
Cover

TE
AM
FL
Y

Team-Fly®

Page i

Developing Mainframe Java™ Applications

Page ii

This page intentionally left blank.

Page iii

Developing Mainframe Java™ Applications

Lou Marco

Page iv

Publisher: Robert Ipsen
Editor: Margaret Eldridge
Assistant Editor: Adaobi Obi
Managing Editor: John Atkins
Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial
capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

Copyright © 2001 by Lou Marco. All rights reserved.

Published by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the
prior written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012,
(212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in professional
services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.

This title is also available in print as ISBN 0-471-41528-6

For more information about Wiley products, visit our web site at www.Wiley.com

Page v

Contents

Preface xiii

Acknowledgments xvii

Part 1 Java Fundamentals 1

Chapter 1 Introduction 3

Java Trek 3

A New World of Objects 3

Reusability 4

Inheritance 4

Encapsulation 4

Stack Class 5

Polymorphism 6

Java and C++ 6

C++ 7

Java 8

A PL/I Version of the Bubble Sort 17

In Summary 20

Chapter 2 What Is Java? 23

A Brief History of Java 23

The World of Java Today 25

Java: The Programming Language 25

Java: The Object-Oriented Programming Language 25

Java: The Portable Programming Language 26

Page vi

Java: The "Pointer-Less" Programming Language 27

Java: The MultiThreaded Language 28

IBM's Java Efforts 29

Java versus COBOL and PL/I: A Brief Look 29

In Summary 34

Chapter 3 Creating Your First Java Program 35

Installing the JDK 35

Is the JDK Installed Properly? 36

Compiling and Running the Program 37

Compiling and Running Java Programs: A Second Look 38

Watch out for Those Class Names 42

What Does a Compile Error Look Like? 43

Let's Look at the HelloWorld Program 43

Back to Our Program 46

In Summary 47

Chapter 4 The Sun Java 2 Basic JDK Tools 49

Basic JDK Tools 49

Appletviewer 50

jar 51

extcheck 53

java 54

javac 58

Javadoc 62

javah 66

javap 66

jdb

68

In Summary 76

Chapter 5 Declaring and Defining Data 77

Java Primitive Types 77

A Few Words on Variable Typing 78

Variable Type Casting 80

Java Variable Typing 81

The boolean Primitive Type 82

The char Primitive Type 83

Integer Primitive Types 84

Floating Point Primitive Types 85

Character Strings in Java 86

Java Reference Data Types 86

Page vii

Java Naming Conventions 88

In Summary 89

Chapter 6 Java Language Syntax 91

Miscellaneous Java Syntax Items 92

Java Source Code Is Case Sensitive 92

Java Statements Terminated by a Semicolon 92

Java Supports Multiple Comment Styles 92

Java Has No COPY or Include Statement 93

Java Has No Pointers 93

Java Has No Preprocessor 93

Reserved Words Exist in Java 93

Java Is a Free-Form Programming Language 95

Java Assignment Statements 96

Java Operators 97

Java Operators not Found in Mainframe Programming Languages 100

Java Arithmetic Anomalies 106

Mixing Primitive Types in Arithmetic Expressions 107

Loss of Precision when Dividing Integers 108

Shoddy Floating Point Arithmetic Results 109

Overflow and Keep Going 110

Java Program Control Statements 111

Loop Constructs 111

Interrupting the Normal Processing of Loops 117

Java Decision Constructs 119

In Summary 123

Chapter 7 Class and Object Representation 125

Anatomy of a Java Method 125

Visibility Modifiers 125

Other Modifiers 127

Returned Types Coded in Method Headers 128

Method Names and Argument Lists 128

The throws Exception-Name Option in Method Headers 128

A Word or Two about Java Packages 129

The package Statement 131

Anatomy of a Java class 132

Constructor Methods and Instance Variables 132

In Summary 147

Page viii

Chapter 8 Encapsulating and Hiding Data and Methods 149

Encapsulation 149

Why Encapsulate and Hide Your Data and Methods? 150

How Do You Encapsulate Your Classes in Java? 153

A PL/I Example: Is This Object-Oriented Programming? 158

Using Accessor (Get and Set) Methods 161

In Summary 164

Chapter 9 Inheritance 165

Inheritance Defined 165

Same Classes, Different Inheritance Trees 166

Single Versus Multiple Inheritance 168

Example of an Inheritance Tree From the Java Libraries 169

An Example: Implementing Bank Accounts 170

Code for Checking and Savings Account Classes 171

Taking Advantage of Inheritance 174

Effects of Casting to and from Superclasses and Subclasses 181

In Summary 183

Chapter 10 Interfaces 185

What Are Interfaces? 185

Why Are Interfaces Useful? 186

What About Abstract Superclasses? 187

Creating Interfaces 188

Example: Implementing the Vehicle Types 188

In Summary 193

Chapter 11 Java Event-Handling Basics 195

Event Processing

TE
AM
FL
Y

Team-Fly®

196

Java Graphical Interface Components 197

Java Events 199

The Java Event Processing Model 200

Variations on a Theme 1: Using Adapter Classes 205

Variations on a Theme 2: Using Top-Level Classes 206

Variations on a Theme 3: Using Inner Classes 207

In Summary 208

Page ix

Chapter 12 Exception Handling and Thread Basics 209

What Are Exceptions? 209

The Java Exception Hierarchy 210

The Java Exception Class 211

Mainframe Programming Language Exception Handling
Mechanisms

212

The Java Exception Handling Mechanism 214

Throwing Exceptions 214

Throwing Exceptions - Continued 215

Declaring Potentially Thrown Exceptions 216

Catching Exceptions with try/catch/finally 218

Java Exceptions Summary 220

Thread Basics 220

Why Code Multithreaded Programs? 220

What Are Java Threads? 221

Executing Your Threads 222

Sample MultiThreaded Program 222

In Summary 227

Chapter 13 The Training Department Class Scheduler
System

229

The Application Defined 229

Application Options for the Students 230

Application Options for the Instructors 230

The User Interface 230

The OS/390 Mainframe User Interface 231

The Java User Interface 234

The Data Stores 237

The Course Information File 238

The Class Information File 238

The Instructor Information File 238

The Employee Information File 238

Application Outputs 238

OS/390 IBM Mainframe Outputs 239

Java Outputs 242

Putting Together the Application 243

A Procedural Language Solution 244

A Java Language Solution 249

In Summary 254

Page x

Part 2 Java In the OS/300 Mainframe Environment 255

Chapter 14 Overview of OS/390 Java
Infrastructure/Architecture

257

Software Requirements 257

Java Application Architectures 258

Java Software Components Versus Standalone Programs 259

Accessing OS/390 System Software 259

IBM Java Development Tools 262

In Summary 262

Chapter 15 Overview of OS/390 UNIX System Services 265

The Command Shell 265

The HFS File System 267

Working with HFS Files 268

Comparing MVS, UNIX, and OS/390 Concepts 270

In Summary 278

Chapter 16 Java and MVS Batch 279

Executing Java in Batch 279

Running Java Programs with BPXBATCH 280

Running Compiled and Linked Java Programs 284

Running Java Programs as Started Tasks 285

In Summary 286

Chapter 17 Java Record I/O Using the JRIO Package 287

What Is JRIO? 287

Contents of the JRIO Package 288

JRIO Interfaces 288

JRIO Constants 290

JRIO Exceptions 292

Using JRIO 294

Directory and Dataset Naming Conventions 294

import Statements Needed for JRIO 295

Representing Record Structures 295

JRIO Coding Examples 298

Fetching Encoded Data from and Setting Data to Fields 311

In Summary 313

Chapter 18 Java, CICS, and IMS 315

Java and CICS 315

The CICS Transaction Gateway 315

Writing a JCICS program using COMMAREA 320

Page xi

Java and IMS 321

What Is IMS Connect for Java? 322

In Summary 326

Chapter 19 Java and DB2 327

Overview of Java and DB2 for OS/390 327

Java Database Connectivity (JDBC) 329

Using JDBC 329

Java and SQLJ 334

Using SQLJ 334

Comparing JDBC to SQLJ 337

In Summary 337

Chapter 20 The Training Department Class Scheduler
System Revisited

339

The Application Feature Defined 339

The SQL Used in the Example 339

A Procedural Language Solution for "Display Class List Later Than
Entered Date" Option

340

Comments on the COBOL Solution 340

A Java Language Solution for "Display Class List Later Than
Entered Date" Option

344

The Code for a Single Class Retrieved from the Database 344

In Summary 347

Part 3 Java: Above and Beyond Other Programming
Languages

349

Chapter 21 Applets 351

A Bit of Background 351

Applications versus Applets 351

Coding the Web Page that Uses the Applet 352

How an Applet Executes 352

In Summary 357

Chapter 22 Java User Interface Basics 359

Java GUI Component Libraries 359

Standard GUI Components 360

Java Containers 360

Another Example 366

In Summary 371

Page xii

Chapter 23 Java File I/O 373

The File 374

Files (Datasets) in COBOL, PL/I 374

Files in Java 375

The Concept of a Stream 378

Streams in COBOL and PL/I 378

Streams in Java 380

In Summary 383

Chapter 24 The Java 2 Enterprise Edition Libraries 387

What Is J2EE? 387

Java on the Server 388

J2EE APIs 389

In Summary 394

Chapter 25 Remote Method Invocation 395

What Is Java RMI? 395

Java RMI Mechanics 396

Time for an Example 398

Step 1: Create the RMI Interface 398

Step 2: Code the Client Class 400

Step 3: Code the Server Class 401

Step 4: Compile the Interface, then the Server, and Then the Client
Classes

403

Step 5: Generate the Stub with the rmic Program 403

Step 6: Place the Stub Class File where the Client and the Server
Classes can Find Them

403

Step 7: Start the rmi Registry 404

Step 8: Create a Policy File 404

Step 9: Execute the Server Class 405

Step 10: Execute the Client Class (Invoke the Remote Method) 405

Summary of RMI Steps 405

In Summary 407

Glossary 409

Bibliography 417

Index 419

Page xiii

Preface
Developing Mainframe Java Applications provides big iron data processors with a reference and
learning tool they can use to write Java programs that run under OS/390. The thrust of the book is to
describe Java in the language of the mainframe professional and to show how such professionals
would develop Java applications for the IBM mainframe.

This is a "how-to" book, meant to impart rules and general techniques by drawing analogies between
the familiar and the new. Scant mention is made of the technical intricacies of the Java Virtual
Machine, garbage collection algorithms, "the taming of the threads," or other topics that deal with
Java internals.

Who Should Read This Book?

The main audience for this book is the mainframe programmer. These programmers have years of
experience on the mainframe and, although the likelihood is high that they have a wintel desktop (for
email, office productivity, and mainframe terminal emulation), they may not be adept at
programming on anything but a mainframe.

The book helps programmers learn Java programming, but the book has a wider audience than
mainframe programmers. Systems analysts need to understand what Java is all about as well as
programmers. Management, especially first and second line managers, needs an understanding of
Java and a way of relating Java to their technical background.

As an aside, the book assumes that the reader has no C or C++ programming experience, which
means that Java syntax, down to using curly braces, may be unfamiliar to the reader. TE

AM
FL
Y

Team-Fly®

Page xiv

The Book's Organization

Part 1, "Java Fundamentals," describes Java by comparing its language features with those of third-
generation procedural languages, such as COBOL and PL/I. The book describes Java as an object-
oriented programming language. Part 1 concludes by showing some Java code for an application and
comparing this Java code to COBOL and PL/I code that performs similar functions.

Part 1 contains chapters that discuss loops, decision constructs, declaring data, and
subroutine/function (methods, really) invocation–the language of procedural programming
languages. Other chapters discuss Class/Object representation, Inheritance, and Encapsulation–the
language of object-oriented programming languages. After the reader completes Part 1, he or she will
have a good grasp of how to use Java and how Java stacks up against familiar mainframe
programming languages.

The goals of Part 1 are as follows:

 To describe Java by comparing and contrasting Java to familiar programming languages

 To introduce the Sun Java JDK so the reader can create and execute simple Java programs on
his or her PC

 To explain how Java implements the object-oriented programming language metaphor,
thereby showing how Java is different from PL/I, COBOL, and other languages used by the
mainframe programmer

Part 2, "Java in the Mainframe Environment," describes IBM's "Java Everywhere" strategy by
examining Java in the OS/390 environment. Each chapter covers how Java works with a particular
brand of IBM technology, such as CICS, DB2, or VSAM. Java code exploiting IBM-specific
technologies is included. The section concludes with Java code that accesses DB2 tables.

Part 2 explains shows how IBM has provided the Java programmer access to tried and true
technologies. After the reader completes this section, he or she will have a good grasp of how to
exploit Java in the OS/390 environment. The reader will be quite comfortable with Java; he or she
knows the syntax, how Java implements the object-oriented world view (from Part 1), and how to
use Java with familiar IBM technologies (Part 1).

The goals of Part 2 are as follows:

 To explain how IBM has implemented Java on its mainframe environment

 To explain how to use Java with the following IBM technologies:

 CICS

 IMS

 Batch

 VSAM

 DB2

 To compare and contrast Java code with COBOL and PL/I code when using the previous list
of technologies

Page xv

 To describe IBM's JRIO classes and how the Java programmer on OS/390 uses these classes to
perform record I/O

 To show application code using JDBC to access DB2 data

In the first two parts, the book shows COBOL and PL/I code that functions like the Java code in the
snippets and applications. However, this approach can only take the reader so far into the world of
Java. Simply put, Java is far more capable than COBOL and PL/I put together. Hence, the last
section of the book describes several key features of Java that are found only in Java.

Part 3, "Java: Above and Beyond Other Programming Languages," lightly touches on several Java
features and capabilities, such as applet creation, the Swing user interface classes, Java 2, Enterprise
Edition (J2EE), and Remote Method Invocation (RMI).

The goals of Part 3 are to describe some of Java's unique features, including

 Applet coding

 Java Native File I/O

 Java GUI classes

 The libraries constituting the Java 2, Enterprise Edition

 The Remote Method Invocation (RMI) classes, which enable a Java programmer to execute
Java programs on other machines over a network

Conventions Used in This Book.

Code listings and outputs appear in a monospaced font, such as

public static void main(String[] args)

The first time a term is used in a chapter, the term is printed in italics.

Throughout the book, you'll find sidebar information that contains relevant information that doesn't
fit into the current context. Here's what a sidebar may look like:

You'll also encounter notes that augment the material preceding the note. Here's

what a note may look like:

 This text may explain the material immediately preceding the note.

You'll also encounter tips that offer a shortcut or a solution to a common problem that relates to the
material you've just read.

THIS IS HOW A SIDEBAR TITLE MAY LOOK
And here is some text explaining the sidebar title . . .

 This text may provide a shortcut or solution to a common problem.

Page xvi

This page intentionally left blank.

Page xvii

Acknowledgments
This work would not have been possible without the nearly infinite patience of the hard-working folk
at John Wiley & Sons. Of course, kudos go to my wife who had to witness and endure some strange
behaviors on my part during the completion of this work.

Page xviii

This page intentionally left blank.

Page 1

PART One
Java Fundamentals

Page 2

This page intentionally left blank.

Page 3

CHAPTER 1
Introduction

Java Trek

You are a mainframe programmer neck deep in COBOL programming. You cannot escape the siren
song of object-oriented programming (OOP). Every trade publication you peruse has articles from
industry pundits chanting the object mantra. In an evangelical manner, these new disciples of the
object faith quote chapter and verse from the missiles of Saint Booch and Saint Jacobsen. The
message is clear— you must adopt the Object Tao and righteously cast out the old demons of
procedural programming and structured design.

Okay, you got the calling. As a highly evolved mammal, your survival instinct kicks in. You sense
that you'd better find out what this object stuff is all about. If these harbingers of the object path are
correct, you could become obsolete before you become vested in your pension plan. Duly motivated,
you begin your quest for the truth about object technology.

A New World of Objects

The oceans of literature and the galaxy of Web pages contain many new terms and concepts. On your
own, the brave new world of object technology can be quite daunting. In this exploration, you will
have an experienced guide to help you sort through the differences between mainframe programming
concepts and object technology— specifically Java programming.

TE
AM
FL
Y

Team-Fly®

Page 4

Object applications are not related sets of procedures acting on external data sources, but sets of
communicating objects. These objects contain all their needed data and procedures. The object view
of modeling software systems is based on the properties and behaviors of actual application entities.
Comparatively, the old software design model of creating separate data models and structure charts
seems archaic.

Reusability.

The object prophets make strong claims about software reusability. On the reusability issue, the
prophets speak with a single voice. They say that only by using object technology can you, the
programmer, create truly reusable code.

We all know that software reusability is not a new issue. Actually, software reusability has always
been the platonic ideal of programming. You've probably been very close to this ideal at times. It is
possible to write reusable code with a procedural language, but the reusability is achieved in spite of,
rather than because of, your programming tools and environment.

Is there really a programming environment out there somewhere that enables you to create reusable
code as a rule, not as an exception? Any culture advanced enough to produce cholesterol-free eggs
and breastfeeding devices for males must be advanced enough to produce this programming
environment. But do object environments truly assist the programmer in writing reusable code?

Inheritance

You may have read about that wonderful property of objects called inheritance. With inheritance,
you write code that implements some behavior for a group of similar objects, or a class. You create
subclasses based on some relationship— subclass A ISA superclass of B, for example. Once done,
the code that implements behaviors for the superclass is automatically known to the subclass. Yes, I
said automatically known to the subclass.

Well, this certainly sounds like a feature that would help me write reusable code. Think of a bank
account superclass with checking and savings account subclasses. You write code to implement the
withdrawal behavior for the bank account class. This code automatically becomes known to the
checking and savings account superclass. One routine, three classes. This beats the pants out of
reusability in the COBOL world-copying code in a separate member of your PDS and changing a
few lines. Do you see the real value in this inheritance stuff?

Encapsulation

You are likely to encounter the term encapsulation in any exploration of object technology. With
encapsulation, the data and code that implement behaviors in application objects are hidden from
other objects. The big idea is that, because other objects do not know about an object's internal data
and behavior representations, these other objects cannot change these representations. In short,
encapsulation provides a safety mechanism that prevents unwanted changes in an object's data.

Page 5

How does this encapsulation stuff really help prevent unwanted changes? Think about the last set of
COBOL modules you wrote. Let's say you coded a list of parameters in the CALL/USING statement
of the calling module. Remember the unexpected behavior of the calling program? Remember trying
to debug the calling program? Remember how the called program changed one of the parameters
supplied in the LINKAGE section? Remember how difficult this problem was to locate? Suddenly,
like the light bulb flashing over the coyote's head in those silly roadrunner cartoons, you see the
beauty, majesty, and practicality of encapsulation.

The problem with the COBOL modules is that both the calling and called modules needed to know
the data representation of the parameters. Because the called module knew the data representation,
the module contained code that changed the parameter. At times, you count on the ability of the
called COBOL module to change the parameter's value and write code to make wanted changes.
Sadly, you can slip and write code that inadvertently changes passed parameters. The calling module
has no knowledge of these changes and does not execute correctly.

Owing to encapsulation, an object application can never suffer this fate. What an object doesn't
know, an object cannot change. Data contained on objects is safe from unwanted tampering from
other objects.

Stack Class

Let's say Joe Programmer wrote a PL/I program a while back. Being a wise guy, he implemented a
stack as a controlled data structure (a controlled data structure in PL/I— declared with the storage
class CONTROLLED— means the PL/I program can dynamically allocate memory for the structure
with the ALLOCATE statement). All routines that used the stack had this controlled structure
declaration. Joe's code worked; he was immensely pleased with himself. When the team lead
scheduled the code walk-through, he couldn't wait to demonstrate his superior knowledge of the PL/I
language.

Well, it turns out that Joe should have known that the project lead is not nearly as well versed in PL/I
as he is. When she saw the stack and its controlled allocation, she barked, "What is this?" With pride,
Joe described the intricacies of PL/I's controlled storage class. A scowl slowly spread over the
project lead's face. She was clearly not impressed with Joe's code and asked him to rewrite the stack
code, using a more conventional data structure. When Joe meekly asked for a suggestion, she
whipped out an array representation on a white board. Joe slinked back to his cube to make the
required changes.

Joe hunted down every module that accessed the stack because he had to change every one. He had
to change the POP, PUSH, and ISEMPTY routines, too. What a pain. Maybe Joe should have
conferred with Hagatha, the team lead, before he embarked on his coding journey.

If this application were done in an object language, Joe would need to change only the stack class.
All objects communicating with the stack, being ignorant of the stack's data representation, would
not have to be changed.

Another bonus— because of inheritance, all subclasses of a changed class automatically know of the
change. Joe need do nothing to implement a new data representation or a behavior in the subclasses.

Page 6

By now, you should be firmly convinced that this object stuff is definitely worth the admission price.
This class/object representation, combined with inheritance and encapsulation, makes for powerful
code. Many more object technology wonders are there to unearth— let's keep digging.

Polymorphism

What if you could send the same message to different objects and each object would invoke the
appropriate behavior in response to the message? Remember that object applications are
communicating objects, not separate function/module calls acting on external data sources. The term
message makes sense in object-speak. Objects communicate by issuing messages to each other. The
message invokes some behavior that you have implemented in code. The thrust of polymorphism is
that each object responds to a message according to its understanding of that message.

There is practical, everyday truth in this. How do people respond to messages? Do we not respond in
our own way? Don't different people (and dogs, for that matter) respond differently to the same
message? When you become accustomed and attuned to this concept, the object world-view of
polymorphism seems as natural and proper as wearing underwear.

You may think that object technology is recent, say 1990s, technology. However, object technology
has been around since the 1970s. It may be strange to realize that object technology is older than
your dog. It may be older than your significant other. It is certainly older than some of the big iron
technology like DB2 and REXX that you've been using for the past 15 years.

Java and C++

By now, you have absorbed the essentials of an object system: class/object representation,
encapsulation, inheritance, and polymorphism. That's good. But, as a programmer, you may be
naturally curious about programming languages that implement these essentials. It seems that every
programming language has an object flavor (even COBOL.) However, the most common are the
C++ and Java programming languages. Let's investigate these two languages.

Your first impulse may be to rush off to a bookstore and purchase some of the uncounted number of
books about these languages. Because most programming books are 40-plus dollars, a few books
equate to big bucks. After all, you're a programmer, not a drug dealer or a dentist. Three books are
the equivalent of food for two weeks. By now, the at-home crowd must be weary of eating beanie-
weenies. Maybe you can make do without the books for now.

Internet searches reveal a wealth of links on C++ and Java. There are lots of C++ and Java source
code, lots of terminology and acronyms, and lots of talk about UNIX on the net. There's little on how
object technology is used by companies in certain industries— notably yours. To find out how this
object–C++–Java technology is used by your industry and your company will take more research.

Page 7

Perhaps a direct approach is in order. Why not talk to folks in your organization to learn if anyone in
the same building is using object technology? You may meet a few object converts under your
corporate roof. Perhaps some of these object practitioners can shed some interesting light on C++
and Java usage within the company.

C++

Joe, the first object practitioner you meet, uses the C++ programming language. This programmer
swears with the fervor of a recent ex-smoker that any object programmer worth his salt uses C++. He
gleefully takes the time to explain his ardor for C++.

Joe tells you in a pompous and annoying manner that C++ supports all the features of object
programming: class/object representation, encapsulation, inheritance, and polymorphism. He
explains that C++ is a hybrid object language— a language built upon an existing procedural
programming language (C, in this case). He boasts that his C experience and knowledge of object
concepts enabled him to start coding almost immediately.

He continues by explaining that C++ supports multiple inheritance. Multiple inheritance enables a
subclass to inherit data attributes or behaviors from more than one superclass. Of course, he grins,
multiple inheritance is more flexible than, and superior to, single inheritance.

Because of your hard work and research, you understand what Joe is talking about. You wax with
glee as you realize that you can talk the object talk. You can't wait to walk the object walk.
Impatiently, you ask him to show you some C++ code.

As your eyes scan the C++ code, your shiny, gleeful face quickly sours to a dull, woeful puss. You
can't understand any of this stuff. This code could be Babylonian cuneiform writing as far as you're
concerned. You can't believe that under this mess is essentially code in a procedural language.

You recall the first time you saw PL/I. You didn't understand the nuts and bolts, but you had a good
understanding of what the code did. Your COBOL background was good preparation for
understanding PL/I. Unfortunately, this C++ stuff looks pretty cryptic.

The C++ programmer senses your state of overall confusion and asks you how much C experience
you have under your belt. There may be lots under your belt these days, but none of it is C
programming experience. You're a COBOL and PL/I programmer. Remember when you had to learn
pointer use in PL/I? You finally grasped that a pointer is merely a four-byte address. Joe shows you
pointers to character strings, pointers to integers, and (gasp!) pointers to pointers, explaining that,
although these pointers are addresses, they are all different data types. You thank the Joe for his time
and mosey on to your cubie. Alone with your thoughts, the horror of learning C++ seeps in. You
thought object programming would be easier than conventional procedural programming. This C++
stuff seems to be procedural programming at its worst.

At lunch, you mention to a chum that you're looking into C++ programming. This chum happens to
know a thing or two about C++. He has some C++ information obtained from a vendor of Macintosh
software development tools. He believes that this information is Mac-specific. But the C++
information from the Mac vendor made the

Page 8

stuff you gleaned from the pointer-happy programmer earlier today read like a nursery rhyme. Here's
what you read:

When you call the function "MYSTREAM.read()", it normally returns a reference to the stream object
itself, that is, . MYSTREAM. This is so you can chain these functions together, like this:

MyStream.read (MyVar1).read(MyVar2).read(MyVar3)

But when you call "MYSTREAM.read()" from a function that expects an integer, the compiler performs
some "sleight-of-hand" and actually returns MYSTREAM.good()" as the function result .

So this is what the world of programming has evolved to?

Desperately, you rifle through your notes. You recall hearing through the mill that your corporate
training department may be developing courses on Internet technologies. You recall the instructor of
the last class you took, oh so many moons ago. Why not give her a call?

Java

Jane, a corporate instructor, is developing a course on the Java programming language. Java, she
excitedly explains, is part of a suite of technologies that enable a programmer to write a program
once and run it on any platform— even on the Internet. Great— you have to deal with a suite of
technologies to learn and use Java. This is just what you need, right? Before you get all steamed up
over technology suites and the like, your Java guide says that Java has use and value as a
programming language aside and apart from Internet; Java is much more than the "Applet language
of the Internet." Upon hearing this, you regain your composure.

Jane starts to talk about Java's inheritance mechanism. When you comment on C++ and its support
for multiple inheritance, she audibly snickers. Jane mentions that with multiple inheritance, you have
no straightforward way of knowing the origin of some inherited behavior. Her point is that an
application developed with multiple inheritance may ease initial class creation and application
development but could make application maintenance a nightmare. By now, you assume that Java
supports single inheritance only.

However, when you point out the textbook advantages of multiple inheritance, she audibly snickers
again. Your Java guide points out that she never got to explain Java's inheritance mechanism to you.
She tells you that Java supports single inheritance inas-much as every object is created from a class
that has one and only one superclass. However, the Java designers were well aware of the limitations
of single inheritance as well as the pitfalls of multiple inheritance. She explains that Java's
inheritance mechanism is unique; a Java class has the ability to inherit behaviors from several classes
but only one of these classes is the superclass. The inherited behaviors that do not belong to the
superclass are defined to the class by an interface.

You are puzzled because this sounds like multiple inheritance. Jane explains that Java supports two
separate hierarchies: a Class hierarchy, which defines the

Page 9

class/superclass relationship, and an Interface hierarchy, which enables a class to implement
behaviors from classes not contained in the class hierarchy. In JavaSpeak, a class extends its
superclass and (optionally) implements one or more interfaces.

Well, this still sounds like multiple inheritance but you get her gist: A Java class has one bonafide
superclass but can implement behaviors from other classes. When you comment that a Java class can
inherit method implementations from only the superclass, and the class must provide
implementations for all methods used by an interface, your guide approvingly nods. She suggests
that you not get hung up on the differences between a superclass and an interface yet.

Jane explains that the lazy C++ programmer could write code that doesn't do the cool object stuff,
like encapsulation or inheritance. The lazy C++ programmer could write C++ code to be completely
procedural. At first, you might be tempted to believe that this ability of C++ to wear two hats, so to
speak, is a good thing. Yeah, but you saw C++ code, remember? C++ is not your idea of procedural
programming.

Actually, she says, a common view of C++ is that C++ is a better version of C; C++ was developed
to overcome the deficiencies of the C programming language (of which many exist). Now, you don't
know C, and don't care to learn, but you see the wisdom of her words. You get the drift that C++ was
developed from C as opposed to being developed from the ground up. C++ is a better C, not a
language necessarily engineered to support object orientation.

The Java guru continues. She states that you could do procedural programming in Java, but anything
of substance, like file or database I/O, requires classes and objects and inheritance— the stuff of
objects. Although you could force a Java program to be procedural and not use object-oriented
features, your program probably could not do anything useful.

Java is a modern language, she says. Java designers at Sun Microsystems had definite ideas in mind
when Java went to the drawing board. Considering that Java was released in late 1995, you can tell
that this technology is hot.

Some Java Code

Perhaps you should look at some Java code before she waxes into a Java frenzy. Jane presents an
implementation of the bubble sort in Java as shown in Listing 1.1.

Looks like that C++ stuff you saw before. You see those ++, --and the braces {}. At least there's a
use for those braces now. For the moment, you're not impressed with the syntax of this "modern"
language.

My friendly Java instructor explains that syntax is syntax; after all, isn't it all a matter of what you're
used to? Of course, as a programmer, you take the time to explain that programming language syntax
parallels written language inasmuch as both need to be read, written, and understandable. You take
the time to explain that language replete with punctuation is more difficult to digest than language
without excess punctuation. However, you are a gracious and classy person and you readily yield to
your Java Guide's point about syntax.

Life, and programming, is too intense to sweat the small stuff. Jane says her time is short and she'd
rather not go over too many syntax details right now; she'd rather stick to explaining Java concepts
that may be daunting to a Java wannabe like you.

Page 10

Listing 1.1 The infamous bubble sort.

She first explains that the double slashes denote a single line comment; the slash-asterisk
combination denote a multi-line comment. She mentions that Java is case sensitive. That is, the
variable names myPay and MYPAY are different variables. Like a chanteuse breaking into song, she
starts to explain pieces of the program by the numbers. She says that even this small example
contains many Java features; she has time to cover only a few points. You express your gratitude and
ask her to proceed.

She explains the big picture by stating that the program has a main method that declares and
initializes an array of numbers, calls a sort method, and prints out the sorted array. The sort() method
implements our friend, old Mr. Bubble. Both the main()

class BubSort { //1
public static void main(String args[]) { //2
 int anarray[] = {3,10,6,1,2,9} ; //3
 sort(anarray) ; //4
 for (int idx = 0; idx < anarray.length; idx++)
 System.out.print1n(anarray[idx]) ;

}

//5

 static void sort(int a[]) {

//6

 for (int idx1 = a.length; --idx1>=0;) {
 boolean swapped = false;
 for (int idx2 = 0; idx2<idx1; idx2++) {

 if (a[idx2] > a[idx2+1]) {
 int temp = a[idx2];
 a[idx2] = a[idx2+1];
 a[idx2+1] = temp;
 swapped = true;

 }

 }
 if (!swapped)
 return ;
 }

 } //7

} //8

Page 11

and sort() methods are part of a class called BubSort. You may understand her reasoning; it is the
way you might code an example to illustrate a sort or features of a programming language.

The Java Program-By the Numbers

She starts to discuss the numbered lines.

Line //1 is the class declaration:

class BubSort {

Every Java file containing Java source code has a class declaration. The class declaration should
match the name of the dataset. In this case, the dataset name would be BubSort.java.

Line //2 is the declaration for the main() method:

public static void main(String args[]) {

Every Java application has a main() method. Now, she continues, this doesn't mean that every dataset
with Java source code has a main() method. Some Java source files have support datasets. And, she
adds, Java applets do not have a main() method.

Yes, applets. You recall reading about Java applets— small programs that execute within a Web
page. But you withhold your questions because you're in the middle of dissecting this bubble sort.

Speaking of which, Jane returns to the explanation of line //(2). Well, those words public static void
have meaning. She says it has to do with the visibility of the method (that's the public keyword)— the
method does not belong to any particular object (that's the static keyword) and what the method
does, or does not return (that's the void keyword).

Yes, she says— Java has keywords, or reserved words, like most programming languages.

Line //3 is a Java array declaration:

int anarray[] = {3,10,6,1,2,9} ;

The first keyword, int, is the data type of the elements of the array. You gather that the keyword int
is short for integer. She tells you that you may be right, you may be wrong— it depends on what you
think an integer is.

You say that the definition of an integer is operating-system dependent. On some platforms an
integer is four bytes, type binary, unsigned. On other platforms, an integer is four bytes, type packed,
signed. You say the int declaration depends on the platform you are writing Java on.

Java and Platform Independence

Well, your long-suffering and humble Java instructor certainly has a thing or two to say now. She
asks you if you've read anything about Java. If so, she claims, you'd know

Page 12

that Java doesn't care for operating system particulars such as primitive data type byte sizes and
formats. The beauty of Java is that Java was designed to be source code compatible across multiple
platforms. The same Java that executes on a Wintel box will run without modification on a
Macintosh, an IBM RS6000 running AIX, or on an IBM mainframe running OS/390.

You chortle under your breath. Seems you've heard this one before. You recall how C was the
ultimate cross platform software development tool. C was the "be all, end all" of programming
languages. Now, you never became proficient in C, but you work in data processing, right? If C lived
up to one-tenth of its promise, you would have heard about it, right? Well, you still spent your time
coding EVALUATE statements and looking at Abend-Aid dumps, right?

Apparently sensing your disbelief over her words, she explains that Java achieves this cross platform
execution boast by compiling into a platform-neutral format called bytecodes. A platform-specific
piece of software called a Java Virtual Machine translates the bytecodes into platform-specific
machine code. Hence, the Java compiler does not have to care about operating system details; the
Java Virtual Machine takes care of that. And the Java Virtual Machine is platform-specific.

You see the beauty in this approach. The Java programmer really does not have to know how big
integers are or how booleans are represented on a particular platform. All the Java programmer needs
to know is how big Java integers are or how Java represents booleans. The Java Virtual Machine
takes care of the mundane platform-specific details.

Oh, back to the question, how large are int data types? She says that Java uses four byte signed
binary integers.

Java Objects and Primitive Types.

A typical Java declaration is the data type or class name followed by the variable or object name. In
line // 3, the identifier anarray is the name of the declared array. My guide says that Java variables or
objects can have other attributes attached to them, but for now let's keep things straightforward.

You are a bit puzzled over this "variable or object" thing. Isn't Java object-oriented? Isn't everything
you use in Java an object instantiated from a class? Isn't that how this object-oriented stuff works?

She reminds you that Java is a new language. Over the years, computer scientists have learned a
thing or two about programming languages. For example, a "pure object" language like Smalltalk
would never, never, ever, ever permit you to use anything but objects. In Smalltalk, even the number
2 is considered an object. Some computer scientist types have concluded that this "everything is an
object" approach doesn't work for some applications. A programming language runtime must keep
track of memory allocated for objects (among other things). Most object languages need custom
routines to compare objects for equality and to read and write objects. In short, using objects is a lot
of work for a computer.

An example of an application type that is not well suited to object technology is the "number
crunching" type of applications used in science labs. Remember those old Fortran programs with five
nested loops? To use an object-oriented system to perform

Page 13

numeric calculations seems a bit wasteful of computing resources considering what the system may
require to keep track of all the objects used. Of course, this is not to say that you couldn't code
application of this type in object languages.

Java enables a programmer to use primitive data types instead of objects. For example, this example
uses few objects. The array elements, the array indices, and the boolean flag are not objects; these
program elements are variables. The array declared on line //3 is what she calls a reference data type.

As an aside, Java arrays are very object-like. Arrays may be assigned to variables of type Object
(Object is the root class in Java, the class at the top of the hierarchy). But, she continues, Java
practitioners do not consider an array an object.

You mull this over. You sort of understand that the array declaration does not declare an object.
Objects use methods and there's been no talk of methods attached to this array. This array is pretty
much like an array used in COBOL or PL/I.

You believe that some of this object stuff looks really good "on paper" but often fails the real world
test. You've read that this object stuff is decades old. Let's face it— if this technology were so great, it
would be more widespread. A mixture of old-fashioned, procedural programming and this object
stuff could be just what we need in data processing, perhaps.

Possibly, says your Java guide. She continues to discuss the sort example.

Back to the Java Bubble Sort

Back to line //3. Note that this statement initializes the array. In Java, arrays start with index 0, not 1
like some programming languages. Just something to keep in mind, she quips.

Jane comments that she has to wrap this up soon; she has meetings to attend and memos to write. She
starts to discuss line //4:

sort(anarray) ;

Here's where you invoke the sort() method and pass the array argument. This is not tough, new, or
strange. This is programming!

Where are the objects? Where are the classes? Java is object-oriented, right? Of course, Jane says,
but we don't need object stuff to do a bubble sort. Java lets you do some things procedurally.

Take a look at line //6:

static void sort(int a[])

The sort method has a special keyword, static, which means that you need not attach this method to
an object. Sometimes you just need a piece of code that does not depend on any particular object's
data. The bubble sort is like that; the sort is entirely parameter driven. What we need is a way of
telling Java that we want this method but don't want to create objects and attach the method to the
object. The static keyword does just that.

She explains that if she (or anyone) needed a bubble sort, she could use the sort method in the
BubSort class. First, the programmer would remove the main() method from BubSort.java; Listing

TE
AM
FL
Y

Team-Fly®

1.2 shows the new BubSort.java.

Page 14

Listing 1.2 Bubble sort in its own class.

As you can see, the sort() method is unchanged but the class does not have a main() method.
Presumably, the class that will use the sort() method has a main() method, and only one main()
method per Java application is allowed.

Assuming the BubSort class is on the same directory as the UseBub class or in what Java mavens
call the classpath, when you execute UseBub, the Java runtime will pull what UseBub needs from
BubSort. In particular, UseBub needs the sort() routine. Check out the lines marked with //*** in
Listing 1.3.

BubSort.sort(anarray) ;
BubSort.sort(anarray2) ;

The sort() method is qualified with the class that contains the method.

You ask about the other statements in the original bubble sort program— the one from Listing 1.1. In
particular, you ask about these curly braces. The rest of the numbered statements are braces that
close off blocks. She explains that Java uses the curly braces as block constructs. The block construct
helps to define variable visibility. Also, the block construct is required when more than one
statement follows an if statement or a loop construct. Even a small Java program can contain
numerous braces, she says.

The visibility of these variables may be defined by curly braces; variables declared within a pair of
braces are known within those braces. Some cases exist where a variable is declared within a
statement. In this case, that variable is visible only in that statement. She directs you to the following
statement:

class BubSort {

static void sort(int a[]) {

 for (int idx1 = a.length; --idx1>=0;) {
 boolean swapped = false;
 for (int idx2 = 0; idx2<idx1; idx2++) {

 if (a[idx2] > a[idx2+1]) {
 int T = a[idx2];
 a[idx2] = a[idx2+1];
 a[idx2+1] = T;
 swapped = true;
 }

 }
 if (!swapped) return ;

 }

 }

}

Page 15

Listing 1.3 Invoking the bubble sort from a class.

for (int idx = 0; idx < anarray.length; idx++)
 System.out.println(anarray[idx]) ;

This is a single statement. The variable idx is visible in this statement only.

She catches you staring at this statement. She catches you in mid-thought and explains that this is a
looping construct that prints an array value to the default output stream. She also says that she is
quickly running out of time and has to pick up the pace.

After a pregnant pause, you meekly ask her where the pointer references are. You figure that
"modern" languages like C++ and Java are replete with pointers. You cite your discussion with the
C++ programmer and what he told you about pointers in C++. What about pointer use in Java, you
ask?

With an impish grin, she tells me that Java does not use pointers. No pointers? None, she answers.
Java is able to do what every programming language does, and more, without the use of explicitly
declared and manipulated pointers. A Java programmer cannot declare a pointer or access the
starting address of a data structure in any way.

Well, well— no pointers in Java! That one statement alone is music to your codeweary ears. You start
to believe that these Java engineers at Sun really know their stuff.

class UseBub {

 static void printResults (int sorted[]) {

 for (int idx = 0; idx < sorted.length; idx++)
 System.out.println(sorted[idx]) ;

 }

 public static void main(String args[]) {

 int anarray[] = {3,10,6,1,2,9} ;
 BubSort.sort(anarray) ; //***

 int anarray2[] = {12, 4, 35, 1, 55, 76, 3 } ;
 BubSort.sort(anarray2) ; //***

 printResults(anarray) ;

 printResults(anarray2) ;

 }

}

Page 16

Meet the Sun JDK

You ask her how she compiles and links this program. She reminds you that Java compiles into a
platform-neutral data format called bytecodes. You knowingly nod in agreement. She is using a
WinTel box to compile her Java source. She tells you that the marketplace is rife with Java tools and
serious Java folk have an arsenal of tools to help with Java development. For now, she explains,
she'll use the standard tool suite, or Java Development Kit, available from Sun Microsystems (the
developers of Java). She opens up a DOS window and compiles the program. Next, she executes the
program. Figure 1.1 shows the DOS window after compiling and running the bubble sort.

The javac command invokes the Java compiler. In truly sparse computer geek fashion, a successful
compile provides no diagnostics. A successful Java compile produces a class file— in this case,
BubSort.class. Next, the java command executes the program. The java command passes the
previously created class file, in Bytecode format, to the Java Virtual Machine for execution. The
result of the execution is seen in the DOS window previously.

Well, well, you think. This certainly beats the pants off of submitting batch compiles and links. You
enter source code in an appropriately named dataset, switch to a DOS window where you do your
compiles, and repeat until you get a clean compile. Next, you execute your program in the very same
window.

You note that you need a program to execute your Java program. You ask her where the executable
file is produced by the linker. Actually, you ask her where and how she did the link. Your Java guide
tells you that she did not link the Java code; she did not produce an executable. The java compiler,
javac, produced a class file composed of bytecodes. The bytecodes are interpreted by the java
command.

You ask her how much these Java tools cost— the compiler (javac), the program that executes the
bytecodes (java), and the Java Virtual Machine. You would like to get a copy on your machine.
When she replies that these tools are free, you slip off your chair. Free? How can this be? Our shop is
used to paying a fortune for any software tool.

Figure 1.1 DOS window after compiling and running the sort.

Page 17

My guide explains that Sun provides a base set of tools, which includes the compiler. Other vendors
committed to Java provide Java Virtual Machines, or JVM's, bytecode interpreters, and applet
viewers. She tells you that the standard Java Development Kit, or JDK, includes a documentation
generator (javadoc), a java debugger (jdb), other tools dealing with system security (javakey), and a
way of disassembling Java classes/bytecode into Java source (javap). She adds that serious Java
developers have visual tools like the rest of the world and these visual tools cost money but anyone
can compile and execute Java programs with the freebies included in the JDK.

You are a bit stunned over this, and, rightfully so. Now you get a glimpse into the hype, the
excitement that Java has caused in the computing community. This Java stuff is the closest thing to a
standard you've heard of. To top it all off, the development tools are free. Of course, you're still
reeling over the phrase, "No pointers in Java."

Your very patient Java guide, and teacher, pauses once again to catch your feedback. A grin slowly
washes over your face as you realize that you understand nearly everything she has said. The
program you've examined makes sense in a macro sort of way. However, you're battle-hardened
enough to realize that every programming language has its quirks and oddities and that the language
syntax just have to be learned. In the middle of your reflections, something odd catches your eye.

You can't help notice your humble Java guide leafing through some IBM language reference
manuals. When you ask her what she needs to know, she replies that she would like to know a bit
more about programming language constructs in COBOL, PL/I, and REXX. She wants to compare
and contrast some Java constructs with constructs from more familiar languages.

What a great idea. She likes that you find merit in her idea. She glances at the wall clock, quickly
stands up, grabs a binder, and tells you she has to go. You want to show your appreciation for taking
the time and energy to show you stuff. As she shrugs off your offers to buy her coffee or lunch
someday, you hit upon a good idea: You tell her that you could write the sort program previously in a
commonly used IBM language. She agrees that your idea has merit. You ask for a reference for Java
syntax, which she gladly provides. You strut off to your designated work environment to fulfill your
promise.

A PL/I Version of the Bubble Sort

You decide to have lunch at the cubie (not all that unusual, right?) and pound out some code. You
wisely spend some time perusing the Java reference material. You see that the Java JDK comes with
packages. These packages are collections of related classes that perform varied tasks from database
and file I/O to mathematical computations to network data movement to graphical user interface
development. You get the idea that a big part of Java software development is knowing what classes
are already available for your use. The over 1,000 classes, constants, interface definitions, and
exceptions available seems daunting. You put that part of the reference down for now and decide to
stick with scrutinizing the syntax to create a compatible version in a procedural language.

You want to code a version of the bubble sort that does what the Java implementation previously
does but in the style and flavor of a procedural language. It takes a while to dope out some of these
Java constructs; the looping construct takes a bit of reading. Fortunately, you are familiar with the
bubble sort— a great help when you

Page 18

Listing 1.4 PL/I implementation of a bubble sort.

want to code an implementation. Listing 1.4 is a PL/I implementation you've written during a greasy
Tuesday taco lunch.

There is no significant difference between the Java and PL/I implementations. Both pieces of code
sort the declared and initialized array and list the sorted array elements

BubSort: Proc (arg) Options(Main) ;
 Dcl arg Char(40) Varying ;
 Dcl anarray (6) Fixed bin(15) Init
(3, 10, 6, 1, 2, 9) ;
 Dcl idx Fixed bin(15) Init(0b) ;
 Dcl arrayLength Fixed bin(15) Init(Length
(anarray))
;
 Dcl Length Builtin ;

 Call sort(anarray) ;

 Do idx = 1 to arrayLength ;
 Put Skip List(anarray(idx)) ;
 End ;

 Sort: Proc(a) ;
Dcl a (*) Fixed bin(15) ;
 Dcl arraylength Fixed bin(15) Init(Length(a)) ;
 Dcl idx1 Fixed bin(15) Init(0b) ;
 Dcl idx2 Fixed Bin(15) Init(0b) ;
 Dcl temp Fixed Bin(15) Init(0b) ;
 Dcl swapped Bit(1) Init('1'B) ; /* TRUE */

 Do idx1 = arraylength to 1 by -1 ;
 swapped = '0'B ; /* FALSE */
 Do idx2 = 1 to idx1 ;
 If a(idx2) > a (idx2+1) Then
 Do ;
 temp = a (idx2) ;
 a(idx2) = a (idx2 + 1) ;
 a (idx2 + 1)= temp ;
 swapped = '1'B ;
 End ; End ;
 if (ˆswapped)Then return ;
 End ;

 End Sort ;

End BubSort ;

Page 19

at the terminal. The PL/I code could have Begin/End block delimiters to mimic the functionality of
Java's curly braces. For example, you could have coded:

If a(idx2) > a (idx2+1) Then
 Begin;

 Dcl temp Fixed Bin(15) Init(0B) ;

 temp = a (idx2) ;
 a(idx2) = a (idx2 + 1) ;
 a (idx2 + 1)= temp ;
 swapped = '1'B ;
 End ;

But you know that PL/I programmers hardly ever code in this style.

As you look at this PL/I code, you can't help but see the remarkable similarities with the Java code.
You realize that, all the hype about Java aside, at the heart of this Java stuff is Java, the
programming language. This programming language is very similar to programming languages you
already know. You think about how much you've learned about Java in a few short hours; it gives
you a warm feeling of satisfaction.

Meanwhile–Back at the Desk . . .

Sadly, your reality as a mainframe programmer creeps back and you check out your ever-growing,
never-diminishing queue of change requests. Here's a change request to modify a report created by a
COBOL application so old you can carbon-date it. As you flip through the mostly worthless
documentation for this application, you can't get Java and the object worldview out of your mind. As
you search the source code and compiler listings looking for variable references, you wax woefully
that this application does not exploit object technology. None of this data is encapsulated or hidden
in any way; every routine that accesses this data has the possibility of changing it. You need to find
and analyze all references to this data across several separately compiled modules.

Oh well, someday you may get to use Java instead of coding PERFORM statements and looking at
JCL job streams. In the midst of your reverie, your boss strolls by and summons you into the
conference room for an impromptu staff meeting. You grab your day-timer and march quickly into
the conference room; you don't want to be left standing.

Your boss announces a new strategic initiative pushed down from the rare air of executive row. The
big boys approved the new customer information system. The twist is that the big boys want this
system developed with object technology. Your boss asks the assemblage if anyone present knows
anything about this stuff.

No sooner than the echo from your boss' mouth fades, the department loudmouth booms in
obnoxiously. The loudmouth knows all about this stuff, he says. He says he's read much about C++
and that is the direction this project, nay, the whole company, should move toward. The meeting
attendees seem impressed. You, of course, know better.

Page 20

Opportunity Knocks

"If you want to do real object-oriented stuff, Java is the way to go," you say. You explain that Java is
source code compatible across platforms. You continue by citing that Java development tools are
free, including documentation generators (that seems to get everyone's attention). Also, you don't
have to mess around with all those pointers because Java has no pointers.

The loudmouth barks that Java is supposed to be cool and all that but it is interpretive. "Can we take
the performance hit?" The Database Administrator adds to the discussion by saying that the
application will likely be I/O bound and that application execution speed may not be a bottleneck.

Attention now shifts back to you. You can't believe that everyone, including the loudmouth, is
hanging on your every word. You confidently lean forward. With eyebrows triumphantly arched, you
continue.

Java comes with packages, which are collections of related routines, that enable the programmer to
create interface screens, read databases, and talk over the network. In addition, you cite, the industry
is behind Java with the major players offering development tool suites. Java is far, far more than the
"Language of the Internet." Also, Training and Development is developing an in-house course on
Java programming.

You sense that your boss needs some action items for the meeting. You suggest that your boss call
the manager of Training and Development to get the take on this Java versus C++ business. Your
boss adjourns the meeting.

After the obligatory post-meeting chitchat with fellow wage slaves, you hunker down in your bunker,
seeking variable references to this COBOL application to implement this change request. Your mind
wanders. You can't help but wonder if this is the last change request for an ancient COBOL
application you'll do. You understand the excitement and fervor of the object disciples in general,
and the Java evangelists in particular. Can the disciples and evangelists be right? Is procedural
programming a thing of the past?

The only constant in this world is change. You cannot escape the Internet and the impact Internet
technologies have in business and society. Dot-coms advertise on the Super Bowl and place highway
billboard ads. Business pundits talk about downsizing, outsourcing, reengineering, and the new shape
of Information Systems. You hear the latest buzzwords and clichés. You hear your management
buzzing with these clichés. It's pretty scary.

However, you're off to a good start. You have some understanding of the hype, the hoopla, even
some of the buzzwords and clichés! Now, the time has come for you to learn how a data processor
skilled in writing COBOL and PL/I programs can master Java.

In Summary

The world of Java covers every facet in data processing from client, single-user programs to large,
enterprise-wide distributed systems. As you learn more and more about the brave new world, you'll
encounter numerous references to odd-sounding

Page 21

technologies, including directory and naming services, remote method invocations, and Enterprise
JavaBeans. Any understanding of these and other Java technologies start with understanding the Java
programming language.

Here you are, with book in hand. You've taken a big step— but you knew that already— into a
different realm. Good luck on your Java trek. If you persevere, you'll be coding Java in no time flat,
and this book will help.

Page 22

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Page 23

CHAPTER 2
What Is Java?

Here, you'll read a bit about the history of Java's development, some of the guiding principles of the
creators of Java (Sun Microsystems), and what may be in store for Java in the near future. This
chapter touches on the similarities and differences in concept between Java and familiar mainframe
programming languages. This chapter also discusses why knowing Java is a key skill for a data
processor, be that data processor a programmer, analyst, project manager, or IS management.

A Brief History of Java

Sun Microsystems, a company you'll hear much of in this book, created the progenitor to Java in the
old days of the early 1990s. Believe it or not, Sun initially had this idea of using what would be
called Java to control household appliances. Bring on those interactive microwave ovens. Can you
see the ad campaigns: "The future is bright with Sun Microsystems' programmable toasters?"

Perhaps the time is not right for smart, computer-controlled washing machines and the like.
Apparently, Sun Microsystems is ahead of its time. In any event, this programming language, now
dubbed Java, designed to control appliances had some interesting properties:

 Programs written in Java had to be small, or not require many resources to run. After all, you
don't want to outfit your TV with many megabytes of memory, right?

Page 24

 Programs written in Java had to be put on different devices, or run on different hardware.

These two properties make Java programs ideal for running on the Web. The creators at Sun realized
this and, in 1994, demonstrated Java use on the Web by writing Java programs, called applets that
ran with a browser, also written in Java. The applet is a piece of Java code that gets downloaded to a
Web page (like an image) and executed. When you leave the page by clicking on a link, the applet is
terminated.

Java struck a chord with the folks at Netscape, so much that Netscape licensed Java in 1995. The
world started to see Java applets appear in Web pages. Recall that the Web was still fairly new in
1995; those days, the corporate world did not allow Internet access on the job and only the
enlightened few amongst us had an Internet connection at home. Even so, Sun realized that Java was
a hit and cranked up their Java development efforts. Java had become worthy of coverage in several
trade rags. Java usage began to spread over the Internet with applets appearing on Web page after
Web page. Java version 1.0 was officially born. Java was on its way.

To encourage Java development, Sun makes its Java Development Kit (JDK), available at
http://java.sun.com, at no charge to anyone who wants to write Java. Because Sun is the owner of
Java (Java is not "open source"), you can count on the Sun JDK to work with the latest and greatest
Java version. You'll read more about the JDK later and use the JDK, if you like, to compile and run
some of the Java programs in this book.

Yes, this is all well and good. However, if all Java does is run in a browser window, you'd not hear a
tenth of the hype and, in all likelihood, would not be reading this book. Fact is that Java is much
more than the applet language of the Internet. And, in early 1997, with the release of Java version
1.1, the Java community realized that fact. The Java language itself changed very little from version
1.0 to 1.1; Java version 1.1 is a faster, more robust, and featured version of Java than version 1.0.
The newer version included application programming interfaces (APIs) for remote access, database
access, printing, encryption, and more. The JDK for this release included tools that generated
documentation, a command line debugger, disassembler, and others. In short, Java version 1.1 took
Java from the applet language of the Internet to a full-featured language that can be used to develop
applications, on or off the Internet.

Most of the hype surrounding Java deals with the new features and capabilities arising from Java
version 1.1. Java version 1.0, used for a year or two, has demonstrated its effectiveness and Sun has
demonstrated a commitment to Java. The industry stood up and took notice. The big industry players
began to get on board with Java. Various consortia formed in an attempt to create some sort of
standards for Java technology, although some say that these consortia formed as a defense against,
well, you-know-who. Software tool vendors, such as Borland, Symantec, IBM, and Sun began to
offer commercial Java development tools. Companies were getting things done with Java version
1.1.

Sun's Java division pressed onward with the next release of Java, which Sun originally called Java
version 1.2, officially released in late 1998, and dubbed Java 2. The leap from Java 1.1 to Java 2 is
not as far as the leap from Java 1.0 to Java 1.1. However, Java 2 contains significant enhancements
over Java 1.1 in the areas of event handling and user interface construction, to name a few. The JDK
that supports Java 2 was called JDK 1.2.

Page 25

The World of Java Today.

These days, Java folk do not speak of Java language versions too much. Java folk speak of platform
versions. For example, Sun has a Java Standard platform (J2SE for Java 2 Standard Edition), which
Java savvy programmers could use to develop applets and small applications. Sun also has a Java
Enterprise Platform (J2EE for Java 2 Enterprise Edition), which Java savvy programmers could use
to develop large applications across a distributed (enterprise) computing environment. Also, Sun has
a JDK for each platform and sets of APIs that are peculiar to each platform (or just peculiar,
perhaps).

Today, the Java world is rife with acronyms, or TLAs (that's Three Letter Acronyms) like JSP, EJB,
and RMI, to name a few. If you check out http://java.sun.com/products, you'll see dozens of
acronyms— some FLA's like JNDI and JDBC, too.

Java as a programming language, apart from programming dishwashers, is five or so years old.
Considering that there exists over 1,200 books on Java and the TLA's and FLA's mentioned
previously is somewhat remarkable. A cursory search on the Internet for "Java Source Code" yields
thousands of hits. The interested computer person could subscribe to various magazines and ezines
that report on Java developments. Sun Microsystems makes available lots of Java source code. You
can participate in online chats with Java experts and authors. In short, seems this is a great time to
learn Java.

Java: The Programming Language

At the heart and soul of all this talk about platforms and the seemingly endless stream of TLAs and
FLAs is Java, the programming language. Java has several features that make it the choice of
programming languages in this heavily distributed computing environments we find are the norm
these days. What are these features, you ask? Let's look at a few.

Java: The Object-Oriented Programming Language

Chapter 7, "Class and Object Representation," describes object oriented software features in general
and the Java implementation of object oriented features in particular. Here, let's make a quick
compare and contrast of calling COBOL modules and calling code written in Java.

When coding in COBOL or some other third generation programming language, you conceptualize
your application as a set of program units often called modules. These modules interact with one
another through a set of interfaces. Remember structure charts with the hollow ended and filled
arrows? If this sounds like structured programming, you're on the money.

Structured programming stresses a separation of data from process. In theory, a piece of PL/I or
COBOL code need only know the structure of data (20-byte character,

Page 26

for example) to act on it. The semantics of the data does not come into play at the language level. For
example, a COBOL compiler and linker would not choke on the following snippet:

Calling Program Called Program 'COBEX'
01 ZIP-CODE PIC(9)9. LINKAGE SECTION.
 *Additional Code
CALL 'COBEX' USING ZIP-CODE. 01 SSN PIC(9)9.

Because both calling and called programs are passing a nine-digit number, everything's kosher. Of
course, this program will not execute properly; module COBEX is expecting a social security
number (SSN) but is getting a nine-digit zip code.

In contrast, when coding in Java, an object oriented programming language, you conceptualize your
application as a set of application units called objects. Unlike modules, an object is not separate from
data-quite the contrary. An object is a happy amalgam of data and program code that acts on that
data. The code that acts on the data defines the allowable operations on that data. In fact, the program
code is part of the object, as much a part of the object as the data.

In an application developed with an object oriented programming language, the previous scenario
with the zip code and SSN could not easily happen. You would assume that zip codes and SSNs have
different semantics; an operation done on a zip code would not be likely to be done on a SSN.

In Java, (as in all object oriented programming languages) objects come from a class. When you call
code written in Java and pass objects as arguments, the class of the argument in the calling code and
the called code must match. For example, the code shown in the following simply won't fly:

Calling Program Called Program 'JavaEX'
ZipCodeClass myZip; void JavaEX(SSNClass aSSN) {
//Additional Code
JavaEX(myZip) ;

Here, the calling routine passes an argument object of class ZipCodeClass to a routine that expects
an argument object of class SSNCLass. The previous code will not compile, much less execute.
Having argument mismatches caught at compile time relatively early in the software development
process, bodes well for those of us who make a living by writing software.

As previously mentioned, Chapter 7 has much more to say about Java's object oriented features.

Java: The Portable Programming Language

Portability, the ability of software to execute on different platforms without source code
modification, has long been a sought-after feature of many a programming language designer.
Traditionally, you bust code then pass your source to a compiler that creates machine code for a
particular platform. If you wanted to put your program on

Page 27

a different platform, you'd have to recompile your source with a compiler on the different platform,
which produces machine code for that platform. After working out the subtle and not so subtle
differences between the platforms, you just might get a working application.

The Java programmer does not suffer this fate. Java, you see, does not compile into machine code.
Java compiles into a format called bytecode. The bytecode format is the same for all operating
systems. You compile a Java program on a Macintosh, you get some bytecode; you compile the same
Java source on a Windows or OS/390 machine, you get the same bytecode. The ten-dollar phrase is
that bytecode is architecturally neutral.

How do the different operating systems understand this bytecode stuff? The answer is that the
operating system needs to have a Java virtual machine (JVM) installed to interpret the bytecode.
Sometimes the JVM is called the Java runtime or the Java interpreter. Whatever you call it, the JVM
is the operating system specific software that interprets the architecturally neutral bytecode into
executable code.

As you'll read later, IBM offers a Java compiler called the High Performance Java compiler that
produces native OS/390 code instead of bytecode. Code produced by the High Performance Java
compiler does not require a JVM for interpretation. The tradeoff is that code produced by this
compiler only runs on OS/390. Of course, IBM also has a Java compiler that produces bytecode and
requires a JVM specific to the OS/390 platform.

Another Java feature that helps ensure that Java programs are portable across platforms is that Java
does not have any platform-specific data types. Some programming languages change the size of
data types depending on the operating system. For example, the C programming language uses
integers of 16, 32, or 64 bits depending on the operating system. Java has one size for its data types-
an integer is 32 bits in size. If you need bigger numbers, you declare a different type or class.

Remember Sun's slogan, "Write Once, Run Anywhere."

Java: The "Pointer-Less" Programming Language

Java started life as a contender for controlling appliances and rapidly evolved as a language for
creating applets. Today, Java is used to create applications-both on and off the Web. The Java
language supports the familiar and some unfamiliar language constructs. The familiar include loops,
decision, case, and function constructs. The unfamiliar include error handling and language
constructs for multitasking.

One programming language feature notably absent from Java is pointers. As you know, a pointer is a
memory address, typically 4 bytes, that indicates the starting location of a data structure in memory.

The COBOL programmer typically does not use pointers much; the PL/I programmer uses pointers
now and then. Hence, you may feel that the previous dissertation on the disallowance of pointer use
may fall under the category of "No Big Deal." If so, read on to see why being pointerless is such a
big deal.

Page 28

You know the programmers who often use pointers; they can be identified by a dull haze over their
faces, a nervous twitch in one of their eyes, and a strange rash. These programmers get that way by
performing arithmetic on pointers to generate memory addresses, passing arrays of pointers as
arguments to procedures, or (gasp!) using pointers to pointers to reference data.

You'll never see a Java programmer suffer the previous ailments for the simple reason that the Java
Programmer cannot use pointers. Put differently, the Java language does not support pointer use.
You cannot declare a pointer in Java and you have no way of accessing the starting memory location
of any data structure.

By eliminating pointer use, Java programs are not fodder for a host of memory related bugs. Tasks
like dynamically allocating memory for various structures such as linked lists and trees are tedious,
error-prone, and extremely dependent on the current execution environment. As you'll read in later
chapters, Java handles memory management for you. Java detects when objects are no longer in use
and automatically frees memory for later use in your program. As you've guessed, there's a ten-dollar
phrase for this process— garbage collection.

A side effect of eliminating pointer use is that a Java program is safer than programs that use
pointers. Because a Java program cannot directly access memory, a Java program (or applet) cannot
use pointers to get outside a string or an array's memory. The pointerless feature of Java is a simple
yet effective defense against malicious hacks wanting to do you and your precious computer harm.

While on the subject of security, Java has security-conscious features other than being pointerless.
Unknown Java programs, including applets, are placed in a "sand-box" where the program can do
what it will inside this box. For example, untrusted Java applets cannot access the local file system.
Java has features that enforce security at the program level. You'll take a look at the Java security
package, java.security, in Chapter 10, "Interfaces."

Java: The MultiThreaded Language

Most mainframe programs execute in a linear fashion, with a single flow of control. Of course,
programs take branches based on inputs and various environmental conditions. However, the
program itself is normally doing one thing at any one time. Let's call programs of this sort
singlethreaded programs.

Most COBOL and PL/I programs are singlethreaded. PL/I has language support for multiple tasking
(threading) under OS/390. However, the typical mainframe program normally does not require any
sort of multiple threading mechanism. Batch jobs don't call for any sort of multithreading. Even
conversational programs requiring user interaction written to execute under IMS or CICS can get
away with single threading.

Web based programs can be quite the opposite. Imagine getting online, downloading a file, then
clicking on a link. You notice that the browser continues your file download while displaying your
newly requested page at the same time. We use the term multithreaded to describe this state of two
or more processes (downloading the file and displaying the page in this case) simultaneously.

Page 29

Common sense will tell you that a programming language that is used to develop Web applications
should make the creation of multithreaded programs somewhat easy. Java contains a class
specifically developed to ease thread use. Also, Java has the synchronize keyword, which helps the
Java programmer control when certain pieces of code should be executed.

You'll see some examples of multithreaded code in this book.

IBM's Java Efforts

Since 1995, IBM has worked, and continues to work, closely with Sun and other industry heavies in
defining and refining various Java technologies. IBM realized early in the game that Java is simply
too good to ignore. IBM supplied vital input into the development of Java technologies back in the
"old days" that helped make this technology suitable for enterprise application development. The
result of IBM's labors is a full suite of Java development programs, support channels and tools well
suited for developing enterprise class applications for OS/390 system and AS/400 systems.

Big Blue customers have a need to access years' worth of data housed on their mainframe systems
with Web technologies. IBM has developed Java related technologies with this goal in mind. IBM
has made several enhancements to make Java fit into its OS/390 mainframe environment. For
example, IBM has Java packages-you'll read more about Java packages later-that enable a
programmer to perform record based I/O, to read and write VSAM datasets and to access IMS
databases. Section II, devoted entirely to accessing data using Java and IBM technologies, has
material and sample code that does all of this.

IBM has its own Java development tool suite called Visual Age for Java, which has both a client and
a server side flavor. Other IBM Java tools include a Java compiler called the High Performance Java
Compiler that bypasses the interpretive/JVM execution by compiling Java source code into machine
code.

For the full skinny on IBM's Java efforts, you may want to check out http://ibm.java.com.

Java versus COBOL and PL/I: A Brief Look

A respectable part of Part 1 of the book compares Java to older, procedural programming languages
still in use today. Check out the following chart to see a quick look at language features and where in
the book these features are covered in detail.

Here are a few words on some of these table entries:

Application structure. At a high level, a Java application is a set of files called class files. Each
class file contains code that defines needed data and code to define objects of that class. One of
these class files has a routine, or method, called main. The Java application works by calling
code from these, and other, class files during execution. Chapter 3, "Creating Your First Java
Program," where

Page 30

Table 2.1 Language Features in Java versus Procedural Languages

LANGUAGE
FEATURE

JAVA COBOL PL/I

Application structure One or more files, one of
which has a main method

One or more files
containing source

One or more files, one of which
has a main procedure

Variable types and
typing mechanism

Primitive data types
(variables) Custom data
types (objects) Strong typing

Representative Representative, some special
types (file, complex, for
example)

Aggregate data
structures supported

Arrays Arrays, records Arrays, records

Arguments passed by Internal reference (objects)
Value(primitive types)

Reference Reference, value

Variable scope Local, class Global to module Local, global to module, global
to program

Declared variable and
object attributes

Modifiers (visibility, other) Storage alignment Storage class, storage
alignment, others

Object support? Yes No No

Pointers supported? No Yes Yes

Programmer
manipulation of
dynamic data
structures?

No. Memory management
done for programmer

No features for dynamic
data structures

Yes. Memory
Allocate/Deallocate, and so on.

Page 31

Table 2.1 Language Features in Java versus Procedural Languages (continued)

LANGUAGE
FEATURE

JAVA COBOL PL/I

Subprogram types Internal and external
methods (may return object,
primitive type or void)

External subroutine Internal and external
subroutines and functions

Exception Handling? Yes (throws, catch) No Yes (signal, on)

Multithreading
language support?

Yes No Yes

Preprocessor,
conditional
compilation?

No Some Yes

Built-in-functions? No No About 100

Page 32

you'll take a look at some simple Java programs, is where you'll read more about Java
application structure.

Variable types and typing mechanism. Java is an object oriented programming language. In
addition, Java also supports variables declared as a primitive data type. Java variables
correspond closely with variables declared in COBOL, PL/I, and other procedural
programming languages. As you'll read later, Java often treats variables differently than
objects.

 Variable typing comes in four flavors: strong, weak, none, and representative. Strong typing
means that variables must be of the same data type for use in expressions. Weak typing
means that you can mix and match variables of different types in expressions. None (no
typing) means that you don't declare variables of a type at all. Representative means that
variables are declared a type that mirrors its machine representation, such as a packed
number. Read Chapter 5, "Declaring and Defining Data," for more on how Java deals with
declaring variables.

Aggregate data structures supported. Java supports arrays of any type or object. Java does not
support record structures like you frequently use in COBOL and PL/I. However, this is not
much of a hardship because Java, with its support for objects, can easily emulate record
structures.

Arguments passed by. Programs can pass arguments to subprograms by reference or value. A
program that passes arguments by reference passes the starting address of the variable. A
program that passes arguments by value passes a copy of the variable. Several differences exist
between the two passing mechanisms. The most visible and important is that a subprogram can
change the value of an argument passed by reference (because the subprogram and program
access the argument by its memory location) and cannot change the value of an argument
passed by value (because the subprogram works with a copy of the original).

 Java uses two separate argument passing mechanisms. Java passes primitive types by value
and passes objects by using an internal reference, not an address. Chapter 7, devoted
entirely to Java's class and object representation, covers passing object references to
methods in detail.

Variable scope. The scope of a declared variable defines where in the program that variable can
be accessed. Java uses a related concept called variable and object visibility (see the following)
to address variable scope. Here, we mention that Java has support for local variables and class
variables. Let's defer any discussion of class variables to Chapter 7, okay?

 Local variables are declared within, and are only known within, a block of code. This code
block could be a method or a "do" or "if" block. Chapter 5 has more information on local
variable use.

Declared variable attributes. Some programming languages enable you to further define the
qualities of a variable by supporting various attributes. For example,

TE
AM
FL
Y

Team-Fly®

Page 33

PL/I supports a storage class attribute and COBOL and PL/I enable you to declare variables that
line up on byte, word, or doubleword boundaries.

 Java goes far beyond its distant procedural language cousins by supporting a variety of
attributes called modifiers in Java-speak. Java supports a class of modifiers called visibility
modifiers. The visibility modifier dictates where a variable or object (or method or class)
can be seen. Using visibility modifiers is a topic in and of itself, which you'll read about in
Chapter 7.

Java allows for other modifiers, which (you guessed it) you'll see in Chapter 7.

Object support. The line on the chart says it all.

Pointers supported. Ditto.

Programmer manipulation of dynamic data structures. Can you use dynamic data structures,
such as binary trees and circular linked lists, in Java? Why, certainly. Does Java force you, the
programmer, to deal with the details of allocating memory for nodes, affixing the memory to
addresses, checking if the memory allocation was successful, freeing up unused nodes of your
structure? Why, certainly not.

 Java provides classes that let you use certain dynamic data structures without the muss and
fuss of memory management. If you've ever had the pleasure of tending to those mundane
programming details listed in the preceding paragraph, you could develop that dull haze
over your face, a nervous twitch in one of your eyes, and that strange rash.

Subprogram types. The procedural terms for subprogram are subroutine and function; the object
term for subprogram is method. A subroutine is a block of code that contains its own data and
logic; a function is a subroutine that returns a value to the calling program. You can replace a
function invocation with a variable of the function's returned data type and the code "makes
sense."

 Java is able to use methods declared internally, in the same class file, or externally, in
different class files. A Java method can return pretty much anything (behave like a function)
or nothing at all (behave like a subroutine).

Exception handling. Java gives you the ability to trap various conditions and (depending on the
condition) affect repair or exit gracefully. Exceptions in Java are objects that contain (like
other objects) data and methods. As such, exceptions can be used like objects; they can be
passed as arguments to methods, for example. Chapter 12, "Exception Handling and Thread
Basics," is devoted to this exciting topic of handling exceptions in Java.

Multithreaded language support. We've covered this ground earlier in this chapter. No need to
be repetitious.

Preprocessor, conditional compilation. Java has no preprocessor or conditional compilation
because it has no need for these features. Preprocessors and conditional compilation are mostly
used to generate platform-specific code. As you

Page 34

know, Java has no need for such nonsense. Java doesn't need to physically include source code,
like the COBOL COPY or PL/I %Include, because Java identifies files by their location in the
system (this location is set by an environment variable) and the class name.

Built-in functions. A built-in function is a function that is part of the language definition. For
example, PL/I has a substr function that returns part of a string, or a length function that
returns the size of a string. Java does not support built-in functions per se, as part of the
language definition. However, Java has methods for common classes. Java has substring and
length methods that do the same thing as the PL/I functions cited previously.

In Summary.

So, what is Java? Is Java the silver bullet we data processors have been awaiting? Will Java render
the existing world of JCL job streams obsolete? Java is well accepted by major industry players.
New information about Java emerges as soon as the ink dries on existing information. One thing is
certain: Java is not going away anytime soon. So, perhaps a good answer to the previous question is
that Java is a suite of technologies that, simply put, cannot be ignored and has to be reckoned with.
Happy reckoning!

Page 35

CHAPTER 3
Creating Your First Java Program

In this chapter, you'll use some of the programs available for download from the book Web site,
www.wiley.com/compbooks/marco, to create a simple Java program on a wintel machine. (The
software required to create a program on the mainframe is a bit too complicated for a "get up and go"
exercise.) You'll make slight changes to the program and use downloaded software to execute
modified versions. This chapter serves as a good segue into the next chapter.

 Here, you'll use Sun's Java Development Kit (JDK), version 1.3. Chapter 4 describes
some of the programs included with this release of the JDK. For now, the goal is to get a
simple Java program up and running on your machine, learn a bit about Java by
dissecting this program, and compile and run a few variations. Once you get the hang of
using the JDK, you'll be ready for the rest of the chapters in this section.

Installing the JDK

Installing the Java Development Kit is fairly straightforward. Here's what you do:

 See if you have 50 MB or so to spare for the JDK installation. Truth be told, you can get away
with about 30 MB. However, you'll have the option of installing a

Page 36

lot of Java source code— the source code for the Java language itself. You don't need this source
to use the Java compiler or the runtime, but you might actually learn a thing or two by having
the source code handy!

 If you have a tough time scraping 50 MB on your hard disk, perhaps its time to get rid
of all those cheesy e-mail animations, electronic cards, and off-color pictures you haven't
looked at for a while.

 Download the latest JDK from the Sun Java Web site http://java.sun.com/j2se.

 When you download the latest JDK version from the Sun Web site, you should check to
ensure that you got the entire file. The Web site has the size of the file. After you've
downloaded the JDK, check the file's size by displaying its properties.

 Assuming the file size found on Sun's site and the file size found by investigating the file's
properties agree, just double-click the downloaded file and follow instructions. The defaults
will work fine.

If the file sizes disagree, you should attempt another download. You need a working JDK to use the
examples in this book; if your file sizes disagree, you'll encounter problems down the road.

Is the JDK Installed Properly?

Before you get into this chapter, you should ensure that you have correctly installed the JDK.
Fortunately, this check is fairly easy. All you need to do is open a Command window (a DOS
window, really) (Start Menu -> Run-Enter "Command") and type:

java -version

This command invokes the Java interpreter with an option to report the Java version installed. If you
successfully installed the JDK, you may see a message similar to:

java version "1.3.0"
java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0-C)
java HotSpot (TM) Client VM (build 1.3.0-C, mixed mode)

Or, you may see a message indicating a minor release, such as:

java version "1.2.2"
Classic VM (build JDK-1.2.2-001, native threads, symcjit)

If you leave out the dash in front of "version," you'll see:

Exception in thread "main" java.lang.NoClassDefFoundError:
version

Page 37

Without the dash, the Java interpreter thinks you want to run a previously compiled Java program
named version.java that compiled into version.class.

If you misspell "version," you'll see:

Unrecognized option: -voision
Could not create the Java virtual machine.

Just be more mindful of what you type and try again.

You don't want to see this:

Bad command or file name

If you do, you'll have to reinstall the JDK.

Compiling and Running the Program

Assuming you've successfully conquered the JDK installation challenge, it's time to enter a small
Java program into a text editor. Java programs, like those of other programming languages, are
streams of text. Any text or word processor program capable of saving your Java source as plain, old
text will be fine.

You'll be entering the old, classic standby of programming language examples: HelloWorld. Open
your word or text processor and enter the Java source in Listing 3.1.

Of course, you need to enter the Java code exactly as shown. Pay particular attention to
capitalization. Java programmers follow naming conventions that govern capitalization; you'll read
the full skinny on these conventions in Chapters 5, 6, and 7. Later in this chapter, you'll see an
example of what happens when you do not pay attention to proper capitalization.

Save the file as HelloWorld.java. You'll see that the Java compiler cares little for the name of the
source code file; the compiler, however, is really interested in the name of the class that you used.

Open a DOS window and check the directory referenced in the window to ensure that the directory is
the same as the one where HelloWorld.java resides. Once this is done, type:

javac HelloWorld.java

Listing 3.1 The classic HelloWorld example.

class HelloWorld {

 public static void main (String[]commandLineArgs) {
 System.out.println ("Hello World!") ;
 }

}

Page 38

After your hard disk spits and spurts for a second or two, you will see the DOS prompt again. The
Java compiler, javac, will not report any diagnostics if you have a successful compile. If you see any
diagnostics, you've made an error. Eventually, you'll have a successful compile. To run the program,
enter the following in the same DOS window:

java HelloWorld

Not surprisingly, you'll see:

Hello World!

No surprise here, right? Let's spend a bit of time on what's going on with the compile and run,
followed by an examination of this tremendously exciting and complicated program you've just
entered, compiled, and executed.

Figure 3.1 is a shot of a DOS window showing the execution of the Java compiler and the Java
runtime.

Note the paucity of diagnostics. Remember, the invocation of the Java compiler was without options
and the program merely spits out a text string. Let's face it— not much is going on here, right?

However, looks can be deceiving. The Java compiler and interpreter are extremely busy even when
compiling and running an extremely simple program. You'll see this in the next section.

Compiling and Running Java Programs: A Second Look

The Java compiler, javac, located your Java source file HelloWorld.java and checked out your source
for references to other Java classes. Even a program containing nothing but a method signature
would require additional Java classes for a successful compile.

Figure 3.1 Running the HelloWorld Java program.

Page 39

Anyway, the Java compiler picks up class references and makes the referenced classes available to
your program.

Listing 3.2 is a compiler listing showing javac loading the classes needed for a successful compile.
The invocation of the Java compiler is bolded. Note the use of the -verbose option to generate the list
of classes loaded during the compile (yes, the leading dash is required).

Once javac finds and loads the classes you've referenced in your source, javac compiles the source
into bytecode. The Java compiler doesn't care what the name of the source file is; you could have
saved the file as doodah.java and the code would compile successfully. However, you are advised to
pay close (really close!) attention to the capitalization because most Java tools pay close (really
close!) attention, and as a programmer, you should be truly concerned about the behavior of the
language and tools. Coming from the case-insensitive mainframe world of COBOL programming,
you are hereby warned!

Running the Java compiler sans options will produce no diagnostics when the compile is successful.
This is quite a change from the world of mainframe compilers! However, who in the big iron world
runs compilers without options? Here, we've used the -verbose option to see javac loading the
classes. In Chapter 4, you'll look at the rest of

Listing 3.2 Compiling HelloWorld.java with the -verbose option.

Javac -verbose helloworld.java

[parsed HelloWorld.java in 660 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/Object.class) in 50 ms]
[checking class HelloWorld]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/String.class) in 60 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/io/Serializable.class) in 0
ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/Comparable.class) in 0
ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/System.class) in 0 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/io/PrintStream.class) in 60
ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/io/FilterOutputStream.class)
in 0 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/io/OutputStream.class) in 50
ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/io/IOException.class) in 0 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/Exception.class) in 0 ms]
[loaded C:\JDK1.2.2\JRE\lib\rt.jar
(java/lang/Throwable.class) in 0 ms]
[wrote C:\Lou's Folder\Writings\Java for MF DPers Book Folder\Book
Chapters\Chapter 3 Your First Java Program\HelloWorld.class]
[done in 1480 ms]

Page 40

the options that you may use with the Java compiler on the Sun JDK. In practice, you'll use some
options when you compile your Java programs.

Your source and included classes come in the Java compiler; a class file goes out the Java compiler.
The class file is composed of the platform-neutral bytecode that you've heard so much about. This
class file can run on any machine that has a Java runtime installed. The class file will reside in the
same directory as the Java source unless you tell javac otherwise by using a compiler option.

When you pass this class file to the Java interpreter (or Java runtime, if you prefer), you are
executing your Java program. The Java runtime looks for all of the classes requested by your
program and loads them dynamically into your system's memory. Listing 3.3 is an abbreviated list of
the Java runtime loading classes from the Java runtime library during the execution of
HelloWorld.class.

Looks like the Java runtime is extremely busy even for a simple program! Note the bolded Hello
World! included in Listing 3.3. That's the actual output of the program intermingled with the
diagnostics.

Recall that Java is interpretive. You do not link Java programs to produce native executable code.
(However, some companies, IBM for example, offer a Java compiler that produces native OS/390
code.) After a successful compile, you're ready to load and go.

Figure 3.2 shows the process in pictures.

Figure 3.2 Compiling and running a Java program.

Page 41

Listing 3.3 Executing HelloWorld.class with the -verbose option.

