
service technologies if they also fully support the standards.

• basicHttpBinding: Provides an older protocol that is compatible with asmx Web Services. It is
also useful when working with Silverlight 2.0 clients and other client technologies that don’t
fully support the advanced WS-* standards.

Contracts can be complex, because they describe the shape of the WCF service itself. The contract
for a service is really the definition of the service, and the contract contains the information required
to create a consumer for the service. Much of the focus of this chapter is on the definition of contracts
and how to implement a service that meets the contract’s requirements.

These elements are expressed in web.config when configuring the WCF service endpoint—for
example:

 <system.serviceModel>
 <services>
 <service name="MyService">
 <endpoint address=""
 binding="wsHttpBinding"
 contract="IMyService" />
 </service>
 </system.serviceModel>

When hosting your service in IIS, you don’t need to provide the address property because it is
calculated based on the server name and the virtual root name in IIS. However, you do need to specify
the binding and contract.

Configuration is perhaps the most complex part of working with WCF. This example illustrates
the simplest configuration of an address, binding, and contract. Most production applications will
have a lot more XML to configure security, time-outs, message size limits, and many other features.
Visual Studio will help you with some of this configuration, but you will need to read a book or two
on WCF to fully understand all the options and how to use them.

The Microsoft Patterns and Practices group has created a guidance project to help address this
complexity. You can find details at www.codeplex.com/WCFSecurity.

Service Contract

Table 21-4 lists the primary elements of a contract for a WCF service. Defining a contract requires
that you think about all these elements.

All three of these elements work together to define the overall contract for a WCF service.

Lhotka_1019-1.book Page 680 Tuesday, November 18, 2008 3:42 PM

http://www.codeplex.com/WCFSecurity

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 681

ServiceContract Attribute

The service contract is implemented as a .NET interface, decorated with WCF-specific attributes—
for example:

 [ServiceContract]
 public interface IMyService
 {
 [OperationContract]
 ResultData[] MyOperation();
 [OperationContract]
 [FaultContract(typeof(AuthorizationFault))]
 ResultMessage OtherOperation(RequestMessage request);
 }

The interface uses the ServiceContract attribute to indicate that it defines a service contract.
Each method that is exposed to a consuming application is decorated with the OperationContract
attribute. This means you can define an interface with some methods that are available only on the
server, and with others that are available both on the server and to consuming applications. I recom-
mend you avoid mixing those concepts and mark all methods in an interface with OperationContract. If
you have methods that can be only called on the server, you should put them in a separate interface
for clarity.

Also notice that the methods accept and return complex types, such as ResultData, ResultMessage,
and RequestMessage. These are simple .NET classes, but they include attributes so they define specific
data contracts. The service contract defines which data contracts are included as part of the overall
contract for the WCF service.

The FaultContract attribute specifies the type AuthorizationFault. The FaultContract attribute
is used to connect a fault contract to a service operation. This means that OtherOperation() can
return a successful result or an AuthorizationFault. Both are valid responses that a consuming
application should expect and handle properly.

DataContract Attribute

The service contract defines the operations, or service methods, that a consuming application can
call. Operations often accept parameters and return results, and each of these parameter and result
types are defined as a data contract.

Table 21-4. Primary Elements of a Service Contract

Element Description

Service contract Defines the operations (service methods) exposed by the service that can be
called by a consuming application

Data contract Defines the shape of message data sent to or from the service

Fault contract Defines any nonsuccessful responses that may be generated when a consuming
application calls a service

Lhotka_1019-1.book Page 681 Tuesday, November 18, 2008 3:42 PM

682 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

Technically, it is possible for an operation to accept and return primitive types, but I strongly
recommend against this. If your operation accepts a primitive type, such as int, you’ll have a hard
time versioning your service over time. Remember that the operations and their parameter/result
types are all part of the contract. Changing them breaks the contract.

For example, you could define an operation like this:

 CustomerData[] FindCustomers(string name);

This works great until you need to enhance the service to also find customers with sales less than
some value. If you’ve used primitive types on your contract, all you can do is add a new method.

 CustomerData[] FindCustomersBySales(double max);

This might not be so bad until you also have to find customers with sales greater than some
value.

 CustomerData[] FindCustomersBySales2(double min);

Pretty soon, you’re reinventing the Win32 API or replicating many of the COM component APIs
from the 1990s. No one wants that.

A better solution is to use data contract types for all parameter and return values. In that case,
your operation is defined like this:

 FindCustomerResponse[] FindCustomersBySales(FindCustomerRequest request);

Then you can define the two data contracts. FindCustomerResponse may look like this:

 [DataContract]
 public class FindCustomerResponse
 {
 [DataMember]
 public int Id { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 [DataMember]
 public double SalesTotal { get; set; }
 }

The DataContract attribute indicates that this class defines a data contract. The DataMember
attribute, which you can apply to fields or properties, indicates that the element is part of the
contract. When an instance of FindCustomerResponse is serialized, all DataMember elements are included
in the resulting byte stream.

The FindCustomerRequest class may start like this:

 [DataContract]
 public class FindCustomerRequest
 {
 [DataMember]
 public string Name { get; set; }
 }

As you discover new requirements, you can add elements to the data contract without breaking
the service contract (and thus without breaking existing consuming applications).

Lhotka_1019-1.book Page 682 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 683

 [DataContract]
 public class FindCustomerRequest
 {
 [DataMember]
 public string Name { get; set; }
 [DataMember(Order=2)]
 public double MaxSales { get; set; }
 [DataMember(Order=3)]
 public double MinSales { get; set; }
 }

The Order parameter to the DataMember attribute indicates which version of the data contract
introduced the new element. You can use this technique to extend the contract of your WCF service
over time without needing to add new operations.

FaultContract Attribute

The final part of a contract for a WCF service is the fault contract. When an operation is called, it
either succeeds or fails. If it succeeds, the operation will typically return some information through
a defined data contract. Failure is more complex, because there are different kinds of failure.

Failure might be due to something entirely unexpected or exceptional. In that case, the opera-
tion will typically throw an exception, which flows back through WCF to the consuming application
as an unexpected fault. An unexpected fault not only tells the consuming application that the oper-
ation failed, but it faults the WCF channel, which means that the network channel is no longer valid.

However, it is also possible that the operation could fail due to something you do expect. For
example, your operation may do some authorization, and you may know ahead of time that the
authorization could fail. Or the operation may include business rules, and if certain business rules or
requirements aren’t met, the operation could fail. These expected failures are also returned to the
consuming application as faults, but they are expected faults that indicate a valid, though unsuccessful,
response.

How does a consuming application know which faults are “normal”? These faults are described
as a fault contract, so the consuming application knows they are a valid (if unsuccessful) result.

■Note Not all XML service technologies support the concept of fault contracts. For example, the WCF implementation
in Silverlight 2.0 doesn’t support this concept, so Silverlight can’t call operations decorated with the FaultContract
attribute. Make sure your consuming applications can support fault contracts before you use them.

The FaultContract attribute is applied to an operation and defines a serializable type that is
returned to contain information about the fault.

 [FaultContract(typeof(MyFault))]

This serializable type is a data contract. Within the service implementation, the code may throw
a fault using this type:

 MyFault fault = new MyFault();
 // set fault properties here
 throw new FaultException<MyFault>(fault, "The code cannot run");

The information in the MyFault object is returned to the consuming application to indicate that
the operation failed, but that it failed in an expected or valid manner. A responsible consuming appli-
cation will be implemented to expect and properly handle any faults declared by a service.

Lhotka_1019-1.book Page 683 Tuesday, November 18, 2008 3:42 PM

684 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

If the consuming application is written using WCF, it’ll get a FaultException<T> that contains a
client-side representation of the MyFault object, along with the message text provided directly to the
FaultException on the server. Again, a responsible consuming application will be expected to handle
any faults declared as a FaultContract on each operation.

Endpoint Definition

A WCF service is exposed to consumers through an endpoint. This endpoint is expressed as a svc file
that connects the endpoint to the code that implements the service contract. You can put the service
code directly into the svc file, but I prefer to keep the code separate for clarity. Here’s a typical svc
file named MyService.svc:

 <%@ ServiceHost Language=C#
 Debug="true"
 Service="MyService"
 CodeBehind="~/App_Code/MyService.cs" %>

The primary properties here are Service and CodeBehind. The Service property specifies the
name of the class that implements the service. The CodeBehind property specifies the location of the
code file containing the code for that class.

■Note You could also put your service implementation in a separate Class Library assembly. In that case, you
would not use the CodeBehind attribute; instead, you would provide the full type name of the class that imple-
ments the service in the Service property.

A consuming application will reference this MyService.svc as the entry point to the service
implementation.

Service Implementation

At this point, most of the WCF-specific work is done. You’ve seen how to configure the endpoint,
define the endpoint, and define the contract for the service. All that remains is to implement the
service, which is pretty much all about your business and application requirements, not about WCF.

Remember that the service contract is defined as a .NET interface, with some WCF-specific
attributes attached. Your service implementation is just a .NET class that implements that interface—
for example:

 public class MyService : IMyService
 {
 public ResultData[] MyOperation()
 {
 // implement operation here
 }

 public ResultMessage OtherOperation(RequestMessage request)
 {
 // implement operation here
 }
 }

Lhotka_1019-1.book Page 684 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 685

The method implementations are typically business-focused. However, it is important to under-
stand one key design issue: your internal implementation and data structures should be separate
from the external data contract structures.

In other words, you shouldn’t use ResultData, ResultMessage, or RequestMessage as business
types or as types that are retrieved or stored directly into your database. These types are part of your
public contract, and changing them is difficult and risky. Any change to these types risks breaking
any consuming applications.

If you allow your business code to rely on these types directly, then changing your business code
becomes difficult, because you are tying your external interface to your internal implementation.
This is a direct violation of the concept of encapsulation, and encapsulation is one of the most powerful
tools in the arsenal of object-oriented and service-oriented programming.

As you look at the ProjectTracker sample code later in this chapter, you’ll see that I use the busi-
ness object types from ProjectTracker.Library as my internal implementation, and I have entirely
separate data contract types to define the public contract of the service. I do this specifically to achieve
encapsulation and to preserve the maintainability of both my application and my service contract.

■Note Business objects created using CSLA .NET cannot be directly exposed as part of a service contract. The
serialization process used by WCF will not serialize a CSLA-style business object. When using CSLA .NET to create
your business layer, you must plan to expose separate data contract types in your service contract, which is what
you should do in any case.

At this point, you should understand how to define a service contract, define and configure an
endpoint, and implement the service contract as a service implementation. In many cases, this is
enough information to build your services.

The ProjectTracker application is a bit more complex, however, because it uses a custom authenti-
cation scheme, where the user’s credentials are validated against data in a custom SQL Server database.
Unfortunately, this turns out to be one of the most complex security scenarios to implement in WCF,
so before I get into the ProjectTracker WCF service, you’ll need to understand how the custom
authentication process works in WCF.

Custom Authentication
If you’re using custom authentication in your business objects, you’ll typically want the client to
pass a username and password to the service. The service can then authenticate those credentials
and set up your custom principal object for use by the server code.

This section of the chapter is pretty intense. WCF configuration can get very complex. You
should know that when using Windows AD authentication or the ASP.NET MembershipProvider
model, things are much simpler and you can essentially skip this section of the chapter. However,
the ProjectTracker application does use a custom username/password authentication model, as do
many web applications in the world. If you have a similar situation, then buckle your seat belt and
read on.

You can easily authenticate the credentials and set up the principal object using a CSLA .NET–
style custom principal object. For example, in ProjectTracker, the PTPrincipal class has a Login()
method to do this:

 PTPrincipal.Login(username, password);

Unfortunately, getting the username and password from a client into a WCF service is challenging.
Remember that this is a function of security, so a lot of infrastructure and configuration work is

Lhotka_1019-1.book Page 685 Tuesday, November 18, 2008 3:42 PM

686 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

required to get all the security pieces set up before you can safely pass a username and password
across the network.

WCF is designed to be secure, so it won’t allow you to pass a username and password without
first having a secure and encrypted binding. To do that, you first need a server certificate, either for
SSL or for WCF’s built-in, message-level security. Creating, installing, and configuring a test certifi-
cate is challenging. After that, some of the WCF configuration and code to use the certificate is also a
bit complex.

Three steps are required:

1. Acquire or create an X.509 certificate.

2. Configure WCF to use message-level security.

3. Configure WCF to use username credentials.

I’ll walk through each of these steps.

Acquiring an X.509 Certificate

Securing a service or a website is typically done with something commonly called an SSL certificate,
which is more formally called an X.509 certificate. In a production Internet environment, a commercial
firm like VeriSign or RapidSSL typically issues these certificates. These commercial certificates are
cryptographically linked to a trusted root certificate, and all the major vendors have their root certif-
icates installed automatically on Windows, so all Windows clients automatically trust the certificates
they sell to their customers.

In a production intranet environment, the certificates might come from your organization itself.
Many organizations have their own internal certificate authority and their own internally trusted
root certificate. Certificates issued by an organization are trusted only by computers within the organiza-
tion (because they install the organization’s trusted root certificate), not by all computers in the world.

In a development or test environment, the developer often creates the certificates. A developer
might use a tool like makecert.exe, which comes with the Microsoft .NET SDK. Such a certificate isn’t
linked to any trusted root certificate, so no one trusts it unless the user on a specific machine trusts
it specifically.

Creating a Test Certificate

Since most of us do development without access to either production or corporate certificates, it is
important to understand how to create and install a test certificate. This is the focus of the rest of
this section.

■Note If you do have access to the private key of a production or organizational certificate, you can use that
instead of creating your own as discussed here.

Creating and installing a certificate is a multistep process:

1. Create the certificate using makecert.exe.

2. Install the certificate in the LocalMachine certificate store.

3. Grant IIS access to the certificate file.

4. Copy the certificate to the TrustedPeople certificate store on any test client machines.

Lhotka_1019-1.book Page 686 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 687

Creating the Certificate

The Microsoft .NET SDK comes with a tool called makecert.exe. This complex tool has a lot of different
uses and options. The article, “X.509 Certificate Validator” (MSDN, http://msdn2.microsoft.com/
en-us/library/aa354512.aspx), describes in detail how to use the tool to create a certificate.

In summary, you can use the following command line to create a test certificate:

 makecert –n CN=localhost localhost.cer –sky exchange –ss My –sr LocalMachine

Table 21-5 lists the arguments and their meaning.

It is important to realize that this command not only creates the certificate, but it also installs
it for use by the server. This means that you should run this command on the machine that will be
hosting your WCF service.

In my example, I use the name CN=localhost because I’m running both the client and service
components on the same development machine. The machine’s domain name is localhost for all
code on the same machine, and having the certificate name match the machine’s domain name
simplifies WCF configuration.

If you plan to use test clients that are on different machines, you’ll want to use a public machine
name for your certificate name, or some arbitrary name such as the name of your service. That last
option requires a little more configuration of WCF.

Granting Access to the Certificate to IIS

Even though the certificate is installed into the LocalMachine certificate store, it isn’t entirely available to
IIS without some extra work. The reason is that websites run under a limited user account on the
server. They don’t, by default, have access to the key file that contains the certificate’s private key
information.

Granting access to the key file is complicated by the fact that actually finding the key file can be
challenging. To help address this, the WCF team at Microsoft has provided a sample application
called FindPrivateKey. The “FindPrivateKey” article (MSDN, http://msdn2.microsoft.com/EN-US/
library/aa717039.aspx) provides details and download information about FindPrivateKey.

Once you’ve downloaded and built the sample application, you can run it as follows:

Table 21-5. Makecert.exe Arguments

Argument Meaning

-n CN=localhost Defines the name of the certificate. If possible, this should be the
network domain name of your server, but you can provide a name
unique to your service if desired.

localhost.cer This optional argument indicates that the certificate should be saved to
a file named localhost.cer. This can simplify the process of installing
the certificate on other test client machines.

-sky exchange Specifies that the certificate should support key exchange. This is
required for WCF, because a key-exchange process occurs as the
secure channel is established.

-ss My Indicates that the certificate should be installed to the certificate store
named My.

-sr LocalMachine Indicates that the certificate should be installed to the LocalMachine
certificate store location.

Lhotka_1019-1.book Page 687 Tuesday, November 18, 2008 3:42 PM

http://msdn2.microsoft.com
http://msdn2.microsoft.com/EN-US

688 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 findprivatekey My LocalMachine –n "CN=localhost" –a

The result is the full path to the certificate file corresponding to CN=localhost in the LocalHost/
My certificate store.

You can then use the cacls.exe tool to grant access to the IIS account. For example, you’d enter
the following command (on one line):

cacls.eXE " ??? C:\Documents and Settings\All Users\Application Data\Microsoft\Crypto\RSA
\MachineKeys\8aeda5eb81555f14f8f9960745b5a40d_38f7de48-5ee9-452d-8a5a-92789d7110b1"
/E /G "NETWORK_SERVICE":R

In this example, you can see both the full path to the certificate file (from the FindPrivateKey
utility) and the account that is granted access (NETWORK_SERVICE). This is because I am working on
Windows Server 2003, and it would be the same on Windows Vista. On Windows XP, however, you’d
grant access to the ASPNET account.

The result is that your service, when hosted in IIS, will have access to the certificate’s private key,
so it can use that information to sign and encrypt messages.

Trusting the Certificate

Though the makecert.exe command shown earlier installs the certificate for server use, it doesn’t
make your machine trust the certificate. Because a trusted root authority didn’t issue the certificate,
you must manually establish that you trust the certificate.

To do this, you must copy the certificate into your TrustedPeople certificate store. You can do
this using the certmgr.exe tool.

 certmgr -add –c –n localhost –r LocalMachine –s My –r CurrentUser –s
TrustedPeople

Table 21-6 lists the arguments to the command and their purpose. The article, “How to: Make X.509
Certificates Accessible to WCF” (MSDN, http://msdn2.microsoft.com/en-us/library/aa702621.aspx),
discusses the process in more detail as it relates to WCF.

In short, this command copies the certificate from LocalMachine/My to CurrentUser/TrustedPeople.
Server components use the LocalMachine/My certificate store, while interactive user applications use
CurrentUser/TrustedPeople.

Table 21-6. Certmgr.exe Arguments

Argument Meaning

-add Specifies that the certificate should be added to a certificate store

-c Indicates that the certificate should be copied from another
certificate store

-n localhost Specifies the name of the certificate to be copied

-r LocalMachine Indicates the source certificate store location

-s My Indicates the source certificate store name

-r CurrentUser Indicates the target certificate store location

-s TrustedPeople Indicates the target certificate store name

Lhotka_1019-1.book Page 688 Tuesday, November 18, 2008 3:42 PM

http://msdn2.microsoft.com/en-us/library/aa702621.aspx

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 689

Manual Installation

Another way you can install the certificate is by double-clicking the .cer file. You need to use this
technique to install the certificate onto other client machines. This brings up a dialog that allows you
to view details about the certificate.

Click the Install Certificate button to bring up the Certificate Import Wizard. Figure 21-3 shows
the key panel of the wizard, where you must specify to install the certificate into the Other People
store, which corresponds to CurrentUser/TrustedPeople.

Figure 21-3. Installing the certificate into the Other People store

The result is the same: the current user can now use the certificate to communicate with the server.

Configuring WCF to Use Message Security

WCF can use transport-level security, like SSL; message-level security, like I’ll discuss in this section;
or a combination of both. The important thing is that you must use some form of security (encryp-
tion and signing of data) before you can send a custom username and password from the client to
your service.

If you’re already set up to use SSL security, you don’t need to switch to message security. However,
if you’re not using any security, it is often simpler to set up message security as shown here. The
process involves customizing the behavior for both the service endpoint and the corresponding
client configuration.

Configuring the Service

By default, the wsHttpBinding uses message-level security, but you need to provide a certificate for
the security to actually be enabled. Configuring the service to use a certificate is done through a
behavior. As with everything in WCF, you can configure the behavior through code, but it is more
commonly done through the configuration file.

The config file needs to now include a custom service behavior.

Lhotka_1019-1.book Page 689 Tuesday, November 18, 2008 3:42 PM

690 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="ServiceCertificate">
 <serviceCredentials>
 <serviceCertificate
 findValue="localhost"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service name="MyService"
 behaviorConfiguration="ServiceCertificate">
 <endpoint address=""
 binding="wsHttpBinding"
 contract="IMyService" />
 </service>
 </system.serviceModel>

Notice how the behaviorConfiguration property is now set on the service element to indicate
that the service should use this custom behavior.

In the behavior element, the serviceCertificate element indicates how to find the certificate
to be used to secure the communication channel. Table 21-7 lists the properties of this element.

The result is that this behavior now requires that the communication be encrypted using the
defined certificate.

Configuring the Client

All clients calling the service must also understand that a certificate is required for secure communi-
cation. On the client, you can configure WCF through code or in the client’s config file. Typically, the
configuration is through the config file, and that’s what I’ll show here.

As with the server, the client defines an endpoint with an address, binding, and contract. These
properties must match those on the server, so both agree on the method of communication. Here’s
the simplest client configuration (prior to adding the requirement for encryption):

Table 21-7. Properties of the serviceCertificate Element

Property Description

findValue The name of the certificate to find. This name must correspond to the name
used earlier to name the certificate (CN=localhost).

storeLocation The certificate store location containing the certificate.

storeName The certificate store name containing the certificate.

X509FindType Specifies which properties to use when searching for the certificate. In this
case, the search is by subject name (the CN= value).

Lhotka_1019-1.book Page 690 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 691

 <system.serviceModel>
 <client>
 <endpoint name="MyService"
 address="http://localhost/MyService/MyService.svc"
 binding="wsHttpBinding"
 contract="MyService.IMyService">
 </endpoint>
 </client>
 </system.serviceModel>

This is much like the configuration for a server, except the endpoint element is contained in a
client element. If a custom behavior is added on the server, an equivalent change is required on the
client. The following illustrates the changes required in the client’s configuration file:

 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <authentication certificateValidationMode="PeerTrust"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <client>
 <endpoint name="MyService"
 behaviorConfiguration="ServiceCertificate"
 address="http://localhost/MyService/MyService.svc"
 binding="wsHttpBinding"
 contract="MyService.IMyService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 </client>

There are two important changes here. First, the client endpoint now uses a customized
behavior named ServiceCertificate. This behavior specifies that the service requires a certificate
and that the client should validate the certificate using PeerTrust.

The default is ChainTrust, meaning that trust flows down from a trusted root certificate. With a
test certificate, however, there is no trusted root, so that would fail. The PeerTrust option indicates
that trust flows from the TrustedPeople certificate store location, where the certificate was installed
in the previous section.

■Note This configuration setting is just for testing. In a production environment, you would typically use the
default ChainTrust, because a production certificate would have a trusted root authority from a commercial
vendor or from your organization itself.

Lhotka_1019-1.book Page 691 Tuesday, November 18, 2008 3:42 PM

http://localhost/MyService/MyService.svc
http://localhost/MyService/MyService.svc

692 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

Second, the identity element specifies the name of the certificate to use. This is not required here,
because the certificate name, localhost, matches the domain name for the server, http://localhost/
<etc>. However, if your certificate name does not match the server domain name, then you must use
the identity element as shown to specify the name of the certificate.

At this point, the service and client are both configured to use message-level secure
communications.

Configuring a Service to Use Username Credentials

By default, most common WCF bindings use Windows credentials from the client. This is true even
if the client provides a username and password, as they are assumed to correspond to a Windows
user account in the server’s Windows domain.

If you want to use custom authentication and create a custom security principal object for your
service, you need to configure WCF to use your authentication components instead of the defaults.
You can do this in a couple of different ways:

• Create custom ASP.NET membership and role providers and configure WCF to use your
custom providers.

• Create a custom WCF username/password validator and authorization policy object.

Both techniques are valid, but the second one is an entirely WCF solution, and it turns out to be
relatively simple to implement. As a result, it is the second option I’ll discuss in this section.

Using a custom principal object requires changes to the service, both in configuration and code.
WCF allows customization for both authentication and authorization. In each case, a class must be
created with a custom implementation of the required behavior. These two classes are invoked at
different times during the WCF initialization process on every service call.

Unfortunately, the strong separation of these two concepts in WCF complicates matters a little.
After the credential validation step, WCF clears the principal object from the current thread. Later in
the process, the principal can be set for the service’s thread, but at that point in time, the credentials
are no longer available.

This means that the credential validation step must somehow cache the results of the Login()
method in memory so that the principal object can be made current later in the process, as shown in
Figure 21-4. This is the purpose behind the PrincipalCache object in Csla.Security.

Figure 21-4. Authentication and authorization during WCF initialization

Lhotka_1019-1.book Page 692 Tuesday, November 18, 2008 3:42 PM

http://localhost

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 693

The PrincipalCache object caches principal objects at the AppDomain level. Since WCF guarantees
that a consistent AppDomain is used throughout the life of a service call, this is a safe location for such
a cache.

To minimize memory consumption, the PrincipalCache object is implemented as a circular list
with a default size of ten items. Keep in mind that the principal object only needs to be cached for
the fraction of a second it takes WCF to go through its initialization process prior to invoking the
service itself, so the size of the cache should be roughly the same as the number of service requests
you expect to occur at any instance in time.

You can control the size of the cache by using the CslaPrincipalCacheSize key in the server’s
web.config file.

 <appSettings>
 <add key="CslaPrincipalCacheSize" value="20" />
 </appSettings>

This overrides the default, expanding the cache to keep the most recent 20 principal objects
in memory.

Without the PrincipalCache object, the authorization step would need to go back to the security
database to reload the principal object. This would result in two hits to the security database for
every service request.

Even with the PrincipalCache object, a second hit to the security database may be required. If
the cache is configured to be too small, there’s a chance that the principal object could be gone from the
cache in the fraction of a second it takes to get from authentication to authorization. To prevent this
unlikely occurrence from causing a failure, your authorization code should have the option of reloading
the principal from the database if needed, and that’s the approach I’ll illustrate in this chapter.

Modifying PTPrincipal

Before I get into the WCF authorization and authentication code, it is necessary to modify PTPrincipal
and PTIdentity to accommodate the separation between authentication and authorization.

WCF validates the user’s credentials early in the process. Later in the process, WCF creates an
authorization policy object that defines the principal and identity objects to be used as the service is
executed. This authorization policy object is only provided with the username value, not the password,
so PTPrincipal needs a way to load the principal and identity objects based purely on the username.

This requirement isn’t unique to WCF. When creating a totally stateless web application, the
custom principal can’t be held in Session on the web server. Instead, it must be reloaded on each
page request, based purely on the username. While ASP.NET forms authentication doesn’t maintain
the password, the username is provided on every page request. You can also use this
LoadPrincipal() method to reload the principal from the database on every page request.

The LoadPrincipal() method is similar to the Login() method, except that it only requires a
username, not a password. In fact, I’ve altered the Login() method to share some code.

 public static bool Login(string username, string password)
 {
 return SetPrincipal(PTIdentity.GetIdentity(username, password));
 }

 public static void LoadPrincipal(string username)
 {
 SetPrincipal(PTIdentity.GetIdentity(username));
 }

Lhotka_1019-1.book Page 693 Tuesday, November 18, 2008 3:42 PM

694 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 private static bool SetPrincipal(PTIdentity identity)
 {
 if (identity.IsAuthenticated)
 {
 PTPrincipal principal = new PTPrincipal(identity);
 Csla.ApplicationContext.User = principal;
 }
 return identity.IsAuthenticated;
 }

The highlighted line of code invokes a new overload of the GetIdentity() factory method on
PTIdentity. This overload uses a different criteria object that contains only the username and calls
an overload of DataPortal_Fetch() in PTIdentity:

 private void DataPortal_Fetch(LoadOnlyCriteria criteria)
 {
 using (var ctx = ContextManager<SecurityDataContext>.
 GetManager(ProjectTracker.DalLinq.Database.Security))
 {
 var data = from u in ctx.DataContext.Users
 where u.Username == criteria.Username
 select u;
 if (data.Count() > 0)
 Fetch(data.Single());
 else
 Fetch(null);
 }
 }

The original login process is unchanged. The UI can either call Login(username, password) or
LoadPrincipal(username), and the result will be the same. Of course, only the Login() method actu-
ally validates the user’s credentials. I’ll use the new LoadPrincipal() method in the implementation
of the custom WCF authorization behavior.

Custom UserNamePasswordValidator

In WCF, custom username authorization is handled by subclassing UserNamePasswordValidator from the
System.IdentityModel.Selectors namespace. The implementation of this class is not complex. If the
user’s credentials are valid, the method will return without an exception. If the credentials are invalid,
the method must throw an exception. Only users with valid username/password combinations get
past this point in the process.

It is important to realize that you cannot set the current principal at this point. WCF makes no
guarantee that this code will run on the same thread as the actual service instance, and it explicitly
resets the principal object at a point after this method completes. However, using the approach
shown in Figure 21-4, it is possible to cache the principal in memory for use later by using the
PrincipalCache object.

In this section of the chapter, I’m going to walk through the actual code used in the ProjectTracker
application, because this will allow you to examine the code and configuration from the download
in context. You can find the CredentialValidator class in the PTWcfServiceAuth project in
ProjectTracker.

public class CredentialValidator : UserNamePasswordValidator
 {
 public override void Validate(string userName, string password)
 {

Lhotka_1019-1.book Page 694 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 695

 if (userName != "anonymous")
 {
 PTPrincipal.Logout();
 if (!PTPrincipal.Login(userName, password))
 throw new FaultException("Unknown username or password");

 // add current principal to rolling cache
 Csla.Security.PrincipalCache.AddPrincipal(Csla.ApplicationContext.User);
 }
 }
 }

Notice the call to the Logout() method. This is required because the data portal must have a
valid—even if unauthenticated—principal to work. Without the call to Logout(), the Login() call
would throw a data portal exception due to having an invalid principal on the thread.

If the Login() call succeeds, the resulting principal (which is temporarily the current principal
until this method completes) will be stored in the PrincipalCache object. This makes the principal
object available for use later in the service initialization process.

Finally, notice that special consideration is made for the username anonymous. Remember that
ProjectTracker allows unauthenticated users to access some information, so the application must
allow anonymous users to at least make some service calls. This special username will get extra
attention in the custom authorization policy class later.

I’ll discuss how to configure WCF to use the CredentialValidator class later in the chapter. For
now, it is enough to know that this code will be invoked early in the process as WCF initializes itself
for every service call.

Custom Authorization Policy

During the initialization process for every service call, WCF creates an authorization policy object.
This object is responsible for providing the principal and identity objects to be used during the service
call itself, so this is the point at which the custom principal and identity objects must be set.

