

Praise for the First Edition

“2005 Best Java Book!”
—Java Developer’s Journal

Hibernate In Action has to be considered the definitive tome on Hibernate. As
the authors are intimately involved with the project, the insight on Hibernate
that they provide can’t be easily duplicated.

—JavaRanch.com

“Not only gets you up to speed with Hibernate and its features…It also intro-
duces you to the right way of developing and tuning an industrial-quality Hiber-
nate application. …albeit very technical, it reads astonishingly
easy…unfortunately very rare nowadays…[an] excellent piece of work…”

 —JavaLobby.com

“The first and only full tutorial, reference, and authoritative guide, and one of
the most anticipated books of the year for Hibernate users.”

—Dr. Dobb’s Journal

“…the book was beyond my expectations…this book is the ultimate
solution.”

—Javalobby.org, (second review, fall 2005)

“…from none others than the lead developer and the lead documenter, this
book is a great introduction and reference documentation to using Hibernate.
It is organized in such a way that the concepts are explained in progressive
order from very simple to more complex, and the authors take good care of
explaining every detail with good examples. …The book not only gets you up
to speed with Hibernate and its features (which the documentation does quite
well). It also introduces you to the right way of developing and tuning an indus-
trial-quality Hibernate application.”

—Slashdot.org

“Strongly recommended, because a contemporary and state-of-the-art topic is
very well explained, and especially, because the voices come literally from the
horses’ mouths.”

—C Vu, the Journal of the ACCU

“The ultimate guide to the Hibernate open source project. It provides in-depth
information on architecture of Hibernate, configuring Hibernate and develop-
ment using Hibernate…It also explains essential concepts like, object/rela-
tional mapping (ORM), persistence, caching, queries and describes how they
are taken care with respect to Hibernate…written by the creators of Hibernate
and they have made best effort to introduce and leverage Hibernate. I recom-
mend this book to everyone who is interested in getting familiar with
Hibernate.”

—JavaReference.com

“Well worth the cost…While the on-line documentation is good, (Mr. Bauer,
one of the authors is in charge of the on-line documentation) the book is bet-
ter. It begins with a description of what you are trying to do (often left out in
computer books) and leads you on in a consistent manner through the entire
Hibernate system. Excellent Book!”

—Books-on-Line

“A compact (408 pages), focused, no nonsense read and an essential resource
for anyone venturing into the ORM landscape. The first three chapters of this
book alone are indispensable for developers that want to quickly build an
application leveraging Hibernate, but more importantly really want to under-
stand Hibernate concepts, framework, methodology and the reasons that
shaped the framework design. The remaining chapters continue the compre-
hensive overview of Hibernate that include how to map to and persist objects,
inheritance, transactions, concurrency, caching, retrieving objects efficiently
using HQL, configuring Hibernate for managed and unmanaged environ-
ments, and the Hibernate Toolset that can be leveraged for several different
development scenarios.”

—Columbia Java Users Group

“The authors show their knowledge of relational databases and the paradigm
of mapping this world with the object-oriented world of Java. This is why the
book is so good at explaining Hibernate in the context of solving or providing
a solution to the very complex problem of object/relational mapping.”

—Denver JUG

Java Persistence
with Hibernate

REVISED EDITION OF
HIBERNATE IN ACTION

CHRISTIAN BAUER
AND GAVIN KING

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetters: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-88-5
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06

brief contents
PART 1 GETTING STARTED WITH HIBERNATE AND EJB 3.01

1 ■ Understanding object/relational persistence 3

2 ■ Starting a project 37

3 ■ Domain models and metadata 105

PART 2 MAPPING CONCEPTS AND STRATEGIES155

4 ■ Mapping persistent classes 157

5 ■ Inheritance and custom types 191

6 ■ Mapping collections and entity associations 240

7 ■ Advanced entity association mappings 277

8 ■ Legacy databases and custom SQL 322

PART 3 CONVERSATIONAL OBJECT PROCESSING381

9 ■ Working with objects 383

10 ■ Transactions and concurrency 433

11 ■ Implementing conversations 476

12 ■ Modifying objects efficiently 517
v

vi BRIEF CONTENTS
13 ■ Optimizing fetching and caching 559

14 ■ Querying with HQL and JPA QL 614

15 ■ Advanced query options 663

16 ■ Creating and testing layered applications 697

17 ■ Introducing JBoss Seam 747

appendix A SQL fundamentals 818

appendix B Mapping quick reference 822

contents
foreword to the revised edition xix
foreword to the first edition xxi
preface to the revised edition xxiii
preface to the first edition xxv
acknowledgments xxviii
about this book xxix
about the cover illustration xxxiii

PART 1 GETTING STARTED WITH HIBERNATE
AND EJB 3.0 ...1

1 Understanding object/relational persistence 3

1.1 What is persistence? 5
Relational databases 5 ■ Understanding SQL 6 ■ Using SQL
in Java 7 ■ Persistence in object-oriented applications 8

1.2 The paradigm mismatch 10
The problem of granularity 12 ■ The problem of subtypes 13
The problem of identity 14 ■ Problems relating to
associations 16 ■ The problem of data navigation 18
The cost of the mismatch 19
vii

viii CONTENTS
1.3 Persistence layers and alternatives 20
Layered architecture 20 ■ Hand-coding a persistence
layer with SQL/JDBC 22 ■ Using serialization 23
Object-oriented database systems 23 ■ Other options 24

1.4 Object/relational mapping 24
What is ORM? 25 ■ Generic ORM problems 27
Why ORM? 28 ■ Introducing Hibernate, EJB3,
and JPA 31

1.5 Summary 35

2 Starting a project 37

2.1 Starting a Hibernate project 38
Selecting a development process 39 ■ Setting up
the project 41 ■ Hibernate configuration and
startup 49 ■ Running and testing the application 60

2.2 Starting a Java Persistence project 68
Using Hibernate Annotations 68 ■ Using Hibernate
EntityManager 72 ■ Introducing EJB components 79
Switching to Hibernate interfaces 86

2.3 Reverse engineering a legacy database 88
Creating a database configuration 89 ■ Customizing
reverse engineering 90 ■ Generating Java source code 92

2.4 Integration with Java EE services 96
Integration with JTA 97 ■ JNDI-bound SessionFactory 101
JMX service deployment 103

2.5 Summary 104

3 Domain models and metadata 105

3.1 The CaveatEmptor application 106
Analyzing the business domain 107 ■ The CaveatEmptor
domain model 108

CONTENTS ix
3.2 Implementing the domain model 110
Addressing leakage of concerns 111 ■ Transparent and
automated persistence 112 ■ Writing POJOs and persistent
entity classes 113 ■ Implementing POJO associations 116
Adding logic to accessor methods 120

3.3 Object/relational mapping metadata 123
Metadata in XML 123 ■ Annotation-based metadata 125
Using XDoclet 131 ■ Handling global metadata 133
Manipulating metadata at runtime 138

3.4 Alternative entity representation 140
Creating dynamic applications 141 ■ Representing data
in XML 148

3.5 Summary 152

PART 2 MAPPING CONCEPTS AND STRATEGIES 155

4 Mapping persistent classes 157

4.1 Understanding entities and value types 158
Fine-grained domain models 158 ■ Defining the concept 159
Identifying entities and value types 160

4.2 Mapping entities with identity 161
Understanding Java identity and equality 162 ■ Handling
database identity 162 ■ Database primary keys 166

4.3 Class mapping options 171
Dynamic SQL generation 172 ■ Making an entity
immutable 173 ■ Naming entities for querying 173
Declaring a package name 174 ■ Quoting SQL identifiers 175
Implementing naming conventions 175

4.4 Fine-grained models and mappings 177
Mapping basic properties 177 ■ Mapping components 184

4.5 Summary 189

x CONTENTS
5 Inheritance and custom types 191

5.1 Mapping class inheritance 192
Table per concrete class with implicit polymorphism 192
Table per concrete class with unions 195 ■ Table per
class hierarchy 199 ■ Table per subclass 203
Mixing inheritance strategies 207 ■ Choosing a
strategy 210

5.2 The Hibernate type system 212
Recapitulating entity and value types 212
Built-in mapping types 214 ■ Using mapping
 types 219

5.3 Creating custom mapping types 220
Considering custom mapping types 221 ■ The
extension points 222 ■ The case for custom
mapping types 223 ■ Creating a UserType 224
Creating a CompositeUserType 228 ■ Parameterizing
custom types 230 ■ Mapping enumerations 233

5.4 Summary 239

6 Mapping collections and entity associations 240

6.1 Sets, bags, lists, and maps of value types 241
Selecting a collection interface 241 ■ Mapping a
 set 243 ■ Mapping an identifier bag 244
Mapping a list 246 ■ Mapping a map 247
Sorted and ordered collections 248

6.2 Collections of components 251
Writing the component class 252 ■ Mapping the
collection 252 ■ Enabling bidirectional navigation 253
Avoiding not-null columns 254

6.3 Mapping collections with annotations 256
Basic collection mapping 256 ■ Sorted and ordered
collections 257 ■ Mapping a collection of embedded objects 258

CONTENTS xi
6.4 Mapping a parent/children relationship 260
Multiplicity 261 ■ The simplest possible association 261
Making the association bidirectional 264 ■ Cascading object
state 267

6.5 Summary 275

7 Advanced entity association mappings 277

7.1 Single-valued entity associations 278
Shared primary key associations 279 ■ One-to-one foreign
key associations 282 ■ Mapping with a join table 285

7.2 Many-valued entity associations 290
One-to-many associations 290 ■ Many-to-many
associations 297 ■ Adding columns to join tables 303
Mapping maps 310

7.3 Polymorphic associations 313
Polymorphic many-to-one associations 313 ■ Polymorphic
collections 315 ■ Polymorphic associations to unions 316
Polymorphic table per concrete class 319

7.4 Summary 321

8 Legacy databases and custom SQL 322

8.1 Integrating legacy databases 323
Handling primary keys 324 ■ Arbitrary join conditions
with formulas 337 ■ Joining arbitrary tables 342 ■ Working
with triggers 346

8.2 Customizing SQL 350
Writing custom CRUD statements 351
Integrating stored procedures and functions 356

8.3 Improving schema DDL 364
Custom SQL names and datatypes 365 ■ Ensuring data
consistency 367 ■ Adding domains and column

xii CONTENTS
constraints 369 ■ Table-level constraints 370
Database constraints 373 ■ Creating indexes 375
Adding auxiliary DDL 376

8.4 Summary 378

PART 3 CONVERSATIONAL OBJECT PROCESSING 381

9 Working with objects 383

9.1 The persistence lifecycle 384
Object states 385 ■ The persistence context 388

9.2 Object identity and equality 391
Introducing conversations 391 ■ The scope of object
identity 393 ■ The identity of detached objects 394
Extending a persistence context 400

9.3 The Hibernate interfaces 401
Storing and loading objects 402 ■ Working with detached
objects 408 ■ Managing the persistence context 414

9.4 The Java Persistence API 417
Storing and loading objects 417 ■ Working with detached
entity instances 423

9.5 Using Java Persistence in EJB components 426
Injecting an EntityManager 426 ■ Looking up an
EntityManager 429 ■ Accessing an
EntityManagerFactory 429

9.6 Summary 431

10 Transactions and concurrency 433

10.1 Transaction essentials 434
Database and system transactions 435 ■ Transactions in
a Hibernate application 437 ■ Transactions with Java
Persistence 449

CONTENTS xiii
10.2 Controlling concurrent access 453
Understanding database-level concurrency 453 ■ Optimistic
concurrency control 458 ■ Obtaining additional isolation
guarantees 465

10.3 Nontransactional data access 469
Debunking autocommit myths 470 ■ Working
nontransactionally with Hibernate 471 ■ Optional
transactions with JTA 473

10.4 Summary 474

11 Implementing conversations 476

11.1 Propagating the Hibernate Session 477
The use case for Session propagation 478 ■ Propagation
through thread-local 480 ■ Propagation with
JTA 482 ■ Propagation with EJBs 483

11.2 Conversations with Hibernate 485
Providing conversational guarantees 485 ■ Conversations
with detached objects 486 ■ Extending a Session for a
conversation 489

11.3 Conversations with JPA 497
Persistence context propagation in Java SE 498
Merging detached objects in conversations 499
Extending the persistence context in Java SE 501

11.4 Conversations with EJB 3.0 506
Context propagation with EJBs 506
Extended persistence contexts with EJBs 510

11.5 Summary 515

12 Modifying objects efficiently 517

12.1 Transitive persistence 518
Persistence by reachability 519 ■ Applying cascading to
associations 520 ■ Working with transitive state 524
Transitive associations with JPA 531

xiv CONTENTS
12.2 Bulk and batch operations 532
Bulk statements with HQL and JPA QL 533 ■ Processing
with batches 537 ■ Using a stateless Session 539

12.3 Data filtering and interception 540
Dynamic data filters 541 ■ Intercepting Hibernate events 546
The core event system 553 ■ Entity listeners and callbacks 556

12.4 Summary 558

13 Optimizing fetching and caching 559

13.1 Defining the global fetch plan 560
The object-retrieval options 560 ■ The lazy default fetch
plan 564 ■ Understanding proxies 564 ■ Disabling proxy
generation 567 ■ Eager loading of associations and
collections 568 ■ Lazy loading with interception 571

13.2 Selecting a fetch strategy 573
Prefetching data in batches 574 ■ Prefetching collections with
subselects 577 ■ Eager fetching with joins 578 ■ Optimizing
fetching for secondary tables 581 ■ Optimization
guidelines 584

13.3 Caching fundamentals 592
Caching strategies and scopes 593 ■ The Hibernate cache
architecture 597

13.4 Caching in practice 602
Selecting a concurrency control strategy 602 ■ Understanding
cache regions 604 ■ Setting up a local cache provider 605
Setting up a replicated cache 606 ■ Controlling the second-level
cache 611

13.5 Summary 612

14 Querying with HQL and JPA QL 614

14.1 Creating and running queries 615
Preparing a query 616 ■ Executing a query 625
Using named queries 629

CONTENTS xv
14.2 Basic HQL and JPA QL queries 633
Selection 633 ■ Restriction 635 ■ Projection 641

14.3 Joins, reporting queries, and subselects 643
Joining relations and associations 643 ■ Reporting
queries 655 ■ Using subselects 659

14.4 Summary 662

15 Advanced query options 663

15.1 Querying with criteria and example 664
Basic criteria queries 665 ■ Joins and dynamic
fetching 670 ■ Projection and report queries 676
Query by example 680

15.2 Using native SQL queries 683
Automatic resultset handling 683 ■ Retrieving scalar
values 684 ■ Native SQL in Java Persistence 686

15.3 Filtering collections 688

15.4 Caching query results 691
Enabling the query result cache 691 ■ Understanding
the query cache 692 ■ When to use the query cache 693
Natural identifier cache lookups 693

15.5 Summary 695

16 Creating and testing layered applications 697

16.1 Hibernate in a web application 698
Introducing the use case 698 ■ Writing a controller 699
The Open Session in View pattern 701 ■ Designing smart
domain models 705

16.2 Creating a persistence layer 708
A generic data-access object pattern 709 ■ Implementing the
generic CRUD interface 711 ■ Implementing entity DAOs 713
Using data-access objects 715

xvi CONTENTS
16.3 Introducing the Command pattern 718
The basic interfaces 719 ■ Executing command objects 721
Variations of the Command pattern 723

16.4 Designing applications with EJB 3.0 725
Implementing a conversation with stateful beans 725 ■ Writing
DAOs with EJBs 727 ■ Utilizing dependency injection 728

16.5 Testing 730
Understanding different kinds of tests 731 ■ Introducing
TestNG 732 ■ Testing the persistence layer 736
Considering performance benchmarks 744

16.6 Summary 746

17 Introducing JBoss Seam 747

17.1 The Java EE 5.0 programming model 748
Considering JavaServer Faces 749 ■ Considering EJB 3.0 751
Writing a web application with JSF and EJB 3.0 752
Analyzing the application 762

17.2 Improving the application with Seam 765
Configuring Seam 766 ■ Binding pages to stateful Seam
components 767 ■ Analyzing the Seam application 773

17.3 Understanding contextual components 779
Writing the login page 779 ■ Creating the components 781
Aliasing contextual variables 784 ■ Completing the login/logout
feature 786

17.4 Validating user input 789
Introducing Hibernate Validator 790 ■ Creating the registration
page 791 ■ Internationalization with Seam 799

CONTENTS xvii
17.5 Simplifying persistence with Seam 803
Implementing a conversation 804 ■ Letting Seam manage the
persistence context 811

17.6 Summary 816

appendix A SQL fundamentals 818
appendix B Mapping quick reference 822

references 824
index 825

foreword to the revised edition
When Hibernate in Action was published two years ago, it was immediately recog-
nized not only as the definitive book on Hibernate, but also as the definitive work
on object/relational mapping.

 In the intervening time, the persistence landscape has changed with the
release of the Java Persistence API, the new standard for object/relational map-
ping for Java EE and Java SE which was developed under the Java Community Pro-
cess as part of the Enterprise JavaBeans 3.0 Specification.

 In developing the Java Persistence API, the EJB 3.0 Expert Group benefitted
heavily from the experience of the O/R mapping frameworks already in use in
the Java community. As one of the leaders among these, Hibernate has had a very
significant influence on the technical direction of Java Persistence. This was due
not only to the participation of Gavin King and other members of the Hibernate
team in the EJB 3.0 standardization effort, but was also due in large part to the
direct and pragmatic approach that Hibernate has taken towards O/R mapping
and to the simplicity, clarity, and power of its APIs--and their resulting appeal to
the Java community.

 In addition to their contributions to Java Persistence, the Hibernate develop-
ers also have taken major steps forward for Hibernate with the Hibernate 3
release described in this book. Among these are support for operations over large
datasets; additional and more sophisticated mapping options, especially for han-
dling legacy databases; data filters; strategies for managing conversations; and
xix

xx FOREWORD TO THE REVISED EDITION
integration with Seam, the new framework for web application development with
JSF and EJB 3.0.

 Java Persistence with Hibernate is therefore considerably more than simply a sec-
ond edition to Hibernate in Action. It provides a comprehensive overview of all the
capabilities of the Java Persistence API in addition to those of Hibernate 3, as well
as a detailed comparative analysis of the two. It describes how Hibernate has been
used to implement the Java Persistence standard, and how to leverage the Hiber-
nate extensions to Java Persistence.

 More important, throughout the presentation of Hibernate and Java Persis-
tence, Christian Bauer and Gavin King illustrate and explain the fundamental
principles and decisions that need to be taken into account in both the design
and use of an object/relational mapping framework. The insights they provide
into the underlying issues of ORM give the reader a deep understanding into the
effective application of ORM as an enterprise technology.

 Java Persistence with Hibernate thus reaches out to a wide range of developers—
from newcomers to object/relational mapping to experienced developers—seek-
ing to learn more about cutting-edge technological innovations in the Java com-
munity that have occurred and are continuing to emerge as a result of this work.

 LINDA DEMICHIEL

 Specification Lead
Enterprise JavaBeans 3.0 and Java Persistence

 Sun Microsystems

foreword to the first edition
Relational databases are indisputably at the core of the modern enterprise.

 While modern programming languages, including JavaTM, provide an intuitive,
object-oriented view of application-level business entities, the enterprise data
underlying these entities is heavily relational in nature. Further, the main strength
of the relational model—over earlier navigational models as well as over later
OODB models—is that by design it is intrinsically agnostic to the programmatic
manipulation and application-level view of the data that it serves up.

 Many attempts have been made to bridge relational and object-oriented tech-
nologies, or to replace one with the other, but the gap between the two is one of
the hard facts of enterprise computing today. It is this challenge—to provide a
bridge between relational data and JavaTM objects—that Hibernate takes on
through its object/relational mapping (ORM) approach. Hibernate meets this
challenge in a very pragmatic, direct, and realistic way.

 As Christian Bauer and Gavin King demonstrate in this book, the effective use
of ORM technology in all but the simplest of enterprise environments requires
understanding and configuring how the mediation between relational data and
objects is performed. This demands that the developer be aware and knowledge-
able both of the application and its data requirements, and of the SQL query lan-
guage, relational storage structures, and the potential for optimization that
relational technology offers.
xxi

xxii FOREWORD TO THE FIRST EDITION
 Not only does Hibernate provide a full-function solution that meets these
requirements head on, it is also a flexible and configurable architecture. Hiber-
nate’s developers designed it with modularity, pluggability, extensibility, and user
customization in mind. As a result, in the few years since its initial release,
Hibernate has rapidly become one of the leading ORM technologies for enter-
prise developers—and deservedly so.

 This book provides a comprehensive overview of Hibernate. It covers how to
use its type mapping capabilities and facilities for modeling associations and
inheritance; how to retrieve objects efficiently using the Hibernate query lan-
guage; how to configure Hibernate for use in both managed and unmanaged
environments; and how to use its tools. In addition, throughout the book the
authors provide insight into the underlying issues of ORM and into the design
choices behind Hibernate. These insights give the reader a deep understanding
of the effective use of ORM as an enterprise technology.

 Hibernate in Action is the definitive guide to using Hibernate and to object/rela-
tional mapping in enterprise computing today.

 LINDA DEMICHIEL

 Lead Architect, Enterprise JavaBeans
 Sun Microsystems

preface to the revised edition
The predecessor of this book, Hibernate in Action, started with a quote from
Anthony Berglas: “Just because it is possible to push twigs along the ground with
one’s nose does not necessarily mean that that is the best way to collect firewood.”
Since then, the Hibernate project and the strategies and concepts software devel-
opers rely on to manage information have evolved. However, the fundamental
issues are still the same—every company we work with every day still uses SQL data-
bases, and Java is entrenched in the industry as the first choice for enterprise
application development.

 The tabular representation of data in a relational system is still fundamentally
different than the networks of objects used in object-oriented Java applications.
We still see the object/relational impedance mismatch, and we frequently see that
the importance and cost of this mismatch is underestimated.

 On the other hand, we now have a range of tools and solutions available to
deal with this problem. We’re done collecting firewood, and the pocket lighter
has been replaced with a flame thrower.

 Hibernate is now available in its third major release; Hibernate 3.2 is the ver-
sion we describe in this book. Compared to older Hibernate versions, this new
major release has twice as many features—and this book is almost double the size
of Hibernate in Action. Most of these features are ones that you, the developers
working with Hibernate every day, have asked for. We’ve sometimes said that
Hibernate is a 90 percent solution for all the problems a Java application devel-
xxiii

xxiv PREFACE TO THE REVISED EDITION
oper has to deal with when creating a database application. With the latest Hiber-
nate version, this number is more likely 99 percent.

 As Hibernate matured and its user base and community kept growing, the Java
standards for data management and database application development were
found lacking by many developers. We even told you not to use EJB 2.x entity
beans in Hibernate in Action.

 Enter EJB 3.0 and the new Java Persistence standard. This new industry stan-
dard is a major step forward for the Java developer community. It defines a light-
weight and simplified programming model and powerful object/relational
persistence. Many of the key concepts of the new standard were modeled after
Hibernate and other successful object/relational persistence solutions. The latest
Hibernate version implements the Java Persistence standard.

 So, in addition to the new all-in-one Hibernate for every purpose, you can now
use Hibernate like any Java Persistence provider, with or without other EJB 3.0
components and Java EE 5.0 services. This deep integration of Hibernate with
such a rich programming model enables you to design and implement applica-
tion functionality that was difficult to create by hand before.

 We wrote this book to give you a complete and accurate guide to both Hiber-
nate and Java Persistence (and also all relevant EJB 3.0 concepts). We hope that
you’ll enjoy learning Hibernate and that you'll keep this reference bible on your
desk for your daily work.

preface to the first edition
Just because it is possible to push twigs along the ground with one’s nose does
not necessarily mean that that is the best way to collect firewood.

—Anthony Berglas

Today, many software developers work with Enterprise Information Systems (EIS).
This kind of application creates, manages, and stores structured information and
shares this information between many users in multiple physical locations.

 The storage of EIS data involves massive usage of SQL-based database manage-
ment systems. Every company we’ve met during our careers uses at least one SQL
database; most are completely dependent on relational database technology at
the core of their business.

 In the past five years, broad adoption of the Java programming language has
brought about the ascendancy of the object-oriented paradigm for software devel-
opment. Developers are now sold on the benefits of object orientation. However,
the vast majority of businesses are also tied to long-term investments in expensive
relational database systems. Not only are particular vendor products entrenched,
but existing legacy data must be made available to (and via) the shiny new object-
oriented web applications.

 However, the tabular representation of data in a relational system is fundamen-
tally different than the networks of objects used in object-oriented Java applica-
tions. This difference has led to the so-called object/relational paradigm mismatch.
xxv

xxvi PREFACE TO THE FIRST EDITION
Traditionally, the importance and cost of this mismatch have been underesti-
mated, and tools for solving the mismatch have been insufficient. Meanwhile, Java
developers blame relational technology for the mismatch; data professionals
blame object technology.

 Object/relational mapping (ORM) is the name given to automated solutions to the
mismatch problem. For developers weary of tedious data access code, the good
news is that ORM has come of age. Applications built with ORM middleware can be
expected to be cheaper, more performant, less vendor-specific, and more able to
cope with changes to the internal object or underlying SQL schema. The astonish-
ing thing is that these benefits are now available to Java developers for free.

 Gavin King began developing Hibernate in late 2001 when he found that the
popular persistence solution at the time—CMP Entity Beans—didn’t scale to non-
trivial applications with complex data models. Hibernate began life as an inde-
pendent, noncommercial open source project.

 The Hibernate team (including the authors) has learned ORM the hard way—
that is, by listening to user requests and implementing what was needed to satisfy
those requests. The result, Hibernate, is a practical solution, emphasizing devel-
oper productivity and technical leadership. Hibernate has been used by tens of
thousands of users and in many thousands of production applications.

 When the demands on their time became overwhelming, the Hibernate team
concluded that the future success of the project (and Gavin’s continued sanity)
demanded professional developers dedicated full-time to Hibernate. Hibernate
joined jboss.org in late 2003 and now has a commercial aspect; you can purchase
commercial support and training from JBoss Inc. But commercial training
shouldn’t be the only way to learn about Hibernate.

 It’s obvious that many, perhaps even most, Java projects benefit from the use of
an ORM solution like Hibernate—although this wasn’t obvious a couple of years
ago! As ORM technology becomes increasingly mainstream, product documenta-
tion such as Hibernate’s free user manual is no longer sufficient. We realized that
the Hibernate community and new Hibernate users needed a full-length book,
not only to learn about developing software with Hibernate, but also to under-
stand and appreciate the object/relational mismatch and the motivations behind
Hibernate’s design.

PREFACE TO THE FIRST EDITION xxvii
 The book you’re holding was an enormous effort that occupied most of our
spare time for more than a year. It was also the source of many heated disputes
and learning experiences. We hope this book is an excellent guide to Hibernate
(or, “the Hibernate bible,” as one of our reviewers put it) and also the first com-
prehensive documentation of the object/relational mismatch and ORM in gen-
eral. We hope you find it helpful and enjoy working with Hibernate.

acknowledgments
This book grew from a small second edition of Hibernate in Action into a volume of
considerable size. We couldn’t have created it without the help of many people.

 Emmanuel Bernard did an excellent job as the technical reviewer of this book;
thank you for the many hours you spent editing our broken code examples. We’d
also like to thank our other reviewers: Patrick Dennis, Jon Skeet, Awais Bajwa,
Dan Dobrin, Deiveehan Nallazhagappan, Ryan Daigle, Stuart Caborn, Patrick
Peak, TVS Murthy, Bill Fly, David Walend, Dave Dribin, Anjan Bacchu, Gary
Udstrand, and Srinivas Nallapati. Special thanks to Linda DiMichiel for agreeing
to write the foreword to our book, as she did to the first edition

 Marjan Bace again assembled a great production team at Manning: Sydney
Jones edited our crude manuscript and turned it into a real book. Tiffany Taylor,
Elizabeth Martin, and Andy Carroll found all our typos and made the book read-
able. Dottie Marsico was responsible for typesetting and gave this book its great
look. Mary Piergies coordinated and organized the production process. We’d like
to thank you all for working with us.
xxviii

about this book
We had three goals when writing this book, so you can read it as

■ A tutorial for Hibernate, Java Persistence, and EJB 3.0 that guides you
through your first steps with these solutions

■ A guide for learning all basic and advanced Hibernate features for object/
relational mapping, object processing, querying, performance optimiza-
tion, and application design

■ A reference for whenever you need a complete and technically accurate def-
inition of Hibernate and Java Persistence functionality

Usually, books are either tutorials or reference guides, so this stretch comes at a
price. If you’re new to Hibernate, we suggest that you start reading the book from
the start, with the tutorials in chapters 1 and 2. If you have used an older version
of Hibernate, you should read the first two chapters quickly to get an overview
and then jump into the middle with chapter 3.

 We will, whenever appropriate, tell you if a particular section or subject is
optional or reference material that you can safely skip during your first read.

Roadmap
This book is divided into three major parts.

 In part 1, we introduce the object/relational paradigm mismatch and explain
the fundamentals behind object/relational mapping. We walk through a hands-
xxix

xxx ABOUT THIS BOOK
on tutorial to get you started with your first Hibernate, Java Persistence, or EJB 3.0
project. We look at Java application design for domain models and at the options
for creating object/relational mapping metadata.

 Mapping Java classes and properties to SQL tables and columns is the focus of
part 2. We explore all basic and advanced mapping options in Hibernate and Java
Persistence, with XML mapping files and Java annotations. We show you how to
deal with inheritance, collections, and complex class associations. Finally, we dis-
cuss integration with legacy database schemas and some mapping strategies that
are especially tricky.

 Part 3 is all about the processing of objects and how you can load and store
data with Hibernate and Java Persistence. We introduce the programming inter-
faces, how to write transactional and conversation-aware applications, and how to
write queries. Later, we focus on the correct design and implementation of lay-
ered Java applications. We discuss the most common design patterns that are used
with Hibernate, such as the Data Access Object (DAO) and EJB Command pat-
terns. You’ll see how you can test your Hibernate application easily and what other
best practices are relevant if you work an object/relational mapping software.

 Finally, we introduce the JBoss Seam framework, which takes many Hibernate
concepts to the next level and enables you to create conversational web applica-
tions with ease. We promise you’ll find this chapter interesting, even if you don’t
plan to use Seam.

Who should read this book?
Readers of this book should have basic knowledge of object-oriented software
development and should have used this knowledge in practice. To understand the
application examples, you should be familiar with the Java programming lan-
guage and the Unified Modeling Language.

 Our primary target audience consists of Java developers who work with SQL-
based database systems. We’ll show you how to substantially increase your produc-
tivity by leveraging ORM.

 If you’re a database developer, the book can be part of your introduction to
object-oriented software development.

 If you’re a database administrator, you’ll be interested in how ORM affects per-
formance and how you can tune the performance of the SQL database-manage-
ment system and persistence layer to achieve performance targets. Because data

ABOUT THIS BOOK xxxi
access is the bottleneck in most Java applications, this book pays close attention to
performance issues. Many DBAs are understandably nervous about entrusting per-
formance to tool-generated SQL code; we seek to allay those fears and also to
highlight cases where applications shouldn’t use tool-managed data access. You
may be relieved to discover that we don’t claim that ORM is the best solution to
every problem.

Code conventions
This book provides copious examples, which include all the Hibernate applica-
tion artifacts: Java code, Hibernate configuration files, and XML mapping meta-
data files. Source code in listings or in text is in a fixed-width font like this to
separate it from ordinary text. Additionally, Java method names, component
parameters, object properties, and XML elements and attributes in text are also
presented using fixed-width font.

 Java, HTML, and XML can all be verbose. In many cases, the original source
code (available online) has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In
rare cases, even this was not enough, and listings include line-continuation mark-
ers. Additionally, comments in the source code have often been removed from
the listings when the code is described in the text.

 Code annotations accompany some of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

Source code downloads
Hibernate is an open source project released under the Lesser GNU Public
License. Directions for downloading Hibernate packages, in source or binary
form, are available from the Hibernate web site: www.hibernate.org/.

 The source code for all Hello World and CaveatEmptor examples in this book
is available from http://caveatemptor.hibernate.org/ under a free (BSD-like)
license. The CaveatEmptor example application code is available on this web site
in different flavors—for example, with a focus on native Hibernate, on Java Persis-
tence, and on JBoss Seam. You can also download the code for the examples in
this book from the publisher’s website, www.manning.com/bauer2.

xxxii ABOUT THIS BOOK
About the authors
Christian Bauer is a member of the Hibernate developer team. He works as a
trainer, consultant, and product manager for Hibernate, EJB 3.0, and JBoss Seam
at JBoss, a division of Red Hat. With Gavin King, Christian wrote Hibernate in
Action.

 Gavin King is the founder of the Hibernate and JBoss Seam projects, and a
member of the EJB 3.0 (JSR 220) expert group. He also leads the Web Beans JSR
299, a standardization effort involving Hibernate concepts, JBoss Seam, JSF, and
EJB 3.0. Gavin works as a lead developer at JBoss, a division of Red Hat.

Author Online
Your purchase of Java Persistence with Hibernate includes free access to a private web
forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the authors and from other
users. To access the forum and subscribe to it, point your web browser to
www.manning.com/bauer2. This page provides information on how to get onto the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue among individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the AO remains voluntary (and unpaid).
We suggest you try asking the authors some challenging questions, lest their inter-
est stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the cover illustration
The illustration on the cover of Java Persistence with Hibernate is taken from a col-
lection of costumes of the Ottoman Empire published on January 1, 1802, by Wil-
liam Miller of Old Bond Street, London. The title page is missing from the
collection and we have been unable to track it down to date. The book’s table of
contents identifies the figures in both English and French, and each illustration
bears the names of two artists who worked on it, both of whom would no doubt be
surprised to find their art gracing the front cover of a computer programming
book…two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to
be nothing more than an old-fashioned verbal agreement sealed with a hand-
shake. The seller simply proposed that the money be transferred to him by wire
and the editor walked out with the bank information on a piece of paper and the
portfolio of images under his arm. Needless to say, we transferred the funds the
next day, and we remain grateful and impressed by this unknown person’s trust in
one of us. It recalls something that might have happened a long time ago.
xxxiii

xxxiv ABOUT THE COVER ILLUSTRATION
 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period—and
of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Getting started with
Hibernate and EJB 3.0

In part 1, we show you why object persistence is such a complex topic and what
solutions you can apply in practice. Chapter 1 introduces the object/relational
paradigm mismatch and several strategies to deal with it, foremost object/rela-
tional mapping (ORM). In chapter 2, we guide you step by step through a tutorial
with Hibernate, Java Persistence, and EJB 3.0—you’ll implement and test a “Hello
World” example in all variations. Thus prepared, in chapter 3 you’re ready to
learn how to design and implement complex business domain models in Java, and
which mapping metadata options you have available.

 After reading this part of the book, you’ll understand why you need object/
relational mapping, and how Hibernate, Java Persistence, and EJB 3.0 work in
practice. You’ll have written your first small project, and you’ll be ready to take on
more complex problems. You’ll also understand how real-world business entities
can be implemented as a Java domain model, and in what format you prefer to
work with object/relational mapping metadata.

Understanding
object/relational

persistence
This chapter covers
■ Object persistence with SQL databases
■ The object/relational paradigm mismatch
■ Persistence layers in object-oriented

applications
■ Object/relational mapping background
3

4 CHAPTER 1

Understanding object/relational persistence
The approach to managing persistent data has been a key design decision in
every software project we’ve worked on. Given that persistent data isn’t a new or
unusual requirement for Java applications, you’d expect to be able to make a
simple choice among similar, well-established persistence solutions. Think of
web application frameworks (Struts versus WebWork), GUI component frame-
works (Swing versus SWT), or template engines (JSP versus Velocity). Each of the
competing solutions has various advantages and disadvantages, but they all share
the same scope and overall approach. Unfortunately, this isn’t yet the case with
persistence technologies, where we see some wildly differing solutions to the
same problem.

 For several years, persistence has been a hot topic of debate in the Java commu-
nity. Many developers don’t even agree on the scope of the problem. Is persistence
a problem that is already solved by relational technology and extensions such as
stored procedures, or is it a more pervasive problem that must be addressed by spe-
cial Java component models, such as EJB entity beans? Should we hand-code even
the most primitive CRUD (create, read, update, delete) operations in SQL and
JDBC, or should this work be automated? How do we achieve portability if every
database management system has its own SQL dialect? Should we abandon SQL
completely and adopt a different database technology, such as object database sys-
tems? Debate continues, but a solution called object/relational mapping (ORM) now
has wide acceptance. Hibernate is an open source ORM service implementation.

 Hibernate is an ambitious project that aims to be a complete solution to the
problem of managing persistent data in Java. It mediates the application’s interac-
tion with a relational database, leaving the developer free to concentrate on the
business problem at hand. Hibernate is a nonintrusive solution. You aren’t
required to follow many Hibernate-specific rules and design patterns when writing
your business logic and persistent classes; thus, Hibernate integrates smoothly with
most new and existing applications and doesn’t require disruptive changes to the
rest of the application.

 This book is about Hibernate. We’ll cover basic and advanced features and
describe some ways to develop new applications using Hibernate. Often, these
recommendations won’t even be specific to Hibernate. Sometimes they will be
our ideas about the best ways to do things when working with persistent data,
explained in the context of Hibernate. This book is also about Java Persistence, a
new standard for persistence that is part of the also updated EJB 3.0 specification.
Hibernate implements Java Persistence and supports all the standardized map-
pings, queries, and APIs. Before we can get started with Hibernate, however, you
need to understand the core problems of object persistence and object/relational

What is persistence? 5
mapping. This chapter explains why tools like Hibernate and specifications such
as Java Persistence and EJB 3.0 are needed.

 First, we define persistent data management in the context of object-oriented
applications and discuss the relationship of SQL, JDBC, and Java, the underlying
technologies and standards that Hibernate is built on. We then discuss the so-
called object/relational paradigm mismatch and the generic problems we encounter
in object-oriented software development with relational databases. These prob-
lems make it clear that we need tools and patterns to minimize the time we have
to spend on the persistence-related code of our applications. After we look at
alternative tools and persistence mechanisms, you’ll see that ORM is the best avail-
able solution for many scenarios. Our discussion of the advantages and drawbacks
of ORM will give you the full background to make the best decision when picking
a persistence solution for your own project.

 We also take a look at the various Hibernate software modules, and how you
can combine them to either work with Hibernate only, or with Java Persistence
and EJB 3.0-compliant features.

 The best way to learn Hibernate isn’t necessarily linear. We understand that
you may want to try Hibernate right away. If this is how you’d like to proceed, skip
to the second chapter of this book and have a look at the “Hello World” example
and set up a project. We recommend that you return here at some point as you
circle through the book. That way, you’ll be prepared and have all the back-
ground concepts you need for the rest of the material.

1.1 What is persistence?

Almost all applications require persistent data. Persistence is one of the funda-
mental concepts in application development. If an information system didn’t
preserve data when it was powered off, the system would be of little practical use.
When we talk about persistence in Java, we’re normally talking about storing
data in a relational database using SQL. We’ll start by taking a brief look at the
technology and how we use it with Java. Armed with that information, we’ll then
continue our discussion of persistence and how it’s implemented in object-ori-
ented applications.

1.1.1 Relational databases

You, like most other developers, have probably worked with a relational database.
Most of us use a relational database every day. Relational technology is a known
quantity, and this alone is sufficient reason for many organizations to choose it.

6 CHAPTER 1

Understanding object/relational persistence
But to say only this is to pay less respect than is due. Relational databases are
entrenched because they’re an incredibly flexible and robust approach to data
management. Due to the complete and consistent theoretical foundation of the
relational data model, relational databases can effectively guarantee and protect
the integrity of the data, among other desirable characteristics. Some people
would even say that the last big invention in computing has been the relational
concept for data management as first introduced by E.F. Codd (Codd, 1970)
more than three decades ago.

 Relational database management systems aren’t specific to Java, nor is a rela-
tional database specific to a particular application. This important principle is
known as data independence. In other words, and we can’t stress this important fact
enough, data lives longer than any application does. Relational technology provides a
way of sharing data among different applications, or among different technolo-
gies that form parts of the same application (the transactional engine and the
reporting engine, for example). Relational technology is a common denominator
of many disparate systems and technology platforms. Hence, the relational data
model is often the common enterprise-wide representation of business entities.

 Relational database management systems have SQL-based application program-
ming interfaces; hence, we call today’s relational database products SQL database
management systems or, when we’re talking about particular systems, SQL databases.

 Before we go into more detail about the practical aspects of SQL databases, we
have to mention an important issue: Although marketed as relational, a database
system providing only an SQL data language interface isn’t really relational and in
many ways isn’t even close to the original concept. Naturally, this has led to confu-
sion. SQL practitioners blame the relational data model for shortcomings in the
SQL language, and relational data management experts blame the SQL standard
for being a weak implementation of the relational model and ideals. Application
developers are stuck somewhere in the middle, with the burden to deliver some-
thing that works. We’ll highlight some important and significant aspects of this
issue throughout the book, but generally we’ll focus on the practical aspects. If
you’re interested in more background material, we highly recommend Practical
Issues in Database Management: A Reference for the Thinking Practitioner by Fabian Pas-
cal (Pascal, 2000).

1.1.2 Understanding SQL

To use Hibernate effectively, a solid understanding of the relational model and
SQL is a prerequisite. You need to understand the relational model and topics
such as normalization to guarantee the integrity of your data, and you’ll need to

What is persistence? 7
use your knowledge of SQL to tune the performance of your Hibernate applica-
tion. Hibernate automates many repetitive coding tasks, but your knowledge of
persistence technology must extend beyond Hibernate itself if you want to take
advantage of the full power of modern SQL databases. Remember that the under-
lying goal is robust, efficient management of persistent data.

 Let’s review some of the SQL terms used in this book. You use SQL as a data def-
inition language (DDL) to create a database schema with CREATE and ALTER state-
ments. After creating tables (and indexes, sequences, and so on), you use SQL as a
data manipulation language (DML) to manipulate and retrieve data. The manipula-
tion operations include insertions, updates, and deletions. You retrieve data by exe-
cuting queries with restrictions, projections, and join operations (including the
Cartesian product). For efficient reporting, you use SQL to group, order, and aggregate
data as necessary. You can even nest SQL statements inside each other; this tech-
nique uses subselects.

 You’ve probably used SQL for many years and are familiar with the basic opera-
tions and statements written in this language. Still, we know from our own experi-
ence that SQL is sometimes hard to remember, and some terms vary in usage. To
understand this book, we must use the same terms and concepts, so we advise you
to read appendix A if any of the terms we’ve mentioned are new or unclear.

 If you need more details, especially about any performance aspects and how
SQL is executed, get a copy of the excellent book SQL Tuning by Dan Tow (Tow,
2003). Also read An Introduction to Database Systems by Chris Date (Date, 2003) for
the theory, concepts, and ideals of (relational) database systems. The latter book
is an excellent reference (it’s big) for all questions you may possibly have about
databases and data management.

 Although the relational database is one part of ORM, the other part, of course,
consists of the objects in your Java application that need to be persisted to and
loaded from the database using SQL.

1.1.3 Using SQL in Java

When you work with an SQL database in a Java application, the Java code issues
SQL statements to the database via the Java Database Connectivity (JDBC) API.
Whether the SQL was written by hand and embedded in the Java code, or gener-
ated on the fly by Java code, you use the JDBC API to bind arguments to prepare
query parameters, execute the query, scroll through the query result table,
retrieve values from the result set, and so on. These are low-level data access tasks;
as application developers, we’re more interested in the business problem that
requires this data access. What we’d really like to write is code that saves and

8 CHAPTER 1

Understanding object/relational persistence
retrieves objects—the instances of our classes—to and from the database, reliev-
ing us of this low-level drudgery.

 Because the data access tasks are often so tedious, we have to ask: Are the rela-
tional data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question immediately: Yes! There are many
reasons why SQL databases dominate the computing industry—relational data-
base management systems are the only proven data management technology, and
they’re almost always a requirement in any Java project.

 However, for the last 15 years, developers have spoken of a paradigm mismatch.
This mismatch explains why so much effort is expended on persistence-related
concerns in every enterprise project. The paradigms referred to are object model-
ing and relational modeling, or perhaps object-oriented programming and SQL.

 Let’s begin our exploration of the mismatch problem by asking what persistence
means in the context of object-oriented application development. First we’ll
widen the simplistic definition of persistence stated at the beginning of this sec-
tion to a broader, more mature understanding of what is involved in maintaining
and using persistent data.

1.1.4 Persistence in object-oriented applications

In an object-oriented application, persistence allows an object to outlive the pro-
cess that created it. The state of the object can be stored to disk, and an object
with the same state can be re-created at some point in the future.

 This isn’t limited to single objects—entire networks of interconnected objects
can be made persistent and later re-created in a new process. Most objects aren’t
persistent; a transient object has a limited lifetime that is bounded by the life of
the process that instantiated it. Almost all Java applications contain a mix of per-
sistent and transient objects; hence, we need a subsystem that manages our per-
sistent data.

 Modern relational databases provide a structured representation of persistent
data, enabling the manipulating, sorting, searching, and aggregating of data.
Database management systems are responsible for managing concurrency and
data integrity; they’re responsible for sharing data between multiple users and
multiple applications. They guarantee the integrity of the data through integrity
rules that have been implemented with constraints. A database management sys-
tem provides data-level security. When we discuss persistence in this book, we’re
thinking of all these things:

What is persistence? 9
■ Storage, organization, and retrieval of structured data

■ Concurrency and data integrity

■ Data sharing

And, in particular, we’re thinking of these problems in the context of an object-
oriented application that uses a domain model.

 An application with a domain model doesn’t work directly with the tabular rep-
resentation of the business entities; the application has its own object-oriented
model of the business entities. If the database of an online auction system has ITEM
and BID tables, for example, the Java application defines Item and Bid classes.

 Then, instead of directly working with the rows and columns of an SQL result
set, the business logic interacts with this object-oriented domain model and its
runtime realization as a network of interconnected objects. Each instance of a Bid
has a reference to an auction Item, and each Item may have a collection of refer-
ences to Bid instances. The business logic isn’t executed in the database (as an
SQL stored procedure); it’s implemented in Java in the application tier. This
allows business logic to make use of sophisticated object-oriented concepts such as
inheritance and polymorphism. For example, we could use well-known design
patterns such as Strategy, Mediator, and Composite (Gamma and others, 1995), all of
which depend on polymorphic method calls.

 Now a caveat: Not all Java applications are designed this way, nor should they
be. Simple applications may be much better off without a domain model. Com-
plex applications may have to reuse existing stored procedures. SQL and the JDBC
API are perfectly serviceable for dealing with pure tabular data, and the JDBC
RowSet makes CRUD operations even easier. Working with a tabular representation
of persistent data is straightforward and well understood.

 However, in the case of applications with nontrivial business logic, the domain
model approach helps to improve code reuse and maintainability significantly. In
practice, both strategies are common and needed. Many applications need to exe-
cute procedures that modify large sets of data, close to the data. At the same time,
other application modules could benefit from an object-oriented domain model
that executes regular online transaction processing logic in the application tier.
An efficient way to bring persistent data closer to the application code is required.

 If we consider SQL and relational databases again, we finally observe the mis-
match between the two paradigms. SQL operations such as projection and join
always result in a tabular representation of the resulting data. (This is known as

10 CHAPTER 1

Understanding object/relational persistence
transitive closure; the result of an operation on relations is always a relation.) This is
quite different from the network of interconnected objects used to execute the
business logic in a Java application. These are fundamentally different models,
not just different ways of visualizing the same model.

 With this realization, you can begin to see the problems—some well understood
and some less well understood—that must be solved by an application that com-
bines both data representations: an object-oriented domain model and a persistent
relational model. Let’s take a closer look at this so-called paradigm mismatch.

1.2 The paradigm mismatch

The object/relational paradigm mismatch can be broken into several parts, which
we’ll examine one at a time. Let’s start our exploration with a simple example that
is problem free. As we build on it, you’ll begin to see the mismatch appear.

 Suppose you have to design and implement an online e-commerce applica-
tion. In this application, you need a class to represent information about a user of
the system, and another class to represent information about the user’s billing
details, as shown in figure 1.1.

 In this diagram, you can see that a User has many BillingDetails. You can
navigate the relationship between the classes in both directions. The classes repre-
senting these entities may be extremely simple:

public class User {
 private String username;
 private String name;
 private String address;
 private Set billingDetails;

 // Accessor methods (getter/setter), business methods, etc.
 ...
}
public class BillingDetails {
 private String accountNumber;
 private String accountName;
 private String accountType;
 private User user;

 // Accessor methods (getter/setter), business methods, etc.
 ...
}

Figure 1.1
A simple UML class diagram of the
User and BillingDetails entities

The paradigm mismatch 11
Note that we’re only interested in the state of the entities with regard to persis-
tence, so we’ve omitted the implementation of property accessors and business
methods (such as getUsername() or billAuction()).

 It’s easy to come up with a good SQL schema design for this case:

create table USERS (
 USERNAME varchar(15) not null primary key,
 NAME varchar(50) not null,
 ADDRESS varchar(100)
)
create table BILLING_DETAILS (
 ACCOUNT_NUMBER varchar(10) not null primary key,
 ACCOUNT_NAME varchar(50) not null,
 ACCOUNT_TYPE varchar(2) not null,
 USERNAME varchar(15) foreign key references user
)

The relationship between the two entities is represented as the foreign key,
USERNAME, in BILLING_DETAILS. For this simple domain model, the object/rela-
tional mismatch is barely in evidence; it’s straightforward to write JDBC code to
insert, update, and delete information about users and billing details.

 Now, let’s see what happens when we consider something a little more realistic.
The paradigm mismatch will be visible when we add more entities and entity rela-
tionships to our application.

 The most glaringly obvious problem with our current implementation is that
we’ve designed an address as a simple String value. In most systems, it’s neces-
sary to store street, city, state, country, and ZIP code information separately. Of
course, we could add these properties directly to the User class, but because it’s
highly likely that other classes in the system will also carry address information, it
makes more sense to create a separate Address class. The updated model is
shown in figure 1.2.

 Should we also add an ADDRESS table? Not necessarily. It’s common to keep
address information in the USERS table, in individual columns. This design is
likely to perform better, because a table join isn’t needed if you want to retrieve
the user and address in a single query. The nicest solution may even be to create a
user-defined SQL datatype to represent addresses, and to use a single column of
that new type in the USERS table instead of several new columns.

 Basically, we have the choice of adding either several columns or a single col-
umn (of a new SQL datatype). This is clearly a problem of granularity.

Figure 1.2
The User has an Address

12 CHAPTER 1

Understanding object/relational persistence
1.2.1 The problem of granularity

Granularity refers to the relative size of the types you’re working with.
 Let’s return to our example. Adding a new datatype to our database catalog,

to store Address Java instances in a single column, sounds like the best
approach. A new Address type (class) in Java and a new ADDRESS SQL datatype
should guarantee interoperability. However, you’ll find various problems if you
check the support for user-defined datatypes (UDT) in today’s SQL database
management systems.

 UDT support is one of a number of so-called object-relational extensions to tradi-
tional SQL. This term alone is confusing, because it means that the database man-
agement system has (or is supposed to support) a sophisticated datatype system—
something you take for granted if somebody sells you a system that can handle
data in a relational fashion. Unfortunately, UDT support is a somewhat obscure
feature of most SQL database management systems and certainly isn’t portable
between different systems. Furthermore, the SQL standard supports user-defined
datatypes, but poorly.

 This limitation isn’t the fault of the relational data model. You can consider
the failure to standardize such an important piece of functionality as fallout from
the object-relational database wars between vendors in the mid-1990s. Today, most
developers accept that SQL products have limited type systems—no questions
asked. However, even with a sophisticated UDT system in our SQL database man-
agement system, we would likely still duplicate the type declarations, writing the
new type in Java and again in SQL. Attempts to find a solution for the Java space,
such as SQLJ, unfortunately, have not had much success.

 For these and whatever other reasons, use of UDTs or Java types inside an SQL
database isn’t common practice in the industry at this time, and it’s unlikely that
you’ll encounter a legacy schema that makes extensive use of UDTs. We therefore
can’t and won’t store instances of our new Address class in a single new column
that has the same datatype as the Java layer.

 Our pragmatic solution for this problem has several columns of built-in ven-
dor-defined SQL types (such as boolean, numeric, and string datatypes). The
USERS table is usually defined as follows:

create table USERS (
 USERNAME varchar(15) not null primary key,
 NAME varchar(50) not null,
 ADDRESS_STREET varchar(50),
 ADDRESS_CITY varchar(15),
 ADDRESS_STATE varchar(15),

The paradigm mismatch 13
 ADDRESS_ZIPCODE varchar(5),
 ADDRESS_COUNTRY varchar(15)
)

Classes in our domain model come in a range of different levels of granularity—
from coarse-grained entity classes like User, to finer-grained classes like Address,
down to simple String-valued properties such as zipcode. In contrast, just two
levels of granularity are visible at the level of the SQL database: tables such as
USERS, and columns such as ADDRESS_ZIPCODE.

 Many simple persistence mechanisms fail to recognize this mismatch and so
end up forcing the less flexible SQL representation upon the object model. We’ve
seen countless User classes with properties named zipcode!

 It turns out that the granularity problem isn’t especially difficult to solve. We
probably wouldn’t even discuss it, were it not for the fact that it’s visible in so
many existing systems. We describe the solution to this problem in chapter 4, sec-
tion 4.4, “Fine-grained models and mappings.”

 A much more difficult and interesting problem arises when we consider
domain models that rely on inheritance, a feature of object-oriented design we may
use to bill the users of our e-commerce application in new and interesting ways.

1.2.2 The problem of subtypes

In Java, you implement type inheritance using superclasses and subclasses. To
illustrate why this can present a mismatch problem, let’s add to our e-commerce
application so that we now can accept not only bank account billing, but also
credit and debit cards. The most natural way to reflect this change in the model is
to use inheritance for the BillingDetails class.

 We may have an abstract BillingDetails superclass, along with several con-
crete subclasses: CreditCard, BankAccount, and so on. Each of these subclasses
defines slightly different data (and completely different functionality that acts on
that data). The UML class diagram in figure 1.3 illustrates this model.

 SQL should probably include standard support for supertables and subtables.
This would effectively allow us to create a table that inherits certain columns from

Figure 1.3
Using inheritance for different billing strategies

14 CHAPTER 1

Understanding object/relational persistence
its parent. However, such a feature would be questionable, because it would intro-
duce a new notion: virtual columns in base tables. Traditionally, we expect virtual
columns only in virtual tables, which are called views. Furthermore, on a theoreti-
cal level, the inheritance we applied in Java is type inheritance. A table isn’t a type,
so the notion of supertables and subtables is questionable. In any case, we can
take the short route here and observe that SQL database products don’t generally
implement type or table inheritance, and if they do implement it, they don’t fol-
low a standard syntax and usually expose you to data integrity problems (limited
integrity rules for updatable views).

 In chapter 5, section 5.1, “Mapping class inheritance,” we discuss how ORM
solutions such as Hibernate solve the problem of persisting a class hierarchy to a
database table or tables. This problem is now well understood in the community,
and most solutions support approximately the same functionality.

 But we aren’t finished with inheritance. As soon as we introduce inheritance
into the model, we have the possibility of polymorphism.

 The User class has an association to the BillingDetails superclass. This is a
polymorphic association. At runtime, a User object may reference an instance of any
of the subclasses of BillingDetails. Similarly, we want to be able to write polymor-
phic queries that refer to the BillingDetails class, and have the query return
instances of its subclasses.

 SQL databases also lack an obvious way (or at least a standardized way) to rep-
resent a polymorphic association. A foreign key constraint refers to exactly one tar-
get table; it isn’t straightforward to define a foreign key that refers to multiple tables.
We’d have to write a procedural constraint to enforce this kind of integrity rule.

 The result of this mismatch of subtypes is that the inheritance structure in your
model must be persisted in an SQL database that doesn’t offer an inheritance
strategy. Fortunately, three of the inheritance mapping solutions we show in chap-
ter 5 are designed to accommodate the representation of polymorphic associa-
tions and the efficient execution of polymorphic queries.

 The next aspect of the object/relational mismatch problem is the issue of object
identity. You probably noticed that we defined USERNAME as the primary key of our
USERS table. Was that a good choice? How do we handle identical objects in Java?

1.2.3 The problem of identity

Although the problem of object identity may not be obvious at first, we’ll encoun-
ter it often in our growing and expanding e-commerce system, such as when we
need to check whether two objects are identical. There are three ways to tackle

The paradigm mismatch 15
this problem: two in the Java world and one in our SQL database. As expected,
they work together only with some help.

 Java objects define two different notions of sameness:

■ Object identity (roughly equivalent to memory location, checked with
a==b)

■ Equality as determined by the implementation of the equals() method
(also called equality by value)

On the other hand, the identity of a database row is expressed as the primary key
value. As you’ll see in chapter 9, section 9.2, “Object identity and equality,” nei-
ther equals() nor == is naturally equivalent to the primary key value. It’s com-
mon for several nonidentical objects to simultaneously represent the same row of
the database, for example, in concurrently running application threads. Further-
more, some subtle difficulties are involved in implementing equals() correctly
for a persistent class.

 Let’s discuss another problem related to database identity with an example. In
our table definition for USERS, we used USERNAME as a primary key. Unfortunately,
this decision makes it difficult to change a username; we need to update not only
the USERNAME column in USERS, but also the foreign key column in BILLING_
DETAILS. To solve this problem, later in the book we’ll recommend that you use
surrogate keys whenever you can’t find a good natural key (we’ll also discuss what
makes a key good). A surrogate key column is a primary key column with no
meaning to the user; in other words, a key that isn’t presented to the user and is
only used for identification of data inside the software system. For example, we
may change our table definitions to look like this:

create table USERS (
 USER_ID bigint not null primary key,
 USERNAME varchar(15) not null unique,
 NAME varchar(50) not null,
 ...
)
create table BILLING_DETAILS (
 BILLING_DETAILS_ID bigint not null primary key,
 ACCOUNT_NUMBER VARCHAR(10) not null unique,
 ACCOUNT_NAME VARCHAR(50) not null,
 ACCOUNT_TYPE VARCHAR(2) not null,
 USER_ID bigint foreign key references USER
)

The USER_ID and BILLING_DETAILS_ID columns contain system-generated values.
These columns were introduced purely for the benefit of the data model, so how

16 CHAPTER 1

Understanding object/relational persistence
(if at all) should they be represented in the domain model? We discuss this ques-
tion in chapter 4, section 4.2, “Mapping entities with identity,” and we find a solu-
tion with ORM.

 In the context of persistence, identity is closely related to how the system han-
dles caching and transactions. Different persistence solutions have chosen differ-
ent strategies, and this has been an area of confusion. We cover all these
interesting topics—and show how they’re related—in chapters 10 and 13.

 So far, the skeleton e-commerce application we’ve designed has identified the
mismatch problems with mapping granularity, subtypes, and object identity. We’re
almost ready to move on to other parts of the application, but first we need to dis-
cuss the important concept of associations: how the relationships between our
classes are mapped and handled. Is the foreign key in the database all you need?

1.2.4 Problems relating to associations

In our domain model, associations represent the relationships between entities.
The User, Address, and BillingDetails classes are all associated; but unlike
Address, BillingDetails stands on its own. BillingDetails instances are stored
in their own table. Association mapping and the management of entity associa-
tions are central concepts in any object persistence solution.

 Object-oriented languages represent associations using object references; but in
the relational world, an association is represented as a foreign key column, with
copies of key values (and a constraint to guarantee integrity). There are substan-
tial differences between the two representations.

 Object references are inherently directional; the association is from one object
to the other. They’re pointers. If an association between objects should be naviga-
ble in both directions, you must define the association twice, once in each of the
associated classes. You’ve already seen this in the domain model classes:

public class User {
 private Set billingDetails;
 ...
}
public class BillingDetails {
 private User user;
 ...
}

On the other hand, foreign key associations aren’t by nature directional. Naviga-
tion has no meaning for a relational data model because you can create arbitrary
data associations with table joins and projection. The challenge is to bridge a com-
pletely open data model, which is independent of the application that works with

The paradigm mismatch 17
the data, to an application-dependent navigational model, a constrained view of
the associations needed by this particular application.

 It isn’t possible to determine the multiplicity of a unidirectional association by
looking only at the Java classes. Java associations can have many-to-many multiplic-
ity. For example, the classes could look like this:

public class User {
 private Set billingDetails;
 ...
}
public class BillingDetails {
 private Set users;
 ...
}

Table associations, on the other hand, are always one-to-many or one-to-one. You can
see the multiplicity immediately by looking at the foreign key definition. The fol-
lowing is a foreign key declaration on the BILLING_DETAILS table for a one-to-
many association (or, if read in the other direction, a many-to-one association):

USER_ID bigint foreign key references USERS

These are one-to-one associations:

USER_ID bigint unique foreign key references USERS
BILLING_DETAILS_ID bigint primary key foreign key references USERS

If you wish to represent a many-to-many association in a relational database, you
must introduce a new table, called a link table. This table doesn’t appear anywhere
in the domain model. For our example, if we consider the relationship between
the user and the billing information to be many-to-many, the link table is defined
as follows:

create table USER_BILLING_DETAILS (
 USER_ID bigint foreign key references USERS,
 BILLING_DETAILS_ID bigint foreign key references BILLING_DETAILS,
 PRIMARY KEY (USER_ID, BILLING_DETAILS_ID)
)

We discuss association and collection mappings in great detail in chapters 6 and 7.
 So far, the issues we’ve considered are mainly structural. We can see them by

considering a purely static view of the system. Perhaps the most difficult problem
in object persistence is a dynamic problem. It concerns associations, and we’ve
already hinted at it when we drew a distinction between object network navigation
and table joins in section 1.1.4, “Persistence in object-oriented applications.” Let’s
explore this significant mismatch problem in more depth.

18 CHAPTER 1

Understanding object/relational persistence
1.2.5 The problem of data navigation

There is a fundamental difference in the way you access data in Java and in a rela-
tional database. In Java, when you access a user’s billing information, you call
aUser.getBillingDetails().getAccountNumber() or something similar. This is
the most natural way to access object-oriented data, and it’s often described as
walking the object network. You navigate from one object to another, following
pointers between instances. Unfortunately, this isn’t an efficient way to retrieve
data from an SQL database.

 The single most important thing you can do to improve the performance of
data access code is to minimize the number of requests to the database. The most obvi-
ous way to do this is to minimize the number of SQL queries. (Of course, there are
other more sophisticated ways that follow as a second step.)

 Therefore, efficient access to relational data with SQL usually requires joins
between the tables of interest. The number of tables included in the join when
retrieving data determines the depth of the object network you can navigate in
memory. For example, if you need to retrieve a User and aren’t interested in the
user’s billing information, you can write this simple query:

select * from USERS u where u.USER_ID = 123

On the other hand, if you need to retrieve a User and then subsequently visit each
of the associated BillingDetails instances (let’s say, to list all the user’s credit
cards), you write a different query:

select *
 from USERS u
 left outer join BILLING_DETAILS bd on bd.USER_ID = u.USER_ID
 where u.USER_ID = 123

As you can see, to efficiently use joins you need to know what portion of the object
network you plan to access when you retrieve the initial User—this is before you
start navigating the object network!

 On the other hand, any object persistence solution provides functionality for
fetching the data of associated objects only when the object is first accessed. How-
ever, this piecemeal style of data access is fundamentally inefficient in the context
of a relational database, because it requires executing one statement for each
node or collection of the object network that is accessed. This is the dreaded n+1
selects problem.

 This mismatch in the way you access objects in Java and in a relational database
is perhaps the single most common source of performance problems in Java
applications. There is a natural tension between too many selects and too big

The paradigm mismatch 19
selects, which retrieve unnecessary information into memory. Yet, although we’ve
been blessed with innumerable books and magazine articles advising us to use
StringBuffer for string concatenation, it seems impossible to find any advice
about strategies for avoiding the n+1 selects problem. Fortunately, Hibernate pro-
vides sophisticated features for efficiently and transparently fetching networks of
objects from the database to the application accessing them. We discuss these fea-
tures in chapters 13, 14, and 15.

1.2.6 The cost of the mismatch

We now have quite a list of object/relational mismatch problems, and it will be
costly (in time and effort) to find solutions, as you may know from experience.
This cost is often underestimated, and we think this is a major reason for many
failed software projects. In our experience (regularly confirmed by developers we
talk to), the main purpose of up to 30 percent of the Java application code written
is to handle the tedious SQL/JDBC and manual bridging of the object/relational
paradigm mismatch. Despite all this effort, the end result still doesn’t feel quite
right. We’ve seen projects nearly sink due to the complexity and inflexibility of
their database abstraction layers. We also see Java developers (and DBAs) quickly
lose their confidence when design decisions about the persistence strategy for a
project have to be made.

 One of the major costs is in the area of modeling. The relational and domain
models must both encompass the same business entities, but an object-oriented
purist will model these entities in a different way than an experienced relational
data modeler would. The usual solution to this problem is to bend and twist the
domain model and the implemented classes until they match the SQL database
schema. (Which, following the principle of data independence, is certainly a safe
long-term choice.)

 This can be done successfully, but only at the cost of losing some of the advan-
tages of object orientation. Keep in mind that relational modeling is underpinned
by relational theory. Object orientation has no such rigorous mathematical defini-
tion or body of theoretical work, so we can’t look to mathematics to explain how
we should bridge the gap between the two paradigms—there is no elegant trans-
formation waiting to be discovered. (Doing away with Java and SQL, and starting
from scratch isn’t considered elegant.)

 The domain modeling mismatch isn’t the only source of the inflexibility and
the lost productivity that lead to higher costs. A further cause is the JDBC API
itself. JDBC and SQL provide a statement-oriented (that is, command-oriented)
approach to moving data to and from an SQL database. If you want to query or

20 CHAPTER 1

Understanding object/relational persistence
manipulate data, the tables and columns involved must be specified at least three
times (insert, update, select), adding to the time required for design and
implementation. The distinct dialects for every SQL database management system
don’t improve the situation.

 To round out your understanding of object persistence, and before we
approach possible solutions, we need to discuss application architecture and the role
of a persistence layer in typical application design.

1.3 Persistence layers and alternatives

In a medium- or large-sized application, it usually makes sense to organize classes
by concern. Persistence is one concern; others include presentation, workflow,
and business logic.1 A typical object-oriented architecture includes layers of code
that represent the concerns. It’s normal and certainly best practice to group all
classes and components responsible for persistence into a separate persistence
layer in a layered system architecture.

 In this section, we first look at the layers of this type of architecture and why we
use them. After that, we focus on the layer we’re most interested in—the persis-
tence layer—and some of the ways it can be implemented.

1.3.1 Layered architecture

A layered architecture defines interfaces between code that implements the vari-
ous concerns, allowing changes to be made to the way one concern is implemented
without significant disruption to code in the other layers. Layering also determines
the kinds of interlayer dependencies that occur. The rules are as follows:

■ Layers communicate from top to bottom. A layer is dependent only on the
layer directly below it.

■ Each layer is unaware of any other layers except for the layer just below it.

Different systems group concerns differently, so they define different layers. A typ-
ical, proven, high-level application architecture uses three layers: one each for
presentation, business logic, and persistence, as shown in figure 1.4.

 Let’s take a closer look at the layers and elements in the diagram:

1 There are also the so-called cross-cutting concerns, which may be implemented generically—by frame-
work code, for example. Typical cross-cutting concerns include logging, authorization, and transaction
demarcation.

Persistence layers and alternatives 21
■ Presentation layer—The user interface logic is topmost. Code responsible for
the presentation and control of page and screen navigation is in the presen-
tation layer.

■ Business layer—The exact form of the next layer varies widely between appli-
cations. It’s generally agreed, however, that the business layer is responsible
for implementing any business rules or system requirements that would be
understood by users as part of the problem domain. This layer usually
includes some kind of controlling component—code that knows when to
invoke which business rule. In some systems, this layer has its own internal
representation of the business domain entities, and in others it reuses the
model defined by the persistence layer. We revisit this issue in chapter 3.

■ Persistence layer—The persistence layer is a group of classes and components
responsible for storing data to, and retrieving it from, one or more data
stores. This layer necessarily includes a model of the business domain enti-
ties (even if it’s only a metadata model).

■ Database—The database exists outside the Java application itself. It’s the
actual, persistent representation of the system state. If an SQL database is
used, the database includes the relational schema and possibly stored pro-
cedures.

■ Helper and utility classes—Every application has a set of infrastructural helper
or utility classes that are used in every layer of the application (such as
Exception classes for error handling). These infrastructural elements don’t
form a layer, because they don’t obey the rules for interlayer dependency in
a layered architecture.

Figure 1.4
A persistence layer is the basis in a layered architecture

22 CHAPTER 1

Understanding object/relational persistence
Let’s now take a brief look at the various ways the persistence layer can be imple-
mented by Java applications. Don’t worry—we’ll get to ORM and Hibernate soon.
There is much to be learned by looking at other approaches.

1.3.2 Hand-coding a persistence layer with SQL/JDBC

The most common approach to Java persistence is for application programmers
to work directly with SQL and JDBC. After all, developers are familiar with rela-
tional database management systems, they understand SQL, and they know how to
work with tables and foreign keys. Moreover, they can always use the well-known
and widely used data access object (DAO) pattern to hide complex JDBC code and
nonportable SQL from the business logic.

 The DAO pattern is a good one—so good that we often recommend its use
even with ORM. However, the work involved in manually coding persistence for
each domain class is considerable, particularly when multiple SQL dialects are
supported. This work usually ends up consuming a large portion of the develop-
ment effort. Furthermore, when requirements change, a hand-coded solution
always requires more attention and maintenance effort.

 Why not implement a simple mapping framework to fit the specific require-
ments of your project? The result of such an effort could even be reused in future
projects. Many developers have taken this approach; numerous homegrown
object/relational persistence layers are in production systems today. However, we
don’t recommend this approach. Excellent solutions already exist: not only the
(mostly expensive) tools sold by commercial vendors, but also open source
projects with free licenses. We’re certain you’ll be able to find a solution that
meets your requirements, both business and technical. It’s likely that such a solu-
tion will do a great deal more, and do it better, than a solution you could build in
a limited time.

 Developing a reasonably full-featured ORM may take many developers months.
For example, Hibernate is about 80,000 lines of code, some of which is much
more difficult than typical application code, along with 25,000 lines of unit test
code. This may be more code than is in your application. A great many details can
easily be overlooked in such a large project—as both the authors know from expe-
rience! Even if an existing tool doesn’t fully implement two or three of your more
exotic requirements, it’s still probably not worth creating your own tool. Any ORM
software will handle the tedious common cases—the ones that kill productivity.
It’s OK if you need to hand-code certain special cases; few applications are com-
posed primarily of special cases.

Persistence layers and alternatives 23
1.3.3 Using serialization

Java has a built-in persistence mechanism: Serialization provides the ability to
write a snapshot of a network of objects (the state of the application) to a byte
stream, which may then be persisted to a file or database. Serialization is also used
by Java’s Remote Method Invocation (RMI) to achieve pass-by value semantics for
complex objects. Another use of serialization is to replicate application state
across nodes in a cluster of machines.

 Why not use serialization for the persistence layer? Unfortunately, a serialized
network of interconnected objects can only be accessed as a whole; it’s impossible
to retrieve any data from the stream without deserializing the entire stream. Thus,
the resulting byte stream must be considered unsuitable for arbitrary search or
aggregation of large datasets. It isn’t even possible to access or update a single
object or subset of objects independently. Loading and overwriting an entire
object network in each transaction is no option for systems designed to support
high concurrency.

 Given current technology, serialization is inadequate as a persistence mecha-
nism for high concurrency web and enterprise applications. It has a particular
niche as a suitable persistence mechanism for desktop applications.

1.3.4 Object-oriented database systems

Because we work with objects in Java, it would be ideal if there were a way to store
those objects in a database without having to bend and twist the object model at
all. In the mid-1990s, object-oriented database systems gained attention. They’re
based on a network data model, which was common before the advent of the rela-
tional data model decades ago. The basic idea is to store a network of objects, with
all its pointers and nodes, and to re-create the same in-memory graph later on.
This can be optimized with various metadata and configuration settings.

 An object-oriented database management system (OODBMS) is more like an
extension to the application environment than an external data store. An
OODBMS usually features a multitiered implementation, with the backend data
store, object cache, and client application coupled tightly together and interact-
ing via a proprietary network protocol. Object nodes are kept on pages of mem-
ory, which are transported from and to the data store.

 Object-oriented database development begins with the top-down definition of
host language bindings that add persistence capabilities to the programming lan-
guage. Hence, object databases offer seamless integration into the object-ori-
ented application environment. This is different from the model used by today’s

24 CHAPTER 1

Understanding object/relational persistence
relational databases, where interaction with the database occurs via an intermedi-
ate language (SQL) and data independence from a particular application is the
major concern.

 For background information on object-oriented databases, we recommend the
respective chapter in An Introduction to Database Systems (Date, 2003).

 We won’t bother looking too closely into why object-oriented database technol-
ogy hasn’t been more popular; we’ll observe that object databases haven’t been
widely adopted and that it doesn’t appear likely that they will be in the near
future. We’re confident that the overwhelming majority of developers will have
far more opportunity to work with relational technology, given the current politi-
cal realities (predefined deployment environments) and the common require-
ment for data independence.

1.3.5 Other options

Of course, there are other kinds of persistence layers. XML persistence is a varia-
tion on the serialization theme; this approach addresses some of the limitations
of byte-stream serialization by allowing easy access to the data through a stan-
dardized tool interface. However, managing data in XML would expose you to an
object/hierarchical mismatch. Furthermore, there is no additional benefit from
the XML itself, because it’s just another text file format and has no inherent
capabilities for data management. You can use stored procedures (even writing
them in Java, sometimes) and move the problem into the database tier. So-called
object-relational databases have been marketed as a solution, but they offer only
a more sophisticated datatype system providing only half the solution to our
problems (and further muddling terminology). We’re sure there are plenty of
other examples, but none of them are likely to become popular in the immedi-
ate future.

 Political and economic constraints (long-term investments in SQL databases),
data independence, and the requirement for access to valuable legacy data call for
a different approach. ORM may be the most practical solution to our problems.

1.4 Object/relational mapping

Now that we’ve looked at the alternative techniques for object persistence, it’s
time to introduce the solution we feel is the best, and the one we use with Hiber-
nate: ORM. Despite its long history (the first research papers were published in
the late 1980s), the terms for ORM used by developers vary. Some call it object
relational mapping, others prefer the simple object mapping; we exclusively use

Object/relational mapping 25
the term object/relational mapping and its acronym, ORM. The slash stresses the
mismatch problem that occurs when the two worlds collide.

 In this section, we first look at what ORM is. Then we enumerate the problems
that a good ORM solution needs to solve. Finally, we discuss the general benefits
that ORM provides and why we recommend this solution.

1.4.1 What is ORM?

In a nutshell, object/relational mapping is the automated (and transparent) per-
sistence of objects in a Java application to the tables in a relational database, using
metadata that describes the mapping between the objects and the database.

 ORM, in essence, works by (reversibly) transforming data from one represen-
tation to another. This implies certain performance penalties. However, if ORM is
implemented as middleware, there are many opportunities for optimization that
wouldn’t exist for a hand-coded persistence layer. The provision and manage-
ment of metadata that governs the transformation adds to the overhead at devel-
opment time, but the cost is less than equivalent costs involved in maintaining a
hand-coded solution. (And even object databases require significant amounts of
metadata.)

FAQ Isn’t ORM a Visio plug-in? The acronym ORM can also mean object role
modeling, and this term was invented before object/relational mapping
became relevant. It describes a method for information analysis, used in
database modeling, and is primarily supported by Microsoft Visio, a
graphical modeling tool. Database specialists use it as a replacement or as
an addition to the more popular entity-relationship modeling. However, if
you talk to Java developers about ORM, it’s usually in the context of
object/relational mapping.

An ORM solution consists of the following four pieces:

■ An API for performing basic CRUD operations on objects of persistent
classes

■ A language or API for specifying queries that refer to classes and properties
of classes

■ A facility for specifying mapping metadata

■ A technique for the ORM implementation to interact with transactional
objects to perform dirty checking, lazy association fetching, and other opti-
mization functions

26 CHAPTER 1

Understanding object/relational persistence
We’re using the term full ORM to include any persistence layer where SQL is auto-
matically generated from a metadata-based description. We aren’t including per-
sistence layers where the object/relational mapping problem is solved manually
by developers hand-coding SQL with JDBC. With ORM, the application interacts
with the ORM APIs and the domain model classes and is abstracted from the
underlying SQL/JDBC. Depending on the features or the particular implementa-
tion, the ORM engine may also take on responsibility for issues such as optimistic
locking and caching, relieving the application of these concerns entirely.

 Let’s look at the various ways ORM can be implemented. Mark Fussel (Fussel,
1997), a developer in the field of ORM, defined the following four levels of ORM
quality. We have slightly rewritten his descriptions and put them in the context of
today’s Java application development.

Pure relational
The whole application, including the user interface, is designed around the rela-
tional model and SQL-based relational operations. This approach, despite its defi-
ciencies for large systems, can be an excellent solution for simple applications
where a low level of code reuse is tolerable. Direct SQL can be fine-tuned in every
aspect, but the drawbacks, such as lack of portability and maintainability, are sig-
nificant, especially in the long run. Applications in this category often make heavy
use of stored procedures, shifting some of the work out of the business layer and
into the database.

Light object mapping
Entities are represented as classes that are mapped manually to the relational
tables. Hand-coded SQL/JDBC is hidden from the business logic using well-
known design patterns. This approach is extremely widespread and is successful
for applications with a small number of entities, or applications with generic,
metadata-driven data models. Stored procedures may have a place in this kind of
application.

Medium object mapping
The application is designed around an object model. SQL is generated at build
time using a code-generation tool, or at runtime by framework code. Associations
between objects are supported by the persistence mechanism, and queries may be
specified using an object-oriented expression language. Objects are cached by the
persistence layer. A great many ORM products and homegrown persistence layers
support at least this level of functionality. It’s well suited to medium-sized

Object/relational mapping 27
applications with some complex transactions, particularly when portability
between different database products is important. These applications usually
don’t use stored procedures.

Full object mapping
Full object mapping supports sophisticated object modeling: composition, inher-
itance, polymorphism, and persistence by reachability. The persistence layer
implements transparent persistence; persistent classes do not inherit from any
special base class or have to implement a special interface. Efficient fetching strat-
egies (lazy, eager, and prefetching) and caching strategies are implemented trans-
parently to the application. This level of functionality can hardly be achieved by a
homegrown persistence layer—it’s equivalent to years of development time. A
number of commercial and open source Java ORM tools have achieved this level
of quality.

 This level meets the definition of ORM we’re using in this book. Let’s look at
the problems we expect to be solved by a tool that achieves full object mapping.

1.4.2 Generic ORM problems

The following list of issues, which we’ll call the ORM problems, identifies the fun-
damental questions resolved by a full object/relational mapping tool in a Java
environment. Particular ORM tools may provide extra functionality (for example,
aggressive caching), but this is a reasonably exhaustive list of the conceptual issues
and questions that are specific to object/relational mapping.

1 What do persistent classes look like? How transparent is the persistence tool?
Do we have to adopt a programming model and conventions for classes of
the business domain?

2 How is mapping metadata defined? Because the object/relational transforma-
tion is governed entirely by metadata, the format and definition of this
metadata is important. Should an ORM tool provide a GUI interface to
manipulate the metadata graphically? Or are there better approaches to
metadata definition?

3 How do object identity and equality relate to database (primary key) identity? How
do we map instances of particular classes to particular table rows?

4 How should we map class inheritance hierarchies? There are several stan-
dard strategies. What about polymorphic associations, abstract classes, and
interfaces?

28 CHAPTER 1

Understanding object/relational persistence
5 How does the persistence logic interact at runtime with the objects of the business
domain? This is a problem of generic programming, and there are a num-
ber of solutions including source generation, runtime reflection, runtime
bytecode generation, and build-time bytecode enhancement. The solution
to this problem may affect your build process (but, preferably, shouldn’t
otherwise affect you as a user).

6 What is the lifecycle of a persistent object? Does the lifecycle of some objects
depend upon the lifecycle of other associated objects? How do we translate
the lifecycle of an object to the lifecycle of a database row?

7 What facilities are provided for sorting, searching, and aggregating? The applica-
tion could do some of these things in memory, but efficient use of relational
technology requires that this work often be performed by the database.

8 How do we efficiently retrieve data with associations? Efficient access to rela-
tional data is usually accomplished via table joins. Object-oriented applica-
tions usually access data by navigating an object network. Two data access
patterns should be avoided when possible: the n+1 selects problem, and its
complement, the Cartesian product problem (fetching too much data in a
single select).

Two additional issues that impose fundamental constraints on the design and
architecture of an ORM tool are common to any data access technology:

■ Transactions and concurrency

■ Cache management (and concurrency)

As you can see, a full object/relational mapping tool needs to address quite a
long list of issues. By now, you should be starting to see the value of ORM. In the
next section, we look at some of the other benefits you gain when you use an
ORM solution.

1.4.3 Why ORM?

An ORM implementation is a complex beast—less complex than an application
server, but more complex than a web application framework like Struts or Tapes-
try. Why should we introduce another complex infrastructural element into our
system? Will it be worth it?

 It will take us most of this book to provide a complete answer to those ques-
tions, but this section provides a quick summary of the most compelling benefits.
First, though, let’s quickly dispose of a nonbenefit.

Object/relational mapping 29
 A supposed advantage of ORM is that it shields developers from messy SQL.
This view holds that object-oriented developers can’t be expected to understand
SQL or relational databases well, and that they find SQL somehow offensive. On
the contrary, we believe that Java developers must have a sufficient level of famil-
iarity with—and appreciation of—relational modeling and SQL in order to work
with ORM. ORM is an advanced technique to be used by developers who have
already done it the hard way. To use Hibernate effectively, you must be able to
view and interpret the SQL statements it issues and understand the implications
for performance.