Your Java source, located in HelloWorld.java, is passed to the Java compiler (the javac program).
Javac includes needed classes during the compile and produces bytecode known to your system as

java -verbose HelloWorld

[Opened C:\JDK1.2.2\JRE\lib\rt.jar in 50 ms]
[Opened C:\JDK1.2.2\JRE\lib\i18n.jar in 0 ms]
[Loaded java.lang.NoClassDefFoundError from
C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.Class from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.Object from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.Throwable from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.io.Serializable from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.String from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.Comparable from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.io.ObjectStreamClass from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.io.ObjectStreamClass$ObjectStreamClassEntry from
C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.lang.ref.SoftReference from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.lang.ref.Reference from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.io.ObjectStreamField from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.io.ObjectStreamClass$CompareClassByName from
C:\JDK1.2.2\JRE\lib\rt.jar]

(Another 100 or so classes get loaded)

[Loaded sun.net.www.URLConnection from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.net.URLConnection from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.net.UnknownContenHello World!
tHandler from C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded java.net.ContentHandler from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded sun.net.www.MessageHeader from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.io.FilePermission from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.io.Filepermission$1 from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.lang.RuntimePermission from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.lang.SecurityException from C:\JDK1.2.2
\JRE\lib\rt.jar]
[Loaded java.security.cert.Certificate from
C:\JDK1.2.2\JRE\lib\rt.jar]
[Loaded [Ljava.security.cert.Certificate;]
[Loaded HelloWorld]
[Loaded java.lang.ref.Finalizer$3 from C:\JDK1.2.2
\JRE\lib\rt.jar]

helloworld.class. This completes the compile process. To execute your program, pass the class file to
the Java runtime (the Java program). The

TE
AM
FL
Y

Team-Fly®

Page 42

Java runtime will require additional classes to successfully execute your program. These required
classes are loaded dynamically during program execution. Once all required classes are brought to
bear, your program successfully executes. Here, the program outputs the time-worn phrase, Hello
World!

Notice that you must observe case sensitivity when invoking your Java program. The class name
coded in your source must match the argument passed to the Java runtime program. Keep reading for
more details.

Watch out for Those Class Names.

Here's where the case sensitivity comes into play, big time. You want the name and the case of the
class file produced by the compiler to be the same as the name of the class in your Java source.
Figure 3.3 shows a screen shot of a compile and execute where this sagely advice is not heeded.

What a mess! The black text is what our "advice-ignorer" entered. Note that after this person entered

javac helloworld.java

DOS comes back with a prompt and no diagnostics; the compile was successful. However, when this
is entered in the DOS window:

java helloworld

Figure 3.3 Not listening to good advice.

Page 43

the Java interpreter has a thing or two to say. For now, we can concentrate on the first line of the
diagnostic:

Exception in thread "main" java.lang.NoClassDefFoundError:
helloworld (wrong name: HelloWorld)

It doesn't take a rocket scientist to deduce that the Java runtime (or Java interpreter, if you prefer)
reported an exception called NoClassDefFoundError and the class definition that was not found is
called helloworld. The Java runtime even reported the class that should be used!

The rest of the diagnostics dumped onto the DOS window show the location (line number) of several
Java classes that you didn't even realize were being used in your three-line program. Believe it or
not, after you read Section I, you'll understand what this string of diagnostics mean.

What Does a Compile Error Look Like?

Good question. Face it— you want to make compile errors; the more compile errors you make, the
more Java you're doing, right? Anyway, let's change your work of art above by omitting the closing
quote. Here is the offending line of Java source:

System.out.println("Hello World!) ;

And the ensuing compiler output:

helloworld.java:5: String not terminated at end of line.
 System.out.println("Hello World!) ;
 ^

helloworld.java:6: ')' expected.
 }
 ^

2 errors

Not too shabby, right? Looks like javac is able to hone in on the problem with good accuracy. Of
course, compilers have this nasty habit of cascading compile errors. That's why this faulty compile
shows two compile errors where, in fact, only one true error exists.

Notice that the compiler reports on the problem source lines by number. Flipping back a page or two
reveals that the Java compiler counts blank lines. Ergo, line 5 is not the fifth line of Java source; line
5 is the fifth line in the source file.

Let's Look at the HelloWorld Program

Now that you have seen what this mammoth program does, let's examine it line by line. The program
is repeated in Listing 3.4 with comments as line numbers for convenience.

Page 44

Listing 3.4 The classic HelloWorld, once more.

Note that Java can use PL/I style comments. Java supports other comment styles, which you'll read
about in Chapter 6.

Every Java program consists of a group of cooperating classes. You can create (or code, if you
prefer) several classes per dataset, but let's stick to creating one class per dataset for now. Line 1
shows the name of the class. Also, line 1 exhibits an opening block construct, better known by a
curly brace; the closing block construct is on line 7. A block defines a scope where declared entities
are known. In other words, entities declared between Java's block construct can be referenced and
changed on any line between the curly braces. In this sense, Java's block construct is somewhat
similar in function to PL/I's block constructs Begin/End and Proc/End.

Line 2 is a comment. Comments may span more than one line. As previously mentioned, Chapter 6
has the full scoop on Java comments.

A Quick Diversion into Method Headers

Line 3 is a declaration of the main method. Actually, this method is special because it is the main
method of the class. For those of you who are familiar with PL/I, think of "Proc Options(Main)."

Every Java program has a main method as previously declared. That is, you need the words public
static void main(String[] aLegalJavaVariableName) to denote this once-in-an-application main
method. The bolded part, containing the method name and the argument description, is called the
method's signature. For the main method, the italicized words are required. The word
"aLegalJavaVariableName" can be any legal variable name; in our example, we've used
commandLineArgs.

Figure 3.4 shows a closer look at the method header used here.

Going left to right, here's a few words describing the components of the above header.

Public is called a visibility modifier. In Java, you can control what classes/methods access other
classes, objects, methods, and variables. The public keyword makes the method accessible to any
class in your application. The main method must be declared public.

The static keyword denotes the existence of a class method. The object-oriented world view is that
you create objects from classes (the ten-dollar word is instantiation, or you

/* 1 */ class HelloWorld {
/* 2 */
/* 3 */ public static void main(String[]commandLineArgs) {
/* 4 */ System.out.println("Hello World!") ;
/* 5 */ }
/* 6 */
/* 7 */}

Page 45

Figure 3.4 The anatomy of a method header.

instantiate an object from a class, or an object is an instance of a class). The classes serve as a
template for similar objects. However, sometimes you need a method, but you do not want the
method to come from an instance object. The main method is such a method. You can have only one
main method and this method is not invoked from any instance of a class. In other words, only one
version of a class method exists per class.

Methods may return a variable, an object, or nothing. Think of a PL/I function with a RETURN
statement and a PROC statement listing out the returned data type. The void keyword means that the
method does not return a variable or object. If a method does return something, this is where you
would code the data type or class name corresponding to the type or class of the returned entity. The
method would also contain one or more return statements.

Methods must have a name so make sure to give them one.

Methods, like functions and subroutines, may accept arguments. Think of the LINKAGE SECTION
in COBOL, where you would define the order and type of passed arguments to subroutines. Java
requires you to code the data type or class name followed by an argument name for each argument
passed into the method. The main method requires a parameter list of an array of strings. Soon,
you'll change the HelloWorld program to accept and use parameters. Java enforces type consistency;
the data type or class name used in the statement that evokes the method (calls the method, so to
speak) must agree with the data types and classes coded in the method's signature.

You must also supply variable names for your arguments. These names are not significant beyond
the accepted Java naming conventions. They are used only in the body of the method.

This is not the full story on method headers. To keep things straightforward, a few optional keywords
are omitted. Remember that the goal of this chapter is to get a simple Java program up and running
and to describe what's going on with the Java compiler and runtime. You'll have more to read about
signatures and naming conventions in following chapters.

Page 46

Back to Our Program

Note the presence of an opening curly brace at the end of line 3. Every method requires a pair of
curly braces, open and closed, to serve as method code delimiters. Line 5 contains the closing curly
brace corresponding to the open curly brace on line 3. Everything sandwiched between the opening
and closing brace is called the body of the method. As you'll see later, you'll code pairs of curly
braces within methods for various programming language constructs.

Line 4 invokes the System.out.println method to write output to the console or the default output
stream. The System class has several objects and methods; the println method pumps output to the
default output stream. The System.out.println method does what the DISPLAY verb in COBOL and
the PUT SKIP LIST statement in PL/I do. This line is the entire body of the main method.

A quick recap: Every Java program requires at least one class and one and only one main method in
one and only one class. Curly braces delimit code blocks.

Let's Change the Program

Let's change the infamous HelloWorld program by allowing the program to accept a parameter and
write that parameter to the default output stream. Listing 3.5 shows this change.

After a successful compile, here's how you would run the program:

java HelloWorld Lou

Here's your output:

Hello Lou

What's going on here, you ask? We've passed a parameter value, Lou, to the main method on the
command line. The changed line creates an output string by concatenating the word "Hello" with the
first argument passed to the method. Java uses + as

Listing 3.5 The HelloWorld classic with a twist.

class HelloWorld {

 public static void main(String[]commandLineArgs) {
 /* Changed */
 System.out.println("Hello " + commandLineArgs[0]);
 }
}

Page 47

the string concatenation operator. Note that Java references arrays from position 0. In other words,
we say that Java uses zero-based arrays. This is in contrast to mainframe programming languages
that default to using one-based arrays.

In Summary.

You've installed a JDK on your machine. You've compiled and executed some simple Java
programs. You've read a bit about how Java loads classes dynamically during compile and execution.
You've seen some compile and execution errors. You've also seen a method signature up close, but in
brief. You've taken apart and changed a Java program. All in all, you've been pretty busy! In the next
chapter, you'll read about the JDK you've just used.

Page 48

This page intentionally left blank.

Page 49

CHAPTER 4
The Sun Java 2 Basic JDK Tools

This chapter describes the programs, or tools, included in the Sun Java Development Kit (JDK).
Some programs, like the Java compiler (javac.exe) and the Java interpreter (java.exe), you've already
seen. Some programs, like the security (keytool.exe, for example) and remote invocation programs
(rmic.exe), you'll see in later chapters of the book. Some programs, like idltojava.exe, are not
included with the Sun JDK distribution.

Sun classifies the tools as Basic Tools, Remote Method Invocation Tools, Internationalization Tools,
Security Tools, and Java IDL Tools. You'll read about the basic tools in this chapter. You'll read
more about particular tools in later chapters.

Basic JDK Tools

Truth be told, you'll probably end up using tools that pack more punch than the Sun JDK tools. The
professional Java crowd demands tools with graphical interfaces, screen builders, and modeling
capabilities; when you join the crowd, you'll be no exception. However, as a mainframe programmer,
you may be used to submitting batch compiles and not having any tools to generate documentation.
The JDK tools enable interactive compiles, debugging, and documentation generation, among other
things: a step up from running batch jobs, to be sure! Plus, these tools are free, gratis, and on the
house. Also, the Sun JDK always works with the latest release of the JDK. So, don't dismiss these
tools out of hand just yet.

Page 50

You'll use these tools in Table 4.1 to code, execute, and debug applications and applets.

Here's more information on the basic JDK tools.

Appletviewer

The appletviewer tool lets you view applets without running a browser. You specify one or more
options followed by one or more URLs. The URLs should reference a Web page that contains a
reference to the applet; if they don't, the appletviewer issues a diagnostic to that effect. Note that
appletviewer does not display the Web page. The appletviewer tool uses the APPLET, EMBED, or
OBJECT tags in the page to get parameter information and window size for display.

The syntax is:

appletviewer <options> URL1 URL2...URLn

If you forget the syntax, just enter appletviewer at the command prompt. Appletviewer will respond
as follows:

No input files specified.
usage: appletviewer [-debug] [-J<javaflag>] [-encoding <character
encoding type>] url|file ...

Table 4.2 lists the options you may pass to the appletviewer tool. All of these options are case
sensitive. If you want to see appletviewer in action, open this folder on your desktop.

Jdk1.3\demo\applets\moleculeviewer

Table 4.1 The One-Line Descriptions

aAppletviewer View applets in a browser-like window (but not a browser)

jar Combines multiple files into a Java Archive (JAR) file

extcheck Check if a Java Archive (JAR) conflicts with other JAR files

java Execute Java applications (but not applets)

javac Compile Java applications and applets

javadoc Generate Java documentation

javah Generate C header files for use in writing native code methods

javap Disassemble Java source from class files

jdb Debug Java programs and applets

Page 51

Table 4.2 Appletviewer Options

This folder contains some sample applets and was copied onto your disk when you installed the JDK.
Once this folder is open, open a DOS window. You should be in the directory corresponding to the
previous folder. If not, change the directory to match this path. Enter this command at the prompt:

appletviewer example1.html

You'll see a DOS window somewhat like the one shown in Figure 4.1.

Example1.html has a reference to the applet in the form of an <applet> tag. Listing 4.1 shows the
<applet> tag coded in Example1.html.

Notice that appletviewer has a menu. The applet menu includes options to reload the applet, to call
Start() and Stop() methods (which are special methods in applets), and to show information about the
HTML tag that references the applet.

jar

You use the jar utility to combine one or more Java class files with other files that your class files
reference (such as images and sounds) into one file called a Java Archive File. The jar tool also
compresses the files.

A common use for jar files is to package class files representing applets with other resources into one
file. An applet packaged this way can be downloaded to a browser in a single request, as opposed to
making the browser go back and forth to grab each file. Furthermore, because jar files are
compressed, they download faster than their uncompressed brethren.

Jar files contain a manifest file, which contains information about the files in the archive. The jar tool
automatically creates a manifest file during packaging. Optionally, you may use the javakey tool to
provide a digital signature, thereby ensuring that the files contained in the archive were not tampered
with since their creation.

Here's an overview of the syntax for jar:

jar <options> <manifest-file> jar-file-name <input-files>

The jar tool contains ten options that may be combined in various ways. Here are some examples of
how jar is commonly used.

-debug Start the Java debugger (jdb). Later, you'll
read more about jdb.

-J <somestring> Pass <somestring> to the Java runtime. Use
this option only if you truly know what you are
doing as these strings impact the Java runtime
environment.

- encoding <Encoding
Name

The encoding scheme of the URLs passed as
arguments to appletviewer.

TE
AM
FL
Y

Team-Fly®

Page 52

Figure 4.1 Running an applet with appletviewer.

Listing 4.1 Example applet tag.

This is perhaps the most common way to use jar:

jar cf aJarFile *.class

<applet code=XYZApp.class width=300 height=300>
 <param name=model value=models/HyaluronicAcid.xyz>
 alt="Your browser understands the <APPLET> tag but isn't
 running the applet, for some reason."
 Your browser is completely ignoring the <APPLET> tag!
</applet>

Page 53

This command creates a file called aJarFile.jar from all files in the current directory with the
extension "class." The c option directs jar to create a new archive; the f option tells jar the name of
the new archive.

jar creates a manifest file named META-INF/MANIFEST.MF and includes this file as the first in the
archive.

If you want to see what files are contained in your archive, enter this variation of the jar command:

jar tf aJarFile.jar

The t option tells jar to list the file names in the archive; the f option tells jar the name of the archive
to operate on.

If you want to add a file to an existing archive, code:

jar uf aJarFile.jar another.class

The u option tells jar to update a jar file; the f option names the jar file to be updated. If you want to
extract the files that make up a jar, code:

jar xf aJarFile.jar

Because jar uses the ZIP compression format, you may use any tool that operates on ZIP files to
extract files from a jar archive.

Entering jar without parameters yields the helpful information in Listing 4.2.

One final point: The options you use with jar are case sensitive. Notice that –m and –M are different
options.

extcheck

The extcheck utility checks extension jar files for conflicts with currently installed jar files.
Extension jar files are stored in your jre\lib\ext directory. The extcheck utility is a good way to
ensure that you don't replace a version of some needed jar file with an older version (yes, it's been
known to happen!).

Extcheck uses the information in the jar's manifest file for the compare. Extcheck compares title and
version information found in the manifest against the manifest files for all jars found in the extension
directory. If extcheck finds any earlier (more recent) versions of the jar, it issues a nonzero return
code; if not, extcheck returns zero.

Here's the syntax (this is what you would see if you entered extcheck without parameters):

extcheck <-verbose> aJarFile.jar

The sole option used with extcheck is the verbose option. Verbose lists the jar files found in the
extension directory checked against the jar file argument to extcheck. Verbose will also report on the
extension jars found conflicting with the jar file argument to extcheck.

Page 54

Listing 4.2 jar command help.

java

You've already used java, the Java runtime, or Java interpreter. You use java to execute, or launch,
applications from a command line. Listing 4.3 is what you'd see by entering java at the command
line.

You can execute an application by specifying the name of a class file that contains a main() method
(JAVA.EXE [-options] class [args . . .]) or by specifying a jar file containing a
class with a main() method (JAVA.EXE -jar [-options] jarfile [args . . .]).
So far, you've used the first syntax form for invoking the Java interpreter.

You code option flags between the java command and the class name or after the -jar flag. The args
coded after the class name or the jar file name are strings passed into the main() method. (Remember
main(String[] commandLineArgs) from the previous chapter?) These options are case sensitive. Let's
take a look at these options.

The -cp or -classpath options enable you to specify a search path for user written classes (as
opposed to system classes) or other files required by your application. Recall from

Usage: jar {ctxu} [vfm0M] [jar-file] [manifest-file] [-C dir] files
. . .
Options:
 -c create new archive
 -t list table of contents for archive
 -x extract named (or all) files from archive
 -u update existing archive
 -v generate verbose output on standard output
 -f specify archive file name
 -m include manifest information from specified manifest file
 -o store only; use no ZIP compression
 -M Do not create a manifest file for the entries
 -C change to the specified directory and include the following
 file
If any file is a directory then it is processed recursively.
The manifest file name and the archive file name needs to be specified
in the same order the 'm' and 'f' flags are specified.

Example 1: to archive two class files into an archive called
classes.jar:
 jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest' and archive all
the files in the foo/ directory into 'classes.jar':
 jar cvfm classes.jar mymanifest -C foo/ .

Page 55

Listing 4.3 java command help.

the previous chapter that the Java interpreter loads classes dynamically as required for the proper
execution of your application. Java.exe knows where to fetch these system classes. If your
application requires classes that you or someone else has written, you may need to tell java.exe
where to find the classes. If you put these classes in a directory that is not on the search path, you
need to tell java.exe, the directory containing these classes with the -cp option. For example, to tell
java.exe that you want the runtime to look in myclassdir to find user written classes, you'd invoke the
interpreter as follows:

java -cp c:\somedir\myclassdir MyApp

The -D option enables you to set a system property. In the wintel environment, you set system
properties by assigning an environment variable to some value. The example given in Sun's
documentation is how to set the JAVA_COMPILER option to either disable a compiler (use the
interpreter) or use a different compiler. Check it out:

java -Djava.compiler=adifferentcompiler MyApp

Notice the absence of a space between -D and the system property; this is no accident or typo.

The -verbose option displays information on loaded classes and other events of interest to a Java
environment. You can tell what information you want by coding a suboption. Here are some
examples.

java -verbose:class MyApp or
java -verbose MyApp

Usage: JAVA.EXE [-options] class [args . . .]
 (to execute a class)
 or JAVA.EXE -jar [-options] jarfile [args . . .]
 (to execute a jar file)

where options include:
 -cp -classpath <directories and zip/jar files separated by ;>
 set search path for application classes and resources
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version
 -? -help print this help message
 -X print help on non-standard options

Page 56

The Java runtime will list information about the classes being dynamically loaded. You may recall
from the previous chapter that you saw a partial listing of the -verbose option replete with loaded
class information.

java -verbose:gc MyApp

The Java runtime will report on garbage collection events. You may recall reading a bit about Java's
ability to collect unused memory blocks using a process charmingly named garbage collection. If
you want to know when your application is taking out the trash, use this option.

java -verbose:jni MyApp

jni stands for Java Native Interface. The jni enables you to create methods in programming
languages other than Java (C is the most commonly used jni language). The idea is that for some
applications, performance may be key. A Java application, which is interpretive, cannot hope to
match the speed of a compiled language (although the gap narrows with each new release of the
JDK). Use this option if you want to know when your application is making a call to a native
language program.

The -version option tells you what version of the JDK you're using. You may recall using this option
to verify that your JDK install was correct.

The -? or -help options display the help information shown in Listing 4.3.

The -X option displays help information on the nonstandard Java runtime options. You can interpret
nonstandard as "not as much used as standard" for the time being. Listing 4.4 shows what you'd see
if you entered this command.

Listing 4.4 Help screen for java -X (nonstandard options).

java -X
 -
Xbootclasspath:<directories and zip/jar files separated by ;>
 set search path for bootstrap classes and
 resources
 -Xnoclassgc disable class garbage collection
 -Xms<size> set initial Java heap size
 -Xmx<size> set maximum Java heap size
 -Xrs reduce the use of OS signals
 -
Xcheck:jni perform additional checks for JNI functions
 -Xrunhprof[:help]|[:<option>=<value>, . . .]
 perform heap, cpu, or monitor profiling
 -Xdebug enable remote debugging
 -
Xfuture enable strictest checks, anticipating future
 default
The -x options are non-
standard and subject to change without notice.

Page 57

Here are some notes on these rarely used options.

The -Xbootclasspath option is similar to the -cp option except that -Xbootclasspath enables you to
set the search path for system classes.

If a class is no longer being used, the Java Virtual Machine (JVM) will collect its memory. If your
program creates an instance of this dropped class, Java resurrects the class. This constant
purging/resurrecting could take a toll on performance. If you want to disable garbage collection for
classes, perhaps to try to improve application performance, you can turn off class garbage collection
with the -Xnoclassgc option.

-Xrs reduces signals sent to your application from the host operating system. You may want to tone
down operating system signals during application development to simplify matters.

-Xdebug enables remote debugging— a handy feature where you start your application while in the
debugger and issue debugging commands— even if on a different machine! You'll find further details
in the section that describes the Java debugger (jdb).

The -Xrunhprof option enables you to peek at application profile information. Like the -X option, the
-Xrunhprof option provides yet another list of suboptions. You'll see the table of options illustrated
in Listing 4.5 when you enter:

java -Xrunhprof:help

For example, if you want a handle on where in your program the CPU is blowing cycles, you can
receive a description of CPU usage by invoking the Java runtime with options like the example
shown at the bottom of Listing 4.5.

Listing 4.5 java hprof values.

Hprof usage: -Xrunhprof[:help]|[<option>=<value>, . . .]
Option Name and Value Description Default
--------------------- ----------- -------

heap=dump|sites|all
cpu=samples|times|old
monitor=y|n
format=a|b
file=<file>

net=<host>:<port>
depth=<size>
cutoff=<value>
lineno=y|n
thread=y|n
doe=y|n

heap profiling
CPU usage
monitor contention
ascii or binary output
write data to file

send data over a socket
stack trace depth
output cutoff point
line number in traces?
thread in traces?
dump on exit?

all
off
n
a
java.hprof
(.txt for
ascii)
write to file
4
0.0001
y
n
y

Example: java -
Xrunhprof:cpu=samples,file=log.txt,depth=3 FooClass

Page 58

As you can see, the Java runtime certainly has a lot of options! This chapter is not the place to
explore these myriad options in detail. Indeed, you should have a bit of battle-hardened Java
programming experience under your belt before delving into some of these options. The good news
is that most visual environments provide easy ways to turn on and view the results of these options.

One last point: the Sun JDK contains the program javaw, which is identical to java except that it does
not open a command window. If you want to run your Java application without seeing a command
window, use javaw. All the options for the java command work with javaw. For example, this
command does not produce any visible output.

javaw -Xrunhprof:help

Of course, if you used java instead of javaw, you'd see Listing 4.5.

javac

javac is the Java compiler provided by Sun Microsystems. As you might imagine, the compiler has
many options. Listing 4.6 shows what you'd see if you entered javac by itself on the command line.

Listing 4.6 javac help listing.

Usage: javac <options> <source files>
where <options> includes:
 -g
 -g:none
 -g:{lines,vars,source}
 -O

 -nowarn
 -verbose

 -deprecation

 -classpath <path>
 -sourcepath <path>
 -bootclasspath <path>
 -extdirs <dirs>
 -d <directory>
 -encoding <encoding>

 -target <release>

Generate all debugging info
Generate no debugging info
Generate only some debugging info
Optimize; may hinder debugging or enlarge
class files
Generate no warnings
Output messages about what the compiler is
doing
Output source locations where deprecated APIs
are used
Specify where to find user class files
Specify where to find input source files
Override location of bootstrap class files
Override location of installed extensions
Specify where to place generated class files
Specify character encoding used by source
files
Generate class files for specific VM version

Page 59

The javac program enables you to compile more than one source file per invocation. For example,
you could list your Java source files one after another on the command line as follows:

javac JavaSrc1.java JavaSrc2.java JavaSrc3.java

This command would compile three Java source files and create three class files in the same
directory as the source files.

If you want to compile a larger number of files, you could put the Java source code file names into a
text file and direct the Java compiler to compile all the files listed in this text file. For instance,
assume the file srcs.txt contained this information:

JavaSrc1.java
JavaSrc2.java
JavaSrc3.java
JavaSrc4.java
JavaSrc5.java
JavaSrc6.java
DiffSrc1.java
DiffSrc2.java
DiffSrc3.java

You could tell javac to compile all these files as follows:

javac @srcs.txt

It's the @ sign that makes the difference.

The -g options tell the java compiler to place debugging information in your bytecode. For those of
you who are familiar with PL/I, this option is similar to the PL/I's TEST(ALL,SYM) compiler option.
If you run the debugger (jdb) without first fetching debugging information with the -g option, all
you'll have access to in your program is the line number and the source code. The -g option enables
you to access local variable information. You can gather specific debugging information by coding
the lines, vars, or source keywords to add line number, local variable, or source code debugging
information, respectively. To create a lean bytecode dataset, you can turn off debugging information
with the -g:none option.

The -O option performs certain code optimizations that improve the performance of your code at the
possible expense of code size. For example, the -O option may expand small methods inside your
class file (inline methods), which results in faster execution but a larger file size. One side effect of
performing code optimizations is that the code is not suited to debugging because the optimized code
may contain inline methods that you didn't code. In essence, using the -O option may result in a
different program (but an identically functioning one— don't be alarmed!).

The -nowarn option suppresses warnings from the compiler. If you're supremely confident of your
Java programming abilities or are sick of getting certain diagnostics, this compiler option is for you.
Think of setting a COBOL compiler to suppress informational messages (return code = zero or four)
and you will understand the idea of the -nowarn option.

Page 60

Use the -verbose option to receive information on each class file loaded into your application. You've
seen the -verbose option in action in the previous chapter, remember?

The -deprecation option lets you know where and how your program is using deprecated methods or
classes. In brief, a deprecated method or class is one that was used in past releases of the JDK, but its
function has been taken over by one or more recent methods. Often, your application will still work
with some deprecated methods or classes. Having said that, using deprecated methods or classes is
the mark of the amateur. Considering that the Java compiler can tell you where and how these
deprecated methods and classes are used, you would be remiss in not trying to correct the situation.

So, should you code - deprecation for every compile? Well, not really. You see, the default behavior
of javac is to tell you the source files that use deprecated methods or classes. Once you learn that
your application uses such methods and classes, you can use the -deprecated option to hone in on the
exact usage and take corrective action.

The -classpath option for javac serves the same function as the -cp or -classpath option for java, the
runtime. In case you forgot, the -classpath option enables you to specify a search path for user
written class files. If you don't set the CLASSPATH environment variable or you don't use the -
classpath option, javac will expect any of your classes needed for this compile to reside in the current
directory.

Guess what the -sourcepath option does? You need not have three Ph.D.'s to figure out that this
option enables you to specify a search path for source files. If you do not code the -sourcepath
option, javac expects to find your source in the user class file search path. In other words, using the -
classpath option without using the -sourcepath option tells javac to look on this path for user class
files and Java source files.

Just when you thought you've read the entire story on search paths, along comes yet another path-
setting option: the -bootclasspath option. This option enables you to set a search path for Java system
classes.

One important point regarding all these path-setting options is that these options require a semicolon-
delimited list of directories, jar files, or ZIP files.

The -extdirs option is yet another search path setting option. This option lets you direct the Java
compiler to a directory (directories) containing class files that represent system extensions. In
Chapter 1, you read a bit about the extcheck utility. These extensions are what you would use
extcheck with.

The -target option lets you create bytecode that is compatible or incompatible with different versions
of the JVM. The default behavior of javac, version 1.2, is to generate bytecode that is compatible
with version 1.1. By coding target 1.2, you can direct javac to generate bytecode that is incompatible
with version 1.1.

The last three options discussed enable you to target Java bytecode to a different JVM. The -target
option is not enough to do this. If you code the -target option without coding the -bootclassbath and -
extdirs options, you may get a clean compile, but fail during execution when your bytecode loads a
system class file or uses a system extension from the other (default) JVM.

The -d option lets you place the compiler output, or class files, into a specified directory. By default,
javac places the output in the same directory as the source file. The accepted wisdom in the Java
world is that you should have your class files in different directories than your source. So, get used to

coding this compiler option!

TE
AM
FL
Y

Team-Fly®

Page 61

Another good reason to code -d for your java compiles is that the -d option causes the directory
structure of your class files to reflect your package structure. You haven't read much about packages
yet. For now, think of a package as a set of related classes and other Java software constructs.
Assume you've created a package com.myPackage.MyClass and you code the javac command as
follows:

javac -d c:\myclassfiles MyClass.java

javac names the resulting class file in c:\myclassfiles\com\mypackage\myclass.class. The interesting
and valuable feature is that javac creates all required subdirectories. Put another way, using the -d
option is a smart, easy way to maintain the structure of your classes.

The -encoding option enables you to specify an encoding scheme. The default is whatever encoding
scheme is used by your system. Unless your application has international concerns, you could
probably get away with not coding this option for a long, long time.

Do you remember the section on the java runtime with the nonstandard options? Well, the Java
compiler has a few of those as well. Listing 4.7 illustrates what you see when you enter this code at
the command line:

javac -X

A few words about these options are in order.

When you code -Xdepend, you are telling Javac to search for and recompile Java source used in your
application. If you need to recompile java source because some source kept in a different file has
changed, the -Xdepend option will find and recompile the source.

Usually, javac sends error messages to whatever file or resource is mapped to System.err. Using -
Xstdout directs javac error messages to System.out, the default output stream. Many times,
System.out and System.err refer to the same stream anyway.

-Xverbosepath provides information on where javac looks for class files and other source files. When
you use this option, javac responds by listing the source path and the classpath.

Listing 4.7 Nonstandard javac compiler options.

 -
Xdepend Recursively search for more recent source files to
 recompile
 -Xstdout Send messages to System.out
 -Xverbosepath Describe how paths and standard extensions were
 searched
 -J<runtime flag> Pass argument to the java interpreter

The -X and -J options are non-
standard and subject to change without
notice.

Page 62

Finally, the -J option enables you to pass an option to the java runtime that gets invoked when you
run the Java compiler. The option you pass would be one of the options described in the section
"Java" above. The appletviewer tool also uses this option.

You can see that the java compiler has numerous options. Fortunately, you can get a lot done by
using only a few, if any, of these options.

Javadoc

The javadoc tool generates documentation (yes, documentation!) in HTML format for one or more
Java source files. Javadoc can accept package names, Java source code files, or both. Javadoc
actually invokes part of the Java compiler to parse your Java method declarations. Because javadoc
uses method headers to generate documentation, it does not even require that the methods be
implemented!

Javadoc will search for all referenced and loaded classes, including system classes. Therefore,
javadoc needs to locate all these classes. As you might imagine, you can code options to direct
javadoc to the directories holding the required classes and packages.

Listing 4.8 is an example of a piece of Java code passed to the javadoc tool and some of what
javadoc generated.

Here's the command.

javadoc queryBean

Figure 4.2 shows some of the HTML output.

Now, this is pretty good! javadoc pulls out all of those objects, provides a cross reference via
hyperlinks to additional descriptions of the objects (fields), puts the descriptive portion in a frame,
and slaps an index atop the page for depreciated methods, tree view, and an alphabetical index. This
HTML page is one of nine (!) pages, including a Cascading StyleSheet (CSS) used to format the
HTML pages.

Javadoc is a robust application with numerous options. Space prevents us from giving it a full
treatment. To get an idea of the numerous javadoc options available, Listing 4.9 shows what you'd
see if you entered this code at the command line:

javadoc -help

Although you can generate documentation with javadoc without using any options, you'll likely use
several. You may use the -sourcepath option to tell javadoc where loaded classes reside. You'll also
likely include an author tag with the -author option. Perhaps you'll want your own window title to
appear in your HTML documents by using the -windowtitle option. Maybe you want a separate
HTML document for each alphabetical entry (one HTML page for A, one for D, and so on) by using
the -splitindex option.

You can use special comments with javadoc called doc comments to include documentation for
software objects. A doc comment starts with /** and ends with */. Now, the Java compiler treats doc
comments like any other comment. However, javadoc picks up on doc comments for additional
processing.

Page 63

Listing 4.8 Some Java source.

You may use tags to tell javadoc to include certain information, such as the author and version, and
to establish hyperlinks (think "See Also <someURL>"). For example, this doc comment contains a
few tags.

/** This class creates Low-Pass filters that
* smooth images.
*
* @author <a href="http://loushomepage.html"
* Lou Marco
*
* @see <a href="http://imageenhancementinfo.html"
* Image Enhancement Information Site

import java.sql.*;
import java.io.*;

public class queryBean extends sqlBean
 {
 String myCustQuery = "select * from Customers where CustomerID = ";

 ResultSet myResultSet = null;
 public queryBean() {super();}

 public boolean getCustomerInfo{String custID} throws Exception
 {
 String myQuery = myCustQuery + "'" + custID + "'";

 Statement stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(myQuery);
 return (myResultSet != null);
 }

 public boolean getNextCustInfo() throws Exception
 {
 return myResultSet.next();
 }

 public String getColumn(String inCol) throws Exception
 {
 return myResultSet.getString(inCol);
 }
 }
}

Page 64

*
* @see "The Big Image Book"
*/

Note that the comment starts with two asterisks, but ends with one— a doc comment. The @author
tag adds an author entry to the HTML page. Note the use of HTML coding in the doc comment.

The @see tag displays the text "See Also" in big, bold type. When you use the @see tag, you
probably want a hyperlink, so code one. The second @see tag also displays "See Also" in big, bold
type. This tag does not have an accompanying hyperlink; the text in quotes is displayed under "See
Also."

Today, javadoc supports 13 tags. Tomorrow, javadoc will likely support more. javadoc uses a default
format for its generated HTML pages like the one in Figure 4.2 called the standard doclet. Looking
at Listing 4.9, you see that a good chunk of javadoc options are available when you use the standard
doclet. You can create your own

Figure 4.2 The index page of javadoc HTML documentation.

Page 65

usage: javadoc [options] [packagenames] [sourcefiles] [classnames]
[@files]
-overview <file> Read overview documentation from HTML file
-public Show only public classes and members
-protected Show protected/public classes and members

(default)
-package Show package/protected/public classes and

members
-private Show all classes and members
-help Display command line options
-doclet <class> Generate output via alternate doclet
-docletpath <path> Specify where to find doclet class files
-1.1 Generate output using JDK 1.1 emulating

doclet
-sourcepath <pathlist> Specify where to find source files
-classpath <pathlist> Specify where to find user class files
-
bootclasspath <pathlist>

Override location of class files loaded
by the bootstrap class loader

-extdirs <dirlist> Override location of installed extensions
-verbose Output messages about what Javadoc is doing
-locale <name> Locale to be used, e.g. en_US or en_US_WIN
-encoding <name> Source file encoding name
-J<flag> Pass <flag> directly to the runtime system

Provided by Standard doclet:
-d <directory> Destination directory for output files
-use Create class and package usage pages
-version Include @version paragraphs
-author Include @author paragraphs
-splitindex Split index into one file per letter
-windowtitle <text> Browser window title for the documentation
-doctitle <html-code> Include title for the package index (first)

page
-header <html-code> Include header text for each page
-footer <html-code> Include footer text for each page
-bottom <html-code> Include bottom text for each page
-link <url> Create links to javadoc output at <url>
-
linkoffline <url> <url2>

Link to docs at <url> using package list at
<url2>

-
group <name> <p1>:<p2>..
overview

Group specified packages together in

 page
-nodeprecated Do not include @deprecated information
-nodeprecatedlist Do not generate deprecated list
-notree Do not generate class hierarchy
-noindex Do not generate index
-nohelp Do not generate help link

Page 66

Listing 4.9 The plentiful options for the javadoc tool.

doclets by using Java's doclet Application Program Interface (API). Your doclets don't have to
generate HTML; XML, RTF, or some other document format is fair game! Also, your custom
doclets can use custom tags.

Here, we've only scratched the surface. Javadoc is constantly improving with each new version of the
JDK. You can find out what's happening with javadoc by checking out Sun's javadoc's page at
http://java.sun.com/j2se/1.3/docs/javadoc.

javah.

The javah tool generates C header and source files that you use to create native methods programmed
in C. These native methods written in C can communicate with your Java classes. Even though you
may never code any native methods or write C code, a few words about javah are in order.

Javah generates header files (think of header files as a COBOL COPY or PL/I %Include files)
containing C structs that correspond to the instance variables of the class or classes supplied as
parameters (think of structs as a COBOL record variables with multiple levels). These header files
are placed in the same directory from which you ran javah.

Listing 4.10 shows the list of options you can use with javah. As always, these parameters are case
sensitive.

Notice the path setting options commonly used by the JDK tools.

javap

You use javap to get Java source from a class file. Now, you'll not get the code exactly as entered.
You'll not get comments, but because so few programmers enter comments, you've lost little, right?

Here's a sample of what javap gives you out of the box. Refer to Listing 4.7 in our discussion of
javadoc of the Java class Vidtype. Enter this command while at the same directory as the class file.

javap Vidtype

Figure 4.3 shows a screen shot of what javap returns.

-nonavbar Do not generate navigation bar
-serialwarn Generate warning about @serial tag
-charset <charset> Charset for cross-platform viewing of

generated documentation.

Page 67

Listing 4.10 javah options.

Figure 4.3 javap default output.

You may want to compare the Java source with what javap returns. Notice the absence of comments
and values used for initialization.

You use javap as a quick way to see what parameters a method requires (called the signature of the
method) or what data type/class a method returns (if any). Sometimes,

Usage: javah [options] <classes>

where [options] include:

 -help Print this help message
 -classpath <path> Path from which to load classes
 -

bootclasspath <path>
Path from which to load bootstrap

classes
 -d <dir> Output directory
 -o <file> Output file (only one of -d or -

o may be
used

 -jni Generate JNI-
style header file (default)

 -old Generate old JDK1.0-style header file
 -stubs Generate a stubs file
 -version Print version information
 -verbose Enable verbose output
 -force Always write output files

<classes> are specified with their fully qualified names (for
instance, java.lang.Object).

Page 68

entering javap <classname> is quicker than looking up the method signature on paper or by other
means. Having said that, most Java-integrated development environments have method signature
information a mouse click away.

Now, take a look at the Java debugger (jdb).

jdb

Jdb is a line-oriented debugger. If you've used graphical debuggers like SmartTest for COBOL or
PLITEST for PL/I, you'll be disappointed with jdb. Having said that, jdb is a useful tool for finding
errors in your Java programs.

The basic mode of operation is to invoke jdb for an application or applet by substituting jdb for java.
In other words, instead of invoking the Java runtime with java.exe, invoke the debugger with jdb.exe.
To debug applets, you need the -debug option of the appletviewer tool (remember?). Also, you
should use the -g option when you compile to include all debugging information.

You know the drill, right? Listing 4.11 shows what you'll see when you enter:

Important! Note the last line of the above listing. When you are in the debugger, you can get a quick
list of all jdb commands. Later, we'll do just that.

Listing 4.11 jdb options.

jdb -help
Usage: jdb <options> <class> <arguments>

where options include:
 -help print out this message and exit
 -version print out the build version and exit
 -host <hostname> host machine of interpreter to attach to
 -password <psswd> password of interpreter to attach to (from -
 debug)
 -dbgtrace print info for debugging jdb

options forwarded to debuggee process:
 -D<name>=<value> set a system property
 -classpath <directories separated by ";">
 list directories in which to look for classes
 -X<option> non-standard debuggee VM option

<class> is the name of the class to begin debugging
<arguments> are the arguments passed to the main
() method of <class>

For command help type 'help' at jdb prompt

Page 69

You probably won't be doing much remote debugging, but a word or two about the -host and -
password options is appropriate. You use these options when you are debugging an already started
java interpretive session from afar. Whoever started the java interpretive session must use the -
Xdebug option to generate a password. You would use this password to gain access to this session.

Note the presence of the all too familiar -classpath option. The -X option enables you to enter the
same nonstandard options allowable for the java command. This makes sense because the jdb
command replaces the java command; hence, the jdb command takes some of the same options as
the java command.

Without further ado, Listing 4.12 lists the jdb debugging commands.

To view this list, you must run jdb, then enter help at the jdb prompt (>).

Using jdb

Let's use jdb to debug a small program. We'll use a variation of the bubble sort implementation
shown in Chapter 1 with a modification to cause an error. Listing 4.13 shows the source.

And here's the result of the execution.

 3
 1
 2
 6
 9
10

Looks like we have a problem!

Let's run the program under jdb. First, compile the program with the -g option to include all
debugging information.

javac -g BubSortMod.java

What follows is a sample session showing some of the debugging commands with comments in
italics on what the debugging commands do. Human entries are in boldface; to the left of the
boldface is the jdb prompt. You would not see these comments during debugging. Here's how you
crank up the debugger.

jdb BubSortMod

Initializing jdb...
0xaa:class(BubSortMod)

Stop the program at the sort method.

> stop in BubSortMod.sort
Breakpoint set in BubSortMod.sort

Page 70

> help
** command list **
threads [threadgroup] -- list threads
thread <thread id> -- set default thread
suspend [thread id(s)] -- suspend threads (default: all)
resume [thread id(s)] -- resume threads (default: all)
where [thread id] | all -- dump a thread's stack
wherei [thread id] | all -- dump a thread's stack, with pc info
threadgroups -- list threadgroups
threadgroup <name> -- set current threadgroup

print <id> [id(s)] -- print object or field
dump <id> [id(s)] -- print all object information

locals
stack

-- print all local variables in current

 frame

classes -- list currently known classes
methods <class id> -- list a class's methods

stop in <class id>.<method>[(argument_type, . . .)] -- set a
breakpoint in
 a method

stop at <class id>:<line> -- set a breakpoint at a line
up [n frames] -- move up a thread's stack
down [n frames] -- move down a thread's stack
clear <class id>.<method>[(argument_type, . . .)] -- clear a
breakpoint
 in a method
clear <class id>:<line> -- clear a breakpoint at a line
step -- execute current line
step up --

 execute until the current method returns
 to its caller

stepi -- execute current instruction
next -- step one line (step OVER calls)
cont -- continue execution from breakpoint

catch <class id> -- break for the specified exception
ignore <class id> -- ignore when the specified exception

list [line number|method] -- print source code
use [source file path] -- display or change the source path

memory -- report memory usage

TE
AM
FL
Y

Team-Fly®

Page 71

Listing 4.12 jdb debugging commands.

Listing 4.13 A faulty bubble sort implementation.

gc -- free unused objects

load classname -- load Java class to be debugged
run <class> [args] --

 start execution of a loaded Java class
!! -- repeat last command
help (or ?) -- list commands
exit (or quit) -- exit debugger
>

class BubSortMod {

public static void main(String args[]) {
 int anarray[] = {3,10,6,1,2,9} ;

 sort(anarray) ;
 for (int idx = 0; idx < anarray.length; idx++)
 System.out.println(anarray[idx]) ;

 }

 static void sort(int a[]) {

 for (int idx1 = a.length; --idx1>=0;) {
 boolean swapped = false;
 for (int idx2 = 1; idx2<idx1; idx2++) {
 if (a[idx2] > a[idx2+1]) {
 int T = a[idx2];
 a[idx2] = a[idx2+1];
 a[idx+1] = T;
 swapped = true;
 }

 }
 if (!swapped) return ;

 }
 }

}

Page 72

Continue execution until the program hits the first breakpoint.

> run
run BubSortMod
running ...
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:13)

List out local variables and method parameters.

main[1] locals
Method arguments:
Local variables:
 this = BubSortMod@49bcdc7d
 a = { 3, 10, 6, ... }

Note that jdb does not list out the entire array. Also note that the prompt indicates the program
location. Determine the array's length.

main[1] print a.length
a.length = 6

List some source code surrounding the line where jdb stopped the program.

main[1] list
9 }
10
11 static void sort(int a[]) {
12
13 => for (int idx1 = a.length; --idx1>=0;) {
14 boolean swapped = false;
15 for (int idx2 = 1; idx2<idx1; idx2++) {
16 if (a[idx2] > a[idx2+1]) {
17 int T = a[idx2];

Run the program to the next breakpoint.

main[1] run
run BubSortMod
running ...
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:13)

Execute the program one statement at a time.

main[1] step
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:14)

Page 73

Take a look to see where we are in the program.

main[1] list
10
11 static void sort(int a[]) {
12
13 for (int idx1 = a.length; --idx1>=0;) {
14 => boolean swapped = false;
15 for (int idx2 = 1; idx2<idx1; idx2++) {
16 if (a[idx2] > a[idx2+1]) {
17 int T = a[idx2];
18 a[idx2] = a[idx2+1];
main[1] step
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:15)
main[1] step
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:16)

List the value of a variable used here.

main[1] print a[1]
a[1] = 10
main[1] list
12
13 for (int idx1 = a.length; --idx1>=0;) {
14 boolean swapped = false;
15 for (int idx2 = 1; idx2<idx1; idx2++) {
16 => if (a[idx2] > a[idx2+1]) {
17 int T = a[idx2];
18 a[idx2] = a[idx2+1];
19 a[idx2+1] = T;
20 swapped = true;
main[1] step
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:17)
main[1] run
run BubSortMod
running ...
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:13)

Check out the calling chain, or the stack trace.

main[1] where 1
 [1] BubSortMod.sort (BubSortMod:13)
 [2] BubSortMod.main (BubSortMod: 6)
main[1] print idx1
idx1 = 5

Page 74

Execute until the program gets to the statement immediately after the method invocation.

main[1] step up
main[1]
Breakpoint hit: BubSortMod.main (BubSortMod:7)
main[1] list
3 public static void main(String args[]) {
4 int anarray[] = {3,10,6,1,2,9) ;
5
6 sort(anarray) ;
7 => for (int idx = 0; idx < anarray.length; idx++)
8 System.out.println(anarray[idx]) ;
9 }
10
11 static void sort(int a[]) {

List the array to be sorted-are we close?

main[1] print anarray
anarray = { 3, 1, 2, ... }
List the last array element
main[1] print anarray[5]
anarray[5] = 10

Note that jdb is smart enough to report on out of bounds references.

main[1] print anarray[6]
6 is out of bounds for { 3, 1, 2, ... }

Continue execution and stop at the statement immediately following the method invocation.

main[1] run
run BubSortMod
running ...
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:13)
main[1] step up
main[1]
Breakpoint hit: BubSortMod.main (BubSortMod:7)
main[1] print anarray
anarray = { 3, 1, 2, ... }

List out the array elements not shown by the above print command.

main[1] print anarray[3] anarray[4] anarray[5]
anarray[3] = 6
anarray[4] = 9
anarray[5] = 10

Page 75

Looks like the first element of the array is not "moving." Is the sort method referencing the first array
element?

main[1] run
run BubSortMod
running ...
main[1]
Breakpoint hit: BubSortMod.sort (BubSortMod:13)
main[1] list
9 }
10
11 static void sort(int a[]) {
12
13 => for (int idx1 = a.length; --idx1>=0;) {
14 boolean swapped = false;
15 for (int idx2 = 1; idx2<idx1; idx2++) {
16 if (a[idx2] > a[idx2+1]) {
17 int T = a[idx2];

Check out line 15. Shouldn't the index variable idx2 start at zero? Clear out breakpoints and
complete execution.

main[1] clear BubSortMod.sort
Breakpoint cleared at BubSortMod.sort
main[1] run
run BubSortMod
running ...
main[1] 3
1
2
6
9
10

Current thread "main" died. Execution continuing . . .
>
BubSortMod exited

Changing this program at line 15 to:

for (int idx2 = 0; idx2<idx1; idx2++)

corrects the problem.

Page 76

In Summary

Your quick tour of Sun's basic JDK tools is over. Hope you enjoyed the show. Part of the reason Java
has, is, and will enjoy wide acceptance and success in the computing community is the availability of
these and other tools. Although some may gripe about the nonvisual nature of these tools, few can
argue that they do a pretty good job for free tools. These days, if you can get something that works
for free, what's there to complain about?

Yes, when you get into the real world of Java development, you'll be using a visual tool suite (if not,
go work for another company!). Another point worth mentioning is that the Sun JDK tools work with
the latest release of Java. If you want to check out a Java feature available with the latest release,
you'll have to use the Sun JDK or wait until the new Java release is supported by your tool vendor.

Page 77

CHAPTER 5
Declaring and Defining Data

Before you can do anything with a piece of data in Java, you have to make this piece of data known
to your program. No surprise here, declaring data for use in a program is one requirement that is
shared by most programming languages. Here, you'll read how to define data in Java and see how
Java data declarations compare with like data declarations in COBOL and other IBM mainframe
programming languages.

This chapter describes how a programmer defines data items to Java programs. Here, the
comparisons between Java, COBOL, and PL/I increase. This chapter spends some time discussing
strong language data typing (Java) versus weak data typing (REXX) versus representative data
typing (COBOL). Java's distinction between primitive data types and reference data types is covered,
as well as how the concept of primitive and reference data types are expressed in the language of the
mainframe programmer. Various Java code snippets are shown here to illustrate these concepts.

Java Primitive Types

Java supports the object-oriented style of programming. Therefore, you will use objects in your Java
programs. However, Java also enables you to declare variables that do not behave like objects. These
variables behave like, well, variables. We Java folk say that these Java variables are declared with a
Primitive Type. Let's defer discussion of objects to Chapter 7, "Class and Object Representation,"
okay?

Just what are these primitive types, anyway? Table 5.1 provides that information.

Page 78

Java primitive data types have a fixed size regardless of the platform. Why is that, you ask?
Remember, Java is platform neutral; code written on one platform must successfully execute on
another platform, as long as both platforms have the same version of the Java runtime.

How do these primitive types compare to types declared in COBOL and PL/I? Table 5.2 provides
that information.

Now, COBOL and PL/I declares for Java primitive types are not exact. You will learn about the
differences as you read about each following primitive data type. However, you should first read a
bit about this business of variable typing in general.

A Few Words on Variable Typing

You may recall some discussion from Chapter 2, "What is Java?," on variable typing. In particular,
programming languages usually follow one of four variable typing classifications: Strong, Weak,
None, and Representative. The typing classification governs how variables of different types may be
used together in expressions.

Strong typing means that different variables used in the same expression must be of the same data
type. Also, there must be a match between the data types used as arguments to a subprogram, and the
parameters of that subprogram. Realize that the lan-

Table 5.1 Java Primitive Types
PRIMITIVE
TYPE

TYPE
REPRESENTS
A

DEFAULT
VALUE

SIZE
SIZE

RANGE OF VALUES

boolean True, false false 1 bit true, false
byte Signed integer 0 8 bits -12810 to 12710

char Unicode
character

0 16
bits

000016 to FFFF16

double Miniscule or
gigantic number

0.0 64
bits

4.94065645841246544 *
10 -324 to
1.79769313486231570 *
10308

float Extremely
small or large
number

0.0 32
bits

1.40239846 * 10-45 to
3.40282347 * 1038

int Signed integer 0 32
bits

-214748364810 to
214748364710

long Signed integer 0 64
bits

-
922337203685477580810
to
922337203685477580710

short Signed integer 0 16
bits

-3276810 to 3276710

Page 79

* PL/I uses the BIT type to mimic booleans (Dcl aBit BIT(1)), but BITs are not Booleans.
** PL/I supports a double byte character set with the GRAPHIC attribute, but DBCS is not Unicode.

guage compiler enforces this forced matching of data types. The fact is that errors are less likely to
creep into your program when you must use variables of the same type in expressions and
subprogram calls; at least you'll not be combining apples and oranges in a strongly typed language. If
you declare two data types as integers, you will not be able to add variables of these types together
without additional coding. The Pascal family of languages (Pascal, Modula-2, and Ada) is strongly
typed.

Weak typing means that you can combine variables of mostly different types in expressions.
Understand that the semantics of the expression need not make sense. For example, some weakly
typed programming languages enable you to add characters to numbers. Some weakly typed
languages enable you to quickly get a small application up and running without the extra effort
involved in enforcing variable type consistency; others are just as difficult, if not more so, than some
strongly typed languages. Several flavors of BASIC and C are examples of weakly typed languages.

None, or no variable typing, or untyped, means that you don't declare variables of a type at all. You
just "code and go." Untyped programming languages are often interpretive, trading ease of coding
for runtime performance. Such languages are often used very effectively as scripting languages,
because the success of a script rarely depends on runtime performance. REXX is an example of an
untyped programming language.

Representative typing means that variables are declared to be a type that mirrors the machine
representation of the data. Two often-used examples of a representative data type are packed and
binary. In the mainframe world of OS/390, data is stored in packed format; some programming
languages used on the mainframe enable for variables declared in packed format, ditto for binary
data. COBOL and PL/I are the most often used programming languages that follow a representative
data-typing scheme.

Table 5.2 Java, COBOL, and PL/I Variable Declares of Primitive Types
PRIMITIVE
TYPE JAVA DECLARE

COBOL
DECLARE PL/I DECLARE

boolean boolean aBool; Can't be done! Can't be Done! *
byte byte aByte; ABYTE PIC 'X'. Dcl aByte Fixed Bin(8);
char char aChar; Can't be done! Can't be done! **
double double aDoub; ADOUB COMP-2 Dcl aDouble Float(64);
float float afloat; AFLOAT COMP-1 Dcl aFloat Float(32);
int int anInt; ANINT COMP. Dcl anInt Fixed Bin(31);
long long along; Can't be done! Can't be done!
short short aShort; ASHORT COMP. Dcl aShort Fixed Bin

(15);

Page 80

Variable Type Casting

One obvious question is evident: What do you do if you want to use two numeric variables of
different types in the same expression when you're programming in a strongly typed language? For
example, if you have a hypothetical, strongly typed language that permits declares like

Integer anInteger = 25. -- Integer data type
Decimal aDecimal = 50.75. -- Decimal data type

How would you perform a simple arithmetic operation like the following without generating type
mismatch errors?

Decimal theSum = anInteger + aDecimal.

The programming language could convert anInteger into an equivalent variable of type Decimal and
perform the addition. However, this seems to violate the reason for having a strongly typed language
in the first place, right? You want the compiler to catch what may be an oversight on your part.

Maybe you should have declared anInteger as a Decimal data type and avoided the problem.
Unfortunately, you may have need of anInteger as an Integer type later on in the program. It seems
silly to have two variables that represent the same thing in a program, but being of different data
types. This isn't what most sane folk would call a good programming practice!

What you need is a way of explicitly coercing a variable to a different data type for a single
statement. By explicitly coding some construct, you will not slip and inadvertently mix data types. In
addition, you can use the same variable where you need it without having to declare copies of
different data types.

The answer is to code a construct called a cast. Most strongly typed programming languages support
this, and even some weakly typed ones as well. The common form of the cast operator is to enclose
the type you need in parenthesis before the variable is declared with the "offending" type. Observe
how the cast works in our hypothetical language.

Decimal theSum = (Decimal)anInteger + aDecimal.

The cast operator does not change the variable that is being cast! What is happening previously is,
for this statement only, the cast operator creates a temporary variable that has the same value as
anInteger only of type Decimal. With the data types agreeing, the arithmetic can be performed.

Of course, the reason for this diatribe is that Java supports the cast operator for primitive types and
for objects. Now, realize that you cannot cast any variable of a certain type to any other type; there
are limits. You will read about casting rules for objects in Chapter 9, "Inheritance." In this chapter,
you'll read about casting rules for primitive types.

TE
AM
FL
Y

Team-Fly®

Page 81

Java Variable Typing

Right now, you are wondering, where does Java fall into this variable-typing scheme? Java has a
hybrid data typing mechanism. For primitive types, Java is weakly typed for some expressions and
strongly typed for others. For objects, you'll have to wait until Chapter 7 for the full explanation.

Java enables you to mix primitive, non-boolean types provided that the target of the expression is a
data type that can contain the largest number of any components of the expression. Yes, that is quite
a mouthful. Perhaps the example in Listing 5.1 will break the mouthful into bite-sized morsels.

However, the expression demonstrated in Listing 5.2 causes a Java compile error.

Here is the compiler error:

Incompatible type for declaration. Explicit cast needed to convert
double to float.
float aFloat2 = anInt + aDoub + aByte;
 ^

Oddly enough, javac points to the target of the expression while saying that you need to explicitly
need to cast the double to a float. Ergo, this change gets a successful compile:

float aFloat2 = anInt + (float)aDoub + aByte;

 OR

float aFloat2 = (float)(anInt + aDoub + aByte) ;

Listing 5.1 Java can deal with mixing these primitive types.

int anInt = 325 ; //Range from -231 to 231-1

float aFloat = 21.25f ; //Range a whole lot bigger
byte aByte = -56 ; //Range from -128 to 127
/**
 The float variable aFloat2 can contain the largest number
 from any of the addends below.
 As an aside, notice how the floating point variable was
 initialized.
**/
float aFloat2 = anInt + aFloat + aByte;

Page 82

Listing 5.2 Java cries out for a cast when mixing these primitive types.

Should the previous operand be cast, or should the target of the result of the expression to a number
declared with the double primitive type be cast? You cannot intelligently answer that question
without knowing the full use of these variables in a program.

In the following, more information about each of Java's primitive types is listed.

The boolean Primitive Type.

Java supports a boolean data type, which has only two values: true and false. Java booleans cannot
be cast into anything. Java booleans are not integers like they are in C, or bit switches like they are in
PL/I. Hence, booleans cannot be used in any arithmetic statement in a meaningful way; javac will
stop such foolish attempts.

The previous dissertation concerning casting of primitive types does not apply to booleans. Use Java
booleans for true and false values, and forget about "boolean tricks" you used in other programming
languages, like setting up multiple bit switches to represent boolean values.

Literal boolean values can only be true or false, no other options exist. In the following, the declares
are listed:

boolean aTrueBool = true ;
boolean aFalseBool = false ;

int anInt = 325 ; //Range from -231 to 231-1

byte aByte = -56 ; //Range from -128 to 127
double aDoub = 31E10d ; //Range far bigger than
 //float
/**
 The float variable aFloat2 cannot contain the largest
 number from the aDoub addend below. Note that aDoub was
 initialized well within the allowable range for a Java
 float variable.

 As an aside, notice how the double variable was
 initialized.
**/
float aFloat2 = anInt + aDoub + aByte;

Page 83

The char Primitive Type

You may think you know what data a variable of type char holds, but you're probably wrong. You'd
expect a char to hold a character, which is a string of bits that represents a member of a character set,
like EBCDIC or ASCII. Well, that's correct. However in Java, the character set is called Unicode,
and each character in the Unicode character set is 16 bits, or two bytes in size. The closest available
option in the mainframe world is the Double Byte Character Set (DBCS). Unicode is not the same as
DBCS; all they share is the fact that both character sets consist of 16 bit characters.

The good news is that you need not concern yourself with Unicode if all you're working with is
garden-variety ASCII or EBCDIC. Java hides the messy details of working with Unicode characters
from you. Actually, the first 8 bits of the Unicode character set is the same as the Latin-I or 8-it
ASCII character set.

Mainframers experienced at working with the EBCDIC character set will have to translate to ASCII,
like they have always done when mainframers have needed to access any non-IBM platform.

If you have C programming experience, the following Java statement will not be surprising. If not,
you'll be scratching your head.

int anInt = 32 + 'a' ; //anInt = 129

It seems odd to be able to add the letter 'a' to the integer 32, doesn't it? Here's another one:

char aChar = 32 + 'a' ; //aChar = '?'

By and large, Java treats char variables as integers. However, if you cast char variables to byte or
short variables, you may get unexpected results. As you might imagine, the concept of a signed
number, common for integers, is meaningless for char variables. The smart approach is to use char
variables as characters and integers as numbers.

This treatment of char variables as integers is a hangover from the world of C programming. You
don't have to use char variables in this way, but you should know about such usage; you will likely
see it done by other Java programmers.

Character literals are either single characters between single quotes, character escape sequences,
octal and hex escape sequences, and Unicode escape sequences. Check out the Java declare
statements below:

char aCharInQuotes = 'a'; //Just a character in quotes
char aCharEscSeq = '\n'; //Escape sequence (newline)
char aUnicodeEscSeq = '\u10D1';//Unicode sequence (????)

Often-used escape sequences are shown in Table 5.3.

Ergo, the line of code,

System.out.println("Hello" + '\n' + "How Are You?");

Page 84

produces the following output:

Hello
How Are You?

Integer Primitive Types

In Java, you can lump together the byte, short, int, and long primitive types as integers. As you've
previously read, the char primitive type is considered an integer by many; however, we'll not
perpetuate such a consideration. All these types can be cast to one another. Unfortunately, what you
see may not always be what you get. Here's an example:

int anInt = 70000;
System.out.println((short) anInt) ;
/** Java Prints out 4464!!! **/

Here, we're casting an integer (32 bits) into a short integer (16 bits). Important things are happening
here that are worthy of passing note. First, the compiler, javac, does not complain in any way, even
though the initialized value of anInt exceeds the maximum value for a short integer (32767). Second,
the runtime does not choke; it actually spits out a number.

The moral of the story is that you must be careful when you cast integer types. Java is very forgiving
in its use of integer primitive data types. Keep in mind, or have a chart handy, of the min and max
values or the bit size of the primitive integer types.

You've seen some examples of coding integer literals. In case you have a really poor retention,
additional examples are listed in the following:

int anInt = 4000 ; //Integer, 32 bits
short aShort = 1000 ; //Short, 16 bits

Table 5.3 Common Escape Sequences
ESCAPE SEQUENCE THE CHARACTER

\n Newline
\b Backspace
\t Tab
\r Return
\\ Backslash
\' Single Quote
\" Double Quote

Page 85

long along = 40001 ; //Long, 64 bits. Note the '1'
byte aByte = 40 ; //Byte, 8 bits

Mainframe languages have no integer support past 32 bits; hence, Java's long primitive type has no
direct analogue in COBOL and PL/I. If you need numbers larger than 15 digits in a COBOL program
(15 significant digits), you'd have to use a floating-point data type (COMP-1 or COMP-2).

Floating Point Primitive Types

Java supports two floating point types: float and double. Although mainframe programming
languages have floating point types, these types are rarely used; mainframers have access to non
integers by using packed numbers, declared with a number of decimal digits. This capability goes to
the heart of COBOL's representational data typing, where the mainframe contains machine
instructions to manipulate packed numbers.

The COBOL programmer could declare the number 3.556 without using a floating-point type,
whereas the Java programmer is required to use either a float or a double to represent such a number.

Floating-point literals are declared as follows.

float afloat = 1.0012f ;
double aDouble = 1.0012d ;
double aDouble = 1.0012 ; //d not needed for double

Java floating-point types have some unusual behavior. For example, check out the following line of
code.

// Division by zero!!!!!!!!
System.out.println(aFloat/0 + " " + -aFloat /0) ;

The output is listed in the following.

Infinity -Infinity

Yes, you're reading this correctly. When you divide a float by zero, you get Infinity; when you divide
a negative floating-point number by zero, you get . . . Infinity.

By the way, you cannot divide a number declared as an integer type by zero. You'll get the familiar,
expected response.

Okay, here's another example of odd behavior. The code is:

float aFloat2 = 0.0f ;
System.out.println(-(aFloat - aFloat) + " " + aFloat2/aFloat2) ;

The output is

-0.0 NaN

Page 86

Yes, Java will generate such a thing as negative zero. If afloat were a variable of an integer type,
Java would output 0. The "NaN" stands for "Not a Number," which is an unordered quantity that
compares false to all numbers and itself.

The moral of the story is to keep an eye on those floating-point numbers; they can act in unusual
ways!

Character Strings in Java

Character strings in Java are an instance of class String. Strings are not a primitive data type. That
said, the creators of Java understood that strings are such a common and often used data structure,
and that Java should make it easy for the programmer to create and use strings. Strings in Java are
straightforward, as the following example shows.

String aString = "Hi Ho, Cherrio!" ;

In other words, strings "look like" a primitive data type. Java converts all occurrences of strings into
an object of class String. However, this conversion has minimal impact on the Java programmer.

The String class has an assortment of utility methods that reach into a string to pull out a substring,
look for one string inside another, and determine the string's length.

Java Reference Data Types

Java draws a distinction between primitive data types and reference data types. Whereas primitive
types are passed to methods by value, the reference types are passed by reference.

What is the difference? Well, when an argument is passed to a method by value, a copy of the
argument variable gets shipped to the method. When an argument is passed by reference, the starting
address of the argument is passed to the method. In Chapter 2, you read portions about this burning
issue; you'll briefly revisit this terribly exciting topic of passing by value and by reference in Chapter
7.

The reference data types in Java are arrays and objects. In Chapter 7, you will read about objects;
here, you'll read about arrays.

Java Arrays

An array is an aggregate data structure where every member of the aggregate is of the same data
type, and every member of the aggregate can be referenced by an index. If you've has experience
programming, you've seen arrays. That said, Java arrays have a few interesting characteristics not
found in COBOL or PL/I. Let's take a look.

A few array declarations are listed in the following.

int anIntArray [] = {12, 24, 36, 4 * 24, anotherInt} ;
String aString [] = {"Hi", "Ho", "Cherrio!"} ;
int aTable[] [] = {

Page 87

 {12, 24, 36},
 {23, -45},
 (12345}
 } ;

Note that the first declaration includes a calculation and a reference to another variable (let's assume
this other variable exists and has a value, okay?). The array elements are separated by commas,
included in curly braces.

The third declaration is an array of arrays. Note the pairs of nested curly braces. Also note the
dimension of the array aTable. How many of you readers caught the first "row" of the table to have
three elements, the second "row" to have two, and the third "row" to have one? Because Java
implements multidimensional arrays as arrays of arrays, you do not need to have your typical
rectangular arrays. Try this in COBOL or PL/I.

Notice that the third declaration is described as an "array of arrays," as opposed to a
multidimensional array. What's the difference, you ask? Look at the previous declaration for aTable.
ATable is not multidimensional; it is not a 2 × 3,2 × 2,2 × 1, or anything × anything. ATable is an
array of three elements; the first element is an array of three elements, the second is an array of two
elements, the third is an array of one element. The term for this sort of structure is an array of arrays.
Of course, you may implement multidimensional arrays by coding a 3 X 3 or 100 X 100 X 100 array,
or any array where the dimension sizes are the same. Not to make a deal about it, but Java arrays are
more flexible than arrays declared in other, procedural languages that are limited to multidimensional
arrays.

Another feature shared by these three declares is that all of these arrays are initialized. You cannot
code

int anIntArray [] ;

because Java would not know how much memory to allocate for the array. If you do not have initial
values, you can declare your arrays as follows:

int anIntArray [] = new int[200] ;

Here, you use the new operator, commonly used to create objects, to create arrays without initial
values. You can declare multidimensional arrays with new, as shown in the following:

String aStringTable[] [] [] = new String [10] [20] [200] ;

Actually, you could even leave out some of the dimension sizes when declaring an array. Observe
the following:

String aStringTable[] [] [] = new String [10] [] [] ;

How can this be? How can Java know how much memory to allocate for this array? Well, Java looks
at this structure as a single dimensional array of 10 elements; each element is a two dimensional
array.

Page 88

Java also accepts this syntax:

int[] anIntArray = {12, 24, 36, 4 * 24, anotherInt} ;
String[] aString = {"Hi", "Ho", "Cherrio!"} ;
int[] [] aTable = {
 {12, 24, 36},
 {23, -45},
 (12345}
 } ;

Now you get the picture of a data type of an array of integers, or a data type of an array of strings. By
using the concept of an array as a data type, Java enables a construct like the following:

int[] anIntArray ;//Data Type is an array of integers
anIntArray = new int[200];//Make anIntArray hold 200 integers
anIntArray = new int[30] ;//Make anIntArray hold 30 integers.

You know how to reference arrays, right? Probably not, because in COBOL and PL/I, arrays
normally start with 1, whereas in Java, arrays start with 0. Ergo, referring to the arrays on the
previous page:

anIntArray [1] = 24 ;
aString [0] = "Hi" ;
aTable[1] [0] = 23 ;
aTable[2] [1] is out of bounds

If you wanted to refer to the last element in aTable, the correct reference is

aTable[2] [0] = 12345 ;

Arrays are a big part of any programming language and Java is no exception. Java enables you to
create arrays both like and unlike those in COBOL and PL/I. In Java, arrays are zero-based (a fact
worth repeating).

Java Naming Conventions

Before we leave the subject of defining data, a few words about the naming of Java variables is
appropriate. Java enables variables of any practical length. A Java variable does not start with a
number; it starts with a lower case letter, underscore, or a dollar sign. The start of each new word is
capitalized all other letters are lowercased. All but the first position of the name can be letters,
numbers, and some special symbols. In addition, variable names should be nouns.

Java objects follow the same naming convention as variables of primitive types.

1. Java classes begin with a capital letter, with the start of each new word capitalized.

Page 89

2. Use nouns with the occasional adjective to name Java classes, objects, and primitive variables.
You remember "person, place, or thing," right?

3. Java methods follow the same naming convention as variables: Start with lower case and
capitalize each word. However, Java methods should denote some sort of action, or, put
differently, Java methods should contain a verb.

Pretty straightforward, right?

In Summary

The Java programming language provides support for familiar data types and data structures. The
Java treatment of primitive types and data usage may seem unusual to the mainframe programmer,
especially the blurring of the int and char data types. However, the similarities between the Java
treatment of primitive types and the mainframe programming language treatment of most data types
are more telling.

Page 90

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Page 91

CHAPTER 6
Java Language Syntax

This chapter covers the majority of Java language features and constructs, including the following:

 Assignment statements

 Operators

 Arithmetic

 Boolean

 String

 Bit

 Object

 Java Arithmetic Anomalies

 Loop constructs

 Decision statements

Every language feature is compared to identically (where possible) functioning language features of
COBOL and PL/I. Also, language features present in mainframe programming languages that have
no Java analogue, such as pointers, COPY/header files, and preprocessor, statements are discussed.
Rounding out the chapter are discussions on the short-circuiting of boolean expressions and
miscellaneous Java syntax items.

This chapter contains plenty of code and tables highlighting the similarities and differences between
Java and the mainframe programming languages. You may want to

Page 92

enter some statements similar to the examples in a Java source file; then you should compile,
execute, and observe the results.

Miscellaneous Java Syntax Items.

A couple of syntax items in Java are different than more familiar mainframe programming
languages. Let's discuss these items first.

Java Source Code Is Case Sensitive

Unlike COBOL, PL/I and a host of other programming languages used on the mainframe, Java, are
case sensitive. Case sensitivity may be a source of frustration for the COBOL and PL/I programmer
who is used to coding everything in upper case. As discussed in Chapter 5, "Declaring and Defining
Data," Java programmers should follow the previously discussed naming convention for their
program entities, such as variables, constants, classes, objects, and methods. You'll have no choice if
you want to use an existing entity (which will occur 99.999999999999999 percent of the time); you
must observe the case of the entity name in your programs. Hence, get used to being aware of the
disposition of the shift key as you enter your Java source.

Java Statements Terminated by a Semicolon

Not much to add to this, right? Think COBOL with the period or PL/I with the semicolon and you
will understand the idea.

Java Supports Multiple Comment Styles

In most languages, a comment is a comment is a comment. This is not so in Java, which supports
three comment styles.

The first is a single-line comment that starts with a double-slash (//) and continues to the end of the
line. This comment style has no closing comment delimiter.

The second example is a multi-line comment style that starts with /* and ends with */. This is the
comment style used by PL/I, REXX, and C programmers. Unlike PL/I and REXX, Java will not
permit you to nest, or place one inside another, comments.

The final example is a special, Java-only style comment that starts with /** and ends with */. This
comment style is called a doc comment. Doc comments can be processed by a Java utility called
javadoc, a program designed to generate documentation, in part, from comments written in source
code. See Chapter 4, "The Sun Java 2 Basic JDK Tools," for additional information on javadoc.

Now, PL/I, REXX, and C programmers would recognize this style to be the same as the multi-line
comment style. Actually, you could code this style comment in your Java programs. To put it another
way, the Java compiler reads /** the same way as /*. By the way, a comment that starts with /** and
ends with **/ is not a doc comment.

Page 93

Because Java multi-line and doc comments do not nest, you should get used to coding the single-line
(//) comment variety. This way, if you want to comment out blocks of code, you can do what PL/I
programmers do— code a /* before the block and */ after the block.

Java Has No COPY or Include Statement

Java has no feature to bring in external source for compile, like COBOL's COPY or PL/I's %Include
statement. Java counts on a strict file naming convention for Java classes. If your program needs
methods or other entities from a class file, Java will be able to locate it. Java does not have to bring
in the source code from other class files into your program.

Java Has No Pointers

You've read this before: Java has no pointers. Java has no support for anything related to pointers; it
automatically handles referencing and dereferencing objects.

You cannot manipulate pointers or memory addresses by performing pointer arithmetic, casting
objects to primitive data types, or computing or changing the byte size of any primitive object.

Fortunately, the engineers at Sun who developed Java realized that pointers, their use and especially
their abuse, are a heinous source of software bugs. By eliminating pointers from the language, the
creators of Java, in one fell swoop, permanently removed a persistent source of bugs.

Another factor to consider is that pointers enable a programmer to get into the bowels of a machine.
The developers of Java were security conscious. Pointers and pointer arithmetic could enable a
nefarious programmer to circumvent any security mechanism in place. Removing pointers strikes a
blow for system security by keeping the system's internals removed from programmers.

Java Has No Preprocessor

PL/I and C programmers are familiar with a preprocessor. The preprocessor generates source code,
which, in turn, gets passed to the particular compiler. Although COBOL's COPY statement adds
source code, COBOL does not support a preprocessor.

One common reason for preprocessor use is for conditional compilation. Java, being platform
neutral, certainly has no need for platform specifics to successfully compile.

Reserved Words Exist in Java

Like most programming languages, Java uses reserved words. You must use these words in their
proper syntactical and semantic context. Table 6.1 shows the list of Java's reserved words.

Page 94

Note that all of Java's reserved words are in lowercase. Of course, the Java compiler (and you)
recognizes a difference between the reserved word false, and some program entity named False.

Some of the reserved words have no syntactic or semantic meaning. These words are shown in Table
6.2.

Java has the audacity to reserve the previous table of words, but has no current use for them. You,
however, are forbidden to use these words in your Java programs. Note that goto is a reserved word
in Java, but Java does not support a goto statement.

The method names of Java's root class Object are not reserved, but these method names warrant
special treatment. As you'll read in Chapter 7, "Class and Object Representation," every class inherits
methods from class Object. Unless you intend to override such a method in your class, you should
not use these method names for your own methods. Table 6.3 is the list of method names from class
Object.

The more astute readers out there will take note of the use of the naming convention used in the
naming of these, and other, Java methods. Yes, it's the same one discussed in Chapter 5, "Declaring
and Defining Data."

If you do any REXX, you know that REXX has some so-called reserved words that aren't really
reserved. For example, the word RC , which represents a REXX variable that holds the return code
value of an operating system call, should not be used in a different context. However, the lame
REXX programmer could code

Table 6.1 Java's Reserved Words
abstract else int static
boolean extends interface super
break false long switch
byte final native synchronized
byvalue finally new this
case float null throw
cast for operator throws
catch future outer transient
char generic package true
class Goto private try
const If protected var
continue implements public void
default import rest volatile
do inner return while
double instanceof short

Page 95

RC = "I sure am a Lame REXX Programmer!"

The REXX interpreter or compiler would not gag, although your fellow REXX programmers sure
would.

Java, too, is forgiving on the use of these pseudo-reserved method names. For example, if you coded
this method:

void toString(int a) { //toString is one of 'those' words
 int x = 5 ;
 if (x > a)
System.out.println("Hah!") ;
}

or coded this variable declaration:

int toString = 10 ;

javac, the compiler, would be very forgiving; Java, the bytecode interpreter, would also be very
forgiving. You would bear the brunt of all the jokes of your fellow Javaians if they caught you using
these method names from class Object in a manner inconsistent with their existence. Also, you'd get
no sympathy from this corner.

Java Is a Free-Form Programming Language

Back in the days when the Earth was cooling, compiler engineers thought it would be smart to make
matters easier for the compiler by forcing programmers to code various

Table 6.2 Java's Meaningless (for Now) Reserved Words
byvalue generic outer
cast goto rest
const inner var
future operator

Table 6.3 Java's Pseudo-Reserved Words
clone getClass notifyAll
equals hashCode toString
finalize notify wait

Page 96

things in specific columns. Those of us who remember Woodstock, remember early versions of
Fortran where you had to code between columns 8 and 72. Of course, the most serious offender of
the "force programmers to code in such and such column" is COBOL. There exists a nearly
uncountable number of COBOL statements coded in the A and B margins.

Since Java was developed after the Cambrian Era, Java does not impose column restrictions on code.
You can start and end your Java code in any column you like.

Java Assignment Statements

Assignment statements in Java have some surprises and can behave differently than assignment
statements in other programming languages. Let's look at what Java assignment statements have in
common with other programming languages.

Java supports the expected, usual, common, and garden-variety assignment statement:

aJavaVariable = aJavaExpression ;

where a JavaVariable is a previously declared variable and, well, you understand.

You have seen in the previous chapter that you can assign a value to a Java variable (or object) upon
declaration. To wit:

char aCharVar = 'L' ; //Primitive Type
Myclass anObj = new MyClass() ; //Object

COBOL enables you to initialize a variable with the Value clause; PL/I enables you to initialize a
variable with the Init option.

That is pretty much the entire gamut of commonality between Java assignment statements and
COBOL or PL/I assignment statements. We'll have more to say about Java expressions later in this
chapter.

The most dramatic difference between Java assignment statements and those used in mainframe
programming languages is Java's assignment with operator statements. This chapter contains more
information about these and the rest of Java's operators. For now, know that Java enables you to
perform an operation and assign the result to a variable in one operation. Here is an example, with
the promise of several more examples included in the section titled Java Operators:

int anInt = 6 ; // Just your normal variable initialization
anInt += 6; // Add 6 to anInt, reassign back - anInt = 12
 // -+, *=, and others also available

anInt = anInt + 6;// Functionally equivalent to anInt += 6 ;

C programmers out there should be quite comfortable and familiar with the "operate and assign"
family of operators.

Page 97

How about another difference between Java assignment statements and COBOL and PL/I assignment
statements? How do you think Java would interpret this statement?

int a, b ;
a = b = 7 ;

This assignment statement, in COBOLSpeak, is akin to a group move. In short, variables a and b
have the value 7 after the assignment statement executes. In PL/I and REXX, the statement would be
evaluated as follows:

a = (b = 7) ;

The variable b would not change. The variable b is not assigned a value; b is tested for the value 7.
Only the variable a gets assigned a value of true (if b equals 7) or false (if b equals some other
value).

When you read about Java's class and object representation in Chapter 7, you'll learn that
assignments of objects is a bit different than assignments of variables.

Java Operators

What's a programming language without operators? You'll see that Java has several operators not
found in COBOL and PL/I; here, you'll take a look at Java operators. You'll learn what operators
Java have in common with COBOL and PL/I; you'll read a bit more about and see examples of the
Java operators that have no counterparts in the mainframe programming world.

Do you have the Java source code window and the DOS window open? It's probably a good
investment of your time to try out some of the examples as you read.

Table 6.4 shows Java's operators with their precedence ranking, their operand types, their
associativity, and, of course, a brief description of the operation.

The operator's precedence governs when the operation is performed in relation to other operations on
the same line. An operation of precedence 1, at the top of the table, is performed before a higher
numbered precedence operator when both are on the same line of code. For example:

myMeagerPay = myTooSmallGross - shockinglyHighTaxRate *
 mytooSmallGross ;

The multiplication operation is performed first, followed by the subtraction operation, and then
followed by the assignment operation.