To implement a custom authorization policy, a class must implement the IAuthorizationPolicy
interface from the System.IdentityModel.Policy namespace.

 public class PrincipalPolicy : IAuthorizationPolicy
 {
 private string _id = Guid.NewGuid().ToString();

 public string Id
 {
 get { return _id; }
 }

 public ClaimSet Issuer
 {
 get { return ClaimSet.System; }
 }

 public bool Evaluate(EvaluationContext context, ref object state)
 {
 // get the identities list from the context
 object obj;

Lhotka_1019-1.book Page 695 Tuesday, November 18, 2008 3:42 PM

696 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 if (!context.Properties.TryGetValue("Identities", out obj))
 return false;
 IList<IIdentity> identities = obj as IList<IIdentity>;

 // make sure there is already a default identity
 if (identities == null || identities.Count <= 0)
 return false;

 // try to get principal from rolling cache
 string username = identities[0].Name;
 IPrincipal principal = Csla.Security.PrincipalCache.GetPrincipal(username);

 if (principal == null)
 {
 PTPrincipal.Logout();
 if (username != "anonymous")
 {
 // load principal based on username authenticated in CredentialValidator
 PTPrincipal.LoadPrincipal(username);
 // add current principal to rolling cache
 Csla.Security.PrincipalCache.AddPrincipal(Csla.ApplicationContext.User);
 }
 principal = Csla.ApplicationContext.User;
 }

 // tell WCF to use the custom principal
 context.Properties["Principal"] = principal;

 // tell WCF to use the custom identity
 identities[0] = principal.Identity;

 return true;
 }
 }

The Evaluate() method is called to evaluate the current context and set the principal and iden-
tity. The highlighted lines of code show how the principal is retrieved from the PrincipalCache object
based on the username value available from the identity object, which is retrieved from the context.
Properties dictionary.

 string username = identities[0].Name;
 IPrincipal principal =
 Csla.Security.PrincipalCache.GetPrincipal(username);

The identity object from context.Properties is typically a GenericIdentity that merely contains
the name of the user, based on the credentials originally provided to CredentialValidator. WCF
created this identity object, which should be replaced by the custom identity associated with the
custom principal object.

It is possible that there is no cached principal object matching the username. This can happen
for two reasons: because the anonymous username was used, or because a valid user’s principal was
flushed from the cache since CredentialValidator was called (meaning the cache size is too small).
Either way, some valid custom principal object must be created and made current.

Notice that the Logout() method is called before LoadPrincipal(). Remember that WCF clears
the principal object between authentication and setting the authorization policy, so when Evaluate() is
called by WCF, the principal is not a valid principal from the data portal’s perspective. In fact, it is just

Lhotka_1019-1.book Page 696 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 697

an authenticated GenericPrincipal at this point. The Logout() method makes sure there’s a valid
PTPrincipal on the thread before LoadPrincipal() tries to use the data portal.

If the anonymous username was used, then that unauthenticated custom principal is left as the
current principal. However, if the anonymous username wasn’t used, that indicates that the user’s
principal was flushed from the cache prematurely. The solution is to call the LoadPrincipal() method to
reload the principal and identity objects from the security database.

■Note You may also want to log that the anonymous username wasn’t used, as it indicates that your cache size
is too small to handle the number of service requests hitting your server.

The result is a valid custom principal that is current on the thread. You can use Csla.
ApplicationContext.User to get at the principal like you would in any other environment.

Both the principal and identity must also be made available to WCF by setting values in context.
Properties. The custom principal is provided to WCF through context.Properties.

 context.Properties["Principal"] = principal;

The custom identity replaces the old GenericIdentity created by WCF.

 identities[0] = principal.Identity;

This object is then used as the primary identity for the ServiceSecurityContext provided by WCF.
With these two classes defined in the PTWcfServiceAuth project, all that remains is to configure

PTWcfService to use them.

Server Configuration

WCF allows the use of custom username validation and authorization policy objects through config-
uration. However, before changing web.config, it is important to reference the PTWcfServiceAuth
project so that the assembly is available to the service. In the code download, look at the PTWcfService
website to see the full web.config file.

The highlighted lines of code show the changes to web.config necessary to use the custom vali-
dation and authorization policy types.

 <services>
 <service behaviorConfiguration="PTServiceBehavior" name="PTService">
 <endpoint address=""
 binding="wsHttpBinding" bindingConfiguration="UserNameWS"
 contract="IPTService" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>

 <bindings>
 <wsHttpBinding>
 <binding name="UserNameWS">
 <security mode="Message">
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

Lhotka_1019-1.book Page 697 Tuesday, November 18, 2008 3:42 PM

698 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 <behaviors>
 <serviceBehaviors>
 <behavior name="PTServiceBehavior">
 <serviceAuthorization principalPermissionMode="Custom">
 <authorizationPolicies>
 <add policyType="PTWcfServiceAuth.PrincipalPolicy,
 PTWcfServiceAuth"/>
 </authorizationPolicies>
 </serviceAuthorization>

 <serviceCredentials>
 <serviceCertificate
 findValue="localhost"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName" />
 <userNameAuthentication
 userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType=
 "PTWcfServiceAuth.CredentialValidator, PTWcfServiceAuth" />
 </serviceCredentials>
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>

The endpoint is configured to use a special bindingConfiguration named UserNameWS. That
defines a custom version of wsHttpBinding.

 <bindings>
 <wsHttpBinding>
 <binding name="UserNameWS">
 <security mode="Message">
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

It explicitly sets the security mode to Message, which is the default. More importantly, it specifies
that the clientCredentialType is UserName, so the service will require that callers provide a username
and password when calling the service.

Also, notice that the PTServiceBehavior behavior has been altered. A new serviceAuthorization
element has been added.

 <serviceAuthorization principalPermissionMode="Custom">
 <authorizationPolicies>
 <add policyType="PTWcfServiceAuth.PrincipalPolicy,
 PTWcfServiceAuth"/>
 </authorizationPolicies>
 </serviceAuthorization>

This specifies that the principalPermissionMode is Custom, which means that a custom authori-
zation policy must be defined. It is set to use a policyType that references the PrincipalPolicy class
discussed earlier in the chapter.

Lhotka_1019-1.book Page 698 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 699

The behavior’s serviceCredentials element has also been enhanced to define the
customUserNamePasswordValidatorType that refers to the CredentialValidator class discussed earlier
in the chapter.

 <userNameAuthentication
 userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType=
 "PTWcfServiceAuth.CredentialValidator, PTWcfServiceAuth" />

With these changes, WCF will now invoke the CredentialValidator to authenticate the caller’s
username and password. Assuming that the method doesn’t throw an exception, WCF will invoke
the PrincipalPolicy to set up the authorization policy later in the process. This will include the
custom principal and identity to be used by the service.

Providing a Username from the Client

The client application that calls the service must now provide a username with every call. It may
also provide a password, but WCF will require that a username value be provided that is not empty
or null. The client configuration also needs to change in order to reflect the changes made to the
service’s configuration.

In the client’s code, setting the username and password values is relatively straightforward. You
can see an example of the code in the PTWcfClient project.

 PTWcfService.ProjectData[] list = null;
 PTWcfService.PTServiceClient svc =
 new PTWcfClient.PTWcfService.PTServiceClient();
 try
 {
 svc.ClientCredentials.UserName.UserName = "pm";
 svc.ClientCredentials.UserName.Password = "pm";
 list = svc.GetProjectList();
 }
 finally
 {
 svc.Close();
 }
 this.projectDataBindingSource.DataSource = list;

Because the service supports the special anonymous username, this will also work (for methods
that don’t require special roles):

 PTWcfService.ProjectData[] list = null;
 PTWcfService.PTServiceClient svc =
 new PTWcfClient.PTWcfService.PTServiceClient();
 try
 {
 svc.ClientCredentials.UserName.UserName = "anonymous";
 list = svc.GetProjectList();
 }
 finally
 {
 svc.Close();
 }
 this.projectDataBindingSource.DataSource = list;

Lhotka_1019-1.book Page 699 Tuesday, November 18, 2008 3:42 PM

700 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

You might also use a channel factory to create the service proxy. In that case, you set the credentials
on the factory.

 PTWcfService.ProjectData[] list = null;
 ChannelFactory<PTWcfService.IPTService> factory =
 new ChannelFactory<PTWcfService.IPTService>("WSHttpBinding_IPTService");
 try
 {
 factory.Credentials.UserName.UserName = "pm";
 factory.Credentials.UserName.Password = "pm";
 PTWcfService.IPTService proxy = factory.CreateChannel();

 using (proxy as IDisposable)
 {
 list = proxy.GetProjectList();
 }
 }
 finally
 {
 factory.Close();
 }
 this.projectDataBindingSource.DataSource = list;

In this case, you can dispose the proxy, but you should call Close() on the factory object. Disposing
the factory may result in an exception from WCF, because WCF treats a Dispose() as an abnormal
scenario, whereas it treats Close()as a normal scenario.

Either way, the supplied values are passed securely to the service, where they are authenticated
and then used to load the custom principal and identity objects.

Client Configuration

One change is required to the caller’s WCF configuration, and it is highlighted here from the app.
config file in PTWcfClient:

 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding_IPTService" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true"
 allowCookies="false">
 <readerQuotas maxDepth="32"
 maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:10:00"
 enabled="false" />
 <security mode="Message">
 <transport clientCredentialType="Windows" proxyCredentialType="None"
 realm="" />

Lhotka_1019-1.book Page 700 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 701

 <message clientCredentialType="UserName"
 negotiateServiceCredential="true"
 algorithmSuite="Default"
 establishSecurityContext="true" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <behaviors>
 <endpointBehaviors>
 <behavior name="ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <authentication certificateValidationMode="PeerTrust"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <client>
 <endpoint
 behaviorConfiguration="ServiceCertificate"
 address="http://localhost/PTWcfServicecs/PTService.svc"
 binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IPTService"
 contract="PTWcfService.IPTService" name="WSHttpBinding_IPTService">
 </endpoint>
 </client>

If you handcraft your client configuration, much of what you see here will be optional. However,
if you allow Visual Studio to create the configuration for you, you’ll see something similar to this. The
highlighted lines of code merely specify that at the message level, the service expects a UserName type
credential.

 <message clientCredentialType="UserName"
 negotiateServiceCredential="true"
 algorithmSuite="Default" establishSecurityContext="true" />

With this change, the client will now properly pass the credentials through to the service.
I realize this section of the chapter has been pretty intense. WCF configuration can get complex,

and enabling some seemingly simple scenarios like passing a username/password combination to
the server can be difficult to figure out. However, if you use Windows AD authentication or the ASP.
NET MembershipProvider model, things will be much simpler.

Now that you have a basic understanding of the technologies behind WCF services, I’ll discuss
how to build an application interface using XML services.

Designing a WCF Service Interface
In many ways, a WCF service interface is easier to construct than a WPF or Web Forms interface,
because you don’t need to worry about any issues of display or user interaction. Those are the
responsibilities of the calling application. All the service needs to worry about is providing an inter-
face that allows the developer of a consumer application to access the information and functionality
provided by this application’s business logic and data.

Lhotka_1019-1.book Page 701 Tuesday, November 18, 2008 3:42 PM

http://localhost/PTWcfServicecs/PTService.svc

702 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

Service Design
You could subdivide the ProjectTracker application’s functionality in many different ways. For
example, you could be specific and provide a set of discrete service operations, such as those listed
in Table 21-8.

Following this approach, you could end up writing a rather large number of service operations!
Although it’s perfectly possible to do that, you might instead consider consolidating some of these
operations into methods with broader functionality, as follows:

• Get a list of projects

• Get details for a project

• Add or update a project

• Delete a project

• Get a list of resources

• Get details for a resource

• Add or update a resource

• Delete a resource

This is a smaller list of discrete operations, and by having fewer operations, there’s less code to
maintain. Moreover, this approach provides a higher level of abstraction—consumers have no idea
what happens when they request details for a project, and over time you may change how that process
works without having any impact on the consumers. Perhaps most importantly, having a small
number of operations tends to improve performance, since a client application needs to make fewer
cross-network method calls to get its work done.

The ProjectTracker WCF service interface, PTWcfService, implements the following set of
operations:

• GetProjectList()

• GetProject()

• AddProject()

• UpdateProject()

• GetRoles()

Table 21-8. Possible Service Operations

Add project Get project Remove project Change project name

Change project
start date

Change project end
date

Add resource Get resource

Remove
resource

Change resource
first name

Change resource
last name

Get list of projects

Get list of
resources

Change project
description

Add resource to project Remove resource from
project

Add project
to resource

Remove project
from resource

Change role of
resource on project

and so on . . .

Lhotka_1019-1.book Page 702 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 703

Later in this chapter, I’ll walk through GetProjectList(), AddProject(), and UpdateProject(),
as they provide a good cross section of the concepts and implementation issues. The WCF service
implementation can be found in the ProjectTracker solution. It is named PTWcfService.

Application Configuration
The website hosting the WCF service needs to provide some basic configuration information through
the web.config file. In the web.config file, you can either provide connection strings so that the site
can interact with the database directly, or you can configure the data portal to communicate with a
remote application server.

I discussed the basic concept in Chapter 15 when I covered the channel adapter implementa-
tion. Recall that the data portal supports numerous communication channels, most notably Local
and WCF.

In Chapter 1, I discussed the trade-offs between performance, scalability, fault tolerance, and
security that come with various physical n-tier configurations. In most cases, the optimal solution
for a web UI is to run the data portal locally in the client process. However, for security reasons, it
may be desirable to run the data portal remotely on an application server.

The web.config file is an XML file that contains settings to configure the website. You use
different XML depending on how you want the site configured.

The information in this section is much the same as that in Chapters 19 and 20. I’m repeating it
here for completeness, so you don’t need to refer back to those chapters if you are focused on creating a
WCF service.

Authentication

CSLA .NET controls authentication through web.config.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 </appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. The
ProjectTracker.Library assembly includes the PTPrincipal and PTIdentity classes specifically to
support custom authentication, and the UI code in this chapter will use custom authentication as well.

If you want to use Windows authentication, change the configuration to this:

 <add key="CslaAuthentication" value="Windows" />

Of course, that change would require coding changes. To start, you would remove the PTPrincipal
and PTIdentity classes from ProjectTracker.Library, as they would no longer be needed. Also, the
virtual root would need to disallow anonymous users, and ASP.NET would need to be configured to
impersonate the caller. If you use Windows authentication, you would not use the custom valida-
tion, authorization, and PrincipalCache code discussed earlier in the chapter.

Local Data Portal

The web.config file also controls how the application uses the data portal. To have the website interact
directly with the database, use the following (with your connection string changed to the connec-
tion string for your database):

Lhotka_1019-1.book Page 703 Tuesday, November 18, 2008 3:42 PM

704 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 </appSettings>
 <connectionStrings>
 <add name="PTracker" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 <add name="Security" connectionString="your connection string"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Because LocalProxy is the default for the data portal, no actual data portal configuration is
required, so the only settings in the configuration file are to control authentication and to provide
the database connection strings.

■Tip In the code download for this book (available at www.apress.com/book/view/1430210192 or
www.lhotka.net/cslanet/download.aspx), the PTracker and Security database files are in the solution
directory, not in the website’s App_Data directory. This means that you can’t use a local data portal from the website
without first copying the database files into the App_Data directory and changing the connection strings accordingly.

Remote Data Portal (with WCF)

To have the data portal use an application server and communicate using the WCF channel, the
configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="CslaAuthentication" value="Csla" />
 <add key="CslaDataPortalProxy"
 value="Csla.DataPortalClient.WcfProxy, Csla"/>
 </appSettings>
 <connectionStrings>
 </connectionStrings>
 <system.serviceModel>
 <client>
 <endpoint name="WcfDataPortal"
 address="http://localhost:4147/WcfHost/WcfPortal.svc"
 binding="wsHttpBinding"
 contract="Csla.Server.Hosts.IWcfPortal"/>
 </client>
 </system.serviceModel>

The CslaDataPortalProxy setting indicates the WcfProxy should be used to communicate with
the application server. This requires that you define a client endpoint in the system.serviceModel
element of the config file.

The only value you need to change in this element is the address property. You need to change
localhost:4147 to the name of the application server on which the data portal host is installed. Also,
you need to replace the WcfHost text with the name of your virtual root on that server.

Before using this configuration, you must create and configure the WCF host virtual root. I’ll
show how to do this in the next section.

Lhotka_1019-1.book Page 704 Tuesday, November 18, 2008 3:42 PM

http://www.apress.com/book/view/1430210192
http://www.lhotka.net/cslanet/download.aspx
http://localhost:4147/WcfHost/WcfPortal.svc

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 705

The most important thing to realize about the site configuration is that the data portal can be
changed from local to remote (using any of the network channels) without needing to change any UI
or business object code.

PTWcfService Site Setup
The website references the ProjectTracker.Library project, as shown in Figure 21-5. This causes
Visual Studio to automatically put the associated Csla.dll files into the Bin directory as well, because
Csla.dll is referenced by ProjectTracker.Library.

Figure 21-5. Referencing ProjectTracker.Library

The PTWcfService website will only run within IIS, not within ASP.NET Development Server
(commonly known as Cassini or VS Host).

ASP.NET Development Server (provided with Visual Studio) has various limitations—among
them, the inability to load custom security objects from assemblies in the Bin directory. This means
you can’t use ASP.NET Development Server to test or debug custom principal objects, custom
membership providers, or other custom security objects if they are in an assembly referenced from
the project.

Though this is an unfortunate limitation, it can be argued that ASP.NET Development Server is
not intended for anything beyond hobbyist or casual usage, and that IIS should be used for any serious
business development.

■Note An alternative solution is to install the assembly containing your custom principal and identity classes into the
.NET GAC. For PTWcfService, this would mean giving ProjectTracker.Library a strong name and using the
gacutil.exe command-line utility to install the assembly into the GAC. You would need to update ProjectTracker.
Library in the GAC after you build the assembly each time. I find that using IIS is a far simpler solution than using
the GAC.

Lhotka_1019-1.book Page 705 Tuesday, November 18, 2008 3:42 PM

706 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

To host a website in IIS during development, you need to take the following steps:

1. Set up a virtual root in IIS, pointing to the directory containing the PTWcfService project files.

2. Set the virtual root to use ASP.NET 2.0 using the ASP.NET tab of the virtual root properties
dialog in the IIS management console.

3. Set the website’s start options using the project properties dialog in Visual Studio 2008. Change
the setting to use a custom server, so it starts up using IIS with a URL such as http://localhost/
PTWcfService.

As I mentioned in Chapter 20, it may seem odd that step 2 sets the virtual root to use ASP.NET 2.0
when this is actually an ASP.NET 3.5 application. However, .NET 3.5 uses the core .NET 2.0 runtime,
and it is the core runtime that is set in step 2.

Now let’s go through the creation of the WCF service interface. I’ll start by discussing the struc-
ture of the service contract, data contract, and service implementation code. Then I’ll walk through
some of the methods that implement the service. Once I’ve covered the WCF service implementa-
tion, I’ll briefly discuss the client application that calls the service.

Service Contract and Implementation
As I discussed earlier, a WCF service has four components: the svc file, an associated code file, the
service contract, and the endpoint configuration. The PTService.svc file is really just a pointer to the
code file.

<%@ ServiceHost Language=C# Debug="true"
 Service="PTService" CodeBehind="~/App_Code/PTService.cs" %>

All the interesting work happens in the code file, PTService.cs. You can find this file in the
App_Code folder beneath the virtual root. It implements the service contract, which is defined in
IPTService.cs. Here’s the service contract:

[ServiceContract]
public interface IPTService
{
 [OperationContract]
 List<ProjectData> GetProjectList(ProjectListRequest request);
 [OperationContract]
 ProjectData GetProject(ProjectRequest request);
 [OperationContract]
 ProjectData AddProject(AddProjectRequest request);
 [OperationContract]
 ProjectData UpdateProject(UpdateProjectRequest request);
 [OperationContract]
 List<RoleData> GetRoles(RoleRequest request);
}

Of course, the contract for the service also includes the data contract definitions for all the types
referenced in IPTService. For example, here’s the ProjectRequest data contract:

[DataContract]
public class ProjectRequest
{
 [DataMember]
 public Guid Id { get; set; }
}

Lhotka_1019-1.book Page 706 Tuesday, November 18, 2008 3:42 PM

http://localhost

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 707

This data contract specifies the parameter value passed into the GetProject() operation. What
is perhaps more interesting is the RoleRequest data contract.

[DataContract]
public class RoleRequest
{
}

This is an empty class, which might seem to make no sense. Why pass in an instance of an empty
class as a parameter to an operation? The reason is versioning. As I discussed earlier in the chapter,
it is difficult to change the signature of a service method after you’ve published your contract, because
such a change would break all consuming applications. Someday this operation might need an input
value, and by requiring even an empty object as a parameter today, it will become easy to add prop-
erties to the data contract in the future without breaking consuming applications. So as strange as it
may be to define such empty data contracts, this technique directly addresses the issue of versioning
and increases the maintainability of your service application.

The PTService class implements IPTService and thus is the implementation of the service itself.

 public class PTService : IPTService
 {
 }

It contains the methods defined by the IPTService interface, each of which is defined as a
service operation. I’ll go through the details of three representative methods.

GetProjectList

The GetProjectList() operation is intended to return a list of the projects in the ProjectTracker
application. A consumer application can use this data however it wishes, and this method will allow
anonymous access with no authentication. Recall that the ProjectList business object applies no
authorization rules, and both the PTWpf and PTWeb interfaces allow anonymous users access to the
list of projects (and the list of resources through ResourceList).

This method provides an opportunity to see the simplest message-based implementation.

 public List<ProjectData> GetProjectList(ProjectListRequest request)
 {
 try
 {
 ProjectList list = null;
 if (string.IsNullOrEmpty(request.Name))
 list = ProjectList.GetProjectList();
 else
 list = ProjectList.GetProjectList(request.Name);

 List<ProjectData> result = new List<ProjectData>();
 foreach (ProjectInfo item in list)
 {
 ProjectData info = new ProjectData();
 Csla.Data.DataMapper.Map(item, info);
 result.Add(info);
 }
 return result;
 }
 catch (Csla.DataPortalException ex)
 {
 throw new FaultException(ex.BusinessException.Message);
 }

Lhotka_1019-1.book Page 707 Tuesday, November 18, 2008 3:42 PM

708 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

 catch (Exception ex)
 {
 throw new FaultException(ex.Message);
 }
 }

The method accepts a ProjectListRequest parameter, allowing the consuming application to
provide a Name property to filter the results. If no Name property value is provided, then the operation
will return all the projects in the database.

The result is returned as a list of ProjectData objects, though once the list is serialized, it appears
in the XML as though it were an array. The ProjectData class defines a data contract for project data.
You can examine the data contract definition in the code download for this book.

This list is populated by looping through all the items in a ProjectList object and using DataMapper
to copy the properties from each ProjectTracker.Library.ProjectInfo child object in the collection
to a List<ProjectData> object. That list is then returned as a result.

 ProjectList list = ProjectList.GetProjectList();
 List<ProjectData> result = new List<ProjectData>();
 foreach (ProjectInfo item in list)
 {
 ProjectData info = new ProjectData();
 Csla.Data.DataMapper.Map(item, info);
 result.Add(info);
 }
 return result;

It is important to realize that the business object is not being returned directly as a result. The
ProjectList object can’t be serialized into XML using the DataContractSerializer (the serializer
used by WCF). Attempting to directly return the business object as a result will cause a serialization
exception.

More importantly, returning a business object (the internal implementation of the service) as a
result would make the business object itself part of the service contract. That would entirely elimi-
nate the concept of encapsulation and would radically reduce the maintainability of your service and
your application.

The approach shown here—where the internal business object is used to implement the service,
and the data is copied into the formal data contract object that is part of the service contract—is
correct. This approach preserves encapsulation and allows for independent versioning and enhance-
ment of the business objects and the service interface.

AddProject

The AddProject() operation allows a caller to add a new project to the system. To avoid breaking
encapsulation, the actual Project class is never exposed to the consumer of the service. Instead, a
ProjectData data contract object is used to provide data to the method and to return any updates to
the consuming application. The core of the operation implementation is highlighted here:

 public ProjectData AddProject(AddProjectRequest request)
 {
 try
 {
 ProjectData obj = request.ProjectData;
 var project = Project.NewProject();
 project.Name = obj.Name;
 project.Started = obj.Started;
 project.Ended = obj.Ended;

Lhotka_1019-1.book Page 708 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 709

 project.Description = obj.Description;
 project = project.Save();

 ProjectData result = new ProjectData();
 Csla.Data.DataMapper.Map(project, result, "Resources");
 return result;
 }
 catch (Csla.DataPortalException ex)
 {
 throw new FaultException(ex.BusinessException.Message);
 }
 catch (Exception ex)
 {
 throw new FaultException(ex.Message);
 }
 }

By the time this code is running, WCF (with the custom validation and authorization compo-
nents from the PTWcfServiceAuth project) will have verified the user’s credentials and put a valid
PTPrincipal class on the thread. The Project object will apply its normal authorization rules based
on that user identity. In other words, the service code is not responsible for preventing an unautho-
rized user from adding a new project, because the Project object itself takes care of those details.

Thanks to the fact that all validation and authorization is in the Project object, the service method
is straightforward. It creates a new Project, loads the parameter values from the caller into the object’s
properties, and then calls the Save() method to insert the data.

 ProjectData obj = request.ProjectData;
 var project = Project.NewProject();
 project.Name = obj.Name;
 project.Started = obj.Started;
 project.Ended = obj.Ended;
 project.Description = obj.Description;
 project = project.Save();

This is all within a try...catch block. Notice that the catch block simply rethrows the exception
as a FaultException. You could add logging code here if desired, but you should remember to rethrow
the exception as a fault so the information will be returned properly through WCF to the consuming
application. When an exception is wrapped in a FaultException, the message text from the exception
is returned to the consumer automatically, so it gets some information about what went wrong.

I have chosen to copy each field from the data contract object to the business object explicitly.
You could use DataMapper to do this instead, but I wanted to illustrate the different options available.

If no exception occurs and the Save() call succeeds, then the updated project data is returned
to the caller. To do this, a ProjectData object is created, loaded with the data from the Project object,
and returned as a result.

 ProjectData result = new ProjectData();
 Csla.Data.DataMapper.Map(project, result, "Resources");
 return result;

The DataMapper is used to copy the values from Project into ProjectData. The first parameter is
the source object, the second is the target object, and the Resources value indicates that the Resources
property should be ignored so DataMapper won’t try to copy that property value. Since the data contract
doesn’t have a Resources property, such an attempt would result in an exception.

The result is that the consuming application has access to the newly created Id value, along with
any other changes that might have occurred to the data during the insert process.

Lhotka_1019-1.book Page 709 Tuesday, November 18, 2008 3:42 PM

710 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

UpdateProject

The UpdateProject() operation allows a caller to update data for an existing project in the system. To
avoid breaking encapsulation, the actual Project class is never exposed to the consumer of the service.
Instead, a ProjectData data contract object is used to provide data to the method and to return any
updates to the consuming application. The core of the operation implementation is highlighted here:

 public ProjectData UpdateProject(UpdateProjectRequest request)
 {
 try
 {
 ProjectData obj = request.ProjectData;
 var project = Project.GetProject(obj.Id);
 project.Name = obj.Name;
 project.Started = obj.Started;
 project.Ended = obj.Ended;
 project.Description = obj.Description;
 project = project.Save();

 ProjectData result = new ProjectData();
 Csla.Data.DataMapper.Map(project, result, "Resources");
 return result;
 }
 catch (Csla.DataPortalException ex)
 {
 throw new FaultException(ex.BusinessException.Message);
 }
 catch (Exception ex)
 {
 throw new FaultException(ex.Message);
 }
 }

As you can see, this method implementation is similar to the AddProject() method. The only
real difference is that this method calls the GetProject() factory method to get an existing business
object, while AddProject() uses the NewProject() factory method to create a new business object.
This is necessary, because the Project object’s IsNew property needs to be false for an update to
occur, and retrieving an existing object makes that happen.

Stateless Update Alternative

There is an alternative, which uses an overload of the Save() method and would require changing
the Project code to allow for setting the Id property through a new factory method called
CreateUpdatableProject(). That factory in the Project class might look like this:

 public static Project CreateUpdatableProject(Guid id)
 {
 return DataPortal.Create<Project>(new SingleCriteria<Project, Guid>(id));
 }

Lhotka_1019-1.book Page 710 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 711

This would call a new DataPortal_Create() overload:

 private void DataPortal_Create(SingleCriteria<Project, Guid> criteria)
 {
 LoadProperty(IdProperty, criteria.Value);
 ValidationRules.CheckRules();
 }

Notice how this new factory creates a new instance of the business object, but one where the Id
property is set to some specific value.

The service code could then look like this:

 var project = Project.CreateUpdatableProject(obj.Id);
 project.Name = obj.Name;
 project.Started = obj.Started;
 project.Ended = obj.Ended;
 project.Description = obj.Description;
 project = project.Save(true);

The two highlighted lines are important. The first calls the new factory method to create a new
object that has a specific Id value—namely, the value of some existing object. The object’s property
values are then all set, and the Save() method is called with a value of true for the forceUpdate parameter.

This Save() overload forces the data portal to perform an update operation, even if the object’s
IsNew value is true. It is included in CSLA .NET to enable stateless implementations of services and
web pages, as shown here.

At this point, you’ve seen how to create service operations that retrieve, insert, and update infor-
mation based on XML messages passed to and from a consuming application. The implementation
shown here preserves encapsulation and decouples the service contract from the application’s
internal implementation, which increases the maintainability of both the service interface and the
business layer.

The result is that there is now a WCF service interface to some of the ProjectTracker function-
ality. Consuming applications can now call these operations to interact with the application’s business
logic and data. These consumers may be running on any hardware platform or OS, and may be
written in virtually any programming language. Those details don’t matter in any meaningful way.

The important thing is that any consumers will interact with the ProjectTracker data through
the business logic in the business objects, including validation, authentication, and authorization—
thereby making it difficult for consumers to misuse the data or functionality.

Web Service Consumer Implementation
The thing about creating WCF services is that it’s not a very satisfying experience. There’s nothing to
see—no visual reinforcement that you’ve accomplished anything. Luckily, we can generate an infor-
mation page to check the service.

Generating a WCF Information Page
WCF includes functionality to generate an information page for WCF services automatically, and
you can use this page to ensure that the basic configuration of your service is correct. You can’t
determine if the service will actually work without writing a consuming application.

Lhotka_1019-1.book Page 711 Tuesday, November 18, 2008 3:42 PM

712 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

Figure 21-6 shows the information page for PTWcfService.