 Now, let’s look at some of the benefits of ORM and Hibernate.

Productivity
Persistence-related code can be perhaps the most tedious code in a Java applica-
tion. Hibernate eliminates much of the grunt work (more than you’d expect) and
lets you concentrate on the business problem.

 No matter which application-development strategy you prefer—top-down,
starting with a domain model, or bottom-up, starting with an existing database
schema—Hibernate, used together with the appropriate tools, will significantly
reduce development time.

Maintainability
Fewer lines of code (LOC) make the system more understandable, because it
emphasizes business logic rather than plumbing. Most important, a system with
less code is easier to refactor. Automated object/relational persistence substan-
tially reduces LOC. Of course, counting lines of code is a debatable way of measur-
ing application complexity.

 However, there are other reasons that a Hibernate application is more main-
tainable. In systems with hand-coded persistence, an inevitable tension exists
between the relational representation and the object model implementing the
domain. Changes to one almost always involve changes to the other, and often the
design of one representation is compromised to accommodate the existence of
the other. (What almost always happens in practice is that the object model of the
domain is compromised.) ORM provides a buffer between the two models, allow-
ing more elegant use of object orientation on the Java side, and insulating each
model from minor changes to the other.

Performance
A common claim is that hand-coded persistence can always be at least as fast, and
can often be faster, than automated persistence. This is true in the same sense that

30 CHAPTER 1

Understanding object/relational persistence
it’s true that assembly code can always be at least as fast as Java code, or a hand-
written parser can always be at least as fast as a parser generated by YACC or
ANTLR—in other words, it’s beside the point. The unspoken implication of the
claim is that hand-coded persistence will perform at least as well in an actual
application. But this implication will be true only if the effort required to imple-
ment at-least-as-fast hand-coded persistence is similar to the amount of effort
involved in utilizing an automated solution. The really interesting question is
what happens when we consider time and budget constraints?

 Given a persistence task, many optimizations are possible. Some (such as query
hints) are much easier to achieve with hand-coded SQL/JDBC. Most optimiza-
tions, however, are much easier to achieve with automated ORM. In a project with
time constraints, hand-coded persistence usually allows you to make some optimi-
zations. Hibernate allows many more optimizations to be used all the time. Fur-
thermore, automated persistence improves developer productivity so much that
you can spend more time hand-optimizing the few remaining bottlenecks.

 Finally, the people who implemented your ORM software probably had much
more time to investigate performance optimizations than you have. Did you
know, for instance, that pooling PreparedStatement instances results in a signifi-
cant performance increase for the DB2 JDBC driver but breaks the InterBase
JDBC driver? Did you realize that updating only the changed columns of a table
can be significantly faster for some databases but potentially slower for others? In
your handcrafted solution, how easy is it to experiment with the impact of these
various strategies?

Vendor independence
An ORM abstracts your application away from the underlying SQL database and
SQL dialect. If the tool supports a number of different databases (and most do),
this confers a certain level of portability on your application. You shouldn’t neces-
sarily expect write-once/run-anywhere, because the capabilities of databases dif-
fer, and achieving full portability would require sacrificing some of the strength
of the more powerful platforms. Nevertheless, it’s usually much easier to develop
a cross-platform application using ORM. Even if you don’t require cross-platform
operation, an ORM can still help mitigate some of the risks associated with ven-
dor lock-in.

 In addition, database independence helps in development scenarios where
developers use a lightweight local database but deploy for production on a differ-
ent database.

Object/relational mapping 31
 You need to select an ORM product at some point. To make an educated deci-
sion, you need a list of the software modules and standards that are available.

1.4.4 Introducing Hibernate, EJB3, and JPA

Hibernate is a full object/relational mapping tool that provides all the previously
listed ORM benefits. The API you’re working with in Hibernate is native and
designed by the Hibernate developers. The same is true for the query interfaces
and query languages, and for how object/relational mapping metadata is defined.

 Before you start your first project with Hibernate, you should consider the EJB
3.0 standard and its subspecification, Java Persistence. Let’s go back in history and
see how this new standard came into existence.

 Many Java developers considered EJB 2.1 entity beans as one of the technolo-
gies for the implementation of a persistence layer. The whole EJB programming
and persistence model has been widely adopted in the industry, and it has been
an important factor in the success of J2EE (or, Java EE as it’s now called).

 However, over the last years, critics of EJB in the developer community became
more vocal (especially with regard to entity beans and persistence), and compa-
nies realized that the EJB standard should be improved. Sun, as the steering party
of J2EE, knew that an overhaul was in order and started a new Java specification
request (JSR) with the goal of simplifying EJB in early 2003. This new JSR, Enter-
prise JavaBeans 3.0 (JSR 220), attracted significant interest. Developers from the
Hibernate team joined the expert group early on and helped shape the new spec-
ification. Other vendors, including all major and many smaller companies in the
Java industry, also contributed to the effort. An important decision made for the
new standard was to specify and standardize things that work in practice, taking
ideas and concepts from existing successful products and projects. Hibernate,
therefore, being a successful data persistence solution, played an important role
for the persistence part of the new standard. But what exactly is the relationship
between Hibernate and EJB3, and what is Java Persistence?

Understanding the standards
First, it’s difficult (if not impossible) to compare a specification and a product. The
questions that should be asked are, “Does Hibernate implement the EJB 3.0 speci-
fication, and what is the impact on my project? Do I have to use one or the other?”

 The new EJB 3.0 specification comes in several parts: The first part defines
the new EJB programming model for session beans and message-driven beans,
the deployment rules, and so on. The second part of the specification deals with
persistence exclusively: entities, object/relational mapping metadata, persistence

32 CHAPTER 1

Understanding object/relational persistence
manager interfaces, and the query language. This second part is called Java Per-
sistence API (JPA), probably because its interfaces are in the package
javax.persistence. We’ll use this acronym throughout the book.

 This separation also exists in EJB 3.0 products; some implement a full EJB 3.0
container that supports all parts of the specification, and other products may
implement only the Java Persistence part. Two important principles were
designed into the new standard:

■ JPA engines should be pluggable, which means you should be able to take
out one product and replace it with another if you aren’t satisfied—even if
you want to stay with the same EJB 3.0 container or Java EE 5.0 applica-
tion server.

■ JPA engines should be able to run outside of an EJB 3.0 (or any other) run-
time environment, without a container in plain standard Java.

The consequences of this design are that there are more options for developers
and architects, which drives competition and therefore improves overall quality of
products. Of course, actual products also offer features that go beyond the specifi-
cation as vendor-specific extensions (such as for performance tuning, or because
the vendor has a focus on a particular vertical problem space).

 Hibernate implements Java Persistence, and because a JPA engine must be
pluggable, new and interesting combinations of software are possible. You can
select from various Hibernate software modules and combine them depending on
your project’s technical and business requirements.

Hibernate Core
The Hibernate Core is also known as Hibernate 3.2.x, or Hibernate. It’s the base
service for persistence, with its native API and its mapping metadata stored in XML
files. It has a query language called HQL (almost the same as SQL), as well as pro-
grammatic query interfaces for Criteria and Example queries. There are hun-
dreds of options and features available for everything, as Hibernate Core is really
the foundation and the platform all other modules are built on.

 You can use Hibernate Core on its own, independent from any framework or
any particular runtime environment with all JDKs. It works in every Java EE/J2EE
application server, in Swing applications, in a simple servlet container, and so on.
As long as you can configure a data source for Hibernate, it works. Your applica-
tion code (in your persistence layer) will use Hibernate APIs and queries, and
your mapping metadata is written in native Hibernate XML files.

Object/relational mapping 33
 Native Hibernate APIs, queries, and XML mapping files are the primary focus
of this book, and they’re explained first in all code examples. The reason for that
is that Hibernate functionality is a superset of all other available options.

Hibernate Annotations
A new way to define application metadata became available with JDK 5.0: type-safe
annotations embedded directly in the Java source code. Many Hibernate users are
already familiar with this concept, as the XDoclet software supports Javadoc meta-
data attributes and a preprocessor at compile time (which, for Hibernate, gener-
ates XML mapping files).

 With the Hibernate Annotations package on top of Hibernate Core, you can now
use type-safe JDK 5.0 metadata as a replacement or in addition to native Hibernate
XML mapping files. You’ll find the syntax and semantics of the mapping annota-
tions familiar once you’ve seen them side-by-side with Hibernate XML mapping
files. However, the basic annotations aren’t proprietary.

 The JPA specification defines object/relational mapping metadata syntax and
semantics, with the primary mechanism being JDK 5.0 annotations. (Yes, JDK 5.0
is required for Java EE 5.0 and EJB 3.0.) Naturally, the Hibernate Annotations are
a set of basic annotations that implement the JPA standard, and they’re also a set
of extension annotations you need for more advanced and exotic Hibernate
mappings and tuning.

 You can use Hibernate Core and Hibernate Annotations to reduce your lines
of code for mapping metadata, compared to the native XML files, and you may
like the better refactoring capabilities of annotations. You can use only JPA anno-
tations, or you can add a Hibernate extension annotation if complete portability
isn’t your primary concern. (In practice, you should embrace the product you’ve
chosen instead of denying its existence at all times.)

 We’ll discuss the impact of annotations on your development process, and how
to use them in mappings, throughout this book, along with native Hibernate XML
mapping examples.

Hibernate EntityManager
The JPA specification also defines programming interfaces, lifecycle rules for per-
sistent objects, and query features. The Hibernate implementation for this part of
JPA is available as Hibernate EntityManager, another optional module you can
stack on top of Hibernate Core. You can fall back when a plain Hibernate
interface, or even a JDBC Connection is needed. Hibernate’s native features are a
superset of the JPA persistence features in every respect. (The simple fact is that

34 CHAPTER 1

Understanding object/relational persistence
Hibernate EntityManager is a small wrapper around Hibernate Core that provides
JPA compatibility.)

 Working with standardized interfaces and using a standardized query language
has the benefit that you can execute your JPA-compatible persistence layer with
any EJB 3.0 compliant application server. Or, you can use JPA outside of any partic-
ular standardized runtime environment in plain Java (which really means every-
where Hibernate Core can be used).

 Hibernate Annotations should be considered in combination with Hibernate
EntityManager. It’s unusual that you’d write your application code against JPA
interfaces and with JPA queries, and not create most of your mappings with JPA
annotations.

Java EE 5.0 application servers
We don’t cover all of EJB 3.0 in this book; our focus is naturally on persistence,
and therefore on the JPA part of the specification. (We will, of course, show you
many techniques with managed EJB components when we talk about application
architecture and design.)

 Hibernate is also part of the JBoss Application Server (JBoss AS), an implementa-
tion of J2EE 1.4 and (soon) Java EE 5.0. A combination of Hibernate Core, Hiber-
nate Annotations, and Hibernate EntityManager forms the persistence engine of
this application server. Hence, everything you can use stand-alone, you can also
use inside the application server with all the EJB 3.0 benefits, such as session
beans, message-driven beans, and other Java EE services.

 To complete the picture, you also have to understand that Java EE 5.0 applica-
tion servers are no longer the monolithic beasts of the J2EE 1.4 era. In fact, the
JBoss EJB 3.0 container also comes in an embeddable version, which runs inside
other application servers, and even in Tomcat, or in a unit test, or a Swing applica-
tion. In the next chapter, you’ll prepare a project that utilizes EJB 3.0 compo-
nents, and you’ll install the JBoss server for easy integration testing.

 As you can see, native Hibernate features implement significant parts of the
specification or are natural vendor extensions, offering additional functionality if
required.

 Here is a simple trick to see immediately what code you’re looking at, whether
JPA or native Hibernate. If only the javax.persistence.* import is visible, you’re
working inside the specification; if you also import org.hibernate.*, you’re
using native Hibernate functionality. We’ll later show you a few more tricks that
will help you cleanly separate portable from vendor-specific code.

Summary 35
FAQ What is the future of Hibernate? Hibernate Core will be developed inde-
pendently from and faster than the EJB 3.0 or Java Persistence specifica-
tions. It will be the testing ground for new ideas, as it has always been.
Any new feature developed for Hibernate Core is immediately and auto-
matically available as an extension for all users of Java Persistence with
Hibernate Annotations and Hibernate EntityManager. Over time, if a
particular concept has proven its usefulness, Hibernate developers will
work with other expert group members on future standardization in an
updated EJB or Java Persistence specification. Hence, if you’re interested
in a quickly evolving standard, we encourage you to use native Hibernate
functionality, and to send feedback to the respective expert group. The
desire for total portability and the rejection of vendor extensions were
major reasons for the stagnation we saw in EJB 1.x and 2.x.

After so much praise of ORM and Hibernate, it’s time to look at some actual code.
It’s time to wrap up the theory and to set up a first project.

1.5 Summary

In this chapter, we’ve discussed the concept of object persistence and the impor-
tance of ORM as an implementation technique.

 Object persistence means that individual objects can outlive the application pro-
cess; they can be saved to a data store and be re-created at a later point in time. The
object/relational mismatch comes into play when the data store is an SQL-based
relational database management system. For instance, a network of objects can’t be
saved to a database table; it must be disassembled and persisted to columns of por-
table SQL datatypes. A good solution for this problem is object/relational mapping
(ORM), which is especially helpful if we consider richly typed Java domain models.

 A domain model represents the business entities used in a Java application. In
a layered system architecture, the domain model is used to execute business logic
in the business layer (in Java, not in the database). This business layer communi-
cates with the persistence layer beneath in order to load and store the persistent
objects of the domain model. ORM is the middleware in the persistence layer that
manages the persistence.

 ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the devel-
oper of 95 percent of object persistence work, such as writing complex SQL state-
ments with many table joins, and copying values from JDBC result sets to objects or
graphs of objects. A full-featured ORM middleware solution may provide database
portability, certain optimization techniques like caching, and other viable func-
tions that aren’t easy to hand-code in a limited time with SQL and JDBC.

36 CHAPTER 1

Understanding object/relational persistence
 It’s likely that a better solution than ORM will exist some day. We (and many
others) may have to rethink everything we know about SQL, persistence API stan-
dards, and application integration. The evolution of today’s systems into true rela-
tional database systems with seamless object-oriented integration remains pure
speculation. But we can’t wait, and there is no sign that any of these issues will
improve soon (a multibillion dollar industry isn’t very agile). ORM is the best solu-
tion currently available, and it’s a timesaver for developers facing the object/rela-
tional mismatch every day. With EJB 3.0, a specification for full object/relational
mapping software that is accepted in the Java industry is finally available.

Starting a project

This chapter covers
■ “Hello World” with Hibernate and Java

Persistence
■ The toolset for forward and reverse engineering
■ Hibernate configuration and integration
37

38 CHAPTER 2

Starting a project
You want to start using Hibernate and Java Persistence, and you want to learn it
with a step-by-step example. You want to see both persistence APIs and how you
can benefit from native Hibernate or standardized JPA. This is what you’ll find in
this chapter: a tour through a straightforward “Hello World” application.

 However, a good and complete tutorial is already publicly available in the
Hibernate reference documentation, so instead of repeating it here, we show you
more detailed instructions about Hibernate integration and configuration along
the way. If you want to start with a less elaborate tutorial that you can complete in
one hour, our advice is to consider the Hibernate reference documentation. It
takes you from a simple stand-alone Java application with Hibernate through the
most essential mapping concepts and finally demonstrates a Hibernate web appli-
cation deployed on Tomcat.

 In this chapter, you’ll learn how to set up a project infrastructure for a plain
Java application that integrates Hibernate, and you’ll see many more details about
how Hibernate can be configured in such an environment. We also discuss config-
uration and integration of Hibernate in a managed environment—that is, an envi-
ronment that provides Java EE services.

 As a build tool for the “Hello World” project, we introduce Ant and create
build scripts that can not only compile and run the project, but also utilize the
Hibernate Tools. Depending on your development process, you’ll use the Hiber-
nate toolset to export database schemas automatically or even to reverse-engineer
a complete application from an existing (legacy) database schema.

 Like every good engineer, before you start your first real Hibernate project you
should prepare your tools and decide what your development process is going to
look like. And, depending on the process you choose, you may naturally prefer
different tools. Let’s look at this preparation phase and what your options are,
and then start a Hibernate project.

2.1 Starting a Hibernate project

In some projects, the development of an application is driven by developers ana-
lyzing the business domain in object-oriented terms. In others, it’s heavily influ-
enced by an existing relational data model: either a legacy database or a brand-
new schema designed by a professional data modeler. There are many choices to
be made, and the following questions need to be answered before you can start:

■ Can you start from scratch with a clean design of a new business require-
ment, or is legacy data and/or legacy application code present?

Starting a Hibernate project 39
■ Can some of the necessary pieces be automatically generated from an exist-
ing artifact (for example, Java source from an existing database schema)?
Can the database schema be generated from Java code and Hibernate map-
ping metadata?

■ What kind of tool is available to support this work? What about other tools
to support the full development cycle?

We’ll discuss these questions in the following sections as we set up a basic Hiber-
nate project. This is your road map:

1 Select a development process

2 Set up the project infrastructure

3 Write application code and mappings

4 Configure and start Hibernate

5 Run the application.

After reading the next sections, you’ll be prepared for the correct approach in
your own project, and you’ll also have the background information for more com-
plex scenarios we’ll touch on later in this chapter.

2.1.1 Selecting a development process

Let’s first get an overview of the available tools, the artifacts they use as source
input, and the output that is produced. Figure 2.1 shows various import and

UML Model
XML/XMI

Persistent Class
Java Source

Mapping Metadata
Annotations

Database Schema

Hibernate
Metamodel

AndroMDA

<hbm2ddl>

Documentation
HTML

Configuration XML Freemarker TemplateMapping Metadata XML

Data Access Object
Java Source

<jdbcconfiguration>

<hbm2hbmxml>

<configuration>
<hbm2cfgxml> <hbmtemplate>

<hbm2java> <hbm2dao>
<annotationconfiguration>

<hbm2java> <hbm2doc>

Figure 2.1 Input and output of the tools used for Hibernate development

40 CHAPTER 2

Starting a project
export tasks for Ant; all the functionality is also available with the Hibernate Tools
plug-ins for Eclipse. Refer to this diagram while reading this chapter.1

 NOTE Hibernate Tools for Eclipse IDE—The Hibernate Tools are plug-ins for the
Eclipse IDE (part of the JBoss IDE for Eclipse—a set of wizards, editors, and
extra views in Eclipse that help you develop EJB3, Hibernate, JBoss Seam,
and other Java applications based on JBoss middleware). The features for
forward and reverse engineering are equivalent to the Ant-based tools.
The additional Hibernate Console view allows you to execute ad hoc Hiber-
nate queries (HQL and Criteria) against your database and to browse
the result graphically. The Hibernate Tools XML editor supports auto-
matic completion of mapping files, including class, property, and even
table and column names. The graphical tools were still in development
and available as a beta release during the writing of this book, however,
so any screenshots would be obsolete with future releases of the software.
The documentation of the Hibernate Tools contains many screenshots
and detailed project setup instructions that you can easily adapt to create
your first “Hello World” program with the Eclipse IDE.

The following development scenarios are common:

■ Top down—In top-down development, you start with an existing domain
model, its implementation in Java, and (ideally) complete freedom with
respect to the database schema. You must create mapping metadata—
either with XML files or by annotating the Java source—and then optionally
let Hibernate’s hbm2ddl tool generate the database schema. In the absence
of an existing database schema, this is the most comfortable development
style for most Java developers. You may even use the Hibernate Tools to
automatically refresh the database schema on every application restart in
development.

■ Bottom up—Conversely, bottom-up development begins with an existing data-
base schema and data model. In this case, the easiest way to proceed is to
use the reverse-engineering tools to extract metadata from the database.
This metadata can be used to generate XML mapping files, with hbm2hbmxml
for example. With hbm2java, the Hibernate mapping metadata is used to
generate Java persistent classes, and even data access objects—in other
words, a skeleton for a Java persistence layer. Or, instead of writing to XML

1 Note that AndroMDA, a tool that generates POJO source code from UML diagram files, isn’t strictly
considered part of the common Hibernate toolset, so it isn’t discussed in this chapter. See the commu-
nity area on the Hibernate website for more information about the Hibernate module for AndroMDA.

Starting a Hibernate project 41
mapping files, annotated Java source code (EJB 3.0 entity classes) can be
produced directly by the tools. However, not all class association details and
Java-specific metainformation can be automatically generated from an SQL
database schema with this strategy, so expect some manual work.

■ Middle out—The Hibernate XML mapping metadata provides sufficient
information to completely deduce the database schema and to generate the
Java source code for the persistence layer of the application. Furthermore,
the XML mapping document isn’t too verbose. Hence, some architects and
developers prefer middle-out development, where they begin with handwrit-
ten Hibernate XML mapping files, and then generate the database schema
using hbm2ddl and Java classes using hbm2java. The Hibernate XML map-
ping files are constantly updated during development, and other artifacts
are generated from this master definition. Additional business logic or data-
base objects are added through subclassing and auxiliary DDL. This devel-
opment style can be recommended only for the seasoned Hibernate expert.

■ Meet in the middle—The most difficult scenario is combining existing Java
classes and an existing database schema. In this case, there is little that the
Hibernate toolset can do to help. It is, of course, not possible to map arbi-
trary Java domain models to a given schema, so this scenario usually
requires at least some refactoring of the Java classes, database schema, or
both. The mapping metadata will almost certainly need to be written by
hand and in XML files (though it might be possible to use annotations if
there is a close match). This can be an incredibly painful scenario, and it is,
fortunately, exceedingly rare.

We now explore the tools and their configuration options in more detail and set
up a work environment for typical Hibernate application development. You can
follow our instructions step by step and create the same environment, or you can
take only the bits and pieces you need, such as the Ant build scripts.

 The development process we assume first is top down, and we’ll walk through
a Hibernate project that doesn’t involve any legacy data schemas or Java code.
After that, you’ll migrate the code to JPA and EJB 3.0, and then you’ll start a
project bottom up by reverse-engineering from an existing database schema.

2.1.2 Setting up the project

We assume that you’ve downloaded the latest production release of Hibernate
from the Hibernate website at http://www.hibernate.org/ and that you unpacked
the archive. You also need Apache Ant installed on your development machine.

42 CHAPTER 2

Starting a project
You should also download a current version of HSQLDB from http://hsqldb.org/
and extract the package; you’ll use this database management system for your
tests. If you have another database management system already installed, you only
need to obtain a JDBC driver for it.

 Instead of the sophisticated application you’ll develop later in the book, you’ll
get started with a “Hello World” example. That way, you can focus on the develop-
ment process without getting distracted by Hibernate details. Let’s set up the
project directory first.

Creating the work directory
Create a new directory on your system, in any location you like; C:\helloworld is a
good choice if you work on Microsoft Windows. We’ll refer to this directory as
WORKDIR in future examples. Create lib and src subdirectories, and copy all
required libraries:

WORKDIR
 +lib
 antlr.jar
 asm.jar
 asm-attrs.jars
 c3p0.jar
 cglib.jar
 commons-collections.jar
 commons-logging.jar
 dom4j.jar
 hibernate3.jar
 hsqldb.jar
 jta.jar
 +src

The libraries you see in the library directory are from the Hibernate distribution,
most of them required for a typical Hibernate project. The hsqldb.jar file is from
the HSQLDB distribution; replace it with a different driver JAR if you want to use a
different database management system. Keep in mind that some of the libraries
you’re seeing here may not be required for the particular version of Hibernate
you’re working with, which is likely a newer release than we used when writing this
book. To make sure you have the right set of libraries, always check the lib/
README.txt file in the Hibernate distribution package. This file contains an up-to-
date list of all required and optional third-party libraries for Hibernate—you only
need the libraries listed as required for runtime.

 In the “Hello World” application, you want to store messages in the database
and load them from the database. You need to create the domain model for this
business case.

Starting a Hibernate project 43
Creating the domain model
Hibernate applications define persistent classes that are mapped to database tables.
You define these classes based on your analysis of the business domain; hence,
they’re a model of the domain. The “Hello World” example consists of one class
and its mapping. Let’s see what a simple persistent class looks like, how the map-
ping is created, and some of the things you can do with instances of the persistent
class in Hibernate.

 The objective of this example is to store messages in a database and retrieve
them for display. Your application has a simple persistent class, Message, which
represents these printable messages. The Message class is shown in listing 2.1.

package hello;

public class Message {
 private Long id;
 private String text;
 private Message nextMessage;

 Message() {}

 public Message(String text) {
 this.text = text;

 }

 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }

 public String getText() {
 return text;
 }
 public void setText(String text) {
 this.text = text;
 }

 public Message getNextMessage() {
 return nextMessage;
 }
 public void setNextMessage(Message nextMessage) {
 this.nextMessage = nextMessage;
 }
}

Listing 2.1 Message.java: a simple persistent class

Identifier
attribute

Message text

Reference to another
Message instance

44 CHAPTER 2

Starting a project
The Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another Message object. The identifier attribute allows
the application to access the database identity—the primary key value—of a per-
sistent object. If two instances of Message have the same identifier value, they rep-
resent the same row in the database.

 This example uses Long for the type of the identifier attribute, but this isn’t a
requirement. Hibernate allows virtually anything for the identifier type, as you’ll
see later.

 You may have noticed that all attributes of the Message class have JavaBeans-
style property accessor methods. The class also has a constructor with no parame-
ters. The persistent classes we show in the examples will almost always look some-
thing like this. The no-argument constructor is a requirement (tools like
Hibernate use reflection on this constructor to instantiate objects).

 Instances of the Message class can be managed (made persistent) by Hiber-
nate, but they don’t have to be. Because the Message object doesn’t implement any
Hibernate-specific classes or interfaces, you can use it just like any other Java class:

Message message = new Message("Hello World");
 System.out.println(message.getText());

This code fragment does exactly what you’ve come to expect from “Hello World”
applications: It prints Hello World to the console. It may look like we’re trying to be
cute here; in fact, we’re demonstrating an important feature that distinguishes
Hibernate from some other persistence solutions. The persistent class can be used
in any execution context at all—no special container is needed. Note that this is
also one of the benefits of the new JPA entities, which are also plain Java objects.

 Save the code for the Message class into your source folder, in a directory and
package named hello.

Mapping the class to a database schema
To allow the object/relational mapping magic to occur, Hibernate needs some
more information about exactly how the Message class should be made persistent.
In other words, Hibernate needs to know how instances of that class are supposed
to be stored and loaded. This metadata can be written into an XML mapping docu-
ment, which defines, among other things, how properties of the Message class map
to columns of a MESSAGES table. Let’s look at the mapping document in listing 2.2.

Starting a Hibernate project 45
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class
 name="hello.Message"
 table="MESSAGES">

 <id
 name="id"
 column="MESSAGE_ID">
 <generator class="increment"/>
 </id>

 <property
 name="text"
 column="MESSAGE_TEXT"/>

 <many-to-one
 name="nextMessage"
 cascade="all"
 column="NEXT_MESSAGE_ID"
 foreign-key="FK_NEXT_MESSAGE"/>

 </class>

</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a foreign key column named NEXT_MESSAGE_ID. Hibernate also gen-
erates the database schema for you and adds a foreign key constraint with the
name FK_NEXT_MESSAGE to the database catalog. (Don’t worry about the other
details for now.)

 The XML document isn’t difficult to understand. You can easily write and
maintain it by hand. Later, we discuss a way of using annotations directly in the
source code to define mapping information; but whichever method you choose,

Listing 2.2 A simple Hibernate XML mapping

46 CHAPTER 2

Starting a project
Hibernate has enough information to generate all the SQL statements needed to
insert, update, delete, and retrieve instances of the Message class. You no longer
need to write these SQL statements by hand.

 Create a file named Message.hbm.xml with the content shown in listing 2.2,
and place it next to your Message.java file in the source package hello. The
hbm suffix is a naming convention accepted by the Hibernate community, and
most developers prefer to place mapping files next to the source code of their
domain classes.

 Let’s load and store some objects in the main code of the “Hello World”
application.

Storing and loading objects
What you really came here to see is Hibernate, so let’s save a new Message to the
database (see listing 2.3).

package hello;

import java.util.*;

import org.hibernate.*;
import persistence.*;

public class HelloWorld {

 public static void main(String[] args) {

 // First unit of work
 Session session =
 HibernateUtil.getSessionFactory().openSession();
 Transaction tx = session.beginTransaction();

 Message message = new Message("Hello World");
 Long msgId = (Long) session.save(message);

 tx.commit();
 session.close();

 // Second unit of work
 Session newSession =
 HibernateUtil.getSessionFactory().openSession();
 Transaction newTransaction = newSession.beginTransaction();

 List messages =
 newSession.createQuery("from Message m order by
 ➥ m.text asc").list();

 System.out.println(messages.size() +
 " message(s) found:");

Listing 2.3 The “Hello World” main application code

Starting a Hibernate project 47
 for (Iterator iter = messages.iterator();
 iter.hasNext();) {
 Message loadedMsg = (Message) iter.next();
 System.out.println(loadedMsg.getText());
 }

 newTransaction.commit();
 newSession.close();

 // Shutting down the application
 HibernateUtil.shutdown();
 }

}

Place this code in the file HelloWorld.java in the source folder of your project, in
the hello package. Let’s walk through the code.

 The class has a standard Java main() method, and you can call it from the com-
mand line directly. Inside the main application code, you execute two separate
units of work with Hibernate. The first unit stores a new Message object, and the
second unit loads all objects and prints their text to the console.

 You call the Hibernate Session, Transaction, and Query interfaces to access
the database:

■ Session—A Hibernate Session is many things in one. It’s a single-threaded
nonshared object that represents a particular unit of work with the data-
base. It has the persistence manager API you call to load and store objects.
(The Session internals consist of a queue of SQL statements that need to be
synchronized with the database at some point and a map of managed persis-
tence instances that are monitored by the Session.)

■ Transaction—This Hibernate API can be used to set transaction bound-
aries programmatically, but it’s optional (transaction boundaries aren’t).
Other choices are JDBC transaction demarcation, the JTA interface, or con-
tainer-managed transactions with EJBs.

■ Query—A database query can be written in Hibernate’s own object-oriented
query language (HQL) or plain SQL. This interface allows you to create que-
ries, bind arguments to placeholders in the query, and execute the query in
various ways.

Ignore the line of code that calls HibernateUtil.getSessionFactory()—we’ll
get to it soon.

48 CHAPTER 2

Starting a project
 The first unit of work, if run, results in the execution of something similar to
the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
 values (1, 'Hello World', null)

Hold on—the MESSAGE_ID column is being initialized to a strange value. You
didn’t set the id property of message anywhere, so you expect it to be NULL, right?
Actually, the id property is special. It’s an identifier property: It holds a generated
unique value. The value is assigned to the Message instance by Hibernate when
save() is called. (We’ll discuss how the value is generated later.)

 Look at the second unit of work. The literal string "from Message m order by
m.text asc" is a Hibernate query, expressed in HQL. This query is internally
translated into the following SQL when list() is called:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
 from MESSAGES m
 order by m.MESSAGE_TEXT asc

If you run this main() method (don’t try this now—you still need to configure
Hibernate), the output on your console is as follows:

1 message(s) found:
 Hello World

If you’ve never used an ORM tool like Hibernate before, you probably expected to
see the SQL statements somewhere in the code or mapping metadata, but they
aren’t there. All SQL is generated at runtime (actually, at startup for all reusable
SQL statements).

 Your next step would normally be configuring Hibernate. However, if you feel
confident, you can add two other Hibernate features—automatic dirty checking
and cascading—in a third unit of work by adding the following code to your main
application:

// Third unit of work
Session thirdSession =
 HibernateUtil.getSessionFactory().openSession();
Transaction thirdTransaction = thirdSession.beginTransaction();

// msgId holds the identifier value of the first message
message = (Message) thirdSession.get(Message.class, msgId);

message.setText("Greetings Earthling");
message.setNextMessage(
 new Message("Take me to your leader (please)")
);

thirdTransaction.commit();
thirdSession.close();

Starting a Hibernate project 49
 This code calls three SQL statements inside the same database transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES
set MESSAGE_TEXT = 'Greetings Earthling', NEXT_MESSAGE_ID = 2
where MESSAGE_ID = 1

Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database—Hiber-
nate did automatic dirty checking. This feature saves you the effort of explicitly ask-
ing Hibernate to update the database when you modify the state of an object
inside a unit of work. Similarly, the new message was made persistent when a refer-
ence was created from the first message. This feature is called cascading save. It
saves you the effort of explicitly making the new object persistent by calling
save(), as long as it’s reachable by an already persistent instance.

 Also notice that the ordering of the SQL statements isn’t the same as the order
in which you set property values. Hibernate uses a sophisticated algorithm to
determine an efficient ordering that avoids database foreign key constraint viola-
tions but is still sufficiently predictable to the user. This feature is called transac-
tional write-behind.

 If you ran the application now, you’d get the following output (you’d have
to copy the second unit of work after the third to execute the query-display
step again):

2 message(s) found:
Greetings Earthling
Take me to your leader (please)

You now have domain classes, an XML mapping file, and the “Hello World” appli-
cation code that loads and stores objects. Before you can compile and run this
code, you need to create Hibernate’s configuration (and resolve the mystery of
the HibernateUtil class).

2.1.3 Hibernate configuration and startup

The regular way of initializing Hibernate is to build a SessionFactory object from
a Configuration object. If you like, you can think of the Configuration as an
object representation of a configuration file (or a properties file) for Hibernate.

 Let’s look at some variations before we wrap it up in the HibernateUtil class.

50 CHAPTER 2

Starting a project
Building a SessionFactory
This is an example of a typical Hibernate startup procedure, in one line of code,
using automatic configuration file detection:

SessionFactory sessionFactory =
 new Configuration().configure().buildSessionFactory();

Wait—how did Hibernate know where the configuration file was located and
which one to load?

 When new Configuration() is called, Hibernate searches for a file named
hibernate.properties in the root of the classpath. If it’s found, all hibernate.*
properties are loaded and added to the Configuration object.

 When configure() is called, Hibernate searches for a file named hiber-
nate.cfg.xml in the root of the classpath, and an exception is thrown if it can’t
be found. You don’t have to call this method if you don’t have this configuration
file, of course. If settings in the XML configuration file are duplicates of proper-
ties set earlier, the XML settings override the previous ones.

 The location of the hibernate.properties configuration file is always the
root of the classpath, outside of any package. If you wish to use a different file or
to have Hibernate look in a subdirectory of your classpath for the XML configura-
tion file, you must pass a path as an argument of the configure() method:

SessionFactory sessionFactory = new Configuration()
 .configure("/persistence/auction.cfg.xml")
 .buildSessionFactory();

Finally, you can always set additional configuration options or mapping file loca-
tions on the Configuration object programmatically, before building the Ses-
sionFactory:

SessionFactory sessionFactory = new Configuration()
 .configure("/persistence/auction.cfg.xml")
 .setProperty(Environment.DEFAULT_SCHEMA, "CAVEATEMPTOR")
 .addResource("auction/CreditCard.hbm.xml")
 .buildSessionFactory();

Many sources for the configuration are applied here: First the hibernate.proper-
ties file in your classpath is read (if present). Next, all settings from /persistence/
auction.cfg.xml are added and override any previously applied settings. Finally, an
additional configuration property (a default database schema name) is set pro-
grammatically, and an additional Hibernate XML mapping metadata file is added
to the configuration.

 You can, of course, set all options programmatically, or switch between different
XML configuration files for different deployment databases. There is effectively no

Starting a Hibernate project 51
limitation on how you can configure and deploy Hibernate; in the end, you only
need to build a SessionFactory from a prepared configuration.

NOTE Method chaining—Method chaining is a programming style supported by
many Hibernate interfaces. This style is more popular in Smalltalk than
in Java and is considered by some people to be less readable and more
difficult to debug than the more accepted Java style. However, it’s conve-
nient in many cases, such as for the configuration snippets you’ve seen in
this section. Here is how it works: Most Java developers declare setter or
adder methods to be of type void, meaning they return no value; but in
Smalltalk, which has no void type, setter or adder methods usually return
the receiving object. We use this Smalltalk style in some code examples,
but if you don’t like it, you don’t need to use it. If you do use this coding
style, it’s better to write each method invocation on a different line. Oth-
erwise, it may be difficult to step through the code in your debugger.

Now that you know how Hibernate is started and how to build a SessionFactory,
what to do next? You have to create a configuration file for Hibernate.

Creating an XML configuration file
Let’s assume you want to keep things simple, and, like most users, you decide to
use a single XML configuration file for Hibernate that contains all the configura-
tion details.

 We recommend that you give your new configuration file the default name
hibernate.cfg.xml and place it directly in the source directory of your project, out-
side of any package. That way, it will end up in the root of your classpath after
compilation, and Hibernate will find it automatically. Look at the file in
listing 2.4.

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.url">
 jdbc:hsqldb:hsql://localhost
 </property>
 <property name="hibernate.connection.username">
 sa
 </property>

Listing 2.4 A simple Hibernate XML configuration file

52 CHAPTER 2

Starting a project
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- Use the C3P0 connection pool provider -->
 <property name="hibernate.c3p0.min_size">5</property>
 <property name="hibernate.c3p0.max_size">20</property>
 <property name="hibernate.c3p0.timeout">300</property>
 <property name="hibernate.c3p0.max_statements">50</property>
 <property name="hibernate.c3p0.idle_test_period">3000</property>

 <!-- Show and print nice SQL on stdout -->
 <property name="show_sql">true</property>
 <property name="format_sql">true</property>

 <!-- List of XML mapping files -->
 <mapping resource="hello/Message.hbm.xml"/>

 </session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD. Note that this isn’t the same DTD as the
one for Hibernate XML mapping files. Also note that we added some line breaks
in the property values to make this more readable—you shouldn’t do this in your
real configuration file (unless your database username contains a line break).

 First in the configuration file are the database connection settings. You need to
tell Hibernate which database JDBC driver you’re using and how to connect to the
database with a URL, a username, and a password (the password here is omitted,
because HSQLDB by default doesn’t require one). You set a Dialect, so that
Hibernate knows which SQL variation it has to generate to talk to your database;
dozens of dialects are packaged with Hibernate—look at the Hibernate API docu-
mentation to get a list.

 In the XML configuration file, Hibernate properties may be specified without
the hibernate prefix, so you can write either hibernate.show_sql or just
show_sql. Property names and values are otherwise identical to programmatic
configuration properties—that is, to the constants as defined in org.hiber-
nate.cfg.Environment. The hibernate.connection.driver_class property, for
example, has the constant Environment.DRIVER.

 Before we look at some important configuration options, consider the last line
in the configuration that names a Hibernate XML mapping file. The Config-
uration object needs to know about all your XML mapping files before you build
the SessionFactory. A SessionFactory is an object that represents a particular

Starting a Hibernate project 53
Hibernate configuration for a particular set of mapping metadata. You can either
list all your XML mapping files in the Hibernate XML configuration file, or you
can set their names and paths programmatically on the Configuration object. In
any case, if you list them as a resource, the path to the mapping files is the relative
location on the classpath, with, in this example, hello being a package in the root
of the classpath.

 You also enabled printing of all SQL executed by Hibernate to the console, and
you told Hibernate to format it nicely so that you can check what is going on
behind the scenes. We’ll come back to logging later in this chapter.

 Another, sometimes useful, trick is to make configuration options more
dynamic with system properties:

...
<property name="show_sql">${displaysql}</property>
...

You can now specify a system property, such as with java -displaysql=true, on
the command line when you start your application, and this will automatically be
applied to the Hibernate configuration property.

 The database connection pool settings deserve extra attention.

The database connection pool
Generally, it isn’t advisable to create a connection each time you want to interact
with the database. Instead, Java applications should use a pool of connections.
Each application thread that needs to do work on the database requests a connec-
tion from the pool and then returns it to the pool when all SQL operations have
been executed. The pool maintains the connections and minimizes the cost of
opening and closing connections.

 There are three reasons for using a pool:

■ Acquiring a new connection is expensive. Some database management sys-
tems even start a completely new server process for each connection.

■ Maintaining many idle connections is expensive for a database manage-
ment system, and the pool can optimize the usage of idle connections (or
disconnect if there are no requests).

■ Creating prepared statements is also expensive for some drivers, and the
connection pool can cache statements for a connection across requests.

Figure 2.2 shows the role of a connection pool in an unmanaged application run-
time environment (that is, one without any application server).

54 CHAPTER 2

Starting a project
With no application server to provide a connection pool, an application either
implements its own pooling algorithm or relies on a third-party library such as the
open source C3P0 connection pooling software. Without Hibernate, the applica-
tion code calls the connection pool to obtain a JDBC connection and then exe-
cutes SQL statements with the JDBC programming interface. When the
application closes the SQL statements and finally closes the connection, the pre-
pared statements and connection aren’t destroyed, but are returned to the pool.

 With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate Session
and Query API for persistence operations, and it manages database transactions
(probably) with the Hibernate Transaction API.

 Hibernate defines a plug-in architecture that allows integration with any con-
nection-pooling software. However, support for C3P0 is built in, and the software
comes bundled with Hibernate, so you’ll use that (you already copied the c3p0.jar
file into your library directory, right?). Hibernate maintains the pool for you, and
configuration properties are passed through. How do you configure C3P0
through Hibernate?

main()

Nonmanaged JSE environment

Figure 2.2 JDBC connection pooling in a nonmanaged environment

main()

Nonmanaged JSE environment

Figure 2.3 Hibernate with a connection pool in a nonmanaged environment

Starting a Hibernate project 55
 One way to configure the connection pool is to put the settings into your
hibernate.cfg.xml configuration file, like you did in the previous section.

 Alternatively, you can create a hibernate.properties file in the classpath root of
the application. An example of a hibernate.properties file for C3P0 is shown in
listing 2.5. Note that this file, with the exception of a list of mapping resources, is
equivalent to the configuration shown in listing 2.4.

hibernate.connection.driver_class = org.hsqldb.jdbcDriver
hibernate.connection.url = jdbc:hsqldb:hsql://localhost
hibernate.connection.username = sa
hibernate.dialect = org.hibernate.dialect.HSQLDialect

hibernate.c3p0.min_size = 5
hibernate.c3p0.max_size = 20
hibernate.c3p0.timeout = 300
hibernate.c3p0.max_statements = 50
hibernate.c3p0.idle_test_period = 3000

hibernate.show_sql = true
hibernate.format_sql = true

This is the minimum number of JDBC connections that C3P0 keeps ready at all
times.

This is the maximum number of connections in the pool. An exception is thrown
at runtime if this number is exhausted.

You specify the timeout period (in this case, 300 seconds) after which an idle con-
nection is removed from the pool.

A maximum of 50 prepared statements will be cached. Caching of prepared state-
ments is essential for best performance with Hibernate.

This is the idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as the connec-
tion pool (the c3p0.max_size option is needed—you don’t need any other switch
to enable C3P0 support). C3P0 has more features than shown in the previous
example; refer to the properties file in the etc/ subdirectory of the Hibernate dis-
tribution to get a comprehensive example you can copy from.

 The Javadoc for the class org.hibernate.cfg.Environment also documents
every Hibernate configuration property. Furthermore, you can find an up-to-date
table with all Hibernate configuration options in the Hibernate reference

Listing 2.5 Using hibernate.properties for C3P0 connection pool settings

B
C

D E

F

B

C

D

E

F

56 CHAPTER 2

Starting a project
documentation. We’ll explain the most important settings throughout the book,
however. You already know all you need to get started.

FAQ Can I supply my own connections? Implement the org.hibernate.connec-
tion.ConnectionProvider interface, and name your implementation
with the hibernate.connection.provider_class configuration option.
Hibernate will now rely on your custom provider if it needs a database
connection.

Now that you’ve completed the Hibernate configuration file, you can move on
and create the SessionFactory in your application.

Handling the SessionFactory
In most Hibernate applications, the SessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any Session should be created using this single
SessionFactory. The SessionFactory is thread-safe and can be shared; a Ses-
sion is a single-threaded object.

 A frequently asked question is where the factory should be stored after cre-
ation and how it can be accessed without much hassle. There are more advanced
but comfortable options such as JNDI and JMX, but they’re usually available only
in full Java EE application servers. Instead, we’ll introduce a pragmatic and quick
solution that solves both the problem of Hibernate startup (the one line of code)
and the storing and accessing of the SessionFactory: you’ll use a static global
variable and static initialization.

 Both the variable and initialization can be implemented in a single class, which
you’ll call HibernateUtil. This helper class is well known in the Hibernate com-
munity—it’s a common pattern for Hibernate startup in plain Java applications
without Java EE services. A basic implementation is shown in listing 2.6.

package persistence;

import org.hibernate.*;
import org.hibernate.cfg.*;

public class HibernateUtil {

 private static SessionFactory sessionFactory;

 static {
 try {
 sessionFactory=new Configuration()
 .configure()

Listing 2.6 The HibernateUtil class for startup and SessionFactory handling

Starting a Hibernate project 57
 .buildSessionFactory();
 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 // Alternatively, you could look up in JNDI here
 return sessionFactory;
 }

 public static void shutdown() {
 // Close caches and connection pools
 getSessionFactory().close();
 }

}

You create a static initializer block to start up Hibernate; this block is executed by
the loader of this class exactly once, on initialization when the class is loaded. The
first call of HibernateUtil in the application loads the class, builds the Session-
Factory, and sets the static variable at the same time. If a problem occurs, any
Exception or Error is wrapped and thrown out of the static block (that’s why you
catch Throwable). The wrapping in ExceptionInInitializerError is mandatory
for static initializers.

 You’ve created this new class in a new package called persistence. In a fully
featured Hibernate application, you often need such a package—for example, to
wrap up your custom persistence layer interceptors and data type converters as
part of your infrastructure.

 Now, whenever you need access to a Hibernate Session in your application,
you can get it easily with HibernateUtil.getSessionFactory().openSession(),
just as you did earlier in the HelloWorld main application code.

 You’re almost ready to run and test the application. But because you certainly
want to know what is going on behind the scenes, you’ll first enable logging.

Enabling logging and statistics
You’ve already seen the hibernate.show_sql configuration property. You’ll need
it continually when you develop software with Hibernate; it enables logging of all
generated SQL to the console. You’ll use it for troubleshooting, for performance
tuning, and to see what’s going on. If you also enable hibernate.format_sql, the
output is more readable but takes up more screen space. A third option you
haven’t set so far is hibernate.use_sql_comments—it causes Hibernate to put

58 CHAPTER 2

Starting a project
comments inside all generated SQL statements to hint at their origin. For exam-
ple, you can then easily see if a particular SQL statement was generated from an
explicit query or an on-demand collection initialization.

 Enabling the SQL output to stdout is only your first logging option. Hiber-
nate (and many other ORM implementations) execute SQL statements asynchro-
nously. An INSERT statement isn’t usually executed when the application calls
session.save(), nor is an UPDATE immediately issued when the application
calls item.setPrice(). Instead, the SQL statements are usually issued at the end
of a transaction.

 This means that tracing and debugging ORM code is sometimes nontrivial. In
theory, it’s possible for the application to treat Hibernate as a black box and
ignore this behavior. However, when you’re troubleshooting a difficult problem,
you need to be able to see exactly what is going on inside Hibernate. Because
Hibernate is open source, you can easily step into the Hibernate code, and occa-
sionally this helps a great deal! Seasoned Hibernate experts debug problems by
looking at the Hibernate log and the mapping files only; we encourage you to
spend some time with the log output generated by Hibernate and familiarize
yourself with the internals.

 Hibernate logs all interesting events through Apache commons-logging, a thin
abstraction layer that directs output to either Apache Log4j (if you put log4j.jar in
your classpath) or JDK 1.4 logging (if you’re running under JDK 1.4 or above and
Log4j isn’t present). We recommend Log4j because it’s more mature, more popu-
lar, and under more active development.

 To see output from Log4j, you need a file named log4j.properties in your class-
path (right next to hibernate.properties or hibernate.cfg.xml). Also, don’t forget
to copy the log4j.jar library to your lib directory. The Log4j configuration exam-
ple in listing 2.7 directs all log messages to the console.

Direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE}
 ➥%5p %c{1}:%L - %m%n

Root logger option
log4j.rootLogger=INFO, stdout

Hibernate logging options (INFO only shows startup messages)
log4j.logger.org.hibernate=INFO

Listing 2.7 An example log4j.properties configuration file

Starting a Hibernate project 59
Log JDBC bind parameter runtime arguments
log4j.logger.org.hibernate.type=INFO

The last category in this configuration file is especially interesting: It enables the
logging of JDBC bind parameters if you set it to DEBUG level, providing information
you usually don’t see in the ad hoc SQL console log. For a more comprehensive
example, check the log4j.properties file bundled in the etc/ directory of the
Hibernate distribution, and also look at the Log4j documentation for more infor-
mation. Note that you should never log anything at DEBUG level in production,
because doing so can seriously impact the performance of your application.

 You can also monitor Hibernate by enabling live statistics. Without an applica-
tion server (that is, if you don’t have a JMX deployment environment), the easiest
way to get statistics out of the Hibernate engine at runtime is the SessionFactory:

Statistics stats =
 HibernateUtil.getSessionFactory().getStatistics();

stats.setStatisticsEnabled(true);
...

stats.getSessionOpenCount();
stats.logSummary();

EntityStatistics itemStats =
 stats.getEntityStatistics("auction.model.Item");
itemStats.getFetchCount();

The statistics interfaces are Statistics for global information, Entity-

Statistics for information about a particular entity, CollectionStatistics for
a particular collection role, QueryStatistics for SQL and HQL queries, and Sec-
ondLevelCacheStatistics for detailed runtime information about a particular
region in the optional second-level data cache. A convenient method is logSum-
mary(), which prints out a complete summary to the console with a single call. If
you want to enable the collection of statistics through the configuration, and not
programmatically, set the hibernate.generate_statistics configuration prop-
erty to true. See the API documentation for more information about the various
statistics retrieval methods.

 Before you run the “Hello World” application, check that your work directory
has all the necessary files:

WORKDIR
build.xml
+lib

60 CHAPTER 2

Starting a project
 <all required libraries>
+src
 +hello
 HelloWorld.java
 Message.java
 Message.hbm.xml
 +persistence
 HibernateUtil.java
 hibernate.cfg.xml (or hibernate.properties)
 log4j.properties

The first file, build.xml, is the Ant build definition. It contains the Ant targets for
building and running the application, which we’ll discuss next. You’ll also add a
target that can generate the database schema automatically.

2.1.4 Running and testing the application

To run the application, you need to compile it first and start the database manage-
ment system with the right database schema.

 Ant is a powerful build system for Java. Typically, you’d write a build.xml file
for your project and call the build targets you defined in this file with the Ant
command-line tool. You can also call Ant targets from your Java IDE, if that is
supported.

Compiling the project with Ant
You’ll now add a build.xml file and some targets to the “Hello World” project. The
initial content for the build file is shown in listing 2.8—you create this file directly
in your WORKDIR.

<project name="HelloWorld" default="compile" basedir=".">

 <!-- Name of project and version -->
 <property name="proj.name" value="HelloWorld"/>
 <property name="proj.version" value="1.0"/>

 <!-- Global properties for this build -->
 <property name="src.java.dir" value="src"/>
 <property name="lib.dir" value="lib"/>
 <property name="build.dir" value="bin"/>

 <!-- Classpath declaration -->
 <path id="project.classpath">
 <fileset dir="${lib.dir}">
 <include name="**/*.jar"/>
 <include name="**/*.zip"/>
 </fileset>

Listing 2.8 A basic Ant build file for “Hello World”

Starting a Hibernate project 61
 </path>

 <!-- Useful shortcuts -->
 <patternset id="meta.files">
 <include name="**/*.xml"/>
 <include name="**/*.properties"/>
 </patternset>

 <!-- Clean up -->
 <target name="clean">
 <delete dir="${build.dir}"/>
 <mkdir dir="${build.dir}"/>
 </target>

 <!-- Compile Java source -->
 <target name="compile" depends="clean">
 <mkdir dir="${build.dir}"/>
 <javac
 srcdir="${src.java.dir}"
 destdir="${build.dir}"
 nowarn="on">
 <classpath refid="project.classpath"/>
 </javac>
 </target>

 <!-- Copy metadata to build classpath -->
 <target name="copymetafiles">
 <copy todir="${build.dir}">
 <fileset dir="${src.java.dir}">
 <patternset refid="meta.files"/>
 </fileset>
 </copy>
 </target>

 <!-- Run HelloWorld -->
 <target name="run" depends="compile, copymetafiles"
 description="Build and run HelloWorld">
 <java fork="true"
 classname="hello.HelloWorld"
 classpathref="project.classpath">
 <classpath path="${build.dir}"/>
 </java>
 </target>

</project>

The first half of this Ant build file contains property settings, such as the project
name and global locations of files and directories. You can already see that this
build is based on the existing directory layout, your WORKDIR (for Ant, this is the
same directory as the basedir). The default target, when this build file is called
with no named target, is compile.

62 CHAPTER 2

Starting a project
 Next, a name that can be easily referenced later, project.classpath, is
defined as a shortcut to all libraries in the library directory of the project. Another
shortcut for a pattern that will come in handy is defined as meta.files. You need
to handle configuration and metadata files separately in the processing of the
build, using this filter.

 The clean target removes all created and compiled files, and cleans the
project. The last three targets, compile, copymetafiles, and run, should be self-
explanatory. Running the application depends on the compilation of all Java
source files, and the copying of all mapping and property configuration files to
the build directory.

 Now, execute ant compile in your WORKDIR to compile the “Hello World”
application. You should see no errors (nor any warnings) during compilation and
find your compiled class files in the bin directory. Also call ant copymetafiles
once, and check whether all configuration and mapping files are copied correctly
into the bin directory.

 Before you run the application, start the database management system and
export a fresh database schema.

Starting the HSQL database system
Hibernate supports more than 25 SQL database management systems out of the
box, and support for any unknown dialect can be added easily. If you have an
existing database, or if you know basic database administration, you can also
replace the configuration options (mostly connection and dialect settings) you
created earlier with settings for your own preferred system.

 To say hello to the world, you need a lightweight, no-frills database system
that is easy to install and configure. A good choice is HSQLDB, an open source
SQL database management system written in Java. It can run in-process with the
main application, but in our experience, running it stand-alone with a TCP port
listening for connections is usually more convenient. You’ve already copied the
hsqldb.jar file into the library directory of your WORKDIR—this library includes
both the database engine and the JDBC driver required to connect to a run-
ning instance.

 To start the HSQLDB server, open up a command line, change into your
WORKDIR, and run the command shown in figure 2.4. You should see startup mes-
sages and finally a help message that tells you how to shut down the database sys-
tem (it’s OK to use Ctrl+C). You’ll also find some new files in your WORKDIR,
starting with test—these are the files used by HSQLDB to store your data. If you
want to start with a fresh database, delete the files between restarts of the server.

Starting a Hibernate project 63
You now have an empty database that has no content, not even a schema. Let’s
create the schema next.

Exporting the database schema
You can create the database schema by hand by writing SQL DDL with CREATE
statements and executing this DDL on your database. Or (and this is much more
convenient) you can let Hibernate take care of this and create a default schema
for your application. The prerequisite in Hibernate for automatic generation of
SQL DDL is always a Hibernate mapping metadata definition, either in XML map-
ping files or in Java source-code annotations. We assume that you’ve designed and
implemented your domain model classes and written mapping metadata in XML
as you followed the previous sections.

 The tool used for schema generation is hbm2ddl; its class is org.hibernate.
tool.hbm2ddl.SchemaExport, so it’s also sometimes called SchemaExport.

 There are many ways to run this tool and create a schema:

■ You can run <hbm2ddl> in an Ant target in your regular build procedure.

■ You can run SchemaExport programmatically in application code, maybe in
your HibernateUtil startup class. This isn’t common, however, because you
rarely need programmatic control over schema generation.

■ You can enable automatic export of a schema when your SessionFactory
is built by setting the hibernate.hbm2ddl.auto configuration property to
create or create-drop. The first setting results in DROP statements fol-
lowed by CREATE statements when the SessionFactory is built. The second
setting adds additional DROP statements when the application is shut down
and the SessionFactory is closed—effectively leaving a clean database
after every run.

Figure 2.4 Starting the HSQLDB server from the command line

64 CHAPTER 2

Starting a project
Programmatic schema generation is straightforward:

Configuration cfg = new Configuration().configure();
SchemaExport schemaExport = new SchemaExport(cfg);
schemaExport.create(false, true);

A new SchemaExport object is created from a Configuration; all settings (such as
the database driver, connection URL, and so on) are passed to the SchemaExport
constructor. The create(false, true) call triggers the DDL generation process,
without any SQL printed to stdout (because of the false setting), but with DDL
immediately executed in the database (true). See the SchemaExport API for more
information and additional settings.

 Your development process determines whether you should enable automatic
schema export with the hibernate.hbm2ddl.auto configuration setting. Many
new Hibernate users find the automatic dropping and re-creation on Session-
Factory build a little confusing. Once you’re more familiar with Hibernate, we
encourage you to explore this option for fast turnaround times in integration test-
ing.

 An additional option for this configuration property, update, can be useful
during development: it enables the built-in SchemaUpdate tool, which can make
schema evolution easier. If enabled, Hibernate reads the JDBC database metadata
on startup and creates new tables and constraints by comparing the old schema
with the current mapping metadata. Note that this functionality depends on the
quality of the metadata provided by the JDBC driver, an area in which many driv-
ers are lacking. In practice, this feature is therefore less exciting and useful than
it sounds.

WARNING We’ve seen Hibernate users trying to use SchemaUpdate to update the
schema of a production database automatically. This can quickly end in
disaster and won’t be allowed by your DBA.

You can also run SchemaUpdate programmatically:

Configuration cfg = new Configuration().configure();
SchemaUpdate schemaUpdate = new SchemaUpdate(cfg);
schemaUpdate.execute(false);

The false setting at the end again disables printing of the SQL DDL to the con-
sole and only executes the statements directly on the database. If you export the
DDL to the console or a text file, your DBA may be able to use it as a starting point
to produce a quality schema-evolution script.

 Another hbm2ddl.auto setting useful in development is validate. It enables
SchemaValidator to run at startup. This tool can compare your mapping against

Starting a Hibernate project 65
the JDBC metadata and tell you if the schema and mappings match. You can also
run SchemaValidator programmatically:

Configuration cfg = new Configuration().configure();
new SchemaValidator(cfg).validate();

An exception is thrown if a mismatch between the mappings and the database
schema is detected.

 Because you’re basing your build system on Ant, you’ll ideally add a schemaex-
port target to your Ant build that generates and exports a fresh schema for your
database whenever you need one (see listing 2.9).

<taskdef name="hibernatetool"
 classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="project.classpath"/>

<target name="schemaexport" depends="compile, copymetafiles"
 description="Exports a generated schema to DB and file">

 <hibernatetool destdir="${basedir}">
 <classpath path="${build.dir}"/>

 <configuration
 configurationfile="${build.dir}/hibernate.cfg.xml"/>

 <hbm2ddl
 drop="true"
 create="true"
 export="true"
 outputfilename="helloworld-ddl.sql"
 delimiter=";"
 format="true"/>

 </hibernatetool>

</target>

In this target, you first define a new Ant task that you’d like to use, Hiber-
nateToolTask. This is a generic task that can do many things—exporting an SQL
DDL schema from Hibernate mapping metadata is only one of them. You’ll use it
throughout this chapter in all Ant builds. Make sure you include all Hibernate
libraries, required third-party libraries, and your JDBC driver in the classpath of
the task definition. You also need to add the hibernate-tools.jar file, which can be
found in the Hibernate Tools download package.

Listing 2.9 Ant target for schema export

66 CHAPTER 2

Starting a project
 The schemaexport Ant target uses this task, and it also depends on the com-
piled classes and copied configuration files in the build directory. The basic use of
the <hibernatetool> task is always the same: A configuration is the starting point
for all code artifact generation. The variation shown here, <configuration>,
understands Hibernate XML configuration files and reads all Hibernate XML
mapping metadata files listed in the given configuration. From that information,
an internal Hibernate metadata model (which is what hbm stands for everywhere)
is produced, and this model data is then processed subsequently by exporters. We
discuss tool configurations that can read annotations or a database for reverse
engineering later in this chapter.

 The other element in the target is a so-called exporter. The tool configuration
feeds its metadata information to the exporter you selected; in the preceding
example, it’s the <hbm2ddl> exporter. As you may have guessed, this exporter
understands the Hibernate metadata model and produces SQL DDL. You can con-
trol the DDL generation with several options:

■ The exporter generates SQL, so it’s mandatory that you set an SQL dialect in
your Hibernate configuration file.

■ If drop is set to true, SQL DROP statements will be generated first, and all
tables and constraints are removed if they exist. If create is set to true, SQL
CREATE statements are generated next, to create all tables and constraints. If
you enable both options, you effectively drop and re-create the database
schema on every run of the Ant target.

■ If export is set to true, all DDL statements are directly executed in the data-
base. The exporter opens a connection to the database using the connec-
tion settings found in your configuration file.

■ If an outputfilename is present, all DDL statements are written to this file,
and the file is saved in the destdir you configured. The delimiter charac-
ter is appended to all SQL statements written to the file, and if format is
enabled, all SQL statements are nicely indented.

You can now generate, print, and directly export the schema to a text file and the
database by running ant schemaxport in your WORKDIR. All tables and con-
straints are dropped and then created again, and you have a fresh database ready.
(Ignore any error message that says that a table couldn’t be dropped because it
didn’t exist.)

Starting a Hibernate project 67
 Check that your database is running and that it has the correct database
schema. A useful tool included with HSQLDB is a simple database browser. You
can call it with the following Ant target:

<target name="dbmanager" description="Start HSQLDB manager">
 <java
 classname="org.hsqldb.util.DatabaseManagerSwing"
 fork="yes"
 classpathref="project.classpath"
 failonerror="true">
 <arg value="-url"/>
 <arg value="jdbc:hsqldb:hsql://localhost/"/>
 <arg value="-driver"/>
 <arg value="org.hsqldb.jdbcDriver"/>
 </java>
</target>

You should see the schema shown in figure 2.5 after logging in.
 Run your application with ant run, and watch the console for Hibernate log

output. You should see your messages being stored, loaded, and printed. Fire an
SQL query in the HSQLDB browser to check the content of your database directly.

 You now have a working Hibernate infrastructure and Ant project build. You
could skip to the next chapter and continue writing and mapping more complex
business classes. However, we recommend that you spend some time with the

Figure 2.5 The HSQLDB browser and SQL console

68 CHAPTER 2

Starting a project
“Hello World” application and extend it with more functionality. You can, for
example, try different HQL queries or logging options. Don’t forget that your
database system is still running in the background, and that you have to either
export a fresh schema or stop it and delete the database files to get a clean and
empty database again.

 In the next section, we walk through the “Hello World” example again, with
Java Persistence interfaces and EJB 3.0.

2.2 Starting a Java Persistence project

In the following sections, we show you some of the advantages of JPA and the new
EJB 3.0 standard, and how annotations and the standardized programming inter-
faces can simplify application development, even when compared with Hibernate.
Obviously, designing and linking to standardized interfaces is an advantage if you
ever need to port or deploy an application on a different runtime environment.
Besides portability, though, there are many good reasons to give JPA a closer look.

 We’ll now guide you through another “Hello World” example, this time with
Hibernate Annotations and Hibernate EntityManager. You’ll reuse the basic
project infrastructure introduced in the previous section so you can see where JPA
differs from Hibernate. After working with annotations and the JPA interfaces,
we’ll show how an application integrates and interacts with other managed com-
ponents—EJBs. We’ll discuss many more application design examples later in the
book; however, this first glimpse will let you decide on a particular approach as
soon as possible.

2.2.1 Using Hibernate Annotations

Let’s first use Hibernate Annotations to replace the Hibernate XML mapping files
with inline metadata. You may want to copy your existing “Hello World” project
directory before you make the following changes—you’ll migrate from native
Hibernate to standard JPA mappings (and program code later on).

 Copy the Hibernate Annotations libraries to your WORKDIR/lib directory—see
the Hibernate Annotations documentation for a list of required libraries. (At the
time of writing, hibernate-annotations.jar and the API stubs in ejb3-persistence.jar
were required.)

 Now delete the src/hello/Message.hbm.xml file. You’ll replace this file with
annotations in the src/hello/Message.java class source, as shown in listing 2.10.

Starting a Java Persistence project 69
package hello;

import javax.persistence.*;

@Entity
@Table(name = "MESSAGES")
public class Message {

 @Id @GeneratedValue
 @Column(name = "MESSAGE_ID")
 private Long id;

 @Column(name = "MESSAGE_TEXT")
 private String text;

 @ManyToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "NEXT_MESSAGE_ID")
 private Message nextMessage;

 private Message() {}

 public Message(String text) {
 this.text = text;
 }

 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }

 public String getText() {
 return text;
 }
 public void setText(String text) {
 this.text = text;
 }

 public Message getNextMessage() {
 return nextMessage;
 }
 public void setNextMessage(Message nextMessage) {
 this.nextMessage = nextMessage;
 }
}

The first thing you’ll probably notice in this updated business class is the import
of the javax.persistence interfaces. Inside this package are all the standardized
JPA annotations you need to map the @Entity class to a database @Table. You put

Listing 2.10 Mapping the Message class with annotations

70 CHAPTER 2

Starting a project
annotations on the private fields of the class, starting with @Id and @Generated-
Value for the database identifier mapping. The JPA persistence provider detects
that the @Id annotation is on a field and assumes that it should access properties
on an object directly through fields at runtime. If you placed the @Id annotation
on the getId() method, you’d enable access to properties through getter and set-
ter methods by default. Hence, all other annotations are also placed on either
fields or getter methods, following the selected strategy.

 Note that the @Table, @Column, and @JoinColumn annotations aren’t necessary.
All properties of an entity are automatically considered persistent, with default
strategies and table/column names. You add them here for clarity and to get the
same results as with the XML mapping file. Compare the two mapping metadata
strategies now, and you’ll see that annotations are much more convenient and
reduce the lines of metadata significantly. Annotations are also type-safe, they sup-
port autocompletion in your IDE as you type (like any other Java interfaces), and
they make refactoring of classes and properties easier.

 If you’re worried that the import of the JPA interfaces will bind your code to
this package, you should know that it’s only required on your classpath when the
annotations are used by Hibernate at runtime. You can load and execute this class
without the JPA interfaces on your classpath as long as you don’t want to load and
store instances with Hibernate.

 A second concern that developers new to annotations sometimes have relates
to the inclusion of configuration metadata in Java source code. By definition, config-
uration metadata is metadata that can change for each deployment of the applica-
tion, such as table names. JPA has a simple solution: You can override or replace
all annotated metadata with XML metadata files. Later in the book, we’ll show you
how this is done.

 Let’s assume that this is all you want from JPA—annotations instead of XML.
You don’t want to use the JPA programming interfaces or query language; you’ll
use Hibernate Session and HQL. The only other change you need to make to
your project, besides deleting the now obsolete XML mapping file, is a change in
the Hibernate configuration, in hibernate.cfg.xml:

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>
 <!-- ... Many property settings ... -->

 <!-- List of annotated classes-->
 <mapping class="hello.Message"/>

Starting a Java Persistence project 71
</session-factory>
</hibernate-configuration>

The Hibernate configuration file previously had a list of all XML mapping files.
This has been replaced with a list of all annotated classes. If you use programmatic
configuration of a SessionFactory, the addAnnotatedClass() method replaces
the addResource() method:

// Load settings from hibernate.properties
AnnotationConfiguration cfg = new AnnotationConfiguration();
// ... set other configuration options programmatically

cfg.addAnnotatedClass(hello.Message.class);

SessionFactory sessionFactory = cfg.buildSessionFactory();

Note that you have now used AnnotationConfiguration instead of the basic
Hibernate Configuration interface—this extension understands annotated
classes. At a minimum, you also need to change your initializer in HibernateUtil
to use that interface. If you export the database schema with an Ant target, replace
<configuration> with <annotationconfiguration> in your build.xml file.

 This is all you need to change to run the “Hello World” application with anno-
tations. Try running it again, probably with a fresh database.

 Annotation metadata can also be global, although you don’t need this for the
“Hello World” application. Global annotation metadata is placed in a file named
package-info.java in a particular package directory. In addition to listing anno-
tated classes, you need to add the packages that contain global metadata to your
configuration. For example, in a Hibernate XML configuration file, you need to
add the following:

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>
 <!-- ... Many property settings ... -->

 <!-- List of annotated classes-->
 <mapping class="hello.Message"/>

 <!-- List of packages with package-info.java -->
 <mapping package="hello"/>

</session-factory>
</hibernate-configuration>

Or you could achieve the same results with programmatic configuration:

72 CHAPTER 2

Starting a project
// Load settings from hibernate.properties
AnnotationConfiguration cfg = new AnnotationConfiguration();
// ... set other configuration options programmatically

cfg.addClass(hello.Message.class);

cfg.addPackage("hello");

SessionFactory sessionFactory = cfg.buildSessionFactory();

Let’s take this one step further and replace the native Hibernate code that loads
and stores messages with code that uses JPA. With Hibernate Annotations and
Hibernate EntityManager, you can create portable and standards-compliant map-
pings and data access code.

2.2.2 Using Hibernate EntityManager

Hibernate EntityManager is a wrapper around Hibernate Core that provides the
JPA programming interfaces, supports the JPA entity instance lifecycle, and allows
you to write queries with the standardized Java Persistence query language.
Because JPA functionality is a subset of Hibernate’s native capabilities, you may
wonder why you should use the EntityManager package on top of Hibernate.
We’ll present a list of advantages later in this section, but you’ll see one particular
simplification as soon as you configure your project for Hibernate EntityManager:
You no longer have to list all annotated classes (or XML mapping files) in your
configuration file.

 Let’s modify the “Hello World” project and prepare it for full JPA compatibility.

Basic JPA configuration
A SessionFactory represents a particular logical data-store configuration in a
Hibernate application. The EntityManagerFactory has the same role in a JPA
application, and you configure an EntityManagerFactory (EMF) either with con-
figuration files or in application code just as you would configure a SessionFac-
tory. The configuration of an EMF, together with a set of mapping metadata
(usually annotated classes), is called the persistence unit.

 The notion of a persistence unit also includes the packaging of the applica-
tion, but we want to keep this as simple as possible for “Hello World”; we’ll assume
that you want to start with a standardized JPA configuration and no special packag-
ing. Not only the content, but also the name and location of the JPA configuration
file for a persistence unit are standardized.

 Create a directory named WORKDIR/etc/META-INF and place the basic config-
uration file named persistence.xml, shown in listing 2.11, in that directory:

Starting a Java Persistence project 73
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="helloworld">
 <properties>
 <property name="hibernate.ejb.cfgfile"
 value="/hibernate.cfg.xml"/>
 </properties>
 </persistence-unit>

</persistence>

Every persistence unit needs a name, and in this case it’s helloworld.

NOTE The XML header in the preceding persistence unit configuration file
declares what schema should be used, and it’s always the same. We’ll
omit it in future examples and assume that you’ll add it.

A persistence unit is further configured with an arbitrary number of properties,
which are all vendor-specific. The property in the previous example, hiber-
nate.ejb.cfgfile, acts as a catchall. It refers to a hibernate.cfg.xml file (in the
root of the classpath) that contains all settings for this persistence unit—you’re
reusing the existing Hibernate configuration. Later, you’ll move all configuration
details into the persistence.xml file, but for now you’re more interested in run-
ning “Hello World” with JPA.

 The JPA standard says that the persistence.xml file needs to be present in the
META-INF directory of a deployed persistence unit. Because you aren’t really pack-
aging and deploying the persistence unit, this means that you have to copy persis-
tence.xml into a META-INF directory of the build output directory. Modify your
build.xml, and add the following to the copymetafiles target:

<property name="src.etc.dir" value="etc"/>

<target name="copymetafiles">

 <!-- Copy metadata to build -->
 <copy todir="${build.dir}">
 <fileset dir="${src.java.dir}">
 <patternset refid="meta.files"/>
 </fileset>
 </copy>

Listing 2.11 Persistence unit configuration file

74 CHAPTER 2

Starting a project
 <!-- Copy configuration files from etc/ -->
 <copy todir="${build.dir}">
 <fileset dir="${src.etc.dir}">
 <patternset refid="meta.files"/>
 </fileset>
 </copy>

</target>

 Everything found in WORKDIR/etc that matches the meta.files pattern is
copied to the build output directory, which is part of the classpath at runtime.

 Let’s rewrite the main application code with JPA.

“Hello World” with JPA
These are your primary programming interfaces in Java Persistence:

■ javax.persistence.Persistence—A startup class that provides a static
method for the creation of an EntityManagerFactory.

■ javax.persistence.EntityManagerFactory—The equivalent to a Hiber-
nate SessionFactory. This runtime object represents a particular persis-
tence unit. It’s thread-safe, is usually handled as a singleton, and provides
methods for the creation of EntityManager instances.

■ javax.persistence.EntityManager—The equivalent to a Hibernate Ses-
sion. This single-threaded, nonshared object represents a particular unit of
work for data access. It provides methods to manage the lifecycle of entity
instances and to create Query instances.

■ javax.persistence.Query—This is the equivalent to a Hibernate Query.
An object is a particular JPA query language or native SQL query representa-
tion, and it allows safe binding of parameters and provides various methods
for the execution of the query.

■ javax.persistence.EntityTransaction—This is the equivalent to a
Hibernate Transaction, used in Java SE environments for the demarcation
of RESOURCE_LOCAL transactions. In Java EE, you rely on the standardized
javax.transaction.UserTransaction interface of JTA for programmatic
transaction demarcation.

To use the JPA interfaces, you need to copy the required libraries to your
WORKDIR/lib directory; check the documentation bundled with Hibernate
EntityManager for an up-to-date list. You can then rewrite the code in WORKDIR/
src/hello/HelloWorld.java and switch from Hibernate to JPA interfaces (see
listing 2.12).

Starting a Java Persistence project 75

package hello;

import java.util.*;
import javax.persistence.*;

public class HelloWorld {

 public static void main(String[] args) {

 // Start EntityManagerFactory
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("helloworld");

 // First unit of work
 EntityManager em = emf.createEntityManager();
 EntityTransaction tx = em.getTransaction();
 tx.begin();

 Message message = new Message("Hello World");
 em.persist(message);

 tx.commit();
 em.close();

 // Second unit of work
 EntityManager newEm = emf.createEntityManager();
 EntityTransaction newTx = newEm.getTransaction();
 newTx.begin();

 List messages = newEm
 .createQuery("select m from Message m
 ➥ order by m.text asc")
 .getResultList();

 System.out.println(messages.size() + " message(s) found");

 for (Object m : messages) {
 Message loadedMsg = (Message) m;
 System.out.println(loadedMsg.getText());
 }

 newTx.commit();
 newEm.close();

 // Shutting down the application
 emf.close();
 }
}

Listing 2.12 The “Hello World” main application code with JPA

76 CHAPTER 2

Starting a project
The first thing you probably notice in this code is that there is no Hibernate
import anymore, only javax.peristence.*. The EntityManagerFactory is cre-
ated with a static call to Persistence and the name of the persistence unit. The
rest of the code should be self-explanatory—you use JPA just like Hibernate,
though there are some minor differences in the API, and methods have slightly
different names. Furthermore, you didn’t use the HibernateUtil class for static
initialization of the infrastructure; you can write a JPAUtil class and move the cre-
ation of an EntityManagerFactory there if you want, or you can remove the now
unused WORKDIR/src/persistence package.

 JPA also supports programmatic configuration, with a map of options:

Map myProperties = new HashMap();
myProperties.put("hibernate.hbm2ddl.auto", "create-drop");
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("helloworld", myProperties);

Custom programmatic properties override any property you’ve set in the persis-
tence.xml configuration file.

 Try to run the ported HelloWorld code with a fresh database. You should see
the exact same log output on your screen as you did with native Hibernate—the
JPA persistence provider engine is Hibernate.

Automatic detection of metadata
We promised earlier that you won’t have to list all your annotated classes or XML
mapping files in the configuration, but it’s still there, in hibernate.cfg.xml. Let’s
enable the autodetection feature of JPA.

 Run the “Hello World” application again after switching to DEBUG logging for
the org.hibernate package. Some additional lines should appear in your log:

...
Ejb3Configuration:141
 - Trying to find persistence unit: helloworld
Ejb3Configuration:150
 - Analyse of persistence.xml:
 file:/helloworld/build/META-INF/persistence.xml
PersistenceXmlLoader:115
 - Persistent Unit name from persistence.xml: helloworld
Ejb3Configuration:359
 - Detect class: true; detect hbm: true
JarVisitor:178
 - Searching mapped entities in jar/par: file:/helloworld/build
JarVisitor:217
 - Filtering: hello.HelloWorld
JarVisitor:217
 - Filtering: hello.Message

Starting a Java Persistence project 77
JarVisitor:255
 - Java element filter matched for hello.Message
Ejb3Configuration:101
 - Creating Factory: helloworld
...

On startup, the Persistence.createEntityManagerFactory() method tries to
locate the persistence unit named helloworld. It searches the classpath for all
META-INF/persistence.xml files and then configures the EMF if a match is found.
The second part of the log shows something you probably didn’t expect. The JPA
persistence provider tried to find all annotated classes and all Hibernate XML
mapping files in the build output directory. The list of annotated classes (or the
list of XML mapping files) in hibernate.cfg.xml isn’t needed, because hello.Mes-
sage, the annotated entity class, has already been found.

 Instead of removing only this single unnecessary option from hiber-
nate.cfg.xml, let’s remove the whole file and move all configuration details into
persistence.xml (see listing 2.13).

<persistence-unit name="helloworld">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <!-- Not needed, Hibernate supports auto-detection in JSE
 <class>hello.Message</class>
 -->

 <properties>
 <property name="hibernate.archive.autodetection"
 value="class, hbm"/>

 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>

 <property name="hibernate.connection.driver_class"
 value="org.hsqldb.jdbcDriver"/>
 <property name="hibernate.connection.url"
 value="jdbc:hsqldb:hsql://localhost"/>
 <property name="hibernate.connection.username"
 value="sa"/>

 <property name="hibernate.c3p0.min_size"
 value="5"/>
 <property name="hibernate.c3p0.max_size"
 value="20"/>
 <property name="hibernate.c3p0.timeout"
 value="300"/>
 <property name="hibernate.c3p0.max_statements"
 value="50"/>

Listing 2.13 Full persistence unit configuration file

78 CHAPTER 2

Starting a project
 <property name="hibernate.c3p0.idle_test_period"
 value="3000"/>

 <property name="hibernate.dialect"
 value="org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.hbm2ddl.auto" value="create"/>

 </properties>
</persistence-unit>

There are three interesting new elements in this configuration file. First, you set
an explicit <provider> that should be used for this persistence unit. This is usu-
ally required only if you work with several JPA implementations at the same time,
but we hope that Hibernate will, of course, be the only one. Next, the specifica-
tion requires that you list all annotated classes with <class> elements if you
deploy in a non-Java EE environment—Hibernate supports autodetection of map-
ping metadata everywhere, making this optional. Finally, the Hibernate
configuration setting archive.autodetection tells Hibernate what metadata to
scan for automatically: annotated classes (class) and/or Hibernate XML map-
ping files (hbm). By default, Hibernate EntityManager scans for both. The rest of
the configuration file contains all options we explained and used earlier in this
chapter in the regular hibernate.cfg.xml file.

 Automatic detection of annotated classes and XML mapping files is a great fea-
ture of JPA. It’s usually only available in a Java EE application server; at least, this is
what the EJB 3.0 specification guarantees. But Hibernate, as a JPA provider, also
implements it in plain Java SE, though you may not be able to use the exact same
configuration with any other JPA provider.

 You’ve now created an application that is fully JPA specification-compliant.
Your project directory should look like this (note that we also moved log4j.proper-
ties to the etc/ directory):

WORKDIR
+etc
 log4j.properties
 +META-INF
 persistence.xml
+lib
 <all required libraries>
+src
 +hello
 HelloWorld.java
 Message.java

All JPA configuration settings are bundled in persistence.xml, all mapping meta-
data is included in the Java source code of the Message class, and Hibernate

Starting a Java Persistence project 79
automatically scans and finds the metadata on startup. Compared to pure Hiber-
nate, you now have these benefits:

■ Automatic scanning of deployed metadata, an important feature in large
projects. Maintaining a list of annotated classes or mapping files becomes
difficult if hundreds of entities are developed by a large team.

■ Standardized and simplified configuration, with a standard location for the
configuration file, and a deployment concept—the persistence unit—that
has many more advantages in larger projects that wrap several units (JARs)
in an application archive (EAR).

■ Standardized data access code, entity instance lifecycle, and queries that are
fully portable. There is no proprietary import in your application.

These are only some of the advantages of JPA. You’ll see its real power if you com-
bine it with the full EJB 3.0 programming model and other managed components.

2.2.3 Introducing EJB components

Java Persistence starts to shine when you also work with EJB 3.0 session beans and
message-driven beans (and other Java EE 5.0 standards). The EJB 3.0 specification
has been designed to permit the integration of persistence, so you can, for exam-
ple, get automatic transaction demarcation on bean method boundaries, or a per-
sistence context (think Session) that spans the lifecycle of a stateful session EJB.

 This section will get you started with EJB 3.0 and JPA in a managed Java EE
environment; you’ll again modify the “Hello World” application to learn the
basics. You need a Java EE environment first—a runtime container that provides
Java EE services. There are two ways you can get it:

■ You can install a full Java EE 5.0 application server that supports EJB 3.0 and
JPA. Several open source (Sun GlassFish, JBoss AS, ObjectWeb EasyBeans)
and other proprietary licensed alternatives are on the market at the time of
writing, and probably more will be available when you read this book.

■ You can install a modular server that provides only the services you need,
selected from the full Java EE 5.0 bundle. At a minimum, you probably want
an EJB 3.0 container, JTA transaction services, and a JNDI registry. At the
time of writing, only JBoss AS provided modular Java EE 5.0 services in an
easily customizable package.

To keep things simple and to show you how easy it is to get started with EJB 3.0,
you’ll install and configure the modular JBoss Application Server and enable only
the Java EE 5.0 services you need.