This is pretty standard stuff, right? As with other programming languages, you may use parenthesis
to alter the natural order of execution as defined by the operator precedence.

myMeagerPay = myTooSmallGross * (1.0 - shockinglyHighTaxRate) ;

Page 98

Table 6.4 Java Operators by Precedence
PRECEDENCE OPERATOR OPERAND

TYPE(S)
ASSOCIATIVITY OPERATION

1 ++ Arithmetic R-L Unary Increment
 – Arithmetic R-L Unary Decrement
 +,- Arithmetic R-L Unary Plus, Unary Minus
 - Integral R-L Unary Bitwise Compliment
 ! Boolean R-L Unary Logical Compliment
 (vartype) Any R-L Type Cast
2 *,/,% Arithmetic L-R Multiply, Divide, Remainder
3 +,- Arithmetic L-R Addition, Subtraction
 + String L-R Concatenation
4 << Integral L-R Shift Left
 >> Integral L-R Shift Right, Extend Sign
 >>> Integral L-R Shift Right, Zero -Fill
5 <, <= Arithmetic L-R Less than, Less than or Equal

to
 >, >= Arithmetic L-R Greater than, Greater than or

Equal to
 instanceof Object,

Type
L-R Type/Class Compare

6 = = Primitive L-R Equal by Having Identical
Values

 != Primitive L-R Not Equal by Having
Different Values

Page 99

Table 6.4 Java Operators by Precedence (continued)
PRECEDENCE OPERATOR OPERAND

TYPE(S)
ASSOCIATIVITY OPERATION

 = = Object L-R Equal by Referring to
Same Object

 != Object L-R Not Equal by Referring
to Different Object

7 & Integral L-R Bit AND
 & Boolean L-R AND
8 ^ Integral L-R Bit Exclusive OR (XOR)
 ^ Boolean L-R Exclusive OR (XOR)
9 | Integral L-R Bit OR
 | Boolean L-R OR
10 && Boolean L-R AND (Used in

Conditional Statements)
11 || Boolean L-R OR (Used in Conditional

Statements)
12 ?:Boolean, Any,

Any
R-L Ternary (Used in

Conditional Statements)
13 = Variable, Any R-L Assignment
 +=,/=,%= Variable, Any R-L Assignment With

Operation
 +=,-=
 <<=, >>=
 >>>=
 &=, ^=, !=

Page 100

The subtraction inside the pair of parenthesis is performed first, followed by the multiplication, and
then followed by the assignment.

In general, Java operator precedence, first to last, is the following:

1. Increment and Decrement operators

2. Arithmetic operators

3. Compare operators

4. Boolean operators

5. Assignment operators

The operator's associativity governs the order of execution when two or more operators of equal
precedence are on the same statement. If an operator has Left to Right (L-R) associativity, then two
or more of the same precedence operators on the same line are evaluated left to right. For example,
Table 6.4 states that the addition operator, +, has L-R associativity. Hence, the statement

sumof = addend1 + addend2 + addend3;

evaluates by first adding addend1 to addend2, then adding that sum to addend3.

Table 6.4 states that the assignment operator, =, has R-L associativity. Hence, the statement

var1=var2=var3=20;

evaluates by assigning 20 to var3, then assigns var3 to var2, then assigns var2 to var1.

For the most part, COBOL and PL/I, in the absence of parenthesis, use L-R associativity for same
precedence operators.

You've noticed that Java has many more operators than COBOL and other mainframe programming
languages. Table 6.5 shows what operations Java, COBOL, and PL/I have in common.

Let's spend some time examining Java operators not found in COBOL and other mainframe
programming languages.

Java Operators not Found in Mainframe Programming Languages.

The operators found in Java, but not found in COBOL or PL/I, are worthy of explanation.

Unary Increment and Decrement

Unary increment (++) and Unary decrement (– –) operators are often used in Java. These operators
add or subtract 1 from a variable and assign the result back to the variable. You'll see these operators
in loops where your Java code increments a loop counter.

TE
AM
FL
Y

Team-Fly®

Page 101

Table 6.5 Java Operators Used in COBOL and PL/I

OPERATOR
OPERAND
TYPE(S) OPERATION

COBOL
OPERATION

PL/I
OPERATION

++ Arithmetic Unary Increment None None
– – Arithmetic Unary Decrement None None
+, - Arithmetic Unary Plus, Unary Minus +, - +, -
- Integral Unary Bitwise Compliment None None
! Boolean Unary Logical Compliment NOT ^
(vartype) Any Type Cast None None
*,/,% Arithmetic Multiply, Divide, Remainder *,/,None *,/,None
+,- Arithmetic Addition, Subtraction +,- +,-
+ String Concatenation None ||
<< Integral Shift Left
>> Integral Shift Right, Extend Sign
>>> Integral Shift Right, Zero -Fill
<, <= Arithmetic Less than, Less than or Equal

to
< <= <, <=

>, >= Arithmetic Greater than, Greater than or
Equal to

>, >= >, >=

instanceof Object, Type Type/Class Compare None None
= = Primitive Equal by Having Identical

Values
= =

!= Primitive Not Equal by Having
Different Values

NOT EQUALS ^=

Page 102

Table 6.5 Java Operators Used in COBOL and PL/I (continued)

OPERATOR
OPERAND
TYPE(S) OPERATION

COBOL
OPERATION

PL/I
OPERATION

= = Object Equal by Referring to
Same Object

None None

!= Object Not Equal by Referring to
Different Object

None None

& Integral Bit AND None None
& Boolean AND AND &
^ Integral Bit Exclusive OR (XOR) None None
^ Boolean Exclusive OR (XOR) None None
| Integral Bit OR None None
| Boolean OR OR |
&& Boolean AND (Used in

Conditional Statements)
AND &

|| Boolean OR (Used in Conditional
Statements)

OR |

 ?:Boolean, Any,
Any

Ternary (Used in
Conditional Statements)

None None

= Variable, Any Assignment = =
+=, /=, %= Variable, Any Assignment With

Operation
None None

+=, -=
<<=, >>=
>>>=
&=, ^=, !=

Page 103

Here are some straightforward examples:

int aInt = 10 ;
aInt ++ ; // aInt equals 11 (postfix)
aInt -- ; // aInt equals 10 (postfix)
-- aInt ; // aInt equals 9 (prefix)
++ aInt ; // aInt equals 10 (prefix)

The increment and decrement operators behave differently based on the placement of the operator.
We draw a distinction between prefix and postfix increment and decrement operators. The prefix
operators are placed before the variable and perform the operation before any assignment or
calculation takes place; the postfix operators are placed after the variable and perform the operation
after any assignment or calculation tales place. Yes, this certainly sounds like a mouthful; looking at
the four examples above, you can't see any difference in the behavior of the postfix and prefix
operators.

To see the difference between the behavior of the postfix and prefix operators, check this out:

int aInt = 10 ;
int bInt ;
bInt = aInt ++ ; // bInt is assigned aInt's current
 // value of 10 before aInt is incremented
 // to 11. So aInt = 11, bInt = 10
bInt = -- aInt; // aInt is decremented from 11 to 10,
 // then aInt's value is assigned to bInt
 // So aInt = 10, bInt = 10

The increment and decrement operators, when used in assignment statements like the previous
examples, have this odd property of changing the values of variables on the right hand side of the
assignment operator. To a C programmer, these operators are standard fare; to a mainframe
programmer, these operators may seem unusual.

On the one hand, there is nothing forcing you to use these operators. You could add or subtract 1
from a variable using a more familiar construct. However, you can bet the ranch that you'll see these
operators in someone else's Java code. You must understand the behavior of these operators.

Assignment with Operators

The assignment with operators is a shorthand way of performing an operation on a variable and
assigning the new result to the same variable. Some examples are in order here:

int aInt = 10 ; int bInt ;
aInt *= 2 ; // Multiply by 2 and reassign; aInt = 12
aInt += aInt ; // Add aInt to itself and reassign.
bInt = aInt /= 2 ; // aInt is halved to 4 then its value
 // assigned to bInt. Recall that these
 // operators have R-L associativity.

Page 104

These assignments with operators can take some getting used to, especially if you chain them one
after another on single statements. There is no force on Earth that can make you code with these
operators. As with the increment and decrement operators, you should have a familiarity of how
these operations work so you can cope with code that contains them.

Bit Operators

The bit operators perform the indicated logical operator on a binary representation of the arguments
in pairs. PL/I supports bit operators whereas COBOL does not. Three examples should drive the
point home:

int aInt = 10; // Bit pattern: 1010
int bInt = 8; // Bit pattern: 1000
int cInt = aInt & bInt ;// AND in pairs: 1000 = 8
cInt = aInt | bInt ; // OR in pairs: 1010 = 10
cInt = aInt ^ bInt ; // XOR in pairs: 0010 = 2

The Exclusive OR (XOR), returns true when only one of the arguments is true, not both.

Shift Operators

The shift operators also work on bit representations of integers. Also, a couple of examples should
shed some insight on the workings of these operations:

int aInt = 10; // Bit pattern: 1010
int bInt = aInt << 2;// Shift left two digits to 101000, or 40
int cInt = aInt >> 2 ;// Shift left two digits to 0010, or 2

The Cast Operator

The cast operator is used to change the data type of a variable or object. In Chapter 7, you'll read
about the rules governing the casting of objects. Some primitive types may be cast to different types.
Java does not permit the casting of an object to a primitive type variable or the casting of a primitive
type variable to an object.

If you enter this declaration,

float myFloat = .012 ;

javac will tell you that you need an explicit cast from double to float.

Some primitive types do not require an explicit cast. Chapter 5 mentions that the char data type can
be used as an integer without an explicit cast. Hence, the declaration passes javac without comment:

int anInt = 'a' ;

Page 105

Chapter 5 contains more information on Java primitive data types, including the integer types.

Boolean and Conditional Operators

You may be a bit befuddled and partially perplexed by the different classifications of logical
operators. The boolean operators (&, |) and the conditional operators (&&, | |) both perform the
logical AND and OR we've come to know and love. However, there is a sneaky difference that is
illustrated by the following code:

int aInt = 10, bInt = 20, cInt = 0 ;
boolean aBool = (aInt > 10) & (bInt / cInt > 0) ;
boolean bBool = (aInt = 10) | (bInt / cInt > 0) ;

What is going to happen here? Java, in its attempt to initialize aBool, reduces aInt > 10 to false; it
then figures the quotient bInt / cInt, which causes an exception— division by zero. Therefore, this
code comes to a screeching, tire-smoking halt.

Well, no surprises here, right? This is the way COBOL and its mainframe kin behave. Programming
languages take a dim view toward division by zero. However, there is an unspoken tale here.

If you look at the previous statement, because aInt was not greater than 10, or aInt > 10 is false, there
is no chance the expression would evaluate to true. You see that, right? Regardless of the boolean
value of the right hand side of the expression, there is no chance the expression would evaluate to
true.

This begs the question: Why would Java even bother to evaluate the remainder of the expression
when the outcome is not in doubt? The answer is simple: that is the purpose of the boolean operators.
The boolean operators always evaluate each and every operation before assigning a boolean value to
the target.

Now, look at the example code of assigning a value to bBool. The operation that assigns a value to
bBool during initialization is the boolean OR. The first part of the expression, aInt = 10, is true;
therefore, the remainder of the expression must be true. However, Java will evaluate the second part
of the expression and, well, you know the inevitable outcome.

Now, check this out:

int aInt = 10, bInt = 20, cInt = 0 ;
boolean aBool = (aInt > 10) && (bInt / cInt > 0) ;
boolean bBool = (aInt = 10) || (bInt / cInt > 0) ;

You see the difference between this and the previous example, right? This example uses the
conditional operators. As you've undoubtedly guessed by now, the conditional operators will
suppress execution of expressions when those expressions play no part in the final outcome.
Concerning the initialization of aBool, because the left part of the logical expression is false, the
right part cannot contribute to the final result and is not evaluated. The right part of the initialization
of bBool, too, is not evaluated, owing to the truth of the left part.

Page 106

A 10-dollar phrase is used to describe the trait of the conditional operators. We in the know say that
these conditional operators short circuit logical expression evaluation. Some programming languages
(C and Ada) short circuit logical expressions. The mainframe languages (COBOL, PL/I, and REXX)
do not; these languages have logical operators that behave like Java's boolean operators. Java gives
you operations that enable you to short circuit or avoid short circuiting.

The String Concatenation Operator.

We've already seen the string concatenation operator (+). This one is a breeze. The concatenation
operator combines two strings into one string. Now PL/I has a concatenation operator, but COBOL
does not. The examples that show Java writing output to the screen with the println() method show
the use of this operator. The concatenation operator creates a long string by (pardon the pun)
stringing together two strings:

String sVar1 = "Left", sVar2 = "Right",
SVar3 = sVar1 + sVar2 ; // sVar3 = "LeftRight"

The Ternary Operator

The last new operator you'll read about in this section is the conditional or ternary operator . This
operator is shorthand for an if-else construct. A basic template of this operator is:

logicalExpression ? valueWhenTrue : valueWhenFalse ;

These examples should prove to be useful:

int mySalary = 999999 ;
boolean rUWealthy = (mySalary > 1000000) ? true : false ;
char uGetGovtCheese = (mySalary < 10) ? 'Y' : 'N' ;

The ternary operator comes in handy when assigning variables one of two values.

You see that Java has many interesting operators with interesting subtleties. There is no substitute for
entering various expressions and seeing firsthand how Java behaves with your code. You'll learn all
sorts of odds and ends about Java operators not mentioned here or in other books.

Speaking of interesting subtleties, let's take a look at arithmetic in Java next.

Java Arithmetic Anomalies

Many programming languages treat some aspects of arithmetic in a counterintuitive manner. Java is
no exception. Here, you'll see some differences between Java and the IBM mainframe languages in
the treatment of arithmetic.

Page 107

Mixing Primitive Types in Arithmetic Expressions

Now, Java is considered to be a strongly typed language. However, the strong typing comes into play
with reference types (objects and arrays), not with primitive data types. Look at the following
statement. Any thoughts on how a strongly typed language should behave?

char aChar = 30 + 70 ;

Here, we are assigning the result of an arithmetic operation to a variable of type char. Believe it or
not, javac, the Java compiler, will not choke on the assignment. Actually, aChar will have the value
of d. Java performs the calculation, yielding (think fast!) 100, before interpreting 100 as an ISO-Latin
I character and converting 100 to the letter d.

The previous assignment statement does not surprise the readership with a background in C
programming. The COBOL programmer cannot get away with this. A COBOL compiler would gush
up a diagnostic if a said compiler encountered the following:

aChar Pic X(1) Value(30 + 70) .

The PL/I programmer coding this statement would get a surprise:

Dcl aChar Char(1) Init (30 + 70) ;

The actual result depends on the compiler settings. aChar could have the value'', or could generate a
diagnostic saying that "the stringsize condition would be raised" if that statement executed.

C programmers are not surprised at Java's behavior toward arithmetic being assigned to char
variables. The conversion from a number to a coded representation is as old as C itself. If you want
to add integers, doesn't it make sense to use int variables?

It is important to know that Java will change the type (if possible) of the result of calculations to
match the type of the target variable. Put another way, Java will force the result of a computation to
fit the type of the target variable. A good programmer takes steps to use variables of the same type.

It's also important to note that the previous spiel applies to computations with variables declared with
primitive types. If you were to declare and use objects in your calculations, Java would expect more
care. Here is an example:

//Primitive Data Types Object Declaration

int cPrim ; Integer cObj ;
cPrim = 'a' + 'b' ; cObj = 'a' + 'b';

Java handles the assignment statement on the left as follows: Java converts the character a to 97 and
b to 98 before adding the two to get (think quickly!) 195. Therefore, cPrim equals 195.

Page 108

Java handles the assignment statement on the right a bit differently. The Java compiler burps, saying

Incompatible type for assignment. Can't convert int to
java.lang.Integer.

Try it. Enter similar statements and see the Java compiler tell you off.

Loss of Precision when Dividing Integers

A consequence of Java converting the result of an arithmetic operation on primitive types is that you
may lose precision when you divide. This precision loss problem is as old as computers. You may
think that as we jet-ski into the twenty-first century, we computer folk would not be plagued with
such ancient problems. You may think that Java, a modern, recently created computer programming
language, would not suffer from this age-old problem. You would be both right and wrong.

You would be right if you declared and used objects. Java would not let you get away with the
mixing of object types or classes in expressions, hoping that Java would convert the result.

You would be wrong if you declared and used primitive types. Java would truncate fractional results
of computations when assigning a quotient to an int variable. To wit:

//Primitive Data Types Object Declaration

int int1 = 7 ; Integer i01 = new Integer(7) ;
int int2 = 3 ; Integer i02 = new Integer(3) ;
float fPrim = int1/int2; Float afloat= new Float(i01/i02) ;

The code on the left, using primitive data types, compiles and executes. Here, fPrim equals 2.0 (note
the .0). The code on the right, using objects, does not compile.

COBOL and PL/I fare a bit better than Java in this instance. For example,

COBOL / PL/I */

Int1 Pic S(9) Comp Value '7'> Dcl Int1 Fixed Bin(15)
 Init(7) ;
Int2 Pic S(9) Comp Value '3'. Dcl Int2 Fixed Bin(15)
 Init(3) ;
Fprim Pic S(9.999) Comp. Dcl Fprim Fixed Dec(5,4) ;
Fprim = Int1 / Int2. Fprim = Int1 / Int2 ;
* Fprim = 2.3333 /* Fprim = 2.3333 */

Using the previous programming languages, you need to declare the quotient with your desired
precision, which cuts down on certain surprises when performing calculations. However, if you
divided integers and assigned the result to an integer in COBOL or PL/I, the result would contain no
fractional part.

Page 109

Shoddy Floating Point Arithmetic Results

The funny thing is, just about everyone who hasn't lived in a cave for the past few decades knows
that computers can surely add up numbers. Computers can add many numbers quickly, easily, and
exactly. After all, computers can't think, but they can sure crunch numbers. Well, like most
generalizations, there are exceptions.

Let's take a look at some code and see these exceptions:

f = .125f ; System.out.println(" f = " + f) ; // f = 0.125
f += .125f ; System.out.println(" f = " + f) ; // f = 0.25
f += .125f ; System.out.println(" f = " + f) ; // f = 0.375
f += .125f ; System.out.println(" f = " + f) ; // f = 0.50
f += .125f ; System.out.println(" f = " + f) ; // f = 0.625
f += .125f ; System.out.println(" f = " + f) ; // f = 0.750
f += .125f ; System.out.println(" f = " + f) ; // f = 0.875
f += .125f ; System.out.println(" f = " + f) ; // f = 1.0
f += .125f ; System.out.println(" f = " + f) ; // f = 1.125

No surprise here, right? Let's make a minor change:

f = .1f ; System.out.println(" f = " + f) ; // f = 0.1
f += .1f ; System.out.println(" f = " + f) ; // f = 0.2
f += .1f ; System.out.println(" f = " + f) ; // f = 0.3
f += .1f ; System.out.println(" f = " + f) ; // f = 0.4
f += .1f ; System.out.println(" f = " + f) ; // f = 0.5
f += .1f ; System.out.println(" f = " + f) ; // f = 0.6
f += .1f ; System.out.println(" f = " + f) ; // f =
 // 0.70000005
f += .1f ; System.out.println(" f = " + f) ; // f = 0.8000001
f += .1f ; System.out.println(" f = " + f) ; // f = 0.9000001

Something seems a bit awry here. COBOL and PL/I behave a bit better because you typically declare
the precision of your results in thee languages; also, the IBM machine instruction set includes fixed-
point decimal arithmetic. For example, these statements in PL/I produce the indicated result:

Dcl f Fixed Dec (5,4) Init(0.1) ;
f = f + .1 ; /* f = 0.2000 */
f = f + .1 ; /* f = 0.3000 */
f = f + .1 ; /* f = 0.4000 */
f = f + .1 ; /* f = 0.5000 */
f = f + .1 ; /* f = 0.6000 */
f = f + .1 ; /* f = 0.7000 */

Believe it or not, this precision problem with floating point numbers is experienced by nearly every
programmer outside of the IBM mainframe community who uses floating point arithmetic. Floating
point arithmetic is a nightmare of sorts; to hope for an exact result when using floating point is akin
to hope for six good numbers in a

Page 110

small, state sanctioned ticket. Floating point arithmetic requires numbers being converted into a
binary representation with exponents (and mantissas— remember that word from high school math?),
and back again. The massive load of converting is bound to introduce inaccuracies.

As an aside, you could argue that we're comparing apples and oranges. The mainframe languages
have floating point types. Why not show an example with, say, a COBOL program declaring floating
point numbers and show the accuracy of COBOL's floating point arithmetic? Well, every mainframe
programmer I know (and all you know, too, I'm sure) uses a fixed decimal representation for
nonintegers. They have no need to use floating point because the IBM mainframe instruction set
provides the tools to get accurate decimal results. Simply put, the IBM mainframer has no cause to
use floating point, as opposed to fixed decimal, numbers.

If possible, try to use integer arithmetic; then, divide the result of the integer arithmetic at the end to
help guard against floating point accuracy errors. To wit:

int iVar = 1 ;
float fVar = iVar / 10 ; // fVar = 0.1
iVar++; fVar = iVar / 10 ; // fVar = 0.2
iVar++; fVar = iVar / 10 ; // fVar = 0.3
iVar++; fVar = iVar / 10 ; // fVar = 0.4

Overflow and Keep Going

Java has an interesting habit of offering extreme forgiveness toward its primitive types. For example,
when you add two integer types that exceed the range for that type, Java does not overflow, or
underflow, or generate any runtime errors, as this example points out:

int aInt = 999999999 ;
System.out.println(aInt += 999999999) ;//aInt = 1999999998
System.out.println(aInt += 999999999) ;//aInt = -1294967299!!
System.out.println(aInt += 999999999) ;//aInt = -294967300!!!

Recall that the allowable range for int types in Java is -231 to 231 -1. The first add and assign
operation yields a number within this range. However, the second one yields 2999999997, which is
outside this range. Java will compile and execute these statements (try them and see). In contrast,
COBOL and PL/I will generate an error when your program exceeds the numeric bounds for a
variable.

The good news is that the Java engineers provided a solution to this and other problems by providing
the classes BigInteger and BigDecimal in package java.math. These classes enable for arbitrary
precision, do not overflow like variables of some of Java's primitive types do, and come with a spate
of methods that handle conversions. Chapter 10, "Interfaces," has more information on the package
java.math.

The moral of this tragic tale of obnoxious overflow is to be sure that your Java variables declared as
an integer primitive type have plenty of room to grow.

We've yet to look at Java statements that affect the program's control flow. Java supports loops,
decision statements, and case constructs. Let's now take a look at program control statements.

TE
AM
FL
Y

Team-Fly®

Page 111

Java Program Control Statements.

You know that a loop is a group of statements that either execute a fixed number of times or execute
based on the value of a boolean. You also know that a decision statement is a two (or more) way
branch that directs a program to execute statements based on the value of a boolean. I'm wagering
that you know that a case is a construct that selects a group of statements to execute based on the
value of a variable. I'll also wager that you aren't exactly sure how to code the previous three
statement types in Java. For more on this, read on.

Loop Constructs

Here, you'll take a look at Java's loop constructs. Like most programming languages, Java supports
an iterative loop and two forms of a conditional loop. Let's see.

The Java for Loop

The for loop is Java's implementation of an iterative loop. Here is the basic template:

for (index = startval; executioncondition; changeindex) {
// one or more statements that constitute the loop body
}

Notice the use of semicolons inside the loop construct.

Here is an example with a COBOL and PL/I iterative loop thrown in for comparison:

for (idx = 10 ;idx <= 15; idx++) {
System.out.println("Loop index is " + idx) ;
}

A COBOL example follows:

Perform Varying Idx From 10 to 15.
 Display 'Loop Index is ', Idx.
End-Perform.

PL/I example:

Do Idx = 10 to 15;
 Put Skip List('Loop Index is ', Idx) ;
End ;

As you can see, the Java for loop has up to four parts.

1. The Initialization Part

The initialization part is represented by index = startval in the basic template. Your for loop can
initialize more than one variable by separating each variable assignment with a

Page 112

comma (index1 = 10, and index2 = 15). Also, you can declare variables in the initialization part.
These declared variables are known only in the for loop (are local to the loop).

Perhaps an example will drive this point home:

for (int idx = 0; idx < 10; idx++)
 System.out.println("Inside loop " + idx) ;

System.out.println("Outside loop " + idx) ;

Javac responds to this code with the following diagnostic:

Undefined variable: idx
System.out.println("Outside Loop " + idx) ;
 ^

As an aside, note that this for loop does not use curly braces. Later on, you'll read more about the use
of these braces in loops and decision statements. The short story is that when your program executes
only one statement in a loop, your program does not need the braces surrounding that single
statement.

2. The Execution Test

The execution test, represented by executioncondition, is a boolean value that governs the execution
of the loop. Simply put, as long as executioncondition is true, the loop executes. Your job is to look
twice to insure that executioncondition will eventually change to false, or else your loop will attain a
somewhat permanent execution status.

3. The Changing of the Loop Index

The Changing of the loop index is represented by changeindex. In a for loop, the index is connected
to the executioncondition. The usual method of changing the executioncondition is by operating on
the index in the changeindex section. The examples we've seen show the use of Java's unary
increment operator, which is arguably the most common use of this operator.

You can code any expression that changes the index.

4. The Loop Body

The loop body is represented by the braces and the statements between and braces. What's a loop
without a loop body? The loop body is the real work of the loop and will execute as long as
executecondition is true. You've figured out that you need to sandwich loop body statements between
curly braces if you want these statements to execute as a unit or a block. Curly braces are Java's
block construct. We'll meet up with the block construct many a time in this chapter.

Now, you could code an empty loop, a loop without a body. For example, if you wanted to find the
first element of an array that has a certain property, you could code

for (int idx = 0;
 idx < myArray.length && hasTheProperty(myArray[idx]);
 idx++) ;

Page 113

For the purposes of this somewhat contrived example, assume that the method hasTheProperty()
returns true if the indicated array element has the property, false otherwise. You recall from Chapter
5 that Java arrays start with a zero index, right? Also, you recall from Chapter 5 the length property,
right? Finally, you recall from this chapter why this example uses the conditional AND, not the
boolean AND, right?

Note the semicolon after the previous for statement. The Java files are replete with the sad saga of
programmers who mistakenly code a construct similar to the following one:

for (int idx = 0; idx < aNumber; idx++) ;
 { Statement1

 Statementn
}

The semicolon— yes, the big one— after the for statement, causes Java not to associate the statements
in the following braces with the for statement. In short, the previous for statement coded is an empty
loop. The statements between the braces execute once. The Java compiler will not indicate the
presence of an empty loop. However, if a variable declared in the for statement, like idx above, is
referenced in the following block, the compiler will report that idx is an undefined variable.

It is virtually impossible to mistakenly code an empty loop in COBOL or PL/I because of the loop
delimiters used in these languages. Could you see yourself coding anything like the following?

COBOL / PL/I */

Perform Do Idx = 1 to 10 ;
 idx Varying from 1 to 10. End ;
End-Perform.

In brief, the Java for loop executes like its mainframe language brethren's loop. The initialization
section is executed first. Next, the executioncondition evaluates. If true, the loop executes. After the
statements in the loop body execute, the changeindex part executes. The cycle of executioncondition,
followed by statement body execution, followed by changeindex part, continues until
executioncondition is false (or a program error causes a choke).

Of course, for statements may be nested. Nested loops in Java behave like their mainframe language
brethren. Nested loops are commonly used to process elements in multidimensional arrays. Most
programming languages have a limit on the number of nested loops; PL/I and COBOL have a limit
of 16 nested loops. Java, being interpretive, doesn't seem to care; you can code 40 plus nested loops
and the compiler won't even peep. Of course, come execution time, the Java Virtual Machine and
Java Runtime will be playing a different tune.

Java supports conditional loops, or loops that execute a body of statements depending on the truth
value of a boolean condition. Now is the time to explore these useful constructs.

Page 114

Did you catch the comment about a Java for loop having up to four parts? Well, you can omit parts
of a for loop provided you take care of the necessary details elsewhere. Actually, Java doesn't care if
you omit parts of the for loop. You, on the other hand, will probably care a great deal when your
loops don't terminate or variables assume (incorrect) default values. In any event, this is a valid Java
for loop:

int idx = 0 ;
for (; idx < 10;) {
 // Body of the loop
 idx++ ;
}

Note that the index variable initialization is done when the variable is declared and the index variable
increment is done inside the loop. This coding construct falls into the category of "you should know
what this looks like in case you come across it."

The following will be of no surprise. Like iterative loops in most programming languages, the index
variable is incremented before the test is applied. Ergo, in this code snippet:

int idx ;
for (idx = 0; idx < 10; idx++) {
 //Do something here
}
System.out.println("outside idx = " + idx) ;

Java prints out 10.

The savvy programmer insures that the ignominious fate of having index variables one off by not
relying on index variables for processing outside the loop. Fortunately in Java, you can easily
enforce this by declaring your index variable on the for statement as described a few pages ago.

The Java while Loop

As the name implies, the Java while loop executes while a condition is true. In brief, the condition is
first evaluated; if true, the loop body executes. Control is transferred to the while statement where the
condition is reevaluated; if true, the loop body executes. This cycle of condition test/loop body
execution stops when the condition becomes false.

The basic template is

One or more statements setting the value of aConditionIsTrue
while (aConditionIsTrue) {

one or more statements that constitute the loop body

 one or more statements that eventually will change the
 value of aConditionIsTrue
}

Page 115

Syntactically, the bare-bones while loop is

while (aConditionIsTrue) { code block }

However, you'll rarely see while loops like the bare-bones variety. A well formed while loop can
have four parts.

1. Statements that set the initial value of the condition. The condition in the while loop,
represented by aConditionIsTrue in the basic template, must be true for the loop to execute.
The condition is evaluated first. If the evaluation resolves to true, the loop body executes. Your
program should have one or more statements that set the initial value of the condition. Now,
these statements need not be coded immediately before the while statement, but they should be
reasonably close to the while loop itself.

2. The condition that governs the execution of the loop. There is not much to add here.
Remember that you can use either boolean or conditional operators for compound conditions.

3. The Loop Body. Like the for loop previously discussed, what is a loop without a loop body?
If your loop body consists of more than one statement, you'll need the curly braces to form a
block. Java accepts empty while loops, however, such loops will cause your program to enter a
permanent state of execution. Can you figure out why?

4. Code that eventually changes the loop condition. Recall that a for loop has a built-in self-
terminating mechanism if you code it properly. A bare-bones while loop has none; if the loop
condition is true and there is no code to change the condition, the loop will execute forever.
Because nothing you do is important enough to continue forever, you should take great pains
to insure that your loops terminate.

That is why the well-formed loop has code that will, upon successive executions, change the value of
the condition.

Here is an interesting and somewhat counterintuitive observation made over the coding of many
while loops: The code that sets the initial value of the condition is often identical to the code that
eventually changes the condition. Here is an example:

custName = getNextCustomerName() ;
while (custName != null) {
 //Loop Body executes here

 //Get another customer
 custName = getNextCustomerName() ;
}

For the purposes of this example, assume that getNextCustomerName is a method that returns an
object representing a customer name or null if no name is available. Note that the method invocation
is used to set the initial condition and to (eventually) change the condition.

Page 116

Occasionally, you can encapsulate various processing details in methods and really streamline your
code. One technique is to have a method return a boolean and to use that return value as a conditional
in a loop. Your opinion, please:

while (weHaveaCustomerName()) {
 //Loop Body executes here
}

boolean WeHaveaCustomerName() {

 custName = getNextCustomerName() ;
 return(custName != null) ;
}

Notice that the method WeHaveaCustomerName tends to the checking for null after the invocation
of method GetNextCustomerName(). This technique works with any programming language that
enables you to code functions (code that returns a single value) or methods that can return boolean
values. This technique will be used quite a bit in the longer examples of the book. Alas, poor
COBOL programmer, this technique is not available to you.

One point worth noting— If the code that sets the initial condition sets that condition to be false, the
loop body does not execute. In our small, previous example, this makes sense; if no name is fetched,
there is no need to enter the loop.

Here are the analogues in mainframe programming languages:

COBOL / PL/I */

* Code that sets condition /*Code that sets condition */
 Perform With Test Before Do While (aConditionIsTrue);
 Until NOT aConditionIsTrue.
* Loop Body /* loop Body */
* Code that changes /*Code that changes
* Condition condition*/
 End-perform End ;

COBOL conditional testing is based on executing statements until a condition becomes true. In
COBOL, if the condition is true, the statements in the perform group do not execute, hence, the use
of the NOT operator.

Let's look at a different flavor of a Java conditional loop called a do while loop.

The Java do while Loop

This conditional loop is very similar to the while loop previously described. The syntactic difference
is, of course, the use of the word do; the operational difference is the location of the testing of the
condition. Java's do while loop tests the condition at the bottom of the loop.

Page 117

Here is the basic layout of Java's do while loop:

do {
 One or more statements that constitute the loop body

 One or more statements setting and eventually changing
 the value of aConditionIsTrue
}
while (aConditionIsTrue) ;

Note that you still need some code to set and change the value of the condition used to govern the
loop's execution. Also, there is no hard and fast rule about the placement of the condition setting
code relative to the loop body.

You see, perhaps, the most important difference between the while and do while loops, right? Once
you read that the do while loop tests the condition at the bottom, it was pretty obvious. This
difference is that a do while loop must execute at least once, whereas a while loop may never execute
at all. This difference governs when you should use a while loop versus a do while loop.

The PL/I and COBOL analogues to Java's do while loop are shown in the following:

COBOL / PL/I */

Perform With Test After Do Until
 Until NOT aConditionIsTrue. (^aConditionIsTrue);
* Loop Body /* Loop Body */
* Code that changes /* Code that changes
* Condition Condition */
End-Perform. End ;

Note: The use of the NOT operators in each language to create an equivalent construct to Java's do
while looping construct.

Interrupting the Normal Processing of Loops

In general, processing enters code blocks in loops from the to and exits from the bottom. However,
Java gives you the capability to code exits from the middle, or anywhere, inside a loop. Java contains
two statements that support premature loop ejection: break and continue statements.

The break Statement

You have already seen the break statement used in switch statements. You may not have guessed that
break statements may also be used in loops. In a general sense, the break statement transfers the
program's flow of control out of the currently executing block as long as that block is in a loop or
switch statement. As with the switch statement, the

Page 118

break statement causes Java to leave the currently executing loop and pick up execution at the first
statement after the loop. A simple example should suffice:

int idx ;
for (idx = 5; idx < someString.length; idx++) {
 if (idx == 7)
 break ;

 System.out.println("Inside the Loop " + idx) ;
}
System.out.println("Outside the loop = " + idx) ;

Well, assuming that someString has more than six characters, Java will encounter the break
statement inside this loop. Once encountered, program control flow exits the loop and continues at
the first statement outside the loop. Therefore, this little code snippet will produce the following
output:

Inside the Loop 5
Inside the Loop 6
Inside the Loop 7
Outside the Loop 7

When you place a break statement inside nested loops, the break statement will cause program
control to exit from the inner loop to the statement after, in the outer loop. Assuming the outer loop
will execute, your program will enter your inner loop again. The following example shows this:

int aIdx, bIdx ;
for (aIdx = 5; aIdx < 7; aIdx++) {
 System.out.println("Outer loop = " + aIdx) ;
 for (bIdx = 10; bIdx < 15; bIdx++) {
 if (bIdx == 12)
 break ;
 System.out.println("Inner loop = " + bIdx) ;
 }

}

The output follows:

Outer loop 5
Inner loop 10
Inner loop 11
Outer loop 6
Inner loop 10
Inner loop 11

Page 119

The continue Statement.

Another Java statement enabless a program to sidestep normal loop processing. The continue
statement, when executed, causes the program's flow of control to go to the bottom of the loop.
REXX programmers who are familiar with the REXX Iterate statement will immediately understand
how to use Java's continue statement. The following shows how the continue statement acts with
Java's three different loop types:

When used in for loops, the continue statement transfers the flow of control to the loop bottom. From
the bottom, the program flow heads to the for statement, where the increment expression is
evaluated, the test is made, and, if successful, the body of the loop executes.

When used in while loops, the continue statement transfers the flow of control to the loop bottom.
From there, program flow heads to the top of the loop where the condition in the while statement is
still true; remember— the continue statement caused your program to skip past the code in the loop
that could have changed the value of the loop conditional. Hence, the continue statement in a while
loop will cause the loop body to execute.

When used in do while loops, the continue statement causes the same result as being used in while
loops.

Here is another way of looking at the continue statement:

//Using the continue Statement Not Using Continue
for (int a=5; a<10; a++){ for (int a=5;a<10; a++) {
 if (a == 8) continue ; if (a != 8) {
//Remainder of the loop //Remainder of the
//body is here //loop body is here
} }
 }

It looks a bit cleaner to use the continue statement. What do you think?

Enough about loops, okay? Next, you'll read about the terribly exciting topic of decision constructs.

Java Decision Constructs

Java decision constructs fall into two categories: if statements and switch statements. Let's examine
these statements in turn.

Java if Statements

Java if statements are identical to C if statements. However, you would rather know how similar Java
if statements are to COBOL or PL/I if statements. You should find this out for yourself. Here is a
basic template for a Java if statement:

Page 120

if (aConditionIsTrue) {
 // Execute this block of statements when condition is true
}
else {
 // Execute this block of statements when condition is false
}

Notice the absence of the word then in the construct. Notice, and remember— no then in Java if
statements.

Of course, you realize that the else clause is optional. You also realize that if you want to execute
only one statement after the if or else, the block brackets are not necessary.

You also realize that you can nest if statements as follows:

if (aConditionIsTrue) {
 // Execute this block of statements when aCondition is true
}
else
if (bConditionIsTrue) {
 // Execute this block of statements when bCondition is true
}
if (cConditionIsTrue) {
 // Execute this block of statements when cCondition is true
}

Remember the oddball ternary operator? Can you see how this operator can take the place of
constructs like the following?

//Simple if Construct Assigning a Ternary Operator
//Variable One of Two Values That Does The Same Thing

if (aConditionIsTrue) aVar = aConditionIsTrue
 aVar = valueA ; ? valueA: valueB ;
else
 aVar = valueB ;

You think there is a place for the ternary operator in your Java programming bag of tricks?

Java if statements behave much like COBOL and PL/I if statements. There isn't much left to add
about if/else statements. You've seen them before and you'll see them again. Remember to choose the
correct logical operator— the conditional versus the boolean operators to form your conditions.

Java switch Statements

Java supports a construct that enables your code to test a variable's value against a list of values. You
can use a series of if/else statements as follows:

TE
AM
FL
Y

Team-Fly®

Page 121

if (sysCode == 'A') //You remember that == is the
 doAMeth() ; //compare operator, right?
else
if (sysCode == 'B')
 doBMeth() ;
else
if (sysCode == 'C')
 doCMeth() ;
else
if (sysCode == 'D')
 doDMeth() ;
else
 doEMeth() ;

You've seen this sort of stuff before, right? You, of course, would never code anything so crass.
You'd use a case construct. In COBOL, the case construct is called an Evaluate statement; in PL/I,
the case construct is called the Select statement. Java's implementation of the case construct is called
the switch statement. Listing 6.1 shows how it looks.

Well, it looks like all the ingredients for a case construct are present. The default option— the last
option coded in the Java switch statement— is a catch all category. However, the Java switch
statement has break statements after every option.

The Java switch statement has a couple of unexpected surprises. First of all, you need a break
statement after each choice or Java will fall into the other choices. For example, without the previous
break statements, all of the methods, doA through doE, would be invoked regardless of the value of
sysCode.

When Java hits a break statement, control transfers to the first statement after the switch closing
curly brace. That said, the case will sometimes occur when you may want the code in your switch
statement to fall through. In other words, you may not want to code a break statement for one or
more options. Let's say you want the same action(s) to take place when a variable is any one of three
values. You could code your switch statement as follows:

switch (aVar) {
 case val1:
 case val2:
 case val3:
 TakeSomeAction(aVar) ;
 break ;
 default:
 ;
}

Also, notice the null statement in the default option. If you can't think of anything to code for a
default, the null Java statement often fits the bill.

Another unexpected surprise, especially for a modern programming language, is the limited
functionality of the switch statement. Java's switch statement can only use

Page 122

Listing 6.1 Case constructs in several programming languages.

JAVA COBOL PL/I
switch(sysCode)
{
 case 'A':
 doAMeth() ;
 break ;
 case 'B':
 doBMeth() ;
 break ;
 case 'C' :
 do DMeth() ;
 break;
 case 'D':
 doDMeth() ;
 break;
 default:
 doEMeth() ;

Evaluate
 When SysCode = 'A'
 Perform doAMeth
 Thru doAMeth-
Exit.
 When ('B')
 Perform doBMeth

 Thru doBMeth-
Exit.
 When SysCode = 'C'

 Perform doCMeth
 Thru doCMeth-
Exit.
 When SysCode = 'D'

 Perform doDMeth
 Thru doDMeth-
Exit.
 When Other
 Perform doEMeth
 Thru doEMeth-
Exit.
 End-Evaluate.

Select (Syscode) ;
 When ('A')

 Call doAMeth();
 When ('B')
 Call doBMeth();
 When ('C')
 Call doCMeth();
 When ('D')
 Call doDMeth();
 Otherwise
 Call doEMeth();
End ;

Page 123

values that are castable to integers. For example, if I wanted to compare a variable's value to a
floating point number, I would have to use a series of nested if/elses. Java's switch statement can't
cope with nonintegral values. Before you comment on the previous example shown in Listing 6.1
using characters in a Java switch statement, recall that Java treats characters as integers.

Note that you do not need to surround the statements after the case keyword with braces. Yes, it
certainly looks strange considering that braces are used everywhere else when more than one
statement is executed as a block. You could use the curly braces if you wish; javac will accept the
code, but you don't have to use the braces.

Unfortunately and regrettably, the only operator allowable in the Java switch statement when
comparing the variable's value is equality. For example, this PL/I Select statement has no direct Java
switch statement analogue:

Select ;
 When (RetirementMoney < 150000 & Age > 40)
 Put Skip List('You're running out of time') ;
 When (RetirementMoney > 1500000 & Age > 40)
 Put Skip List('Whatcher waiting for?') ;
 When (RetirementMoney > 2000000 & Age > 70)
 Put Skip List('Old Folk Sure Have All the Fun!') ;
 Otherwise
 Put Skip List('Get back to Work') ;
End ;

You would code if/elses to mimic this functionality in Java.

The Java switch statement is a construct of limited functionality with quirks that betray Java's C
heritage. However, even with limited functionality, you'll be coding many switch statements.
Remember to put in that default option; the braces to group code after each option are not required.

In Summary

You've read much in this chapter. You've read about Java's bizarre operators, the likes of which have
never been seen in the mainframe world. You've read about the essentials of busting Java code— the
big three statement types: assignment statements, loop statements, and decision statements. You've
even learned a quirk or two about Java.

This chapter is only one of a book containing 26. You've read so much about Java. At this point, you
see that despite the hype hysteria and hoopla, Java is a programming language. Subsequent chapters
will deal with the object-oriented nature of Java. However, you cannot exploit Java's OO properties
without an understanding of the material in this chapter.

After all, how can you write any methods unless you know how to code the big three?

Page 124

This page intentionally left blank.

Page 125

CHAPTER 7
Class and Object Representation

Java's Object/Class representation, arguably the heart of any object-oriented language, is discussed in
this chapter. You'll read about the makeup of a Java method, the contents of a Java class, and how to
create objects from classes. Also, you'll see how to code methods, which is the meat and potatoes of
implementing object behavior. Along the way, you'll read a thing or two about Java packages.

Anatomy of a Java Method

In Chapter 3, "Creating Your First Java Program," you've seen the main() method, chock full of Java
keywords. In general, Figure 7.1 shows what a method header looks like.

Not shown in Figure 7.1 is the method body, which is responsible for implementing the behavior the
method is to model.

You'll read a brief description of some keywords here and a not-so-brief description later in the
chapter.

Visibility Modifiers

Java enables you to dictate what other members (methods, classes, and packages) can access or use
your methods by coding an optional visibility modifier. The following descriptions in Table 7.1 apply
to any member type (method, class, and package) declared with the modifier. At most, You can code
one visibility modifier per member. Table 7.1 lists your choices.

Page 126

Figure 7.1 A Java method header.

Table 7.1 Visibility Modifier Overview
VISIBILITY
MODIFIER CAN BE SEEN (USED) BY:

public Every class of your application (the world)
protected The package (if one exists) that holds the class containing the

member, the class containing the member, and all subclasses of
the class containing the member

Default Package
Visibility (not
coded)

The package (if one exists) that holds the class containing the
member and the class containing the member.

private Every method or class within the class containing the member.

Page 127

Here's the short story on when to use which visibility modifier.

 Use public when you want free and unfettered access to the member. Period.

 Use protected when you want to keep classes from changing data in the member and you want
subclasses (Chapter 9, "Inheritance" explores subclasses further) to have full access to the
member.

 Use the default package visibility (do not code a visibility modifier) if you want only the
members in the package or class containing the member to have free and unfettered access.

 Use private when you want the only methods in the class containing the member to access the
member.

You'll return to visibility modifiers in Chapter 8, "Encapsulating and Hiding Data and Methods,"
when you read about data hiding and encapsulation (big word!).

Other Modifiers

Java enables you to declare an additional modifier. These modifiers cannot be lumped into a single
category like the visibility modifiers. As with the visibility modifiers, these other modifiers apply to
classes and, sometimes, variables and methods. You may code more than one of these modifiers, at
times, for the same member. Here's the list:

An abstract method is a method that contains no body; an abstract class contains one or more
abstract methods. You'll explore abstract classes in Chapter 9.

A final method is one that cannot be overridden, a final class cannot be subclassed, and a final
variable cannot be changed (constant declaration). The final modifier is the opposite of the
abstract modifier. Again, you'll read more about the final modifier in Chapter 9.

A native method is implemented in some other programming language (usually the C
programming language).

A static method is a method that models some behavior applicable to the class as a whole; a
static variable is a variable that represents a property applicable to the class as a whole. You'll
read more about static methods and variables in this chapter.

A synchronized method, class or code block (code between curly braces) causes the runtime to
lock referenced objects to prevent other processes, or threads from changing them. Threads are
discussed in Chapter 12, "Exception Handling and Thread Basics."

Page 128

Returned Types Coded in Method Headers.

Java methods may or may not return a value. The classical distinction in procedural programming is
of a function that returns a value and a subroutine that does not. If your Java method does not
explicitly return data using a return statement, you must code void in the function header. If your
Java method uses a return statement, you must code the primitive data type or the class of the data
item being returned.

Method Names and Argument Lists

A Java method name can be a string of practically any length not containing spaces and not
beginning with a number. Typically, method names should be verbs that denote some action,
indicative of what they do; whereas variable names should be nouns, indicative of what they are.

An Argument list, if present, is a comma delimited list of Primitive Type/Class-variable name pairs.
If the method does not require an argument, you must code a pair of empty parenthesis. The variable
names used in the Type/Class-name pairs have meaning only within the method. Think of these
argument variables as local to the method.

As an aside, Java passes arguments of primitive types by value and arguments of objects by internal
reference. The long and the short of it is that for primitive type arguments, Java passes a copy of the
argument to the method. Therefore, the method is free to make changes to primitive type arguments
and these changes will not be made to the corresponding parameters in the calling method. In
contrast, for object arguments, Java passes a reference of the argument to the method. Therefore, if
the method changes the argument object, the changes will be made to the corresponding parameter in
the calling method. That's why objects in Java are also known as reference types.

The throws Exception-Name Option in Method Headers

Chapter 12 discusses exceptions. For now, know that a method may include an optional throws
exception-name option, which specifies that if a coded class of exceptional condition(s) arise, the
condition trickles up to an error handler, where (hopefully) you've written code to tend to the
condition.

Passing by Reference and Passing by Value

Let's face it; a program written in a procedural language is a coupled collection of procedures acting
independently on data in various formats. Each procedure does one of three things to a piece of data:
gets it into the system, transforms the data into some other data, and gets the data out of the system.
The issue is how do you, the long suffering and humble programmer, ensure that these procedures
act only on the data you want to be acted on, and no other?

The nature of programming languages used in the mainframe world, with their representative typing
scheme, is an accident waiting to happen. Procedures in these

Page 129

languages will accept any data as long as the passed data bears a resemblance to the correct
parameters. Many programmers get into trouble because they may not fully understand how
parameters are passed to subprograms. In other words, you can pass parameters to a subprogram with
the intent of having that subprogram change the parameter value, thereby making the changed value
known in the calling routine. Conversely, you can pass data to a subprogram with the intent of not
changing the parameter value. The terms used to describe these mechanisms are passing parameters
by reference and passing parameters by value.

You've read about these mechanisms in Chapter 2, "What is Java?"; no need to rehash the
information. What needs to be said here is that Java passes arguments of primitive types by value and
arguments of reference types by reference. Hence, the code snippet:

int aNum = 10 ;
doit(vStack, aNum) ;
System.out.println("aNum = " + aNum) ;

static void doit(VectorStack aStack, int aNumber) {
 aNumber++ ;
VectorStack.pushTheStack(aStack, "A Stack Element");
}

would list aNum = 10. The value of the parameter aNum is not changed in the method; the method
operates on a copy of the parameter. However, because the argument aStack is not a primitive type,
the invocation of the method called pushTheStack() inside method doit() changes the object.

A Word or Two about Java Packages

A Java package is a construct that contains related classes and other Java entities. Packages have two
important traits. One trait is that every method contained within has a unique name. Figure 7.2 shows
how you name methods with packages to get this absolute uniqueness.

The first method name comes from the Java class library; the second is a method name thought up by
DigVidIncLtd. Every word to the left of the class name is deemed to be the package name. In the
case of DigVidIncLtd, their Web site is http://DigVidIncLtd.org, which is guaranteed to be unique.
Hence, the method name is unique.

How do you make these methods known to your program? You need to direct your system to look on
a directory (local or remote) where the desired package resides. Then you code the method name,
package and all, or use the Java import statement. Look at the following:

public MyClass {
 //Java statements
 void myMethod() {
 //Java statements
 org.DigVidIncLtd.RandD.frequencyTransform.fourier(aFrame);

Page 130

Figure 7.2 Guaranteeing unique method names.

This is what you expected, right? All you do is refer to the method name. The Java compiler and
runtime are responsible for locating the package, with a little help from you.

The import Statement

As straightforward as the previous is, no true, red-blooded Java programmer would enter such a long
method name. If all you need is one method from the package, well, maybe. However, if you need
several, you could wear out your fingers with all that typing. Fortunately, Java provides a mechanism
for dealing with this problem: the import statement.

The import statement merely provides a shorthand for referencing entities from packages. Take a
look at Listing 7.1.

The import statement does not "bring in" any code to your program. The import statement does not
behave like a COBOL COPY or PL/I %Include statement. You can have zero to many import
statements. The presence or absence of import statements has no effect on your program's size or
execution speed.

The difference between the two forms shown in Listing 7.1 is that the first one enables the program
to use shorthand to access any class in the package, whereas the second form enables the program to
use shorthand only for the named class. Understand that you can always code the fully qualified
method name.

Some say that you should use the second form to clearly show where your classes are coming from.
Sounds like good advice. Now, if you're using 15 or so classes from one package, I'm sure the Java
style police aren't going to bust you for using the first

TE
AM
FL
Y

Team-Fly®

Page 131

Listing 7.1 Using the import statement to refer to a method in a package.

form. As a programmer who has picked up someone else's code from time to time (we all have,
right?) and wished the code were better documented, you should appreciate every little mechanism
provided by the environment and programming language to document things. End of editorial
comment.

What is the other important trait? Package names mirror the directory where they are stored. This
mirroring is partly how the Java compiler and runtime can find the package. Using our previous
examples, there would be a subdirectory structure java\lang (UNIX), java/lang (Windows), or
java:lang (Mac) within a group of directories called the Classpath.

The package Statement

You can (and should) group related classes into packages. Look, if it's good enough for the
developers of Java, it's good enough for you. It's pretty easy to create a package. All you do is put
your (hopefully) related classes in one source code file and code a package statement as the first line
in the file. To wit:

package myPackageName ;

class MyClass1 {
/** methods, etc. for MyClass1 **/
}
public class MyClass2 {
/** Ditto **/
}
class MyClass3 {
/** Get the idea? **/
}

Note the absence of a curly brace; just what you see previously, okay? You can use whatever
package name that will guarantee uniqueness.

import org.DigVidIncLtd.RandD.* ;
//or import org.DigVidIncLtd.RandD.frequencyTransform ;

public MyClass {
 //Java statements
 void myMethod() {
 //Java statements
 frequencyTransform.fourier(aFrame);

Page 132

One caveat— recall from the previous that the package name must reflect the actual directory
structure where the file is stored. Therefore, pay heed to your package name and where you put the
compiled package. Java will look along the directory structure mandated by your package name.

Here's where the visibility modifiers come in handy. If you want classes and methods coded in a
package to be visible outside the package, you must remember to use the public visibility modifier
on those classes. Now, when you use an import statement like the following:

import myPackageName.* ;

You'll import only those classes with the public modifier.

When you compile a source file with a package statement, Java creates a directory structure that
mimics the package name. Compiling the previous example would create a directory called
myPackageName. Inside the directory would be the class files MyClass1.class, MyClass2.class, and
MyClass3.class.

Anatomy of a Java class

Recall that a class is a template used to create objects that have the same behavior but different
properties. Every Java source code file compiles into a class file. Put differently, class files represent
the platform-neutral bytecode you've heard so much about.

Every Java class is a subclass of class Object. In other words, class Object is the root class. The
upshot of every class being a subclass of Object is that methods defined in class Object are available
to each and every Java class. You'll read about the Object class, and how Java implements subclasses
and implements Inheritance in Chapter 9.

Because a single Java class could be an entire application, you could find many Java software
elements, or members, inside a class. Table 7.2 lists what you could find in a typical Java class.

Let's describe each of these members in more detail.

Constructor Methods and Instance Variables

When you create an object (instantiate the object) from a class, just what happens? In short, the
created object acquires behaviors from the class (the methods) and some piece of user code imbues
the object with properties (the data). Generally, the data from one object is what distinguishes it from
another of the same class (of course, two identical objects could have the same data but different
names, but that's why the preceding sentence began with "generally").

In Java, you can accomplish the previous by coding and invoking a constructor method. Let's take a
look at Listing 7.2.

Before you think you are straying from a description of the items in Table 7.1, fear not. In Listing
7.2, the variables autoName, modelYearYYYY, and retailValue are Instance

Page 133

Table 7.2 Class Member One-Liner Descriptions

Variables. These variables are present with every instance of class Automobile. Put differently,
every object from class Automobile has the properties autoName, model YearYYYY, and
retailValue.

When you create an object from class Automobile, you can provide values for these properties by
invoking a constructor method. Note the following properties of the constructor method, shared by
constructor methods, shown in Listing 7.2:

 The constructor method name is always the same as the class name.

 The constructor method cannot have a return statement.

More often than not, constructor methods have public visibility. You'll read more about visibility
modifiers later in this chapter. For now, a member declared with public visibility means that the
member can be accessed by any class in the application.

How do you create an object? You call its constructor. And, pray tell, how is that done? Well, you
invoke the constructor with the new operator. Behold and learn in Listing 7.3.

Once the bolded statement in Listing 7.3 executes, the object myCar has its instance variables set to
the values passed to the constructor. Also, any methods defined in class Automobile are now a part
of the object myCar.

A. Members That Are Used with Objects Instantiated from the Class

Constructor
Methods

Used to implement some custom object creation process.

Instance Variables Used to hold data that describes some property that may be unique
to the object

Instance Methods Used to implement some behavior that is usually common to all
objects instantiated from the class

Finalizer Methods Used to detach resources held by some objects that cannot be
released by the system

Inner Classes Used to create objects that are wholly contained within other
objects, code blocks, or methods

B. Members That Are Used to Describe or Implement Some Behavior Peculiar to the
Class

Class Variables Used to hold data that describes some property of the class
Class Methods Used to implement some behavior peculiar to the class as a whole
Static Blocks Used to implement some initialization for the class
Nested Top-Level
Class

Used to group related classes within the class together

Page 134

Listing 7.2 A class with a constructor method.

Listing 7.3 Invoking a constructor method.

To refer to the instance variables for a particular object, you prefix the instance variable name with
that of the object. For example, to reference the value of the object created previously, you would
code:

myCar.retailValue

There's more to say about constructor methods. You could have more than one constructor method
for objects of the same class. Before you ask why you would want multiple constructors, first take a
look at Listing 7.4 to see how you code multiple constructors.

//Here is our class
public class Automobile {
 String autoName ;
 int modelYearYYYY ;
 /** Other variables relevant to a particular Automobile **/
 int retailValue;
 /** Other variables, methods, any or all of the stuff
 listed in Table 7.1 **/
/** Here is a constructor method **/
public Automobile(String aName,
 int aYear,
 /**Other args for other vars **/
 int aValue) {
 autoName = aName ;
 modelYearYYYY = aYear ;
 /** Other variables relevant to an Automobile
 object set here **/
 retailValue = aValue ;
}
}

public class someClass {
 //Create an object of class Automobile
 Automobile myCar = new Automobile
("Rolls Royce Silver Ghost",
 1942,
 /** Other Parms **/
 87500) ;
 }

Page 135

Listing 7.4 Another constructor method.

This constructor has the same name as the first. Also, you would code the second constructor in the
same source file as the first. How can Java tell them apart?

You see that the signatures of the two constructors differ, don't you? The second constructor does
not take retailValue as a parameter; the car is probably too old and not worth selling. The second
constructor assigns a blue book value of 0 to all Automobiles created with this constructor.

There's still more to say about constructor methods. You don't have to code one, you know. The
skinny is that if you don't, Java will use a default constructor with no arguments. However, most
objects will require some sort of initial data, which means that you'll need a "real" constructor of
some sort. The default constructor insures that every class has a constructor, although the default
constructor doesn't do much.

Another point about constructors is that you cannot invoke a constructor method apart from creating
an object. Too bad, because such a capability could prove useful if you needed to reinitialize an
object. Perhaps in a future release.

Believe it or not, there's still more to say about constructors, but you'll have to wait until Chapter 9,
where you read about superclasses and subclasses.

By the way, Java does not require you to code anything to destroy an object. Some programming
languages (C++ comes to mind) require you to code destructor methods to remove unused objects,
thereby reclaiming the memory for subsequent use. Java's garbage collection does this reclaiming for
you. In short, Java's memory management keeps track of object use and destroys those objects not in
use. If you had to write code to free memory by destroying objects yourself, you know what a relief
it is to have the runtime do this unpleasant, error-prone task for you?

Back to the subject of creating objects, you may think that you can create an object the same way as
you create a variable of a primitive data type. Why not just declare the object with the class name as
the object's type, as follows?

Automobile someonesCar ;

/** Here is another constructor method **/
public Automobile(String aName,
 int aYear,
 /**Other args for other vars **/
){
 autoName = aName ;
 modelYearYYYY = aYear ;
 /** Other variables relevant to an Automobile
 object set here **/
 retailValue = 0 ;

}

Page 136

Truth be told, you could code the previous and Java would successfully compile. However, you have
not created an object from class Automobile! What you've done is create a reference for an object of
class Automobile.

Let's step back. No, we're not splitting hairs here. A huge difference between the object and the
reference to the object exists. Think of the difference between a variable and a pointer to the variable
(although, as you know, Java doesn't enable the programmable use of pointers). Take a look at the
code in Listing 7.5 and anticipate the output.

Class Demo1 has a main() method, so we can run this and get output. Note the use of the constructor
method to create the object named yourCar. Seems you're riding fancy these days. Looking at
line //1. You see that this statement does not use the constructor; this statement declares an object
reference to aCar. Line // 2 looks like it assigns the contents of yourCar to aCar. In other words, both
objects would seem to have the same data. Line // 3 changes the value of the autoName property of
the aCar object, right? Thus, the output statements should list the autoName property values of both
cars: "Dodge Stealth" and "Ford Fiesta," right?

Well, here's what's going on. While line // 2 is assigning the contents of yourCar to aCar, it is also
assigning the reference of yourCar to the reference of aCar. Now, yourCar and aCar reference the
same object. Along comes line // 3 to change the value of the autoName property of aCar and
yourCar, because both names reference the same object. Now, when the output statements execute,
you'll see:

You Drive a Ford Fiesta
The Other Car is a Ford Fiesta

So much for trading up!

Pop quiz: what if statement // 1 in Listing 7.5 were coded:

Automobile aCar = new Automobile("Buick", 1993, 3000) ;

Listing 7.5 A nasty shock!

public class Demo {
 public static void main(String[] args) {
 Automobile yourCar = new Automobile("Dodge Stealth",
 1999, 56500) ;
 Automobile aCar ; // 1
 aCar = yourCar; // 2
 aCar.autoName = "Ford Fiesta" ; // 3
 System.out.println("You Drive a " +
 yourCar.autoName) ;
 System.out.println("The Other Car is a " +
 aCar.autoName) ;
 }
}

Page 137

The object aCar is now created with a "real" constructor. Would the output produced by the code in
Listing 7.5 with the new line // 1 be now? If you thought that you'd be holding onto that fancy, fast
Dodge Stealth, you'd be wrong. The behavior of the assignment of the object references on line // 2
does not change. The labels aCar and yourCar still point to the same object.

Do you recall that in Java, a string is an instance of class String? One consequence is that you cannot
do what you think is obvious with strings. Listing 7.6 shows some innocent looking statements that
behave in a counterintuitive manner.

Here's the output:

1 and 2 Equal Strings Hello There
1 and 3 Unequal Strings Hello There

What gives? The equality test does not compare the contents of the string objects; the equality test
compares the references of the string objects. Now, Java is "smart" enough to reuse the storage
allocated for string1 and string2. In essence, string1 and string2 are the same object. However, such
is not the case for string1 and string3. Java sees the initialization of these string objects results in
different strings and considers them different objects. However, when you change string3 to have the
same content as string1, Java still considers them different objects. When you do the second
compare, Java tells you that these string objects are, indeed, different.

Remember that Java variables declared of a primitive type behave as expected, or behave as
variables from a procedural language. Java Objects, however, behave a bit differently.

A sober question is how would you assign the contents of one object to another of the same class but
maintain the first object's reference?

Listing 7.6 You know what will happen, right?

String string1 = "Hello There" ;
String string2 = "Hello There" ;
if (string1 == string2)
 System.out.println("1 and 2 Equal Strings " + string2) ;
else
 System.out.println
("1 and 2 UnEqual Strings " + string2) ;

String string3 = "Hello " ;
String3 = string3 + "There"
if (string1 == string3)
 System.out.println("1 and 3 Equal Strings " + string3) ;
else
 System.out.println("1 and 3 Unequal Strings " + string3) ;

Page 138

Instance Methods

In truth, Java provides a mechanism for assigning objects to one another by using a clone method in
the java.lang.Object class. However, by showing different approaches to rolling your own
assignment method, you will read about the different method types available to you. So, without any
further ado . . .

One solution to the previous question is to code a method like the one in Listing 7.7.

You see the logic here, right? We sidestep the assignment operator that, for objects, assigns
references by assigning the object properties. The void keyword tells Java that this method does not
return a value.

Where do you put the method? You could put this method in class Automobile, under the constructor
method. Listing 7.8 shows the code for class Automobile.

Coding the assignTo() method in class Automobile makes this new method part of the "template" for
the class. Objects instantiated from class Automobile will have this new method as part of their
behavior. Put differently, this new method is an Instance method.

Now, how do you use this assignTo() method? Let's look at the Demo class with a change in Listing
7.9 that answers the aforementioned question.

Well, this certainly looks good except for one small detail: The code in Listing 7.9 will not compile.
The reason occurs because the assignTo() method, an instance method, is not attached to an object.
Java expects an object to go along with this method. Therefore, either of the following statements
will satisfy the compiler:

yourCar.assignTo(yourCar, aCar);

aCar.assignTo(yourCar, aCar);

Now, Java is able to properly reference the method and execute the statements within.

Soon, you'll see other, better ways of implementing this assignTo() method. Before you check out
other ways, here's another example of an instance method. The behavior you need to implement is to
determine if a particular automobile is overpriced given its retail value, name, and model year.
Assume the existence of a class called BlueBook that has routines that return a car's blue book value
based on model year and

Listing 7.7 A method that assigns one car object to another.

void assignTo(Automobile src, Automobile tgt) {

 tgt.autoName = src.autoName ;
 tgt.modYear = src.modYear ;
 tgt.retailValue = src.retailValue ;
}

Page 139

Listing 7.8 The assignTo() method in class Automobile.

Listing 7.9 Problem solved?

public class Automobile {
 String autoName ;
 int modelYearYYYY ;
 /** Other variables relevant to a particular Automobile **/
 int retailValue;

 public Automobile(String aName,
 int aYear,
 /**Other args for other vars **/
 int aValue){
 autoName = aName ;
 modelYearYYYY = aYear ;
 /** Other variables relevant to an Automobile
 object set here **/
 retailValue = aValue ;
 }
 /** Assign one Automobile to another **/
void assignTo(Automobile src, Automobile tgt) {

 tgt.autoName = src.autoName ;
 tgt.modYear = src.modYear ;
 tgt.retailValue = src.retailValue ;
 }
}

public class Demo {
 public static void main(String[] args) {
 Automobile yourCar = new Automobile("Dodge Stealth",
 1999, 56500) ;
 Automobile aCar new Automobile("Buick", 1993, 3000);

 assignTo(yourCar, aCar);
 aCar.autoName = "Ford Fiesta" ;
 System.out.println("You Drive a " +
 yourCar.autoName) ;
 System.out.println("The Other Car is a " +
 aCar.autoName) ;
 }
}

Page 140

make. Your method compares the blue book value with the retailPrice property to determine the car's
"overpriced" status. Call the method isCarOverpriced().

You can see that the previous method would be peculiar to each object from class Automobile, right?
The data required to make this determination for each car comes from that car (and from method(s)
in class BlueBook). A possible implementation is demonstrated in Listing 7.10.

Place this code in the source file for the Automobile class. Notice that the method returns a boolean,
indicating whether or not the car is overpriced. Also notice the invocation of the method
getBlueBookValue from class BlueBook; the method name is prefixed with the class name. You'll
read more about such methods soon.

To invoke this method to determine if, say, the yourCar object is overpriced, you code:

yourCar.isCarOverpriced (yourCar) ;

Yes, this does work. However, a hard look at the syntax reveals the clumsiness of the solution. This
invocation requires your coding a reference to the yourCar object twice: once as a prefix for the
method (because it is an instance method) and once as an argument to the method. Java, a modern
language, should be able to do better, right?

this–A Special Keyword

Because the previous invocation specifically calls the method belonging to object yourCar, you
should not have to tell Java again that you want to use the yourCar object as an argument. Java gives
you a way of referring to the object whose method is being invoked within the body of the method.
You use the reserved Java keyword this to refer to the object. Take a look at Listing 7.11.

Notice the changes. You no longer need the argument because Java knows that the reserved keyword
this refers to the object belonging to the method being invoked, or the current object. Now, the
invocation of isCarOverpriced() becomes:

yourCar.isCarOverpriced() ;

Looks better, right? Of course, the reserved word this must be used in the body of an instance
method.

Listing 7.10 Instance method is CarOverpriced().

boolean isCarOverpriced(Automobile aCar) {
 int blueBookValue =
 BlueBook.getBlueBookValue(aCar.autoName,
 aCar.modYear) ;
 return blueBookValue < aCar.retailValue ;
}

TE
AM
FL
Y

Team-Fly®

Page 141

Listing 7.11 Instance method isCarOverpriced() revisited.

Listing 7.12 Another permitted use of this .

Another point about using this: You may code this on the first statement of a constructor to invoke
another constructor. See Listing 7.12, for example.

Yes, such a construct is not too useful, but Java permits it.

Do you recall the comment about implementing the assignTo() method in a "better" way than as an
instance method? Let's explore that now. Using this, you can recode the assignTo() method as in
Listing 7.13.

Notice the use of this to refer to the current object. Also notice that this method has a return value: an
object of class Automobile.

Now, to invoke this method, you code:

aCar = yourCar.assignTo() ;

Other ways to code assignTo exist. Let's look at them now.

Class Methods

As you know, the term method is a piece of code that implements some behavior. The original
object-oriented languages required that only classes had methods that they passed to their
instantiated objects. However, experience has shown that forcing methods to be associated with
objects is limiting in some regards. Could the class as a whole

boolean isCarOverpriced() {

 int blueBookValue =
 BlueBook.getBlueBookValue(this.autoName,
 this.modYear) ;
 return blueBookValue < this.retailValue ;
}

public Automobile(String aName,
 int aYear,
 /**Other args for other vars **/
 int aValue){
 // Call the two-arg constructor in Listing 7.4
 this(aName, aYear) ;
}

Page 142

Listing 7.13 assignTo() revisited.

have some behavior that demands implementation? How about some behavior that requires data
from more than one object? Shouldn't there be a straightforward way of implementing behaviors of
an entire class or more than one object?

What a coincidence! The issue of assigning object contents deals with implementing a behavior that
requires data from two objects. Perhaps this is one of those situations that is not well served by a
method that should, in theory, require data from one object.

If you think about it, why should the assignTo() method be attached to a single object? As you've
seen, we could have coded the method invocation with the prefix of any Automobile object.

In addition, the assignTo() method implements what car-like behavior? I never heard of a car
"assigning" itself to another car. This is not what object-oriented programming is all about. Even
though the coding of the assignTo() method works, we have higher standards, don't we?

What makes more sense is to think of the assignTo() method as a utility needed for applications that
use objects of class Automobile. Can we have this method available to our application by not
referencing this method from an object?

Yes, we can. We can code the assignTo() method to belong to the class Automobile, as opposed to
objects of class Automobile. In JavaSpeak, methods that belong to a class are called Class Methods.

The change needed to change assignTo() from an instance method to a class method is pretty subtle.
You still code the method within the class file. Listing 7.14 shows the class method assignTo().

Notice the presence of the word static in the Method header. A poor choice of a word, really, to
describe its purpose. Static is a hangover from the land of C and PL/I programming. When a C or
PL/I programmer declares a software entity as static, she tells the compiler to allocate memory for
that object, as opposed to having the runtime allocate memory during program execution. This is not
what the keyword static means in Java.

You can think of a class member declared as static as having only one instance or occurrence.
Members belonging to objects have as many copies as there are objects.

Automobile assignTo() {

 Automobile target = new Automobile(this.autoName,
 this.modYear,
 this.retailValue) ;
 return target ;
}

Page 143

Listing 7.14 The class method assignTo().

The assignTo() method coded in Listing 7.10 has a single occurrence. So, how is this class method
invoked? Like this:

Automobile.assignTo(yourCar, aCar);

You saw the previous syntax coming, right? You invoke instance methods by prefixing the method
name with a particular object; you invoke class methods by prefixing the method name with the class
name. Sounds simple enough.

The piece of code in Listing 7.9 that fetches the Blue Book value is a class method of BlueBook.
Here it is again, with the class name bolded:

int blueBookValue =
 BlueBook.getBlueBookValue(aCar.autoName, aCar.modYear) ;

Oddly, Java treats class methods as belonging to every object instantiated from the class. This is
unfortunate; such usage clouds the purpose of the class method as being a property of the class as
opposed to a property of the objects from the class. Here's an example of such usage:

yourCar.assignTo(yourCar, aCar);

aCar.assignTo(yourCar, aCar);

This usage is the same as that for instance methods. Java accepts this syntax for class methods,
bowing to the treatment of class methods belonging to every object. Looking at the two previous
invocations, you'd be hard pressed to know that assignTo() is a class method. You could (likely)
believe that the application has a need to include the behavior implemented by the assignTo()
method to objects. Looking at the invocation prefixed by the class name, you couldn't miss the fact
that assignTo() is a class method.

Why confuse the issue? If you want to use a class method, make it easier on those long-suffering
programmers that will follow in your codesteps by prefixing the method name with the class name.
Regardless of how you invoke a class method, you'll have only one copy in your application.

static void assignTo(Automobile src, Automobile tgt) {

 tgt.autoName = src.autoName ;
 tgt.modYear = src.modYear ;
 tgt.retailValue = src.retailValue ;
}

Page 144

Use a class method when the desired behavior does not apply to a particular object but to the class as
a whole or to multiple objects. Use a class method when the implementation of said behavior
requires data from multiple objects from the same class.

Use an instance method if the behavior applies to a particular object. Use an instance method when
the implementation of said behavior requires data from a single object.

Finalizer Methods.

Java, as you know, reclaims memory from unused, or dead, objects by using a garbage collection
scheme. If you have a need to perform some activity between the time the garbage collector
recognizes an object as garbage and the time the memory for that object is reclaimed, you can code a
finalizer method. Some resources, such as file locks, may be held even after an object representing a
file is garbage collected.

All finalizer methods must have this signature:

protected void finalize() throws Throwable

When you read about threads in Chapter 11, "Java Event Handling Basics," you'll revisit finalizer
methods, but not that much— you won't use them all that much.

Class Variables

Objects have behaviors that are relevant to their being implemented as instance methods. Classes
have behaviors that are relevant to the class as a whole implemented as class methods. Objects have
properties that describe particulars about the object stored as instance variables. Classes have
properties that describe particulars about the class as a whole stored as class variables.

For example, the number of cars in class Automobile is a property of the class, not any particular
object. Java provides a mechanism for declaring variables that belong to the class. All you need do is
use the static modifier. Look at Listing 7.15.

Notice that you can use the class name to reference the variable.

Yes, this works. Do any of you astute readers see a problem with this technique? Here's a hint: The
problem is not with the declaring and use of the class variable in class Automobile; the problem is in
the access of this variable in class Demo.

You'll revisit this situation of improper access of class and instance variables in the next chapter.

Static Blocks

Java enables you to code blocks of code that are not part of any method. Recall that a block is one or
more statements enclosed in curly braces. To code blocks that do not belong to a method, merely
affix the modifier static to the start of the block, as follows:

static {
 //Some code
}

Page 145

Listing 7.15 An example of using and referencing a class variable.

The code must be inside a class (not between a package statement and a class or between two
classes) and outside all methods.

Static blocks execute only once when the class loads. You cannot invoke static code like you would a
static method. Indeed, if you need to invoke the code yourself, you cannot use static code.

Static code is good for initializations when you must guarantee that some activity relevant to the
class takes place only once and at the start of the class load. Also, static code can access only static,
or class, variables. Although instance variables are coded outside of any methods, these variables are
still off-limits to static code blocks.

Nested Top-Level Classes and Inner Classes

The last topics on Table 7.2 are the Nested Top-Level and Inner Classes. Sometimes, you may find it
convenient to include one class wholly within another. The nested top-level class mechanism enables
you to declare a static class within another class. You may find using a nested top-level class a handy
way of organizing significant data that is tightly coupled to the enclosing class. The only
requirements for a nested top-level

Class Automobile {
 //Other Statements
 //Here is the Class Variable
 static int numberOfCars = 0 ;
 /** Here is a constructor method **/
 public Automobile(String aName,
 int aYear,
 int aValue) {
 autoName = aName ;
 modYear = aYear ;
 retailValue = aValue ;
 // Tally up the new Automobiles
 numberOfCars++ ;
 }
 //Remainder of class Automobile
 }
 Class Demo {
 //Other Statements
 System.out.println("Number of Cars = " +
 Automobile.numberOfCars) ;
 //Rest of class Demo
 }

Page 146

class are that you must use the enclosing class name when referring to objects of the nested top-level
class outside of the enclosing class. For example:

class MainClass {
 //Statements
 static class NestedClass {
 //Variables, methods, etc - same old stuff
 }
 //Reference object of NestedClass within enclosing class
 void aMethod() {
 NestedClass objNestedClass = new NestedClass() ;
 }

} // of MainClass

Recall that everything you code in Java has to be contained within some class. Some feel that this
requirement, not specific to Java, is a flaw with object-oriented programming. If you want to code an
itty-bitty utility method, you need to create a class before coding the method inside this class. Of
course, to use this utility, you need to ensure that this class can be located (on the CLASSPATH)
when you compile.

Inner classes help you out here. You can code a class inside an existing class. The syntax depends on
the type of inner class you want. In JavaSpeak, three types of inner classes exist: Member classes,
Local classes, and Anonymous classes.

You code member classes like top-level nested classes except that you omit the static qualifier. Thus,
member classes are associated with every instance of the enclosing class. Think of objects from the
member class like other members associated with objects of the enclosing class. The inner class can
reference members in its enclosing class. The enclosing class needs to declare objects from the
member class before using the inner class methods.

Member classes are rarely required. These classes are often a convenience. The member classes are
not visible outside the enclosing class.

Here's a sample declaration and invocation of a member class:

class MainClass {
 //Statements
 class MemberClass {
 //Variables, methods, etc - same old stuff
 }
 //Reference object of NestedClass within enclosing class
 void aMethod() {
 MemberClass objMemberClass = new MemberClass() ;
 }

} // of MainClass

Local classes are another type of inner class. The difference between a member class and a local
class is that a local class is defined within a method. The common use for a local class is to
implement some behavior for a graphical interface object. An anony-

Page 147

mous class is a refinement of the local class. This form of inner class combines the class definition
with an instantiation of the class.

You'll read about local and anonymous class usage in Chapter 11 on events.

In Summary

You've read much about how Java represents objects and classes. However, the best is yet to come.
In the next chapter, you'll read about that infamous object property of encapsulation. In Chapter 9,
you'll read about the nefarious object property of inheritance. That will pretty much describe how
Java implements the object-oriented view of programming.

Page 148

This page intentionally left blank.

Page 149

CHAPTER 8
Encapsulating and Hiding Data and Methods

This chapter explores Java's technique for data hiding by way of visibility modifiers. Java code
samples showing the effects of declaring objects and variables with different visibility modifiers is
included. Encapsulation goes hand in hand with data hiding, and this chapter has examples of objects
with protected attributes accessible by interface code only. This too is a concept that may be
unfamiliar to the reader.

This chapter also includes PL/I code that, at first glance, seems to implement encapsulation. This
PL/I code is compared and contrasted to Java code that successfully encapsulates object properties
and behaviors. The chapter ends with a discussion on get and set methods, which enable users of
your classes to have controlled access to instance variables.

Encapsulation

Encapsulation. Quite a twenty-dollar word! For our uses, encapsulation is the mechanism that
prevents a variable from one class to be inadvertently modified by a method in another class.
Encapsulation is a major property of object-oriented programming in general, and Java programming
in particular.

Think of a class as a capsule surrounding the classes' data and methods. This capsule shields the
contents of your class from outside, prying eyes. You allow access to the data and methods in the
class by coding a well-defined interface. In other words, programmers do not know how you've
implemented your classes and, as a consequence, cannot rely on intimate, implementation details
when accessing your classes'

Page 150

data. In addition, you are free to change the underlying class implementation without affecting how
others access your class (this is where the well-defined interface comes into play).

This capsule offers protection against data being improperly changed and methods being illegally
invoked. The strength of this capsule is directly proportional to the features of the programming
language that support encapsulation. Put in the language of the systems analyst, the capsule binds
related data and operations that imbue data with behavior into a highly cohesive object.

As you'll read soon, Java has all the essentials to firm up that capsule wall and gives you, the humble
programmer, complete control over what code can touch or access your class.

Hand in hand with encapsulation is the concept of data hiding. Data hiding is the strategy for
implementing an encapsulation mechanism. Essentially, data hiding enables you to protect data from
changes by hiding this data from unauthorized classes. Sometimes, the terms encapsulation and data
hiding are used interchangeably.

Why Encapsulate and Hide Your Data and Methods?

It's all about control.

The reason you want to encapsulate your classes is to give you control over who, what, and where
your class is accessed. Given this control, you are free to change your classes' implementation
without fear of breaking existing code. In addition, you can relax, knowing that someone cannot
mistakenly change your object's data because you have enforced access to this data by way of a well-
defined interface.

Before going into the details of how to encapsulate your classes and hide your data in Java, a few
words on how data can be unwittingly and erroneously changed in a Java program are in order, and
what Java features help prevent such unwanted changes.

Preventing Unwarranted Changes to Your Data

Preventing unwarranted changes to your data touches on a few issues: variable scoping, the
parameter passing mechanism supported by the programming language, and the features available in
the programming language to hide your data and encapsulate your classes. The first two items are
issues to reckon with in procedural languages as well as Java.

Variable Scoping

Variable scoping is where a variable is known in a program. If a variable is known in a program, the
value of the variable can be changed. At times, the variable is unknowingly or mistakenly changed
by a piece of code that has no business making such changes.

TE
AM
FL
Y

Team-Fly®

Page 151

In COBOL, variables global to the compile unit are truly the rule; in PL/I, local variables are actually
the exception. A telling clue is that compilers in these languages have options to produce variable by
statement number cross-reference listings because variables can be used (and changed) on practically
any statement in the compile unit. For compile units consisting of thousands of lines of source, no
practical way exists for a mere mortal to keep track of what gets accessed and changed where.

Naturally, a program unit changing variables throughout its 5,000 line code is quite the mess.
Commonly, COBOL and PL/I applications used in today's data intensive industries contain anywhere
from 100 to 1,000 such compile units; each compile unit contains hundreds of declared variables,
swimming in a sea of code.

Maybe this explains the sky-high maintenance budgets of the legacy DP shop.

Limiting variable use, or limiting the scope of a variable, to a subprogram makes sense because now,
a mere mortal can keep up with variable changes. Now, a particular variable, more properly scoped,
can be changed on, say, 100 lines as opposed to 5,000 lines. If a problem in the application can be
tracked down to a compile unit, these more properly scoped variables can, in all likelihood, be
removed as suspects.

Java enforces variable and object scooping with the block construct. You've already read that by
declaring a variable or object within a pair of curly braces, the block construct, you've limited the
access to that variable or object to that block. The COBOL programmer has no blocking construct;
the PL/I programmer has two.

Some scoping examples follow. Any thoughts on what Java would do with the code snippet in
Listing 8.1?

Notice that the loop index variable is declared within the loop. As an aside, you recall that the
brackets used in the loop are optional, right? Well, here's what the Java compiler, javac, has to say
about this piece of code in Listing 8.2.

Notice that the variable idx is not known outside the loop. The lingo is that the reference to the
variable idx falls outside the variable's declared scope. Javac will not report the diagnostic by
referring to scope; javac just tells you it cannot locate a definition for the referenced variable.