Figure 21-6. Information page for a WCF service

If this page displays properly, you’ll know that IIS and ASP.NET are properly configured and that
there are no major issues with the content of the web.config file, the svc file, or the service contract.
Again, this doesn’t mean that the service will actually work; it just means that there are no major
configuration issues.

You can also click the link shown in the web page, which will display the WSDL for the service.
This is a good idea, as it further tests the configuration and data contract definition for major issues.
Figure 21-7 shows the resulting display.

To determine if your service implementation works, you need to create at least a simple consuming
application. That’s what I’ll demonstrate in the rest of this chapter.

Lhotka_1019-1.book Page 712 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 713

Figure 21-7. WSDL display for a WCF service

A Simple Smart Client
To illustrate how to call PTWcfService, the ProjectTracker solution contains a PTWcfClient project.
This is a bare-bones Windows Forms application that acts as a consumer for PTWcfService. Figure 21-8
shows what the application looks like when running.

Figure 21-8. The PTWcfClient application

Lhotka_1019-1.book Page 713 Tuesday, November 18, 2008 3:42 PM

714 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

More interesting is Figure 21-9, which shows a simple DataGrid control bound to the results of
the GetProjectList() operation.

Figure 21-9. The PTWcfClient application displaying a list of project data

My goal with this application isn’t to create a complete consumer. Rather, I’m using this appli-
cation to show how to consume a basic web service and how to set up and pass credentials through
the WCF proxy.

As shown in Figure 21-10, PTWcfClient has a service reference to PTWcfService.

Figure 21-10. Service reference to PTWcfService

You can right-click the item in Solution Explorer and choose the Configure Service Reference
menu option to see the dialog shown in Figure 21-11. This dialog allows you to control important
elements of the service reference and also control how Visual Studio generates client-side proxy
code so you can interact with the service.

Although you can override the service address in code, the default address is shown here. This
address is important, because it is also the address used by Visual Studio if you ever right-click the
service reference in Solution Explorer and choose the Update Service Reference menu option.

The remaining configuration values are the defaults. You may change them to suit your needs,
but for this simple consuming application, the defaults are fine.

Lhotka_1019-1.book Page 714 Tuesday, November 18, 2008 3:42 PM

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 715

Notice the Collection type: option, which converts server-side collection or list types to an array
on the client. The XML data transferred over the network is always the same format either way; this
option simply controls whether “array data” from the server is expressed as an array or a list type on the
client. This option controls the code generated by Visual Studio as it creates the service proxy classes, and
it allows you to tell Visual Studio to insert code to convert array data into more complex types.

Figure 21-11. Service Reference Settings dialog

Client Configuration

When the service reference was added to the project, Visual Studio automatically retrieved the
WSDL description for the service and used that information to generate a set of proxy types and
other important information. It also added configuration information to the app.config file based
on the WSDL.

■Note You must create and install a test security certificate on your computer as described earlier in this chapter.
If you do not create and install an X.509 certificate, the WCF service will be inaccessible to the client application.

Lhotka_1019-1.book Page 715 Tuesday, November 18, 2008 3:42 PM

716 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

You need to make a couple of changes to the generated configuration information. You need
to add a custom behavior element to override the default certificate validation mode as discussed
earlier in the chapter.

 <behaviors>
 <endpointBehaviors>
 <behavior name="ServiceCertificate">
 <clientCredentials>
 <serviceCertificate>
 <authentication certificateValidationMode="PeerTrust"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>

You also must change the endpoint to use this new behavior and to not use the hard-coded
certificate value.

 <client>
 <endpoint name="WSHttpBinding_IPTService"
 behaviorConfiguration="ServiceCertificate"
 bindingConfiguration="WSHttpBinding_IPTService"
 address="http://localhost:1052/PTWcfService/PTService.svc"
 binding="wsHttpBinding"
 contract="PTWcfService.IPTService">
 <!--<identity>
 <certificate encodedValue="AwAAAA ..." />
 </identity>-->
 </endpoint>
 </client>

The reason for removing the identity element is that the encodedValue directly refers to the
specific certificate used by the service. In the code download, this value corresponds to the test
certificate I’m using on my computer, so it won’t work with the certificate that you created and
installed on your computer. The client will work without this value configured, so commenting it out
is the simplest way to get the configuration to work.

You will probably also need to change the address property to match the specific address for
your service.

Calling a Service Operation

The data binding support in Windows Forms works against the proxy classes generated for a WCF
service. This means you can add a type like ProjectData to the Data Sources window. Figure 21-12
shows the Data Source Configuration Wizard listing all the types from the PTService service reference.

Once the types are in the Data Sources window, you can drag-and-drop these types onto a form
just like you would with any business object. This is how the PTWcfClient UI was built.

For each type you drag onto the form, Visual Studio creates a corresponding BindingSource
object in the form’s component tray. The UI controls are bound to the BindingSource control, and
that BindingSource control is bound to your data.

Lhotka_1019-1.book Page 716 Tuesday, November 18, 2008 3:42 PM

http://localhost:1052/PTWcfService/PTService.svc

CH AP T E R 2 1 ■ W CF SE R V IC E I N T E R F ACE 717

Figure 21-12. Types available from the PTWcfService service reference

You need to write a bit of code to set the DataSource property of the BindingSource object. For
instance, when the client’s form loads, the following code is run:

 private void Form1_Load(object sender, EventArgs e)
 {
 PTWcfService.ProjectData[] list;

 var svc = new PTWcfClient.PTWcfService.PTServiceClient(
 "WSHttpBinding_IPTService");
 try
 {
 svc.ClientCredentials.UserName.UserName = "anonymous";
 //svc.ClientCredentials.UserName.Password = "";
 list =
 svc.GetProjectList(new PTWcfClient.PTWcfService.ProjectListRequest());
 }
 finally
 {
 svc.Close();
 }

 this.projectDataBindingSource.DataSource = list;
 }

First, an instance of PTServiceClient is created.

 var svc = new PTWcfClient.PTWcfService.PTServiceClient(
 "WSHttpBinding_IPTService");

Lhotka_1019-1.book Page 717 Tuesday, November 18, 2008 3:42 PM

718 CH AP T E R 2 1 ■ W CF S E R V I CE I N T E R F AC E

This is a proxy object that allows the client code to interact with the WCF service. Because this
service requires username/password credentials, those credentials must be set on the proxy.

 svc.ClientCredentials.UserName.UserName = "anonymous";
 //svc.ClientCredentials.UserName.Password = "";

In this case, the anonymous username with no password is used, but you can see how a user’s
actual credentials could be provided if necessary.

The service operation is then invoked to get the list of project data.

 list =
 svc.GetProjectList(new PTWcfClient.PTWcfService.ProjectListRequest());

The consuming application then uses this value. In this example, it is used as the data source for
the projectDataBindingSource, so the data is displayed to the user in a DataGrid control.

You can look through the rest of the client code in the code download for the book. All the forms
in the consuming application follow the same basic structure for interacting with the WCF service
operations.

Conclusion
XML services enable the creation of another type of interface for your business objects. Rather than
exposing an interface directly to users like WPF or Web Forms, XML services expose an interface for
use by other applications. Those applications can call your service methods to leverage the business
functionality and data provided by your application and its business objects.

You can design your XML services using either n-tier client/server or service-oriented models.
While the client/server approach works, it isn’t ideal, and you should consider implementing
message-based, service-oriented services as shown in this chapter.

Service-oriented design specifies that a service is an autonomous entity—an independent
application, not a tier within a larger application. Service orientation also specifies that your service
methods should communicate using a message-based approach, where the service methods accept
a complex type as a message and return a complex type as a resulting message. Those complex types
are defined as data contracts when using WCF.

Whether you use a remote data portal or not, the framework and concepts discussed in this
book should enable you to create applications using object-oriented design concepts, while lever-
aging the power of .NET. Your objects will support data binding in WPF, Web Forms, and Windows
Forms, along with support for the encapsulation of business, validation, and authorization logic in a
clear and concise manner.

I’ve thoroughly enjoyed exploring these concepts with you, and I wish you the best as you
develop your software.

Code well, have fun.

Lhotka_1019-1.book Page 718 Tuesday, November 18, 2008 3:42 PM

719

Index

■SYMBOLS and Numerics
\ folder, CSLA .NET, 208

Csla namespace, 212
.NET Framework alphabetized as NET

Framework
3-layer logical model, 5
5-layer logical architecture, 9–14

applying logical architecture, 14–18
Business layer, 11–12
Data Access layer, 12–13
Data Storage and Management layer, 13–14
Interface Control layer, 10–11
Interface layer, 10
table summarizing roles of logical layers, 14

■A
abstract keyword, 373
AcceptChanges method, 395–396

IUndoableObject interface, 236
UndoableBase class, 381–382

AcceptChangesComplete method, 384
AccessType type, 360
AcquireRequestState event, 643
Action template, DataPortal events, 448
ActionType property, 309
Activator class

CreateInstance method, 450, 499
Active Directory (AD) groups, 60
ActiveViewIndex property, 647, 653
AD security see Windows integrated security
Add method

BrokenRulesCollection class, 344
BusinessListBase class, 66
creating child objects, 150, 152

AddAssignment method, 573
addAssignment procedure, PTracker, 135, 573
AddAuthorizationRules method

editable root objects, 177
per-type authorization rules, 365
Project class, 528
ProjectResource class, 534
read-only objects, 193

AddBusinessRules method
BusinessBase class, 348
Project class, 522, 525–526, 564
ProjectResource class, 533

Role class, 543
RuleArgs class, 349

AddDependentProperty method, 527
AddFieldMapping method, 508
AddFieldToPropertyMapping method, 508
AddInstanceAuthorizationRules method, 366
AddNew method, Roles class, 652
AddNewCore method

dynamic editable collections, 201
editable child collections, 191
editable root collections, 190
properties controlling editable

collections, 577
Roles class, PTracker, 540, 541
Roles class, PTWeb, 652

AddObjectAuthorization method, 177
AddObjectAuthorizationRules method,

361–362
editable root collections, 189
Project class, 529
read-only objects, 193

addProject procedure, PTracker, 133, 567
AddProject method, WCF, 708–709
AddPropertyMapping method, 508
AddPropertyToFieldMapping method, 508
AddRange method, 74, 223, 232
AddRef method, 498
addResource procedure, PTracker, 136, 567
address property, WCF, 679, 704, 716
addRole procedure, PTracker, 138
AddRoleButton control, PTWeb, 651
AddRule method, 177, 526
ADO.NET

null values, 494
ADO.NET Entity Framework, 556
AfterServer method, 198
AllowCreate method, 361, 529
AllowDelete method, 361, 529
AllowEdit method, 361, 529, 577
AllowExecute method, 364
AllowGet method, 361, 362, 529
AllowNew property, 190, 201, 577
AllowRead method, 364
AllowRemove property, 238, 577
AllowWrite method, 364, 528
anchored objects, 30, 32, 59

Lhotka_1019-1INDEX.fm Page 719 Monday, November 24, 2008 2:50 PM

720 ■IN D E X

app.config file
configuring CSLA .NET, 355
defining proxy object, 448
importance of name, 593
object data binding, WPF, 314

AppDomain class
SetThreadPrincipal method, 584

application, SOA terminology, 676
application architecture, redundant servers, 9
application classes, ProjectTracker, 518
application configuration

PTWeb project, 629–633
PTWpf project, 593–596
WCF service interface, 703–705

application data
business logic, 20

application design
see also framework design
behavioral object-oriented design, 55–56
CSLA .NET framework, 61–96
custom authentication, 60–61
high-level guidelines, 38
importance of, 35
integrated authorization, 41
logical architecture and physical tiers, 3
models for UI developer, 45–50

class-in-charge, 48–50
object-in-charge, 48
UI-in-charge, 46–48

n-level undo functionality, 42–45
n-tier design complexity, 4
object persistence, 54
object-oriented goals, 38–61
object-relational mapping (ORM), 56–57
preserving encapsulation, 57–58
relational vs. object modeling, 54–55
strongly typed collections of child objects, 42
supporting data binding, 50–54
supporting physical n-tier models, 58–60
tracking broken business rules, 39
tracking whether object state has

changed, 41
validation and business rules, 39–40

application design, PTracker
database design, 126–140
object design, 108–123

application framework
architectures and frameworks, 34–35

application requirements, gathering
business concepts and process flow

design, 105
data focused design, 104
object-oriented application design, 104, 108
UI focused design, 104

application servers
authorizing server calls, 431–432
scalability of physical model, 6

Application tab, Visual Studio, 209
ApplicationContext class, 214–219

accessing current principal object, 584
ClientContext property, 214, 216, 217, 219
context passing and location

transparency, 431
Csla, 623
Csla namespace classes, 213
DataPortalProxy property, 449
ExecutionLocation property, 214, 215
GlobalContext property, 214, 216, 219
LocalContext property, 214, 216, 219, 429
SetExecutionLocation method, 216
User property, 214, 215, 354, 357, 641

applications
edge applications, 2
external applications, security, 7
hackers, 7
internal applications, security, 7
SOA model, 2
use of term in this book, 1
workflow model, 2

Apply method, BindingSourceNode, 307
ApplyAuthorization method, 588, 600, 609
ApplyAuthorization property, 297, 298–299
ApplyAuthorizationRules method, 656, 661, 671
ApplyEdit method

BusinessBase class, 373
BusinessListBase class, 373
deleting and undeleting child objects, 388,

389, 390, 396–397
edit level, 385
IEditableObject interface, 294, 385
ISupportUndo interface, 235, 372, 383–384
UndoableBase class, 71

ApplyEditChild method, 279, 384
ApplyReadRules method, 300–301
ApplyWriteRules method, 300, 301–302
architectures

5-layer logical architecture, 9–14
complexity of n-tier design, 4
frameworks and, 34–35
logical and physical architectures, 1–19
logical model, 5
physical model, 5–9

Arguments property, RuleDescription, 337
ArrayList collection, 42
arrays

ToArray method, 380
asmx services

WCF and, 675

Lhotka_1019-1INDEX.fm Page 720 Monday, November 24, 2008 2:50 PM

721■I N D E X

ASP.NET
configuring ASP.NET, 355
description, 619
IIS security and, 639
storing state on web farm, 623
switching between state-handling

models, 627
ASP.NET Development Server

limitations, 639
PTWcfService website setup, 705

ASP.NET membership service
login page, PTWeb project, 645–646

ASP.NET validation controls, 22
ASP.NET Web Forms see Web Forms user

interface, PTWeb
AspNetCompatibilityRequirements

attribute, 461
assemblies

signed assemblies, 210
taking snapshot of data, 375

Assembly Information dialog, Visual
Studio, 210

AssemblyResolve event, 472
Assign method

ProjectResource class, 571
ProjectResources class, 113, 530, 531
Resources collection, 670

Assignment class, 534–535
AddAssignment method, 573
Business and Validation Rules region, 535
Business Methods region, 535
final class list for PTracker, 121
GetDefaultAssignedDate method, 535
IHoldRoles interface, 535
normalizing behavior, 116, 117
revising PTracker relationships, 112
Role property, 535
RoleList collection, 535
UpdateAssignment method, 574
ValidRole method, 535, 578

Assignments property, Project class, 566
Assignments table, PTracker

addAssignment procedure, 135
database design, 130
deleteAssignment procedure, 136
updateAssignment procedure, 135

AssignTo method, 114
AssignView control, PTWeb, 663, 669
asynchronous BeginSave methods, 437,

439–441
asynchronous behaviors, data portals, 432–433
AsyncRuleMethod class, 335
AttachSource method, 322
AttributeUsage attribute, 373

AuthenticateRequest event, PTWeb, 643
authentication, 353–360

Active Directory (AD) groups, 60
application configuration, PTWeb, 630
application configuration, PTWpf, 593
during WCF initialization, 692
CslaAuthentication key, 593
custom authentication, 60–61, 91–92,

355–360
PTracker, 543–546
WCF, 685–701, 703
WPF, 584–585

forms-based authentication, PTWeb,
639–644

MembershipProvider, 359–360
Windows authentication, 355

authentication classes, Csla.Security, 356
AuthenticationType property, 214
authorization, 360–367

ApplyAuthorization method, 588, 609, 656
during WCF initialization, 692
authorizing server calls, 431–432
CanReadProperty method, 242
CanWriteProperty method, 243
IAuthorizeReadWrite interface, 365
integrated authorization, 41, 92–93
per-method authorization, 364
per-property authorization, 364
property/method level authorization,

364–367
type level authorization, 361–364
type level roles, 362–364
types implementing, 360
VerifyAuthorizationCache method, 367

authorization policy, WCF services, 695–697
authorization rules

AddAuthorizationRules method, 365
AddInstanceAuthorizationRules

method, 366
AddObjectAuthorizationRules method,

361–362
BusinessBase functionality, 220
CSLA .NET default, 367
CSLA .NET design benefits, 123
current .NET principal changes, 609
extender control applying, 299–302
per-instance authorization rules, 366
per-type authorization rules, 365
permissive, 367
ProjectEdit web form, 671–672
ProjectList web form, 660
ReadWriteAuthorization control, 299–302
RolesEdit web form, 656

Lhotka_1019-1INDEX.fm Page 721 Monday, November 24, 2008 2:50 PM

722 ■IN D E X

Authorization Rules region, 168
dynamic editable collections, 201
editable child objects, 182
editable root collections, 189
editable root objects, 177
Project class, PTracker, 528–529

AddAuthorizationRules method, 528
AddObjectAuthorizationRules

method, 529
ProjectResource class, PTracker, 534
read-only collections, 195
Roles class, PTracker, 539

AuthorizationRules class, 360
AllowCreate method, 361
AllowDelete method, 361
AllowEdit method, 361
AllowExecute method, 364
AllowGet method, 361, 362
AllowRead method, 364
AllowWrite method, 364
CanGetObject method, 362
CanReadProperty method, 364
CanWriteProperty method, 364
CanXyzObject methods, 362
DenyExecute method, 364
DenyRead method, 364
DenyWrite method, 364
IsInRoleProvider method, 363
maintaining lists of roles, 365
methods, 361, 364

AuthorizationRules type, 360
AuthorizationRulesManager type, 360, 365, 366
Authorize method, 432, 464
Authorizer control, 324–326

properties and methods, 325, 326
AutoCloneOnUpdate property, 214
AutoComplete attribute, 467
AutoShowBrokenRules property, 309

■B
background.jpg file, PTWeb, 636
BackgroundWorker component, 224

asynchronous behaviors, data portals, 433
DataPortal class, 456

backing fields, CSLA .NET properties
managed backing fields, 245, 247–248
private backing fields, 245, 246–247

BalancedTreeIndex class, 416
base class support, data portals, 434–442

asynchronous BeginSave methods, 437,
439–441

factory methods and criteria, 436–437

Save() and BeginSave(), 441
SaveComplete method, 438
synchronous Save methods, 437, 438–439
updating child objects with field

manager, 441
updating editable collections, 441–442

base classes, 62, 64
Basic theme, PTWeb, 635, 636
Basic.css file, PTWeb, 636
Basic.skin file, PTWeb, 636
basicHttpBinding, WCF service bindings, 680
BeforeServer method, 198
BeginCreate method, 455
BeginDelete method, 455
BeginEdit method

BindingSource control, 304
BusinessBase class, 373
BusinessListBase class, 373
deleting and undeleting child objects, 387,

389, 390, 396–397
edit level, 385
IEditableObject interface, 291, 292, 384
ISupportUndo interface, 235, 370, 372, 382
UndoableBase class, 71

BeginExecute method, 455
BeginFetch method, 433, 455, 456
BeginQuery method, 316
BeginResumeWorkflow method, 511
BeginSave method

base class support, data portals, 437, 439–441
BusinessBase class, 87, 156, 157, 438
BusinessListBase class, 438

BeginUpdate method, 441, 455
BeginWorkflow method, 511
behaviorConfiguration property, WCF, 690
behaviors

asynchronous behaviors, data portals,
432–433

behavioral object-oriented design, 55–56
BusinessBase functionality, 220
data portals, 84–91
normalizing behavior, 103, 116–118
relational vs. object modeling, 54

bidirectional data updates, 87
bin folder, WcfHost website, 595, 632
BinaryExpression objects, 410
BinaryFormatter class, 164, 165

circular references in object graph, 278
cloning serializable object, 237
serializing and stacking

HybridDictionary, 379
Bind method, 306, 307

Lhotka_1019-1INDEX.fm Page 722 Monday, November 24, 2008 2:50 PM

723■I N D E X

BindableBase class, 73
OnUnknownPropertyChanged method, 266

binding see data binding
Binding element, ProjectList, 612
Binding objects, 299

Format/Parse events, 300
binding property, endpoint element, 679, 680
BindingComplete event, 304
bindingConfiguration property, WCF, 698
BindingEdit property

CopyState method, 378
IEditableObject interface, 292, 384

BindingError event, 304
BindingList class, 73

Contains method, 387
data binding, 295
IBindingList interface, 73
inheritance from, 52
ListChanged event, 232
marking events as NonSerialized, 53

BindingList collection, 42
BindingSource component, 305, 306, 307

DataSource property, 306, 310
working with multiple root objects, 311

BindingSource control, 304–305
BindingComplete event, 304
calling service operation, PTWcfClient, 716
data binding, 303
IEditableObject interface, 291
methods, 304

BindingSourceHelper class, 306–308
BindingSourceNode class, 305–306

methods, 305, 306, 307
BindingSourceRefresh control, 302, 304
BindsDirectlyToSource property

CslaDataProvider control, 607
ProjectList class, PTracker, 612

bool type
empty values, 502

BoundField column, GridView, 650
boxing, 257
broken rules

BrokenRule class, 343
BrokenRulesCollection class, 344–346
IDataErrorInfo interface, 294
maintaining list of, 76, 342–343

BrokenRule class, 75, 76, 343
BrokenRulesCollection class, 75, 76, 343,

344–346
methods and properties, 76, 344, 345, 346

BrokenRuleTemplate element, 320
Browsable attribute

IsNew property, 264
IsSelfValid property, 269

Business and Validation Rules region
Assignment class, 535
Project class, 525–528

AddBusinessRules method, 525–526
custom rule methods, 527–528
interdependent properties, 526–527

ProjectResource class, 533
Role class, 542

business class implementation, PTracker,
519–543, 559–581

Assignment class, 534–535
Exists command, 543, 579–581
ExistsCommand class, 579–581
main areas of each class, 517
Project class, 520–529, 560–569
ProjectList class, 538, 575
ProjectResource class, 532–534, 571–574
ProjectResources class, 530–532, 569–570
ProjectTracker objects, 517
Resource class, 536–538
ResourceAssignment class, 536
ResourceInfo class, 538–539
ResourceList class, 538, 575–576
Role class, 541–543
RoleList class, 536, 574–575
Roles class, 539–541, 577–578

business classes
encapsulation, 38
setting up ProjectTracker, 518

business collection classes
common regions, 166

business concepts and process flow design, 105
business framework see CSLA .NET framework
business framework base classes, 62
business functionality, PTWeb, 646–672

ProjectEdit form, 661–672
ProjectList form, 656–661
RolesEdit form, 646–656

Business layer, 11–12, 14
business logic locations, 22
communicating with Data layer, 5
communicating with Interface layer, 5
high security web client, 18
high-scalability smart client, 16
mobile objects and logical architecture, 28
n-layer (logical) architecture, 3, 5
separation from Interface layers, 11

business logic
authorization, 41
Data Access layer, 20
data access separation, 547
Interface layer, 19
locating in multiple layers, 19, 20
managing, 19–34

Lhotka_1019-1INDEX.fm Page 723 Monday, November 24, 2008 2:50 PM

724 ■IN D E X

mobile objects, 26
separation of data access and, 420

business logic locations, 20–23
Business layer, 22
Data Access layer, 22
Data Storage and Management layer, 21
Interface Control layer, 21–22
sharing business logic across tiers, 22–23
validation and manipulation, 20

Business Methods region, 168
Assignment class, 535
editable child objects, 182
editable root business objects, 176
Project class, 521–525

child collection properties, 524
overriding GetIdValue method, 524
read-only properties, 521
read-write properties, 521–523
SmartDate properties, 523–524

ProjectResource class, 533
ProjectResources class, 530–532

Assign method, 531
Contains method, 532
ContainsDeleted method, 532
GetItem method, 531
Remove method, 532

ResourceInfo class, 538–539
RoleList class, 536
Roles class, 539–541

business object persistence
data access models, 548–553

business objects, 23–26
see also mobile objects
centralizing business logic, 28
command objects, 197–198
common regions, 166–169
common structures and features, 163–170
component parts of, 25–26
creation, CSLA .NET framework, 61–69

exposing as part of service contract, 685
criteria object identifying type, 444
criteria objects, 202–205
CSLA .NET design benefits, 123–126
data transfer, 24, 28
DataContract attribute, 164
DataPortal_Xyz methods, 548
DataSet, 24
dynamic editable collections, 199–201
dynamic editable root objects, 201–202
editable child collections, 190–191
editable child objects, 180–184
editable root collections, 187–190
editable root objects, 174–180
encapsulation, 24

executing workflow from, 514–515
mobile business objects, 23
models for UI developer, 45–50
name/value list objects, 198–199
non-public default constructor, 170
NonSerialized attribute, 164
object design, 24
object factory classes, 169–170
per-instance rules, 331, 332
persistence, 548
per-type rules, 331, 332
process flow to create or load, 435
process flow to save, 436
PTracker object design, 108

final class list, 121
potential objects and class names, 109

read-only child collections, 196
read-only child objects, 193–194
read-only collections, 194–196
read-only objects, 191–193
regions in inherited classes, 166
rules, 331
Serializable attribute, 164
smart data, 24–25
snapshot process, 373
subclassing BusinessBase class, 124
subclassing BusinessListBase class, 124
switchable objects, 184–187
using as data source, 648

business objects, life cycle of, 147–163
adding/editing root objects, 156–158
adding/editing/deleting child objects,

158–160
creating child objects, 150–152
creating root objects, 148–150
deleting root objects, 160–161
disposing and finalizing objects, 162–163
object creation, 147–152
object disposal, 163
object retrieval, 152–155
retrieving child objects, 155
retrieving root objects, 153–154
updating editable objects, 156–161

business rules, 39
see also rules; validation rules
application design, 39–40
BusinessBase functionality, 220
common business rules, 351
CSLA .NET design benefits, 123
CSLA .NET framework, 74–77
method signature for, 332
null values, 500
tracking broken business rules, 39, 74
types of rules, 331–332

Lhotka_1019-1INDEX.fm Page 724 Monday, November 24, 2008 2:50 PM

725■I N D E X

Business Rules region, 168
BusinessBase class, 62, 64, 219–221

AddBusinessRules method, 348
ApplyEdit method, 373, 383–384, 385
base class for, 73
BeginEdit method, 373, 382, 384
BeginSave method, 87, 438
business objects subclassing, 124
CancelEdit method, 373, 383, 384
CanExecuteMethod method, 367
CanReadProperty method, 366
CanWriteProperty method, 367
Child_Xyz methods, 66
criteria objects, 204
Csla namespace classes, 98, 213
Csla.Core namespace classes, 231, 232
data access methods, 64
DataPortal_Xyz methods, 65
exception handling, 65
functional areas implemented in, 220
GetProperty method, 242, 245
IEditableObject interface, 384–385
implementing Project class, PTracker, 520
inheritance, 219, 288
inheriting from non-generic base classes, 64
IsDeleted property, 271–272
IsDirty property, 268–269
IsNew property, 264–265
IsSavable property, 270
IsSelfDirty property, 265–268
IsSelfValid property, 269
ISupportUndo interface, 382–384
IsValid property, 269
MarkAsChild method, 65
n-level undo functionality, 70, 382–385
object status properties, 263–272
ReadProperty method, 242, 245
rules, 331
Save method, 87–88, 435, 438
SetProperty method, 242, 245
tracking broken business rules, 74
tracking object status, 263

BusinessBase object
Update method, SimpleDataPortal, 474–475

BusinessException property, 430
BusinessListBase class, 62, 66, 221–223

AcceptChanges method, 395–396
Add method, 66
ApplyEdit method, 373, 396–397
base class for, 73
BeginEdit method, 373, 396–397
BeginSave method, 438
business objects subclassing, 124
calling SetParent() on child objects, 542

CancelEdit method, 373, 396–397
Child_Update method, 441, 442
Child_Xyz methods, 67
ContainsDeleted method, 387
CopyState method, 391–392
Csla namespace classes, 98, 213
DataPortal_Xyz methods, 66
DeleteChild method, 386, 390
deleted object collection, 387–391
deleting child objects, 387
edit level tracking, 385
editable child collections, 190
EditLevelAdded property, 386
IEditableCollection interface, 71, 233
inheritance, 222
InsertItem method, 386
LinqBindingList and, 401
MarkAsChild method, 67
n-level undo functionality, 385–397
object status properties, 263
reacting to Insert/Remove/Clear operations,

386–387
regions in inherited classes, 166
Remove method, 66
RemoveChild method, 386
RemoveItem method, 386
Save method, 435, 438
searching for items in, 403
SetParent method, 387
tracking object status, 263
UnDeleteChild method, 390
UndoChanges method, 392–395

BusinessObjectInvalid event, 310
BusinessPrincipalBase class, 91

authentication classes, Csla.Security, 356
creating custom principal class, 357
Identity property, 358
IsInRole method, 358
Login method, 357
Logout method, 358

BusyAnimation control, 323, 610
DispatchTimer, 323
IsBusy property, 610
IsRunning property, 610
Storyboard elements, 323

BusyChanged event, 322
Button control

Command properties, WPF, 607, 608

■C
caching

caching project object in Session, 664
InvalidateCache method, 199, 574, 578
InvalidatedCache method, 578

Lhotka_1019-1INDEX.fm Page 725 Monday, November 24, 2008 2:50 PM

726 ■IN D E X

invalidating client-side cache, 578
invalidating server-side cache, 578
Session object, 649
VerifyAuthorizationCache method, 367

cacls.exe tool, 688
CallByName method, 230, 348
CallMethod method, 443, 473
CallMethodException class, 423, 443
CallMethodIfImplemented method, 443
Cancel method, BindingSourceNode, 307
Cancel property, CslaDataProvider, 609
CancelEdit method

BindingSource control, 304
BusinessBase class, 373
BusinessListBase class, 373
deleting and undeleting child objects, 387,

389, 390
edit level, 385
IEditableObject interface, 291, 292, 293, 384
ISupportUndo interface, 235, 372, 383
UndoableBase class, 71

CanCreate/CanDelete/CanEdit methods,
Project class, 529

CanEditObject property, 604, 608
CanExecuteMethod method

per-method authorization, 364
ProjectResource class, PTracker, 533, 534
property/method level authorization,