80 CHAPTER 2

Starting a project
Installing the EJB container
Go to http://jboss.com/products/ejb3, download the modular embeddable
server, and unzip the downloaded archive. Copy all libraries that come with the
server into your project’s WORKDIR/lib directory, and copy all included configu-
ration files to your WORKDIR/src directory. You should now have the following
directory layout:

WORKDIR
+etc
 default.persistence.properties
 ejb3-interceptors-aop.xml
 embedded-jboss-beans.xml
 jndi.properties
 log4j.properties
 +META-INF
 helloworld-beans.xml
 persistence.xml
+lib
 <all required libraries>
+src
 +hello
 HelloWorld.java
 Message.java

The JBoss embeddable server relies on Hibernate for Java Persistence, so the
default.persistence.properties file contains default settings for Hibernate that are
needed for all deployments (such as JTA integration settings). The ejb3-intercep-
tors-aop.xml and embedded-jboss-beans.xml configuration files contain the ser-
vices configuration of the server—you can look at these files, but you don’t need
to modify them now. By default, at the time of writing, the enabled services are
JNDI, JCA, JTA, and the EJB 3.0 container—exactly what you need.

 To migrate the “Hello World” application, you need a managed datasource,
which is a database connection that is handled by the embeddable server. The eas-
iest way to configure a managed datasource is to add a configuration file that
deploys the datasource as a managed service. Create the file in listing 2.14 as
WORKDIR/etc/META-INF/helloworld-beans.xml.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:bean-deployer bean-deployer_1_0.xsd"
 xmlns="urn:jboss:bean-deployer:2.0">

 <!-- Enable a JCA datasource available through JNDI -->
 <bean name="helloWorldDatasourceFactory"

Listing 2.14 Datasource configuration file for the JBoss server

Starting a Java Persistence project 81
 class="org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">

 <property name="jndiName">java:/HelloWorldDS</property>

 <!-- HSQLDB -->
 <property name="driverClass">
 org.hsqldb.jdbcDriver
 </property>
 <property name="connectionURL">
 jdbc:hsqldb:hsql://localhost
 </property>
 <property name="userName">sa</property>

 <property name="minSize">0</property>
 <property name="maxSize">10</property>
 <property name="blockingTimeout">1000</property>
 <property name="idleTimeout">100000</property>

 <property name="transactionManager">
 <inject bean="TransactionManager"/>
 </property>
 <property name="cachedConnectionManager">
 <inject bean="CachedConnectionManager"/>
 </property>
 <property name="initialContextProperties">
 <inject bean="InitialContextProperties"/>
 </property>
 </bean>

 <bean name="HelloWorldDS" class="java.lang.Object">
 <constructor factoryMethod="getDatasource">
 <factory bean="helloWorldDatasourceFactory"/>
 </constructor>
 </bean>

</deployment>

Again, the XML header and schema declaration aren’t important for this exam-
ple. You set up two beans: The first is a factory that can produce the second type
of bean. The LocalTxDataSource is effectively now your database connection
pool, and all your connection pool settings are available on this factory. The fac-
tory binds a managed datasource under the JNDI name java:/HelloWorldDS.

 The second bean configuration declares how the registered object named
HelloWorldDS should be instantiated, if another service looks it up in the JNDI
registry. Your “Hello World” application asks for the datasource under this name,
and the server calls getDatasource() on the LocalTxDataSource factory to
obtain it.

82 CHAPTER 2

Starting a project
 Also note that we added some line breaks in the property values to make this
more readable—you shouldn’t do this in your real configuration file (unless your
database username contains a line break).

Configuring the persistence unit
Next, you need to change the persistence unit configuration of the “Hello World”
application to access a managed JTA datasource, instead of a resource-local connec-
tion pool. Change your WORKDIR/etc/META-INF/persistence.xml file as follows:

<persistence ...>

 <persistence-unit name="helloworld">
 <jta-data-source>java:/HelloWorldDS</jta-data-source>
 <properties>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>

 </properties>
 </persistence-unit>

</persistence>

You removed many Hibernate configuration options that are no longer relevant,
such as the connection pool and database connection settings. Instead, you set a
<jta-data-source> property with the name of the datasource as bound in JNDI.
Don’t forget that you still need to configure the correct SQL dialect and any other
Hibernate options that aren’t present in default.persistence.properties.

 The installation and configuration of the environment is now complete, (we’ll
show you the purpose of the jndi.properties files in a moment) and you can
rewrite the application code with EJBs.

Writing EJBs
There are many ways to design and create an application with managed compo-
nents. The “Hello World” application isn’t sophisticated enough to show elabo-
rate examples, so we’ll introduce only the most basic type of EJB, a stateless session
bean. (You’ve already seen entity classes—annotated plain Java classes that can
have persistent instances. Note that the term entity bean only refers to the old EJB
2.1 entity beans; EJB 3.0 and Java Persistence standardize a lightweight program-
ming model for plain entity classes.)

Starting a Java Persistence project 83
 Every EJB session bean needs a business interface. This isn’t a special interface
that needs to implement predefined methods or extend existing ones; it’s plain
Java. Create the following interface in the WORKDIR/src/hello package:

package hello;

public interface MessageHandler {

 public void saveMessages();

 public void showMessages();
}

A MessageHandler can save and show messages; it’s straightforward. The actual
EJB implements this business interface, which is by default considered a local
interface (that is, remote EJB clients cannot call it); see listing 2.15.

package hello;

import javax.ejb.Stateless;
import javax.persistence.*;
import java.util.List;

@Stateless
public class MessageHandlerBean implements MessageHandler {

 @PersistenceContext
 EntityManager em;

 public void saveMessages() {
 Message message = new Message("Hello World");
 em.persist(message);
 }

 public void showMessages() {
 List messages =
 em.createQuery("select m from Message m
 ➥ order by m.text asc")
 .getResultList();

 System.out.println(messages.size() + " message(s) found:");

 for (Object m : messages) {
 Message loadedMsg = (Message) m;
 System.out.println(loadedMsg.getText());
 }

 }
}

Listing 2.15 The “Hello World” EJB session bean application code

84 CHAPTER 2

Starting a project
There are several interesting things to observe in this implementation. First, it’s a
plain Java class with no hard dependencies on any other package. It becomes an
EJB only with a single metadata annotation, @Stateless. EJBs support container-
managed services, so you can apply the @PersistenceContext annotation, and
the server injects a fresh EntityManager instance whenever a method on this
stateless bean is called. Each method is also assigned a transaction automatically
by the container. The transaction starts when the method is called, and commits
when the method returns. (It would be rolled back when an exception is thrown
inside the method.)

 You can now modify the HelloWorld main class and delegate all the work of
storing and showing messages to the MessageHandler.

Running the application
The main class of the “Hello World” application calls the MessageHandler state-
less session bean after looking it up in the JNDI registry. Obviously, the managed
environment and the whole application server, including the JNDI registry, must
be booted first. You do all of this in the main() method of HelloWorld.java (see
listing 2.16).

package hello;

import org.jboss.ejb3.embedded.EJB3StandaloneBootstrap;
import javax.naming.InitialContext;

public class HelloWorld {

 public static void main(String[] args) throws Exception {

 // Boot the JBoss Microcontainer with EJB3 settings, automatically
 // loads ejb3-interceptors-aop.xml and embedded-jboss-beans.xml
 EJB3StandaloneBootstrap.boot(null);

 // Deploy custom stateless beans (datasource, mostly)
 EJB3StandaloneBootstrap
 .deployXmlResource("META-INF/helloworld-beans.xml");

 // Deploy all EJBs found on classpath (slow, scans all)
 // EJB3StandaloneBootstrap.scanClasspath();

 // Deploy all EJBs found on classpath (fast, scans build directory)
 // This is a relative location, matching the substring end of one
 // of java.class.path locations. Print out the value of
 // System.getProperty("java.class.path") to see all paths.
 EJB3StandaloneBootstrap.scanClasspath("helloworld-ejb3/bin");

 // Create InitialContext from jndi.properties

Listing 2.16 “Hello World” main application code, calling EJBs

Starting a Java Persistence project 85
 InitialContext initialContext = new InitialContext();

 // Look up the stateless MessageHandler EJB
 MessageHandler msgHandler = (MessageHandler) initialContext
 .lookup("MessageHandlerBean/local");

 // Call the stateless EJB
 msgHandler.saveMessages();
 msgHandler.showMessages();

 // Shut down EJB container
 EJB3StandaloneBootstrap.shutdown();
 }
}

The first command in main() boots the server’s kernel and deploys the base ser-
vices found in the service configuration files. Next, the datasource factory config-
uration you created earlier in helloworld-beans.xml is deployed, and the
datasource is bound to JNDI by the container. From that point on, the container is
ready to deploy EJBs. The easiest (but often not the fastest) way to deploy all EJBs
is to let the container search the whole classpath for any class that has an EJB
annotation. To learn about the many other deployment options available, check
the JBoss AS documentation bundled in the download.

 To look up an EJB, you need an InitialContext, which is your entry point for
the JNDI registry. If you instantiate an InitialContext, Java automatically looks for
the file jndi.properties on your classpath. You need to create this file in WORKDIR/
etc with settings that match the JBoss server’s JNDI registry configuration:

java.naming.factory.initial
 ➥ org.jnp.interfaces.LocalOnlyContextFactory
java.naming.factory.url.pkgs org.jboss.naming:org.jnp.interfaces

You don’t need to know exactly what this configuration means, but it basically
points your InitialContext to a JNDI registry running in the local virtual
machine (remote EJB client calls would require a JNDI service that supports
remote communication).

 By default, you look up the MessageHandler bean by the name of an imple-
mentation class, with the /local suffix for a local interface. How EJBs are named,
how they’re bound to JNDI, and how you look them up varies and can be custom-
ized. These are the defaults for the JBoss server.

 Finally, you call the MessageHandler EJB and let it do all the work automati-
cally in two units—each method call will result in a separate transaction.

86 CHAPTER 2

Starting a project
 This completes our first example with managed EJB components and inte-
grated JPA. You can probably already see how automatic transaction demarcation
and EntityManager injection can improve the readability of your code. Later,
we’ll show you how stateful session beans can help you implement sophisticated
conversations between the user and the application, with transactional semantics.
Furthermore, the EJB components don’t contain any unnecessary glue code or
infrastructure methods, and they’re fully reusable, portable, and executable in
any EJB 3.0 container.

NOTE Packaging of persistence units —We didn’t talk much about the packaging
of persistence units—you didn’t need to package the “Hello World”
example for any of the deployments. However, if you want to use features
such as hot redeployment on a full application server, you need to pack-
age your application correctly. This includes the usual combination of
JARs, WARs, EJB-JARs, and EARs. Deployment and packaging is often also
vendor-specific, so you should consult the documentation of your appli-
cation server for more information. JPA persistence units can be scoped
to JARs, WARs, and EJB-JARs, which means that one or several of these
archives contains all the annotated classes and a META-INF/persis-
tence.xml configuration file with all settings for this particular unit. You
can wrap one or several JARs, WARs, and EJB-JARs in a single enterprise
application archive, an EAR. Your application server should correctly
detect all persistence units and create the necessary factories automati-
cally. With a unit name attribute on the @PersistenceContext annota-
tion, you instruct the container to inject an EntityManager from a
particular unit.

Full portability of an application isn’t often a primary reason to use JPA or EJB 3.0.
After all, you made a decision to use Hibernate as your JPA persistence provider.
Let’s look at how you can fall back and use a Hibernate native feature from time
to time.

2.2.4 Switching to Hibernate interfaces

You decided to use Hibernate as a JPA persistence provider for several reasons:
First, Hibernate is a good JPA implementation that provides many options that
don’t affect your code. For example, you can enable the Hibernate second-level
data cache in your JPA configuration, and transparently improve the performance
and scalability of your application without touching any code.

 Second, you can use native Hibernate mappings or APIs when needed. We dis-
cuss the mixing of mappings (especially annotations) in chapter 3, section 3.3,

Starting a Java Persistence project 87
“Object/relational mapping metadata,” but here we want to show how you can
use a Hibernate API in your JPA application, when needed. Obviously, importing a
Hibernate API into your code makes porting the code to a different JPA provider
more difficult. Hence, it becomes critically important to isolate these parts of your
code properly, or at least to document why and when you used a native Hibernate
feature.

 You can fall back to Hibernate APIs from their equivalent JPA interfaces and
get, for example, a Configuration, a SessionFactory, and even a Session when-
ever needed.

 For example, instead of creating an EntityManagerFactory with the Persis-
tence static class, you can use a Hibernate Ejb3Configuration:

Ejb3Configuration cfg = new Ejb3Configuration();
EntityManagerFactory emf =
 cfg.configure("/custom/hibernate.cfg.xml")
 .setProperty("hibernate.show_sql", "false")
 .setInterceptor(new MyInterceptor())
 .addAnnotatedClass(hello.Message.class)
 .addResource("/Foo.hbm.xml")
 .buildEntityManagerFactory();

AnnotationConfiguration
 hibCfg = cfg.getHibernateConfiguration();

The Ejb3Configuration is a new interface that duplicates the regular Hibernate
Configuration instead of extending it (this is an implementation detail). This
means you can get a plain AnnotationConfiguration object from an
Ejb3Configuration, for example, and pass it to a SchemaExport instance pro-
grammatically.

 The SessionFactory interface is useful if you need programmatic control over
the second-level cache regions. You can get a SessionFactory by casting the
EntityManagerFactory first:

HibernateEntityManagerFactory hibEMF =
 (HibernateEntityManagerFactory) emf;
SessionFactory sf = hibEMF.getSessionFactory();

The same technique can be applied to get a Session from an EntityManager:

HibernateEntityManager hibEM =
 (HibernateEntityManager) em;
Session session = hibEM.getSession();

This isn’t the only way to get a native API from the standardized EntityManager.
The JPA specification supports a getDelegate() method that returns the underly-
ing implementation:

88 CHAPTER 2

Starting a project
Session session = (Session) entityManager.getDelegate();

Or you can get a Session injected into an EJB component (although this only
works in the JBoss Application Server):

@Stateless
public class MessageHandlerBean implements MessageHandler {

 @PersistenceContext
 Session session;

 ...
}

In rare cases, you can fall back to plain JDBC interfaces from the Hibernate Session:

Connection jdbcConnection = session.connection();

This last option comes with some caveats: You aren’t allowed to close the JDBC
Connection you get from Hibernate—this happens automatically. The exception
to this rule is that in an environment that relies on aggressive connection releases,
which means in a JTA or CMT environment, you have to close the returned con-
nection in application code.

 A better and safer way to access a JDBC connection directly is through resource
injection in a Java EE 5.0. Annotate a field or setter method in an EJB, an EJB lis-
tener, a servlet, a servlet filter, or even a JavaServer Faces backing bean, like this:

@Resource(mappedName="java:/HelloWorldDS") DataSource ds;

So far, we’ve assumed that you work on a new Hibernate or JPA project that
involves no legacy application code or existing database schema. We now switch
perspectives and consider a development process that is bottom-up. In such a sce-
nario, you probably want to automatically reverse-engineer artifacts from an exist-
ing database schema.

2.3 Reverse engineering a legacy database

Your first step when mapping a legacy database likely involves an automatic
reverse-engineering procedure. After all, an entity schema already exists in your
database system. To make this easier, Hibernate has a set of tools that can read a
schema and produce various artifacts from this metadata, including XML map-
ping files and Java source code. All of this is template-based, so many customiza-
tions are possible.

 You can control the reverse-engineering process with tools and tasks in your
Ant build. The HibernateToolTask you used earlier to export SQL DDL from

Reverse engineering a legacy database 89
Hibernate mapping metadata has many more options, most of which are
related to reverse engineering, as to how XML mapping files, Java code, or even
whole application skeletons can be generated automatically from an existing
database schema.

 We’ll first show you how to write an Ant target that can load an existing data-
base into a Hibernate metadata model. Next, you’ll apply various exporters and
produce XML files, Java code, and other useful artifacts from the database tables
and columns.

2.3.1 Creating a database configuration

Let’s assume that you have a new WORKDIR with nothing but the lib directory
(and its usual contents) and an empty src directory. To generate mappings and
code from an existing database, you first need to create a configuration file that
contains your database connection settings:

hibernate.dialect = org.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class = org.hsqldb.jdbcDriver
hibernate.connection.url = jdbc:hsqldb:hsql://localhost
hibernate.connection.username = sa

Store this file directly in WORKDIR, and name it helloworld.db.properties. The
four lines shown here are the minimum that is required to connect to the data-
base and read the metadata of all tables and columns. You could have created a
Hibernate XML configuration file instead of hibernate.properties, but there is no
reason to make this more complex than necessary.

 Write the Ant target next. In a build.xml file in your project, add the following
code:

<taskdef name="hibernatetool"
 classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="project.classpath"/>

<target name="reveng.hbmxml"
 description="Produces XML mapping files in src directory">

 <hibernatetool destdir="${basedir}/src">

 <jdbcconfiguration
 propertyfile="${basedir}/helloworld.db.properties"
 revengfile="${basedir}/helloworld.reveng.xml"/>

 <hbm2hbmxml/> <!-- Export Hibernate XML files -->
 <hbm2cfgxml/> <!-- Export a hibernate.cfg.xml file -->

 </hibernatetool>

</target>

90 CHAPTER 2

Starting a project
The HibernateToolTask definition for Ant is the same as before. We assume that
you’ll reuse most of the build file introduced in previous sections, and that refer-
ences such as project.classpath are the same. The <hibernatetool> task is set
with WORKDIR/src as the default destination directory for all generated artifacts.

 A <jdbconfiguration> is a Hibernate tool configuration that can connect to a
database via JDBC and read the JDBC metadata from the database catalog. You usu-
ally configure it with two options: database connection settings (the properties
file) and an optional reverse-engineering customization file.

 The metadata produced by the tool configuration is then fed to exporters. The
example Ant target names two such exporters: the hbm2hbmxml exporter, as you
can guess from its name, takes Hibernate metadata (hbm) from a configuration,
and generates Hibernate XML mapping files; the second exporter can prepare a
hibernate.cfg.xml file that lists all the generated XML mapping files.

 Before we talk about these and various other exporters, let’s spend a minute
on the reverse-engineering customization file and what you can do with it.

2.3.2 Customizing reverse engineering

JDBC metadata—that is, the information you can read from a database about itself
via JDBC—often isn’t sufficient to create a perfect XML mapping file, let alone
Java application code. The opposite may also be true: Your database may contain
information that you want to ignore (such as particular tables or columns) or that
you wish to transform with nondefault strategies. You can customize the reverse-
engineering procedure with a reverse-engineering configuration file, which uses an
XML syntax.

 Let’s assume that you’re reverse-engineering the “Hello World” database you
created earlier in this chapter, with its single MESSAGES table and only a few col-
umns. With a helloworld.reveng.xml file, as shown in listing 2.17, you can custom-
ize this reverse engineering.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering SYSTEM
 "http://hibernate.sourceforge.net/
 ➥ hibernate-reverse-engineering-3.0.dtd">

<hibernate-reverse-engineering>

 <table-filter match-name=".*" package="hello"/>

 <table name="MESSAGES" schema="PUBLIC" class="Message">

 <primary-key>

Listing 2.17 Configuration for customized reverse engineering

B

C

D

E

Reverse engineering a legacy database 91
 <generator class="increment"/>
 <key-column name="MESSAGE_ID" property="id" type="long"/>
 </primary-key>

 <column name="MESSAGE_TEXT" property="text"/>

 <foreign-key constraint-name="FK_NEXT_MESSAGE">
 <many-to-one property="nextMessage"/>
 <set exclude="true"/>
 </foreign-key>

 </table>

</hibernate-reverse-engineering>

This XML file has its own DTD for validation and autocompletion.

A table filter can exclude tables by name with a regular expression. However, in
this example, you define a a default package for all classes produced for the tables
matching the regular expression.

You can customize individual tables by name. The schema name is usually
optional, but HSQLDB assigns the PUBLIC schema to all tables by default so this
setting is needed to identify the table when the JDBC metadata is retrieved. You
can also set a custom class name for the generated entity here.

The primary key column generates a property named id, the default would be
messageId. You also explicitly declare which Hibernate identifier generator
should be used.

An individual column can be excluded or, in this case, the name of the generated
property can be specified—the default would be messageText.

If the foreign key constraint FK_NEXT_MESSAGE is retrieved from JDBC metadata, a
many-to-one association is created by default to the target entity of that class. By
matching the foreign key constraint by name, you can specify whether an inverse
collection (one-to-many) should also be generated (the example excludes this)
and what the name of the many-to-one property should be.

If you now run the Ant target with this customization, it generates a Mes-
sage.hbm.xml file in the hello package in your source directory. (You need to
copy the Freemarker and jTidy JAR files into your library directory first.) The
customizations you made result in the same Hibernate mapping file you wrote
earlier by hand, shown in listing 2.2.

 In addition to the XML mapping file, the Ant target also generates a Hibernate
XML configuration file in the source directory:

F

G

B

C

D

E

F

G

92 CHAPTER 2

Starting a project
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.url">
 jdbc:hsqldb:hsql://localhost
 </property>
 <property name="hibernate.connection.username">
 sa
 </property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <mapping resource="hello/Message.hbm.xml" />

 </session-factory>
</hibernate-configuration>

The exporter writes all the database connection settings you used for reverse engi-
neering into this file, assuming that this is the database you want to connect to
when you run the application. It also adds all generated XML mapping files to the
configuration.

 What is your next step? You can start writing the source code for the Message
Java class. Or you can let the Hibernate Tools generate the classes of the domain
model for you.

2.3.3 Generating Java source code

Let’s assume you have an existing Hibernate XML mapping file for the Message
class, and you’d like to generate the source for the class. As discussed in chapter 3,
a plain Java entity class ideally implements Serializable, has a no-arguments
constructor, has getters and setters for all properties, and has an encapsulated
implementation.

 Source code for entity classes can be generated with the Hibernate Tools and
the hbm2java exporter in your Ant build. The source artifact can be anything that
can be read into a Hibernate metadata model—Hibernate XML mapping files are
best if you want to customize the Java code generation.

 Add the following target to your Ant build:

<target name="reveng.pojos"
 description="Produces Java classes from XML mappings">

 <hibernatetool destdir="${basedir}/src">

 <configuration>

Reverse engineering a legacy database 93
 <fileset dir="${basedir}/src">
 <include name="**/*.hbm.xml"/>
 </fileset>
 </configuration>

 <hbm2java/> <!-- Generate entity class source -->

 </hibernatetool>

</target>

The <configuration> reads all Hibernate XML mapping files, and the <hbm2-
java> exporter produces Java source code with the default strategy.

Customizing entity class generation
By default, hbm2java generates a simple entity class for each mapped entity. The
class implements the Serializable marker interface, and it has accessor methods
for all properties and the required constructor. All attributes of the class have pri-
vate visibility for fields, although you can change that behavior with the <meta>
element and attributes in the XML mapping files.

 The first change to the default reverse engineering behavior you make is to
restrict the visibility scope for the Message’s attributes. By default, all accessor
methods are generated with public visibility. Let’s say that Message objects are
immutable; you wouldn’t expose the setter methods on the public interface, but
only the getter methods. Instead of enhancing the mapping of each property with
a <meta> element, you can declare a meta-attribute at the class level, thus applying
the setting to all properties in that class:

<class name="Message"
 table="MESSAGES">

 <meta attribute="scope-set">private</meta>
 ...

</class>

The scope-set attribute defines the visibility of property setter methods.
 The hbm2java exporter also accepts meta-attributes on the next higher-level,

in the root <hibernate-mapping> element, which are then applied to all classes
mapped in the XML file. You can also add fine-grained meta-attributes to single
property, collection, or component mappings.

 One (albeit small) improvement of the generated entity class is the inclusion
of the text of the Message in the output of the generated toString() method.
The text is a good visual control element in the log output of the application. You
can change the mapping of Message to include it in the generated code:

94 CHAPTER 2

Starting a project
<property name="text" type="string">
 <meta attribute="use-in-tostring">true</meta>
 <column name="MESSAGE_TEXT" />
</property>

The generated code of the toString() method in Message.java looks like this:

public String toString() {
 StringBuffer buffer = new StringBuffer();
 buffer.append(getClass().getName())
 .append("@")
 .append(Integer.toHexString(hashCode()))
 .append(" [");
 .append("text").append("='").append(getText()).append("' ");
 .append("]");

 return buffer.toString();
}

Meta-attributes can be inherited; that is, if you declare a use-in-tostring at the
level of a <class> element, all properties of that class are included in the
toString() method. This inheritance mechanism works for all hbm2java meta-
attributes, but you can turn it off selectively:

<meta attribute="scope-class" inherit="false">public abstract</meta>

Setting inherit to false in the scope-class meta-attribute creates only the par-
ent class of this <meta> element as public abstract, but not any of the (possibly)
nested subclasses.

 The hbm2java exporter supports, at the time of writing, 17 meta-attributes for
fine-tuning code generation. Most are related to visibility, interface implementa-
tion, class extension, and predefined Javadoc comments. Refer to the Hibernate
Tools documentation for a complete list.

 If you use JDK 5.0, you can switch to automatically generated static imports and
generics with the jdk5="true" setting on the <hbm2java> task. Or, you can pro-
duce EJB 3.0 entity classes with annotations.

Generating Java Persistence entity classes
Normally, you use either Hibernate XML mapping files or JPA annotations in your
entity class source code to define your mapping metadata, so generating Java
Persistence entity classes with annotations from XML mapping files doesn’t seem
reasonable. However, you can create entity class source code with annotations
directly from JDBC metadata, and skip the XML mapping step. Look at the follow-
ing Ant target:

Reverse engineering a legacy database 95
<target name="reveng.entities"
 description="Produces Java entity classes in src directory">

 <hibernatetool destdir="${basedir}/src">

 <jdbcconfiguration
 propertyfile="${basedir}/helloworld.db.properties"
 revengfile="${basedir}/helloworld.reveng.xml"/>

 <hbm2java jdk5="true" ejb3="true"/>
 <hbm2cfgxml ejb3="true"/>

 </hibernatetool>

</target>

This target generates entity class source code with mapping annotations and a
hibernate.cfg.xml file that lists these mapped classes. You can edit the Java source
directly to customize the mapping, if the customization in helloworld.reveng.xml
is too limited.

 Also note that all exporters rely on templates written in the FreeMarker tem-
plate language. You can customize the templates in whatever way you like, or
even write your own. Even programmatic customization of code generation is
possible. The Hibernate Tools reference documentation shows you how these
options are used.

 Other exporters and configurations are available with the Hibernate Tools:

■ An <annotationconfiguration> replaces the regular <configuration> if
you want to read mapping metadata from annotated Java classes, instead of
XML mapping files. Its only argument is the location and name of a hiber-
nate.cfg.xml file that contains a list of annotated classes. Use this approach
to export a database schema from annotated classes.

■ An <ejb3configuration> is equivalent to an <annotationconfiguration>,
except that it can scan for annotated Java classes automatically on the class-
path; it doesn’t need a hibernate.cfg.xml file.

■ The <hbm2dao> exporter can create additional Java source for a persistence
layer, based on the data access object pattern. At the time of writing, the
templates for this exporter are old and need updating. We expect that the
finalized templates will be similar to the DAO code shown in chapter 16,
section 16.2, “Creating a persistence layer.”

■ The <hbm2doc> exporter generates HTML files that document the tables
and Java entities.

96 CHAPTER 2

Starting a project
■ The <hbmtemplate> exporter can be parameterized with a set of custom
FreeMarker templates, and you can generate anything you want with this
approach. Templates that produce a complete runable skeleton application
with the JBoss Seam framework are bundled in the Hibernate Tools.

You can get creative with the import and export functionality of the tools. For
example, you can read annotated Java classes with <annotationconfiguration>
and export them with <hbm2hbmxml>. This allows you to develop with JDK 5.0 and
the more convenient annotations but deploy Hibernate XML mapping files in
production (on JDK 1.4).

 Let’s finish this chapter with some more advanced configuration options and
integrate Hibernate with Java EE services.

2.4 Integration with Java EE services

We assume that you’ve already tried the “Hello World” example shown earlier
in this chapter and that you’re familiar with basic Hibernate configuration and
how Hibernate can be integrated with a plain Java application. We’ll now dis-
cuss more advanced native Hibernate configuration options and how a regular
Hibernate application can utilize the Java EE services provided by a Java EE
application server.

 If you created your first JPA project with Hibernate Annotations and Hibernate
EntityManager, the following configuration advice isn’t really relevant for you—
you’re already deep inside Java EE land if you’re using JPA, and no extra integra-
tion steps are required. Hence, you can skip this section if you use Hibernate
EntityManager.

 Java EE application servers such as JBoss AS, BEA WebLogic, and IBM Web-
Sphere implement the standard (Java EE-specific) managed environment for
Java. The three most interesting Java EE services Hibernate can be integrated with
are JTA, JNDI, and JMX.

 JTA allows Hibernate to participate in transactions on managed resources.
Hibernate can look up managed resources (database connections) via JNDI and
also bind itself as a service to JNDI. Finally, Hibernate can be deployed via JMX and
then be managed as a service by the JMX container and monitored at runtime
with standard JMX clients.

 Let’s look at each service and how you can integrate Hibernate with it.

Integration with Java EE services 97
2.4.1 Integration with JTA

The Java Transaction API (JTA) is the standardized service interface for transaction
control in Java enterprise applications. It exposes several interfaces, such as the
UserTransaction API for transaction demarcation and the TransactionManager
API for participation in the transaction lifecycle. The transaction manager can
coordinate a transaction that spans several resources—imagine working in two
Hibernate Sessions on two databases in a single transaction.

 A JTA transaction service is provided by all Java EE application servers. How-
ever, many Java EE services are usable stand-alone, and you can deploy a JTA pro-
vider along with your application, such as JBoss Transactions or ObjectWeb JOTM.
We won’t have much to say about this part of your configuration but focus on the
integration of Hibernate with a JTA service, which is the same in full application
servers or with stand-alone JTA providers.

 Look at figure 2.6. You use the Hibernate Session interface to access your
database(s), and it’s Hibernate’s responsibility to integrate with the Java EE ser-
vices of the managed environment.

In such a managed environment, Hibernate no longer creates and maintains a
JDBC connection pool—Hibernate obtains database connections by looking up a
Datasource object in the JNDI registry. Hence, your Hibernate configuration
needs a reference to the JNDI name where managed connections can be
obtained.

<hibernate-configuration>
<session-factory>

 <property name="hibernate.connection.datasource">
 java:/MyDatasource

Figure 2.6 Hibernate in an environment with managed resources

98 CHAPTER 2

Starting a project
 </property>

 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>
 ...

</session-factory>
</hibernate-configuration>

With this configuration file, Hibernate looks up database connections in JNDI
using the name java:/MyDatasource. When you configure your application server
and deploy your application, or when you configure your stand-alone JTA provider,
this is the name to which you should bind the managed datasource. Note that a
dialect setting is still required for Hibernate to produce the correct SQL.

NOTE Hibernate with Tomcat—Tomcat isn’t a Java EE application server; it’s just
a servlet container, albeit a servlet container with some features usually
found only in application servers. One of these features may be used
with Hibernate: the Tomcat connection pool. Tomcat uses the DBCP
connection pool internally but exposes it as a JNDI datasource, just like a
real application server. To configure the Tomcat datasource, you need
to edit server.xml, according to instructions in the Tomcat JNDI/JDBC
documentation. Hibernate can be configured to use this datasource by
setting hibernate.connection.datasource. Keep in mind that Tomcat
doesn’t ship with a transaction manager, so you still have plain JDBC
transaction semantics, which Hibernate can hide with its optional
Transaction API. Alternatively, you can deploy a JTA-compatible stand-
alone transaction manager along with your web application, which you
should consider to get the standardized UserTransaction API. On the
other hand, a regular application server (especially if it’s modular like
JBoss AS) may be easier to configure than Tomcat plus DBCP plus JTA,
and it provides better services.

To fully integrate Hibernate with JTA, you need to tell Hibernate a bit more about
your transaction manager. Hibernate has to hook into the transaction lifecycle,
for example, to manage its caches. First, you need to tell Hibernate what transac-
tion manager you’re using:

<hibernate-configuration>
<session-factory>

 <property name="hibernate.connection.datasource">
 java:/MyDatasource
 </property>

Integration with Java EE services 99
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
 </property>

 <property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
 </property>

 ...

</session-factory>
</hibernate-configuration>

You need to pick the appropriate lookup class for your application server, as you
did in the preceding code—Hibernate comes bundled with classes for the most
popular JTA providers and application servers. Finally, you tell Hibernate that you
want to use the JTA transaction interfaces in the application to set transaction
boundaries. The JTATransactionFactory does several things:

■ It enables correct Session scoping and propagation for JTA if you decide to
use the SessionFactory.getCurrentSession() method instead of opening
and closing every Session manually. We discuss this feature in more detail
in chapter 11, section 11.1, “Propagating the Hibernate session.”

■ It tells Hibernate that you’re planning to call the JTA UserTransaction inter-
face in your application to start, commit, or roll back system transactions.

■ It also switches the Hibernate Transaction API to JTA, in case you don’t
want to work with the standardized UserTransaction. If you now begin a
transaction with the Hibernate API, it checks whether an ongoing JTA trans-
action is in progress and, if possible, joins this transaction. If no JTA transac-
tion is in progress, a new transaction is started. If you commit or roll back
with the Hibernate API, it either ignores the call (if Hibernate joined an
existing transaction) or sets the system transaction to commit or roll back.
We don’t recommend using the Hibernate Transaction API if you deploy
in an environment that supports JTA. However, this setting keeps existing
code portable between managed and nonmanaged environments, albeit
with possibly different transactional behavior.

There are other built-in TransactionFactory options, and you can write your
own by implementing this interface. The JDBCTransactionFactory is the default
in a nonmanaged environment, and you have used it throughout this chapter in

100 CHAPTER 2

Starting a project
the simple “Hello World” example with no JTA. The CMTTransactionFactory
should be enabled if you’re working with JTA and EJBs, and if you plan to set trans-
action boundaries declaratively on your managed EJB components—in other
words, if you deploy your EJB application on a Java EE application server but don’t
set transaction boundaries programmatically with the UserTransaction interface
in application code.

 Our recommended configuration options, ordered by preference, are as
follows:

■ If your application has to run in managed and nonmanaged environments,
you should move the responsibility for transaction integration and resource
management to the deployer. Call the JTA UserTransaction API in your
application code, and let the deployer of the application configure the
application server or a stand-alone JTA provider accordingly. Enable
JTATransactionFactory in your Hibernate configuration to integrate with
the JTA service, and set the right lookup class.

■ Consider setting transaction boundaries declaratively, with EJB components.
Your data access code then isn’t bound to any transaction API, and the CMT-
TransactionFactory integrates and handles the Hibernate Session for you
behind the scenes. This is the easiest solution—of course, the deployer now
has the responsibility to provide an environment that supports JTA and EJB
components.

■ Write your code with the Hibernate Transaction API and let Hibernate
switch between the different deployment environments by setting either
JDBCTransactionFactory or JTATransactionFactory. Be aware that trans-
action semantics may change, and the start or commit of a transaction may
result in a no-op you may not expect. This is always the last choice when
portability of transaction demarcation is needed.

FAQ How can I use several databases with Hibernate? If you want to work with
several databases, you create several configuration files. Each database is
assigned its own SessionFactory, and you build several SessionFactory
instances from distinct Configuration objects. Each Session that is
opened, from any SessionFactory, looks up a managed datasource in
JNDI. It’s now the responsibility of the transaction and resource manager
to coordinate these resources—Hibernate only executes SQL statements
on these database connections. Transaction boundaries are either set
programmatically with JTA or handled by the container with EJBs and a
declarative assembly.

Integration with Java EE services 101
Hibernate can not only look up managed resources in JNDI, it can also bind itself
to JNDI. We’ll look at that next.

2.4.2 JNDI-bound SessionFactory

We already touched on a question that every new Hibernate user has to deal with:
How should a SessionFactory be stored, and how should it be accessed in appli-
cation code? Earlier in this chapter, we addressed this problem by writing a
HibernateUtil class that held a SessionFactory in a static field and provided the
static getSessionFactory() method. However, if you deploy your application in
an environment that supports JNDI, Hibernate can bind a SessionFactory to
JNDI, and you can look it up there when needed.

NOTE The Java Naming and Directory Interface API (JNDI) allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transaction
contexts, datasources, and so on), configuration settings (environment
settings, user registries, and so on) and even application objects (EJB ref-
erences, object factories, and so on) can all be bound to JNDI.

The Hibernate SessionFactory automatically binds itself to JNDI if the hiber-
nate.session_factory_name property is set to the name of the JNDI node. If your
runtime environment doesn’t provide a default JNDI context (or if the default
JNDI implementation doesn’t support instances of Referenceable), you need to
specify a JNDI initial context using the hibernate.jndi.url and hiber-

nate.jndi.class properties.
 Here is an example Hibernate configuration that binds the SessionFactory to

the name java:/hibernate/MySessionFactory using Sun’s (free) file-system-
based JNDI implementation, fscontext.jar:

hibernate.connection.datasource = java:/MyDatasource
 hibernate.transaction.factory_class = \
 org.hibernate.transaction.JTATransactionFactory
 hibernate.transaction.manager_lookup_class = \
 org.hibernate.transaction.JBossTransactionManagerLookup
 hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
 hibernate.session_factory_name = java:/hibernate/MySessionFactory
 hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
 hibernate.jndi.url = file:/auction/jndi

You can, of course, also use the XML-based configuration for this. This example
isn’t realistic, because most application servers that provide a connection pool
through JNDI also have a JNDI implementation with a writable default context.

102 CHAPTER 2

Starting a project
JBoss AS certainly has, so you can skip the last two properties and just specify a
name for the SessionFactory.

NOTE JNDI with Tomcat —Tomcat comes bundled with a read-only JNDI context,
which isn’t writable from application-level code after the startup of the
servlet container. Hibernate can’t bind to this context: You have to either
use a full context implementation (like the Sun FS context) or disable
JNDI binding of the SessionFactory by omitting the session_
factory_name property in the configuration.

The SessionFactory is bound to JNDI when you build it, which means when
Configuration.buildSessionFactory() is called. To keep your application
code portable, you may want to implement this build and the lookup in
HibernateUtil, and continue using that helper class in your data access code,
as shown in listing 2.18.

public class HibernateUtil {

 private static Context jndiContext;

 static {
 try {
 // Build it and bind it to JNDI
 new Configuration().buildSessionFactory();

 // Get a handle to the registry (reads jndi.properties)
 jndiContext = new InitialContext();

 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory(String sfName) {
 SessionFactory sf;
 try {
 sf = (SessionFactory) jndiContext.lookup(sfName);
 } catch (NamingException ex) {
 throw new RuntimeException(ex);
 }
 return sf;
 }
}

Listing 2.18 HibernateUtil for JNDI lookup of SessionFactory

Integration with Java EE services 103
Alternatively, you can look up the SessionFactory directly in application code
with a JNDI call. However, you still need at least the new Configuration().build-
SessionFactory() line of startup code somewhere in your application. One way
to remove this last line of Hibernate startup code, and to completely eliminate the
HibernateUtil class, is to deploy Hibernate as a JMX service (or by using JPA and
Java EE).

2.4.3 JMX service deployment

The Java world is full of specifications, standards, and implementations of these. A
relatively new, but important, standard is in its first version: the Java Management
Extensions (JMX). JMX is about the management of systems components or, better,
of system services.

 Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services, like managed transactions and
pooled datasources. Also, with Hibernate JMX integration, Hibernate can be a
managed JMX service, depended on and used by others.

 The JMX specification defines the following components:

■ The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

■ The JMX container—Mediates generic access (local or remote) to the MBean

■ The JMX client—May be used to administer any MBean via the JMX con-
tainer

An application server with support for JMX (such as JBoss AS) acts as a JMX con-
tainer and allows an MBean to be configured and initialized as part of the applica-
tion server startup process. Your Hibernate service may be packaged and
deployed as a JMX MBean; the bundled interface for this is org.hibernate.jmx
.HibernateService. You can start, stop, and monitor the Hibernate core through
this interface with any standard JMX client. A second MBean interface that can be
deployed optionally is org.hibernate.jmx.StatisticsService, which lets you
enable and monitor Hibernate’s runtime behavior with a JMX client.

 How JMX services and MBeans are deployed is vendor-specific. For example,
on JBoss Application Server, you only have to add a jboss-service.xml file to your
application’s EAR to deploy Hibernate as a managed JMX service.

 Instead of explaining every option here, see the reference documentation for
JBoss Application Server. It contains a section that shows Hibernate integration
and deployment step by step (http://docs.jboss.org/jbossas). Configuration and

104 CHAPTER 2

Starting a project
deployment on other application servers that support JMX should be similar, and
you can adapt and port the JBoss configuration files.

2.5 Summary

In this chapter, you have completed a first Hibernate project. We looked at how
Hibernate XML mapping files are written and what APIs you can call in Hibernate
to interact with the database.

 We then introduced Java Persistence and EJB 3.0 and explained how it can sim-
plify even the most basic Hibernate application with automatic metadata scan-
ning, standardized configuration and packaging, and dependency injection in
managed EJB components.

 If you have to get started with a legacy database, you can use the Hibernate
toolset to reverse engineer XML mapping files from an existing schema. Or, if you
work with JDK 5.0 and/or EJB 3.0, you can generate Java application code directly
from an SQL database.

 Finally, we looked at more advanced Hibernate integration and configuration
options in a Java EE environment—integration that is already done for you if you
rely on JPA or EJB 3.0.

 A high-level overview and comparison between Hibernate functionality and
Java Persistence is shown in table 2.1. (You can find a similar comparison table at
the end of each chapter.)

In the next chapter, we introduce a more complex example application that we’ll
work with throughout the rest of the book. You’ll see how to design and imple-
ment a domain model, and which mapping metadata options are the best choices
in a larger project.

Table 2.1 Hibernate and JPA comparison

Hibernate Core Java Persistence and EJB 3.0

Integrates with everything, everywhere. Flexi-
ble, but sometimes configuration is complex.

Works in Java EE and Java SE. Simple and standard-
ized configuration; no extra integration or special con-
figuration is necessary in Java EE environments.

Configuration requires a list of XML mapping
files or annotated classes.

JPA provider scans for XML mapping files and anno-
tated classes automatically.

Proprietary but powerful. Continually improved
native programming interfaces and query
language.

Standardized and stable interfaces, with a sufficient
subset of Hibernate functionality. Easy fallback to
Hibernate APIs is possible.

Domain models
and metadata

This chapter covers
■ The CaveatEmptor example application
■ POJO design for rich domain models
■ Object/relational mapping metadata options
105

106 CHAPTER 3

Domain models and metadata
The “Hello World” example in the previous chapter introduced you to Hibernate;
however, it isn’t useful for understanding the requirements of real-world applica-
tions with complex data models. For the rest of the book, we use a much more
sophisticated example application—CaveatEmptor, an online auction system—to
demonstrate Hibernate and Java Persistence.

 We start our discussion of the application by introducing a programming
model for persistent classes. Designing and implementing the persistent classes is
a multistep process that we’ll examine in detail.

 First, you’ll learn how to identify the business entities of a problem domain.
You create a conceptual model of these entities and their attributes, called a
domain model, and you implement it in Java by creating persistent classes. We
spend some time exploring exactly what these Java classes should look like, and
we also look at the persistence capabilities of the classes, and how this aspect influ-
ences the design and implementation.

 We then explore mapping metadata options—the ways you can tell Hibernate
how your persistent classes and their properties relate to database tables and col-
umns. This can involve writing XML documents that are eventually deployed
along with the compiled Java classes and are read by Hibernate at runtime.
Another option is to use JDK 5.0 metadata annotations, based on the EJB 3.0 stan-
dard, directly in the Java source code of the persistent classes. After reading this
chapter, you’ll know how to design the persistent parts of your domain model in
complex real-world projects, and what mapping metadata option you’ll primarily
prefer and use.

 Finally, in the last (probably optional) section of this chapter, we look at Hiber-
nate’s capability for representation independence. A relatively new feature in
Hibernate allows you to create a domain model in Java that is fully dynamic, such
as a model without any concrete classes but only HashMaps. Hibernate also sup-
ports a domain model representation with XML documents.

 Let’s start with the example application.

3.1 The CaveatEmptor application

The CaveatEmptor online auction application demonstrates ORM techniques and
Hibernate functionality; you can download the source code for the application
from http://caveatemptor.hibernate.org. We won’t pay much attention to the
user interface in this book (it could be web based or a rich client); we’ll concen-
trate instead on the data access code. However, when a design decision about data

The CaveatEmptor application 107
access code that has consequences for the user interface has to be made, we’ll nat-
urally consider both.

 In order to understand the design issues involved in ORM, let’s pretend the
CaveatEmptor application doesn’t yet exist, and that you’re building it from
scratch. Our first task would be analysis.

3.1.1 Analyzing the business domain

A software development effort begins with analysis of the problem domain
(assuming that no legacy code or legacy database already exists).

 At this stage, you, with the help of problem domain experts, identify the main
entities that are relevant to the software system. Entities are usually notions
understood by users of the system: payment, customer, order, item, bid, and so
forth. Some entities may be abstractions of less concrete things the user thinks
about, such as a pricing algorithm, but even these would usually be understand-
able to the user. All these entities are found in the conceptual view of the busi-
ness, which we sometimes call a business model. Developers and architects of
object-oriented software analyze the business model and create an object-ori-
ented model, still at the conceptual level (no Java code). This model may be as
simple as a mental image existing only in the mind of the developer, or it may be
as elaborate as a UML class diagram created by a computer-aided software engi-
neering (CASE) tool like ArgoUML or TogetherJ. A simple model expressed in
UML is shown in figure 3.1.

 This model contains entities that you’re bound to find in any typical auction
system: category, item, and user. The entities and their relationships (and perhaps
their attributes) are all represented by this model of the problem domain. We call
this kind of object-oriented model of entities from the problem domain, encom-
passing only those entities that are of interest to the user, a domain model. It’s an
abstract view of the real world.

 The motivating goal behind the analysis and design of a domain model is to
capture the essence of the business information for the application’s purpose.
Developers and architects may, instead of an object-oriented model, also start the
application design with a data model (possibly expressed with an Entity-Relation-
ship diagram). We usually say that, with regard to persistence, there is little

Figure 3.1 A class diagram of a typical online auction model

108 CHAPTER 3

Domain models and metadata
difference between the two; they’re merely different starting points. In the end,
we’re most interested in the structure and relationships of the business entities,
the rules that have to be applied to guarantee the integrity of data (for example,
the multiplicity of relationships), and the logic used to manipulate the data.

 In object modeling, there is a focus on polymorphic business logic. For our
purpose and top-down development approach, it’s helpful if we can implement
our logical model in polymorphic Java; hence the first draft as an object-oriented
model. We then derive the logical relational data model (usually without addi-
tional diagrams) and implement the actual physical database schema.

 Let’s see the outcome of our analysis of the problem domain of the Caveat-
Emptor application.

3.1.2 The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic
equipment to airline tickets. Auctions proceed according to the English auction
strategy: Users continue to place bids on an item until the bid period for that item
expires, and the highest bidder wins.

 In any store, goods are categorized by type and grouped with similar goods
into sections and onto shelves. The auction catalog requires some kind of hierar-
chy of item categories so that a buyer can browse these categories or arbitrarily
search by category and item attributes. Lists of items appear in the category
browser and search result screens. Selecting an item from a list takes the buyer to
an item-detail view.

 An auction consists of a sequence of bids, and one is the winning bid. User
details include name, login, address, email address, and billing information.

 A web of trust is an essential feature of an online auction site. The web of trust
allows users to build a reputation for trustworthiness (or untrustworthiness). Buy-
ers can create comments about sellers (and vice versa), and the comments are vis-
ible to all other users.

 A high-level overview of our domain model is shown in figure 3.2. Let’s briefly
discuss some interesting features of this model.

 Each item can be auctioned only once, so you don’t need to make Item dis-
tinct from any auction entities. Instead, you have a single auction item entity
named Item. Thus, Bid is associated directly with Item. Users can write Comments
about other users only in the context of an auction; hence the association
between Item and Comment. The Address information of a User is modeled as a
separate class, even though the User may have only one Address; they may alter-
natively have three, for home, billing, and shipping. You do allow the user to have

The CaveatEmptor application 109
many BillingDetails. The various billing strategies are represented as subclasses
of an abstract class (allowing future extension).

 A Category may be nested inside another Category. This is expressed by a
recursive association, from the Category entity to itself. Note that a single Cate-
gory may have multiple child categories but at most one parent. Each Item
belongs to at least one Category.

 The entities in a domain model should encapsulate state and behavior. For
example, the User entity should define the name and address of a customer and
the logic required to calculate the shipping costs for items (to this particular cus-
tomer). The domain model is a rich object model, with complex associations,
interactions, and inheritance relationships. An interesting and detailed discussion
of object-oriented techniques for working with domain models can be found in
Patterns of Enterprise Application Architecture (Fowler, 2003) or in Domain-Driven
Design (Evans, 2003).

name : String name : String
description : String
initialPrice : BigDecimal
reservePrice : BigDecimal
startDate : Date
endDate : Date
state : ItemState
approvalDatetime : Date

firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
admin : boolean

sold by

bought

0..*

0..*

1..*

amount : BigDecimal
created : Date

0..*

successful

0..*

ownername : String
BillingDetails

type : CreditCardType
number : String
expMonth : String
expYear : String

number : String
bankname : String
swift : String

default

0..*

rating : Rating
text : String
created : Date

from

about

street : String
zipcode : String
city : String

home

billing

0..*

children

parent

shipping

delivery

inspectionPeriodDays : int
state : ShipmentState
created : Date

seller

buyer

0..1

0..1

Figure 3.2 Persistent classes of the CaveatEmptor domain model and their relationships

110 CHAPTER 3

Domain models and metadata
 In this book, we won’t have much to say about business rules or about the
behavior of our domain model. This isn’t because we consider it unimportant;
rather, this concern is mostly orthogonal to the problem of persistence. It’s the
state of our entities that is persistent, so we concentrate our discussion on how to
best represent state in our domain model, not on how to represent behavior. For
example, in this book, we aren’t interested in how tax for sold items is calculated
or how the system may approve a new user account. We’re more interested in how
the relationship between users and the items they sell is represented and made
persistent. We’ll revisit this issue in later chapters, whenever we have a closer look
at layered application design and the separation of logic and data access.

NOTE ORM without a domain model—We stress that object persistence with full
ORM is most suitable for applications based on a rich domain model. If
your application doesn’t implement complex business rules or complex
interactions between entities (or if you have few entities), you may not
need a domain model. Many simple and some not-so-simple problems
are perfectly suited to table-oriented solutions, where the application is
designed around the database data model instead of around an object-
oriented domain model, often with logic executed in the database
(stored procedures). However, the more complex and expressive your
domain model, the more you’ll benefit from using Hibernate; it shines
when dealing with the full complexity of object/relational persistence.

Now that you have a (rudimentary) application design with a domain model,
the next step is to implement it in Java. Let’s look at some of the things you
need to consider.

3.2 Implementing the domain model

Several issues typically must be addressed when you implement a domain model
in Java. For instance, how do you separate the business concerns from the cross-
cutting concerns (such as transactions and even persistence)? Do you need auto-
mated or transparent persistence? Do you have to use a specific programming
model to achieve this? In this section, we examine these types of issues and how to
address them in a typical Hibernate application.

 Let’s start with an issue that any implementation must deal with: the separation
of concerns. The domain model implementation is usually a central, organizing
component; it’s reused heavily whenever you implement new application func-
tionality. For this reason, you should be prepared to go to some lengths to ensure

Implementing the domain model 111
that concerns other than business aspects don’t leak into the domain model
implementation.

3.2.1 Addressing leakage of concerns

The domain model implementation is such an important piece of code that it
shouldn’t depend on orthogonal Java APIs. For example, code in the domain
model shouldn’t perform JNDI lookups or call the database via the JDBC API. This
allows you to reuse the domain model implementation virtually anywhere. Most
importantly, it makes it easy to unit test the domain model without the need for a
particular runtime environment or container (or the need for mocking any ser-
vice dependencies). This separation emphasizes the distinction between logical
unit testing and integration unit testing.

 We say that the domain model should be concerned only with modeling the
business domain. However, there are other concerns, such as persistence, transac-
tion management, and authorization. You shouldn’t put code that addresses these
crosscutting concerns in the classes that implement the domain model. When
these concerns start to appear in the domain model classes, this is an example of
leakage of concerns.

 The EJB standard solves the problem of leaky concerns. If you implement your
domain classes using the entity programming model, the container takes care of
some concerns for you (or at least lets you externalize those concerns into meta-
data, as annotations or XML descriptors). The EJB container prevents leakage of
certain crosscutting concerns using interception. An EJB is a managed compo-
nent, executed inside the EJB container; the container intercepts calls to your
beans and executes its own functionality. This approach allows the container to
implement the predefined crosscutting concerns—security, concurrency, persis-
tence, transactions, and remoteness—in a generic way.

 Unfortunately, the EJB 2.1 specification imposes many rules and restrictions on
how you must implement a domain model. This, in itself, is a kind of leakage of
concerns—in this case, the concerns of the container implementer have leaked!
This was addressed in the EJB 3.0 specification, which is nonintrusive and much
closer to the traditional JavaBean programming model.

 Hibernate isn’t an application server, and it doesn’t try to implement all the
crosscutting concerns of the full EJB specification. Hibernate is a solution for just
one of these concerns: persistence. If you require declarative security and transac-
tion management, you should access entity instances via a session bean, taking
advantage of the EJB container’s implementation of these concerns. Hibernate in

112 CHAPTER 3

Domain models and metadata
an EJB container either replaces (EJB 2.1, entity beans with CMP) or implements
(EJB 3.0, Java Persistence entities) the persistence aspect.

 Hibernate persistent classes and the EJB 3.0 entity programming model offer
transparent persistence. Hibernate and Java Persistence also provide automatic
persistence.

 Let’s explore both terms in more detail and find an accurate definition.

3.2.2 Transparent and automated persistence

We use transparent to mean a complete separation of concerns between the per-
sistent classes of the domain model and the persistence logic, where the persistent
classes are unaware of—and have no dependency on—the persistence mecha-
nism. We use automatic to refer to a persistence solution that relieves you of han-
dling low-level mechanical details, such as writing most SQL statements and
working with the JDBC API.

 The Item class, for example, doesn’t have any code-level dependency on any
Hibernate API. Furthermore:

■ Hibernate doesn’t require that any special superclasses or interfaces be
inherited or implemented by persistent classes. Nor are any special classes
used to implement properties or associations. (Of course, the option to use
both techniques is always there.) Transparent persistence improves code
readability and maintenance, as you’ll soon see.

■ Persistent classes can be reused outside the context of persistence, in unit
tests or in the user interface (UI) tier, for example. Testability is a basic
requirement for applications with rich domain models.

■ In a system with transparent persistence, objects aren’t aware of the under-
lying data store; they need not even be aware that they are being persisted
or retrieved. Persistence concerns are externalized to a generic persistence
manager interface—in the case of Hibernate, the Session and Query. In
JPA, the EntityManager and Query (which has the same name, but a differ-
ent package and slightly different API) play the same roles.

Transparent persistence fosters a degree of portability; without special interfaces,
the persistent classes are decoupled from any particular persistence solution. Our
business logic is fully reusable in any other application context. You could easily
change to another transparent persistence mechanism. Because JPA follows the
same basic principles, there is no difference between Hibernate persistent classes
and JPA entity classes.

Implementing the domain model 113
 By this definition of transparent persistence, certain nonautomated persis-
tence layers are transparent (for example, the DAO pattern) because they decou-
ple the persistence-related code with abstract programming interfaces. Only plain
Java classes without dependencies are exposed to the business logic or contain the
business logic. Conversely, some automated persistence layers (including EJB 2.1
entity instances and some ORM solutions) are nontransparent because they
require special interfaces or intrusive programming models.

 We regard transparency as required. Transparent persistence should be one of
the primary goals of any ORM solution. However, no automated persistence solu-
tion is completely transparent: Every automated persistence layer, including
Hibernate, imposes some requirements on the persistent classes. For example,
Hibernate requires that collection-valued properties be typed to an interface such
as java.util.Set or java.util.List and not to an actual implementation such
as java.util.HashSet (this is a good practice anyway). Or, a JPA entity class has to
have a special property, called the database identifier.

 You now know why the persistence mechanism should have minimal impact
on how you implement a domain model, and that transparent and automated
persistence are required. What kind of programming model should you use?
What are the exact requirements and contracts to observe? Do you need a spe-
cial programming model at all? In theory, no; in practice, however, you should
adopt a disciplined, consistent programming model that is well accepted by the
Java community.

3.2.3 Writing POJOs and persistent entity classes

As a reaction against EJB 2.1 entity instances, many developers started talking
about Plain Old Java Objects (POJOs),1 a back-to-basics approach that essentially
revives JavaBeans, a component model for UI development, and reapplies it to
the business layer. (Most developers now use the terms POJO and JavaBean almost
synonymously.) The overhaul of the EJB specification brought us new lightweight
entities, and it would be appropriate to call them persistence-capable JavaBeans.
Java developers will soon use all three terms as synonyms for the same basic
design approach.

 In this book, we use persistent class for any class implementation that is capa-
ble of persistent instances, we use POJO if some Java best practices are relevant,

1 POJO is sometimes also written Plain Ordinary Java Objects. This term was coined in 2002 by Martin
Fowler, Rebecca Parsons, and Josh Mackenzie.

114 CHAPTER 3

Domain models and metadata
and we use entity class when the Java implementation follows the EJB 3.0 and JPA
specifications. Again, you shouldn’t be too concerned about these differences,
because the ultimate goal is to apply the persistence aspect as transparently as pos-
sible. Almost every Java class can be a persistent class, or a POJO, or an entity class
if some good practices are followed.

 Hibernate works best with a domain model implemented as POJOs. The few
requirements that Hibernate imposes on your domain model implementation are
also best practices for the POJO implementation, so most POJOs are Hibernate-
compatible without any changes. Hibernate requirements are almost the same as
the requirements for EJB 3.0 entity classes, so a POJO implementation can be eas-
ily marked up with annotations and made an EJB 3.0 compatible entity.

 A POJO declares business methods, which define behavior, and properties,
which represent state. Some properties represent associations to other user-
defined POJOs.

 A simple POJO class is shown in listing 3.1. This is an implementation of the
User entity of your domain model.

public class User
 implements Serializable {

 private String username;
 private Address address;

 public User() {}

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public MonetaryAmount calcShippingCosts(Address fromLocation) {
 ...
 }

}

Listing 3.1 POJO implementation of the User class

Declaration of
Serializable

No-argument class constructor

Property
accessor
methods

Business method

Implementing the domain model 115
Hibernate doesn’t require that persistent classes implement Serializable. How-
ever, when objects are stored in an HttpSession or passed by value using RMI,
serialization is necessary. (This is likely to happen in a Hibernate application.)
The class can be abstract and, if needed, extend a nonpersistent class.

 Unlike the JavaBeans specification, which requires no specific constructor,
Hibernate (and JPA) require a constructor with no arguments for every persistent
class. Hibernate calls persistent classes using the Java Reflection API on this con-
structor to instantiate objects. The constructor may be nonpublic, but it has to be
at least package-visible if runtime-generated proxies will be used for performance
optimization. Proxy generation also requires that the class isn’t declared final
(nor has final methods)! (We’ll come back to proxies in chapter 13, section 13.1,
“Defining the global fetch plan.”)

 The properties of the POJO implement the attributes of the business entities—
for example, the username of User. Properties are usually implemented as private
or protected instance variables, together with public property accessor methods: a
method for retrieving the value of the instance variable and a method for chang-
ing its value. These methods are known as the getter and setter, respectively. The
example POJO in listing 3.1 declares getter and setter methods for the username
and address properties.

 The JavaBean specification defines the guidelines for naming these methods,
and they allow generic tools like Hibernate to easily discover and manipulate the
property value. A getter method name begins with get, followed by the name of
the property (the first letter in uppercase); a setter method name begins with set
and similarly is followed by the name of the property. Getter methods for Boolean
properties may begin with is instead of get.

 You can choose how the state of an instance of your persistent classes should
be persisted by Hibernate, either through direct access to its fields or through
accessor methods. Your class design isn’t disturbed by these considerations. You
can make some accessor methods nonpublic or completely remove them. Some
getter and setter methods do something more sophisticated than access instance
variables (validation, for example), but trivial accessor methods are common.
Their primary advantage is providing an additional buffer between the internal
representation and the public interface of the class, allowing independent refac-
toring of both.

 The example in listing 3.1 also defines a business method that calculates the
cost of shipping an item to a particular user (we left out the implementation of
this method).

116 CHAPTER 3

Domain models and metadata
 What are the requirements for JPA entity classes? The good news is that so far,
all the conventions we’ve discussed for POJOs are also requirements for JPA enti-
ties. You have to apply some additional rules, but they’re equally simple; we’ll
come back to them later.

 Now that we’ve covered the basics of using POJO persistent classes as a pro-
gramming model, let’s see how to handle the associations between those classes.

3.2.4 Implementing POJO associations

You use properties to express associations between POJO
classes, and you use accessor methods to navigate from
object to object at runtime. Let’s consider the associations
defined by the Category class, as shown in figure 3.3.

 As with all our diagrams, we left out the association-
related attributes (let’s call them parentCategory and
childCategories) because they would clutter the illustra-
tion. These attributes and the methods that manipulate
their values are called scaffolding code.

 This is what the scaffolding code for the one-to-many self-association of Cate-
gory looks like:

public class Category {
 private String name;
 private Category parentCategory;
 private Set childCategories = new HashSet();

 public Category() { }
 ...
}

To allow bidirectional navigation of the association, you require two attributes.
The parentCategory field implements the single-valued end of the association
and is declared to be of type Category. The many-valued end, implemented by
the childCategories field, must be of collection type. You choose a Set, because
duplicates are disallowed, and initialize the instance variable to a new instance of
HashSet.

 Hibernate requires interfaces for collection-typed attributes, so you must use
java.util.Set or java.util.List rather than HashSet, for example. This is con-
sistent with the requirements of the JPA specification for collections in entities. At
runtime, Hibernate wraps the HashSet instance with an instance of one of Hiber-
nate’s own classes. (This special class isn’t visible to the application code.) It’s

Figure 3.3 Diagram
of the Category
class with associations

Implementing the domain model 117
good practice to program to collection interfaces anyway, rather than concrete
implementations, so this restriction shouldn’t bother you.

 You now have some private instance variables but no public interface to allow
access from business code or property management by Hibernate (if it shouldn’t
access the fields directly). Let’s add some accessor methods to the class:

public String getName() {
 return name;
}

public void setName(String name) {
 this.name = name;
}

public Set getChildCategories() {
 return childCategories;
}

public void setChildCategories(Set childCategories) {
 this.childCategories = childCategories;
}

public Category getParentCategory() {
 return parentCategory;
}

public void setParentCategory(Category parentCategory) {
 this.parentCategory = parentCategory;
}

Again, these accessor methods need to be declared public only if they’re part of
the external interface of the persistent class used by the application logic to create
a relationship between two objects. However, managing the link between two Cat-
egory instances is more difficult than setting a foreign key value in a database
field. In our experience, developers are often unaware of this complication that
arises from a network object model with bidirectional references. Let’s walk
through the issue step by step.

 The basic procedure for adding a child Category to a parent Category looks
like this:

Category aParent = new Category();
Category aChild = new Category();
aChild.setParentCategory(aParent);
aParent.getChildCategories().add(aChild);

Whenever a link is created between a parent Category and a child Category, two
actions are required:

118 CHAPTER 3

Domain models and metadata
■ The parentCategory of the child must be set, effectively breaking the asso-
ciation between the child and its old parent (there can only be one parent
for any child).

■ The child must be added to the childCategories collection of the new par-
ent Category.

NOTE Managed relationships in Hibernate—Hibernate doesn’t manage persistent
associations. If you want to manipulate an association, you must write
exactly the same code you would write without Hibernate. If an associa-
tion is bidirectional, both sides of the relationship must be considered.
Programming models like EJB 2.1 entity beans muddled this behavior by
introducing container-managed relationships—the container automati-
cally changes the other side of a relationship if one side is modified by
the application. This is one of the reasons why code that uses EJB 2.1
entity beans couldn’t be reused outside the container. EJB 3.0 entity asso-
ciations are transparent, just like in Hibernate. If you ever have problems
understanding the behavior of associations in Hibernate, just ask your-
self, “What would I do without Hibernate?” Hibernate doesn’t change
the regular Java semantics.

It’s a good idea to add a convenience method to the Category class that groups
these operations, allowing reuse and helping ensure correctness, and in the end
guarantee data integrity:

public void addChildCategory(Category childCategory) {
 if (childCategory == null)
 throw new IllegalArgumentException("Null child category!");
 if (childCategory.getParentCategory() != null)
 childCategory.getParentCategory().getChildCategories()
 .remove(childCategory);
 childCategory.setParentCategory(this);
 childCategories.add(childCategory);
}

The addChildCategory() method not only reduces the lines of code when deal-
ing with Category objects, but also enforces the cardinality of the association.
Errors that arise from leaving out one of the two required actions are avoided.
This kind of grouping of operations should always be provided for associations, if
possible. If you compare this with the relational model of foreign keys in a rela-
tional database, you can easily see how a network and pointer model complicates
a simple operation: instead of a declarative constraint, you need procedural code
to guarantee data integrity.

Implementing the domain model 119
 Because you want addChildCategory() to be the only externally visible muta-
tor method for the child categories (possibly in addition to a removeChildCate-
gory() method), you can make the setChildCategories() method private or
drop it and use direct field access for persistence. The getter method still returns
a modifiable collection, so clients can use it to make changes that aren’t reflected
on the inverse side. You should consider the static methods Collections.unmod-
ifiableCollection(c) and Collections.unmodifiableSet(s), if you prefer to
wrap the internal collections before returning them in your getter method. The
client then gets an exception if it tries to modify the collection; every modification
is forced to go through the relationship-management method.

 A different kind of relationship exists between the Category and Item classes:
a bidirectional many-to-many association, as shown in figure 3.4.

In the case of a many-to-many association, both sides are implemented with collec-
tion-valued attributes. Let’s add the new attributes and methods for accessing the
Item relationship to the Category class, as shown in listing 3.2.

public class Category {
 ...
 private Set items = new HashSet();
 ...

 public Set getItems() {
 return items;
 }

 public void setItems(Set items) {
 this.items = items;
 }
}

Listing 3.2 Category to Item scaffolding code

Figure 3.4
Category and the associated Item class

120 CHAPTER 3

Domain models and metadata
The code for the Item class (the other end of the many-to-many association) is
similar to the code for the Category class. You add the collection attribute, the
standard accessor methods, and a method that simplifies relationship manage-
ment, as in listing 3.3.

public class Item {

 private String name;
 private String description;
 ...
 private Set categories = new HashSet();
 ...

 public Set getCategories() {
 return categories;
 }

 private void setCategories(Set categories) {
 this.categories = categories;
 }

 public void addCategory(Category category) {
 if (category == null)
 throw new IllegalArgumentException("Null category");
 category.getItems().add(this);
 categories.add(category);
 }
}

The addCategory() method is similar to the addChildCategory() convenience
method of the Category class. It’s used by a client to manipulate the link between
an Item and a Category. For the sake of readability, we won’t show convenience
methods in future code samples and assume you’ll add them according to your
own taste.

 Using convenience methods for association handling isn’t the only way to
improve a domain model implementation. You can also add logic to your accessor
methods.

3.2.5 Adding logic to accessor methods

One of the reasons we like to use JavaBeans-style accessor methods is that they
provide encapsulation: The hidden internal implementation of a property can be
changed without any changes to the public interface. This lets you abstract the
internal data structure of a class—the instance variables—from the design of the

Listing 3.3 Item to Category scaffolding code

Implementing the domain model 121
database, if Hibernate accesses the properties at runtime through accessor meth-
ods. It also allows easier and independent refactoring of the public API and the
internal representation of a class.

 For example, if your database stores the name of a user as a single NAME col-
umn, but your User class has firstname and lastname properties, you can add
the following persistent name property to the class:

public class User {
 private String firstname;
 private String lastname;
 ...

 public String getName() {
 return firstname + ' ' + lastname;
 }

 public void setName(String name) {
 StringTokenizer t = new StringTokenizer(name);
 firstname = t.nextToken();
 lastname = t.nextToken();
)

}

Later, you’ll see that a Hibernate custom type is a better way to handle many of
these kinds of situations. However, it helps to have several options.

 Accessor methods can also perform validation. For instance, in the following
example, the setFirstName() method verifies that the name is capitalized:

public class User {
 private String firstname;
 ...

 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname)
 throws InvalidNameException {

 if (!StringUtil.isCapitalizedName(firstname))
 throw new InvalidNameException(firstname);
 this.firstname = firstname;
)

}

Hibernate may use the accessor methods to populate the state of an instance when
loading an object from a database, and sometimes you’ll prefer that this validation

122 CHAPTER 3

Domain models and metadata
not occur when Hibernate is initializing a newly loaded object. In that case, it
makes sense to tell Hibernate to directly access the instance variables.

 Another issue to consider is dirty checking. Hibernate automatically detects
object state changes in order to synchronize the updated state with the database.
It’s usually safe to return a different object from the getter method than the
object passed by Hibernate to the setter. Hibernate compares the objects by
value—not by object identity—to determine whether the property’s persistent
state needs to be updated. For example, the following getter method doesn’t
result in unnecessary SQL UPDATEs:

public String getFirstname() {
 return new String(firstname);
}

There is one important exception to this: Collections are compared by identity!
For a property mapped as a persistent collection, you should return exactly the
same collection instance from the getter method that Hibernate passed to the set-
ter method. If you don’t, Hibernate will update the database, even if no update is
necessary, every time the state held in memory is synchronized with the database.
This kind of code should almost always be avoided in accessor methods:

public void setNames(List namesList) {
 names = (String[]) namesList.toArray();
}

public List getNames() {
 return Arrays.asList(names);
}

Finally, you have to know how exceptions in accessor methods are handled if you
configure Hibernate to use these methods when loading and storing instances. If
a RuntimeException is thrown, the current transaction is rolled back, and the
exception is yours to handle. If a checked application exception is thrown, Hiber-
nate wraps the exception into a RuntimeException.

 You can see that Hibernate doesn’t unnecessarily restrict you with a POJO pro-
gramming model. You’re free to implement whatever logic you need in accessor
methods (as long as you keep the same collection instance in both getter and set-
ter). How Hibernate accesses the properties is completely configurable. This kind
of transparency guarantees an independent and reusable domain model imple-
mentation. And everything we have explained and said so far is equally true for
both Hibernate persistent classes and JPA entities.

 Let’s now define the object/relational mapping for the persistent classes.

Object/relational mapping metadata 123
3.3 Object/relational mapping metadata

ORM tools require metadata to specify the mapping between classes and tables,
properties and columns, associations and foreign keys, Java types and SQL types,
and so on. This information is called the object/relational mapping metadata.
Metadata is data about data, and mapping metadata defines and governs the
transformation between the different type systems and relationship representa-
tions in object-oriented and SQL systems.

 It’s your job as a developer to write and maintain this metadata. We discuss var-
ious approaches in this section, including metadata in XML files and JDK 5.0
source code annotations. Usually you decide to use one strategy in a particular
project, and after reading these sections you’ll have the background information
to make an educated decision.

3.3.1 Metadata in XML

Any ORM solution should provide a human-readable, easily hand-editable map-
ping format, not just a GUI mapping tool. Currently, the most popular object/
relational metadata format is XML. Mapping documents written in and with XML
are lightweight, human readable, easily manipulated by version-control systems
and text editors, and they can be customized at deployment time (or even at run-
time, with programmatic XML generation).

 But is XML-based metadata really the best approach? A certain backlash
against the overuse of XML can be seen in the Java community. Every framework
and application server seems to require its own XML descriptors.

 In our view, there are three main reasons for this backlash:

■ Metadata-based solutions have often been used inappropriately. Metadata is
not, by nature, more flexible or maintainable than plain Java code.

■ Many existing metadata formats weren’t designed to be readable and easy
to edit by hand. In particular, a major cause of pain is the lack of sensible
defaults for attribute and element values, requiring significantly more typ-
ing than should be necessary. Even worse, some metadata schemas use only
XML elements and text values, without any attributes. Another problem is
schemas that are too generic, where every declaration is wrapped in a
generic extension attribute of a meta element.

■ Good XML editors, especially in IDEs, aren’t as common as good Java coding
environments. Worst, and most easily fixable, a document type declaration
(DTD) often isn’t provided, preventing autocompletion and validation.

124 CHAPTER 3

Domain models and metadata
There is no getting around the need for metadata in ORM. However, Hibernate
was designed with full awareness of the typical metadata problems. The XML
metadata format of Hibernate is extremely readable and defines useful default
values. If attribute values are missing, reflection is used on the mapped class to
determine defaults. Hibernate also comes with a documented and complete DTD.
Finally, IDE support for XML has improved lately, and modern IDEs provide
dynamic XML validation and even an autocomplete feature.

 Let’s look at the way you can use XML metadata in Hibernate. You created the
Category class in the previous section; now you need to map it to the CATEGORY
table in the database. To do that, you write the XML mapping document in
listing 3.4.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class
 name="auction.model.Category"
 table="CATEGORY">

 <id
 name="id"
 column="CATEGORY_ID"
 type="long">
 <generator class="native"/>
 </id>

 <property
 name="name"
 column="NAME"
 type="string"/>

 </class>
</hibernate-mapping>

The Hibernate mapping DTD should be declared in every mapping file—it’s
required for syntactic validation of the XML.

Mappings are declared inside a <hibernate-mapping> element. You may include
as many class mappings as you like, along with certain other special declarations
that we’ll mention later in the book.

Listing 3.4 Hibernate XML mapping of the Category class

B

C D

E

F

B

C

Object/relational mapping metadata 125
The class Category (in the auction.model package) is mapped to the CATEGORY
table. Every row in this table represents one instance of type Category.

We haven’t discussed the concept of object identity, so you may be surprised by
this mapping element. This complex topic is covered in the next chapter. To
understand this mapping, it’s sufficient to know that every row in the CATEGORY
table has a primary key value that matches the object identity of the instance in
memory. The <id> mapping element is used to define the details of object iden-
tity.

The property name of type java.lang.String is mapped to a database NAME col-
umn. Note that the type declared in the mapping is a built-in Hibernate type
(string), not the type of the Java property or the SQL column type. Think about
this as the converter that represents a bridge between the other two type systems.

We’ve intentionally left the collection and association mappings out of this exam-
ple. Association and especially collection mappings are more complex, so we’ll
return to them in the second part of the book.

 Although it’s possible to declare mappings for multiple classes in one mapping
file by using multiple <class> elements, the recommended practice (and the
practice expected by some Hibernate tools) is to use one mapping file per persis-
tent class. The convention is to give the file the same name as the mapped class,
appending a suffix (for example, Category.hbm.xml), and putting it in the same
package as the Category class.

 As already mentioned, XML mapping files aren’t the only way to define map-
ping metadata in a Hibernate application. If you use JDK 5.0, your best choice is
the Hibernate Annotations based on the EJB 3.0 and Java Persistence standard.

3.3.2 Annotation-based metadata

The basic idea is to put metadata next to the information it describes, instead of
separating it physically into a different file. Java didn’t have this functionality
before JDK 5.0, so an alternative was developed. The XDoclet project introduced
annotation of Java source code with meta-information, using special Javadoc tags
with support for key/value pairs. Through nesting of tags, quite complex struc-
tures are supported, but only some IDEs allow customization of Javadoc templates
for autocompletion and validation.

 Java Specification Request (JSR) 175 introduced the annotation concept in the
Java language, with type-safe and declared interfaces for the definition of annota-
tions. Autocompletion and compile-time checking are no longer an issue. We
found that annotation metadata is, compared to XDoclet, nonverbose and that it

D

E

F

126 CHAPTER 3

Domain models and metadata
has better defaults. However, JDK 5.0 annotations are sometimes more difficult to
read than XDoclet annotations, because they aren’t inside regular comment
blocks; you should use an IDE that supports configurable syntax highlighting of
annotations. Other than that, we found no serious disadvantage in working with
annotations in our daily work in the past years, and we consider annotation-meta-
data support to be one of the most important features of JDK 5.0.

 We’ll now introduce mapping annotations and use JDK 5.0. If you have to work
with JDK 1.4 but like to use annotation-based metadata, consider XDoclet, which
we’ll show afterwards.

Defining and using annotations
Before you annotate the first persistent class, let’s see how annotations are cre-
ated. Naturally, you’ll usually use predefined annotations. However, knowing
how to extend the existing metadata format or how to write your own annota-
tions is a useful skill. The following code example shows the definition of an
Entity annotation:

package javax.persistence;

@Target(TYPE)
@Retention(RUNTIME)
public @interface Entity {
 String name() default "";
}

The first line defines the package, as always. This annotation is in the package
javax.persistence, the Java Persistence API as defined by EJB 3.0. It’s one of the
most important annotations of the specification—you can apply it on a POJO to
make it a persistent entity class. The next line is an annotation that adds meta-
information to the @Entity annotation (metadata about metadata). It specifies
that the @Entity annotation can only be put on type declarations; in other words,
you can only mark up classes with the @Entity annotation, not fields or methods.
The retention policy chosen for this annotation is RUNTIME; other options (for
other use cases) include removal of the annotation metadata during compilation,
or only inclusion in byte-code without possible runtime reflectivity. You want to
preserve all entity meta-information even at runtime, so Hibernate can read it on
startup through Java Reflection. What follows in the example is the actual declara-
tion of the annotation, including its interface name and its attributes (just one in
this case, name, with an empty string default).

 Let’s use this annotation to make a POJO persistent class a Java Persistence
entity:

Object/relational mapping metadata 127
package auction.model;

import javax.persistence.*;

@Entity
@Table(name = "ITEM")
public class Item {
 ...
}

This public class, Item, has been declared as a persistent entity. All of its proper-
ties are now automatically persistent with a default strategy. Also shown is a second
annotation that declares the name of the table in the database schema this persis-
tent class is mapped to. If you omit this information, the JPA provider defaults to
the unqualified class name (just as Hibernate will if you omit the table name in an
XML mapping file).

 All of this is type-safe, and declared annotations are read with Java Reflection
when Hibernate starts up. You don’t need to write any XML mapping files, Hiber-
nate doesn’t need to parse any XML, and startup is faster. Your IDE can also easily
validate and highlight annotations—they are regular Java types, after all.

 One of the clear benefits of annotations is their flexibility for agile develop-
ment. If you refactor your code, you rename, delete, or move classes and proper-
ties all the time. Most development tools and editors can’t refactor XML element
and attribute values, but annotations are part of the Java language and are
included in all refactoring operations.

 Which annotations should you apply? You have the choice among several stan-
dardized and vendor-specific packages.

Considering standards
Annotation-based metadata has a significant impact on how you write Java appli-
cations. Other programming environments, like C# and .NET, had this kind of
support for quite a while, and developers adopted the metadata attributes quickly.
In the Java world, the big rollout of annotations is happening with Java EE 5.0. All
specifications that are considered part of Java EE, like EJB, JMS, JMX, and even the
servlet specification, will be updated and use JDK 5.0 annotations for metadata
needs. For example, web services in J2EE 1.4 usually require significant metadata
in XML files, so we expect to see real productivity improvements with annotations.
Or, you can let the web container inject an EJB handle into your servlet, by adding
an annotation on a field. Sun initiated a specification effort (JSR 250) to take care
of the annotations across specifications, defining common annotations for the

128 CHAPTER 3

Domain models and metadata
whole Java platform. For you, however, working on a persistence layer, the most
important specification is EJB 3.0 and JPA.

 Annotations from the Java Persistence package are available in javax.persis-
tence once you have included the JPA interfaces in your classpath. You can use
these annotations to declare persistent entity classes, embeddable classes (we’ll
discuss these in the next chapter), properties, fields, keys, and so on. The JPA
specification covers the basics and most relevant advanced mappings—everything
you need to write a portable application, with a pluggable, standardized persis-
tence layer that works inside and outside of any runtime container.

 What annotations and mapping features aren’t specified in Java Persistence? A
particular JPA engine and product may naturally offer advantages—the so-called
vendor extensions.

Utilizing vendor extensions
Even if you map most of your application’s model with JPA-compatible annota-
tions from the javax.persistence package, you’ll have to use vendor extensions
at some point. For example, almost all performance-tuning options you’d expect
to be available in high-quality persistence software, such as fetching and caching
settings, are only available as Hibernate-specific annotations.

 Let’s see what that looks like in an example. Annotate the Item entity source
code again:

package auction.model;

import javax.persistence.*;

@Entity
@Table(name = "ITEM")
@org.hibernate.annotations.BatchSize(size = 10)
@org.hibernate.annotations.DiscriminatorFormula(
 "case when ITEM_IS_SPECIAL is not null then A else B end"
)
public class Item {
 ...
}

This example contains two Hibernate annotations. The first, @BatchSize, is a
fetching option that can increase performance in situations we’ll examine later
in this book. The second, @DiscriminatorFormula, is a Hibernate mapping
annotation that is especially useful for legacy schemas when class inheritance
can’t be determined with simple literal values (here it maps a legacy column
ITEM_IS_SPECIAL—probably some kind of flag—to a literal value). Both anno-
tations are prefixed with the org.hibernate.annotations package name.

Object/relational mapping metadata 129
Consider this a good practice, because you can now easily see what metadata of
this entity class is from the JPA specification and which tags are vendor-spe-
cific. You can also easily search your source code for “org.hibernate.annota-
tions” and get a complete overview of all nonstandard annotations in your
application in a single search result.

 If you switch your Java Persistence provider, you only have to replace the ven-
dor-specific extensions, and you can expect a similar feature set to be available
with most sophisticated solutions. Of course, we hope you’ll never have to do this,
and it doesn’t happen often in practice—just be prepared.

 Annotations on classes only cover metadata that is applicable for that particu-
lar class. However, you often need metadata at a higher level, for a whole package
or even the whole application. Before we discuss these options, we’d like to intro-
duce another mapping metadata format.