Listing 8.1 What will Javac and Java do?

public class ScopingExample {
 public static void main(String[] args) {

 for (int idx = 0; idx < 5; idx++) {
 System.out.println
("idx Known in loop " + idx) ;
 }
 System.out.println
("idx Known in method " + idx) ;

 }

}

Page 152

Listing 8.2 Javac's response.

Listing 8.3 A PL/I version of the above Java code.

As a comparison, Listing 8.3 shows how you'd code the previous (well, close enough!) in PL/I.

As an aside, PL/I will compile this example and provide a default value and data type for the variable
idx referenced outside the Begin block.

One more example is demonstrated in Listing 8.4.

This main() method has two separate variables named idx. Each variable is defined in a separate
block; therefore, each variable has its own scope. Put differently, each variable is known (and can be
changed in) different parts of the program.

Now, you don't have to be especially brilliant to realize that using the same variable name in
differently scoped areas of the same method is, quite frankly, the mark of the amateur.

Pop quiz: How many blocks are present in Listing 8.4? This listing has four blocks: the block
defined for the class, the block defined for the main() method, the block defined in the for loop, and
the block defined by the interior curly braces.

The previous examples showed scoping of Java primitive type variables; the same scoping rules
apply to objects, or reference data types as well.

ScopingExample.java:8: Undefined variable: idx
 System.out.println
("idx Known in method " + idx) ;
 ^
1 error

Main: Proc (aStringArgument) Options(Main) ;
 Dcl aStringArgument Char(40) Varying ;

 Begin ;
 Dcl idx Fixed Bin(31) Init(0) ;
 Do idx = 0 to 5 ;
 Put Skip List ("idx known in loop " || idx) ;
 End ;
 End ;
 Put Skip List ("idx known in method " || idx) ;
End Main ;

Page 153

Listing 8.4 Another example to show Java blocks and variable scoping.

Understanding the Parameter Passing Mechanism

You've read in Chapter 7, "Class and Object Representation," that Java passes primitive types to
methods by value and passes reference types by reference. Here, we mention that by not
understanding the difference, you can get into a lot of trouble. COBOL and PL/I each provide
mechanisms for passing parameters by value or by reference; Java does not. Thus, make it a point to
get the passing parameters by value and by reference thing straight and understand Java's parameter
passing mechanism.

How Do You Encapsulate Your Classes in Java?

As you might well imagine, the benefits of encapsulation and data hiding do not miraculously
happen. You have to use the features of the programming language to make it happen. Java, of
course, has features to enable you to encapsulate your data and methods. Your job is to use the
correct Java constructs in the correct ways.

That's what this chapter is all about.

public class ScopingExample {

 public static void main(String[] args) {

 for (int idx = 0; idx < 5; idx++)
 System.out.println
("idx Known in loop " + idx) ;

 {//Block defines part of the method with unique scope
 int idx = 10 ;
 if (idx < 20)
 System.out.println("idx Known in if stmt " +
 idx);
 }//End of the block

 }

}

Page 154

Table 8.1 Java's Visibility Modifiers

The primary Java feature you'll use in your programs to encapsulate and hide your data is the
visibility modifier. You've read a bit about these modifiers in Chapter 7. Here, you'll delve more
deeply into this vitally important Java feature.

Table 8.1 shows Java's visibility modifiers once again.

You can qualify (or modify, if you prefer) a primitive type variable, an object, a method, or a class
with a visibility modifier. Here's an example from Chapter 7. Here, notice that the visibility
modifiers are bolded. The purpose of this dissertation is to illustrate how to encapsulate items in
Java. The goal is to allow access to a stack by the approved methods: popTheStack and
pushTheStack. We don't care how these methods work or what other methods are needed by the
stack to get the job done. All we care about is popping and pushing.

Using Visibility Modifiers.

Let's see if the class with the chosen visibility modifiers in Listing 8.5 does the trick.

What follows is a short explanation on choosing the bolded visibility modifiers.

If we assume that you want other classes to access objects of class VectorStack, then you need to
declare the class VectorStack public. Usually, you'd make the class describing a useful data structure
public so others can use it.

If you do not want any users of your class to determine if a stack is empty, you declare your
isStackEmpty() method as a private method. Now, isStackEmpty() is known only to the methods in
your class. Notice that your popTheStack() method first invokes the isStackEmpty() method before
popping. Because method isStackEmpty() has use inside your class and nowhere else, the method
should be declared private.

Methods popTheStack() and pushTheStack() have to be accessible by any class needing a stack.
Thus, the proper visibility modifier for these methods is public.

The constructor method enables users of your class to create objects from your class. Seems logical
that the constructor must be declared public. Oddly, using any visibility modifier other than private
works here.

Now, if you've been paying attention, you might get this question correct: What is the proper
visibility modifier for the data structure that implements objects of class

VISIBILITY
MODIFIER CAN BE SEEN (USED) BY:

public Every class of your application (the world)
protected The package (if one exists) that holds the class containing the

member, the class containing the member, and all subclasses of the
class containing the member

Default Package
Visibility (not
coded)

The package (if one exists) that holds the class containing the
member and the class containing the member

private Every method or class within the class containing the member

Page 155

Listing 8.5 A possible stack implementation.

VectorStack? Your first instinct may be to declare aStack, the data structure corresponding to an
object of VectorStack as a public structure so other classes can access the stack. If so, your instincts
are dead wrong.

Recall that the goal is to have objects of class VectorStack accessed by the classes' popTheStack()
and pushTheStack() methods, none other. The idea is that a stack can only be accessed from the
"top." You should not be permitted to go in the "middle" of a stack and yank out a stack element.

Let's assume you've declared aStack previously as a public member of class VectorStack. Take a
look at the code in Listing 8.6 that uses this class.

After a successful compile, here's the output of this routine:

Element 4
Element 3
Element 2

import java.util.* ;
/** Use the methods in class Vector to implement a stack. **/
public class VectorStack{
 //Possible Stack implementation.
 //Now, the methods
 static private boolean isStackEmpty(VectorStack myStack) {

 return myStack.aStack.isEmpty() ;

 }
 static public Object popTheStack (VectorStack myStack) {
 Object stackElement = null ;
 if (!isStackEmpty(myStack)) {
 stackElement = myStack.aStack.lastElement();
 myStack.aStack.removeElement(stackElement) ;
 }
 return stackElement ;
 }
 static public void pushTheStack(VectorStack myStack,
 Object myStackElement) {
 myStack.aStack.addElement(myStackElement);
 }
 //The constructor
 public VectorStack() {
 aStack = new Vector() ;
 }
 //Finally, the data structure
 ??? Vector aStack ;
}

Page 156

Listing 8.6 Using the stack with a publicly declared data structure.

Line //(1) creates an object of class VectorStack with the new operator. As you know, the Java
runtime will invoke the constructor method for class VectorStack in class VectorStack to create
object vStack.

Lines //(2) through //(5) push an element onto the stack using the public method pushTheStack() in
class VectorStack.

Lines //(6) and //(7) print out the popped stack element. Hence, you'd see the phrase "Element 4"
followed by "Element 3" written to the default output stream. Again, the class uses the public method
popTheStack() to access the "top" element.

Let's take a look at line //(8). This line uses a method called elementAt(). Now, this method is not one
of the approved public methods in class VectorStack. Well, just what is this method elementAt()
anyway?

Take a look at this declare in class VectorStack:

public Vector aStack ;

This is the public declaration of the stack implementation in class VectorStack. Notice that class
VectorStack implements the stack as an object of class Vector. Now, class Vector is a very handy
class that you'll read more on in Chapter 10, "Interfaces." Without giving too much away, know that
a vector in Java is a data structure that holds an array of objects that can grow or shrink in size during
runtime. Class Vector is so handy that an object of class Vector has 24 public methods to add and
remove elements, of which one is the elementAt() method. As the name suggests, elementAt()

public class StackWork {

public static void main(String[] args) {

 VectorStack vStack = new VectorStack
() ; //(1)

 VectorStack.pushTheStack
(vStack, "Element 1") ; //(2)
 VectorStack.pushTheStack
(vStack, "Element 2") ; //(3)
 VectorStack.pushTheStack
(vStack, "Element 3") ; //(4)
 VectorStack.pushTheStack
(vStack, "Element 4") ; //(5)

 System.out.println(VectorStack.popTheStack
(vStack)) ; //(6)
 System.out.println(VectorStack.popTheStack
(vStack)) ; //(7)

 System.out.println(vStack.aStack.elementAt
(1)) ; //(8)

 }

}

Page 157

returns a vector element at a given position. The pushTheStack() method added four elements to the
stack; the popTheStack() element removed the "top" two elements. Thus, the stack has two elements
remaining. The elementAt(1) method returns the second element in the vector (vectors are indexed
from 0, like arrays). Hence, the last line of output is as shown previously, "Element 2".

So, what's going on here, anyway? Seems that we are able to access our stack with methods other
than the approved public methods, pushTheStack() and popTheStack(). In JavaSpeak, we have not
encapsulated the stack. Actually, as the code sits, objects instantiated from class VectorStack are not
stacks because the operation elementAt() is not a stack operation; elementAt() is a vector operation.

Is this a big deal? Well, if you wanted to code an implementation of a stack and you care if you've
done a good job, it sure is a big deal. After all, why go through the coding exercise of creating a
stack when all you've done is hooked a few extra methods on a vector? If you wanted to create a
class that has the features of class Vector with a few additional methods, you should have subclassed
the Vector class. Chapter 9, "Inheritance," discusses how to create subclasses in particular and the
object property of Inheritance in general.

Meanwhile, back at the ranch, you're still checking out this stack implementation. Take a look at the
three following lines:

VectorStack vStack = new VectorStack() ; //(1)
VectorStack.pushTheStack(vStack, "Element 1") ; //(2)
System.out.println(vStack.aStack.elementAt(1)) ; //(8)

Notice that line //(2) using the approved public method refers to the instance of the stack, vStack,
whereas line //(8) using the method elementAt() refers to the instance of the vector aStack.

How did this programmer know that objects of class VectorStack were defined in terms of objects of
class Vector and that the definition relies on a vector called aStack? In the absence of any other
compelling evidence, the best guess is that she looked at the code for class VectorStack. She could
have run the javap program with the -c option to disassemble the class (read Chapter 4, "The Sun
Java 2 Basic SDK Tools," to get the dope on javap).

Bottom line: The issue is not what the programmer who accesses the VectorStack class knows; the
issue is the shoddiness of the code that enables a programmer to bypass the interface and directly
access the underlying data structure.

You know this problem is easy to correct, right? All you need to do is declare the object of class
VectorStack in Listing 8.5 as private, like so:

//Finally, the data structure
private Vector aStack ;

After compiling the revised VectorStack class, you compile the code shown in Listing 8.6 and, lo
and behold, Listing 8.7 is what you see.

The private visibility modifier has done its job. You cannot access the Vector object aStack used to
define objects of class VectorStack. The encapsulation mechanism of Java, implemented by using
visibility modifiers, will not let you. So there.

Page 158

Listing 8.7 Javac tells you off.

Listing 8.8 Do you get it now?

You may be thinking that you can fool Java by coding the invocation of elementAt() without
referencing the Vector object aStack. Well, if you coded:

System.out.println(vStack.elementAt(1)) ; //(8)

Listing 8.8 is what you'd see.

Now, you cannot use the elementAt() method, or any method from class Vector, in a class that
accesses VectorStack because the stack representation of VectorClass objects is invisible to all
classes but the class VectorStack.

Looks like the objective is met. The previous implementation allows access to a data structure from
one location: the "top." You can only use methods to put something on and take something off. The
code models the behavior of a stack, the removing of an item from the top, and the placing of an item
on the top, like cafeteria trays. The code successfully encapsulates the stack and hides the internal
representation from user classes.

A PL/I Example: Is This Object-Oriented Programming?

To an experienced object-oriented programmer, encapsulation is par for the course. For the
mainframe data processor using procedural languages, encapsulation might sound akin to voodoo.
That said, some mainframe languages have features that would seem to allow for the encapsulation
of data.

StackWork.java:17: Variable aStack in class VectorStack not
accessible from class StackWork.
 System.out.println(vStack.aStack.elementAt(1)) ;
 ^
1 error

StackWork.java:17: Method elementAt(int) not found
in class VectorStack.
 System.out.println(vStack.elementAt(1)) ;

1 error

Page 159

Take a look at the PL/I code in Listing 8.9.

This compile unit implements a stack as controlled data structure. The code allocates memory at
runtime for each stack element when required (when pushTheStack is called). Each stack element is
a 32K byte varying string, which is generic as it gets in PL/I.

Listing 8.10 shows how you'd call these routines to use the stack.

So, what does this PL/I code do? The compile unit Stack defines a data structure and two routines to
gain access to the stack: popTheStack() and pushTheStack(). The PL/I stack also uses a function,
isStackEmpty(), to determine if a pop operation will be

Listing 8.9 PL/I stack implementation.

Stack: Proc ;
 Dcl popTheStack Entry
 Returns(Char(32767) Varying) ;
 Dcl pushTheStack Entry(Char (32767) ;
 Dcl aStack Char(32767) Varying Controlled ;
 Dcl Allocate Builtin ;

 popTheStack: Entry() Returns(Bit(1)) ;
 Dcl stackElement Char(32767) Varying Init('') ;

 If ^stackIsEmpty() Then
 Do ;
 stackElement = aStack ;
 Free(aStack) ;
 End ;
 Return(StackElement) ;

 End popTheStack ;

 pushTheStack: Entry(stackElement) ;
 Dcl stackElement Char(32767) Varying Init('') ;

 Allocate(aStack) ;
 aStack = stackElement) ;

 end pushTheStack ;

 stackIsEmpty: Proc Returns(Bit(1)) ;
 Return(Allocate(aStack) = 0 ;
 End stackIsEmpty ;

End Stack ;

Page 160

Listing 8.10 Using the PL/I stack.

permitted. The function isStackEmpty() is hidden from users of the stack. The code in Listing 8.10
declares the stack interface routines and shows how to use these routines.

Well, well. Looks like the astute PL/I programmer can implement encapsulation by declaring a data
structure, coding a well-defined interface, and hiding implementation details from users of the
structure. However, one caveat exists. Do you see it?

This code does, indeed, implement a stack. Unfortunately, the code can use only one stack. Notice
that the code in Listing 8.10 never refers to a stack by name. That's because the code in Listing 8.9
implements a single stack. Why bother with a name when there's only one stack to work with? In
other words, the PL/I code is missing some sort of new operator to create a stack.

Before you think that all you need to do is declare a stack in the program shown in Listing 8.10 and
modify the routines in compile unit Stack to use this declared stack, remember that once you declare
the stack in Listing 8.10, you have access to the data without using the approved interface routines.
Hence, you could change the routines to use more than one stack, but you'd sacrifice the benefits of
encapsulation and expose the stack to whatever you could do in PL/I to the underlying data type, a
string of characters. This is akin to using the elementAt() method on an object of the underlying class
Vector.

If you wanted to work with two stacks in the previous Java code, all you need to do is code another
object instantiation:

VectorStack anotherStack = new VectorStack() ;

To use two stacks in the previous PL/I code, you'd need a copy of the Stack compile unit, say,
Stack2, or you'd have to write code to empty the old stack before using the new one. The act of
cleaning out a stack is not a known behavior of a stack; this is an

useTheStack: Proc Options(Main) ;

 Dcl popTheStack Entry(Char (32767) Varying)
 Returns(Char(32767) Varying) ;
 Dcl pushTheStack Entry(Char (32767) ;
 /** Put something on the Stack **/
 Call pushTheStack(" Element 1") ;
 Call pushTheStack(" Element 2") ;
 Call pushTheStack(" Element 3") ;
 Call pushTheStack(" Element 4") ;
 /** Take something off **/
 Put Skip List(popTheStack()) ;
 Put Skip List(popTheStack()) ;

end UseTheStack ;

TE
AM
FL
Y

Team-Fly®

Page 161

implementation detail forced on the programmer by the limitations of the programming language.

Although PL/I has some features that allow for good procedural programming, PL/I does not
implement common object-oriented features. PL/I programmers cannot implement the concept of
instantiating objects from classes. That's why the previous code must reference a single stack; no
language support for class creation exists.

Using Accessor (Get and Set) Methods

Data hiding means to eliminate the possibility of an unwanted change to data by removing that data
from sight; you can't change what you can't see (or don't know about). Sometimes you want users of
your class to have access to data in your objects or classes and, at times, change this data, but you
don't want to give away the store. Put differently, you want users of your class to have controlled
access to class and object data.

Let's say that your stack class keeps a running total of the number of objects of class String on the
stack. Listing 8.11 shows a way of doing this.

To summarize the changes: Declare an instance variable numberStrings to hold the number of string
elements. Use the instanceof operator to check for String elements every time pushTheStack() is
invoked. Because you need users of your class to access this quantity, you declare the variable
public.

Here's a line of code used in class StackWork (Listing 8.6) to access this quantity:

System.out.println(vStack.numberStrings) ;

Do you see a problem? Here's a hint: Any thoughts on what will happen with the following code:

System.out.println(vStack.numberStrings) ;
vStack.numberStrings = 25252 ;
System.out.println(vStack.numberStrings) ;

Listing 8.11 Changing vectorstack to track number of string elements.

public int numberStrings = 0 ;

static public void pushTheStack(VectorStack myStack,
 Object myStackElement) {
 if (myStackElement instanceof String)
 myStack.numberStrings++ ;

 myStack.aStack.addElement(myStackElement);
}

Page 162

The first println produces the correct number of string elements on the stack; the second produces the
changed value.

Clearly, this property of the stack object should not be changed in this fashion. However, you face a
dilemma: How do you allow read access to this property and prevent write access?

A related problem is how do you allow controlled write access to an object property. For example,
let's say you want to give users of your VectorClass stack the ability to set the size, or set the
maximum number of elements, of a stack. The caveat is that the user of the stack cannot set a stack
size more than 100.

Do you see the problem? If you were to create another instance variable, say, numberStackElements,
and enable the user to change it (which she must), how can you enforce the less-than-101
requirement?

The object-oriented technique for solving these dilemmas is by coding accessor, or get and set
methods. The idea is to allow access to these instance variables (or properties of the object, if you
prefer) by invoking methods as opposed to by coding assignment statements. The code in the get or
set method enforces any restrictions on the access of the object property.

To enforce read-only access to the number of strings in the stack, you may code as in Listing 8.12.

Now, the instance variable numberStrings is declared as private. As you know, the private visibility
modifier blocks any outside class from accessing the variable. The only way to read this variable is
by invoking the get method, getNumberStrings. Here's a line of code that accesses the variable via
the get method:

System.out.println(vStack.getNumberStrings()) ;

Were you to try to read the value of numberStrings directly, Listing 8.13 shows what javac would
tell you.

A few points about the get method are in order. Notice the name of the method, get<variableName>.
This is conventional. Also notice the use of the reserved Java word, this , to refer to the object that
invoked the method. Because this is an instance

Listing 8.12 Using a get method to read an object property.

private int numberStrings = 0 ;

public int getNumberStrings() {

 return numberStrings ;
 //or return this.numberStrings ;
}

Page 163

method, you need not pass the stack as a parameter to the method. Contrast the parameterless mode
of the instance method with the class methods pushTheStack() and popTheStack. These are class
methods. Hence, you must supply the name of the object as a parameter.

Set methods follow the same principle of allowing access to an instance variable only through a
method. Listing 8.14 shows how you could code a set method for the instance variable
numberStackElements.

Once again, the hidden variable is declared private and the set method is declared public. We've
shown a constant declaration that applies to every stack created from VectorClass. Notice that the get
method has the name get<variableName>, again, by convention. Set methods do not return a value,
hence, the void keyword is present on the method header. The argument is the value to use to set the
instance variable. Here, this set method uses the value of the passed parameter if less than the
maximum, otherwise, the maximum. Again, notice the use of the keyword this to refer to the object
invoking the method. Here's a sample invocation:

vStack.setNumberStackElements(40) ;

For instance variables declared as boolean, many use a get method named is<variableName> to
retrieve the value.

Listing 8.13 Again, Javac tells you off.

Listing 8.14 Using a set method to write an object property.

StackWork.java:19: Variable numberStrings in class
VectorStack not accessible from class StackWork.
System.out.println(vStack.numberStrings) ;
 ^

1 error

private int numberStackElements ;
private final static int MAXNUMSTACKELEMENTS = 100 ;

public void setNumberStackElements(int numberElements) {

 numberStackElements =
(numberElements <= MAXNUMSTACKELEMENTS)
 ? numberElements
 : MAXNUMSTACKELEMENTS ;
}

Page 164

Throughout this discussion of get and set methods, the emphasis is on instance variables. Of course,
you may code get and set methods for class variables as well. However, normally an application
needs access to the objects instantiated from classes as opposed to the classes themselves.

In Summary

This chapter described encapsulation, a critical feature of object-oriented programming, and how you
encapsulate objects in Java. By using visibility modifiers and get/set methods, you can allow users of
your classes to access needed object properties without accidentally corrupting, or changing, other
properties. The result is better quality software than you could ever hope to achieve with procedural
languages that lack support for encapsulation and data hiding.

Page 165

CHAPTER 9
Inheritance.

In this chapter, you'll read about the critically important property of both object environments (in
general) and Java (in particular), which is inheritance. This chapter begins with various comments on
inheritance and a cursory examination of various inheritance hierarchies, followed by a short
discussion on the merits of single versus multiple inheritance. Next, you'll see inheritance in action
by a Java implementation of bank account classes. After defining the requirements for your bank
accounts, you'll see the Java code that does not take advantage of inheritance, followed by Java code
implementation that does.

Inheritance Defined

The simple definition of inheritance that follows belies the power of inheritance. Inheritance is a
mechanism whereby one class can use the behaviors (methods) and properties (data) from other
classes. Inheritance enables you to define new classes as a combination of existing classes.
Additionally, you would add functionality not found in the existing classes to the new classes.

In objectspeak, a subclass inherits from one or more superclasses. In Javaspeak, a subclass extends
its superclass. The astute reader notes the use of the plural in the objectspeak phrase, and the singular
in the Javaspeak phrase. No, this is not accidental. Java was designed to not enable a subclass to have
more than one superclass. Shortly, in this chapter, you'll read some reasons for this design decision.

Page 166

The strength of inheritance is that you, the Java programmer, need do little to reuse behaviors and
properties from existing classes. By using a few Java keywords here and there, you're using
inheritance. You don't copy and paste code from one class to another; you reference the methods and
properties in the superclass you want to use in your subclass as if they were defined (coded) in the
subclass. Many times, if you look at the invocation (in the subclass) of inherited methods (from the
superclass), you would not know that the methods are inherited.

Another way of looking at a group of subclasses and superclasses is that these classes form a
hierarchy, with the superclasses on the top, and the subclasses underneath. The terms inheritance
tree or hierarchy tree are aptly used to describe the inheritance relationship.

Same Classes, Different Inheritance Trees

Before you read about the Java treatment of inheritance, take a look at the two examples of hierarchy
trees in Table 9.1, which are composed of real world entities. The trees show different hierarchies of
the same entities. The hierarchies reflect different ways of illustrating the relationships among the
same entities.

The following table shows two possible arrangements of vehicles. The first classifies vehicles by
what they travel on, or in; the second classifies vehicles by what the vehicle transports. Under each
hierarchy is a short list of behaviors. Think of the vehicle classifications as classes, and the behaviors
as methods.

With both hierarchies, some behaviors for a vehicle are start, stop, and steer. Every vehicle has this
behavior, regardless of where the vehicle travels or what the vehicle transports. If you were to model
the behaviors of different vehicles, you would provide an implementation for starting, stopping, and
steering a vehicle. If your implementation environment supports inheritance, you could provide
implementations at the topmost entities of the hierarchy and allow the bottom entities to use all, or
part of these implementations. Put differently, objects of class Cars or Space Shuttles or any other
vehicle would have access to these methods.

Every operator of a land vehicle has a need to repair whatever touches the road from time-to-time, be
it a tire or a tread. This repair behavior is peculiar to land vehicles because, simply put, land vehicles
have tires or tread. Put another way, land vehicle objects have a property of 'have tires' or 'have
treads.' By implementing a 'repair tire' behavior in an environment that supports inheritance, all land
vehicles, or classes that are children of the land vehicle class, that have tires can inherit and therefore
use the implementation.

When vehicles are classified according to what they transport, the behavior of repairing a tire does
not fit neatly into the classification. If you need to implement a 'repair tire or tread' behavior, you
cannot take advantage of inheritance with the second hierarchy because this hierarchy does not
enable you to specify a parent class in the hierarchy as one having tires or treads. In other words, you
cannot model a Passenger, Cargo, or Military Vehicle as one having tires or tread with the existing
second hierarchy.

The vehicle classes used in both hierarchies are the same; they have the same attributes and
behaviors. After all, that's the point of object technology— objects have a set of

Page 167

Table 9.1 Two Vehicle Hierarchies

properties and behaviors. These properties and behaviors doesn't change when you create different
superclass/subclass hierarchies. Whether you model a truck as a child of a land vehicle or passenger
vehicle, a truck has tires. Now, the problem at hand may

VEHICLE HIERARCHY 1 VEHICLE HIERARCHY 2

• Vehicle • Vehicle
• Land Vehicle • Passenger Vehicles
• Cars • Cars
• Buses • Buses
• Trucks • Trucks
• Tanks • Trains
• Troop Carriers • Boats, Yachts
• Trains • Sailboats

• Water Vehicles • Cruise Ships
• Boats, Yachts • Planes
• Sailboats • Jets
• Cruise Ships • Space Shuttles
• Cargo Tankers • Gliders
• Warships • Airships
• Submarines • Cargo Vehicles

• Air Vehicles • Trucks
• Planes • Trains
• Jets • Cargo Tankers
• Gliders • Planes
• Airships • Jets

• Space Vehicles • Rockets
• Space Shuttles • Military Vehicles
• Rockets • Tanks
• ICBMs • Troop Carriers

 • Warships
 • Submarines
 • Planes
 • Jets
 • Rockets
 • ICBMs

Some Vehicle Behaviors Some Vehicle Behaviors
• Start, Stop, Steer • Stop, Start, Steer

Some Land Vehicle Behaviors Some Passenger Vehicle Behaviors
• Repair Tire or Tread • Collect Fares, Confirm Destination

Some Water Vehicle Behaviors Some Cargo Vehicle Behaviors
• Bail Water, Drop Anchor • Deliver Payload , Confirm Shipment

Some Air Vehicle Behaviors Some Military Vehicle Behaviors
• Take off, Land • Confirm Orders, Deliver Payload

Some Space Vehicle Behaviors
• Ignite Boosters, Achieve Orbit

Page 168

not require you to implement a "Repair Tire" method when you classify vehicles by what they
transport. If you must, you can still implement such a method. The point is that you cannot easily
leverage inheritance to reuse this method when you are using the second hierarchy.

Classes often have several hierarchical relationships. Here, you've seen two possible arrangements of
vehicles. You could have arranged the vehicle classes by the size of the passengers and crew, or the
type of fuel used to propel the vehicle. The hierarchy you choose to create should be heavily
dependent on your problem domain.

Classes at the top of a hierarchy tree are more abstract than those at the bottom. Another way of
putting this is that the classes at treetop do not correspond to tangible, real world entities, whereas
those classes at the bottom do. In our previous example hierarchies, the topmost class is called
Vehicle. Now, vehicles have real behaviors and properties. However, real world vehicles do not
come from this topmost class; they come from a bottommost class. In objectspeak, you doesn't
instantiate objects from classes Vehicle or Military Vehicles; you instantiate objects from classes
Tank or ICBM. In Javaspeak, class Vehicle or class Military Vehicles are abstract classes. The top
classes exist to provide an inheritance mechanism whereby properties and behaviors may be
inherited by the real world, bottommost classes. After all, cars and buses are real world things,
whereas Passenger Vehicles is an abstraction.

Although the top- and mid-level classes are abstract, you'll still implement methods that correspond
to the classes' behaviors. However, the logic behind coding methods for top- and mid-level classes is
to make life easier for the bottom level classes. Just like life, the parents always work hard and make
sacrifices for their children. The same is true with object environments and inheritance relationships
among parent and child classes.

The keen reader will notice that some classes in the second hierarchy are bolded and italicized.
You'll revisit these classes in the section Single Versus Multiple Inheritance, coming up next.

Single Versus Multiple Inheritance

The definition of inheritance, used in this chapter, allows for one or more subclasses inheriting
behaviors and properties from one or more superclasses. The industry jargon for the object property
of allowing a class to inherit from more than one superclass is multiple inheritance. You don't have
to be exceedingly sharp to deduce the industry jargon of prohibiting a class from inheriting from
more than one superclass.

Recall that Java does not permit a class to inherit from more than one subclass. In other words, Java
permits single inheritance only. You may reasonably question the wisdom of disallowing multiple
inheritance. After all, if inheriting properties and behaviors from one superclass is effective,
shouldn't inheriting from more than one class be even more effective?

To shed some light on potential problems with multiple inheritance, take a look at the second
hierarchy in Table 9.1. The reader will notice that some classes are bolded and italicized. These
classes are repeated in the hierarchy; they have multiple superclasses. In English, a plane can
transport passengers and cargo, or soldiers and arma-

Page 169

ments. Given this hierarchy, a plane class could be a child of all three superclasses.

Now, the second hierarchy shown in Table 9.1 does not reflect a multiple inheritance scenario. You
could construct the hierarchy and classes such that the Plane class with a superclass of Passenger
Vehicle is different than the Plane class with a superclass of Military Vehicle. Here, to draw
distinctions between single and multiple inheritance, we're assuming that the plane class (and others)
share properties and behaviors from multiple superclasses.

Notice that the behavior Deliver Payload exists for subclasses of Cargo Vehicles and Military
Vehicles. You can safely assume that the implementation for the Deliver Payload behavior for a
subclass of Cargo Vehicle will differ from that of a subclass of Military Vehicle. Given that objects
from class Plane inherit from these two superclasses, the question arises:

Which superclass does the behavior Deliver Payload come from?

It turns out that no straightforward way exists for avoiding ambiguities arising from name clashes.
You could change the names of the methods in the superclasses, but that seems to defeat the purpose
of using an inheritance mechanism in the first place.

You can be reasonably assured that implementation for deliver payload for a cargo vehicle is
somewhat different than that for a military craft. How can an object of one class intelligently use
both implementations?

To avoid such ambiguities, the engineers at Sun, who developed Java, decided to forgo using
multiple inheritance. Still, you can't deny that the ability to inherit from several superclasses has
benefits. The Sun folk use a construct called an Interface. Rather than spending more time on
interfaces in Java, let's defer the discussion to Chapter 10, "Interfaces."

Example of an Inheritance Tree From the Java Libraries

You will see many hierarchies of superclasses and subclasses in an object system. Nowhere is this
more evident than in the Java libraries. For example, Figure 9.1 shows the hierarchy, or tree, for the
Java package java.sql from the Sun Documentation.

You probably have a good idea of how to interpret the following hierarchy tree. The classes to the
left are the parents, or the superclasses, of the classes under and to the right. For example, the class
java.util.Date (second from the top) is a subclass of java.lang.Object; the class
java.lang.SQLException is a subclass of java.lang.Exception.

You may be thinking that the class hierarchy shown in Figure 9.1 belies the comment regarding Java
classes inheriting from (at most) one superclass. You should notice that Figure 9.1 shows class
java.sql.DataTruncation as a subclass (or child) of class java.sql.SQLWarning; it also shows
java.sql.SQLWarning as a child of java.sql.SQLException. You may think that class
java.sql.DataTruncation has more than one superclass: the immediate parent (java.sql.SQLWarning)
and the 'grandparent' (java.sql.SQLException). Well, the preceding comment on the
parent/grandparent classes is, of course, true. However, when the literature speaks of a
superclass/subclass relationship, the relationship is with the parent and child, not with any
grandparents or grandchildren.

Page 170

Figure 9.1 Class hierarchy tree for java.sql.

The observant reader notes that one class in this diagram has no parent. The class java.lang.Object is
the ultimate parent of each and every Java class. In other words, if you were to examine each and
every hierarchy for each and every package in Java (packages that are part of the Java runtime and
packages created by application developers), you would find class java.lang.Object at the top of the
hierarchy chain.

As a Java programmer, you will spend a great deal of time perusing class hierarchy trees. After all,
you don't want to code when you can inherit, right?

An Example: Implementing Bank Accounts

Tables 9.2 and 9.3 with Listing 9.1 on the following pages show a straightforward implementation of
checking and savings account behaviors that illustrate the use of inheritance in Java. The accounts
have the properties and behaviors shown in Tables 9.2 and 9.3.

TE
AM
FL
Y

Team-Fly®

Page 171

Table 9.2 Checking Account Properties and Behaviors

Code for Checking and Savings Account Classes

The implementation of these methods is relatively straightforward. Listing 9.1 shows a not-too-
optimal implementation. Following the Listing and an explanation of the somewhat lackluster
version, you'll see a better implementation that takes advantage of inheritance and a few other Java
features.

A few points about the following code are worth a comment or two. Please refer to the numbers
placed conveniently to the right of the code when reading this dissertation.

Line 1 starts the constructor for the checking account class. You create objects of the checking
account class by using the new operator, passing a name and an initial account balance.

PROPERTY NAME FORMAT

Name of Account
Holder

Character String

Current Balance Currency
Number of Withdrawals Integer
Number of Deposits Integer

BEHAVIOR DESCRIPTION

Open Checking Account Create a Checking Account given the Name of Account
Holder and an initial balance. If the Name of Account is not
provided, open the account for "Pete Moss."

Make a Deposit Add the amount to be deposited to the Current Balance,
generating a new value for Current Balance. Report on the
status of the transaction. If successful, report the value of
Current Balance and increment the number of deposits.

Make a Withdrawal Subtract the amount to be withdrawn from the Current
Balance, generating a new value for Current Balance. Report
on the status of the transaction. If the transaction is successful,
report on the new value of Current Balance and increment the
number of withdrawals. Also, if the number of withdrawals
exceeds five, report on the number of withdrawals.

Report Account
Information

Display the above properties of a Checking Account.

Page 172

Table 9.3 Savings Account Properties and Behaviors

PROPERTY NAME FORMAT

Name of Account
Holder

Character String

Current Balance Currency
Number of Withdrawals Integer
Number of Deposits Integer

BEHAVIOR DESCRIPTION

Open Savings Account Create a Savings Account given the Name of Account Holder
and an initial balance. If the Name of Account is not provided,
open the account for "Pete Moss."

Make a Deposit Add the amount to be deposited to the Current Balance,
generating a new value for Current Balance. Report on the
status of the transaction. If successful, report the value of
Current Balance and increment the number of deposits. Also,
if the Current Balance exceeds 1,000 dollars, add 5 percent of
the amount exceeding 1,000 dollars to the Current Balance.

Make a Withdrawal Subtract the amount to be withdrawn from the Current
Balance, generating a new value for Current Balance. Report
on the status of the transaction. If the transaction is successful,
report on the new value of Current Balance and increment the
number of withdrawals.

Report Account
Information

Display the above properties of a Savings Account.

/**

 A far from optimal implementation of the bank account classes
 with the described properties and behaviors

 Here's the Checking Account class:
**/
class CheckingAccount
{
 String nameHolder; //Account owner
 Double balance ;
 int numWithdrawals=0, numDeposits=1;

Page 173

 //Constructor for when we pass an account holder.
 CheckingAccount (String strAccHolder, int intDeposit) //1
 {
 //Just initialize property fields to passed values
 nameHolder = strAccHolder;
 balance = intDeposit;
 }
 //Constructor for Pete Moss:
 CheckingAccount (int intDeposit) //2
 {
 //Use Pete M. for Account Holder and the passed value
 //for initial deposit.
 NameHolder = "Pete Moss" ;
 balance = intDeposit;
 }
 /**
No surprise here . . . Subtract amount (passed arg) from
 Existing account balance (balance)
 **/
 public void CheckingWithdraw (double amount) //3
 {
 String response;
 if (amount > balance)
 {
 response = "Insufficient Funds. Balance = " +
 balance + "From Checking Account" ;
 }
 else
 {
 balance -= amount;
 numWithdrawals++;
 response = "Withdrawal Successful. Balance = " +
 balance + "From Checking Account" ;
 }
 System.out.println(response) ;
 //Recall requirement that if the number of withdrawals
 //exceeds 5, to report on the number of withdrawals
 //
 if (numWithdrawals > 5)
 System.out.println("Number of Withdrawals = " +
 NumWithdrawals) ;

 }
 //Put some $$$ in
 public void CheckingDeposit (double amount) //4
 {
 balance = balance + amount;

Page 174

Listing 9.1 Implementing the checking account class.

Line 2 starts another constructor. This constructor causes the account holder's name to default to Pete
Moss. Notice that the constructor takes one argument, the initial account balance.

Line 3 is the method header for the checking account withdrawal method. The code included in the
method implements the behavior of the withdrawal action as described in Table 9.2.

Lines 4 and 5 are the method headers for the checking account deposit and display information
methods, respectively.

Listing 9.2 below shows a possible Java implementation of a savings account class with the
properties and behaviors described in Table 9.3.

Any similarities between the code that implements the savings account to the code that implements
the checking account is not accidental. You should see that most of the code is duplicated in both
classes. This sad state of affairs cries out for remedy. Fortunately, this code is Java, which means we
can leverage inheritance to cut out the duplication. The next section explains this task.

Taking Advantage of Inheritance.

Recall from the hierarchy trees of vehicles that the topmost classes in the tree contain behaviors
common to all vehicles. Some superclasses at the middle of the hierarchy had properties (like tires
and treads) common to a group of related subclasses.

 numDeposits++;
 System.out.println ("Deposit Successful. Balance = " +
 Balance + "for Checking Account");
 }
 //
 //Display information on this Checking Account
 //
 public void CheckingAccountInfo() //5
 {
 System.out.println("Checking Account Information\n");
 System.out.println
("Account Holder : " + nameHolder);
 System.out.println("Dollars on Account: " + balance);
 System.out.println("Num Withdrawals: " +
 numWithdrawals);
 System.out.println("Num Deposits : " + numDeposits);
 }
}

Page 175

/**
 Here's the Savings Account class.
**/
class SavingsAccount
{
 String nameHolder; //Account owner
 double balance ;
 int numWithdrawals=0, numDeposits=1;
 //
 SavingsAccount (String strAccHolder, int intDeposit) {
 nameHolder = strAccHolder;
 balance = intDeposit;
 }
 //
 SavingsAccount (int intDeposit) {
 nameHolder = "Pete Moss" ;
 balance = intDeposit;
 }
 //
 public void SavingsWithdraw(double amount) {
 String response;
 if (amount > balance)
 response = "Insufficient Funds. Balance = " +
 balance + "From Savings Account" ;
 else {
 balance = balance - amount;
 numWithdrawals++;
 response = "Withdrawal Successful. Balance = " +
 balance + "From Savings Account" ;
 }
 System.out.println(response) ;
 }
 //
 public void SavingsDeposit(double amount) {
 balance = balance + amount;
 numDeposits++;
 //Recall the requirement that if the balance exceeds 1,000
 //this bank heaps 5% extra onto the balance.
 if (balance > 1000)
 balance += (balance - 1000) * 0.05 ;

 System.out.println ("Deposit Successful. Balance = " +
 balance + "for Savings Account");
 }
 //
 public void SavingsAccountInfo() {
 System.out.println("Savings Account Information\n") ;

Page 176

Listing 9.2 Implementing the savings account class.

A quick, but accurate, observation would be that superclasses contain properties and behaviors
common to a number of subclasses.

This is also true with our checking and saving account classes. A cursory examination of the
properties and behaviors of these account classes, with the goal of finding common ground, yields
the the data in Table 9.4.

It looks like there is a lot of common ground here. We can leverage inheritance by taking the
following steps:

1. Create a superclass containing the properties and behaviors common to both subclasses.

2. Write the code for the subclasses to reflect the differences between the subclass and superclass
implementations.

Hence, without further ado, Listing 9.3 shows the code for the account classes. Now we have code
for a new class: class Account , the superclass for classes CheckingAccount and SavingsAccount,
with the code for the checking and savings account classes. This code also contains some Java
constructs not peculiar to demonstrating inheritance use, but demonstrating some good coding
practices. That said, some code is less than optimal; the sacrifice is made to illustrate some points
about inheritance in Java.

Once again, refer to the numbered lines during the brief and informative dissertation on the code.

Line 1 is the class statement for the Account class (the superclass). The Account class ends just
before line 5; the properties common to all subclasses of Account are declared here. By inheritance,
any subclass has immediate and unfettered access to these properties.

Notice the class qualifier— abstract. By declaring the class as abstract, Java will not enable the class
to be instantiated. Recall that we're interested in the checking and savings accounts; the reason for
using the Account class is to take advantage of Java's inheritance mechanism. We don't want objects
of class Account. We can lay down the law and Java will enforce it. For example, this code,

Account anAcct = new Account("Lou", 250000) ;

will produce the following diagnostic from the Java compiler:

class Account is an abstract class. It can't be instantiated.
 Account anAcct = new Account("Lou", 250000) ;

 System.out.println
("Account Holder : " + nameHolder);
 System.out.println("Dollars on Account: " + balance);
 System.out.println
("Num of Withdrawals: " + numWithdrawals);
 System.out.println
("Num of Deposits : " + numDeposits);
 }

Page 177

Table 9.4 Properties and Behaviors Common to Checking and Savings Accounts

PROPERTY NAME FORMAT

Name of Account
Holder

Character String

Current Balance Currency
Number of Withdrawals Integer
Number of Deposits Integer

BEHAVIOR DESCRIPTION

Open an Account Create an Account given the Name of Account Holder and an
initial balance. If the Name of Account is not provided, open
the account for "Pete Moss."

Make a Deposit Add the amount to be deposited to the Current Balance,
generating a new value for Current Balance. Report on the
status of the transaction. If successful, report the value of
Current Balance and increment the number of deposits.

Make a Withdrawal Subtract the amount to be withdrawn from the Current
Balance, generating a new value for Current Balance. Report
on the status of the transaction. If the transaction is successful,
report on the new value of Current Balance and increment the
number of withdrawals.

Report Account
Information

Display the above properties of an Account.

Abstract class Account //1
 {
 private String nameHolder; //2
 private double balance;
 private int withdrawals=0, deposits=1;
 //
 Account (String strAccHolder, int intDeposit) { //3
 //Just initialize property fields to passed values
 nameHolder = strAccHolder;
 balance = intDeposit;
 }
 Account (int intDeposit) {
 nameHolder = "Pete Moss" ;

Page 178

 balance = intDeposit ;
 }
 public String getNameHolder() { //4
 return nameHolder ;
 }
 public double getBalance() {
 return balance ;
 }
 public int getWithdrawals() {
 return withdrawals ;
 }
 public int getDeposits() {
 return deposits ;
 }
 //
 public void withdraw(double amount) {
 String response;
 if (amount > balance)
 response = "Insufficient Funds. ";
 else {
 balance = balance - amount;
 withdrawals++;
 response = "Withdrawal Successful. " ;
 }
 System.out.println(response) ;
 }
 //
 public void deposit(double amount) {
 balance = balance + amount;
 deposits++;
 }
 //
 public String accountInfo() {
 return ("Account Holder : " + nameHolder + "\n" +
 "Dollars on Account : " + balance + "\n" +
 "Number of Withdrawals : " + withdrawals + "\n" +
 "Number of Deposits : " + deposits);
 }
} //5
 //
 class CheckingAccount extends Account { //6
 CheckingAccount(String strAccHolder, int intDeposit) {
 super(strAccHolder, intDeposit) ;
 }
 CheckingAccount(int intDeposit) {
 super(intDeposit) ;
 }

Page 179

 //7
 public void withdraw (double amount) {
 String strMsg;
 //8
 super.withdraw(amount); //9
 strMsg = "Balance = " + getBalance() +
 " for Checking Account";
 //10
 int withdrawals = getWithdrawals() ;
 if (withdrawals > 5)
 strMsg = strMsg + "\n # of Withdrawals is " +
 withdrawals;
 System.out.println(strMsg);
 }
 public void deposit (double amount) {
 String strMsg;
 super.deposit(amount);
 System.out.println("Balance = " + getBalance() +
 " for Checking Account");
 }
 //
 public String accountInfo() {
 String strMsg;
 strMsg = super.accountInfo();
 strMsg = "Checking Account Information\n" +
 "----------------------------\n" +
 strMsg;
 return strMsg;
 } //11
}
class SavingsAccount extends Account
{
 //
 SavingsAccount
(String strAccHolder, int intDeposit) {
 super(strAccHolder, intDeposit) ;
 }
 SavingsAccount(int intDeposit) {
 super(intDeposit) ;
 }
 //
 public void savWithdraw (double amount)
 {
 String strMsg;

 withdraw(amount);
 System.out.println("Balance = " + getBalance() +
 " for Savings Account") ;

Page 180

Listing 9.3 Bank account classes using inheritance.

You've got to love the plain English diagnostics from the Java compiler, don't you?

Line 2 starts the first constructor; the second constructor immediately follows the first. Now, as
you've seen, a call to the constructor will not create an object of class Account. However, you'll see
how the Java code uses these constructors in the CheckingAccount and SavingsAccount classes.

Line 3 starts a group of methods called get methods. You recall reading about get and set methods in
Chapter 8," Encapsulating and Hiding Data and Methods." Java programmers may disagree on many
things, but they are nearly unanimous in agreement on declaring instance variables private, and using
get and set methods to access the variables. The motivation is to stop code that will alter the state of
an account by improperly accessing an instance variable. For example, if a class using the bank
account classes had the following code,

CheckingAccount anAcct = new CheckingAccount("Lou", 250000) ;
anAcct.deposits +=12 ;

the state of object anAcct would be inconsistent. This reference is illegal when deposits is declared
private. Line 9 shows how a subclass would reference a property by using the get method.

The methods between lines 4 and 5 implement behavior that is common to the checking and savings
account classes. Later in the code, you'll see references to these methods in the subclasses.

 }
 public void savDeposit (double amount) {
 String strMsg;
 double balance = getBalance() ;
 if (balance + amount > 1000)
 deposit(amount + (amount - 1000) * 0.05) ;
 else //12
 deposit(amount) ;
 System.out.println("Balance = " + getBalance() +
 " for Savings Account");
 }
 public String savAccountInfo() {
 String strMsg;
 strMsg = accountInfo();
 strMsg = "Savings Account Information\n" +
 "---------------------------\n" +
 strMsg;
 return strMsg;
 }
}

TE
AM
FL
Y

Team-Fly®

Page 181

Line 5 is the class statement for the first subclass, CheckingAccount. Notice the use of the extends
keyword. The extends keyword tells Java that the two classes named have a subclass/superclass
relationship. Line 12 also uses the extends keyword.

Line 6 starts the constructors for class CheckingAccount. Notice the reference to the constructors in
the superclass by using the super keyword. You'll see a similar reference for the other subclass after
line 11.

Line 7 starts the implementation of the withdraw method for the CheckingAccount subclass. Because
the name of the method found in the superclass is also withdraw, Java needs a mechanism for
referring to the like-named method in the superclass. Java uses the super keyword for this purpose,
as seen on line 8.

Because the instance variables are declared private in class Account, all other classes need to invoke
the get methods to access the variable's values. Lines 9 and 10 illustrate the use of get methods for
the current balance and number of withdrawals properties. The deposit method in class
CheckingAccount uses similar constructs to get the job done.

When a subclass uses a method identically named to one in its superclass, we say that the subclass is
overriding the superclass method. The two methods must return the same data type, an object of the
same class, or void.

The methods in class SavingsAccount are not named identically to those in its superclass. Therefore,
methods of SavingsAccount can reference superclass methods directly. Line 12 shows such a
reference to the method withdraw. The Java runtime searches for the method declared in the
containing class (SavingsAccount). Not finding the method, the Java runtime searches the superclass
for the method, finds it, and executes it. The Java runtime would continue searching up the hierarchy
tree looking for the method and executing the first one it finds.

At first glance, you may think that that code not relying on inheritance is shorter and simpler. Well,
perhaps in this instance that is true. However, this code shows how inheritance in Java is a powerful
feature that enables for true code reuse. Imagine implementing a third type of bank account, say a
money market account, and using the behaviors in the parent Account class. Like the vehicles that all
need to be started, stopped, and steered, bank accounts need to be opened, have money deposited,
and have money withdrawn. Inheritance will certainly lighten your load.

Effects of Casting to and from Superclasses and Subclasses

Before you finish with this chapter, you need to know that you can cast to and from classes and
superclasses and some of the interesting effects of such casting. As you'll read, sometimes you might
see some results that seem counterintuitive.

The only allowable casting between objects of different classes is when these classes have a
superclass/subclass relationship. For example, because class Object is the root class, or is a
superclass of every Java class, the following is legal:

Object myObj = (Object) myChecking ; // 1

Page 182

Put differently, every object from any class in Java can be cast to an object of class Object.

Because class Account is the superclass of class CheckingAccount, this works, too:

Account myAcct = (Account) myChecking ; // 2

However, this will not work

MyChecking = (SavingsAccount) mySavings ; // 3

because classes CheckingAccount and SavingsAccount do not have a superclass/subclass
relationship. Don't be misled because the checking and savings account classes share a superclass.

Because a child class 'belongs' to its parent in the sense that the specific (subclass) is an instance of
the general (superclass), you do not need to code a cast when you assign a child to a parent. The Java
assignment operator works out of the box. Hence, these statements are legal,

Object myObj = myChecking ;
Account myAcct = myChecking ; // 4

and equivalent to the cast assignments labeled // 1 and // 2. However, you cannot assign the general
to the specific; a cast is required. So, you can code the following,

myChecking = (Account) myAcct ; // 5

but not the following:

myChecking = myAcct ; // 6

Looking back at line // 5, you should know that although this line shows a valid coding construct, the
code still might result in a runtime error. For example, you might try to be sly and sneaky, and code
the following:

Account myAcct = myChecking ; // 7
mySavings = (SavingsAccount) myAcct ;

Your reasoning might be that this construct lets you cast a checking account into a savings account,
or, to get line // 3 above to compile and execute. After all, everyone tries to outfox the compiler now
and then. Well, the previous two lines compile. However, upon execution, the Java runtime issues a
ClassCastException, which is pretty much what it sounds like.

Recall that assignment of objects in Java does not create copies of the objects. Java object names are
a reference to the object, not the object itself. The assignment of the checking

Page 183

account object to one of class Account does not create a new object, just a reference to an existing
one. Hence, the following code

Account myAcct = (Account) myChecking ;
System.out.println("Acct Info = " + myAcct.accountInfo());

will list out the account information for myChecking, not myAcct.

In addition, because object assignment operates on object references, you can assign and cast objects
of related classes back and forth. Looking previously at line 1, you might think that when Java cast
the object of subclass CheckingAccount to an object of the (most) general of Java classes, the Java
environment 'lost' the subclass information. You might think this to be true, especially if you forgot
that Java operates on references, not objects. Even after the assignment on line 1, the original object
still exists. Ergo, the statements

Object myObj = myChecking ;
myChecking = (CheckingAccount) myObj ; // 8
System.out.println(myChecking.accountInfo()) ;

will list the information for the checking account. Of course, you realize that the cast coded on line //
8 is required.

To wrap this assignment/casting to and from subclasses and superclasses, know that you can assign a
subclass instance to a superclass instance with or without a cast, you can assign a superclass instance
to a subclass instance with a cast , and you cannot assign instances of unrelated classes at all, with or
without a cast.

In Summary

This chapter explored the vitally important property of inheritance. You've seen how inheritance
allows you to model common characteristics of several classes into a superclass. The code
implementing the common characteristics can be used by child classes.

Of course code reuse saves time because you don't have to reinvent wheels, but improved system
quality is another of its benefits. The reused code, presumably bugfree, should not introduce
problems when incorporated into systems.

Inheritance is a feature not available to the COBOL or PL/I programmer in the mainframe shop.
You, the mainframe programmer, may have to think along different lines when you write Java
because inheritance is part and parcel of Java programs.

Page 184

This page intentionally left blank.

Page 185

CHAPTER 10
Interfaces

Chapter 9, "Inheritance," discussed the important object property of inheritance. You've read that
Java supports a single inheritance scheme. You've also read a vague reference or two about a Java
scheme that provides some benefits of multiple inheritance, namely interfaces . Now is the time to
explore Java interfaces in detail.

You'll read a brief description of interfaces, followed by an explanation for how Java interfaces
overcome some of the limitations of the single inheritance model. This short chapter covers the
relationship between interfaces, abstract classes, and concrete classes. You'll learn how to create and
implement interfaces, and see some coding examples of interfaces in use.

What Are Interfaces?

A Java interface is a collection of abstract behaviors; an object declares that it implements this. Put
differently, an interface is a promise that the behaviors, or abstract methods, contained in the
interface will be implemented by declaring objects.

The concept of a Java interface is similar to that of an API. After all, the I in API means interface,
right? An API is a set of behaviors that are used by objects. When you use the Java Database
Connectivity (JDBC) API to issue an SQL statement, you count on the JDBC API to do its job. You
are ignorant of how the call is implemented. All you care about is the promise of expected behavior.

Of course, merely declaring that an object uses this or that behavior is not enough. The behaviors
require an implementation. In the case of using a core, optional, or

Page 186

vendor API, the implementation is already coded and made available for your use. In the case of a
Java interface, someone has to code the implementation. After all, it is not magic.

The relevant lingo is that a class implements interfaces; this is not to be confused with a subclass that
extends a superclass. A class can extend a superclass and implement one or more interfaces. The
declaration looks like this:

class MySubClass extends MySuperClass implements
MyInterface1,MyInterface2 { . . .

The implements keyword may be used apart from the extends keyword, and vice-versa.

Mainframe programmers, too, use APIs to issue SQL or create data entry screens. Mainframe APIs
are like function libraries; the program issues a call to an API function and gets a result. Interfaces in
Java aren't used as function libraries. Interfaces specify what must be done, not how to do it.

Why Are Interfaces Useful?

At times, Interfaces are incorrectly touted as enabling the Java programmer to take advantage of
multiple inheritance. A more accurate slant is that interfaces provide the Java programmer with a
mechanism to overcome some of the deficiencies of single inheritance.

One such deficiency was illustrated in Chapter 9 with the two hierarchy trees for vehicles. Using a
single inheritance model, you have no easy method of implementing both trees and leveraging
inheritance. You would choose one tree, implementing the methods in the other without the benefits
of inheritance.

A set of interfaces defines another hierarchy separate and distinct from the inheritance hierarchy.
However, interfaces are far more; interfaces enable the Java programmer to imbue objects with
behaviors from several classes. When you state that your class implements an interface, you are
saying that objects from your class can be used anywhere the interface is used. For example, the
following declaration

public class Jets extends AirVehicles implements PassengerVehicles,
CargoVehicles, MilitaryVehicles { . . .

establishes two separate hierarchies: the Passenger/Cargo/Military vehicle hierarchy and the
Land/Sea/Air/Space hierarchy. This declaration states that you can use objects from class Jets
anywhere you would use a PassengerVehicle, a CargoVehicle, or a MilitaryVehicle.

Remember that with the inheritance hierarchy, the subclasses have immediate access to
implementations provided in the superclass. The interface hierarchy is a different animal. Every class
that implements an interface must provide, or have access to, an implementation of the behaviors
stated in the interface. The access would be through a superclass. Put differently, if a superclass
implements one or more interfaces, all subclasses therefore have access to the implementations.

Page 187

Referring to the previous declaration, and to Table 9.1, class Jets would need to implement the
methods CollectFares, DeliverPayload, ConfirmDestination, and so on. Now, if the following
declaration existed,

public class Jets extends AirVehicles implements PassengerVehicles,
CargoVehicles, MilitaryVehicles { . . .

then class Jets would have access to the implementations of the three interfaces in class AirVehicles.

Another reason interfaces are useful is that interfaces provide a mechanism to separate
implementations from classes that use the implementations. By separating the two, you can change
implementations without impacting the classes that use them. As the old saying goes, the change is
transparent to the user.

What About Abstract Superclasses?.

Comparing interfaces to an abstract superclass is a useful comparison. Recall that an abstract class
contains abstract methods, or method signatures, return types, and an optional throws clause, but
with no implementation. Interfaces are similar inasmuch as an interface also contains a list of
abstract methods. However, conceptual differences between the two exist.

An abstract superclass carries this overtone of "incompleteness;" the superclass requires one or more
subclasses to complete it. Interfaces are not incomplete in this sense. An interface is a statement that
a list of behaviors must be implemented according to a set of specifications (signatures).

The code present in the superclass places some restrictions on how the subclasses complete the
implementation. Put differently, the superclass could provide a base implementation, the subclass
could provide the details. The base implementation could limit subsequent subclass implementations.

For example, let's assume that our bank account hierarchy enabled for an account identifier property.
Behaviors dealing with this property could be the following:

 Assign an account identifier.

 Retrieve account information by identifier.

 Add, Change, or Delete account by identifier.

The implementation of these behaviors could depend on the account identifier or parts of the account
identifier, being a certain primitive type, like int, or object of a certain user created class. If so,
method implementations in the checking and savings account subclasses must adhere to whatever
constraints are placed by the selection of the underlying data type used in the superclass.

So, where is the problem? One problem could arise if there is a desire to implement this property as
different data types depending on various circumstances. Perhaps one implementation of this
property is best suited for in memory access, another could be best suited for disk access. The single
inheritance model does not easily permit this sort of flexibility.

Page 188

Creating Interfaces

The syntax for creating an interface is straightforward. Following is an example:

public interface PassengerVehicles {

 public double collectFares() ;
 public boolean confirmDestination (Destination where) ;
 // More method signatures here, perhaps

}

You code the previous interface declaration in a file named PassengerVehicle.java as you would
with any java source. The compiler creates a class file, which is PassengerVehicle.class. You may
pass instances of PassengerVehicles, which are arguments to methods. So far, declaring and using
the interface strongly resembles declaring and using a class, right? However, differences exist, which
are shown in the following:

 Interfaces are public; all the contained methods are public.

 Interfaces cannot contain "class" variables— only variables declared final .

 Interfaces contain no body, only method signatures.

Let's see some sample code that ties interfaces and classes together.

Example: Implementing the Vehicle Types

Here, you'll see some code that implements the inheritance and interface hierarchies for out vehicle
classes. For your convenience, Table 10.1 is a section of Table 9.1 showing parts of the vehicle
hierarchies.

Table 10.1 Table 9.1 Revisited

VEHICLE HIERARCHY 1 VEHICLE HIERARCHY 2

• Vehicle • Vehicle
• Land Vehicle • Passenger Vehicles
• Trucks • Trucks

• Water Vehicles • Jets
• Boats, Yachts • Cargo Vehicles

• Air Vehicles • Trucks
• Jets • Military Vehicles

• Space Vehicles • Tanks
• Rockets • Jets

Page 189

The following code shows the inheritance hierarchy:

//The top level class
public class Vehicle {

 String vehicleName ;
 //Constructor
 Vehicle(String aName) {
 vehicleName = aName ;
 }

 public void start() {
 System.out.println(vehicleName + " Has Started") ;

 }
 public void steer() {
 System.out.println(vehicleName + " is steered") ;

 }
 public void stop() {
 System.out.println(this.vehicleName + " Has Stopped") ;

 }
}

public class LandVehicles extends Vehicle{
 //Constructor
 LandVehicles (String aName) {
 //Note reference to superclass constructor
 super("Land Vehicle " + aName) ;
 }

 public void repairTireorTread() {

• Some Vehicle Behaviors • Some Vehicle Behaviors
• Start, Stop, Steer • Stop, Start, Steer

• Some Land Vehicle Behaviors • Some Passenger Vehicle Behaviors
• Repair Tire or Tread • Collect Fares, Confirm Destination

• Some Air Vehicle Behaviors • Some Cargo Vehicle Behaviors
• Take Off • Deliver Payload, Confirm Shipment
• Land • Some Military Vehicle Behaviors

 • Confirm Orders, Deliver Payload

Page 190

 System.out.println("Repairing Tires or Tread on " +
 this.vehicleName) ;

 }
public class AirVehicles extends Vehicle{

 AirVehicles (String aName) {
 super("Air Vehicle " + aName) ;
 }

 public void takeOff(AirVehicles aVeh) {
 System.out.println(aVeh.vehicleName + " Taking off!!!") ;

 }
 public void land() {
 System.out.println("The " + this.vehicleName +
 " has landed") ;

 }
}

Notice that the methods have implementations (or so to speak). The implementation of the takeOff()
method takes an argument of class AirVehicles to reference the property; the land() method uses this,
the implementations of start() and steer() (and others) reference the instance variable directly. The
last reference is preferable to the first two.

interface PassengerVehicles {
 public double collectFares();
 public boolean confirmDestination (Destination where) ;

}

interface CargoVehicles {
 public boolean confirmShipment(Shipment whatShipped) ;
 public void deliverPayload() ;

}

interface MilitaryVehicles {
 public boolean confirmOrders(Orders theOrders) ;
 public void deliverPayload();

}

These interfaces do not have the public visibility modifier coded. You can assume that this code
appears within a class file with the public modifier. Do not expect to see any method bodies here as
you did with the previous superclasses. Remember that the methods declared in the interfaces are
implemented in the classes that use the interfaces.

TE
AM
FL
Y

Team-Fly®

Page 191

Code for the Jet and Truck classes are listed in the following:

class Jets extends AirVehicles
 implements PassengerVehicles, CargoVehicles, MilitaryVehicles
{
 //Constructor
 Jets (String aName) {
 super("The Jet " + aName) ;
 }

 public double collectFares() {
 System.out.println("Jet Fares Collected For " +
 this.vehicleName) ;
 return 1010.11 ;
 }
 public boolean confirmDestination(Destination jetDest) {
 System.out.println("Jet Destination Confirmed For "
 + this.vehicleName) ;
 return(false) ;
 }
 public void confirmShipment() {
 System.out.println("Jet Shipment Confirmed For "
 + this.vehicleName) ;
 }
 public void confirmOrders() {
 System.out.println("Jet Orders Confirmed For "
 + this.vehicleName) ;
 }
 public void deliverPayload() {
 System.out.println("Payload DeliveredFor "
 + this.vehicleName) ;
 }
 //Other methods, perhaps

}

class Trucks extends LandVehicles
 implements PassengerVehicles, CargoVehicles, MilitaryVehicles
{
 //refer to the superclass constructor
 Trucks (String aName) {
 super("The Truck " + aName) ;
 }
 public double collectFares() {
 System.out.println("Truck Fares Collected For "
 + this.vehicleName) ;
 return 2323.11 ;
 }
 public boolean confirmDestination(Destination truckDest) {
 System.out.println("Truck Destination Confirmed For "

Page 192

 + this.vehicleName) ;
 return (true) ;
 }
 public void confirmShipment() {
 System.out.println("Truck Shipment Confirmed For "
 + this.vehicleName) ;
 }
 public void confirmOrders() {
 System.out.println("Truck Orders Confirmed For "
 + this.vehicleName) ;
 }
 public void deliverPayload() {
 System.out.println("Truck Payload Delivered For "
 + this.vehicleName) ;
 }
 //Other methods, perhaps
}

Notice that both classes must provide implementations for all methods declared in the interfaces. Of
course, you are free to declare and code other methods not defined in the interface. Here, you must
use the Java reserved word this to refer to the object in question when you need access to instance
variables.

Next, the following code refers to objects of class Jet and Truck:

public class VehicleExample {

 public static void main(String[] names) {

 Jets myJet = new Jets(names[0]) ;
 Trucks myTruck = new Trucks(names[1]) ;

 double jetFare = myJet.collectFares() ; //1
 double truckFare = myTruck.collectFares() ; //2

 whichPVehicle(myJet) ; //3
 whichPVehicle(myTruck) ; //4

 }
 static void whichPVehicle(PassengerVehicles ph) {
 System.out.println("in which Vehicle Routine");
 System.out.println(ph.collectFares()) ;
 }
}

The main() method accepts the array of string argument, which the method uses to name the objects.
Notice that both Jets and Trucks objects have their own implementation of the collectFares() method;
line 1 invokes the method for class Jets, line 2 invokes the method for class Trucks.

Page 193

Lines 3 and 4 show the strength of interfaces. Notice that the method whichPVehicle() accepts an
argument of PassengerVehicle. However, line 3 passes an argument of class Jets. Java will allow this
construct; when a class implements an interface, the class can be used anywhere the interface can be
used. That is why line 4, which passes an argument of class Trucks, is also permitted.

In Summary

The importance of interfaces is to separate behaviors from classes that use the behaviors. The
previous code shows how you can abstract these behaviors by referencing a class behavior through
an interface. If you were to change the implementations of methods declared in interfaces, you need
not change code that accesses these methods.

In the next chapter, you'll see how to use interfaces with GUI elements to handle events.

Page 194

This page intentionally left blank.

Page 195

CHAPTER 11
Java Event-Handling Basics

In days of old, green screens were the interface between the customer and the computer, and
dominated the data processing landscape. (Now, mainframe terminal emulators that run on PCs have
replaced the classic green screens.) Programs had a sequential flow. Batch systems running
unattended produced mountains of output. For those systems that required user inputs, the input
requirements— the what, where, and when— were well defined. User inputs mostly filled out green
screens and triggered transactions.

Much of the mainframe world is still like this, but with one major exception: The green screen has
yielded to the personal computer as the interface between the customer and the computer. The
customer entering data in a green screen uses a character-based interface; her friend down the hall
entering data in a PC uses a graphical user interface (GUI).

Green screen inputs typically enable a customer to fill in data entry fields and press the Enter or a
function key to accept the inputs and proceed to the next step of the application. In contrast, GUI
inputs enable a customer to enter data, click buttons, invoke actions from menus, display additional
windows, and so forth. As you might imagine, programming an application to accept user inputs
from a green screen is vastly different than from that of a GUI.

This short chapter discusses the basics of writing Java programs to process events. After a brief
discourse on events, you'll read about high-level event processing frameworks called event models
and of course, the Java event model. To have a handle on Java event handling, you'll need a bit of
background on GUI containers and interface components, which you'll also get in this chapter. You'll
see some Java code that captures GUI events. This chapter closes with a summary of Java event
handling.

Page 196

Event Processing

At a high level, you can define an event as something that happens during the execution of a program
that demands attention. For example, when your program reaches the end of a file, your program
should take some action, such as closing the file. Many programs that execute in a mainframe
environment handle a series of predictable events, especially programs that execute in batch. The
handling of events is part and parcel of the programmer's job.

Notice that this description does not deal specifically with applications that accept user inputs.
Chapter 12, "Exception Handling and Thread Basics," discusses the Java mechanism for handling
certain events called exceptions. In this chapter, you'll read about how Java handles events that are
created as a result of user inputs.

Green screen applications process user inputs in a synchronous manner; that is, the inputs come to
the program as a set of well-ordered streams. The program "expects" the user inputs at certain times
during its execution. Most of the time, the program will sit still and wait for users to complete their
inputs, fill out data entry screens, and press ENTER or a function key to allow the program to continue
execution.

The process that green screen mainframe programs use to gather user inputs is relatively
straightforward: The program executes until it displays a green screen where the program patiently
waits for the user to complete the screen entries and hit a continue or process key. This process is
repeated until the program has all the required user inputs, after which the program executes,
oblivious to the user.

In contrast, a GUI application process user inputs in an asynchronous manner. The inputs come to
the program in unpredictable ways: some from clicking a button, some from entering text in a text
area, and some from selecting a menu item. A GUI program has no reasonable way of knowing
ahead of time what sort of GUI elements a user will use to provide inputs at any given time.

The unpredictability of inputs received by a GUI application demands a different process than that
used for green screen applications. A GUI application has to deal with whatever is thrown its way;
the application has to respond to events as they occur. The five-dollar term used to describe
programming to respond to events is (not surprisingly) event driven programming.

One often-used scheme to implement event driven programming is to code a rather large case
construct inside a conditional loop. The loop executes while user input is processed. The case
construct that takes action depending on the sort of event generated is inside the loop. When no more
events need to be processed, the program processes what it must in the absence of user events,
otherwise it terminates. Figure 11.1 illustrates this concept.

The left column shows some of the myriad input sources available to accept inputs or those available
to generate input events. Now, the program has no way of knowing which input devices will be used
or what order the user will use these devices. Ergo, the computing environment, establishes an event
queue to house generated events. The programming language has an application program interface
(API) function library that can fetch these events and related information (like the source of the
event) from the event queue. The conditional loop contains a case construct that invokes some user

Page 197

Figure 11.1 Event driven programming loop.

written routine based on the source of the event. The loop terminates when no more events need to
be processed.

With the input source determined inside the case construct, each routine invoked in the case
construct determines the nature of the event. For example, the doKeyPressed user written routine
issues additional API calls to determine which keyboard character, or combination of characters, was
pressed; the doMouseClick routine issues calls to determine what mouse button was clicked, where
on the screen the mouse was clicked, and so on. If determination of the nature of the event requires
additional information, the program issues additional API calls to obtain this information. If the
event was generated by a mouse click, the program may need to determine just what was clicked
(button, scroll bar, and so on) or where the click occurred. It's all very procedural, isn't it?

Java Graphical Interface Components

Before you read specifics about Java event handling, a few words about Java graphical interface
components are in order. This topic is large enough for several chapters; the

Page 198

Java interface component libraries contain hundreds of classes. The primary goal of this section is to
acquaint you with some Java GUI fundamentals that are necessary to grasp Java's event handling
mechanism; the secondary goal is to provide you with enough of a foundation to make further
reading on Java GUI components intelligible.

Why not take several chapters to explain Java GUI components, you might ask? Well, in all
likelihood, you, the mainframe programmer, will not be developing complex user interfaces in Java
for the client. More likely, you'll be writing Java to use an existing user interface, such as a Web
browser. Your time is valuable, right?

The basis of Java GUI components is the Abstract Windowing Toolkit (AWT). The AWT does more
than provide classes for GUI components. However, in this section, we'll limit the discussion of
AWT to AWT graphical components.

The idea behind the AWT is to provide a set of services that would enable a Java program to use the
GUI and other services on the platform. In other words, an AWT button component created by a Java
program running on a Wintel box is actually a Windows button, on a Macintosh it is a Mac button,
and so on. The AWT relies heavily on the platform to render GUI components.

This reliance on operating system services to render GUI components is a bit troubling. Many people
thought that the rendering of Java GUI components should be done with Java. In response to this line
of thought, Sun created the Swing component set. Swing, a core library since JDK 1.2, is meant to
replace the GUI components in the AWT.

Although you can mix GUI components from the AWT and Swing in one application, you are
advised to follow this simple guideline: When using JDK 1.1 and prior, use AWT; when using JDK
1.2 and later, use Swing.

Using GUI components from either AWT or Swing is conceptually similar; you instantiate a Java
class from the appropriate library (AWT or Swing) to create an object representing the desired
graphical component. Hence, for AWT, this code creates a button:

import java.awt.* ;
//One of two constructors for the AWT Button class
Button myButton = new Button("Button Text") ;

And this code creates a Swing button:

import javax.swing.* ;
//One of four constructors for the Swing JButton class
JButton mySwingButton = new JButton("Button Text") ;

The Swing GUI component corresponding to its AWT counterpart is named J followed by the AWT
component name.

Both AWT and Swing rely on the concept of containers. A container is an abstraction that holds GUI
components, among other containers. You create an interface by adding GUI components to
containers. Here's a code snippet that illustrates the concept:

Page 199

//For AWT Frame Container and Button Component
import java.awt.* ;

Frame myFrame = new Frame("My Frame") ;
Button myButton = new Button("A Button") ;
myFrame.add(myButton) ;

The idea is that the object myFrame serves as a place to put GUI components. For Swing containers
and components, the mechanics are a bit different, but the idea is the same.

//For Swing JFrame Container and JButton Component
import javax.swing.* ;

//JFrame Is a subclass of Frame, by the way
JFrame myJFrame = new JFrame("My Swing Frame") ;
JButton myJButton = new JButton("A Swing Button") ;
//Panes are a Swing construct that allows for layering, transparency
MyJFrame.getContentPane().add(myJButton) ;

You get the idea? Create a container and add GUI elements. Each GUI component (AWT or Swing)
is an object from a class that contains properties and methods that are peculiar to the GUI
component. This is all you need to know about creating GUI elements in Java in order to leap into
event processing.

Java Events

As you might imagine, objects represent events in Java. Likewise, an event object has (drumroll,
please) a list of properties and a set of behaviors. The Java runtime defines event classes that
describe events that are generated by various input devices and various graphical components.

The parent class of all events in Java is java.util.EventObject. For events generated by AWT GUI
components, the parent class is java.awt.AWTEvent. Some Swing components generate events that
are represented by subclasses of EventObject.

When you click in a window created by a Java application, the Java runtime generates a window
event, or an object from class java.awt.event.WindowEvent . When you press one or more keys, the
runtime generates a keyboard event, or an object from class java.awt.event.KeyEvent. Sometimes
such events are called low-level events.

The Java runtime defines certain event classes to capture semantic, or high-level events. For
example, when you select a window, a list item, or some other selectable interface component, the
Java runtime generates an item event in addition to the event corresponding to the particular
component type selected. If needed, your Java program can respond to the high-level, meaningful
event of selecting an item as opposed to dealing with the device that performed the actual selecting
(the mouse).

Page 200

Table 11.1 Some GUI Components with Generated Events

Table 11.1 shows some of the Java events generated by Java graphical interface components. In
other words, the table shows the classes of objects corresponding to events generated by these
components.

By the way, container objects generate events from class ContainerEvent.

The Java Event Processing Model

The lingo used to describe how events are passed to your code that handles the events is called an
event model. Although the model of an event loop processing events based on the event source is
conceptually straightforward, the model is implemented in mostly procedural programming
languages. No hint of leveraging object technology appears here. After all, you would expect Java to
process events by using an object metaphor of some sort, which Java does, of course.

The event model used by Java is called the delegation-based model. This model enables a Java
programmer to connect graphical components that generate events to the objects that handle those
events. Here's the recipe of implementing the delegation-based model in Java:

GUI
COMPONENT

CLASSES
REPRESENTING
EVENTS GENERATED
BY THIS COMPONENT

HOW THIS
EVENT IS
GENERATED

Button ActionEvent Clicking on a button
Check Box ItemEvent Selecting/deselecting an item
Combo Box ItemEvent Selecting/deselecting an item
List ActionEvent ItemEvent Double-clicking a list item

Selecting/deselecting an item
Menu Item ActionEvent Selecting a menu item
Radio Button ItemEvent Selecting/deselecting an item
Scroll Bar AdjustmentEvent Moving a scroll bar
Text Entry Box TextEvent ActionEvent Changing text Finishing editing text
Window WindowEvent Opening/closing/minimizing/restoring

a window

TE
AM
FL
Y

Team-Fly®

Page 201

1. Create an object to represent the graphical component that generates the events, which we'll
call the event source. Add the component to a container if required.

2. Create a class to handle the generated events from the event source. The event handling class
implements an interface called a listener in the java.awt.event package, which is peculiar to the
graphical component.

3. Code implementations of the listener interface that implement the appropriate action in
response to the generated event. Because the listener is an interface, you must provide
implementations for all behaviors stated in the interface.

4. Delegate the code that handles the events to the component that generates them as follows:

a. Instantiate an object of the class created in Step 2 to the component object created in Step 1.

b. Invoke the component's add listener method. In Javaspeak, the invoking of the add listener
method is called registering the listener. The add listener method, which is peculiar to each
graphical component, takes the object created in Step 2 as an argument.

The event model does not dictate the exact nature of the source object. You are free to register the
listener to whatever object makes sense. Usually, you'll register the listener for a component to the
container holding the component. If the component is a container, you'll register the listener with the
container object.

To capture events from a window, you code a class that implements the listener interface for
windows, which is the WindowListener interface. Register the listener by invoking the window's
addWindowListener method, passing an instance of the class that implements the WindowListener
interface.

To capture events from a button, you code a class that implements the listener interface for buttons,
which is the ActionListener interface. After you add the button object to a suitable container with the
add method, you register the listener by invoking the button's addActionListener method, passing an
instance of the class that implements the ActionListener interface.

Let's see some code that will bring these words to life.

THE OLD JAVA EVENT MODEL
Java 1.0 uses an event model based on an Event superclass and a Component
superclass. You, the Java 1.0 programmer, would access instance variables of
class Event that describe the event. Your application would code methods that
override methods of class Component that handle specific events like
mouseMove() and keyDown(). This chapter will not discuss the Java 1.0 event
model, but you should be aware of its existence in case you run into any old
Java code.

Page 202

Example: Capturing Window Events

The following code creates a window and reports on various window events. This example uses
Swing components. The code that uses AWT components is included as comments.

import javax.swing.* ;
import java.awt.event.* ;
import java.awt.* ;

public class WindowDemo {

public static void main(String[] args) {
 //Create a container object - In this case, a window
 //This is the event source
 JFrame myJFrame = new JFrame("My Window") ; //1
 //These next two statements are needed to see the window
 myJFrame.setSize(600, 600) ;
 myJFrame.setVisible(true) ;
 //Create an Instance of the code that actually responds to the
//events - the event handler
 myWindowEventHandlerCode mWEHC =
new myWindowEventHandlerCode() ; //4a
 //Register the event handler with the object that receives the
//events
 myJFrame.addWindowListener(mWEHC) ; //4b
//
/** This is the version using AWT components

 Frame myFrame = new Frame("My Frame") ; //1

 myFrame.setSize(600, 600) ;
 myFrame.setVisible(true) ;

 myWindowEventHandlerCode mWEHC = //4a
new myWindowEventHandlerCode() ;
 myFrame.addWindowListener(mWEHC) ; //4b

**/
//
class myWindowEventHandlerCode implements WindowListener{ //2

 public void windowClosing(WindowEvent we) {
 System.out.println("Bye!") ;
 System.exit(0) ;
 }
 public void windowActivated(WindowEvent we) { //3

Page 203

 System.out.println("Window Activated") ;
 }
 public void windowDeactivated(WindowEvent we) { //3
 System.out.println("Window Deactivated") ;
 }
 public void windowIconified(WindowEvent we) { //3
 System.out.println("Window Minimized/Iconified") ;
 }
 public void windowDeiconified(WindowEvent we) { //3
 System.out.println("Window Maximized/Deconified") ;
 }
 public void windowOpened(WindowEvent we) { } //3

}

The bolded numbers to the right of the statements correspond to the numbers shown in the previous
recipe. The lines numbered 1 create a JFrame object (Swing) and a Frame object (AWT). These
objects will generate the events to which the code will respond.

Line 2 is the class that contains the implementations of the response to the events capable of being
generated by the objects created in lines 1. Notice that this class implements the appropriate listener
interface for the event generating objects. Objects of the class created in line 2 are the event handlers.
If this program created multiple JFrames and these separate JFrames required different responses to
WindowEvents, you would code different class statements and provide different implementations of
the WindowListener interface.

Lines 3 are the behaviors that require implementation. The only thing going on here is that in
response to the event, Java writes some text to System.out. When the window is closing, Java issues
a call to the System.exit() method, which stops the program.

The lines numbered 4a create an object that will respond to the generated events. Lines 4b invoke the
add listener method for the JFrame (or Frame) component using the event handler object as an
argument.

Figure 11.2 shows a sample execution of the program.

Of course, when you run this program, your results will differ depending on what and where you
click.

One user action on a component could trigger multiple events. When you minimize, or iconify, a
window, the JFrame object generates two window events: a WindowIconified event and a
WindowDeselected event. This makes sense because when the window is minimized, it is also
deselected.

You may be wondering just how the Java runtime knows when to fire the methods that implement
the listener interface. Looking at the WindowDemo program, you can see that method invocations of
say, windowActivated() or windowIconified() do not exist anywhere in the code. This is the crux of
the event delegation model: The runtime delegates events to code as the events occur. The runtime
knows what events go to what code by a callback mechanism. In other words, the event causes the
runtime to call back to the code that is hooked into the listener.

Page 204

Figure 11.2 Running the WindowDemo program.

Example: Capturing Button Events.

Let's look at another example. The following code shows a button added to the JFrame (or Frame)
and an event listener that is hooked in to report when the button is clicked. Only the code showing
the button creation, listener implementation, and listener registration is presented. The numbers in
parenthesis refer to the recipe previously shown.

Create the button and add to a container (1).

//Swing
JButton myJButton = new JButton("My Button") ;
myJFrame.getContentPane() .add(myJButton) ;
//AWT
Button myButton = new Button("My Button") ;

Page 205

myFrame.add(myButton) ;

Create a class to handle events generated by the component (2). If you look at Table 11.1, you'll note
that buttons generate ActionEvents. Ergo, the event handling code, implements the ActionListener
interface, as shown here:

//Swing and AWT
class myButtonEventHandlerCode implements ActionListener{

Code implementations of all behaviors required by the listener interface (3). The ActionListener
interface contains only one behavior: actionPerformed.

//Swing and AWT
public void actionPerformed(ActionEvent ae) {
 System.out.println("Mouse Clicked on this button") ;
}

Delegate the event handler to the component that generates the event by instantiating an event
handler object (4a)

//Swing and AWT
myButtonEventHandlerCode mBEHC = new myButtonEventHandlerCode() ;

and invoke the component's add listener method (4b).

//Swing
myJButton.addActionListener(mBEHC) ;
//AWT
myButton.addActionListener(mBEHC) ;

You can skin Java events in more than one way. The next two sections show alternate coding
techniques for handling events.