366–367
CanExtend method, 297
CanGet method, 529
CanGetObject method, 362
CanReadProperty method

authorization, 242
AuthorizationRules class, 364
IAuthorizeReadWrite interface, 296
integrated authorization, 92, 93
IReadOnlyObject interface, 234
property/method level authorization,

366–367
CanWriteProperty method

authorization, 243
AuthorizationRules, 364
IAuthorizeReadWrite interface, 296
integrated authorization, 92, 93
property/method level authorization,

366–367
CanXyzObject methods,

AuthorizationRules, 362
catch block, 709
certificates, WCF services, 686–689
certmgr.exe tool, 688
ChainTrust, WCF, 691
ChangeType method, 505

channel adapter, 468
behaviors, DataPortal class, 445–462

channel adapter design pattern, 421–424,
445–462

CallMethodException class, 423
DataPortal class, 423, 446–455
DataPortalEventArgs class, 423, 448
DataPortal class, 423, 455–457
EnterpriseServicesPortal class, 424
EnterpriseServicesProxy class, 424
IDataPortalProxy interface, 423, 458
IDataPortalServer interface, 423, 457–458
LocalProxy class, 423, 458–459
MethodCaller class, 423
RemotingPortal class, 424
RemotingProxy class, 424
RunLocalAttribute class, 423, 445–446
types required for, 423
WcfPortal class, 423, 460–462
WcfProxy class, 423, 459–460
WebServicePortal class, 424
WebServicesProxy class, 424

CheckRules method
broken rules, 344
checking rules for all properties, 342
checking rules for one property, 340–342
object data binding, WPF, 314
object status properties, 268
Project class, PTracker, 526
ValidationRules class, 340

child classes
lazy loading child objects, 282

child collection properties
Project class, PTracker, 524

child object reference fields
properties, CSLA .NET, 248

child objects
adding/editing/deleting, 158–160
BusinessBase indicating object is child, 65
cascading call to, 377
consistent coding model for, 421
creating, 150–152
CSLA .NET terminology, 144
data access methods, 455
DataPortal methods, 447
declaring child properties, 279–283
DeleteChild method, 386
DeleteSelf method, 159
deleting, 387
description, 64, 273
editable child collections, 190–191
editable child objects, 180–184
Insert method, 159
InsertItem method, 386

Lhotka_1019-1INDEX.fm Page 726 Monday, November 24, 2008 2:50 PM

727■I N D E X

lazy loading, 281–283
n-level undo functionality, 43

edit level tracking, 385
parent with single child, 273
parent-child interaction, 274–279
read-only child collections, 196
read-only child objects, 193–194
read-only collections, 194
RemoveChild method, 386
removing from collection, 285
retrieving, 155
SetParent method, 387
strongly typed collections of, 42
switchable objects, 184
UndoableBase class, 71
Update method, 159
updating with field manager, 441

child properties
declaring in DataPortal_Xyz methods, 279–280

Child_Create method
editable child objects, 182
invoking, 447

Child_DeleteSelf method
child objects, 158, 159, 160, 442
invoking, 447
ProjectResource class, PTracker, 574

Child_Fetch method
editable child collections, 191
editable child objects, 183
invoking, 447
ProjectResource class, PTracker, 572
ProjectResources class, PTracker, 570

Child_Insert method
child objects, 158, 159, 160
invoking, 447
ProjectResource class, PTracker, 573

Child_OnDataPortalInvoke method, 480
Child_Update method

BusinessListBase class, 441, 442, 570
child objects, 158, 159, 160
editable child collections, 191
invoking, 447

Child_Xyz methods
BusinessBase class, 66
BusinessListBase class, 67
consistent coding model for child

objects, 421
editable child objects, 183, 184
EditableRootListBase class, 67
switchable objects, 186

ChildChanged event
editable collections, 283
ExtendedBindingList class, 74
parent-child interaction, 274, 276–278

ChildChangedEventArgs
parent-child interaction, 277

ChildDataPortal class, 479–480
child object data access methods, 455

Class Library project, 518
classes

see also business class
implementation, PTracker

base classes, 62, 64, 98
complete code download for, 208
final class list, PTracker, 121
generic classes, 64
helper types and classes, 93–96

class-in-charge (Factory pattern) model,
48–50, 435

ClearContext method, 483
ClearIndex method, 412
ClearIndexes method, 412
ClearItems method, 238
Clicked event, 310
Clicking event, 310
client configuration

configuring WCF to use message
security, 690

custom authentication, WCF services, 700–701
PTWcfClient project, 715

client models
high-scalability smart client, 15–16
high-security web client, 18
optimal performance smart client, 14–15
optimal performance web client, 17–18
smart client for WCF service, 713–718

ClientContext collection, 429
ClientContext objects

storing state on web server, 623
ClientContext property, 214, 216, 217, 218, 219
clientCredentialType property, WCF, 698
ClientCulture data, DataPortalContext, 429
client/server applications

XML services, SOA, 676
client-side cache, invalidating, 578
Client-side Code region, 198
client-side context data, 80
client-side DataPortal, 78–79
client-side proxy classes, 78, 79–80
ClientUICulture data, DataPortalContext, 429
Clone method

ICloneable interface, 237
Project class, PTracker, 520
ProjectResources class, PTracker, 530
ReadOnlyListBase class, 538

cloning, 220, 237
code download

Resources.resx file, 211

Lhotka_1019-1INDEX.fm Page 727 Monday, November 24, 2008 2:50 PM

728 ■IN D E X

code generation, criteria objects, 204
code reuse

architectures and frameworks, 34
object-oriented application design, 103
reflection, 347
validation rules, 40

CodeBehind property, WCF, 684
CoerceValue method, 230, 505

managed backing fields, 248
private backing fields, 247
setting field values, 259

collaboration
behavioral object-oriented design, 55
revising PTracker design, 120

collection classes
reacting to Insert/Remove/Clear operations,

386–387
collection data binding

Windows Forms, 295–296
WPF, 315

collection objects
CSLA .NET terminology, 144
parent with single collection, 274
ProjectTracker objects, 517
root objects compared, 188

CollectionChanged event, 52, 315
collections

binding to results from LINQ to Objects, 400
BusinessListBase class, 66
cascading call to, 377
CSLA .NET terminology, 144
deleted object collection, 387–391
dynamic editable collections, 199–201
editable child collections, 190–191
editable root collections, 187–190
EditableRootListBase class, 67
parent editable collection, 283–285
parent-child interaction, 283–285
properties controlling editable

collections, 577
read-only child collections, 196
read-only collections, 194–196
ReadOnlyListBase class, 68
state, 392
strongly typed collections of child objects, 42
updating editable collections, 441–442

Collections.Generic namespace, 42
COM (Component Object Model), 7
COM+ transactional context, 466
ComboBox control, ProjectEdit form, 613, 615
command objects, 63, 67, 197–198

common regions, 167
CSLA .NET object stereotypes, 146

Command property, Button control, 607, 608

CommandBase class, 62, 67, 223
Csla namespace classes, 98, 213
DataPortal_Execute method, 68, 466
regions in inherited classes, 167

CommandBase object
Execute method, SimpleDataPortal, 475

CommandBinding, ProjectEdit control, 616
CommandField column

DetailsView control, 662, 672
GridView control, 650, 653, 656, 659, 661, 663

CommandManager property, 607
CommandName property, 310
CommandParameter property

Button control, 607
ProjectEdit control, 616

CommandTarget property
Button control, 607
CslaDataProviderCommandManager

class, 319
common business rules, 351
CommonRules class, 75, 347–351

implementing common rules, 76
methods, 347
Project class, PTracker, 525
purpose, 347
RuleHandler delegate, 347
StringMaxLength method, 347, 348–351
StringRequired method, 347, 348

Compile method, LINQ, 410, 413
Complete method

TransactionScope object disposal, 468
complexity

data access layer design, 554
Component Object Model (COM), 7
ComVisible attribute, 467
ConfigurationManager class, 215
connection object

ConnectionManager opening, 498
connection pooling

high-scalability smart client, 16
managing database connections, 495
optimal performance web client, 18
scalability of physical model, 6

ConnectionManager class, 93, 94, 496–498
AddRef method, 498
connection manager types, 495
data access using, 495, 496
DeRef method, 498
Dispose method, 496, 498
GetManager method, 498
IDbConnection interface, 497
IDisposable interface, 496
LINQ to SQL, 565
lock statement, 497

Lhotka_1019-1INDEX.fm Page 728 Monday, November 24, 2008 2:50 PM

729■I N D E X

opening connection object, 498
thread local storage (TLS), 497, 498
threading, 497

connections see database connections
ConstantExpression

expression evaluation, LINQ, 410
NodeType property, Expression objects, 413

constructors
non public constructors, Project class, 561
non-public default constructor, 170
using factory methods, 170

consuming application, SOA, 676
containment, stereotypes, 144
Contains/ContainsDeleted methods, 387,

530, 532
ContainsKey method, LINQ, 413
Content control, RolesEdit web form, 646
content pages

master page, PTWeb project, 634
ContentPlaceHolder control, PTWeb, 635
ContentPlaceHolderID property, 646
ContextDictionary type, 481
ContextManager class, 93, 94, 499

connection manager types, 495
data access using, 495, 496, 573
LINQ to SQL, 565

contexts
ApplicationContext class, 214
ClearContext method, 483
context dictionaries, 216
data access, 428–431, 480–484
DataPortalContext class, 429, 480–483
DataPortalContext object, 429
DataPortalException class, 430, 484
DataPortalResult class, 430, 484
DataPortalResult object, 429
managing contexts, 495
message objects, 80
ObjectContextManager class, 499
SetContext method, 481
types required to implement, 431

contract property, WCF, 679, 680
control skin, PTWeb master page, 636
Control_BindingComplete method, 303
controls

Authorizer control, 324–326
BindingSource control, 304–305
BindingSourceRefresh control, 302–304
BusyAnimation control, 323
controls bound to properties, 296
CslaActionExtender control, 305, 308–311
CslaDataProvider control, 315–319
CslaDataSource control, 327–329
DataDecoratorBase control, 324

defining control prefix, 629
ErrorProvider control, 296
extender controls, 296
ObjectStatus control, 326–327
PropertyStatus control, 319–323
ReadWriteAuthorization control, 296–302

controls, PTWpf, 586
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609
user control framework, 587–590

conversion functions
date handling with SmartDate, 491–492

Convert class
ChangeType method, 505

Convert method
ListTemplateConverter class, 592
value converters, PTWpf project, 591
VisibilityConverter class, 592

ConvertBack method, PTWpf, 591
converters

ListTemplateConverter class, 592, 586
value converters, PTWpf, 591–592
VisibilityConverter class, 591, 587

cookies
reloading principal objects, 642

CopyingState method, 377
CopyState method, 374–380, 391–392

avoiding double-processing of fields, 377
BeginEdit method, 382
BindingEdit property, 378
cascading call to child objects/collections, 377
getting list of fields, 377
IUndoableObject interface, 236
protected scope, 376
serializing/stacking HybridDictionary,

379–380
skipping NotUndoable fields, 377
stacking data, 374
taking snapshot of data, 374–377
taking snapshot of regular fields, 379

CopyStateComplete method, 377
Core folder, 208
Core namespace, 97, 230

BusinessBase class, 231, 232
ExtendedBindingList class, 231, 232
IBusinessObject, 227, 231, 232–233
ICommandObject, 233
IEditableBusinessObject, 233
IEditableCollection, 233
IPropertyInfo interface, 227
IReadOnlyCollection, 234
IReadOnlyObject, 234

Lhotka_1019-1INDEX.fm Page 729 Monday, November 24, 2008 2:50 PM

730 ■IN D E X

ISavable, 231, 234
ISmartField, 231, 235
ISupportUndo, 231, 235
ITrackStatus, 231, 236
IUndoableObject, 236
ObjectCloner class, 231, 237–238
ReadOnlyBindingList class, 231, 238–239

Core.FieldManager namespace, 250–252
corner.png file, PTWeb, 636
coupling, 103
CRC cards, PTracker object design, 109
Create method

ChildDataPortal class, 479
ObjectFactory class, 169

Create method, DataPortal, 84–86
see also DataPortal_Create method
creating child objects, 151
creating root objects, 148
description, 446
distributed transaction support, 465
purpose, 425
root object data access methods, 454
RunLocal attribute, 445

create operation
data portal behaviors, 84
data portals, 81
server-side data portal, 82

CreateChild method, DataPortal, 151, 570, 571
CreateConsolidatedList method, 254
CreateInstance method

Activator class, 450, 499
MethodCaller class, 443

CreateQuery method, 406, 407, 408
CreateUpdatableProject method, 710
CreateWorkflow method, 510
creating objects see object creation
credentials

reloading principal objects without
authenticating, 544

security in physical model, 6
username credentials, WCF, 692–693

CredentialValidator class, WCF, 694, 696, 699
criteria class, naming, 203
criteria objects, 202–205

base class support, data portals, 436
create operation, data portals, 85
creating criteria object, 81
CriteriaBase class, 81
CSLA .NET object stereotypes, 147
CSLA .NET terminology, 144
delete operation, data portals, 90
fetch operation, data portals, 86
identifying business object type, 444
SingleCriteria class, 81
Value parameter, 565

CriteriaBase class, 81, 223
criteria objects, 203, 204
Csla namespace classes, 213
message router design pattern, 426

CRUD operations, 59
CSLA .NET

authentication, 353–360
authorization, 360–367
child object reference fields, 248
configuring, 355, 356
custom authentication, 356
data portals, 148
declaring properties, 241–250
field manager, 159
Indexable attribute, 399
indexed LINQ and, 408–416
indexed search using, 403–404
IQueryable implementation for, 404–408
LINQ to, 400–401
LINQ, reducing code with, 399–400
managed backing fields, 245, 247–248
private backing fields, 245, 246–247
project structure, 208–212
SaveComplete method, 234
serialization, 165
signed assemblies, 210
stereotypes, 146
support for mobile objects, 419
terminology, 144
using NetDataContractSerializer, 165
Windows authentication, 355

CSLA .NET for Silverlight, 176
IMobileObject interface, 489
information web site, 583
serializable objects, 357
using base classes, 539

CSLA .NET framework
Authorizer control, 324–326
base classes, 207
BindingSourceRefresh control, 302–304
business and validation rules, 331
business framework base classes, 62
business object creation, 61–69
business object design benefits, 123–126
business object persistence, 548–553
business rules, 74–77
BusyAnimation control, 323
classes

BindableBase, 73
BindingList, 73
BrokenRule, 75
BrokenRulesCollection, 75
BusinessBase, 64
BusinessListBase, 66
CommandBase, 67

Lhotka_1019-1INDEX.fm Page 730 Monday, November 24, 2008 2:50 PM

731■I N D E X

CommonRules, 75
ConnectionManager, 93, 94, 496
ContextManager, 93, 94, 499
CriteriaBase, 81
CustomIdentity, 92
DataMapper, 93, 95, 503–508
DataPortal, 78–80, 446–457
EditableRootListBase, 67
ExtendedBindingList, 74
FilteredBindingList, 74
LocalProxy, 458–459
NameValueListBase, 69
ObjectContextManager, 499
ReadOnlyBase, 68
ReadOnlyListBase, 68, 538
RuleArgs, 75
RuleHandler, 75
SafeDataReader, 93, 94–95, 499–503
SingleCriteria, 81
SmartDate, 93
SmartDate, 96
SortedBindingList, 74
UndoableBase, 70–71
ValidationException, 75
ValidationRules, 75
WcfPortal, 460–462
WcfProxy, 459–460
WorkflowManager, 510–515

command objects, 197–198
common business rules, 351
criteria objects, 202–205
CslaActionExtender control, 305, 308–311
CslaDataProvider control, 315–319
CslaDataSource control, 327–329
custom authentication, 91–92
data access, 494–508
data binding, 72–74
data portals, 77–91
DataDecoratorBase control, 324
date handling with SmartDate, 488–494
directory structure, 208
dynamic editable collections, 199–201
dynamic editable root objects, 201–202
editable child collections, 190–191
editable child objects, 180–184
editable root collections, 187–190
editable root objects, 174–180
folders, table of, 208
framework design, 61–96
generic types, 232
helper types and classes, 93–96
inheritance, 207
integrated authorization, 92–93
ISupportUndo interface, 71

LINQ support, 73
localization, 211
message router, 425
name/value list objects, 198–199
namespace organization, 96–98
n-level undo functionality, 69–72
NotUndoableAttribute, 71
object status properties, 263–272
ObjectStatus control, 326–327
polymorphism, 232
PropertyStatus control, 319–323
read-only child collections, 196
read-only child objects, 193–194
read-only collections, 194–196
read-only objects, 191–193
ReadWriteAuthorization control, 296–302
SmartDate type, 488–494
switchable objects, 184–187
validation rules, 74–77

CSLA Light, 221
Csla namespace, 97, 212–230

base classes, 98, 212
Csla namespace classes

ApplicationContext class, 213, 214–219
BusinessBase class, 213, 219–221
BusinessListBase class, 213, 221–223
CommandBase class, 213, 223
CriteriaBase class, 213, 223
DataPortal class, 224
EditableRootListBase class, 213, 224
NameValueListBase class, 213, 225
PropertyInfo class, 213, 226, 227
ReadOnlyBase class, 213, 227, 228
ReadOnlyListBase class, 213, 228
SingleCriteria class, 213, 229
SmartDate class, 214, 229
Utilities class, 214, 230

Csla project
project settings, 209
project signing, 210

Csla.Core namespace see Core namespace
Csla.Core.FieldManager namespace

PropertyInfoManager class, 250–252
Csla.Data namespace, 97
Csla.DataPortalClient namespace, 97
Csla.dll assembly, 210

defining control prefix, 629
PTWcfService site setup, 705
PTWpf project setup, 596
referencing, 519

Csla.Linq namespace, 97
Csla.Properties namespace, 97
Csla.Reflection namespace, 97, 443

Lhotka_1019-1INDEX.fm Page 731 Monday, November 24, 2008 2:50 PM

732 ■IN D E X

Csla.Security namespace, 97, 354
authentication classes, 356

Csla.Serialization namespace, 97
Csla.Server namespace, 97

DataPortal class, 462–466
Csla.Server.Hosts namespace, 97
Csla.Validation namespace see Validation

namespace
Csla.Web namespace, 97
Csla.Web.Design namespace, 98
Csla.WebServiceHost namespace, 98
Csla.Windows namespace, 98
CslaActionExtender control, 305, 308–311

ActionType property, 309
AutoShowBrokenRules property, 309
BusinessObjectInvalid event, 310
Clicked event, 310
Clicking event, 310
CommandName property, 310
DataSource property, 309
DirtyWarningMessage property, 309
DisableWhenClean property, 310
ErrorEncountered event, 310
HasBrokenRules event, 311
IButtonControl interface, 308
ObjectSaved event, 311
ObjectSaving event, 311
PostSaveAction property, 309
RebindAfterSave property, 310
WarnIfCloseOnDirty property, 309
WarnOnCancel property, 309
WarnOnCancelMessage property, 309
working with multiple root objects, 311–312

CslaAuthentication key
application configuration, PTWpf, 593
authentication, PTWeb, 630
authentication, WCF service interface, 703
data portal server, 596
WCF data portal server, PTWeb, 633

CslaDataPortalProxy key
defining proxy class, 448, 449
local data portal, 630
remote data portal (with WCF), 631
WCF service interface, 704

CslaDataProvider class
DataChanged property, 603
DeferRefresh method, 614
FactoryMethod property, 603
IsAsynchronous property, 604
IsInitialLoadEnabled property, 603
ManageObjectLifeTime property, 603
ObjectType property, 603
RolesEdit form, PTWpf, 603, 603–604

CslaDataProvider control, 224, 315–319
BeginQuery method, 316
BindsDirectlyToSource property, 607
Button control with commanding, 607
Cancel property, 609
CommandManager property, 607
CslaDataProviderCommandManager class,

318–319
DoQuery method, 317–318
IsAsynchronous property, 315, 316
IsInitialLoadEnabled property, 316
IsRefreshDeferred property, 316
ManageObjectLifetime property, 317
OnQueryFinished method, 318, 319
Rebind method, 609
RolesEdit form contents, 608
WPF, 583

CslaDataProviderCommandManager class,
318–319

CslaDataSource control, 327–329
application configuration, PTWeb, 629
ProjectEdit web form, PTWeb, 663
properties, 658
supporting graphical designer, 650

CslaDataSourceXyz classes, 328
CslaDesignerDataSourceView class, 328
CslaIdentity class

authentication classes, Csla.Security, 356
creating custom identity class, 358, 544
DataPortal_Fetch method, 358, 359
PTIdentity class and, 546

CslaKey.snk file, 210
CslaPrincipalCacheSize key, 693
CslaPropertyChangedMode key, 593
CslaQueryProvider class, 405, 407
CSS style sheet

themes, PTWeb project, 635
culture see localization
CurrentPrincipal class, 215
CurrentUICulture setting, 482
custom authentication, 60–61, 355–360

authentication classes in Csla.Security, 356
configuring CSLA .NET, 356
creating custom identity class, 358–359
creating custom principal class, 357–358
CSLA .NET design benefits, 124
CSLA .NET framework, 91–92
CslaAuthentication key, 593
custom principal object inheritance, 353
MembershipProvider authentication, 359–360
message objects, 80
PTWeb project, 630
setting server context, 482, 483
WPF, 584–585

Lhotka_1019-1INDEX.fm Page 732 Monday, November 24, 2008 2:50 PM

733■I N D E X

custom authentication, PTracker, 543–546
object design, 122
PTIdentity class, 545
PTPrincipal class, 543–545

custom authentication, WCF services, 685–701
acquiring X.509 certificate, 686
client configuration, 700–701
creating test certificate, 686–689
custom authorization policy, 695–697
custom UserNamePasswordValidator,

694–695
message security, 689–692
modifying PTPrincipal, 693–694
providing username from client, 699–700
server configuration, 697–699
username credentials, 692–693

custom membership provider, PTWeb, 640–642
custom rule methods, Project class, 527–528
CustomerDal object, 550, 555
CustomIdentity class

GetIdentity method, 92
IsAuthenticated property, 92
UnauthenticatedIdentity method, 92

■D
DalLinq project, ProjectTracker, 557559
data

application data, 20
business objects as smart data, 24–25

data access, 494–508
business logic separation, 547
channel adapter behaviors, 421–424,

445–462
ConnectionManager class, 496–498
context and location transparency, 428–431,

480–484
ContextManager class, 499
CSLA .NET design benefits, 123
DataMapper class, 503–508
distributed transaction support, 427–428,

462–468
managing database connections and

contexts, 495–499
message router functionality, 424–427,

468–480
ObjectContextManager class, 499
#region directive, 166
SafeDataReader class, 499–503
separation of business logic and, 420
SmartDate type, 494
TransactionScope object, 495

data access code, ProjectTracker, 557
Data Access layer, 12–13, 14

business logic, 20
business logic locations, 22

encapsulation, 34
high security web client, 18
high-scalability smart client, 15
interacting with, 548
mobile business objects, 23
mobile objects, 27

logical architecture and, 28, 29
data access layer design, 547–556

balancing design issues, 554–556
common designs, 548
complexity, 554
data access models, 548–553
encapsulation, 554, 555–556
layering, 554
performance, 554

data access methods
BusinessBase class, 64
child objects, DataPortal, 455
dual data access methods, 185–187
root objects, DataPortal, 450–455

data access models, 548–553
DataPortal_Xyz methods, 548–551

invoking separate data access, 549–551
putting data access code into, 549

ObjectFactory attribute, 548, 551–553
web applications, 620

data access objects, 556
LINQ to SQL, 556–557
ProjectTracker.DalLinq project, 557–559

Data Access region, 169
dynamic editable collections, 201
editable child collections, 191
editable child objects, 182
editable root collections, 189
editable root objects, 177
ExistsCommand class, 580–581
name/value list objects, 199
Project class, 562–569

DataPortal_Xyz methods, 563–569
ProjectResource class, 571–574
ProjectResources class, 530, 570
read-only objects, 193
ResourceList class, 576
RoleList class, 575
Roles class, 577–578
switchable objects, 184

data binding
application design supporting, 50–54
Authorizer control, 324–326
benefits of using in .NET, 50
BindableBase class, 73
BindingList class, 73, 238, 295
BindingSource control, 303, 304–305
BindingSourceRefresh control, 302–304

Lhotka_1019-1INDEX.fm Page 733 Monday, November 24, 2008 2:50 PM

734 ■IN D E X

BusinessBase functionality, 220
BusyAnimation control, 323
collection interfaces supporting, 52
CollectionChanged event, 52
creating child objects, 150
CSLA .NET framework, 72–74
CslaActionExtender control, 305, 308–311
CslaDataProvider control, 315–319
CslaDataSource control, 327–329
DataDecoratorBase control, 324
enabling objects for, 51–52
events and serialization, 52–54
ExtendedBindingList class, 74
FilteredBindingList class, 74
grid-based binding, 52
IBindingList interface, 52, 72, 73, 295
IBindingListView interface, 295
ICancelAddNew interface, 72, 295
IDataErrorInfo interface, 54, 72, 73, 294–295
IEditableObject interface, 51, 72, 73, 291–294
INotifyCollectionChanged interface, 52,

72, 73
INotifyPropertyChanged interface, 51, 72,

73, 289–290
INotifyPropertyChanging interface, 51,

72, 291
IRaiseItemChangedEvents interface, 72, 295
.NET Framework interfaces, 72
null values, 488
ObjectDataProvider control, 315
ObjectStatus control, 326–327
ProjectEdit form, PTWpf, 615
properties controlling editable collections, 577
PropertyChanged event, 51, 266, 303
PropertyChanging event, 51
PropertyStatus control, 319–323
ReadWriteAuthorization control, 296–302
ResourcesDataSource control, 668
setting DataContext, 615
SortedBindingList class, 74
undo functionality, 370
value converters, 591
WPF, 583

data binding, Web Forms, 327–329
data binding, Windows Forms, 287–312

applying authorization rules, 299–302
collection data binding, 295–296
controls and helper objects, 296–311
object data binding, 287–295
working with multiple root objects, 311–312

data binding, WPF, 312–327
collection data binding, 315
controls and helper objects, 315–327
object data binding, 312–314

data centric object model, 56

data contention, 6
data contract element, WCF, 681
data focused design, 104
Data folder, 208
Data layer

communicating with Business layer, 5
n-layer (logical) architecture, 3

Data namespace, 97
data portal server

application configuration, PTWpf, 595–596
configuring WCF data portal server, 631–633
local mode, 595

data portals, 77–91
application configuration, PTWeb, 630, 631
application configuration, PTWpf, 594
areas of functionality, 78
asynchronous behaviors, 432–433
authorizing server calls, 431–432
base class support, 434, 442
behaviors/methods, 84–91
benefits of, 77
channel adapter design pattern, 421–424,

445–462
ChildDataPortal class, 479–480
client-side DataPortal, 78–79
client-side proxy classes, 78, 79–80
consistent entry point to application

server, 77
context and location transparency, 428–431,

480–484
CSLA .NET, 148
data access in ObjectFactory, 551
data passed to/from server, 81
data portal design, 420–434
DataPortalSelector class, 469–470
description, 59, 419
design patterns, 421
distributed transaction support, 427–428,

462–468
FactoryDataPortal class, 426, 476–479
FactoryDataPortal object, 425
IDataPortalProxy interface, 458
IDataPortalServer interface, 457–458
IDataPortalTarget interface, 265
local data portals, 630, 703
message objects, 78, 80–81
message router design pattern, 421, 424–427,

468–480
methods exposed by data portal server, 425
mobile objects, 420, 485
object factory classes, 433–434
object factory model, 78, 84, 548, 551
reflection and dynamic method invocation,

442–445
remote data portals, 163, 631, 704

Lhotka_1019-1INDEX.fm Page 734 Monday, November 24, 2008 2:50 PM

735■I N D E X

RunLocal attribute, 445–446
separation of business logic and data

access, 420
server-side child data portal, 78
server-side data portal, 78, 82–83
server-side host objects, 78, 81–82
ServicedDataPortal class, 426, 466–467
SimpleDataPortal class, 425, 426, 470–476
transaction models, 82
Transactional attribute, 462
transactional options supported by, 428
TransactionalDataPortal class, 426, 467–468
WCF service interface, 703, 704
WcfPortal class, 460–462

data provider controls
ProjectEdit form, PTWpf, 613–615

data providers
CslaDataProvider control, 315
ObjectDataProvider control, 315

data source controls
CslaDataSource, 663
ProjectDataSource, 666–668
ProjectListDataSource, 659
ResourceListDataSource, 671
ResourcesDataSource, 668–670
RoleListDataSource, 670
RolesDataSource, 648

data stacking see stacking data
Data Storage and Management layer, 13–14

business logic locations, 21
data transfer object (DTO), 24, 495, 503
data validation see validation
database connections

avoiding overhead of DTC, 487, 494
connection manager types, 495
ConnectionManager class, 496–498
ContextManager class, 499
managing database connections, 495
ObjectContextManager class, 499

database design see PTracker database design
database diagrams, PTracker, 131
database format

date handling with SmartDate, 494
DataBind method, 653
DataChanged event, 589, 603
DataChanged property, 603
DataContext type

creating instance of, 499
RolesEdit form, PTWpf, 604

DataContextChanged event, 324
DataContract attribute, 164, 165

creating mobile objects in WCF, 31
ObjectCloner class, 237
passing mobile objects by reference, 33

using in business classes, 166
WCF services, 681–683, 706
WcfPortal class, 461

DataContractSerializer class, 164, 461
DataDecoratorBase control, 324
DataKeyNames property

DetailsView control, 652
GridView control, 650, 654, 657, 660, 662

DataMap class, 508
DataMapper class, 93, 95, 503–508

data transfer objects (DTOs), 503
data transfer using, 495
GetProperties method, 506
GetSourceProperties method, 506
GetValue method, 507
IDictionary interface, 503, 505–506
IsBrowsable property, 506
Map method, 505, 506, 507, 508, 652, 667
mapping from objects, 506–507

with DataMap, 507–508
reflection, 503
setting values, 504–505
SetValue method, 504, 505, 506, 507
WCF services, 708, 709

DataMember attribute, 165
creating mobile objects in WCF, 31
serialization engines, 164
using in business classes, 166
WCF services, 682, 683, 706
WcfPortal class, 461