XML descriptors in JPA and EJB 3.0
The EJB 3.0 and Java Persistence standard embraces annotations aggressively.
However, the expert group has been aware of the advantages of XML deployment
descriptors in certain situations, especially for configuration metadata that
changes with each deployment. As a consequence, every annotation in EJB 3.0
and JPA can be replaced with an XML descriptor element. In other words, you
don’t have to use annotations if you don’t want to (although we strongly encour-
age you to reconsider and give annotations a try, if this is your first reaction to
annotations).

 Let’s look at an example of a JPA XML descriptor for a particular persistence
unit:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence/orm orm_1_0.xsd"
 version="1.0">

 <persistence-unit-metadata>
 <xml-mapping-metadata-complete/>
 <persistence-unit-defaults>
 <schema>MY_SCHEMA</schema>
 <catalog>MY_CATALOG</catalog>
 <cascade-persist/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

130 CHAPTER 3

Domain models and metadata
 <package>auction.model</package>

 <entity class="Item" access="PROPERTY"
 metadata-complete="true">
 <attributes>
 <id name="id">
 <generated-value strategy="AUTO"/>
 </id>
 </attributes>
 </entity>

</entity-mappings>

This XML is automatically picked up by the JPA provider if you place it in a file
called orm.xml in your classpath, in the META-INF directory of the persistence
unit. You can see that you only have to name an identifier property for a class; as
in annotations, all other properties of the entity class are automatically consid-
ered persistent with a sensible default mapping.

 You can also set default mappings for the whole persistence unit, such as the
schema name and default cascading options. If you include the <xml-mapping-
metadata-complete> element, the JPA provider completely ignores all annota-
tions on your entity classes in this persistence unit and relies only on the map-
pings as defined in the orm.xml file. You can (redundantly in this case) enable
this on an entity level, with metadata-complete="true". If enabled, the JPA pro-
vider assumes that all properties of the entity are mapped in XML, and that all
annotations for this entity should be ignored.

 If you don’t want to ignore but instead want to override the annotation meta-
data, first remove the global <xml-mapping-metadata-complete> element from
the orm.xml file. Also remove the metadata-complete="true" attribute from any
entity mapping that should override, not replace, annotations:

<entity-mappings ...>

 <package>auction.model</package>

 <entity class="Item">
 <attributes>
 <basic name="initialPrice" optional="false">
 <column name="INIT_PRICE"/>
 </basic>
 </attributes>
 </entity>

</entity-mappings>

Here you map the initialPrice property to the INIT_PRICE column and specify
it isn’t nullable. Any annotation on the initialPrice property of the Item class is

Object/relational mapping metadata 131
ignored, but all other annotations on the Item class are still applied. Also note
that you didn’t specify an access strategy in this mapping, so field or accessor
method access is used depending on the position of the @Id annotation in Item.
(We’ll get back to this detail in the next chapter.)

 An obvious problem with XML deployment descriptors in Java Persistence is
their compatibility with native Hibernate XML mapping files. The two formats
aren’t compatible at all, and you should make a decision to use one or the other.
The syntax of the JPA XML descriptor is much closer to the actual JPA annotations
than to the native Hibernate XML mapping files.

 You also need to consider vendor extensions when you make a decision for an
XML metadata format. The Hibernate XML format supports all possible Hibernate
mappings, so if something can’t be mapped in JPA/Hibernate annotations, it can
be mapped with native Hibernate XML files. The same isn’t true with JPA XML
descriptors—they only provide convenient externalized metadata that covers the
specification. Sun does not allow vendor extensions with an additional namespace.

 On the other hand, you can’t override annotations with Hibernate XML map-
ping files; you have to define a complete entity class mapping in XML.

 For these reasons, we don’t show all possible mappings in all three formats; we
focus on native Hibernate XML metadata and JPA/Hibernate annotations. How-
ever, you’ll learn enough about the JPA XML descriptor to use it if you want to.

 Consider JPA/Hibernate annotations the primary choice if you’re using JDK
5.0. Fall back to native Hibernate XML mapping files if you want to externalize a
particular class mapping or utilize a Hibernate extension that isn’t available as an
annotation. Consider JPA XML descriptors only if you aren’t planning to use any
vendor extension (which is, in practice, unlikely), or if you want to only override a
few annotations, or if you require complete portability that even includes deploy-
ment descriptors.

 But what if you’re stuck with JDK 1.4 (or even 1.3) and still want to benefit from
the better refactoring capabilities and reduced lines of code of inline metadata?

3.3.3 Using XDoclet

The XDoclet project has brought the notion of attribute-oriented programming
to Java. XDoclet leverages the Javadoc tag format (@attribute) to specify class-,
field-, or method-level metadata attributes. There is even a book about XDoclet
from Manning Publications, XDoclet in Action (Walls and Richards, 2004).

 XDoclet is implemented as an Ant task that generates Hibernate XML meta-
data (or something else, depending on the plug-in) as part of the build process.

132 CHAPTER 3

Domain models and metadata
Creating the Hibernate XML mapping document with XDoclet is straightforward;
instead of writing it by hand, you mark up the Java source code of your persistent
class with custom Javadoc tags, as shown in listing 3.5.

/**
 * The Category class of the CaveatEmptor auction site domain model.
 *
 * @hibernate.class
 * table="CATEGORY"
 */
public class Category {
 ...

 /**
 * @hibernate.id
 * generator-class="native"
 * column="CATEGORY_ID"
 */
 public Long getId() {
 return id;
 }

 ...

 /**
 * @hibernate.property
 */
 public String getName() {
 return name;
 }

 ...
}

With the annotated class in place and an Ant task ready, you can automatically
generate the same XML document shown in the previous section (listing 3.4).

 The downside to XDoclet is that it requires another build step. Most large Java
projects are using Ant already, so this is usually a nonissue. Arguably, XDoclet
mappings are less configurable at deployment time; but there is nothing stopping
you from hand-editing the generated XML before deployment, so this is probably
not a significant objection. Finally, support for XDoclet tag validation may not be
available in your development environment. However, the latest IDEs support at
least autocompletion of tag names. We won’t cover XDoclet in this book, but you
can find examples on the Hibernate website.

Listing 3.5 Using XDoclet tags to mark up Java classes with mapping metadata

Object/relational mapping metadata 133
 Whether you use XML files, JDK 5.0 annotations, or XDoclet, you’ll often
notice that you have to duplicate metadata in several places. In other words, you
need to add global information that is applicable to more than one property,
more than one persistent class, or even the whole application.

3.3.4 Handling global metadata

Consider the following situation: All of your domain model persistent classes are
in the same package. However, you have to specify class names fully qualified,
including the package, in every XML mapping file. It would be a lot easier to
declare the package name once and then use only the short persistent class name.
Or, instead of enabling direct field access for every single property through the
access="field" mapping attribute, you’d rather use a single switch to enable
field access for all properties. Class- or package-scoped metadata would be much
more convenient.

 Some metadata is valid for the whole application. For example, query strings
can be externalized to metadata and called by a globally unique name in the
application code. Similarly, a query usually isn’t related to a particular class, and
sometimes not even to a particular package. Other application-scoped metadata
includes user-defined mapping types (converters) and data filter (dynamic view)
definitions.

 Let’s walk through some examples of global metadata in Hibernate XML map-
pings and JDK 5.0 annotations.

Global XML mapping metadata
If you check the XML mapping DTD, you’ll see that the <hibernate-mapping>
root element has global options that are applied to the class mapping(s) inside
it—some of these options are shown in the following example:

<hibernate-mapping
 schema="AUCTION"
 default-lazy="false"
 default-access="field"
 auto-import="false">

<class ...>
 ...
</class>

</hibernate-mapping>

The schema attribute enables a database schema prefix, AUCTION, used by Hiber-
nate for all SQL statements generated for the mapped classes. By setting default-
lazy to false, you enable default outer-join fetching for some class associations, a

134 CHAPTER 3

Domain models and metadata
topic we’ll discuss in chapter 13, section 13.1, “Defining the global fetch plan.”
(This default-lazy="true" switch has an interesting side effect: It switches to
Hibernate 2.x default fetching behavior—useful if you migrate to Hibernate 3.x
but don’t want to update all fetching settings.) With default-access, you enable
direct field access by Hibernate for all persistent properties of all classes mapped
in this file. Finally, the auto-import setting is turned off for all classes in this file.
We’ll talk about importing and naming of entities in chapter 4, section 4.3, “Class
mapping options.”

TIP Mapping files with no class declarations—Global metadata is required and
present in any sophisticated application. For example, you may easily
import a dozen interfaces, or externalize a hundred query strings. In
large-scale applications, you often create mapping files without actual
class mappings, and only imports, external queries, or global filter and
type definitions. If you look at the DTD, you can see that <class> map-
pings are optional inside the <hibernate-mapping> root element. Split
up and organize your global metadata into separate files, such as
AuctionTypes.hbm.xml, AuctionQueries.hbm.xml, and so on, and load
them in Hibernate’s configuration just like regular mapping files.
However, make sure that all custom types and filters are loaded before
any other mapping metadata that applies these types and filters to
class mappings.

Let’s look at global metadata with JDK 5.0 annotations.

Global annotation metadata
Annotations are by nature woven into the Java source code for a particular class.
Although it’s possible to place global annotations in the source file of a class (at
the top), we’d rather keep global metadata in a separate file. This is called pack-
age metadata, and it’s enabled with a file named package-info.java in a particu-
lar package directory:

@org.hibernate.annotations.TypeDefs({
 @org.hibernate.annotations.TypeDef(
 name="monetary_amount_usd",
 typeClass = MonetaryAmountType.class,
 parameters = { @Parameter(name="convertTo", value="USD") }
),
 @org.hibernate.annotations.TypeDef(
 name="monetary_amount_eur",
 typeClass = MonetaryAmountType.class,
 parameters = { @Parameter(name="convertTo", value="EUR") }
)
})

Object/relational mapping metadata 135
@org.hibernate.annotations.NamedQueries({
 @org.hibernate.annotations.NamedQuery(
 name = "findItemsOrderByPrice",
 query = "select i from Item i order by i.initialPrice)"
)
})

package auction.persistence.types;

This example of a package metadata file, in the package auction.persis-
tence.types, declares two Hibernate type converters. We’ll discuss the Hiber-
nate type system in chapter 5, section 5.2, “The Hibernate type system.” You
can now refer to the user-defined types in class mappings by their names. The
same mechanism can be used to externalize queries and to define global identi-
fier generators (not shown in the last example).

 There is a reason the previous code example only includes annotations from
the Hibernate package and no Java Persistence annotations. One of the (last-
minute) changes made to the JPA specification was the removal of package visibil-
ity of JPA annotations. As a result, no Java Persistence annotations can be placed in
a package-info.java file. If you need portable global Java Persistence metadata, put
it in an orm.xml file.

 Note that you have to name a package that contains a metadata file in your
Hibernate or JPA persistence unit configuration if you aren’t using automatic
detection—see chapter 2, section 2.2.1, “Using Hibernate Annotations.”

 Global annotations (Hibernate and JPA) can also be placed in the source code
of a particular class, right after the import section. The syntax for the annotations
is the same as in the package-info.java file, so we won’t repeat it here.

 You now know how to write local and global mapping metadata. Another issue
in large-scale applications is the portability of metadata.

Using placeholders
In any larger Hibernate application, you’ll face the problem of native code in
your mapping metadata—code that effectively binds your mapping to a particular
database product. For example, SQL statements, such as in formula, constraint, or
filter mappings, aren’t parsed by Hibernate but are passed directly through to the
database management system. The advantage is flexibility—you can call any native
SQL function or keyword your database system supports. The disadvantage of put-
ting native SQL in your mapping metadata is lost database portability, because
your mappings, and hence your application, will work only for a particular DBMS
(or even DBMS version).

136 CHAPTER 3

Domain models and metadata
 Even simple things, such as primary key generation strategies, usually aren’t
portable across all database systems. In the next chapter, we discuss a special iden-
tifier generator called native, which is a built-in smart primary key generator. On
Oracle, it uses a database sequence to generate primary key values for rows in a
table; on IBM DB2, it uses a special identity primary key column by default. This is
how you map it in XML:

<class name="Category" table="CATEGORY">

 <id name="id" column="CATEGORY_ID" type="long">
 <generator class="native"/>
 </id>

 ...
</class>

We’ll discuss the details of this mapping later. The interesting part is the declara-
tion class="native" as the identifier generator. Let’s assume that the portability
this generator provides isn’t what you need, perhaps because you use a custom
identifier generator, a class you wrote that implements the Hibernate
IdentifierGenerator interface:

<id name="id" column="CATEGORY_ID" type="long">
 <generator class="auction.custom.MyOracleGenerator"/>
</id>

The XML mapping file is now bound to a particular database product, and you
lose the database portability of the Hibernate application. One way to deal with
this issue is to use a placeholder in your XML file that is replaced during build
when the mapping files are copied to the target directory (Ant supports this).
This mechanism is recommended only if you have experience with Ant or already
need build-time substitution for other parts of your application.

 A much more elegant variation is to use custom XML entities (not related to
our application’s business entities). Let’s assume you need to externalize an ele-
ment or attribute value in your XML files to keep it portable:

<id name="id" column="CATEGORY_ID" type="long">
 <generator class="&idgenerator;"/>
</id>

The &idgenerator; value is called an entity placeholder. You can define its value
at the top of the XML file as an entity declaration, as part of the document type
definition:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping SYSTEM

Object/relational mapping metadata 137
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[
<!ENTITY idgenerator "auction.custom.MyOracleGenerator">
]>

The XML parser will now substitute the placeholder on Hibernate startup, when
mapping files are read.

 You can take this one step further and externalize this addition to the DTD in a
separate file and include the global options in all other mapping files:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping SYSTEM
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[
<!ENTITY % globals SYSTEM "classpath://persistence/globals.dtd">
%globals;
]>

This example shows the inclusion of an external file as part of the DTD. The syn-
tax, as often in XML, is rather crude, but the purpose of each line should be clear.
All global settings are added to the globals.dtd file in the persistence package on
the classpath:

<!ENTITY idgenerator "auction.custom.MyOracleGenerator">
<!-- Add more options if needed... -->

To switch from Oracle to a different database system, just deploy a different glo-
bals.dtd file.

 Often, you need not only substitute an XML element or attribute value but also
to include whole blocks of mapping metadata in all files, such as when many of
your classes share some common properties, and you can’t use inheritance to cap-
ture them in a single location. With XML entity replacement, you can externalize
an XML snippet to a separate file and include it in other XML files.

 Let’s assume all the persistent classes have a dateModified property. The first
step is to put this mapping in its own file, say, DateModified.hbm.xml:

<property name="dateModified"
 column=”DATE_MOD”
 type="timestamp"/>

This file needs no XML header or any other tags. Now you include it in the map-
ping file for a persistent class:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping SYSTEM
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[

138 CHAPTER 3

Domain models and metadata
<!ENTITY datemodified SYSTEM "classpath://model/DateModified.hbm.xml">
]>

<hibernate-mapping>

<class name="Item" table="ITEM"
 <id ...>

 &datemodified;

 ...
</class>

The content of DateModified.hbm.xml will be included and be substituted for the
&datemodified; placeholder. This, of course, also works with larger XML snippets.

 When Hibernate starts up and reads mapping files, XML DTDs have to be
resolved by the XML parser. The built-in Hibernate entity resolver looks for the
hibernate-mapping-3.0.dtd on the classpath; it should find the DTD in the
hibernate3.jar file before it tries to look it up on the Internet, which happens
automatically whenever an entity URL is prefixed with http://hibernate.source-
forge.net/. The Hibernate entity resolver can also detect the classpath:// pre-
fix, and the resource is then searched for in the classpath, where you can copy it
on deployment. We have to repeat this FAQ: Hibernate never looks up the DTD on
the Internet if you have a correct DTD reference in your mapping and the right
JAR on the classpath.

 The approaches we have described so far—XML, JDK 5.0 annotations, and
XDoclet attributes—assume that all mapping information is known at develop-
ment (or deployment) time. Suppose, however, that some information isn’t
known before the application starts. Can you programmatically manipulate the
mapping metadata at runtime?

3.3.5 Manipulating metadata at runtime

It’s sometimes useful for an application to browse, manipulate, or build new map-
pings at runtime. XML APIs like DOM, dom4j, and JDOM allow direct runtime
manipulation of XML documents, so you could create or manipulate an XML doc-
ument at runtime, before feeding it to the Configuration object.

 On the other hand, Hibernate also exposes a configuration-time metamodel
that contains all the information declared in your static mapping metadata.
Direct programmatic manipulation of this metamodel is sometimes useful, espe-
cially for applications that allow for extension by user-written code. A more dras-
tic approach would be complete programmatic and dynamic definition of the
mapping metadata, without any static mapping. However, this is exotic and

Object/relational mapping metadata 139
should be reserved for a particular class of fully dynamic applications, or applica-
tion building kits.

 The following code adds a new property, motto, to the User class:

// Get the existing mapping for User from Configuration
PersistentClass userMapping =
 cfg.getClassMapping(User.class.getName());

// Define a new column for the USER table
Column column = new Column();
column.setName("MOTTO");
column.setNullable(false);
column.setUnique(true);
userMapping.getTable().addColumn(column);

// Wrap the column in a Value
SimpleValue value = new SimpleValue();
value.setTable(userMapping.getTable());
value.setTypeName("string");
value.addColumn(column);

// Define a new property of the User class
Property prop = new Property();
prop.setValue(value);
prop.setName("motto");
prop.setNodeName(prop.getName());
userMapping.addProperty(prop);

// Build a new session factory, using the new mapping
SessionFactory sf = cfg.buildSessionFactory();

A PersistentClass object represents the metamodel for a single persistent class,
and you retrieve it from the Configuration object. Column, SimpleValue, and
Property are all classes of the Hibernate metamodel and are available in the
org.hibernate.mapping package.

TIP Keep in mind that adding a property to an existing persistent class map-
ping, as shown here, is quite easy, but programmatically creating a new
mapping for a previously unmapped class is more involved.

Once a SessionFactory is created, its mappings are immutable. The Session-
Factory uses a different metamodel internally than the one used at configuration
time. There is no way to get back to the original Configuration from the Ses-
sionFactory or Session. (Note that you can get the SessionFactory from a Ses-
sion if you wish to access a global setting.) However, the application can read the
SessionFactory’s metamodel by calling getClassMetadata() or getCollection-
Metadata(). Here’s an example:

140 CHAPTER 3

Domain models and metadata
Item item = ...;
ClassMetadata meta = sessionFactory.getClassMetadata(Item.class);
String[] metaPropertyNames =
 meta.getPropertyNames();
Object[] propertyValues =
 meta.getPropertyValues(item, EntityMode.POJO);

This code snippet retrieves the names of persistent properties of the Item class
and the values of those properties for a particular instance. This helps you write
generic code. For example, you may use this feature to label UI components or
improve log output.

 Although you’ve seen some mapping constructs in the previous sections, we
haven’t introduced any more sophisticated class and property mappings so far.
You should now decide which mapping metadata option you’d like to use in
your project and then read more about class and property mappings in the
next chapter.

 Or, if you’re already an experienced Hibernate user, you can read on and find
out how the latest Hibernate version allows you to represent a domain model
without Java classes.

3.4 Alternative entity representation

In this book, so far, we’ve always talked about a domain model implementation
based on Java classes—we called them POJOs, persistent classes, JavaBeans, or
entities. An implementation of a domain model that is based on Java classes with
regular properties, collections, and so on, is type-safe. If you access a property of
a class, your IDE offers autocompletion based on the strong types of your model,
and the compiler checks whether your source is correct. However, you pay for
this safety with more time spent on the domain model implementation—and
time is money.

 In the following sections, we introduce Hibernate’s ability to work with domain
models that aren’t implemented with Java classes. We’re basically trading type-
safety for other benefits and, because nothing is free, more errors at runtime
whenever we make a mistake. In Hibernate, you can select an entity mode for your
application, or even mix entity modes for a single model. You can even switch
between entity modes in a single Session.

 These are the three built-in entity modes in Hibernate:

■ POJO—A domain model implementation based on POJOs, persistent classes.
This is what you have seen so far, and it’s the default entity mode.

Alternative entity representation 141
■ MAP—No Java classes are required; entities are represented in the Java appli-
cation with HashMaps. This mode allows quick prototyping of fully dynamic
applications.

■ DOM4J—No Java classes are required; entities are represented as XML ele-
ments, based on the dom4j API. This mode is especially useful for exporting
or importing data, or for rendering and transforming data through XSLT
processing.

There are two reasons why you may want to skip the next section and come back
later: First, a static domain model implementation with POJOs is the common
case, and dynamic or XML representation are features you may not need right
now. Second, we’re going to present some mappings, queries, and other opera-
tions that you may not have seen so far, not even with the default POJO entity
mode. However, if you feel confident enough with Hibernate, read on.

 Let’s start with the MAP mode and explore how a Hibernate application can be
fully dynamically typed.

3.4.1 Creating dynamic applications

A dynamic domain model is a model that is dynamically typed. For example,
instead of a Java class that represents an auction item, you work with a bunch of
values in a Java Map. Each attribute of an auction item is represented by a key (the
name of the attribute) and its value.

Mapping entity names
First, you need to enable this strategy by naming your business entities. In a Hiber-
nate XML mapping file, you use the entity-name attribute:

<hibernate-mapping>

<class entity-name="ItemEntity" table="ITEM_ENTITY">
 <id name="id" type="long" column="ITEM_ID">
 <generator class="native"/>
 </id>

 <property name="initialPrice"
 type="big_decimal"
 column="INIT_PRICE"/>

 <property name="description"
 type="string"
 column="DESCRIPTION"/>

 <many-to-one name="seller"
 entity-name="UserEntity"
 column="USER_ID"/>

142 CHAPTER 3

Domain models and metadata
</class>

<class entity-name="UserEntity" table="USER_ENTITY">
 <id name="id" type="long" column="USER_ID">
 <generator class="native"/>
 </id>

 <property name="username"
 type="string"
 column="USERNAME"/>

 <bag name="itemsForSale" inverse="true" cascade="all">
 <key column="USER_ID"/>
 <one-to-many entity-name="ItemEntity"/>
 </bag>

</class>

</hibernate-mapping>

There are three interesting things to observe in this mapping file.
 First, you mix several class mappings in one, something we didn’t recommend

earlier. This time you aren’t really mapping Java classes, but logical names of enti-
ties. You don’t have a Java source file and an XML mapping file with the same name
next to each other, so you’re free to organize your metadata in any way you like.

 Second, the <class name="..."> attribute has been replaced with <class
entity-name="...">. You also append ...Entity to these logical names for clar-
ity and to distinguish them from other nondynamic mappings that you made ear-
lier with regular POJOs.

 Finally, all entity associations, such as <many-to-one> and <one-to-many>, now
also refer to logical entity names. The class attribute in the association mappings
is now entity-name. This isn’t strictly necessary—Hibernate can recognize that
you’re referring to a logical entity name even if you use the class attribute. How-
ever, it avoids confusion when you later mix several representations.

 Let’s see what working with dynamic entities looks like.

Working with dynamic maps
To create an instance of one of your entities, you set all attribute values in a Java
Map:

Map user = new HashMap();
user.put("username", "johndoe");

Map item1 = new HashMap();
item1.put("description", "An item for auction");
item1.put("initialPrice", new BigDecimal(99));
item1.put("seller", user);

Alternative entity representation 143
Map item2 = new HashMap();
item2.put("description", "Another item for auction");
item2.put("initialPrice", new BigDecimal(123));
item2.put("seller", user);

Collection itemsForSale = new ArrayList();
itemsForSale.add(item1);
itemsForSale.add(item2);
user.put("itemsForSale", itemsForSale);

session.save("UserEntity", user);

The first map is a UserEntity, and you set the username attribute as a key/value
pair. The next two maps are ItemEntitys, and here you set the link to the seller
of each item by putting the user map into the item1 and item2 maps. You’re
effectively linking maps—that’s why this representation strategy is sometimes also
called “representation with maps of maps.”

 The collection on the inverse side of the one-to-many association is initialized
with an ArrayList, because you mapped it with bag semantics (Java doesn’t have
a bag implementation, but the Collection interface has bag semantics). Finally,
the save() method on the Session is given a logical entity name and the user
map as an input parameter.

 Hibernate knows that UserEntity refers to the dynamically mapped entity,
and that it should treat the input as a map that has to be saved accordingly. Hiber-
nate also cascades to all elements in the itemsForSale collection; hence, all item
maps are also made persistent. One UserEntity and two ItemEntitys are
inserted into their respective tables.

FAQ Can I map a Set in dynamic mode? Collections based on sets don’t work
with dynamic entity mode. In the previous code example, imagine that
itemsForSale was a Set. A Set checks its elements for duplicates, so
when you call add(item1) and add(item2), the equals() method on
these objects is called. However, item1 and item2 are Java Map instances,
and the equals() implementation of a map is based on the key sets of
the map. So, because both item1 and item2 are maps with the same keys,
they aren’t distinct when added to a Set. Use bags or lists only if you
require collections in dynamic entity mode.

Hibernate handles maps just like POJO instances. For example, making a map per-
sistent triggers identifier assignment; each map in persistent state has an identifier
attribute set with the generated value. Furthermore, persistent maps are automat-
ically checked for any modifications inside a unit of work. To set a new price on an
item, for example, you can load it and then let Hibernate do all the work:

144 CHAPTER 3

Domain models and metadata
Long storedItemId = (Long) item1.get("id");

Session session = getSessionFactory().openSession();
session.beginTransaction();

Map loadedItemMap = (Map) session.load("ItemEntity", storedItemId);

loadedItemMap.put("initialPrice", new BigDecimal(100));

session.getTransaction().commit();
session.close();

All Session methods that have class parameters such as load() also come in an
overloaded variation that accepts entity names. After loading an item map, you set
a new price and make the modification persistent by committing the transaction,
which, by default, triggers dirty checking and flushing of the Session.

 You can also refer to entity names in HQL queries:

List queriedItemMaps =
 session.createQuery("from ItemEntity where initialPrice >= :p")
 .setParameter("p", new BigDecimal(100))
 .list();

This query returns a collection of ItemEntity maps. They are in persistent state.
 Let’s take this one step further and mix a POJO model with dynamic maps.

There are two reasons why you would want to mix a static implementation of your
domain model with a dynamic map representation:

■ You want to work with a static model based on POJO classes by default, but
sometimes you want to represent data easily as maps of maps. This can be
particularly useful in reporting, or whenever you have to implement a
generic user interface that can represent various entities dynamically.

■ You want to map a single POJO class of your model to several tables and
then select the table at runtime by specifying a logical entity name.

You may find other use cases for mixed entity modes, but they’re so rare that we
want to focus on the most obvious.

 First, therefore, you’ll mix a static POJO model and enable dynamic map repre-
sentation for some of the entities, some of the time.

Mixing dynamic and static entity modes
To enable a mixed model representation, edit your XML mapping metadata and
declare a POJO class name and a logical entity name:

<hibernate-mapping>

<class name="model.ItemPojo"
 entity-name="ItemEntity"

Alternative entity representation 145
 table="ITEM_ENTITY">
 ...
 <many-to-one name="seller"
 entity-name="UserEntity"
 column="USER_ID"/>

</class>

<class name="model.UserPojo"
 entity-name="UserEntity"
 table="USER_ENTITY">
 ...
 <bag name="itemsForSale" inverse="true" cascade="all">
 <key column="USER_ID"/>
 <one-to-many entity-name="ItemEntity"/>
 </bag>

</class>

</hibernate-mapping>

Obviously, you also need the two classes, model.ItemPojo and model.UserPojo,
that implement the properties of these entities. You still base the many-to-one and
one-to-many associations between the two entities on logical names.

 Hibernate will primarily use the logical names from now on. For example, the
following code does not work:

UserPojo user = new UserPojo();
...
ItemPojo item1 = new ItemPojo();
...
ItemPojo item2 = new ItemPojo();
...
Collection itemsForSale = new ArrayList();
...

session.save(user);

The preceding example creates a few objects, sets their properties, and links
them, and then tries to save the objects through cascading by passing the user
instance to save(). Hibernate inspects the type of this object and tries to figure
out what entity it is, and because Hibernate now exclusively relies on logical entity
names, it can’t find a mapping for model.UserPojo. You need to tell Hibernate
the logical name when working with a mixed representation mapping:

...
session.save("UserEntity", user);

Once you change this line, the previous code example works. Next, consider
loading, and what is returned by queries. By default, a particular SessionFactory

146 CHAPTER 3

Domain models and metadata
is in POJO entity mode, so the following operations return instances of
model.ItemPojo:

Long storedItemId = item1.getId();
ItemPojo loadedItemPojo =
 (ItemPojo) session.load("ItemEntity", storedItemId);

List queriedItemPojos =
 session.createQuery("from ItemEntity where initialPrice >= :p")
 .setParameter("p", new BigDecimal(100))
 .list();

You can switch to a dynamic map representation either globally or temporarily, but
a global switch of the entity mode has serious consequences. To switch globally,
add the following to your Hibernate configuration; e.g., in hibernate.cfg.xml:

<property name="default_entity_mode">dynamic-map</property>

All Session operations now either expect or return dynamically typed maps! The
previous code examples that stored, loaded, and queried POJO instances no
longer work; you need to store and load maps.

 It’s more likely that you want to switch to another entity mode temporarily, so
let’s assume that you leave the SessionFactory in the default POJO mode. To
switch to dynamic maps in a particular Session, you can open up a new tempo-
rary Session on top of the existing one. The following code uses such a tempo-
rary Session to store a new auction item for an existing seller:

Session dynamicSession = session.getSession(EntityMode.MAP);

Map seller = (Map) dynamicSession.load("UserEntity", user.getId());

Map newItemMap = new HashMap();
newItemMap.put("description", "An item for auction");
newItemMap.put("initialPrice", new BigDecimal(99));
newItemMap.put("seller", seller);

dynamicSession.save("ItemEntity", newItemMap);

Long storedItemId = (Long) newItemMap.get("id");

Map loadedItemMap =
 (Map) dynamicSession.load("ItemEntity", storedItemId);

List queriedItemMaps =
 dynamicSession
 .createQuery("from ItemEntity where initialPrice >= :p")
 .setParameter("p", new BigDecimal(100))
 .list();

The temporary dynamicSession that is opened with getSession() doesn’t need
to be flushed or closed; it inherits the context of the original Session. You use it

Alternative entity representation 147
only to load, query, or save data in the chosen representation, which is the Entity-
Mode.MAP in the previous example. Note that you can’t link a map with a POJO
instance; the seller reference has to be a HashMap, not an instance of UserPojo.

 We mentioned that another good use case for logical entity names is the map-
ping of one POJO to several tables, so let’s look at that.

Mapping a class several times
Imagine that you have several tables with some columns in common. For exam-
ple, you could have ITEM_AUCTION and ITEM_SALE tables. Usually you map each
table to an entity persistent class, ItemAuction and ItemSale respectively. With
the help of entity names, you can save work and implement a single persistent
class.

 To map both tables to a single persistent class, use different entity names (and
usually different property mappings):

<hibernate-mapping>

<class name="model.Item"
 entity-name="ItemAuction"
 table="ITEM_AUCTION">

 <id name="id" column="ITEM_AUCTION_ID">...</id>
 <property name="description" column="DESCRIPTION"/>
 <property name="initialPrice" column="INIT_PRICE"/>

</class>

<class name="model.Item"
 entity-name="ItemSale"
 table="ITEM_SALE">

 <id name="id" column="ITEM_SALE_ID">...</id>
 <property name="description" column="DESCRIPTION"/>
 <property name="salesPrice" column="SALES_PRICE"/>

</class>

</hibernate-mapping>

The model.Item persistent class has all the properties you mapped: id, descrip-
tion, initialPrice, and salesPrice. Depending on the entity name you use at
runtime, some properties are considered persistent and others transient:

Item itemForAuction = new Item();
itemForAuction.setDescription("An item for auction");
itemForAuction.setInitialPrice(new BigDecimal(99));
session.save("ItemAuction", itemForAuction);

Item itemForSale = new Item();
itemForSale.setDescription("An item for sale");

148 CHAPTER 3

Domain models and metadata
itemForSale.setSalesPrice(new BigDecimal(123));
session.save("ItemSale", itemForSale);

Thanks to the logical entity name, Hibernate knows into which table it should
insert the data. Depending on the entity name you use for loading and querying
entities, Hibernate selects from the appropriate table.

 Scenarios in which you need this functionality are rare, and you’ll probably
agree with us that the previous use case isn’t good or common.

 In the next section, we introduce the third built-in Hibernate entity mode, the
representation of domain entities as XML documents.

3.4.2 Representing data in XML

XML is nothing but a text file format; it has no inherent capabilities that qualify it
as a medium for data storage or data management. The XML data model is weak,
its type system is complex and underpowered, its data integrity is almost com-
pletely procedural, and it introduces hierarchical data structures that were out-
dated decades ago. However, data in XML format is attractive to work with in Java;
we have nice tools. For example, we can transform XML data with XSLT, which we
consider one of the best use cases.

 Hibernate has no built-in functionality to store data in an XML format; it relies
on a relational representation and SQL, and the benefits of this strategy should be
clear. On the other hand, Hibernate can load and present data to the application
developer in an XML format. This allows you to use a sophisticated set of tools
without any additional transformation steps.

 Let’s assume that you work in default POJO mode and that you quickly want to
obtain some data represented in XML. Open a temporary Session with the Enti-
tyMode.DOM4J:

Session dom4jSession = session.getSession(EntityMode.DOM4J);

Element userXML =
 (Element) dom4jSession.load(User.class, storedUserId);

What is returned here is a dom4j Element, and you can use the dom4j API to read
and manipulate it. For example, you can pretty-print it to your console with the
following snippet:

try {
 OutputFormat format = OutputFormat.createPrettyPrint();
 XMLWriter writer = new XMLWriter(System.out, format);
 writer.write(userXML);
} catch (IOException ex) {
 throw new RuntimeException(ex);
}

Alternative entity representation 149
If we assume that you reuse the POJO classes and data from the previous exam-
ples, you see one User instance and two Item instances (for clarity, we no longer
name them UserPojo and ItemPojo):

<User>
 <id>1</id>
 <username>johndoe</username>
 <itemsForSale>
 <Item>
 <id>2</id>
 <initialPrice>99</initialPrice>
 <description>An item for auction</description>
 <seller>1</seller>
 </Item>
 <Item>
 <id>3</id>
 <initialPrice>123</initialPrice>
 <description>Another item for auction</description>
 <seller>1</seller>
 </Item>
 </itemsForSale>
</User>

Hibernate assumes default XML element names—the entity and property names.
You can also see that collection elements are embedded, and that circular refer-
ences are resolved through identifiers (the <seller> element).

 You can change this default XML representation by adding node attributes to
your Hibernate mapping metadata:

<hibernate-mapping>

<class name="Item" table="ITEM_ENTITY" node="item">

 <id name="id" type="long" column="ITEM_ID" node="@id">
 <generator class="native"/>
 </id>

 <property name="initialPrice"
 type="big_decimal"
 column="INIT_PRICE"
 node="item-details/@initial-price"/>

 <property name="description"
 type="string"
 column="DESCRIPTION"
 node="item-details/@description"/>

 <many-to-one name="seller"
 class="User"
 column="USER_ID"
 embed-xml="false"

150 CHAPTER 3

Domain models and metadata
 node="@seller-id"/>

</class>

<class name="User" table="USERS" node="user">

 <id name="id" type="long" column="USER_ID" node="@id">
 <generator class="native"/>
 </id>

 <property name="username"
 type="string"
 column="USERNAME"
 node="@username"/>

 <bag name="itemsForSale" inverse="true" cascade="all"
 embed-xml="true" node="items-for-sale">
 <key column="USER_ID"/>
 <one-to-many class="Item"/>
 </bag>

</class>

</hibernate-mapping>

Each node attribute defines the XML representation:

■ A node="name" attribute on a <class> mapping defines the name of the
XML element for that entity.

■ A node="name" attribute on any property mapping specifies that the prop-
erty content should be represented as the text of an XML element of the
given name.

■ A node="@name" attribute on any property mapping specifies that the prop-
erty content should be represented as an XML attribute value of the given
name.

■ A node="name/@attname" attribute on any property mapping specifies that
the property content should be represented as an XML attribute value of
the given name, on a child element of the given name.

The embed-xml option is used to trigger embedding or referencing of associated
entity data. The updated mapping results in the following XML representation of
the same data you’ve seen before:

<user id="1" username="johndoe">
 <items-for-sale>
 <item id="2" seller-id="1">
 <item-details initial-price="99"
 description="An item for auction"/>
 </item>

Alternative entity representation 151
 <item id="3" seller-id="1">
 <item-details initial-price="123"
 description="Another item for auction"/>
 </item>
 </items-for-sale>
</user>

Be careful with the embed-xml option—you can easily create circular references
that result in an endless loop!

 Finally, data in an XML representation is transactional and persistent, so you
can modify queried XML elements and let Hibernate take care of updating the
underlying tables:

Element itemXML =
 (Element) dom4jSession.get(Item.class, storedItemId);

itemXML.element("item-details")
 .attribute("initial-price")
 .setValue("100");

session.flush(); // Hibernate executes UPDATEs

Element userXML =
 (Element) dom4jSession.get(User.class, storedUserId);

Element newItem = DocumentHelper.createElement("item");
Element newItemDetails = newItem.addElement("item-details");
newItem.addAttribute("seller-id",
 userXml.attribute("id").getValue());
newItemDetails.addAttribute("initial-price", "123");
newItemDetails.addAttribute("description", "A third item");

dom4jSession.save(Item.class.getName(), newItem);

dom4jSession.flush(); // Hibernate executes INSERTs

There is no limit to what you can do with the XML that is returned by Hibernate.
You can display, export, and transform it in any way you like. See the dom4j docu-
mentation for more information.

 Finally, note that you can use all three built-in entity modes simultaneously, if
you like. You can map a static POJO implementation of your domain model, switch
to dynamic maps for your generic user interface, and export data into XML. Or,
you can write an application that doesn’t have any domain classes, only dynamic
maps and XML. We have to warn you, though, that prototyping in the software
industry often means that customers end up with the prototype that nobody
wanted to throw away—would you buy a prototype car? We highly recommend
that you rely on static domain models if you want to create a maintainable system.

152 CHAPTER 3

Domain models and metadata
 We won’t consider dynamic models or XML representation again in this book.
Instead, we’ll focus on static persistent classes and how they are mapped.

3.5 Summary

In this chapter, we focused on the design and implementation of a rich domain
model in Java.

 You now understand that persistent classes in a domain model should to be
free of crosscutting concerns, such as transactions and security. Even persistence-
related concerns should not leak into the domain model implementation. You
also know how important transparent persistence is if you want to execute and test
your business objects independently and easily.

 You have learned the best practices and requirements for the POJO and JPA
entity programming model, and what concepts they have in common with the old
JavaBean specification. We had a closer look at the implementation of persistent
classes, and how attributes and relationships are best represented.

 To be prepared for the next part of the book, and to learn all the object/rela-
tional mapping options, you needed to make an educated decision to use either
XML mapping files or JDK 5.0 annotations, or possibly a combination of both.
You’re now ready to write more complex mappings in both formats.

 For convenience, table 3.1 summarizes the differences between Hibernate and
Java Persistence related to concepts discussed in this chapter.

Table 3.1 Hibernate and JPA comparison chart for chapter 3

Hibernate Core Java Persistence and EJB 3.0

Persistent classes require a no-argument con-
structor with public or protected visibility if proxy-
based lazy loading is used.

The JPA specification mandates a no-argument
constructor with public or protected visibility for all
entity classes.

Persistent collections must be typed to interfaces.
Hibernate supports all JDK interfaces.

Persistent collections must be typed to interfaces.
Only a subset of all interfaces (no sorted collec-
tions, for example) is considered fully portable.

Persistent properties can be accessed through
fields or accessor methods at runtime, or a com-
pletely customizable strategy can be applied.

Persistent properties of an entity class are
accessed through fields or accessor methods, but
not both if full portability is required.

Summary 153
In the next part of the book, we show you all possible basic and some advanced
mapping techniques, for classes, properties, inheritance, collections, and associa-
tions. You’ll learn how to solve the structural object/relational mismatch.

The XML metadata format supports all possible
Hibernate mapping options.

JPA annotations cover all basic and most advanced
mapping options. Hibernate Annotations are
required for exotic mappings and tuning.

XML mapping metadata can be defined globally,
and XML placeholders are used to keep metadata
free from dependencies.

Global metadata is only fully portable if declared in
the standard orm.xml metadata file.

Table 3.1 Hibernate and JPA comparison chart for chapter 3 (continued)

Hibernate Core Java Persistence and EJB 3.0

Part 2

Mapping concepts
and strategies

This part is all about actual object/relational mapping, from classes and
properties to tables and columns. Chapter 4 starts with regular class and
property mappings, and explains how you can map fine-grained Java domain
models. Next, in chapter 5, you’ll see how to map more complex class inher-
itance hierarchies and how to extend Hibernate's functionality with the pow-
erful custom mapping type system. In chapters 6 and 7, we show you how to
map Java collections and associations between classes, with many sophisti-
cated examples. Finally, you’ll find chapter 8 most interesting if you need to
introduce Hibernate in an existing applications, or if you have to work with
legacy database schemas and hand-written SQL. We also talk about custom-
ized SQL DDL for schema generation in this chapter.

 After reading this part of the book, you’ll be ready to create even the
most complex mappings quickly and with the right strategy. You’ll under-
stand how the problem of inheritance mapping can be solved, and how col-
lections and associations can be mapped. You’ll also be able to tune and
customize Hibernate for integration with any existing database schema or
application.

Mapping
persistent classes

This chapter covers
■ Understanding the entity and value-type concept
■ Mapping classes with XML and annotations
■ Fine-grained property and component mappings
157

158 CHAPTER 4

Mapping persistent classes
This chapter presents the fundamental mapping options, explaining how classes
and properties are mapped to tables and columns. We show and discuss how you
can handle database identity and primary keys, and how various other metadata
settings can be used to customize how Hibernate loads and stores objects. All
mapping examples are done in Hibernate’s native XML format, and with JPA
annotations and XML descriptors, side by side. We also look closely at the map-
ping of fine-grained domain models, and at how properties and embedded com-
ponents are mapped.

 First, though, we define the essential distinction between entities and value
types, and explain how you should approach the object/relational mapping of
your domain model.

4.1 Understanding entities and value types

Entities are persistent types that represent first-class business objects (the term
object is used here in its natural sense). In other words, some of the classes and
types you have to deal with in an application are more important, which naturally
makes others less important. You probably agree that in CaveatEmptor, Item is a
more important class than String. User is probably more important than
Address. What makes something important? Let’s look at the issue from a differ-
ent perspective.

4.1.1 Fine-grained domain models

A major objective of Hibernate is support for fine-grained domain models, which
we isolated as the most important requirement for a rich domain model. It’s one
reason why we work with POJOs. In crude terms, fine-grained means more classes
than tables.

 For example, a user may have both a billing address and a home address. In the
database, you may have a single USERS table with the columns BILLING_STREET,
BILLING_CITY, and BILLING_ZIPCODE, along with HOME_STREET, HOME_CITY, and
HOME_ZIPCODE. (Remember the problem of SQL types we discussed in chapter 1?)

 In the domain model, you could use the same approach, representing the two
addresses as six string-valued properties of the User class. But it’s much better to
model this using an Address class, where User has the billingAddress and
homeAddress properties, thus using three classes for one table.

 This domain model achieves improved cohesion and greater code reuse,
and it’s more understandable than SQL systems with inflexible type systems. In

Understanding entities and value types 159
the past, many ORM solutions didn’t provide especially good support for this
kind of mapping.

 Hibernate emphasizes the usefulness of fine-grained classes for implementing
type safety and behavior. For example, many people model an email address as a
string-valued property of User. A more sophisticated approach is to define an
EmailAddress class, which adds higher-level semantics and behavior—it may pro-
vide a sendEmail() method.

 This granularity problem leads us to a distinction of central importance in
ORM. In Java, all classes are of equal standing—all objects have their own identity
and lifecycle.

 Let’s walk through an example.

4.1.2 Defining the concept

Two people live in the same apartment, and they both register user accounts in
CaveatEmptor. Naturally, each account is represented by one instance of User, so
you have two entity instances. In the CaveatEmptor model, the User class has a
homeAddress association with the Address class. Do both User instances have a
runtime reference to the same Address instance or does each User instance have
a reference to its own Address? If Address is supposed to support shared runtime
references, it’s an entity type. If not, it’s likely a value type and hence is dependent
on a single reference by an owning entity instance, which also provides identity.

 We advocate a design with more classes than tables: One row represents multi-
ple instances. Because database identity is implemented by primary key value,
some persistent objects won’t have their own identity. In effect, the persistence
mechanism implements pass-by-value semantics for some classes! One of the
objects represented in the row has its own identity, and others depend on that. In
the previous example, the columns in the USERS table that contain address infor-
mation are dependent on the identifier of the user, the primary key of the table.
An instance of Address is dependent on an instance of User.

 Hibernate makes the following essential distinction:

■ An object of entity type has its own database identity (primary key value).
An object reference to an entity instance is persisted as a reference in the
database (a foreign key value). An entity has its own lifecycle; it may exist
independently of any other entity. Examples in CaveatEmptor are User,
Item, and Category.

■ An object of value type has no database identity; it belongs to an entity
instance and its persistent state is embedded in the table row of the owning

160 CHAPTER 4

Mapping persistent classes
entity. Value types don’t have identifiers or identifier properties. The
lifespan of a value type instance is bounded by the lifespan of the owning
entity instance. A value type doesn’t support shared references: If two users
live in the same apartment, they each have a reference to their own homeAd-
dress instance. The most obvious value types are classes like Strings and
Integers, but all JDK classes are considered value types. User-defined classes
can also be mapped as value types; for example, CaveatEmptor has Address
and MonetaryAmount.

Identification of entities and value types in your domain model isn’t an ad hoc
task but follows a certain procedure.

4.1.3 Identifying entities and value types

You may find it helpful to add stereotype information to your UML class diagrams
so you can immediately see and distinguish entities and value types. This practice
also forces you to think about this distinction for all your classes, which is a first
step to an optimal mapping and well-performing persistence layer. See figure 4.1
for an example.

 The Item and User classes are obvious entities. They each have their own iden-
tity, their instances have references from many other instances (shared refer-
ences), and they have independent lifecycles.

 Identifying the Address as a value type is also easy: A particular Address
instance is referenced by only a single User instance. You know this because the
association has been created as a composition, where the User instance has been
made fully responsible for the lifecycle of the referenced Address instance.
Therefore, Address objects can’t be referenced by anyone else and don’t need
their own identity.

 The Bid class is a problem. In object-oriented modeling, you express a compo-
sition (the association between Item and Bid with the diamond), and an Item
manages the lifecycles of all the Bid objects to which it has a reference (it’s a col-
lection of references). This seems reasonable, because the bids would be useless if

Figure 4.1 Stereotypes for entities and value types have been added to the diagram.

Mapping entities with identity 161
an Item no longer existed. But at the same time, there is another association to
Bid: An Item may hold a reference to its successfulBid. The successful bid must
also be one of the bids referenced by the collection, but this isn’t expressed in the
UML. In any case, you have to deal with possible shared references to Bid
instances, so the Bid class needs to be an entity. It has a dependent lifecycle, but it
must have its own identity to support shared references.

 You’ll often find this kind of mixed behavior; however, your first reaction
should be to make everything a value-typed class and promote it to an entity only
when absolutely necessary. Try to simplify your associations: Collections, for exam-
ple, sometimes add complexity without offering any advantages. Instead of map-
ping a persistent collection of Bid references, you can write a query to obtain all
the bids for an Item (we’ll come back to this point again in chapter 7).

 As the next step, take your domain model diagram and implement POJOs for
all entities and value types. You have to take care of three things:

■ Shared references—Write your POJO classes in a way that avoids shared refer-
ences to value type instances. For example, make sure an Address object
can be referenced by only one User. For example, make it immutable and
enforce the relationship with the Address constructor.

■ Lifecycle dependencies—As discussed, the lifecycle of a value-type instance is
bound to that of its owning entity instance. If a User object is deleted, its
Address dependent object(s) have to be deleted as well. There is no notion
or keyword for this in Java, but your application workflow and user interface
must be designed to respect and expect lifecycle dependencies. Persistence
metadata includes the cascading rules for all dependencies.

■ Identity—Entity classes need an identifier property in almost all cases. User-
defined value-type classes (and JDK classes) don’t have an identifier prop-
erty, because instances are identified through the owning entity.

We’ll come back to class associations and lifecycle rules when we discuss more
advanced mappings later in the book. However, object identity is a subject you
have to understand at this point.

4.2 Mapping entities with identity

It’s vital to understand the difference between object identity and object equality
before we discuss terms like database identity and the way Hibernate manages
identity. Next, we explore how object identity and equality relate to database (pri-
mary key) identity.

162 CHAPTER 4

Mapping persistent classes
4.2.1 Understanding Java identity and equality

Java developers understand the difference between Java object identity and equal-
ity. Object identity, ==, is a notion defined by the Java virtual machine. Two object
references are identical if they point to the same memory location.

 On the other hand, object equality is a notion defined by classes that imple-
ment the equals() method, sometimes also referred to as equivalence. Equiva-
lence means that two different (nonidentical) objects have the same value. Two
different instances of String are equal if they represent the same sequence of
characters, even though they each have their own location in the memory space
of the virtual machine. (If you’re a Java guru, we acknowledge that String is a spe-
cial case. Assume we used a different class to make the same point.)

 Persistence complicates this picture. With object/relational persistence, a per-
sistent object is an in-memory representation of a particular row of a database
table. Along with Java identity (memory location) and object equality, you pick up
database identity (which is the location in the persistent data store). You now have
three methods for identifying objects:

■ Objects are identical if they occupy the same memory location in the JVM.
This can be checked by using the == operator. This concept is known as
object identity.

■ Objects are equal if they have the same value, as defined by the
equals(Object o) method. Classes that don’t explicitly override this
method inherit the implementation defined by java.lang.Object, which
compares object identity. This concept is known as equality.

■ Objects stored in a relational database are identical if they represent the
same row or, equivalently, if they share the same table and primary key
value. This concept is known as database identity.

We now need to look at how database identity relates to object identity in Hiber-
nate, and how database identity is expressed in the mapping metadata.

4.2.2 Handling database identity

Hibernate exposes database identity to the application in two ways:

■ The value of the identifier property of a persistent instance
■ The value returned by Session.getIdentifier(Object entity)

Mapping entities with identity 163
Adding an identifier property to entities
The identifier property is special—its value is the primary key value of the data-
base row represented by the persistent instance. We don’t usually show the identi-
fier property in the domain model diagrams. In the examples, the identifier
property is always named id. If myCategory is an instance of Category, calling
myCategory.getId() returns the primary key value of the row represented by
myCategory in the database.

 Let’s implement an identifier property for the Category class:

public class Category {
 private Long id;
 ...
 public Long getId() {
 return this.id;
 }

 private void setId(Long id) {
 this.id = id;
 }
 ...
}

Should you make the accessor methods for the identifier property private scope or
public? Well, database identifiers are often used by the application as a convenient
handle to a particular instance, even outside the persistence layer. For example,
it’s common for web applications to display the results of a search screen to the
user as a list of summary information. When the user selects a particular element,
the application may need to retrieve the selected object, and it’s common to use a
lookup by identifier for this purpose—you’ve probably already used identifiers
this way, even in applications that rely on JDBC. It’s usually appropriate to fully
expose the database identity with a public identifier property accessor.

 On the other hand, you usually declare the setId() method private and let
Hibernate generate and set the identifier value. Or, you map it with direct field
access and implement only a getter method. (The exception to this rule is
classes with natural keys, where the value of the identifier is assigned by the
application before the object is made persistent instead of being generated by
Hibernate. We discuss natural keys in chapter 8.) Hibernate doesn’t allow you to
change the identifier value of a persistent instance after it’s first assigned. A pri-
mary key value never changes—otherwise the attribute wouldn’t be a suitable
primary key candidate!

164 CHAPTER 4

Mapping persistent classes
 The Java type of the identifier property, java.lang.Long in the previous exam-
ple, depends on the primary key type of the CATEGORY table and how it’s mapped
in Hibernate metadata.

Mapping the identifier property
A regular (noncomposite) identifier property is mapped in Hibernate XML files
with the <id> element:

<class name="Category" table="CATEGORY">
<id name="id" column="CATEGORY_ID" type="long">
 <generator class="native"/>
</id>

...
</class>

The identifier property is mapped to the primary key column CATEGORY_ID of the
table CATEGORY. The Hibernate type for this property is long, which maps to a
BIGINT column type in most databases and which has also been chosen to match
the type of the identity value produced by the native identifier generator. (We
discuss identifier generation strategies in the next section.)

 For a JPA entity class, you use annotations in the Java source code to map the
identifier property:

@Entity
@Table(name="CATEGORY")
public class Category {
 private Long id;
 ...

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "CATEGORY_ID")
 public Long getId() {
 return this.id;
 }

 private void setId(Long id) {
 this.id = id;
 }
 ...
}

The @Id annotation on the getter method marks it as the identifier property, and
@GeneratedValue with the GenerationType.AUTO option translates into a native
identifier generation strategy, like the native option in XML Hibernate map-
pings. Note that if you don’t define a strategy, the default is also Generation-

Mapping entities with identity 165
Type.AUTO, so you could have omitted this attribute altogether. You also specify a
database column—otherwise Hibernate would use the property name. The map-
ping type is implied by the Java property type, java.lang.Long.

 Of course, you can also use direct field access for all properties, including the
database identifier:

@Entity
@Table(name="CATEGORY")
public class Category {

 @Id @GeneratedValue
 @Column(name = "CATEGORY_ID")
 private Long id;
 ...

 public Long getId() {
 return this.id;
 }
 ...

}

Mapping annotations are placed on the field declaration when direct field access
is enabled, as defined by the standard.

 Whether field or property access is enabled for an entity depends on the posi-
tion of the mandatory @Id annotation. In the preceding example, it’s present on a
field, so all attributes of the class are accessed by Hibernate through fields. The
example before that, annotated on the getId() method, enables access to all
attributes through getter and setter methods.

 Alternatively, you can use JPA XML descriptors to create your identifier
mapping:

<entity class="auction.model.Category" access="FIELD">
 <table name="CATEGORY"/>
 <attributes>
 <id name="id">
 <generated-value strategy="AUTO"/>
 </id>
 ...
 </attributes>
</entity>

In addition to operations for testing Java object identity, (a == b), and object
equality, (a.equals(b)), you may now use a.getId().equals(b.getId())
to test database identity. What do these notions have in common? In what situa-
tions do they all return true? The time when all are true is called the scope of

166 CHAPTER 4

Mapping persistent classes
guaranteed object identity; and we’ll come back to this subject in chapter 9, sec-
tion 9.2, “Object identity and equality.”

 Using database identifiers in Hibernate is easy and straightforward. Choosing a
good primary key (and key-generation strategy) may be more difficult. We discuss
this issue next.

4.2.3 Database primary keys

Hibernate needs to know your preferred strategy for generating primary keys.
First, though, let’s define primary key.

Selecting a primary key
The candidate key is a column or set of columns that could be used to identify a
particular row in a table. To become a primary key, a candidate key must satisfy
the following properties:

■ Its value (for any column of the candidate key) is never null.
■ Each row has a unique value.
■ The value of a particular row never changes.

If a table has only one identifying attribute, it’s, by definition, the primary key.
However, several columns or combinations of columns may satisfy these proper-
ties for a particular table; you choose between candidate keys to decide the best
primary key for the table. Candidate keys not chosen as the primary key should be
declared as unique keys in the database.

 Many legacy SQL data models use natural primary keys. A natural key is a key
with business meaning: an attribute or combination of attributes that is unique by
virtue of its business semantics. Examples of natural keys are the U.S. Social Secu-
rity Number and Australian Tax File Number. Distinguishing natural keys is sim-
ple: If a candidate key attribute has meaning outside the database context, it’s a
natural key, whether or not it’s automatically generated. Think about the applica-
tion users: If they refer to a key attribute when talking about and working with the
application, it’s a natural key.

 Experience has shown that natural keys almost always cause problems in the
long run. A good primary key must be unique, constant, and required (never null
or unknown). Few entity attributes satisfy these requirements, and some that do
can’t be efficiently indexed by SQL databases (although this is an implementation
detail and shouldn’t be the primary motivation for or against a particular key). In

Mapping entities with identity 167
addition, you should make certain that a candidate key definition can never
change throughout the lifetime of the database before making it a primary key.
Changing the value (or even definition) of a primary key, and all foreign keys that
refer to it, is a frustrating task. Furthermore, natural candidate keys can often be
found only by combining several columns in a composite natural key. These com-
posite keys, although certainly appropriate for some relations (like a link table in
a many-to-many relationship), usually make maintenance, ad-hoc queries, and
schema evolution much more difficult.

 For these reasons, we strongly recommend that you consider synthetic identifi-
ers, also called surrogate keys. Surrogate keys have no business meaning—they’re
unique values generated by the database or application. Application users ideally
don’t see or refer to these key values; they’re part of the system internals. Intro-
ducing a surrogate key column is also appropriate in a common situation: If there
are no candidate keys, a table is by definition not a relation as defined by the rela-
tional model—it permits duplicate rows—and so you have to add a surrogate key
column. There are a number of well-known approaches to generating surrogate
key values.

Selecting a key generator
Hibernate has several built-in identifier-generation strategies. We list the most use-
ful options in table 4.1.

Table 4.1 Hibernate’s built-in identifier-generator modules

Generator
name

JPA
GenerationType

Options Description

native AUTO – The native identity generator picks other
identity generators like identity,
sequence, or hilo, depending on the capa-
bilities of the underlying database. Use this
generator to keep your mapping metadata por-
table to different database management sys-
tems.

identity IDENTITY – This generator supports identity columns in
DB2, MySQL, MS SQL Server, Sybase, and
HypersonicSQL. The returned identifier is of
type long, short, or int.

168 CHAPTER 4

Mapping persistent classes
sequence SEQUENCE sequence,
parameters

This generator creates a sequence in DB2,
PostgreSQL, Oracle, SAP DB, or Mckoi; or a
generator in InterBase is used. The returned
identifier is of type long, short, or int.
Use the sequence option to define a catalog
name for the sequence (hibernate_
sequence is the default) and parameters
if you need additional settings creating a
sequence to be added to the DDL.

increment (Not avail-
able)

– At Hibernate startup, this generator reads the
maximum (numeric) primary key column value
of the table and increments the value by one
each time a new row is inserted. The gener-
ated identifier is of type long, short, or
int. This generator is especially efficient if
the single-server Hibernate application has
exclusive access to the database but should
not be used in any other scenario.

hilo (Not avail-
able)

table, column,
max_lo

A high/low algorithm is an efficient way to gen-
erate identifiers of type long, given a table
and column (by default
hibernate_unique_key and next,
respectively) as a source of high values. The
high/low algorithm generates identifiers that
are unique only for a particular database. High
values are retrieved from a global source and
are made unique by adding a local low value.
This algorithm avoids congestion when a sin-
gle source for identifier values has to be
accessed for many inserts. See “Data Model-
ing 101” (Ambler, 2002) for more information
about the high/low approach to unique identifi-
ers. This generator needs to use a separate
database connection from time to time to
retrieve high values, so it isn’t supported with
user-supplied database connections. In other
words, don’t use it with
sessionFactory.openSession(myCo
nnection). The max_lo option defines
how many low values are added until a new
high value is fetched. Only settings greater
than 1 are sensible; the default is 32767
(Short.MAX_VALUE).

Table 4.1 Hibernate’s built-in identifier-generator modules (continued)

Generator
name

JPA
GenerationType

Options Description

Mapping entities with identity 169
seqhilo (Not avail-
able)

sequence,
parameters,
max_lo

This generator works like the regular hilo
generator, except it uses a named database
sequence to generate high values.

(JPA
only)

TABLE table, catalog,
schema,
pkColumnName,
valueColumnNam
e,
pkColumnValue,
allocationSize

Much like Hibernate’s hilo strategy, TABLE
relies on a database table that holds the last-
generated integer primary key value, and each
generator is mapped to one row in this table.
Each row has two columns: pkColumnName
and valueColumnName. The pkColumn-
Value assigns each row to a particular gen-
erator, and the value column holds the last
retrieved primary key. The persistence provider
allocates up to allocationSize integers
in each turn.

uuid.hex (Not avail-
able)

separator This generator is a 128-bit UUID (an algorithm
that generates identifiers of type string,
unique within a network). The IP address is
used in combination with a unique timestamp.
The UUID is encoded as a string of hexadeci-
mal digits of length 32, with an optional
separator string between each component
of the UUID representation. Use this generator
strategy only if you need globally unique identi-
fiers, such as when you have to merge two
databases regularly.

guid (Not avail-
able)

- This generator provides a database-generated
globally unique identifier string on MySQL and
SQL Server.

select (Not avail-
able)

key This generator retrieves a primary key
assigned by a database trigger by selecting
the row by some unique key and retrieving the
primary key value. An additional unique candi-
date key column is required for this strategy,
and the key option has to be set to the name
of the unique key column.

Table 4.1 Hibernate’s built-in identifier-generator modules (continued)

Generator
name

JPA
GenerationType

Options Description

170 CHAPTER 4

Mapping persistent classes
Some of the built-in identifier generators can be configured with options. In a
native Hibernate XML mapping, you define options as pairs of keys and values:

<id column="MY_ID">
 <generator class="sequence">
 <parameter name="sequence">MY_SEQUENCE</parameter>
 <parameter name="parameters">
 INCREMENT BY 1 START WITH 1
 </parameter>
 </generator>
</id>

You can use Hibernate identifier generators with annotations, even if no direct
annotation is available:

@Entity
@org.hibernate.annotations.GenericGenerator(
 name = "hibernate-uuid",
 strategy = "uuid"
)
class name MyEntity {

 @Id
 @GeneratedValue(generator = "hibernate-uuid")
 @Column(name = "MY_ID")
 String id;
}

The @GenericGenerator Hibernate extension can be used to give a Hibernate
identifier generator a name, in this case hibernate-uuid. This name is then refer-
enced by the standardized generator attribute.

 This declaration of a generator and its assignment by name also must be
applied for sequence- or table-based identifier generation with annotations. Imag-
ine that you want to use a customized sequence generator in all your entity classes.
Because this identifier generator has to be global, it’s declared in orm.xml:

<sequence-generator name="mySequenceGenerator"
 sequence-name="MY_SEQUENCE"
 initial-value="123"
 allocation-size="20"/>

This declares that a database sequence named MY_SEQUENCE with an initial value
of 123 can be used as a source for database identifier generation, and that the per-
sistence engine should obtain 20 values every time it needs identifiers. (Note,
though, that Hibernate Annotations, at the time of writing, ignores the initial-
Value setting.)

 To apply this identifier generator for a particular entity, use its name:

Class mapping options 171
@Entity
class name MyEntity {

 @Id @GeneratedValue(generator = "mySequenceGenerator")
 String id;
}

If you declared another generator with the same name at the entity level, before
the class keyword, it would override the global identifier generator. The same
approach can be used to declare and apply a @TableGenerator.

 You aren’t limited to the built-in strategies; you can create your own identifier
generator by implementing Hibernate’s IdentifierGenerator interface. As
always, it’s a good strategy to look at the Hibernate source code of the existing
identifier generators for inspiration.

 It’s even possible to mix identifier generators for persistent classes in a single
domain model, but for nonlegacy data we recommend using the same identifier
generation strategy for all entities.

 For legacy data and application-assigned identifiers, the picture is more com-
plicated. In this case, we’re often stuck with natural keys and especially composite
keys. A composite key is a natural key that is composed of multiple table columns.
Because composite identifiers can be a bit more difficult to work with and often
only appear on legacy schemas, we only discuss them in the context of chapter 8,
section 8.1, “Integrating legacy databases.”

 We assume from now on that you’ve added identifier properties to the entity
classes of your domain model, and that after you completed the basic mapping of
each entity and its identifier property, you continued to map value-typed proper-
ties of the entities. However, some special options can simplify or enhance your
class mappings.

4.3 Class mapping options

If you check the <hibernate-mapping> and <class> elements in the DTD (or the
reference documentation), you’ll find a few options we haven’t discussed so far:

■ Dynamic generation of CRUD SQL statements
■ Entity mutability control
■ Naming of entities for querying
■ Mapping package names
■ Quoting keywords and reserved database identifiers
■ Implementing database naming conventions

172 CHAPTER 4

Mapping persistent classes
4.3.1 Dynamic SQL generation

By default, Hibernate creates SQL statements for each persistent class on startup.
These statements are simple create, read, update, and delete operations for read-
ing a single row, deleting a row, and so on.

 How can Hibernate create an UPDATE statement on startup? After all, the col-
umns to be updated aren’t known at this time. The answer is that the generated
SQL statement updates all columns, and if the value of a particular column isn’t
modified, the statement sets it to its old value.

 In some situations, such as a legacy table with hundreds of columns where the
SQL statements will be large for even the simplest operations (say, only one col-
umn needs updating), you have to turn off this startup SQL generation and switch
to dynamic statements generated at runtime. An extremely large number of enti-
ties can also impact startup time, because Hibernate has to generate all SQL state-
ments for CRUD upfront. Memory consumption for this query statement cache
will also be high if a dozen statements must be cached for thousands of entities
(this isn’t an issue, usually).

 Two attributes for disabling CRUD SQL generation on startup are available on
the <class> mapping element:

<class name="Item"
 dynamic-insert="true"
 dynamic-update="true">
...
</class>

The dynamic-insert attribute tells Hibernate whether to include null property
values in an SQL INSERT, and the dynamic-update attribute tells Hibernate
whether to include unmodified properties in the SQL UPDATE.

 If you’re using JDK 5.0 annotation mappings, you need a native Hibernate
annotation to enable dynamic SQL generation:

@Entity
@org.hibernate.annotations.Entity(
 dynamicInsert = true, dynamicUpdate = true
)
public class Item { ...

The second @Entity annotation from the Hibernate package extends the JPA
annotation with additional options, including dynamicInsert and dynamicUpdate.

 Sometimes you can avoid generating any UPDATE statement, if the persistent
class is mapped immutable.

Class mapping options 173
4.3.2 Making an entity immutable

Instances of a particular class may be immutable. For example, in CaveatEmptor,
a Bid made for an item is immutable. Hence, no UPDATE statement ever needs to
be executed on the BID table. Hibernate can also make a few other optimizations,
such as avoiding dirty checking, if you map an immutable class with the mutable
attribute set to false:

<hibernate-mapping default-access="field">
 <class name="Bid" mutable="false">
 ...
 </class>
</hibernate-mapping>

A POJO is immutable if no public setter methods for any properties of the class are
exposed—all values are set in the constructor. Instead of private setter methods,
you often prefer direct field access by Hibernate for immutable persistent classes,
so you don’t have to write useless accessor methods. You can map an immutable
entity using annotations:

@Entity
@org.hibernate.annotations.Entity(mutable = false)
@org.hibernate.annotations.AccessType("field")
public class Bid { ...

Again, the native Hibernate @Entity annotation extends the JPA annotation with
additional options. We have also shown the Hibernate extension annotation
@AccessType here—this is an annotation you’ll rarely use. As explained earlier,
the default access strategy for a particular entity class is implicit from the position
of the mandatory @Id property. However, you can use @AccessType to force a
more fine-grained strategy; it can be placed on class declarations (as in the pre-
ceding example) or even on particular fields or accessor methods.

 Let’s have a quick look at another issue, the naming of entities for queries.

4.3.3 Naming entities for querying

By default, all class names are automatically “imported” into the namespace of the
Hibernate query language, HQL. In other words, you can use the short class
names without a package prefix in HQL, which is convenient. However, this auto-
import can be turned off if two classes with the same name exist for a given Ses-
sionFactory, maybe in different packages of the domain model.

 If such a conflict exists, and you don’t change the default settings, Hibernate
won’t know which class you’re referring to in HQL. You can turn off auto-import

174 CHAPTER 4

Mapping persistent classes
of names into the HQL namespace for particular mapping files with the auto-
import="false" setting on the <hibernate-mapping> root element.

 Entity names can also be imported explicitly into the HQL namespace. You can
even import classes and interfaces that aren’t explicitly mapped, so a short name
can be used in polymorphic HQL queries:

<hibernate-mapping>
 <import class="auction.model.Auditable" rename="IAuditable"/>
</hibernate-mapping>

You can now use an HQL query such as from IAuditable to retrieve all persistent
instances of classes that implement the auction.model.Auditable interface.
(Don’t worry if you don’t know whether this feature is relevant to you at this
point; we’ll get back to queries later in the book.) Note that the <import> ele-
ment, like all other immediate child elements of <hibernate-mapping>, is an
application-wide declaration, so you don’t have to (and can’t) duplicate this in
other mapping files.

 With annotations, you can give an entity an explicit name, if the short name
would result in a collision in the JPA QL or HQL namespace:

@Entity(name="AuctionItem")
public class Item { ... }

Now let’s consider another aspect of naming: the declaration of packages.

4.3.4 Declaring a package name

All the persistent classes of the CaveatEmptor application are declared in the Java
package auction.model. However, you don’t want to repeat the full package
name whenever this or any other class is named in an association, subclass, or
component mapping. Instead, specify a package attribute:

 <hibernate-mapping package="auction.model">
 <classname="Item" table="ITEM">
 ...
 </class>
 </hibernate-mapping>

Now all unqualified class names that appear in this mapping document will be
prefixed with the declared package name. We assume this setting in all mapping
examples in this book and use unqualified names for CaveatEmptor model classes.

 Names of classes and tables must be selected carefully. However, a name you’ve
chosen may be reserved by the SQL database system, so the name has to be quoted.

Class mapping options 175
4.3.5 Quoting SQL identifiers

By default, Hibernate doesn’t quote table and column names in the generated
SQL. This makes the SQL slightly more readable, and it also allows you to take
advantage of the fact that most SQL databases are case insensitive when compar-
ing unquoted identifiers. From time to time, especially in legacy databases, you
encounter identifiers with strange characters or whitespace, or you wish to force
case sensitivity. Or, if you rely on Hibernate’s defaults, a class or property name in
Java may be automatically translated to a table or column name that isn’t allowed
in your database management system. For example, the User class is mapped to a
USER table, which is usually a reserved keyword in SQL databases. Hibernate
doesn’t know the SQL keywords of any DBMS product, so the database system
throws an exception at startup or runtime.

 If you quote a table or column name with backticks in the mapping document,
Hibernate always quotes this identifier in the generated SQL. The following prop-
erty declaration forces Hibernate to generate SQL with the quoted column name
"DESCRIPTION". Hibernate also knows that Microsoft SQL Server needs the varia-
tion [DESCRIPTION] and that MySQL requires `DESCRIPTION`.

<property name="description"
 column="`DESCRIPTION`"/>

There is no way, apart from quoting all table and column names in backticks, to
force Hibernate to use quoted identifiers everywhere. You should consider renam-
ing tables or columns with reserved keyword names whenever possible. Quoting
with backticks works with annotation mappings, but it’s an implementation detail
of Hibernate and not part of the JPA specification.

4.3.6 Implementing naming conventions

We often encounter organizations with strict conventions for database table and
column names. Hibernate provides a feature that allows you to enforce naming
standards automatically.

 Suppose that all table names in CaveatEmptor should follow the pattern
CE_<table name>. One solution is to manually specify a table attribute on all
<class> and collection elements in the mapping files. However, this approach is
time-consuming and easily forgotten. Instead, you can implement Hibernate’s
NamingStrategy interface, as in listing 4.1.

176 CHAPTER 4

Mapping persistent classes
public class CENamingStrategy extends ImprovedNamingStrategy {

 public String classToTableName(String className) {
 return StringHelper.unqualify(className);
 }

 public String propertyToColumnName(String propertyName) {
 return propertyName;
 }

 public String tableName(String tableName) {
 return "CE_" + tableName;
 }

 public String columnName(String columnName) {
 return columnName;
 }

 public String propertyToTableName(String className,
 String propertyName) {
 return "CE_"
 + classToTableName(className)
 + '_'
 + propertyToColumnName(propertyName);
 }
}

You extend the ImprovedNamingStrategy, which provides default implementa-
tions for all methods of NamingStrategy you don’t want to implement from
scratch (look at the API documentation and source). The classToTableName()
method is called only if a <class> mapping doesn’t specify an explicit table
name. The propertyToColumnName() method is called if a property has no
explicit column name. The tableName() and columnName() methods are called
when an explicit name is declared.

 If you enable this CENamingStrategy, the class mapping declaration

<class name="BankAccount">

results in CE_BANKACCOUNT as the name of the table.
 However, if a table name is specified, like this,

<class name="BankAccount" table="BANK_ACCOUNT">

then CE_BANK_ACCOUNT is the name of the table. In this case, BANK_ACCOUNT is
passed to the tableName() method.

Listing 4.1 NamingStrategy implementation

Fine-grained models and mappings 177
 The best feature of the NamingStrategy interface is the potential for dynamic
behavior. To activate a specific naming strategy, you can pass an instance to the
Hibernate Configuration at startup:

Configuration cfg = new Configuration();
cfg.setNamingStrategy(new CENamingStrategy());
SessionFactory sessionFactory sf =
 cfg.configure().buildSessionFactory();

This allows you to have multiple SessionFactory instances based on the same
mapping documents, each using a different NamingStrategy. This is extremely
useful in a multiclient installation, where unique table names (but the same data
model) are required for each client. However, a better way to handle this kind of
requirement is to use an SQL schema (a kind of namespace), as already discussed
in chapter 3, section 3.3.4, “Handling global metadata.”

 You can set a naming strategy implementation in Java Persistence in your per-
sistence.xml file with the hibernate.ejb.naming_strategy option.

 Now that we have covered the concepts and most important mappings for enti-
ties, let’s map value types.

4.4 Fine-grained models and mappings

After spending the first half of this chapter almost exclusively on entities and
the respective basic persistent class-mapping options, we’ll now focus on value
types in their various forms. Two different kinds come to mind immediately:
value-typed classes that came with the JDK, such as String or primitives, and
value-typed classes defined by the application developer, such as Address and
MonetaryAmount.

 First, you map persistent class properties that use JDK types and learn the basic
mapping elements and attributes. Then you attack custom value-typed classes and
map them as embeddable components.

4.4.1 Mapping basic properties

If you map a persistent class, no matter whether it’s an entity or a value type, all
persistent properties have to be mapped explicitly in the XML mapping file. On
the other hand, if a class is mapped with annotations, all of its properties are con-
sidered persistent by default. You can mark properties with the @javax.persis-
tence.Transient annotation to exclude them, or use the transient Java
keyword (which usually only excludes fields for Java serialization).

 In a JPA XML descriptor, you can exclude a particular field or property:

178 CHAPTER 4

Mapping persistent classes
<entity class="auction.model.User" access="FIELD">
 <attributes>
 ...
 <transient name="age"/>
 </attributes>
</entity>

A typical Hibernate property mapping defines a POJO’s property name, a data-
base column name, and the name of a Hibernate type, and it’s often possible to
omit the type. So, if description is a property of (Java) type java.lang.String,
Hibernate uses the Hibernate type string by default (we come back to the
Hibernate type system in the next chapter).

 Hibernate uses reflection to determine the Java type of the property. Thus, the
following mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>
<property name="description" column="DESCRIPTION"/>

It’s even possible to omit the column name if it’s the same as the property name,
ignoring case. (This is one of the sensible defaults we mentioned earlier.)

 For some more unusual cases, which you’ll see more about later, you may need
to use a <column> element instead of the column attribute in your XML mapping.
The <column> element provides more flexibility: It has more optional attributes
and may appear more than once. (A single property can map to more than one
column, a technique we discuss in the next chapter.) The following two property
mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>
<property name="description" type="string">
 <column name="DESCRIPTION"/>
</property>

The <property> element (and especially the <column> element) also defines cer-
tain attributes that apply mainly to automatic database schema generation. If you
aren’t using the hbm2ddl tool (see chapter 2, section 2.1.4, “Running and testing
the application”) to generate the database schema, you may safely omit these.
However, it’s preferable to include at least the not-null attribute, because Hiber-
nate can then report illegal null property values without going to the database:

<property name="initialPrice" column="INITIAL_PRICE" not-null="true"/>

JPA is based on a configuration by exception model, so you could rely on defaults.
If a property of a persistent class isn’t annotated, the following rules apply:

Fine-grained models and mappings 179
■ If the property is of a JDK type, it’s automatically persistent. In other words,
it’s handled like <property name="propertyName"/> in a Hibernate XML
mapping file.

■ Otherwise, if the class of the property is annotated as @Embeddable, it’s
mapped as a component of the owning class. We’ll discuss embedding of
components later in this chapter.

■ Otherwise, if the type of the property is Serializable, its value is stored in
its serialized form. This usually isn’t what you want, and you should always
map Java classes instead of storing a heap of bytes in the database. Imagine
maintaining a database with this binary information when the application is
gone in a few years.

If you don’t want to rely on these defaults, apply the @Basic annotation on a par-
ticular property. The @Column annotation is the equivalent of the XML <column>
element. Here is an example of how you declare a property’s value as required:

@Basic(optional = false)
@Column(nullable = false)
public BigDecimal getInitialPrice { return initialPrice; }

The @Basic annotation marks the property as not optional on the Java object
level. The second setting, nullable = false on the column mapping, is only
responsible for the generation of a NOT NULL database constraint. The Hibernate
JPA implementation treats both options the same way in any case, so you may as
well use only one of the annotations for this purpose.

 In a JPA XML descriptor, this mapping looks the same:

<entity class="auction.model.Item" access="PROPERTY">
 <attributes>
 ...
 <basic name="initialPrice" optional="false">
 <column nullable="false"/>
 </basic>
 </attributes>
</entity>

Quite a few options in Hibernate metadata are available to declare schema con-
straints, such as NOT NULL on a column. Except for simple nullability, however,
they’re only used to produce DDL when Hibernate exports a database schema
from mapping metadata. We’ll discuss customization of SQL, including DDL, in
chapter 8, section 8.3, “Improving schema DDL.” On the other hand, the Hiber-
nate Annotations package includes a more advanced and sophisticated data vali-
dation framework, which you can use not only to define database schema

180 CHAPTER 4

Mapping persistent classes
constraints in DDL, but also for data validation at runtime. We’ll discuss it in
chapter 17.

 Are annotations for properties always on the accessor methods?

Customizing property access
Properties of a class are accessed by the persistence engine either directly
(through fields) or indirectly (through getter and setter property accessor meth-
ods). In XML mapping files, you control the default access strategy for a class with
the default-access="field|property|noop|custom.Class" attribute of the
hibernate-mapping root element. An annotated entity inherits the default from
the position of the mandatory @Id annotation. For example, if @Id has been
declared on a field, not a getter method, all other property mapping annotations,
like the name of the column for the item’s description property, are also
declared on fields:

@Column(name = "ITEM_DESCR")
private String description;

public String getDescription() { return description; }

This is the default behavior as defined by the JPA specification. However, Hiber-
nate allows flexible customization of the access strategy with the @org.hiber-
nate.annotations.AccessType(<strategy>) annotation:

■ If AccessType is set on the class/entity level, all attributes of the class are
accessed according to the selected strategy. Attribute-level annotations are
expected on either fields or getter methods, depending on the strategy.
This setting overrides any defaults from the position of the standard @Id
annotations.

■ If an entity defaults or is explicitly set for field access, the Access-
Type("property") annotation on a field switches this particular attribute to
runtime access through property getter/setter methods. The position of the
AccessType annotation is still the field.

■ If an entity defaults or is explicitly set for property access, the
AccessType("field") annotation on a getter method switches this particu-
lar attribute to runtime access through a field of the same name. The posi-
tion of the AccessType annotation is still the getter method.

■ Any @Embedded class inherits the default or explicitly declared access strat-
egy of the owning root entity class.

■ Any @MappedSuperclass properties are accessed with the default or explic-
itly declared access strategy of the mapped entity class.

Fine-grained models and mappings 181
 You can also control access strategies on the property level in Hibernate XML
mappings with the access attribute:

<property name="description"
 column="DESCR"
 access="field"/>

Or, you can set the access strategy for all class mappings inside a root <hibernate-
mapping> element with the default-access attribute.

 Another strategy besides field and property access that can be useful is noop. It
maps a property that doesn’t exist in the Java persistent class. This sounds strange,
but it lets you refer to this “virtual” property in HQL queries (in other words, to
use the database column in HQL queries only).

 If none of the built-in access strategies are appropriate, you can define your
own customized property-access strategy by implementing the interface
org.hibernate.property.PropertyAccessor. Set the (fully qualified) class
name on the access mapping attribute or @AccessType annotation. Have a look
at the Hibernate source code for inspiration; it’s a straightforward exercise.

 Some properties don’t map to a column at all. In particular, a derived property
takes its value from an SQL expression.

Using derived properties
The value of a derived property is calculated at runtime by evaluating an expres-
sion that you define using the formula attribute. For example, you may map a
totalIncludingTax property to an SQL expression:

<property name="totalIncludingTax"
 formula="TOTAL + TAX_RATE * TOTAL"
 type="big_decimal"/>

The given SQL formula is evaluated every time the entity is retrieved from the
database (and not at any other time, so the result may be outdated if other
properties are modified). The property doesn’t have a column attribute (or sub-
element) and never appears in an SQL INSERT or UPDATE, only in SELECTs. For-
mulas may refer to columns of the database table, they can call SQL functions,
and they may even include SQL subselects. The SQL expression is passed to the
underlying database as is; this is a good chance to bind your mapping file to a
particular database product, if you aren’t careful and rely on vendor-specific
operators or keywords.

 Formulas are also available with a Hibernate annotation:

@org.hibernate.annotations.Formula("TOTAL + TAX_RATE * TOTAL")
public BigDecimal getTotalIncludingTax() {

182 CHAPTER 4

Mapping persistent classes
 return totalIncludingTax;
}

The following example uses a correlated subselect to calculate the average
amount of all bids for an item:

<property
 name="averageBidAmount"
 type="big_decimal"
 formula=
 "(select AVG(b.AMOUNT) from
 BID b where b.ITEM_ID = ITEM_ID)"/>

Notice that unqualified column names refer to columns of the table of the class to
which the derived property belongs.