Variations on a Theme 1:
Using Adapter Classes

A point worth mentioning is that you, the Java programmer, must provide implementations for all
the behaviors stated in the interface. If you forgot this important fact, reread Chapter 10 "Interfaces."
If you don't have the need to provide an implementation for an interface behavior, you can "dummy"
it out. For an example, look at the windowOpened() method coded in the WindowListener interface
implementation— it has no code. If you were interested in acting on only one of the window events
generated, you would have to provide dummy implementations of the remaining six behaviors.

Page 206

Java has several adapter classes that help mitigate this odd situation. An adapter class is a class of
dummy methods that implement an interface. You extend the adapter class and override the dummy
methods with your own. Using an adapter class, line 2 becomes:

class myWindowEventHandlerCode extends WindowAdapter {

Notice that the class definition does not implement an interface. Because the Window Adapter class
implements the WindowListener interface, the user created class extends a class. Of course, if the
event handler class needs to extend a different class, you are stuck implementing the interface
because as you know, a Java class can have only one superclass.

Assuming that we are interested in closing the window only, the event handler class that extends the
adapter class would look like this:

class myWindowEventHandlerCode extends WindowAdapter{

 public void windowClosing(WindowEvent we) {
 System.out.println("Bye!") ;
 System.exit(0) ;
 }
}

Short and sweet.

Variations on a Theme 2:
Using Top-Level Classes

The previous code samples show the use of a separate class that implements the listener interface or
extends the adapter class. You can use just about any class to do this. Check out the following
example.

import javax.swing.* ;
import java.awt.event.* ;
import java.awt.* ;

public class WindowDemo2 implements WindowListener {

 public static void main(String[] a) {

 JFrame myJFrame = new JFrame("My Window") ;

 myJFrame.setSize(400, 200) ;
 myJFrame.setVisible(true) ;

 myJFrame.addWindowListener(new WindowDemo2 ()) ; //1

}

Page 207

 public void windowClosing(WindowEvent we) {
 System.out.println("Bye!") ;
 System.exit(0) ;
 }
 public void windowActivated(WindowEvent we) {
 System.out.println("Window Activated") ;
 }
 public void windowDeactivated(WindowEvent we) {
 System.out.println("Window Deactivated") ;
 }
 public void windowIconified(WindowEvent we){
 System.out.println("Window Minimized/Iconified") ;
 }
 public void windowDeiconified(WindowEvent we) {
 System.out.println("Window Maximized/Deconified") ;
 }
 public void windowOpened(WindowEvent we) { }

 public void windowClosed(WindowEvent we) { }
}

This code shows that you may dispense with creating a separate class for the event handling code
and use an existing class instead. Two points are worth noting here:

1. Because you don't have a separate class that handles the events, you would either create an
instance of the top-level class and use the instance as the argument to the add listener method,
or use an existing instance of the top-level class as the argument, as shown on line 1.

2. Your top-level class could extend an adapter class instead of implementing the listener
interface.

If you wanted to listen for window events and button events in your top-level class, your class would
implement both listeners.

Variations on a Theme 3:
Using Inner Classes

In Chapter 7, "Class and Object Representation," you read a bit about inner classes. It turns out that
the major use of inner classes is to code event handlers. Why not code your event handling code next
to the code that creates the component that generates the event? This is what our add listener method
looks like when an inner class represents the event handler.

myJButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 System.out.println("Mouse Clicked on this button") ;
 }
 }
) ;

Page 208

You could also use an adapter class with the inner class as follows:

myJFrame.addWindowListener(new WindowAdapter() {
 public void windowIconified(WindowEvent we) {
 System.out.println("Getting Smaller Now") ;
 }
 }
) ;

Using inner classes works very well when the event handling code is short. However, once the event
handler grows, you might find wading through the code a bit tiresome.

In Summary

In brief, Java handles events by connecting the components that generate the events to the
implementation of event listeners by a callback mechanism. The event listener implementations are
the methods that react to the receipt of the event.

After you've created your components and placed them in containers, you code implementations for
the listeners of the components and often, the containers. The listeners are tailored to reflect the
behaviors of the components and containers. Once the listeners are implemented, register them to the
appropriate objects with the listener's add listener method. Once registered, your work is done. The
Java runtime will dispatch the events to the appropriate event handler methods for you automatically.

You've read about the basics of Java event processing. The rest is in the details of the particular
events and listener interfaces that are required to implement a full-featured GUI.

Page 209

CHAPTER 12
Exception Handling and Thread Basics.

In the real world, programmers must take steps to guard against occurrences that are unforeseeable,
unfortunate, and avoidable. Unforeseeable occurrences often occur when customers enter bogus data
or do not follow operating procedures. Unfortunate occurrences include input files containing
spoiled, corrupt, or out-of-date data. Examples of avoidable occurrences include the presence of
runtime errors, such as divide-by-zero and arithmetic overflows.

The bad news is that these occurrences will always be part of the programmer's world; the good news
is that Java has a mechanism that helps the programmer overcome some of the ill effects that arise
from these occurrences. This mechanism, called exception handling, is one of this chapter's subjects.

Java's language support for multiple threads is the other subject that is covered. A thread is a flow of
program control; multiple threads mean that a single Java program may create and manage multiple
program flows of control. These multiple program flows may either be used to work on different
pieces of a large problem, or to keep computing resources busy. While one thread waits for, say, user
inputs, another thread is busy performing some background task. As you will see, creating and
managing tasks in Java is pretty straightforward once you understand the basics.

What Are Exceptions?

In plain language, an exception is some event that is not usual, normal, or anticipated. In the
language of programmers, an exception means pretty much the same thing.

Page 210

However, the term exception has a specific meaning in Java. An exception is an instance of a class
derived from class Throwable.

This meaning tells us that exceptions are, of course, objects. This should not surprise you by now.
After all, the heart and soul of this whole object-oriented view is to express entities as objects. In
Java, entities used in your applications and system entities, such as files and exceptions, are
expressed as objects.

Because exceptions are objects, each exception object has properties and behaviors. You can do
object stuff with exceptions, such as create new exceptions, pass exceptions as arguments to
methods, and invoke methods that implement exception behavior. In addition, Java contains custom
language support for dealing with these exception objects. This language support is, of course, a
topic of this chapter. Before you work on Java exception support, take a look at the Java exception
hierarchy.

The Java Exception Hierarchy

The Java exception hierarchy is shown in Figure 12.1.

At the top of the chain is class Throwable. Class Throwable contains most of the methods you'll find
useful, such as printing a list of the called methods (called a stack

Figure 12.1 The Java Exception class hierarchy.

TE
AM
FL
Y

Team-Fly®

Page 211

trace), fetching, or setting a string describing the exception. Class Throwable has two direct
subclasses: Error and Exception.

Class Error describes exceptions that, almost always, spell certain death and doom for your program.
Exceptions derived from class Error report problems with the Java Virtual Machine, such as out-of-
memory or the depletion of some other system resource. There is little, if anything, you can do about
such exceptions. The Java Language Specification refers to exceptions derived from class Error as
unchecked exceptions. Fortunately, exceptions derived from class Error are rare.

Class Exception is where you'll spend your time catching and (hopefully) recovering from
exceptional conditions. All names of each subclass of class Exception end with the word exception.
Because most of your Java code will catch exceptions of class Exception or one of its subclasses,
class Exception deserves special treatment.

The Java Exception Class

Don't get confused— this chapter, in part, talks about Java exception handling, and class Exception is
one class describing exceptions. You'll know what the Java literature means by the exceptional
condition and an object of class Exception.

Class Exception has about 35 subclasses, ranging from general (for example, SQLException and
IOException) to specific (for example, ClassNotFoundException and ServerNotActiveException).
You guessed it— the general exception classes have direct subclasses whereas the specific exception
classes do not.

You could group the 35 or so subclasses of Exception into 3 categories:

1. I/O exceptions

2. Exceptions that your code should stop from occurring

3. Other exceptions not falling into the previous categories

I/O exceptions, the first category, are objects of class IOException or one of its subclasses. As you've
deduced, exceptions in this class describe exceptions arising from I/O, such as
FileNotFoundException or MalformedURLException. As a rule, you should attempt to recover from
exceptions of these classes. If your program encounters a FileNotFoundException, get another
(hopefully existing) file. If your program attempts to use a URL in an incorrect format, you should
fix this. At the very least, your program should display informative diagnostics; try to roll the
program back to a stable state and exit gracefully. Exceptions of IOException and those of its
subclasses are called checked exceptions.

Java folk use shorthand for expressing exceptions in the second category. Runtime exceptions, or
exceptions of class RuntimeException, or one of its direct subclasses, are exceptions that arise
mostly from poor quality Java code. Now, the term runtime exception is a bit of a misnomer because
all exceptions occur at runtime. Exceptions of class RuntimeException or one of its subclasses are
referred to as unchecked exceptions. A runtime exception should never occur because you, the Java
programmer, can write code to stop this class of exceptions from rearing their ugly heads.

Let's be honest, okay? If, while on call, you got roused from slumber at some early hour to patch a
program that bombed because of a divide-by-zero, you'd be more than

Page 212

slightly irate, am I right? You know that a single line of code before the divide would stop the
divide-by-zero from occurring. You might think that a special place exists down under (not
Australia) where programmers who put this sort of code in production should go. You shudder to
think what other surprises lie in store— such as accessing an array with an out-of-bounds index, or
accessing an uninitialized data element.

The zerodivide and other exceptional conditions mentioned previously could have, and should have,
never occurred. Your Java code should check your program's primitive types and objects to guard
against these conditions. In other words, you should not rely on Java's exception reporting and
handling mechanism to cope with exceptions of class RuntimeException and its direct subclasses.

Check for ArithmeticException by checking the divisor before performing the division. (You recall
that floating point arithmetic never causes exceptions, right?) Check for
ArrayIndexOutOfBoundsException by comparing the array index to the array length. Check for a
ClassCastException by using the instanceof operator as follows:

MyClass anotherObject ;
If (myObject instanceof MyClass)
 anotherObject = (MyClass) myObject ;

Thus, you see that a little bit of caution and common sense can stop these exceptions from ever being
thrown.

The exceptions falling in the third category are a hodgepodge of exceptions; you will use Java's
exception handling mechanism with which to process. These exceptions are checked exceptions.

In short, you'll write code to handle checked exceptions and allow unchecked exceptions to pass to
the Java runtime. You'll soon learn the code to write that will handle checked exceptions.

Mainframe Programming Language Exception Handling
Mechanisms

The COBOL programmer handles exceptions the old-fashioned way. Assuming the program is privy
to the exception(s), the program attempts the operation and, if unsuccessful, generates a code that
describes the exception.

Here, the COBOL program has code to deal with the aforementioned exception before proceeding.
For example, a COBOL program issuing SQL against DB2 tables must be on the lookout for a
variety of exceptional conditions. Because issuing SQL generates a fixed number of return codes
corresponding to a variety of conditions, the COBOL program can trap and deal with these
conditions. To wit:

EXEC SQL.
 FETCH MYSELECTCURSOR
 INTO :HOST-VAR1, :HOST-VAR2, :HOST-VAR3
END-EXEC.
IF SQLCODE = 100 THEN

Page 213

 DIAGNOSTIC = "No More Data to Process".
ELSE
IF SQLCODE < 0 THEN
 DIAGNOSTIC = "Unspecified Error".
ELSE
 PERFORM PROCESS-SELECTION THRU PROCESS-SELECTION-EXIT.
END-IF.

This strategy somewhat works when the program knows what exceptions can occur; however,
assuming the program is ignorant of the exception(s), the program may gasp and wheeze when the
exception occurs.

Sadly, the gasping and wheezing of COBOL programs is common. Yes, you can blame the
programmer for this sorry state of affairs. The programmer must bear the brunt of responsibility;
however, the programmer could use a bit of help. COBOL offers virtually no support for trapping
and dealing with errors in a systemic manner. COBOL programs are replete with return code
checking; it is the only mechanism available.

The PL/I programmer has far better language constructs for dealing with the unexpected. PL/I uses
the ON block construct to trap and deal with exceptions. For example,

On Key(myFile)
Begin ;
 If NumberOfRetries < 4 Then
 Do ;
 Put Skip List ('Key Value ' || myKey
 || 'Not Found In File') ;
 Put Skip List ('You Have ' || 4 - NumberOfRetries ||
 ' Retries Left. Make Another Entry') ;
 MyKey = ReEnterKeyValue() ;
 Return ;
End ;
Else
Do ;
 Put Skip List ('You Have Exhausted Your Chances. ' ||
 'Get Lost') ;
 Exit ;
End ;

End ;
/* Some PL/I Code Follows */
Read File(myFile) Into(myStruct) KeyFrom(myKey) ;

This code snippet reads a file into a suitably declared record structure based on a key value held in
variable myKey. If myKey is not present in the file's index, the Key condition is raised and the
previous code block is executed. PL/I also enables the programmer to trap unspecified errors with the
ON ERROR statement. Also, PL/I permits the declaration of user-defined conditions by supporting a
CONDITION data type.

Page 214

Actually, as you'll see, PL/I's condition trapping and handling has a passing resemblance to Java's
exception handling. Now, there is no talk of exception classes and object stuff in the PL/I
programmer's world. Yet, PL/I's capability to trap and deal with specific errors in different parts of
the compile unit is a step in the right direction. That said, the PL/I programmer must code numerous
return code checks like his or her COBOL brethren.

All programmers must be vigilant in the handling of errors. The COBOL programmer has no
language features specific to error handling whereas the PL/I programmer has several. However,
Java's exception handling mechanism is superior as you'll see.

The Java Exception Handling Mechanism

Java exception handling is pretty straightforward. In short, the Java programming language enables
exceptions to be thrown and caught. The "throwing" of an exception is the Java way of bringing the
exception to a point where the exception can be handled, whereas the "catching'" is the handling of
the exception.

Throwing Exceptions

Exceptions can be thrown in one of two ways: either your code can explicitly throw the exception, or
your code throws the exception in response to an event in the Java runtime. In other words, either
you or the Java Virtual Machine throws the exception.

You throw an exception by coding a throw statement as follows,

throw myException ;

where myException is an object of a class that extends class Throwable.

Why would you want to throw an exception? One reason is so you can control how and when this
exception gets handled. Another reason is that when you create your own exceptions, explicitly
throwing the exception may be the only means at your disposal to manage the exception.

Creating Your Own Exception Classes

Wait a minute. Are you surprised that you can create your own exceptions? Think about it.
Exceptions are objects instantiated from a subclass of Throwable. You can use the features of Java to
create your own exception classes and, of course, objects from those classes. An example is listed as
follows:

//Convert RGB Color Coordinates to H(ue)S(aturation)V(alue) Color
//Coordinates.
//Some RGB Color Values Yield Bogus HSV Values
class RGBToHSVConversionException
 extends Exception { // can extend Throwable or other
 // exception class

Page 215

 //Code Constructors..
 RGBToHSVConversionException()
 { //Default No Arg Constructor }
 RGBToHSVConversionException(String desc) {
//Leverage Inheritance to do the Dirty Work
super(desc) ;
 }

}

As you see, this exception class is just like many in the Java class. Exception classes typically have
two constructors: the default, no argument constructor, and one that takes a string as an argument.
The string argument is a one-liner describing the nature of the exception, which you can retrieve by
invoking the getMessage() method.

Now, back to throwing exceptions.

Throwing Exceptions–Continued

The following shows how you could throw exceptions of this (and any other) exception class:

class HSVVideoFrame extends VideoFrame {
 //Some code here, some code there
 anHSVCoordinate = convertRGBToHSV(anRGBCoordinate) ;
 if (anHSVCoordinate.hue > 360)
 throw new
 RGBToHSVConversionException("Hue Value Out of Range");
 //Some more code
}

The previous code is incomplete because you'll need additional coding constructs that tell Java the
nature of the exception that can be thrown. You'll see these constructs soon.

How about the cases where the Java runtime throws the exception? The JVM will throw exceptions
more often than your code will. The JVM throws an exception when the exception occurs. To wit:

HSVCoordinate firstHSVCoordinate ;
//Some code, perhaps
if (firstHSVCoordinate.value < 0.1) //OOPS!!!
 coordinateDescription = "Dark" ;

Assuming the first line is the only declaration of the object firstHSVCoordinate, the Java runtime
will leave your program dangling at the end of a noose by belching out a NullPointerException. You
can see that the object firstHSVCoordinate has no value, right? When Java reaches the if statement,
the unhappy situation of a null object reference bears its ugly head, causing Java to throw the
NullPointerException. As an aside, NullPointerException is a subclass of the exception class
Runnable. Hence, the code should have checked for the validity of the object reference before
making the reference.

Page 216

You can throw exceptions of your making, or of a class, in one of the Java libraries by coding a
throw statement. Any exceptions that you do not explicitly throw will be thrown for you by the Java
runtime.

It seems that if your code is going to throw exceptions, the least your code can do is to let users of
your classes know what exceptions can be thrown. Keep reading.

Declaring Potentially Thrown Exceptions.

If your code explicitly throws exceptions by using one or more throws statements, or contains code
that may cause the Java runtime to throw exceptions, you must declare or catch these exceptions. In
the this section, you'll learn how to declare the exceptions.

Why declare the exceptions? By declaring in your methods that your code can, or does, throw a
particular exception, you announce to the methods invoking your code that the methods must handle
these exceptions. This announcement cannot be ignored. The Java compiler enforces the
requirement. For example, check out the following snippet:

class IOExample {
private static char readIt() {

 int anInputChar = System.in.read() ;
 return (char) anInputChar ;

}
}

However, javac has a thing or two to say about this code. The following shows javac's reaction:

C:\WINDOWS\DESKTOP>javac IOExample.java
IOExample.java:4: Exception java.io.IOException must be caught,
or it must be declared in the throws clause of this method.
 int anInputChar = System.in.read() ;
 ^
1 error

Java is smart enough to know that the method System.in.read() could throw an exception of class
IOException. Java also knows that this method has no code to handle this exception. Hence, Java
will not let any code use this method unless the code can handle exceptions of class IOException.
The following is another example of the robustness of Java at work. Java will not let exceptions
declared in methods go unhandled. Java is really trying to ensure that exceptions are taken seriously.

You may wonder how Java knew that System.in.read() could throw an IOException. A cursory
glance at the method header provides a clue:

public int read() throws IOException

Page 217

It looks like this read() method has a construct specifically for announcing a potentially thrown
exception. Notice the choice of words in the compiler diagnostic above-declared in the throws clause
of this method. You don't have to be a savant to pick out the throws clause in the method header for
the read() method, right?

Okay, we hear what the Java compiler is saying. In response, change the code for the readIt() method
to include a throws clause as follows:

private static char readIt() throws java.io.IOException

Now the code compiles without complaint. Of course you noticed that, because the method did not
have an import statement; the class IOException needs a full qualification.

So far, so good. We've told the Java compiler that the method readIt() throws the exception as
dictated by readIt() calling System.in.read(). Now let's use readIt() to fetch some characters from the
keyboard:

public static String readaString() {

 String aString = "" ;
 char anInputChar = readIt() ;

 while (anInputChar != '\n') {
 aString = aString + anInputChar ;
 anInputChar = readIt() ;
 }

 return aString.substring(0, aString.length() - 1) ;
)

Can you guess what the Java compiler will respond with?

C:\WINDOWS\DESKTOP>javac IOExample.java
IOExample.java:14: Exception java.io.IOException must be caught, or it
must be declared in the throws clause of this method.
 char anInputChar = readIt() ;
 ^
1 error

You guessed it. Java will keep you from getting away with not handling declared exceptions.

A few tidbits on declaring exceptions in a throws clause are in order. If a method can throw more
than one exception, then declare the potentially thrown exception classes in the method header
separated by commas. For example,

public void myThrowingMethod() throws IOException, InterruptedException

If a method declares an exception class in its throws clause, then that method can throw an exception
derived from a subclass of the declared exception class as well. The System.in.read() method could
throw an InterruptedIOException, a RemoteException, or an IOException.

Page 218

Your rule for the day is as follows: Your methods must declare in the throws clause all the checked
exceptions these methods throw. In other words, you need not declare exceptions derived from
classes Error or RuntimeException, which, as you recall, are also known as unchecked exceptions.

You've now read about both declaring exceptions and throwing exceptions. Continue, and read how
to catch exceptions.

Catching Exceptions with try/catch/finally

To catch an exception is to write a block of code that takes some action in response to the throwing
of the exception. Recall that you will write code to handle checked exceptions— exceptions not
belonging to classes Error or RuntimeException, or any of their subclasses. You need yet another
Java language construct to handle exceptions: the try/catch/finally blocks .

A try block tells the Java compiler and runtime that an exception may be thrown by the code within
the block. A catch block tells the Java compiler and runtime that when an exception of a given class
is thrown, here is where that exception will be handled. A finally block is a block that gets executed
under all circumstances, even if no exceptions ever get thrown.

If a method contains a try block, the method may contain zero to many catch blocks, zero, or one
finally block. You cannot code a try block without at least one catch or one finally block. Most of
the time, you'll code a try followed by one or more catch blocks.

The following is a simple example:

private static char readIt() {

 int anInputChar = 0 ;

 try {
 anInputChar = System.in.read() ;
 }
 catch (IOException ioe) {
 System.out.println("Error: " + ioe) ;
 }
 return (char) anInputChar ;
}

Notice the code that could possibly cause the IOException to be thrown is included in the try block.
Although the try block contains only a single line of code, the block braces are required. After the try
statement, the catch block will catch exceptions of the specified type. You can code only one
exception class in a try block. As with the try block, the curly braces are required regardless of the
number of statements in the catch block.

Your catch block, if present, must immediately follow your try block. You cannot have any
statements between the two blocks. You cannot code two try blocks after one another. You could
code a try/catch block pair followed by another try/block pair. However, you should code one try
block per method. As you've guessed by now, if

Page 219

your method can throw, say, exceptions from three different (and unrelated) classes, you'll usually
need three catch blocks. The basic structure would be

try {
 //Some Java code that may throw (or cause a throwing of)
 //exception classes 1, 2 and 3
 }
 catch (ExceptionClass1 e1) {
 System.out.println("Error: " + e1.getMessage()) ;
 //More code, perhaps

}

catch (ExceptionClass2 e2) {
 System.out.println("Error: " + e2.getMessage()) ;
//More code, perhaps

}

catch (ExceptionClass3 e3) {
 System.out.println("Error: " + e3.getMessage()) ;
 //More code, perhaps
 }
 //Code outside try/catch blocks

You may code one finally block within a method. If so, the finally block must follow the catch block,
if coded, or the try block, if no catch block is coded. As previously mentioned, the code within the
finally block is always executed, even if the try or catch block has a return statement. If you want to
ensure that code executes within a method, place that code inside a finally block.

In the previous example, if an exception of class ExceptionClass2 is thrown by a statement in the try
block (either by a throws statement or by the Java runtime), program control transfers to the catch
block for ExceptionClass2. The code in this block executes, top-down. If this block contains no
transfer of control statements, such as return or System.exit() statement, and a finally block is not
present, the program continues execution at the statement following all the catch statements labeled
Code outside try/catch blocks. If a finally block is present, the program executes the code in this
block after executing the code in the ExceptionClass2 catch block.

Variables declared within try and catch blocks are local to those blocks. Do not declare variables
within a try block and expect these variables to be known in your catch and finally blocks. Of course,
variables declared outside the try/catch/finally blocks, but within the method containing these blocks,
are known to these blocks. Remember the variable scope visibility rule: Within a method, your
program can look outside a block and know the "outside" variables, but cannot look inside a block
and know the "inside" variables.

You may also pass exceptions up the calling chain (called the stack trace) to the method that invoked
the method that threw the exception. In other words, a method does not have to handle exceptions
with try/catch/finally. The method can "kick it

Page 220

upstairs" by enabling the calling method to handle the exception. However, you should try to handle
exceptions close to where they occur. Of course, we are assuming that you know that the calling
method can adequately handle the exception.

When an exception gets thrown, Java looks first in the method that threw the exception for a handler.
If none is found, Java looks in the method that invoked the exception-throwing method for an
exception handler, and so on. If no try/catch/finally block is found in all methods of the stack trace,
then the Java runtime spits out a diagnostic, usually followed by a stack trace.

Java Exceptions Summary

 Java exceptions are objects of classes that extend Throwable.

 Unchecked exceptions are objects derived from classes Error and RuntimeException. Let the
Java runtime handle these exceptions.

 You can explicitly throw exceptions with the throw statement; the Java runtime can throw
exceptions, usually in response to an unfortunate and unseen circumstance.

 You must declare or catch every exception that your method throws.

 You catch exceptions with a series of try/catch/finally blocks.

 Java travels up the stack trace to search for a try/catch block that handles exceptions.

Thread Basics

In this section, you'll read an overview of Java thread support. You'll not, however, read about the
full skinny on Java threads. Also, you'll read enough about Java thread support to write some
straightforward multithreaded programs. Of course, after this section, you'll understand enough about
Java threads to pick up the more advanced uses of threads in Java.

Most mainframe programs have a single control flow, which is governed by input states and program
control statements (if/then, do/while, and so on). Let's call a program that has a single flow of control
a program a single threaded program. All the Java programs you've seen to this point will fall into
this category. Of course, we will call a program with multiple flows of control a multithreaded
program.

Why Code Multithreaded Programs?

Multithreaded programs could maximize resource usage. Imagine, if you will, an application that
presents a screen to the customer. If this application were single threaded, and as the customer hems
and haws, deliberating over his or her choice of inputs, the application is dead in the water. The
single thread stops at the customer's

TE
AM
FL
Y

Team-Fly®

Page 221

input screen, and it will stay there until the customer decides to continue. Now if this application
were multithreaded, the application could be performing some useful work while the customer mulls
over his or her inputs. The application could be accessing data from a previous entry, performing a
database backup, or printing. The important point is that the application need not stop. Other threads
could continue, while the thread corresponding to gathering the customer's input tends to that job.

Many programs are, and should be, written as single threaded. Many programs should be written as
multithreaded programs. For example, sorting very large sets of data is a good candidate for
multithreading. One thread could partition the sort job into multiple, smaller sort jobs, and assign a
thread to each smaller sort. When all small sort jobs complete, one thread merges the individual
results into the final sorted set. Computations involving large numbers of numbers fall into this
category as well. Later, you'll see a multithreaded program that adds up 10,000,000,000 numbers.

Once you learn a few additional Java classes, you'll be able to write many multithreaded programs.
Before doing so, a little groundwork is in order.

What Are Java Threads?.

The short answer is that a Java thread is an instance of class Thread or a subclass of Thread. To no
surprise, a Java thread is an object. You have two means at your disposal when you want to create
threads:

1. You can extend the class Thread and override this class's run() method. For example,

class ThreadedAdd extends Thread {
public void run() {
}
}

2. You can implement the Runnable interface before providing an instance of your class that
implements Runnable to the constructor for the Thread class. For example,

class ThreadedAdd implements Runnable {
 public void run() { //The only method in the Runnable
interface
 }
 ThreadedAdd myAddThread = new ThreadedAdd() ;
 Thread myThread = new Thread(myAddThread) ; //One way
 Thread myOtherThread = new Thread(new ThreadedAdd())
;//Another way
}

Think fast: If your thread class (ThreadedAdd, in this case) already extends an existing class, which
way would you have to use to create threads? Of course, you remember that you must implement
Runnable because Java will not permit you to have a class that extends more than one class.

Page 222

Regardless of how you create the thread, you'll code the work of the thread in the run() method. You
must code the run() method with the signature shown above. You cannot pass any arguments to run()
nor can your run() method return any values.

Creating threads does not execute them. You need to keep reading to see how to execute your newly
created threads.

Executing Your Threads

If you think that you need to invoke the run() method to kick off your threads, then you are half right.
Your run() method must execute, but you do not invoke it. You need a bit of Java magic to invoke
your run() method, thereby starting your threads. You need to invoke a method called start(). Once
you invoke start(), the Java runtime invokes your run() method for you.

Let's back up a little. Code a run() method that does the actual work of your thread(s). Do not write
any code that directly invokes run(). You invoke run by invoking start(). You do not code a start()
method. This is the Java magic— you invoke a method you did not code in order to execute a method
you did code. If this seems a bit odd, well, you have my sympathy.

Here are two steps you can take to write multithreaded programs:

1. Create a class that extends class Thread and contains an implementation of run(),
or
Create a class that implements the Runnable interface and contains an implementation of run().

2. Create a class that will create instances of your threads and govern the threads execution.
If you are extending class Thread, you'll use the new operator on your thread subclass and
code an invocation to subclassThreadObject.start(). If you are implementing the Runnable
interface, you'll create an instance of class Thread and pass an instance of your class
containing the implementation of Runnable as an argument to the thread constructor.

Let's see what this looks like by examining a multithreaded program.

Sample MultiThreaded Program

Here is a program that will add the numbers stored in an array using multiple threads. The basic idea
is to slice the array up and give each thread a piece of the array. After each thread computes a partial
sum, the partial sums are added together to yield a total of all the array elements.

For example, assume your array is 1,000 elements, and you'd like to use 11 threads to add all the
numbers. You could have one thread as a driver of sorts (for example, thread 11) creating and
executing the remaining 10 threads. As for the thread objects, we could have thread 0 (the first
thread) add up array elements 0 to 100, thread 1, add up elements from 101 to 200, and so on.

Page 223

Let's use the two-step recipe in the previous section, okay? First, the following shows the code for a
subclass that extends Thread, or previously, number 1:

A Subclass of Class Thread

class AddThreads extends Thread { //1
 //
 //Do not use class variables here!!! Remember----we want to access
 //the partial sums from class ThreadedAdd, which calls this
 //thread class
 //
 int partialSum = 0 ; //2
 int startIDX, endIDX ;
 //
 //Constructor. All we need is to set up the bounds for the
 //array we're gonna access.
 //
 AddThreads(int idx) { //3
 int threadArrayLength = ThreadedAdd.adders.length ;
 int arrayLength = ThreadedAdd.addends.length ;
 startIDX = arrayLength / threadArrayLength * idx ;
 endIDX = arrayLength / threadArrayLength * (idx + 1)-1 ;
 }
 //
 //Recall that threads must override the run() method of class Thread
 //when we're using this threading mechanism (as opposed to
 //implementing the Runnable interface like you MUST do with applets.
 //
 public void run() { //4
 //One line ought to do it!!!
 //Notice the reference to the CLASS variable addends declared
 //and initialized in class ThreadedAdd.
 //
 System.out.println("In Thread: " + getName()) ;
 //Do the actual addition
 for (int arrIDX = startIDX; arrIDX <= endIDX; arrIDX++)
 partialSum += ThreadedAdd.addends[arrIDX] ;
 System.out.println("Done with Thread: " + getName()) ;

 } // of run() method
} // of class AddThreads

All right— by the numbers.

Line 1 is the method header. You know there is tasking going on when you notice that this class
extends class Thread. This class contains the implementation of the run() method that does the work
of the thread.

Line 2 shows some of the properties that objects of this class will contain. The instance variable
partialSum holds the sum of the array piece generated by a particular

Page 224

thread. The instance variables startIDX and endIDX contain the start and end indices of the array this
thread will access. The expression threadArrayLength is the number of threads created that will add
up the numbers. In the method (not shown yet) that creates and starts these threads, the threads are
stored as an array of subclass objects. We take care to insure that the number of threads evenly
divides the number of array elements to be added by choosing appropriate numbers for both.

Line 3 starts the constructor for the subclass objects. We generate the start and end indices from an
index passed from the method (not shown yet) that creates the subclass objects.

Line 4 starts the run() method. This method uses the getName() method to fetch the name of the
thread currently executing, prints the name, and add up the numbers. A for loop adds up the array
elements. When the loop is done, the method prints out the thread name.

So far, so good— we have a subclass of Thread and a run() method. Now, we need step 2, which is
listed previously— a class to create and manage threads that will add the numbers. The code is show
in the next section.

A Class That Creates and Manages Threads

public class ThreadedAdd {
 //
 //Notice that we're using CLASS variables here. No need for
 //instance variables because we're not gonna create any objects
 //for class ThreadedAdd.
 //
 static float theSum = 0 ;
 static float[] addends = new float[1000000] ; //1
 //
 //This is an array of objects from a class that extends class Thread.
 //Objects from this class will correspond to a thread that will
 //perform the actual addition.
 //
 static AddThreads[] adders = new AddThreads[5] ; //2

 public static void main(String[] args) {
 //Like it says........
 loadAddendArray() ;
 //
 //Create the thread objects and kick them off.
 //
 for (int tidx = 0; tidx < adders.length; tidx++) {
 //Yes, I know this can be done in one statement as follows:
 //addres[tidx] = new AddThreads(tidx).start();
 adders[tidx] = new AddThreads(tidx) ; //3
 adders[tidx].start() ;
 }
 //

Page 225

 //Wait for all kicked threads to terminate before adding
 //the partial sums.
 //If we don't wait, we have no guarantee that all five threads
 //will finish their tasks before we add up their (possibly)
 //nonexistent or incomplete results.
 //
 try {
 for (int tidx = 0; tidx < adders.length; tidx++)
 adders[tidx].join() ; //4
 }
 catch (InterruptedException ie) {
 System.out.println("Task Interrupted") ;
 }
 //
 //Access the instance variables that hold the partial sums
 //for each thread object.
 //
 for (int tidx = 0; tidx < adders.length; tidx++)
 theSum += adders[tidx].partialSum ;
 //Print the result.
 System.out.println("The sum equals......" + theSum) ;

 } //of main() method
 //
 //Initialize array with numbers from 1 to the array size
 //Might as well use a static method - no real object jazz
 //required for this routine.
 //
 static void loadAddendArray() { //5
 for (int arrIDX = 0; arrIDX < addends.length; arrIDX++)
 addends[arrIDX] = arrIDX + 1 ;
 } // of loadAddendArray

} //of class ThreadedAdd

The basic idea is to create five threads, kick them off, and wait for all five threads to complete. add
up the partial sums once they complete. Hence, when the main() method executes and kicks off the
five threads, there will be six threads executing at once. Java uses one thread for executing the main
() method; the other five threads are created to do the arithmetic. The comments in the code are self-
explanatory. However, some numbered lines bear additional commentary.

Line 1 is the array of numbers the program will add. If you put, say, 100 elements in the array, you'll
not see any evidence of multithreading Later, when you see the output, you'll see such evidence.

Line 2 creates an array of objects. Now you know that this declaration does not create the objects.
All this array declaration does is create a reference for five objects. These objects are instances of the
previous class, the class that extends class Thread. In other words, these objects are our threads that
will add the array elements.

Page 226

Line 3 shows the creation of the subclass objects of class Thread, and the invocation to
threadObj.start(), to begin executing the threads. Remember, you code a run() method that does the
work of the thread; however, you do not code a start() method to start the thread running. You do not
invoke the run() method whereas you must invoke the start() method.

Line 4 is a method in class Thread called join(). The join() method instructs the Java runtime to have
the thread that invoked the join() method (the thread controlling the execution of main()) wait until
the thread referenced in the join() method (the threads that do the arithmetic) dies. Because the join()
method is in a loop, the Java runtime will instruct the thread governing execution of the main()
method to wait until all five threads complete. Like the comment says, you have no guarantee that
these threads will complete at the same time or in the order they were started.

Class Thread includes methods to get or set a thread's priority, to put the thread to sleep for a
specified period of time, to give up the processor to another waiting-to-execute thread, and others.
Aside from run() and start(), the only other thread method used here is join().

Line 4 also shows a try/catch block. The join method throws an exception of class
InterruptedException, which, if you've been paying attention, must be caught in this method.

Line 5 shows the array being initialized to integers 1 through the array size. This was done to check
the results by using the following inductive formula:

Sum of numbers from 1 to N = N * (N + 1) / 2

Now, for large array sizes, floating-point precision errors creep in; thus, the result will not be exact.

The following page shows an example of a sample output.

Figure 12.2 shows three executions of the multithreaded addition program that adds numbers ranging
from one to 1,000,000. Notice how the results show evidence of concurrent threads. If this were a
single-threaded program, your output would resemble the following:

In Thread: Thread-0
In Thread: Thread-1
In Thread: Thread-2
In Thread: Thread-3
In Thread: Thread-4
Done with Thread: Thread-0
Done with Thread: Thread-1
Done with Thread: Thread-2
Done with Thread: Thread-3
Done with Thread: Thread-4

However, you can see the threads completing in a different order for each execution.

Page 227

Figure 12.2 Three sample executions of ThreadedAdd.

In Summary

You've read a bit about multithreading and seen Java's implementation of Threads. You've read that
you create threads in Java by extending the Thread class or implementing the Runnable interface. In
both cases, you must code a run() method with this signature:

public void run()

Page 228

Also, you have read that your code never invokes run() directly; there is no statement invoking run().
Rather, you invoke the start() method, which kicks off the run() method. When your run() method
begins execution, you are multithreading.

Again, this is not the full story. To write multithreading programs, you'll need more than a passing
familiarity with the other methods in class Thread, and how to use them. However, with the
explanation and the sample-threaded program, you'll be able to handle anything pertaining to Java
threads that you could not have handled with time and a good resource book.

Page 229

CHAPTER 13
The Training Department Class Scheduler System.

In this chapter, you'll see the Java source code for a training department class scheduling system.
Along the way, you'll see some code in COBOL and PL/I that provides similar functions. You'll also
read about the analysis of the application, comparing and contrasting the analysis of a Java solution
with the analysis of a procedural language solution.

The chapter starts by describing the high-level functionality of the application followed by some
thoughts on the user interface. The chapter describes the format of the underlying data stores and the
application outputs. Next, the chapter covers the processing required to produce the outputs.

So far, the application description is not specific to any programming language. Next, you'll read
about Java-specific details required to implement the previous interface, outputs, and processes.
You'll contrast the Java details with COBOL and PL/I details that follow.

The remainder of the chapter is the Java code that implements the application complete with
comments and information on Java features not yet covered in the book. At times, you'll see COBOL
and PL/I modules that implement similar application features.

The Application Defined

The purpose of the training department class scheduler is to enable students and instructors to query
a set of data stores to find information about classes and courses

Page 230

and to update the store with new information on classes and courses. Put differently, students and
instructors can find class and course information; students may enroll in courses and instructors may
schedule themselves to teach classes. The application allows a fixed number of students in a class
and no student may take two classes at the same time. Also, no instructor may teach two classes at
the same time.

 Here, a course is a body of instructional material on a particular topic. A class is a
course scheduled for delivery in a room by an instructor on a given date.

The application is not particularly robust; a commercial system used to track the activities of a
training department that would contain more features and functions than our application. As you read
this chapter, you'll say from time to time, "Why doesn't the application do function X," or "I would
have done function Y differently."

Application Options for the Students

The student will be able to perform the following activities with the application:

 List classes offered starting after a particular date

 List classes by room number

 List courses or classes by category

 List courses taken by student

 List classes with openings (available seats) starting on a particular date

Application Options for the Instructors

The application gives an instructor the same capabilities of the student plus the additional capabilities
listed in the following:

 Create a new class (instructor must be teaching the new class)

 Delete an existing class (instructor must be teaching the class)

 Change an existing class (instructor must be teaching the class)

 Add or remove one or more students from a class (instructor must be teaching the class)

The User Interface

The user interface consists of entry screens and a few dialogs. The user first encounters a screen
where he enters personal information. Once done, the application determines if the user is an
instructor or student and displays the appropriate screen showing

TE
AM
FL
Y

Team-Fly®

Page 231

allowable application options. The user selects her option. Depending on the selected option, the
application may display additional entry screens, perhaps to capture dates or other information
required to complete the request.

The OS/390 Mainframe User Interface

Here are the user entry screens that an OS/390 mainframe user may encounter if this application
were coded in a procedural language like COBOL. The entry screens are 3270 text-based ISPF entry
screens.

The User Identification Screen

Figure 13.1 shows the user identification screen. Here, the user enters a name and an employee ID.
The application checks the employee ID against the employee file. If the entered employee ID is on
file, and the entered employee ID matches the employee name on file, the application enables the
user to continue.

The Student Enter Options Screen

Figure 13.2 shows a mainframe entry screen showing the options available to a student. The options
are relatively self-explanatory. The output resulting from entering options 1 or 5 is an ISPF table
showing class information. We assume that the student has access to room numbers and course
categories.

Figure 13.1 The mainframe user identification entry screen.

Page 232

Figure 13.2 The mainframe entry screen showing student options.

The Instructor Enter Options Screen

The instructor has most of the same options available to students plus the ability to create, remove,
and change class information for those classes the instructor is scheduled to teach or has already
taught. The result of selecting the change student roster option is the same list as shown in Figure
13.5.

Figure 13.3 shows the options available to an instructor.

The Instructor Create a New Class Screen

When the instructor selects option 6 from the screen shown in Figure 13.3, the instructor sees the
screen shown in Figure 13.4. The entry screen shows the instructor's name by default; the instructor
may change this field. The entered course ID must exist on file.

Figure 13.4 shows the entry screen for creating a new class. Here, the instructor enters particulars for
the course.

The Instructor Change Existing Class Entry Screen

The change existing class screen looks the same as the screen shown in Figure 13.4, except that the
input fields are prefilled with the entered class information and the

Page 233

Figure 13.3 The mainframe entry screen showing instructor options.

Figure 13.4 The mainframe creates a new class entry screen.

instructional text reads "Enter Required Information For Clas<classID> Below," and the screen title
reads "Change Information for Class <classID>," where <classID> is the class ID entered on the
previous screen.

Page 234

The Change Student Roster Screen.

Here, the instructor has the ability to change the student roster for a class she is scheduled to teach.
The processing is typical ISPF table processing— enter a code to the left of a table row that directs
processing. To change an existing student, the instructor overtypes the name of an existing student.
To add a student, the instructor enters A in the line command field, presses ENTER, and gets a new
table row where he enters student information.

The Java User Interface

The screens are what a user may encounter if this application were coded in Java on a small machine.
You'll see the Java source that created these screens later in this chapter.

This book did not cover the coding of Java user interface components yet. However, it is not possible
to provide an example of a Java application without addressing the coding of user interface
components to some degree. For you to see how a Java application might be put together, you need
to know something about Java user interface construction. On the flip side, you'll probably not be
spending too much of your time, Java-wise, coding Java user interfaces.

The approach taken in this book is to provide some exposure to coding Java user interface
components without going into all the details. You'll see some input and output screen examples and
the code that produces the examples. You'll read an explanation of the code that creates the
examples. You will not read about most of the nuances involved in creating Java user interfaces.

Figure 13.5 The mainframe changes student roster entry screen.

Page 235

The goal of this chapter is for you to see how you might code a Java application that mimics the
functionality of an application developed in a procedural language on the IBM mainframe. The Java
input screens were developed to be similar to the ISPF screens shown previously.

The Identify User Screen

The following screen performs the same function as the mainframe counterpart shown in Figure
13.1. The Java entry screen requires that the user click on the submit button whereas the mainframe
entry screen requires that the user press the ENTER key after field entry.

Figure 13.6 shows the user identification screen. Here, the user enters a name and an employee ID.

The Student Enter Option Screen

With Java, we can use radio buttons to automatically enforce a mutually exclusive choice. The text
fields to the right of the Student options become active when the corresponding option is selected.
For example, notice that the last option is selected and the text box to the right is enabled, or can
accept inputs. Were the student to click on another radio button, the corresponding text box would
become enabled and the previously enabled text box becomes disabled.

The student must click on the submit button to proceed.

Figure 13.7 shows a Java entry screen showing the options available to a student.

The Java Instructor Options Entry Screen

The structure of the instructor entry screen is the same as that for the student entry screen. The
similarity is mirrored in the code used to create both entry screens.

Figure 13.8 shows the options available to an instructor.

The Create a New Class Entry Screen

Figure 13.9 shows the entry screen for creating a new course. Here, the instructor enters particulars
for the course. All fields require an entry.

Figure 13.6 The Java small machine Identification entry screen.

Page 236

Figure 13.7 The Java small machine screen showing student options.

Figure 13.8 The Java small machine entry screen showing Instructor options.

Figure 13.9 The Java small machine create a new class entry screen.

Page 237

The Change Student Roster Entry Screen

This screen looks a bit different than its mainframe counterpart. Rather than have an option field to
the left of each row, having a clear button that deletes a student does the job. Any changes the
instructor makes to the roster will not take effect until the instructor clicks on the Process Student
Roster button at the bottom of the screen.

Figure 13.10 shows the entry screen for changing the student roster for a class.

The Data Stores

In this section, you'll read a description of the files used to hold the data used by the application. The
data is kept in sequential files; in Chapter 19, you'll see this application with the data stored in
VSAM files and DB2 tables.

You have not read much about the Java treatment of file I/O. The case for not covering Java file I/O
in detail is similar to that for not covering Java user interface component development in detail. In all
likelihood, you'll spend your time writing Java programs to access databases or IBM-specific data
structures, such as sequential files or VSAM datasets. Nonetheless, you deserve some exposure to
Java file I/O, and here is where you'll get it.

The content and structure of the files is the same as for the procedural version of the program as for
the Java version. What follows is a list of files and a brief description of each.

Figure 13.10 The Java small machine change student roster entry screen.

Page 238

The Course Information File.

This file contains information about the courses offered by the training department. A course is a
collection of material relating to a single topic. Table 13.1 shows the file layout and a description of
the fields in the file.

The Class Information File

A class is a scheduled course. This file contains information on specific course offerings, or classes.
Table 13.2 shows the particulars for the fields in the class information file.

The Instructor Information File

The instructor information file has personal information and classes the instructor is scheduled to
teach. Table 13.3 describes the fields in the instructor information file.

The Employee Information File

This file contains information on the employees. To take a simplistic view, an employee is either an
instructor or a student. To keep matters simple, this file has information relevant to the training
application. Table 13.4 contains a description of this file's contents.

Application Outputs

The application produces outputs as a series of screens containing information corresponding to
previous user selections. We'll look at the outputs from our mainframe version and similar outputs
from our Java application. The screens that follow do not permit user inputs.

Table 13.1 Fields in the Course Information File

FIELD NAME POSITION DESCRIPTION

CourseID 1–5 Alpha string that identifies the course. The
CourseID field is unique to each record.

Topic 5–20 Alpha string serving as a short description
of the course.

Description 21–50 A longer description than the Topic field.
Prerequisites 51-70 Up to four CourseIDs that are prerequisites

for this course.
Duration 71-72 Number of hours scheduled to deliver a

course offering.

Page 239

Table 13.2 Fields in the Class Information File

Table 13.3 Fields in the Instructor Information file

OS/390 IBM Mainframe Outputs

As with the input screens, the output screens are ISPF Dialog Manager screens.

The first output screen, shown in Figure 13.11, is produced when a student requests a list of classes
starting on or later than an entered date. A student would view this screen when selecting the first
option from the input screen shown in Figure 13.2.

FIELD NAME POSITION DESCRIPTION

ClassID 1-8 Alpha string that identifies the class. The
first five characters is the CourseID; the
next three are numeric. The ClassID field is
unique to each record.

DateOffered 9-14 A date field in YYMMDD format
identifying the date the class starts.

RoomNumber 15-18 Alphanumeric string identifying the room
the class is taught in.

InstructorID 19-25 Alphanumeric string identifying the
instructor scheduled to teach the class.

EmployeeID 26-110 Up to 12 alphanumeric strings, each string
identifying a particular student enrolled in
the class. Each EmployeeID starts with two
alpha characters followed by five numbers.

FIELD NAME POSITION DESCRIPTION

EmployeeID 1-7 A seven character string that uniquely
identifies an employee. The first two
characters are alpha; the remaining five are
numeric.

FirstName 8-17 A 10 character field with contents that are
self-explanatory.

LastName 18-27 A 10 character field with contents that are
self-explanatory.

CourseIDs 28-57 Up to six CourseIDs that the instructor is
qualified to teach.

Page 240

Table 13.4 Fields in the Employee Information File

Figure 13.11 The mainframe classes starting on or after an entered date.

Figure 13.12 shows a list of classes offered by room number. A student or instructor would see the
following screen when selecting option 2 from the input screen shown in Figure 13.2.

Figure 13.13 shows a table of the courses by category. The user may view the following screen after
selecting option 3 from the input screen shown in Figure 13.2.

Figure 13.14 shows a list of classes with open seats. The student would see this screen after selecting
option 5 from the screen shown in Figure 13.2.

Figure 13.15 shows a list of classes taken by a student. The student would see this screen after
selecting option 4 from the screen shown in Figure 13.2.

FIELD NAME POSITION DESCRIPTION

EmployeeID 1-7 Alpha string that uniquely identifies the
employee. The first two characters are
alpha; the remaining five are numeric.

FirstName 8-17 A 10 character field with contents that are
self-explanatory.

LastName 15-18 A 10 character field with contents that are
self-explanatory.

ClassesTaken 19-65 Up to six ClassIDs of classes taken by the
employee. Each ClassID is eight characters.

TE
AM
FL
Y

Team-Fly®

Page 241

Figure 13.12 The mainframe classes sorted by room number.

Figure 13.13 The mainframe list of courses by category.

The list of classes taught by an instructor screen is nearly identical to the screen shown in Figure
13.15, except that the screen title reads "Classes Taught," not "Classes Taken." An instructor would
see the list of classes taught when selecting option 4 from the screen shown in Figure 13.3.

Page 242

Figure 13.14 The mainframe list of classes with open seats.

Figure 13.15 The mainframe list of classes taken by a student.

Java Outputs

Here, you'll see screens similar to the ones shown in Figures 13.11 through 13.15. The screens in this
section were produced with Java code. The main difference in function-

Page 243

ality between the mainframe screens and the Java screens is that the user needs to hit a function key
(usually PF3) on the mainframe screens to continue whereas the user needs to click a button at the
bottom of the Java screen to continue.

The descriptions provided for the mainframe output screens will do for describing the Java screens.
Hence, in Figures 13.16 through 13.20, we present the Java screens without additional comment.

The list of classes taught by an instructor screen is nearly identical to the screen shown in Figure
13.15, except that the screen title reads "Classes Taught," not "Classes Taken." An instructor would
see the list of classes taught when selecting option 4 from the screen shown in Figure 13.3.

Putting Together the Application

This section discusses some thoughts on how this application could be constructed in a procedural,
third-generation programming language and in Java. The analysis that follows is at a high level with
some attention paid to details now and then.

We deliberately made the application simple. The goal is to present a problem and compare and
contrast a procedural language solution to a Java solution. For example, this application uses a set of
sequential files, not a database. Also, the user interface screens and outputs are hardly commercial
quality. That said, you'll get a feel for the differences between putting together the application in a
procedural language versus Java.

Figure 13.16 The Java classes starting on or after an entered date.

Page 244

Figure 13.17 The Java classes sorted by room number.

Without further ado, some thoughts on a procedural language solution follow.

A Procedural Language Solution

If you were to ask a data processor to sum up the nature of this application, she might reply that the
application were a basic report-writing app. She might mention that the application follows the
classic input— process— output model of the majority of data processing applications.

A data processor may create a series of flowcharts, write some pseudocode, and create a set of
structure charts to describe the processes. The data processor would map processes that end up as
modules on a structure chart to process boxes and decision diamonds on the flowcharts. Although
we've come a long way from the days of structured design, the aforementioned tools are still used in
today's data processing organizations.

Let's take a look at some flowcharts that go a long way in describing the required processes. We'll
not look at all flowcharts required to describe all of the application's behavior. Later, we'll map some
modules to the processes described in the flowcharts that follow and pen some pseudocode for some
modules.

Page 245

Figure 13.18 The Java list of courses by category.

Flowcharts

Figure 13.21 shows the flowchart that gets the application rolling.

After the application displays the user identification screen and accepts an employee name and
employee ID, the application confirms that the name matches with the ID. If the two inputs match,
the application determines if the user is an instructor or not (a student). The determination is made by
examining the instructor information file; if the employee ID is found on the instructor information
file, the user is deemed to be an instructor, else the user is deemed to be a student. Depending on the
instructor/student qualification, the application displays the appropriate options screen.

Figure 13.22 shows a flowchart that describes the process of a student ordering the application to
display a list of classes later than an entered date.

Page 246

Figure 13.19 The Java list of classes with open seats.

Figure 13.20 The mainframe list of classes taken by a student.

The class information file contains a date field identifying when the class starts. The process is to
read every record, comparing the date field on the record with the entered date field. If the entered
date field precedes the date on record, the relevant record data

Page 247

Figure 13.21 Flowchart that describes the start of the application.

is added to the structure. When the program reaches EOF, the program displays the structure with the
relevant class information. The display shown in Figure 13.11 would be the resultant output.

The remaining flowcharts that describe the processes for generating the output screens would be
similar to the flowchart shown in Figure 13.22. They would involve reading one or more files,
comparing fields from the records against entered criteria, saving data on the records that satisfied
the criteria, and displaying the results in a suitable display medium (in this case, ISPF panels).

Page 248

Figure 13.22 Flowchart for "display list of classes starting after a certain date" option.

Pseudocode for "Display Class List Later Than Entered Date" Option

Listing 13.1 shows an example of what may pass as pseudocode in some quarters for the flowchart
shown in Figure 13.22.

Some details are omitted from the pseudocode, such as the layout of the classinfo.data record and the
manner by which the entered date is fetched. Nonetheless, the pseudocode conveys the sense of the
required elements of a procedural solution.

Page 249

Listing 13.1 Pseudocode sample for flowchart in Figure 13.22

The pseudocode that describes how to generate the remaining outputs is strikingly similar to Listing
13.1. The major differences are the fields saved from the records, the files read, and the criteria used.

Features of a Procedural Language Solution.

The approach taken when developing a procedural language solution is the emphasis of process over
data (hence, the term procedural language). The flowcharts and pseudocode reveal an almost
formulaic approach— read a record, compare fields, and save data. The development of code mirrors
these processes.

In addition, program flow of control is sequential, top-down. Nothing happens in the program unless
the code explicitly invokes a routine or "falls into" a code block.

A Java language solution contrasts with the procedural approach. Next, we'll discuss the elements of
a Java language approach.

A Java Language Solution

To implement the Training Department application in Java, we must think a bit differently than our
mainframe programming brethren. In Java, we'll not pay nearly as much attention to process as we
would in using a procedural language. Also, we'll have to forgo the strict sequential flow of control.
As you'll see, that's not the Java way, especially when dealing with user interfaces.

Display Classes After Entered Date:
 Fetch Entered Date
 Create ISPF table to hold class information
 TBCreate CLASINFO containing ClassID, Course Topic,
 Instructor Name, Start Date and Room Number
 Open File "classinfo.data"
 Read file "classinfo.data" into classinfo.data record
 at EOF, close file "classinfo.data"
 If date on classinfo.data record > Entered Date
 Then issue TBADD CLASINFO
 Else
 Read file "classinfo.data" into classinfo.data record

 Issue TBDISPL with table CLASINFO

End:

Page 250

Let's start with basic building blocks. In a procedural language, you might start with a flowchart or
pseudocode to get the ball rolling. Because Java is object-oriented, we'll have to think in terms of
objects. For example, the entry screens and the output displays are objects. You recall that objects
have an associated set of properties and behaviors. In developing our Java solution, we'll fixate on
what objects will be used in our solution and the properties and behaviors of these objects.

Procedurally, a programmer thinks of programs that implement processes that read inouts and create
outputs. In Java, a programmer thinks of objects that have behaviors that implement the desired
processes acting on data that is the properties of objects. Ergo, a good place for a Java programmer to
start in developing a solution is to determine what objects will be needed to solve the problem.

Actually, you've already seen a good number of the required Java objects— the input and output
screens. These screens represent objects with properties and behaviors. Let's put a few under the
microscope and see how a Java solution could be put together.

The Identify User Screen— A Java Object

You recall the user identification screen from Figure 13.6, right? Here is the screen again in case you
forgot.

This screen is a Java object that has the following properties:

 The Employee Name

 The Employee ID

Now, the screen may have other properties that it requires to do its work. However, we're interested
only in the screen's public properties. The Employee Name and Employee ID are two quantities that
will be used elsewhere in the application. Any other property of the screen in relevant only to the
screen and only when the screen is working.

What about the screen's behaviors? We could say that the only behaviors we are interested in is the
screen's ability to capture the previous two properties and make the properties available to other
objects that may need their values.

How do we go about implementing this object? As you would any other Java object; first, you create
a class to serve as a template for similar typed objects. You code instance variables to represent
properties and methods to represent behaviors. The properties and behaviors you want known in the
rest of your application should be declared with the public visibility modifier. Other properties and
methods may be declared private or with another modifier.

Listing 13.2 shows the Java code that represents the user identification screen.

The code shown in Listing 13.2 creates the panel shown in Figure 13.6 by using Java user interface
components called swing components. Refer to Chapter 24 "The Java 2 Enterprise Edition Libraries,"
for a short discussion on using swing components to construct user interfaces. The salient point with
this code is the creation of an object that encapsulates the behavior and properties required for the
application.

The last routine shown in Listing 13.2 is the routine that processes the button click. Recall from
Chapter 11, "Java Event Handling Basics," where you read about event

TE
AM
FL
Y

Team-Fly®

Page 251

import java.awt.* ;
import java.awt.event.* ;
import javax.swing.* ;

public class EntryScreen extends JFrame implements ActionListener
{

 String userName ;
 String userID ;

 public EntryScreen() {

 super("Enter Name and Employee ID") ;
 this.getContentPane().setLayout (new GridLayout(3, 1)) ;

 JPanel userNamePanel = new JPanel(new GridLayout
(1, 2)) ;
 JPanel userIDPanel = new JPanel(new GridLayout
(1, 2)) ;

 JLabel userNameLabel = new JLabel("Name ") ;
 JLabel userIDLabel = new JLabel("Employee ID ") ;

 JTextField userNameTF = new JTextField(20) ;
 JTextField userIDTF = new JTextField(6) ;

 JButton submitBtn = new JButton(" Submit") ;
 submitBtn.addActionListener(this) ;

 userNamePanel.add(userNameLabel) ;
 userNamePanel.add(userNameTF) ;

 userIDPanel.add(userIDLabel) ;
 userIDPanel.add(userIDTF) ;

 this.getContentPane().add(userNamePanel) ;
 this.getContentPane().add(userIDPanel) ;
 this.getContentPane().add(submitBtn) ;

 addWindowListener (new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0) ;
 }
 }) ;

 }
 public void actionPerformed (ActionEvent aev) {
 userName = userNameTF.getText() ;
 userID = userIDTF.getText() ;
 if ((userName.length() != 0) && (userID.length() !
= 0))
 AppUtilities.processEntries
(myES, userName, userID) ;

 }

}

Listing 13.2 Java code for the user Identification screen.

Page 252

handling. Here, the event class for button clicks (and other GUI components, too) is ActionEvent.
The listener interface is called ActionListener and the callback is called ActionPerformed. Here, the
object of class EntryScreen deals with the user clicking.on the Submit button. The action taken is to
pass parameters to a utility routine developed to process the button click. Listing 13.3 shows the code
for the method processEntries.

The thrust of this routine is to ensure that both user name and userID agree and to take action
depending on the user being a student or an instructor. If the user is an instructor, the application
creates and displays an instructor option screen, likewise for students.

Notice that a reference to the entry screen object is passed to processEntries. The reason is that when
we have a bona fide employee (name and ID match), we no longer need the EntryScreen object.
However, if the name and ID do not match, we want the EntryScreen object to stick around. Hence,
we pass a reference and when we get a match on user name and ID, we remove the EntryScreen
object.

The methods nameAndIDMatch() and isAnInstructor() are utility methods located in the same class
as processEntries. The methods are static; you need not instantiate an object to use these utility
methods.

Listing 13.3 Java code for the processEntries method.

public static void processEntries(EntryScreen myES, String
userName, String userID) {
 boolean processed = false ;

 //We have a live one...is this a student, an instructor or do the
number and name
 //not match?
 if (nameAndIDMatch(userName, userID)) {
 myES.dispose() ;
 //If an instructor, show the Instructor choice screen
 if (isAnInstructor(userID)) {
 InstructorOptionsScreen anInstrOptionScreen =
 new InstructorOptionsScreen() ;
 anInstrOptionScreen.show() ;
 }
 else {
 //Show the Student choice screen
 StudentOptionsScreen aStudInstrScreen =
 new StudentOptionsScreen() ;
 aStudInstrScreen.show() ;
 }

 }

}

Page 253

Listing 13.4 Java code for nameAndIDMatch method.

Listing 13.4 has the code for the nameAndIDMatch() method.

The code in Listing 13.4 accepts a name and ID arguments as strings, reads a file containing names
and IDs, and compares the names and IDs read against the values of the arguments. If a match is
found, the routine returns true.

The method has several string-handling methods from class String, such as the trim() and substring()
functions. The method builds up a name form the first and last names stored on file for compare to
the entered name.

The previous routine also employs Java file I/O. Refer to Chapter 24 for a brief dissertation on Java's
file I/O capabilities.

public static boolean nameAndIDMatch
(String empName, String empID)
{
 boolean match = false ;
 String aLine ;
 try {
 FileReader employeeFile =
 new FileReader
("employeeinfo.dat") ;
 BufferedReader bread =
 new BufferedReader(employeeFile) ;

 while ((aLine = bread.readLine()) != null) {
 String empIDFromFile = aLine.substring
(0, 7) ;
 String fName = aLine.substring
(7, 16) ;
 String lName = aLine.substring
(17, 26) ;
 String name = fName.trim() + " "
 + lName.trim() ;

 if (empIDFromFile.equals(empID) &&
 name.equals(empName)) {
 match = true ;
 break ;
 }
}

 bread.close() ;
 }
 catch (IOException ioe) {
 System.out.println("Exception : "
 + ioe.getMessage()); } ;

 return match ;
 }

Page 254

In Summary

The thrust of this chapter is to highlight the difference in a procedural language solution and a Java
(object) solution to a common data processing problem.

The procedural solution concentrates on defining the application as a separate group of modules to
implement functions that operate on data. The data is analyzed and modeled separately from the
modules. The flow of the system is envisioned as a well-defined sequence of actions implemented as
program modules.

The Java solution concentrates on defining the application as a group of objects created from classes.
The classes imbue the objects with properties and behaviors that model the essence of the application
entities, such as input screens and output reports. The flow of the system is envisioned as a group of
objects communication by way of a runtime event delegation model.

Page 255

PART Two
Java In the OS/300 Mainframe Environment

Page 256

This page intentionally left blank.

Page 257

CHAPTER 14
Overview of OS/390 Java Infrastructure/Architecture

You've seen the nuts and bolts of Java programming on your Windows-based workstation. However,
the reason you may have purchased this book is to learn how Java fits in with the IBM mainframe
technologies you've come to know and love. This chapter provides the necessary background to
prepare you to use these technologies with Java.

The chapter starts with the software requirements you'll need to write and run Java on your OS/390
system. Next, you'll read an overview of how Java works with a potpourri of IBM technologies,
including DB2, CICS, IMS, and VSAM. You'll encounter some new IBM and Java terminology in
this chapter as well. This chapter concludes with some references for additional reading.

Software Requirements

For you to run Java on OS/390, you'll need to enable Unix System Services, be running under
Language Environment (LE) Release 1.5 or higher, and, of course, have a Java runtime installed. The
version of the Java runtime you need to install depends on the release of OS/390 you are using.

The short story is that you'll need access to OS/390 Version 1 Release 1 or higher. However, if you
can get access to OS/390 Version 1 Release 6 or higher, you'll have access to a more current JDK
and some useful proprietary IBM features. Table 14.1 shows some JDK features available to various
releases of OS/390 Version 1.

Page 258

Table 14.1 Some Java Features Available to OS/390 by Release

As you see, OS/390 Releases 1, 2, and 3 support Java version 1.1, Releases 6 and 7 support several
features found in Java 2, such as the Swing API, and Releases 8 and above support JDK 1.3.
Actually, the official Java release supported by OS/390 Version 1 Release 6 and 7 is JDK 1.1.8 and
for Releases 8 and above is JDK 1.3.0. The entry in Table 14.1 labeled Support for Record I/O, is a
set of proprietary IBM classes called JRIO, for Java Record I/O.

Java Application Architectures

This section discusses different architectures you may implement when coding Java on OS/390.
Your choices fall into one of the following categories:

 Standalone program. Your Java program directly communicates to some OS/390 software.
You execute your Java program by invoking its main() method. The method invocation can be
from a command window or a batch job.

FEATURE

OS/390
R1, R2,
R3

OS/390
R4, R5

OS/390
R6, R7

OS/390
R8 AND
ABOVE

Java 1.1 Yes Yes Yes Yes
SAF/RACF Security No Yes Yes Yes
Security Migration Aid No No Yes Yes
RMI-IIOP No No Yes Yes
Swing Classes No No Yes Yes
Support for Record I/O No No Yes Yes
Java 1.2 No No No No
Java 1.3 No No No No

JAVA COMPILER OR JAVA INTERPRETER?
As you know, Java "compilers" generate bytecode, not native code. However,
IBM has a product called the High Performance Java Compiler (HPJ), which
generates native OS/390 code. In the discussions that follow, we assume that
you are not using the HPJ. Any situations that require the HPJ or require the
use of the Java bytecode compiler will be cited where appropriate.

Page 259

 Fat client. Your Java component directly communicates to some OS/390 software, like a
standalone program. However, you do not invoke a main() method; you access OS/390
software with a Java applet or servlet. This architecture is an example of a two-tiered
architecture.

 Thin client . Your Java component communicates with some OS/390 software through some
intermediate software layer. The Java components could be part of the intermediate software
layer, like a servlet. This architecture is an example of a three-tiered (or N-tiered) architecture.

Java Software Components Versus Standalone Programs

Most of the examples shown and discussed in Part II of this book concentrate on both writing
standalone Java programs and writing fat clients to access mainframe software and data. A good case
could be made for spending more time discussing the thin client application architecture. Part III of
the book spends some time discussing three- and N-tiered application architecture and the Java 2
Platform, Enterprise Edition (J2EE— refer to Chapter 2, "What is Java?" to refresh your memory).

The two- and three-tier models cited previously use Java software components as opposed to Java
programs. For now, you can think of a Java software component as a piece of Java software that
cannot be run as a program but performs some useful work. Put differently, the Java software
component represents a tier of a multi-tiered application.

One example of such a Java software component is an applet, a Java software component that runs
within the context of a Web browser. For the purposes of our discussion, an applet could be the
implementation of the presentation tier of a multi-tiered application. The customer uses the applet to
communicate with OS/390 system software to access mainframe data.

Another example is a Java servlet, a Java software component that runs within the context of a Web
server. A servlet is an implementation of all or part of the business logic tier of a multi-tiered
application. The customer does not access a servlet directly; the customer accesses the servlet
typically through a Web page. The servlet performs the necessary functions of mainframe data
access and passes any results back to the software components implementing the presentation layer.

Whether the mainframe data or system software access is done by a standalone Java application or a
Java software component, the Java code uses a gateway or connector to access mainframe data.
Think of a gateway as a software layer that provides functions to connect Java software components
with existing software on an OS/390 system. Next, you'll read about gateways that enable you to
access IBM system software products, like CICS and DB2.

Accessing OS/390 System Software

Here, we provide a summary of connecting to various IBM system software products. Some
products, like DB2, do not require proprietary connector software. Others, like

TE
AM
FL
Y

Team-Fly®

Page 260

CICS, may require proprietary connector software. Let's examine how you, the mainframe
programmer, access IBM system software with Java.

Accessing DB2 with Java.

Your Java programs software components can access DB2 data by using one of three methods. You
can use the Java Database Connectivity (JDBC) API, SQLJ, or Java to invoke a DB2 stored
procedures.

JDBC is industry-standard technology implemented by nearly all database vendors that enables a
programmer to access data stored in relational databases. You, the mainframe Java programmer
using JDBC, issue SQL calls as character-string parameters of methods in java.sql.*. You would use
JDBC mostly for dynamic SQL.

SQLJ is an alternative technology that enables you to imbed SQL calls in Java programs. However,
in contract to using JDBC, you would use SQLJ mostly for static SQL. Put another way, SQLJ
requires the use of a preprocessor that translates the SQL calls into source code. If you've done any
DB2 programming on the host in COBOL or PL/I, the aforementioned approach should sound
familiar.

In Chapter 19 "Java and DB2," you'll read more about using Java to access data stored in DB2. In
addition, the coding example shown in Chapter 20, "The Training Department Class Scheduler
System Revisited," has additional Java code examples of DB2 data access.

Accessing CICS with Java

Your Java programs or software components can access CICS by using a custom connector called
the CICS Transaction Gateway (CTG) or by using JCICS.

The CTG is a set of Java classes that enable your Java code to talk to CICS through the External
CICS Interface (EXCI). CTG classes can execute over a network where the CICS servers and the
clients accessing these servers can be located on different OS/390 systems. Also, the CTG classes
can execute locally where the CICS servers are located on the same OS/390 system as the clients.

If you are using CICS Transaction Server Version 1.3 or later, you can access CICS transactions
directly (without using a custom connector like CTG) by using JCICS. JCICS is a set of Java classes
that come with CICS. You merely make these classes known to your Java development environment
and code your Java/CICS programs.

In Chapter 15, "Overview of OS/390 UNIX System Services," you'll read how to access CICS
transactions with Java.

Accessing IMS with Java

You have several options at your disposal to access IMS from a Java program or software
component. You can use the Callable Interface, which uses the Open Transaction Monitor Access
(OMTA) to access IMS. You can use Advanced Peer-to-Peer Communications (APPC). You can use
a custom IMS gateway called the IMS Connector for Java (formerly called the IMS TOC Connector
for Java).

You can establish both conversational and non-conversational IMS transactions from a Java client
application or from a Java software component (applet, servlet).

Page 261

Some Java to IMS access technologies, like APPC, require the use of the Java Native Interface
(JNI).

Chapter 15 provides additional information on IMS access with Java using the aforementioned
products.

Running Java under MVS Batch

You have three options for running your Java programs under MVS batch. You can use the
BPXBATCH utility. You could run your Java program compiled with the High Performance
Compiler as an executable in an all-too-familiar JCL job. You also could run your Java program as
an MVS started task.

The BPXBATCH utility enables you to run a UNIX program or script. In principle, running
BPXBATCH is not that different than running a REXX EXEC under IKJEFT01 (TSO).

If you use the HPJ and linked your object code into an MVS load module, you run the Java program
as you would run any COBOL program you linked.

Running your Java application as a started task is no different than running any program or script as
a started task.

Chapter 16, "Java and MVS Batch," has more information on running your Java programs in MVS
batch.

Accessing OS/390 Record Structures with Java

You can access stream files by using the Java base I/O classes (the java.io package). However, you,
the mainframe programmer, rarely use stream I/O, right? How often do you code COBOL DISPLAY
or PL/I PUT SKIP DATA statements in your production programs? What you really need to know is
how to perform record I/O in Java; you need the equivalent of COBOL, PL/I READ FILE, and
WRITE file statements in the Java language.

To access proprietary file structures with Java, IBM provides a custom package called Java Record
I/O, or JRIO. You use JRIO to access sequential files or members of a partitioned dataset. Chapter
17, "Java Record I/O Using the JRIO Package," has details on Java record access with JRIO,
including copious coding examples.

THE JAVA NATIVE INTERFACE
Sometimes, you cannot access OS/390 resources from Java without calling a
program, written in another programming language, currently on the OS/390
system. Sun provides an API, called JNI that enables you to call other, non-
Java programs from Java programs. You'll see mention of JNI pop up from
time-to-time in our discussion of OS/390 data access. We'll provide particulars
on JNI where appropriate.

Page 262

You access VSAM files with Java by using JRIO, too. JRIO supports read, append, and update
record operations on random, keyed, and sequential VSAM files. You'll read the full story on Java
VSAM file access with JRIO in Chapter 18, "Java COCS, and IMS." The coding example in Chapter
20 uses JRIO to access VSAM files, too.

IBM Java Development Tools

The cross platform nature of Java implies that you can develop your Java programs or software
components on any hardware/software combination and upload the programs to OS/390. The reality
is that you'll want your Java programs to access proprietary IBM system software. Hence, you'll need
custom IBM packages representing connectors. In all likelihood, you'll not find the custom
connection classes with non-IBM Java development tools.

As a mainframe COBOL or PL/I programmer, you may be accustomed to entering source code in the
ISPF editor and running batch compiles. As a Java programmer, you will get accustomed to entering
source code in an integrated development environment on a small machine and uploading a compiled
piece of code or a software component to the host. Some of you COBOL folk with exposure to
MicroFocus COBOL get the idea.

IBM has a suite of small machine development tools called the Visual Age series. IBM has Visual
Age for COBOL, PL/I, C, C++, and Java. The Visual Age product has the same interface for all
programming languages. Also, The Visual Age product comes in Entry, Professional, and Enterprise
Editions.

IBM VisualAge for Java is a powerful rapid application development tool for building Java-
compatible applications, applets, and Java software components. With the VisualAge for Java
programming environment, you can build 100 percent Pure Java applications that run on any Java-
compatible Virtual Machine Java Development Kit or inside any Java-enabled browser. With
VisualAge for Java, you can add or change code and compile without exiting the test environment.
The product includes the Visual Composition Editor and a fully integrated, repository-based
environment that provides complete source and version control.

If your shop does not have, nor plans to use, IBM's Visual Age tools, do not fret. You can adapt any
of the leading Java tools to use the custom IBM classes, like JRIO.

Appendix B has more information about IBM's Visual Age for Java environment, including
directions on downloading a copy, and helpful tips on configuring the environment on Windows
platforms, as well as information on other Java development tools.

In Summary

You see that IBM has covered the bases in providing Java access to OS/390 system software. You,
the Java mainframe programmer, have the means to use Java to get to your mainframe-stored data,
be it stored in a VSAM file or stored in a relational database. The next six chapters show you how.

Page 263

You can reference the IBM site, www.s390.ibm.com/java/, for the most current information on
OS/390 and Java. The site www-4.ibm.com/software/data/db2/java/index.html has information on
using Java with DB2. The site www.ibm.com/developer/java/ has IBM Java information of interest
to programmers. Of course, general Web searches reveal a wealth of information you might find
relevant.

Page 264

This page intentionally left blank.

Page 265

CHAPTER 15
Overview of OS/390 UNIX System Services

With OS/390 UNIX System Services, OS/390 and UNIX, two widely used operating systems, come
together inside a single box. As previously mentioned, to use Java for OS/390, the shop needs UNIX
System Services installed. It would behoove you, the IBM mainframe programmer, to know a bit
about UNIX System Services, or OS/390 UNIX.

This chapter provides some information on OS/390 UNIX. We start by discussing the OS/390
command shell and methods of accessing the OS/390 shell. You'll read portions about the file system
used in OS/390 UNIX, namely the Hierarchical File System (HFS). Lastly, you'll compare and
contrast MVS concepts with those in OS/390 UNIX.

It is not the intent of this chapter to provide a comprehensive description of OS/390 UNIX System
Services. Rather, the intent is to provide you, the MVS programmer, with the knowledge to use
OS/390 UN IX System Services to write and execute your Java programs.

The Command Shell

The shell is a command that reads lines from either a file or the terminal, interprets them, and
generally executes other commands. It is the program that is running when a user logs into the
system. The shell implements a language that has flow control constructs, as well as a macro facility
that provides a variety of features in addition to data storage with built-in history and line editing
capabilities. It incorporates many features

Page 266

to aid interactive use; it's advantage is that the interpretative language is common to both interactive
and non-interactive use (shell scripts). That is, commands can either be typed directly to the running
shell, or they can be put into a file that can be executed directly by the shell.

Some of you stalwart MVSers may recall interacting with TSO by issuing commands at the READY
prompt; using the command shell is similar.

You may wonder how you get to the OS/390 command shell in the first place. The next section
discusses getting to the shell.

Accessing the Command Shell

OS/390 provides several terminal emulators that you can use to access the shells:

The TSO/E OMVS command, a 3270 terminal interface

The rlogin command, an asynchronous terminal interface

The telnet command, an asynchronous terminal interface

Your system administrator must set you up to use one of these terminal emulators. To see which
terminal emulator you are set up for, you should enter the TSO command LISTUSER as follows:

LISTUSER USERNAME OMVS

Typical output from the LISTUSER command would be

UID=0000000101
HOME=/tr23790/home/loum
PROGRAM=OMVS
CPUTIMEMAX=NONE
ASSIZEMAX=NONE
FILEPROCMAX=NONE
PROCUSERMAX=NONE
THREADSMAX=NONE
MMAPAREAMAX=NONE
READY

The italicized line shows the program being used to access the shell. The default shell is accessed
through the TSO OMVS command. Change the shell by entering the ALTUSER command. The
following command entered at the READY prompt changes the OS/390 shell from OMVS to the
OS/390 shell:

ALTUSER USERNAME OMVS(PROGRAM('/bin/sh'))

If you come from a UNIX background, you'll likely access the command shell through rlogin. If you
come from an MVS background, which is a key assumption of this book, you'll likely access the
shell by using the OMVS command. Let's spend some time discussing the OMVS command.

Page 267

The OMVS Command

If you are not set up to use the OMVS command, you can change it by entering the OMVS command
at the READY prompt. Figure 15.1 shows the OMVS terminal emulator with default settings.

You enter commands at the command line prefaced with = = > at the bottom of the screen. Later in
this chapter, you'll read about some OS/390 UNIX commands you may enter in this screen.

The HFS File System.

OS/390 UNIX files are organized in a hierarchy, as in a UNIX system. All files are members of a
directory, and each directory is in turn a member of another directory at a higher level in the
hierarchy. The highest level of the hierarchy is the root directory. A file contained within the HFS
hierarchy is called an HFS file.

Figure 15.2 shows a comparison between MVS files and HFS files.

Figure 15.2 shows that the root/ directory is analogous to the MVS catalog; the root/ directory assists
the file manager in locating HFS files. Each user in an HFS system is

Figure 15.1 The OMVS screen with default PFKey setting.

Page 268

Figure 15.2 MVS datasets and HFS files compared.

assigned a home directory, specified by /u/. The remaining directories ax123 and adsn show one
possible file organization. The files /u/ax123/adsn/mbra and /u/ax123/adsn/mbrb show two files
residing in the subdirectory previously shown.

In short, the directory structure used by HFS is similar to the structure used in PCs running
Windows.

Working with HFS Files

This section discusses naming HFS files and shows some commands that act on HFS files.

Naming HFS Files

A filename can be up to 255 characters long. To be portable, the filename should use only the
following characters:

TE
AM
FL
Y

Team-Fly®

Page 269

 Uppercase or lowercase A to Z

 Numbers 0 to 9

 Period

 Underscore

 Hyphen

Do not include any nulls or slash characters in a filename. Doublebyte characters are not supported
in a filename and are treated as singlebyte data. Using doublebyte characters in a filename may
cause problems. For instance, if you use a doublebyte character in which one of the bytes is a . (dot)
or / (slash), the file system treats this as a special delimiter in the pathname.

OS/390 UNIX is case-sensitive and distinguishes characters as either uppercase or lowercase.
Therefore, MyFile is not the same as myfile.

A filename can include a suffix, or extension, that indicates its file type. An extension consists of a
period () and several characters. For example, files that are Java code could have the extension .java,
as in the filename myprog.java. Having groups of files with identical suffixes makes it easier to run
commands against many files at once. For example, to compile all the Java programs in the current
directory, you could enter

javac *.java

HFS File Commands

Table 15.1 describes some commands that act on HFS files. Some commands accept wildcard
characters that enable the command to act on groups of files, like the previous example of javac
command invocation.

Copying Files between UNIX Files and MVS Datasets

You can copy HFS files to MVS datasets from the OS/390 shell using the cp or mv command, or by
using the following TSO commands. Some examples of using cp to copy files to and from HFS to
MVS are as follows:

cp anhfsfile "//'myhlq.anmvsdsn'"

The previous command copies the file anhfsfile to an MVS dataset myhlq.anmvsdsn. Notice the use
of quotes around the MVS dataset name.

cp -p "DSORG=PS, RECFM=FB, SPACE=
(20, 10)" anhfsfile "//'myhlq.anewmvsdsn'"

The previous command copies anhhsfile to a new MVS dataset myhlq.anewmvsdsn with the specified
DCBs. Notice the -P parameter must be coded in uppercase.

Table 15.2 lists the TSO commands you may use to copy files to and from HFS to MVS.

Page 270

Table 15.1 OS/390 UNIX File Commands

Comparing MVS, UNIX, and OS/390 Concepts

The following list describes platform— independent computing concepts in the language of MVS, the
language of UNIX (AIX, an IBM implementation of UNIX), and OS/390 UNIX. You'll find these
comparisons useful when you see how familiar concepts and properties of MVS are implemented on
OS/390 with UNIX System Services.

COMMAND EXAMPLE DESCRIPTION

In In oldpath
newpath

Create a hard link. Oldpath is the
existing pathname; newpath is the
new reference. Every reference to
newpath is a reference to oldpath.
Hard links cannot access files across
file systems (in a different root
structure).

 In -s oldpath
newpath

Create a symbolic link. A symbolic
link acts like a hard link without the
restriction of accessing across file
systems.

 In -e oldpath
newpath

Create an external link. An external
link may refer to an MVS dataset.

rm rm afile bfile Delete one or more files or links.
When you delete a link, you do not
affect the files, only the link(s)
between them.

cp cp filea fileb Copy filea into fileb. If fileb does
not exist, cp will create it.

mv mv filea fileb
dirA

Move one or more files to another
directory.

 mv -R dirA dirB Move all files from directory A to
directory B. The -R option must be
coded in uppercase.

diff diff filea fileb Compare filea and fileb.
wc wc filea Count the words and lines in a text

file.
grep grep aword afile Search afile for occurrences of

aword. The grep command enables
for pattern searches. Patterns used
by grep are not the same as
wildcards used in commands.
However, the concept is similar.