DataObjectField attribute, 521, 522
DataPortal class, 224, 446–457, 462–466

asynchronous behaviors, 432
base class support for data portals, 435
channel adapter behaviors, 445–462
channel adapter design pattern, 423
child object data access methods, 455
ClearContext method, 483
client-side DataPortal, 78–79
client-side proxy classes, 79
Create method, 84–86, 454

creating child objects, 151
creating root objects, 148
distributed transaction support, 465

CreateChild method, 151, 570, 571
creating proxy object, 448–450
Delete method, 90–91, 454

deleting root objects, 160
distributed transaction support, 465

description, 419
determining network protocol, 448
distributed transaction support, 462–466
events, 447
Execute method, 198, 580

Lhotka_1019-1INDEX.fm Page 735 Monday, November 24, 2008 2:50 PM

736 ■IN D E X

Fetch method, 86–87, 450–453
distributed transaction support, 463–465
retrieving root objects, 153

FetchChild method, 570, 571
message objects, 80
message router design pattern, 423, 425
methods exposed by data portal server, 425
methods for child objects, 447
methods for root objects, 446
root object data access methods, 450–455
RunLocal attribute, 79
SetContext method, 216, 481
Transactional attribute, 427
transactional contexts, 427
Update method, 87–90, 454–455

adding/editing root objects, 156
distributed transaction support, 465–466

UpdateChild method, 441, 442
DataPortal events, 447
DataPortal_Create method, 85, 86

see also Create method, DataPortal
creating child objects, 152
creating root objects, 148, 150
declaring child properties, 280
editable child objects, 183
invoking, 446
Project class, 563–564
RunLocal attribute, 445, 446

DataPortal_Delete method
see also Delete method, DataPortal
invoking, 446
Project class, 561, 569
root objects, 160

DataPortal_DeleteSelf method, 88, 90, 91
see also DeleteSelf method, child objects
determining method name, 466
invoking, 446
processing BusinessBase object, 475
Project class, 568–569
root objects, 156, 158, 161

DataPortal_Execute method
see also Execute method, DataPortal
command objects, 198
CommandBase class, 68, 466
executing workflow from business

object, 515
ExistsCommand class, 580, 581
invoking, 446
processing CommandBase object, 475

DataPortal_Fetch method, 86
see also Fetch method, DataPortal
CslaIdentity class, 358, 359
declaring child properties, 280, 281
dynamic editable collections, 201

dynamic editable root objects, 202
editable root collections, 189
Fetch method, SimpleDataPortal, 473
invoking, 446
invoking separate data access, 550
lazy loading child objects, 282
modifying PTPrincipal, WCF, 694
preserving encapsulation, 555
Project class, 561, 564–566
putting data access code into, 549
read-only collections, 195
read-only objects, 193
ResourceList class, 576
retrieving child objects, 155
retrieving root objects, 153, 154
RoleList class, 575

DataPortal_Insert method
see also Insert method, child objects
determining method name, 466
invoking, 446
processing BusinessBase object, 475
Project class, 566–568, 570
root objects, 156, 158

DataPortal_OnDataPortalException method,
470, 474

DataPortal_OnDataPortalInvoke method, 470,
473, 476, 578

DataPortal_OnDataPortalInvokeComplete
method, 470, 476, 578

DataPortal_Update method, 88
see also Update method, DataPortal
determining method name, 466
editable root collections, 189
invoking, 446
processing BusinessBase object, 475
processing other objects, 476
Project class, 568, 570
Roles class, 578
root objects, 156, 158

DataPortal_Xyz methods
BusinessBase class, 65
BusinessListBase class, 66
consistent coding model for root objects, 421
data access layer designs, 548
data access models, 548–551
declaring child properties, 279–280
dynamic editable root objects, 202
editable root objects, 177, 179
EditableRootListBase class, 67
invoking separate data access, 549–551
putting data access code into, 549
setting up ProjectTracker, 519
SimpleDataPortal class, 470
switchable objects, 185

Lhotka_1019-1INDEX.fm Page 736 Monday, November 24, 2008 2:50 PM

737■I N D E X

DataPortalClient folder, 208
DataPortalClient namespace, 97
DataPortalContext class, 480–483

clearing server context, 483
context data within, 429
context data/information, 429
context passing and location

transparency, 431
root object data access methods, 452
setting server context, 481–483

DataPortalContext property, 448
DataPortalEventArgs class, 423, 448
DataPortalException class, 484

context data within, 430
context passing and location

transparency, 431
DataPortalSelector routing, 470
Fetch method, SimpleDataPortal, 474
root object data access methods, 453

DataPortalInvoke event, 447, 452
DataPortalInvokeComplete event, 447, 453
DataPortalMethodCache class, 452
DataPortalMethodInfo class, 464, 452
DataPortalProxy property, 214, 449
DataPortalResult class, 429, 430, 431, 473, 484
DataPortalSelector class, 462, 465, 469–470
DataPortalUrl property, 214
DataPropertyChanged method, 324
DataReader objects, 620

SafeDataReader class, 500
DataSet objects, 24, 620, 621
DataSource property

applying authorization rules, 299
BindingSource control, 306, 310, 717
CslaActionExtender control, 309

DataSourceID property, 650
DataTemplate element

Grid control, RolesEdit form, 604, 605
ListBox control, 610
ProjectEdit form, 615
RolesEdit form, 608

date field
SmartDate type, 490, 491, 493

date functions
date handling with SmartDate, 493

date handling with SmartDate, 488–494
conversion functions, 491–492
database format, 494
date functions, 493
empty/blank dates, 488
initializing structs, 490–491
supporting empty dates, 491
text functions, 492–493

Date property, 493

dates
see also SmartDate type
conversion functions, 491–492
supporting empty dates, 491
working with empty date values, 96

DateTime property, 591
DateTime type

Date property, 493
empty/blank dates, 488, 500, 502
GetDateTime method, 502
inheritance from, 489
Project class, PTracker, 523
SmartDate type, 93, 488, 489
working with empty date values, 96

DateToString method, 492, 493
DCOM (Distributed Component Object

Model), 7
debugging message objects, 80
DeclaringType property, 444
decomposition

object-oriented application design, 102
DecoratedRuleArgs class, 334, 349–350
DecrementCount method, 345
Default form, PTWeb, 629
default values

loading from database, 183
Role class setting, 541–542

Default.aspx page, PTWeb, 627, 634
defaultFormat field, SmartDate, 490
DefaultPopupTemplate element, 320
DefaultRole method, 536, 571
deferred deletion, root objects, 161, 178
DeferredLoadIndexIfNotLoaded method, 239
DeferRefresh method, 614
delegates, 40, 53, 55

RuleHandler delegate, 75, 332–333
Delete method

IsDeleted property, 271
ObjectFactory class, 169

Delete method, DataPortal, 90–91, 425, 446
see also DataPortal_Delete method
deleting root objects, 160
distributed transaction support, 465
root object data access methods, 454

delete operation, data portals, 81, 82, 90
deleteAssignment procedure, PTracker, 136
DeleteChild method, 182, 390

BusinessListBase class, 386
IsDeleted property, 271

deleted object collection, 387–391
DeletedList collection

AcceptChanges method, 396
BusinessListBase class, 386, 387
CopyState method, 392

Lhotka_1019-1INDEX.fm Page 737 Monday, November 24, 2008 2:50 PM

738 ■IN D E X

deleting child objects, 387
UndoChanges method, 394, 395

DeleteObject event
CslaDataSource control, 329
ProjectDataSource control, 668
ProjectEdit web form, 666
ProjectListDataSource control, 659
ResourcesDataSource control, 669
RolesDataSource control, 650, 655

DeleteProject method, 660, 668
deleteProject procedure, PTracker, 134, 569
deleteResource procedure, PTracker, 137
deleteRole procedure, PTracker, 139
DeleteSelf method, child objects, 159

see also DataPortal_DeleteSelf method
deleting objects

child objects, 158–160
deferred/immediate deletion, 161
editable root objects, 178
IsDeleted property, business objects,

271–272
root objects, 160–161

demilitarized zone (DMZ), 18
DenyExecute method, 364
DenyRead method, 364
DenyWrite method, 364
dependency properties

Title property, EditForm control, 588
DependencyProperty field, WPF, 321
DeRef method, 498
Description column, Projects table, 130
Description property

Project class, 522
RuleArgs class, 76, 333, 347, 348

deserialization
editable collections, 283

design
application design goals, 38–61
data access layer design, 547–556
framework design, 61–96
Web Forms user interface, 627–646
WPF user interface, 585–616

Design namespace, 98
design patterns

channel adapter design pattern, 421–424,
445–462

message router design pattern, 424–427,
468–480

DesignerCategory attribute, 297
DetachSource method, 322
DetailsView control

choosing data source for, 648
CommandField column, 662, 672
ItemCreated event, 665

ItemDeleted event, 668
ItemInserted event, 653, 667
ModeChanged event, 653
ProjectEdit form, PTWeb, 661, 665, 668, 672
RolesDataSource control, 651

Diagrams folder, 209
Dictionary

indices on Dictionary properties, 409
directory structure, 208
dirty objects

IsDirty property, 268–269
IsSelfDirty property, 265–268

DirtyWarningMessage property, 309
DisableIEditableObject property, 292
DisableWhenClean property, 310
DispatchTimer class, 323
Dispose method, 162, 163, 496, 498
DisposeRuntime method, 511, 513
disposing of objects see object disposal
distributed applications

mobile objects, 26
passing by reference/value, 33
procedural model, 27

distributed architectures
frameworks and, 34–35
logical and physical architectures, 1–19
managing business logic, 19–34

Distributed Component Object Model
(DCOM), 7

Distributed Transaction Coordinator see DTC
distributed transaction support, 427–428,

462–468
Transactional attribute, 462

distributed transactions, 427
COM+ transactional context, 466
DataPortal class, 462–466
DTC, 427
ServicedDataPortal class, 466–467
transactional options supported by data

portal, 428
TransactionalDataPortal class, 467–468
TransactionalTypes enumeration, 428, 462
TransactionScope object, 427

DMZ (demilitarized zone), 18
DockPanel control, MainForm, 589
domains, 24
domains of trust, 7, 8
DoQuery method, 317–318
DoWork event, 456
DropDownList controls, PTWeb, 662
DTC (Distributed Transaction Coordinator)

avoiding overhead of, 487, 494
managing database connections, 495

DTO (data transfer object), 24, 495, 503

Lhotka_1019-1INDEX.fm Page 738 Monday, November 24, 2008 2:50 PM

739■I N D E X

dual data access methods, 185–187
dual factory methods, switchable objects, 185
duplicate objects, PTracker design, 111
duplicate values, Role class preventing, 542–543
dynamic editable collection stereotype,

199–201
dynamic editable collections, 199–201
dynamic editable list objects, 147
dynamic editable root objects, 147, 201–202
dynamic method invocation, 442
dynamic root list objects, 63, 67
DynamicInvoke method, LINQ, 410, 413
DynamicMethodHandle class, 443
DynamicMethodHandlerFactory class, 443

■E
edge application, 2

SOA terminology, 676
edit level, 385

AcceptChanges method, 395
UndoChanges method, 380, 394

edit level tracking, BusinessListBase, 385
editable child collections, 190–191
editable child list objects, 63, 67

CSLA .NET object stereotypes, 146
editable child objects, 63, 65, 180–184

CSLA .NET object stereotypes, 146
loading default values from database, 183
ProjectResource class, 532
ProjectTracker objects, 517
state management, 184

editable collections
dynamic editable collections, 199–201
parent editable collection, 283–285
properties controlling, 577
updating editable collections, 441–442

editable objects
CSLA .NET terminology, 144
IsDeleted property, 158
IsNew property, 158
object status properties, 263–272
parent editable object, 273–283
switchable objects, 184
updating, 156–160

editable root business objects,
ProjectTracker, 517

editable root classes, PTracker, 520, 560
editable root collections, 187–190
editable root list objects, 63, 66

CSLA .NET object stereotypes, 146
editable root objects, 63, 64, 65, 174–180

CSLA .NET object stereotypes, 146
deletion, 178
dynamic editable root objects, 201–202

ObjectFactory attribute, 179–180
state management, 179

EditableRootListBase class, 62, 67, 224
Child_Xyz methods, 67
Csla namespace classes, 213
DataPortal_Xyz methods, 67
determining user editing child object, 384
dynamic editable collections, 200
regions in inherited classes, 168

EditForm class, PTWpf, 586, 587–589, 602, 603
ApplyAuthorization method, 588
behaviors implemented in, 587
DataChanged event, 589
error handling, 587, 589
principal changes, 587, 588
Title property, 587, 588
TitleChanged event, 588

editing child objects, 158–160
editing root objects, 156–158
EditLevel property, 236
EditLevelAdded property, 386, 396
EditorBrowsable attribute, 290
ElementType property, 404
Employee class, PTracker, 109, 110, 111
empty date values, SmartDate, 491
empty fields, DateTime type, 500
empty values

bool type, 502
DateTime data type, 502
GetEmptyValue method, 301
null values, 500
ReturnEmpty method, 301
SmartDate type, 489, 491, 502
StringToDate method, 491

EmptyList method, 576
emptyValue field, SmartDate, 490, 491, 493
Enabled property, 300, 302
encapsulation

breaking, 555–556
business classes, 38
CSLA .NET design benefits, 123
Data Access layer, 34
data access layer design, 554, 555–556
description, 24, 57, 369
Interface Control layer, 34
mobile objects, 34
n-level undo functionality, 370
ObjectFactory breaking, 551, 555
object-orientation, 420
preserving encapsulation, 57–58, 555
web services returning objects, 503
workflows, 509

Ended property, Project class, 523, 526

Lhotka_1019-1INDEX.fm Page 739 Monday, November 24, 2008 2:50 PM

740 ■IN D E X

EndEdit method
BindingSource control, 304
IEditableObject interface, 291, 292, 293

endpoint configuration, WCF services, 679–680
endpoint definition, WCF services, 679, 684
endpoint element, WCF, 691
EndPoint property, WcfProxy, 459
EndWorkflow method, 511
Enterprise Services

server-side hosting, 81
WCF and, 675

Enterprise Services (MTS/COM+), 82
Enterprise Services proxy, 79
EnterpriseServices transaction option, 82, 83
EnterpriseServices transaction type

DataPortal transactional contexts, 428
routing call to data portal, 462, 464

EnterpriseServices.dll, ProjectTracker, 518
EnterpriseServicesPortal class, 424, 518
EnterpriseServicesProxy class, 424
entities, PTracker object design, 108
Entity Framework, ADO.NET, 556
equality, logical, 525
error handling

EditForm control, PTWpf, 587, 589
Error property, 294
ErrorCount property, 345
ErrorEncountered event, 310
ErrorLabel control

ProjectEdit web form, 663
RolesEdit web form, 647

ErrorProvider control, 296
Evaluate method, 696
EventHandler template, DataPortal events, 448
events

ChildChanged event, 276–278
data binding, 52–54
DataPortalInvoke event, 447
DataPortalInvokeComplete event, 447
delegates and, 53
inheritance and, 290
ListChanged event, 283–285
parent-child interaction, 274
raising for Windows Forms, 268
raising for WPF, 268

EventTrackingEnabled attribute, 467
Exception class, 346
exception handling

BusinessBase class, 65
DataPortalException class, 484
message objects, 80
root object data access methods, 453
ValidationException class, 346

Exception property, DataPortalEventArgs, 448
exceptions

DataPortalException class, 430
ValidationException class, 346

Execute method, DataPortal
command objects, 198, 580
description, 446
processing CommandBase object, 475
purpose, 425

Execute method, IQueryProvider, 406, 407, 408
execute operation, data portals, 81, 82
ExecuteReader method, 501
ExecuteWorkflow method, 511–512, 513,

514, 515
ExecutionLocation property, 214, 215, 482
Exists method

Project class, 543, 579–581
Resource class, 581

Exists region, 520
ExistsCommand class, PTracker, 579–581

Data Access region, 580–581
DataPortal_Execute method, 580, 581
Factory Methods region, 580
ProjectExists property, 580

expression evaluation, 410
Expression objects

NodeType property, 413
Expression property, 404, 405
expression trees, LINQ, 405
ExtendedBindingList class, 74, 231, 232

AddRange method, 74, 223
ChildChanged event, 74
editable collections, 284
IsBusy property, 74
IsSelfBusy property, 74
ListChanged event, 74
PropertyChanged event, 74
RemovingItem event, 74, 223

extender controls, 296
ApplyAuthorization property, 298–299
applying authorization rules, 299–302
BindingSourceRefresh control, 302
GetApplyAuthorization method, 298, 299
IExtenderProvider interface, 297
SetApplyAuthorization method, 298

external applications, 7

■F
factory classes

object factory classes, 169–170
Factory design pattern

class-in-charge model, 48–50

Lhotka_1019-1INDEX.fm Page 740 Monday, November 24, 2008 2:50 PM

741■I N D E X

factory methods
base class support, data portals, 435, 436
creating child objects, 150, 151
creating root objects, 148
dual factory methods, 185
editable child collections, 191
#region directive, 166
retrieving child objects, 155
retrieving root objects, 153

Factory Methods region, 168
command objects, 198
dynamic editable collections, 201
editable child objects, 182
editable root collections, 189
editable root objects, 177
ExistsCommand class, 580
name/value list objects, 199
Project class, 560–562
ProjectResources class, 530, 569–570, 571
read-only collections, 195
read-only objects, 193
ResourceList class, 576
RoleList class, 574–575
Roles class, 577

factory objects
see also object factory model
breaking encapsulation, 551
object factory loader class, 169

FactoryDataPortal class, 476–479
DataPortalSelector routing, 470
FactoryLoader property, 454, 476–477
Fetch method, 477
InvokeMethod method, 478–479
message router design pattern, 425, 426
methods, 477

FactoryLoader property, 476–477
Update method, DataPortal, 454

FactoryMethod property, 603
FalseTemplate property, 592
fault contract element, WCF, 681
fault contracts, XML services, 683
fault tolerance

Data Access layer and, 12
optimal performance web client, 18
physical model, 8–9

FaultContract attribute, WCF, 681, 683–684
FaultException, WCF services, 709
Fetch method

ChildDataPortal class, 479
dynamic editable root objects, 202
FactoryDataPortal class, 477
ObjectFactory class, 169, 551
SimpleDataPortal class, 470–474
WcfPortal class, 461

Fetch method, DataPortal, 86–87, 425, 446,
463–465

see also DataPortal_Fetch method
message router functionality, 470–474
retrieving root objects, 153
root object data access methods, 450–453

fetch operation, data portals, 81, 82, 86
FetchChild method

child object data access methods, 455
DataPortal class, 570, 571
dynamic editable root objects, 202

FetchCompleted event, 433, 457
field manager, 252–261

adding/editing/deleting child objects, 159
consistent coding model for child

objects, 421
updating child objects with, 441

FieldData class, 257
FieldDataDeserialized method, 276, 278
FieldDataManager class, 253–261

CreateConsolidatedList method, 254
generating consolidated property list, 254–256
GetConsolidatedList method, 254
GetFieldData method, 258
getting field values, 258–259
IFieldData interface, 256, 257
SetFieldData method, 259, 261
setting field values, 259–261
snapshots, 378
UpdateChildren method, 441

FieldExists method, 281
FieldInfo objects

DataMapper mapping from object, 508
FieldManager class

child object reference fields, 248
IPropertyInfo objects, 241
UpdateChildren method, 159

FieldManager namespace, 250–252
FieldManager property, 253
fields

avoiding double-processing of, 377
getting list of, 377
skipping NotUndoable fields, 377
taking snapshot of, 379

FilteredBindingList class, 74
finalizing objects, 162–163
FindChildBindings method, 324
FindCustomerRequest class, 682
FindCustomerResponse class, 682
FindMethod method, 443
FindPrivateKey application, 687
findValue property, serviceCertificate, 690
firewalls

demilitarized zone (DMZ), 18

Lhotka_1019-1INDEX.fm Page 741 Monday, November 24, 2008 2:50 PM

742 ■IN D E X

FirstName property, Resource class, 537
folders, CSLA .NET framework, 208
forceLocal parameter, proxy objects, 449
foreign key relationships

null values, 499
Format event, Binding objects, 300
format field, SmartDate type, 490, 492
FormatString property, SmartDate, 492
forms, PTWeb

ASP.NET membership service, 645–646
content pages, 634
Default form, 629, 634
forms-based authentication, 639–644
Login form, 629, 638–646
master page, 629, 634–638
ProjectEdit form, 629, 634, 661–672
ProjectList form, 629, 656–661
ResourceEdit form, 629, 646
ResourceList form, 629, 646
RolesEdit form, 629, 646–656
Windows integrated security, 644

forms, PTWpf, 586
EditForm class, 587–589
Login form, 600–601
MainForm class, 589–590
MainForm window, 596–600
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609

forms-based authentication, PTWeb
configuring web site, 639–640
custom membership provider, 640–642
login page, 639–644
reloading principal object, 642–644

FoundBinding method, 324
framework design, 61–96

see also application design
business object creation, 61–69
business rules, 74–77
custom authentication, 91–92
data binding, 72–74
data portals, 77–91
helper types and classes, 93–96
high-level guidelines, 38
integrated authorization, 92–93
n-level undo functionality, 69–72
validation rules, 74–77

frameworks, 34–35, 61
see also CSLA .NET framework

FullName property
ProjectEdit control, 616
RuleMethod class, 335

■G
garbage collection, 162
generic classes

inheriting from non-generic base classes, 64
Generic namespace, 42
generic types, 42

CSLA .NET framework, 232
polymorphism, 64, 231, 232

Generic.xaml file, 320
GenericPrincipal class, 355
generics, 42
get block, PTracker, 522, 524
GetAllowGetRoles method, 363
GetApplyAuthorization method, 298, 299
GetBaseException method, 430
GetBoolean method, 502
GetChild method, 280, 282
GetChildItemType method, 230
GetClientContext method, 218
GetConsolidatedList method, 254
GetData method, threads, 217
GetDataPortalProxy method, 449, 452
GetDateTime method, 502
GetDefaultAssignedDate method, 535
GetDenyGetRoles method, 363
GetEditableChild method, 182
GetEditableChildList method, 191
GetEmptyValue method, 301
GetFactory method, 477
GetFactoryType method, 477
GetFieldData method, 258
GetFirstBrokenRule method, 345
GetFirstMessage method, 345
GetFormatter method, 237
GetHashCode method, 409
GetIdentity method, 92, 545, 694
GetIdValue method, 524
GetItem method, 530, 531
GetList method, 574, 671
GetManager method, 338, 498
GetMax method, 541
GetMethod method, 443
GetMethodInfo method, 466
GetNameDataSlot method, 217
GetObjectFactoryAttribute method, 469
GetObjectType method, 444
GetOrdinal method, 501
GetParameterTypes method, 444
GetProject method, 561, 664, 665, 667
getProject stored procedure, LINQ to SQL, 558
GetProjectList method, 611, 659, 707–708
GetProperties method, 506

Lhotka_1019-1INDEX.fm Page 742 Monday, November 24, 2008 2:50 PM

743■I N D E X

GetProperty method
BusinessBase class, 242, 245
child object reference fields, 248
integrated authorization, 92
per-property authorization, 364
private backing fields, 246
Project class, PTracker, 521
PropertyInfo class, 226
Resource class, PTracker, 537

GetPropertyConvert method, 247, 524
GetPropertyDescriptor method, 285
GetPropertyListCache method, 251, 252
GetPropertyName method, 348
GetPropertyType method, 230, 504
GetRegisteredProperties method, 252
GetResource method, 533, 571, 572
getResource stored procedure, LINQ to

SQL, 558
GetResourceList method, 576, 671
GetRoleById method, 540, 654
GetRoles method, 361, 577, 649
getRoles procedure, PTracker, 138
GetSmartDate method, 502
GetSourceProperties method, 506
GetString method, 501
GetValue method, 378, 507
Global Assembly Cache (GAC), 639
global context data, 484
GlobalContext collection, 429, 430, 453
GlobalContext property, 214, 216, 219, 457
granularity, 27
graphical user interface (GUI), 10
Grid control, ProjectEdit form, 615
Grid control, RolesEdit form, 604–607

DataTemplate element, 604, 605
ListTemplateConverter element, 604
PropertyStatus control, 605, 606
read-only template, 604
read-write template, 605–607
TextBox control, 605

Grid element, PropertyStatus, 321
grid-based binding, 52
GridView control

BoundField column, 650
choosing data source for, 648
columns, 657
CommandField column, 650, 653, 656, 659,

661, 663
DataBind method, 653
DataKeyNames property, 654, 657, 660
enabling paging for, 658
Id column, 650, 657, 660
Name column, 650, 657, 659
PageSize property, 658

ProjectEdit web form, 662, 663, 669, 670
RolesEdit web form, 649
SelectedIndexChanged event, 657

GUI (graphical user interface)
Interface layer, 10

Guid class, 49

■H
hackers, 7
HandleTarget method, 322
HasBrokenRules event, 311
header region, PTWeb, 636, 637
helper types and classes, 93–96
high-scalability smart client, 15–16, 27
high-security web client, 18, 27
host objects, server-side, 81–82
hosts

hosting PTWeb site in IIS, 633
server-side host classes, 78

Hosts namespace, 97
HttpContext class, 217
HybridDictionary class, 376, 379–380, 381

■I
IAuthorizationPolicy interface, 695
IAuthorizeDataPortal interface, 431, 483

Authorize method, 432, 464
IAuthorizeReadWrite interface, 296, 300

Authorizer control, 324
property and method level

authorization, 365
types implementing authorization, 360

IBindingList interface, 52, 72, 73, 295, 315
IBindingListView interface, 295
IBusinessObject interface, 227, 231, 232–233
IButtonControl interface, 305, 308
ICancelAddNew interface, 72, 293, 295
ICheckRoles interface, 356, 544
ICloneable interface, 237
ICollection methods, 415
ICommandObject interface, 233
IComparable interface, 336, 403, 409, 489
ICriteria interface, 203, 204, 223, 426, 427
Id column, GridView, 650, 657, 660
Id column, Projects table, 129
Id property

Project class, 521
ProjectResources class, 531
Resource class, 536
ResourceInfo class, 538
Role class, 541, 542, 543

IDataErrorInfo interface
BusinessBase inheritance hierarchy, 288
data binding, 54, 72, 73

Lhotka_1019-1INDEX.fm Page 743 Monday, November 24, 2008 2:50 PM

744 ■IN D E X

maintaining list of broken rules, 76
object data binding, Windows Forms, 288,

294–295
object data binding, WPF, 313
validation and business rules, 40

IDataPortalProxy interface, 423, 448, 458
IDataPortalServer interface, 423, 457–458,

463, 468
IDataPortalTarget interface, 223, 265, 472
IDataReader interface, 500, 502
IDbConnection interface, 497
identity classes, 356, 358–359
identity element, 692, 716
identity objects, 91, 353, 354, 545
identity projections, 401

handling non-identity projections, 407
Identity property, 358, 543, 544
IdentityConverter class, 603, 605
IdentityFactory class, 356
IDictionary interface, 503, 505–506
IDisposable interface, 162, 163, 496
IEditableBusinessObject interface, 233
IEditableCollection interface, 71, 233
IEditableObject interface

BeginEdit method, 291, 292
BindingEdit property, 292, 384
BusinessBase class, 288, 384–385
CancelEdit method, 291, 293
data binding, 51, 72, 73
DisableIEditableObject property, 292
EndEdit method, 291, 293
n-level undo functionality, 369
object data binding, 288, 291–294, 312

IEnumerable interface, 407
IExtenderProvider interface, 296, 297
IFieldData interface, 256, 257
IFormattable interface, 489
IHoldRoles interface, 533, 535
IIdentity interface, 91, 353
IIndex interface, 409, 414–415
IIndexSet interface, 409, 411–412
IIS, 81

ASP.NET security and, 639
granting access to test certificate to,

WCF, 687
PTWeb site hosting, 633
PTWcfService site hosting, 705, 706

immediate deletion, root objects, 160, 178
IMobileObject interface, 229, 254, 489
impersonate property, identity element, 644
impersonation, 61, 428

configuring ASP.NET, 355
Windows Integrated security, 431

implementation code, business objects, 25

IncrementCount method, 344
Index class, 415–416
index mode, 403
index set, 409–410
Indexable attribute, 399, 401, 403, 404
Indexable property, 409, 410
indexed LINQ and CSLA .NET, 408–416
indexed LINQ queries, 400
indexed search using CSLA .NET, 403–404, 410
IndexField property, 414
indexing object model, 411–416

BalancedTreeIndex class, 416
IIndex interface, 414–415
IIndexSet interface, 411–412
Index class, 415–416
IndexSet class, 412–414
IRangeTestableIndex, 416

indexing, serialization and, 403
IndexingProvider property, 403
IndexModeXyz options, Indexable attribute,

403, 404
IndexOutOfRangeException

converting to InvalidOperationException, 258
IndexSet class, 412–414
InformationCount property, 345
inheritance

avoiding double-processing of fields, 377
BindingList class, 52
BusinessListBase class, 222
CSLA .NET framework, 207
events and, 290
ObservableCollection class, 52
polymorphism, 232
RegisterProperty method, 248, 250
static fields, 249

InitializeBindingSourceTree method, 306
initialized field, SmartDate type, 490, 493
InitializeRuntime method, 511, 512–513
InnerException property, 430
INotifyCollectionChanged interface, 52, 72,

73, 315
INotifyPropertyChanged interface

BusinessBase inheritance hierarchy, 288
data binding, 51, 72, 73
object data binding, Windows Forms, 288,

289–290
object data binding, WPF, 312, 313
undo functionality, 373

INotifyPropertyChanging interface, 51, 72,
288, 291

Insert method, child objects, 159, 573
see also DataPortal_Insert method

InsertItem method, 386, 391, 411
InsertObject event, 329, 652, 667, 668, 669

Lhotka_1019-1INDEX.fm Page 744 Monday, November 24, 2008 2:50 PM

745■I N D E X

InsertView control, 647
Instance property, LateBoundObject, 473
InstanceContextMode value, WcfPortal, 461
IntegerMaxValue method, 347
IntegerMinValue method, 347
integrated authorization, 41, 92–93
integrated security, 60
IntelliSense, 290
interdependent properties, 526–527
Interface Control layer, 10–11, 14

business logic locations, 21–22
encapsulation, 34
mobile business objects, 23
mobile objects and logical architecture,

28, 29
separation from Interface layer, 10

interface design, PTWeb, 627–646
application configuration, 629–633
login page, 638–646
master page, 634–638
site setup, 633–634

interface design, PTWpf, 585–616
application configuration, 593–596
Login form, 600–601
MainForm window, 596–600
project setup, 596
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609
user control framework, 587–590
value converters, 591–592