 Another special kind of property relies on database-generated values.

Generated and default property values
Imagine a particular property of a class has its value generated by the database,
usually when the entity row is inserted for the first time. Typical database-gener-
ated values are timestamp of creation, a default price for an item, and a trigger
that runs for every modification.

 Typically, Hibernate applications need to refresh objects that contain any
properties for which the database generates values. Marking properties as gener-
ated, however, lets the application delegate this responsibility to Hibernate. Essen-
tially, whenever Hibernate issues an SQL INSERT or UPDATE for an entity that has
defined generated properties, it immediately does a SELECT afterwards to retrieve
the generated values. Use the generated switch on a property mapping to enable
this automatic refresh:

<property name="lastModified"
 column="LAST_MODIFIED"
 update="false"
 insert="false"
 generated="always"/>

Properties marked as database-generated must additionally be noninsertable and
nonupdateable, which you control with the insert and update attributes. If both
are set to false, the property’s columns never appear in the INSERT or UPDATE
statements—the property value is read-only. Also, you usually don’t add a public
setter method in your class for an immutable property (and switch to field access).

 With annotations, declare immutability (and automatic refresh) with the
@Generated Hibernate annotation:

Fine-grained models and mappings 183
@Column(updatable = false, insertable = false)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
private Date lastModified;

The settings available are GenerationTime.ALWAYS and GenerationTime.INSERT,
and the equivalent options in XML mappings are generated="always" and gen-
erated="insert".

 A special case of database-generated property values are default values. For
example, you may want to implement a rule that every auction item costs at least
$1. First, you’d add this to your database catalog as the default value for the
INITIAL_PRICE column:

create table ITEM (
 ...
 INITIAL_PRICE number(10,2) default '1',
 ...
);

If you use Hibernate’s schema export tool, hbm2ddl, you can enable this output
by adding a default attribute to the property mapping:

<class name="Item" table="ITEM"
 dynamic-insert="true" dynamic-update="true">
 ...
 <property name="initialPrice" type="big_decimal">
 <column name="INITIAL_PRICE"
 default="'1'"
 generated="insert"/>
 </property>
 ...
 </class>

Note that you also have to enable dynamic insertion and update statement gener-
ation, so that the column with the default value isn’t included in every statement
if its value is null (otherwise a NULL would be inserted instead of the default
value). Furthermore, an instance of Item that has been made persistent but not
yet flushed to the database and not refreshed again won’t have the default value
set on the object property. In other words, you need to execute an explicit flush:

Item newItem = new Item(...);
session.save(newItem);

newItem.getInitialPrice(); // is null

session.flush(); // Trigger an INSERT
// Hibernate does a SELECT automatically

newItem.getInitialPrice(); // is $1

184 CHAPTER 4

Mapping persistent classes
Because you set generated="insert", Hibernate knows that an immediate addi-
tional SELECT is required to read the database-generated property value.

 You can map default column values with annotations as part of the DDL defini-
tion for a column:

@Column(name = "INITIAL_PRICE",
 columnDefinition = "number(10,2) default '1'")
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.INSERT
)
private BigDecimal initalPrice;

The columnDefinition attribute includes the complete properties for the col-
umn DDL, with datatype and all constraints. Keep in mind that an actual nonport-
able SQL datatype may bind your annotation mapping to a particular database
management system.

 We’ll come back to the topic of constraints and DDL customization in chapter
8, section 8.3, “Improving schema DDL.”

 Next, you’ll map user-defined value-typed classes. You can easily spot them in
your UML class diagrams if you search for a composition relationship between two
classes. One of them is a dependent class, a component.

4.4.2 Mapping components

So far, the classes of the object model have all been entity classes, each with its
own lifecycle and identity. The User class, however, has a special kind of associa-
tion with the Address class, as shown in figure 4.2.
In object-modeling terms, this association is a kind of aggregation—a part-of rela-
tionship. Aggregation is a strong form of association; it has some additional
semantics with regard to the lifecycle of objects. In this case, you have an even
stronger form, composition, where the lifecycle of the part is fully dependent
upon the lifecycle of the whole.

 Object modeling experts and UML designers claim that there is no difference
between this composition and other weaker styles of association when it comes to
the actual Java implementation. But in the context of ORM, there is a big differ-
ence: A composed class is often a candidate value type.

firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
admin : boolean

street : String
zipcode : String
city : String

home

billing

Figure 4.2
Relationships between User and
Address using composition

Fine-grained models and mappings 185
 You map Address as a value type and User as an entity. Does this affect the
implementation of the POJO classes?

 Java has no concept of composition—a class or attribute can’t be marked as a
component or composition. The only difference is the object identifier: A compo-
nent has no individual identity, hence the persistent component class requires no
identifier property or identifier mapping. It’s a simple POJO:

public class Address {

 private String street;
 private String zipcode;
 private String city;

 public Address() {}

 public String getStreet() { return street; }
 public void setStreet(String street) { this.street = street; }

 public String getZipcode() { return zipcode; }
 public void setZipcode(String zipcode) {
 this.zipcode = zipcode; }

 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

}

The composition between User and Address is a metadata-level notion; you only
have to tell Hibernate that the Address is a value type in the mapping document
or with annotations.

Component mapping in XML
Hibernate uses the term component for a user-defined class that is persisted to
the same table as the owning entity, an example of which is shown in listing 4.2.
(The use of the word component here has nothing to do with the architecture-
level concept, as in software component.)

<class name="User" table="USER">

 <id name="id" column="USER_ID" type="long">
 <generator class="native"/>
 </id>

 <property name="loginName" column="LOGIN" type="string"/>

 <component name="homeAddress" class="Address">
 <property name="street" type="string"
 column="HOME_STREET" not-null="true"/>
 <property name="city" type="string"
 column="HOME_CITY" not-null="true"/>

Listing 4.2 Mapping of the User class with a component Address

B

186 CHAPTER 4

Mapping persistent classes
 <property name="zipcode" type="string"
 column="HOME_ZIPCODE" not-null="true"/>
 </component>

 <component name="billingAddress" class="Address">
 <property name="street" type="string"
 column="BILLING_STREET" not-null="true"/>
 <property name="city" type="string"
 column="BILLING_CITY" not-null="true"/>
 <property name="zipcode" type="string"
 column="BILLING_ZIPCODE" not-null="true"/>
 </component>

 ...

</class>

You declare the persistent attributes of Address
inside the <component> element. The property
of the User class is named homeAddress.

You reuse the same component class to map
another property of this type to the same table.

Figure 4.3 shows how the attributes of the
Address class are persisted to the same table as
the User entity.

 Notice that, in this example, you model the
composition association as unidirectional. You
can’t navigate from Address to User. Hibernate
supports both unidirectional and bidirectional
compositions, but unidirectional composition
is far more common. An example of a bidirec-
tional mapping is shown in listing 4.3.

<component name="homeAddress" class="Address">
 <parent name="user"/>
 <property name="street" type="string"
 column="HOME_STREET" not-null="true"/>
 <property name="city" type="string"
 column="HOME_CITY" not-null="true"/>
 <property name="zipcode" type="stringshort"
 column="HOME_ZIPCODE" not-null="true"/>
</component>

Listing 4.3 Adding a back-pointer to a composition

C

Figure 4.3 Table attributes of User with
Address component

B

C

Fine-grained models and mappings 187
In listing 4.3, the <parent> element maps a property of type User to the owning
entity, which in this example is the property named user. You can then call
Address.getUser() to navigate in the other direction. This is really a simple
back-pointer.

 A Hibernate component can own other components and even associations to
other entities. This flexibility is the foundation of Hibernate’s support for fine-
grained object models. For example, you can create a Location class with detailed
information about the home address of an Address owner:

<component name="homeAddress" class="Address">
 <parent name="user"/>

 <component name="location" class="Location">
 <property name="streetname" column="HOME_STREETNAME"/>
 <property name="streetside" column="HOME_STREETSIDE"/>
 <property name="housenumber" column="HOME_HOUSENR"/>
 <property name="floor" column="HOME_FLOOR"/>
 </component>

 <property name="city" type="string" column="HOME_CITY"/>
 <property name="zipcode" type="string" column="HOME_ZIPCODE"/>

</component>

The design of the Location class is equivalent to the Address class. You now have
three classes, one entity, and two value types, all mapped to the same table.

 Now let’s map components with JPA annotations.

Annotating embedded classes
The Java Persistence specification calls components embedded classes. To map an
embedded class with annotations, you can declare a particular property in the
owning entity class as @Embedded, in this case the homeAddress of User:

@Entity
@Table(name = "USERS")
public class User {

 ...

 @Embedded
 private Address homeAddress;

 ...
}

If you don’t declare a property as @Embedded, and it isn’t of a JDK type, Hibernate
looks into the associated class for the @Embeddable annotation. If it’s present, the
property is automatically mapped as a dependent component.

188 CHAPTER 4

Mapping persistent classes
 This is what the embeddable class looks like:

@Embeddable
public class Address {

 @Column(name = "ADDRESS_STREET", nullable = false)
 private String street;

 @Column(name = "ADDRESS_ZIPCODE", nullable = false)
 private String zipcode;

 @Column(name = "ADDRESS_CITY", nullable = false)
 private String city;

 ...
}

You can further customize the individual property mappings in the embeddable
class, such as with the @Column annotation. The USERS table now contains, among
others, the columns ADDRESS_STREET, ADDRESS_ZIPCODE, and ADDRESS_CITY. Any
other entity table that contains component fields (say, an Order class that also has
an Address) uses the same column options. You can also add a back-pointer prop-
erty to the Address embeddable class and map it with @org.hibernate.annota-
tions.Parent.

 Sometimes you’ll want to override the settings you made inside the
embeddable class from outside for a particular entity. For example, here is how
you can rename the columns:

@Entity
@Table(name = "USERS")
public class User {

 ...

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name = "street",
 column = @Column(name="HOME_STREET")),
 @AttributeOverride(name = "zipcode",
 column = @Column(name="HOME_ZIPCODE")),
 @AttributeOverride(name = "city",
 column = @Column(name="HOME_CITY"))
 })
 private Address homeAddress;

 ...
}

Summary 189
The new @Column declarations in the User class override the settings of the
embeddable class. Note that all attributes on the embedded @Column annotation
are replaced, so they’re no longer nullable = false.

 In a JPA XML descriptor, a mapping of an embeddable class and a composition
looks like the following:

<embeddable class="auction.model.Address access-type="FIELD"/>

<entity class="auction.model.User" access="FIELD">
 <attributes>
 ...
 <embedded name="homeAddress">
 <attribute-override name="street">
 <column name="HOME_STREET"/>
 </attribute-override>
 <attribute-override name="zipcode">
 <column name="HOME_ZIPCODE"/>
 </attribute-override>
 <attribute-override name="city">
 <column name="HOME_CITY"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>

There are two important limitations to classes mapped as components. First,
shared references, as for all value types, aren’t possible. The component homeAd-
dress doesn’t have its own database identity (primary key) and so can’t be
referred to by any object other than the containing instance of User.

 Second, there is no elegant way to represent a null reference to an Address. In
lieu of any elegant approach, Hibernate represents a null component as null val-
ues in all mapped columns of the component. This means that if you store a com-
ponent object with all null property values, Hibernate returns a null component
when the owning entity object is retrieved from the database.

 You’ll find many more component mappings (even collections of them)
throughout the book.

4.5 Summary

In this chapter, you learned the essential distinction between entities and value
types and how these concepts influence the implementation of your domain
model as persistent Java classes.

 Entities are the coarser-grained classes of your system. Their instances have an
independent lifecycle and their own identity, and they can be referenced by many

190 CHAPTER 4

Mapping persistent classes
other instances. Value types, on the other hand, are dependent on a particular
entity class. An instance of a value type has a lifecycle bound by its owning entity
instance, and it can be referenced by only one entity—it has no individual identity.

 We looked at Java identity, object equality, and database identity, and at what
makes good primary keys. You learned which generators for primary key values
are built into Hibernate, and how you can use and extend this identifier system.

 You also learned various (mostly optional) class mapping options and, finally,
how basic properties and value-type components are mapped in XML mappings
and annotations.

 For convenience, table 4.2 summarizes the differences between Hibernate and
Java Persistence related to concepts discussed in this chapter.

In the next chapter, we’ll attack inheritance and how hierarchies of entity classes
can be mapped with various strategies. We’ll also talk about the Hibernate map-
ping type system, the converters for value types we’ve shown in a few examples.

Table 4.2 Hibernate and JPA comparison chart for chapter 4

Hibernate Core Java Persistence and EJB 3.0

Entity- and value-typed classes are the essential
concepts for the support of rich and fine-grained
domain models.

The JPA specification makes the same distinction,
but calls value types “embeddable classes.” How-
ever, nested embeddable classes are considered a
nonportable feature.

Hibernate supports 10 identifier generation strate-
gies out-of-the-box.

JPA standardizes a subset of 4 identifier genera-
tors, but allows vendor extension.

Hibernate can access properties through fields,
accessor methods, or with any custom
PropertyAccessor implementation. Strate-
gies can be mixed for a particular class.

JPA standardizes property access through fields or
access methods, and strategies can’t be mixed for
a particular class without Hibernate extension
annotations.

Hibernate supports formula properties and data-
base-generated values.

JPA doesn’t include these features, a Hibernate
extension is needed.

Inheritance and
custom types
This chapter covers
■ Inheritance mapping strategies
■ The Hibernate mapping type system
■ Customization of mapping types
191

192 CHAPTER 5

Inheritance and custom types
We deliberately didn’t talk much about inheritance mapping so far. Mapping a
hierarchy of classes to tables can be a complex issue, and we’ll present various strat-
egies in this chapter. You’ll learn which strategy to choose in a particular scenario.

 The Hibernate type system, with all its built-in converters and transformers for
Java value-typed properties to SQL datatypes, is the second big topic we discuss in
this chapter.

 Let’s start with the mapping of entity inheritance.

5.1 Mapping class inheritance

A simple strategy for mapping classes to database tables might be “one table for
every entity persistent class.” This approach sounds simple enough and, indeed,
works well until we encounter inheritance.

 Inheritance is such a visible structural mismatch between the object-oriented
and relational worlds because object-oriented systems model both is a and has a
relationships. SQL-based models provide only has a relationships between entities;
SQL database management systems don’t support type inheritance—and even
when it’s available, it’s usually proprietary or incomplete.

 There are four different approaches to representing an inheritance hierarchy:

■ Table per concrete class with implicit polymorphism—Use no explicit
inheritance mapping, and default runtime polymorphic behavior.

■ Table per concrete class—Discard polymorphism and inheritance relation-
ships completely from the SQL schema.

■ Table per class hierarchy—Enable polymorphism by denormalizing the SQL
schema, and utilize a type discriminator column that holds type information.

■ Table per subclass—Represent is a (inheritance) relationships as has a (for-
eign key) relationships.

This section takes a top-down approach; it assumes that you’re starting with a
domain model and trying to derive a new SQL schema. However, the mapping
strategies described are just as relevant if you’re working bottom up, starting with
existing database tables. We’ll show some tricks along the way that help you deal-
ing with nonperfect table layouts.

5.1.1 Table per concrete class with implicit polymorphism

Suppose we stick with the simplest approach suggested. You can use exactly one
table for each (nonabstract) class. All properties of a class, including inherited
properties, can be mapped to columns of this table, as shown in figure 5.1.

Mapping class inheritance 193
You don’t have to do anything special in Hibernate to enable polymorphic behav-
ior. The mapping for CreditCard and BankAccount is straightforward, each in its
own entity <class> element, as we have done already for classes without a super-
class (or persistent interfaces). Hibernate still knows about the superclass (or any
interface) because it scans the persistent classes on startup.

 The main problem with this approach is that it doesn’t support polymorphic
associations very well. In the database, associations are usually represented as
foreign key relationships. In figure 5.1, if the subclasses are all mapped to differ-
ent tables, a polymorphic association to their superclass (abstract BillingDe-
tails in this example) can’t be represented as a simple foreign key
relationship. This would be problematic in our domain model, because Bill-
ingDetails is associated with User; both subclass tables would need a foreign
key reference to the USERS table. Or, if User had a many-to-one relationship with
BillingDetails, the USERS table would need a single foreign key column,
which would have to refer both concrete subclass tables. This isn’t possible with
regular foreign key constraints.

 Polymorphic queries (queries that return objects of all classes that match the
interface of the queried class) are also problematic. A query against the superclass
must be executed as several SQL SELECTs, one for each concrete subclass. For a
query against the BillingDetails class Hibernate uses the following SQL:

select CREDIT_CARD_ID, OWNER, NUMBER, EXP_MONTH, EXP_YEAR ...
from CREDIT_CARD

select BANK_ACCOUNT_ID, OWNER, ACCOUNT, BANKNAME, ...
from BANK_ACCOUNT

Notice that a separate query is needed for each concrete subclass. On the other
hand, queries against the concrete classes are trivial and perform well—only one
of the statements is needed.

Figure 5.1 Mapping all concrete classes to an independent table

194 CHAPTER 5

Inheritance and custom types
 (Also note that here, and in other places in this book, we show SQL that is con-
ceptually identical to the SQL executed by Hibernate. The actual SQL may look
superficially different.)

 A further conceptual problem with this mapping strategy is that several differ-
ent columns, of different tables, share exactly the same semantics. This makes
schema evolution more complex. For example, a change to a superclass property
results in changes to multiple columns. It also makes it much more difficult to
implement database integrity constraints that apply to all subclasses.

 We recommend this approach (only) for the top level of your class hierarchy,
where polymorphism isn’t usually required, and when modification of the super-
class in the future is unlikely.

 Also, the Java Persistence interfaces don’t support full polymorphic queries;
only mapped entities (@Entity) can be officially part of a Java Persistence query
(note that the Hibernate query interfaces are polymorphic, even if you map with
annotations).

 If you’re relying on this implicit polymorphism, you map concrete classes with
@Entity, as usual. However, you also have to duplicate the properties of the super-
class to map them to all concrete class tables. By default, properties of the super-
class are ignored and not persistent! You need to annotate the superclass to
enable embedding of its properties in the concrete subclass tables:

@MappedSuperclass
public abstract class BillingDetails {

 @Column(name = "OWNER", nullable = false)
 private String owner;

 ...
}

Now map the concrete subclasses:

@Entity
@AttributeOverride(name = "owner", column =
 @Column(name = "CC_OWNER", nullable = false)
)
public class CreditCard extends BillingDetails {

 @Id @GeneratedValue
 @Column(name = "CREDIT_CARD_ID")
 private Long id = null;

 @Column(name = "NUMBER", nullable = false)
 private String number;

 ...
}

Mapping class inheritance 195
You can override column mappings from the superclass in a subclass with the
@AttributeOverride annotation. You rename the OWNER column to CC_OWNER in
the CREDIT_CARD table. The database identifier can also be declared in the super-
class, with a shared column name and generator strategy for all subclasses.

 Let’s repeat the same mapping in a JPA XML descriptor:

<entity-mappings>

 <mapped-superclass class="auction.model.BillingDetails"
 access="FIELD">
 <attributes>
 ...
 </attributes>
 </mapped-superclass>

 <entity class="auction.model.CreditCard" access="FIELD">
 <attribute-override name="owner">
 <column name="CC_OWNER" nullable="false"/>
 </attribute-override>
 <attributes>
 ...
 </attributes>
 </entity>
 ...
</entity-mappings>

NOTE A component is a value type; hence, the normal entity inheritance rules
presented in this chapter don’t apply. However, you can map a subclass
as a component by including all the properties of the superclass (or
interface) in your component mapping. With annotations, you use the
@MappedSuperclass annotation on the superclass of the embeddable
component you’re mapping just like you would for an entity. Note that
this feature is available only in Hibernate Annotations and isn’t standard-
ized or portable.

With the help of the SQL UNION operation, you can eliminate most of the issues
with polymorphic queries and associations, which are present with this map-
ping strategy.

5.1.2 Table per concrete class with unions

First, let’s consider a union subclass mapping with BillingDetails as an abstract
class (or interface), as in the previous section. In this situation, we again have two
tables and duplicate superclass columns in both: CREDIT_CARD and BANK_ACCOUNT.
What’s new is a special Hibernate mapping that includes the superclass, as you
can see in listing 5.1.

196 CHAPTER 5

Inheritance and custom types
<hibernate-mapping>
 <class
 name="BillingDetails"
 abstract="true">

 <id
 name="id"
 column="BILLING_DETAILS_ID"
 type="long">
 <generator class="native"/>
 </id>

 <property
 name="name"
 column="OWNER"
 type="string"/>

 ...

 <union-subclass
 name="CreditCard" table="CREDIT_CARD">

 <property name="number" column=”NUMBER”/>
 <property name="expMonth" column="EXP_MONTH"/>
 <property name="expYear" column="EXP_YEAR"/>

 </union-subclass>

 <union-subclass
 name="BankAccount" table="BANK_ACCOUNT">
 ...

 </class>
</hibernate-mapping>

An abstract superclass or an interface has to be declared as abstract="true"; oth-
erwise a separate table for instances of the superclass is needed.

The database identifier mapping is shared for all concrete classes in the hierarchy.
The CREDIT_CARD and the BANK_ACCOUNT tables both have a BILLING_DETAILS_ID
primary key column. The database identifier property now has to be shared for all
subclasses; hence you have to move it into BillingDetails and remove it from
CreditCard and BankAccount.

Properties of the superclass (or interface) are declared here and inherited by all
concrete class mappings. This avoids duplication of the same mapping.

A concrete subclass is mapped to a table; the table inherits the superclass (or
interface) identifier and other property mappings.

Listing 5.1 Using the <union-subclass> inheritance strategy

B

C

D

E

B

C

D

E

Mapping class inheritance 197
The first advantage you may notice with this strategy is the shared declaration of
superclass (or interface) properties. No longer do you have to duplicate these
mappings for all concrete classes—Hibernate takes care of this. Keep in mind that
the SQL schema still isn’t aware of the inheritance; effectively, we’ve mapped two
unrelated tables to a more expressive class structure. Except for the different pri-
mary key column name, the tables look exactly alike, as shown in figure 5.1.

 In JPA annotations, this strategy is known as TABLE_PER_CLASS:

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class BillingDetails {

 @Id @GeneratedValue
 @Column(name = "BILLING_DETAILS_ID")
 private Long id = null;

 @Column(name = "OWNER", nullable = false)
 private String owner;

 ...
}

The database identifier and its mapping have to be present in the superclass, to
be shared across all subclasses and their tables. An @Entity annotation on each
subclass is all that is required:

@Entity
@Table(name = "CREDIT_CARD")
public class CreditCard extends BillingDetails {

 @Column(name = "NUMBER", nullable = false)
 private String number;

 ...
}

Note that TABLE_PER_CLASS is specified in the JPA standard as optional, so not all
JPA implementations may support it. The actual implementation is also vendor
dependent—in Hibernate, it’s equivalent to a <union-subclass> mapping in
XML files.

 The same mapping looks like this in a JPA XML descriptor:

<entity-mappings>

 <entity class="auction.model.BillingDetails" access="FIELD">
 <inheritance strategy="TABLE_PER_CLASS"/>
 ...
 </entity>

 <entity class="auction.model.CreditCard" access="FIELD"/>

198 CHAPTER 5

Inheritance and custom types
 <entity class="auction.model.BankAccount" access="FIELD"/>

</entity-mappings>

If your superclass is concrete, then an additional table is needed to hold
instances of that class. We have to emphasize again that there is still no relation-
ship between the database tables, except for the fact that they share some similar
columns. The advantages of this mapping strategy are clearer if we examine poly-
morphic queries. For example, a query for BillingDetails executes the follow-
ing SQL statement:

select
 BILLING_DETAILS_ID, OWNER,
 NUMBER, EXP_MONTH, EXP_YEAR,
 ACCOUNT, BANKNAME, SWIFT
 CLAZZ_
from
 (select
 BILLING_DETAILS_ID, OWNER,
 NUMBER, EXP_MONTH, EXP_YEAR,
 null as ACCOUNT, null as BANKNAME, null as SWIFT,
 1 as CLAZZ_
 from
 CREDIT_CARD

 union

 select
 BILLING_DETAILS_ID, OWNER,
 null as NUMBER, null as EXP_MONTH, null as EXP_YEAR, ...
 ACCOUNT, BANKNAME, SWIFT,
 2 as CLAZZ_
 from
 BANK_ACCOUNT
)

This SELECT uses a FROM-clause subquery to retrieve all instances of BillingDe-
tails from all concrete class tables. The tables are combined with a UNION opera-
tor, and a literal (in this case, 1 and 2) is inserted into the intermediate result;
Hibernate reads this to instantiate the correct class given the data from a particu-
lar row. A union requires that the queries that are combined project over the
same columns; hence, we have to pad and fill up nonexistent columns with NULL.
You may ask whether this query will really perform better than two separate state-
ments. Here we can let the database optimizer find the best execution plan to
combine rows from several tables, instead of merging two result sets in memory as
Hibernate’s polymorphic loader engine would do.

Mapping class inheritance 199
 Another much more important advantage is the ability to handle polymorphic
associations; for example, an association mapping from User to BillingDetails
would now be possible. Hibernate can use a UNION query to simulate a single table
as the target of the association mapping. We cover this topic in detail in chapter 7,
section 7.3, “Polymorphic associations.”

 So far, the inheritance mapping strategies we’ve discussed don’t require extra
consideration with regard to the SQL schema. No foreign keys are needed, and
relations are properly normalized. This situation changes with the next strategy.

5.1.3 Table per class hierarchy

An entire class hierarchy can be mapped to a single table. This table includes col-
umns for all properties of all classes in the hierarchy. The concrete subclass repre-
sented by a particular row is identified by the value of a type discriminator
column. This approach is shown in figure 5.2.

 This mapping strategy is a winner in terms of both performance and simplicity.
It’s the best-performing way to represent polymorphism—both polymorphic and
nonpolymorphic queries perform well—and it’s even easy to implement by hand.
Ad-hoc reporting is possible without complex joins or unions. Schema evolution is
straightforward.

Figure 5.2
Mapping a whole class hierarchy to a single table

200 CHAPTER 5

Inheritance and custom types
 There is one major problem: Columns for properties declared by subclasses
must be declared to be nullable. If your subclasses each define several nonnul-
lable properties, the loss of NOT NULL constraints may be a serious problem from
the point of view of data integrity. Another important issue is normalization.
We’ve created functional dependencies between nonkey columns, violating the
third normal form. As always, denormalization for performance can be mislead-
ing, because it sacrifices long-term stability, maintainability, and the integrity of
data for immediate gains that may be also achieved by proper optimization of the
SQL execution plans (in other words, ask your DBA).

 In Hibernate, you use the <subclass> element to create a table per class hier-
archy mapping, as in listing 5.2.

<hibernate-mapping>
 <class
 name="BillingDetails"
 table="BILLING_DETAILS">

 <id
 name="id"
 column="BILLING_DETAILS_ID"
 type="long">
 <generator class="native"/>
 </id>

 <discriminator
 column="BILLING_DETAILS_TYPE"
 type="string"/>

 <property
 name="owner"
 column="OWNER"
 type="string"/>

 ...

 <subclass
 name="CreditCard"
 discriminator-value="CC">

 <property name="number" column="CC_NUMBER"/>
 <property name="expMonth" column="CC_EXP_MONTH"/>
 <property name="expYear" column="CC_EXP_YEAR"/>

 </subclass>

 <subclass
 name=”BankAccount”
 discriminator-value=”BA”>

Listing 5.2 Hibernate <subclass> mapping

B

C

D

E

Mapping class inheritance 201
 ...

 </class>
</hibernate-mapping>

The root class BillingDetails of the inheritance hierarchy is mapped to the
table BILLING_DETAILS.

You have to add a special column to distinguish between persistent classes: the dis-
criminator. This isn’t a property of the persistent class; it’s used internally by
Hibernate. The column name is BILLING_DETAILS_TYPE, and the values are
strings—in this case, “CC” or “BA”. Hibernate automatically sets and retrieves the
discriminator values.

Properties of the superclass are mapped as always, with a simple <property> ele-
ment.

Every subclass has its own <subclass> element. Properties of a subclass are
mapped to columns in the BILLING_DETAILS table. Remember that NOT NULL con-
straints aren’t allowed, because a BankAccount instance won’t have an expMonth
property, and the CC_EXP_MONTH field must be NULL for that row.

The <subclass> element can in turn contain other nested <subclass> elements,
until the whole hierarchy is mapped to the table.

 Hibernate generates the following SQL when querying the BillingDetails
class:

select
 BILLING_DETAILS_ID, BILLING_DETAILS_TYPE, OWNER,
 CC_NUMBER, CC_EXP_MONTH, ..., BA_ACCOUNT, BA_BANKNAME, ...
from BILLING_DETAILS

To query the CreditCard subclass, Hibernate adds a restriction on the discrimina-
tor column:

select BILLING_DETAILS_ID, OWNER, CC_NUMBER, CC_EXP_MONTH, ...
from BILLING_DETAILS
where BILLING_DETAILS_TYPE='CC'

This mapping strategy is also available in JPA, as SINGLE_TABLE:

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
 name = "BILLING_DETAILS_TYPE",
 discriminatorType = DiscriminatorType.STRING
)

B

C

D

E

202 CHAPTER 5

Inheritance and custom types
public abstract class BillingDetails {

 @Id @GeneratedValue
 @Column(name = "BILLING_DETAILS_ID")
 private Long id = null;

 @Column(name = "OWNER", nullable = false)
 private String owner;

 ...
}

If you don’t specify a discriminator column in the superclass, its name defaults to
DTYPE and its type to string. All concrete classes in the inheritance hierarchy can
have a discriminator value; in this case, BillingDetails is abstract, and Credit-
Card is a concrete class:

@Entity
@DiscriminatorValue("CC")
public class CreditCard extends BillingDetails {

 @Column(name = "CC_NUMBER")
 private String number;

 ...
}

Without an explicit discriminator value, Hibernate defaults to the fully qualified
class name if you use Hibernate XML files and the entity name if you use annota-
tions or JPA XML files. Note that no default is specified in Java Persistence for non-
string discriminator types; each persistence provider can have different defaults.

 This is the equivalent mapping in JPA XML descriptors:

<entity-mappings>
 <entity class="auction.model.BillingDetails" access="FIELD">
 <inheritance strategy="SINGLE_TABLE"/>
 <discriminator-column name="BILLING_DETAILS_TYPE"
 discriminator-type="STRING"/>
 ...
 </entity>

 <entity class="auction.model.CreditCard" access="FIELD">
 <discriminator-value>CC</discriminator-value>
 ...
 </entity>

</entity-mappings>

Sometimes, especially in legacy schemas, you don’t have the freedom to include
an extra discriminator column in your entity tables. In this case, you can apply a
formula to calculate a discriminator value for each row:

Mapping class inheritance 203
<discriminator
 formula="case when CC_NUMBER is not null then 'CC' else 'BA' end"
 type="string"/>

 ...

<subclass
 name="CreditCard"
 discriminator-value="CC">
 ...

This mapping relies on an SQL CASE/WHEN expression to determine whether a par-
ticular row represents a credit card or a bank account (many developers never
used this kind of SQL expression; check the ANSI standard if you aren’t familiar
with it). The result of the expression is a literal, CC or BA, which in turn is declared
on the <subclass> mappings. Formulas for discrimination aren’t part of the JPA
specification. However, you can apply a Hibernate annotation:

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@org.hibernate.annotations.DiscriminatorFormula(
 "case when CC_NUMBER is not null then 'CC' else 'BA' end"
)
public abstract class BillingDetails {
 ...
}

The disadvantages of the table per class hierarchy strategy may be too serious for
your design—after all, denormalized schemas can become a major burden in the
long run. Your DBA may not like it at all. The next inheritance mapping strategy
doesn’t expose you to this problem.

5.1.4 Table per subclass

The fourth option is to represent inheritance relationships as relational foreign
key associations. Every class/subclass that declares persistent properties—includ-
ing abstract classes and even interfaces—has its own table.

 Unlike the table per concrete class strategy we mapped first, the table here
contains columns only for each noninherited property (each property declared
by the subclass itself) along with a primary key that is also a foreign key of the
superclass table. This approach is shown in figure 5.3.

 If an instance of the CreditCard subclass is made persistent, the values of prop-
erties declared by the BillingDetails superclass are persisted to a new row of the
BILLING_DETAILS table. Only the values of properties declared by the subclass are
persisted to a new row of the CREDIT_CARD table. The two rows are linked together

204 CHAPTER 5

Inheritance and custom types
by their shared primary key value. Later, the subclass instance may be retrieved
from the database by joining the subclass table with the superclass table.

 The primary advantage of this strategy is that the SQL schema is normalized.
Schema evolution and integrity constraint definition are straightforward. A poly-
morphic association to a particular subclass may be represented as a foreign key
referencing the table of that particular subclass.

 In Hibernate, you use the <joined-subclass> element to create a table per
subclass mapping. See listing 5.3.

<hibernate-mapping>
 <class
 name="BillingDetails"
 table="BILLING_DETAILS">

 <id
 name="id"
 column="BILLING_DETAILS_ID"
 type="long">
 <generator class="native"/>

Listing 5.3 Hibernate <joined-subclass> mapping

Figure 5.3 Mapping all classes of the hierarchy to their own table

B

Mapping class inheritance 205
 </id>

 <property
 name="owner"
 column="OWNER"
 type="string"/>

 ...

 <joined-subclass
 name="CreditCard"
 table="CREDIT_CARD">

 <key column="CREDIT_CARD_ID"/>

 <property name="number" column="NUMBER"/>
 <property name="expMonth" column="EXP_MONTH"/>
 <property name="expYear" column="EXP_YEAR"/>

 </joined-subclass>

 <joined-subclass
 name="BankAccount"
 table="BANK_ACCOUNT">
 ...

 </class>
</hibernate-mapping>

The root class BillingDetails is mapped to the table BILLING_DETAILS. Note
that no discriminator is required with this strategy.

The new <joined-subclass> element maps a subclass to a new table—in this
example, CREDIT_CARD. All properties declared in the joined subclass are mapped
to this table.

A primary key is required for the CREDIT_CARD table. This column also has a for-
eign key constraint to the primary key of the BILLING_DETAILS table. A Credit-
Card object lookup requires a join of both tables. A <joined-subclass> element
may contain other nested <joined-subclass> elements, until the whole hierar-
chy has been mapped.

Hibernate relies on an outer join when querying the BillingDetails class:

select BD.BILLING_DETAILS_ID, BD.OWNER,
 CC.NUMBER, CC.EXP_MONTH, ..., BA.ACCOUNT, BA.BANKNAME, ...
 case
 when CC.CREDIT_CARD_ID is not null then 1
 when BA.BANK_ACCOUNT_ID is not null then 2
 when BD.BILLING_DETAILS_ID is not null then 0
 end as CLAZZ_

C

D

B

C

D

206 CHAPTER 5

Inheritance and custom types
from BILLING_DETAILS BD
 left join CREDIT_CARD CC
 on BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
 left join BANK_ACCOUNT BA
 on BD.BILLING_DETAILS_ID = BA.BANK_ACCOUNT_ID

The SQL CASE statement detects the existence (or absence) of rows in the subclass
tables CREDIT_CARD and BANK_ACCOUNT, so Hibernate can determine the concrete
subclass for a particular row of the BILLING_DETAILS table.

 To narrow the query to the subclass, Hibernate uses an inner join:

select BD.BILLING_DETAILS_ID, BD.OWNER, CC.NUMBER, ...
from CREDIT_CARD CC
 inner join BILLING_DETAILS BD
 on BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID

As you can see, this mapping strategy is more difficult to implement by hand—
even ad-hoc reporting is more complex. This is an important consideration if you
plan to mix Hibernate code with handwritten SQL.

 Furthermore, even though this mapping strategy is deceptively simple, our
experience is that performance can be unacceptable for complex class hierarchies.
Queries always require either a join across many tables or many sequential reads.

 Let’s map the hierarchy with the same strategy and annotations, here called
the JOINED strategy:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class BillingDetails {

 @Id @GeneratedValue
 @Column(name = "BILLING_DETAILS_ID")
 private Long id = null;

 ...
}

In subclasses, you don’t need to specify the join column if the primary key column
of the subclass table has (or is supposed to have) the same name as the primary
key column of the superclass table:

@Entity
public class BankAccount {
 ...
}

This entity has no identifier property; it automatically inherits the BILLING_
DETAILS_ID property and column from the superclass, and Hibernate knows how

Mapping class inheritance 207
to join the tables together if you want to retrieve instances of BankAccount. Of
course, you can specify the column name explicitly:

@Entity
@PrimaryKeyJoinColumn(name = "CREDIT_CARD_ID")
public class CreditCard {
 ...
}

Finally, this is the equivalent mapping in JPA XML descriptors:

<entity-mappings>

 <entity class="auction.model.BillingDetails" access="FIELD">
 <inheritance strategy="JOINED"/>
 ...
 </entity>

 <entity class="auction.model.BankAccount" access="FIELD"/>
 <entity class="auction.model.CreditCard" access="FIELD">
 <primary-key-join-column name="CREDIT_CARD_ID"/>
 </entity>

</entity-mappings>

Before we show you when to choose which strategy, let’s consider mixing inherit-
ance mapping strategies in a single class hierarchy.

5.1.5 Mixing inheritance strategies

You can map whole inheritance hierarchies by nesting <union-subclass>, <sub-
class>, and <joined-subclass> mapping elements. You can’t mix them—for
example, to switch from a table-per-class hierarchy with a discriminator to a nor-
malized table-per-subclass strategy. Once you’ve made a decision for an inherit-
ance strategy, you have to stick to it.

 This isn’t completely true, however. With some Hibernate tricks, you can
switch the mapping strategy for a particular subclass. For example, you can map a
class hierarchy to a single table, but for a particular subclass, switch to a separate
table with a foreign key mapping strategy, just as with table per subclass. This is
possible with the <join> mapping element:

<hibernate-mapping>
<class name="BillingDetails"
 table="BILLING_DETAILS">

 <id>...</id>

 <discriminator
 column="BILLING_DETAILS_TYPE"
 type="string"/>

208 CHAPTER 5

Inheritance and custom types
 ...

 <subclass
 name="CreditCard"
 discriminator-value="CC">

 <join table="CREDIT_CARD">
 <key column="CREDIT_CARD_ID"/>

 <property name="number" column="CC_NUMBER"/>
 <property name="expMonth" column="CC_EXP_MONTH"/>
 <property name="expYear" column="CC_EXP_YEAR"/>
 ...
 </join>

 </subclass>

 <subclass
 name="BankAccount"
 discriminator-value="BA">

 <property name=account" column="BA_ACCOUNT"/>
 ...
 </subclass>

...

</class>
</hibernate-mapping>

The <join> element groups some properties and tells Hibernate to get them from
a secondary table. This mapping element has many uses, and you’ll see it again
later in the book. In this example, it separates the CreditCard properties from the
table per hierarchy into the CREDIT_CARD table. The CREDIT_CARD_ID column of
this table is at the same time the primary key, and it has a foreign key constraint
referencing the BILLING_DETAILS_ID of the hierarchy table. The BankAccount
subclass is mapped to the hierarchy table. Look at the schema in figure 5.4.

 At runtime, Hibernate executes an outer join to fetch BillingDetails and all
subclass instances polymorphically:

select
 BILLING_DETAILS_ID, BILLING_DETAILS_TYPE, OWNER,
 CC.CC_NUMBER, CC.CC_EXP_MONTH, CC.CC_EXP_YEAR,
 BA_ACCOUNT, BA_BANKNAME, BA_SWIFT

from
 BILLING_DETAILS
left outer join
 CREDIT_CARD CC
 on BILLING_DETAILS_ID = CC.CREDIT_CARD_ID

Mapping class inheritance 209
You can also use the <join> trick for other subclasses in your class hierarchy. How-
ever, if you have an exceptionally wide class hierarchy, the outer join can become
a problem. Some database systems (Oracle, for example) limit the number of
tables in an outer join operation. For a wide hierarchy, you may want to switch to a
different fetching strategy that executes an immediate second select instead of an
outer join:

<subclass
 name="CreditCard"
 discriminator-value="CC">

 <join table="CREDIT_CARD" fetch="select">
 <key column="CREDIT_CARD_ID"/>
 ...
 </join>

</subclass>

Java Persistence also supports this mixed inheritance mapping strategy with anno-
tations. Map the superclass BillingDetails with InheritanceType.SINGLE_
TABLE, as you did before. Now map the subclass you want to break out of the sin-
gle table to a secondary table.

@Entity
@DiscriminatorValue("CC")
@SecondaryTable(

Figure 5.4 Breaking out a subclass to its own secondary table

210 CHAPTER 5

Inheritance and custom types
 name = "CREDIT_CARD",
 pkJoinColumns = @PrimaryKeyJoinColumn(name = "CREDIT_CARD_ID")
)
public class CreditCard extends BillingDetails {

 @Column(table = "CREDIT_CARD",
 name = "CC_NUMBER",
 nullable = false)
 private String number;
 ...
}

If you don’t specify a primary key join column for the secondary table, the name
of the primary key of the single inheritance table is used—in this case,
BILLING_DETAILS_ID. Also note that you need to map all properties that are
moved into the secondary table with the name of that secondary table.

 You also want more tips about how to choose an appropriate combination of
mapping strategies for your application’s class hierarchies.

5.1.6 Choosing a strategy

You can apply all mapping strategies to abstract classes and interfaces. Interfaces
may have no state but may contain accessor method declarations, so they can be
treated like abstract classes. You can map an interface with <class>, <union-sub-
class>, <subclass>, or <joined-subclass>, and you can map any declared or
inherited property with <property>. Hibernate won’t try to instantiate an abstract
class, even if you query or load it.

NOTE Note that the JPA specification doesn’t support any mapping annotation
on an interface! This will be resolved in a future version of the specifica-
tion; when you read this book, it will probably be possible with Hibernate
Annotations.

Here are some rules of thumb:

■ If you don’t require polymorphic associations or queries, lean toward table-
per-concrete-class—in other words, if you never or rarely query for Bill-
ingDetails and you have no class that has an association to BillingDe-
tails (our model has). An explicit UNION-based mapping should be
preferred, because (optimized) polymorphic queries and associations will
then be possible later. Implicit polymorphism is mostly useful for queries
utilizing non-persistence-related interfaces.

■ If you do require polymorphic associations (an association to a superclass,
hence to all classes in the hierarchy with dynamic resolution of the concrete

Mapping class inheritance 211
class at runtime) or queries, and subclasses declare relatively few properties
(particularly if the main difference between subclasses is in their behavior),
lean toward table-per-class-hierarchy. Your goal is to minimize the number
of nullable columns and to convince yourself (and your DBA) that a denor-
malized schema won’t create problems in the long run.

■ If you do require polymorphic associations or queries, and subclasses
declare many properties (subclasses differ mainly by the data they hold),
lean toward table-per-subclass. Or, depending on the width and depth of
your inheritance hierarchy and the possible cost of joins versus unions, use
table-per-concrete-class.

By default, choose table-per-class-hierarchy only for simple problems. For more
complex cases (or when you’re overruled by a data modeler insisting on the
importance of nullability constraints and normalization), you should consider the
table-per-subclass strategy. But at that point, ask yourself whether it may not be
better to remodel inheritance as delegation in the object model. Complex inherit-
ance is often best avoided for all sorts of reasons unrelated to persistence or ORM.
Hibernate acts as a buffer between the domain and relational models, but that
doesn’t mean you can ignore persistence concerns when designing your classes.

 When you start thinking about mixing inheritance strategies, remember that
implicit polymorphism in Hibernate is smart enough to handle more exotic cases.
For example, consider an additional interface in our application, Electronic-
PaymentOption. This is a business interface that doesn’t have a persistence
aspect—except that in our application, a persistent class such as CreditCard will
likely implement this interface. No matter how you map the BillingDetails
hierarchy, Hibernate can answer a query from ElectronicPaymentOption cor-
rectly. This even works if other classes, which aren’t part of the BillingDetails
hierarchy, are mapped persistent and implement this interface. Hibernate always
know what tables to query, which instances to construct, and how to return a poly-
morphic result.

 Finally, you can also use <union-subclass>, <subclass>, and <joined-sub-
class> mapping elements in a separate mapping file (as a top-level element
instead of <class>). You then have to declare the class that is extended, such as
<subclass name="CreditCard" extends="BillingDetails">, and the super-
class mapping must be loaded programmatically before the subclass mapping file
(you don’t have to worry about this order when you list mapping resources in the
XML configuration file). This technique allows you to extend a class hierarchy
without modifying the mapping file of the superclass.

212 CHAPTER 5

Inheritance and custom types
 You now know everything you need to know about the mapping of entities,
properties, and inheritance hierarchies. You can already map complex domain
models. In the second half of this chapter, we discuss another important fea-
ture that you should know by heart as a Hibernate user: the Hibernate map-
ping type system.

5.2 The Hibernate type system

In chapter 4, we first distinguished between entity and value types—a central
concept of ORM in Java. We must elaborate on that distinction in order for you
to fully understand the Hibernate type system of entities, value types, and map-
ping types.

5.2.1 Recapitulating entity and value types

Entities are the coarse-grained classes in your system. You usually define the fea-
tures of a system in terms of the entities involved. The user places a bid for an item is
a typical feature definition; it mentions three entities. Classes of value types often
don’t even appear in the business requirements—they’re usually the fine-grained
classes representing strings, numbers, and monetary amounts. Occasionally, value
types do appear in feature definitions: the user changes billing address is one exam-
ple, assuming that Address is a value type.

 More formally, an entity is any class whose instances have their own persistent
identity. A value type is a class that doesn’t define some kind of persistent identity.
In practice, this means that entity types are classes with identifier properties, and
value type classes depend on an entity.

 At runtime, you have a network of entity instances interleaved with value type
instances. The entity instances may be in any of the three persistent lifecycle
states: transient, detached, or persistent. We don’t consider these lifecycle states to
apply to the value type instances. (We’ll come back to this discussion of object
states in chapter 9.)

 Therefore, entities have their own lifecycle. The save() and delete() methods
of the Hibernate Session interface apply to instances of entity classes, never to
value type instances. The persistence lifecycle of a value type instance is completely
tied to the lifecycle of the owning entity instance. For example, the username
becomes persistent when the user is saved; it never becomes persistent indepen-
dently of the user.

The Hibernate type system 213
 In Hibernate, a value type may define associations; it’s possible to navigate
from a value type instance to some other entity. However, it’s never possible to
navigate from the other entity back to the value type instance. Associations always
point to entities. This means that a value type instance is owned by exactly one
entity when it’s retrieved from the database; it’s never shared.

 At the level of the database, any table is considered an entity. However, Hiber-
nate provides certain constructs to hide the existence of a database-level entity
from the Java code. For example, a many-to-many association mapping hides the
intermediate association table from the application. A collection of strings (more
accurately, a collection of value-typed instances) behaves like a value type from
the point of view of the application; however, it’s mapped to its own table.
Although these features seem nice at first (they simplify the Java code), we have
over time become suspicious of them. Inevitably, these hidden entities end up
needing to be exposed to the application as business requirements evolve. The
many-to-many association table, for example, often has additional columns added
as the application matures. We’re almost prepared to recommend that every data-
base-level entity be exposed to the application as an entity class. For example, we
would be inclined to model the many-to-many association as two one-to-many
associations to an intervening entity class. We’ll leave the final decision to you,
however, and come back to the topic of many-to-many entity associations in the
future chapters.

 Entity classes are always mapped to the database using <class>, <union-sub-
class>, <subclass>, and <joined-subclass> mapping elements. How are value
types mapped?

 You’ve already met two different kinds of value type mappings: <property>
and <component>. The value type of a component is obvious: It’s the class that is
mapped as embeddable. However, the type of a property is a more generic notion.
Consider this mapping of the CaveatEmptor User and email address:

<property name="email"
 column="EMAIL"
 type="string"/>

Let’s focus on that type="string" attribute. You know that in ORM you have to
deal with Java types and SQL datatypes. The two different type systems must be
bridged. This is the job of the Hibernate mapping types, and string is the name
of a built-in Hibernate mapping type.

214 CHAPTER 5

Inheritance and custom types
 The string mapping type isn’t the only one built into Hibernate. Hibernate
comes with various mapping types that define default persistence strategies for
primitive Java types and certain JDK classes.

5.2.2 Built-in mapping types

Hibernate’s built-in mapping types usually share the name of the Java type they
map. However, there may be more than one Hibernate mapping type for a partic-
ular Java type.

 The built-in types may not be used to perform arbitrary conversions, such as
mapping a VARCHAR database value to a Java Integer property value. You may
define your own custom value types for this kind of conversation, as shown later in
this chapter.

 We now discuss the basic, date and time, locator object, and various other
built-in mapping types and show you what Java and SQL datatype they handle.

Java primitive mapping types
The basic mapping types in table 5.1 map Java primitive types (or their wrapper
types) to appropriate built-in SQL standard types.

Table 5.1 Primitive types

Mapping type Java type Standard SQL built-in type

integer int or java.lang.Integer INTEGER

long long or java.lang.Long BIGINT

short short or java.lang.Short SMALLINT

float float or java.lang.Float FLOAT

double double or java.lang.Double DOUBLE

big_decimal java.math.BigDecimal NUMERIC

character java.lang.String CHAR(1)

string java.lang.String VARCHAR

byte byte or java.lang.Byte TINYINT

boolean boolean or java.lang.Boolean BIT

yes_no boolean or java.lang.Boolean CHAR(1) ('Y' or 'N')

true_false boolean or java.lang.Boolean CHAR(1) ('T' or 'F')

The Hibernate type system 215
 You’ve probably noticed that your database doesn’t support some of the SQL
types mentioned in table 5.1. The listed type names are names of ANSI-standard
datatypes. Most database vendors ignore this part of the SQL standard (because
their legacy type systems often predate the standard). However, the JDBC driver
provides a partial abstraction of vendor-specific SQL datatypes, allowing Hiber-
nate to work with ANSI-standard types when executing DML. For database-specific
DDL generation, Hibernate translates from the ANSI-standard type to an appropri-
ate vendor-specific type, using the built-in support for specific SQL dialects. (This
means you usually don’t have to worry about SQL datatypes if you’re using Hiber-
nate for data access and SQL schema definition.)

 Furthermore, the Hibernate type system is smart and can switch SQL datatypes
depending on the defined length of a value. The most obvious case is string: If
you declare a string property mapping with a length attribute, Hibernate picks
the correct SQL datatype depending on the selected dialect. For MySQL, for
example, a length of up to 65535 results in a regular VARCHAR(length) column
when Hibernate exports the schema. For a length of up to 16777215, a MEDIUM-
TEXT datatype is used. Larger string mappings result in a LONGTEXT. Check your
SQL dialect (the source code comes with Hibernate) if you want to know the
ranges for this and other mapping types. You can customize this behavior by sub-
classing your dialect and overriding these settings.

 Most dialects also support setting the scale and precision of decimal SQL
datatypes. For example, a precision or scale setting in your mapping of a Big-
Decimal creates a NUMERIC(precision, scale) datatype for MySQL.

 Finally, the yes_no and true_false mapping types are converters that are
mostly useful for legacy schemas and Oracle users; Oracle DBMS products don’t
have a built-in boolean or truth-valued type (the only built-in datatype actually
required by the relational data model).

Date and time mapping types
Table 5.2 lists Hibernate types associated with dates, times, and timestamps. In
your domain model, you may choose to represent date and time data using
java.util.Date, java.util.Calendar, or the subclasses of java.util.Date
defined in the java.sql package. This is a matter of taste, and we leave the deci-
sion to you—make sure you’re consistent, however. (In practice, binding your
domain model to types from the JDBC package isn’t the best idea.)

 A caveat: If you map a java.util.Date property with timestamp (the most
common case), Hibernate returns a java.sql.Timestamp when loading the prop-
erty from the database. Hibernate has to use the JDBC subclass because it includes

216 CHAPTER 5

Inheritance and custom types
nanosecond information that may be present in the database. Hibernate can’t just
cut off this information. This can lead to problems if you try to compare your
java.util.Date properties with the equals() method, because it isn’t symmetric
with the java.sql.Timestamp subclass equals() method. First, the right way (in
any case) to compare two java.util.Date objects, which also works for any sub-
class, is aDate.getTime() > bDate.getTime() (for a greater-than comparison).
Second, you can write a custom mapping type that cuts off the database nanosec-
ond information and returns a java.util.Date in all cases. Currently (although
this may change in the future), no such mapping type is built into Hibernate.

Binary and large value mapping types
Table 5.3 lists Hibernate types for handling binary data and large values. Note that
only binary is supported as the type of an identifier property.

 If a property in your persistent Java class is of type byte[], Hibernate can map
it to a VARBINARY column with the binary mapping type. (Note that the real SQL

Table 5.2 Date and time types

Mapping type Java type
Standard SQL
built-in type

date java.util.Date or java.sql.Date DATE

time java.util.Date or java.sql.Time TIME

timestamp java.util.Date or java.sql.Timestamp TIMESTAMP

calendar java.util.Calendar TIMESTAMP

calendar_date java.util.Calendar DATE

Table 5.3 Binary and large value types

Mapping type Java type
Standard SQL
built-in type

binary byte[] VARBINARY

text java.lang.String CLOB

clob java.sql.Clob CLOB

blob java.sql.Blob BLOB

serializable Any Java class that implements
java.io.Serializable

VARBINARY

The Hibernate type system 217
type depends on the dialect; for example, in PostgreSQL, the SQL type is BYTEA,
and in Oracle it’s RAW.) If a property in your persistent Java class is of type
java.lang.String, Hibernate can map it to an SQL CLOB column, with the text
mapping type.

 Note that in both cases, Hibernate initializes the property value right away,
when the entity instance that holds the property variable is loaded. This is incon-
venient when you have to deal with potentially large values.

 One solution is lazy loading through interception of field access, on demand.
However, this approach requires bytecode instrumentation of your persistent
classes for the injection of extra code. We’ll discuss lazy loading through bytecode
instrumentation and interception in chapter 13, section 13.1.6, “Lazy loading
with interception.”

 A second solution is a different kind of property in your Java class. JDBC sup-
ports locator objects (LOBs) directly.1 If your Java property is of type
java.sql.Clob or java.sql.Blob, you can map it with the clob or blob mapping
type to get lazy loading of large values without bytecode instrumentation. When
the owner of the property is loaded, the property value is a locator object—effec-
tively, a pointer to the real value that isn’t yet materialized. Once you access the
property, the value is materialized. This on-demand loading works only as long as
the database transaction is open, so you need to access any property of such a type
when the owning entity instance is in a persistent and transactional state, not in
detached state. Your domain model is now also bound to JDBC, because the
import of the java.sql package is required. Although domain model classes are
executable in isolated unit tests, you can’t access LOB properties without a data-
base connection.

 Mapping properties with potentially large values is slightly different if you rely
on Java Persistence annotations. By default, a property of type java.lang.String
is mapped to an SQL VARCHAR column (or equivalent, depending on the SQL dia-
lect). If you want to map a java.lang.String, char[], Character[], or even a
java.sql.Clob typed property to a CLOB column, you need to map it with the
@Lob annotation:

@Lob
@Column(name = "ITEM_DESCRIPTION")
private String description;

1 Jim Starkey, who came up with the idea of LOBs, says that the terms BLOB and CLOB don’t mean any-
thing but were created by the marketing department. You can interpret them any way you like. We pre-
fer locator objects, as a hint that they work like pointers.

218 CHAPTER 5

Inheritance and custom types
@Lob
@Column(name = "ITEM_IMAGE")
private byte[] image;

The same is true for any property that is of type byte[], Byte[], or java.
sql.Blob. Note that for all cases, except properties that are of java.sql.Clob or
java.sql.Blob type, the values are again loaded immediately by Hibernate, and
not lazily on demand. Instrumenting bytecode with interception code is again an
option to enable lazy loading of individual properties transparently.

 To create and set a java.sql.Blob or java.sql.Clob value, if you have these
property types in your domain model, use the static Hibernate.createBlob()
and Hibernate.createClob() methods and provide a byte array, an input stream,
or a string.

 Finally, note that both Hibernate and JPA provide a serialization fallback for
any property type that is Serializable. This mapping type converts the value of a
property to a byte stream that is then stored in a VARBINARY (or equivalent) col-
umn. When the owner of the property is loaded, the property value is deserial-
ized. Naturally, you should use this strategy with extreme caution (data lives
longer than an application), and it may be useful only for temporary data (user
preferences, login session data, and so on).

JDK mapping types
Table 5.4 lists Hibernate types for various other Java types of the JDK that may be
represented as a VARCHAR in the database.

 You may have noticed that <property> isn’t the only Hibernate mapping ele-
ment that has a type attribute.

Table 5.4 Other JDK-related types

Mapping type Java type
Standard SQL
built-in type

class java.lang.Class VARCHAR

locale java.util.Locale VARCHAR

timezone java.util.TimeZone VARCHAR

currency java.util.Currency VARCHAR

The Hibernate type system 219
5.2.3 Using mapping types

All of the basic mapping types may appear almost anywhere in the Hibernate
mapping document, on normal property, identifier property, and other mapping
elements. The <id>, <property>, <version>, <discriminator>, <index> and
<element> elements all define an attribute named type.

 You can see how useful the built-in mapping types are in this mapping for the
BillingDetails class:

<class name="BillingDetails" table="BILLING_DETAILS">
 <id name="id" type="long" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>
 <discriminator type="character" column="BILLING_DETAILS_TYPE"/>
 <property name="number" type="string"/>

</class>

The BillingDetails class is mapped as an entity. Its discriminator, identifier,
and name properties are value typed, and we use the built-in Hibernate mapping
types to specify the conversion strategy.

 It isn’t often necessary to explicitly specify a built-in mapping type in the XML
mapping document. For instance, if you have a property of Java type
java.lang.String, Hibernate discovers this using reflection and selects string
by default. We can easily simplify the previous mapping example:

<class name="BillingDetails" table="BILLING_DETAILS">
 <id name="id" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>
 <discriminator type="character" column="BILLING_DETAILS_TYPE"/>
 <property name="number"/>

</class>

Hibernate also understands type="java.lang.String"; it doesn’t have to use
reflection then. The most important case where this approach doesn’t work well is
a java.util.Date property. By default, Hibernate interprets a java.util.Date as
a timestamp mapping. You need to explicitly specify type="time" or type="date"
if you don’t wish to persist both date and time information.

 With JPA annotations, the mapping type of a property is automatically
detected, just like in Hibernate. For a java.util.Date or java.util.Calendar
property, the Java Persistence standard requires that you select the precision with
a @Temporal annotation:

220 CHAPTER 5

Inheritance and custom types
@Temporal(TemporalType.TIMESTAMP)
@Column(nullable = false, updatable = false)
private Date startDate;

On the other hand, Hibernate Annotations, relaxing the rules of the standard,
defaults to TemporalType.TIMESTAMP—options are TemporalType.TIME and Tem-
poralType.DATE.

 In other rare cases, you may want to add the @org.hibernate.annota-
tions.Type annotation to a property and declare the name of a built-in or custom
Hibernate mapping type explicitly. This is a much more common extension as
soon as you start writing your own custom mapping types, which you’ll do later in
this chapter.

 The equivalent JPA XML descriptor is as follows:

<entity class="auction.model.Item" access="FIELD">
 <attributes>
 ...
 <basic name="startDate">
 <column nullable="false" updatable="false"/>
 <temporal>TIMESTAMP</temporal>
 </basic>
 </attributes>
</entity>

For each of the built-in mapping types, a constant is defined by the class
org.hibernate.Hibernate. For example, Hibernate.STRING represents the
string mapping type. These constants are useful for query parameter binding, as
discussed in more detail in chapters 14 and 15:

session.createQuery("from Item i where i.description like :desc")
 .setParameter("desc", d, Hibernate.STRING)
 .list();

Note that you may as well use the setString() argument binding method in this
case. Type constants are also useful for programmatic manipulation of the Hiber-
nate mapping metamodel, as discussed in chapter 3.

 Hibernate isn’t limited to the built-in mapping types. We consider the extensi-
ble mapping-type system one of the core features and an important aspect that
makes Hibernate so flexible.

5.3 Creating custom mapping types

Object-oriented languages like Java make it easy to define new types by writing
new classes. This is a fundamental part of the definition of object-orientation. If
we were then limited to the predefined built-in Hibernate mapping types when

Creating custom mapping types 221
declaring properties of our persistent classes, we would lose much of Java’s
expressiveness. Furthermore, our domain model implementation would be
tightly coupled to the physical data model, because new type conversions would
be impossible.

 Most ORM solutions that we have seen provide support for user-defined strate-
gies for performing type conversions. These are often called converters. For
example, the user can create a new strategy for persisting a property of JDK type
Integer to a VARCHAR column. Hibernate provides a similar, much more power-
ful, feature called custom mapping types.

 First you need to understand when it’s appropriate to write your own custom
mapping type, and which Hibernate extension point is relevant for you. We’ll
then write some custom mapping types and explore the options.

5.3.1 Considering custom mapping types

As an example, take the mapping of the Address class from previous chapters, as a
component:

<component name="homeAddress" class="Address">

 <property name="street" type="string" column="HOME_STREET"/>
 <property name="city" type="string" column="HOME_CITY"/>
 <property name="zipcode" type="string" column="HOME_ZIPCODE"/>

</component>

This value type mapping is straightforward; all properties of the new user-defined
Java type are mapped to individual columns of a built-in SQL datatype. However,
you can alternatively map it as a simple property, with a custom mapping type:

<property name="homeAddress"
 type="auction.persistence.CustomAddressType">

 <column name="HOME_STREET"/>
 <column name="HOME_CITY"/>
 <column name="HOME_ZIPCODE"/>

</property>

This is also probably the first time you’ve seen a single <property> element with
several <column> elements nested inside. We’re moving the responsibility for
translating and converting between an Address value type (it isn’t even named
anywhere) and the named three columns to a separate class: auction.persis-
tence.CustomAddressType. This class is now responsible for loading and saving
this property. Note that no Java code changes in the domain model implementa-
tion—the homeAddress property is of type Address.

222 CHAPTER 5

Inheritance and custom types
 Granted, the benefit of replacing a component mapping with a custom map-
ping type is dubious in this case. As long as you require no special conversion
when loading and saving this object, the CustomAddressType you now have to
write is just additional work. However, you can already see that custom mapping
types provide an additional buffer—something that may come in handy in the
long run when extra conversion is required. Of course, there are better use cases
for custom mapping types, as you’ll soon see. (Many examples of useful Hibernate
mapping types can be found on the Hibernate community website.)

 Let’s look at the Hibernate extension points for the creation of custom map-
ping types.

5.3.2 The extension points

Hibernate provides several interfaces that applications may use when defining
custom mapping types. These interfaces reduce the work involved in creating new
mapping types and insulate the custom type from changes to the Hibernate core.
This allows you to easily upgrade Hibernate and keep your existing custom map-
ping types.

 The extension points are as follows:

■ org.hibernate.usertype.UserType—The basic extension point, which is
useful in many situations. It provides the basic methods for custom loading
and storing of value type instances.

■ org.hibernate.usertype.CompositeUserType—An interface with more
methods than the basic UserType, used to expose internals about your value
type class to Hibernate, such as the individual properties. You can then
refer to these properties in Hibernate queries.

■ org.hibernate.usertype.UserCollectionType—A rarely needed inter-
face that’s used to implement custom collections. A custom mapping type
implementing this interface isn’t declared on a property mapping but is
useful only for custom collection mappings. You have to implement this
type if you want to persist a non-JDK collection and preserve additional
semantics persistently. We discuss collection mappings and this extension
point in the next chapter.

■ org.hibernate.usertype.EnhancedUserType—An interface that extends
UserType and provides additional methods for marshalling value types to
and from XML representations, or enables a custom mapping type for use
in identifier and discriminator mappings.

Creating custom mapping types 223
■ org.hibernate.usertype.UserVersionType—An interface that extends
UserType and provides additional methods enabling the custom mapping
type for usage in entity version mappings.

■ org.hibernate.usertype.ParameterizedType—A useful interface that
can be combined with all others to provide configuration settings—that is,
parameters defined in metadata. For example, you can write a single Money-
Converter that knows how to translate values into Euro or US dollars,
depending on a parameter in the mapping.

We’ll now create some custom mapping types. You shouldn’t consider this an
unnecessary exercise, even if you’re happy with the built-in Hibernate mapping
types. In our experience, every sophisticated application has many good use cases
for custom mapping types.

5.3.3 The case for custom mapping types

The Bid class defines an amount property, and the Item class defines an ini-
tialPrice property; both are monetary values. So far, we’ve used only a simple
BigDecimal to represent the value, mapped with big_decimal to a single
NUMERIC column.

 Suppose you want to support multiple currencies in the auction application
and that you have to refactor the existing domain model for this (customer-
driven) change. One way to implement this change would be to add new proper-
ties to Bid and Item: amountCurrency and initialPriceCurrency. You could
then map these new properties to additional VARCHAR columns with the built-in
currency mapping type. We hope you never use this approach!

 Instead, you should create a new MonetaryAmount class that encapsulates both
currency and amount. Note that this is a class of your domain model; it doesn’t
have any dependency on Hibernate interfaces:

public class MonetaryAmount implements Serializable {

 private final BigDecimal amount;
 private final Currency currency;

 public MonetaryAmount(BigDecimal amount, Currency currency) {
 this.amount = amount;
 this.currency = currency;
 }

 public BigDecimal getAmount() { return amount; }

 public Currency getCurrency() { return currency; }

224 CHAPTER 5

Inheritance and custom types
 public boolean equals(Object o) { ... }
 public int hashCode() { ...}

}

We have made MonetaryAmount an immutable class. This is a good practice in Java
because it simplifies coding. Note that you have to implement equals() and
hashCode() to finish the class (there is nothing special to consider here). You use
this new MonetaryAmount to replace the BigDecimal of the initialPrice prop-
erty in Item. You can and should use it for all other BigDecimal prices in any per-
sistent classes, such as the Bid.amount, and in business logic—for example, in the
billing system.

 Let’s map the refactored initialPrice property of Item, with its new Mone-
taryAmount type to the database.

5.3.4 Creating a UserType

Imagine that you’re working with a legacy database that represents all monetary
amounts in USD. The application is no longer restricted to a single currency (that
was the point of the refactoring), but it takes some time for the database team to
make the changes. You need to convert the amount to USD when persisting Mone-
taryAmount objects. When you load from the database, you convert it back to the
currency the user selected in his or her preferences.

 Create a new MonetaryAmountUserType class that implements the Hibernate
interface UserType. This is your custom mapping type, shown in listing 5.4.

 public class MonetaryAmountUserType
 implements UserType {

 public int[] sqlTypes() {
 return new int[]{ Hibernate.BIG_DECIMAL.sqlType() };
 }

 public Class returnedClass() { return MonetaryAmount.class; }

 public boolean isMutable() { return false; }

 public Object deepCopy(Object value) { return value; }

 public Serializable disassemble(Object value)
 { return (Serializable) value; }

 public Object assemble(Serializable cached, Object owner)
 { return cached; }

 public Object replace(Object original,
 Object target,

Listing 5.4 Custom mapping type for monetary amounts in USD

B

C

D
E

F

G

H

Creating custom mapping types 225
 Object owner)
 { return original; }

 public boolean equals(Object x, Object y) {
 if (x == y) return true;
 if (x == null || y == null) return false;
 return x.equals(y);
 }

 public int hashCode(Object x) {
 return x.hashCode();
 }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws SQLException {

 BigDecimal valueInUSD = resultSet.getBigDecimal(names[0]);
 // Deferred check after first read
 if (resultSet.wasNull()) return null;
 Currency userCurrency = User.getPreferences().getCurrency();
 MonetaryAmount amount = new MonetaryAmount(valueInUSD, "USD");
 return amount.convertTo(userCurrency);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {

 if (value == null) {
 statement.setNull(index, Hibernate.BIG_DECIMAL.sqlType());
 } else {
 MonetaryAmount anyCurrency = (MonetaryAmount)value;
 MonetaryAmount amountInUSD =
 MonetaryAmount.convert(anyCurrency,
 Currency.getInstance("USD"));
 statement.setBigDecimal(index, amountInUSD.getAmount ());
 }
 }
}

The sqlTypes() method tells Hibernate what SQL column types to use for
DDL schema generation. Notice that this method returns an array of type
codes. A UserType may map a single property to multiple columns, but this
legacy data model has only a single numeric column. By using the Hiber-
nate.BIG_DECIMAL.sqlType() method, you let Hibernate decide the exact SQL

I

J

1)

B

226 CHAPTER 5

Inheritance and custom types
datatype for the given database dialect. Alternatively, return a constant from
java.sql.Types.

The returnedClass() method tells Hibernate what Java value type class is
mapped by this UserType.

Hibernate can make some minor performance optimizations for immutable types
like this one, for example, when comparing snapshots during dirty checking. The
isMutable() method tells Hibernate that this type is immutable.

The UserType is also partially responsible for creating a snapshot of a value in the
first place. Because MonetaryAmount is an immutable class, the deepCopy()
method returns its argument. In the case of a mutable type, it would need to
return a copy of the argument to be used as the snapshot value.

The disassemble() method is called when Hibernate puts a MonetaryAmount
into the second-level cache. As you’ll learn later, this is a cache of data that stores
information in a serialized form.

The assemble() method does the opposite of disassembly: It can transform
cached data into an instance of MonetaryAmount. As you can see, implementation
of both routines is easy for immutable types.

Implement replace() to handle merging of detached object state. As you’ll see
later in the book, the process of merging involves an original and a target object,
whose state must be combined. Again, for immutable value types, return the first
argument. For mutable types, at least return a deep copy of the first argument.
For mutable types that have component fields, you probably want to apply a recur-
sive merging routine.

The UserType is responsible for dirty checking property values. The equals()
method compares the current property value to a previous snapshot and deter-
mines whether the property is dirty and must by saved to the database. The hash-
Code() of two equal value typed instances has to be the same. We usually delegate
this method to the actual value type class—in this case, the hashCode() method of
the given MonetaryAmount object.

The nullSafeGet() method retrieves the property value from the JDBC Result-
Set. You can also access the owner of the component if you need it for the conver-
sion. All database values are in USD, so you convert it to the currency the user has
currently set in his preferences. (Note that it’s up to you to implement this con-
version and preference handling.)

C

D

E

F

G

H

I

J

Creating custom mapping types 227
The nullSafeSet() method writes the property value to the JDBC Prepared-
Statement. This method takes whatever currency is set and converts it to a simple
BigDecimal USD amount before saving.

You now map the initialPrice property of Item as follows:

<property name="initialPrice"
 column="INITIAL_PRICE"
 type="persistence.MonetaryAmountUserType"/>

Note that you place the custom user type into the persistence package; it’s part
of the persistence layer of the application, not the domain model or business layer.

 To use a custom type in annotations, you have to add a Hibernate extension:

@org.hibernate.annotations.Type(
 type = " persistence.MonetaryAmountUserType"
)
@Column(name = "INITIAL_PRICE")
private MonetaryAmount initialPrice;

This is the simplest kind of transformation that a UserType can perform. Much
more sophisticated things are possible. A custom mapping type can perform vali-
dation; it can read and write data to and from an LDAP directory; it can even
retrieve persistent objects from a different database. You’re limited mainly by
your imagination.

 In reality, we’d prefer to represent both the amount and currency of mone-
tary amounts in the database, especially if the schema isn’t legacy but can be
defined (or updated quickly). Let’s assume you now have two columns available
and can store the MonetaryAmount without much conversion. A first option may
again be a simple <component> mapping. However, let’s try to solve it with a cus-
tom mapping type.

 (Instead of writing a new custom type, try to adapt the previous example for
two columns. You can do this without changing the Java domain model classes—
only the converter needs to be updated for this new requirement and the addi-
tional column named in the mapping.)

 The disadvantage of a simple UserType implementation is that Hibernate
doesn’t know anything about the individual properties inside a MonetaryAmount.
All it knows is the custom type class and the column names. The Hibernate query
engine (discussed in more detail later) doesn’t know how to query for amount or a
particular currency.

1)

228 CHAPTER 5

Inheritance and custom types
 You write a CompositeUserType if you need the full power of Hibernate que-
ries. This (slightly more complex) interface exposes the properties of the
MonetaryAmount to Hibernate queries. We’ll now map it again with this more flex-
ible customization interface to two columns, effectively producing an equivalent
to a component mapping.

5.3.5 Creating a CompositeUserType

To demonstrate the flexibility of custom mappings types, you don’t change the
MonetaryAmount class (and other persistent classes) at all—you change only the
custom mapping type, as shown in listing 5.5.

public class MonetaryAmountCompositeUserType
 implements CompositeUserType {

 // public int[] sqlTypes()...
 public Class returnedClass...
 public boolean isMutable...
 public Object deepCopy...
 public Serializable disassemble...
 public Object assemble...
 public Object replace...
 public boolean equals...
 public int hashCode...

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 SessionImplementor session,
 Object owner)
 throws SQLException {

 BigDecimal value = resultSet.getBigDecimal(names[0]);
 if (resultSet.wasNull()) return null;
 Currency currency =
 Currency.getInstance(resultSet.getString(names[1]));
 return new MonetaryAmount(value, currency);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index,
 SessionImplementor session)
 throws SQLException {

 if (value==null) {
 statement.setNull(index, Hibernate.BIG_DECIMAL.sqlType());
 statement.setNull(index+1, Hibernate.CURRENCY.sqlType());
 } else {

Listing 5.5 Custom mapping type for monetary amounts in new database schemas

B

C

D

Creating custom mapping types 229
 MonetaryAmount amount = (MonetaryAmount) value;
 String currencyCode =
 amount.getCurrency().getCurrencyCode();
 statement.setBigDecimal(index, amount.getAmount());
 statement.setString(index+1, currencyCode);
 }
 }

 public String[] getPropertyNames() {
 return new String[] { "amount", "currency" };
 }

 public Type[] getPropertyTypes() {
 return new Type[] { Hibernate.BIG_DECIMAL,
 Hibernate.CURRENCY };
 }

 public Object getPropertyValue(Object component, int property) {
 MonetaryAmount monetaryAmount = (MonetaryAmount) component;
 if (property == 0)
 return monetaryAmount.getAmount();
 else
 return monetaryAmount.getCurrency();
 }

 public void setPropertyValue(Object component,
 int property,
 Object value) {
 throw new
 UnsupportedOperationException("Immutable MonetaryAmount!");
 }
}

The CompositeUserType interface requires the same housekeeping methods as
the UserType you created earlier. However, the sqlTypes() method is no longer
needed.

Loading a value now is straightforward: You transform two column values in the
result set to two property values in a new MonetaryAmount instance.

Saving a value involves setting two parameters on the prepared statement.

A CompositeUserType exposes the properties of the value type through getProp-
ertyNames().

The properties each have their own type, as defined by getPropertyTypes(). The
types of the SQL columns are now implicit from this method.

The getPropertyValue() method returns the value of an individual property of
the MonetaryAmount.

E

F

G

H

B

C

D

E

F

G

230 CHAPTER 5

Inheritance and custom types
The setPropertyValue() method sets the value of an individual property of the
MonetaryAmount.

The initialPrice property now maps to two columns, so you need to declare
both in the mapping file. The first column stores the value; the second stores the
currency of the MonetaryAmount:

<property name="initialPrice"
 type="persistence.MonetaryAmountCompositeUserType">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>

If Item is mapped with annotations, you have to declare several columns for this
property. You can’t use the javax.persistence.Column annotation several times,
so a new, Hibernate-specific annotation is needed:

@org.hibernate.annotations.Type(
 type = "persistence.MonetaryAmountUserType"
)
@org.hibernate.annotations.Columns(columns = {
 @Column(name="INITIAL_PRICE"),
 @Column(name="INITIAL_PRICE_CURRENCY", length = 2)
})
private MonetaryAmount initialPrice;

In a Hibernate query, you can now refer to the amount and currency properties of
the custom type, even though they don’t appear anywhere in the mapping docu-
ment as individual properties:

from Item i
where i.initialPrice.amount > 100.0
 and i.initialPrice.currency = 'AUD'

You have extended the buffer between the Java object model and the SQL data-
base schema with the new custom composite type. Both representations are now
more robust to changes. Note that the number of columns isn’t relevant for your
choice of UserType versus CompositeUserType—only your desire to expose value
type properties for Hibernate queries.

 Parameterization is a helpful feature for all custom mapping types.

5.3.6 Parameterizing custom types

Let’s assume that you face the initial problem again: conversion of money to a dif-
ferent currency when storing it to the database. Often, problems are more subtle
than a generic conversion; for example, you may store US dollars in some tables

H

Creating custom mapping types 231
and Euros in others. You still want to write a single custom mapping type for this,
which can do arbitrary conversions. This is possible if you add the Parameter-
izedType interface to your UserType or CompositeUserType classes:

public class MonetaryAmountConversionType
 implements UserType, ParameterizedType {

 // Configuration parameter
 private Currency convertTo;

 public void setParameterValues(Properties parameters) {
 this.convertTo = Currency.getInstance(
 parameters.getProperty("convertTo")
);
 }

 // ... Housekeeping methods

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 SessionImplementor session,
 Object owner)
 throws SQLException {

 BigDecimal value = resultSet.getBigDecimal(names[0]);
 if (resultSet.wasNull()) return null;
 // When loading, take the currency from the database
 Currency currency = Currency.getInstance(
 resultSet.getString(names[1])
);
 return new MonetaryAmount(value, currency);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index,
 SessionImplementor session)
 throws SQLException {

 if (value==null) {
 statement.setNull(index, Types.NUMERIC);
 } else {
 MonetaryAmount amount = (MonetaryAmount) value;
 // When storing, convert the amount to the
 // currency this converter was parameterized with
 MonetaryAmount dbAmount =
 MonetaryAmount.convert(amount, convertTo);
 statement.setBigDecimal(index, dbAmount.getAmount());
 statement.setString(index+1,
 dbAmount.getCurrencyCode());
 }
 }
}

232 CHAPTER 5

Inheritance and custom types
We left out the usual mandatory housekeeping methods in this example. The
important additional method is setParameterValues() of the Parameterized-
Type interface. Hibernate calls this method on startup to initialize this class with a
convertTo parameter. The nullSafeSet() methods uses this setting to convert to
the target currency when saving a MonetaryAmount. The nullSafeGet() method
takes the currency that is present in the database and leaves it to the client to deal
with the currency of a loaded MonetaryAmount (this asymmetric implementation
isn’t the best idea, naturally).

 You now have to set the configuration parameters in your mapping file when
you apply the custom mapping type. A simple solution is the nested <type> map-
ping on a property:

<property name="initialPrice">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CUR"/>
 <type name="persistence.MonetaryAmountConversionType">
 <param name="convertTo">USD</param>
 </type>
</property>

However, this is inconvenient and requires duplication if you have many monetary
amounts in your domain model. A better strategy uses a separate definition of the
type, including all parameters, under a unique name that you can then reuse
across all your mappings. You do this with a separate <typedef>, an element (you
can also use it without parameters):

<typedef class="persistence.MonetaryAmountConversionType"
 name="monetary_amount_usd">
 <param name="convertTo">USD</param>
</typedef>

<typedef class="persistence.MonetaryAmountConversionType"
 name="monetary_amount_eur">
 <param name="convertTo">EUR</param>
</typedef>

What we show here is a binding of a custom mapping type with some arguments
to the names monetary_amount_usd and monetary_amount_eur. This definition
can be placed anywhere in your mapping files; it’s a child element of <hibernate-
mapping> (as mentioned earlier in the book, larger applications have often one or
several MyCustomTypes.hbm.xml files with no class mappings). With Hibernate
extensions, you can define named custom types with parameters in annotations:

Creating custom mapping types 233
@org.hibernate.annotations.TypeDefs({
 @org.hibernate.annotations.TypeDef(
 name="monetary_amount_usd",
 typeClass = persistence.MonetaryAmountConversionType.class,
 parameters = { @Parameter(name="convertTo", value="USD") }
),
 @org.hibernate.annotations.TypeDef(
 name="monetary_amount_eur",
 typeClass = persistence.MonetaryAmountConversionType.class,
 parameters = { @Parameter(name="convertTo", value="EUR") }
)
})

This annotation metadata is global as well, so it can be placed outside any Java
class declaration (right after the import statements) or in a separate file, pack-
age-info.java, as discussed in chapter 2, section 2.2.1, “Using Hibernate Anno-
tations.” A good location in this system is in a package-info.java file in the
persistence package.

 In XML mapping files and annotation mappings, you now refer to the defined
type name instead of the fully qualified class name of your custom type:

<property name="initialPrice"
 type="monetary_amount_usd">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CUR"/>
</property>

@org.hibernate.annotations.Type(type = "monetary_amount_eur")
@org.hibernate.annotations.Columns({
 @Column(name = "BID_AMOUNT"),
 @Column(name = "BID_AMOUNT_CUR")
})
private MonetaryAmount bidAmount;

Let’s look at a different, extremely important, application of custom mapping
types. The type-safe enumeration design pattern can be found in almost all appli-
cations.

5.3.7 Mapping enumerations

An enumeration type is a common Java idiom where a class has a constant (small)
number of immutable instances. In CaveatEmptor, this can be applied to credit
cards: for example, to express the possible types a user can enter and the applica-
tion offers (Mastercard, Visa, and so on). Or, you can enumerate the possible rat-
ings a user can submit in a Comment, about a particular auction.

234 CHAPTER 5

Inheritance and custom types
 In older JDKs, you had to implement such classes (let’s call them CreditCard-
Type and Rating) yourself, following the type-safe enumeration pattern. This is
still the right way to do it if you don’t have JDK 5.0; the pattern and compatible
custom mapping types can be found on the Hibernate community website.