Page 271

Table 15.2 TSO Commands to Copy Files to and from HFS to MVS

Virtual Storage.

Virtual (or logical) storage is a concept that, when implemented by a computer and its operating
system, enables programmers to use a very large range of memory or storage addresses for stored
data. The computing system maps the programmer's virtual addresses to real hardware storage
addresses. Usually, the programmer is freed from having to be concerned about the availability of
data storage.

On MVS, each user gets an address space of 2 gigabytes of virtual storage. Some of this storage
contains common code for all users.

On AIX UNIX, each user gets whatever they require within the constraints of the operating system,
and also the amount of real memory and storage.

On OS/390 UNIX, each user gets an MVS address space.

TSO COMMAND DESCRIPTION

OPUT Puts (copies) an MVS sequential data set or partitioned
data set member into the file system. You can specify
text or binary data.

OPUTX Puts (copies) a sequential data set, a data set member,
an MVS partitioned data set, or a PDSE into an HFS
directory. You can specify text or binary data, select
code page conversion for singlebyte data, specify a
copy to lowercase filenames, and append a suffix to
the member names when they become filenames.
OPUTX is a REXX EXEC that invokes OPUT.

OGET Gets an HFS file and copies it into an MVS sequential
data set or partitioned data set member. You can
specify text or binary data, and select code page
conversion for singlebyte data.

OGETX Gets an HFS file or directory and copies it into an
MVS partitioned data set, PDSE, or sequential data set.
You can specify text or binary data, select code page
conversion for singlebyte data, allow a copy from
lowercase filenames, and delete one or all suffixes
from the filenames when they become PDS member
names. OGETX is a REXX EXEC that invokes OGET.

OCOPY Copies data in either direction between an MVS data
set and an HFS file, using ddnames. OCOPY can also
copy within MVS (one data set to another data set) or
within the shell (one file to another file). OCOPY has a
CONVERT operand for converting singlebyte data
from one code page to another.

Page 272

Data Storage

Data storage is what we call the physical implementation of related sets of data.

On MVS, data storage is named by data sets, sometimes, written as a single word datasets.

On AIX UNIX and OS/390 UNIX, data storage is named by files.

Configuration Data

Configuration data is a set of attributes that describe the overall behavior of the system, such as
system software versions and details on various system services.

On MVS, configuration data is stored as members of the partitioned dataset SYS1.PARMLIB, also
called the parmlib. Data in the parmlib controls the initial loading of the system as well as how MVS
address spaces behave.

On AIX UNIX, configuration data is stored in files in the /etc directory. In addition, a utility called
the Object Data Manager stores some configuration information.

On OS/390 UNIX, configuration data is also stored in the /etc file system.

Bit Bucket

The bit bucket, a somewhat whimsical term, is the universal data sink (originally, the mythical
receptacle caught bits when they fell off the end of a register during a shift instruction). Discarded,
lost, or destroyed data is said to have 'gone to the bit bucket.'

On MVS, the bit bucket is the DD DUMMY card.

On AIX UNIX and OS/390 UNIX, the bit bucket is a file reference called /dev/null.

Locating Data

How does a user or application locate a dataset or file? The files for an operating system are
organized into a file system. Many environments, such as UNIX System Services, use a file system
that consists of a hierarchy of directories. Conventional MVS, however, uses a non-hierarchical file
system in which groups of data sets are referred to by their high-level qualifier (HLQ) specification.

On MVS, you locate datasets by using a catalog or a PDS directory. A catalog is a direct access
dataset containing device-specific information used to locate datasets. A PDS directory is a listing of
PDS member names with offsets within the PDS used to locate members.

MVS catalogs are tied into system levels. For example, a system catalog could hold information you
would use to locate datasets with a system-wide high level qualifier, such as SYS1. A user catalog
could hold information used to locate datasets with a user high-level qualifier.

Also, on MVS, you may use the Volume Table of Contents (VTOC) to list the dataset names residing
on a particular direct access device. The VTOC does not contain any information on PDS members.

On AIX UNIX and OS/390 UNIX, you would navigate the directory structure of the files to locate a
file. If you are familiar with Windows or DOS, you are no doubt

Page 273

familiar with a directory file system. If so, you know how to navigate directory structures. You direct
the shell to a directory with a change directory command and issue commands to reference files
stored in that directory.

On OS/390 UNIX, the directory file system is called the hierarchical file system (HFS). You'll read
expressions like HFS files (files stored in an HFS file system) and HFS programs (programs that
access HFS files) in this and any work dealing with OS/390 UNIX System Services.

Using Shared Libraries

Shared libraries enable multiple users to access useful system resources. Every multi-user operating
system enables certain libraries to be used by multiple users.

On MVS, the system has a common area called the Link Pack Area (LPA) that holds shared libraries.
The LPA is available to every address space running in the system.

On AIX UNIX and OS/390 UNIX, shared libraries are loaded into the system on demand. When the
first user requests use of a library, the system loads that library into memory. Subsequent users
requiring access to the library may access the previously loaded copy. The operating system will
purge the library when no user requires further access. OS/390 UNIX programs, with their sticky bit
switched on, can access shared libraries in the LPA as well.

Data Encoding

A data encoding is a low-level representation of data. Sometimes, the term collating sequence is used
to mean the data encoding representation. Some often-used data encodings are EBCDIC, ASCII, and
Unicode.

We draw a distinction between the encoding of the data and the format of the data. For example, you
can have text and binary formats with the EBCDIC encoding scheme as well as with the ASCII
encoding scheme. Although both encoding schemes enable for text representation, their underlying
bit patterns, or machine representations, are different.

On MVS, you are free to use any data encoding you wish; the applications are responsible for
handling the data. However, most MVS programs expect the data to be encoded in the EBCDIC
scheme. For the most part, you are safe in assuming that MVS programs use data encoded in
EBCDIC.

THE STICKY BIT
This is the bit in the mode of a UNIX file which, if set for an executable, tells the
kernel to keep the code loaded in swap space even after it has finished executing on
the assumption that it is likely to be used again soon. This performance
optimization was included in some early versions of UNIX to save reloading of
frequently used programs such as the shell from disk.

Page 274

On AIX UNIX, the expectation is that programs expect the data encoding to be ASCII. Of course, you
can write code to use data in EBCDIC or any encoding. However, it's a safe bet that UNIX programs
expect an ASCII data encoding.

On OS/390 UNIX, you are free to use any encoding you wish. However, IBM system software
products expect data to follow the EBCDIC encoding. However, if a program coming from another
UNIX environment gets ported to OS/390 UNIX, you can assume that the program to be ported uses
and produces data in ASCII. If so, the ported program executing on OS/390 UNIX needs to convert
the encoding from ASCII to EBCDIC. You may use the OS/390 UNIX utilities pax and iconv to
convert data from ASCII to EBCDIC.

Dataset and File Formats.

Some operating systems provide dataset and file formats, which are abstractions that enable an
application to access data in a consistent and organized fashion.

On MVS, datasets may be formatted into logical records and physical records (called blocks). When
an application program reads data from a file, the program may read a record of data with a record
I/O statement. This I/O statement operates on a logical record. Physical records, or blocks, are what
MVS uses to buffer data from storage to memory for subsequent program access.

By and large, UNIX and OS/390 UNIX do not have any real file formats or access methods. Data
contained in files is a stream of bytes; any organization required by the application is enforced by the
application.

Dataset Organization and Access Methods

On MVS, closely allied to the concept of dataset format is the concept of dataset organization.
Whereas the record/block format discussed previously describes how an MVS application accesses
data in a dataset, the dataset organization provides a higher-level abstraction for custom data access.
Often, you'll hear MVS programmers use the term access method interchangeably with dataset
organization.

For example, when you, the MVS programmer, perform I/O on a sequential dataset, you are using
the Basic Sequential Access Method (BSAM). When you perform I/O on a VSAM dataset, you are
using the Virtual Storage Access Method. Now, your COBOL or PL/I program issues READ FILE
INTO and WRITE FILE FROM statements; these statements may perform I/O on either sequential
or VSAM datasets (of course, VSAM datasets have more I/O options than BSAM datasets). The
low-level system code that accesses the data is completely hidden from the program.

UNIX and OS/390 UNIX do not have any native support for access methods per se. File organization
and access are the responsibility of the application. However, IBM has utilities that you can use to
copy MVS datasets to HFS datasets to enable access by HFS programs.

Page 275

Case Sensitivity

Coming from the MVS world where everything is usually coded in upper case, you may experience a
few gotchas when coding in the world of OS/390 UNIX. Although you, the MVS programmer, may
code your programs and issue TSO commands in upper case, MVS cares little for the case of your
code. Some exceptions arise when you code JCL and runtime parameters coded on an EXEC PGM=
JCL card.

In UNIX and OS/390 UNIX, case sensitivity rules the roost; nearly every command, file name, and
programming language construct is case sensitive.

Supported Programming Languages

For the most part, nearly every programming language used is supported on MVS with one glaring
exception, which is Java. That said, you, the MVS programmer, could code Java on OS/390 UNIX to
access data resident in an MVS system. The UNIX programmer has a compiler for just about every
programming language imaginable.

Operating systems typically have one or more scripting languages. You use a scripting language to
control system resources, such as files or datasets, and to invoke executables. A script is a curious
mix of operating system statements that may manipulate files or datasets combined with
programming language constructs. An example of a typical script could be a program that checks for
the existence of one or more files; if the files exist, then the script executes program X, or else the
script executes program Y. Scripting languages are usually interpreted and are not processor-
intensive applications.

On MVS, you can code TSO CLISTS, which few people use these days, and REXX EXECs.

On AIX UNIX, you have access to all scripting languages from MVS and AIX UNIX.

Online Help

On MVS, you can issue the TSO HELP command or, if within the ISPF environment, you can hit
PF1 for online help. You can configure ISPF to invoke Book Manager to reference IBM
programming language and system software manuals.

On AIX UNIX and OS/390 UNIX, the man command provides help for shell commands. In addition,
you may get online help through the installed GUI. OS/390 UNIX has an interface to Book Manager
via the OHELP command.

Code That Performs Work

In MVS, the elementary entity that performs work is called a task. MVS represents tasks by using a
Task Control Block. The MVS operating system supports multiple tasks within each address space.
Applications written in COBOL and PL/I usually correspond to a single task.

Page 276

In AIX UNIX and OS/390 UNIX, the elementary entity that performs work is called a thread. A UNIX
(AIX or OS/390) application starts a unit of work called a process, which may contain or create
multiple threads. In addition, an AIX UNIX or OS/390 UNIX process can create additional
processes, which, in turn, may create one or more threads.

In MVS, a long running task is known as a started task. A started task may execute as long as the
system is active. In AIX UNIX and OS/390 UNIX, a long-running task is called a daemon; a long-
running task under OS/390 may also be a started task.

Program Search Order.

The program search order is the list of libraries and paths the system searches to locate executable
programs.

In MVS, the system searches the following partitioned datasets (libraries) allocated to the following
DDNAMES in the order listed: TASKLIB, STEPLIB, JOBLIB, LPALST, and LNKLST.

In AIX UNIX , the system searches the directories specified in the user's PATH environment variable.
The value of PATH is a list of directories; the program file found in the first directory listed in the
PATH is the file loaded and executed. For dynamic link libraries, the system searches a list of
directories specified in the LIBPATH environment variable.

In OS390 UNIX, the system searches the directories specified in the user's PATH variable. However,
if the program's sticky bit is switched on, the search order follows the previous rules for MVS.

Assigning Disk Storage

In MVS, a user assigns storage by allocating datasets. Dataset allocation can be done in the
foreground by using the TSO ALLOCATE command or using dataset utilities in ISPF (which is a
front end for the ALLOCATE command). MVS users may allocate disk space in batch by using DD
statements in a JCL job stream.

In AIX UNIX , a system administrator assigns files to logical disk volumes that are mapped to
physical disk volumes.

In OS/390 UNIX , a system administrator allocates HFS files. Also, a user may execute a shell script,
REXX Exec, or a program that creates HFS files from program data.

Problem Determination

In MVS, you can use TSO TEST, a line-oriented debugger, or the IBM debug tool. MVS supports
ABEND codes and may produce a system dump on request. Several third parties offer source level
debugging tools.

In AIX UNIX , you have access to a range of programming debugging tools as well as system
routines, such as errpt, for reporting system errors; you can also request a core dump.

Page 277

In OS/390 UNIX , you have the same features as AIX UNIX at your disposal. You also may use the
Visual Age product, which provides a source level debugger for several programming languages,
including Java.

Online Execution

In MVS, you may log on to TSO by supplying a user ID and a password. Upon logging on, the
system submits a started task that represents the user logged onto the system. Each TSO user may
have only one TSO session active at a given time.

The MVS user executes a program in the foreground by either entering the name of the program at
the TSO "ready" prompt, or through option 6 of ISPF. The system searches the program libraries
allocated to the DDNAMEs specified in the section "Program Search Order" unless the user
specified the fully-qualified dataset name.

In AIX UNIX , users log on to the system and execute shell scripts. An AIX user may issue an rlogin
or telnet command to connect to another operating system. In addition, the AIX user may enter the
name of a script or executable. AIX UNIX users may have several login sessions simultaneously.

In OS/390 UNIX , a user may logon with the rlogin and telnet commands, then logon to TSO (MVS)
and execute the OMVS command to have an MVS session. As with AIX UNIXI, OS/390 UNIX
users may enter the name for a shell script or executable program.

Background Execution

In MVS, background program execution is done by submitting a batch file, containing JCL, to the
batch environment.

In AIX UNIX and OS/390 UNIX, shell commands prefixed with both an ampersand (&) and cron
command will execute in batch. In OS/390 UNIX, the BPXBATCH command enables the user to
submit batch jobs and run HFS programs in JCL job streams.

Scheduling Programs for Execution

In MVS, a job scheduler may use a number of system utilities, such as JES or the system Automation
for OS/390.

In AIX UNIX and OS/390 UNIX, the cron utility schedules programs that execute in the background.
Third-party solutions for UNIX background daemons also exist.

Creating Programs

The MVS programmer may create a program by using a compiler with a linker or binder. The output
of the binder is a load module— a member of a PDS that holds executable code.

In AIX UNIX or OS/390 UNIX, the programmer uses a compiler and a linker. Usually, a special script
called a makefile is used to ensure the existence of necessary files, call the compiler, and if the return
code is satisfactory, issue a call to a linker.

TE
AM
FL
Y

Team-Fly®

Page 278

Editing Data

In MVS, the primary tool used by you, the MVS programmer, to edit data and program code is the
ISPF editor.

In AIX UNIX , you would use one of several editors, such as vi, ed, or emacs.

In OS/390 UNIX , you could use the AIX UNIX editors or the edit tool. You may use a GUI-based
editor called nedit, which also converts from ASCII to EBCDIC.

View and Cancel Jobs

In MVS, you could use SDSF or a third-party product, such as IOF, to view, purge, and cancel jobs.
These tools enable you to stop a job that is currently executing or to remove a job pending execution
from the job queue.

In AIX UNIX , you could use the ps shell to view and kill threads. To stop an online executing
process, you use the Control-C key combination.

In OS/390 UNIX , you have the features available to both MVS and AIX UNIX to view and stop
threads.

In Summary

OS/390 UNIX System Services bring together two powerful operating systems. These system
services enable you, the mainframe programmer, to access MVS datasets from a UNIX environment.
Since you must compile and execute your Java programs from within this environment, you need
tools to access mainframe (MVS) datasets; UNIX System Services give you just that.

Page 279

CHAPTER 16
Java and MVS Batch.

Even in this day and age of GUI applications, there will always be a need to run programs in batch.
Fortunately, running Java programs in batch is not difficult. All you need to do is secure your shop's
Java Class Library (JCL), and modify the job stream by supplying your Java program, dataset
references, and other runtime and environment parameters.

This chapter provides what you, the mainframe programmer, need to know to execute a Java
program in batch. You'll read about the three options that are available for batch Java program
execution. For each option, you'll read about the parameters that you'll need to supply to the job
stream. Along the way, you'll see which environment variables to set and how to set them in the
OS/390 batch environment.

Executing Java in Batch

Three options are available to execute Java programs in batch:

1. You can execute the Multiple Virtual Storage (MVS) utility program BPXBATCH. BXBATCH
enables you to run an OS/390 UNIX command or executable under MVS.

2. If you compile and link your Java program with the High Performance Compiler, you can
execute your linked program as you would a COBOL or PL/I program.

Page 280

3. You can run Java programs as a started task using one of the two options previously outlined.

The next sections examine these options in detail, starting with using BPXBATCH.

Running Java Programs with BPXBATCH

Because the Java interpreter runs under OS/390 UNIX system services, you can use the BPXBATCH
utility to load the Java interpreter and pass the name of a Java program. You may also supply
runtime parameters to the main() method of the Java program at the same time.

Listing 16.1 shows the JCL that loads BPXBATCH and runs a Java program.

This listing is an absolute minimum. BPXBATCH writes to Hierarchical File Storage (HFS)
datasets only. (BPXBATCH can read from MVS datasets.) Hence, you can't use SYSOUT=* for the
standard output streams. Some additional information on this job follows.

The Parameter Passed to BPXBATCH

This statement in Listing 16.1 is the parameter passed to BPXBATCH:

// PARM='SH java javaprog parm1 parm2'

Listing 16.1 Running Java with BPXBATCH.

//WHOIAMA JOB (MYACCTINFO), CLASS=X, MSGCLASS=X, MSGLEVEL= (1,1),
// REGION=16M, NOTIFY=& SYSUID
//*
//* Run Java Program with BPXBATCH
//*
//RUNJAVA EXEC PGM=BPXBATCH,
// PARM='SH java javaprog parm1 parm2'
//STDOUT DD PATH=' /u/homedir/stdout',
// PATHOPTS=(OCREAT, OTRUNC, OWRONLY),
// PATHMODE=SIRWXU
//STDERR DD PATH=' /u/homedir/stderr',
// PATHOPTS=(OCREAT, OTRUNC, OWRONLY),
// PATHMODE=SIRWXU
//STDENV DD PATH=' /u/homedir/myenvfil'
/*

Page 281

The parameter is the standard UNIX command shell, SH, with the Java runtime, the name of a Java
program, and any parameters the Java program requires. The Java program would contain the
following constructs:

public class javaprog {
 public static void main(String[] args) {
 //args[0] equals parm1, args[1] equals parm2
 }
}

You are not limited to passing the Java runtime interpreter to the command shell. You can pass a
script that calls the Java runtime interpreter. In the script, you can set environment variables or use
program logic to run different Java programs.

Standard Files Used by BPXBATCH

The filesused by BPXBATCH are STDOUT, STDERR, and STDENV.

 STDOUT is the default output file that corresponds to System.out.print in your Java program.

 STDERR is the error output where the Java runtime writes diagnostics-like stack traces.
STDERR, if not specified in your job stream, defaults to the dataset referenced by STDOUT.

 STDENV is a file that contains options to the Java runtime, such as a classpath setting.
STDENV is not required and is usually "dummied" out (DD DUMMY).

Listing 16.1 shows these files stored in a home directory, but the files can be stored anywhere the
user has permission to save files.

A More Robust Job Stream for Executing BPXBATCH

In the real world, a batch job would include an IEFBR14 step at the beginning and perhaps, a step at
the end to clean up or move output to another location. Listing 16.2 shows the BPXBATCH job
including these steps.

The DELETE step does what you think it does; it runs IEFBR14 to delete any existing datasets that
shouldn't exist for this job. The datasets in question are the standard output and standard error
datasets.

WARNING
If you misspell or omit the DDNames, STDOUT, or STDERR in your
BPXBATCH job, BPXBATCH will route the output to the null and invisible
output, /dev/null.

Page 282

Listing 16.2 Running Java with output redirection.

The RUNJAVA step is the same as the RUNJAVA step in Listing 16.1.

The COPYOUT step invokes TSO in the background and runs the OCOPY command to copy the
data from HFS datasets to a SYSOUT dataset. You can easily code a

//WHOIAMA JOB (MYACCTINFO),CLASS=X,MSGCLASS=X,MSGLEVEL=(1,1),
// REGION=16M,NOTIFY=&SYSUID
//*
//* Run Java Program with BPXBATCH
//*
//DELETE EXEC PGM=IEFBR14
//STDOUT DD PATH='/u/homedir/stdjava.out',
// PATHOPTS=(OCREAT,OWRONLY),
// PATHMODE=SIRWXU,
// PATHDISP=(DELETE)
//STDERR DD PATH='/u/homedir/stdjava.err',
// PATHOPTS=(OCREAT,OWRONLY),
// PATHMODE=SIRWXU,
// PATHDISP=(DELETE)
//*
//RUNJAVA EXEC PGM=BPXBATCH,
// PARM='SH java javaprog parm1 parm2'
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//STDOUT DD PATH='/u/homedir/stdjava.out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/homedir/stdjava.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD DUMMY
//*
//COPYOUT EXEC PGM=IKJEFTO1,DYNAMNBR=300,COND=EVEN
//SYSTSPRT DD SYSOUT=*
//HFSOUT DD PATH='/u/homedir/stdjava.out'
//HFSERR DD PATH='/u/homedir/stdjava.err'
//*Shop - specific DCBs for output files follow
//STDOUTL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//STDERRL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD DATA
 ocopy indd(HFSOUT) outdd(STDOUTL)
 ocopy indd(HFSERR) outdd(STDERRL)
/*

Page 283

sequential MVS or member of a partitioned dataset (PDS) for the destination of the OCOPY
command.

If you're wondering why the COPYOUT step is there, sadly, it is because no symbolic temporary
dataset representation is available for HFS datasets. You cannot code &&TEMP for STDOUT or
STDERR datasets. Also, as previously mentioned, BPXBATCH writes to HFS datasets only.

Compiling a Java Program in Batch

Because BPXBATCH runs OS/390 UNIX programs in batch and the Java bytecode compiler is an
OS/390 UNIX program, you can compile Java programs in batch. The JCL is nearly identical to that
for executing the program. The only difference is that instead of passing the java command to the
UNIX command shell, you pass the javac command. You can use the job shown in Listing 16.2 and
change the EXEC card of the RUNJAVA step to pass javac to compile Java programs in batch.

As previously mentioned, you can pass a shell script to the command processor to set environment
variables and compiler options.

Defining Environment Variables in Batch

Whether you compile or run Java programs on a workstation or in batch, you'll need to establish the
proper environment. A convenient method for establishing your Java environment for batch compiles
and executions is by defining your Java environment variables in a dataset. The dataset is known to
BPXBATCH jobs as DDNAME STDENV. The dataset referenced by DDNAME STDENV can be
an HFS or MVS dataset (recall that BPXBATCH can read from MVS datasets).

BPXBATCH also accepts environment variable settings by way of an instream DD statement. For
example,

//SYSENV DD *
 PATH==/usr/lpp/java12:/u/myhome/myprog
/*

Typically, you need to set the PATH and CLASSPATH environment variables. It's good practice to
set the JAVA_HOME variable as well. Code the values for these environment variables in an
unnumbered text file (turn line numbering off while editing) as name-value pairs:
environmentvarname=varvalue. Here's how to make variable assignments for some Java
environment variables in OS/390.

Assigning Environment Variables in OS/390

Here are some rules of thumb to follow when assigning Java environment variables in OS/390.

 Use a colon to separate path names.

 Example: PATH=/usr/lpp/java12:/u/myhome/myprogs

Page 284

This sets the PATH environment variable to the two directories (paths) separated by the colon. Of
course, you may, and usually will, use more than two paths in an environment variable assignment.

 Environment variable names are referenced by a $ on the right-hand side of an assignment
statement.

 Example: CLASSPATH=$CLASSPATH:/u/myhome/myprogs

This sets the CLASSPATH to the existing CLASSPATH assignment and the path following the
colon. Assigning an environment variable with its existing value plus additional paths is a common
technique for setting environment variables.

 Most environment variables deal with paths. However, several enable the use of JAR and ZIP
files in conjunction with paths.

 Example: CLASSPATH=$CLASSPATH:/u/myhome/myprogs:/libs/tools.jar

This sets the CLASSPATH assignment to the current CLASSPATH, the path /u/myhome/myprogs,
and the JAR file /libs/tools/jar.

 You can use the values of some existing environment variables as partial paths when assigning
other environment variables.

 Example: PATH=/usr/lpp/java12:/u/myhome/myprogs:$JAVA_HOME/lib

This uses the value of JAVA_HOME to set a path that partly defines the PATH environment
variable. Using an existing environment variable as part of a path works when the existing
environment variable can refer to only one path, such as JAVA_HOME.

 Different products use different sets of environment variables. For example, the Customer
Information Control System (CICS) has a set of environment variables that is unique to using
Java and the CICS gateway. Using Java with DB2 requires yet another set of environment
variables.

Running Compiled and Linked Java Programs

Executing Java programs compiled and linked with the High Performance Java Compiler (HPJC)
can be done in one of two ways. If you linked your module into an HFS file, you'll use BPXBATCH.
If you linked your module into an MVS dataset, you'll invoke the module directly with an EXEC
PGM= JCL statement.

Listing 16.3 shows a sample job stream that runs a Java executable compiled and linked into an HFS
dataset.

You'll have to code a STEPLIB DD statement in your JCL to bring in the HPJC and the IBM
Language Environment (LE) runtime libraries. The dataset names shown here are probably not the
same as those used in your installation. Notice the absence of the STDENV DD statement; you don't
need one when you run Java executables.

Listing 16.4 shows a sample job stream that runs a Java executable compiled and linked into an MVS
dataset.

No surprises here. Any files referenced in the program would need DD statements, of course.

Page 285

Listing 16.3 Running a Java executable with BPXBATCH.

Listing 16.4 Running a Java executable as an MVS load module.

Running Java Programs as Started Tasks

You may run a Java application as an MVS started task. Note that the Java application runs under the
authorization of the started task user ID, which allows you to assign specific authorities to a Java
server application. In addition, your Java server runs in a familiar, "operator-friendly" environment
and can be easily started, monitored, and cancelled from an MVS console.

The JCL for the started task is the same as for the batch job listing shown in Listing 16.1.

//WHOIAMA JOB (MYACCTINFO),CLASS=X,MSGCLASS=X,MSGLEVEL=(1,1),
// REGION=16M,NOTIFY=&SYSUID
//*
//* Run Executable Java Program with BPXBATCH
//*
//RUNJAVA EXEC PGM=BPXBATCH,
// PARM='SH /u/homedir/javaprgs/ajavaprg'
//STEPLIB DD DSN=HPJ.SHPJMOD,DISP=SHR
// DD DSN=HPJ.SHPOMOD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//STDOUT DD PATH='/u/homedir/stdout',
// PATHOPTS=(OCREAT,OTRUNC,OWRONLY),
// PATHMODE=SIRWXU
//STDERR DD PATH='/u/homedir/stderr',
// PATHOPTS=(OCREAT,OTRUNC,OWRONLY),
// PATHMODE=SIRWXU

//WHOIAMA JOB (MYACCTINFO),CLASS=X,MSGCLASS=X,MSGLEVEL=(1,1),
// REGION=16M,NOTIFY=&SYSUID
//*
//* Run Executable Java Program From MVS Load Module DSN
//*
//RUNJAVA EXEC PGM=AJAVAPRG,
//STEPLIB DD DSN=MYHLQ.JAVA.LOAD,DISP=SHR
// DD DSN=HPJ.SHPJMOD,DISP=SHR
// DD DSN=HPJ.SHPOMOD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*

Page 286

In Summary

Hopefully, you can see that running a Java program (or compiling one) in batch is not difficult. If
you're not familiar with HFS dataset organization, the JCL listings included in this chapter may seem
a bit strange. However, whether the datasets used by your Java programs are MVS or HFS, it all
boils down to the same concepts: The OS/390 batch environment requires that certain DDNames are
known to executing programs. Just make those DDNames known and the environment will do the
rest.

You've also read about setting environment variables. PL/I programmers are comfortable with setting
runtime environment variables; COBOL programmers are probably less comfortable. Most of the
time, these environment variables will be set in script files or in SYSIN DD * JCL, so you can
probably get away without being a maven on Java environment variables for now.

TE
AM
FL
Y

Team-Fly®

Page 287

CHAPTER 17
Java Record I/O Using the JRIO Package.

As mainframe programmers, you spend much of your time writing and maintaining programs that
perform record I/O. There's one slight catch— Java has no support for record I/O. We say "slight"
because the extensible nature of Java makes it possible to write Java programs that perform record
I/O with a little help from our friends at IBM. The help comes in the form of a custom package
called JRIO, for Java Record Input and Output, which is the subject of this chapter.

Here, we'll cover the particulars of using IBM's JRIO package. You'll learn where to get a copy of
the required class files and see some code using the JRIO classes to perform common and useful
tasks.

What Is JRIO?

JRIO is an extension library that lets Java applications access traditional OS/390 file systems in
addition to the Hierarchical File System (HFS). JRIO makes it possible for Java applications to
access records within files and to access file systems through native methods. You do not have to
write any code using the Java Native Interface (JNI) to use JRIO.

Recall that java.io, the base I/O package from Sun, provides byte-oriented or field-oriented access to
files. JRIO is a class library that provides record-oriented access. JRIO uses separate interfaces for
representing files and directories. JRIO also provides interfaces and classes for binary record-
oriented operations and supports text only fields within binary record files.

Page 288

JRIO provides access methods to read, write, or update sequential BSAM, random access, and keyed
access files that are supported. In addition, Java programs using JRIO can access VSAM datasets, a
PDS directory, and the system catalog.

JRIO enables you to access VSAM datasets in entry sequence order, by accessing a unique, primary
key, or by accessing an alternate index. Directory and catalog operations supported by JRIO are
listing the high level qualifiers in the system catalog, listing the datasets starting with a qualifier, and
listing the members of a PDS.

JRIO is part of Java for OS/390. You can download the JDK for OS/390 from
www.s390.ibm.com/java. JRIO is installed when you install the downloaded JDK.

Contents of the JRIO Package

This section describes the list of interfaces, related classes, constants, and exceptions available in the
JRIO package com.ibm.recordio. You can divide the elements in JRIO among elements dealing with
HFS files, OS/390 non VSAM files, and OS/390 VSAM files.

Let's take a look at the interfaces provided by JRIO.

JRIO Interfaces

JRIO provides Java interfaces that allow you to access directory information as well as perform
record IO on common IBM data structures. The sections that follow provide details on the JRIO
interfaces.

IDirectory

The IDirectory interface defines the operations on a directory, such as getting attributes, listing
contents, creating new directories, and deleting or renaming existing directories. The related class,
Directory, acts as a handler class when instances are created using the new() operator. The Directory
class also provides several getInstanceOf() static factory methods that return references to concrete
classes.

WHAT IS A FACTORY?
A factory is an object that creates or locates other objects. Objects are usually
created with the new operator, which is analogous to having a static (factory)
method on the object's class object. Often such static methods are named
getInstanceOf() or newInstance(). This enables users of an interface to obtain
instances of objects that implement the desired interface, without knowing or
specifying the concrete class of the object. This enables a runtime choice of
which implementation to use, based on the particulars of the environment,
user inputs, or other factors.

Page 289

IRecordFile

The IRecordFile interface defines the operations on a file, such as getting and setting attributes,
creating new files, and deleting or renaming existing files. The related class, RecordFile, acts as a
handle class when instances are created using new() operator. The RecordFile class also provides
several getInstanceOf() static factory methods that return references to concrete classes.

IRecord

The IRecord interface defines the operations on the Record class, which is a wrapper for a byte array.
An object of type byte[] is the simplest form of a record. The Record class provides field navigation
by name or field index and also provides field-level type conversion. The record streams and random
and keyed access files support reading and writing IRecords. IRecord and Record are part of the IBM
VisualAge for Java Record Framework com.ibm.record package. This package is included with Java
for OS/390.

 Although the record streams and the random access and keyed access files all
support reading and writing byte arrays, the application must handle any field navigation,
type conversion, and exceptions arising from invalid conversions.

IFileInputRecordStream

The IFileInputRecordStream interface extends the InputRecordStream interface. Both interfaces
define the sequential file input operations for record files, basically read and close. The related class,
FileInputRecordStream, acts as a handler class when instances are created using the new() operator.

FileInputRecordStream also provides several getInstanceOf() static factory methods that return
references to concrete classes. FileInputRecordStream extends the abstract class Input Record
Stream. FileInputRecordStream is similar to FileInputStream in the java.io package.
InputRecordStream is similar to InputStream in the java.io package.

IFileOutputRecordStream

The IFileOutputRecordStream interface extends the IOutputRecordStream interface. Both interfaces
define the sequential file output operations for record files, including write, flush, and close. The
related class, FileOutputRecordStream, acts as a handle class when instances are created using the
new() operator.

FileOutputRecordStream also provides several getInstanceOf() static factory methods that return
references to concrete classes. FileOutputRecordStream extends the abstract class
OutputRecordStream. FileOutputRecordStream is similar to FileOutputStream in the java.io
package. OutputRecordStream is similar to OutputStream in the java.io package.

Page 290

IRandomAccessRecordFile.

The IRandomAccessRecordFile interface defines the random access operations for record files, such
as relative positioning, seeking, reading, writing, and closing. The related class,
RandomAccessRecordFile, acts as a handle class when instances are created using new() operator.
RandomAccessRecordFile also provides several getInstanceOf (. . .) static factory methods that
return references to concrete classes.

IKeyedAccessRecordFile

The IKeyedAccessRecordFile interface defines the keyed access operations for record files, such as
positioning by key, reading, writing, updating, deleting records, getting related index files, and
closing. The related class, KeyedAccessRecordFile, acts as a handler class when instances are
created using the new() operator.

KeyedAccessRecordFile also provides several getInstanceOf(. . .) static factory methods that return
references to concrete classes. KeyedAccessRecordFile is somewhat similar to RandomAccessFile in
the java.io package, but it introduces new, key-related positioning functions and the ability to
logically delete records. Its function is somewhat similar to the java.util.Properties class. It lets you
store and retrieve records by using a key.

IKeyDescriptor and IKey

The IKey interface defines the operations for a key, such as getting the bytes from the key and
comparing this key's value with another key's value. The related class, Key, is a simple wrapper for a
byte array (that is, it is not a handler class). It does provide a utility method, named getKey(), to
create a key wrapper object from bytes extracted from another key or from a record when you
provide the offset and length of the key bytes in the record.

An object of class Key does not contain its offsets or its length. However, an object of class
KeyDescriptor contains the offset and length attributes needed to extract the key from a record, but
does not contain the key's actual data.

The next section has information on the constants used by classes in JRIO.

JRIO Constants

JRIO constants are static variables in interface com.ibm.recordio.IConstants. Table 17.1 shows the
JRIO constants used by classes that implement the IRecord interface, their values, the JRIO classes
that you'll use these constants in, and a short description.

Table 17.2 shows the JRIO constants representing file attributes used by the listDetailed() method of
the class Directory. ListDetailed() returns an array of file names and file attributes. The class
Directory implements the IDirectory interface.

Listing 17.1 shows how to use the listDetailed() method.

The next section has some information on exceptions thrown by methods from JRIO classes.

Page 291

Table 17.1 JRIO Constants Used in Classes that Implement IRecord

CONSTANT NAME VALUE USED IN CLASSES DESCRIPTION

JRIO_DEFAULT_RECORD_FORMAT String =
"FB"

RecordFile Default file record format
RandomAccessRecordFile

JRIO_DEFAULT_RECORD_LENGTH int = 80 RecordFile Default LRECL
RandomAccessRecordFile
KeyedAccessRecordFile

JRIO_FIXED_MODE String =
"FB"

RecordFile Represents Fixed Blocked
RECFM
RandomAccessRecordFile

JRIO_MAX_RECORD_LENGTH int =
32760

RecordFile The largest LRECL
possible
RandomAccessRecordFile

JRIO_MIN_RECORD_LENGTH int = 1 RecordFile The smallest LRECL
possible
RandomAccessRecordFile

JRIO_READ_EOF int = -1 FileInputRecordStream End of file marker
RandomAccessRecordFile
KeyedAccessRecordFile

JRIO_READ_MODE String =
"r"

RandomAccessRecordFile Random access read only
mode
KeyedAccessRecordFile

JRIO_READ_WRITE_MODE String =
"rw"

RandomAccessRecordFile Random read-write access
mode
KeyedAccessRecordFile

JRIO_VARIABLE_MODE String =
"vb"

RecordFile Represents variable
blocked RECFM
RandomAccessRecordFile

Page 292

Table 17.2 JRIO Constants Used by listDetailed() from Class Directory

Listing 17.1 listDetailed() example

JRIO Exceptions

Methods from classes derived from JRIO throw some Java exceptions as well as some exceptions
unique to JRIO. Of the exceptions unique to JRIO, you can group them into common exceptions and
keyed access exceptions. The common exceptions are thrown by a

CONSTANT NAME VALUE DESCRIPTION

JRIO_DIR_ENTRY_POSIX byte = 0 File entry is a POSIX file

JRIO_DIR_ENTRY_CATALOG byte = 1 File entry came from a
catalog

JRIO_DIR_ENTRY_HLQ byte = 2 File entry came from a High
Level Qualifier

JRIO_DIR_ENTRY_PDS byte = 3 File entry came from a PDS
directory

JRIO_DIR_ENTRY_TYPE_BYTE_SIZE byte = 1 Size of a directory entry
identifier

static final String myHLQ = "//TR23790" ;
//Get a reference to the Directory (an HLQ In this case)
Directory myDSNsDir = Directory new(myHLQ) ;
//Fetch dataset names from HLQ directory object
byte[] [] myDSNs = myDSNsDir.listDetailed() ;
//This will hold an Individual dataset name
String aDSN ;
//This will always be JRIO_DIR_ENTRY_HLQ (2) in this example
byte dsnEntryType ;
for (int i = 0; i < myDSNs.length; i++) {
 aDSN = "" ;
 //Access the first byte of the returned byte array
 dsnSource = myDSNs[i] [0] ;
 //Create a dataset name as a string from the bytes returned from
 //listDetails()
 for (int j = 1; j < myDSNs[i].length ; j++)
 aDSN = aDSN + (char)myDSNs[i] [j] ;
 //List dataset name to standard output
 System.out.println("DSN = " + aDSN) ;
}

Page 293

variety of methods that operate on keyed and non-keyed datasets and directories whereas keyed
access exceptions are thrown by methods that operate on keyed datasets only.

The following general Java exceptions in the java.io package are thrown by many methods of JRIO:
FileNotFoundException, IOException, IllegalArgumentException, IllegalStateException, and
SecurityException.

Short descriptions of the JRIO-specific exceptions follow, starting with those exceptions common to
methods that operate on both VSAM and non-VSAM files and directories.

Common JRIO Exceptions

JRIO methods throw two common exceptions: RecordIOException and RecordIORuntimeException.

RecordIOException

RecordIOException is a subclass of the Java exception class java.io.IOException that distinguishes
I/O exceptions detected when using JRIO methods. RecordIOException is a checked exception,
which means that your application code must explicitly handle it. The method that throws the
exception can use a try-catch block to handle the exception or pass the exception to the calling
method by declaring the exception in the method header.

RecordIORuntimeException

RecordIORuntimeException is a subclass of the Java exception class java.lang.RuntimeException
that distinguishes runtime exceptions detected within JRIO. RecordIORuntimeException is an
unchecked exception, which the application methods need not catch nor declare in a throws clause.

 Recall that your application normally can't do anything about unchecked
exceptions except, perhaps, report on them and gracefully exit. If your application catches
unchecked exceptions, you'll use System.exit(0) to stop your application. If you let the JVM
handle the unchecked expression, the JVM will stop your application and generate a stack
trace.

JRIO Exceptions Unique to Keyed File Processing

The exceptions described in this section are specific to keyed file access. They are all subclasses of
com.ibm.recordio.RecordIOException. Methods of class KeyedAccessRecordFile can throw these
exceptions. Like RecordIOException, they are also checked exceptions. Some of these exceptions
are a result of programming or input errors; some could result from normal processing.

Page 294

DuplicateKeyException

DuplicateKeyException exception is thrown when your application calls a write or update method
that uses a new record containing a key that violates uniqueness in a unique key index of a cluster.
DuplicateKeyException usually indicates an application logic error or bad input data. It is hard to
imagine a situation where the generation of a duplicate key results from normal or expected
application behavior.

IllegalKeyChangeException

IllegalKeyChangeException exception is thrown when your application calls an update method that
uses a key to locate a record to update and then tries to change the field containing the key. Your
application cannot change the field containing the key used to locate a record. You may be able to
change keys in other fields. However, this could cause a DuplicateKeyException.

KeyNotFoundException

KeyNotFoundException is thrown when your application calls the positionForward(keyFile,
thisKey) method and the method cannot locate a record in keyFile containing the key with value
thisKey. The method positionForward() does not perform a read operation; the method moves the
cursor to the record with the key value specified in its argument. The similar method
positionForwardGE(key) does not throw this exception, but positions to the next higher key if the
specified key is not found. The next read could get an End-Of-File indication if no more keys in this
index exist.

MissingPriorReadException

MissingPriorReadException is thrown when your application calls either deleteRecord (aRecordFile)
or update (aRecordFile, aRecord) and the previous operation is not a successful read of the record to
delete or update. Put simply, your call to deleteRecord or update has no record to delete or update.

Now that you've read a bit about the JRIO interfaces, classes, constants, and exceptions, you can
check out some Java that uses JRIO. The next section provides some coding examples of JRIO in
action.

Using JRIO

Here, we present code samples illustrating key concepts of using the JRIO API. The code samples
are not complete programs; their purpose is to impart a flavor of using JRIO. Before we jump into
the code samples, a few words on dataset and directory naming conventions, required import
statements, and JRIO record representation are called for.

Directory and Dataset Naming Conventions

JRIO routines expect directory and dataset names to be strings that begin with //. Therefore, all
datasets with the high level qualifier TR23790 would be accessed

Page 295

through a directory object "//TR23790". A PDS directory is the name of the PDS dataset, such as
"//TR23790.MYPDS.LIB". The slash-string "//" represents the root of all high level qualifiers.

Aside from starting the strings with double slashes, dataset names known to JRIO methods are like
dataset names used in a JCL job stream. A non-VSAM dataset name understood by JRIO could be
"//TR23790.MYFLATFILE.DATA". A member of a PDS is named as you'd expect,
"//TR23790.MYPDS.LIB(MYMEM)". A sequential VSAM dataset name could be
"//MYHLQ.VSAMSEQ.ESDS" and a keyed VSAM dataset name could be
"//YOURHLQ.VSAMKEY.KSDS".

 You can use JRIO methods to create a non-VSAM dataset. However, you cannot
use JRIO methods to create a VSAM dataset. You must use IDCAMS, usually in a JCL job
stream, to create a VSAM dataset before you can access the dataset with JRIO. Later,
you'll see a code snippet using JRIO methods that create a non-VSAM dataset.

For HFS datasets, you'll code a path string like "/homedir/hfsDsn.data". Where "//" represents the
root of all high level qualifiers for non-HFS files, a single slash, "/", represents the root of HFS files.

import Statements Needed for JRIO.

As previously mentioned, JRIO is in the extension com.ibm.recordio. Hence, the import statement:

import com.ibm.recordio.* ;

is required. However, you'll also need to import the base Java IO library as well. If you want to use
custom record classes as opposed to byte arrays to represent your record structures, you'll need the
com.ibm.record package as well. You could, of course, import specific public classes and interfaces
if you like. If you want to "code and go," you'll need the three import statements shown in the
following to start using JRIO:

import com.ibm.recordio.* ;
import com.ibm.record.* ;
import java.io.* ;

Representing Record Structures

You have two choices when implementing record structures in Java for use with JRIO: as byte arrays
and as a record framework objects. This section provides details on these alternatives.

Representing Records as Byte Arrays

A simple way to implement records is to use a byte array. You can think of a byte array as an array
of characters. By now you know that an array of characters is not a Java

Page 296

string, although in COBOL and PL/I, an array of characters is pretty much the same thing as a string.
You may be tempted to implement your record structures as byte arrays because of the familiarity
you have with using arrays of characters as strings.

When you use a byte array to represent a record, your application must know each field offset,
length, and type in order to access a field. In addition, your application is responsible for converting
a field to whatever data type is needed at the time, and back to a byte array, if necessary. This isn't
COBOL or PL/I, where you can establish a record structure as a mixture of representative data types,
code your application to read a record into the record structure knowing that the runtime will store
characters as characters, packed numbers as packed, and so on (as long as the record structure agrees
with the record contents, of course). All this accessing by offset and length and converting from one
data type to the other and back sounds like a lot of work. You'll see some examples of accessing
fields in a record represented as a byte array later in this chapter.

You create a byte array representing a record using the new() operator as follows:

//LRECLMYDSN is the logical record length of a dataset.
byte[] myRec = new byte[LRECLMYDSN];
//You could use the JRIO_MAX_RECORD_LENGTH from interface IConstants
//if you want your byte array to hold a record from any file.
byte[] anyRec = new byte[JRIO_MAX_RECORD_LENGTH];

Remember that with the byte array representation, your application is responsible for keeping track
of all the data types, offsets, and field lengths. Doesn't sound very much like object orientation, does
it?

If the previous dissertation on using byte arrays to represent records sounds unappealing, fear not.
You have another choice. You can represent your records as record framework objects. It is not by
coincidence that the subject of record framework representation is the topic of the next section.

Representing Records as Record Framework Objects

Another way to implement records is as record framework objects. The record framework provides
the capability of creating a JavaBean, which encapsulates a record by providing accessors (get and
set methods) to the fields of a record. The record framework runtime handles any data conversion on
the fields by managing a set of metadata that describe each field offset, length, and type. The record
framework provides classes with operations that use this metadata that assist in locating and
converting fields to and from bytes when accessing a field. In short, the record framework does all
the dirty work you read in the previous section, work you would have to do when you use a byte
array to represent a record to JRIO.

Worthy of mention is that the record framework does not perform any I/O. Not to belabor the
obvious, but file I/O is performed by JRIO, not the record framework. The record framework
provides a representation of a record that enables a Java application access to the record fields
without the hassles associated with byte array representation.

TE
AM
FL
Y

Team-Fly®

Page 297

You do not need to use the record framework classes in order to JRIO. However, you would be
remiss in your professional responsibility not to investigate using the record framework instead of
using detail-laden, error-prone byte arrays.

You create a record object with the new() operator. However, you need to create an instance of the
record type and a record object as an object of the record type. In practice, you would code a class
that contains the constructors, and the get and set methods for all the fields.

//Create an instance of the record type.
//MyRecordType Is a class that Implements IRecordType
IRecordType myRecType = new MyRecordType();
//Create an Instance of a record of a particular type
//myRecord Is a method that creates an Instance of myRec.
//myRec must be from a class that Implements the IRecord Interface.
IRecord myRec = myRecType.myRecord();

The record framework classes are in the package com.ibm.record. You get this package with JRIO.
You could code all the accessor methods, complete with the required data conversions, by hand. A
better strategy would be to acquire a tool that helps you take advantage of the labor-saving features
of the record framework. Such a tool exists, the Visual Age for Java, Enterprise Edition. Perhaps a
word or two on this flavor of the Visual Age product is in order here.

Visual Age for Java, Enterprise Edition, and the Record Framework

The VisualAge for Java Enterprise Edition Record Framework is a collection of predefined classes of
objects that work together to handle record-oriented data in Java. The record framework enables you
to create a JavaBean. Think of a JavaBean, or bean, as a class that contains no public instance
variables— only public accessor methods (get and set methods, remember?). In a bean that
corresponds to a record structure, the bean has accessor methods for the record fields. Hence, when
your Java program needs to access a field on the record, your program would invoke an accessor
method. Any data conversions required are handled by methods, usually the accessor methods.

The Record Framework is provided with JRIO to make it easier for Java applications to access fields
within records. The Visual Age for Java Enterprise Edition for the workstation (NT, OS/2, Windows
95, 98, and 2000, AIX) has tools that enable the programmer to create record beans without requiring
any knowledge of the Record Framework or even writing a single line of code. The tools are
contained in the Enterprise Access Builder (EAB) feature of the product. There is an importer (that
imports COBOL source code to create a record bean) and a Record Editor (that enables the
programmer to create, manipulate, or examine records graphically. Currently, support only exists for
C, COBOL, and 3270 records, but the advanced programmer can extend the Record Framework to
support other types of records. The records generated by tools provide access to the fields of a record
as properties of the generated record bean.

 Sadly, Visual Age for Java Enterprise Edition is not a free download (although
Visual Age for Java Developers Edition is).

Page 298

JRIO Coding Examples

Here, you'll see JRIO code that performs common file I/O actions. The following list shows the
actions covered in this section.

 Adding Records

 Add a record to a file output record stream

 Add a record to a keyed access record file

 Add a record to a random access record file

 Determine the existence of a file or directory

 Check the existence of a directory

 Check the existence of a file

 Create a directory or non-VSAM file

 Create a directory

 Create a record file

 Create a temporary directory

 Create a temporary record file

 Create (define) a key

 Locate a record

 Locate a record by key in a keyed access record file

 Position to a record in a random access record file

 Read a record

 Read a record from a file input record stream

 Read a record from a keyed access record file

 Read a record from a random access record file

 Delete items

 Delete a directory

 Delete a record file

 Delete a record from a keyed access record file

 Fetching Encoded Data From and Setting Encoded Data to Fields

 Update a record in a keyed access record file

 Compare two keys

Adding Records With JRIO

The following examples illustrate using JRIO to add records. The examples do not show how the
records get data (this section has examples of how to load fields with different types of data). Also,
the examples do not show exception handling or recovery code.

Page 299

Append a Record to a File Output Record Stream

The JRIO methods used in the following block are the constructors for the classes that implement the
JRIO record interfaces.

//RecordFile Is a class that Implements IRecordFile.
//Note the double-slashes for the file name.
//Think of the object of IRecordFile as being Instantiated from
//what we would call the file name.
//
IRecordFile myRecFile = new RecordFile("//MYHLQ.FLATFILE.DATA");
//Dataname declares for a PDS member and a HFS dataset follow.
// myRecFile = new RecordFile("//MYHLQ.PDSFILE.LIB(MEMBER)");
//Note the single-slash for the HFS dataset name.
// myRecFile = new RecordFile("/u/lou/myRecordFile");
//The first block that follows shows the record represented
//as an array of bytes. In this case, we need a Stream writer
//
IFileOutputRecordStream myOutStream = null;
//The true parm In the second argument tells Java to append subsequent
//output to the end of the stream.
//
myOutStream = FileOutputRecordStream.getInstanceOf(myRecFile, true);
//
byte[] byteRecRepresentation = new byte[JRIO_MAX_RECORD_LENGTH];
//You would have code that sets the byte array elements to values
//corresponding to the fields In the record
//
//Notice that we are not writing directly to the IRecordFile
//object. We are writing to the stream which has an association
//with the IRecordFile object.
//
myOutStream.write(byteRecRepresentation);

Here is some code that shows the record framework representation of the record.

IRecordFile myRecFile = new RecordFile("//MYHLQ.FLATFILE.DATA");
IFileOutputRecordStream myOutStream = null;
myOutStream = FileOutputRecordStream.getInstanceOf(myRecFile, true);
//MyRecordType Is an Implementation of IRecordType corresponding to
//the particulars of the record structure.
//
IRecordType myRecType = new MyRecordType();
IRecord myRecord = myRecType.newRecord ();
//You would have code that sets the fields In myRecord to values
//corresponding to the fields In the record
//
myOutStream.write(myRecord);

Append a Record to a Keyed Access Record File

The JRIO methods used in the following are the constructors for the classes that implement the
record and keyed file interfaces.

Page 300

//You need an Instance of a IRecordFile which corresponds to the
//file name, or what some think of as the 'real' file object
IRecordFile myRecFile =
 RecordFile.getInstanceOf("//MYHLQ.VSAM.KSDS.CLUSTER");
//Here you define the type of record file created In the previous
//statement. Recall that the constants come from the IConstants
//Interface.
//
IKeyedAccessRecordFile myKeyedFile =
 new KeyedAccessRecordFile(myRecFile,
 JRIO_READ_WRITE_MODE);
//Here's the byte array representation
//
byte[] byteRecRepresentation = new byte[JRIO_MAX_RECORD_LENGTH];
//Set the contents of the record and write the byte array out.
//
myKeyedFile.write(byteRecRepresentation);

Here are the few lines showing the write operation with a record framework representation.

//This seems more straightforward than the byte array representation
//right?
IRecordType myKeyedRecType = new MyRecordType();
IRecord myRecord = myKeyedRecType.newKeyedRecord();
//Set the contents of the record
myKeyedRecType.write(myRecord);

Append a Record to a Random Access Record File

The JRIO methods used in the following are the constructors for the classes that implement the
record and random file interfaces.

IRecordFile myRecFile = null;
//Here we are using an HFS file. Note the object creation
//strategy - a bit different than the ones shown In the preceding
examples.
//You can use any of the create record file object statements
//for any record file object.
//
myRecFile = new RecordFile("/u/lou/myRecordFile");
//Again - one statement creates a IRecordFile object
//corresponding to the 'real' file and another object corresponding
//to the 'type' of file we are going to use.
//
IRandomAccessRecordFile myRandomFile = null;
myRandomFile = new RandomAccessRecordFile(myRecFile,
 JRIO_READ_WRITE_MODE);
//Move the cursor to the end of the file, or the start
//of the last record.

Page 301

//
myRandomFile.positionLast();
//You've seen this before...
//
byte[] byteRecRepresentation = new byte[JRIO_MAX_RECORD_LENGTH];
//Set the contents of the record and write the byte array out.
//
myRandomFile.write(bytes);

As with the preceding examples, here is the code for the record representation.

IRecordType myRandomRecType = new MyRecordType();
IRecord myRecord = myRandomRecType.newRandomRecord();
//Set the contents of the record
myRandomRecType.write(myRecord);

Determine the Existence of a File or Directory

The following examples illustrate using JRIO to check if various items exist.

Check the Existence of a Directory

To check the existence of some JRIO object, use the exists() method as shown in the following.

IDirectory myDir = new Directory("//MYHLQ.PDSFILE.LIB");
//Here's code to create an HFS directory
// IDirectory myDir = new Directory("/u/lou/myHFSDir");
//The getAbsolutePath() method returns a String representing
//(you guessed it) the path of the object
//If you're really with it, you'd figure that the exists() method
//returns a boolean - true If the object exists, false if not.
if (myDir.exists())
 System.out.println("dir = " + myDir.getAbsolutePath() +
 " exists");

Check the Existence of a File
IRecordFile myRecFile = new RecordFile("//MYHLQ.FLATFILE.DATA");
//Here are file declares for a PDS member and an HFS dataset.
//
// IRecordFile myRecFile = new
RecordFile("//MYHLQ.PDSFILE.LIB(MEMBER)");
// IRecordFile myRecFile = new RecordFile("/u/lou/myHFSFil");
//
//You've seen this before, right?
//
if (myRecFile.exists())
 System.out.println("myRecFile = " + myRecFile.getAbsolutePath()

Page 302

 + "exists.") ;

Create a Directory or Non-VSAM File

Recall that you must use IDCAMS to create VSAM files. In other words, you won't see JRIO
methods that create VSAM files.

Create a Directory

Use the mkDir() method to create a directory object as shown in the following. The mkDir() method
uses the default attributes when creating a new directory. For example, your shop may use a default
of 96 directory blocks for a PDS space allocation. The following code also shows use of the
mkdirLike() method that creates a new directory based on the attributes of an existing one.

IDirectory myDir, yourDir;
//Create an HFS Directory
myDir = new Directory("/u/lou/myHFSDir");
if (myDir.mkDir())
 System.out.println("HFS Directory " +
 myDir. getAbsolutePath() +
 " Created") ;
//Create a PDS Directory
myDir = new Directory("//MYHLQ.PDSFILE.LIB");
if (myDir.mkDir())
 System.out.println ("PDS Directory " +
 myDir. getAbsolutePath() +
 " Created") ;
//Create a PDS directory with the same space attributes
//as an existing PDS directory
myDir = new Directory("//MYHLQ.PDSFILE2.LIB");
yourDir = new Directory("//YOURHLQ.PDSFILE.LIB");
if (myDir.mkdirLike(yourDir))
 System.out.println(" dir = " + dir.getAbsolutePath() +
 " like = " + yourDir.getAbsolutePath() +
 " created ") ;

Create a Non-VSAM Record File

The following code shows using the createFile() method to create an HFS file and a sequential file.
The createfile() method uses the default space and DSN attributes. Also shown is the use of the
createFileLike() method that does what you expect— creates a file based with the attributes of an
existing file.

IRecordFile myRecFile, yourRecFile;
//Set the name of the file - an HFS file here
myRecFile = new RecordFile("/u/lou/myHFSFil");
//Create using createFile()
if (myRecFile.createFile())

Page 303

 System.err.println("HFS Record File located at "+
 myRecFile.getAbsolutePath()+ " created") ;
//Creating a sequential (flat) file Is just as straightforward.
//The methods In the JRIO package hide the details of creating
//an HFS file versus creating an MVS sequential file.
//The constructor below allocates the named dataset with an
//LRECL of 160 with a fixed record format.
myRecFile = new RecordFile("//MYHLQ.FLATFILE.DATA",
 160,
 JRIO_FIXED_MODE);
if (myRecFile.createFile())
 System.err.println("Sequential Record File located at "+
 myRecFile.getAbsolutePath()+ " created") ;
//Last but not least, create a sequential file like an
//existing file
yourRecFile = new RecordFile("//YOURHLQ.FLATFILE.DATA");
myRecFile = new RecordFile("//MYHLQ.ANOTHER.FLATFILE.DATA");
if (myRecFile.createFileLike(yourRecFile))
 System.err.println("Sequential Record File located at " +
 myRecFile.getAbsolutePath() +
 " with the same attributes as " +
 yourRecFile.getAbsolutePath() + " created") ;

Create a Temporary Directory

You use the same JRIO methods, mkDir() or mkdirLike(), to create a temporary directory as you
would to create a permanent one. The following code shows removing the temporary directory in a
finally block. You recall from Chapter 11, "Java Event-Handling Basics," that a finally block is
always executed, even when no exceptions are thrown. Using a finally block is a handy way of
ensuring that code tasked with the removal of a temporary directory (or file, for that matter) will be
executed.

Because the methods mkDir() and mkdirLike() do not throw any exceptions, you'll not code a catch
clause; there's nothing to catch.

One additional caveat is that you'll check to ensure that the directory is non-null before deletion. The
call to delete() will fail if the directory is not empty.

IDirectory myDir = null;
//Encase the JRIO method calls within a try block.
try {
 myDir = new Directory("//MYHLQ.TEMPPDS.LIB");
 if (myDir.mkdir())
 System.out.println("Directory Located at " +
 myDir.getAbsolutePath()+ " created ") ;
 //Do whatever you need to do with this directory (i.e.,
 //create files)
 //If any code you place here throws exceptions, catch
 //them with a catch clause
}
finally {

Page 304

 if(myDir != null)
 //If you've created any files In the temp directory, remove them
 //Time to delete the directory
 if (myDir.delete())
 System.out.println("Directory Located at " +
myDir.getAbsolutePath()+ " deleted") ;
}

Create a Temporary Record File

As with creating a temporary directory, you'll not write different JRIO calls to create a temporary file
as to create a permanent file. You'll need code that attempts to remove the temporary dataset, again,
like working with a temporary directory.

JRIO methods that write data and position cursors throw IOExceptions. When you code such
methods, you'll need a catch clause to trap and deal with such exceptions. Also, your file must be
closed before you attempt deletion. In Java, you don't explicitly open files and streams but you must
close them.

Objects instantiated from class RecordFile are, essentially, datasets. After a successful creation of
RecordFile objects, you create File objects, which are, essentially, DDNames. You code JRIO read
and write operations as methods invoked from File objects, like you would code a READ FILE
statement in COBOL or WRITE FILE FROM statement in PL/I.

//Recall that when working with files, you create a dataset with a
//name and optional attributes. This call to new()uses an
//LRECL = 100.
//Think ALLOCATE DSN here.
IRecordFile myTempFile = new
 RecordFile("//MYHLQ.TEMPRANDOM.DATA", 100);
//Next, create the file that you'll reading and writing to.
//Think DDNAME here.
IRandomAccessRecordFile myRandomAccessFile =
 new RandomAccessRecordFile(myTempFile);
//Do stuff with your newly created file (I.e., write data to It)
try {
 myRandomAccessFile.write(...);
 myRandomAccessFile.positionFirst(...);
 myRandomAccessFile.read(...)
}
//JRIO methods that read, position the cursor and write to record
//files throw checked exceptions that must be caught or
//otherwise handled.
catch(IOException ioe) {
 ioe.printStackTrace(); //Whatever...
}
//This code always gets executed.
finally
{
 if (myTempFile!= null)
 try {

Page 305

 myRandomAccessFile.close();
 }
 catch(IOException ioe) {
 //Do something, stack trace, whatever...
 }
 if (myTempFile!= null)
 try { myTempFile.delete(); }
 catch(IOException ioe) {
 //Do something, stack trace, whatever...
 }
}

Create (Define) a Key

The code that follows shows how you'd use the constructor for the Key class to create objects of
class Key. The constructor takes a byte array as an argument. The JRIO method getBytes() is a useful
method that generates a byte array from a string or Key object.

Key k1 = new Key("10101".getBytes());
Key k2 = new Key("ABC".getBytes());
//If you have unprintable characters, you can create your
//byte array as shown below
byte[] myByteArray = {
(byte) 0xCA, (byte) 0xFE, (byte) 0xBA, (byte) 0xBE,
};
Key k3 = new Key(myByteArray);

Locating and Reading Records with JRIO.

The next group of code snippets shows how to use JRIO to locate and read records.

Locate a Record by Key in a Keyed Access Record File

JRIO has methods to locate a record based on the value of a supplied key. The following code shows
you how to use these methods. Locate and position methods for keyed files search the index of the
file, not the file itself. If the key is not found in the index, the position cursor does not change.

IKeyedAccessRecordFile myKeyedFile =
 new KeyedAccessRecordFile("//MYHLQ.KEYED.KSDS",
 JRIO_READ_MODE);
//
IRecordFile myIndex = myKeyedFile.getPrimaryIndex();
//Assume myKey Is an object of class Key with a value
//Find the first reference to the key In the Index
myKeyedFile.positionForward(myIndex, myKey);
//Now you can read the record...

TE
AM
FL
Y

Team-Fly®

Page 306

Position to a Record in a Random Access Record File

The following code shows more JRIO record locate methods. Record searches by key may fail
because the key is not contained in the index; record searches by position (aside from generating an
IO exception) will not fail.

JRIO has methods that position the read cursor relative to the current cursor position or absolute to
the beginning of the file. Relative positioning methods include positionNext() and positionPrev().
Absolute positioning methods use a record index as an argument; the first record is referenced by an
index value of zero. Hence, to reference the Ith record in a random access record file, you would
look for the I— 1 th record.

The code snippet shows the invocation of read() methods. We don't have to worry about EOF
because we are reading a record after positioning the file to the desired record.

IRandomAccessRecordFile myRandomFile =
new RandomAccessRecordFile("//MYHLQ.VSAM.KSDS",
 JRIO_READ_MODE;
//recBuffer holds the data read from the file.
byte[]recBuffer = byte[200] ; //LRECL = 200
//The cursor begins life at the first record. Performing a read()
//without positioning the cursor gets the first record In the file.
myRandomFile.read(recBuffer);
//The positionLast() method advances the read cursor after the last
//record. Hence, to read the last record In the file, you need to
//'back up' one record after advancing to the end of the file.
myRandomFile.positionLast();
//'Back up' one record
myRandomFile.positionPrev();
//Read the last record
myRandomFile.read(recBuffer);
//You can position the read cursor forwards and backwards. However,
//you cannot go two or more records back with one method
//Invocation.
//Position the read cursor to the beginning of the file.
myRandomFile.positionFirst();
//Skip to the next record
myRandomFile.positionNext();
//Read the second record.
myRandomFile.read(recBuffer);
//Move the read cursor to the 6th record (remember that record
//references are zero-based!)
myRandomFile.seek(5L); //Note the use of primitive type long
//Read the sixth record
myRandomFile.read(recBuffer);
myRandomFile.close();

Page 307

Read All Records from a File Input Record Stream

The short story is that you code a loop reading one record at a time until you reach the end of file. In
other words, nothing new except for the use of JRIO methods to perform the reading.

You can read a record into a byte array or a record, depending on the record representation coded.
The following code shows reading into both representations.

When you read into a byte array, you could code the size of the byte array equal to the LRECL of the
file or equal to the constant JRIO_MAX_RECORD_LENGTH. You don't want the byte array size
less than the file's LRECL; you'll read only the number of bytes equal to the size of the byte array. In
addition, you'll not receive any warning that your read operation did not fetch the entire record. In
the case of coding, the byte array size equal to JRIO_MAX_RECORD_LENGTH, the read() method
will read a number of bytes equal to the LRECL of the file. Coding an array size of
JRIO_MAX_RECORD_LENGTH removes the need to hardcode LRECLs in your applications.

//You read from the myFileInputStream regardless of the record
//representation (byte array or custom record)
IFileInputRecordStream myFileInputStream =
 new FileInputRecordStream("//MYHLQ.FLATFILE.DATA");
//This Is the byte array record representation
byte[] recBuffer = new byte[JRIO_MAX_RECORD_LENGTH];
//
//This continuous looping structure Is familiar to mainframe
programmers.
//COBOL programs have record structures with 77 levels coded to
//detect EOF. PL/I programs use ON ENDFILE conditions to catch EOF.
//Loop until you break
for(;;)
{
 int bytesRead = myFileInputStream.read(recBuffer);
 if (bytesRead != JRIO_READ_EOF)
 {
 //Process the record just read
 }
 else
 break;
}
myFileInputStream.close();

The code that follows shows a different looping structure.

int bytesRead = myFileInputStream.read(recBuffer);
while (bytesRead != JRIO_READ_EOF) {
 //Process the record just read
 bytesRead = myFileInputStream.read(recBuffer);
}

Page 308

Here's an example using a record representation from the JRIO record framework. The read() method
returns the number of records read either 1 or 1 (JRIO_READ_EOF).

//The method getCustomRecordType() Is coded In my custom class that
//Implements the particulars of the record and the record field's
//get and set methods.
IRecordType myCustomRecType = myRecRepresentation.getCustomRecordType();
CustomRecord myCustomRecord = (CustomRecord)
myCustomRecType.newRecord();
int recsRead = myFileInputStream.read(myCustomRecord);
while (recsRead!= JRIO_READ_EOF) {
 //Process the record just read
 recsRead = myFileInputStream.read(myCustomRecord);
}

Read a Record from a Keyed Access Record File

The particulars of reading from a keyed file versus a sequential file deal with the establishment of the
appropriate keyed dataset structures. The methodology for performing the I/O is the same regardless
of the underlying dataset organization. That's part of the power of an object-oriented programming
language like Java.

The following code shows the continuous loop shown previously. However, because the code
searches for records with a matching key, the code does not examine every record in the file. For
keyed files, you can search for records using either the primary index or an alternate index (assuming
the dataset has an alternate index). In practice, the search for a record by primary index would not be
contained within a loop, because primary indices contain unique keys. The loop structure for record
searches in keyed access files is more appropriate for datasets containing an alternate index.

You can use the code in the section that reads all records from a file input stream to read all records
from a keyed file sequentially. Put differently, if you want to process all records in a keyed file, you
need not access them by key values. You can access the records sequentially using the code, with
appropriate changes to the file objects, shown in the previous section.

IKeyedAccessRecordFile myKeyedFile =
 new KeyedAccessRecordFile("//MYHLQ.VSAMDATA.KSDS");
IRecordFile myPrimaryIDX = myKeyedFile.getPrimaryIndex();
//Byte array representation of the record follows
byte[] recBuffer = new byte[JRIO_MAX_RECORD_LENGTH];
//Assume the key has a value.
myKeyedFile.positionForward(key);
//Do the read Into the buffer
bytesRead = myKeyedFile.read(myPrimaryIDX, recBuffer);
if (bytesRead != JRIO_READ_EOF)
 //Record found...process

The code that follows shows record access and input by using an alternate index. Note that the
method getAlternateIndex() requires the name (the path, really) of the

Page 309

alternate index file whereas the method getPrimaryIndex() does not require any arguments.

myKeyedFile.positionForward(key);
IRecordFile myAlternateIDX =
 myKeyedFile.getAlternateIndex("//MYHLQ.ALTERNATE.AIX",
 JRIO_READ_MODE);
byte[] recBuffer = new byte[JRIO_MAX_RECORD_LENGTH];
int bytesRead = myKeyedFile.read(myAlternateIDX, recBuffer);
while (bytesRead != JRIO_READ_EOF) {
 //Record found...process
 //Read the next record with the matching key
 bytesRead = myKeyedFile.read(myAlternateIDX, recBuffer);
}
myKeyedFile.close();

Read a Record from a Random Access Record File

The code seeks out a particular record then reads that record. The code is conceptually the same as
searching for a record by primary key followed by a read. As in the case of sequential reads from a
keyed file, you can use the code in the "read all records" section to access and read all records from a
random file.

IRandomAccessRecordFile myRandomFile =
 new RandomAccessRecordFile("//MYHLQ.RANDOM.DATA");
//You've seen this before...
byte[] recBuffer = new byte[JRIO_MAX_RECORD_LENGTH];
//recNumWeWant is the record number we're looking for.
myRandomFile.seek(recNumWeWant);
int bytesRead = myRandomFile.read(recBuffer);
if (bytesRead != JRIO_READ_EOF) {
 //Record found and read - process It
}
myRandomFile.close();

Deleting Directories, Files, and Records with JRIO

The next group of code snippets show delete actions.

Delete a Directory

Before deleting a directory, you check if the directory is non null, as the following code shows. You
must remove any files in the directory or the call to delete() will fail.

IDirectory myDir;
//Do stuff with this directory...
if (myDir != null) {
 System.out.print(" Directory Located at "+ myDir.getAbsolutePath());

Page 310

 //Remove files In the directory before directory deletion
 if (myDir.delete())
 System.out.println(" Is deleted") ;
 else
 System.out.println(" Is not deleted") ;
}

Delete a Record File

Deleting a file is a single JRIO method call. However, you must have permission to delete a file. The
Java Security manager, called from your OS/390 system, will check permissions by invoking the
file's checkDelete() (not a JRIO method!) method.

IRecordFile myRecordFile;
//Do stuff with the record file.
try {
 if (myRecordFile.delete())
 System.out.println("File Located at " +
 myRecordFile.getAbsolutePath() +
 " deleted") ;
 else
 System.out.println("File Located at " +
 myRecordFile.getAbsolutePath() +
 " not deleted") ;
}
catch (SecurityException sex) {
 System.out.println("You do not have permission to delete " +
 myRecordFile.getAbsolutePath()) ;
}

Delete a Record from a Keyed Access Record File

You must read a record from a keyed file before you can perform operations on the record, such as
update or delete. The following code does not show any record read operation(). As with the
previous delete record example, the Security manager checks for user permissions before enabling
any record or file operations. The following code does not show catching any security exceptions
that may be thrown.

IKeyedAccessRecordFile myKeyedFile =
 new KeyedAccessRecordFile("//MYHLQ.VSAM.KSDS",
 JRIO_READ_WRITE_MODE);
//Need an Index to access the file, right?
IRecordFile index = myKeyedFile.getPrimaryIndex();
//Do stuff with the keyed file (I.e., read, update, delete records)
//The deleteRecord call removes the last record read
myKeyedFile.deleteRecord(index);
//Close the file to make
myKeyedFile.close();

Page 311

Fetching Encoded Data from and Setting Data to Fields

Sometimes your records contain raw data encoded in ASCII, EBCDIC, or some other encoding. The
technique for extracting such data is to issue a call to the String constructor with four arguments:

AString = new String (byteArray, fieldOffset, fieldLength, Encoding);

The byteArray is your record, the field offset is zero-based, the field length is, of course, the length
of the field, and the encoding is a string that describes the character encoding. If you are using a
record framework representation, you'll have get methods for your record fields; the get methods
would contain code that implements the previous technique.

Table 17.3 shows some of the more common character encodings and the values of the argument
strings.

The following code shows extracting an EBCDIC field from a record represented as an array of
bytes.

//Assume the record Is laid out as follows:
// Field 1 = "2A"
// Field 2 = "4B"
// Field 3 = "6C"
//Here's what this record looks like
//byte[] myEBCDICRec = {
// (byte) 0xF2, (byte) 0XC1,
// (byte) 0XF4, (byte) 0XC2,
// (byte) 0XF6, (byte) 0XC3
// } ;
//We want to access Field 2.
String field2 = new String (myEBCDICRec, //Record Byte array
 2 , //First array element of
 //field
 2 , //Field 2 length
 "Cp1047"); //Value representing
 //EBCDIC

Table 17.3 Character Encoding Values for the String Constructor

ENCODING VALUE FOR STRING CONSTRUCTOR

8859_1 ASCII (ISO Latin-1)

Cp1047 EBCDIC

UnicodeBig Unicode

UTF8 UTF-8

Page 312

For other encodings, merely change the value of the fourth argument in the String constructor and
you're all set.

As for setting the value of a record field to an encoded value, the short story is to use a call to
method getBytes(). The getBytes() method from class String converts a string into a byte array
according to a character encoding scheme passed as an argument. The values of the character
encoding are listed in Table 17.3. Sure sounds like what we need here, doesn't it? Here's code
sample:

//Once again, assume the record Is laid out as follows:
// Field 1 = "2A"
// Field 2 = "4B"
// Field 3 = "6C"
//The code below changes Field 2 to "AB"
//myASCIIRec Is the byte array representation of a record.
final int FIELDOFFSET = 2;
String newASCIIValue = "AB";
//Create a byte array holding the new field 2 value
byte[] newField2Bytes =
 newASCIIValue.getBytes("8859_1");
//We need the field offsets to put the data Into the record.
//So, put the data back In!
for(int i = 0; i < newField2Bytes.length; ++i)
 myASCIIRec [FIELDOFFSET + i] = newField2Bytes [i];

Update a Record in a Keyed Access Record File

Updating a record involves one method invocation (you guessed it— update()). However, you can
update only the last record read. Hence, your application must read a record prior to issuing the call
to update(). The following code shows the way. Obviously, the file must be opened for read-write
mode. Not so obvious is that you must access the record-to-be-updated by using an index.

The update() method throws JRIO-specific exceptions that arise when code changes key fields
improperly.

IKeyedAccessRecordFile myKeyedFile =
 new KeyedAccessRecordFile("//MYHLQ.MYKEYED.FILE",
 JRIO_READ_WRITE_MODE);
//Need an Index for the update call. Here, we're using the primary
//Index
IRecordFile primIDX = myKeyedFile.getPrimaryIndex();
//You could use a record representation or a byte representation
myKeyedFile.read(primIDX, recBuffer);
//Code to change non-key fields follows
//
//Update the record.
myKeyedFile.update(primIDX, recBuffer);
myKeyedFile.close();

Page 313

Compare Two Keys

Comparing keys is a common operation. The JRIO Key class has its own equals() and compareTo()
methods. In Java, objects are compared by reference but the methods in class Key compare by value.

Given the key declarations in the following:

Key k1 = new Key("1A".getBytes());
Key k2 = new Key("2A".getBytes());
Key k3 = new Key("2A".getBytes());

Key k1 is not equal to keys k2 and k3. Keys k2 and k3, although different objects, are equal.

In Summary

The one striking difference between the mainframe data processor's applications and those of her
small machine counterparts is the overwhelming amount of record I/O performed by the mainframe
data processor. A programming environment without support for record I/O is of little use to the
mainframe programmer. With JRIO, the mainframe programmer can use Java to access familiar and
useful IBM dataset structures.

Here, you've seen code snippets using JRIO to perform useful tasks. The next chapter shows
additional and more fully featured JRIO code.

Page 314

This page intentionally left blank.

Page 315

CHAPTER 18
Java, CICS, and IMS

CICS and IMS are two of the most widely used products in the IBM OS/390 mainframe shop. For
Java technology to be a force in mainframe processing, you, the mainframe programmer, must have
the ability to write Java applications using CICS transactions, and IMS applications using Java.

This chapter covers how to access CICS transactions with Java by using the CICS Transaction
Gateway and a set of Java classes called JCICS. We'll also look at the IBM IMS Connector for Java
products, which supports communications with IMS between one or more TCP/IP clients and one or
more IMS systems.

Java and CICS

As previously mentioned, the Java CICS programmer has two options: the CICS Transaction
Gateway (CTG) and the JCICS classes. These are not either-or choices; you'll see that you may use
JCICS classes to write Java code that invokes CICS transactions through the Transaction Gateway.
First, let's look at the Transaction Gateway.

The CICS Transaction Gateway

The IBM CICS Transaction Gateway (CTG) for OS/390 provides access from Web browsers and
network computers to applications running on a CICS Transaction Server in a two-tier configuration.
It replaces the CICS Gateway for Java (MVS), which was shipped as a component of the CICS
Transaction Server for OS/390 1.2. TE

AM
FL
Y

Team-Fly®

Page 316

The CTG for OS/390 runs in the same operating environment as the CICS Transaction Server for
OS/390, using the UNIX System Services of the OS/390 Operating System. It is supported with the
CICS Transaction Server for OS/390 1.2 and 1.3. It provides an API that enables Java applets and
Java servlets to communicate using the CICS External Call Interface (ECI). The CTG for OS/390
converts this ECI communication to access the CICS Transaction Server for OS/390 using the
External CICS Interface (EXCI). Unlike the CTG supported in other platforms, the CTG for OS/390
can only route ECI requests and not the External Presentation Interface (EPI) requests.

CTGs on other platforms can access multiple CICS servers; however, the CTG for OS/390 can only
access the CICS Transaction Server for OS/390.

The JVM and CICS Execution Environment

The JVM used in CICS uses the open TCB provided by the CICS Open Transaction Environment
(OTE). The OTE enhances CICS internal architecture to enable specified user tasks to run under
their own task control block (TCB), the open TCB. The open TCB that CICS uses to run the JVM is
called J8 TCB. The J8 TCB uses the MVS Language Environment (LE) services, rather than CICS
LE services because CICS LE does not support threading. In addition, each J8 TCB is set up to run
as an MVS UNIX System Services process, which is required by the JVM on OS/390.

Each Java program requiring services runs under its own J8 TCB with its own JVM. The JVM
cannot be reused. It is created, used, and destroyed only for the Java program that requires the JVM.

An open TCB is assigned to a CICS task for the life of the CICS task. No subdispatching of other
CICS tasks takes place under the open TCB. The execution of the JVM must not impact the main
CICS workload, so it runs at a lower priority than the main CICS TCB.

An MVS JVM requires significant storage above and below the line outside the CICS DSAs. In
practice, currently, no more than 30 JVMs can be active at any one time.

The good news is that you, the Java CICS programmer, need not be too concerned with these details.
When you write a Java CICS application, you typically require only one JVM. The system
programmers should configure the CICS gateway to make the required memory for the JVM above
and below the line available to your application program.

Changes to Your JCL for Java CICS Execution

You, or some other party responsible for maintaining JCL, must make a few changes to run Java
with CICS. To run with only JVM (bytecode) support, put the MVS LE executable SCEERUN in the
CICS STEPLIB or MVS LINKLIST. To run with JVM support and CICS LE support, you (or this
other person) should put SCEERUN in the CICS STEPLIB or MVS LINKLIST and put SCEECICS
followed by SCEERUN in DFHRPL.

In addition, two DD cards are needed in the CICS startup JCL:

DFHCJVM DD DUMMY

Page 317

and

DFHJVM DD DSN=CICSTS13.CICS.SDFHENV

The environment variables that control the JVM initialization are supplied in the SDFHENV PDS.
The member DFHJVMEV contains default values and should be copied and tailored to your desired
values. The default name of the copied member is DFHJVM.

DFHCJVM is a standard batch C program using the MVS Language Environment. The job of
DFHCJVM is to create a Java Virtual Machine whenever a Java program consisting of bytecode (as
opposed to executable code created by the High Performance Java Compiler) is loaded. It is loaded
during CICS initialization as part of the CICS nucleus. The program uses the DFHCJVM DDname
for STDIN rather than the SYSIN DDname.

CTG Modes of Operation.

The gateway classes have two modes of operation: Network mode and Local mode. In Network
mode, the gateway must be customized to listen on a TCP/IP port. The CTG can be activated as a
started task or from a UNIX Systems Services command line. Requests arriving over the network can
then be serviced by the gateway and connections can be made to CICS servers.

Application programmers in the mainframe environment rarely are responsible for configuring
network devices. Let's face it— the application programmer's job is tough enough without having to
configure networked resources. Usually, the job of configuring the gateway is delegated to a separate
team within the organization.

In Local mode, no customization is required. The gateway classes can be used directly in Java code
and connections can be made locally to CICS servers running on the same OS/390 system. CICS
support for transactions written in Java is included in the base product and no specific installation is
required.

More good news— you, the Java CICS programmer, need not be too concerned about the
configuration (Network mode) or lack of configuration (Local mode).