Interface layer, 3, 5, 10, 14
business logic, 19
optimal performance web client, 17

interfaces
business objects, 25
.NET data binding interfaces, 72
security and external applications, 8

internal applications, 7
Internet Information Services see IIS
InvalidateCache method, 199, 574, 578
InvalidatedCache method, 578
InvalidateIndex method, 414
InvalidOperationException, 258
Invoke method, 336
InvokeMethod method, 478–479
IObjectFactoryLoader interface, 477
IParent interface, 278, 279
IPrincipal interface, 91, 353, 429, 543
IPrincipal value, 482, 483
IPropertyInfo interface, 227, 241, 256
IPTService interface, 707
IQueryable interface, 404–408

IQueryProvider interface, 405, 406–408
IRaiseItemChangedEvents interface, 72, 295
IRangeTestableIndex class, 416
IReadOnlyCollection interface, 234
IReadOnlyObject interface, 234
IRuleMethod interface, 335, 339
IsAsynchronous property, 315, 316, 604, 610
IsAuthenticated property, 92, 545
ISavable interface, 231, 234
IsBrowsable property, 506
IsBusy property, 74, 232, 274, 610
IsDeleted flag, UndoChanges method, 395
IsDeleted property, 263, 270, 271–272

editable objects, 158
methods, 271
processing BusinessBase object, 475
Project class, PTracker, 568
ProjectResource class, PTracker, 573
Update method, DataPortal, 454

IsDirty property, 263, 270, 268–269
declaring child properties, 280
field manager, 253
parent editable collections, 283
parent-child interaction, 274, 276
Project class, PTracker, 522

IsEmpty property, SmartDate, 491, 494
IsEnabled property, 326
ISerializable interface, 31
IsInitialLoadEnabled property, 316, 603,

610, 611
IsInRole method, 91, 363, 358, 543, 544
IsInRoleProvider, 214, 360, 363
ISmartField interface, 230, 231, 235, 489
IsNew property, 263, 264–265

editable objects, 158
lazy loading child objects, 282
Project class, 568
ProjectResource class, 573

IsNumeric method, 230
IsPropertyImplemented method, 298
IsReadAllowed method, 367
IsReadDenied method, 367
IsReadOnly property

Authorizer control, 326
name/value list objects, 199
read-only collections, 195
ReadOnlyBindingList class, 238
ResourceList class, 576
RoleList class, 575

IsRefreshDeferred property, 316
IsRemotePortal flag, 429
IsRunning property, BusyAnimation, 610
IsSavable property, 263, 270

ObjectStatus control, 326, 327, 604, 608

Lhotka_1019-1INDEX.fm Page 745 Monday, November 24, 2008 2:50 PM

746 ■IN D E X

IsSelfBusy property, 74, 232
IsSelfDirty property, 263, 265–268
IsSelfValid property, 263, 269, 275
IsServerRemote property, 458
ISupportUndo interface, 71, 231, 235

BusinessBase class, 382–384
n-level undo functionality, 371, 372

IsValid property, 263, 269, 270
declaring child properties, 280
BrokenRulesCollection class, 76
parent-child interaction, 274, 276
parent editable collections, 283
Project class, 522

IsValidating property, 270
ItemCreated event, 665
ItemDeleted event, 668
ItemInserted event, 653, 667
Items collection, 217
ITrackStatus interface, 231, 236, 264, 275
IUndoableObject interface, 71, 236, 254

n-level undo functionality, 371, 373
IValueConverter interface, 591
IWcfPortal interface, 460, 461

■J
JavaScript Object Notation (JSON) format, 678
Just-in-Time (JIT) compiler, 377

■L
LambdaExpression parameter, LINQ, 410
LANs (local area networks), 7
LastChanged column, Roles table, 129
lastChanged parameter, Project class, 567
LateBoundObject class, 443, 445, 472, 473
layers

see also tiers
5-layer logical architecture, 9–14
Business layer, 11–12
cross-layer communication, 5
Data Access layer, 12–13
data access layer design, 554
Data Storage and Management layer, 13–14
Interface Control layer, 10–11
Interface layer, 10
managing business logic in multiple layers,

19–23
n-layer (logical) architecture, 2, 3
sharing business logic across tiers, 22–23
table summarizing roles of logical layers, 14

lazy loading, child objects, 150, 281–283
left evaluation, 410
Library class library project, PTracker

Assignment class, 534–535
business classes, 518

business objects, 519–543, 546, 559–581
custom authentication, 543–546
Project class, 520–529, 560–569
ProjectList class, 538, 575
ProjectResource class, 530–534, 569–570,

571–574
PTIdentity class, 545
PTPrincipal class, 543–545
Resource class, 536–538
ResourceInfo class, 538–539
ResourceList class, 538, 575–576
Role class, 541–543
RoleList class, 536, 574–575
Roles class, 539–541, 577–578

Library namespace, 520
life cycle, business objects see business objects,

life cycle of
LineItem objects, 43, 44, 45
link tables, 130
LinkButton control, 651
LINQ

CSLA .NET class support, 73
expression evaluation, 410
expression trees, 405
indexed LINQ and CSLA .NET, 408–416
indexed LINQ queries, 400
indexed search using CSLA .NET, 403–404
indexing object model, 411–416
introduction, 399
IQueryable implementation, 404–408
IQueryProvider interface, 406–408
LINQ to CSLA .NET, 400–401
managing index set, 409–410
projection, 401–402
reducing code with, 399–400

Linq folder, 208
Linq namespace, 97
LINQ to Objects, 400, 401, 407
LINQ to SQL

ContextManager class, 495
data access objects, 556–557
expression trees, 406
Project class, 567
ProjectTracker.DalLinq project, 557–559

LINQ to XML, 406
LinqBindingList class, 401–402, 406, 407, 408
List collection type, 42
list objects, 144
ListBox control, 607, 608, 610
ListChanged event

BindingList class, 232
editable collections, 283–285
ExtendedBindingList class, 74
parent-child interaction, 274, 276

Lhotka_1019-1INDEX.fm Page 746 Monday, November 24, 2008 2:50 PM

747■I N D E X

ListTemplateConverter class, 586, 592
ListTemplateConverter element, 604, 608
Load method, 412
LoadComplete method, 414
LoadCustomData method, 359
LoadData method, 552, 553
Loaded event handler, 614
Loaded property, 414
LoadPrincipal method, 544, 693, 696, 697
LoadProperty method, 244, 245

breaking encapsulation, 556
BusinessBase class, 259
child object reference fields, 248
data portal invoking separate data

access, 550
DataPortal_Create method, 563
declaring child properties, 280, 281
preserving encapsulation, 555

LoadPropertyConvert method, 565
LoadPropertyValue method, 243, 260, 276, 278
LoadWith method, 566
local area networks (LANs), 7
local data portals, 594, 595, 630, 703
local objects, 29, 32
LocalContext objects, 623
LocalContext property, 214, 216, 219, 429
localization, 211, 428, 482
LocalMachine certificate store, 686, 687
LocalProxy channel, 422
LocalProxy class, 423, 458–459, 630
location transparency, 428–431, 480–484
lock statements, 338, 339, 362, 497
logical architecture

see also layers; physical architecture
3-layer logical model, 5
5-layer logical architecture, 9–14

Business layer, 11–12
Data Access layer, 12–13
Data Storage and Management layer,

13–14
Interface Control layer, 10–11
Interface layer, 10

applying 5-layer logical architecture, 14–18
high-scalability smart client, 15–16
high-security web client, 18
optimal performance smart client, 14–15
optimal performance web client, 17–18

benefit of separating layers, 3
logical and physical architectures, 1–19
logical model, 5
mapping logical layers to technologies, 37
mobile objects, 28
n-layer (logical) architecture, 2, 3
physical architecture and, 2

physical tiers defining, 3
rules for logical layers, 5
separation of business logic and data

access, 420
table summarizing roles of logical layers, 14

logical equality, 525
logical trust boundary, SOA, 676
login and logout, MainForm, 598–600
Login button, MainForm, 598
Login control, PTWeb, 636
Login form, PTWpf, 586, 600–601
Login method

ASP.NET membership service, 645
authenticating credentials, 685
BusinessPrincipalBase class, 357
custom authentication, 91, 695
forms-based authentication, 641
PTPrincipal class, 544–545, 599, 600

Login page, PTWeb, 629, 638–646
ASP.NET membership service, 645–646
forms-based authentication, 639–644
Windows integrated security, 644

Login procedure, PTracker, 140
Login.aspx page, 640
LogInOut method, 598, 599, 600, 601
LoginStatus control, PTWeb, 638
Logout method, 358, 545, 638, 644

custom authentication, WCF, 695, 696

■M
MainForm class, PTWpf, 589–590

ShowControl method, 589, 611
MainForm window, 585, 586, 589–590, 596–600

DockPanel control, 589
login and logout, 598–600
Login button, 598
LogInOut method, 598, 599, 600, 601
navigation, 597–598

MainView control, 647, 661
makecert.exe, 686, 687
managed backing fields, 245, 247–248, 254
ManageObjectLifetime property, 317, 603
manual invocation, undo functionality, 370
Manual transaction option, 82, 83
Manual transaction type, 428, 462
many-to-many relationships, 130
Map method, 505, 506, 507, 508, 652, 667
mapping

DataMapper class, 503–508
object-relational mapping (ORM), 56–57

MarkAsChild method
BusinessBase class, 65
BusinessListBase class, 67
creating child objects, 152

Lhotka_1019-1INDEX.fm Page 747 Monday, November 24, 2008 2:50 PM

748 ■IN D E X

editable child collections, 190
editable child objects, 182, 183, 184
lazy loading child objects, 282, 283
ObjectFactory class, 170, 552
retrieving child objects, 155

MarkClean method, 266
MarkDeleted method, 161, 271
MarkDirty method, 266
MarkNew method

IsNew property, business objects, 265
object factories, 434
ObjectFactory class, 170, 552
processing BusinessBase object, 475

MarkOld method
dynamic editable root objects, 202
IsNew property, business objects, 264
object factories, 434
ObjectFactory class, 170, 552

marshaling, 29
master page, PTWeb, 629, 634–638
MasterPage.master, PTWeb, 634, 635, 636
MasterPageFile property, 646
MaxLengthRuleArgs object, 526
MaxValue method, 347
MemberAccess expression, LINQ, 413
MemberExpression type, LINQ, 410, 413
MembershipIdentity class, 356, 359, 645
MembershipProvider authentication, 359–360
MembershipProvider class, 640–642
MemoryStream class, 380
message objects, data portals, 78, 80–81
message router design pattern, 421, 424–427,

468–480
ChildDataPortal class, 479–480
CriteriaBase class, 426
DataPortal class, 423, 425
DataPortalSelector class, 426, 469–470
FactoryDataPortal class, 425, 426, 476–479
ICriteria interface, 426, 427
MethodCaller class, 426
server-side data portal, 82
ServicedDataPortal class, 426
SimpleDataPortal class, 425, 426, 470–476
SingleCriteria class, 426
TransactionalDataPortal class, 426
types required for, 426

message routers, 424–427, 468–480
message security, WCF, 689–692
method level authorization, property and,

364–367
method signatures

delegates, 40
RuleHandler delegate, 75
rules, 332, 333

MethodCacheKey class, 443
MethodCaller class, 443, 444

channel adapter design pattern, 423
Fetch method, SimpleDataPortal, 472
GetObjectType method, 444
message router design pattern, 426

MethodInfo object, 465
MethodName property, 337
MethodsEquivalent function, 408
MethodTypeName property, 337
MinValue method, 347
mobile business objects, 23
mobile objects, 26, 28, 31–32

see also business objects
data portals, 420, 485
description, 59
encapsulation, 34
passing by reference, 32–33
passing by value, 33
support for, 419
supporting physical n-tier models, 59

MobileList class, 222, 225
MobileObject, 221, 223
ModeChanged event, 653
models

see also architectures
data centric object model, 56
logical model, 5
models for UI developer, 45–50

class-in-charge, 48–50
object-in-charge, 48
UI-in-charge, 46–48

physical model, 5–9
relational vs. object modeling, 54–55
supporting physical n-tier models, 58–60
transaction models, 82

MouseDoubleClick event, 610
MSMQ, WCF and, 675
multiple users

high-scalability smart client, 15
MultiView control

ActiveViewIndex property, 647, 653
ProjectEdit web form, PTWeb project, 661
RolesEdit web form, 651

PTWeb project, 647

■N
Name column, GridView, 650, 657, 659
Name property

Project class, 521
ResourceInfo class, 538

name/value list objects, 63, 69, 198–199
common regions, 168
CSLA .NET object stereotypes, 146
filtering results, 574

Lhotka_1019-1INDEX.fm Page 748 Monday, November 24, 2008 2:50 PM

749■I N D E X

ProjectTracker objects, 517
RoleList class, 536, 574

NameObjectCollectionBase class, 69
namespaces

Csla, 97, 212–230
CSLA .NET framework, 96–98
Csla.Core, 97, 230
Csla.Data, 97
Csla.DataPortalClient, 97
Csla.Linq, 97
Csla.Properties, 97
Csla.Reflection, 97
Csla.Security, 97
Csla.Serialization, 97
Csla.Server, 97
Csla.Server.Hosts, 97
Csla.Validation, 97, 332–346
Csla.Web, 97
Csla.Web.Design, 98
Csla.WebServiceHost, 98
Csla.Windows, 98
Project class, PTracker, 520

NameValueCollection class, 69
NameValueListBase class, 69, 213

name/value list objects, 198
regions in inherited classes, 168
RoleList class, 125, 536, 574

NameValueListBase class, 63, 69, 98, 225
NameValuePair class, 199, 226
naming conventions

app.config file, 593
navigation region, PTWeb, 637
.NET development

benefits of using data binding, 50
.NET Framework

see also CSLA .NET framework
creating mobile objects in, 31
data binding interfaces, 72
functionality required, 38
mobile objects, 28
static fields, 249

NetDataContractSerializer (NDCS), 164,
165, 461

circular references in object graph, 278
serializing/stacking HybridDictionary, 379

network contention, 6
network latency, 6
network protocol, DataPortal, 447, 448
networks

channel adapter design pattern, 422
neverCommitted flag, ApplyEdit method, 384
new keyword

creating child objects, 150
object-in-charge model, 48
using factory methods instead, 170

new objects
IsNew property, 264–265

NewChild method, 248, 280, 282
NewEditableChild method, 183
NewProject method, 561
NewProjectResource method, 572
NewProjectResources method, 571
n-layer (logical) architecture, 2, 3

see also 5-layer logical architecture; logical
architecture

n-level undo functionality, 42–45, 369–370
see also undo functionality
AcceptChanges method, 381–382, 395–396
ApplyEdit method, 383–384
BeginEdit method, 382
BusinessBase class, 70, 220, 382–385
BusinessListBase class, 385–397
CancelEdit method, 383
CopyState method, 374–380, 391–392
CSLA .NET, 69–72, 123
edit level tracking, 385
encapsulation, 370
IEditableObject, 292, 384–385
implementing, 370–397
ISupportUndo, 235, 371, 372, 382–384
IUndoableObject, 371
NotUndoableAttribute, 71, 371, 372–373
parent-child interaction, 274, 279
reacting to Insert/Remove/Clear operations,

386–387
removing child objects from collection, 285
requirement for, 373
serialization, 70
stacking data, 374
types required by, 371
UndoableBase class, 371, 372, 373–382
UndoChanges method, 380–381, 392–395
UndoException, 371

NoAccessBehavior type, 360
NodeType property, 413
NoDuplicates rule method, 542
noncollection classes, 166
non-public default constructor, 170
non-serializable objects, 53
NonSerialized attribute, 53, 164

parent-child interaction, 277, 278
PropertyChanged event, 290

normalization
relational vs. object modeling, 54

normalizing behavior, 103, 116–118
NotUndoableAttribute, 71

AttributeUsage attribute, 373
n-level undo functionality, 371, 372–373
parent-child interaction, 277, 278
preventing snapshots, 374

Lhotka_1019-1INDEX.fm Page 749 Monday, November 24, 2008 2:50 PM

750 ■IN D E X

skipping NotUndoable fields, 377
taking snapshot of data, 374

NotVisibleModeProperty property, 325
n-tier (physical) architecture, 2, 3, 4

see also physical architecture
channel adapter design pattern, 421
redundant servers, 9
root object data access methods, 453
supporting physical n-tier models, 58–60

null values
ADO.NET, 494
business rules, 500
data binding, 488
DateTime data type, 500
empty fields, 500
foreign key relationships, 499
helper class handling, 94
reasons for allowing, 499
SafeDataReader class, 93, 495, 500
working with empty date values, 96

Nullable generic type
DataMapper setting values, 505
DateTime value, 488
handling null values, 95
working with empty date values, 96

■O
object creation

child object creation, 150–152
life cycle of business objects, 147–152
root object creation, 148–150

object data binding, Windows Forms, 287–295
IDataErrorInfo, 294–295
IEditableObject, 291–294
INotifyPropertyChanged, 289–290
INotifyPropertyChanging, 291

object data binding, WPF, 312–314
object database, Data Access layer, 13
object design see PTracker object design
object design, encapsulation, 24
object disposal, business objects, 162–163
object factory classes, 169–170

data portals, 433–434
object factory loader class, 169
object factory model

data access in ObjectFactory, 551–552
data portals, 78, 84, 548, 551
invoking separate data access, 552–553

object graph, 144, 237
handling circular references in, 278

object-in-charge model, 48
object models, 54

indexing object model, 411–416
normalizing behavior, 117

object persistence see persistence
object retrieval

life cycle of business objects, 152–155
retrieving child objects, 155
retrieving root objects, 153–154

object status
Delete method, 271
DeleteChild method, 271
ITrackStatus interface, 264
MarkClean method, 266
MarkDeleted method, 271
MarkDirty method, 266
MarkNew method, 265
MarkOld method, 264

object status properties, 263–272
IsDeleted property, 263, 271–272
IsDirty property, 263, 268–269
IsNew property, 263, 264–265
IsSavable property, 263, 270
IsSelfDirty property, 263, 265–268
IsSelfValid property, 263, 269
IsValid property, 263, 269
PropertyChanged event, 266, 268
PropertyChangedMode property, 267
PropertyHasChanged method, 267

object stereotypes, list of, 63
object updates

adding/editing root objects, 156–158
adding/editing/deleting child objects, 158–160
deleting root objects, 160–161
life cycle of business objects, 156–161

ObjectAuthorizationRules type, 360, 361
ObjectCloner class, 231, 237–238
ObjectContext type, 499
ObjectContextManager class, 495, 496, 499

LINQ to SQL, 565
ObjectDataProvider control, 315
ObjectFactory attribute, 84, 469

adding/editing root objects, 156, 157, 158
command objects, 198
creating root objects, 148
data access models, 548, 551–553
data portals, 433
DataPortalSelector class and, 469
deleting root objects, 160, 161
editable child objects, 183, 184
editable root collections, 189
editable root objects, 179–180
exceptions to common regions, 166, 167, 168
object factory classes, 169–170
read-only objects, 193
retrieving root objects, 153, 154
SimpleDataPortal class and, 470
Update method, DataPortal, 454

Lhotka_1019-1INDEX.fm Page 750 Monday, November 24, 2008 2:50 PM

751■I N D E X

ObjectFactory class, 84
Fetch method, 551
MarkXyz methods, 170, 552
methods, 169
protected methods, 170

ObjectFactory model
breaking encapsulation, 551, 555
data access in ObjectFactory, 551–552
data access layer designs, 548
invoking separate data access, 552–553
ORM tools and encapsulation, 555

ObjectFieldInfo class, 328
object-level authorization, 431
object-oriented application design

application requirements, gathering,
104, 108

normalization of behavior, 103
objects with responsibilities, 102
use cases, 102, 103

object-oriented applications
behavioral object-oriented design, 55–56
core object-oriented concepts, 39
design goals, 38–61
distributed architectures and, 27
encapsulation, 57–58, 420
logical and physical architectures, 1–19
mobile objects, 26
reason for creating, 24
relational and object models, 54–55, 131
supporting physical n-tier models, 58–60

object-relational mapping see ORM
objects

anchored objects, 30
business objects, life cycle of, 147–163
child objects, 64
choosing local/anchored/mobile, 32
creating read only objects, 68
deleted object collection, 387–391
enabling objects for data binding, 51–52
finalizing objects, 162–163
local objects, 29
mobile objects, 31–32
object persistence and object-relational

mapping, 54–60
parent editable object, 273–283
parent-child interaction, 274–279
passing by reference, 30
passing by value, 31
ProjectTracker objects, 517
relational vs. object modeling, 54–55
root objects, 64
strongly typed collections of child objects, 42
tracking object status, 263
tracking whether state has changed, 41

ObjectSaved event, 311
ObjectSaving event, 311
ObjectSchema class, 328
ObjectStatus class, 603, 604
ObjectStatus control, 326–327

binding to UI control, 592
PropertyChanged event, 326, 327
RolesEdit form contents, 608

ObjectType property
criteria object identifying type, 444
CslaDataProvider class, 603
DataPortalEventArgs class, 448

ObjectType value, 432
ObjectViewSchema class, 328
ObservableCollection class, 223

inheritance from, 52
INotifyCollectionChanged, 73

ObservableCollection collection, 42
OnAddEventHooksInternal method, 284
OnChildChanged method, 276
OnChildChangedInternal method, 284
OnDeleteObject property, 648
OnDeserialized method, 250
OnDeserializedHandler method, 276, 278, 284
OnPropertyChanged method, 290, 314
OnQueryFinished method, 318, 319
OnUnknownPropertyChanged method, 266,

290, 383
OpenCmdExecuted method, 616
Operation property, 448
Operation value, 432
OperationContract attribute, WCF, 681, 706
optimal performance smart client, 14–15
optimal performance web client, 17–18
ORM (object-relational mapping), 56–57

database design, 126
ObjectFactory model and encapsulation, 555

overriding
Save method, Project class, 561–562

■P
Page directive, 646
pages see forms, PTWeb
PageSize property, GridView, 658
PageTitle control, 637
parent editable collections, 283–285
parent editable object, 273–283
parent objects, 273

CSLA .NET terminology, 144
declaring child properties, 279–283
IParent interface, 279
parent with single child, 273
parent with single collection, 274
parent-child interaction, 274–279

Lhotka_1019-1INDEX.fm Page 751 Monday, November 24, 2008 2:50 PM

752 ■IN D E X

parent parameter, 183
Parent property, 278, 542
parent reference, 274, 278
Parse event, 300
Parse method, SmartDate, 491, 492
passing by reference, 30, 32–33
passing by value, 31, 32, 33

class-in-charge model, 49
PeerTrust, 691
performance, 5

data access layer design, 554
high-scalability smart client, 15
high-security smart client, 18
mobile objects, 31

passing by reference, 33
object-oriented applications, 27
optimal performance smart client, 14–15
optimal performance web client, 17–18
physical model, 5
revising PTracker design, 118–120

per-instance authorization rules, 331, 332, 366
per-method authorization, 364
permissive authorization rules, 367
per-property authorization, 364, 431
persistence, 434

associating persistence service with runtime,
512–513

business objects, 548
BusinessBase functionality, 220
CSLA .NET design benefits, 123
data access models, 548–553
data portals, 420, 433
object persistence and object-relational

mapping, 54–60
persistence objects, encapsulation, 57
per-type authorization rules, 365
per-type rules, 331, 332
physical architecture, 2, 3

see also logical architecture; n-tier (physical)
architecture; tiers

applying logical architecture, 14–18
logical and physical architectures, 1–19
physical model, 5–9

physical configurations
high-scalability smart client, 15–16
high-security web client, 18
optimal performance smart client, 14–15
optimal performance web client, 17–18

physical model, 5–9
fault tolerance, 8–9
performance, 5
scalability, 5, 6
security, 6–8

external applications, 7–8
internal applications, 7

points of failure, physical model, 8
polymorphism, 64

BusinessBase class, 219
CSLA .NET framework, 232
generic types, 64, 231, 232
IBusinessObject, 232
IReadOnlyCollection, 234
IReadOnlyObject, 234
IUndoableObject, 236
ReadOnlyBase class, 227
UndoableBase class, 236

portals
data portals, 59, 77–91

PostSaveAction property, 309
Presentation layer see Interface layer
principal changes, 587, 588
principal classes, 356, 357–358
Principal namespace, 91
principal objects, 91

accessing current principal object, 584
custom principal object inheritance, 353
DataPortalContext class, 429
IPrincipal interface, 353
login and logout, MainForm, 599
maintaining user’s principal object, 215
PTPrincipal class, 543–545
reloading without authenticating

credentials, 544
reloading, PTWeb forms-based

authentication, 642–644
SetThreadPrincipal method, 584
username credentials, WCF, 692
WindowsPrincipal class, 354

PrincipalCache object, 692, 693, 696
PrincipalPolicy class, 696, 699
PrincipalRoleInList method, 363
Priority property, RuleMethod, 336
priority values, rules, 335
private backing fields, 245, 246–247
private keyword, 26
procedural model, distributed architectures, 27
process flow design, business concepts and, 105
profile data, custom authentication, 60
programmatic access for users, 107
Project class

DeleteProject method, 660, 668
saving project, 665–666
WCF service contract and

implementation, 709
Project class, PTracker, 520–529, 560–569

AddAuthorizationRules method, 528
AddBusinessRules method, 522, 525–526
AddDependentProperty method, 527
AddObjectAuthorizationRules method, 529
AddRule method, 526

Lhotka_1019-1INDEX.fm Page 752 Monday, November 24, 2008 2:50 PM

753■I N D E X

AllowCreate method, 529
AllowDelete method, 529
AllowEdit method, 529
AllowGet method, 529
AllowWrite method, 528
Authorization Rules region, 528–529
Business and Validation Rules region, 525–528
Business Methods region, 521–525
CanCreate method, 529
CanDelete method, 529
CanEdit method, 529
CanGet method, 529
CheckRules method, 526
child collection properties, 524
CommonRules class, 525
custom rule methods, 527–528
Data Access region, 562–569
DataObjectField attribute, 521, 522
DataPortal_Create method, 563–564
DataPortal_Delete method, 569
DataPortal_DeleteSelf method, 568–569
DataPortal_Fetch method, 564–566
DataPortal_Insert method, 566–568
DataPortal_Update method, 568
Description property, 522
Ended property, 523, 526
Exists command, 543, 579–581
Exists method, 579, 580
Factory Methods region, 560–562
final class list for PTracker, 121
get block, 522
GetProperty method, 521
GetPropertyConvert method, 524
handling transactions, 562–563
Id property, 521
interdependent properties, 526–527
IsDirty property, 522
IsValid property, 522
MaxLengthRuleArgs object, 526
methods checking per-type

authorization, 529
Name property, 521
non public constructor, 561
overriding GetIdValue method, 524
overriding Save method, 561–562
potential classes for PTracker, 109
ProjectManager role, 528
PropertyChanged event, 522
PropertyChanging event, 522
PropertyInfo object, 522
read-only properties, 521
ReadProperty method, 527
read-write properties, 521–523
Resources collection, 615

revising PTracker relationships, 112
RuleHandler delegate, 527
set block, 522
SetProperty method, 522
SetPropertyConvert method, 524
SmartDate properties, 523–524
StartDateGTEndDate rule, 526, 527
Started property, 523, 526
StringMaxLength rule, 526
StringRequired method, 526

Project data provider, 614
project maintenance use case, 106
project setup, PTWeb, 633–634
project setup, PTWpf, 596
project structure, 208–212
Project Tracker project see ProjectTracker project
ProjectData class, 708, 709

AddProject method, 708
GetProjectList method, 707
UpdateProject method, 710

ProjectDataSource control, 666–668
ProjectEdit control, 616
ProjectEdit form, PTWeb, 629, 661–672

assigning resources to projects, 669–670
authorization rules, 671–672
caching project object in Session, 664
creating new object, 665
MultiView control, 661
ProjectDataSource control, 666–668
ResourceListDataSource control, 671
ResourcesDataSource control, 668–670
RoleListDataSource control, 670
SaveProject method, 666
saving project, 665–666

ProjectEdit form, PTWpf, 586, 612–616
ComboBox controls, 613
data binding, 615
data provider controls, 613–615
Loaded event handler, 614
navigation through commanding, 616
Project data provider, 614

ProjectEdit.aspx, PTWeb, 634
ProjectExists property, 580
ProjectInfo class, 121, 124
projections

binding from, 400
handling non-identity projections, 407
identity projections and

LinqBindingList, 401
LINQ and, 401–402

ProjectList class
performance optimization, 118
WCF service contract and

implementation, 708

Lhotka_1019-1INDEX.fm Page 753 Monday, November 24, 2008 2:50 PM

754 ■IN D E X

ProjectList class, PTracker
Binding element, 612
BindsDirectlyToSource property, 612
final class list for PTracker, 121
GetProjectList method, 611
implementing business classes, 538, 575
IsInitialLoadEnabled property, 611
potential classes for PTracker, 109
revising PTracker design, 111
Text property, TextBox control, 612
UpdateSourceTrigger property, 612

ProjectList class, PTWeb, 658
ProjectList form, PTWeb, 629, 656–661

adding projects, 659
authorization rules, 660
deleting projects, 659
GetProjectList method, 659
loading data, 659
viewing/editing projects, 659

ProjectList form, PTWpf, 586, 611–612
ProjectListDataSource control, 658, 659
ProjectListRequest parameter, 708
ProjectManager role, PTracker, 528
ProjectRequest data contract, 706
ProjectResource class

normalizing behavior, 116, 117
ProjectResource class, PTracker, 532–534,

571–574
AddAuthorizationRules method, 534
AddBusinessRules method, 533
Assign method, 571
Assignment class and, 534
Authorization Rules region, 534
Business and Validation Rules region, 533
Business Methods region, 533
CanExecuteMethod method, 533, 534
Child_DeleteSelf method, 574
Child_Fetch method, 572
creating ProjectResource object, 531, 571
Data Access region, 571–574
deleting data, 574
Factory Methods region, 571
final class list for PTracker, 121
GetResource method, 533, 571, 572
IHoldRoles interface, 533
inserting data, 573
loading existing object, 572
navigating to Resource root object, 533
NewProjectResource method, 571, 572
regions, 532
Role property, 533
updating data, 574
ValidRole rule, 533