Using enumerations in JDK 5.0
If you use JDK 5.0, you can use the built-in language support for type-safe enumer-
ations. For example, a Rating class looks as follows:

package auction.model;

public enum Rating {
 EXCELLENT, OK, BAD
}

The Comment class has a property of this type:

public class Comment {
 ...
 private Rating rating;
 private Item auction;
 ...
}

This is how you use the enumeration in the application code:

Comment goodComment =
 new Comment(Rating.EXCELLENT, thisAuction);

You now have to persist this Comment instance and its Rating. One approach is to
use the actual name of the enumeration and save it to a VARCHAR column in the
COMMENTS table. This RATING column will then contain EXCELLENT, OK, or BAD,
depending on the Rating given.

 Let’s write a Hibernate UserType that can load and store VARCHAR-backed enu-
merations, such as the Rating.

Writing a custom enumeration handler
Instead of the most basic UserType interface, we now want to show you the
EnhancedUserType interface. This interface allows you to work with the Comment
entity in XML representation mode, not only as a POJO (see the discussion of
data representations in chapter 3, section 3.4, “Alternative entity representa-
tion”). Furthermore, the implementation you’ll write can support any VARCHAR-
backed enumeration, not only Rating, thanks to the additional Parameterized-
Type interface.

 Look at the code in listing 5.6.

Creating custom mapping types 235
public class StringEnumUserType
 implements EnhancedUserType, ParameterizedType {

 private Class<Enum> enumClass;

 public void setParameterValues(Properties parameters) {
 String enumClassName =
 parameters.getProperty("enumClassname");
 try {
 enumClass = ReflectHelper.classForName(enumClassName);
 } catch (ClassNotFoundException cnfe) {
 throw new
 HibernateException("Enum class not found", cnfe);
 }
 }

 public Class returnedClass() {
 return enumClass;
 }

 public int[] sqlTypes() {
 return new int[] { Hibernate.STRING.sqlType() };
 }

 public boolean isMutable...
 public Object deepCopy...
 public Serializable disassemble...
 public Object replace...
 public Object assemble...
 public boolean equals...
 public int hashCode...

 public Object fromXMLString(String xmlValue) {
 return Enum.valueOf(enumClass, xmlValue);
 }

 public String objectToSQLString(Object value) {
 return '\'' + ((Enum) value).name() + '\'';
 }

 public String toXMLString(Object value) {
 return ((Enum) value).name();
 }

 public Object nullSafeGet(ResultSet rs,
 String[] names,
 Object owner)
 throws SQLException {
 String name = rs.getString(names[0]);
 return rs.wasNull() ? null : Enum.valueOf(enumClass, name);
 }

 public void nullSafeSet(PreparedStatement st,

Listing 5.6 Custom mapping type for string-backed enumerations

B

C

D

E

F

G

H

236 CHAPTER 5

Inheritance and custom types
 Object value,
 int index)
 throws SQLException {
 if (value == null) {
 st.setNull(index, Hibernate.STRING.sqlType());
 } else {
 st.setString(index, ((Enum) value).name());
 }
 }

}

The configuration parameter for this custom mapping type is the name of the
enumeration class it’s used for, such as Rating.

It’s also the class that is returned from this method.

A single VARCHAR column is needed in the database table. You keep it portable by
letting Hibernate decide the SQL datatype.

These are the usual housekeeping methods for an immutable type.

The following three methods are part of the EnhancedUserType and are used for
XML marshalling.

When you’re loading an enumeration, you get its name from the database and
create an instance.

When you’re saving an enumeration, you store its name.

Next, you’ll map the rating property with this new custom type.

Mapping enumerations with XML and annotations
In the XML mapping, first create a custom type definition:

<typedef class="persistence.StringEnumUserType"
 name="rating">
 <param name="enumClassname">auction.model.Rating</param>
</typedef>

You can now use the type named rating in the Comment class mapping:

<property name="rating"
 column="RATING"
 type="rating"
 not-null="true"
 update="false"
 access="field"/>

B

C

D

E

F

G

H

Creating custom mapping types 237
Because ratings are immutable, you map it as update="false" and enable direct
field access (no setter method for immutable properties). If other classes besides
Comment have a Rating property, use the defined custom mapping type again.

 The definition and declaration of this custom mapping type in annotations
looks the same as the one you did in the previous section.

 On the other hand, you can rely on the Java Persistence provider to persist
enumerations. If you have a property in one of your annotated entity classes of
type java.lang.Enum (such as the rating in your Comment), and it isn’t marked as
@Transient or transient (the Java keyword), the Hibernate JPA implementation
must persist this property out of the box without complaining; it has a built-in
type that handles this. This built-in mapping type has to default to a representa-
tion of an enumeration in the database. The two common choices are string rep-
resentation, as you implemented for native Hibernate with a custom type, or
ordinal representation. An ordinal representation saves the position of the
selected enumeration option: for example, 1 for EXCELLENT, 2 for OK, and 3 for
BAD. The database column also defaults to a numeric column. You can change this
default enumeration mapping with the Enumerated annotation on your property:

public class Comment {
 ...

 @Enumerated(EnumType.STRING)
 @Column(name = "RATING", nullable = false, updatable = false)
 private Rating rating;
 ...
}

You’ve now switched to a string-based representation, effectively the same repre-
sentation your custom type can read and write. You can also use a JPA XML
descriptor:

<entity class="auction.model.Item" access="PROPERTY">
 <attributes>
 ...
 <basic name="rating">
 <column name="RATING" nullable="false" updatable="false"/>
 <enumerated>STRING</enumerated>
 </basic>
 </attributes>
</entity>

You may (rightfully) ask why you have to write your own custom mapping type for
enumerations when obviously Hibernate, as a Java Persistence provider, can per-
sist and load enumerations out of the box. The secret is that Hibernate Annota-
tions includes several custom mapping types that implement the behavior defined

238 CHAPTER 5

Inheritance and custom types
by Java Persistence. You could use these custom types in XML mappings; however,
they aren’t user friendly (they need many parameters) and weren’t written for
that purpose. You can check the source (such as org.hibernate.type.EnumType
in Hibernate Annotations) to learn their parameters and decide if you want to use
them directly in XML.

Querying with custom mapping types
One further problem you may run into is using enumerated types in Hibernate
queries. For example, consider the following query in HQL that retrieves all com-
ments that are rated “bad”:

Query q =
 session.createQuery(
 "from Comment c where c.rating = auction.model.Rating.BAD"
);

Although this query works if you persist your enumeration as a string (the query
parser uses the enumeration value as a constant), it doesn’t work if you selected
ordinal representation. You have to use a bind parameter and set the rating value
for the comparison programmatically:

Query q =
 session.createQuery("from Comment c where c.rating = :rating");

Properties params = new Properties();
params.put("enumClassname",
 "auction.model.Rating");

q.setParameter("rating", Rating.BAD,
 Hibernate.custom(StringEnumUserType.class, params)
);

The last line in this example uses the static helper method Hibernate.custom()
to convert the custom mapping type to a Hibernate Type; this is a simple way to
tell Hibernate about your enumeration mapping and how to deal with the
Rating.BAD value. Note that you also have to tell Hibernate about any initializa-
tion properties the parameterized type may need.

 Unfortunately, there is no API in Java Persistence for arbitrary and custom
query parameters, so you have to fall back to the Hibernate Session API and cre-
ate a Hibernate Query object.

 We recommend that you become intimately familiar with the Hibernate type
system and that you consider the creation of custom mapping types an essential
skill—it will be useful in every application you develop with Hibernate or JPA.

Summary 239
5.4 Summary

In this chapter, you learned how inheritance hierarchies of entities can be
mapped to the database with the four basic inheritance mapping strategies: table
per concrete class with implicit polymorphism, table per concrete class with
unions, table per class hierarchy, and the normalized table per subclass strategy.
You’ve seen how these strategies can be mixed for a particular hierarchy and
when each strategy is most appropriate.

 We also elaborated on the Hibernate entity and value type distinction, and
how the Hibernate mapping type system works. You used various built-in types
and wrote your own custom types by utilizing the Hibernate extension points such
as UserType and ParameterizedType.

 Table 5.5 shows a summary you can use to compare native Hibernate features
and Java Persistence.

The next chapter introduces collection mappings and discusses how you can han-
dle collections of value typed objects (for example, a collection of Strings) and
collections that contain references to entity instances.

Table 5.5 Hibernate and JPA comparison chart for chapter 5

Hibernate Core Java Persistence and EJB 3.0

Supports four inheritance mapping
strategies. Mixing of inheritance
strategies is possible.

Four inheritance mapping strategies are standardized; mixing
strategies in one hierarchy isn’t considered portable. Only table
per class hierarchy and table per subclass are required for JPA-
compliant providers.

A persistent supertype can be an
abstract class or an interface (with
property accessor methods only).

A persistent supertype can be an abstract class; mapped inter-
faces aren’t considered portable.

Provides flexible built-in mapping
types and converters for value typed
properties.

There is automatic detection of mapping types, with standard-
ized override for temporal and enum mapping types. Hibernate
extension annotation is used for any custom mapping type dec-
laration.

Powerful extendable type system. The standard requires built-in types for enumerations, LOBs, and
many other value types for which you’d have to write or apply a
custom mapping type in native Hibernate.

Mapping collections
and entity associations
This chapter covers
■ Basic collection mapping strategies
■ Mapping collections of value types
■ Mapping a parent/children entity relationship
240

Sets, bags, lists, and maps of value types 241
Two important (and sometimes difficult to understand) topics didn’t appear in
the previous chapters: the mapping of collections, and the mapping of associa-
tions between entity classes.

 Most developers new to Hibernate are dealing with collections and entity asso-
ciations for the first time when they try to map a typical parent/child relationship.
But instead of jumping right into the middle, we start this chapter with basic col-
lection mapping concepts and simple examples. After that, you’ll be prepared for
the first collection in an entity association—although we’ll come back to more
complicated entity association mappings in the next chapter. To get the full pic-
ture, we recommend you read both chapters.

6.1 Sets, bags, lists, and maps of value types

An object of value type has no database identity; it belongs to an entity instance,
and its persistent state is embedded in the table row of the owning entity—at least,
if an entity has a reference to a single instance of a valuetype. If an entity class has
a collection of value types (or a collection of references to value-typed instances),
you need an additional table, the so-called collection table.

 Before you map collections of value types to collection tables, remember that
value-typed classes don’t have identifiers or identifier properties. The lifespan of a
value-type instance is bounded by the lifespan of the owning entity instance. A
value type doesn’t support shared references.

 Java has a rich collection API, so you can choose the collection interface and
implementation that best fits your domain model design. Let’s walk through the
most common collection mappings.

 Suppose that sellers in CaveatEmptor are able to attach images to Items. An
image is accessible only via the containing item; it doesn’t need to support associ-
ations from any other entity in your system. The application manages the collec-
tion of images through the Item class, adding and removing elements. An image
object has no life outside of the collection; it’s dependent on an Item entity.

 In this case, it isn’t unreasonable to model the image class as a value type.
Next. you need to decide what collection to use.

6.1.1 Selecting a collection interface

The idiom for a collection property in the Java domain model is always the same:

private <<Interface>> images = new <<Implementation>>();

...
// Getter and setter methods

242 CHAPTER 6

Mapping collections and entity associations
Use an interface to declare the type of the property, not an implementation. Pick
a matching implementation, and initialize the collection right away; doing so
avoids uninitialized collections (we don’t recommend initializing collections late,
in constructors or setter methods).

 If you work with JDK 5.0, you’ll likely code with the generic versions of the JDK
collections. Note that this isn’t a requirement; you can also specify the contents of
the collection explicitly in mapping metadata. Here’s a typical generic Set with a
type parameter:

private Set<String> images = new HashSet<String>();
...
// Getter and setter methods

Out of the box, Hibernate supports the most important JDK collection interfaces.
In other words, it knows how to preserve the semantics of JDK collections, maps,
and arrays in a persistent fashion. Each interface has a matching implementation
supported by Hibernate, and it’s important that you use the right combination.
Hibernate only wraps the collection object you’ve already initialized on declara-
tion of the field (or sometimes replaces it, if it’s not the right one).

 Without extending Hibernate, you can choose from the following collections:

■ A java.util.Set is mapped with a <set> element. Initialize the collection
with a java.util.HashSet. The order of its elements isn’t preserved, and
duplicate elements aren’t allowed. This is the most common persistent col-
lection in a typical Hibernate application.

■ A java.util.SortedSet can be mapped with <set>, and the sort attribute
can be set to either a comparator or natural ordering for in-memory sort-
ing. Initialize the collection with a java.util.TreeSet instance.

■ A java.util.List can be mapped with <list>, preserving the position of
each element with an additional index column in the collection table. Ini-
tialize with a java.util.ArrayList.

■ A java.util.Collection can be mapped with <bag> or <idbag>. Java
doesn’t have a Bag interface or an implementation; however, java.util.
Collection allows bag semantics (possible duplicates, no element order is
preserved). Hibernate supports persistent bags (it uses lists internally but
ignores the index of the elements). Use a java.util.ArrayList to initial-
ize a bag collection.

■ A java.util.Map can be mapped with <map>, preserving key and value
pairs. Use a java.util.HashMap to initialize a property.

Sets, bags, lists, and maps of value types 243
■ A java.util.SortedMap can be mapped with <map> element, and the sort
attribute can be set to either a comparator or natural ordering for in-mem-
ory sorting. Initialize the collection with a java.util.TreeMap instance.

■ Arrays are supported by Hibernate with <primitive-array> (for Java prim-
itive value types) and <array> (for everything else). However, they’re rarely
used in domain models, because Hibernate can’t wrap array properties.
You lose lazy loading without bytecode instrumentation, and optimized
dirty checking, essential convenience and performance features for persis-
tent collections.

The JPA standard doesn’t name all these options. The possible standard collection
property types are Set, List, Collection, and Map. Arrays aren’t considered.

 Furthermore, the JPA specification only specifies that collection properties
hold references to entity objects. Collections of value types, such as simple String
instances, aren’t standardized. However, the specification document already men-
tions that future versions of JPA will support collection elements of embeddable
classes (in other words, value types). You’ll need vendor-specific support if you
want to map collections of value types with annotations. Hibernate Annotations
include that support, and we’d expect many other JPA vendors support the same.

 If you want to map collection interfaces and implementations not directly sup-
ported by Hibernate, you need to tell Hibernate about the semantics of your cus-
tom collections. The extension point in Hibernate is called Persistent-
Collection; usually you extend one of the existing PersistentSet, Persistent-
Bag, or PersistentList classes. Custom persistent collections are not very easy to
write and we don’t recommend doing this if you aren’t an experienced Hibernate
user. An example can be found in the Hibernate test suite source code, as part of
your Hibernate download package.

 We now go through several scenarios, always implementing the collection of
item images. You map it first in XML and then with Hibernate’s support for collec-
tion annotations. For now, assume that the image is stored somewhere on the file-
system and that you keep just the filename in the database. How images are stored
and loaded with this approach isn’t discussed; we focus on the mapping.

6.1.2 Mapping a set

The simplest implementation is a Set of String image filenames. First, add a col-
lection property to the Item class:

244 CHAPTER 6

Mapping collections and entity associations
private Set images = new HashSet();
...
public Set getImages() {
 return this.images;
}
public void setImages(Set images) {
 this.images = images;
}

Now, create the following mapping in the Item’s XML metadata:

<set name="images" table="ITEM_IMAGE">

 <key column="ITEM_ID"/>

 <element type="string" column="FILENAME" not-null="true"/>
</set>

The image filenames are stored in a table named ITEM_IMAGE, the collection
table. From the point of view of the database, this table is a separate entity, a sepa-
rate table, but Hibernate hides this for you. The <key> element declares the for-
eign key column in the collection table that references the primary key ITEM_ID
of the owning entity. The <element> tag declares this collection as a collection of
value type instances—in this case, of strings.

 A set can’t contain duplicate elements, so the primary key of the ITEM_IMAGE
collection table is a composite of both columns in the <set> declaration: ITEM_ID
and FILENAME. You can see the schema in figure 6.1.

It doesn’t seem likely that you would allow the user to attach the same image more
than once, but let’s suppose you did. What kind of mapping would be appropriate
in that case?

6.1.3 Mapping an identifier bag

An unordered collection that permits duplicate elements is called a bag. Curi-
ously, the Java Collections framework doesn’t include a bag implementation.
However, the java.util.Collection interface has bag semantics, so you only
need a matching implementation. You have two choices:

Figure 6.1
Table structure and example data for a
collection of strings

Sets, bags, lists, and maps of value types 245
■ Write the collection property with the java.util.Collection interface,
and, on declaration, initialize it with an ArrayList of the JDK. Map the
collection in Hibernate with a standard <bag> or <idbag> element. Hiber-
nate has a built-in PersistentBag that can deal with lists; however, consis-
tent with the contract of a bag, it ignores the position of elements in the
ArrayList. In other words, you get a persistent Collection.

■ Write the collection property with the java.util.List interface, and, on
declaration, initialize it with an ArrayList of the JDK. Map it like the previ-
ous option, but expose a different collection interface in the domain model
class. This approach works but isn’t recommended, because clients using
this collection property may think the order of elements is always preserved,
which isn’t the case if it’s mapped as a <bag> or <idbag>.

We recommend the first option. Change the type of images in the Item class from
Set to Collection, and initialize it with an ArrayList:

private Collection images = new ArrayList();
...
public Collection getImages() {
 return this.images;
}

public void setImages(Collection images) {
 this.images = images;
}

Note that the setter method accepts a Collection, which can be anything in the
JDK collection interface hierarchy. However, Hibernate is smart enough to replace
this when persisting the collection. (It also relies on an ArrayList internally, like
you did in the declaration of the field.)

 You also have to modify the collection table to permit duplicate FILENAMEs;
the table needs a different primary key. An <idbag> mapping adds a surrogate
key column to the collection table, much like the synthetic identifiers you use for
entity classes:

<idbag name="images" table="ITEM_IMAGE">

 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>

 <key column="ITEM_ID"/>

 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

246 CHAPTER 6

Mapping collections and entity associations
In this case, the primary key is the generated ITEM_IMAGE_ID, as you can see in fig-
ure 6.2. Note that the native generator for primary keys isn’t supported for
<idbag> mappings; you have to name a concrete strategy. This usually isn’t a
problem, because real-world applications often use a customized identifier gener-
ator anyway. You can also isolate your identifier generation strategy with place-
holders; see chapter 3, section 3.3.4.3, “Using placeholders.”

 Also note that the ITEM_IMAGE_ID column isn’t exposed to the application in
any way. Hibernate manages it internally.

 A more likely scenario is one in which you wish to preserve the order in which
images are attached to the Item. There are a number of good ways to do this; one
way is to use a real list, instead of a bag.

6.1.4 Mapping a list

First, let’s update the Item class:

private List images = new ArrayList();
...
public List getImages() {
 return this.images;
}

public void setImages(List images) {
 this.images = images;
}

A <list> mapping requires the addition of an index column to the collection table.
The index column defines the position of the element in the collection. Thus,
Hibernate is able to preserve the ordering of the collection elements. Map the
collection as a <list>:

<list name="images" table="ITEM_IMAGE">

 <key column="ITEM_ID"/>

 <list-index column="POSITION"/>

Figure 6.2 A surrogate primary key allows duplicate bag elements.

Sets, bags, lists, and maps of value types 247
 <element type="string" column="FILENAME" not-null="true"/>
</list>

(There is also an index element in the XML DTD, for compatibility with Hiber-
nate 2.x. The new list-index is recommended; it’s less confusing and does the
same thing.)

 The primary key of the collection table is a composite of ITEM_ID and POSI-
TION. Notice that duplicate elements (FILENAME) are now allowed, which is consis-
tent with the semantics of a list, see figure 6.3.

The index of the persistent list starts at zero. You could change this, for example,
with <list-index base="1".../> in your mapping. Note that Hibernate adds null
elements to your Java list if the index numbers in the database aren’t continuous.

 Alternatively, you could map a Java array instead of a list. Hibernate supports
this; an array mapping is virtually identical to the previous example, except with
different element and attribute names (<array> and <array-index>). However,
for reasons explained earlier, Hibernate applications rarely use arrays.

 Now, suppose that the images for an item have user-supplied names in addi-
tion to the filename. One way to model this in Java is a map, with names as keys
and filenames as values of the map.

6.1.5 Mapping a map

Again, make a small change to the Java class:

private Map images = new HashMap();
...
public Map getImages() {
 return this.images;
}

public void setImages(Map images) {
 this.images = images;
}

Mapping a <map> (pardon us) is similar to mapping a list.

Figure 6.3 The collection table preserves the position of each element.

248 CHAPTER 6

Mapping collections and entity associations
<map name="images" table="ITEM_IMAGE">

 <key column="ITEM_ID"/>

 <map-key column="IMAGENAME" type="string"/>

 <element type="string" column="FILENAME" not-null="true"/>
</map>

The primary key of the collection table is a composite of ITEM_ID and IMAGENAME.
The IMAGENAME column holds the keys of the map. Again, duplicate elements are
allowed; see figure 6.4 for a graphical view of the tables.

 This map is unordered. What if you want to always sort your map by the name
of the image?

6.1.6 Sorted and ordered collections

In a startling abuse of the English language, the words sorted and ordered mean dif-
ferent things when it comes to Hibernate persistent collections. A sorted collection is
sorted in memory using a Java comparator. An ordered collection is ordered at the
database level using an SQL query with an order by clause.

 Let’s make the map of images a sorted map. First, you need to change the ini-
tialization of the Java property to a java.util.TreeMap and switch to the
java.util.SortedMap interface:

private SortedMap images = new TreeMap();
...
public SortedMap getImages() {
 return this.images;
}

public void setImages(SortedMap images) {
 this.images = images;
}

Hibernate handles this collection accordingly, if you map it as sorted:

Figure 6.4 Tables for a map, using strings as indexes and elements

Sets, bags, lists, and maps of value types 249
<map name="images"
 table="ITEM_IMAGE"
 sort="natural">

 <key column="ITEM_ID"/>

 <map-key column="IMAGENAME" type="string"/>

 <element type="string" column="FILENAME" not-null="true"/>
</map>

By specifying sort="natural", you tell Hibernate to use a SortedMap and to sort
the image names according to the compareTo() method of java.lang.String. If
you need some other sort algorithm (for example, reverse alphabetical order),
you may specify the name of a class that implements java.util.Comparator in
the sort attribute. For example:

<map name="images"
 table="ITEM_IMAGE"
 sort="auction.util.comparator.ReverseStringComparator">

 <key column="ITEM_ID"/>

 <map-key column="IMAGENAME" type="string"/>

 <element type="string" column="FILENAME" not-null="true"/>
</map>

A java.util.SortedSet (with a java.util.TreeSet implementation) is mapped
like this:

<set name="images"
 table="ITEM_IMAGE"
 sort="natural">

 <key column="ITEM_ID"/>

 <element type="string" column="FILENAME" not-null="true"/>
</set>

Bags may not be sorted (there is no TreeBag, unfortunately), nor may lists; the
order of list elements is defined by the list index.

 Alternatively, instead of switching to the Sorted* interfaces and the (Tree*
implementations), you may want to work with a linked map and to sort elements
on the database side, not in memory. Keep the Map/HashMap declaration in the
Java class, and create the following mapping:

<map name="images"
 table="ITEM_IMAGE"
 order-by="IMAGENAME asc">

250 CHAPTER 6

Mapping collections and entity associations
 <key column="ITEM_ID"/>

 <map-key column="IMAGENAME" type="string"/>

 <element type="string" column="FILENAME" not-null="true"/>
</map>

The expression in the order-by attribute is a fragment of an SQL order by

clause. In this case, Hibernate orders the collection elements by the IMAGENAME
column in ascending order during loading of the collection. You can even include
an SQL function call in the order-by attribute:

<map name="images"
 table="ITEM_IMAGE"
 order-by="lower(FILENAME) asc">

 <key column="ITEM_ID"/>

 <map-key column="IMAGENAME" type="string"/>

 <element type="string" column="FILENAME" not-null="true"/>
</map>

You can order by any column of the collection table. Internally, Hibernate uses a
LinkedHashMap, a variation of a map that preserves the insertion order of key ele-
ments. In other words, the order that Hibernate uses to add the elements to the
collection, during loading of the collection, is the iteration order you see in your
application. The same can be done with a set: Hibernate internally uses a
LinkedHashSet. In your Java class, the property is a regular Set/HashSet, but
Hibernate’s internal wrapping with a LinkedHashSet is again enabled with the
order-by attribute:

<set name="images"
 table="ITEM_IMAGE"
 order-by="FILENAME asc">

 <key column="ITEM_ID"/>

 <element type="string" column="FILENAME" not-null="true"/>
</set>

You can also let Hibernate order the elements of a bag for you during collection
loading. Your Java collection property is either Collection/ArrayList or List/
ArrayList. Internally, Hibernate uses an ArrayList to implement a bag that pre-
serves insertion-iteration order:

<idbag name="images"
 table="ITEM_IMAGE"
 order-by="ITEM_IMAGE_ID desc">

Collections of components 251
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>

 <key column="ITEM_ID"/>

 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

The linked collections Hibernate uses internally for sets and maps are available
only in JDK 1.4 or later; older JDKs don’t come with a LinkedHashMap and
LinkedHashSet. Ordered bags are available in all JDK versions; internally, an
ArrayList is used.

 In a real system, it’s likely that you’ll need to keep more than just the image
name and filename. You’ll probably need to create an Image class for this extra
information. This is the perfect use case for a collection of components.

6.2 Collections of components

You could map Image as an entity class and create a one-to-many relationship
from Item to Image. However, this isn’t necessary, because Image can be modeled
as a value type: Instances of this class have a dependent lifecycle, don’t need their
own identity, and don’t have to support shared references.

 As a value type, the Image class defines the properties name, filename, sizeX,
and sizeY. It has a single association with its owner, the Item entity class, as shown
in figure 6.5.

 As you can see from the composition association style (the black diamond),
Image is a component of Item, and Item is the entity that is responsible for the
lifecycle of Image instances. The multiplicity of the association further declares
this association as many-valued—that is, many (or zero) Image instances for the
same Item instance.

 Let’s walk through the implementation of this in Java and through a mapping
in XML.

name : String
description : String
initialPrice : BigDecimal
reservePrice : BigDecimal
startDate : Date
endDate : Date
state : ItemState
approvalDatetime : Date

name : String
filename : String
sizeX : int
sizeY : int

0..*

Figure 6.5
Collection of Image components
in Item

252 CHAPTER 6

Mapping collections and entity associations
6.2.1 Writing the component class

First, implement the Image class as a regular POJO. As you know from chapter 4,
component classes don’t have an identifier property. You must implement
equals() (and hashCode()) and compare the name, filename, sizeX, and sizeY
properties. Hibernate relies on this equality routine to check instances for
modifications. A custom implementation of equals() and hashCode() isn’t
required for all component classes (we would have mentioned this earlier). How-
ever, we recommend it for any component class because the implementation is
straightforward, and “better safe than sorry” is a good motto.

 The Item class may have a Set of images, with no duplicates allowed. Let’s map
this to the database.

6.2.2 Mapping the collection

Collections of components are mapped similarly to collections of JDK value type.
The only difference is the use of <composite-element> instead of an <element>
tag. An ordered set of images (internally, a LinkedHashSet) can be mapped like
this:

<set name="images"
 table="ITEM_IMAGE"
 order-by="IMAGENAME asc">

 <key column="ITEM_ID"/>

 <composite-element class="Image">
 <property name="name" column="IMAGENAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

The tables with example data are shown in figure 6.6.
 This is a set, so the primary key of the collection table is a composite of the

key column and all element columns: ITEM_ID, IMAGENAME, FILENAME, SIZEX, and
SIZEY. Because these columns all appear in the primary key, you needed to
declare them with not-null="true" (or make sure they’re NOT NULL in any exist-
ing schema). No column in a composite primary key can be nullable—you can’t
identify what you don’t know. This is probably a disadvantage of this particular
mapping. Before you improve this (as you may guess, with an identifier bag), let’s
enable bidirectional navigation.

Collections of components 253
6.2.3 Enabling bidirectional navigation

The association from Item to Image is unidirectional. You can navigate to the
images by accessing the collection through an Item instance and iterating:
anItem.getImages().iterator(). This is the only way you can get these image
objects; no other entity holds a reference to them (value type again).

 On the other hand, navigating from an image back to an item doesn’t make
much sense. However, it may be convenient to access a back pointer like anIm-
age.getItem() in some cases. Hibernate can fill in this property for you if you
add a <parent> element to the mapping:

<set name="images"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">

 <key column="ITEM_ID"/>

 <composite-element class="Image">
 <parent name="item"/>
 <property name="name" column="IMAGENAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

True bidirectional navigation is impossible, however. You can’t retrieve an Image
independently and then navigate back to its parent Item. This is an important
issue: You can load Image instances by querying for them. But these Image objects
won’t have a reference to their owner (the property is null) when you query in
HQL or with a Criteria. They’re retrieved as scalar values.

Figure 6.6
Example data tables for a collection
of components mapping

254 CHAPTER 6

Mapping collections and entity associations
 Finally, declaring all properties as not-null is something you may not want.
You need a different primary key for the IMAGE collection table, if any of the prop-
erty columns are nullable.

6.2.4 Avoiding not-null columns

Analogous to the additional surrogate identifier property an <idbag> offers, a
surrogate key column would come in handy now. As a side effect, an <idset>
would also allow duplicates—a clear conflict with the notion of a set. For this and
other reasons (including the fact that nobody ever asked for this feature), Hiber-
nate doesn’t offer an <idset> or any surrogate identifier collection other than
an <idbag>. Hence, you need to change the Java property to a Collection with
bag semantics:

private Collection images = new ArrayList();
...
public Collection getImages() {
 return this.images;
}

public void setImages(Collection images) {
 this.images = images;
}

This collection now also allows duplicate Image elements—it’s the responsibility of
your user interface, or any other application code, to avoid these duplicate ele-
ments if you require set semantics. The mapping adds the surrogate identifier col-
umn to the collection table:

<idbag name="images"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">

 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>

 <composite-element class="Image">
 <property name="name" column="IMAGENAME"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</idbag>

The primary key of the collection table is now the ITEM_IMAGE_ID column, and it
isn’t important that you implement equals() and hashCode() on the Image class

Collections of components 255
(at least, Hibernate doesn’t require it). Nor do you have to declare the properties
with not-null="true". They may be nullable, as can be seen in figure 6.7.

 We should point out that there isn’t a great deal of difference between this bag
mapping and a standard parent/child entity relationship like the one you map
later in this chapter. The tables are identical. The choice is mainly a matter of
taste. A parent/child relationship supports shared references to the child entity
and true bidirectional navigation. The price you’d pay is more complex lifecycles
of objects. Value-typed instances can be created and associated with the persistent
Item by adding a new element to the collection. They can be disassociated and
permanently deleted by removing an element from the collection. If Image would
be an entity class that supports shared references, you’d need more code in your
application for the same operations, as you’ll see later.

 Another way to switch to a different primary key is a map. You can remove the
name property from the Image class and use the image name as the key of a map:

<map name="images"
 table="ITEM_IMAGE"
 order-by="IMAGENAME asc">

 <key column="ITEM_ID"/>

 <map-key type="string" column="IMAGENAME"/>

 <composite-element class="Image">
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</map>

The primary key of the collection table is now a composite of ITEM_ID and IMAGE-
NAME.

 A composite element class like Image isn’t limited to simple properties of basic
type like filename. It may contain other components, mapped with <nested-
composite-element>, and even <many-to-one> associations to entities. It can’t

Figure 6.7 Collection of Image components using a bag with surrogate key

256 CHAPTER 6

Mapping collections and entity associations
own collections, however. A composite element with a many-to-one association is
useful, and we come back to this kind of mapping in the next chapter.

 This wraps up our discussion of basic collection mappings in XML. As we men-
tioned at the beginning of this section, mapping collections of value types with
annotations is different compared with mappings in XML; at the time of writing, it
isn’t part of the Java Persistence standard but is available in Hibernate.

6.3 Mapping collections with annotations

The Hibernate Annotations package supports nonstandard annotations for the
mapping of collections that contain value-typed elements, mainly org.hiber-
nate.annotations.CollectionOfElements. Let’s walk through some of the most
common scenarios again.

6.3.1 Basic collection mapping

The following maps a simple collection of String elements:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@Column(name = "FILENAME", nullable = false)
private Set<String> images = new HashSet<String>();

The collection table ITEM_IMAGE has two columns; together, they form the com-
posite primary key. Hibernate can automatically detect the type of the element if
you use generic collections. If you don’t code with generic collections, you need
to specify the element type with the targetElement attribute—in the previous
example it’s therefore optional.

 To map a persistent List, add @org.hibernate.annotations.IndexColumn
with an optional base for the index (default is zero):

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@org.hibernate.annotations.IndexColumn(
 name="POSITION", base = 1

Mapping collections with annotations 257
)
@Column(name = "FILENAME")
private List<String> images = new ArrayList<String>();

If you forget the index column, this list would be treated as a bag collection,
equivalent to a <bag> in XML.

 For collections of value types, you'd usually use <idbag> to get a surrogate pri-
mary key on the collection table. A <bag> of value typed elements doesn’t really
work; duplicates would be allowed at the Java level, but not in the database. On
the other hand, pure bags are great for one-to-many entity associations, as you’ll
see in chapter 7.

 To map a persistent map, use @org.hibernate.annotations.MapKey:

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@org.hibernate.annotations.MapKey(
 columns = @Column(name="IMAGENAME")
)
@Column(name = "FILENAME")
private Map<String, String> images = new HashMap<String, String>();

If you forget the map key, the keys of this map would be automatically mapped to
the column MAPKEY.

 If the keys of the map are not simple strings but of an embeddable class, you
can specify multiple map key columns that hold the individual properties of the
embeddable component. Note that @org.hibernate.annotations.MapKey is a
more powerful replacement for @javax.persistence.MapKey, which isn’t very
useful (see chapter 7, section 7.2.4 “Mapping maps”).

6.3.2 Sorted and ordered collections

A collection can also be sorted or ordered with Hibernate annotations:

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@Column(name = "FILENAME", nullable = false)
@org.hibernate.annotations.Sort(
 type = org.hibernate.annotations.SortType.NATURAL
)
private SortedSet<String> images = new TreeSet<String>();

258 CHAPTER 6

Mapping collections and entity associations
(Note that without the @JoinColumn and/or @Column, Hibernate applies the
usual naming conventions and defaults for the schema.) The @Sort annotation
supports various SortType attributes, with the same semantics as the XML map-
ping options. The shown mapping uses a java.util.SortedSet (with a java.
util.TreeSet implementation) and natural sort order. If you enable SortType.
COMPARATOR, you also need to set the comparator attribute to a class that imple-
ments your comparison routine. Maps can also be sorted; however, as in XML
mappings, there is no sorted Java bag or a sorted list (which has a persistent
ordering of elements, by definition).

 Maps, sets, and even bags, can be ordered on load, by the database, through an
SQL fragment in the ORDER BY clause:

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@Column(name = "FILENAME", nullable = false)
@org.hibernate.annotations.OrderBy(
 clause = "FILENAME asc"
)
private Set<String> images = new HashSet<String>();

The clause attribute of the Hibernate-specific @OrderBy annotation is an SQL
fragment that is passed on directly to the database; it can even contain function
calls or any other native SQL keyword. See our explanation earlier for details
about the internal implementation of sorting and ordering; the annotations are
equivalent to the XML mappings.

6.3.3 Mapping a collection of embedded objects

Finally, you can map a collection of components, of user-defined value-typed ele-
ments. Let’s assume that you want to map the same Image component class you’ve
seen earlier in this chapter, with image names, sizes, and so on.

 You need to add the @Embeddable component annotation on that class to
enable embedding:

@Embeddable
public class Image {

 @org.hibernate.annotations.Parent
 Item item;

 @Column(length = 255, nullable = false)
 private String name;

Mapping collections with annotations 259
 @Column(length = 255, nullable = false)
 private String filename;

 @Column(nullable = false)
 private int sizeX;

 @Column(nullable = false)
 private int sizeY;

 ... // Constructor, accessor methods, equals()/hashCode()
}

Note that you again map a back pointer with a Hibernate annotation; anIm-
age.getItem() can be useful. You can leave out this property if you don’t need
this reference. Because the collection table needs all the component columns as
the composite primary key, it’s important that you map these columns as NOT
NULL. You can now embed this component in a collection mapping and even over-
ride column definitions (in the following example you override the name of a sin-
gle column of the component collection table; all others are named with the
default strategy):

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@AttributeOverride(
 name = "element.name",
 column = @Column(name = "IMAGENAME",
 length = 255,
 nullable = false)
)
private Set<Image> images = new HashSet<Image>();

To avoid the non-nullable component columns you need a surrogate primary key
on the collection table, like <idbag> provides in XML mappings. With annota-
tions, use the @CollectionId Hibernate extension:

@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "ITEM_IMAGE",
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@CollectionId(
 columns = @Column(name = "ITEM_IMAGE_ID"),
 type = @org.hibernate.annotations.Type(type = "long"),
 generator = "sequence"
)
private Collection<Image> images = new ArrayList<Image>();

260 CHAPTER 6

Mapping collections and entity associations
You’ve now mapped all the basic and some more complex collections with XML
mapping metadata, and annotations. Switching focus, we now consider collec-
tions with elements that aren’t value types, but references to other entity
instances. Many Hibernate users try to map a typical parent/children entity rela-
tionship, which involves a collection of entity references.

6.4 Mapping a parent/children relationship

From our experience with the Hibernate user community, we know that the first
thing many developers try to do when they begin using Hibernate is a mapping of
a parent/children relationship. This is usually the first time you encounter
collections. It’s also the first time you have to think about the differences between
entities and value types, or get lost in the complexity of ORM.

 Managing the associations between classes and the relationships between
tables is at the heart of ORM. Most of the difficult problems involved in imple-
menting an ORM solution relate to association management.

 You mapped relationships between classes of value type in the previous section
and earlier in the book, with varying multiplicity of the relationship ends. You
map a one multiplicity with a simple <property> or as a <component>. The many
association multiplicity requires a collection of value types, with <element> or
<composite-element> mappings.

 Now you want to map one- and many-valued relationships between entity
classes. Clearly, entity aspects such as shared references and independent lifecycle com-
plicate this relationship mapping. We’ll approach these issues step by step; and, in
case you aren’t familiar with the term multiplicity, we’ll also discuss that.

 The relationship we show in the following sections is always the same, between
the Item and Bid entity classes, as can be seen in figure 6.8.

 Memorize this class diagram. But first, there’s something we need to explain
up front.

 If you’ve used EJB CMP 2.0, you’re familiar with the concept of a managed
association (or managed relationship). CMP associations are called container
managed relationships (CMRs) for a reason. Associations in CMP are inherently
bidirectional. A change made to one side of an association is instantly reflected at
the other side. For example, if you call aBid.setItem(anItem), the container
automatically calls anItem.getBids().add(aBid).

Figure 6.8
Relationship between Item and Bid

Mapping a parent/children relationship 261
 POJO-oriented persistence engines such as Hibernate don’t implement man-
aged associations, and POJO standards such as EJB 3.0 and Java Persistence don’t
require managed associations. Contrary to EJB 2.0 CMR, Hibernate and JPA associ-
ations are all inherently unidirectional. As far as Hibernate is concerned, the associ-
ation from Bid to Item is a different association than the association from Item to
Bid! This is a good thing—otherwise your entity classes wouldn’t be usable outside
of a runtime container (CMR was a major reason why EJB 2.1 entities were consid-
ered problematic).

 Because associations are so important, you need a precise language for classify-
ing them.

6.4.1 Multiplicity

In describing and classifying associations, we’ll almost always use the term multi-
plicity. In our example, the multiplicity is just two bits of information:

■ Can there be more than one Bid for a particular Item?
■ Can there be more than one Item for a particular Bid?

After glancing at the domain model (see figure 6.8), you can conclude that the
association from Bid to Item is a many-to-one association. Recalling that associa-
tions are directional, you classify the inverse association from Item to Bid as a one-
to-many association.

 There are only two more possibilities: many-to-many and one-to-one. We’ll get
back to these in the next chapter.

 In the context of object persistence, we aren’t interested in whether many
means two or a maximum of five or unrestricted. And we’re only barely inter-
ested in optionality of most associations; we don’t especially care whether an asso-
ciated instance is required or if the other end in an association can be NULL
(meaning zero-to-many and to-zero association) However, these are important
aspects in your relational data schema that influence your choice of integrity
rules and the constraints you define in SQL DDL (see chapter 8, section 8.3,
“Improving schema DDL”).

6.4.2 The simplest possible association

The association from Bid to Item (and vice versa) is an example of the simplest
possible kind of entity association. You have two properties in two classes. One is a
collection of references, and the other a single reference.

 First, here’s the Java class implementation of Bid:

262 CHAPTER 6

Mapping collections and entity associations
public class Bid {
 ...

 private Item item;

 public void setItem(Item item) {
 this.item = item;
 }

 public Item getItem() {
 return item;
 }

 ...
}

Next, this is the Hibernate mapping for this association:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>

</class>

This mapping is called a unidirectional many-to-one association. (Actually, because it’s
unidirectional, you don’t know what is on the other side, and you could just as
well call this mapping a unidirectional to-one association mapping.) The column
ITEM_ID in the BID table is a foreign key to the primary key of the ITEM table.

 You name the class Item, which is the target of this association, explicitly. This
is usually optional, because Hibernate can determine the target type with reflec-
tion on the Java property.

 You added the not-null attribute because you can’t have a bid without an
item—a constraint is generated in the SQL DDL to reflect this. The foreign key
column ITEM_ID in the BID can never be NULL, the association is not to-zero-or-
one. The table structure for this association mapping is shown in figure 6.9.

Figure 6.9
Table relationships and keys for a
one-to-many mapping

Mapping a parent/children relationship 263
 In JPA, you map this association with the @ManyToOne annotation, either on the
field or getter method, depending on the access strategy for the entity (deter-
mined by the position of the @Id annotation):

public class Bid {
 ...
 @ManyToOne(targetEntity = auction.model.Item.class)
 @JoinColumn(name = "ITEM_ID", nullable = false)
 private Item item;

 ...
}

There are two optional elements in this mapping. First, you don’t have to include
the targetEntity of the association; it’s implicit from the type of the field. An
explicit targetEntity attribute is useful in more complex domain models—for
example, when you map a @ManyToOne on a getter method that returns a delegate
class, which mimics a particular target entity interface.

 The second optional element is the @JoinColumn. If you don’t declare the
name of the foreign key column, Hibernate automatically uses a combination of
the target entity name and the database identifier property name of the target
entity. In other words, if you don’t add a @JoinColumn annotation, the default
name for the foreign key column is item plus id, separated with an underscore.
However, because you want to make the foreign key column NOT NULL, you need
the annotation anyway to set nullable = false. If you generate the schema with
the Hibernate Tools, the optional="false" attribute on the @ManyToOne would
also result in a NOT NULL constraint on the generated column.

 This was easy. It’s critically important to realize that you can write a complete
application without using anything else. (Well, maybe a shared primary key one-
to-one mapping from time to time, as shown in the next chapter.) You don’t
need to map the other side of this class association, and you’ve already mapped
everything present in the SQL schema (the foreign key column). If you need the
Item instance for which a particular Bid was made, call aBid.getItem(), utiliz-
ing the entity association you created. On the other hand, if you need all bids
that have been made for an item, you can write a query (in whatever language
Hibernate supports).

 One of the reasons you use a full object/relational mapping tool like Hiber-
nate is, of course, that you don’t want to write that query.

264 CHAPTER 6

Mapping collections and entity associations
6.4.3 Making the association bidirectional

You want to be able to easily fetch all the bids for a particular item without an
explicit query, by navigating and iterating through the network of persistent
objects. The most convenient way to do this is with a collection property on Item:
anItem.getBids().iterator(). (Note that there are other good reasons to map
a collection of entity references, but not many. Always try to think of these kinds
of collection mappings as a feature, not a requirement. If it gets too difficult,
don’t do it.)

 You now map a collection of entity references by making the relationship
between Item and Bid bidirectional.

 First add the property and scaffolding code to the Item class:

public class Item {
 ...

 private Set bids = new HashSet();

 public void setBids(Set bids) {
 this.bids = bids;
 }

 public Set getBids() {
 return bids;
 }

 public void addBid(Bid bid) {
 bid.setItem(this);
 bids.add(bid);
 }

 ...

}

You can think of the code in addBid() (a convenience method) as implementing
a managed association in the object model! (We had more to say about these
methods in chapter 3, section 3.2, “Implementing the domain model.” You may
want to review the code examples there.)

 A basic mapping for this one-to-many association looks like this:

<class
 name="Item"
 table="ITEM">
 ...

 <set name="bids">
 <key column="ITEM_ID"/>

Mapping a parent/children relationship 265
 <one-to-many class="Bid"/>
 </set>

</class>

If you compare this with the collection mappings earlier in this chapter, you see
that you map the content of the collection with a different element, <one-to-
many>. This indicates that the collection contains not value type instances, but ref-
erences to entity instances. Hibernate now knows how to treat shared references
and the lifecycle of the associated objects (it disables all the implicit dependent
lifecycle of value type instances). Hibernate also knows that the table used for the
collection is the same table the target entity class is mapped to—the <set> map-
ping needs no table attribute.

 The column mapping defined by the <key> element is the foreign key column
ITEM_ID of the BID table, the same column you already mapped on the other side
of the relationship.

 Note that the table schema didn’t change; it’s the same as it was before you
mapped the many side of the association. There is, however, one difference: The
not null="true" attribute is missing. The problem is that you now have two dif-
ferent unidirectional associations mapped to the same foreign key column. What
side controls that column?

 At runtime, there are two different in-memory representations of the same for-
eign key value: the item property of Bid and an element of the bids collection
held by an Item. Suppose the application modifies the association, by, for exam-
ple, adding a bid to an item in this fragment of the addBid() method:

bid.setItem(item);
bids.add(bid);

This code is fine, but in this situation, Hibernate detects two changes to the in-
memory persistent instances. From the point of view of the database, only one
value has to be updated to reflect these changes: the ITEM_ID column of the
BID table.

 Hibernate doesn’t transparently detect the fact that the two changes refer to
the same database column, because at this point you’ve done nothing to indicate
that this is a bidirectional association. In other words, you’ve mapped the same
column twice (it doesn’t matter that you did this in two mapping files), and Hiber-
nate always needs to know about this because it can’t detect this duplicate auto-
matically (there is no reasonable default way it could be handled).

266 CHAPTER 6

Mapping collections and entity associations
 You need one more thing in the association mapping to make this a real bidi-
rectional association mapping. The inverse attribute tells Hibernate that the col-
lection is a mirror image of the <many-to-one> association on the other side:

<class
 name="Item"
 table="ITEM">
 ...

 <set name="bids"
 inverse="true">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>

 </set>

</class>

Without the inverse attribute, Hibernate tries to execute two different SQL state-
ments, both updating the same foreign key column, when you manipulate the
link between two instances. By specifying inverse="true", you explicitly tell
Hibernate which end of the link it should not synchronize with the database. In
this example, you tell Hibernate that it should propagate changes made at the
Bid end of the association to the database, ignoring changes made only to the
bids collection.

 If you only call anItem.getBids().add(bid), no changes are made persistent!
You get what you want only if the other side, aBid.setItem(anItem), is set cor-
rectly. This is consistent with the behavior in Java without Hibernate: If an associa-
tion is bidirectional, you have to create the link with pointers on two sides, not just
one. It’s the primary reason why we recommend convenience methods such as
addBid()—they take care of the bidirectional references in a system without con-
tainer-managed relationships.

 Note that an inverse side of an association mapping is always ignored for the
generation of SQL DDL by the Hibernate schema export tools. In this case, the
ITEM_ID foreign key column in the BID table gets a NOT NULL constraint, because
you’ve declared it as such in the noninverse <many-to-one> mapping.

 (Can you switch the inverse side? The <many-to-one> element doesn’t have an
inverse attribute, but you can map it with update="false" and insert="false"
to effectively ignore it for any UPDATE or INSERT statements. The collection side is
then noninverse and considered for insertion or updating of the foreign key col-
umn. We’ll do this in the next chapter.)

Mapping a parent/children relationship 267
 Let’s map this inverse collection side again, with JPA annotations:

public class Item {
 ...

 @OneToMany(mappedBy = "item")
 private Set<Bid> bids = new HashSet<Bid>();

 ...

}

The mappedBy attribute is the equivalent of the inverse attribute in XML map-
pings; however, it has to name the inverse property of the target entity. Note that
you don’t specify the foreign key column again here (it’s mapped by the other
side), so this isn’t as verbose as the XML.

 You now have a working bidirectional many-to-one association (which could also
be called a bidirectional one-to-many association). One final option is missing if
you want to make it a true parent/children relationship.

6.4.4 Cascading object state

The notion of a parent and a child implies that one takes care of the other. In
practice, this means you need fewer lines of code to manage a relationship
between a parent and a child, because some things can be taken care of automati-
cally. Let’s explore the options.

 The following code creates a new Item (which we consider the parent) and a
new Bid instance (the child):

Item newItem = new Item();
Bid newBid = new Bid();

newItem.addBid(newBid); // Set both sides of the association

session.save(newItem);
session.save(newBid);

The second call to session.save() seems redundant, if we’re talking about a true
parent/children relationship. Hold that thought, and think about entities and
value types again: If both classes are entities, their instances have a completely
independent lifecycle. New objects are transient and have to be made persistent if
you want to store them in the database. Their relationship doesn’t influence their
lifecycle, if they’re entities. If Bid would be a value type, the state of a Bid instance
is the same as the state of its owning entity. In this case, however, Bid is a separate
entity with its own completely independent state. You have three choices:

268 CHAPTER 6

Mapping collections and entity associations
■ Take care of the independent instances yourself, and execute additional
save() and delete() calls on the Bid objects when needed—in addition to
the Java code needed to manage the relationship (adding and removing ref-
erences from collections, and so on).

■ Make the Bid class a value type (a component). You can map the collec-
tion with a <composite-element> and get the implicit lifecycle. However,
you lose other aspects of an entity, such as possible shared references to
an instance.

■ Do you need shared references to Bid objects? Currently, a particular Bid
instance isn’t referenced by more than one Item. However, imagine that a
User entity also has a collection of bids, made by the user. To support
shared references, you have to map Bid as an entity. Another reason you
need shared references is the successfulBid association from Item in the
full CaveatEmptor model. In this case, Hibernate offers transitive persistence,
a feature you can enable to save lines of code and to let Hibernate manage
the lifecycle of associated entity instances automatically.

You don’t want to execute more persistence operations than absolutely necessary,
and you don’t want to change your domain model—you need shared references
to Bid instances. The third option is what you’ll use to simplify this parent/chil-
dren example.

Transitive persistence
When you instantiate a new Bid and add it to an Item, the bid should become per-
sistent automatically. You’d like to avoid making the Bid persistent explicitly with
an extra save() operation.

 To enable this transitive state across the association, add a cascade option to
the XML mapping:

<class
 name="Item"
 table="ITEM">
 ...

 <set name="bids"
 inverse="true"
 cascade="save-update">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>

 </set>

</class>

Mapping a parent/children relationship 269
The cascade="save-update" attribute enables transitive persistence for Bid
instances, if a particular Bid is referenced by a persistent Item, in the collection.

 The cascade attribute is directional: It applies to only one end of the associa-
tion. You could also add cascade="save-update" to the <many-to-one> associa-
tion in the mapping of Bid, but because bids are created after items, doing so
doesn’t make sense.

 JPA also supports cascading entity instance state on associations:

public class Item {
 ...

 @OneToMany(cascade = { CascadeType.PERSIST, CascadeType.MERGE },
 mappedBy = "item")
 private Set<Bid> bids = new HashSet<Bid>();

 ...

}

Cascading options are per operation you’d like to be transitive. For native Hiber-
nate, you cascade the save and update operations to associated entities with
cascade="save-update". Hibernate’s object state management always bundles
these two things together, as you’ll learn in future chapters. In JPA, the (almost)
equivalent operations are persist and merge.

 You can now simplify the code that links and saves an Item and a Bid, in native
Hibernate:

Item newItem = new Item();
Bid newBid = new Bid();

newItem.addBid(newBid); // Set both sides of the association

session.save(newItem);

All entities in the bids collection are now persistent as well, just as they would be
if you called save() on each Bid manually. With the JPA EntityManager API, the
equivalent to a Session, the code is as follows:

Item newItem = new Item();
Bid newBid = new Bid();

newItem.addBid(newBid); // Set both sides of the association

entityManager.persist(newItem);

Don’t worry about the update and merge operations for now; we’ll come back to
them later in the book.

270 CHAPTER 6

Mapping collections and entity associations
FAQ What is the effect of cascade on inverse? Many new Hibernate users ask
this question. The answer is simple: The cascade attribute has nothing to
do with the inverse attribute. They often appear on the same collection
mapping. If you map a collection of entities as inverse="true", you’re
controlling the generation of SQL for a bidirectional association map-
ping. It’s a hint that tells Hibernate you mapped the same foreign key
column twice. On the other hand, cascading is used as a convenience fea-
ture. If you decide to cascade operations from one side of an entity rela-
tionship to associated entities, you save the lines of code needed to
manage the state of the other side manually. We say that object state
becomes transitive. You can cascade state not only on collections of enti-
ties, but on all entity association mappings. cascade and inverse have in
common the fact that they don’t appear on collections of value types or
on any other value-type mappings. The rules for these are implied by the
nature of value types.

Are you finished now? Well, perhaps not quite.

Cascading deletion
With the previous mapping, the association between Bid and Item is fairly loose.
So far, we have only considered making things persistent as a transitive state. What
about deletion?

 It seems reasonable that deletion of an item implies deletion of all bids for the
item. In fact, this is what the composition (the filled out diamond) in the UML
diagram means. With the current cascading operations, you have to write the fol-
lowing code to make that happen:

Item anItem = // Load an item

// Delete all the referenced bids
for (Iterator<Bid> it = anItem.getBids().iterator();
 it.hasNext();) {

 Bid bid = it.next();

 it.remove(); // Remove reference from collection
 session.delete(bid); // Delete it from the database
}

session.delete(anItem); // Finally, delete the item

First you remove the references to the bids by iterating the collection. You delete
each Bid instance in the database. Finally, the Item is deleted. Iterating and
removing the references in the collection seems unnecessary; after all, you’ll
delete the Item at the end anyway. If you can guarantee that no other object (or

Mapping a parent/children relationship 271
row in any other table) holds a reference to these bids, you can make the dele-
tion transitive.

 Hibernate (and JPA) offer a cascading option for this purpose. You can enable
cascading for the delete operation:

<set name="bids"
 inverse="true"
 cascade="save-update, delete">
...

The operation you cascade in JPA is called remove:

public class Item {
 ...

 @OneToMany(cascade = { CascadeType.PERSIST,
 CascadeType.MERGE,
 CascadeType.REMOVE },
 mappedBy = "item")
 private Set<Bid> bids = new HashSet<Bid>();

 ...

}

The same code to delete an item and all its bids is reduced to the following, in
Hibernate or with JPA:

Item anItem = // Load an item
session.delete(anItem);
entityManager.remove(anItem);

The delete operation is now cascaded to all entities referenced in the collection.
You no longer have to worry about removal from the collection and manually
deleting those entities one by one.

 Let’s consider one further complication. You may have shared references to
the Bid objects. As suggested earlier, a User may have a collection of references to
the Bid instances they made. You can’t delete an item and all its bids without
removing these references first. You may get an exception if you try to commit this
transaction, because a foreign key constraint may be violated.

 You have to chase the pointers. This process can get ugly, as you can see in the fol-
lowing code, which removes all references from all users who have references
before deleting the bids and finally the item:

Item anItem = // Load an item

// Delete all the referenced bids
for (Iterator<Bid> it = anItem.getBids().iterator();
 it.hasNext();) {

272 CHAPTER 6

Mapping collections and entity associations
 Bid bid = it.next();

 // Remove references from users who have made this bid
 Query q = session.createQuery(
 "from User u where :bid in elements(u.bids)"
);
 q.setParameter("bid", bid);
 Collection usersWithThisBid = q.list();

 for (Iterator itUsers = usersWithThisBid.iterator();
 itUsers.hasNext();) {
 User user = (User) itUsers.next();
 user.getBids().remove(bid);
 }
}

session.delete(anItem);
// Finally, delete the item and the associated bids

Obviously, the additional query (in fact, many queries) isn’t what you want. How-
ever, in a network object model, you don’t have any choice other than executing
code like this if you want to correctly set pointers and references—there is no
persistent garbage collector or other automatic mechanism. No Hibernate cascad-
ing option helps you; you have to chase all references to an entity before you
finally delete it.

 (This isn’t the whole truth: Because the BIDDER_ID foreign key column that
represents the association from User to Bid is in the BID table, these references
are automatically removed at the database level if a row in the BID table is deleted.
This doesn’t affect any objects that are already present in memory in the current
unit of work, and it also doesn’t work if BIDDER_ID is mapped to a different (inter-
mediate) table. To make sure all references and foreign key columns are nulled
out, you need to chase pointers in Java.)

 On the other hand, if you don’t have shared references to an entity, you
should rethink your mapping and map the bids as a collection components (with
the Bid as a <composite-element>). With an <idbag> mapping, even the tables
look the same:

<class
 name="Item"
 table="ITEM">
 ...

 <idbag name="bids" table="BID">

 <collection-id type="long" column="BID_ID">
 <generator class="sequence"/>
 </collection-id>

Mapping a parent/children relationship 273
 <key column="ITEM_ID" not-null="true"/>

 <composite-element class="Bid">
 <parent name="item"/>
 <property .../>
 ...
 </composite-element>

 </idbag>

</class>

The separate mapping for Bid is no longer needed.
 If you really want to make this a one-to-many entity association, Hibernate

offers another convenience option you may be interested in.

Enabling orphan deletion
The cascading option we explain now is somewhat difficult to understand. If you
followed the discussion in the previous section, you should be prepared.

 Imagine you want to delete a Bid from the database. Note that you aren’t delet-
ing the parent (the Item) in this case. The goal is to remove a row in the BID
table. Look at this code:

anItem.getBids().remove(aBid);

If the collection has the Bid mapped as a collection of components, as in the pre-
vious section, this code triggers several operations:

■ The aBid instance is removed from the collection Item.bids.

■ Because Bid is mapped as a value type, and no other object can hold a refer-
ence to the aBid instance, the row representing this bid is deleted from the
BID table by Hibernate.

In other words, Hibernate assumes that aBid is an orphan if it’s removed from its
owning entity’s collection. No other in-memory persistent object is holding a ref-
erence to it. No foreign key value that references this row can be present in the
database. Obviously, you designed your object model and mapping this way by
making the Bid class an embeddable component.

 However, what if Bid is mapped as an entity and the collection is a <one-to-
many>? The code changes to

anItem.getBids().remove(aBid);
session.delete(aBid);

The aBid instance has its own lifecycle, so it can exist outside of the collection. By
deleting it manually, you guarantee that nobody else will hold a reference to it,

274 CHAPTER 6

Mapping collections and entity associations
and the row can be removed safely. You may have removed all other references
manually. Or, if you didn’t, the database constraints prevent any inconsistency,
and you see a foreign key constraint exception.

 Hibernate offers you a way to declare this guarantee for collections of entity
references. You can tell Hibernate, “If I remove an element from this collection, it
will be an entity reference, and it’s going to be the only reference to that entity
instance. You can safely delete it.” The code that worked for deletion with a collec-
tion of components works with collections of entity references.

 This option is called cascade orphan delete. You can enable it on a collection
mapping in XML as follows:

<set name="bids"
 inverse="true"
 cascade="save-update, delete, delete-orphan">
...

With annotations, this feature is available only as a Hibernate extension:

public class Item {
 ...

 @OneToMany(cascade = { CascadeType.PERSIST,
 CascadeType.MERGE,
 CascadeType.REMOVE },
 mappedBy = "item")
 @org.hibernate.annotations.Cascade(
 value = org.hibernate.annotations.CascadeType.DELETE_ORPHAN
)
 private Set<Bid> bids = new HashSet<Bid>();

 ...

}

Also note that this trick works only for collections of entity references in a one-to-
many association; conceptually, no other entity association mapping supports it.
You should ask yourself at this point, with so many cascading options set on your
collection, whether a simple collection of components may be easier to handle.
After all, you’ve enabled a dependent lifecycle for objects referenced in this col-
lection, so you may as well switch to the implicit and fully dependent lifecycle of
components.

 Finally, let’s look at the mapping in a JPA XML descriptor:

<entity-mappings>

 <entity class="auction.model.Item" access="FIELD">
 ...
 <one-to-many name="bids" mapped-by="item">

Summary 275
 <cascade>
 <cascade-persist/>
 <cascade-merge/>
 <cascade-remove/>
 </cascade>
 </one-to-many>
 </entity>

 <entity class="auction.model.Bid" access="FIELD">
 ...
 <many-to-one name="item">
 <join-column name="ITEM_ID"/>
 </many-to-one>
 </entity>

</entity-mappings>

Note that the Hibernate extension for cascade orphan deletion isn’t available in
this case.

6.5 Summary

You’re probably a little overwhelmed by all the new concepts we introduced in
this chapter. You may have to read it a few times, and we encourage you to try the
code (and watch the SQL log). Many of the strategies and techniques we’ve shown
in this chapter are key concepts of object/relational mapping. If you master col-
lection mappings, and once you’ve mapped your first parent/children entity asso-
ciation, you’ll have the worst behind you. You’ll already be able to build entire
applications!

 Table 6.1 summarizes the differences between Hibernate and Java Persistence
related to concepts discussed in this chapter.

Table 6.1 Hibernate and JPA comparison chart for chapter 6

Hibernate Core Java Persistence and EJB 3.0

Hibernate provides mapping support for sets, lists,
maps, bags, identifier bags, and arrays. All JDK collec-
tion interfaces are supported, and extension points for
custom persistent collections are available.

Standardized persistent sets, lists, maps,
and bags are supported.

Collections of value types and components are
supported.

Hibernate Annotations is required for collec-
tions of value types and embeddable
objects.

Parent/children entity relationships are supported,
with transitive state cascading on associations per
operation.

You can map entity associations and enable
transitive state cascading on associations
per operation.

276 CHAPTER 6

Mapping collections and entity associations
We’ve covered only a tiny subset of the entity association options in this chapter.
The remaining options we explore in detail in the next chapter are either rare or
variations of the techniques we’ve just described.

Automatic deletion of orphaned entity instances is
built in.

Hibernate Annotations is required for auto-
matic deletion of orphaned entity instances.

Table 6.1 Hibernate and JPA comparison chart for chapter 6 (continued)

Hibernate Core Java Persistence and EJB 3.0

Advanced entity
association mappings
This chapter covers
■ Mapping one-to-one and many-to-one entity

associations
■ Mapping one-to-many and many-to-many

entity associations
■ Polymorphic entity associations
277

278 CHAPTER 7

Advanced entity association mappings
When we use the word associations, we always refer to relationships between enti-
ties. In the previous chapter, we demonstrated a unidirectional many-to-one asso-
ciation, made it bidirectional, and finally turned it into a parent/children
relationship (one-to-many and many-to-one with cascading options).

 One reason we discuss more advanced entity mappings in a separate chapter is
that quite a few of them are considered rare, or at least optional.

 It’s absolutely possible to only use component mappings and many-to-one
(occasionally one-to-one) entity associations. You can write a sophisticated appli-
cation without ever mapping a collection! Of course, efficient and easy access to
persistent data, by iterating a collection for example, is one of the reasons why you
use full object/relational mapping and not a simple JDBC query service. However,
some exotic mapping features should be used with care and even avoided most of
the time.

 We’ll point out recommended and optional mapping techniques in this chap-
ter, as we show you how to map entity associations with all kinds of multiplicity,
with and without collections.

7.1 Single-valued entity associations

Let’s start with one-to-one entity associations.
 We argued in chapter 4 that the relationships between User and Address (the

user has a billingAddress, homeAddress, and shippingAddress) are best repre-
sented with a <component> mapping. This is usually the simplest way to represent
one-to-one relationships, because the lifecycle is almost always dependent in such
a case, it’s either an aggregation or a composition in UML.

 But what if you want a dedicated table for Address, and you map both User
and Address as entities? One benefit of this model is the possibility for shared ref-
erences—another entity class (let’s say Shipment) can also have a reference to a
particular Address instance. If a User has a reference to this instance, as their
shippingAddress, the Address instance has to support shared references and
needs its own identity.

 In this case, User and Address classes have a true one-to-one association. Look at
the revised class diagram in figure 7.1.

 The first change is a mapping of the Address class as a stand-alone entity:

<class name="Address" table="ADDRESS">
 <id name="id" column="ADDRESS_ID">
 <generator .../>
 </id>
 <property name="street" column="STREET"/>

Single-valued entity associations 279
 <property name="city" column="CITY"/>
 <property name="zipcode" column="ZIPCODE"/>
</class>

We assume you won’t have any difficulty creating the same mapping with annota-
tions or changing the Java class to an entity, with an identifier property—this is
the only change you have to make.

 Now let’s create the association mappings from other entities to that class.
There are several choices, the first being a primary key one-to-one association.

7.1.1 Shared primary key associations

Rows in two tables related by a primary key association share the same primary key
values. The main difficulty with this approach is ensuring that associated instances
are assigned the same primary key value when the objects are saved. Before we try
to solve this problem, let’s see how you map the primary key association.

Mapping a primary key association with XML
The XML mapping element that maps an entity association to a shared primary
key entity is <one-to-one>. First you need a new property in the User class:

public class User {
 ...
 private Address shippingAddress;
 // Getters and setters
}

Next, map the association in User.hbm.xml:

<one-to-one name="shippingAddress"
 class="Address"
 cascade="save-update"/>

You add a cascading option that is natural for this model: If a User instance is
made persistent, you usually also want its shippingAddress to become persistent.
Hence, the following code is all that is needed to save both objects:

Figure 7.1 Address as an entity with two associations referencing the same instance

280 CHAPTER 7

Advanced entity association mappings
User newUser = new User();
Address shippingAddress = new Address();

newUser.setShippingAddress(shippingAddress);

session.save(newUser);

Hibernate inserts a row into the USERS table and a row into the ADDRESS table. But
wait, this doesn’t work! How can Hibernate possibly know that the record in the
ADDRESS table needs to get the same primary key value as the USERS row? At the
beginning of this section, we intentionally didn’t show you any primary-key gener-
ator in the mapping of Address.

 You need to enable a special identifier generator.

The foreign identifier generator
If an Address instance is saved, it needs to get the primary key value of a User
object. You can’t enable a regular identifier generator, let’s say a database
sequence. The special foreign identifier generator for Address has to know
where to get the right primary key value.

 The first step to create this identifier binding between Address and User is a
bidirectional association. Add a new user property to the Address entity:

public class Address {
 ...
 private User user;
 // Getters and setters
}

 Map the new user property of an Address in Address.hbm.xml:

<one-to-one name="user"
 class="User"
 constrained="true"/>

This mapping not only makes the association bidirectional, but also, with con-
strained="true", adds a foreign key constraint linking the primary key of the
ADDRESS table to the primary key of the USERS table. In other words, the database
guarantees that an ADDRESS row’s primary key references a valid USERS primary
key. (As a side effect, Hibernate can now also enable lazy loading of users when a
shipping address is loaded. The foreign key constraint means that a user has to
exist for a particular shipping address, so a proxy can be enabled without hitting
the database. Without this constraint, Hibernate has to hit the database to find
out if there is a user for the address; the proxy would then be redundant. We’ll
come back to this in later chapters.)

 You can now use the special foreign identifier generator for Address objects:

Single-valued entity associations 281
<class name="Address" table="ADDRESS">

 <id name="id" column="ADDRESS_ID">
 <generator class="foreign">
 <param name="property">user</param>
 </generator>
 </id>
 ...
 <one-to-one name="user"
 class="User"
 constrained="true"/>

</class>

This mapping seems strange at first. Read it as follows: When an Address is saved,
the primary key value is taken from the user property. The user property is a ref-
erence to a User object; hence, the primary key value that is inserted is the same
as the primary key value of that instance. Look at the table structure in figure 7.2.

The code to save both objects now has to consider the bidirectional relationship,
and it finally works:

User newUser = new User();
Address shippingAddress = new Address();

newUser.setShippingAddress(shippingAddress);
shippingAddress.setUser(newUser); // Bidirectional

session.save(newUser);

Let’s do the same with annotations.

Shared primary key with annotations
JPA supports one-to-one entity associations with the @OneToOne annotation. To
map the association of shippingAddress in the User class as a shared primary key
association, you also need the @PrimaryKeyJoinColumn annotation:

@OneToOne
@PrimaryKeyJoinColumn
private Address shippingAddress;

This is all that is needed to create a unidirectional one-to-one association on a
shared primary key. Note that you need @PrimaryKeyJoinColumns (plural)

Figure 7.2
The USERS and ADDRESS tables
have the same primary keys.

282 CHAPTER 7

Advanced entity association mappings
instead if you map with composite primary keys. In a JPA XML descriptor, a one-to-
one mapping looks like this:

<entity-mappings>

 <entity class="auction.model.User" access="FIELD">
 ...
 <one-to-one name="shippingAddress">
 <primary-key-join-column/>
 </one-to-one>
 </entity>

</entity-mappings>

The JPA specification doesn’t include a standardized method to deal with the
problem of shared primary key generation, which means you’re responsible for
setting the identifier value of an Address instance correctly before you save it (to
the identifier value of the linked User instance). Hibernate has an extension
annotation for custom identifier generators which you can use with the Address
entity (just like in XML):

@Entity
@Table(name = "ADDRESS")
public class Address {

 @Id @GeneratedValue(generator = "myForeignGenerator")
 @org.hibernate.annotations.GenericGenerator(
 name = "myForeignGenerator",
 strategy = "foreign",
 parameters = @Parameter(name = "property", value = "user")
)
 @Column(name = "ADDRESS_ID")
 private Long id;

 ...
 private User user;
 }

Shared primary key one-to-one associations aren’t uncommon but are relatively
rare. In many schemas, a to-one association is represented with a foreign key field
and a unique constraint.

7.1.2 One-to-one foreign key associations

Instead of sharing a primary key, two rows can have a foreign key relationship.
One table has a foreign key column that references the primary key of the
associated table. (The source and target of this foreign key constraint can even be
the same table: This is called a self-referencing relationship.)

Single-valued entity associations 283
 Let’s change the mapping from a User to an Address. Instead of the shared
primary key, you now add a SHIPPING_ADDRESS_ID column in the USERS table:

<class name="User" table="USERS">

 <many-to-one name="shippingAddress"
 class="Address"
 column="SHIPPING_ADDRESS_ID"
 cascade="save-update"
 unique="true"/>

</class>

The mapping element in XML for this association is <many-to-one>—not <one-
to-one>, as you might have expected. The reason is simple: You don’t care what’s
on the target side of the association, so you can treat it like a to-one association
without the many part. All you want is to express “This entity has a property that is
a reference to an instance of another entity” and use a foreign key field to repre-
sent that relationship. The database schema for this mapping is shown in
figure 7.3.

An additional constraint enforces this relationship as a real one to one. By making
the SHIPPING_ADDRESS_ID column unique, you declare that a particular address
can be referenced by at most one user, as a shipping address. This isn’t as strong as
the guarantee from a shared primary key association, which allows a particular
address to be referenced by at most one user, period. With several foreign key col-
umns (let’s say you also have unique HOME_ADDRESS_ID and BILLING_ADDRESS_ID),
you can reference the same address target row several times. But in any case, two
users can’t share the same address for the same purpose.

 Let’s make the association from User to Address bidirectional.

Inverse property reference
The last foreign key association was mapped from User to Address with <many-to-
one> and a unique constraint to guarantee the desired multiplicity. What mapping

Figure 7.3 A one-to-one foreign key association between USERS and ADDRESS

284 CHAPTER 7

Advanced entity association mappings
element can you add on the Address side to make this association bidirectional, so
that access from Address to User is possible in the Java domain model?

 In XML, you create a <one-to-one> mapping with a property reference
attribute:

<one-to-one name="user"
 class="User"
 property-ref="shippingAddress"/>

You tell Hibernate that the user property of the Address class is the inverse of a
property on the other side of the association. You can now call anAd-

dress.getUser() to access the user who’s shipping address you’ve given. There is
no additional column or foreign key constraint; Hibernate manages this pointer
for you.

 Should you make this association bidirectional? As always, the decision is up to
you and depends on whether you need to navigate through your objects in that
direction in your application code. In this case, we’d probably conclude that the
bidirectional association doesn’t make much sense. If you call anAd-

dress.getUser(), you are saying “give me the user who has this address has its
shipping address,” not a very reasonable request. We recommend that a foreign
key-based one-to-one association, with a unique constraint on the foreign key col-
umn—is almost always best represented without a mapping on the other side.

 Let’s repeat the same mapping with annotations.

Mapping a foreign key with annotations
The JPA mapping annotations also support a one-to-one relationship between
entities based on a foreign key column. The main difference compared to the
mappings earlier in this chapter is the use of @JoinColumn instead of @Prima-
ryKeyJoinColumn.

 First, here’s the to-one mapping from User to Address with the unique con-
straint on the SHIPPING_ADDRESS_ID foreign key column. However, instead of a
@ManyToOne annotation, this requires a @OneToOne annotation:

public class User {
 ...

 @OneToOne
 @JoinColumn(name="SHIPPING_ADDRESS_ID")
 private Address shippingAddress;

 ...
}

Single-valued entity associations 285
Hibernate will now enforce the multiplicity with the unique constraint. If you
want to make this association bidirectional, you need another @OneToOne map-
ping in the Address class:

public class Address {
 ...

 @OneToOne(mappedBy = "shippingAddress")
 private User user;

 ...
}

The effect of the mappedBy attribute is the same as the property-ref in XML map-
ping: a simple inverse declaration of an association, naming a property on the tar-
get entity side.

 The equivalent mapping in JPA XML descriptors is as follows:

<entity-mappings>

 <entity class="auction.model.User" access="FIELD">
 ...
 <one-to-one name="shippingAddress">
 <join-column name="SHIPPING_ADDRESS_ID"/>
 </one-to-one>
 </entity>

 <entity class="auction.model.Address" access="FIELD">
 ...
 <one-to-one name="user" mapped-by="shippingAddress"/>
 </entity>

</entity-mappings>

You’ve now completed two basic single-ended association mappings: the first with
a shared primary key, the second with a foreign key reference. The last option we
want to discuss is a bit more exotic: mapping a one-to-one association with the
help of an additional table.

7.1.3 Mapping with a join table

Let’s take a break from the complex CaveatEmptor model and consider a differ-
ent scenario. Imagine you have to model a data schema that represents an office
allocation plan in a company. Common entities include people working at desks.
It seems reasonable that a desk may be vacant and have no person assigned to it.
On the other hand, an employee may work at home, with the same result. You’re
dealing with an optional one-to-one association between Person and Desk.

286 CHAPTER 7

Advanced entity association mappings
 If you apply the mapping techniques we discussed in the previous sections, you
may come to the following conclusions: Person and Desk are mapped to two
tables, with one of them (let’s say the PERSON table) having a foreign key column
that references the other table (such as ASSIGNED_DESK_ID) with an additional
unique constraint (so two people can’t be assigned the same desk). The relation-
ship is optional if the foreign key column is nullable.

 On second thought, you realize that the assignment between persons and
desks calls for another table that represents ASSIGNMENT. In the current design,
this table has only two columns: PERSON_ID and DESK_ID. The multiplicity of
these foreign key columns is enforced with a unique constraint on both—a partic-
ular person and desk can only be assigned once, and only one such an assign-
ment can exist.

 It also seems likely that one day you’ll need to extend this schema and add col-
umns to the ASSIGNMENT table, such as the date when a person was assigned to a
desk. As long as this isn’t the case, however, you can use object/relational map-
ping to hide the intermediate table and create a one-to-one Java entity association
between only two classes. (This situation changes completely once additional col-
umns are introduced to ASSIGNMENT.)

 Where does such an optional one-to-one relationship exist in CaveatEmptor?

The CaveatEmptor use case
Let’s consider the Shipment entity in CaveatEmptor again and discuss its purpose.
Sellers and buyers interact in CaveatEmptor by starting and bidding on auctions.
The shipment of the goods seems to be outside the scope of the application; the
seller and the buyer agree on a method of shipment and payment after the auc-
tion ends. They can do this offline, outside of CaveatEmptor. On the other hand,
you could offer an extra escrow service in CaveatEmptor. Sellers would use this ser-
vice to create a trackable shipment once the auction completed. The buyer would
pay the price of the auction item to a trustee (you), and you’d inform the seller
that the money was available. Once the shipment arrived and the buyer accepted
it, you’d transfer the money to the seller.

 If you’ve ever participated in an online auction of significant value, you’ve
probably used such an escrow service. But you want more service in CaveatEmp-
tor. Not only will you provide trust services for completed auctions, but you’ll also
allow users to create a trackable and trusted shipment for any deal they make out-
side an auction, outside CaveatEmptor.

 This scenario calls for a Shipment entity with an optional one-to-one associa-
tion to an Item. Look at the class diagram for this domain model in figure 7.4.

Single-valued entity associations 287
In the database schema, you add an intermediate link table called ITEM_SHIPMENT.
A row in this table represents a Shipment made in the context of an auction. The
tables are shown in figure 7.5.

 You now map two classes to three tables: first in XML, and then with annotations.

Mapping a join table in XML
The property that represents the association from Shipment to Item is called
auction:

public class Shipment {

 ...
 private Item auction;
 ...
 // Getter/setter methods
}

Because you have to map this association with a foreign key column, you need the
<many-to-one> mapping element in XML. However, the foreign key column isn’t
in the SHIPMENT table, it’s in the ITEM_SHIPMENT join table. With the help of the
<join> mapping element, you move it there.

Figure 7.4 A shipment has an optional link with a single auction item.

Figure 7.5 An optional one-to-many relationship mapped to a join table

288 CHAPTER 7

Advanced entity association mappings
<class name="Shipment" table="SHIPMENT">

 <id name="id" column="SHIPMENT_ID">...</id>

 ...

 <join table="ITEM_SHIPMENT" optional="true">
 <key column="SHIPMENT_ID"/>
 <many-to-one name="auction"
 column="ITEM_ID"
 not-null="true"
 unique="true"/>
 </join>

</class>

The join table has two foreign key columns: SHIPMENT_ID, referencing the pri-
mary key of the SHIPMENT table; and ITEM_ID, referencing the ITEM table. The
ITEM_ID column is unique; a particular item can be assigned to exactly one ship-
ment. Because the primary key of the join table is SHIPMENT_ID, which makes this
column also unique, you have a guaranteed one-to-one multiplicity between
Shipment and Item.

 By setting optional="true" on the <join> mapping, you tell Hibernate that
it should insert a row into the join table only if the properties grouped by this
mapping are non-null. But if a row needs to be inserted (because you called
aShipment.setAuction(anItem)), the NOT NULL constraint on the ITEM_ID col-
umn applies.

 You could map this association bidirectional, with the same technique on the
other side. However, optional one-to-one associations are unidirectional most of
the time.

 JPA also supports association join tables as secondary tables for an entity.

Mapping secondary join tables with annotations
You can map an optional one-to-one association to an intermediate join table with
annotations:

public class Shipment {

 @OneToOne
 @JoinTable(
 name="ITEM_SHIPMENT",
 joinColumns = @JoinColumn(name = "SHIPMENT_ID"),
 inverseJoinColumns = @JoinColumn(name = "ITEM_ID")
)
 private Item auction;
 ...
 // Getter/setter methods
}

Single-valued entity associations 289
You don’t have to specify the SHIPMENT_ID column because it’s automatically con-
sidered to be the join column; it’s the primary key column of the SHIPMENT table.

 Alternatively, you can map properties of a JPA entity to more than one table,
as demonstrated in “Moving properties into a secondary table” in chapter 8,
section 8.1.3. First, you need to declare the secondary table for the entity:

@Entity
@Table(name = "SHIPMENT")
@SecondaryTable(name = "ITEM_SHIPMENT")
public class Shipment {

 @Id @GeneratedValue
 @Column(name = "SHIPMENT_ID")
 private Long id;

 ...
}

Note that the @SecondaryTable annotation also supports attributes to declare the
foreign-key column name—the equivalent of the <key column="..."/> you saw
earlier in XML and the joinColumn(s) in a @JoinTable. If you don’t specify it, the
primary-key column name of the entity is used—in this case, again SHIPMENT_ID.

 The auction property mapping is a @OneToOne; and as before, the foreign key
column referencing the ITEM table is moved to the intermediate secondary table:

...
public class Shipment {
 ...
 @OneToOne
 @JoinColumn(table = "ITEM_SHIPMENT", name = "ITEM_ID")
 private Item auction;
}

The table for the target @JoinColumn is named explicitly. Why would you use this
approach instead of the (simpler) @JoinTable strategy? Declaring a secondary
table for an entity is useful if not only one property (the many-to-one in this case)
but several properties must be moved into the secondary table. We don’t have a
great example with Shipment and Item, but if your ITEM_SHIPMENT table would
have additional columns, mapping these columns to properties of the Shipment
entity might be useful.

 This completes our discussion of one-to-one association mappings. To summa-
rize, use a shared primary key association if one of the two entities seems more
important and can act as the primary key source. Use a foreign key association in
all other cases, and a hidden intermediate join table when your one-to-one associ-
ation is optional.

290 CHAPTER 7

Advanced entity association mappings
 We now focus on many-valued entity associations, including more options for
one-to-many, and finally, many-to-many mappings.

7.2 Many-valued entity associations

A many-valued entity association is by definition a collection of entity references.
You mapped one of these in the previous chapter, section 6.4, “Mapping a par-
ent/children relationship.” A parent entity instance has a collection of references
to many child objects—hence, one-to-many.

 One-to-many associations are the most important kind of entity association
that involves a collection. We go so far as to discourage the use of more exotic
association styles when a simple bidirectional many-to-one/one-to-many will do
the job. A many-to-many association may always be represented as two many-to-
one associations to an intervening class. This model is usually more easily extensi-
ble, so we tend not to use many-to-many associations in applications. Also remem-
ber that you don’t have to map any collection of entities, if you don’t want to; you
can always write an explicit query instead of direct access through iteration.

 If you decide to map collections of entity references, there are a few options
and more complex situations that we discuss now, including a many-to-many rela-
tionship.