Java CICS Processing Flow

Here are the typical steps required to use the CICS Transaction Gateway in a Webbased application:

1. A URL is invoked from the browser with input parameters.

2. The Web server loads the servlet if it is not already loaded and invokes the servlet service()
method.

3. In the initialization process (init method), the servlet creates a local logical connection to the
CICS Transaction Gateway. In the termination process (destroy() method), the servlet closes
the logical connection to the CICS Transaction Gateway.

Page 318

4. In the service() method, the servlet sends a request to the CICS Transaction Gateway using the
ECI API.

5. The CTG calls CICS transaction services locally using EXCI.

6. A JCICS Java program retrieves data through the CICS COMMAREA.

Actually, the previous steps are not peculiar to Java CICS programs. They may describe a CICS
transaction written in any programming language supported by CICS, such as COBOL, PL/I, or C.

Figure 18.1 shows the connection between the relevant pieces in the CICS and Web server
environments that typically make up a three-tier Java CICS application.

EXCI is the External CICS Interface and ECI is the CICS External Call Interface.

Writing a CTG Application

Take the following steps to implement a CICS Transaction Gateway application:

1. Import the required Java CICS package com.ibm.ctg.client.*;.

2. Create the connection to CTG for OS/390. The class that represents the logical connection
between a Java program and the CICS Transaction Gateway for OS/390 is called
JavaGateway:

JavaGateway jgConnection = new JavaGateway();

This is the default constructor that creates a blank JavaGateway object. You must set the relevant
attributes to define the kind of connection you are using. For now, assume you'll set up a local
connection. Here's the code to set up the JavaGateway object jgConnection to use a local connection:

try{
jgConnection.setURL("local:");

Figure 18.1 Java CICS application environment.

Page 319

}catch(java.io.IOExceptoin e){
//Deal with the exception
e.printStackTrace();
}

The setURL() method in class JavaGateway determines whether the connection is local or
network-based.

3. Open the connection by coding the following:

try{
jgConnection.open();
}catch (java.io.IOException e){
//Deal with the exception
e.printStackTrace();
}

4. Initialize the CICS COMMAREA.

The ECI interface sends data to the CICS Transaction Server program and receives data from
it through the CICS COMMAREA. A COMMAREA is an array of bytes that may contain
different data types such as characters, binary numbers, or packed decimal numbers. To work
with the COMMAREA, you can manipulate it one byte at a time or you can access the
contents of the COMMAREA using the IBM Java Record Framework to access fields as
objects (refer to Chapter 17, "Java Record I/O Using the JRIO Package"). The following code
shows a method, initCommArea(), which initializes a byte array with the data to be sent. This
is the code of the initCommArea() method:

public byte[] initCommArea(int size , String data)
{
//build a temporal byte array
byte [] dataBytes = data.getBytes();
//Create new commArea long enough to store the request and to store
the reply
byte []theCommArea=new byte[size];
//Copy input data into the commArea
System.arraycopy(dataBytes,0,theCommArea,0,dataBytes.length);
//Fill the rest of commArea bytes with 0
int c = dataBytes.length;
while (c < size) theCommArea[c++]=0;
return theCommArea;
}

This method returns a byte array with the request data contents. Keep in mind that the byte
array commArea is an input/output field. Its length must be large enough to store the request
and the reply. However, the size of the COMMAREA may not exceed 64K.

5. Initialize the COMMAREA by invoking the previous method:

byte []commArea = initCommArea(2048,data);

Page 320

6. Create a request. You may create a synchronous or asynchronous request. Here you'll see how
to create a synchronous request. A synchronous request causes the runtime to wait until the
request is completed before proceeding. The class that represents an ECI request is
ECIRequest. Here is a code sample:

ECIRequest eciRequest = new ECIRequest(
CICS_APPLID, //CICS Region Name
null, //UserID
null, //Password
programName, //CICS Target Program Name
commArea, //COMMAREA Byte Array to hold Request results
ECIRequest.ECI_NO_EXTEND, //ECI_NO_EXTEND to tell CICS extended
units of work are not supported
ECIRequest.ECI_LUW_NEW); //This value Is Ignored for non extended
units of work

Flow the request to the CICS transaction server. Here's an example invocation:

try{
jgConnection.flow(eciRequest);
}catch (java.io.IOException e){
//Deal with the exception
e.printStackTrace();
}

7. Process the reply from the CICS server. The reply attributes are contained in the ECIRequest
object (property COMMAREA) used to make the synchronous request. If the transaction
originated from a Java servlet, the servlet could format an HTML or XML page containing the
data for the reply.

8. Close the connection to the CICS Transaction Gateway. Here's a code sample:

try{
jgConnection.close();
}catch (java.io.IOException e){
//Deal with the exception
e.printStackTrace();
}

The methods in class JavaGateway are straightforward: setURL(), open(), flow(), and close(). Each
method should be contained within a try/catch block.

Writing a JCICS program using COMMAREA

This section shows a sample program that receives data and sends back the reply through the
COMMAREA. A COMMAREA is an array of bytes that may contain different data types such as
character, binary number, or packed decimal numbers. To work with the COMMAREA, you can
manipulate it one byte at a time or you can

Page 321

access the contents of COMMAREA using the IBM Java Record Framework to access fields as
objects.

The class that represents the COMMAREA is CommAreaHolder. The actual COMMAREA is an
instance variable of type byte[] with the name value. The reason for this extra holder class is that a
COMMAREA is used both for input and output, so the extra level of indirection is needed as Java
only passes arguments by value. On input, value contains the COMMAREA that is being passed into
the program. The program returns a COMMAREA by setting value to a new byte[] that it has
constructed.

Listing 18.1 shows a CICS program using the JCICS classes to receive data from the COMMAREA.

The parameter ca of class CommAreaHolder will hold the input and output of the main() method.
Notice the property value of the argument of the main() method. This property represents the byte
array that will hold the data returning from the COMMAREA.

Java and IMS

As earlier mentioned, IBM supports Java access to IMS by means of a proprietary product called
IMS Connect for Java. IMS Connector for Java provides a way to create Java applications that can
access IMS transactions. With additional support from the IBM WebSphere Studio and IBM
WebSphere Application Server, you can build and run Java servlets that access your transactions
from Web sites.

Listing 18.1 Receiving data from the COMMAREA.

public static void main(CommAreaHolder ca) {
String caString = new String (ca.value); [2]
int receivedLength = caString.length();
System.out.println("String size we get from CommArea : " +
receivedLength
);
System.out.println("String that we get from CommArea : " + caString
);
//Write the commarea back to ctg
String sCommAreaResponse = ("Message received: "+caString);
System.out.println("Reply commArea set to : "+ sCommAreaResponse);
//Create reply that includes message received and date
String dateString = (new java.util.Date()).toString();
String sCommAreaResponse = ("Message received. Date: "+dateString);
ca.value = sCommAreaResponse.getBytes();
return;
}

Page 322

You will not configure IMS Connector for Java. The IMS Connector for Java is a piece of system
software and it is they who will tend to installation and tuning.

What Is IMS Connect for Java?.

IMS Connector for Java provides a Common Connector Framework-compliant Java interface to IMS
Connect. IMS Connector for Java is a class library that consists of two packages:
com.ibm.connector.imstoc and com.ibm.imstoc. All of the classes in the com.ibm.imstoc package and
many of the classes in the com.ibm.connector.imstoc package are support classes that are not used by
application developers during the development of applications that use IMS Connector for Java.

Prerequisites for Running IMS Connect for Java

A prerequisite to using IMS Connector for Java is IMS Connect (formerly called IMS TCP/IP
OTMA Connection, or simply ITOC). IMS Connect enables client applications to send messages to
IMS TM through the IMS Open Transaction Manager Access (OTMA) interface, providing
connections to IMS transactions from a variety of platforms, including both workstation and
mainframe products. IMS Connect will provide enhancements in usability, performance, and SMP
installability. Before you attempt to run a Java application program or servlet that uses IMS
Connector for Java, Version 3.5, be sure that the following products are installed on the target host
machine.

IMS Connector for Java Concepts

This section provides an overview of some of the concepts and terminology needed to understand
IMS Connector for Java, and it includes

 MFS formatting

 Java classes provided with IMS Connector for Java

 IMS messages

 IMS message formats

 IMS logon information

 Synchronization levels

 Connection management

 IMS conversations

MFS Formatting

Transaction input and output messages that are provided to IMS through IBM's Open Transaction
Manager Access (OTMA) bypass online MFS processing. MFS is the online processing component
in IMS that performs message formatting, such as field padding, truncation, justification, and the
insertion of literal data in messages.

Page 323

Java Classes Provided with IMS Connector for Java

IMS Connector for Java provides a number of Java beans to aid you in building Java programs and
servlets. All of these beans are in the IMS Connector for Java package com.ibm.connector.imstoc.
You can combine these beans into a composite bean that accesses an IMS transaction. IMS
Connector for Java includes the following documented classes:

 IMSConnectionSpec: The IMSConnectionSpec bean provides information about the
connection between a Java program and an IMS Connect host component, as well as
information about connection management. The IMSConnectionSpec host name and port
properties are specific to IMS Connector for Java, while the other properties are inherited from
the Common Connector Framework interface
com.ibm.connector.ConnectionSpecManagementProperties.

 IMSConvContext: The IMSConvContext bean is used to comply with the IMS Connect
requirement that the same connection is used for all iterations of an IMS conversation. A
connection is a communications link, a socket in the case of TCP/IP, and is analogous to the
phone line that connects two telephones during a telephone conversation. IMS Connector for
Java includes this class in its programming model for use by conversational Web applications.
A Java application or servlet should create a single instance of the IMSConvContext class at
the start of a conversation and associate this single instance with the connection used for the
conversation. This ensures that the connection will be preserved for the lifetime of the IMS
conversation and that the CCF ConnectionManager will always return the same connection for
each iteration of the IMS Conversation.

 IMSConvHttpSessionCleanup: IMS Connector for Java includes the class
IMSConvHttpSessionCleanup in its programming model for use by conversational Web
applications only. This class implements the HttpSessionBindingListener interface and is used
to capture the unbound event of an HttpSession object during an active conversation, and to
then perform appropriate cleanup.

 IMSInteractionSpec: The IMSInteractionSpec bean provides information about the interaction
between a Java program and a datastore. Interaction properties include

 ConvTerminated, set to TRUE if the host IMS application program ends the IMS
conversation. The Java application program checks the value of this property to determine
whether or not the conversation has been terminated by the host.

 Datastore name, the name of the target IMS datastore that is defined in the IMS Connect
configuration file.

 LTERM name, used to override the LTERM name in the IMS application program I/O PCB.
The override is used if the client does not want to override the LTERM name in the I/O
PCB with the transaction pipe.

 Map name (or the MFS MOD name), which is the name provided by an IMS application
program when returning the output of a transaction. It can also

Page 324

be provided by IMS when returning a status message, such as the output from a /DIS
command, or an error message.

 Mode, or the type of interaction to be carried out between the Java program and the IMS
datastore. The modes that are currently supported include MODE_SEND_RECEIVE,
MODE_ACK, MODE_NACK, and MODE_END_CONVERSATION.

 Synchronization level, or what specifies the transaction synchronization level— the way in
which the client (a Java application or servlet) and server transaction program (for example,
an IMS application program) interact with respect to transaction output messages. Stated
simply, the synchronization level determines whether or not transaction output messages
must be acknowledged, that is, accepted (ACK) or rejected (NACK), by the client.

 DFSMsg: The DFSMsg bean represents IMS status or error messages that are returned to a
Java application or servlet in response to a command or a transaction. These messages
typically begin with the characters DFS. Often, DFS messages are returned to a Java
application or servlet. Some DFS messages indicate error situations, while others are returned
as the output of IMS commands. In all cases, because OTMA is used to return the message,
MFS formatting is not performed. However, IMS includes an MFS MOD name (map name)
with DFS messages. IMS Connector for Java checks the MOD name field of messages that it
receives from IMS Connect. If the MOD has one of the following names, the message is
processed as a DFS message. If the name is not listed in the following list, it is processed as
transaction output.

IMS Messages

The messages sent to IMS or received from IMS by a Java application or servlet using IMS
Connector for Java can be any of the following:

 IMS transaction input messages

 IMS transaction output messages

 IMS status or error messages (also called DFS messages)

 IMS commands

 IMS command output messages

 IMS Connector for Java is primarily designed to handle the first three types of messages.

IMS Message Format

Message segments that are sent to and received from IMS transactions always begin with a two-byte
segment length field (called LL), followed by a two-byte field that contains IMS information (called
ZZ). The two-byte segment length field represents the length of the entire message segment,
including the LL and ZZ fields. The data of the message segment follows the LL and ZZ fields. In
the case of the first segment of

Page 325

the transaction's input message, up to the first n+1 bytes of the data portion of the segment contain
the n-byte transaction code, followed by a blank.

IMS Logon Information

The IMS logon information (user ID, password, and group name) provided to the runtime context of
a Java application or servlet is used by IMS Connector for Java.

The user ID, password, and group name are placed in the OTMA message sent by IMS Connector
for Java to the host component, IMS Connect. IMS Connect then calls the host's Security
Authorization Facility (SAF) under control of the IMS Connect SETRACF command.

Synchronization Level

Currently, all IMS Connector for Java interactions use the OTMA protocol Commit Mode 1, also
referred to as send-then-commit. Under this protocol, if the synchronization level is Confirm, IMS
sends the output message to the client and then waits for a response from the client. It is the
responsibility of the client to respond to IMS. If the synchronization level is None, IMS commits any
changes made by the IMS application without waiting for a response from the client.

For Synchronization level none, the transaction runs and IMS sends the output message to the client.
Any database changes are then committed. IMS does not require that the client send a message in
response to the transaction output message in order to commit the database changes. Synchronization
level None is typically used for Java applications and servlets that run IMS transactions that browse
or query host databases.

For Synchronization level confirm, the transaction runs and IMS sends the output message to the
client without committing any database changes. IMS does not complete the transaction until the
client responds to the transaction output message by sending a positive or negative acknowledgment
to IMS. If the client is satisfied with the transaction output, it responds by sending a positive
acknowledgment. IMS then completes the transaction by committing the database changes, if
necessary. If the client is not satisfied with the transaction output (or does not want to continue with
the transaction for any reason), it responds by sending a negative acknowledgment. IMS then rolls
back any changes to the database.

Connection Management

Connection pooling is key to enhancing the performance of Java applications or servlets that access
IMS transactions. This connection management feature is provided by the IBM Common Connector
Framework (CCF). CCF is a set of Java APIs that provides infrastructure services like connection
management, transaction services, security, and tracing facilities to Java applications and servlets.

IMS Conversations

IMS Connector for Java Conversational Support enables customers to build Java applications and
Web applications to access IMS conversational transactions. A conversational IMS transaction is a
transaction that is defined to IMS as being conversational,

TE
AM
FL
Y

Team-Fly®

Page 326

meaning that it can process transactions made up of several individual steps. An IMS transaction is
made up of a connected series of client-to-program-to-client interactions. The IMS conversational
program receives messages from the client, processes the requests, and replies to the client. It also
saves the intermediate data from the transaction in the scratch pad area (SPA). When the user enters
more data from the client, the program has the data it saved from the last message in the SPA, and
thus can continue processing the request without having the user enter the data again. When the
client sends a message to initiate the next iteration of the conversation, the program uses the data in
the new message along with the data it saved in the SPA at the end of the last iteration of the
conversation as its input. In more complex conversations, different transactions can be invoked using
an immediate or deferred program switch.

In Summary

IBM has provided the mainframe Java programmer the tools to access two important and commonly
used system software packages: IMS and CICS. With these tools, Java programmers have access to
existing mainframe data and applications.

Page 327

CHAPTER 19
Java and DB2

As part of IBM's "Java Everywhere" strategy, IBM has provided the OS/390 Java programmer with
two access mechanisms to access DB2 data. This chapter discusses two mechanisms: using Java
Database Connectivity, or JDBC, and using SQLJ. In addition, the Java programmer can use either
mechanism to access DB2 data by calling DB2-stored procedures.

The chapter starts by providing an overview of Java with DB2 in the OS/390 environment. Next, the
chapter covers how the OS/390 Java programmer can access DB2 data by using JDBC, SQLJ, and
stored procedures. The reader will see code snippets illustrating each access mechanism. A
comparison of the strengths and weaknesses of JDBC versus SQLJ follow.

Overview of Java and DB2 for OS/390

Figure 19.1 shows the major components that make up a Java/DB2 environment for OS/390. The
programmer can access DB2 data by including static DB2 in their Java source (SQLJ), dynamic DB2
(JDBC), or both. Also, the programmer can access DB2 data by having their Java programs access
DB2 stored procedures.

If the Java programmer uses either SQLJ or stored procedures, they must call a DB2 preprocessor
called the SQLJ translator. This translator provides the same function as the DB2 preprocessor for
translating static SQL embedded in COBOL, PL/I, or C programs. After a successful SQLJ
translation, it's business as usual with the production of

Page 328

Figure 19.1 Java/DB2 environment for OS/390

a DBRM and a plan or package bind. The Java programmer using JDBC for dynamic SQL skips
these DBRM/plan or package bind steps.

The OS/390 Java DB2 programmer can use a mixture of static (including stored procedures) and
dynamic SQL statements like the COBOL DB2 programmer. Whatever the combination of SQL
statement types used, the code gets to the Java compiler where the compiler produces industry-
standard Java Bytecode. From here, the Bytecode can get passed to the Java Virtual Machine (JVM)
for program execution or to IBM's High Performance Java (HPJ) compiler.

The HPJ compiler accepts Bytecode as input and produces OS/390 native code as output. Java's
cross-platform execution by using standard Bytecode formats comes at

Page 329

a price. Bytecode execution is interpretive and therefore slow when compared to traditional compiled
and linked languages like COBOL or C. To address the needs of customers who want the advantages
of Java application development (cross-platform source code or the use of object-oriented
techniques, for example) without the execution performance degradation common with interpretive
languages, IBM offers the HPJ compiler. As Figure 19.1 shows, the same source code that gets
compiled and sent to the Java Virtual Machine can be sent to the HPJ.

Java Database Connectivity (JDBC)

JDBC is an industry-standard SQL API that enables the Java programmer to access most relational
databases, including DB2. The programmer should include the java.sql package to use JDBC. This
package includes the following class and abstract interfaces:

 DriverManager. This class is used to load the DB2 driver code needed to create database
connections.

 Connection. This interface enables a programmer to connect and disconnect to a named data
source.

 Statement. This interface is used to execute SQL statements. Included with the Statement
interface are two interfaces:

 PreparedStatement. Executes SQL statements containing input parameters.

 CallableStatement. Invokes a DB2 stored procedure.

 ResultSet. This interface is used to retrieve the data in the results set of a previously executed
SQL statement.

These classes and interfaces are not unique to the OS/390 environment; any Java programmer
wanting to access relational database data with Java would use these classes and interfaces.

Using JDBC

Here are the steps a Java programmer takes to access DB2 data with JDBC (with code snippets):

1. Import the JDBC package java.sql by coding:

import java.sql.* ;

2. Load the DB2 driver using DriverManager:

String ibmDriver = "ibm.sql.DB2Driver" ;

try { Class.forName(ibmDriver) ; }
catch (ClassNotFoundException exception) {
 exception.printStackTrace() ;
}

Page 330

The method Class.forName automatically creates an instance of a driver object. A benefit of using
the class method from class Class (quite the tongue twister) is that the forName() method
automatically registers the driver with the Java runtime. Notice that you need not assign the results
of the invocation of forName() to any object. It's all part of the Java magic.

3. Declare and connect to a named data source (database):

String db2URL = "jdbc:db2os390:mydb2db" ;
 Connection myCon ;

try { myCon = DriverManager.getConnection(myURL) ; }
catch (SQLException exception) {
 exception.PrintStackTrace() ;
}

The named data source identifies the database that will be queried or updated. The form of the string
is a URL. The DBA responsible for maintaining the DB2 catalog should associate the URL with
some DB2 access object, such as a table, database, or view. In particular, for OS/390, JDBC
identifies a data source for connection by accepting a database URL in the following format:

jdbc:db2os390:<locationname>

where <locationname> is the DB2 LOCATION found in the DB2 catalog table
SYSIBM.LOCATIONS.

Once the data source is identified to the Java program, the program must make a connection to the
named access object. The getConnection() method in class DriverManager does this. If the method
invocation is successful, the program has a connection object , which the program uses to issue SQL
and process results.

4. Execute one or more SQL statements by creating a Statement object, associating the statement
(s) with an active connection, and executing the statement using the appropriate method.

For SQL SELECT statements, the appropriate method is executeQuery(). For SQL statements that
modify or create tables, the appropriate method is executeUpdate(). The following code shows a Java
program issuing an SQL DELETE statement. Step 5 shows a Java program issuing an SQL SELECT
statement.

Statement deleteStmt = myCon.createStatement() ; //myCon is the active
connection
String deleteSQL = "DELETE FROM EMP WHERE UNIT = 'A001'" ;
deleteStmt.executeUpdate(deleteSQL) ; //Execute Statement

SQL statements may be constructed by using the full arsenal of String methods and operators. The
previous code snippet shows a static string. However, you may construct the string by concatenating
arguments and String objects. The following is valid in the world of Java and JDBC:

String tabKeyForDelete = "'A001'" ;
String deleteSQL = "DELETE FROM EMP WHERE UNIT = " + tabKeyForDelete ;

Page 331

Notice the inclusion of the single quotes for string data. DB2 recognizes both single and double
quotes as long as you are consistent. If you omitted the single quotes surrounding the value of UNIT
in the previous example, your code would generate an SQLException.

5. Retrieve the data returned by a SELECT statement by creating a ResultSet object and
accessing the rows of this ResultSet, usually with a loop construct.

Statement selectStmt = myCon.createStatement() ;
ResultSet selectResults =
selectStmt.executeQuery("SELECT NAME, SALARY, UNIT FROM EMP") ;
//Loop through selectResults to access each row of the //ResultSet
object
while(selectResults.next()) {
String javaName = selectResults.getString(1) ;
float javaSalary = selectResults.getBigDecimal(2,2).floatValue() ;
 String javaUnit = selectResults.getString("UNIT") ;
}

The next() method of an instance of ResultSet advances the cursor to the next row. The cursor is
initially above the first row; hence, the first call to next() advances to the first row in the ResultSet.
Next() returns false when no following row exists in the ResultSet.

Class ResultSet contains get???? methods, where ???? is a Java primitive data type or class that
corresponds to a SQL data type. A program could use a method to access the DB2 data but could get
unexpected results. For example, a program accessing a DECIMAL type as FLOAT could result in a
loss of precision. Table 19.1 shows what get???? methods of class ResultSet are recommended to get
DB2 data. Note that the recommended method to access a DB2 FLOAT data type is getDouble(), not
getFloat(). The generic getObject() method could be used to access data of any type, but the returned
results could be unpredictable.

Only SQL statements create result sets. SQL INSERT, DELETE, and UPDATE statements do not.

JDBC enables two ways to identify a column in the results set: by position and by name. Note the
first call to getString() in the previous code snippet:

String javaName = selectResults.getString(1) ;

The second call uses the name of the table column, "UNIT":

String javaUnit = selectResults.getString("UNIT") ;

The author is not aware of any advantages one method of identification has over the other.

As you know, most indexed entities in Java have indices that start with zero. For example, to access
the first element of a Java array, you access element 0. However, with indexed entities returned by
JDBC calls, the index starts with 1, not 0. The call to getString() earlier accesses the first column in
the result set. Were you to code

String javaName = selectResults.getString(0) ;

Page 332

the Java compiler would not catch the error because the method signature states that the method
requires an argument of type int (or String). Upon execution, your program would throw an
SQLException.

You may use the PreparedStatement interface to issue SQL statements. The PreparedStatement
interface is used to issue precompiled SQL. The ideal is that DB2 can perform some optimizations
on the SQL statement. This is not quite the same thing as preprocessing your SQL statement by
creating a plan.

Here's a code snippet for issuing SQL with the PreparedStatement interface:

String SQLString = "SELECT NAME, SALARY, UNIT FROM EMP WHERE NAME = ?
and SALARY > ?" ;

Table 19.1 Recommended Access Methods According to DB2 Data Type

DB2 DATA TYPE RECOMMENDED ACCESS METHOD

TINYINT getByte()

SMALLINT getShort()

INTEGER getInt()

BIGINT getLong()

REAL getFloat()

FLOAT getDouble()

DOUBLE getDouble()

DECIMAL getBigDecimal()

NUMERIC getBigDecimal()

BIT getBoolean()

CHAR getString()

VARCHAR getString()

LONGVARCHAR getAsciiStream(), getUnicodeStream()

BINARY getBytes()

VARBINARY getBytes()

LONGVARBINARY getBinaryStream()

DATE getDate()

TIME getTime()

TIMESTAMP getTimeStamp()

Page 333

PreparedStatement myStmt = myCon.prepareStatement(SQLString) ;
//Recall that myCon Is the active connection
//Set parameters
myStmt.setString(1, "Lou Marco") ;
myStmt.setDouble(2, 234567.89) ;
//No parameter to the executeQuery() method
ResultSet selectResults = selectStmt.executeQuery();
//Loop through selectResults to access each row of the //ResultSet
object
while(selectResults.next()) {
String javaName = selectResults.getString(1) ;
float javaSalary = selectResults.getBigDecimal(2,2).floatValue() ;
 String javaUnit = selectResults.getString("UNIT") ;
}

The question marks in the SQL string are placeholders. The setString() and setDouble() methods are
used to fill in the placeholders. You must know the data types of the DB2 columns you want to
access. You may replace the word "get" with the word "set" with the method names shown in Table
19.1 to set SQL predicate values for SQL issued with the PreparedStatement interface.

Notice that when using the Statement interface, the SQL string is passed to the executeQuery()
method, whereas with the PreparedStatement interface, the SQL string is not. If you forget and code
a string argument, don't fret. The Java compiler will stop you in your tracks.

The technique used to access the result set is the same whether you use the Statement interface or the
PreparedStatement interface.

6. Clean up by closing the statement and closing the connection from the database:

selectStmt.close() ; //Close the statement
selectResults.close();//Close the result set
myCon.close() ; //Close the connection

The application should have code that closes the statement(s), the result set, and the active
connection when the application encounters an unrecoverable error. Many Java programmers place
the calls to the close() methods within a finally block. When enclosed within a finally block, the
close() methods are guaranteed to execute even if no exceptions are thrown.

The structure of Java code that issues SQL resembles

try{
//load driver, create connection, Issue SQL, process results
}
catch (SQLException sqlE) {
//report any errors arising from SQL execution
}
finally {
//Close statement(s), result sets (If any) and connection(s)

}

Page 334

JDBC use, with DB2 under OS/390, is not different than JDBC use with other relational database
products under different operating systems. The only DB2-specific code is the loading and
registering of the DB2 driver by using the Class.forName() method. The creation of statements using
the Statement or PreparedStatement interfaces is the same.

Java and SQLJ

SQLJ is a standard way of embedding static SQL statements in Java programs. The overall
methodology is similar to embedding SQL in COBOL or PL/I programs. A Java program can use
both SQLJ and JDBC to access DB2 data.

The SQLJ standard includes three parts: the embedded SQL, the SQLJ translator, and a SQLJ
runtime environment. The programmer embeds SQL in SQLJ programs by preceding the SQL
statement with the #sql token. SQLJ programs can contain any data manipulation SQL, DB2 table
DDL, COMMIT/ROLLBACK, searched and positioned UPDATE and DELETE, CALL to access
stored procedures, and SET for host variables. SQLJ files containing Java and embedded SQLJ must
have a sqlj extension.

The SQLJ translator produces Java source containing embedded SQL into Java source files. Put
another way, the SQLJ translator is similar to the DB2 preprocessor used by the COBOL, PL/I, or C
programmer accessing DB2 data. The SQLJ translator also produces profiles that provide the runtime
with various details on the database schema. These profiles are used to create DBRMS that are
bound to packages or plans.

The SQLJ runtime environment executes SQL using, in part, the information found in the previously
generated profile(s). Typically, the runtime SQL implementation is done through JDBC.

Using SQLJ

Here are the steps a programmer takes to create a Java/DB2 program using SQLJ.

1. Import the java.sql and sqlj.runtime.ref packages by coding:

import java.sql.* ;
import sqlj.runtime.ref.* ;

2. Declare and establish a connection context. A connection context is the SQLJ equivalent of a
database connection. In JavaSpeak, a connection context is an instance of a connection context
class. Here's how an SQLJ program declares a connection context:

#sql context myCtx ;

Once the program knows the connection context, the programmer has a choice of two DB2
connection methods. The first is to invoke the constructor for the class created by the previous
declaration using the location of the DB2 data source as an argument. Here is an example:

Page 335

//Note difference in second qualifier
//from JDBC location name
String db2URL = "jdbc:db2os390sqlj:mydb2db" ;

myCtx myCon = new myCtx(db2URL) ;

The second method is to invoke the constructor for the context connection class using the
JDBC connection returned by DriverManager.getConnection(). For example,

Connection myJDBCCon = DriverManager.getConnection(db2URL) ;
myCtx myCon = new mtCtx(myJDBCCon) ;

3. Load a DB2 driver as shown in the section "Using JDBC."

4. Declare result set iterators. A result set iterator is similar to the ResultSet object discussed
earlier. In the language of static SQL, a result set iterator is like a cursor. Like a cursor, the
iterator declaration identifies the columns of a DB2 table or join to be accessed. One
interesting feature of iterators not shared by their cousins, the cursors, is that iterators can be
passed to methods as arguments (like other Java objects), whereas cursors cannot.

SQLJ iterators come in two flavors: positioned iterators and named iterators. A positioned
iterator associates the columns in the results table with the columns referenced in the iterator in
left-to-right order. A named iterator associates these columns by the name of the column in the
DB2 table.

The programmer declares the iterator classes corresponding to those SQL statements that
produce result set tables having more than one row. The programmer declares objects of the
iterator classes. Here are some examples:

//By Position iterator showing data type of
//result set column.
#sql iterator ByposUnitIter (String) ;

//By Name iterator showing data type
//and name of result set column
#sql iterator BynameNameIter(String unit) ;

It is important to remember that the previous #sql statements declare Java classes and that the
DB2 program works with objects created from these classes.

5. Execute the SQL statement(s). If the SQL statements access more than one row, the SQL
statement may refer to a previously declared iterator. Here is an example:

//Declare an object of Class ByposUnitIter
ByposUnitIter aniterByPos ;
//Construct the iterator object and execute statement
#sql (myCon) aniterByPos =
 {SELECT UNIT FROM EMP WHERE EMPID=23790 } ;

TE
AM
FL
Y

Team-Fly®

Page 336

//Do the FETCH, loop down the iterator
#sql (myCon) { FETCH :aniterByPos INTO :javaUnit } ;
while (!aniterByPos.endFetch()) {
/* Do Stuff With The Retrieved Data*/
#sql (myCon) { FETCH :aniterByPos INTO :javaUnit } ;
}

Like embedding SQL in a COBOL or PL/I program, the Java programmer passes data between
the Java program and DB2 by using host expressions. A Java host expression could be a Java
identifier, like the previous FETCH statement shows, or a Java expression that evaluates to a
value, preceded by a colon. Java identifiers, therefore host expressions, are case-sensitive.
Here's an example of some Java code that uses a named iterator:

//Declare an object of Class BynameNameIter
//Construct the iterator object and execute statement
BynameNameIter aniterByName;
#sql (myCon) aniterByName =
 {SELECT NAME FROM EMP WHERE UNIT='A001'} ;
//Get the data, loop down the iterator
while (aniterByName.next()) {
/* Do stuff with the retrieved data */
javaName = aniterByName.Unit() ;
}

Note the name of the accessor method provided to the program from the iterator class:
aniterByName.Unit(). SQLJ generates an accessor method for every column named in
the iterator. For those cases where the DB2 column name is not a valid Java identifier, the
programmer could use the AS feature of the SELECT statement. For example,

//Declare named iterator Class
#sql iterator aNameIter ByName(String MyCol) ;
//Declare iterator from Class
aNameIter myIter ;
#sql myIter =
 {SELECT "GOOD DB2 BAD JAVA NAME" AS MYCOL FROM ATABLE};

6. Commit any changes by invoking the commit() method of the Connection object with code
that resembles the following:

myCon.commit() ;

7. Finally, close any iterators and close (disconnect) from the database:

myIter.close() ;
myCon.close() ;

Page 337

As with a JDBC connection, the program should disconnect from the database when the program
encounters an unrecoverable error.

Comparing JDBC to SQLJ.

Java programs that access DB2 data may use both JDBC and SQLJ. However, if a Java program
needs to issue dynamic SQL, that program must use JDBC only. The dynamic nature of JDBC has an
impact on security. DBAs can grant users access to tables; a user can either change a table or not. In
contrast, a program that uses SQLJ uses a previously bound package or plan. The DBA can grant
users execution authority to the package or plans.

Of course, the old argument of execution speed still applies. Programs that use statically bound SQL
statements execute quicker than programs that use dynamically bound SQL statements. In addition,
the access paths contained in the DBRMs can be analyzed and tweaked, yielding further performance
gains.

The JDBC program cannot check that the SQL data types match the Java primitive types or classes
until runtime. In programs that use SQLJ, type checking is done at the translator (precompiler) stage.

On the flip side, using SQLJ limits the portability of the application. Each vendor could provide their
SQLJ translator, which would be different for different products. Also, the SQLJ development
process is more complex owing to the need for translation (precompilation) and binding.

If Java/DB2 development parallels DB2 development in COBOL, PL/I, or C, it is a safe bet to
assume that most Java/DB2 programs would use static SQL more than dynamic SQL.

The mainframe DB2 programmer is used to precompiling their SQL and producing plans. There are
no facilities in Java that assist the programmer in creating plans. You, the Java DB2 programmer,
will continue to use the operating system products from IBM that precompile SQL, bind plans, and
(optionally) create packages.

In Summary

The Java programmer has access to IBM's flagship database product DB2. Because DB2 is available
on every IBM platform, the promise of Java, "Write once, run everywhere," is closer to reality in the
IBM world.

Page 338

This page intentionally left blank.

Page 339

CHAPTER 20
The Training Department Class Scheduler System
Revisited

We revisit the training department scheduler shown in Chapter 13, "The Training Department Class
Scheduler System." In this chapter, you'll see a function of the system done with DB2 database calls
as opposed to using native Java File I/O.

The chapter starts by describing the implemented feature and shows a mainframe solution. Next, we
present a Java solution that implements the feature. We do not repeat the descriptions of the data; we
leave it to the reader to refer to Chapter 13 for such details. We conclude the chapter with a summary
of the key issues addressed in the chapter.

The Application Feature Defined

The feature we'll show here is to access three tables with an SQL join to create a list of classes
offered later than a date input parameter. The SQL will reference table names so you can see where
the columns are coming from. All data represented in the tables are strings.

The SQL Used in the Example

Listing 20.1 shown here is the SQL that will retrieve the needed data.

The quantity ENTEREDDATE is the date parameter used to qualify the class list. Of course, the
same SQL will be used in the procedural language and the Java language solution.

Page 340

Listing 20.1 SQL to retrieve data.

A Procedural Language Solution for "Display Class List Later
Than Entered Date" Option

Listing 20.2 shown here is a COBOL module that performs the following tasks:

 Accepts a date parameter

 Creates an ISPF table to display the outputs

 Issues the SQL shown in Listing 20.1, reformatted to fit COBOL's column coding
requirements

 Fetches a row retrieved from the query and adds the row's data to an ISPF table

 Saves return codes to send back to the calling routine

Comments on the COBOL Solution

The COBOL module handles the SQL execution and the creation of the structure (an ISPF table) that
will display the output. The module could have been coded to pass the data retrieved by the SQL
query back to the calling module, leaving the calling module to build the ISPF table. However,
COBOL's lack of support for all but the most elementary data structures makes such an approach
awkward.

Given the procedural nature of mainframe programming languages, including COBOL, the approach
is centered around the process. The code shown in Listing 20.2 flows naturally. However, there is no
real hope of reusability aside from copying and pasting code from one dataset to another.

select classinfo.classid, courseinfo.coursetopic,
 instructorinfo.instructorfirstname || " " ||
 instructorinfo.instructorlastname,
 classinfo.dateoffered, classinfo.roomnumber
from courseinfo, instructorinfo, classinfo
where courseinfo.courseid = substr(classinfo.classid, 1, 5) and
 classinfo.instructorid = instructorinfo.instructorid and
 classinfo.dateoffered > ENTEREDDATE

Page 341

IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLEX.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-OS390.
 OBJECT-COMPUTER. IBM-OS390.
 INPUT-OUTPUT SECTION.

 FILE-CONTROL.
 SELECT PRINTFILE ASSIGN TO PRINTER-QPRINT
 ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD PRINTFILE
 BLOCK CONTAINS 1 RECORDS
 LABEL RECORDS ARE OMITTED.
 01 PRINT-RECORD PIC X(132).

 WORKING-STORAGE SECTION.

 * This string holds the ISPF Table Commands to add data, *
 * create, and display the ISPF Output table. *

 01 TABLECOMMANDS.
 05 TBADD PIC X(15)
 VALUE "TBADD DTELATER".
 05 TBCREATE PIC X(72)
 VALUE "TBCREATE DTELATER NAMES(CLASSID,CTOPIC,INSTNAME,
 -DOFFERED, ROOMNUM)".
 05 TBDISPL PIC X(17) VALUE "TBDISPL DTELATER".

 * Return Code from ISPF *

 01 ISPFRC PIC S9(4) COMP.

 * Structure that holds data resulting from SQL Join *

 01 SQLJOINDATA.
 05 CLASSID PIC X(8).
 05 CTOPIC PIC X(15).

Page 342

 05 INSTNAME PIC X(10).
 05 DOFFERED PIC 99/99/9999.
 05 ROOMNUM PIC X(5).

 * The SQL Communications Area *

 EXEC SQL
 INCLUDE SQLCA
 END-EXEC.

 * The linkage section contains return codes returned to the *
 * calling routine and the date for the query. *

 LINKAGE SECTION.

 01 ENTDATE PIC 99/99/9999.
 01 ISPFRETURN PIC S9(4) COMP.
 01 SQLCODERETURN PIC S9(4) COMP.

 PROCEDURE DIVISION.

 A000-MAIN.

 **
 * Issue the SQL Join. Report on any errors. *
 * *
 **

 EXEC SQL
 WHENEVER SQLERROR GO TO E000-SET-RETURN-CODES.
 END-EXEC.

 **
 * Issue the SQL that generates a result set containing rows *
 * with data for classes offered later than the passed date. *
 **
 exec sql
 declare c1 cursor for
 SELECT ClassID, CourseTopic, InstFName || " " ||
 InstLname, DateOffered, RoomNum
 from CourseInfo, ClassInfo, InstructorInfo
 where DateOffered > :ENTDATE and
 ClassInfo.InstID = InstructorInfo.InstID and
 CourseID = Substr(ClassID, 1, 5)
 end-exec.

Page 343

 EXEC SQL
 OPEN C1
 END-EXEC.

 CALL 'ISPEXEC' USING TBCREATE, ISPFRC.
 IF ISPFRC > 0
 PERFORM E000-SET-RETURN-CODES THRU
 EOOO-SET-RETURN-CODES-EXIT.

 PERFORM B000-ADD-ROWS-TO-OUTPUT-SCREEN THRU
 B000-ADD-ROWS-TO-OUTPUT-SCREEN-EXIT.
 UNTIL SQLCODE NOT EQUAL TO ZERO.

 A100-DONE.
 EXEC SQL
 CLOSE C1
 END-EXEC.

 **
 * All done. Set Return codes and split. *
 **

 A900-MAIN-EXIT.
 PERFORM E000-SET-RETURN-CODES THRU
 E000-SET-RETURN-CODES-EXIT.
 EXIT.

 **
 * Fetch and add row to ISPF table *
 ***s*

 B000-ADD-ROWS-TO-OUTPUT-SCREEN.
 EXEC SQL
 WHENEVER NOT FOUND GO TO A100-DONE
 END-EXEC.
 EXEC SQL
 FETCH C1 INTO :CLASSID,
 :CTOPIC, :INSTNAME,
 :DOFFERED, :ROOMNUM
 END-EXEC.

 CALL "ISPEXEC" USING TBADD, ISPFRC.
 IF ISPFRC > 0
 PERFORM E000-REPORT-ERROR THRU
 EOOO-REPORT-ERROR-EXIT.

Page 344

Listing 20.2 A COBOL solution.

A Java Language Solution for "Display Class List Later Than
Entered Date" Option.

The code listings that soon follow show Java classes that contain methods that issue SQL to capture
class offerings that start after the entered date. We present code for four Java classes. Each class
contains methods for a set of related tasks.

The Code for a Single Class Retrieved from the Database

Listing 20.3 shows the Java code that models the information relevant to a single class. Each instance
of the class shown will be an element of another class that contains all classes offered later than the
entered date. The instance variables are not declared private; you could declare the instance variables
private and code get/set methods to retrieve or change the values as the need arises.

Listing 20.4 shows a Java class, sqlClass, with limited but important responsibilities. Class sqlClass
has methods that establish a database connection and disconnect from the database. With a bit of
polish, class sqlClass could make an excellent utility. In particular, we'd need a mechanism to obtain
the driver information and the database (URL) name from parameters.

Class queryClass, shown in Listing 20.5, has methods that issue the query and return a value
corresponding to a single column in the result set. Class queryClass contains the sql query as a string.
However, the query string could be passed as a parameter.

 B000-ADD-ROWS-TO-OUTPUT-SCREEN-EXIT.
 EXIT.

 **
 * Error occurred while issuing SQL. Set SQL and ISPF return *
 * codes to return values and split. *
 **

 E000-SET-RETURN-CODES.
 MOVE SQLCODE TO SQLCODERETURN.
 MOVE ISPFRC TO ISPFRETURN.
 E000-SET-RETURN-CODES-EXIT.
 EXIT.

Page 345

Listing 20.3 Java code for a single class.

Listing 20.4 Java code for the sqlClass class.

public class CourseOfferedLaterThan {
 String classID ;
 String courseTopic ;
 String instructorName ;
 String dateOffered ;
 String roomNumber ;
 public CourseOfferedLaterThan(String cID, String cTopic,
 String iName, string dOff,
 String roomNum) {
 classID = cID ;
 courseTopic = cTopic ;
 instructorName = iName ;
 dateOffered = dOff ;
 roomNumber = roomNum ;
)
}

import java.sql.*;
import java.io.*;
public class sqlClass
 {
 private String myDriver = "ibm.sql.DB2Driver";
 private String myURL = "jdbc:db2os390:classdb";
 protected Connection myConn;
 public sqlClass() {}
 public void makeConnection() throws Exception
 {
 Class.forName(myDriver);
 myConn = DriverManager.getConnection(myURL);
 }
 public void disconnectFromDB() throws Exception
 {
 myConn.close();
 }
 }

TE
AM
FL
Y

Team-Fly®

Page 346

Listing 20.5 Java code for the queryClass class.

Notice that queryClass extends the sqlClass. That's why the reference to myConn, an object of class
Connection, is understood in queryClass, although myConn is not declared in queryClass.

Class CoursesLaterThanOutput, shown in Listing 20.6, models a list of classes that are offered later
than a specified date. The class contains a constructor that invokes all the needed methods from
classes sqlClass and queryClass. Since queryClass extends sqlClass, the constructor can invoke the
disconnectFromDB() method defined in sqlClass by referencing an object of class queryClass.

import java.sql.*;
import java.io.*;
public class queryClass extends sqlClass
 {
 String mySelectQuery =
 "SELECT ClassID, CourseTopic, InstFName || " " || " +
 "InstLname, DateOffered, RoomNum " +
 "from CourseInfo, ClassInfo, InstructorInfo " +
 "where ClassInfo.InstID = InstructorInfo.InstID " +
 "and CourseID = Substr(ClassID, 1, 5) " +
 "and DateOffered > " ;

 ResultSet myResultSet = null;
 public queryClass() {super();}
 public boolean getCourses(String enteredDate) throws Exception
 {
 String myQuery = mySelectQuery + enteredDate;
 Statement stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(myQuery);
 return (myResultSet != null);
 }
 public boolean getNextCourse() throws Exception
 {
 return myResultSet.next();
 }

 public String getColumn(String inCol) throws Exception
 {
 return myResultSet.getString(inCol);
 }
 }

Page 347

Listing 20.6 Java code to hold information for the classes later than entered date.

In Summary

The COBOL solution, at first glance, may appear simpler and more straightforward than the offered
Java solution. The COBOL solution accomplishes the goal within the confines of a single module,
whereas the Java solution uses four classes. However, thinking of a solution as simple because the
code required for implementation is short may be narrow-minded. The issues of code reuse and
maintenance should also be considered as well.

The Java classes shown in this chapter that connect and disconnect from the database, and issue the
query and return the results, could be changed to be reusable.

public class CoursesLaterThanOutput {
 //The only instance variable in the class
 private Vector coursesLater ;
 //The constructor for the courses can handle all the necessary
 //work.
 public CoursesLaterThanOutput (String dateForQuery) {
 queryClass myQuery = new queryClass();
 try
 {
 myQuery.makeConnection();
 myQuery.getCourses(dateForQuery);
 while (myQuery.getNextCourse())
 {
 CourseOfferedLaterThan aCourse =
 new CourseOfferedLaterThan(
 myQuery.getColumn("classid"),
 myQuery.getColumn("coursetopic"),
 myQuery.getColumn("instructorname"),
 myQuery.getColumn("dateoffered"),
 myQuery.getColumn("roomnumber"));
 //Add new course to vector
 aCourse.coursesLater.addElement(aCourse) ;
 }
 myQuery.disconnectFromDB();
 }
 catch (Exception e)
 { e.printStackTrace(); }
 }
}

Page 348

This page intentionally left blank.

Page 349

PART Three
Java: Above and Beyond Other Programming
Languages

Page 350

This page intentionally left blank.

Page 351

CHAPTER 21
Applets

Before you read this book, you may have thought of Java as the "applet language of the Internet." In
case you don't know, an applet is a Java program that runs within the context of a Web browser. This
chapter provides you with information on coding Java applets.

We'll start by providing a bit of background followed by the key methods you must code for an
applet to be an applet. Next, you'll see some short examples. The chapter concludes with some
comments on the future of applet development.

A Bit of Background

You'll see that you already know how to code Java applets. In other words, you write Java if/else
statements, while loops, assignment statements, and method calls as you've been doing up to now.
All you need do is code a few required methods and voila! You've got an applet.

Of course, you should have an understanding of how an applet differs from an application, how to
code a Web page that can use an applet, and how an applet executes on the user's machine. So, let's
get started.

Applications versus Applets

As mentioned earlier, an applet is a Java executable that runs within a Web page. You may also run
applets in the Java SDK utility appletviewer as explained in Chapter 2. Java

Page 352

applications run within the context of the Java Virtual Machine (JVM). The JVM is usually invoked
from a command prompt or from some program that accepts operating system commands.

Applications must contain a main() method with the often-seen signature:

public static void main(String[] args)

Applets do not require a main() method. If an applet contains a main() method, the method is not
automatically invoked as with applications. Applets have their own "magic" methods that are
invoked by the Java runtime.

Applications do not come with a standard graphics context. If you want GUI elements in your Java
application, you need to create at least one container and take it from there (see Chapter 22). For
applets, you have a graphics context; every applet has a container of class Panel (or JPanel)
immediately available.

Coding the Web Page that Uses the Applet

You can use the applet tag within an HTML page to cause the browser to download the applet into
the browser. Here's a bare-bones example:

<applet code=AnApplet.class width=400 height=400>
</applet>

The applet tag names the class file containing the applet and provides a size for the initial graphics
context. The size parameters, width, and height are in pixels.

You may code other parameters in the applet tag that specify the border to draw around the graphics
panel. Because this chapter is on applet coding, not HTML coding, let's forgo the subtleties of the
applet tag. When you code applets, you'll probably spend most of your time using the appletviewer
program, which is more full-featured than using a Web page.

As an aside, you cannot change the size of the panel within your applet that you code on the HTML
page within the applet tag.

How an Applet Executes

As earlier mentioned, applets have their own magic methods. Table 21.1 describes these methods.

You do not invoke any of the methods in Table 21.1 directly (by name). These methods are invoked
by the Java runtime within the browser when the runtime deems it necessary.

When the user clicks on a Web page containing an applet tag, the browser downloads the file cited in
the code= parameter into a panel of size coded in the applet tag. Once the download completes, the
init() method executes. After init() executes, the applet's start() method executes. At this point, you
may imagine the user is interacting with the applet, at which point methods that you code are usually
invoked. If the user

Page 353

Table 21.1 Magic Applet Methods

takes any action that causes a component to be redrawn, the applet's paint() method is invoked by the
runtime (not by your code).

If the user clicks on another Web page, thereby deactivating the page containing the applet, the
applet's stop() method is invoked. When the user clicks on the Web page again, the applet's start()
method is invoked. Finally, when the user has had enough and closes the Web page, the runtime
invokes the destroy() method.

One important point: All the magic methods cited previously are not required. You do not have to
code these methods. However, if you do not code a paint() method, you'll not see anything.

A Minimal Applet

Here's an example of a pretty minimal applet:

public class MinApplet extends javax.swing.JApplet {
 public void paint(javax.awt.Graphics g) {
 g.drawString("Hello World", 15, 15) ;
 }

}

Yes, the previous code is a bona fide applet that will draw the phrase "Hello World" in the graphics
panel. Figure 21.1 shows the result of running this applet in appletviewer.

The HTML that may be used to invoke this applet within a Web page may be:

<applet code=MinApplet.class height=400 width=400>
</applet>

METHOD SIGNATURE DESCRIPTION

void init() Invoked when the applet is initially loaded
into memory.

void start() Invoked each time the user visits the Web
page containing the applet.

void stop() Invoked when the user leaves the Web page
containing the applet.

void paint(Graphics g) Invoked by the graphics environment when a
component (or container) needs to be
redisplayed.

void destroy() Invoked when the user closes the Web page
containing the applet.

Page 354

Figure 21.1 A minimal applet output.

Another Pretty Minimal Example

This applet shows the invocations of the init(), start(), and destroy() methods. Listing 21.1 shows the
code.

The applet displays as before (see Figure 21.1); the println() methods do not write to the graphics
pane. The appletviewer program directs standard output to a command window; a browser has its
own Java log that may be used to record standard output messages. Figure 21.2 shows the command
window.

Notice the line of code in the methods:

repaint()

The repaint() method forces the Java runtime to invoke the paint() method. That's why you see calls
to paint() throughout the execution of the applet. Although you do not call paint() yourself, you may
force a call to paint() by calling repaint().

The calls to start() were caused by the user minimizing and then restoring the applet window.
Finally, the call to destroy() shows up as the last line to be written to the standard output.

Page 355

Listing 21.1 Showing the init(), start(), and destroy() method invocations

Objects that you want to access inside the magic applet methods must be declared outside any
method; the objects cannot be local to any method. The signatures of the magic methods are cast in
stone. For all but paint(), the methods take no arguments. You cannot pass any objects as parameters
to the magic methods. The message string and the position of the message to be drawn are declared
outside any method. Ergo, these objects are accessible within any method.

One more point: The paint() method redraws the entire panel. The display of the applet in Listing
21.1 is the string "Invoking start()." Actually, if you are from Krypton, you'd notice the message
displayed in the applet window changing from "Hello World" to "Invoking Start()." Because the
paint() method redraws the entire container, you'll see the results of the last redraw operation.

import javax.swing.* ;
import java.awt.* ;
public class MinApplet extends JApplet {

 String messageStr = "Hello World" ;
 int xPos = 15, yPos = 15 ;
 public void init() {

 System.out.println("Invoking init()") ;
 repaint() ;
 }
 public void start() {
 System.out.println("Invoking start()") ;
 messageStr = "Invoking Start()" ;
 xPos =+50 ;
 yPos =+50 ;
 repaint() ;

 }
 public void destroy() {
 System.out.println("Invoking destroy()") ;

 }
 public void paint(Graphics g) {
 System.out.println("Invoking Paint") ;
 g.drawString(messageStr, xPos, yPos) ;
 }

}

TE
AM
FL
Y

Team-Fly®

Page 356

Figure 21.2 Showing the init(), start(), and destroy() method invocations.

Applet Odds and Ends.

Before we close this chapter, here are some odds and ends about applets.

Applet code may be bundled with images, sounds, or other resources into a jar file. Chapter 2 has
some information on the Sun JDK utility program jar. Jar is short for Java Archive. Think of a jar file
as a compressed version of one or more files, of which one is usually a Java class. Because applet
code is downloaded to the browser, it makes sense to minimize download activity. Compressing the
class file(s) helps, of course, However, if the applet uses other files, combining these files with the
applet class into one file means the browser needs only one download session to fetch required files.

You may pass parameters to applets. Within the applet tag, you have the option of coding one or
more param tags. For example:

<applet code=AnApplet.class height=300 width=300>
 <param name=param1 value="This Is the value for Param1">
 <param name=anotherparam value="another Value">
</applet>

Within the applet, you would code the getParameter() method as follows:

String valParam1 = getParameter("param1") ;
String valParam2 = getParameter("anotherparam") ;

Page 357

In Summary

Applets are a time-honored way of presenting the user with a more robust user interface than with
garden variety HTML. In addition, applets enable the Web page developer to bring the power of Java
to their pages. This is, of course, a good thing.

However, another side is there to be told. When Java first made the Web scene in the mid-1990s,
Web developers had few options in providing their customers with robust, animated Web pages.
Today, Web developers have a host of tools that can provide what applets once did without having to
use Java. In addition, the enterprise is learning that other Java technologies, such as Java Servlets and
JavaServer Pages, can provide more effective access to corporate data than applets while providing
customers with a professional look. As the enterprise moves toward using enterprise Java
technologies, applet use may dwindle.

Page 358

This page intentionally left blank.

Page 359

CHAPTER 22
Java User Interface Basics

Java supports the creation and manipulation of the traditional GUI elements. Here, you'll get some
exposure to the "Java way" of creating front ends for applications.

The topic of user interfaces is sizeable and entire books have been written on Java GUI alone. The
intent of this chapter is to provide you, the mainframe Java programmer, with the fundamentals of
Java GUI programming. We'll start the chapter with some information on Java GUI packages and a
review of the standard GUI components, and describe the Java mechanism for representing these
components. Next, you'll read about Java containers and Java layout managers. Along the way, you'll
see a few examples of Java GUI component creation and manipulation. The chapter closes with some
comments on Java GUI usage in the enterprise.

Java GUI Component Libraries

You have two packages at your disposal when creating Java GUIs: the Abstract Windowing Toolkit
(AWT) package and the Java Foundation Classes package. The AWT contains more than GUI
component Application Programming Interfaces (APIs). The AWT package includes support for
Java events (refer to Chapter 11) as well as miscellaneous Java functions, such as printing.

The Java Foundation Classes package contains the Swing component set. Swing replaces one piece
of the AWT, namely the GUI component construction piece.

Page 360

Standard GUI Components

Table 22.1 describes some standard GUI components. The first column is the AWT component
name, the second column is the Swing name, and the third is a short description. Figure 22.1 shows a
screen shot with these components.

Soon, you'll see the Java code for the creation of this display. First, however, you need to read some
background on how Java implements GUI components.

Java Containers

In Java, a container is an object that holds one or more graphical components, including other
containers. The Java class Container is abstract; you cannot create container objects directly. You
usually create one of two popular subclasses of class Container: the Panel (for applets) and Frame
(for windows and dialogs) subclasses.

Here's the short story on how to create a Java user interface:

 First, create a container using an object from a Java container class.

 Second, decide on a layout manager for the container. You'll read more about layout managers
soon. For now, a layout manager is an overall scheme for placing components within a
container.

 Third, create your components using initialization parameters that are peculiar to the
component.

 Fourth, place components (the items listed in Table 22.1, among others) inside the container.
The layout manager decides how to place the components within the container.

YOU WILL NOT CODE MUCH JAVA NATIVE GUI INTERFACES
You, the Java programmer, are far too valuable a commodity to be spending
time coding GUIs. These days, GUIs are developed using screen-building
tools, which are similar to Visual Basic form builders and the like. Also, the
days of the graphical Java application are coming to a quick close. Java has
found a home with server-side and enterprise technologies. The new
application model is to have a front layer represented by a client running a
browser, one or more middle layers representing business logic, and a data
layer housing permanent data stores.
Having said that, you should have a basic understanding of the Java GUI
mechanism. You may be called upon to rewrite old (four years old?) Java
applications with Java GUIs. Two possibilities for a modern facelift are Java
server-side programs called servlets that generate HTML pages for display or
JavaServer pages, which are a combination of HTML and Java scripting code.

Page 361

Table 22.1 Some Standard GUI Components

 Fifth, attach a listener to the components. You will recall from Chapter 11 on event handling,
that Java uses the event delegation model to capture and process events.

Listing 22.1 shows a piece of code that creates a small window with two text entry fields. The
example uses AWT components with comments on using Swing components. As you'll see, little
difference exists between the coding of the two components.

Here is the code that corresponds to the previous steps.

1. Create a container using an object from a Java container class. The call to the constructor
and the constructor code creates the container:

AWTEntryScreen1 myES = new AWTEntryScreen1() ;
super("Enter Name and Employee ID") ;

The class statement clarifies that the object of class AWTEntryScreen1 is a child class of class
Frame; the constructor invocation using the keyword super gives AWTEntryScreen1 objects
the characteristics of the Frame superclass.

Think of a Frame as a window. Although Java has a Window class, the Window class is not
what you might think. A Java Window object is a piece of screen area without a border, a title
bar, or open or close buttons. You'd use the Frame class to create "Windows." By the way,
Frame is a subclass of Window.

AWT NAME SWING NAME DESCRIPTION

Label JLabel Text describing another component or
providing instructions

Button JButton Component that triggers a user action
Checkbox JCheckbox Component that offers a user an on or off

choice
CheckboxGroup ButtonGroup Radio buttons where one and only one of

the group must be selected
Choice JCombobox A list where the user may select one or

more entities
List JListbox A Choice with more than one entity

visible
TextField JTextField Enables the user to enter a line of text
TextArea JTextArea Enables the user to enter multiple lines

of text
ScrollBar JScrollbar Enables the user to bring in previously

hidden portions of a component

Page 362

Figure 22.1 Standard GUI components.

//java.awt.* Is for the user Interface components
//java.awt.event Is for the event handling
//You would Import java.swing.* for swing components.
//You still need java.awt.events because swing components use
//awt events.
import java.awt.* ;
import java.awt.event.* ;
//Swing: extends JFrame
//The ActionListener Interface Is for event capture and
//processing
public class AWTEntryScreen1 extends Frame implements ActionListener
{
 //String objects to hold what the user enters
 private String userName = null ;

Page 363

 private String userID = null ;
 //AWT Text field components
 //Swing: JTextField userNameTF = new JTextField(20)
 TextField userNameTF = new TextField(20) ;
 TextField userIDTF = new TextField(6) ;

 public AWTEntryScreen1() {
 //Create a Frame object with the title In quotes.
 //See text below for comments on the getContentPane
() call
 super("Enter Name and Employee ID") ;
 //Swing: this.getContentPane().setLayout(new GridLayout
(3,2))
;
 //See the text below for commentws on the setLayout call
 this.setLayout (new GridLayout(3, 2)) ;
 //Swing: JLabel userNameLabel = new JLabel("Name ") ;
 Label userNameLabel = new Label("Name ") ;
 Label userIDLabel = new Label("Employee ID ") ;
 //Swing: JButton submitBtn = new JButton(" Submit") ;
 Button submitBtn = new Button(" Submit") ;
 submitBtn.addActionListener(this) ;
 //Swing: this.getContentPane().add(Ö)
 this.add(userNameLabel) ;
 this.add(userNameTF) ;
 this.add(userIDLabel) ;
 this.add(userIDTF) ;
 this.add(submitBtn) ;
 //This Is the action listener that allows the user to
 //close the window. See Chapter 11 for details.
 this.addWindowListener (new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0) ;
 }
 }) ;

 }
 //This Is the callback that the Java runtime Invokes
 //when the user clicks on the button
 public void actionPerformed (ActionEvent aev) {
 userName = userNameTF.getText() ;
 userID = userIDTF.getText() ;

 System.out.println(userName + " " + userID) ;

 }

 public static void main(String[] a) {

Page 364

Listing 22.1 Create a window with two text fields and a button with AWT components.

2. Decide on a layout manager for the container. A layout manager is a Java object that
describes the overall look of a container. The choices are a GridLayout, a FlowLayout , a
BoxLayout, a GridbagLayout, and a custom layout. You have the option of using absolute
component placement within the container, but real Java programmers frown on absolute
placement (although absolute placement comes in handy when developing custom layouts).

In our example, we've chosen to use GridLayout. Imagine that the frame is divided into a grid
of so many cells wide by so many cells tall. Each component placed within the frame occupies
a grid position. The GridLayout adds components in left to right order. The GridLayout is the
default layout for Frame (or JFrame) components.

A FlowLayout adds components using directions: north, south, east, west, and center. You
may add a component by specifying a direction, or add components and let FlowLayout take
care of placement. FlowLayout is the default for Panel (or JPanel) components.

The BoxLayout adds components either left to right or top to bottom, depending on
initialization parameters.

The GridbagLayout is similar to the GridLayout without the restriction of each component
occupying only one cell. With a GridbagLayout, a component may span multiple cells.
However, the complexity of the GridbagLayout has left many users with less hair than when
they started. GridbagLayout is not for the squeamish.

Here's the code that adds the layout manager to the Frame component:

this.setLayout (new GridLayout(3, 2)) ;

As an aside, use of the keyword this in the previous example is not required.

3. Create your components using initialization parameters that are peculiar to the
component. We create five components: two Labels, two TextField, and a Button. Here's the
code that creates the components:

 AWTEntryScreen1 myES = new AWTEntryScreen1() ;

 myES.pack() ;
 myES.show() ;
 }

}

Page 365

TextField userNameTF = new TextField(20) ;
TextField userIDTF = new TextField(6) ;
Label userNameLabel = new Label("Name ") ;
Label userIDLabel = new Label("Employee ID ") ;
Button submitBtn = new Button(" Submit") ;

Notice that the two text field components are created outside the constructor because we'll
need to access these text fields outside the constructor.

4. Place components (the items listed in Table 22.1, among others) inside the container. As
previously mentioned, the layout manager decides how to place the components within the
container. The code that places the components inside the container is

this.add(userNameLabel) ;
this.add(userNameTF) ;
this.add(userIDLabel) ;
this.add(userIDTF) ;
this.add(submitBtn) ;

The GridLayout adds the components in left to right, top to bottom order. Again, use of the
keyword this is optional.

5. Attach a listener to the components. We could attach a listener to every component except
the Label component (Label does not generate events). However, for this example, we'll attach
an event listener to the Button and the Frame. We want to know when the button is clicked and
we want to be able to close the window.

Here's the code that attaches the listener to the Button:

submitBtn.addActionListener(this) ;

When the user clicks the button, the Java runtime looks for a method named actionPerformed
() with the following signature:

public void actionPerformed (ActionEvent aev)

Notice that no code actually invokes the actionPerformed() method; no code invokes the
method directly.

The code for the actionPerformed() method fetches the text from the two TextFields and writes
the field contents to the default output stream. This is why the text field components were not
declared within the constructor. If they were, the code could not access the components outside
the constructor to gain access to the entered text.

public void actionPerformed (ActionEvent aev) {
 userName = userNameTF.getText() ;
 userID = userIDTF.getText() ;

 System.out.println(userName + " " + userID) ;
}

TE
AM
FL
Y

Team-Fly®

Page 366

Here is the code that attaches the window listener so the user can close the window, thereby
quitting the application:

this.addWindowListener (new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0) ;
}
}) ;

The technique used in this code is known in Java circles as using an anonymous inner class.
The addWindowListener() method is attached to the this object, which is AWTEntryScreen1,
the subclass of Frame. The class name is WindowAdapter, which contains stub methods for
catching window-related events, like moving, resizing, or closing a window. The body of the
method invokes the exit() method, which quits the application. Using anonymous inner classes
to exit windowed applications is common; the previous code is a Java idiom that is found
everywhere.

Notice that we did not attach a listener to the text entry fields. The use of event listeners is
optional. You may gain access to a component's contents without using a listener, as we did in
the previous example. If you want to perform some input validation as the user is entering text,
you could attach a listener to fetch characters as the user enters them.

The main() method creates and displays a windowed object. If this object was part of an
application, the windowed object would be created as part of the application workflow.

Another Example

Next, let's take a look at the code that generates the screen shown in Figure 22.1. Listing 22.2 shows
this code.

The code creates an applet (see Chapter 21) that contains a host of GUI components. As with the
previous example, let's examine the code according to the formula cited earlier.

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
//For swing, Import java.swing.* ;

// This is an AWT implementation of the code that generates
// the "all components" screen shot.
//For swing, extend class JApplet.
public class GUIComponents
 extends Applet

Page 367

implements ActionListener, ItemListener
{
Label greeting; //JLabel
Button aButton; //JButton ;
Checkbox bBox, iBox; //JCheckbox
Checkbox cBox1, cBox2, cBox3;
CheckboxGroup cbGroup;
Choice chooser; //JCombobox
List lstDays; //JListBox
TextField txt1, txt2, txt3;//JTextField
TextArea sendText, recvText; //JTextArea

public void init()
 {
 //Remember, for Swing, to add components to the
 //content pane, accessible by a call to getContentPane()
 greeting = new Label("Hello World!");
 add(greeting);

 aButton = new Button("Hello World!");
 aButton.addActionListener (this);
 add(aButton);

 bBox = new Checkbox ("Bold");
 iBox = new Checkbox ("Italics", true);
 bBox.addItemListener (this);
 iBox.addItemListener (this);
 add (bBox);
 add (iBox);

 cbGroup = new CheckboxGroup();
 cBox1 = new Checkbox("1st", cbGroup, true);
 cBox2 = new Checkbox("2nd", cbGroup, false);
 cBox3 = new Checkbox("3rd", cbGroup, false);
 cBox1.addItemListener (this);
 cBox2.addItemListener (this);
 cBox3.addItemListener (this);
 add(cBox1);
 add(cBox2);
 add(cBox3);

 chooser = new Choice();
 chooser.addItem("Times Roman");
 chooser.addItem("Helvetica");
 chooser.addItem("Courier");
 chooser.addItemListener (this);
 add(chooser);

Page 368

 int howMany = 5;
 boolean multiSelect = true;
 lstDays = new List(howMany, multiSelect);
 lstDays.addItem("Monday");
 lstDays.addItem("Tuesday");
 lstDays.addItem("Wednesday");
 add(lstDays);
 lstDays.addItem("Thursday");
 lstDays.addItem("Friday");
 lstDays.addItem("Saturday");
 lstDays.addItem("Sunday");
 lstDays.addActionListener (this);
 lstDays.addItemListener (this);

 txt1 = new TextField(20);
 txt2 = new TextField("Predefined Text");
 txt3 = new TextField("Text + Size", 40);
 txt1.addActionListener (this);
 txt2.addActionListener (this);
 txt3.addActionListener (this);
 add(txt1);
 add(txt2);
 add(txt3);

 int rows = 5, cols = 30;
 sendText = new TextArea(rows, cols);
 recvText = new TextArea("None", rows, cols);
 add(sendText);
 add(recvText);
 }

 public void actionPerformed (ActionEvent e)
 {
 if (e.getSource() == aButton)
 { System.out.println ("Hello World Button"); }
 if (e.getSource() == lstDays)
 { System.out.println ("List double clicked"); }
 if (e.getSource() instanceof TextField)
 { System.out.println (((TextField)e.getSource
()).getText()
); }
 }

 public void itemStateChanged (ItemEvent e)
 {
 if (e.getSource() instanceof Checkbox)
 {

Page 369

Listing 22.2 The code that generates Figure 22.1.

1. Create a container using an object from a Java container class. For applets, you do not
need to explicitly create a container; applets come ready-made with a container. Applets (and
JApplets) extend the Panel container. Hence, the Java runtime already provides applets with a
container to play in.

2. Decide on a layout manager for the container. The default layout manager for objects of
class Panel (and hence, applets) is the FlowLayout . Our example does not attach a flow
manager to the Panel. Nonetheless, the layout manager exists. When components are added to
the container, they will be added in flow layout order.

3. Create your components using initialization parameters that are peculiar to the
component. Here is some code that creates GUI components. This is a button:

aButton = new Button("Hello World!");

Here's choice.

chooser = new Choice();
chooser.addItem("Times Roman");
chooser.addItem("Helvetica");
chooser.addItem("Courier");

Here's a TextField:

txt1 = new TextField(20);

 Checkbox c = (Checkbox) e.getSource();
 System.out.println (c.getLabel() + c.getState());
 }
 else
 if (e.getSource() == chooser)
 {
 System.out.println ("Font is " + chooser.getSelectedItem
());
 }
 if (e.getSource() == lstDays)
 {
 System.out.println ("Day selected is " +
 lstDays.getSelectedItem());
 }

 }
 }

Page 370

The rest of the components are created with constructors that are peculiar to the component.

4. Place components inside the container. Components are placed in a container with the add()
method, as shown:

add(aButton); //Add the button to the Panel container
add (chooser) ; //Add the Choice object
add(txt1) ; //Add the TextField

For swing components, the add() method invocations could resemble the following:

getContentPane().add(aButton); //Add the button to the Panel
container
getContentPane().add (chooser) ; //Add the Choice object
getContentPane().add(txt1) ; //Add the TextField

5. Attach a listener to the components. Here is the code that "listens" for events on these
components with their respective listener methods.

//Attach the listener for the button
aButton.addActionListener (this);
//Attach the listener for the text field
txt1.addActionListener (this);
//Here's the callback
public void actionPerformed (ActionEvent e)
{
 if (e.getSource() == aButton)
 { System.out.println ("Hello World Button"); }
 if (e.getSource() == lstDays)
 { System.out.println ("List double clicked"); }
 if (e.getSource() instanceof TextField)
 { System.out.println (((TextField)e.getSource()).getText());
}
}

You may attach the same listener to multiple components. The Java event handling API specifies
which component types should be attached to which listener methods. Buttons, lists, and text fields
may be listened to by catching an ActionEvent.

When one listener is attached to multiple components, your program needs a way of distinguishing
which component is the source of the event. The getSource() method of class Event (and known to
all subclasses of class Event) can identify the event source. A sequence of if/else statements may be
used to hone in on the event source component.

Here's the code for attaching the listener and the callback for handling events that arise from
selecting an item from a Choice object.

Page 371

//Attach the listener
chooser.addItemListener (this);
//Here's the callback
public void itemStateChanged (ItemEvent e)
{
 if (e.getSource() instanceof Checkbox)
 {
 Checkbox c = (Checkbox) e.getSource();
 System.out.println (c.getLabel() + c.getState());
 }
 else
 if (e.getSource() == chooser)
 {
 System.out.println ("Font is " + chooser.getSelectedItem());
 }
 if (e.getSource() == lstDays)
 {
 System.out.println ("Day selected is " + lstDays.getSelectedItem()
);
 }

}

Components that contain lists have their events captured by item events.

Something worth mentioning is that you may attach more than one event class to a component. For
example, the list of a days component, a multiselect list object, has an ActionEvent and an ItemEvent
attached to it. In Java, you can attach events to components in a somewhat arbitrary fashion,
depending on what makes sense for your application.

In Summary.

Java provides the programmer with extensive facilities to create robust GUI front ends. The Java
GUI mechanism integrates nicely with Java event delegation, enabling a clean separation of user
interaction processing and user presentation. However, most of us in the Java world rely on tools to
create user interfaces or are delving into Java enterprise technologies, leaving the user interface
issues to HTML or XML screen generation.

Page 372

This page intentionally left blank.

Page 373

CHAPTER 23
Java File I/O

Every programming language needs a mechanism for reading and writing data to and from
permanent storage: a disk file. This short chapter describes the basics of native file I/O in Java. Here,
we do not discuss the IBM package JRIO as we did in Chapter 17. Instead, you'll read about some of
the methods in the package java.io. You'll also see how Java file I/O stacks up against I/O in
COBOL and PL/I.

The chapter starts with a discussion of a file in Java, followed by the concept of a stream. The
chapter continues with covering how to read and write bytes and primitive data types to and from
files. You'll see sample programs throughout the chapter illustrating the concepts. You'll read about
the Java implementation of random file access and see how this stacks up against procedural,
mainframe programming languages.

YOU WILL NOT CODE MUCH JAVA NATIVE FILE I/O
As you'll read, Java native file I/O is similar to using ACCEPT/DISPLAY
statements in COBOL or GET/PUT LIST statements in PL/I. Most
mainframe programmers do not use these statements in their programs. Most
mainframe programs use record I/O or perform database calls with SQL, or
work in a transaction monitor like CICS. Likewise, Java programmers make
database calls using JDBC, like in Chapter 18, or get user inputs by way of a
visual presentation component, such as an applet or HTML screen. That said,
you, the mainframe Java programmer, should have a bit of exposure to native
Java file I/O, which this chapter provides.

Page 374

The File

Think of the file as an entity that holds related sets of data, known to the operating system by a single
name. Now, each operating system has a set of naming rules used to construct file names. Also, one
or more files may be grouped together to form higher-level data storage structures, such as databases.
Here, we are concerned with accessing data kept in storage structures represented by catalog (MVS)
or directory (other) listings.

Files (Datasets) in COBOL, PL/I

The term file as used by MVS mainframe programmers usually means a reference to a data store
used in an application program; the actual data store is called a dataset. An application program
written in COBOL, PL/I, or another MVS mainframe programming language references the
filename. The filename must be previously associated with a dataset name prior to program
execution. Typically, the association lasts for the duration of a program or job step execution. The
common term for a filename associated with a dataset for the duration of a program or job step is a
DDName.

The previous association of a filename and a dataset name, or allocating a dataset to a DDName, is
usually done statically in a JCL jobstream for batch programs, or by the execution of a TSO
ALLOCATE statement in a REXX EXEC or TSO CLIST. Listing 23.1 shows a REXX EXEC that
associates a filename with a dataset name; it then invokes a program that uses that dataset, and it also
shows a COBOL code snippet that may read the dataset.

Listing 23.1 shows that the filename is a further abstraction of the dataset name, or an abstraction of
the data store as known to the operating system. The program knows the dataset by the filename, not
the dataset name. The obvious advantage of associating filenames with dataset names in programs is
that the data used by the program may be changed without changing the program. For example,
changing the line in the REXX EXEC shown in Listing 23.1 to

"Allocate Da('TX12345.SalesDta.Feb2000.Data') Fi(SalesDta) Shr Reu"

causes the COBOL program to use February's sales data, not January's. The application developer
does not recompile the COBOL program. Actually, the COBOL program has no real knowledge of
the name of the dataset; the association of the dataset name with the filename is made by the
operating system.

A file allocation, or association between a filename and a dataset name, does not guarantee that a
program will use the data. Listing 23.2 shows a JCL job stream that makes two datasets available to a
program, and a PL/I code segment that conditionally uses one of the two datasets.

For the most part, MVS application programs know little about the characteristics of datasets. The
dataset name is hidden from the application as are other dataset attributes, such as blocksize or where
the dataset resides. The file allocation mechanism does not require that application programs know
most dataset attributes in order for the programs to use the data.

Page 375

Listing 23.1 Making a dataset known in a COBOL program.

Files in Java

Files in Java are, of course, instances of the File class. File objects in Java do not permit a Java
program to do any I/O on a file. The class File enables a Java program to glean information
(attributes) about a file. Methods in class File enable a Java program to

Determine whether or not a file can be read from or written to

boolean canRead(), boolean canWrite()

Determine whether a File object is a file or a directory

boolean isFile, boolean isDirectory()

Get the size of a file in bytes

long length()

Delete a file or directory

boolean delete()

/* Execute program MAKRPT using January data */
Address TSO
"Allocate Da('TX12345.SalesDta.Jan2000.Data') Fi
(SalesDta) Shr Reu"
If RC > 0 Then
 Call Display_Allocate_Error
"Call 'TX12345.SalesPgm.Load(MakRpt)"
/** Other Rexx Code May Follow **/

* Here Is a possible COBOL code snippet
 FILE SECTION.
 FD SALESDTA
 RECORD CONTAINS 120 CHARACTERS.
 01 SALES-REPORT-INPUT-RECORD.
 05 SALES-AREA-ID PIC 'X(3)'.
* Other Fields In This Record Follow
* WORKING-STORAGE section Follows

 PROCEDURE DIVISION.
 A100-MAIN.
 OPEN INPUT SALESDTA
 OUTPUT ANOUTFLE
 PERFORM UNTIL NO-MO-RECORDS
 READ SALESDTA
* Process Records, etc.

TE
AM
FL
Y

Team-Fly®

Page 376

Listing 23.2 Conditionally using a file in PL/I.

Make a directory

boolean mkdir()

The previous list of methods in class File is not exhaustive. You can see that, in Java, class File
denotes objects that are files and directories.

Listing 23.3 shows some of the methods in the File class in use.

//AX12345A JOB(ACCTINFO),OTHER JOB CARD PARMS
//*
//RUNPGM EXEC PGM=MAKRPT,PARM='SUMMARY'
//STEPLIB DD DSN=AX12345.REPORT.LOADLIB,DISP=SHR
//SUMRY DD DSN=RT98765.SALESDTA.JANSUMRY,DISP=SHR
//DETAIL DD DSN=RT98765.SALESDTA.JANDETAL,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*** Other Job steps may follow

MakRpt: Proc(Summary_Detail_Parm) Options(Main)
 Reorder ;
 Dcl Summary_Report_Desired Bit(01) Aligned
 Init(Input_Parm_For_Summary(Summary_Detail_Parm)) ;
 Dcl Mo_Data Bit(01) Aligned Init('1'B);

 Dcl SaleDta File Variable;

 Dcl Sumry File Input Record ;
 Dcl 01 Sumry_Input_Record,
 05 Field_A Fixed Bin(31),
 /* Other Fields For This record Follow */

 Dcl Detail File Input Record ;
 Dcl 01 Detail_Input_Record,
 05 Field_A Fixed Bin(31),
 /* Other Fields For This record Follow */
 /** Use the Summary or Detail File Based on the Runtime Input Parm
**/
 If Summary_Report_Desired Then
 SaleDta = Sumry ;
 Else
 SaleDta = Detail ;

 Call Process_Sales_Data ;
 /** And so on **/

Page 377

Listing 23.3 Some methods in class File in use.

A few comments about the code are in order. First, the constructor does not create a new file. That is,
by constructing a new File object, you do not create a new file on disk. The File constructor provides
your Java program with a reference to an existing file (assuming the file exists). Hence, the
statements

//File aFile = new File("classinfo.dat") ; works here, too
String fName = "classinfo.dat" ;
File aFile = new File(fName) ;

enable your program to determine the attributes of a file in the current directory named classinfo.dat.

import java.io.* ;
import java.util.* ;

public class FileTest {

public static void main(String[] a) {
 //Make a new File Object
 String fName = "classinfo.dat" ;
 File aFile = new File(fName) ;
 //Does the file exist?
 System.out.println(fName + " exists is a " +
 aFile.exists() + " statement") ;
 //Is this a file or a directory? (could use the isFile()
 // method as well)
 System.out.println(fName + " is a directory is a "
 + aFile.isDirectory() + " statement") ;
 //Where is this file located?
 System.out.println(aFile + " is located at " +
 aFile.getAbsolutePath()) ;
 //How big is the file?
 System.out.println(aFile + " is " + aFile.length()
 + " bytes.") ;
 //Can we read from or write to this file?
 System.out.println("You may write to " + aFile + " is a "
 + aFile.canWrite() + " statement") ;
 //When was this file last modified?
 System.out.println(aFile + " was modified on " +
 new Date(aFile.lastModified())) ;
 }
}

Page 378

Notice that some of the println statements use the character string representation of the filename
(String fName), while others use the File object (File aFile). We can get away with using the File
object because the magic of the println statement causes the toString() method of class File to be
invoked.

Listing 23.4 shows the output of the code in Listing 23.3.

We've seen that a major use of a file in the mainframe world is to associate a file with a dataset,
thereby enabling an application program to perform I/O operations on that dataset. Does an object of
class File provide the Java programmer with similar functionality? Is an object of class File a
DDName of sorts for the Java program? The short answer is yes; the long answer is included in the
next section.

The Concept of a Stream

A file, or dataset, is one of a number of data sources for a program. A program can get data from the
keyboard, a Web page, a network socket, or a file. To accommodate the idea of an abstract data
source, Java and other programming languages support the concept of a stream. In this section, you'll
read about streams in mainframe programming languages and in Java.

Streams in COBOL and PL/I

MVS programmers do not speak of COBOL, PL/I, and other procedural mainframe languages
supporting streams. Rather, MVS programmers speak of programming language support for stream
I/O and record I/O. In the MVS world, you get data into a program by using stream I/O facilities and
record I/O facilities.

COBOL and PL/I support stream I/O with input and output statements that are part of the
programming language, whereas, in Java, every I/O statement deals with a stream in one form or
another. Put another way, stream I/O is a feature or function of an MVS programming language,
whereas the stream is the very heart and soul of Java I/O.

In mainframe programming languages and in Java, the concept of system-defined streams is used.
Let's take a look at system-defined streams in COBOL and PL/I.