ProjectResources object, PTracker, 530–532,
569–570, 615

Assign method, 530, 531
business methods, 530
Business Methods region, 530–532
Child_Fetch method, 570
Child_Update method, 570
Clone method, 530
Contains method, 530, 532
ContainsDeleted method, 530, 532
Data Access region, 530, 570
DataPortal_Insert method, 570
DataPortal_Update method, 570
Factory Methods region, 530, 569–570
final class list for PTracker, 121
GetItem method, 530, 531
Id property, 531
merging classes, 115
NewProjectResource factory method, 531
potential classes for PTracker, 109
regions, 530
Remove method, 530, 532
revising PTracker relationships, 112, 113
Save method, 530
Serializable attribute, 530

projects
assigning resources to, 669–670

Projects table, PTracker
addProject procedure, 133
Assignments table linking to, 130, 131
database design, 129
deleteProject procedure, 134
updateProject procedure, 133

ProjectSelect window, PTWpf, 586
ProjectTracker application classes, 518
ProjectTracker application, WCF, 702
ProjectTracker objects, 517
ProjectTracker project

see also PTWpf project
data access code, 557
endpoint definition, WCF services, 685
library of business classes, 518
setting up, 518–519

ProjectTracker.DalLinq project, 557–559
ProjectTracker.Library class see Library class

library project, PTracker
ProjectTracker.Library project

GAC as alternative to IIS, 639
PTWpf project setup, 596

project-tracking system see PTracker
application

properties
associating rules with, 339–340
checking validation rules, 340–342

Lhotka_1019-1INDEX.fm Page 754 Monday, November 24, 2008 2:50 PM

755■I N D E X

Properties namespace, 97
properties, CSLA .NET

CanReadProperty method, 242
CanWriteProperty method, 243
child object reference fields, 248
CoerceValue method, 247, 248
declaration options, 245–248
declaring, 241–250
GetProperty method, 242, 245
GetPropertyConvert method, 247
GetPropertyListCache method, 251, 252
GetRegisteredProperties method, 252
LoadProperty method, 244, 245
LoadPropertyValue method, 243
managed backing fields, 245, 247–248
private backing fields, 245, 246–247
ReadProperty method, 242, 245
RegisterProperty method, 241, 248, 250
SetProperty method, 242, 245
storing property values, 245

property and method level authorization,
364–367

CanXyz methods, 366–367
IAuthorizeReadWrite interface, 365
per-instance authorization rules, 366
per-type authorization rules, 365

property list
generating consolidated property list,

254–256
Property property, 320, 606
PropertyChanged event, 266

authentication, PTWpf, 593
business objects and, 290
data binding, 51, 303
editable collections, 283, 285
ExtendedBindingList class, 74
INotifyPropertyChanged, 289
object data binding, WPF, 312, 313–314
ObjectStatus control, 326, 327
parent-child interaction, 274, 276
Project class, PTracker, 522
PropertyStatus control, 322
raising events for Windows Forms, 268
raising events for WPF, 268

PropertyChangedMode property, 214, 267
PropertyChanging event, 51, 288, 291, 522
PropertyDescriptor object, 284
PropertyHasChanged method, 267, 268
PropertyInfo class, 213, 226–227, 256, 522

DataMapper mapping, 506, 507, 508
PropertyInfoCache property, 251
PropertyInfoManager, 250–252
PropertyName property, 333, 337, 347

PropertyStatus control, 319–323
AttachSource method, 322
BusyChanged event, 322
DetachSource method, 322
Grid control, 605, 606
Grid element, 321
HandleTarget method, 322
Property property, 320
PropertyChanged event, 322
SetSource method, 321
Source property, 320, 321
StoryBoard elements, 321
Style element, 320
Target property, 321
UpdateState method, 322

protected method, 290
ProvideProperty attribute, 297, 298
Provider property, 319, 404, 405
proxy classes

client-side proxy classes, 78, 79–80
creating proxy object, DataPortal, 448–450
CslaDataPortalProxy key, 449
IDataPortalProxy interface, 458
LocalProxy class, 458–459
managing network protocols, 448
root object data access methods, 452
WcfProxy class, 459–460

proxyType field, 449
PTIdentity class

custom authentication, 122
database design, 127
GetIdentity method, 694
inheritance, 126
Login procedure, 140
Security database, 139

PTIdentity class, PTracker, 544, 545
PTIdentity class, PTWeb, 630, 642, 645
PTMembershipProvider class, 641, 642
PTPrincipal class

custom authentication, 122
inheritance, 126
LoadPrincipal method, 693
PTracker, 543–545
PTWeb project, 630, 641, 642, 644, 645
WCF services, 693–694

PTracker application
custom authentication, 543–546
implementing business classes, 519–543,

559–581
programmatic access for users, 107
project maintenance, 106
resource maintenance, 106–107
Security database, 128, 139–140
use cases, 105–108
Web Forms user interface see PTWeb project

Lhotka_1019-1INDEX.fm Page 755 Monday, November 24, 2008 2:50 PM

756 ■IN D E X

PTracker database design, 126–140
Assignments table, 130
creating databases, 127–129
database diagrams, 131
Projects table, 129
Resources table, 130
Roles table, 129
stored procedures, 132–139

PTracker database file
code download, 630

PTracker object design, 108–123
CSLA .NET benefits, 123–126
custom authentication, 122
duplicate objects, identifying, 111
entities, 108
final class list, 121
inter object collaboration, 120
merging classes, 115
normalizing behavior, 116–118
performance optimization, 118–120
potential objects and class names, 109
reviewing design, 120–122
revising design, 110–120
trivial objects, identifying, 111

PTService class, 707
PTService.cs, 706
PTService.svc, 706
PTServiceBehavior, 698
PTWcfClient project, 713–718

calling service operation, 716
client configuration, 700, 715
providing username from client, 699

PTWcfService project
AddProject method, 708–709
calling service operation, 716
CreateUpdatableProject method, 710
generating WCF information page, 712
GetProjectList method, 707–708
service interface design, 702
smart client for WCF service, 713–718
UpdateProject method, 710

PTWcfService website setup, 705–706
PTWcfServiceAuth project, 697
PTWeb project

application configuration, 629–633
business functionality, 646–672
Default.aspx page, 627
forms and controls, list of, 629
hosting PTWeb site in IIS, 633
interface design, 627–646
login page, 638–646
master page, 634–638
ProjectEdit web form, 661–672
ProjectList web form, 656–661

RolesEdit web form, 646–656
site setup, 633–634
state management, 622–627

PTWpf project
see also ProjectTracker project
application configuration, 593–596
forms and user controls, table of, 586
interface design, 585–616
Login form, 600–601
MainForm window, 596–600
project setup, 596
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609
user control framework, 587–590
value converters, 591–592

public keyword, 26

■Q
queries

binding to results from LINQ to Objects, 400
handling non-identity projections, 407
indexed LINQ queries, 400
IQueryable implementation for CSLA .NET,

404–408
IQueryProvider interface, 406–408
LINQ to Objects query, 401

QueryString property, 664

■R
RAD (rapid application development), 104
RaiseListChangedEvents property

editable child collections, 191, 442
editable root collections, 189
read-only collections, 196
suppressing ListChanged events, 570

Read method, 502
read-only child collections, 196
read-only child list objects, 63, 68, 146
read-only child objects, 63, 68, 146, 193–194
read-only collections, 194–196
read-only objects, 68, 144, 191–193
read-only properties, PTracker, 521
ReadOnly property, 302
read-only root list objects, 63, 68, 146
read-only root objects, 63, 68, 146
ReadOnlyBase class, 227–228

CanReadProperty method, 366
child objects, 194
description, 62, 98, 213
read-only objects, 68, 191

ReadOnlyBindingList class, 225, 231, 238–239
ReadOnlyCollectionBase class, 575

Lhotka_1019-1INDEX.fm Page 756 Monday, November 24, 2008 2:50 PM

757■I N D E X

ReadOnlyListBase class, 228, 538
base classes, business framework
Clone method, 538
description, 63, 98, 213
performance optimization, 119
read-only collections, 194
read-only objects, 68, 191
regions in inherited classes, 166
searching for items in, 403

ReadProperty method, 242, 245, 258, 527
read-write properties, 521–523
ReadWriteAuthorization control, 296–299

ApplyAuthorization property, 297, 298–299
applying authorization rules, 299–302
ApplyReadRules method, 300–301
ApplyWriteRules method, 301–302
DesignerCategory attribute, 297
Enabled property, 300, 302
GetEmptyValue method, 301
IExtenderProvider interface, 297
ProvideProperty attribute, 297, 298
ReadOnly property, 302
ResetControlAuthorization method, 299
ReturnEmpty method, 301
using IsPropertyImplemented method, 298

Rebind method, 609
RebindAfterSave property, 310
red-black tree structure, 409
redundant servers, 9
reference fields, child objects, 248
reflection

data portals, 442
DataMapper, 503, 506
Fetch method, SimpleDataPortal, 472
public members, 508
server-side data portal using, 85
taking snapshot of data, 374, 375
UndoableBase class, 373
validation rules, 347

Reflection folder, 208
Reflection namespace, 97, 443
RegEx method, 347
#region directive, 166–169
regions, 166–169

Client-side Code region, 198
Exists region, 520
master page, PTWeb project, 636
Validation Rules region, 177, 182

RegisterProperty method, 241, 248, 250, 252
regsvcs.exe utility, 519
ReIndex method, 414
relational databases, 54–60

object-relational mapping, 56–57
relational vs. object modeling, 54–55

relational models, 127, 131
relationships

using relationship, 145
relationships, PTracker object design, 111–118
remote data portals

application configuration, PTWpf, 594
WCF data portal server, 631
WCF service interface, 704
Windows integrated security, 644

remoting, 79, 675
RemotingPortal class, 424
RemotingProxy class, 424
Remove button, WPF Command

properties, 607
Remove method

BrokenRulesCollection class, 344, 345
BusinessListBase class, 66
ProjectResources class, 530, 532
Roles class, 539, 655

RemoveChild method, 233, 279, 386
RemoveItem method, 238, 285, 386, 411
RemovingItem event, 74, 223, 232
representational state transfer (REST), 424
Request class

QueryString property, 664
RequestObject value, 432
requirements

gathering application requirements, 104, 108
ResetActionBehaviors method, 309
ResetChildEditLevel method, 253
ResetControlAuthorization method, 299
Resource class, 536–538

addResource procedure, 567
Exists method, 581
final class list for PTracker, 121
potential classes, 109
properties and methods, 536, 537
revising design, 110
revising relationships, 112

resource editor, Visual Studio, 211
resource maintenance use case, PTracker,

106–107
ResourceAssignment class, 536, 538

Assignment class and, 534
final class list for PTracker, 121
normalizing behavior, 116, 117

ResourceAssignments object, 538
final class list for PTracker, 121
merging classes, 115
potential classes, 109
revising relationships, 112, 114

ResourceEdit form, PTWeb, 629, 646
ResourceEdit form, PTWpf, 587

Lhotka_1019-1INDEX.fm Page 757 Monday, November 24, 2008 2:50 PM

758 ■IN D E X

ResourceInfo class, 538–539
Business Methods region, 538–539
final class list for PTracker, 122
Id property, 538
inheritance, 124
Name property, 538

ResourceList class, 538, 575–576
Data Access region, 576
DataPortal_Fetch method, 576
EmptyList method, 576
Factory Methods region, 576
final class list for PTracker, 121
GetResourceList method, 576, 671
IsAsynchronous property, 610
IsInitialLoadEnabled property, 610
performance optimization, 118
potential classes for PTracker, 109
revising PTracker design, 111

ResourceList form, PTWeb, 629, 646
ResourceList form, PTWpf, 587, 609–611
ResourceListDataSource control, 663, 671
resources

assigning to projects, 669–670
security roles and resource roles, 109

Resources collection, PTracker, 615
Resources table

addResource procedure, 136
Assignments table linking to, 130, 132
deleteResource procedure, 137
PTracker database design, 130
updateResource procedure, 137

Resources.resx file, 211
ResourcesDataSource control, 668–670
ResourceSelect window, PTWpf, 587
REST (representational state transfer), 424

XML services and REST services, 678
Result property, PTWpf Login form, 601
ResumeWorkflow method, 511, 513, 514
retrieving objects, 152–155
ReturnEmpty method, 301
ReturnObject, DataPortalResult, 429, 430
reusable code see code reuse
RIA (rich Internet application), 8
right evaluation, 410
Role class, 541–543

AddBusinessRules method, 543
Business and Validation Rules region, 542
final class list for PTracker, 122
Id property, 542, 543
NoDuplicates rule method, 542
potential classes for PTracker, 109
preventing duplicate values, 542–543
setting default value, 541–542
trivial objects, identifying, 111

Role property, 116, 533, 535
RoleEdit class, 109
RoleEditList class, 109
RoleList class, 536, 574–575

Assignment class and, 535
Business Methods region, 536
caching object in static field, PTWeb, 671
Data Access region, 575
DataPortal_Fetch method, 575
DefaultRole method, 536, 571
Factory Methods region, 574–575
final class list for PTracker, 122
getRoles procedure, 138
implementing Roles class, 578
inter object collaboration, 120
InvalidateCache method, 574
potential classes for PTracker, 109
revising PTracker design, 110, 111
subclassing NameValueListBase class, 125

RoleListDataSource control, 670
RoleRequest data contract, WCF, 707
roles

GetAllowGetRoles method, 363
GetDenyGetRoles method, 363
GetRoles method, 361
integrated authorization, 41
IsInRole method, 363
IsInRoleProvider method, 363
PrincipalRoleInList method, 363
PTracker use cases, 107
results of allowing or denying roles, 367
security roles and resource roles, 109
type level authorization, 361
type level roles, 362–364
types maintaining roles for object type, 365

Roles class, 539–541, 577–578
AddNew method, 652
AddNewCore method, 540, 541, 652
AllowNew property, 577
Business Methods region, 539–541
Data Access region, 577–578
DataPortal_Update method, 578
Factory Methods region, 577
final class list for PTracker, 122
GetMax method, 541
GetRoleById method, 540, 654
GetRoles method, 577, 649
getRoles procedure, 138
Id property, 541
inter object collaboration, 120
InvalidateCache method, 578
InvalidatedCache method, 578
invalidating client-side cache, 578
invalidating server-side cache, 578

Lhotka_1019-1INDEX.fm Page 758 Monday, November 24, 2008 2:50 PM

759■I N D E X

Parent property, 542
Remove method, 539, 655
Roles_Saved method, 578
Save method, 653, 655

Roles table
addRoles procedure, 138
Assignments table linking to, 130, 132
deleteRole procedure, 139
PTracker database design, 129
Security database, 140
updateRole procedure, 139

Roles_Saved method, 578
RolesDataSource control

DeleteObject event, 650, 655
DetailsView control, 651
InsertObject event, 652
RolesEdit web form, 648
SelectObject event, 649–651, 653
UpdateObject event, 650, 654

RolesEdit form, PTWeb, 629, 646–656
authorization rules, 656
caching object in Session, 649
Content control, 646
ContentPlaceHolderID property, 646
deleting objects, 655
ErrorLabel control, 647
GetRoles method, 649
inserting objects, 651–653
MultiView control, 647
Page directive, 646
RolesDataSource control, 648
selecting objects, 649–651
updating objects, 653–655
using business object as data source, 648
View controls, 647

RolesEdit form, PTWpf, 586, 602–609
ApplyAuthorization method, 609
CslaDataProvider class, 603–604
EditForm class, 602
form content, 607–609
form declaration, 602
form resources, 603–604
Grid control resources, 604–607
IdentityConverter class, 603
ObjectStatus class, 603, 604
setting DataContext, 604

RolesForProperty type, 360, 365
RolesForType type, 360
root objects

adding/editing, 156–158
collection root objects compared, 188
consistent coding model for, 421
creating, 148–150
CSLA .NET terminology, 144

data access methods, DataPortal, 450–455
DataPortal methods, 446
deleting, 160–161
description, 64, 273
dynamic editable root objects, 201–202
editable root collections, 187–190
editable root objects, 174–180
retrieving, 153–154
switchable objects, 184

root/parent/child behaviors, 220
routers

message router functionality, 424–427,
468–480

rule methods, 333, 350, 351
RuleArgs class, 75, 333

AddBusinessRules method, 349
DecoratedRuleArgs class, 334, 349–350
Description property, 76, 333, 347, 348
GetPropertyName method, 348
managing rule methods, 76
PropertyName property, 333, 347
RuleHandler delegate, 332, 333
StringMaxLength method, 350

RuleArgs parameter, 348
RuleDescription class, 335, 336

properties, 337
RuleHandler class, 75
RuleHandler delegate, 332–333

CommonRules class, 347
managing rule methods, 75
Project class, PTracker, 527
RuleArgs object, 332, 333

RuleMethod class, 334–336
RuleName property, 335
rules

see also business rules; validation rules
associating rules with properties, 339–340
BrokenRule class, 343
BrokenRulesCollection class, 344–346
business objects, 331
CommonRules class, 347–351
custom rule methods, 527–528
DecoratedRuleArgs class, 334
definition, 74
keeping list of rules for business type, 337
keeping list of rules for properties, 337
maintaining list of broken rules, 76, 342–343
per-instance rules, 331, 332
per-type rules, 331, 332
reflection based or hard coded, 347
shared rules and threading, 337–339
types of rules, 331–332
Validation namespace, 332–346

RulesList objects, 339

Lhotka_1019-1INDEX.fm Page 759 Monday, November 24, 2008 2:50 PM

760 ■IN D E X

RulesToCheck property, 341
RunLocal attribute, 445–446

client-side DataPortal, 79
creating root objects, 148, 149
DataPortal_Create method, 563
editable root objects, 178
retrieving root objects, 154
root object data access methods, 452
Update method, DataPortal, 454

RunLocalAttribute type, 423
runtime

associating persistence service with, 512–513
RunWorkerCompleted event, 456

■S
SafeDataReader class, 93, 94–95, 499–503

data access using, 495
ExecuteReader method, 501
GetBoolean method, 502
GetOrdinal method, 501
GetSmartDate method, 502
GetString method, 501
IDataReader interface, 500
null values, 500
Read method, 502

savable objects, 234, 270
Save method

adding/editing root objects, 156, 157
base class support, data portals, 437, 438–439
BusinessBase class, 87, 88, 435, 438
BusinessListBase class, 435, 438
Insert/Update/Delete operations, 88
ISavable interface, 234
Project class, 520, 561–562
ProjectResources class, 530
Roles class, 653, 655

SaveCommand method, 319
SaveComplete method, 234, 438
Saved event, 234, 577, 578
SavedEventArgs parameter, 234
SaveProject method, 666, 667, 670
scalability, 5, 6

high-scalability smart client, 15–16, 27
high-security smart client, 18

Scheme property, RuleDescription, 337
SCOPE_IDENTITY function, 137
Search method, IndexSet, 412, 413
searching

indexed search using CSLA .NET,
403–404, 410

security
configuring WCF to use message security,

689–692
CSLA .NET design benefits, 124

custom authentication, 91–92
Data Access layer, 16
domains of trust, 7
forms-based authentication, 639–644
high-scalability smart client, 16
high-security web client, 18, 27
IIS and ASP.NET, 639
integrated security, 60
physical model, 6–8
principal/identity objects, 91
security roles and resource roles, 109
transferring state to/from client, 625
Windows integrated security, 644

Security database, 128, 139–140
code download, 630

Security folder, 208
Security namespace, 97, 354, 356
security trust boundary, 7
Security.Principal namespace, 91
select clause, LINQ, 401, 406
Select method, LINQ, 401
SelectedIndexChanged event, 657
SelectObject event

CslaDataSource control, 329
ProjectDataSource control, 666
ProjectListDataSource control, 659
ResourceListDataSource control, 671
ResourcesDataSource control, 668
RoleListDataSource control, 670
RolesDataSource control, 649–651, 653

semantic trust boundary, 7
Sequence type, LINQ, 400, 406
Serializable attribute, 164, 165

BusinessBase class, 219
BusinessListBase class, 221
creating mobile objects in .NET, 31
criteria objects, 203
FieldDataManager class, 254
n-level undo functionality, 70
ObjectCloner class, 237
objects raising events conflict, 52
passing mobile objects by reference, 33
passing objects across network during

edit, 380
ProjectInfo class, 124
ProjectResources class, 530
ResourceInfo class, 124
storing state on web server, 624
UndoableBase class, 373

serializable object
creating custom principal class, 357
non-serializable object handling events

raised by, 53
parent-child interaction, 277

Lhotka_1019-1INDEX.fm Page 760 Monday, November 24, 2008 2:50 PM

761■I N D E X

serialization
cloning, 237
CSLA .NET, 165
data binding, 52–54
DataContractSerializer, 164
editable collections, 283
HybridDictionary, 379–380
IMobileObject interface, 229, 254
MobileList class, 222, 225
MobileObject, 221, 223
NetDataContractSerializer (NDCS), 164
n-level undo functionality, 70
NonSerialized attribute, 53
PropertyChanged event, 290
serialization and indexing, 403
taking snapshot of data, 376

Serialization folder, 208
Serialization namespace, 97
SerializationFormatter property, 214
SerializationFormatterFactory class, 237, 379
server calls, data portals, 431–432
server configuration, WCF services, 697–699
server context, data portals, 481–483
Server folder, 208
Server namespace, 97

DataPortal class, 462–466
Server.Hosts namespace, 97
servers, 6, 431–432
server-side cache, invalidating, 578
server-side child data portal, 78
Server-side Code region, 198
server-side data portal, 78, 82–83

message objects, 80
using reflection, 85

server-side host classes, 78, 79
server-side host objects, 81–82
service configuration, WCF, 689
service contract element, WCF, 681
service contract, WCF, 679, 680–684
service design, WCF, 702–703
service element, WCF, 690
service implementation, WCF, 679, 684–685
service orientation (SO), 7
Service property, WCF, 684
Service Reference Settings dialog, 715
serviceAuthorization element, 698
ServiceCertificate behavior, 691
serviceCertificate element, 690
ServiceContract attribute, 681, 706
serviceCredentials element, 699
ServicedDataPortal class, 466–467

delegating calls to DataPortalSelector, 465
message router design pattern, 426

server-side data portal, 83
setting up ProjectTracker, 518
Transactional attribute routing calls via,

462, 464
serviceModel element, 704
service-oriented architecture see SOA
services see WCF services
services, SOA see XML services
Session object

avoiding, 638
caching project object, 664
caching, PTWeb, 649
principal objects, PTWeb, 642, 644
state management options, 627
storage locations for, 625
storing state on web farm, 623, 624, 625
storing state on web server, 622, 623

set block, PTracker, 522, 524
SetApplyAuthorization method, 298
SetClientContext method, 218
SetContext method, 216, 481
SetData method, threads, 217
SetDefaultFormatString method, 492
SetExecutionLocation method, 216
SetFieldData method, 259, 261
SetParent method, 278, 387, 542
SetPrincipal method, 544
SetProperty method

BusinessBase class, 242, 245, 260
integrated authorization, 92
per-property authorization, 364
private backing fields, 246
Project class, 522
PropertyInfo class, 226, 348
Resource class, 537

SetPropertyConvert method, 524
SetRead method, 325
SetSource method, 321
SetTarget method, 383
SetThreadPrincipal method, 584
SetTitle method, 590
SetValue method, 504, 505, 506, 507
SetWrite method, 326
SharedAuthorizationRules type, 360, 365
SharedValidationRulesManager class, 337
ShowControl method, 589, 611, 616
ShowStartingNode property, 637
ShowUserControl method, 590
signed assemblies, Csla.dll file, 210
Signing tab, Visual Studio, 210
SignOut method, 638
Silverlight, 176
Silverlight folder, 208

Lhotka_1019-1INDEX.fm Page 761 Monday, November 24, 2008 2:50 PM

762 ■IN D E X

SimpleDataPortal class, 470–476
Execute method, 475
Fetch method, 470–474
message router design pattern, 425, 426
Update method, 474–476

Single method, LINQ query, 565
SingleCriteria class, 81, 202, 213, 229

message router design pattern, 426
single-tier systems, 14
site setup, PTWeb, 633–634
SiteMapDataSource control, 637
siteMapNode element, 637
skins, 636
smart client application, 713–718

calling service operation, 716
smart client models

high-scalability smart client, 15–16
optimal performance smart client, 14–15

smart data
business objects as, 24–25
CSLA .NET design benefits, 123
ISmartField interface, 230, 235
mobile objects, 28

SmartDate class, 93, 96, 214, 229, 523
SmartDate properties, 523–524
SmartDate type, 488–494

data access, 494
database format, 494
date conversion functions, 491–492
date field, 493
date functions, 493
DateTime type and, 488, 489
DateToString method, 492, 493
defaultFormat field, 490
empty date values, 489, 502
emptyValue field, 490, 491, 493
format field, 490, 492
FormatString property, 492
initialized field, 490, 493
initializing structs, 490–491
IsEmpty property, 491, 494
Parse method, 491, 492
SetDefaultFormatString method, 492
StringToDate method, 491, 492, 493
supporting empty dates, 491
text functions, 492–493
Text property, 493
ToString method, 493
TryParse method, 492
type conversions, 489

snapshots
AcceptChanges method, 381
business objects, 373
CopyState method, 374

preventing with NotUndoable, 374
skipping NotUndoable fields, 377
stacking data, 374
taking snapshot of data, 374–377
taking snapshot of regular fields, 379

snippet files, 523
SO (service orientation), 7
SOA (service-oriented architecture), 3, 8, 10,

675, 676
SOA model, 2
SortedBindingList class, 74
Source property, 320, 321, 606
SQL membership provider, 645
SqlDataReader class, 95
SSL (Secure Sockets Layer), 640
Stack class, 374
stacking data

CopyState method, 374
HybridDictionary, 379–380

StackPanel control, 608
StackTrace property, 430
StartDateGTEndDate rule, 526, 527
Started property, PTracker, 523, 526
state

business objects, 25
collections and, 392
CopyState method, 374, 391–392
edit level and, 385
encapsulation, 369
ITrackStatus interface, 264
n-level undo functionality, 44, 369
object status properties, 263–272
ObjectStatus control, 326
restoring object’s state data, 381
stateful objects, web development, 619
tracking change of, 41
tracking object status, 220, 263
Windows Forms data binding, 290

state management
editable child objects, 184
editable root objects, 179

state management, web development, 622–627
implementing centralized state

database, 626
storing state in file/database, 622, 626–627
storing state on web farm, 623
storing state on web server, 622–625
switching between state-handling

models, 627
transferring state to/from client, 622, 625

static classes
ObjectCloner class, 237

static factory methods
Create method, DataPortal, 85

Lhotka_1019-1INDEX.fm Page 762 Monday, November 24, 2008 2:50 PM

763■I N D E X

static fields, 248–250
static methods

class-in-charge model, 49, 50
Status property, WorkflowManager, 511
stereotypes, 63, 143, 144, 146

command objects, 197–198
criteria objects, 202–205
dynamic editable collections, 199–201
dynamic editable root objects, 201–202
editable child collections, 190–191
editable child objects, 180–184
editable root collections, 187–190
editable root objects, 174–180
name/value list objects, 198–199
read-only child collections, 196
read-only child objects, 193–194
read-only collections, 194–196
read-only objects, 191–193
switchable objects, 184–187

stored procedures, PTracker, 132–139
addAssignment, 135
addProject, 133
addResource, 136
addRole, 138
deleteAssignment, 136
deleteProject, 134
deleteResource, 137
deleteRole, 139
getRoles, 138
Login, 140
updateAssignment, 135
updateProject, 133
updateResource, 137
updateRole, 139

storeLocation property, serviceCertificate, 690
storeName property, serviceCertificate, 690
Storyboard elements, 321, 323
storyboarding, 105
StringMaxLength method, 347, 348–351, 526
StringMinLength method, 347
StringRequired method, 347, 348, 351, 526
strings

converting into SmartDate, 491
StringToDate method, 491, 492, 493
strong naming, signed assemblies, 210
strong typing, 42, 232
structs, 490–491
Style element, PropertyStatus, 320
styleSheetTheme property, 635
SubClass class, 374
SuppressRuleChecking property, 341, 342
svc file, WCF services, 684, 706
switchable objects, 146, 184–187
synchronization, 406, 407

synchronous Save methods, 437, 438–439
system, SOA terminology, 676
System.Collections.Generic namespace, 42
System.EnterpriseServices.dll, 518
System.Security.Principal namespace, 91
System.Transactions namespace, 82, 94

■T
tables

link tables, 130
Target property, PropertyStatus, 321
test certificate, WCF services, 686–689
text functions, SmartDate, 492–493
Text property

SmartDate type, 493
TextBox control, 605, 606, 612

TextBlock control, 607
TextBox control, 605
theme property, PTWeb master page, 635
themes, PTWeb, 635–636
this keyword, 87, 412
thread local storage (TLS), 497, 498
Thread object, 216
threading, 337–339

ConnectionManager class, 497
threads

custom authentication, WPF, 584, 585
setting server context, 482

tiers
see also layers; n-tier (physical) architecture
physical architecture, 2, 3
sharing business logic across tiers, 22–23

Title property, 587, 588, 646
TitleChanged event, 588, 590
TLS (thread local storage), 497, 498
ToArray method, 345, 380, 566
ToString method, 346, 493
transaction models, 82
Transactional attribute, 82, 83, 427, 462

data access, 495, 496
editable root objects, 178
Project class, 563, 566
routing calls to DataPortalSelector, 462, 464
ServicedDataPortal class, 467
setting up ProjectTracker, 519

transactional contexts, DataPortal, 427
TransactionalDataPortal class, 426, 462, 465,

467–468
TransactionalTypes enumeration, 428, 462
transactions, 83, 84

distributed transaction support, 427–428,
462–468

handling transactions, 562–563
Transactions namespace, 82, 94

Lhotka_1019-1INDEX.fm Page 763 Monday, November 24, 2008 2:50 PM

764 ■IN D E X

TransactionScope class, 94
avoiding overhead of DTC, 487, 494
data access, 495, 496
distributed transactions, 427
Project class, PTracker, 562
TransactionalDataPortal methods, 468

TransactionScope transaction option, 82, 83
TransactionScope transaction type

DataPortal transactional contexts, 428
routing call to data portal, 462, 465

TreeView control, 637
TrueTemplate property, 592
trust

domains of trust, 7, 8
trusting test certificate, WCF services, 688

trust boundaries, 7
logical trust boundary, SOA, 676

trusted root certificates, WCF services, 686
TrustedPeople certificate store, 686, 688
try...catch block, WCF services, 709
TryGetValue method, 251, 339, 367
TryParse method, 492
type conversions, 246, 247

SmartDate type, 489
type level authorization, 361–364
type level roles, 362–364
TypeAssemblyName property, 648
TypeName property

ProjectListDataSource control, 658
RolesDataSource control, 648

types
complete code download for, 208
generic types, 42
helper types and classes, 93–96
strongly typed collections of child objects, 42