7.2.1 One-to-many associations

The parent/children relationship you mapped earlier was a bidirectional associa-
tion, with a <one-to-many> and a <many-to-one> mapping. The many end of this
association was implemented in Java with a Set; you had a collection of bids in
the Item class.

 Let’s reconsider this mapping and focus on some special cases.

Considering bags
It’s possible to use a <bag> mapping instead of a set for a bidirectional one-to-many
association. Why would you do this?

 Bags have the most efficient performance characteristics of all the collections
you can use for a bidirectional one-to-many entity association (in other words, if
the collection side is inverse="true"). By default, collections in Hibernate are
loaded only when they’re accessed for the first time in the application. Because a
bag doesn’t have to maintain the index of its elements (like a list) or check for
duplicate elements (like a set), you can add new elements to the bag without trig-
gering the loading. This is an important feature if you’re going to map a possibly

Many-valued entity associations 291
large collection of entity references. On the other hand, you can’t eager-fetch two
collections of bag type simultaneously (for example, if bids and images of an
Item were one-to-many bags). We’ll come back to fetching strategies in
chapter 13, section 13.1, “Defining the global fetch plan.” In general we would say
that a bag is the best inverse collection for a one-to-many association.

 To map a bidirectional one-to-many association as a bag, you have to replace
the type of the bids collection in the Item persistent class with a Collection and
an ArrayList implementation. The mapping for the association between Item
and Bid is left essentially unchanged:

<class name="Bid"
 table="BID">
 ...
 <many-to-one name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>

</class>
<class name="Item"
 table="ITEM">
 ...
 <bag name="bids"
 inverse="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </bag>

</class>

You rename the <set> element to <bag>, making no other changes. Even the
tables are the same: The BID table has the ITEM_ID foreign key column. In JPA, all
Collection and List properties are considered to have bag semantics, so the fol-
lowing is equivalent to the XML mapping:

public class Item {
 ...

 @OneToMany(mappedBy = "item")
 private Collection<Bid> bids = new ArrayList<Bid>();

 ...

}

A bag also allows duplicate elements, which the set you mapped earlier didn’t. It
turns out that this isn’t relevant in this case, because duplicate means you’ve added
a particular reference to the same Bid instance several times. You wouldn’t do this

292 CHAPTER 7

Advanced entity association mappings
in your application code. But even if you add the same reference several times to
this collection, Hibernate ignores it—it’s mapped inverse.

Unidirectional and bidirectional lists
If you need a real list to hold the position of the elements in a collection, you have
to store that position in an additional column. For the one-to-many mapping, this
also means you should change the bids property in the Item class to List and ini-
tialize the variable with an ArrayList (or keep the Collection interface from the
previous section, if you don’t want to expose this behavior to a client of the class).

 The additional column that holds the position of a reference to a Bid instance
is the BID_POSITION, in the mapping of Item:

<class name="Item"
 table="ITEM">
 ...
 <list name="bids">
 <key column="ITEM_ID"/>
 <list-index column="BID_POSITION"/>
 <one-to-many class="Bid"/>
 </list>

</class>

So far this seems straightforward; you’ve changed the collection mapping to
<list> and added the <list-index> column BID_POSITION to the collection
table (which in this case is the BID table). Verify this with the table shown in
figure 7.6.

 This mapping isn’t really complete. Consider the ITEM_ID foreign key column:
It’s NOT NULL (a bid has to reference an item). The first problem is that you don’t
specify this constraint in the mapping. Also, because this mapping is
unidirectional (the collection is noninverse), you have to assume that there is no
opposite side mapped to the same foreign key column (where this constraint
could be declared). You need to add a not-null="true" attribute to the <key>
element of the collection mapping:

Figure 7.6
Storing the position of each bid in
the list collection

Many-valued entity associations 293
<class name="Item"
 table="ITEM">
 ...
 <list name="bids">
 <key column="ITEM_ID" not-null="true"/>
 <list-index column="BID_POSITION"/>
 <one-to-many class="Bid"/>
 </list>

</class>

Note that the attribute has to be on the <key> mapping, not on a possible nested
<column> element. Whenever you have a noninverse collection of entity refer-
ences (most of the time a one-to-many with a list, map, or array) and the foreign
key join column in the target table is not nullable, you need to tell Hibernate
about this. Hibernate needs the hint to order INSERT and UPDATE statements cor-
rectly, to avoid a constraint violation.

 Let’s make this bidirectional with an item property of the Bid. If you follow the
examples from earlier chapters, you might want to add a <many-to-one> on the
ITEM_ID foreign key column to make this association bidirectional, and enable
inverse="true" on the collection. Remember that Hibernate ignores the state of
an inverse collection! This time, however, the collection contains information that
is needed to update the database correctly: the position of its elements. If only the
state of each Bid instance is considered for synchronization, and the collection is
inverse and ignored, Hibernate has no value for the BID_POSITION column.

 If you map a bidirectional one-to-many entity association with an indexed col-
lection (this is also true for maps and arrays), you have to switch the inverse sides.
You can’t make an indexed collection inverse="true". The collection becomes
responsible for state synchronization, and the one side, the Bid, has to be made
inverse. However, there is no inverse="true" for a many-to-one mapping so you
need to simulate this attribute on a <many-to-one>:

<class name="Bid"
 table="BID">
 ...
 <many-to-one name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"
 insert="false"
 update="false"/>

</class>

294 CHAPTER 7

Advanced entity association mappings
Setting insert and update to false has the desired effect. As we discussed earlier,
these two attributes used together make a property effectively read-only. This side
of the association is therefore ignored for any write operations, and the state of
the collection (including the index of the elements) is the relevant state when the
in-memory state is synchronized with the database. You’ve switched the inverse/
noninverse sides of the association, a requirement if you switch from a set or bag
to a list (or any other indexed collection).

 The equivalent in JPA, an indexed collection in a bidirectional one-to-many
mapping, is as follows:

public class Item {
 ...

 @OneToMany
 @JoinColumn(name = "ITEM_ID", nullable = false)
 @org.hibernate.annotations.IndexColumn(name = "BID_POSITION")
 private List<Bid> bids = new ArrayList<Bid>();

 ...

}

This mapping is noninverse because no mappedBy attribute is present. Because JPA
doesn’t support persistent indexed lists (only ordered with an @OrderBy at load
time), you need to add a Hibernate extension annotation for index support.
Here’s the other side of the association in Bid:

public class Bid {
 ...

 @ManyToOne
 @JoinColumn(name = "ITEM_ID", nullable = false,
 updatable = false, insertable = false)
 private Item item;

 ...

}

We now discuss one more scenario with a one-to-many relationship: an association
mapped to an intermediate join table.

Optional one-to-many association with a join table
A useful addition to the Item class is a buyer property. You can then call
anItem.getBuyer() to access the User who made the winning bid. (Of course,
anItem.getSuccessfulBid().getBidder() can provide the same access with a

Many-valued entity associations 295
different path.) If made bidirectional, this association will also help to render a
screen that shows all auctions a particular user has won: You call aUser.get-
BoughtItems() instead of writing a query.

 From the point of view of the User class, the association is one-to-many. The
classes and their relationship are shown in figure 7.7.

 Why is this association different than the one between Item and Bid? The mul-
tiplicity 0..* in UML indicates that the reference is optional. This doesn’t influ-
ence the Java domain model much, but it has consequences for the underlying
tables. You expect a BUYER_ID foreign key column in the ITEM table. The column
has to be nullable—a particular Item may not have been bought (as long as the
auction is still running).

 You can accept that the foreign key column can be NULL and apply additional
constraints (“allowed to be NULL only if the auction end time hasn’t been
reached or if no bid has been made”). We always try to avoid nullable columns in
a relational database schema. Information that is unknown degrades the quality
of the data you store. Tuples represent propositions that are true; you can’t assert
something you don’t know. And, in practice, many developers and DBAs don’t
create the right constraint and rely on (often buggy) application code to pro-
vide data integrity.

 An optional entity association, be it one-to-one or one-to-many, is best repre-
sented in an SQL database with a join table. See figure 7.8 for an example schema.

 You added a join table earlier in this chapter, for a one-to-one association. To
guarantee the multiplicity of one-to-one, you applied unique constraints on both
foreign key columns of the join table. In the current case, you have a one-to-many
multiplicity, so only the ITEM_ID column of the ITEM_BUYER table is unique. A par-
ticular item can be bought only once.

 Let’s map this in XML. First, here’s the boughtItems collection of the User
class.

name : String
description : String
initialPrice : BigDecimal
reservePrice : BigDecimal
startDate : Date
endDate : Date
state : ItemState
approvalDatetime : Date

firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
admin : boolean

bought0..*

Figure 7.7
Items may be bought by users.

296 CHAPTER 7

Advanced entity association mappings
<set name="boughtItems" table="ITEM_BUYER">
 <key column="USER_ID"/>
 <many-to-many class="Item"
 column="ITEM_ID"
 unique="true"/>
</set>

You use a Set as the collection type. The collection table is the join table,
ITEM_BUYER; its primary key is a composite of USER_ID and ITEM_ID. The new
mapping element you haven’t seen before is <many-to-many>; it’s required
because the regular <one-to-many> doesn’t know anything about join tables. By
forcing a unique constraint on the foreign key column that references the target
entity table, you effectively force a one-to-many multiplicity.

 You can map this association bidirectional with the buyer property of Item.
Without the join table, you’d add a <many-to-one> with a BUYER_ID foreign key
column in the ITEM table. With the join table, you have to move this foreign key
column into the join table. This is possible with a <join> mapping:

<join table="ITEM_BUYER"
 optional="true"
 inverse="true">
 <key column="ITEM_ID” unique=”true” not-null="true"/>
 <many-to-one name="buyer" column="USER_ID"/>
</join>

Two important details: First, the association is optional, and you tell Hibernate
not to insert a row into the join table if the grouped properties (only one here,
buyer) are null. Second, this is a bidirectional entity association. As always, one
side has to be the inverse end. You’ve chosen the <join> to be inverse; Hibernate
now uses the collection state to synchronize the database and ignores the state of

Figure 7.8 An optional relationship with a join table avoids nullable foreign key columns.

Many-valued entity associations 297
the Item.buyer property. As long as your collection is not an indexed variation (a
list, map, or array), you can reverse this by declaring the collection
inverse="true". The Java code to create a link between a bought item and a user
object is the same in both cases:

aUser.getBoughtItems().add(anItem);
anItem.setBuyer(aUser);

You can map secondary tables in JPA to create a one-to-many association with a
join table. First, map a @ManyToOne to a join table:

@Entity
public class Item {
 @ManyToOne
 @JoinTable(
 name = "ITEM_BUYER",
 joinColumns = {@JoinColumn(name = "ITEM_ID")},
 inverseJoinColumns = {@JoinColumn(name = "USER_ID")}
)
 private User buyer;
 ...
}

At the time of writing, this mapping has the limitation that you can’t set it to
optional="true"; hence, the USER_ID column is nullable. If you try to add a nul-
lable="false" attribute on the @JoinColumn, Hibernate Annotations thinks that
you want the whole buyer property to never be null. Furthermore, the primary
key of the join table is now the ITEM_ID column only. This is fine, because you
don’t want duplicate items in this table—they can be bought only once.

 To make this mapping bidirectional, add a collection on the User class and
make it inverse with mappedBy:

@OneToMany(mappedBy = "buyer")
private Set<Item> boughtItems = new HashSet<Item>();

We showed a <many-to-many> XML mapping element in the previous section for a
one-to-many association on a join table. The @JoinTable annotation is the equiva-
lent in annotations. Let’s map a real many-to-many association.

7.2.2 Many-to-many associations

The association between Category and Item is a many-to-many association, as can
be seen in figure 7.9.

 In a real system, you may not have a many-to-many association. Our experience
is that there is almost always other information that must be attached to each link
between associated instances (such as the date and time when an item was added

298 CHAPTER 7

Advanced entity association mappings
to a category) and that the best way to represent this information is via an inter-
mediate association class. In Hibernate, you can map the association class as an
entity and map two one-to-many associations for either side. Perhaps more conve-
niently, you can also map a composite element class, a technique we show later.
It’s the purpose of this section to implement a real many-to-many entity associa-
tion. Let’s start with a unidirectional example.

A simple unidirectional many-to-many association
If you require only unidirectional navigation, the mapping is straightforward.
Unidirectional many-to-many associations are essentially no more difficult than
the collections of value-type instances we discussed earlier. For example, if the
Category has a set of Items, you can create this mapping:

<set name="items"
 table="CATEGORY_ITEM"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</set>

The join table (or link table, as some developers call it) has two columns: the for-
eign keys of the CATEGORY and ITEM tables. The primary key is a composite of both
columns. The full table structure is shown in figure 7.10.

 In JPA annotations, many-to-many associations are mapped with the @ManyTo-
Many attribute:

@ManyToMany
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = {@JoinColumn(name = "CATEGORY_ID")},
 inverseJoinColumns = {@JoinColumn(name = "ITEM_ID")}
)
private Set<Item> items = new HashSet<Item>();

Figure 7.9
A many-to-many valued association between
Category and Item

Many-valued entity associations 299
In Hibernate XML you can also switch to an <idbag> with a separate primary key
column on the join table:

<idbag name="items"
 table="CATEGORY_ITEM”
 cascade="save-update">
 <collection-id type="long" column="CATEGORY_ITEM_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</idbag>

As usual with an <idbag> mapping, the primary key is a surrogate key column,
CATEGORY_ITEM_ID. Duplicate links are therefore allowed; the same Item can be
added twice to a Category. (This doesn’t seem to be a useful feature.) With anno-
tations, you can switch to an identifier bag with the Hibernate @CollectionId:

@ManyToMany
@CollectionId(
 columns = @Column(name = "CATEGORY_ITEM_ID"),
 type = @org.hibernate.annotations.Type(type = "long"),
 generator = "sequence"
)
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = {@JoinColumn(name = "CATEGORY_ID")},
 inverseJoinColumns = {@JoinColumn(name = "ITEM_ID")}
)
private Collection<Item> items = new ArrayList<Item>();

A JPA XML descriptor for a regular many-to-many mapping with a set (you can’t
use a Hibernate extension for identifier bags) looks like this:

Figure 7.10 Many-to-many entity association mapped to an association table

300 CHAPTER 7

Advanced entity association mappings
<entity class="auction.model.Category" access="FIELD">
 ...
 <many-to-many name="items">
 <join-table name="CATEGORY_ITEM">
 <join-column name="CATEGORY_ID"/>
 <inverse-join-column name="ITEM_ID"/>
 </join-table>
 </many-to-many>

</entity>

You may even switch to an indexed collection (a map or list) in a many-to-many
association. The following example maps a list in Hibernate XML:

<list name="items"
 table="CATEGORY_ITEM"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <list-index column="DISPLAY_POSITION"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</list>

The primary key of the link table is a composite of the CATEGORY_ID and
DISPLAY_POSITION columns; this mapping guarantees that the position of each
Item in a Category is persistent. Or, with annotations:

@ManyToMany
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = {@JoinColumn(name = "CATEGORY_ID")},
 inverseJoinColumns = {@JoinColumn(name = "ITEM_ID")}
)
@org.hibernate.annotations.IndexColumn(name = "DISPLAY_POSITION")
private List<Item> items = new ArrayList<Item>();

As discussed earlier, JPA only supports ordered collections (with an optional
@OrderBy annotation or ordered by primary key), so you again have to use a
Hibernate extension for indexed collection support. If you don’t add an @Index-
Column, the List is stored with bag semantics (no guaranteed persistent order of
elements).

 Creating a link between a Category and an Item is easy:

aCategory.getItems().add(anItem);

Bidirectional many-to-many associations are slightly more difficult.

A bidirectional many-to-many association
You know that one side in a bidirectional association has to be mapped as inverse
because you have named the foreign key column(s) twice. The same principle

Many-valued entity associations 301
applies to bidirectional many-to-many associations: Each row of the link table is
represented by two collection elements, one element at each end of the associa-
tion. An association between an Item and a Category is represented in memory by
the Item instance in the items collection of the Category, but also by the Cate-
gory instance in the categories collection of the Item.

 Before we discuss the mapping of this bidirectional case, you have to be aware
that the code to create the object association also changes:

aCategory.getItems().add(anItem);
anItem.getCategories().add(aCategory);

As always, a bidirectional association (no matter of what multiplicity) requires that
you set both ends of the association.

 When you map a bidirectional many-to-many association, you must declare
one end of the association using inverse="true" to define which side’s state is
used to update the join table. You can choose which side should be inverse.

 Recall this mapping of the items collection from the previous section:

<class name="Category" table="CATEGORY">
 ...
 <set name="items"
 table="CATEGORY_ITEM"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
 </set>

You may reuse this mapping for the Category end of the bidirectional association
and map the other side as follows:

<class name="Item" table="ITEM">
 ...
 <set name="categories"
 table="CATEGORY_ITEM”
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Category" column="CATEGORY_ID"/>
 </set>
</class>

Note the inverse="true". Again, this setting tells Hibernate to ignore changes
made to the categories collection and that the other end of the association, the
items collection, is the representation that should be synchronized with the data-
base if you link instances in Java code.

302 CHAPTER 7

Advanced entity association mappings
 You have enabled cascade="save-update" for both ends of the collection.
This isn’t unreasonable, we suppose. On the other hand, the cascading options
all, delete, and delete-orphans aren’t meaningful for many-to-many associa-
tions. (This is good point to test if you understand entities and value types—try to
come up with reasonable answers why these cascading options don’t make sense
for a many-to-many association.)

 In JPA and with annotations, making a many-to-many association bidirectional
is easy. First, the noninverse side:

@ManyToMany
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = {@JoinColumn(name = "CATEGORY_ID")},
 inverseJoinColumns = {@JoinColumn(name = "ITEM_ID")}
)
private Set<Item> items = new HashSet<Item>();

Now the opposite inverse side:

@ManyToMany(mappedBy = "items")
private Set<Category> categories = new HashSet<Category>();

As you can see, you don’t have to repeat the join-table declaration on the inverse
side.

 What types of collections may be used for bidirectional many-to-many associa-
tions? Do you need the same type of collection at each end? It’s reasonable to
map, for example, a <list> for the noninverse side of the association and a <bag>
on the inverse side.

 For the inverse end, <set> is acceptable, as is the following bag mapping:

<class name="Item" table="ITEM">
 ...
 <bag name="categories"
 table="CATEGORY_ITEM”
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Category" column="CATEGORY_ID"/>
 </bag>
</class>

In JPA, a bag is a collection without a persistent index:

@ManyToMany(mappedBy = "items")
private Collection<Category> categories = new ArrayList<Category>();

Many-valued entity associations 303
No other mappings can be used for the inverse end of a many-to-many association.
Indexed collections (lists and maps) don’t work, because Hibernate won’t initial-
ize or maintain the index column if the collection is inverse. In other words, a
many-to-many association can’t be mapped with indexed collections on both sides.

 We already frowned at the use of many-to-many associations, because addi-
tional columns on the join table are almost always inevitable.

7.2.3 Adding columns to join tables

In this section, we discuss a question that is asked frequently by Hibernate users:
What do I do if my join table has additional columns, not only two foreign key col-
umns?

 Imagine that you need to record some information each time you add an Item
to a Category. For example, you may need to store the date and the name of the
user who added the item to this category. This requires additional columns on the
join table, as you can see in figure 7.11.

You can use two common strategies to map such a structure to Java classes. The
first strategy requires an intermediate entity class for the join table and is mapped
with one-to-many associations. The second strategy utilizes a collection of compo-
nents, with a value-type class for the join table.

Mapping the join table to an intermediate entity
The first option we discuss now resolves the many-to-many relationship between
Category and Item with an intermediate entity class, CategorizedItem.
Listing 7.1 shows this entity class, which represents the join table in Java, includ-
ing JPA annotations:

Figure 7.11
Additional columns on the
join table in a many-to-many
association

304 CHAPTER 7

Advanced entity association mappings
@Entity
@Table(name = "CATEGORIZED_ITEM")
public class CategorizedItem {

 @Embeddable
 public static class Id implements Serializable {

 @Column(name = "CATEGORY_ID")
 private Long categoryId;

 @Column(name = "ITEM_ID")
 private Long itemId;

 public Id() {}

 public Id(Long categoryId, Long itemId) {
 this.categoryId = categoryId;
 this.itemId = itemId;
 }
 public boolean equals(Object o) {
 if (o != null && o instanceof Id) {
 Id that = (Id)o;
 return this.categoryId.equals(that.categoryId) &&
 this.itemId.equals(that.itemId);
 } else {
 return false;
 }
 }

 public int hashCode() {
 return categoryId.hashCode() + itemId.hashCode();
 }
 }

 @EmbeddedId
 private Id id = new Id();

 @Column(name = "ADDED_BY_USER")
 private String username;

 @Column(name = "ADDED_ON")
 private Date dateAdded = new Date();

 @ManyToOne
 @JoinColumn(name="ITEM_ID",
 insertable = false,
 updatable = false)
 private Item item;

 @ManyToOne
 @JoinColumn(name="CATEGORY_ID",
 insertable = false,
 updatable = false)
 private Category category;

Listing 7.1 An entity class that represents a link table with additional columns

Many-valued entity associations 305
 public CategorizedItem() {}

 public CategorizedItem(String username,
 Category category,
 Item item) {
 // Set fields
 this.username = username;

 this.category = category;
 this.item = item;

 // Set identifier values
 this.id.categoryId = category.getId();
 this.id.itemId = item.getId();

 // Guarantee referential integrity
 category.getCategorizedItems().add(this);
 item.getCategorizedItems().add(this);
 }

 // Getter and setter methods
 ...
}

An entity class needs an identifier property. The primary key of the join table is
CATEGORY_ID and ITEM_ID, a composite. Hence, the entity class also has a compos-
ite key, which you encapsulate in a static nested class for convenience. You can
also see that constructing a CategorizedItem involves setting the values of the
identifier—composite key values are assigned by the application. Pay extra atten-
tion to the constructor and how it sets the field values and guarantees referential
integrity by managing collections on either side of the association.

 Let’s map this class to the join table in XML:

<class name="CategorizedItem"
 table="CATEGORY_ITEM"
 mutable="false">

 <composite-id name="id" class="CategorizedItem$Id">
 <key-property name="categoryId"
 access="field"
 column="CATEGORY_ID"/>

 <key-property name="itemId"
 access="field"
 column="ITEM_ID"/>
 </composite-id>

 <property name="dateAdded"
 column="ADDED_ON"
 type="timestamp"

306 CHAPTER 7

Advanced entity association mappings
 not-null="true"/>

 <property name="username"
 column="ADDED_BY_USER"
 type="string"
 not-null="true"/>

 <many-to-one name="category"
 column="CATEGORY_ID"
 not-null="true"
 insert="false"
 update="false"/>

 <many-to-one name="item"
 column="ITEM_ID"
 not-null="true"
 insert="false"
 update="false"/>

</class>

The entity class is mapped as immutable—you’ll never update any properties after
creation. Hibernate accesses <composite-id> fields directly—you don’t need get-
ters and setters in this nested class. The two <many-to-one> mappings are effec-
tively read-only; insert and update are set to false. This is necessary because the
columns are mapped twice, once in the composite key (which is responsible for
insertion of the values) and again for the many-to-one associations.

 The Category and Item entities (can) have a one-to-many association to the
CategorizedItem entity, a collection. For example, in Category:

<set name="categorizedItems"
 inverse="true">
 <key column="CATEGORY_ID"/>
 <one-to-many class="CategorizedItem"/>
</set>

And here’s the annotation equivalent:

@OneToMany(mappedBy = "category")
private Set<CategorizedItem> categorizedItems =
 new HashSet<CategorizedItem>();

There is nothing special to consider here; it’s a regular bidirectional one-to-many
association with an inverse collection. Add the same collection and mapping to
Item to complete the association. This code creates and stores a link between a
category and an item:

CategorizedItem newLink =
 new CategorizedItem(aUser.getUsername(), aCategory, anItem);

session.save(newLink);

Many-valued entity associations 307
The referential integrity of the Java objects is guaranteed by the constructor of
CategorizedItem, which manages the collection in aCategory and in anItem.
Remove and delete the link between a category and an item:

aCategory.getCategorizedItems().remove(theLink);
anItem.getCategorizedItems().remove(theLink);

session.delete(theLink);

The primary advantage of this strategy is the possibility for bidirectional naviga-
tion: You can get all items in a category by calling aCategory.getCategor-
izedItems() and the also navigate from the opposite direction with
anItem.getCategorizedItems(). A disadvantage is the more complex code
needed to manage the CategorizedItem entity instances to create and remove
associations—they have to be saved and deleted independently, and you need
some infrastructure in the CategorizedItem class, such as the composite identi-
fier. However, you can enable transitive persistence with cascading options on the
collections from Category and Item to CategorizedItem, as explained in
chapter 12, section 12.1, “Transitive persistence.”

 The second strategy for dealing with additional columns on the join table
doesn’t need an intermediate entity class; it’s simpler.

Mapping the join table to a collection of components
First, simplify the CategorizedItem class, and make it a value type, without an
identifier or any complex constructor:

public class CategorizedItem {
 private String username;
 private Date dateAdded = new Date();
 private Item item;
 private Category category;

 public CategorizedItem(String username,
 Category category,
 Item item) {
 this.username = username;
 this.category = category;
 this.item = item;
 }
 ...

 // Getter and setter methods
 // Don't forget the equals/hashCode methods
}

As for all value types, this class has to be owned by an entity. The owner is the Cat-
egory, and it has a collection of these components:

308 CHAPTER 7

Advanced entity association mappings
<class name="Category" table="CATEGORY">

 ...
 <set name="categorizedItems" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>

 <many-to-one name="item"
 column="ITEM_ID"
 not-null="true"
 class="Item"/>

 <property name="username" column="ADDED_BY_USER"/>
 <property name="dateAdded" column="ADDED_ON"/>

 </composite-element>
 </set>

</class>

This is the complete mapping for a many-to-many association with extra columns
on the join table. The <many-to-one> element represents the association to Item;
the <property> mappings cover the extra columns on the join table. There is only
one change to the database tables: The CATEGORY_ITEM table now has a primary
key that is a composite of all columns, not only CATEGORY_ID and ITEM_ID, as in
the previous section. Hence, all properties should never be nullable—otherwise
you can’t identify a row in the join table. Except for this change, the tables still
look as shown in figure 7.11.

 You can enhance this mapping with a reference to the User instead of just the
user’s name. This requires an additional USER_ID column on the join table, with a
foreign key to USERS. This is a ternary association mapping:

<set name="categorizedItems" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>

 <many-to-one name="item"
 column="ITEM_ID"
 not-null="true"
 class="Item"/>

 <many-to-one name="user"
 column="USER_ID"
 not-null="true"
 class="User"/>

 <property name="dateAdded" column="ADDED_ON"/>

 </composite-element>
</set>

Many-valued entity associations 309
This is a fairly exotic beast!
 The advantage of a collection of components is clearly the implicit lifecycle of

the link objects. To create an association between a Category and an Item, add a
new CategorizedItem instance to the collection. To break the link, remove the
element from the collection. No extra cascading settings are required, and the
Java code is simplified:

CategorizedItem aLink =
 new CategorizedItem(aUser.getUserName(), aCategory, anItem);

aCategory.getCategorizedItems().add(aLink);

aCategory.getCategorizedItems().remove(aLink);

The downside of this approach is that there is no way to enable bidirectional navi-
gation: A component (such as CategorizedItem) can’t, by definition, have shared
references. You can’t navigate from Item to CategorizedItem. However, you can
write a query to retrieve the objects you need.

 Let’s do the same mapping with annotations. First, make the component class
@Embeddable, and add the component column and association mappings:

@Embeddable
public class CategorizedItem {

 @org.hibernate.annotations.Parent // Optional back-pointer
 private Category category;

 @ManyToOne
 @JoinColumn(name = "ITEM_ID",
 nullable = false,
 updatable = false)
 private Item item;

 @ManyToOne
 @JoinColumn(name = "USER_ID",
 nullable = false,
 updatable = false)
 private User user;

 @Temporal(TemporalType.TIMESTAMP)
 @Column(name = "ADDED_ON", nullable = false, updatable = false)
 private Date dateAdded;

 ...
 // Constructor
 // Getter and setter methods
 // Don't forget the equals/hashCode methods
}

Now map this as a collection of components in the Category class:

310 CHAPTER 7

Advanced entity association mappings
@org.hibernate.annotations.CollectionOfElements
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = @JoinColumn(name = "CATEGORY_ID")
)
private Set<CategorizedItem> categorizedItems =
 new HashSet<CategorizedItem>();

That’s it: You’ve mapped a ternary association with annotations. What looked
incredibly complex at the beginning has been reduced to a few lines of annota-
tion metadata, most of it optional.

 The last collection mapping we’ll explore are Maps of entity references.

7.2.4 Mapping maps

You mapped a Java Map in the last chapter—the keys and values of the Map were
value types, simple strings. You can create more complex maps; not only can the
keys be references to entities, but so can the values. The result can therefore be a
ternary association.

Values as references to entities
First, let’s assume that only the value of each map entry is a reference to another
entity. The key is a value type, a long. Imagine that the Item entity has a map of
Bid instances and that each map entry is a pair of Bid identifier and reference to a
Bid instance. If you iterate through anItem.getBidsByIdentifier(), you iterate
through map entries that look like (1, <reference to Bid with PK 1>), (2,
<reference to Bid with PK 2>), and so on.

 The underlying tables for this mapping are nothing special; you again have an
ITEM and a BID table, with an ITEM_ID foreign key column in the BID table. Your
motivation here is a slightly different representation of the data in the applica-
tion, with a Map.

 In the Item class, include a Map:

@MapKey(name="id")
@OneToMany
private Map<Long,Bid> bidsByIdentifier = new HashMap<Long,Bid>();

New here is the @MapKey element of JPA—it maps a property of the target entity as
key of the map.The default if you omit the name attribute is the identifier property
of the target entity (so the name here is redundant). Because the keys of a map
form a set, values are expected to be unique for a particular map—this is the case
for Bid primary keys but likely not for any other property of Bid.

Many-valued entity associations 311
 In Hibernate XML, this mapping is as follows:

<map name="bidsByIdentifier">
 <key column="ITEM_ID"/>
 <map-key type="long" formula="BID_ID"/>
 <one-to-many class="Bid"/>
</map>

The formula key for a map makes this column read-only, so it’s never updated
when you modify the map. A more common situation is a map in the middle of a
ternary association.

Ternary associations
You may be a little bored by now, but we promise this is the last time we’ll show
another way to map the association between Category and Item. Let’s summarize
what you already know about this many-to-many association:

■ It can be mapped with two collections on either side and a join table that
has only two foreign key columns. This is a regular many-to-many associa-
tion mapping.

■ It can be mapped with an intermediate entity class that represents the join
table, and any additional columns therein. A one-to-many association is
mapped on either side (Category and Item), and a bidirectional many-to-
one equivalent is mapped in the intermediate entity class.

■ It can be mapped unidirectional, with a join table represented as a value
type component. The Category entity has a collection of components. Each
component has a reference to its owning Category and a many-to-one
entity association to an Item. (You can also switch the words Category and
Item in this explanation.)

You previously turned the last scenario into a ternary association by adding
another many-to-one entity association to a User. Let’s do the same with a Map.

 A Category has a Map of Item instances—the key of each map entry is a refer-
ence to an Item. The value of each map entry is the User who added the Item to
the Category. This strategy is appropriate if there are no additional columns on
the join table; see the schema in figure 7.12.
The advantage of this strategy is that you don’t need any intermediate class, no
entity or value type, to represent the ADDED_BY_USER_ID column of the join table
in your Java application.

 First, here’s the Map property in Category with a Hibernate extension
annotation.

312 CHAPTER 7

Advanced entity association mappings
@ManyToMany
@org.hibernate.annotations.MapKeyManyToMany(
 joinColumns = @JoinColumn(name = "ITEM_ID")
)
@JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns = @JoinColumn(name = "CATEGORY_ID"),
 inverseJoinColumns = @JoinColumn(name = "USER_ID")
)
private Map<Item,User> itemsAndUser = new HashMap<Item,User>();

The Hibernate XML mapping includes a new element, <map-key-many-to-many>:

<map name="itemsAndUser" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <map-key-many-to-many column="ITEM_ID" class="Item"/>
 <many-to-many column="ADDED_BY_USER_ID" class="User"/>
</map>

To create a link between all three entities, if all your instances are already in per-
sistent state, add a new entry to the map:

aCategory.getItemsAndUser().add(anItem, aUser);

To remove the link, remove the entry from the map. As an exercise, you can try to
make this mapping bidirectional, with a collection of categories in Item.

Figure 7.12 A ternary association with a join table between three entities

Polymorphic associations 313
Remember that this has to be an inverse collection mapping, so it doesn’t support
indexed collections.

 Now that you know all the association mapping techniques for normal entities,
we still have to consider inheritance and associations to the various levels of an
inheritance hierarchy. What we really want is polymorphic behavior. Let’s see how
Hibernate deals with polymorphic entity associations.

7.3 Polymorphic associations

Polymorphism is a defining feature of object-oriented languages like Java. Sup-
port for polymorphic associations and polymorphic queries is an absolutely basic
feature of an ORM solution like Hibernate. Surprisingly, we’ve managed to get this
far without needing to talk much about polymorphism. Even more surprisingly,
there is not much to say on the topic—polymorphism is so easy to use in Hiber-
nate that we don’t need to spend a lot of effort explaining it.

 To get an overview, we first consider a many-to-one association to a class that
may have subclasses. In this case, Hibernate guarantees that you can create links
to any subclass instance just like you would to instances of the superclass.

7.3.1 Polymorphic many-to-one associations

A polymorphic association is an association that may refer instances of a subclass of
the class that was explicitly specified in the mapping metadata. For this example,
consider the defaultBillingDetails property of User. It references one particu-
lar BillingDetails object, which at runtime can be any concrete instance of that
class. The classes are shown in figure 7.13.

 You map this association to the abstract class BillingDetails as follows in
User.hbm.xml.

Figure 7.13 A user has either a credit card or a bank account as the default.

314 CHAPTER 7

Advanced entity association mappings
<many-to-one name="defaultBillingDetails"
 class="BillingDetails"
 column="DEFAULT_BILLING_DETAILS_ID"/>

But because BillingDetails is abstract, the association must refer to an instance
of one of its subclasses—CreditCard or CheckingAccount—at runtime.
You don’t have to do anything special to enable polymorphic associations in
Hibernate; specify the name of any mapped persistent class in your association
mapping (or let Hibernate discover it using reflection), and then, if that class
declares any <union-subclass>, <subclass>, or <joined-subclass> elements,
the association is naturally polymorphic.

 The following code demonstrates the creation of an association to an instance
of the CreditCard subclass:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpiryDate(ccExpiryDate);

User user = (User) session.get(User.class, userId);
user.addBillingDetails(cc); // Add it to the one-to-many association

user.setDefaultBillingDetails(cc);

// Complete unit of work

Now, when you navigate the association in a second unit of work, Hibernate auto-
matically retrieves the CreditCard instance:

User user = (User) secondSession.get(User.class, userId);

// Invoke the pay() method on the actual subclass instance
user.getDefaultBillingDetails().pay(amount);

There is just one thing to watch out for: If BillingDetails was mapped with
lazy="true" (which is the default), Hibernate would proxy the defaultBilling-
Details association target. In this case, you wouldn’t be able to perform a type-
cast to the concrete class CreditCard at runtime, and even the instanceof
operator would behave strangely:

User user = (User) session.get(User.class, userid);
BillingDetails bd = user.getDefaultBillingDetails();
System.out.println(bd instanceof CreditCard); // Prints "false"
CreditCard cc = (CreditCard) bd; // ClassCastException!

In this code, the typecast fails because bd is a proxy instance. When a method is
invoked on the proxy, the call is delegated to an instance of CreditCard that is
fetched lazily (it’s an instance of a runtime-generated subclass, so instanceof also
fails). Until this initialization occurs, Hibernate doesn’t know what the subtype of

Polymorphic associations 315
the given instance is—this would require a database hit, which you try to avoid
with lazy loading in the first place. To perform a proxy-safe typecast, use load():

User user = (User) session.get(User.class, userId);
BillingDetails bd = user.getDefaultBillingDetails();

// Narrow the proxy to the subclass, doesn't hit the database
CreditCard cc =
 (CreditCard) session.load(CreditCard.class, bd.getId());
expiryDate = cc.getExpiryDate();

After the call to load(), bd and cc refer to two different proxy instances, which
both delegate to the same underlying CreditCard instance. However, the second
proxy has a different interface, and you can call methods (like getExpiryDate())
that apply only to this interface.

 Note that you can avoid these issues by avoiding lazy fetching, as in the follow-
ing code, using an eager fetch query:

User user = (User)session.createCriteria(User.class)
 .add(Restrictions.eq("id", uid))
 .setFetchMode("defaultBillingDetails", FetchMode.JOIN)
 .uniqueResult();

// The users defaultBillingDetails have been fetched eagerly
CreditCard cc = (CreditCard) user.getDefaultBillingDetails();
expiryDate = cc.getExpiryDate();

Truly object-oriented code shouldn’t use instanceof or numerous typecasts. If
you find yourself running into problems with proxies, you should question your
design, asking whether there is a more polymorphic approach. Hibernate also
offers bytecode instrumentation as an alternative to lazy loading through proxies;
we’ll get back to fetching strategies in chapter 13, section 13.1, “Defining the glo-
bal fetch plan.”

 One-to-one associations are handled the same way. What about many-valued
associations—for example, the collection of billingDetails for each User?

7.3.2 Polymorphic collections

A User may have references to many BillingDetails, not only a single default
(one of the many is the default). You map this with a bidirectional one-to-many
association.

 In BillingDetails, you have the following:

<many-to-one name="user"
 class="User"
 column="USER_ID"/>

316 CHAPTER 7

Advanced entity association mappings
In the Users mapping you have:

<set name="billingDetails"
 inverse="true">
 <key column="USER_ID"/>
 <one-to-many class="BillingDetails"/>
</set>

Adding a CreditCard is easy:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpMonth(...);
cc.setExpYear(...);

User user = (User) session.get(User.class, userId);

// Call convenience method that sets both sides of the association
user.addBillingDetails(cc);

// Complete unit of work

As usual, addBillingDetails() calls getBillingDetails().add(cc) and cc.set-
User(this) to guarantee the integrity of the relationship by setting both pointers.

 You may iterate over the collection and handle instances of CreditCard and
CheckingAccount polymorphically (you probably don’t want to bill users several
times in the final system, though):

User user = (User) session.get(User.class, userId);

for(BillingDetails bd : user.getBillingDetails()) {
 // Invoke CreditCard.pay() or BankAccount.pay()
 bd.pay(paymentAmount);
}

In the examples so far, we assumed that BillingDetails is a class mapped explic-
itly and that the inheritance mapping strategy is table per class hierarchy, or normal-
ized with table per subclass.

 However, if the hierarchy is mapped with table per concrete class (implicit poly-
morphism) or explicitly with table per concrete class with union, this scenario requires
a more sophisticated solution.

7.3.3 Polymorphic associations to unions

Hibernate supports the polymorphic many-to-one and one-to-many associations
shown in the previous sections even if a class hierarchy is mapped with the table per
concrete class strategy. You may wonder how this works, because you may not have a
table for the superclass with this strategy; if so, you can’t reference or add a for-
eign key column to BILLING_DETAILS.

Polymorphic associations 317
 Review our discussion of table per concrete class with union in chapter 5,
section 5.1.2, “Table per concrete class with unions.” Pay extra attention to the poly-
morphic query Hibernate executes when retrieving instances of BillingDetails.
Now, consider the following collection of BillingDetails mapped for User:

<set name="billingDetails"
 inverse="true">
 <key column="USER_ID"/>
 <one-to-many class="BillingDetails"/>
</set>

If you want to enable the polymorphic union feature, a requirement for this poly-
morphic association is that it’s inverse; there must be a mapping on the opposite
side. In the mapping of BillingDetails, with <union-subclass>, you have to
include a <many-to-one> association:

<class name="BillingDetails" abstract="true">

 <id name="id" column="BILLING_DETAILS_ID" .../>

 <property .../>

 <many-to-one name="user"
 column="USER_ID"
 class="User"/>

 <union-subclass name="CreditCard" table="CREDIT_CARD">
 <property .../>
 </union-subclass>

 <union-subclass name="BankAccount" table="BANK_ACCOUNT">
 <property .../>
 </union-subclass>

</class>

You have two tables for both concrete classes of the hierarchy. Each table has a for-
eign key column, USER_ID, referencing the USERS table. The schema is shown in
figure 7.14.

 Now, consider the following data-access code:

aUser.getBillingDetails().iterator().next();

Figure 7.14 Two concrete classes mapped to two separate tables

318 CHAPTER 7

Advanced entity association mappings
Hibernate executes a UNION query to retrieve all instances that are referenced in
this collection:

select
 BD.*
from
 (select
 BILLING_DETAILS_ID, USER_ID, OWNER,
 NUMBER, EXP_MONTH, EXP_YEAR,
 null as ACCOUNT, null as BANKNAME, null as SWIFT,
 1 as CLAZZ
 from
 CREDIT_CARD

 union

 select
 BILLING_DETAILS_ID, USER_ID, OWNER,
 null as NUMBER, null as EXP_MONTH, null as EXP_YEAR
 ACCOUNT, BANKNAME, SWIFT,
 2 as CLAZZ
 from
 BANK_ACCOUNT
) BD
where
 BD.USER_ID = ?

The FROM-clause subselect is a union of all concrete class tables, and it includes the
USER_ID foreign key values for all instances. The outer select now includes a
restriction in the WHERE clause to all rows referencing a particular user.

 This magic works great for retrieval of data. If you manipulate the collection
and association, the noninverse side is used to update the USER_ID column(s) in
the concrete table. In other words, the modification of the inverse collection has
no effect: The value of the user property of a CreditCard or BankAccount
instance is taken.

 Now consider the many-to-one association defaultBillingDetails again,
mapped with the DEFAULT_BILLING_DETAILS_ID column in the USERS table.
Hibernate executes a UNION query that looks similar to the previous query to
retrieve this instance, if you access the property. However, instead of a restriction
in the WHERE clause to a particular user, the restriction is made on a particular
BILLING_DETAILS_ID.

 Important: Hibernate cannot and will not create a foreign key constraint for
DEFAULT_BILLING_DETAILS_ID with this strategy. The target table of this reference
can be any of the concrete tables, which can’t be constrained easily. You should
consider writing a custom integrity rule for this column with a database trigger.

Polymorphic associations 319
 One problematic inheritance strategy remains: table per concrete class with
implicit polymorphism.

7.3.4 Polymorphic table per concrete class

In chapter 5, section 5.1.1, “Table per concrete class with implicit polymorphism,”
we defined the table per concrete class mapping strategy and observed that this map-
ping strategy makes it difficult to represent a polymorphic association, because
you can’t map a foreign key relationship to a table of the abstract superclass.
There is no table for the superclass with this strategy; you have tables only for con-
crete classes. You also can’t create a UNION, because Hibernate doesn’t know what
unifies the concrete classes; the superclass (or interface) isn’t mapped anywhere.

 Hibernate doesn’t support a polymorphic billingDetails one-to-many collec-
tion in User, if this inheritance mapping strategy is applied on the BillingDe-
tails hierarchy. If you need polymorphic many-to-one associations with this
strategy, you’ll have to resort to a hack. The technique we’ll show you in this sec-
tion should be your last choice. Try to switch to a <union-subclass> mapping first.

 Suppose that you want to represent a polymorphic many-to-one association
from User to BillingDetails, where the BillingDetails class hierarchy is
mapped with a table per concrete class strategy and implicit polymorphic behavior in
Hibernate. You have a CREDIT_CARD table and a BANK_ACCOUNT table, but no
BILLING_DETAILS table. Hibernate needs two pieces of information in the USERS
table to uniquely identify the associated default CreditCard or BankAccount:

■ The name of the table in which the associated instance resides

■ The identifier of the associated instance

The USERS table requires a DEFAULT_BILLING_DETAILS_TYPE column in addition
to the DEFAULT_BILLING_DETAILS_ID. This extra column works as an additional
discriminator and requires a Hibernate <any> mapping in User.hbm.xml:

<any name="defaultBillingDetails"
 id-type="long"
 meta-type="string">
 <meta-value value="CREDIT_CARD" class="CreditCard"/>
 <meta-value value="BANK_ACCOUNT" class="BankAccount"/>
 <column name="DEFAULT_BILLING_DETAILS_TYPE"/>
 <column name="DEFAULT_BILLING_DETAILS_ID"/>
</any>

The meta-type attribute specifies the Hibernate type of the DEFAULT_BILLING_
DETAILS_TYPE column; the id-type attribute specifies the type of the DEFAULT_

320 CHAPTER 7

Advanced entity association mappings
BILLING_DETAILS_ID column (it’s necessary for CreditCard and BankAccount to
have the same identifier type).

 The <meta-value> elements tell Hibernate how to interpret the value of the
DEFAULT_BILLING_DETAILS_TYPE column. You don’t need to use the full table
name here—you can use any value you like as a type discriminator. For example,
you can encode the information in two characters:

<any name="defaultBillingDetails"
 id-type="long"
 meta-type="string">
 <meta-value value="CC" class="CreditCard"/>
 <meta-value value="CA" class="BankAccount"/>
 <column name="DEFAULT_BILLING_DETAILS_TYPE"/>
 <column name="DEFAULT_BILLING_DETAILS_ID"/>
</any>

An example of this table structure is shown in figure 7.15.
 Here is the first major problem with this kind of association: You can’t add a

foreign key constraint to the DEFAULT_BILLING_DETAILS_ID column, because
some values refer to the BANK_ACCOUNT table and others to the CREDIT_CARD table.
Thus, you need to come up with some other way to ensure integrity (a trigger, for
example). This is the same issue you’d face with a <union-subclass> strategy.

 Furthermore, it’s difficult to write SQL table joins for this association. In partic-
ular, the Hibernate query facilities don’t support this kind of association mapping,
nor may this association be fetched using an outer join. We discourage the use of
<any> associations for all but the most special cases. Also note that this mapping

Figure 7.15 Using a discriminator column with an any association

Summary 321
technique isn’t available with annotations or in Java Persistence (this mapping is
so rare that nobody asked for annotation support so far).

 As you can see, as long as you don’t plan to create an association to a class hier-
archy mapped with implicit polymorphism, associations are straightforward; you
don’t usually need to think about it. You may be surprised that we didn’t show any
JPA or annotation example in the previous sections—the runtime behavior is the
same, and you don’t need any extra mapping to get it.

7.4 Summary

In this chapter, you learned how to map more complex entity associations. Many
of the techniques we’ve shown are rarely needed and may be unnecessary if you
can simplify the relationships between your classes. In particular, many-to-many
entity associations are often best represented as two one-to-many associations to
an intermediate entity class, or with a collection of components.

 Table 7.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

In the next chapter, we’ll focus on legacy database integration and how you can
customize the SQL that Hibernate generates automatically for you. This chapter is
interesting not only if you have to work with legacy schemas, but also if you want
to improve your new schema with custom DDL, for example.

Table 7.1 Hibernate and JPA comparison chart for chapter 7

Hibernate Core Java Persistence and EJB 3.0

Hibernate supports key generation for shared
primary key one-to-one association mappings.

Standardized one-to-one mapping is supported. Auto-
matic shared primary key generation is possible
through a Hibernate extension.

Hibernate supports all entity association map-
pings across join tables.

Standardized association mappings are available
across secondary tables.

Hibernate supports mapping of lists with persis-
tent indexes.

Persistent indexes require a Hibernate extension
annotation.

Hibernate supports fully polymorphic behavior.
It provides extra support for any association
mappings to an inheritance hierarchy mapped
with implicit polymorphism.

Fully polymorphic behavior is available, but there is
no annotation support for any mappings.

Legacy databases
and custom SQL
This chapter covers
■ Legacy database integration and tricky mappings
■ Customization of SQL statements
■ Improving the SQL schema with custom DDL
322

Integrating legacy databases 323
Many examples presented in this chapter are about “difficult” mappings. The first
time you’ll likely have problems creating a mapping is with a legacy database
schema that can’t be modified. We discuss typical issues you encounter in such a
scenario and how you can bend and twist your mapping metadata instead of
changing your application or database schema.

 We also show you how you can override the SQL Hibernate generates auto-
matically. This includes SQL queries, DML (create, update, delete) operations, as
well as Hibernate’s automatic DDL-generation feature. You’ll see how to map
stored procedures and user-defined SQL functions, and how to apply the right
integrity rules in your database schema. This section will be especially useful if
your DBA needs full control (or if you’re a DBA and want to optimize Hibernate
at the SQL level).

 As you can see, the topics in this chapter are diverse; you don’t have to read
them all at once. You can consider a large part of this chapter to be reference
material and come back when you face a particular issue.

8.1 Integrating legacy databases

In this section, we hope to cover all the things you may encounter when you have
to deal with an existing legacy database or (and this is often synonymous) a weird
or broken schema. If your development process is top-down, however, you may
want to skip this section. Furthermore, we recommend that you first read all chap-
ters about class, collection, and association mappings before you attempt to
reverse-engineer a complex legacy schema.

 We have to warn you: When your application inherits an existing legacy data-
base schema, you should usually make as few changes to the existing schema as
possible. Every change that you make to the schema could break other existing
applications that access the database. Possibly expensive migration of existing
data is also something you need to evaluate. In general, it isn’t possible to build a
new application and make no changes to the existing data model—a new applica-
tion usually means additional business requirements that naturally require evolu-
tion of the database schema.

 We’ll therefore consider two types of problems: problems that relate to the
changing business requirements (which generally can’t be solved without schema
changes) and problems that relate only to how you wish to represent the same
business problem in your new application (these can usually, but not always, be
solved without database schema changes). It should be clear that the first kind of
problem is usually visible by looking at just the logical data model. The second

324 CHAPTER 8

Legacy databases and custom SQL
more often relates to the implementation of the logical data model as a physical
database schema.

 If you accept this observation, you’ll see that the kinds of problems that require
schema changes are those that necessitate addition of new entities, refactoring of
existing entities, addition of new attributes to existing entities, and modification
to the associations between entities. The problems that can be solved without
schema changes usually involve inconvenient table or column definitions for a
particular entity. In this section, we’ll concentrate on these kinds of problems.

 We assume that you’ve tried to reverse-engineer your existing schema with the
Hibernate toolset, as described in chapter 2, section 2.3, “Reverse engineering a
legacy database.” The concepts and solutions discussed in the following sections
assume that you have basic object/relational mapping in place and that you need
to make additional changes to get it working. Alternatively, you can try to write the
mapping completely by hand without the reverse-engineering tools.

 Let’s start with the most obvious problem: legacy primary keys.

8.1.1 Handling primary keys

We’ve already mentioned that we think natural primary keys can be a bad idea.
Natural keys often make it difficult to refactor the data model when business
requirements change. They may even, in extreme cases, impact performance.
Unfortunately, many legacy schemas use (natural) composite keys heavily and, for
the reason we discourage the use of composite keys, it may be difficult to change
the legacy schema to use noncomposite natural or surrogate keys.

 Therefore, Hibernate supports the use of natural keys. If the natural key is a
composite key, support is via the <composite-id> mapping. Let’s map both a
composite and a noncomposite natural primary key.

Mapping a natural key
If you encountered a USERS table in a legacy schema, it’s likely that USERNAME is
the actual primary key. In this case, you have no surrogate identifier that is auto-
matically generated. Instead, you enable the assigned identifier generator strat-
egy to indicate to Hibernate that the identifier is a natural key assigned by the
application before the object is saved:

<class name="User" table="USERS">
 <id name="username" column="USERNAME" length="16">
 <generator class="assigned"/>
 </id>

 ...
</class>

Integrating legacy databases 325
The code to save a new User is as follows:

User user = new User();
user.setUsername("johndoe"); // Assign a primary key value
user.setFirstname("John");
user.setLastname("Doe");
session.saveOrUpdate(user); // Will result in an INSERT
// System.out.println(session.getIdentifier(user));
session.flush();

How does Hibernate know that saveOrUpdate() requires an INSERT and not an
UPDATE? It doesn’t, so a trick is needed: Hibernate queries the USERS table for the
given username, and if it’s found, Hibernate updates the row. If it isn’t found,
insertion of a new row is required and done. This is certainly not the best solution,
because it triggers an additional hit on the database.

 Several strategies avoid the SELECT:

■ Add a <version> or a <timestamp> mapping, and a property, to your entity.
Hibernate manages both values internally for optimistic concurrency con-
trol (discussed later in the book). As a side effect, an empty timestamp or a
0 or NULL version indicates that an instance is new and has to be inserted,
not updated.

■ Implement a Hibernate Interceptor, and hook it into your Session. This
extension interface allows you to implement the method isTransient()
with any custom procedure you may need to distinguish old and new
objects.

On the other hand, if you’re happy to use save() and update() explicitly instead
of saveOrUpdate(), Hibernate doesn’t have to distinguish between transient and
detached instances—you do this by selecting the right method to call. (This issue
is, in practice, the only reason to not use saveOrUpdate() all the time, by the way.)

 Mapping natural primary keys with JPA annotations is straightforward:

@Id
private String username;

If no identifier generator is declared, Hibernate assumes that it has to apply the
regular select-to-determine-state-unless-versioned strategy and expects the appli-
cation to take care of the primary key value assignment. You can again avoid the
SELECT by extending your application with an interceptor or by adding a version-
control property (version number or timestamp).

 Composite natural keys extend on the same ideas.

326 CHAPTER 8

Legacy databases and custom SQL
Mapping a composite natural key
Suppose that the primary key of the USERS table consists of a USERNAME and
DEPARTMENT_NR. You can add a property named departmentNr to the User class
and create the following mapping:

<class name="User" table="USERS">

 <composite-id>
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEPARTMENT_NR"/>
 </composite-id>

 ...
</class>

The code to save a new User looks like this:

User user = new User();

// Assign a primary key value
user.setUsername("johndoe");
user.setDepartmentNr(42);

// Set property values
user.setFirstname("John");
user.setLastname("Doe");

session.saveOrUpdate(user);
session.flush();

Again, keep in mind that Hibernate executes a SELECT to determine what save-
OrUpdate() should do—unless you enable versioning control or a custom Inter-
ceptor. But what object can/should you use as the identifier when you call load()
or get()? Well, it’s possible to use an instance of the User class, for example:

User user = new User();

// Assign a primary key value
user.setUsername("johndoe");
user.setDepartmentNr(42);

// Load the persistent state into user
session.load(User.class, user);

In this code snippet, User acts as its own identifier class. It’s more elegant to
define a separate composite identifier class that declares just the key properties.
Call this class UserId:

public class UserId implements Serializable {
 private String username;

Integrating legacy databases 327
 private Integer departmentNr;

 public UserId(String username, Integer departmentNr) {
 this.username = username;
 this.departmentNr = departmentNr;
 }

 // Getters...

 public int hashCode() {
 int result;
 result = username.hashCode();
 result = 29 * result + departmentNr.hashCode();
 return result;
 }

 public boolean equals(Object other) {
 if (other==null) return false;
 if (!(other instanceof UserId)) return false;
 UserId that = (UserId) other;
 return this.username.equals(that.username) &&
 this.departmentNr.equals(that.departmentNr);
 }
}

It’s critical that you implement equals() and hashCode() correctly, because
Hibernate relies on these methods for cache lookups. Identifier classes are also
expected to implement Serializable.

 You now remove the username and departmentNr properties from User and
add a userId property. Create the following mapping:

<class name="User" table="USERS">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEPARTMENT_NR"/>
 </composite-id>

 ...
</class>

Save a new instance of User with this code:

UserId id = new UserId("johndoe", 42);

User user = new User();

// Assign a primary key value
user.setUserId(id);

// Set property values

328 CHAPTER 8

Legacy databases and custom SQL
user.setFirstname("John");
user.setLastname("Doe");

session.saveOrUpdate(user);
session.flush();

Again, a SELECT is needed for saveOrUpdate() to work. The following code shows
how to load an instance:

UserId id = new UserId("johndoe", 42);

User user = (User) session.load(User.class, id);

Now, suppose that the DEPARTMENT_NR is a foreign key referencing the DEPART-
MENT table, and that you wish to represent this association in the Java domain
model as a many-to-one association.

Foreign keys in composite primary keys
We recommend that you map a foreign key column that is also part of a compos-
ite primary key with a regular <many-to-one> element, and disable any Hiber-
nate inserts or updates of this column with insert="false" update="false", as
follows:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentId"
 column="DEPARTMENT_ID"/>
 </composite-id>

 <many-to-one name="department"
 class="Department"
 column="DEPARTMENT_ID"
 insert="false" update="false"/>
 ...
</class>

Hibernate now ignores the department property when updating or inserting a
User, but you can of course read it with johndoe.getDepartment(). The relation-
ship between a User and Department is now managed through the departmentId
property of the UserId composite key class:

UserId id = new UserId("johndoe", department.getId());

User user = new User();

// Assign a primary key value
user.setUserId(id);

Integrating legacy databases 329
// Set property values
user.setFirstname("John");
user.setLastname("Doe");
user.setDepartment(department);

session.saveOrUpdate(user);
session.flush();

Only the identifier value of the department has any effect on the persistent state;
the setDepartment(department) call is done for consistency: Otherwise, you’d
have to refresh the object from the database to get the department set after the
flush. (In practice you can move all these details into the constructor of your com-
posite identifier class.)

 An alternative approach is a <key-many-to-one>:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="username"
 column="USERNAME"/>

 <key-many-to-one name="department"
 class="Department"
 column="DEPARTMENT_ID"/>
 </composite-id>

 ...
</class>

However, it’s usually inconvenient to have an association in a composite identifier
class, so this approach isn’t recommended except in special circumstances. The
<key-many-to-one> construct also has limitations in queries: You can’t restrict a
query result in HQL or Criteria across a <key-many-to-one> join (although it’s
possible these features will be implemented in a later Hibernate version).

Foreign keys to composite primary keys
Because USERS has a composite primary key, any referencing foreign key is also
composite. For example, the association from Item to User (the seller) is now
mapped with a composite foreign key.

 Hibernate can hide this detail from the Java code with the following associa-
tion mapping from Item to User:

<many-to-one name="seller" class="User">
 <column name="USERNAME"/>
 <column name="DEPARTMENT_ID"/>
</many-to-one>

330 CHAPTER 8

Legacy databases and custom SQL
Any collection owned by the User class also has a composite foreign key—for
example, the inverse association, items, sold by this user:

<set name="itemsForAuction" inverse="true">
 <key>
 <column name="USERNAME"/>
 <column name="DEPARTMENT_ID"/>
 </key>
 <one-to-many class="Item"/>
</set>

Note that the order in which columns are listed is important and should match
the order in which they appear in the <composite-id> element of the primary
key mapping of User.

 This completes our discussion of the basic composite key mapping technique
in Hibernate. Mapping composite keys with annotations is almost the same, but as
always, small differences are important.

Composite keys with annotations
The JPA specification covers strategies for handling composite keys. You have
three options:

■ Encapsulate the identifier properties in a separate class and mark it
@Embeddable, like a regular component. Include a property of this compo-
nent type in your entity class, and map it with @Id for an application-
assigned strategy.

■ Encapsulate the identifier properties in a separate class without any annota-
tions on it. Include a property of this type in your entity class, and map it
with @EmbeddedId.

■ Encapsulate the identifier properties in a separate class. Now—and this is
different that what you usually do in native Hibernate—duplicate all the
identifier properties in the entity class. Then, annotate the entity class with
@IdClass and specify the name of your encapsulated identifier class.

The first option is straightforward. You need to make the UserId class from the
previous section embeddable:

@Embeddable
public class UserId implements Serializable {
 private String username;
 private String departmentNr;

 ...
}

Integrating legacy databases 331
As for all component mappings, you can define extra mapping attributes on the
fields (or getter methods) of this class. To map the composite key of User, set the
generation strategy to application assigned by omitting the @GeneratedValue
annotation:

@Id
@AttributeOverrides({
 @AttributeOverride(name = "username",
 column = @Column(name="USERNAME")),
 @AttributeOverride(name = "departmentNr",
 column = @Column(name="DEP_NR"))
})
private UserId userId;

Just as you did with regular component mappings earlier in the book, you can
override particular attribute mappings of the component class, if you like.

 The second composite-key mapping strategy doesn’t require that you mark up
the UserId primary key class. Hence, no @Embeddable and no other annotation
on that class is needed. In the owning entity, you map the composite identifier
property with @EmbeddedId, again, with optional overrides:

@EmbeddedId
@AttributeOverrides({
 @AttributeOverride(name = "username",
 column = @Column(name="USERNAME")),
 @AttributeOverride(name = "departmentNr",
 column = @Column(name="DEP_NR"))
})
private UserId userId;

In a JPA XML descriptor, this mapping looks as follows:

<embeddable class="auction.model.UserId" access ="PROPERTY">
 <attributes>
 <basic name="username">
 <column name="UNAME"/>
 </basic>
 <basic name="departmentNr">
 <column name="DEPARTMENT_NR"/>
 </basic>
 </attributes>
</embeddable>

<entity class="auction.model.User" access="FIELD">
 <attributes>
 <embedded-id name="userId">
 <attribute-override name="username">
 <column name="USERNAME"/>
 </attribute-override>

332 CHAPTER 8

Legacy databases and custom SQL
 <attribute-override name="departmentNr">
 <column name="DEP_NR"/>
 </attribute-override>
 </embedded-id>
 ...
 </attributes>
</entity>

The third composite-key mapping strategy is a bit more difficult to understand,
especially for experienced Hibernate users. First, you encapsulate all identifier
attributes in a separate class—as in the previous strategy, no extra annotations
on that class are needed. Now you duplicate all the identifier properties in the
entity class:

@Entity
@Table(name = "USERS")
@IdClass(UserId.class)
public class User {

 @Id
 private String username;

 @Id
 private String departmentNr;

 // Accessor methods, etc.
 ...
}

Hibernate inspects the @IdClass and singles out all the duplicate properties (by
comparing name and type) as identifier properties and as part of the primary
key. All primary key properties are annotated with @Id, and depending on the
position of these elements (field or getter method), the entity defaults to field or
property access.

 Note that this last strategy is also available in Hibernate XML mappings; how-
ever, it’s somewhat obscure:

<composite-id class="UserId" mapped="true">
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="departmentNr"
 column="DEP_NR"/>
</composite-id>

You omit the identifier property name of the entity (because there is none), so
Hibernate handles the identifier internally. With mapped="true", you enable the
last JPA mapping strategy, so all key properties are now expected to be present in
both the User and the UserId classes.

Integrating legacy databases 333
 This composite identifier mapping strategy looks as follows if you use JPA XML
descriptors:

<entity class="auction.model.User" access="FIELD">
 <id-class class="auction.model.UserId"/>
 <attributes>
 <id name="username"/>
 <id name="departmentNr"/>
 </attributes>
</entity>

Because we didn’t find a compelling case for this last strategy defined in Java Per-
sistence, we have to assume that it was added to the specification to support some
legacy behavior (EJB 2.x entity beans).

 Composite foreign keys are also possible with annotations. Let’s first map the
association from Item to User:

@ManyToOne
@JoinColumns({
 @JoinColumn(name="USERNAME", referencedColumnName = "USERNAME"),
 @JoinColumn(name="DEP_NR", referencedColumnName = "DEP_NR")
})
private User seller;

The primary difference between a regular @ManyToOne and this mapping is the
number of columns involved—again, the order is important and should be the
same as the order of the primary key columns. However, if you declare the refer-
encedColumnName for each column, order isn’t important, and both the source
and target tables of the foreign key constraint can have different column names.

 The inverse mapping from User to Item with a collection is even more straight-
forward:

@OneToMany(mappedBy = "seller")
private Set<Item> itemsForAuction = new HashSet<Item>();

 This inverse side needs the mappedBy attribute, as usual for bidirectional associa-
tions. Because this is the inverse side, it doesn’t need any column declarations.

 In legacy schemas, a foreign key often doesn’t reference a primary key.

Foreign key referencing nonprimary keys
Usually, a foreign key constraint references a primary key. A foreign key constraint
is an integrity rule that guarantees that the referenced table has one row with a key
value that matches the key value in the referencing table and given row. Note that
a foreign key constraint can be self-referencing; in other words, a column with a
foreign key constraint can reference the primary key column of the same table.
(The PARENT_CATEGORY_ID in the CaveatEmptor CATEGORY table is one example.)

334 CHAPTER 8

Legacy databases and custom SQL
 Legacy schemas sometimes have foreign key constraints that don’t follow the
simple “FK references PK” rule. Sometimes a foreign key references a nonprimary
key: a simple unique column, a natural nonprimary key. Let’s assume that in Cave-
atEmptor, you need to handle a legacy natural key column called CUSTOMER_NR on
the USERS table:

<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <property name="customerNr"
 column="CUSTOMER_NR"
 not-null="true"
 unique="true"/>

</class>

The only thing that is probably new to you in this mapping is the unique attribute.
This is one of the SQL customization options in Hibernate; it’s not used at run-
time (Hibernate doesn’t do any uniqueness validation) but to export the database
schema with hbm2ddl. If you have an existing schema with a natural key, you
assume that it’s unique. For completeness, you can and should repeat such impor-
tant constraints in your mapping metadata—maybe you’ll use it one day to export
a fresh schema.

 Equivalent to the XML mapping, you can declare a column as unique in JPA
annotations:

@Column(name = "CUSTOMER_NR", nullable = false, unique=true)
private int customerNr;

The next issue you may discover in the legacy schema is that the ITEM table has a
foreign key column, SELLER_NR. In an ideal world, you would expect this foreign
key to reference the primary key, USER_ID, of the USERS table. However, in a legacy
schema, it may reference the natural unique key, CUSTOMER_NR. You need to map
it with a property reference:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID">...</id>

 <many-to-one name="seller" column="SELLER_NR"
 property-ref="customerNr"/>

</class>

You’ll encounter the property-ref attribute in more exotic Hibernate mappings.
It’s used to tell Hibernate that “this is a mirror of the named property.” In the pre-
vious example, Hibernate now knows the target of the foreign key reference. One

Integrating legacy databases 335
further thing to note is that property-ref requires the target property to be
unique, so unique="true", as shown earlier, is needed for this mapping.

 If you try to map this association with JPA annotations, you may look for an
equivalent to the property-ref attribute. You map the association with an explicit
reference to the natural key column, CUSTOMER_NR:

@ManyToOne
@JoinColumn(name="SELLER_NR", referencedColumnName = "CUSTOMER_NR")
private User seller;

Hibernate now knows that the referenced target column is a natural key and man-
ages the foreign key relationship accordingly.

 To complete this example, you make this association mapping between the two
classes bidirectional, with a mapping of an itemsForAuction collection on the
User class. First, here it is in XML:

<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <property name="customerNr" column="CUSTOMER_NR" unique="true"/>

 <set name="itemsForAuction" inverse="true">
 <key column="SELLER_NR” property-ref="customerNr"/>
 <one-to-many class="Item"/>
 </set>

</class>

Again the foreign key column in ITEM is mapped with a property reference to
customerNr. In annotations, this is a lot easier to map as an inverse side:

@OneToMany(mappedBy = "seller")
private Set<Item> itemsForAuction = new HashSet<Item>();

Composite foreign key referencing nonprimary keys
Some legacy schemas are even more complicated than the one discussed before:
A foreign key might be a composite key and, by design, reference a composite nat-
ural nonprimary key!

 Let’s assume that USERS has a natural composite key that includes the FIRST-
NAME, LASTNAME, and BIRTHDAY columns. A foreign key may reference this natural
key, as shown in figure 8.1.

 To map this, you need to group several properties under the same name—oth-
erwise you can’t name the composite in a property-ref. Apply the <properties>
element to group the mappings:

336 CHAPTER 8

Legacy databases and custom SQL
<class name="User" table="USERS">

 <id name="id" column="USER_ID">...</id>

 <properties name="nameAndBirthday" unique="true" update="false">
 <property name="firstname" column="FIRSTNAME"/>
 <property name="lastname" column="LASTNAME"/>
 <property name="birthday" column="BIRTHDAY" type="date"/>
 </properties>

 <set name="itemsForAuction" inverse="true">
 <key property-ref="nameAndBirthday">
 <column name="SELLER_FIRSTNAME"/>
 <column name="SELLER_LASTNAME"/>
 <column name="SELLER_BIRTHDAY"/>
 </key>
 <one-to-many class="Item"/>
 </set>

</class>

As you can see, the <properties> element is useful not only to give several prop-
erties a name, but also to define a multicolumn unique constraint or to make sev-
eral properties immutable. For the association mappings, the order of columns is
again important:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID">...</id>

 <many-to-one name="seller" property-ref="nameAndBirthday">
 <column name="SELLER_FIRSTNAME"/>
 <column name="SELLER_LASTNAME"/>
 <column name="SELLER_BIRTHDAY"/>
 </many-to-one>

</class>

Figure 8.1 A composite foreign key references a composite primary key.

Integrating legacy databases 337
Fortunately, it’s often straightforward to clean up such a schema by refactoring
foreign keys to reference primary keys—if you can make changes to the database
that don’t disturb other applications sharing the data.

 This completes our exploration of natural, composite, and foreign key-related
problems you may have to deal with when you try to map a legacy schema. Let’s
move on to other interesting special mapping strategies.

 Sometimes you can’t make any changes to a legacy database—not even creat-
ing tables or views. Hibernate can map classes, properties, and even parts of asso-
ciations to a simple SQL statement or expression. We call these kinds of mappings
formula mappings.

8.1.2 Arbitrary join conditions with formulas

Mapping a Java artifact to an SQL expression is useful for more than integrating a
legacy schema. You created two formula mappings already: The first, “Using
derived properties,” in chapter 4, section 4.4.1, was a simple derived read-only
property mapping. The second formula calculated the discriminator in an inher-
itance mapping; see chapter 5, section 5.1.3, “Table per class hierarchy.”

 You’ll now apply formulas for a more exotic purposes. Keep in mind that some
of the mappings you’ll see now are complex, and you may be better prepared to
understand them after reading all the chapters in part 2 of this book.

Understanding the use case
You now map a literal join condition between two entities. This sounds more com-
plex than it is in practice. Look at the two classes shown in figure 8.2.

 A particular Item may have several Bids—this is a one-to-many association. But
it isn’t the only association between the two classes; the other, a unidirectional

Figure 8.2
A single-association that references an
instance in a many-association

338 CHAPTER 8

Legacy databases and custom SQL
one-to-one, is needed to single out one particular Bid instance as the winning bid.
You map the first association because you’d like to be able to get all the bids for an
auctioned item by calling anItem.getBids(). The second association allows you
to call anItem.getSuccessfulBid(). Logically, one of the elements in the collec-
tion is also the successful bid object referenced by getSuccessfulBid().

 The first association is clearly a bidirectional one-to-many/many-to-one associ-
ation, with a foreign key ITEM_ID in the BID table. (If you haven’t mapped this
before, look at chapter 6, section 6.4, “Mapping a parent/children relationship.”)

 The one-to-one association is more difficult; you can map it several ways.
The most natural is a uniquely constrained foreign key in the ITEM table refer-
encing a row in the BID table—the winning row, for example a SUCCESSFUL_
BID_ID column.

 Legacy schemas often need a mapping that isn’t a simple foreign key relation-
ship.

Mapping a formula join condition
Imagine that each row in the BID table has a flag column to mark the winning bid,
as shown in figure 8.3. One BID row has the flag set to true, and all other rows for
this auction item are naturally false. Chances are good that you won’t find a con-
straint or an integrity rule for this relationship in a legacy schema, but we ignore
this for now and focus on the mapping to Java classes.

 To make this mapping even more interesting, assume that the legacy schema
didn’t use the SQL BOOLEAN datatype but a CHAR(1) field and the values T (for
true) and F (for false) to simulate the boolean switch. Your goal is to map this flag
column to a successfulBid property of the Item class. To map this as an object
reference, you need a literal join condition, because there is no foreign key Hiber-
nate can use for a join. In other words, for each ITEM row, you need to join a row
from the BID table that has the SUCCESSFUL flag set to T. If there is no such row,
the anItem.getSuccessfulBid() call returns null.

 Let’s first map the Bid class and a successful boolean property to the SUC-
CESSFUL database column:

Figure 8.3
The winning bid is marked with the
SUCCESSFUL column flag.

Integrating legacy databases 339
<class name="Bid" table="BID">

 <id name="id" column="BID_ID"...

 <property name="amount"
 ...

 <properties name="successfulReference">

 <property name="successful"
 column="SUCCESSFUL"
 type="true_false"/>
 ...

 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"/>
 ...
 </properties>

 <many-to-one name="bidder"
 class="User"
 column="BIDDER_ID"/>
 ...
</class>

The type="true_false" attribute creates a mapping between a Java boolean
primitive (or its wrapper) property and a simple CHAR(1) column with T/F literal
values—it’s a built-in Hibernate mapping type. You again group several properties
with <properties> under a name that you can reference in other mappings. What
is new here is that you can group a <many-to-one>, not only basic properties.

 The real trick is happening on the other side, for the mapping of the success-
fulBid property of the Item class:

<class name="Item" table="ITEM">

 <id name="id" column="ITEM_ID"...

 <property name="initialPrice"
 ...

 <one-to-one name="successfulBid"
 property-ref="successfulReference">
 <formula>'T'</formula>
 <formula>ITEM_ID</formula>
 </one-to-one>

 <set name="bids" inverse="true">
 <key column="ITEM_ID”/>
 <one-to-many class="Bid"/>
 </set>

</class>

340 CHAPTER 8

Legacy databases and custom SQL
Ignore the <set> association mapping in this example; this is the regular one-to-
many association between Item and Bid, bidirectional, on the ITEM_ID foreign
key column in BID.

NOTE Isn’t <one-to-one> used for primary key associations? Usually, a <one-to-
one> mapping is a primary key relationship between two entities, when
rows in both entity tables share the same primary key value. However, by
using a formula with a property-ref, you can apply it to a foreign key
relationship. In the example shown in this section, you could replace the
<one-to-one> element with <many-to-one>, and it would still work.

The interesting part is the <one-to-one> mapping and how it relies on a prop-
erty-ref and literal formula values as a join condition when you work with the
association.

Working with the association
The full SQL query for retrieval of an auction item and its successful bid looks like
this:

select
 i.ITEM_ID,
 i.INITIAL_PRICE,
 ...
 b.BID_ID,
 b.AMOUNT,
 b.SUCCESSFUL,
 b.BIDDER_ID,
 ...
from
 ITEM i
left outer join
 BID b
 on 'T' = b.SUCCESSFUL
 and i.ITEM_ID = b.ITEM_ID
where
 i.ITEM_ID = ?

When you load an Item, Hibernate now joins a row from the BID table by applying
a join condition that involves the columns of the successfulReference property.
Because this is a grouped property, you can declare individual expressions for
each of the columns involved, in the right order. The first one, 'T', is a literal, as
you can see from the quotes. Hibernate now includes 'T' = SUCCESSFUL in the
join condition when it tries to find out whether there is a successful row in the BID
table. The second expression isn’t a literal but a column name (no quotes).

Integrating legacy databases 341
Hence, another join condition is appended: i.ITEM_ID = b.ITEM_ID. You can
expand this and add more join conditions if you need additional restrictions.

 Note that an outer join is generated because the item in question may not have
a successful bid, so NULL is returned for each b.* column. You can now call
anItem.getSuccessfulBid() to get a reference to the successful bid (or null if
none exists).

 Finally, with or without database constraints, you can’t just implement an
item.setSuccessfulBid() method that only sets the value on a private field in
the Item instance. You have to implement a small procedure in this setter method
that takes care of this special relationship and the flag property on the bids:

public class Item {
 ...

 private Bid successfulBid;
 private Set<Bid> bids = new HashSet<Bid>();

 public Bid getSuccessfulBid() {
 return successfulBid;
 }

 public void setSuccessfulBid(Bid successfulBid) {
 if (successfulBid != null) {

 for (Bid bid : bids)
 bid.setSuccessful(false);

 successfulBid.setSuccessful(true);
 this.successfulBid = successfulBid;
 }
 }

}

When setSuccessfulBid() is called, you set all bids to not successful. Doing so
may trigger the loading of the collection—a price you have to pay with this strat-
egy. Then, the new successful bid is marked and set as an instance variable. Setting
the flag updates the SUCCESSFUL column in the BID table when you save the
objects. To complete this (and to fix the legacy schema), your database-level con-
straints need to do the same as this method. (We’ll come back to constraints later
in this chapter.)

 One of the things to remember about this literal join condition mapping is
that it can be applied in many other situations, not only for successful or default
relationships. Whenever you need some arbitrary join condition appended to
your queries, a formula is the right choice. For example, you could use it in a

342 CHAPTER 8

Legacy databases and custom SQL
<many-to-many> mapping to create a literal join condition from the association
table to the entity table(s).

 Unfortunately, at the time of writing, Hibernate Annotations doesn’t support
arbitrary join conditions expressed with formulas. The grouping of properties
under a reference name also wasn’t possible. We expect that these features will
closely resemble the XML mapping, once they’re available.

 Another issue you may encounter in a legacy schema is that it doesn’t integrate
nicely with your class granularity. Our usual recommendation to have more
classes than tables may not work, and you may have to do the opposite and join
arbitrary tables into one class.

8.1.3 Joining arbitrary tables

We’ve already shown the <join> mapping element in an inheritance mapping in
chapter 5; see section 5.1.5, “Mixing inheritance strategies.” It helped to break out
properties of a particular subclass into a separate table, out of the primary inherit-
ance hierarchy table. This generic functionality has more uses—however, we have
to warn you that <join> can also be a bad idea. Any properly designed system
should have more classes than tables. Splitting a single class into separate tables is
something you should do only when you need to merge several tables in a legacy
schema into a single class.

Moving properties into a secondary table
Suppose that in CaveatEmptor, you aren’t keeping a user’s address information
with the user’s main information in the USERS table, mapped as a component, but
in a separate table. This is shown in figure 8.4. Note that each BILLING_ADDRESS
has a foreign key USER_ID, which is in turn the primary key of the BILLING_
ADDRESS table.

 To map this in XML, you need to group the properties of the Address in a
<join> element:

Figure 8.4
Breaking out the billing address
data into a secondary table

Integrating legacy databases 343
<class name="User" table="USERS">
 <id>...

 <join table="BILLING_ADDRESS" optional="true">
 <key column="USER_ID"/>
 <component name="billingAddress" class="Address">
 <property name="street"
 type="string"
 column="STREET"
 length="255"/>
 <property name="zipcode"
 type="string"
 column="ZIPCODE"
 length="16"/>
 <property name="city"
 type="string"
 column="CITY"
 length="255"/>
 </component>
 </join>

</class>

You don’t have to join a component; you can as well join individual properties or
even a <many-to-one> (we did this in the previous chapter for optional entity
associations). By setting optional="true", you indicate that the component prop-
erty may also be null for a User with no billingAddress, and that no row should
then be inserted into the secondary table. Hibernate also executes an outer join
instead of an inner join to retrieve the row from the secondary table. If you
declared fetch="select" on the <join> mapping, a secondary select would be
used for that purpose.

 The notion of a secondary table is also included in the Java Persistence specifi-
cation. First, you have to declare a secondary table (or several) for a particular
entity:

@Entity
@Table(name = "USERS")
@SecondaryTable(
 name = "BILLING_ADDRESS",
 pkJoinColumns = {
 @PrimaryKeyJoinColumn(name="USER_ID")
 }
)
public class User {
 ...
}

344 CHAPTER 8

Legacy databases and custom SQL
Each secondary table needs a name and a join condition. In this example, a for-
eign key column references the primary key column of the USERS table, just like
earlier in the XML mapping. (This is the default join condition, so you can only
declare the secondary table name, and nothing else). You can probably see that
the syntax of annotations is starting to become an issue and code is more difficult
to read. The good news is that you won’t have to use secondary tables often.

 The actual component property, billingAddress, is mapped as a regular
@Embedded class, just like a regular component. However, you need to override
each component property column and assign it to the secondary table, in the
User class:

@Embedded
@AttributeOverrides({
 @AttributeOverride(
 name = "street",
 column = @Column(name="STREET",
 table = "BILLING_ADDRESS")
),
 @AttributeOverride(
 name = "zipcode",
 column = @Column(name="ZIPCODE",
 table = "BILLING_ADDRESS")
),
 @AttributeOverride(
 name = "city",
 column = @Column(name="CITY",
 table = "BILLING_ADDRESS")
)
})
private Address billingAddress;

This is no longer easily readable, but it’s the price you pay for mapping flexibility
with declarative metadata in annotations. Or, you can use a JPA XML descriptor:

<entity class="auction.model.User" access="FIELD">
 <table name="USERS"/>
 <secondary-table name="BILLING_ADDRESS">
 <primary-key-join-column
 referenced-column-name="USER_ID"/>
 </secondary-table>
 <attributes>
 ...
 <embedded name="billingAddress">
 <attribute-override name="street">
 <column name="STREET" table="BILLING_ADDRESS"/>
 </attribute-override>
 <attribute-override name="zipcode">

Integrating legacy databases 345
 <column name="ZIPCODE" table="BILLING_ADDRESS"/>
 </attribute-override>
 <attribute-override name="city">
 <column name="CITY" table="BILLING_ADDRESS"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>

Another, even more exotic use case for the <join> element is inverse joined prop-
erties or components.

Inverse joined properties
Let’s assume that in CaveatEmptor you have a legacy table called DAILY_BILLING.
This table contains all the open payments, executed in a nightly batch, for any
auctions. The table has a foreign key column to ITEM, as you can see in figure 8.5.

 Each payment includes a TOTAL column with the amount of money that will be
billed. In CaveatEmptor, it would be convenient if you could access the price of a
particular auction by calling anItem.getBillingTotal().

 You can map the column from the DAILY_BILLING table into the Item class.
However, you never insert or update it from this side; it’s read-only. For that rea-
son, you map it inverse—a simple mirror of the (supposed, you don’t map it here)
other side that takes care of maintaining the column value:

<class name="Item" table="ITEM">
 <id>...