Listing 23.4 The output from code in Listing 23.3.

classinfo.dat exists is a true statement
classinfo.dat is a directory is a false statement
classinfo.dat is located at D:\Lous Folder\Java MF Book\Book
Chapters\Java File IO\Code\classinfo.dat
classinfo.dat is 9772 bytes.
You may write to classinfo.dat is a true statement
classinfo.dat was modified on Sat Feb 17 14:28:50 CST 2001

Page 379

System-Defined Streams in COBOL and PL/I

The system-defined streams of the MVS world are known by two filenames: SYSIN and SYSOUT.
If you do not tell your program any differently, your program assumes your input source is allocated
to (or associated with) DDName SYSIN, and your output destination is allocated to DDName
SYSOUT.

You would use different I/O statements in COBOL for stream I/O than in record I/O. COBOL
supports the ACCEPT statement that may fetch input from the keyboard and the DISPLAY
statement for output to the terminal. PL/I supports the GET and PUT statements for keyboard I/O.
The record I/O statements for COBOL are READ, WRITE, and REWRITE; for PL/I, the record I/O
statements are READ INTO, WRITE FROM, REWRITE, and LOCATE.

For example, the short code snippet shown in Listing 23.5 gets a line of input from the terminal and
assigns the input line to a variable called Customer-Name in COBOL and PL/I.

Listing 23.5 Reading characters from and writing characters to the default I/O streams.

* COBOL example
* Environment Division, et. al. is coded here
 Configuration Section.
 Special-Names.
 Console is Terminal-Input.
* More Statements follow
 Working-Storage section.
 01 Customer-Name Pic X(80).
* More Statements Follow
 Procedure-Division.
* More Statements follow
 Accept Customer-Name From Terminal-Input.
 Display "You Entered " Customer-Name "From the Terminal".
* End of COBOL Example

/** PL/I Example **/
Ex: Proc Options(Main) ;
 /** Statements follow **/
 Dcl Customer_Name Char(80) Varying Init('') ;
 /** More Statements **/
 Get Skip List(Customer_Name) ;
 Put Skip List
("You Entered " || Customer_Name || " From The
Terminal") ;

Page 380

Streams in Java

Think of a stream in Java as any data source that holds a series of bytes that can be read or written.
Such a series may be stored on a file or kept in memory, or the series is accessible over a network
port. The essence of an object-oriented programming language like Java is to express accessing such
a series of bytes the same way, regardless of its source or destination.

All I/O in Java is done through a stream. Java defines a library of stream classes in the java.io
package. Here we'll take a look at some of the methods in the java.io package as well as some
methods from java.lang.System that define some streams.

System-Defined Streams in Java

The class java.lang.System defines three streams available from any and all Java programs:

 System.in: Reads bytes from the keyboard.

 System.out: Writes bytes out to the screen.

 System.err: Writes error text to the screen.

You've already seen System.out.println() statements a zillion times, right?

Listing 23.6 Reading characters from the keyboard.

import java.io.* ;

public class KeybdIO {

public static void main(String[] a) {
 char aCharRead ;
 try {
 aCharRead = (char) System.in.read() ;
 while (aCharRead != (char) -1) {
 System.out.println
("Here's a char read ==> " + aCharRead) ;
 aCharRead = (char) System.in.read() ;

 }
 System.out.println("You never see this statement") ;
 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }

}

}

Page 381

Reading and Writing a Stream of Bytes–Java

How do you read characters from the keyboard? Listing 23.6 shows you one way.

The statement

aCharRead = (char) System.in.read();

is responsible for fetching a single character from the keyboard. Oddly, the read() method reads an
int that usually gets cast to a char. The value ñ1 signals end of file; on the PC, press Control+Z.

The println() statement outside the while loop never gets executed; the only way to stop the input
loop is to stop the program.

As far as writing characters to the screen is concerned, you've seen and done System.out.println()
many times, right? The default output stream out has the println() method, which you use to write
characters to the stream.

Java file I/O is done within a try/catch block. The methods in the various stream classes throw an
exception of class IOException, which your code must deal with.

To read characters from a file, you may create a file object and assign that file object to a file, not
unlike using a DD statement in a JCL job stream. Once done, you use a mechanism similar to the one
shown in Listing 23.6. Listing 23.7 shows how to read characters from a file.

The program in Listing 23.7 detects the end of file and eventually lists the phrase, "You see this
statement at end of file."

You could have constructed the FileReader object with the following constructor:

FileReader myReader = new FileReader("afile.dat") ;

and not use the constructor for the File object.

Listing 23.8 shows a small program that captures keyboard inputs and writes the inputs to a file.

Notice the use of a Java class called FileWriter. Java uses reader and writer classes to reference file
streams. Also, notice that in Java, you do not open streams, but you should close them. In Listing
23.7, if you did not close the stream, your outputs (via the myWriter.write() statement) would not
stick.

So much for character IO. What if you want to read and write ints, floats, or other primitive types?
The next section sheds some light.

Reading and Writing Primitive Data Types–Java

We consider two categories of IO here. The first is performing I/O on Java primitive types so the
result is human-readable text. That is, we want to write primitive types as characters (no, you don't
convert the primitive types to characters first!). Next, we'll consider doing I/O on primitive types as
is, not in human-readable form.

You use a PrintWriter stream to write Java primitive types to a stream in character form. Listing 23.9
shows an example:

Here, we require the use of the PrintWriter class. PrintWriter objects take a FileWriter object as an
argument for its constructor. Notice that the output stream object myWriter should be closed.

Page 382

Listing 23.7 Reading text from a file.

Next, we'll look at writing Java primitive types to files as is, in binary format. We'll use methods in
the Java class DataOutputStream for this task. Listing 23.10 provides an illustrative example.

Notice that we use objects of class FileOutputStream and DataOutputStream in Listing 23.10. The
rule is, for character I/O, use reader/writer classes, such as FileWriter. For binary I/O, use
InputStream/OutputStream classes, such as DataOutputStream.

Reading and Writing Objects–Java

Java supports the reading and writing of entire objects. The Java term for the process of writing an
object is to serialize the object. When an object is serialized, all properties of that object, including
other objects, may be written to disk.

The Java keyword transient marks object properties as not worth saving. That is, an instance variable
coded with the transient modifier will not be saved upon serialization.

import java.io.* ;

public class FileRead {

public static void main(String[] a) {
 char aCharRead ;
 try {
 File myFile = new File("afile.dat") ;
 FileReader myReader = new FileReader(myFile) ;
 aCharRead = (char) myReader.read() ;
 while (aCharRead != (char) -1) {
 System.out.println
("Here's a char read ==> " + aCharRead) ;
 aCharRead = (char) myReader.read() ;

 }
 myReader.close() ;
 System.out.println
("You see this statement at end of file") ;
 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }

}

}

Page 383

Listing 23.8 Writing characters to a file.

Listing 23.11 shows the writing of an object to a disk file and reading that object in.

The serializable interface contains no methods (in JavaSpeak, it's called a marker interface). Notice
that the methods in the ObjectInputStream class throw a ClassNotFound exception that your code
must catch.

The object property notSaved is just that, not saved, because the property is coded with the transient
modifier.

In Summary.

Java release 1.3 contains 75 classes in the java.io package. Here you've seen a bit of Java file I/O
capabilities. Java exploits the concept of a stream, which is an abstraction for a data source or data
output destination. You use reader and writer stream classes to perform character I/O, and
InputStream and OutputStream stream classes to perform native Java primitive type I/O. Java also
supports the direct input and output of objects through a process called serialization.

import java.io.* ;

public class FileWrite {

public static void main(String[] a) {
 char anInputChar ;

 try {
 FileWriter myWriter =
 new FileWriter("anewoutfile.dat") ;
 anInputChar = (char)System.in.read() ;
 while (anInputChar != (char) -1) {
 myWriter.write(anInputChar) ;
 anInputChar = (char) System.in.read() ;
 }
 myWriter.close() ;

 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }

:}

}

Page 384

Listing 23.9 Writing Java primitive types to a file as characters.

import java.io.* ;

public class UsePrintWriter {

public static void main(String[] fname) {
 int anInt = 12345 ;
 double aDouble = 123.45 ;
 boolean aBool = true ;

 try {
 FileWriter myFW = new FileWriter(fname[0]) ;
 PrintWriter myWriter = new PrintWriter(myFW) ;
 myWriter.print(anInt) ;
 myWriter.print(aDouble) ;
 myWriter.print(aBool) ;
 myWriter.close() ;

 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }

}

}

TE
AM
FL
Y

Team-Fly®

Page 385

Listing 23.10 Writing Java primitive types as binary data.

import java.io.* ;

public class UseDataOutputStream {

public static void main(String[] fname) {
 int anInt = 12345 ;
 double aDouble = 123.45 ;
 boolean aBool = true ;

 try {
 FileOutputStream myFOS =
 new FileOutputStream(fname[0]) ;
 DataOutputStream myWriter =
 new DataOutputStream(myFOS) ;
 myWriter.writeInt(anInt) ;
 myWriter.writeDouble(aDouble) ;
 myWriter.writeBoolean(aBool) ;
 myWriter.close() ;

 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }

}

}

Page 386

Listing 23.11 Writing and reading Java objects.

import java.io.* ;

public class ObjIOExample implements Serializable {

 int intprop1 = 12345;
 double doubprop2= 321.65 ;
 transient char notSaved = 'K' ;
 String strprop3 = "This is an example of Object serialization";

public static void main(String[] fname) {

 try {

 FileOutputStream myFOS =
 new FileOutputStream(fname[0]) ;
 ObjectOutputStream myWriter =
 new ObjectOutputStream(myFOS) ;

 ObjectInputStream myReader =
 new ObjectInputStream(
 new FileInputStream(fname[0])) ;
 ObjIOExample obj1 = new ObjIOExample() ;
 ObjIOExample obj2 ;

 myWriter.writeObject(obj1) ;

 myWriter.close() ;

 obj2 = (ObjIOExample) myReader.readObject() ;
 System.out.println(obj2.strprop3) ;

 }
 catch(IOException ioe) {
 System.out.println("IO Error " + ioe) ;
 }
 catch(ClassNotFoundException cnfe) {
 System.out.println("Class not found " + cnfe) ;
 }

}

}

Page 387

CHAPTER 24
The Java 2 Enterprise Edition Libraries

J2EE, the Java 2 Enterprise Edition platform is a collection of about a dozen application
programming interfaces (APIs) for developing enterprise applications. These APIs define a complete
set of services that software engineers use to develop software in 100 percent Java that is scalable,
fault-tolerant, distributed, and secure. This chapter discusses the J2EE APIs.

What Is J2EE?

Depending on your point of view, J2EE is a set of APIs that gives the Java programmer the
additional capabilities of writing enterprise-class applications. J2EE can also be viewed as a product.
You can download the J2EE software development kit from the Sun site, which certainly lends the
impression that J2EE is a product. However, the J2EE "product" does little in and of itself. It is a
means by which a team of software developers may develop a large, multi-user Java application.

Up to now, you've been reading about the Java 2 platform, Standard Edition (J2SE). It serves as the
foundation for Java technologies. You might say that J2EE includes J2SE, plus a set of extra APIs.
Whereas J2SE deals with writing application programs and applets on the client, the J2EE APIs deal
with writing Java on the server.

Page 388

Java on the Server

J2EE assists the Java application development team by providing a foundation for server-side
software development. Let's face it— using Java solely on the client raises some issues. Java is
interpretive, which translates into slow. How many REXX (an immensely popular IBM mainframe
scripting language, in case you don't know) production applications do you see in your mainframe
environment?

Also, Java being interpretive means that every box that runs Java requires a separate Java Virtual
Machine (JVM), or Java runtime. That's one more piece of maintenance requiring attention. In
addition to distributing new releases of productivity tools, such as word processors and the like, the
company must attend to distributing new JVMs. Isn't the hassle of software maintenance on the
one reason why the enterprise is spending fortunes on developing N-tier applications?

Turns out that Java makes for a pretty darn good platform for server-side software development. As
you've seen, using an object-oriented language greatly aids you, the application developer, in your
appointed task (whether you're writing client or server software). Java, with full support for object-
oriented software development and a rich set of classes available for use, enables powerful software
development.

The fact that Java is interpretive does not impact server-side applications much. Although Java code
does not execute as quickly as code written in compiled languages, Java code executes quickly
enough for the server. The real bottleneck in N-tier applications is not the speed of the code per se;
the bottlenecks arise from poor application design, including the failing to engineer software to be
scalable to thousands of users in a distributed environment. Besides, enterprise applications dealing
with distributed components and data stores running over networks can only be as fast as the
underlying network. Java code has no problem executing faster than the network's capability to move
around data and code.

Actually, the interpretive nature of Java may serve as a benefit in the server environment. The Java
environment has the capability to dynamically load Java classes when needed. A static executable
may require that all needed software be resident at the moment of execution, whereas a Java server-
side application may load Java classes as needed and remove them when not needed. The dynamic
loading and purging of software components (loosely speaking, Java classes) help servers to
maximize resources, such as memory, storage, and database connections. The J2EE specification
(apart from the API specifications) published for draft release 1.3 is 161 pages.

The J2EE APIs enable you, the Java developer, to write your application without having to worry
about the dynamic loading and purging of class files. Actually, the J2EE APIs enable you to write
software without worrying about a number of server-side application issues, such as network
communications or transaction integrity and security. You may concentrate on solving your problem
without dealing with the mundane but necessary details involved in writing enterprise-wide,
distributed server applications. Let's look at the J2EE components next and see just what services
J2EE provides you, the Java server-side application developer.

Page 389

J2EE APIs

Here is a list of the J2EE APIs with a brief description. Please understand that most of these J2EE
APIs are worthy of a separate book. Sun has published specifications for these APIs, often running
into hundreds of pages for each specification. Of course, you may freely download any of these
specifications from the Sun Web site.

JavaServer Pages (JSPs)

JavaServer Pages enable developers to dynamically generate Web pages with HTML, XML, and
Java code. Some call JSPs the front door to enterprise applications, and with good reason. The thrust
of JSPs is to help the enterprise application developer separate presentation code from business logic
code on the server. The theory is that by separating the presentation into its own layer, the
application developer can make changes to the presentation (Web pages) without impacting the code
that implements the business logic, and vice versa.

You create a JSP using a text or HTML building tool and store the JSP on the server. The user
invokes a JSP by entering the name of the JSP in the location bar of his or her browser or clicking on
an HTML form containing the JSP as the target of the ACTION attribute.

Listing 24.1 shows a JSP page that displays "Hello <Your name here>" on a Web page.

JSPs use tags to send commands to a JSP translator. The JSP tags are shown in italics. We assume
that some previously displayed Web page had a form with an entry field named you, making this
value known to the server during the session.

Notice the previous JSP page has a mixture of HTML and Java code. The HTML is coded as you'd
expect; the Java code is sandwiched between <% and %> tag markups.

Listing 24.1 Hello <your name here> JSP.

<html>
<head><title>The Hello JSP</title></head>
<body>
<%@ page language="java" %>
<p> Hello
<% String you = session.getParameter("you");
out.println(you); %>

</body>
</html>

Page 390

The latest version of JavaServer Pages, version 1.2, is in the final specification phase, meaning that
unless some organization with clout involved in JSP development says otherwise, the version
becomes official. The JSP specification for release 1.2 is 243 pages.

Java Servlets

Like JSP, servlets enable developers to dynamically create Web content as well as provide additional
functionality to a Web server. As we'll see later, a JSP is actually translated into a Java servlet, which
resides on the Web server.

Listing 24.2 shows a Java servlet that does the same thing as the JSP shown in Listing 24.1.

Notice how the servlet constructs HTML by using println statements. The servlet has the full features
of the Java programming language available to construct whatever HTML (or XML or text) is
desired.

Actually, JavaServer Pages get translated into Java servlets. When a client requests a JavaServer
Page (by entering the JSP name in the location bar of a browser, for example), the browser sends a
request to the Java-enabled server. The server determines if a servlet corresponding to the requested
JSP page is present; if not, the server translates the JSP into a servlet and executes the servlet.
Subsequent invocation of the JSP page results in the server executing the previously-generated
servlet. Figure 24.1 shows the process.

You can do everything with a servlet that you could do with a JSP. Looking at Listings 24.1 (JSP)
and 24.2 (servlet), most will agree that the JSP is smaller than the servlet. Most will agree that the
JSP is easier to understand and maintain than the servlet. Most

Listing 24.2 The Hello <your name here> servlet.

import java.io.*;
import javax.servlet.*;
public class HeyItsYou extends HttpServlet {
 public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 String you = session.getParameter("you">);
 out.println("<html>");
 out.println("<head><title>The Hello JSP</title></head>");
 out.println("<body>");
 out.println("<p> Hello," + you);
 out.println("</p>");
 out.println("</body>");
 out.println("</html>");
 }
}

Page 391

Figure 24.1 JSP-to-servlet translation process.

will also agree that writing out HTML (or XML, of course) by way of out.println() statements is a
major drag. A large page could have hundreds of out.println statements!

However, servlets have a place in the J2EE world. Some server-side tasks are pretty awkward by
using JSPs alone. Also, recall that JSPs were developed to help the application developer separate
business logic from presentation logic, not to replace business logic. Servlets are best used to
implement business logic, whereas JSPs are best used to deal with presentation details. The Java
servlet specification for release 2.3 is 267 pages.

Java Messaging Services (JMS)

JMS is a set of APIs that invokes asynchronous messaging services like broadcast and point-to-point
(client-to-client) messages. JMS is an API for using networked messaging services. A messaging
system accepts messages from "producer" clients and delivers them to "consumer" clients. Data sent
in a message is often intended as a sort of event notification.

Page 392

In a synchronous messaging service, the producer sends a message and then waits for verification
from the consumer that the message was received and understood. This waiting can cause severe
bottlenecks. In an asynchronous messaging system, the producer sends the message and delegates the
responsibility of delivery and verification to the messaging service. The producer is free to continue
without waiting for the verification of message delivery by the consumer. The messaging service
tends to the messy details. The specification for the current version of JMS, release 1.0.2, is 112
pages.

Java Transaction API (JTA).

JTA provides developers with a mechanism for handling the commit and the rollback of transactions
as well as insuring the Atomicity, Consistency, Isolation, and Durability (ACID) properties of a
transaction.

JTA is used for managing distributed transactions (such as updates to multiple databases that must be
handled in a single transaction). JTA is a low-level API and associated coding is complex and error-
prone. Fortunately, other J2EE technologies, such as Enterprise JavaBeans, and application servers
provide transaction support, which means that rarely, if ever, an application programmer makes calls
to the JTA API. Transaction support is one of the many services provided to the enterprise
application developer using the J2EE family of APIs. The specification for the current version of
JTA, release 1.0.1, is 60 pages.

Java Transaction Services

Java Transaction Services (JTS) provides developers with a means of communicating with
transaction monitors and other transaction-oriented resources. Of course, JTS provides high-level
support for JTA, as well as other transaction services.

JTS plays the role of an intermediary for all the constituent components of the EJB architecture. In
JTS terminology, the director is called the transaction manager. The participants in the transaction
that implement transaction-protected resources, such as relational databases, are called resource
managers. When an application begins a transaction, it creates a transaction object that represents the
transaction. You would use JNDI to access this transaction object. The application then invokes the
resource managers to perform the work of the transaction. As the transaction progresses, the
transaction manager keeps track of each of the resource managers enlisted in the transaction. Often,
JTS assists in managing the activities involved in a two-phase commit. The specification for the
current version of JTS, release 1.0, is 17 pages.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) defines an architecture that enables developers to create reusable,
server-side components. EJBs typically reside on the application server or may have their own
dedicated server. These components are the heart and soul of the enterprise application. Although the
long list of J2EE APIs is necessary for any sub-

Page 393

stantial enterprise or N-tier application, most of the API sets define interfaces to support services and
external resources that are required for EJB usage. EJB is the API that deals with creating application
components and how these components interact with the other J2EE APIs.

A key feature of the EJB architecture is the construction of applications from software components
(enterprise beans). The EBJ architecture defines what the enterprise beans are, what enterprise beans
are made of, and what classes and interfaces enterprise beans extend or implement. The EJB
architecture does not define how a vendor constructs enterprise beans; the vendor is free to use
whatever tools and technologies are at their disposal. The vision is one of a rich marketplace of
vendors creating reusable server-side distributed components and an industry of customers mixing
and matching different vendor offerings, secure in the knowledge that the developed enterprise beans
will work according to the EJB architecture.

If you plan to develop Java-distributed applications, plan on using EJB. The specification for the
final draft version of EBJ, release 2.0, is 558 pages.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet
mail protocols. The API provides a platform-independent and protocol-independent framework to
build Java technology-based mail and messaging applications. Put differently, JavaMail represents a
standardized, extensible platform for communicating, presenting, and manipulating all current and
future Multimedia Internet Mail Extension (MIME) types. The JavaMail API is implemented as a
Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols. Say goodbye to learning yet
another unique third-party or in-house class library for dealing with e-mail or newsgroups. JavaMail
was designed to communicate with popular protocols and mime types. The specification for the
current version of JavaMail, release 1.2, is 104 pages.

Java Naming and Directory Service (JNDI)

JNDI provides an interface for accessing name and directory services, such as LDAP directory
services and Domain Name Service (DNS). JNDI enables Java programs to use name servers and
directory servers to look up objects or data by name. This important feature enables a client object to
locate a remote server object or data.

JNDI is a generic API that can work with any name or directory service. As such, JNDI was not
designed to replace existing technology; instead, it provides a common interface to existing naming
services. For example, JNDI provides methods to bind a name to an object, allowing that object to be
located, regardless of its location on the network.

Server providers have been implemented for many common protocols (such as NIS, LDAP, and
NDS) and for CORBA object registries. Of particular interest to users of J2EE, JNDI is used to
locate EJB components on the network.

Page 394

Again, the thrust of J2EE technology is to provide enterprise application developers with much-
needed services in the distributed realm. It's hard to think of a more invaluable service than a naming
service. JNDI provides the Java application developer with this much-needed service. The
specification for the current version of JNDI, including the API documentation, release 1.2, is 76
pages.

JDBC

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases
(usually relational databases). You've seen JDBC in Chapter 19, "Java and DB2." However, the latest
releases of JDBC have additional capabilities not yet supported in the IBM environment.

Sun offers two versions of JDBC: one version for client-side development and the other for server-
side. If your needs are to issue SQL statements, either version will work. The server-side JDBC
package provides additional transaction support, using JTA and JTS, which you'll need in a
distributed environment. The specification for the alpha draft version of JDBC, release 3.0, is 190
pages.

Java Interface Definition Language (Java IDL)

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA
objects. The Java programmer can use the IDL-to-Java compiler, called idlj, to generate Java code to
interact with CORBA objects.

CORBA, the Common Object Request Broker Architecture, defines a standard for creating
distributed object request systems. The CORBA standard is the result of the collaboration of well
over a hundred companies. The end result is a standard that is language-, platform-, and vendor-
neutral.

CORBA enables the enterprise to use existing software by providing features that developers can use
to wrap existing software as CORBA objects. With CORBA, applications written in several
languages can happily coexist and communicate. By using Java IDL, the Java enterprise application
developer can tap into the CORBA world.

In Summary

As you can see, J2EE is a robust framework that covers much ground and provides numerous, vitally
important services to the enterprise application developer. J2EE is an evolving technology. As
industry participants, in collaboration with Sun, use J2EE, we can expect the specifications of the
J2EE APIs to change in the future.

The previous (and other) J2EE APIs do not stand in isolation. When developing a distributed,
enterprise application in Java, you'll need to write code that uses several of the mentioned APIs.
Fortunately, you need not deal with several underlying issues; the J2EE APIs tend to many of the
details, leaving you free to bust code to solve your problems.

TE
AM
FL
Y

Team-Fly®

Page 395

CHAPTER 25
Remote Method Invocation

Java gives you, the programmer, the interesting capability to invoke Java methods that live on
different machines, or JVMs. Now, what makes this capability interesting is that the invocations
appear, for the most part, to work on methods on the same machine. This capability, or feature, is
called Remote Method Invocation (RMI).

This chapter describes how you would code RMI method invocations. We start by describing the
requirements for Java RMI, followed by the code for a pair of classes that execute on the same JVM.
Continuing, we split this pair by placing one class in one JVM, the other in another JVM, and coding
the RMI constructs required to invoke the methods remotely.

What Is Java RMI?

Java RMI is an API that enables you to invoke methods residing on different Java Virtual Machines
as if these methods were available locally. The RMI mechanism will send parameters across the
network and tend to values (if any) that return to the calling method.

RMI is a completely 100 percent Java solution to the problem of accessing distributed objects on the
network. Now, RMI is not the only distributed object technology available. Non-Java environments
could use a similar technology called Remote Procedure calls (RPC), which is very similar to RMI.
Also, implementations of the CORBA standard address accessing remote objects across a network.
For now, let's limit our discussion to RMI.

Page 396

 Because mainframe environments are rarely 100 percent, Java, RMI may not
address all of the issues involved in accessing distributed objects in a mainframe
environment. The CORBA standard was developed to address distributed objects in a
heterogeneous distributed environment. Also, RMI is not the only Java solution to
distributed objects. Enterprise JavaBeans also addresses this issue and applies to
environments that are not 100 percent pure Java. That said, the concepts underlying RMI
will serve as a basis for CORBA and Enterprise JavaBeans, should your shop decide to
pursue one of those routes.

Before we start, a bit of terminology is in order. We call the method residing on the distant JVM the
remote method. We call the object invoking the remote method the client; we call the object naming
the remote method the server.

Please understand that the client/server pairing is only for the duration of a single remote-method
invocation. The same object may serve as a client for one method invocation and a server for a
subsequent invocation.

Also, understand that when your RMI program invokes a remote method, it executes on the server.
Don't think that RMI is copying the method over from the server to the client JVM before executing
the method. That's why RMI is called Remote Method Invocation, not Remote Method Copying.

Java RMI Mechanics

The basic idea behind Java RMI and all remote method or distributed object referencing technologies
is to create understandable constructs for the client and the server; however, they are not what they
appear to be. For this feat of Java magic to work, a few details must be taken care of.

First, we need a way of invoking the remote method with the appearance of invoking a local method.
Next, we will want the capability to address the second detail mentioned.

Second, your client Java object needs a way to locate this remote method. Remember that the remote
object may be on any server on the network. In addition, you don't want to hard code some particular
server reference; you want to access the remote object wherever it may be today. If the remote object
moves to another server tomorrow, you don't want to be forced into changing your client code.

Third, your client needs a way of sending parameters over the network and accepting returned
values, if any, back from the remote method. Recall that the method is invoked locally from the
client, but executed on the server. Hence, any data returned via a return statement originates in the
server JVM.

Fourth, because you are sending and receiving data over the network, you may have security
considerations. We'll not cover the nitty gritty of Java's security features. You'll see what you have to
code in order for your RMI programs to pass the muster.

The next section addresses the first issue of concern: invoking the remote method like it is a local
method.

Page 397

The RMI Stub.

In RMISpeak, you create an object accessed locally by the RMI client that the RMI server
understands. When the client accesses this local object, the magic of RMI performs network tasks,
which include locating remote objects, sending parameters, and invoking the remote object.

The local object cited in the preceding paragraph is called a stub. The stub is implemented as a Java
class like everything else in Java, right? Think of the stub as a dummy routine that looks similar to
the remote method (it has the same signature and return value type).

Part of the magic of RMI is that the stub tends to collect all the parameters, ready the parameters for
network transport, and send the parameters over the network. In RMISpeak, the process of collecting
and readying the parameters is called marshalling the parameters.

You don't need to be a rocket scientist to figure out what happens on the server side. The parameters
are fetched from the network and made ready for the remote method by a process called
unmarshalling.

Of course, all this marshalling and unmarshalling is totally transparent to the Java program or Java
programmer. You, the Java programmer, merely code your application as RMI-ready; the Java
runtime takes care of the messy details. The marshalling and unmarshalling of parameters and
returned values answers the third detail previously cited. How nice that you don't have to tend to the
sticky networking details!

You may wonder what this stub looks like or how you can create it. The short story is that you use a
Sun-supplied JDK tool called rmic to create the stub. Before we show you how, we need one more
piece to fully respond to the first detail.

The RMI Interface

We can't get a stub class because we need to tell the stub what it should look like. In other words, we
need to tell the stub what the remote method looks like. The method used by RMI is to rely on a Java
interface that describes the remote method implemented by the server class. Ergo, when the client
calls the stub, the stub knows what the server method looks like because the server class implements
the interface; the interface describes the remote method.

Yes, it already sounds confusing, right? Soon, we'll take a look at an example that will show you
how the interface ties with the server class, which ties with the stub, which ties with the client object.

Let's address the second detail: locating the remote method.

The rmiregistry Program

Although the interface describes the remote method and the stub is aware of the interface, your client
still needs a way to locate a remote object so the client can invoke the remote method. Once your
client has a reference to the remote object, your client invokes the method by the old and familiar
object.method() invocation syntax.

Page 398

The RMI way of locating remote objects is by using a JDK tool called rmiregistry. The rmiregistry
program loads a Java registry with a symbolic name (that's fancy phrase for a string) paired with a
remote object. Your server program creates a remote object, invokes a method in the rmi API to
associate the name with the remote object, and the rmiregistry program loads the pair into the
registry. Your client program accesses the registry using a method from the rmi API and invokes the
remote method using object.method() syntax.

Think of the registry as a small table resident on every JVM. You don't need to know anything more
about the registry in order to use it. If you are privy to the registry on Windows operating systems,
you have a good understanding of the Java registry.

On to the fourth detail: the issue of security.

Security Considerations

Because RMI sends data to and from different JVMs, security concerns should be addressed. Every
time data comes into a JVM from an outside source, that data may be corrupted by omission or
commission. Prudence is called for, especially in these perilous times.

We will not delve into the specifics of Java security in this section. You'll read enough to get kick-
started on using RMI. What we need to do is tell the JVM(s) that the client, server, or both, have
permission to connect, accept, and receive network connections.

We do this by passing an option to the Java runtime when we execute our client (or server) RMI
programs. We code the relevant permissions into a policy file and make that policy file known to the
client or server. Later, you'll see an example of a policy file used in our up-and-coming example.

Time for an Example

The next several sections show a pair of classes that reside in a single Java VM that we'll break up.
We'll make one class the client, the other the server, and "RMIize" the classes. Along, the way, we'll
provide commentary.

Refer to listing 25.1 for the Java source for the two classes.

After the compile, you'll see two Java classes. Figure 25.1 shows the output when running the
RMIExample class.

Our mission is to convert the class RMIExample into the RMI client and the class
RemoteMethodLocal into the RMI server. We'll do this one step at a time. As we progress through
the steps, we'll encounter RMI requirements and explain them en route.

Step 1: Create the RMI Interface

The interface has to show a description of the remote method. In our case, the method rollDice() is
the method in question. Listing 25.2 shows the code for our RMI interface.

Page 399

Listing 25.1 Two Java classes in one JVM.

Figure 25.1 Running the RMIExample class.

This interface shows some RMI requirements. First, the interface must extend the Remote interface.
The Remote interface is part of the java.rmi package shown imported in this interface. Second, all
remote methods must have a throws clause, throwing RemoteException. That is all for the RMI
interface.

public class RMIExample {

 public static void main(String[] a) {

 RemoteMethodLocal myEx = new RemoteMethodLocal() ;

 String rolledValue = myEx.rollDice() ;
 System.out.println(rolledValue) ;
 }

}
class RemoteMethodLocal {

 public String rollDice() {

 int dieValue1 = (int) (5 * Math.random()) + 1 ;
 int dieValue2 = (int) (5 * Math.random()) + 1 ;
 return "You rolled a " + dieValue1 + " and a " + dieValue2 ;
 }

Page 400

Listing 25.2 The RMI Interface that describes the remote method.

Step 2: Code the Client Class

You could code the server class here if you like— it doesn't really matter. Anyway, Listing 25.3
shows code for the client class.

Let's examine Listing 25.3 for differences from class RMIExample in Listing 25.1. First, the code is
sandwiched between a try/catch block. Every time you do any RMI, you must be prepared to catch
exceptions. Here, we are merely printing out the text that accompanies the caught exception.

Although the catching of exceptions is a requirement for RMI programming, catching exceptions is
not "RMIish." However, the following two lines are definitely "RMIIsh:"

Remote remObj = Naming.lookup("//localhost/RMIExample") ;
RMIInterface serverObject = (RMIInterface) remObj ;

The Naming class of (you guessed it) the java.rmi package contains methods to load into and retrieve
data from the rmi registry. Because this is our client program, we need a reference to the remote
object; the Naming.lookup() method provides this referencing service.

The method Naming.lookup() returns an object of class Remote. In order for our client program to
use this remote object, we must cast it. The second line casts the reference to the remote object to
that of the RMI interface coded in Listing 25.2.

In our example, we used the special name //localhost. This name refers to the same host, but not
necessarily the same JVM. When you run RMI on a network, your argument to Naming.lookup()
will resemble

rmi://yourservername.com/namefromNaming.rebind()

where namefromNaming.rebind() is the symbolic name paired with the remote object in the RMI
server class.

How do we know that the cast will be valid? We know the cast is valid because when we code the
server, we take pains to have the server class implement the interface. Next we will take a look at the
server code.

import java.rmi.* ;

public interface RMIInterface extends Remote {

 public String rollDice() throws RemoteException ;
}

Page 401

Listing 25.3 The RMI client class that invokes the remote method.

Step 3: Code the Server Class

Listing 25.4 shows the code for the server class.

It looks like the server class has additional RMI constructs and requirements. The first is that the
server class must extend java.rmi.UnicastRemoteObject. For now, the only class supported by the
server-side of Java RMI is the UnicastRemoteObject. People are talking about Sun developing a
class for MulticastRemoteObject, but that's for tomorrow.

The second RMI requirement is that the server class must implement the RMI interface. You read this
in the previous section on the client code. With the server implementing the interface, the client can
access the remote object as if it were a local object. Of course, it doesn't matter where on network the
remote class resides— that's the magic of RMI.

The third RMI requirement is that the default constructor throws RemoteException. As a rule, every
method invoked remotely must throw RemoteException. However, is the constructor invoked
remotely? Well, the client program invokes the Naming.lookup() method, which accesses the rmi
registry for a name/remote object pair. At this time, a reference to the remote object is made
available to the client program.

The fourth requirement is not strictly an RMI requirement, but you follow it because of RMI. Your
remote method must match the signature of the interface description.

import java.rmi.* ;

public class RMIExampleClient {

 public static void main(String[] a) {

 try {
 Remote remObj = Naming.lookup
("//localhost/RMIExample") ;
 RMIInterface serverObject = (RMIInterface) remObj ;

 String whatYouRolled = serverObject.rollDice() ;
 System.out.println(whatYouRolled) ;
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage()) ;
 }

 }

}

Page 402

Listing 25.4 The RMI server class that contains the remote method.

Of course, that is part and parcel of why you use interfaces. However, the requirement that all remote
methods throw RemoteException comes into play here.

The fifth requirement is not a hard-and-fast RMI requirement, but we show an example because it
deals with security. The following line of code,

System.setSecurityManager(new RMISecurityManager()) ;

shows the implementing of a Java security manager. Here, we show the RMISecurityManager being
"installed" in the server. Again, this is not an RMI requirement;

import java.rmi.* ;
import java.rmi.server.* ;

public class RMIExampleServer extends UnicastRemoteObject
 implements RMIInterface {

 public RMIExampleServer() throws RemoteException {
 super() ;
 }

 public String rollDice() throws RemoteException {

 int dieValue1 = (int) (5 * Math.random()) + 1 ;
 int dieValue2 = (int) (5 * Math.random()) + 1 ;
 return "You rolled a " + dieValue1 + " and a "
 + dieValue2 ;
 }

 public static void main(String[] a) {
 System.setSecurityManager(new RMISecurityManager
()) ;
 try {
 RMIExampleServer myExObj = new RMIExampleServer() ;
 Naming.rebind("/RMIExample", myExObj) ;

 }
 catch (Exception exc) {
 System.out.println(exc.getMessage()) ;
 }

 }

}

Page 403

however, you may have to code a security manager because of shop standards (remember them?) or
overly paranoid management.

The fifth requirement is that your server RMI code must be sandwiched in a try/catch block.

The next two lines highlight the seventh requirement:

RMIExampleServer myExObj = new RMIExampleServer() ;
Naming.rebind("/RMIExample", myExObj) ;

The first line merely creates an object of the server class. Nothing terribly "RMIish" about that;
however, the client programs need an object to "hang" the remote method on.

The second line invokes the Naming.rebind() method to associate the remote object with a string
(name). Note the name string /RMIExample is very similar to the name used in the client program's
invocation of the Naming.lookup() method.

That's it. We've seen the code for the interface that makes the remote method look like a local
method and the code for the RMI client and RMI server programs. Now, let's continue our steps and
get our RMI example up and running.

Step 4: Compile the Interface, then the Server, and Then the Client
Classes

Easy enough, right? Put all three source files in one directory and compile them with the Java
compiler. Compile the interface first because the server and the client require knowledge of the
interface.

Step 5: Generate the Stub with the rmic Program

Run the rmic program with the server class file as an argument. Figure 25.2 shows a successful rmic
execution and a listing of the class files.

Notice the last file shown in the directory listing: RMIExampleServer_Stub.class. This is the
infamous stub file we've been talking about. Again, part of RMI magic is causing the client to
reference the stub, which looks like the server method, giving the appearance that the remote method
invocation is local.

Step 6: Place the Stub Class File where the Client and the Server Classes
can Find Them

You would copy the stub class file to a common directory in the classpath of both the client and the
server. For our example here, the current directory will suffice.

Page 404

Figure 25.2 Results of a successful execution of rmic.

Step 7: Start the rmi Registry.

You may start the rmi registry by running the Sun JDK tool, rimregistry. However, in our example,
we want to run rmiregistry in a separate window because the rmiregistry program continues to run
until stopped.

Create a new command shell by entering start in an existing command window. Enter rmiregistry.
Your command shell window will remain open. You stop the rmiregistry program by issuing an
interrupt (Ctrl-C).

Step 8: Create a Policy File

The policy file describes the permissions available to the client, server, or both. The policy file will
be used as an argument to the Java runtime interpreter (that's step 9). Listing 25.5 shows what our
policy file looks like.

Each line in the policy file grants a network permission on the stated host over a range of ports. For
now, you should know that the host identifier (here, we're using an IP address) 127.0.0.1 refers to
same machine (not the same JVM); the expression 1023-65535 means being on any network post in
the range 1,023 to 65,535. As an aside, the default RMI port is 1,099.

You could use the same policy file for the client, server, or both. However, as the code in Listing
25.4 shows, we installed a security manager only in the server class. You may use a text editor to
create this file; don't use a word processor. You might save formatting characters in the file, which
would cause the Java policy file parser to choke. We named this file rmiexample.policy.

TE
AM
FL
Y

Team-Fly®

Page 405

Listing 25.5 A Java policy file showing network permissions.

Step 9: Execute the Server Class

Open a new command window (with the start command) and enter the following:

java -Djava.security.policy=rmiexample RMIExampleServer

Figure 25.3 shows the result of the server execution.

Yes, the server program just sits there, waiting. What does it wait for? The client, of course.
Speaking of which, we've come to the end of the line with the last step.

Step 10: Execute the Client Class (Invoke the Remote Method)

All you do here is get a command window you can type in (remember the window running
rmiregistry and the server class are blocked from further inputs) and enter

java RMIExampleClient

Figure 25.4 shows the command and the output.

Because we didn't install a security manager in the client, we do not need to pass the policy file to the
Java runtime with the -D option.

Summary of RMI Steps

We close with a list of the previous steps for your convenient reference.

Step 1: Create the RMI Interface.

Step 2: Code the Client Class.

Step 3: Code the Server Class.

Step 4: Compile the Interface, then the server, and then the client classes.

Step 5: Generate the stub with the rmic program.

grant {
 permission java.net.SocketPermission "127.0.0.1:1023-65535",
"connect" ;
 permission java.net.SocketPermission "127.0.0.1:1023-65535",
"accept" ;
 permission java.net.SocketPermission "127.0.0.1:1023-65535",
"resolve" ;

} ;

Page 406

Figure 25.3 Executing the RMI server program with the Java policy file.

Figure 25.4 Executing the RMI client program and accessing the remote method.

Step 6: Place the stub class file where the client and the server classes can find them.

Step 7: Start the rmi registry.

Step 8: Create a policy file.

Step 9: Execute the server class.

Step 10: Execute the client class (invoke the remote method).

Perhaps you should try this out in your spare time. Although it looks intimidating, if you walk
through the steps a couple of times, you'll get the hang of it.

Page 407

In Summary

The techniques used in RMI may seem overly complicated at first. However, stop and think about
what RMI allows you to do. With the ability to invoke Java methods that reside on different
machines, the world of Java distributed processing opens up. Also, the technique of using stubs to
describe and interface to other methods is the corner-stone of other distributed Java technologies,
such as Enterprise JavaBeans.

Page 408

This page intentionally left blank.

Page 409

Glossary.
Accessor Methods A series of methods used to retrieve and set object property values. Also called
get/set methods.

Aggregate Data Structure A declared variable that consists of more than one piece of data: arrays
and record structures.

API Application Programming Interface. A set of specifications and libraries that enables a
programmer to write application code that communicates with another system (usually a system-
level package, such as a windowing system or a DBMS).

Appletviewer Sun JDK tool that lets you run an applet in a window outside of a browser.

ASCII An 8-bit encoding scheme used by most all operating systems (notably, not used by IBM's
MVS operating system).

AWT Abstract Windowing Toolkit. A set of Java libraries that enables a Java programmer to use
platform-independent windowing, printing, GUI construction and event handling, and other utilities.
AWT relies heavily on the underlying operating system's graphics-rendering routines.

Behavior A characteristic of an object; how an object acts. An object method implements that
object's behavior.

BXBATCH An MVS utility that enables you to execute a UNIX command or executable in batch.
Used often to compile and run Java programs in MVS batch.

Bytecode The output from the Java compiler. Bytecode is a platform-independent representation of a
Java software object.

Casting The act of temporarily changing the type of a variable for use in a single expression.

Checked Exceptions Exceptions that should be handled by Java code, usually with Java's
try/catch/finally constructs.

Class A template for object creation. All objects derived, or instantiated, from a class share the
methods defined in the class.

Page 410

Class Variable, Method A variable or method declared with the static modifier; a variable or
method that is not attached to a single instance of a class. Class variables and methods are known to
and are the same (have the same value) for all instances of a class. Contrast to instance variables and
methods.

Classpath A collection of directories and jar files containing the classes used by the Java runtime.

Conditional Compilation Describes the activities of a preprocessor in conditionally generating
code. Basically, the preprocessor directives are if/else statements of some sort that cause the source
to be conditionally generated. Java does not support conditional compilation.

Constructor A method that creates an instance of a class.

CTG CICS Transaction Gateway. The CTG provides access from Web browsers and network
computers to applications running on a CICS Transaction Server in a two-tier configuration.

Data Hiding A property of object systems where the inner workings, or details of the object's
behavior, and representation of an object's properties are hidden from other objects.

Doc Comment A special Java comment that starts with /** and ends with */. The Java utility
javadoc uses doc comments to generate documentation.

EBCDIC An 8-bit data encoding scheme used by IBM for its MVS operating system.

Encapsulation A property of object systems where an object is packaged such that other objects
interact with the object by means of a well-defined interface.

Enterprise JavaBeans (EJB) Enterprise JavaBeans (EJB) defines an architecture that enables
developers to create reusable, server-side components.

Error An object of class Error.

Escape Sequence A series of characters that enables a Java programmer to output certain
nonprintable characters.

Event An object of class java.util.EventObject or one of its subclasses; an encapsulation of a state
that usually requires a programmed response.

Event Delegation The term used to describe Java's event-handling model. Events are assigned
listeners. When the event occurs, the Java runtime listener delegates the event to its assigned listener.

Exception An object of class Exception or a subclass; a direct subclass of class Throwable; a
condition in a program that may demand attention.

extcheck JDK tool that checks if a Java Archive (jar) file conflicts with other jar files.

Finalizer Method A method that executes between the time the garbage collector recognizes an
object as garbage and the garbage collector reclaims the memory.

Garbage Collector A part of the Java runtime that recognizes unused objects as such and
automatically reclaims the object's memory. Garbage collection frees the programmer from having to

manage memory.

Get Methods A set of methods that retrieves the values of object properties. The properties have the
private visibility modifier; the get method has the public visibility modifier. Sometimes called
Accessor methods.

Page 411

Header, Method The part of a method that consists of the visibility and other modifiers, the returned
type (or void), the method name, the argument list, and its optional throws clause. The method
header is contained in Java interfaces.

HFS Hierarchical File System. A UNIX-based file system used with IBM's OS/390 operating
system.

HPC High Performance Compiler. An IBM Java compiler that generates native OS/390 instructions
as opposed to generating bytecode.

IMS Connector for Java An IBM product that enables Java applications to access IMS transactions.

Inheritance A property of object-oriented systems where one class (the subclass) automatically
knows, and can use, the properties and behaviors of another class (the superclass).

Inheritance, Multiple A property of object environments (C++, in particular) where a subclass may
have more than one superclass.

Inheritance, Single A property of object environments (Java, in particular) where a subclass may
have, at most, one superclass.

Inner Class A class wholly contained within another class.

Instance Variables, Methods A variable, object, or method that is known to and usually has a
unique value for each instance of a class. Contrast with Class variables and methods.

Interface A collection of abstract behaviors, coded as method headers, that will be implemented by a
class. When a class implements an interface, the class is responsible for providing concrete method
bodies for all the method headers declared in the interface.

IOException An object of class IOException or a subclass; an exception thrown by a condition
dealing with IO, such as FileNotFoundException. Also called checked exceptions.

J2EE Java 2, Enterprise Edition. The specification, written by Sun Microsystems, that describes a
collection of APIs that enable programmers to develop enterprise-class applications in Java.

J2ME Java 2, Micro Edition. The specification, written by Sun Microsystems, that describes a
collection of APIs that enable programmers to develop Java applications that run on small machines
and embedded devices.

J2SE Java 2, Standard Edition. The specification, written by Sun Microsystems, that describes a
collection of APIs that enable programmers to develop client applications in Java. Considered the
core of the Java language.

jar JDK tool that combines multiple files into a Java Archive file.

java JDK tool that runs compiled Java programs.

Java Applet A Java software object that executes within the context of a browser. Applets have a
different structure than applications and usually have different security requirements as well.

Java Application A Java software object containing a main() method and is executed by invoking
the main() method. Sometimes called a client application.

JavaBeans An architecture for developing software components, mostly used to create custom user
interface components.

Page 412

javac JDK tool that compiles Java source code.

javadoc JDK tool that generates documentation for Java programs in HTML format.

javah JDK tool that generates C header files for use in writing native C code methods.

JavaMail A Java extension API that can communicate with standard Internet mail protocols.

Java Messaging Service (JMS) JMS is a set of APIs that invokes asynchronous messaging services
like broadcast and point-to-point (client-to-client) messages.

Java Naming and Directory Service (JNDI) JNDI provides an interface for accessing name and
directory services, such as LDAP directory services and Domain Name Service (DNS), to locate
distributed objects by name (not location).

javap JDK tool that disassembles Java source from class files.

Java Runtime See JVM.

JavaServer Pages (JSP) A JSP is a combination of HTML (or XML) and Java scripting code that
can dynamically generate HTML (or XML).

Java Servlet A Java software object that executes on a Web server, additionally providing that
server with increased functionality.

Java Transaction API (JTA) JTA provides developers with a mechanism for handling the commit
and the rollback of transactions as well as insuring the Atomicity, Consistency, Isolation, and
Durability (ACID) properties of a transaction.

Java Transaction Services (JTS) JTS provides developers with a means of communicating with
transaction monitors and other transaction-oriented resources.

jdb JDK line-oriented Java debugging tool.

JDBC Java Database Connectivity (not an acronym, but often used as such). A Java API that enables
Java programs to access data stored in relational databases and enables Java programs to issue SQL
statements.

JDK Java Development Kit. A set of software tools and utilities supplied by Sun Microsystems.

JFC Java Foundation Classes. A set of Java classes that contains Swing user interface classes.

jni Java Native Interface. An API that enables programmers to interface C programs with Java
methods

JRIO Java Record Input/Output. A set of proprietary IBM classes that enables the Java programmer
to perform record I/O on traditional MVS datasets.

JVM Java Virtual Machine. The environment in which Java software objects execute in. Also called
a Java Runtime.

TE
AM
FL
Y

Team-Fly®

Layout Manager An object of class LayoutManager; an abstraction used by Java GUI programmers
to define the overall layout of GUI components in the interface.

Listener A Java object assigned the task of reporting on certain classes of events. The listener
reports the event to the appropriate system manager, which invokes a callback to handle the event.

Method The term used to describe the code that implements some behavior of an object.

Modifier A keyword placed before a variable or object type or method return value that provides
additional information about the variable, object, or method.

Page 413

Multithreading The practice of coding programs (Java or otherwise) that may create multiple
threads of control.

MVS IBM's operating system that runs on mainframe-class computers. MVS is being phased out in
favor of IBM's OS/390, although many MVS shops are still in existence.

OS/390 UNIX A flavor of UNIX that runs with OS/390.

Object Oriented Programming A view of software where software is constructed by creating
objects, which is a combination of properties and behaviors (as opposed to separate data and
processes).

OS/390 IBM's operating system used on mainframe-class computers. OS/390 combines features of
UNIX and MVS.

Overloading, Methods The coding of two or more methods with the same name, but different
argument lists. Often done when coding multiple constructors for a single class.

Overriding, Methods The coding of a method in a subclass with the same signature as a method in
the superclass.

Package A collection of classes used together and referenced by a name. The package name mirrors
the directory structure that specifies its location.

Pass by Reference When passing an argument to a method, the JVM passes a reference (pointer or
address) of the argument to the method. Reference types are passed by reference. Contrast with pass
by value below.

Pass by Value When passing an argument to a method, the JVM generates a copy of the argument
and passes the copy to the method. Primitive types are passed by value. Contrast with pass by
reference above.

Polymorphism A property of object systems where behaviors of the same name may be used in
different contexts.

Preprocessor A piece of software that generates source code based on directives coded within a
source code file. Java does not support preprocessors.

Primitive Type A piece of data declared in a Java software object that is not derived from a class.
Primitive types correspond to declared types in non-object languages and closely parallel variables
declared in C programs.

Reference Data Types A class, array, or a string type, as opposed to primitive types.

Representative Typing Declared variable types mirror the underlying data representation. COBOL
and PL/I are representatively typed.

RMI Remote Method Invocation. A Java technology that enables a Java program executing in one
JVM to invoke methods from an object residing in another JVM.

RuntimeException An object of class RuntimeException; an exception thrown in a Java program

usually as a result of poorly written code, such as a zerodivide or array out of bounds.

Set Methods Methods used to assign values to the properties of an object. The object properties are
typically declared with the private visibility modifier; the set methods are typically declared public.
Sometimes called Accessor methods or Mutator methods.

Signature, Method The part of a method header containing the name and the argument list.

Page 414

SQLJ A library (not Java-specific but a Java binding is available) that enables Java programs to
issue SQL statements to access relational databases. Similar in function to JDBC.

Stream A data source or destination abstraction that Java uses to define input/output resources. Java
IO is done on streams that may be defined as disk files, network sockets, or URLs.

Strong Typing The language does not enable the programmer to use variables of different data types
in the same expression. Pascal is an example of a strongly typed language.

Structured Programming A view of software as separate process models and data models. The
process model describes processes as sets of related processes.

Subclass A class that automatically knows properties and methods of the classes' superclass. A
subclass may override superclass methods and properties or provide additional methods and
properties to distinguish itself from its superclass.

super A Java keyword that refers to an instance of the object's superclass, used to reference
superclass methods.

Superclass A class that contains methods and properties that are automatically known by the classes'
subclass.

Swing A set of Java libraries that enables the Java programmer to develop platform-independent user
interfaces. Swing does not depend on the underlying operating system's graphics rendering like
does.

this A Java keyword that refers to the current object.

Thread An object of class Thread or a subclass; a flow of control in a Java program; short for
Thread of Control.

throw Java keyword that, when used in a program, introduces an object of class Throwable (or a
direct subclass) into the JVM.

Throwable Superclass of exceptions and errors.

Unicode A 16-bit data encoding scheme used by Java. The first 8 bits are ASCII.

URL Uniform Resource Locator. A naming scheme that enables a directory service to locate a
resource on a network; commonly used to reference Web pages.

Variable Scope The locations in a program where a declared variable is known and can be used.
Globally declared variables, such as those used in COBOL, can be used throughout the compile unit
containing the variable. Locally declared variables, such as those declared inside a PL/I procedure or
a Java method, can be used only within the declared procedure or method.

Variable Typing How the language runtime compares the attributes of a variable to other variables
in the same expressions. See strong typing, weak typing, and representative typing.

Variable Visibility See variable scope.

Visibility Modifier A modifier that defines the visibility of a declared variable, object, or method.

Visual Age IBM's Java integrated software development environment (IDE).

void Java keyword coded before a method name that indicates that the method does not return a
value to the calling method.

VSAM Virtual Storage Access Method. A data structure used on OS/MVS to implement direct and
random access data access.

Page 415

Weak Typing The language enables the programmer to use variables of different data types in the
same expression (within certain bounds). Taken to the extreme, some weakly typed programming
languages (REXX is an example) do not even permit declaring variables with a data type.

Page 416

This page intentionally left blank.

Page 417

Bibliography
"E-business Application Solutions on OS/390 Using Java." IBM Redbooks. SG24-5342-00

"E-business Application Solutions on OS/390 Using Java: Samples." IBM Redbooks. SG24-5365-00

"Experiences Moving a Java Application to OS/390." IBM Redbooks. SG24-5620-00

Flanagan, David, et. al. Java in a Nutshell, Deluxe Edition. O'Reilly. ISBN 1-56392-304-9

"IBM OS/390 Introduction and Release Guide, Release 10." IBM Redbooks. GC28-1725-09

"IMS Connect Guide and Reference." IBM Redbooks. SC27-0946-00

"Integrating Java with Existing Data and Applications on OS/390." IBM Redbooks. SG24-5142-00

"Java Application Development for CICS." IBM Redbooks. SG24-5275-01

"Java Programming Guide for OS/390." IBM Redbooks.

"JRIO API User's Guide." IBM Redbooks.

"OS/390 UNIX System Services User's Guide." IBM Redbooks. SC28-1891-10

"Programming with the Host Access APIs." IBM Redbooks. SG24-5856-00

Roman, Ed. Enterprise JavaBeans and the Java 2 Platform Enterprise Edition. John Wiley & Sons.
ISBN 0-471-33229-1

Page 418

This page intentionally left blank.

Page 419

Index

A
abstract classes, 168
abstract methods, 127
abstract superclasses, interfaces, 187
access to system methods, cross-platform comparisons, 274
accessor methods, 161–162
account properties, 170–171, 174
ActionListener interface, 201
Adapter classes, 205–206
AddActionListener method, 201
addition operator, 100
Addlistener method, 201
AddWindowListener method, 201
AIX UNIX

access methods, 274
background execution, 277
bit bucket, 272
case sensitivity, 275
configuration data, 272
data
editing, 278
encoding, 273
locating, 272
storage, 272

debuggers, 276
disk storage, 276
file formats, 274
online options, 275–277
programs, 276–277
shared libraries, 273
threads, 275
viewing jobs, 278
virtual storage, 271

ALTUSER command, 266
anonymous inner classes, GUIs, 366
APIs (Application Programming Interfaces), 24, 389–394

TE
AM
FL
Y

Team-Fly®

applications
CTG, writing, 318–320
launching, 54-55
outputs, training department class scheduling system, 238
server-side. See server-side applications.
standalone, OS/390, 259

applets, 24, 351–356
GUIs, 366, 370
OS/390, 259
viewing, appletviewer, 51
Web page, 352–353

appletviewer, 50
archives, viewing, 53
arguments

methods, 45, 128
passing, 32
variable names, 45

arithmetic
exceptions, 212
expressions, 107
floating point, 109

ArrayIndexOutOfBoundsExceptions, 212
arrays, 32, 86–87

arrays of arrays, 87

Page 420

arrays of objects, multithreading, 225–226
arrays of strings, methods, 45
creating via new operator, 87
referencing, 88

assignment operator, 100
assignment statements, 96
assignment with operator, 103–104
AssignTo() method, 138
associativity, operators, 100
attributes, 32
Automobile class, 140
AWT (Abstract Windowing Toolkit), 198

B
background execution, cross-platform comparisons, 277
bank accounts

inheritance, 176–180
properties, 170–171, 174, 177

Basic Tools, 49
appletviewer, 50
extcheck utility, 53
header files, 66
jar utility, 51–52
Java interpreter, 54–57
javac, 58–61
javadoc, 62
javakey tool, 51
javap, retrieving source code, 66
jdb, line-oriented debugging, 68–69, 72–75

bit bucket, cross-platform comparisons, 272
bit operator, 104
block constructs, 44, 112
block statements, variable/object scoping, 151–152
body, methods, 46
Boolean data type, 82
Boolean operator, 105
BPXBATCH

compiling Java programs, 283–284
environment variables, 283
linked programs, 284
passing SH parameter, 281

running Java programs, 280
standard files, 281
started tasks, 285

break statements, 117
built-in functions, 34
button events, 204
byte array record structures, JRIO, 295
bytecode, 27, 41

C
C++, multiple inheritance, 7
callback mechanism, 203
canceling jobs, 278
capitalization in code, 37
capturing events, 199, 202–204
case sensitivity

class names, 42
code, 92
cross-platform comparisons, 275

cast operator, 80, 104
casting

integer types, 84
subclasses, 181–182
variable types, 80

catch blocks, catching exceptions, 218
catching exceptions, 218–219
Change Student Roster screen, training department class scheduling system, 237
Change Index section, for loops, 112
Changing of the Loop index, 112
char primitive type, 83
character literals, 83
character strings, 86
checked exceptions, 211–212
checking accounts, 171, 174

inheritance, 176–180
properties, 177

CICS OS/390, 260
JVM execution environment, 316–317
processing flow, 317
writing apps, 318–320

class files, 29, 40
class hierarchy, 8

Class Info file, training department class scheduling system, 238
class methods, 141–142
class variables, 144
ClassCastExceptions, 212
classes, 26, 130–132

abstract, 168
adapter, 205–206
Automobile, 140
controlled access, 161
Demol, 136
deprecated, 60
encapsulation, 154–155
Error, 211
EventObject, 199
Exception, 211, 214

Page 421

extending superclasses, 9
File, methods, 375–376
grouping, package statements, 131
implementing interfaces, 186
import statements, 130
IMS Connector for Java, 323
inheritance trees, 166–169
inner, 145–146, 207
instantiating objects, 44
loading, 39
main method, 44
members, 132
multiple inheritance, 168
names, case sensitivity, 42
nested top-level, 145–146
Object, reserved method names, 94
objects, 4
references, 38, 136
root classes, 132
Runnable, 215
stack, 5
StackWork, 161
String, 86
System, 46
Thread, 221–223
Throwable, 210
top-level, 206
user-defined, search paths, 54
VectorStack, 155–156
WindowEvent, 199

Classpath option, javac, 60
Client class, 400, 405
client/server application, Java RMI, 398

client class, 400, 405
interface, 398
policy files, 404
rmiregistry, 404
server class, 401, 405
stubs, 403

COBOL
class list displays, training department class scheduling system, 340–341, 343

exception handling, 212
files, 374
streams, 378–379

code, syntax, 9
command shell, OS/390 UNIX, 265–266
COMMAREA, writing JCICS programs, 320
comments, 44, 92
compiler. See also javac.

class references, 38
errors, 43, 81
High Performance Java Compiler, 29
loading classes, 39

compiling
HelloWorld program, 37
programs, BPXBATCH, 283–284
source files, 59

components, GUIs, 198
conditional operator, 105
configuration data, 272
connection pooling, IMS Connector for Java, 325
constants, JRIO, 290
constructor methods

instance variables, 132–133
signatures, 135

containers
GUIs, 360–361
layout managers, 364

Continue statements, 119
controlled access, classes, 161
controlled data structures, PL/I, 5
conversational transactions, 325
COPY statements, 93
Course Info file, training department class scheduling system, 238
CPU usage, Java interpreter, 57
Create New Class screen, training department class scheduling system, 235
CreateFile() method, 302
CTG (CICS Transaction Gateway), 315

modes 317
processing flow, 317
writing apps, 318, 320

curly braces
block constructs, 44
method code delimiters, 46

D
data

encapsulation, PL/I example, 158–160
encoding, cross-platform comparisons, 273
hiding via encapsulation, 149–150
JRIO, fetching from fields, 311
preventing changes, 150
storage, cross-platform comparisons, 272

data stores, training department class scheduling system, 237

Page 422

data types, 27
arrays, 86
Boolean, 82
character strings, 86
reference, 86

datasets
JRIO, naming conventions, 295
MVS, 374

DB2, 260, 327–328
JDBC, 329–332
SQLJ programs, 334–336

debugging
cross-platform comparisons, 276
line-oriented, 68–69, 72–75
remote, 57
source files, 59

decision constructs, 119
declarations, main method, 44
default output streams, 46
delegation-based event model, 200–201
deleting

directories, 309
record files, 310

Demol class, 136
Deposit method, 181
deprecated methods and classes, 60
development of Java, 23–29
diagnostic warnings, source files, suppressing, 59
digital signatures, javakey, 51
directories

javac, 60
JRIO, 302
deleting, 309
naming conventions, 294
temporary, 303
verifying existence, 301

disk storage assignments, cross-platform comparisons, 276
dividing integers, 108
Do While loops, 116–117
doc comments, 62, 92
documentation, source files, 62

DOS window, running HelloWorld, 37
double slashes, single line comments, 10
DuplicateKeyException, JRIO, 294
dynamic data structures, 33
dynamic Web pages, 389

E
editing data, cross-platform comparisons, 278
EJB (Enterprise JavaBeans), 393
ElementAt() method, 156
EmployeeInfo file, training department class scheduling system, 238
encapsulation

classes, visibility modifiers, 154–155
hiding data, 149–150
objects, 4–5
PL/I example, 158–160

environment variables, BPXBATCH, 283
equality tests, string object references, 137
Error class, 211
errors, compile, 43
escape sequences, 83
event classes, capturing semantic events, 199
event handling, 195
event listeners, GUIs, 365
event model, delegation-based, 200–201
EventObject class, 199
events, 199

button, capturing, 204
predictable, 196
processing, 196
window capturing, 202–203

exception classes, 211, 214
exceptions, 43

catching, 218–219
checked, 211–212
handling, 33, 209–212
I/O, 211
JRIO, 292
runtime, 211
throwing, 214–217
unchecked, 211

executing

applications, 40
via Java interpreter, 55

HelloWorld program, 41
threads, 222

execution environment, CICS JVM, 316–317
execution test, for loops, 112
extcheck utility, verifying jar files, 53
extending superclasses, 9, 165
Extends keyword, 181

F
factories, 288
fields, JRIO, fetching data, 311
File class, methods, 375–376

TE
AM
FL
Y

Team-Fly®

Page 423

file formats, cross-platform comparisons, 274
file I/O, 298, 373
file output streams, JRIO, adding records, 299
FileNotFoundException, 211
files

BPXBATCH, 281
class, 40
COBOL, 374
Java, 375–376
JRIO, 301
PL/I, 374
record-oriented access, 287

final methods, 127
finalizer methods, 144
Finally blocks, catching exceptions, 218–219
floating point arithmetic, 109
floating point primitive types, 85
flowcharts, training department class scheduling system, 245–247
For loops, 111–114
frame objects, 203
front–ends for applications. See GUIs.
functions, built-in, 34

G
garbage collection, 28, 56–57, 135
Get method, 162
GetMessage() method, 215
GetName() method, 224
Goto reserved word, 94
green screens, 195
grouping classes, package statements, 131
GUIs (Graphical User Interfaces), 195, 359

anonymous inner classes, 366
applets, 366, 370
components, 198
containers, 360–361
event listeners, 365
event processing, 196, 364
Swing library, 198

H

handling events, 195
handling exceptions, 212–213
header files, javah, 66
headers, methods, 44
HelloWorld program

compiling, 37
executing, 41
main method, 44
parameters, 46
running, 37

HFS file system, OS/390 UNIX, 267–269
hiding data, encapsulation, 149–150
hierarchies

exception handling, 210–211
inheritance, 189–192
interfaces, 189–192
Java, 8

hierarchy trees, 166–168
High Performance Java Compiler, 27–29
HTML, servlets, 390

I
I/O, 373

exceptions, 211
file, 298, 373

IBM
CTG (CICS Transaction Gateway), 315
High Performance Java compiler, 27–29
Java development tools, 262
Visual Age for Java, 29

Identify User screen, training department class scheduling system, 235
IDirectory interface, JRIO, 288
If statements, 119
IFileInputRecordStream interface, JRIO, 289
IFileOutputRecordStream interface, JRIO, 289
IKey interface, JRIO, 290
IKeyDescriptor interface, JRIO, 290
IKeyedAccessRecordFile interface, JRIO, 290
Implements keyword, 186
Import statements, 130, 295
IMS Connector for Java, 322

connection pooling, 325

conversational transactions, 325
IMS messages, 324
Java classes, 323
logon info, 325
MFS formatting, 322
synchronization levels, 325

Include statements, 93
Index variable, 114
inheritance, 166, 176

checking accounts, 176–180
hierarchies, 189–192

Page 424

Java, 8
objects, 4
subclasses, 165

inheritance trees, 166–169
initialization part, For loops, 111
inner classes, 145–146, 207
installing JDK, 35–36
instance methods, 138
instance variables, 132–133, 161
Instanceof operator, 161, 212
instantiating objects from classes, 44
Instructor screens, training department class scheduling system, 232–235
Instructor functions, training department class scheduling system, 230
InstructorInfo file, training department class scheduling system, 238
integer division, loss of precision, 108
integer primitive types, 84, 110
interfaces, 185–186

abstract superclasses, 187
ActionListener, 201
creating, 188
hierarchies, 9, 189–192
implementing, 186
Java, 8–9
Java RMI, 397–398
JRIO, 288–290
WindowListener, 201

internal references, Java comparisons, 32
InterruptedExceptions, 226
interrupting processing of loops, 117
IRandomAccessRecordFile interface, JRIO, 290
IRecord interface, JRIO, 289
IRecordFile interface, JRIO, 289
IsCarOverpriced() method, 140
IsStackEmpty() method, 154
iterative loops, 111

J
J2EE (Java 2 Enterprise Edition), 387

APIs, 389
server-side applications, 388

jar utility (Java archive), 51–53

Java, 8
applets, 351–356
arithmetic expressions, 107
built-in functions, 34
capturing events, 202–204
catching exceptions, 218–219
classes, 8–9, 38, 141–142
comments, 44
compile errors, 43
DB2, 327–332
decision constructs, 119
declared variable attributes, 32
delegation-based event model, 200–201
dividing integers, loss of precision, 108
dynamic data structures, 33
event handling, 195
exception handling, 33, 209–211
file I/O, 373
files, 375–376
floating point arithmetic, 109
GUIs, 198, 359–361, 364–366, 370
I/O exceptions, 211
IBM development tools, 262
Index variable, 114
inheritance, 8, 166
inheritance trees, 166
integer primitive types, 84, 110
interfaces, 9, 185–188
internal references, 32
libraries, 169
loops, 111, 117–119
methods, 29, 44–45, 125–128
multidimensional arrays, 87
multithreading, 220–222, 225–226
MVS Batch, 279
naming conventions for variables, 88
negative zero, 86
nested top-level classes, 145–146
Netscape licensing, 24
objects, 88, 382
operators, 80, 97, 100–105
OS/390, 257–261
passing arguments, 32

pointers, 93
postfix operators, 103
prefix operators, 103
preprocessor, 93

Page 425

primitive data types, 32, 77–78, 381
program control statements, 111
record-oriented data, 297
reference data types, 86
servlets, 390
source code case sensitivity, 92
SQLJ, 334–336
stack traces, 219
statements, ending with semicolon, 92
streams, 380–381
Swing components, 250
synchronized methods, 127
syntax, 9, 91–96
throwing exceptions, 214–217
top-level classes, 206
unary operators, 100
user interfaces. See GUIs.
variables, 32, 78–81
vectors, 156
visibility modifiers, 154
Web page applets, 352–353

java-version command, 36
Java archive files. See jar utility.
Java IDL, 394
Java interpreter, 54–57
Java RMI (Remote Method Invocation), 395

client/server application, 398
Client class, 400, 405
interface, 398
policy files, 404
rmiregistry, 404
Server class, 401, 405
stubs, 403

interface, 397
marshalling parameters, 397
mechanics, 396
rmiregistry program, 398
security issues, 398
stubs, 397

Java runtime. See JVM.
javac, 38

bootclasspath option, 60
bytecode debugging data, 59
class references, 38
classpath option, 60
code optimization, 59
compile errors, 43
compiling source files, 58–60
directory options, 60
loading classes, 39
recompile option, 61
sourcepath option, 60
suppressing diagnostic warnings, 59
target option, 60

javadoc, 62
javakey tool, 51
JavaMail, 393
javap, 66
JCICS, 320
jdb, line-oriented debugger, 68–69, 72–75
JDBC (Java Database Connectivity), 329–331, 337, 394
JDK (Java Development Kit), 24

appletviewer, 50
Basic Tools, 49
extcheck utility, 53
installing, 35–36
jar utility, 51–52
Java interpreter, 54–57
javac, 59–61
javadoc, 62
javah, 66
javakey tool, 51
javap, 66
jdb, 68–69, 72–75

JFrame objects, 203
JMS (Java Messaging Services), 392
JNDI (Java Naming and Directory Service), 393
jni (Java Native Interface), 56
Join() method, 226
JRIO (Java Record I/O)

adding records to file output streams, 299
appending records, 299–300
byte array record structures, 295
constants, 290

createFile() method, 302
datasets, 295
directories, 294, 302, 309
exceptions, 292–294
fetching data from fields, 311
file I/O program, 298
finding records, 305–306
interfaces, 288–290
import statement, 295
keys, 305, 313
mkDir() method, 302
reading records, 307–309
record files, deleting, 310
record framework object structures, 296
record-oriented file access, 287

Page 426

records, deleting, 310
temporary directories and files, 303–304
updating records, 312

JSPs (Java Server Pages), 389
JTA (Java Transaction API), 392
JTS (Java Transaction Services), 392
JVM (Java Virtual Machine), 27, 316–317

K
keyed access record files, 299–300
keyed file processing exceptions, 293
keys, JRIO, 305, 313
keywords

Extends, 181
Implements, 186
Public, 44
Static, 44
Super, 181
This, 140
Void, 45, 138

L
Land() method, 190
language constructs, 27
launching applications, Java interpreter, 54–55
layout managers, GUI containers, 364
libraries

GUIs, 359
inheritance trees, 169
Swing, 198

line-oriented debugger, 68–75
linked programs, BPXBATCH, 284
listeners, registering, 201
LISTUSERcommand, 266
literals, character, 83
loading classes, 39
Local mode, CTG, 317
local variables, 32
Logon info, IMS Connector for Java, 325
loops, 111

break statements, 117

TE
AM
FL
Y

Team-Fly®

continue statements, 119
do while, 116–117
for, 111–114
interrupting processing, 117
while, 114–116

loss of precision when dividing integers, 108

M
Main method, 29, 44
manifest files, jar files, 51
marshalling parameters, Java RMI, 397
members, classes, 132
messages, IMS Connector for Java, 324
methods

abstract, 127
accessor, 161–162
arguments, 45, 128
arrays of strings, 45
body, 46
class, 141–142
constructors, 132–135
curly braces, method code delimiters, 46
deposit, 181
deprecated, 60
final, 127
finalizer, 144
get, 162
headers, 44
instance, 138
modifiers, 127
naming, 45, 128–129
native, 127
parameters, 45
private, 154
pseudo-reserved names, 95
return statements, 45
returned types in headers, 128
set, 163
static, 127
superclass, overriding, 181
synchronized, 127
throws Exception-name option, 128

visibility modifiers, 125–127
withdraw, 181
See also specific method names

MFS formatting, IMS Connector for Java, 322
MkDir() method, JRIO, 302
modifiers, methods, 127
multi-line comments, 92
multidimensional arrays, 87
multiple inheritance

C++, 7
classes, 168

multithreading, 28, 220–221
arrays of objects, 225–226
executing, 222
join() method, 226

MVS (Multiple Virtual Storage), 279
access methods, 274
background execution, 277
bit bucket, 272
case sensitivity, 275

Page 427

data
configuration, 272
editing, 278
encoding, 273
locating, 272
storage, 272

datasets, 274, 374
debuggers, 276
online execution, 277
online help, 275
programs
scheduling, 277
search order, 276

programming language support, 275
shared libraries, 273
storage assignment, 276
tasks, 275
viewing/canceling jobs, 278
virtual storage, 271

MVS Batch, 261, 279
MyException object, 214

N
naming

classes, case sensitivity, 42
JRIO conventions
datasets, 295
directories, 294

methods, 45, 128
with packages, 129

objects, 88
variables, 88
arguments, 45

NaN (Not a Number), 86
native methods, 127
negative zero, 86
nested top-level classes, 145–146
Netscape, Java licensing, 24
Network mode, CTG, 317
new operator 87, 156
no typing, variables, 32, 79

NoClassDefFoundError exception, 43
null object references, 215
NullPointerExceptions, 215

O
Object class, reserved method names, 94
objects, 3, 26

classes, 4, 136
encapsulation, 4–5
Frame, 203
inheritance, 4
instantiating from classes, 44
JFrame, 203
myException, 214
naming, 88
null references, 215
polymorphism, 6
reading, 382
reusability, 4
scoping, 151
subclasses, 4
superclasses, 4
writing, 382

OMVS command, 267
online help, cross-platform comparisons, 275
OOP (Object-Oriented Programming), 3
operators, 97

addition, 100
assignment, 100
assignment with, 96, 103–104
associativity, 100
bit, 104
Boolean, 105
cast, 80, 104
conditional, 105
instanceof, 161
new, 156
postfix decrement, 103
postfix increment, 103
precedence, 97
prefix decrement, 103
prefix increment, 103

shift, 104
string concatenation, 106
tertiary, 106
unary decrement, 100
unary increment, 100

optimizing source files, 59
OS/390

CTG, 316
DB2, 327–328, 329–332
environment variables, 283
High Performance Java compiler, 27
Java operations, 258–262

OS/390 UNIX
access methods, 274
background execution, 277
bit bucket, 272
case sensitivity, 275
command shell, 265
configuration data, 272
copying files from HFS to MVS, 269
data encoding, 273
data storage, 272
debuggers, 276
disk storage, 276
editing data, 278
file formats, 274
HFS file system, 267–269
locating data, 272
online execution, 277
online help, 275
program scheduling, 277
program search order, 276

Page 428

programming language support, 275
shared libraries, 273
threads, 275
viewing jobs, 278
virtual storage, 271

overflow, integer primitive types, 110
overriding superclass method, 181

P
packages

naming methods, 129
statements, grouping classes, 131

parameters
Java RMI, 397
methods, 45–46
passing, 128–129, 153

passing
arguments, 32
parameters, 128–129

PL/I
controlled data structures, 5
data encapsulation example, 158–160
exception handling, 213
files, 374
streams, 378–379

platform versions, Java, 25
pointers, 93
policy files, Java RMI, 404
polymorphism of objects, 6
PopTheStack() method, 154–155
postfix operators, 103
prcessing flow, CTG, 317
precedence, operators, 97
predictable events, 196
prefix operators, 103
preprocessor, 93
preventing data changes, 150
primitive types, 77–78

char, 83
data, 32, 381
floating point, 85

integer, 84
mixing in arithmetic expressions, 107

Println method, 46
PrintWriter stream, 381
private methods, 154
private visibility modifiers, 157
procedural languages, Java comparisons, 29
processing

events, 196
loops, interrupting, 117

programming languages, 7–8
programs

block constructs, 44
compiling, 283
control statements, 111
executing, 40
HelloWorld, 37
main method, 44
multithreading, 220–222, 225–226
running in BPXBATCH, 280–281

pseudo-reserved method names, 95
Public keyword, 44
public visibility modifier, 132
PushTheStack() method, 154–155

R
random access record files, 300
Read() method, 217
reading

objects, 382
primitive data types, 381
streams, 381

ReadIt() method, 217
Recompile option, javac, 61
record files, JRIO

deleting, 310
temporary, 304

record structures, JRIO
byte arrays, 295
record framework objects, 296

record-oriented data, 297
record-oriented file access, JRIO, 287

RecordIOException, JRIO, 293
records, JRIO

adding to file output streams, 299
appending, 299–300
deleting, 310
finding, 305–306
reading, 307–309
updating, 312

Reference data types, 86
references

arrays, 88
classes, 38
interval, 32
object classes, 136
passing parameters by, 128

registering listeners, 201
remote debugging, Java interpreter, 57
representative typing, variables, 32, 79
reserved words, 93–94
retrieving source code, 66
Return statements, 45
reusability of objects, 4

Page 429

RMI (Remote Method Invocation), 395
client/server application
client class, 400, 405
interface, 398
policy files, 404
rmiregistry, 404
serverclass, 401, 405
stubs, 403

interface, 397
marshalling parameters, 397
mechanics, 396
rmiregistry program, 398
security issues, 398
stubs, 397

rmiregistry, 398, 404

S
String class, 86
string concatenation operator, 106
String objects, equality tests, 137
strings, arrays, 45
strong typing, variables, 32, 78
structured programming, 25
stubs, Java RMI, 397, 403
Student Enter Options screen, training department class scheduling system, 231, 235
student functions, training department class scheduling system, 230
subclasses, 4

casting, 181–182
extending superclasses, 165
inheritance, 165
Thread class, 223

subprograms, Java, 33
Sun Microsystems, Java development, 23
Super keyword, 181
Superclass method, overriding, 181
superclasses, 4

abstract, 187
extending, 9, 165

Swing library, 198
switch statements, 120, 123
synchronization levels, IMS Connector for Java, 325

synchronized methods, 127
syntax, 91

arithmetic expressions, 107
assignment statements, 96
assignment with operator, 96, 103–104
bit operator, 104
boolean operator, 105
cast operator, 104
comments, 92
conditional operator, 105
decision constructs, 119
dividing integers, 108
do while loops, 116–117
floating point arithmetic, 109
for loops, 111–114
if statements, 119
integer primitive types, 110
Java code, 9
methods, 125–127
operators, 97, 100
postfix operators, 103
prefix operators, 103
program control statements, 111
pseudo-reserved method names, 95
reserved words, 93–94
shift operator, 104
source code, 92
statements, 92
string concatenation operator, 106
switch statements, 120, 123
tertiary operator, 106
unary operators, 100
while loops, 114–116

System class, 46
system-defined streams, 380
System.exit() method, 203
System.in.read() method, 216
System.out.println method, writing output, 46

T
TakeOff() method, 190
Target option, javac, 60

TE
AM
FL
Y

Team-Fly®

temporary directories, JRIO, 303
temporary record files, JRIO, 304
terminal emulators, OS/390 UNIX, 266
tertiary operator, 106
This keyword, 140
Thread class, 221–223
ThreadObj.start() method, 226
threads, 220–221

arrays of objects, 225–226
executing, 222
Join() method, 226

Page 430

Throwable class, 210
throwing exceptions, 214–217
top-level classes, 206
training department class scheduling system, 229

application outputs, 238–240
class info file, 238
class list displays, 340–344
course info file, 238
data stores, 237
employee info file, 238
flowcharts, 245–247
instructor functions, 230
instructor info file, 238
single class retrieval, 344
SQL joins, 339
student functions, 230
Swing components, 250
user interface, 230, 234

Try blocks, 218
TSO, 266
two dimensional arrays, 87
type mismatch errors, 80
typing variables, 78–81

U
unary operators, 100
unchecked exceptions, 211
UNIX OS/390

command shell, 265–266
HFS file system, 267–269

Unix System Services, OS/390 Java requirements, 257
updating JRIO records, 312
User ID screen, training department class scheduling system, 231
user inputs, 196
user interfaces, 359

anonymous inner classes, 366
applets, 366, 370
containers, 360–361, 364
event listeners, 365
training department class scheduling system, 230, 234

user-defined classes, 54

utilities
extcheck, 53
jar, 51–52

V
values, passing parameters by, 128–129
variables, 32

arguments, 45
char, 83
class, 144
constructor methods, 132–133
index, 114
instance, 161
naming, 45, 88
scoping, 150–152
typing, 78–81

vectors, 156
VectorStack class, 155–156
verifying

jar files, extcheck utility, 53
JDK install, 36

viewing
applets, 51
archives, 53
jobs, cross-platform comparisons, 278

visibility modifiers, 44, 154
encapsulation of classes, 154–155
methods, 125–127
private, 157

Visual Age for Java, IBM, 29, 297
Void keyword, 45, 138

W
weak typing, variables, 32, 79
Web pages

applets, 352–353
generating dynamically, 389

while loops, 114–116
Window events, 202–203
WindowEvent class, 199
WindowListener interface, 201
WindowOpened() method, 205

Withdraw method, 181
writing

CTG applications, 318–320
JCICS programs, 320
objects, 382
output, 46
primitive data types, 381
streams, 381

	sample.pdf
	sterling.com
	Welcome to Sterling Software