TypeSupportsPaging property, 658
TypeSupportsSorting property, 658

■U
UI see user interface
UI focused design, 104, 105
UI layer see Interface layer
UML sequence diagram, 86, 87, 89, 90
unanchored objects see mobile objects
UnauthenticatedIdentity class, 356
UnauthenticatedIdentity method, 92
UnauthenticatedPrincipal class, 356
unboxing, 257
UnDeleteChild method, 390, 391
undo functionality, 369–370

see also n-level undo functionality
implementing, 370–397

UndoableBase class, 70, 97
AcceptChanges method, 381–382
ApplyEdit method, 71
avoiding double-processing of fields, 377
BeginEdit method, 71
CancelEdit method, 71
cascading call to child objects or

collections, 377
child objects and, 71
CopyingState method, 377
CopyState method, 374–380
CopyStateComplete method, 377
getting list of fields, 377
n-level undo functionality, 371, 372, 373–382
NotUndoableAttribute, 72
polymorphism, 236
ResetChildEditLevel method, 253
restoring object’s state data, 381
Serializable attribute, 373
skipping NotUndoable fields, 377
stacking data, 374
taking snapshot of data, 374–377
taking snapshot of regular fields, 379
UndoChanges method, 380–381

UndoChanges method, 380–381, 383, 392–395
IUndoableObject interface, 236, 378

UndoChangesComplete method, 383
UndoException, 371
Update method

base class support, data portals, 439
child objects, 159
ChildDataPortal class, 479
ObjectFactory class, 169
SimpleDataPortal class, 474–476

Update method, DataPortal, 87–90, 425, 446
see also DataPortal_Update method
adding/editing root objects, 156
distributed transaction support, 465–466
root object data access methods, 454–455

update operation, data portals, 81, 82, 87
UpdateAssignment method, 574
updateAssignment procedure, 135
UpdateChild method, 441, 442
UpdateChildren method

FieldDataManager class, 441
FieldManager class, 159, 496
Project class, PTracker, 567

UpdateObject event
CslaDataSource control, 329
ProjectDataSource control, 666
ResourcesDataSource control, 669
RolesDataSource control, 650, 654

Lhotka_1019-1INDEX.fm Page 764 Monday, November 24, 2008 2:50 PM

765■I N D E X

UpdatePanel control, 663
UpdateProgress control, 663
UpdateProject method, 710
updateProject procedure, 133, 565, 568
updateResource procedure, 137
updateRole procedure, 139
updates, bidirectional, 87
UpdateSourceTrigger property, 612
UpdateState method, 322
updating objects see object updates
use cases, 102, 103, 105–108
UseNetDataContract attribute, 461
user control framework, PTWpf, 587–590

EditForm class, 587–589
Login form, 600–601
MainForm window, 589–590, 596–600
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609

user controls, PTWpf, 586
user identity see impersonation
user interface (UI)

CSLA .NET design benefits, 123
models for UI developer, 45–50
UI-in-charge model, 46–48

user interface design, PTWeb see Web Forms
user interface, PTWeb

user interface design, PTWpf, 585–616
application configuration, 593–596
Login form, 600–601
MainForm window, 596–600
project setup, 596
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609
user control framework, 587–590
value converters, 591–592

user interface layer see Interface layer
user interface, Web Forms, see Web Forms user

interface, PTWeb
user profile, custom authentication, 60
User property, 214, 215, 354, 357, 641
username credentials, WCF services, 692–693
UsernameCriteria class, 356
UserNamePasswordValidator class, 694–695
Users table, Security database, 140
using block

TransactionScope object disposal, 468
using relationship, 145
Utilities class, 214, 230

CoerceValue method, 505
GetPropertyType method, 504

■V
ValidatesOnDataErrors property, 606
ValidateUser method, 641
validation

ASP.NET validation controls, 22
Business layer, 11
IDataErrorInfo interface, 294, 295
IsSelfValid property, 269
IsValid property, 269
managing business logic, 19

Validation folder, 208
Validation namespace, 97, 332–346

BrokenRule class, 343
BrokenRulesCollection class, 344–346
DecoratedRuleArgs class, 334
RuleArgs class, 333
RuleDescription class, 335, 336
RuleHandler delegate, 332–333
RuleMethod class, 334–336
ValidationException class, 346
ValidationRules class, 337–343

validation rules, 347–351
see also business rules; rules
application design, 39–40
BusinessBase class functionality, 220
checking validation rules, 340–342
classes implementing, 75
CommonRules class, 347–351
CSLA .NET framework, 74–77
description, 39
implementing common rules, 76
maintaining list of broken rules, 76, 342–343
method signatures, 40
reusable code, 40
types of rules, 331–332
Validation namespace, 332–346
ValidationRules class, 337–343

Validation Rules region
see also Business and Validation Rules region
editable child objects, 182
editable root objects, 177

ValidationException class, 75, 346
managing rule methods, 76

ValidationRules class, 75, 337–343
associating rules with properties, 339–340
checking validation rules, 340–342
CheckRules methods, 340
maintaining list of broken rules, 76, 342–343
managing rules, 76
rule methods, 76, 334
SetTarget method, 383
shared rules and threading, 337–339
SuppressRuleChecking property, 341, 342

Lhotka_1019-1INDEX.fm Page 765 Monday, November 24, 2008 2:50 PM

766 ■IN D E X

ValidationRulesManager class, 337
GetManager method, 338
RulesToCheck property, 341

ValidRole method, 116, 535
ValidRole rule method, 533, 578
value converters, PTWpf, 591–592

Convert method, 591
ConvertBack method, 591
ListTemplateConverter class, 592
VisibilityConverter class, 591

VerifyAuthorizationCache method, 367
versioning, WCF services, 707
View controls, PTWeb, 647
virtual methods, 267
Visibility property

Authorizer control, 325
StackPanel control, 608

VisibilityConverter class, 587, 591, 608
Convert method, 592

Visible property, GridView, 657
Visual Studio, 209, 210, 211

■W
WaitForEnd method, 511
WarnIfCloseOnDirty property, 309
WarningCount property, 345
WarnOnCancel property, 309
WarnOnCancelMessage property, 309
WCF (Windows Communication Foundation)

authentication/authorization during
initialization, 692

configuring to use message security, 689–692
configuring WCF data portal server, 631–633
extensibility, 678
network transport options, 678
remote data portal with WCF, 631
server-side host objects, 82
WS-* standards supported by, 678

WCF service contract and implementation,
706–711

AddProject method, 708–709
CreateUpdatableProject method, 710
GetProjectList method, 707–708
PTService class, 707
PTService.cs, 706
PTService.svc, 706
UpdateProject method, 710
versioning, 707

WCF service interface
application configuration, 703–705
authentication, 703
designing, 701–711
local data portals, 703
PTWcfService website setup, 705–706

remote data portals, 704
service design, 702–703

WCF services, 677–701
configuring to use username credentials,

692–693
custom authentication, 685–701
DataContract attribute, 681–683
DataMember attribute, 682, 683
definition of, 679
elements of, 679–685
endpoint configuration, 679–680
endpoint definition, 684
FaultContract attribute, 681, 683–684
FindCustomerRequest class, 682
FindCustomerResponse class, 682
generating WCF information page, 711–712
OperationContract attribute, 681
service contract, 680–684
service implementation, 684–685
ServiceContract attribute, 681
smart client for WCF service, 713–718
web service consumer implementation,

711–718
WSDL display for, 713

WcfHost website, 595, 596, 632
WcfPortal class, 423, 460–462
WcfPortal.svc file, 595, 632
WcfProxy class, 423, 459–460
web-based applications

data access models, 620
undo functionality, 45

web client models, 17–18
web development, 619, 622–627
web farms, 623, 624, 626
Web folder, 208
Web Forms user interface, PTWeb

application configuration, 629–633
business functionality, 646–672
data binding, 327–329
Default.aspx page, 627
forms and controls, list of, 629
hosting PTWeb site in IIS, 633
interface design, 627–646
introduction, 619
login page, 638–646
master page, 634–638
ProjectEdit web form, 661–672
ProjectList web form, 656–661
RolesEdit web form, 646–656
site setup, 633–634
state management, 622–627

Web namespace, 97
web pages, PTWeb see forms, PTWeb

Lhotka_1019-1INDEX.fm Page 766 Monday, November 24, 2008 2:50 PM

767■I N D E X

web services
see also WCF services
client-side proxy classes, 79
CSLA .NET design benefits, 124
generating WCF information page, 711–712
returning objects and encapsulation, 503
security and internal applications, 7
smart client for, 713–718
WCF and, 675
web service consumer implementation,

711–718
web sites, PTWeb, 639–640
web.config file

application configuration, PTWeb, 629
authentication, CSLA.NET, 630
authentication, WCF service interface, 703
configuring CSLA .NET, 355
custom membership provider, PTWeb, 641
data portals, PTWeb, 630
data portals, WCF services, 703
defining control prefix, 629
defining proxy object, 448
definition of WCF service, 680
server configuration, WCF services, 697
WCF service interface, 703
WcfHost website, 595, 596, 632
Windows integrated security, 644

Web.Design namespace, 98
web.sitemap file, PTWeb, 637
WebServiceHost namespace, 98
WebServicePortal class, 424
WebServicesProxy class, 424
WF (Windows Workflow Foundation), 2,

508–515
starting workflows from objects, 510
WorkflowManager class, 510–515

where clause, LINQ, 401, 406
Where method

expression evaluation, LINQ, 410
indexed LINQ queries, 401
optimizing queries, 408
understanding expression trees, LINQ, 405

WhereEqual method, 414, 415
WhereGreaterThan method, 416
WhereGreaterThanOrEqualTo method, 416
WhereLessThan method, 416
WhereLessThanOrEqualTo method, 416
Windows Activation Service (WAS), 81
Windows authentication, 355

CslaAuthentication key, 593
PTWeb project, 630
WCF service interface, 703

Windows Communication Foundation see WCF

Windows credentials
username credentials, WCF, 692

Windows folder, 208
Windows Forms

see also WPF (Windows Presentation
Foundation)

configuring Windows Forms, 355
data binding, 287–312
Interface Control layer, 11
n-level undo functionality, 373
raising events for Windows Forms, 268
security and external applications, 8

Windows integrated security
business layer coding, 543
context data, 429
impersonation, 431
login page, PTWeb project, 644
message objects, 80
principal/identity objects, 91
setting server context, 483

Windows namespace, 98
Windows Presentation Foundation see WPF
Windows Workflow Foundation see WF
windows, PTWpf see forms, PTWpf
WindowsIdentity class, 354, 355
WindowsPrincipal class, 354, 355
Workflow folder, 209
Workflow Foundation see WF
workflow model, 2
WorkflowManager class, 510–515

BeginResumeWorkflow method, 511
BeginWorkflow method, 511
DisposeRuntime method, 511, 513
EndWorkflow method, 511
ExecuteWorkflow method, 511–512, 513,

514, 515
InitializeRuntime method, 511, 512–513
ResumeWorkflow method, 511, 513, 514
Status property, 511
WaitForEnd method, 511

workflows
architectural view of objects and, 509
associating persistence service with runtime,

512–513
encapsulation, 509
executing from business object, 514–515
idled or suspended workflows, 512
loading and resuming, 513
resuming without unloading, 514
starting from objects, 510
synchronous execution of, 511–512
unloading suspended workflow, 513

Lhotka_1019-1INDEX.fm Page 767 Monday, November 24, 2008 2:50 PM

768 ■IN D E X

WPF (Windows Presentation Foundation), 583
Command properties, 607
configuring, 355
custom authentication, 584–585
data binding, 312–327
n-level undo functionality, 373
raising events for, 268
security and external applications, 8
threads, 584, 585

Wpf folder, 209
WPF user interface, PTWpf

application configuration, 593–596
interface design, 585–616
Login form, 600–601
MainForm window, 596–600
project setup, 596
ProjectEdit form, 612–616
ProjectList form, 611–612
ResourceList form, 609–611
RolesEdit form, 602–609
user control framework, 587–590
value converters, 591–592

wrappers
routing calls through transactional

wrappers, 84
WSDL

WSDL display for WCF service, 713
WSE

WCF and, 675
wsHttpBinding

configuring WCF to use message
security, 689

server configuration, WCF services, 698
WCF service bindings, 680

■X
X.509 certificate, acquiring, 686
X509FindType property, 690
XML services

fault contracts, 683
intended use of, 678
.NET creating and consuming, 678
SOA terminology, 676, 677
security and internal applications, 7

Lhotka_1019-1INDEX.fm Page 768 Monday, November 24, 2008 2:50 PM

Lhotka_1019-1INDEX.fm Page 769 Monday, November 24, 2008 2:50 PM

Offer valid through 6/09.

Lhotka_1019-1INDEX.fm Page 770 Monday, November 24, 2008 2:50 PM

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	From CSLA .NET 2.0 to 3.6
	Designing CSLA .NET
	Framework License
	What You Need to Use This Book
	How This Book Is Structured
	Downloading the Code
	Contacting the Author

	Distributed Architecture
	Logical and Physical Architecture
	N-Tier and SOA
	Complexity
	Relationship Between Logical and Physical Models
	The Logical Model
	Cross-Layer Communication
	The Physical Model

	A 5-Layer Logical Architecture
	Interface
	Interface Control
	Business Logic
	Data Access
	Data Storage and Management

	Applying the Logical Architecture
	Optimal Performance Smart Client
	High-Scalability Smart Client
	Optimal Performance Web Client
	High-Security Web Client

	The Way Ahead

	Managing Business Logic
	Potential Business Logic Locations
	Business Logic in the Data Storage and Management Layer
	Business Logic in the Interface Control Layer
	Business Logic in the Middle (Merged Business and Data Access Layers)
	Sharing Business Logic Across Tiers

	Business Objects
	Business Objects As Smart Data
	Anatomy of a Business Object

	Mobile Objects
	A New Logical Architecture
	Local, Anchored, and Mobile Objects
	Complete Encapsulation

	Architectures and Frameworks
	Conclusion

	Framework Design
	Basic Design Goals
	Validation and Business Rules
	Tracking Whether the Object Has Changed
	Integrated Authorization
	Strongly Typed Collections of Child Objects
	A Short Primer on Generics
	Strongly Typed Collections of Child Objects

	N-Level Undo Capability
	Simple and Abstract Model for the UI Developer
	UI in Charge
	Object in Charge
	Class-in-Charge (Factory Pattern)

	Supporting Data Binding
	Enabling the Objects for Data Binding
	Events and Serialization

	Object Persistence and Object-Relational Mapping
	Relational vs. Object Modeling
	Behavioral Object-Oriented Design
	Object-Relational Mapping
	Preserving Encapsulation
	Supporting Physical N-Tier Models

	Custom Authentication

	Designing the Framework
	Business Object Creation
	Editable Root
	Editable Child
	Editable Root List
	Editable Child List
	Dynamic Root List
	Command
	Read-Only Root and Child
	ReadOnly Root and Child List
	Name/Value List

	N-Level Undo Functionality
	UndoableBase
	NotUndoableAttribute

	Data Binding Support
	ExtendedBindingList Class

	Business and Validation Rules
	Managing Rule Methods
	Maintaining a List of Broken Rules
	Implementing Common Rules

	Data Portal
	Client-Side DataPortal
	Client-Side Proxies
	Message Objects
	Server-Side Host Objects
	Server-Side Data Portal
	Object Factory Model
	Data Portal Behaviors

	Custom Authentication
	Integrated Authorization
	Helper Types and Classes
	ConnectionManager
	ContextManager
	SafeDataReader
	DataMapper
	SmartDate

	Namespace Organization
	Conclusion

	Object-Oriented Application Design
	Responsibility-Driven Design
	Use-Case or Story-Based Analysis
	Objects with Responsibilities
	Objects Exist for Use Cases
	Normalization of Behavior

	Application Requirements
	Use Cases
	Project Maintenance
	Resource Maintenance
	External Access

	Object Design
	Initial Design
	Revising the Design
	Duplicate Objects
	Trivial Objects
	Overly Complex Relationships
	Optimizing for Performance
	Inter-Object Collaboration
	Reviewing the Design

	Custom Authentication

	Using CSLA .NET
	Database Design
	Creating the Databases
	PTracker Database
	Roles
	Projects
	Resources
	Assignments
	Database Diagrams
	Stored Procedures

	Security Database

	Conclusion

	CSLA .NET Object Stereotypes
	Basic Terminology and Object Graph Structure
	Business Object Life Cycle
	Object Creation
	Root Object Creation
	Child Object Creation

	Object Retrieval
	Root Object Retrieval
	Child Object Retrieval

	Updating Editable Objects
	Adding and Editing Root Objects
	Adding, Editing, and Deleting Child Objects
	Deleting Root Objects

	Disposing and Finalizing Objects
	Implementing IDisposable
	Careful Object Disposal

	Business Class Structure
	The Serializable or DataContract Attribute
	When to Use DataContract
	Serialization in CSLA .NET
	Configuring CSLA .NET to Use NetDataContractSerializer

	Common Regions
	Object Factory Classes

	Non-public Default Constructor

	Conclusion

	CSLA .NET Object Templates
	Business Class Structure
	Editable Root Business Objects
	Immediate or Deferred Deletion
	Object State Management
	Using an Object Factory

	Editable Child Business Objects
	Loading Default Values from a Data Store
	Object State Management

	Switchable Objects
	Dual Factory Methods
	Dual Data Access Methods

	Editable Root Collection
	Editable Child Collection
	Read-Only Business Objects
	Read-Only Child Objects
	Read-Only Collection
	Read-Only Child Collection
	Command Objects
	Name/Value List Objects
	Dynamic Editable Collection
	Dynamic Editable Root Objects
	Criteria Objects

	Conclusion

	Business Framework Implementation
	CSLA .NET Project Structure
	Project Directory Structure
	Project Settings
	Project Signing
	Supporting Localization

	Csla Namespace
	ApplicationContext
	Configuration Settings
	Ambient Values
	Context Dictionaries

	BusinessBase
	BusinessListBase
	CommandBase
	CriteriaBase
	DataPortal
	EditableRootListBase
	NameValueListBase
	PropertyInfo
	ReadOnlyBase
	ReadOnlyListBase
	SingleCriteria
	SmartDate
	Utilities

	Csla.Core Namespace
	BusinessBase
	ExtendedBindingList
	IBusinessObject Interface
	ICommandObject Interface
	IEditableBusinessObject Interface
	IEditableCollection Interface
	IReadOnlyObject Interface
	IReadOnlyCollection Interface
	ISavable Interface
	ISmartField Interface
	ISupportUndo Interface
	ITrackStatus Interface
	IUndoableObject Interface
	ObjectCloner Class
	ReadOnlyBindingList

	Conclusion

	Property Declarations
	Declaring Properties
	Property Declaration Options
	Private Backing Fields
	Private Backing Fields with Type Conversion
	Managed Backing Fields
	Managed Backing Fields with Type Conversion
	Child Object Reference Fields

	RegisterProperty and Inheritance
	Adding a static Constructor
	Initializing a Dummy static Field

	PropertyInfoManager
	Field Manager
	FieldManager Property
	FieldDataManager Class
	Generating a Consolidated Property List
	IFieldData and IFieldData<T> Interfaces
	FieldData<T> Class
	Getting Field Values
	Setting Field Values

	Conclusion

	Object Status Management
	Object Status Properties
	ITrackStatus Interface
	IsNew
	MarkOld Method
	MarkNew Method

	IsSelfDirty
	MarkClean Method
	MarkDirty Method

	IsDirty
	IsSelfValid
	IsValid
	IsSavable
	IsDeleted
	MarkDeleted Method
	Delete and DeleteChild Methods

	Conclusion

	Parent-Child Relationships
	Parent Editable Object
	Parent-Child Interaction
	IsValid and IsDirty Properties
	ChildChanged Event
	Parent Reference
	N-Level Undo

	IParent Interface
	Declaring Child Properties
	Create Child in DataPortal_XYZ Methods
	Create Child on Demand
	Lazy Load Child

	Parent Editable Collection
	Parent-Child Interaction
	ListChanged Event
	Removing Child Objects from the Collection

	Conclusion

	Data Binding
	Windows Forms
	Object Data Binding
	The INotifyPropertyChanged Interface
	The INotifyPropertyChanging Interface
	The IEditableObject Interface
	The IDataErrorInfo Interface

	Collection Data Binding
	Controls and Helper Objects
	The ReadWriteAuthorization Control
	Applying Authorization Rules
	The BindingSourceRefresh Control
	The CslaActionExtender Control and Associated Components

	Working with Multiple Root Objects

	WPF
	Object Data Binding
	PropertyChanged Event Handling
	Configuration
	Raising PropertyChanged in BusinessBase

	Collection Data Binding
	Controls and Helper Objects
	The CslaDataProvider Control
	The PropertyStatus Control
	The BusyAnimation Control
	The DataDecoratorBase Control
	The Authorizer Control
	The ObjectStatus Control

	Web Forms
	Controls and Helper Objects
	The CslaDataSource Control

	Conclusion

	Business and Validation Rules
	Types of Rules
	Csla.Validation Namespace
	RuleHandler Delegate
	RuleArgs Class
	DecoratedRuleArgs Class
	RuleMethod Class
	RuleDescription Class
	ValidationRules Class
	ValidationRulesManager and SharedValidationRulesManager Classes
	Checking Validation Rules
	Maintaining a List of Broken Rules

	BrokenRule Class
	BrokenRulesCollection Class
	ValidationException

	Common Validation Rules
	CommonRules
	StringRequired
	StringMaxLength

	Conclusion

	Authentication and Authorization
	Authentication
	Csla.ApplicationContext.User Property
	Windows Authentication
	Configuring CSLA .NET
	Configuring WPF and Windows Forms
	Configuring ASP.NET

	Custom Authentication
	Configuring CSLA .NET
	Authentication Classes in Csla.Security
	Creating a Custom Principal Class
	Creating a Custom Identity Class
	MembershipProvider Authentication

	Authorization
	Type Level Authorization
	AddObjectAuthorizationRules Method
	Using Type Level Roles

	Property and Method Level Authorization
	IAuthorizeReadWrite Interface
	Per-Type Authorization Rules
	Per-Instance Authorization Rules
	CanReadProperty, CanWriteProperty, and CanExecuteMethod Methods

	Conclusion

	N-Level Undo
	Using Undo
	Implementing Undo
	ISupportUndo Interface
	NotUndoableAttribute Class
	UndoableBase Class
	CopyState
	UndoChanges
	AcceptChanges

	BusinessBase Class
	BeginEdit Method
	CancelEdit Method
	ApplyEdit Method
	IEditableObject Interface

	BusinessListBase Class
	Edit Level Tracking
	Reacting to Insert, Remove, or Clear Operations
	Deleted Object Collection
	CopyState
	UndoChanges
	AcceptChanges
	BeginEdit, CancelEdit, and ApplyEdit

	Conclusion

	LINQ to CSLA
	Reducing Code with LINQ
	Overview of LINQ to CSLA .NET
	Binding to Results from LINQ to Objects
	Indexed LINQ Queries

	LINQ and Projection
	Identity Projections and LinqBindingList<T>
	Understanding LinqBindingList

	Overview of Indexed Search Using CSLA .NET
	Serialization and Indexing
	Index Mode

	The IQueryable Implementation for CSLA .NET
	Understanding Expression Trees
	Digging into IQueryProvider
	Evaluating Expression for Synchronization Support
	Handling Non-Identity Projections
	Passing Control to the Default Handler

	LinqBindingList

	Indexed LINQ and CSLA .NET
	Managing the Index Set
	Implementations of IIndex

	Expression Evaluation
	Left Evaluation
	Right Evaluation
	Indexed Search

	The Indexing Object Model
	IIndexSet
	IndexSet
	IIndex
	Index
	IRangeTestableIndex
	BalancedTreeIndex

	Conclusion

	Persistence and the Data Portal
	Data Portal Design
	Separation of Business Logic and Data Access
	Consistent Coding Model for Root and Child Objects
	Channel Adapter and Message Router Patterns
	Channel Adapter
	Message Router

	Distributed Transaction Support
	Context and Location Transparency
	Authorizing Server Calls
	Asynchronous Behaviors
	Object Factories

	Base Class Support
	Factory Methods and Criteria
	Save Methods
	Synchronous Save Methods
	Asynchronous BeginSave Methods

	Updating Child Objects with the Field Manager
	Updating Editable Collections

	Reflection and Dynamic Method Invocation
	The MethodCaller Class
	The GetObjectType Method

	The LateBoundObject Class

	Channel Adapter
	The RunLocal Attribute
	The DataPortal Class
	DataPortal Events
	Creating the Proxy Object
	Root Object Data Access Methods
	Child Object Data Access Methods

	The DataPortal<T> Class
	The IDataPortalServer Interface
	The IDataPortalProxy Interface
	The LocalProxy Class
	The WcfProxy Class
	The WcfPortal Class

	Distributed Transaction Support
	The Transactional Attribute
	The Csla.Server.DataPortal Object
	The Fetch Method
	The Update Method

	The ServicedDataPortal Class
	The TransactionalDataPortal Class

	Message Router
	The DataPortalSelector Class
	The SimpleDataPortal Class
	The Fetch Method
	The Update Method

	The FactoryDataPortal Class
	The FactoryLoader Property
	The Fetch Method
	The InvokeMethod Method

	The ChildDataPortal Class

	Context and Location Transparency
	The DataPortalContext Class
	Setting the Server Context
	Clearing the Server Context

	The DataPortalResult Class
	Csla.Server.DataPortalException

	Conclusion

	Other Framework Features
	Date Handling with SmartDate
	Initializing the Struct
	Supporting Empty Dates
	Conversion Functions
	Text Functions
	Date Functions
	Database Format

	Data Access
	Managing Database Connections and Contexts
	ConnectionManager
	ObjectContextManager
	ContextManager

	SafeDataReader
	GetString
	GetDateTime and GetSmartDate
	GetBoolean
	Other Methods

	DataMapper
	Setting Values
	Mapping from IDictionary
	Mapping from an Object
	Mapping from an Object with a DataMap

	Windows Workflow Foundation
	Starting a Workflow from an Object
	WorkflowManager Class
	Synchronous Execution of a Workflow
	Dealing with Idled or Suspended Workflows
	Associating a Persistence Service with the Runtime
	Unloading a Suspended Workflow
	Loading and Resuming a Workflow
	Resuming a Suspended Workflow Without Unloading
	Executing a Workflow from a Business Object

	Conclusion

	Business Object Implementation
	ProjectTracker Objects
	Setting Up the Project
	Business Class Implementation
	Project
	Business Methods
	Business and Validation Rules
	Authorization Rules

	ProjectResources
	Business Methods

	ProjectResource
	Business Methods
	Business and Validation Rules
	Authorization Rules

	Assignment
	Business Methods
	Business and Validation Rules

	RoleList
	Business Methods

	Resource and Related Objects
	ProjectList and ResourceList
	ResourceInfo

	Roles
	Business Methods

	Role
	Setting a Default Value
	Preventing Duplicate Values

	Implementing Exists Methods

	Custom Authentication
	PTPrincipal
	Login and Logout

	PTIdentity

	Conclusion

	Example Data Access
	Data Access Layer Design
	Data Access Models
	Using the DataPortal_XYZ Methods
	Using an Object Factory

	Balancing Design Issues
	Preserving Encapsulation
	Breaking Encapsulation

	Data Access Objects
	Using LINQ to SQL
	The ProjectTracker.DalLinq Project

	Business Class Implementation
	Project
	Factory Methods
	Data Access

	ProjectResources
	Factory Methods
	Data Access

	ProjectResource
	Factory Methods
	Data Access

	RoleList
	Factory Methods
	Data Access

	ProjectList and ResourceList
	Factory Methods
	Data Access

	Roles
	Factory Methods
	Data Access

	Implementing Exists Methods
	Exists Method
	ExistsCommand Class

	Conclusion

	Windows Presentation Foundation UI
	Custom Authentication in WPF
	Interface Design
	User Control Framework
	The EditForm Class
	The MainForm Window

	Value Converters
	VisibilityConverter
	ListTemplateConverter

	Application Configuration
	Authentication
	Local Data Portal
	Remote Data Portal
	Configuring the Data Portal Server

	PTWpf Project Setup
	The MainForm Window
	Navigation
	Login and Logout

	The Login Window
	The RolesEdit Form
	Form Declaration
	Form Resources
	Setting the DataContext
	Grid Resources
	Form Content
	The ApplyAuthorization Method

	The ResourceList Form
	The ProjectList Form
	The ProjectEdit Form
	Data Provider Controls and Data Retrieval
	Setting Up Data Binding
	Navigation Through Commanding

	Conclusion

	Web Forms UI
	Web Development and Objects
	State Management
	State on the Web Server
	Transferring State to or from the Client
	State in a File or Database

	Interface Design
	Application Configuration
	CslaDataSource Control
	Authentication
	Local Data Portal
	Remote Data Portal (with WCF)
	Configuring the WCF Data Portal Server

	PTWeb Site Setup
	Master Page
	Theme Support
	Header Region
	Navigation Region
	LoginStatus Control

	Login Page
	Using Forms-Based Authentication
	Using Windows Integrated Security
	Using the ASP.NET Membership Service

	Business Functionality
	RolesEdit Form
	Using the MultiView Control
	Using ErrorLabel
	Using a Business Object As a Data Source
	Caching the Object in Session
	Selecting an Object
	Inserting an Object
	Updating an Object
	Deleting an Object
	Authorization

	ProjectList Form
	Loading the Data
	Viewing or Editing a Project
	Adding a Project
	Deleting a Project
	Authorization

	ProjectEdit Form
	Caching the Project Object in Session
	Creating a New Object
	Saving a Project
	ProjectDataSource
	ResourcesDataSource
	RoleListDataSource
	ResourceListDataSource

	Conclusion

	WCF Service Interface
	Choosing Between Client/Server and SOA
	Overview of WCF Services
	Elements of a WCF Service
	Endpoint Configuration
	Service Contract
	Endpoint Definition
	Service Implementation

	Custom Authentication
	Acquiring an X.509 Certificate
	Creating a Test Certificate
	Configuring WCF to Use Message Security
	Configuring a Service to Use Username Credentials
	Modifying PTPrincipal
	Custom UserNamePasswordValidator
	Custom Authorization Policy
	Server Configuration
	Providing a Username from the Client
	Client Configuration

	Designing a WCF Service Interface
	Service Design
	Application Configuration
	Authentication
	Local Data Portal
	Remote Data Portal (with WCF)

	PTWcfService Site Setup
	Service Contract and Implementation
	GetProjectList
	AddProject
	UpdateProject

	Web Service Consumer Implementation
	Generating a WCF Information Page
	A Simple Smart Client
	Client Configuration
	Calling a Service Operation

	Conclusion

	Index