 <join table="DAILY_BILLING" optional="true" inverse="true">
 <key column="ITEM_ID"/>
 <property name="billingTotal"
 type="big_decimal"
 column="TOTAL"/>
 </join>

</class>

Figure 8.5 The daily billing summary references an item and contains the total sum.

346 CHAPTER 8

Legacy databases and custom SQL
Note that an alternative solution for this problem is a derived property using a for-
mula expression and a correlated subquery:

<property name="billingTotal"
 type="big_decimal"
 formula="(select db.TOTAL from DAILY_BILLING db
 where db.ITEM_ID = ITEM_ID)"/>

The main difference is the SQL SELECT used to load an ITEM: The first solution
defaults to an outer join, with an optional second SELECT if you enable <join
fetch="select">. The derived property results in an embedded subselect in
the select clause of the original query. At the time of writing, inverse join map-
pings aren’t supported with annotations, but you can use a Hibernate annota-
tion for formulas.

 As you can probably guess from the examples, <join> mappings come in
handy in many situations. They’re even more powerful if combined with formu-
las, but we hope you won’t have to use this combination often.

 One further problem that often arises in the context of working with legacy
data are database triggers.

8.1.4 Working with triggers

There are some reasons for using triggers even in a brand-new database, so legacy
data isn’t the only scenerio in which they can cause problems. Triggers and object
state management with an ORM software are almost always an issue, because trig-
gers may run at inconvenient times or may modify data that isn’t synchronized
with the in-memory state.

Triggers that run on INSERT
Suppose the ITEM table has a CREATED column, mapped to a created property of
type Date, that is initialized by a trigger that executes automatically on insertion.
The following mapping is appropriate:

<property name="created"
 type="timestamp"
 column="CREATED"
 insert="false"
 update="false"/>

Notice that you map this property insert="false" update="false" to indicate
that it isn’t to be included in SQL INSERTs or UPDATEs by Hibernate.

 After saving a new Item, Hibernate isn’t aware of the value assigned to this col-
umn by the trigger, because it occurred after the INSERT of the item row. If you

Integrating legacy databases 347
need the generated value in the application, you must explicitly tell Hibernate to
reload the object with an SQL SELECT. For example:

Item item = new Item();
...
Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

session.save(item);
session.flush(); // Force the INSERT to occur
session.refresh(item); // Reload the object with a SELECT

System.out.println(item.getCreated());

tx.commit();
session.close();

Most problems involving triggers may be solved in this way, using an explicit
flush() to force immediate execution of the trigger, perhaps followed by a call to
refresh() to retrieve the result of the trigger.

 Before you add refresh() calls to your application, we have to tell you that the
primary goal of the previous section was to show you when to use refresh().
Many Hibernate beginners don’t understand its real purpose and often use it
incorrectly. A more formal definition of refresh() is “refresh an in-memory
instance in persistent state with the current values present in the database.”

 For the example shown, a database trigger filling a column value after inser-
tion, a much simpler technique can be used:

<property name="created"
 type="timestamp"
 column="CREATED"
 generated="insert"
 insert="false"
 update="false"/>

With annotations, use a Hibernate extension:

@Temporal(TemporalType.TIMESTAMP)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.INSERT
)
@Column(name = "CREATED", insertable = false, updatable = false)
private Date created;

We have already discussed the generated attribute in detail in chapter 4,
section 4.4.1.3, “Generated and default property values.” With gener-

ated="insert", Hibernate automatically executes a SELECT after insertion, to
retrieve the updated state.

348 CHAPTER 8

Legacy databases and custom SQL
 There is one further problem to be aware of when your database executes trig-
gers: reassociation of a detached object graph and triggers that run on each
UPDATE.

Triggers that run on UPDATE
Before we discuss the problem of ON UPDATE triggers in combination with reat-
tachment of objects, we need to point out an additional setting for the generated
attribute:

<version name="version"
 column="OBJ_VERSION"
 generated="always"/>
...
<timestamp name="lastModified"
 column="LAST_MODIFIED"
 generated="always"/>
...
<property name="lastModified"
 type="timestamp"
 column="LAST_MODIFIED"
 generated="always"
 insert="false"
 update="false"/>

With annotations, the equivalent mappings are as follows:

@Version
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "OBJ_VERSION")
private int version;

@Version
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "LAST_MODIFIED")
private Date lastModified;

@Temporal(TemporalType.TIMESTAMP)
@org.hibernate.annotations.Generated(
 org.hibernate.annotations.GenerationTime.ALWAYS
)
@Column(name = "LAST_MODIFIED", insertable = false, updatable = false)
private Date lastModified;

With always, you enable Hibernate’s automatic refreshing not only for insertion
but also for updating of a row. In other words, whenever a version, timestamp, or
any property value is generated by a trigger that runs on UPDATE SQL statements,

Integrating legacy databases 349
you need to enable this option. Again, refer to our earlier discussion of generated
properties in section 4.4.1.

 Let’s look at the second issue you may run into if you have triggers running on
updates. Because no snapshot is available when a detached object is reattached to
a new Session (with update() or saveOrUpdate()), Hibernate may execute
unnecessary SQL UPDATE statements to ensure that the database state is synchro-
nized with the persistence context state. This may cause an UPDATE trigger to fire
inconveniently. You avoid this behavior by enabling select-before-update in the
mapping for the class that is persisted to the table with the trigger. If the ITEM
table has an update trigger, add the following attribute to your mapping:

<class name="Item"
 table="ITEM"
 select-before-update="true">
 ...
</class>

This setting forces Hibernate to retrieve a snapshot of the current database state
using an SQL SELECT, enabling the subsequent UPDATE to be avoided if the state of
the in-memory Item is the same. You trade the inconvenient UPDATE for an addi-
tional SELECT.

 A Hibernate annotation enables the same behavior:

@Entity
@org.hibernate.annotations.Entity(selectBeforeUpdate = true)
public class Item { ... }

Before you try to map a legacy scheme, note that the SELECT before an update
only retrieves the state of the entity instance in question. No collections or associ-
ated instances are eagerly fetched, and no prefetching optimization is active. If
you start enabling selectBeforeUpdate for many entities in your system, you’ll
probably find that the performance issues introduced by the nonoptimized
selects are problematic. A better strategy uses merging instead of reattachment.
Hibernate can then apply some optimizations (outer joins) when retrieving data-
base snapshots. We’ll talk about the differences between reattachment and merg-
ing later in the book in more detail.

 Let’s summarize our discussion of legacy data models: Hibernate offers several
strategies to deal with (natural) composite keys and inconvenient columns easily.
Before you try to map a legacy schema, our recommendation is to carefully exam-
ine whether a schema change is possible. In our experience, many developers
immediately dismiss database schema changes as too complex and time-consum-
ing and look for a Hibernate solution. This sometimes isn’t justified, and you

350 CHAPTER 8

Legacy databases and custom SQL
should consider schema evolution a natural part of your schema’s lifecycle. If
tables change, then a data export, some transformation, and an import may solve
the problem. One day of work may save many days in the long run.

 Legacy schemas often also require customization of the SQL generated by
Hibernate, be it for data manipulation (DML) or schema definition (DDL).

8.2 Customizing SQL

SQL started its life in the 1970s but wasn’t (ANSI) standardized until 1986.
Although each update of the SQL standard has seen new (and many controver-
sial) features, every DBMS product that supports SQL does so in its own unique
way. The burden of portability is again on the database application developers.
This is where Hibernate helps: Its built-in query mechanisms, HQL and the Cri-
teria API, produce SQL that depends on the configured database dialect. All
other automatically generated SQL (for example, when a collection has to be
retrieved on demand) is also produced with the help of dialects. With a simple
switch of the dialect, you can run your application on a different DBMS.

 To support this portability, Hibernate has to handle three kinds of operations:

■ Every data-retrieval operation results in SELECT statements being executed.
Many variations are possible; for example, database products may use a dif-
ferent syntax for the join operation or how a result can be limited to a par-
ticular number of rows.

■ Every data modification requires the execution of Data Manipulation Lan-
guage (DML) statements, such as UPDATE, INSERT, and DELETE. DML often
isn’t as complex as data retrieval, but it still has product-specific variations.

■ A database schema must be created or altered before DML and data
retrieval can be executed. You use Data Definition Language (DDL) to work
on the database catalog; it includes statements such as CREATE, ALTER, and
DROP. DDL is almost completely vendor specific, but most products have at
least a similar syntax structure.

Another term we use often is CRUD, for create, read, update, and delete. Hiber-
nate generates all this SQL for you, for all CRUD operations and schema definition.
The translation is based on an org.hibernate.dialect.Dialect implementa-
tion—Hibernate comes bundled with dialects for all popular SQL database man-
agement systems. We encourage you to look at the source code of the dialect
you’re using; it’s not difficult to read. Once you’re more experienced with

Customizing SQL 351
Hibernate, you may even want to extend a dialect or write your own. For example,
to register a custom SQL function for use in HQL selects, you’d extend an existing
dialect with a new subclass and add the registration code—again, check the exist-
ing source code to find out more about the flexibility of the dialect system.

 On the other hand, you sometimes need more control than Hibernate APIs (or
HQL) provide, when you need to work on a lower level of abstraction. With Hiber-
nate you can override or completely replace all CRUD SQL statements that will be
executed. You can customize and extend all DDL SQL statements that define your
schema, if you rely on Hibernate’s automatic schema-export tool (you don’t have
to).

 Furthermore Hibernate allows you to get a plain JDBC Connection object at all
times through session.connection(). You should use this feature as a last resort,
when nothing else works or anything else would be more difficult than plain
JDBC. With the newest Hibernate versions, this is fortunately exceedingly rare,
because more and more features for typical stateless JDBC operations (bulk
updates and deletes, for example) are built-in, and many extension points for cus-
tom SQL already exist.

 This custom SQL, both DML and DDL, is the topic of this section. We start with
custom DML for create, read, update, and delete operations. Later, we integrate
stored database procedures to do the same work. Finally, we look at DDL customi-
zation for the automatic generation of a database schema and how you can create
a schema that represents a good starting point for the optimization work of a DBA.

 Note that at the time of writing this detailed customization of automatically
generated SQL isn’t available in annotations; hence, we use XML metadata exclu-
sively in the following examples. We expect that a future version of Hibernate
Annotations will include better support for SQL customization.

8.2.1 Writing custom CRUD statements

The first custom SQL you’ll write is used to load entities and collections. (Most of
the following code examples show almost the same SQL Hibernate executes by
default, without much customization—this helps you to understand the mapping
technique more quickly.)

Loading entities and collections with custom SQL
For each entity class that requires a custom SQL operation to load an instance, you
define a <loader> reference to a named query:

<class name="User" table="USERS">
 <id name="id" column="USER_ID"...

352 CHAPTER 8

Legacy databases and custom SQL
 <loader query-ref="loadUser"/>
 ...

</class>

The loadUser query can now be defined anywhere in your mapping metadata,
separate and encapsulated from its use. This is an example of a simple query that
retrieves the data for a User entity instance:

<sql-query name="loadUser">
 <return alias="u" class="User"/>
 select
 us.USER_ID as {u.id},
 us.FIRSTNAME as {u.firstname},
 us.LASTNAME as {u.lastname},
 us.USERNAME as {u.username},
 us."PASSWORD" as {u.password},
 us.EMAIL as {u.email},
 us.RANKING as {u.ranking},
 us.IS_ADMIN as {u.admin},
 us.CREATED as {u.created},
 us.HOME_STREET as {u.homeAddress.street},
 us.HOME_ZIPCODE as {u.homeAddress.zipcode},
 us.HOME_CITY as {u.homeAddress.city},
 us.DEFAULT_BILLING_DETAILS_ID as {u.defaultBillingDetails}
 from
 USERS us
 where
 us.USER_ID = ?
</sql-query>

As you can see, the mapping from column names to entity properties uses a sim-
ple aliasing. In a named loader query for an entity, you have to SELECT the follow-
ing columns and properties:

■ The primary key columns and primary key property or properties, if a com-
posite primary key is used.

■ All scalar properties, which must be initialized from their respective col-
umn(s).

■ All composite properties which must be initialized. You can address the
individual scalar elements with the following aliasing syntax: {entity-
alias.componentProperty.scalarProperty}.

■ All foreign key columns, which must be retrieved and mapped to the
respective many-to-one property. See the DEFAULT_BILLING_DETAILS_ID
example in the previous snippet.

Customizing SQL 353
■ All scalar properties, composite properties, and many-to-one entity refer-
ences that are inside a <join> element. You use an inner join to the
secondary table if all the joined properties are never NULL; otherwise, an
outer join is appropriate. (Note that this isn’t shown in the example.)

■ If you enable lazy loading for scalar properties, through bytecode instru-
mentation, you don’t need to load the lazy properties. See chapter 13, sec-
tion 13.1.6, “Lazy loading with interception.”

The {propertyName} aliases as shown in the previous example are not absolutely
necessary. If the name of a column in the result is the same as the name of a
mapped column, Hibernate can automatically bind them together.

 You can even call a mapped query by name in your application with ses-
sion.getNamedQuery("loadUser"). Many more things are possible with custom
SQL queries, but we’ll focus on basic SQL customization for CRUD in this section.
We come back to other relevant APIs in chapter 15, section 15.2, “Using native
SQL queries.”

 Let’s assume that you also want to customize the SQL that is used to load a col-
lection—for example, the items sold by a User. First, declare a loader reference
in the collection mapping:

<set name="items" inverse="true">
 <key column="SELLER_ID" not-null="true"/>
 <one-to-many class="Item"/>
 <loader query-ref="loadItemsForUser"/>
</set>

The named query loadItemsForUser looks almost the same as the entity loader:

<sql-query name="loadItemsForUser">
 <load-collection alias="i" role="User.items"/>
 select
 {i.*}
 from
 ITEM i
 where
 i.SELLER_ID = :id
</sql-query>

There are two major differences: One is the <load-collection> mapping from
an alias to a collection role; it should be self-explanatory. What is new in this query
is an automatic mapping from the SQL table alias ITEM i to the properties of all
items with {i.*}. You created a connection between the two by using the same
alias: the symbol i. Furthermore, you’re now using a named parameter, :id,

354 CHAPTER 8

Legacy databases and custom SQL
instead of a simple positional parameter with a question mark. You can use what-
ever syntax you prefer.

 Sometimes, loading an entity instance and a collection is better done in a sin-
gle query, with an outer join (the entity may have an empty collection, so you can’t
use an inner join). If you want to apply this eager fetch, don’t declare a loader ref-
erences for the collection. The entity loader takes care of the collection retrieval:

<sql-query name="loadUser">
 <return alias="u" class="User"/>
 <return-join alias="i" property="u.items"/>
 select
 {u.*}, {i.*}
 from
 USERS u
 left outer join ITEM i
 on u.USER_ID = i.SELLER_ID
 where
 u.USER_ID = ?
</sql-query>

Note how you use the <return-join> element to bind an alias to a collection
property of the entity, effectively linking both aliases together. Further note that
this technique also works if you’d like to eager-fetch one-to-one and many-to-one
associated entities in the original query. In this case, you may want an inner join if
the associated entity is mandatory (the foreign key can’t be NULL) or an outer join
if the target is optional. You can retrieve many single-ended associations eagerly in
one query; however, if you (outer-) join more than one collection, you create a
Cartesian product, effectively multiplying all collection rows. This can generate
huge results that may be slower than two queries. You’ll meet this limitation again
when we discuss fetching strategies in chapter 13.

 As mentioned earlier, you’ll see more SQL options for object loading later in
the book. We now discuss customization of insert, update, and delete operations,
to complete the CRUD basics.

Custom insert, update, and delete
Hibernate produces all trivial CRUD SQL at startup. It caches the SQL statements
internally for future use, thus avoiding any runtime cost of SQL generation for the
most common operations. You’ve seen how you can override the R of CRUD, so
let’s do the same for CUD.

 For each entity or collection, you can define custom CUD SQL statements
inside the <sql-insert>, <sql-delete>, and <sql-update> element, respectively:

Customizing SQL 355
 <class name="User" table="USERS">

 <id name="id" column="USER_ID"...

 ...

 <join table="BILLING_ADDRESS" optional="true">
 <key column="USER_ID"/>
 <component name="billingAddress" class="Address">
 <property ...
 </component>

 <sql-insert>
 insert into BILLING_ADDRESS
 (STREET, ZIPCODE, CITY, USER_ID)
 values (?, ?, ?, ?)
 </sql-insert>

 <sql-update>...</sql-update>

 <sql-delete>...</sql-delete>

 </join>

 <sql-insert>
 insert into USERS (FIRSTNAME, LASTNAME, USERNAME,
 "PASSWORD", EMAIL, RANKING, IS_ADMIN,
 CREATED, DEFAULT_BILLING_DETAILS_ID,
 HOME_STREET, HOME_ZIPCODE, HOME_CITY,
 USER_ID)
 values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
 </sql-insert>

 <sql-update>...</sql-update>

 <sql-delete>...</sql-delete>

</class>

This mapping example may look complicated, but it’s really simple. You have two
tables in a single mapping: the primary table for the entity, USERS, and the second-
ary table BILLING_ADDRESS from your legacy mapping earlier in this chapter.
Whenever you have secondary tables for an entity, you have to include them in
any custom SQL—hence the <sql-insert>, <sql-delete>, and <sql-update>
elements in both the <class> and the <join> sections of the mapping.

 The next issue is the binding of arguments for the statements. For CUD SQL
customization, only positional parameters are supported at the time of writing.
But what is the right order for the parameters? There is an internal order to how
Hibernate binds arguments to SQL parameters. The easiest way to figure out the
right SQL statement and parameter order is to let Hibernate generate one for

356 CHAPTER 8

Legacy databases and custom SQL
you. Remove your custom SQL from the mapping file, enable DEBUG logging for
the org.hibernate.persister.entity package, and watch (or search) the
Hibernate startup log for lines similar to these:

AbstractEntityPersister - Insert 0: insert into USERS (FIRSTNAME,
 LASTNAME, USERNAME, "PASSWORD", EMAIL, RANKING, IS_ADMIN,
 CREATED, DEFAULT_BILLING_DETAILS_ID, HOME_STREET, HOME_ZIPCODE,
 HOME_CITY, USER_ID) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
AbstractEntityPersister - Update 0: update USERS set
 FIRSTNAME=?, LASTNAME=?, "PASSWORD"=?, EMAIL=?, RANKING=?,
 IS_ADMIN=?, DEFAULT_BILLING_DETAILS_ID=?, HOME_STREET=?,
 HOME_ZIPCODE=?, HOME_CITY=? where USER_ID=?
...

You can now copy the statements you want to customize into your mapping file
and make the necessary changes. For more information on logging in Hibernate,
refer to “Enabling logging statistics” in chapter 2, in section 2.1.3.

 You’ve now mapped CRUD operations to custom SQL statements. On the other
hand, dynamic SQL isn’t the only way how you can retrieve and manipulate data.
Predefined and compiled procedures stored in the database can also be mapped
to CRUD operations for entities and collections.

8.2.2 Integrating stored procedures and functions

Stored procedures are common in database application development. Moving
code closer to the data and executing it inside the database has distinct advantages.

 First, you don’t have to duplicate functionality and logic in each program that
accesses the data. A different point of view is that a lot of business logic shouldn’t
be duplicated, so it can be applied all the time. This includes procedures that
guarantee the integrity of the data: for example, constraints that are too complex
to be implemented declaratively. You’ll usually also find triggers in a database that
has procedural integrity rules.

 Stored procedures have advantages for all processing on large amounts of
data, such as reporting and statistical analysis. You should always try to avoid mov-
ing large data sets on your network and between your database and application
servers, so a stored procedure is a natural choice for mass data operations. Or, you
can implement a complex data-retrieval operation that assembles data with sev-
eral queries before it passes the final result to the application client.

 On the other hand, you’ll often see (legacy) systems that implement even the
most basic CRUD operations with a stored procedure. As a variation of this, sys-
tems that don’t allow any direct SQL DML, but only stored procedure calls, also
had (and sometimes still have) their place.

Customizing SQL 357
 You may start integrating existing stored procedures for CRUD or for mass data
operations, or you may begin writing your own stored procedure first.

Writing a procedure
Programming languages for stored procedures are usually proprietary. Oracle
PL/SQL, a procedural dialect of SQL, is very popular (and available with variations
in other database products). Some databases even support stored procedures writ-
ten in Java. Standardizing Java stored procedures was part of the SQLJ effort,
which, unfortunately, hasn’t been successful.

 You’ll use the most common stored procedure systems in this section: Oracle
databases and PL/SQL. It turns out that stored procedures in Oracle, like so many
other things, are always different than you expect; we’ll tell you whenever some-
thing requires extra attention.

 A stored procedure in PL/SQL has to be created in the database catalog as
source code and then compiled. Let’s first write a stored procedure that can load
all User entities that match a particular criterion:

<database-object>
 <create>
 create or replace procedure SELECT_USERS_BY_RANK
 (
 OUT_RESULT out SYS_REFCURSOR,
 IN_RANK in int
) as
 begin
 open OUT_RESULT for
 select
 us.USER_ID as USER_ID,
 us.FIRSTNAME as FIRSTNAME,
 us.LASTNAME as LASTNAME,
 us.USERNAME as USERNAME,
 us."PASSWORD" as PASSWD,
 us.EMAIL as EMAIL,
 us.RANKING as RANKING,
 us.IS_ADMIN as IS_ADMIN,
 us.CREATED as CREATED,
 us.HOME_STREET as HOME_STREET,
 us.HOME_ZIPCODE as HOME_ZIPCODE,
 us.HOME_CITY as HOME_CITY,
 ba.STREET as BILLING_STREET,
 ba.ZIPCODE as BILLING_ZIPCODE,
 ba.CITY as BILLING_CITY,
 us.DEFAULT_BILLING_DETAILS_ID
 as DEFAULT_BILLING_DETAILS_ID
 from
 USERS us

358 CHAPTER 8

Legacy databases and custom SQL
 left outer join
 BILLING_ADDRESS ba
 on us.USER_ID = ba.USER_ID
 where
 us.RANKING >= IN_RANK;
 end;
 </create>
 <drop>
 drop procedure SELECT_USERS_BY_RANK
 </drop>
</database-object>

You embed the DDL for the stored procedure in a <database-object> element
for creation and removal. That way, Hibernate automatically creates and drops
the procedure when the database schema is created and updated with the
hbm2ddl tool. You could also execute the DDL by hand on your database catalog.
Keeping it in your mapping files (in whatever location seems appropriate, such as
in MyStoredProcedures.hbm.xml) is a good choice if you’re working on a nonleg-
acy system with no existing stored procedures. We’ll come back to other options
for the <database-object> mapping later in this chapter.

 As before, the stored procedure code in the example is straightforward: a join
query against the base tables (primary and secondary tables for the User class)
and a restriction by RANKING, an input argument to the procedure.

 You must observe a few rules for stored procedures mapped in Hibernate.
Stored procedures support IN and OUT parameters. If you use stored procedures
with Oracle’s own JDBC drivers, Hibernate requires that the first parameter of the
stored procedure is an OUT; and for stored procedures that are supposed to be
used for queries, the query result is supposed to be returned in this parameter. In
Oracle 9 or newer, the type of the OUT parameter has to be a SYS_REFCURSOR. In
older versions of Oracle, you must define your own reference cursor type first,
called REF CURSOR—examples can be found in Oracle product documentation.
All other major database management systems (and drivers for the Oracle DBMS
not from Oracle) are JDBC-compliant, and you can return a result directly in the
stored procedure without using an OUT parameter. For example, a similar proce-
dure in Microsoft SQL Server would look as follows:

create procedure SELECT_USERS_BY_RANK
 @IN_RANK int
 as
 select
 us.USER_ID as USER_ID,
 us.FIRSTNAME as FIRSTNAME,
 us.LASTNAME as LASTNAME,

Customizing SQL 359
 ...
 from
 USERS us
 where us.RANKING >= @IN_RANK

Let’s map this stored procedure to a named query in Hibernate.

Querying with a procedure
A stored procedure for querying is mapped as a regular named query, with some
minor differences:

<sql-query name="loadUsersByRank" callable="true">
 <return alias="u" class="User">
 <return-property name="id" column="USER_ID"/>
 <return-property name="firstname" column="FIRSTNAME"/>
 <return-property name="lastname" column="LASTNAME"/>
 <return-property name="username" column="USERNAME"/>
 <return-property name="password" column="PASSWD"/>
 <return-property name="email" column="EMAIL"/>
 <return-property name="ranking" column="RANKING"/>
 <return-property name="admin" column="IS_ADMIN"/>
 <return-property name="created" column="CREATED"/>
 <return-property name="homeAddress">
 <return-column name="HOME_STREET"/>
 <return-column name="HOME_ZIPCODE"/>
 <return-column name="HOME_CITY"/>
 </return-property>
 <return-property name="billingAddress">
 <return-column name="BILLING_STREET"/>
 <return-column name="BILLING_ZIPCODE"/>
 <return-column name="BILLING_CITY"/>
 </return-property>
 <return-property name="defaultBillingDetails"
 column="DEFAULT_BILLING_DETAILS_ID"/>
 </return>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

The first difference, compared to a regular SQL query mapping, is the call-
able="true" attribute. This enables support for callable statements in Hibernate
and correct handling of the output of the stored procedure. The following map-
pings bind the column names returned in the procedures result to the properties
of a User object. One special case needs extra consideration: If multicolumn
properties, including components (homeAddress), are present in the class, you
need to map their columns in the right order. For example, the homeAddress
property is mapped as a <component> with three properties, each to its own

360 CHAPTER 8

Legacy databases and custom SQL
column. Hence, the stored procedure mapping includes three columns bound to
the homeAddress property.

 The call of the stored procedure prepares one OUT (the question mark) and a
named input parameter. If you aren’t using the Oracle JDBC drivers (other driv-
ers or a different DBMS), you don’t need to reserve the first OUT parameter; the
result can be returned directly from the stored procedure.

 Look at the regular class mapping of the User class. Notice that the column
names returned by the procedure in this example are the same as the column
names you already mapped. You can omit the binding of each property and let
Hibernate take care of the mapping automatically:

<sql-query name="loadUsersByRank" callable="true">
 <return class="User"/>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

The responsibility for returning the correct columns, for all properties and for-
eign key associations of the class with the same names as in the regular mappings,
is now moved into the stored procedure code. Because you have aliases in the
stored procedure already (select ... us.FIRSTNAME as FIRSTNAME...), this is
straightforward. Or, if only some of the columns returned in the result of the pro-
cedure have different names than the ones you mapped already as your proper-
ties, you only need to declare these:

<sql-query name="loadUsersByRank" callable="true">
 <return class="User">
 <return-property name="firstname" column="FNAME"/>
 <return-property name="lastname" column="LNAME"/>
 </return>
 { call SELECT_USERS_BY_RANK(?, :rank) }
</sql-query>

Finally, let’s look at the call of the stored procedure. The syntax you’re using
here, { call PROCEDURE() }, is defined in the SQL standard and portable. A non-
portable syntax that works for Oracle is begin PROCEDURE(); end;. It’s recom-
mended that you always use the portable syntax. The procedure has two
parameters. As explained, the first is reserved as an output parameter, so you use a
positional parameter symbol (?). Hibernate takes care of this parameter if you
configured a dialect for an Oracle JDBC driver. The second is an input parameter
you have to supply when executing the call. You can either use only positional
parameters or mix named and positional parameters. We prefer named parame-
ters for readability.

Customizing SQL 361
 Querying with this stored procedure in the application looks like any other
named query execution:

Query q = session.getNamedQuery("loadUsersByRank");
q.setParameter("rank", 12);
List result = q.list();

At the time of writing, mapped stored procedures can be enabled as named que-
ries, as you did in this section, or as loaders for an entity, similar to the loadUser
example you mapped earlier.

 Stored procedures can not only query and load data, but also manipulate data.
The first use case for this is mass data operations, executed in the database tier.
You shouldn’t map this in Hibernate but should execute it with plain JDBC: ses-
sion.connection().prepareCallableStatement(); and so on. The data-manip-
ulation operations you can map in Hibernate are the creation, deletion, and
update of an entity object.

Mapping CUD to a procedure
Earlier, you mapped <sql-insert>, <sql-delete>, and <sql-update> elements
for a class to custom SQL statements. If you’d like to use stored procedures for
these operations, change the mapping to callable statements:

<class name="User">
 ...

 <sql-update callable="true" check="none">
 { call UPDATE_USER(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) }
 </sql-update>

</class>

With the current version of Hibernate, you have the same problem as before: the
binding of values to the positional parameters. First, the stored procedure must
have the same number of input parameters as expected by Hibernate (enable the
SQL log as shown earlier to get a generated statement you can copy and paste).
The parameters again must be in the same order as expected by Hibernate.

 Consider the check="none" attribute. For correct (and, if you enabled it) opti-
mistic locking, Hibernate needs to know whether this custom update operation
was successful. Usually, for dynamically generated SQL, Hibernate looks at the
number of updated rows returned from an operation. If the operation didn’t or
couldn’t update any rows, an optimistic locking failure occurs. If you write your
own custom SQL operation, you can customize this behavior as well.

 With check="none", Hibernate expects your custom procedure to deal inter-
nally with failed updates (for example, by doing a version check of the row that

362 CHAPTER 8

Legacy databases and custom SQL
needs to be updated) and expects your procedure to throw an exception if some-
thing goes wrong. In Oracle, such a procedure is as follows:

<database-object>
 <create>
 create or replace procedure UPDATE_USER
 (IN_FIRSTNAME in varchar,
 IN_LASTNAME in varchar,
 IN_PASSWORD in varchar,
 ...
)
 as
 rowcount INTEGER;
 begin

 update USERS set
 FIRSTNAME = IN_FIRSTNAME,
 LASTNAME = IN_LASTNAME,
 "PASSWORD" = IN_PASSWORD,
 where
 OBJ_VERSION = ...;

 rowcount := SQL%ROWCOUNT;
 if rowcount != 1 then
 RAISE_APPLICATION_ERROR(-20001, 'Version check failed');
 end if;

 end;

 </create>
 <drop>
 drop procedure UPDATE_USER
 </drop>
</database-object>

The SQL error is caught by Hibernate and converted into an optimistic locking
exception you can then handle in application code. Other options for the check
attribute are as follows:

■ If you enable check="count", Hibernate checks the number of modified
rows using the plain JDBC API. This is the default and used when you write
dynamic SQL without stored procedures.

■ If you enable check="param", Hibernate reserves an OUT parameter to get
the return value of the stored procedure call. You need to add an additional
question mark to your call and, in your stored procedure, return the row
count of your DML operation on this (first) OUT parameter. Hibernate then
validates the number of modified rows for you.

Customizing SQL 363
Mappings for insertion and deletion are similar; all of these must declare how
optimistic lock checking is performed. You can copy a template from the Hiber-
nate startup log to get the correct order and number of parameters.

 Finally, you can also map stored functions in Hibernate. They have slightly dif-
ferent semantics and use cases.

Mapping stored functions
A stored function only has input parameters—no output parameters. However, it
can return a value. For example, a stored function can return the rank of a user:

<database-object>
 <create>
 create or replace function GET_USER_RANK
 (IN_USER_ID int)
 return int is
 RANK int;
 begin
 select
 RANKING
 into
 RANK
 from
 USERS
 where
 USER_ID = IN_USER_ID;

 return RANK;
 end;
 </create>
 <drop>
 drop function GET_USER_RANK
 </drop>
</database-object>

This function returns a scalar number. The primary use case for stored functions
that return scalars is embedding a call in regular SQL or HQL queries. For exam-
ple, you can retrieve all users who have a higher rank than a given user:

String q = "from User u where u.ranking > get_user_rank(:userId)";
List result = session.createQuery(q)
 .setParameter("userId", 123)
 .list();

This query is in HQL; thanks to the pass-through functionality for function calls in
the WHERE clause (not in any other clause though), you can call any stored func-
tion in your database directly. The return type of the function should match the

364 CHAPTER 8

Legacy databases and custom SQL
operation: in this case, the greater-than comparison with the ranking property,
which is also numeric.

 If your function returns a resultset cursor, as in previous sections, you can
even map it as a named query and let Hibernate marshal the resultset into an
object graph.

 Finally, remember that stored procedures and functions, especially in legacy
databases, sometimes can’t be mapped in Hibernate; in such cases you have to fall
back to plain JDBC. Sometimes you can wrap a legacy stored procedure with
another stored procedure that has the parameter interface expected by Hiber-
nate. There are too many varieties and special cases to be covered in a generic
mapping tool. However, future versions of Hibernate will improve mapping capa-
bilities—we expect better handling of parameters (no more counting of question
marks) and support for arbitrary input and output arguments to be available in
the near future.

 You’ve now completed customization of runtime SQL queries and DML. Let’s
switch perspective and customize the SQL used for the creation and modification
of the database schema, the DDL.

8.3 Improving schema DDL

Customizing the DDL in your Hibernate application is something you’ll usually
consider only when you generate the database schema with Hibernate’s toolset.
If a schema already exists, such customizations won’t affect the runtime behavior
of Hibernate.

 You can export DDL to a text file or execute it directly on your database
whenever you run your integration tests. Because DDL is mostly vendor-specific,
every option you put in your mapping metadata has the potential to bind the
metadata to a particular database product—keep this in mind when applying the
following features.

 We separate DDL customization into two categories:

■ Naming automatically generated database objects, such as tables, columns,
and constraints explicitly in mapping metadata, instead of relying on the
automatic naming derived from the Java class and property names by Hiber-
nate. We already discussed the built-in mechanism and options for quoting
and extending names in chapter 4, section 4.3.5, “Quoting SQL identifiers.”
We next look at other options you can enable to beautify your generated
DDL scripts.

Improving schema DDL 365
■ Handling additional database objects, such as indexes, constraints, and
stored procedures in your mapping metadata. Earlier in this chapter, you
added arbitrary CREATE and DROP statements to XML mapping files with the
<database-object> element. You can also enable the creation of indexes
and constraints with additional mapping elements inside the regular class
and property mappings.

8.3.1 Custom SQL names and datatypes

In listing 8.1, you add attributes and elements to the mapping of the Item class.

<class name="Item" table="ITEMS">

 <id name="id" type="string">
 <column name="ITEM_ID" sql-type="char(32)"/>
 <generator class="uuid"/>
 </id>

 <property name="initialPrice" type="big_decimal">
 <column name="INIT_PRICE"
 not-null="true"
 precision="10"
 scale="2"/>
 </property>

 <property name="description" type="string"
 column="ITM_DESCRIPTION" length="4000"/>

 <set name="categories" table="CATEGORY_ITEM" cascade="none">
 <key>
 <column name="ITEM_ID" sql-type="char(32)"/>
 </key>
 <many-to-many class="Category">
 <column name="CATEGORY_ID" sql-type="char(32)”/>
 </many-to-many>
 </set>

 ...

</class>

The hbm2ddl exporter generates a VARCHAR typed column if a property (even the
identifier property) is of mapping type string. You know that the identifier gen-
erator uuid always generates 32-character strings; therefore you switch to a CHAR
SQL type and also set its size fixed at 32 characters. The <column> element is

Listing 8.1 Additional elements in the Item mapping for hbm2ddl

B

C

D

E

B

366 CHAPTER 8

Legacy databases and custom SQL
required for this declaration, because no attribute supports the SQL datatype on
the <id> element.

For decimal types, you can declare the precision and scale. This example creates
the column as INIT_PRICE number(10,2) on an Oracle dialect; however, for data-
bases that don’t support types with decimal precision, a simple INIT_PRICE
numeric (this is in HSQL) is produced.

For the description field, you add DDL attributes on the <property> element
instead of a nested <column> element. The DESCRIPTION column is generated as
VARCHAR(4000)—a limitation of a variable character field in an Oracle database
(in Oracle, it would be VARCHAR2(4000) in the DDL, but the dialect takes care
of this).

A <column> element can also be used to declare the foreign key fields in an associ-
ation mapping. Otherwise, the columns of your association table CATEGORY_ITEM
would be VARCHAR(32) instead of the more appropriate CHAR(32) type.

The same customization is possible in annotations, see listing 8.2.

@Entity
@Table(name = "ITEMS")
public class Item {

 @Id
 @Column(name = "ITEM_ID", columnDefinition = "char(32)")
 @GeneratedValue(generator = "hibernate-uuid.hex")
 @org.hibernate.annotations.GenericGenerator(
 name = "hibernate-uuid.hex",
 strategy = "uuid.hex"
)
 Private String id;

 @Column(name = "INIT_PRICE", nullable = false,
 precision = 10, scale = 2)
 BigDecimal initialPrice;

 @Column(name = "ITM_DESCRIPTION", length = 4000)
 Private String description;

 @ManyToMany
 @JoinTable(
 name = "CATEGORY_ITEM",
 joinColumns =
 { @JoinColumn(name = "ITEM_ID",
 columnDefinition = "char(32)")
 },
 inverseJoinColumns =

Listing 8.2 Additional annotations for customization of DDL export

C

D

E

Improving schema DDL 367
 { @JoinColumn(name = "CATEGORY_ID",
 columnDefinition = "char(32)")
 }
)
 Private Set<Category> categories = new HashSet<Category>();

 ...
}

You have to use one Hibernate extension to name the nonstandard identifier gen-
erator. All other customizations of the generated SQL DDL are done with annota-
tions of the JPA specification. One attribute deserves special attention: The
columnDefinition isn’t the same as sql-type in a Hibernate mapping file. It’s
more flexible: The JPA persistence provider appends the whole string after the
column name in the CREATE TABLE statement, as in ITEM_ID char(32).

 Customization of names and data types is the absolute minimum you should
consider. We recommend that you always improve the quality of your database
schema (and ultimately, the quality of the data that is stored) with the appropriate
integrity rules.

8.3.2 Ensuring data consistency

Integrity rules are an important part of your database schema. The most important
responsibility of your database is to protect your information and to guarantee that
it’s never in an inconsistent state. This is called consistency, and it’s part of the
ACID criteria commonly applied to transactional database management systems.

 Rules are part of your business logic, so you usually have a mix of business-
related rules implemented in your application code and in your database. Your
application is written so as to avoid any violation of the database rules. However,
it’s the job of the database management system to never allow any false (in the
business logic sense) information to be stored permanently—for example, if one
of the applications accessing the database has bugs. Systems that ensure integrity
only in application code are prone to data corruption and often degrade the qual-
ity of the database over time. Keep in mind that the primary purpose of most busi-
ness applications is to produce valuable business data in the long run.

 In contrast to ensuring data consistency in procedural (or object-oriented)
application code, database-management systems allow you to implement integrity
rules declaratively as part of your data schema. The advantages of declarative rules
include fewer possible errors in code and a chance for the database-management
system to optimize data access.

368 CHAPTER 8

Legacy databases and custom SQL
 We identify four levels of rules:

■ Domain constraint—A domain is (loosely speaking, and in the database
world) a datatype in a database. Hence, a domain constraint defines the
range of possible values a particular datatype can handle. For example, an
int datatype is usable for integer values. A char datatype can hold character
strings: for example, all characters defined in ASCII. Because we mostly use
datatypes that are built in to the database management system, we rely on
the domain constraints as defined by the vendor. If you create user-defined
datatypes (UDT), you’ll have to define their constraints. If they’re sup-
ported by your SQL database, you can use the (limited) support for custom
domains to add additional constraints for particular datatypes.

■ Column constraint—Restricting a column to hold values of a particular
domain is equivalent to adding a column constraint. For example, you
declare in DDL that the INITIAL_PRICE column holds values of the domain
MONEY, which internally uses the datatype number(10,2). You use the
datatype directly most of the time, without defining a domain first. A special
column constraint in an SQL database is NOT NULL.

■ Table constraint—An integrity rule that applies to a single row or several rows
is a table constraint. A typical declarative table constraints is UNIQUE (all
rows are checked for duplicate values). A sample rule affecting only a single
row is “end date of an auction must be later than the start date.”

■ Database constraint—If a rule applies to more than one table, it has database
scope. You should already be familiar with the most common database con-
straint, the foreign key. This rule guarantees the integrity of references
between rows, usually in separate tables, but not always (self-referencing for-
eign key constraints aren’t uncommon).

Most (if not all) SQL database-management systems support the mentioned levels
of constraints and the most important options in each. In addition to simple key-
words, such as NOT NULL and UNIQUE, you can usually also declare more complex
rules with the CHECK constraint that applies an arbitrary SQL expression. Still,
integrity constraints are one of the weak areas in the SQL standard, and solutions
from vendors can differ significantly.

 Furthermore, nondeclarative and procedural constraints are possible with
database triggers that intercept data-modification operations. A trigger can then
implement the constraint procedure directly or call an existing stored procedure.

Improving schema DDL 369
Like DDL for stored procedures, you can add trigger declarations to your
Hibernate mapping metadata with the <database-object> element for inclusion
in the generated DDL.

 Finally, integrity constraints can be checked immediately when a data-modifi-
cation statement is executed, or the check can be deferred until the end of a
transaction. The violation response in SQL databases is usually rejection, without
any possibility of customization.

 We now have a closer look at the implementation of integrity constraints.

8.3.3 Adding domains and column constraints

The SQL standard includes domains, which, unfortunately, not only are rather
limited but also are often not supported by the DBMS. If your system supports SQL
domains, you can use them to add constraints to datatypes:

create domain EMAILADDRESS as varchar
 constraint DOMAIN_EMAILADDRESS
 check (IS_EMAILADDRESS(value));

You can now use this domain identifier as a column type when creating a table:

create table USERS (
 ...
 USER_EMAIL EMAILADDRESS(255) not null,
 ...
);

The (relatively minor) advantage of domains in SQL is the abstraction of common
constraints into a single location. Domain constraints are always checked immedi-
ately when data is inserted and modified. To complete the previous example, you
also have to write the stored function IS_EMAILADDRESS (you can find many regu-
lar expressions to do this on the Web). Adding the new domain in a Hibernate
mapping is simple as an sql-type:

<property name="email" type="string">
 <column name="USER_EMAIL"
 length="255"
 not-null="true"
 sql-type="EMAILADDRESS"/>
</property>

With annotations, declare your own columnDefinition:

@Column(name = "USER_EMAIL", length = 255,
 columnDefinition = "EMAILADDRESS(255) not null")
String email;

370 CHAPTER 8

Legacy databases and custom SQL
If you want to create and drop the domain declaration automatically with the rest
of your schema, put it into a <database-object> mapping.

 SQL supports additional column constraints. For example, the business rules
allow only alphanumeric characters in user login names:

create table USERS (
 ...
 USERNAME varchar(16) not null
 check(regexp_like(USERNAME,'^[[:alpha:]]+$')),
 ...
);

You may not be able to use this expression in your DBMS unless it supports regular
expressions. Single-column check constraints are declared in Hibernate map-
pings on the <column> mapping element:

<property name="username" type="string">
 <column name="USERNAME"
 length="16"
 not-null="true"
 check="regexp_like(USERNAME,'^[[:alpha:]]+$')"/>
</property>

Check constraints in annotations are available only as a Hibernate extension:

@Column(name = "USERNAME", length = 16,
 nullable = false, unique = true)
@org.hibernate.annotations.Check(
 constraints = "regexp_like(USERNAME,'^[[:alpha:]]+$')"
)
private String username;

Note that you have a choice: Creating and using a domain or adding a single-col-
umn constraint has the same effect. In the long run, domains are usually easier to
maintain and more likely to avoid duplication.

 Let’s look at the next level of rules: single and multirow table constraints.

8.3.4 Table-level constraints

Imagine that you want to guarantee that a CaveatEmptor auction can’t end before
it started. You write the application code to prevent users from setting the start-
Date and endDate properties on an Item to wrong values. You can do this in the
user interface or in the setter methods of the properties. In the database schema,
you add a single-row table constraint:

create table ITEM (
 ...
 START_DATE timestamp not null,

Improving schema DDL 371
 END_DATE timestamp not null,
 ...
 check (START_DATE < END_DATE)
);

Table constraints are appended in the CREATE TABLE DDL and can contain arbi-
trary SQL expressions. You include the constraint expression in your Hibernate
mapping file on the <class> mapping element:

<class name="Item"
 table="ITEM"
 check="START_DATE < END_DATE">

Note that the < character must be escaped as < in XML. With annotations, you
need to add a Hibernate extension annotation to declare check constraints:

@Entity
@org.hibernate.annotations.Check(
 constraints = "START_DATE < END_DATE"
)
public class Item { ... }

Multirow table constraints can be implemented with more complex expressions.
You may need a subselect in the expression to do this, which may not be sup-
ported in your DBMS—check your product documentation first. However, there
are common multirow table constraints you can add directly as attributes in
Hibernate mappings. For example, you identify the login name of a User as
unique in the system:

<property name="username" type="string">
 <column name="USERNAME"
 length="16"
 not-null="true"
 check="regexp_like(USERNAME,'^[[:alpha:]]+$')"
 unique="true"/>
</property>

Unique constraint declaration is also possible in annotation metadata:

@Column(name = "USERNAME", length = 16, nullable = false,
 unique = true)
@org.hibernate.annotations.Check(
 constraints = "regexp_like(USERNAME,'^[[:alpha:]]+$')"
)
private String username;

And, of course, you can do this in JPA XML descriptors (there is no check con-
straint, however):

372 CHAPTER 8

Legacy databases and custom SQL
<entity class="auction.model.User" access="FIELD">
 <attributes>
 ...
 <basic name="username">
 <column name="USERNAME"
 length="16"
 nullable="false"
 unique="true"/>
 </basic>
 </attributes>
</entity>

The exported DDL includes the unique constraint:

create table USERS (
 ...
 USERNAME varchar(16) not null unique
 check(regexp_like(USERNAME,'^[[:alpha:]]+$')),
 ...
);

A unique constraint can also span several columns. For example, CaveatEmptor
supports a tree of nested Category objects. One of the business rules says that a
particular category can’t have the same name as any of its siblings. Hence, you
need a multicolumn multirow constraint that guarantees this uniqueness:

<class name="Category" table="CATEGORY">
 ...
 <property name="name">
 <column name="CAT_NAME"
 unique-key="unique_siblings"/>
 </property>

 <many-to-one name="parent" class="Category">
 <column name="PARENT_CATEGORY_ID"
 unique-key="unique_siblings"/>
 </many-to-one>
 ...
</class>

You assign an identifier to the constraint with the unique-key attribute so you can
refer to it several times in one class mapping and group columns for the same
constraint. However, the identifier isn’t used in the DDL to name the constraint:

create table CATEGORY (
 ...
 CAT_NAME varchar(255) not null,
 PARENT_CATEGORY_ID integer,
 ...
 unique (CAT_NAME, PARENT_CATEGORY_ID)
);

Improving schema DDL 373
If you want to create a unique constraint with annotations that spans several col-
umns, you need to declare it on the entity, not on a single column:

@Entity
@Table(name = "CATEGORY",
 uniqueConstraints = {
 @UniqueConstraint(columnNames =
 {"CAT_NAME", "PARENT_CATEGORY_ID"})
 }
)
public class Category { ... }

With JPA XML descriptors, multicolumn constraints are as follows:

<entity class="Category" access="FIELD">
 <table name="CATEGORY">
 <unique-constraint>
 <column-name>CAT_NAME</column-name>
 <column-name>PARENT_CATEGORY_ID</column-name>
 </unique-constraint>
 </table>
...

Completely custom constraints, including an identifier for the database catalog,
can be added to your DDL with the <database-object> element:

<database-object>
 <create>
 alter table CATEGORY add constraint UNIQUE_SIBLINGS
 unique (CAT_NAME, PARENT_CATEGORY_ID);
 </create>
 <drop>
 drop constraint UNIQUE_SIBLINGS
 </drop>
</database-object>

This functionality isn’t available in annotations. Note that you can add a Hiber-
nate XML metadata file with all your custom database DDL objects in your annota-
tion-based application.

 Finally, the last category of constraints includes database-wide rules that span
several tables.

8.3.5 Database constraints

You can create a rule that spans several tables with a join in a subselect in any
check expression. Instead of referring only to the table on which the constraint is
declared, you may query (usually for the existence or nonexistence of a particular
piece of information) a different table.

374 CHAPTER 8

Legacy databases and custom SQL
 Another technique to create a database-wide constraint uses custom triggers
that run on insertion or update of rows in particular tables. This is a procedural
approach that has the already-mentioned disadvantages but is inherently flexible.

 By far the most common rules that span several tables are referential integrity
rules. They’re widely known as foreign keys, which are a combination of two
things: a key value copy from a related row and a constraint that guarantees that
the referenced value exists. Hibernate creates foreign key constraints automati-
cally for all foreign key columns in association mappings. If you check the DDL
produced by Hibernate, you may notice that these constraints also have automati-
cally generated database identifiers—names that aren’t easy to read and that
make debugging more difficult:

alter table ITEM add constraint FK1FF7F1F09FA3CB90
 foreign key (SELLER_ID) references USERS;

This DDL declares the foreign key constraint for the SELLER_ID column in the
ITEM table. It references the primary key column of the USERS table. You can cus-
tomize the name of the constraint in the <many-to-one> mapping of the Item
class with the foreign-key attribute:

<many-to-one name="seller"
 class="User"
 column="SELLER_ID"
 foreign-key="FK_SELLER_ID"/>

With annotations, use a Hibernate extension:

@ManyToOne
@JoinColumn(name = "SELLER_ID")
@org.hibernate.annotations.ForeignKey(name = "FK_SELLER_ID")
private User seller;

And a special syntax is required for foreign keys created for a many-to-many
association:

@ManyToMany
@JoinTable(...)
@org.hibernate.annotations.ForeignKey(
 name = "FK_CATEGORY_ID",
 inverseName = "FK_ITEM_ID"
)
private Set<Category> categories...

If you want to automatically generate DDL that isn’t distinguishable from what a
human DBA would write, customize all your foreign key constraints in all your
mapping metadata. Not only is this good practice, but it also helps significantly

Improving schema DDL 375
when you have to read exception messages. Note that the hbm2ddl exporter con-
siders constraint names only for foreign keys that have been set on the noninverse
side of a bidirectional association mapping.

 Foreign key constraints also have features in SQL that your legacy schema may
already utilize. Instead of immediately rejecting a modification of data that would
violate a foreign key constraint, an SQL database can CASCADE the change to the
referencing rows. For example, if a row that is considered a parent is deleted, all
child rows with a foreign key constraint on the primary key of the parent row may
be deleted as well. If you have or want to use these database-level cascading
options, enable them in your foreign key mapping:

<class name="Item" table="ITEM">
 ...
 <set name="bids" cascade="save-update, delete">
 <key column="ITEM_ID" on-delete="cascade"/>
 <one-to-many class="Bid"/>
 </set>

</class>

Hibernate now creates and relies on a database-level ON CASCADE DELETE option
of the foreign key constraint, instead of executing many individual DELETE state-
ments when an Item instance is deleted and all bids have to be removed. Be
aware that this feature bypasses Hibernate’s usual optimistic locking strategy for
versioned data!

 Finally, unrelated to integrity rules translated from business logic, database
performance optimization is also part of your typical DDL customization effort.

8.3.6 Creating indexes

Indexes are a key feature when optimizing the performance of a database applica-
tion. The query optimizer in a database-management system can use indexes to
avoid excessive scans of the data tables. Because they’re relevant only in the physi-
cal implementation of a database, indexes aren’t part of the SQL standard, and
the DDL and available indexing options are specific for a particular product. How-
ever, the most common DDL for typical indexes can be embedded in a Hibernate
mapping (that is, without the generic <database-object> element).

 Many queries in CaveatEmptor will probably involve the endDate property of
an auction Item. You can speed up these queries by creating an index for the col-
umn of this property:

<property name="endDate"
 column="END_DATE"

376 CHAPTER 8

Legacy databases and custom SQL
 type="timestamp"
 index="IDX_END_DATE"/>

The automatically produced DDL now includes an additional statement:

create index IDX_END_DATE on ITEM (END_DATE);

The same functionality is available with annotations, as a Hibernate extension:

@Column(name = "END_DATE", nullable = false, updatable = false)
@org.hibernate.annotations.Index(name = "IDX_END_DATE")
private Date endDate;

You can create a multicolumn index by setting the same identifier on several
property (or column) mappings. Any other index option, such as UNIQUE INDEX
(which creates an additional multirow table-level constraint), the indexing
method (common are btree, hash, and binary), and any storage clause (for
example, to create the index in a separate tablespace) can be set only in com-
pletely custom DDL with <database-object>.

 A multicolumn index with annotations is defined at the entity level, with a cus-
tom Hibernate annotation that applies additional attributes to table mapping:

@Entity
@Table(name="ITEMS")
@org.hibernate.annotations.Table(
 appliesTo = "ITEMS", indexes =
 @org.hibernate.annotations.Index(
 name = "IDX_INITIAL_PRICE",
 columnNames = { "INITIAL_PRICE", "INITIAL_PRICE_CURRENCY" }
)
)
public class Item { ... }

Note that @org.hibernate.annotations.Table isn’t a replacement for @javax.
perisistence.Table, so if you need to override the default table name, you still
need the regular @Table.

 We recommend that you get the excellent book SQL Tuning by Dan Tow (Tow,
2003) if you want to learn efficient database-optimization techniques and espe-
cially how indexes can get you closer to the best-performing execution plan for
your queries.

 One mapping we have shown a few times in this chapter is <database-
object>. It has some other options that we haven’t discussed yet.

8.3.7 Adding auxiliary DDL

Hibernate creates the basic DDL for your tables and constraints automatically; it
even creates sequences if you have a particular identifier generator. However,

Improving schema DDL 377
there is some DDL that Hibernate can’t create automatically. This includes all
kinds of highly vendor-specific performance options and any other DDL that is rel-
evant only for the physical storage of data (tablespaces, for example).

 One reason this kind of DDL has no mapping elements or annotations is that
there are too many variations and possibilities—nobody can or wants to maintain
more than 25 database dialects with all the possible combinations of DDL. A sec-
ond, much more important reason, is that you should always ask your DBA to
finalize your database schema. For example, did you know that indexes on foreign
key columns can hurt performance in some situations and therefore aren’t auto-
matically generated by Hibernate? We recommend that DBAs get involved early
and verify the automatically generated DDL from Hibernate.

 A common process, if you’re starting with a new application and new database,
is to generate DDL with Hibernate automatically during development; database
performance concerns shouldn’t and usually don’t play an important role at that
stage. At the same time (or later, during testing), a professional DBA verifies and
optimizes the SQL DDL and creates the final database schema. You can export the
DDL into a text file and hand it to your DBA.

 Or—and this is the option you’ve seen a few times already—you can add cus-
tomized DDL statements to your mapping metadata:

<database-object>
 <create>
 [CREATE statement]
 </create>
 <drop>
 [DROP statement]
 </drop>

 <dialect-scope name="org.hibernate.dialect.Oracle9Dialect"/>
 <dialect-scope name="org.hibernate.dialect.OracleDialect"/>

</database-object>

The <dialect-scope> elements restrict the custom CREATE or DROP statements to
a particular set of configured database dialects, which is useful if you’re deploying
on several systems and need different customizations.

 If you need more programmatic control over the generated DDL, imple-
ment the AuxiliaryDatabaseObject interface. Hibernate comes bundled with a
convenience implementation that you can subclass; you can then override meth-
ods selectively:

package auction.persistence;

import org.hibernate.mapping.*;

378 CHAPTER 8

Legacy databases and custom SQL
import org.hibernate.dialect.Dialect;
import org.hibernate.engine.Mapping;

public class CustomDDLExtension
 extends AbstractAuxiliaryDatabaseObject {

 public CustomDDLExtension() {
 addDialectScope("org.hibernate.dialect.Oracle9Dialect");
 }

 public String sqlCreateString(Dialect dialect,
 Mapping mapping,
 String defaultCatalog,
 String defaultSchema) {

 return "[CREATE statement]";
 }

 public String sqlDropString(Dialect dialect,
 String defaultCatalog,
 String defaultSchema) {

 return "[DROP statement]";
 }
}

You can add dialect scopes programmatically and even access some mapping
information in the sqlCreateString() and sqlDropString() methods. This
gives you a lot of flexibility regarding how you create and write your DDL state-
ments. You have to enable this custom class in your mapping metadata:

<database-object>
 <definition class="auction.persistence.CustomDDLExtension"/>
 <dialect-scope name="org.hibernate.dialect.OracleDialect"/>
</database-object>

Additional dialect scopes are cumulative; the previous examples all apply to two
dialects.

8.4 Summary

In this chapter, we looked at issues that you may run into when you have to deal
with a legacy database schema. Natural keys, composite keys, and foreign keys are
often inconvenient and need to be mapped with extra care. Hibernate also offers
formulas, little SQL expressions in your mapping file, that can help you to deal
with a legacy schema you can’t change.

 Usually, you also rely on Hibernate’s automatically generated SQL for all cre-
ate, read, update, and delete operations in your application. In this chapter,

Summary 379
you’ve learned how to customize this SQL with your own statements and how to
integrate Hibernate with stored procedures and stored functions.

 In the last section, we explored the generation of database schemas and how
you can customize and extend your mappings to include all kinds of constraints,
indexes, and arbitrary DDL that your DBA may recommend.

 Table 8.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

You now know everything (well, as much as we can show in a single book) there is
to know about mapping classes to schemas. In the next part of the book, we’ll dis-
cuss how to use the persistence manager APIs to load and store objects, how trans-
actions and conversations are implemented, and how to write queries.

Table 8.1 Hibernate and JPA comparison chart for chapter 8

Hibernate Core Java Persistence and EJB 3.0

Hibernate supports any kind of natural and com-
posite primary key, including foreign keys to natu-
ral keys, composite primary keys, and foreign
keys in composite primary keys.

Standardized support is provided for natural and
composite keys, equivalent to Hibernate.

Hibernate supports arbitrary association join con-
ditions with formula mappings and property refer-
ences.

No standard or annotation support is provided for
grouped property references at the time of writing.

Hibernate supports basic joins of secondary
tables for a particular entity class.

Standardized support is provided for secondary
tables and basic joins.

Hibernate supports trigger integration and
generated property settings.

Hibernate Annotations supports generated proper-
ties and trigger integration.

Hibernate lets you customize all SQL DML state-
ments with options in XML mapping metadata.

At the time of writing, no support is provided for
SQL DML customization with annotations.

Hibernate lets you customize SQL DDL for auto-
matic schema generation. Arbitrary SQL DDL
statements can be included in XML mapping
metadata.

JPA standardizes basic DDL declarations, but not
all features of the XML mapping metadata are sup-
ported with annotations.

Part 3

Conversational
object processing

In this part of the book, we explain how to work with persistent objects.
Chapter 9 shows you how to load and store objects with the Hibernate and
Java Persistence programming interfaces. Transactions and concurrency
control are another important topic, discussed in detail in chapter 10. We
then implement conversations in chapter 11 and show you how this con-
cept can improve the design of your system. Chapters 12 and 13 focus on
efficiency and how Hibernate features can make your life easier when you
have to load and modify large and complex datasets. Querying, query lan-
guages, and APIs are examined in detail in chapters 14 and 15. In
chapter 16, we bring it all together by designing and testing a layered appli-
cation with ORM persistence.

 After reading this part, you’ll know how to work with Hibernate and Java
Persistence programming interfaces and how to load, modify, and store
objects efficiently. You’ll understand how transactions work and why conver-
sational processing can open up new ways for application design. You’ll be
ready to optimize any object modification scenario, write complex queries,
and apply the best fetching and caching strategy to increase performance
and scalability.

Working with objects
This chapter covers
■ The lifecycle and states of objects
■ Working with the Hibernate API
■ Working with the Java Persistence API
383

384 CHAPTER 9

Working with objects
You now have an understanding of how Hibernate and ORM solve the static
aspects of the object/relational mismatch. With what you know so far, it’s possible
to solve the structural mismatch problem, but an efficient solution to the problem
requires something more. You must investigate strategies for runtime data access,
because they’re crucial to the performance of your applications. You basically
have learn how to control the state of objects.

 This and the following chapters cover the behavioral aspect of the object/rela-
tional mismatch. We consider these problems to be at least as important as the
structural problems discussed in previous chapters. In our experience, many
developers are only really aware of the structural mismatch and rarely pay atten-
tion to the more dynamic behavioral aspects of the mismatch.

 In this chapter, we discuss the lifecycle of objects—how an object becomes per-
sistent, and how it stops being considered persistent—and the method calls and
other actions that trigger these transitions. The Hibernate persistence manager,
the Session, is responsible for managing object state, so we discuss how to use this
important API. The main Java Persistence interface in EJB 3.0 is called EntityMan-
ager, and thanks to its close resemblance with Hibernate APIs, it will be easy to
learn alongside. Of course, you can skip quickly through this material if you aren’t
working with Java Persistence or EJB 3.0—we encourage you to read about both
options and then decide what is better for your application.

 Let’s start with persistent objects, their lifecycle, and the events which trigger a
change of persistent state. Although some of the material may be formal, a solid
understanding of the persistence lifecycle is essential.

9.1 The persistence lifecycle

Because Hibernate is a transparent persistence mechanism—classes are unaware
of their own persistence capability—it’s possible to write application logic that is
unaware whether the objects it operates on represent persistent state or tempo-
rary state that exists only in memory. The application shouldn’t necessarily need
to care that an object is persistent when invoking its methods. You can, for exam-
ple, invoke the calculateTotalPrice() business method on an instance of the
Item class without having to consider persistence at all; e.g., in a unit test.

 Any application with persistent state must interact with the persistence service
whenever it needs to propagate state held in memory to the database (or vice
versa). In other words, you have to call Hibernate (or the Java Persistence) inter-
faces to store and load objects.

The persistence lifecycle 385
 When interacting with the persistence mechanism in that way, it’s necessary for
the application to concern itself with the state and lifecycle of an object with
respect to persistence. We refer to this as the persistence lifecycle: the states an object
goes through during its life. We also use the term unit of work: a set of operations
you consider one (usually atomic) group. Another piece of the puzzle is the persis-
tence context provided by the persistence service. Think of the persistence context
as a cache that remembers all the modifications and state changes you made to
objects in a particular unit of work (this is somewhat simplified, but it’s a good
starting point).

 We now dissect all these terms: object and entity states, persistence contexts,
and managed scope. You’re probably more accustomed to thinking about what
statements you have to manage to get stuff in and out of the database (via JDBC and
SQL). However, one of the key factors of your success with Hibernate (and Java
Persistence) is your understanding of state management, so stick with us through
this section.

9.1.1 Object states

Different ORM solutions use different terminology and define different states and
state transitions for the persistence lifecycle. Moreover, the object states used
internally may be different from those exposed to the client application. Hiber-
nate defines only four states, hiding the complexity of its internal implementation
from the client code.

 The object states defined by Hibernate and their transitions in a state chart are
shown in figure 9.1. You can also see the method calls to the persistence manager
API that trigger transitions. This API in Hibernate is the Session. We discuss this
chart in this chapter; refer to it whenever you need an overview.

 We’ve also included the states of Java Persistence entity instances in figure 9.1.
As you can see, they’re almost equivalent to Hibernate’s, and most methods of the
Session have a counterpart on the EntityManager API (shown in italics). We say
that Hibernate is a superset of the functionality provided by the subset standardized
in Java Persistence.

 Some methods are available on both APIs; for example, the Session has a per-
sist() operation with the same semantics as the EntityManager’s counterpart.
Others, like load() and getReference(), also share semantics, with a different
method name.

 During its life, an object can transition from a transient object to a persistent
object to a detached object. Let’s explore the states and transitions in more detail.

386 CHAPTER 9

Working with objects
Transient objects
Objects instantiated using the new operator aren’t immediately persistent. Their
state is transient, which means they aren’t associated with any database table row
and so their state is lost as soon as they’re no longer referenced by any other
object. These objects have a lifespan that effectively ends at that time, and they
become inaccessible and available for garbage collection. Java Persistence doesn’t
include a term for this state; entity objects you just instantiated are new. We’ll con-
tinue to refer to them as transient to emphasize the potential for these instances to
become managed by a persistence service.

 Hibernate and Java Persistence consider all transient instances to be nontrans-
actional; any modification of a transient instance isn’t known to a persistence con-
text. This means that Hibernate doesn’t provide any roll-back functionality for
transient objects.

 Objects that are referenced only by other transient instances are, by default,
also transient. For an instance to transition from transient to persistent state, to
become managed, requires either a call to the persistence manager or the cre-
ation of a reference from an already persistent instance.

Persistent objects
A persistent instance is an entity instance with a database identity, as defined in chap-
ter 4, section 4.2, “Mapping entities with identity.” That means a persistent and

Figure 9.1 Object states and their transitions as triggered by persistence manager operations

The persistence lifecycle 387
managed instance has a primary key value set as its database identifier. (There are
some variations to when this identifier is assigned to a persistent instance.)

 Persistent instances may be objects instantiated by the application and then
made persistent by calling one of the methods on the persistence manager. They
may even be objects that became persistent when a reference was created from
another persistent object that is already managed. Alternatively, a persistent
instance may be an instance retrieved from the database by execution of a query,
by an identifier lookup, or by navigating the object graph starting from another
persistent instance.

 Persistent instances are always associated with a persistence context. Hibernate
caches them and can detect whether they have been modified by the application.

 There is much more to be said about this state and how an instance is man-
aged in a persistence context. We’ll get back to this later in this chapter.

Removed objects
You can delete an entity instance in several ways: For example, you can remove it
with an explicit operation of the persistence manager. It may also become avail-
able for deletion if you remove all references to it, a feature available only in
Hibernate or in Java Persistence with a Hibernate extension setting (orphan dele-
tion for entities).

 An object is in the removed state if it has been scheduled for deletion at the end
of a unit of work, but it’s still managed by the persistence context until the unit of
work completes. In other words, a removed object shouldn’t be reused because it
will be deleted from the database as soon as the unit of work completes. You
should also discard any references you may hold to it in the application (of
course, after you finish working with it—for example, after you’ve rendered the
removal-confirmation screen your users see).

Detached objects
To understand detached objects, you need to consider a typical transition of an
instance: First it’s transient, because it just has been created in the application.
Now you make it persistent by calling an operation on the persistence manager.
All of this happens in a single unit of work, and the persistence context for this
unit of work is synchronized with the database at some point (when an SQL
INSERT occurs).

 The unit of work is now completed, and the persistence context is closed. But
the application still has a handle: a reference to the instance that was saved. As
long as the persistence context is active, the state of this instance is persistent. At

388 CHAPTER 9

Working with objects
the end of a unit of work, the persistence context closes. What is the state of the
object you’re holding a reference to now, and what can you do with it?

 We refer to these objects as detached, indicating that their state is no longer
guaranteed to be synchronized with database state; they’re no longer attached to
a persistence context. They still contain persistent data (which may soon be stale).
You can continue working with a detached object and modify it. However, at some
point you probably want to make those changes persistent—in other words, bring
the detached instance back into persistent state.

 Hibernate offers two operations, reattachment and merging, to deal with this situ-
ation. Java Persistence only standardizes merging. These features have a deep
impact on how multitiered applications may be designed. The ability to return
objects from one persistence context to the presentation layer and later reuse
them in a new persistence context is a main selling point of Hibernate and Java
Persistence. It enables you to create long units of work that span user think-time.
We call this kind of long-running unit of work a conversation. We’ll get back to
detached objects and conversations soon.

 You should now have a basic understanding of object states and how transi-
tions occur. Our next topic is the persistence context and the management of
objects it provides.

9.1.2 The persistence context

You may consider the persistence context to be a cache of managed entity
instances. The persistence context isn’t something you see in your application; it
isn’t an API you can call. In a Hibernate application, we say that one Session has
one internal persistence context. In a Java Persistence application, an EntityMan-
ager has a persistence context. All entities in persistent state and managed in a
unit of work are cached in this context. We walk through the Session and
EntityManager APIs later in this chapter. Now you need to know what this (inter-
nal) persistence context is buying you.

 The persistence context is useful for several reasons:

■ Hibernate can do automatic dirty checking and transactional write-behind.

■ Hibernate can use the persistence context as a first-level cache.

■ Hibernate can guarantee a scope of Java object identity.

■ Hibernate can extend the persistence context to span a whole conversation.

All these points are also valid for Java Persistence providers. Let’s look at each
feature.

The persistence lifecycle 389
Automatic dirty checking
Persistent instances are managed in a persistence context—their state is synchro-
nized with the database at the end of the unit of work. When a unit of work com-
pletes, state held in memory is propagated to the database by the execution of
SQL INSERT, UPDATE, and DELETE statements (DML). This procedure may also
occur at other times. For example, Hibernate may synchronize with the database
before execution of a query. This ensures that queries are aware of changes made
earlier during the unit of work.

 Hibernate doesn’t update the database row of every single persistent object in
memory at the end of the unit of work. ORM software must have a strategy for
detecting which persistent objects have been modified by the application. We call
this automatic dirty checking. An object with modifications that have not yet been
propagated to the database is considered dirty. Again, this state isn’t visible to the
application. With transparent transaction-level write-behind, Hibernate propagates
state changes to the database as late as possible but hides this detail from the
application. By executing DML as late as possible (toward the end of the database
transaction), Hibernate tries to keep lock-times in the database as short as possi-
ble. (DML usually creates locks in the database that are held until the transac-
tion completes.)

 Hibernate is able to detect exactly which properties have been modified so that
it’s possible to include only the columns that need updating in the SQL UPDATE
statement. This may bring some performance gains. However, it’s usually not a sig-
nificant difference and, in theory, could harm performance in some environ-
ments. By default, Hibernate includes all columns of a mapped table in the SQL
UPDATE statement (hence, Hibernate can generate this basic SQL at startup, not at
runtime). If you want to update only modified columns, you can enable dynamic
SQL generation by setting dynamic-update="true" in a class mapping. The same
mechanism is implemented for insertion of new records, and you can enable
runtime generation of INSERT statements with dynamic-insert="true". We rec-
ommend you consider this setting when you have an extraordinarily large num-
ber of columns in a table (say, more than 50); at some point, the overhead
network traffic for unchanged fields will be noticeable.

 In rare cases, you may also want to supply your own dirty checking algorithm to
Hibernate. By default, Hibernate compares an old snapshot of an object with the
snapshot at synchronization time, and it detects any modifications that require an
update of the database state. You can implement your own routine by supplying a
custom findDirty() method with an org.hibernate.Interceptor for a Ses-
sion. We’ll show you an implementation of an interceptor later in the book.

390 CHAPTER 9

Working with objects
 We’ll also get back to the synchronization process (known as flushing) and
when it occurs later in this chapter.

The persistence context cache
A persistence context is a cache of persistent entity instances. This means it
remembers all persistent entity instances you’ve handled in a particular unit of
work. Automatic dirty checking is one of the benefits of this caching. Another
benefit is repeatable read for entities and the performance advantage of a unit of
work-scoped cache.

 For example, if Hibernate is told to load an object by primary key (a lookup by
identifier), it can first check the persistence context for the current unit of work.
If the entity is found there, no database hit occurs—this is a repeatable read for
an application. The same is true if a query is executed through one of the Hiber-
nate (or Java Persistence) interfaces. Hibernate reads the result set of the query
and marshals entity objects that are then returned to the application. During this
process, Hibernate interacts with the current persistence context. It tries to
resolve every entity instance in this cache (by identifier); only if the instance can’t
be found in the current persistence context does Hibernate read the rest of the
data from the result set.

 The persistence context cache offers significant performance benefits and
improves the isolation guarantees in a unit of work (you get repeatable read of
entity instances for free). Because this cache only has the scope of a unit of work,
it has no real disadvantages, such as lock management for concurrent access—a
unit of work is processed in a single thread at a time.

 The persistence context cache sometimes helps avoid unnecessary database
traffic; but, more important, it ensures that:

■ The persistence layer isn’t vulnerable to stack overflows in the case of circu-
lar references in a graph of objects.

■ There can never be conflicting representations of the same database row at
the end of a unit of work. In the persistence context, at most a single object
represents any database row. All changes made to that object may be safely
written to the database.

■ Likewise, changes made in a particular persistence context are always imme-
diately visible to all other code executed inside that persistence context and
its unit of work (the repeatable read for entities guarantee).

You don’t have to do anything special to enable the persistence context cache. It’s
always on and, for the reasons shown, can’t be turned off.

Object identity and equality 391
 Later in this chapter, we’ll show you how objects are added to this cache (basi-
cally, whenever they become persistent) and how you can manage this cache (by
detaching objects manually from the persistence context, or by clearing the per-
sistence context).

 The last two items on our list of benefits of a persistence context, the guaran-
teed scope of identity and the possibility to extend the persistence context to span
a conversation, are closely related concepts. To understand them, you need to take
a step back and consider objects in detached state from a different perspective.

9.2 Object identity and equality

A basic Hibernate client/server application may be designed with server-side units
of work that span a single client request. When a request from the application
user requires data access, a new unit of work is started. The unit of work ends
when processing is complete and the response for the user is ready. This is also
called the session-per-request strategy (you can replace the word session with persis-
tence context whenever you read something like this, but it doesn’t roll off the
tongue as well).

 We already mentioned that Hibernate can support an implementation of a
possibly long-running unit of work, called a conversation. We introduce the con-
cept of conversations in the following sections as well as the fundamentals of
object identity and when objects are considered equal—which can impact how
you think about and design conversations.

 Why is the concept of a conversation useful?

9.2.1 Introducing conversations

For example, in web applications, you don’t usually maintain a database transac-
tion across a user interaction. Users take a long time to think about modifica-
tions, but, for scalability reasons, you must keep database transactions short and
release database resources as soon as possible. You’ll likely face this issue when-
ever you need to guide the user through several screens to complete a unit of
work (from the user’s perspective)—for example, to fill an online form. In this
common scenario, it’s extremely useful to have the support of the persistence ser-
vice, so you can implement such a conversation with a minimum of coding and
best scalability.

 Two strategies are available to implement a conversation in a Hibernate or Java
Persistence application: with detached objects or by extending a persistence con-
text. Both have strength and weaknesses.

392 CHAPTER 9

Working with objects
The detached object state and the already mentioned features of reattachment or
merging are ways to implement a conversation. Objects are held in detached state
during user think-time, and any modification of these objects is made persistent
manually through reattachment or merging. This strategy is also called session-per-
request-with-detached-objects. You can see a graphical illustration of this conversation
pattern in figure 9.2.

 A persistence context only spans the processing of a particular request, and
the application manually reattaches and merges (and sometimes detaches) entity
instances during the conversation.

 The alternative approach doesn’t require manual reattachment or merging:
With the session-per-conversation pattern, you extend a persistence context to span
the whole unit of work (see figure 9.3).

 First we have a closer look at detached objects and the problem of identity
you’ll face when you implement a conversation with this strategy.

Figure 9.2 Conversation implementation with detached object state

Figure 9.3 Conversation implementation with an extended persistence context

Object identity and equality 393
9.2.2 The scope of object identity

As application developers, we identify an object using Java object identity (a==b).
If an object changes state, is the Java identity guaranteed to be the same in the
new state? In a layered application, that may not be the case.

 In order to explore this, it’s extremely important to understand the relation-
ship between Java identity, a==b, and database identity, x.getId().equals(
y.getId()). Sometimes they’re equivalent; sometimes they aren’t. We refer to
the conditions under which Java identity is equivalent to database identity as the
scope of object identity.

 For this scope, there are three common choices:

■ A primitive persistence layer with no identity scope makes no guarantees
that if a row is accessed twice the same Java object instance will be
returned to the application. This becomes problematic if the application
modifies two different instances that both represent the same row in a sin-
gle unit of work. (How should we decide which state should be propa-
gated to the database?)

■ A persistence layer using persistence context-scoped identity guarantees that, in
the scope of a single persistence context, only one object instance repre-
sents a particular database row. This avoids the previous problem and also
allows for some caching at the context level.

■ Process-scoped identity goes one step further and guarantees that only one
object instance represents the row in the whole process (JVM).

For a typical web or enterprise application, persistence context-scoped identity is
preferred. Process-scoped identity does offer some potential advantages in terms
of cache utilization and the programming model for reuse of instances across
multiple units of work. However, in a pervasively multithreaded application, the
cost of always synchronizing shared access to persistent objects in the global iden-
tity map is too high a price to pay. It’s simpler, and more scalable, to have each
thread work with a distinct set of persistent instances in each persistence context.

 We would say that Hibernate implements persistence context-scoped iden-
tity. So, by nature, Hibernate is best suited for highly concurrent data access in
multiuser applications. However, we already mentioned some issues you’ll face
when objects aren’t associated with a persistence context. Let’s discuss this with
an example.

 The Hibernate identity scope is the scope of a persistence context. Let’s see
how this works in code with Hibernate APIs—the Java Persistence code is the

394 CHAPTER 9

Working with objects
equivalent with EntityManager instead of Session. Even though we haven’t
shown you much about these interfaces, the following examples are simple, and
you should have no problems understanding the methods we call on the Session.

 If you request two objects using the same database identifier value in the same
Session, the result is two references to the same in-memory instance. Listing 9.1
demonstrates this with several get() operations in two Sessions.

Session session1 = sessionFactory.openSession();
Transaction tx1 = session1.beginTransaction();

// Load Item with identifier value "1234"
Object a = session1.get(Item.class, new Long(1234));
Object b = session1.get(Item.class, new Long(1234));

(a==b) // True, persistent a and b are identical

tx1.commit();
session1.close();

// References a and b are now to an object in detached state

Session session2 = sessionFactory.openSession();
Transaction tx2 = session2.beginTransaction();

Object c = session2.get(Item.class, new Long(1234));

(a==c) // False, detached a and persistent c are not identical

tx2.commit();
session2.close();

Object references a and b have not only the same database identity, but also the
same Java identity, because they’re obtained in the same Session. They reference
the same persistent instance known to the persistence context for that unit of
work. Once you’re outside this boundary, however, Hibernate doesn’t guarantee
Java identity, so a and c aren’t identical. Of course, a test for database identity,
a.getId().equals(c.getId()), will still return true.

 If you work with objects in detached state, you’re dealing with objects that are
living outside of a guaranteed scope of object identity.

9.2.3 The identity of detached objects

If an object reference leaves the scope of guaranteed identity, we call it a reference
to a detached object. In listing 9.1, all three object references, a, b, and c, are equal if
we only consider database identity—their primary key value. However, they aren’t

Listing 9.1 The guaranteed scope of object identity in Hibernate

Object identity and equality 395
identical in-memory object instances. This can lead to problems if you treat them
as equal in detached state. For example, consider the following extension of the
code, after session2 has ended:

...
session2.close();

Set allObjects = new HashSet();
allObjects.add(a);
allObjects.add(b);
allObjects.add(c);

All three references have been added to a Set. All are references to detached
objects. Now, if you check the size of the collection, the number of elements, what
result do you expect?

 First you have to realize the contract of a Java Set: No duplicate elements are
allowed in such a collection. Duplicates are detected by the Set; whenever you
add an object, its equals() method is called automatically. The added object is
checked against all other elements already in the collection. If equals() returns
true for any object already in the collection, the addition doesn’t occur.

 If you know the implementation of equals() for the objects, you can find out
the number of elements you can expect in the Set. By default, all Java classes
inherit the equals() method of java.lang.Object. This implementation uses a
double-equals (==) comparison; it checks whether two references refer to the
same in-memory instance on the Java heap.

 You may guess that the number of elements in the collection is two. After all, a
and b are references to the same in-memory instance; they have been loaded in
the same persistence context. Reference c is obtained in a second Session; it
refers to a different instance on the heap. You have three references to two
instances. However, you know this only because you’ve seen the code that loaded
the objects. In a real application, you may not know that a and b are loaded in the
same Session and c in another.

 Furthermore, you obviously expect that the collection has exactly one ele-
ment, because a, b, and c represent the same database row.

 Whenever you work with objects in detached state, and especially if you test
them for equality (usually in hash-based collections), you need to supply your
own implementation of the equals() and hashCode() methods for your persis-
tent classes.

396 CHAPTER 9

Working with objects
Understanding equals() and hashCode()
Before we show you how to implement your own equality routine. we have to
bring two important points to your attention. First, in our experience, many Java
developers never had to override the equals() and hashCode() methods before
using Hibernate (or Java Persistence). Traditionally, Java developers seem to be
unaware of the intricate details of such an implementation. The longest discus-
sion threads on the public Hibernate forum are about this equality problem, and
the “blame” is often put on Hibernate. You should be aware of the fundamental
issue: Every object-oriented programming language with hash-based collections
requires a custom equality routine if the default contract doesn’t offer the desired
semantics. The detached object state in a Hibernate application exposes you to
this problem, maybe for the first time.

 On the other hand, you may not have to override equals() and hashCode().
The identity scope guarantee provided by Hibernate is sufficient if you never com-
pare detached instances—that is, if you never put detached instances into the
same Set. You may decide to design an application that doesn’t use detached
objects. You can apply an extended persistence context strategy for your conversa-
tion implementation and eliminate the detached state from your application com-
pletely. This strategy also extends the scope of guaranteed object identity to span
the whole conversation. (Note that you still need the discipline to not compare
detached instances obtained in two conversations!)

 Let’s assume that you want to use detached objects and that you have to test
them for equality with your own routine. You can implement equals() and hash-
Code() several ways. Keep in mind that when you override equals(), you always
need to also override hashCode() so the two methods are consistent. If two objects
are equal, they must have the same hashcode.

 A clever approach is to implement equals() to compare just the database
identifier property (often a surrogate primary key) value:

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (id==null) return false;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 return this.id.equals(that.getId());
 }

 public int hashCode() {
 return id==null ?

Object identity and equality 397
 System.identityHashCode(this) :
 id.hashCode();
 }

}

Notice how this equals() method falls back to Java identity for transient instances
(if id==null) that don’t have a database identifier value assigned yet. This is rea-
sonable, because they can’t possibly be equal to a detached instance, which has an
identifier value.

 Unfortunately, this solution has one huge problem: Identifier values aren’t
assigned by Hibernate until an object becomes persistent. If a transient object is
added to a Set before being saved, its hash value may change while it’s contained
by the Set, contrary to the contract of java.util.Set. In particular, this problem
makes cascade save (discussed later in the book) useless for sets. We strongly dis-
courage this solution (database identifier equality).

 A better way is to include all persistent properties of the persistent class, apart
from any database identifier property, in the equals() comparison. This is how
most people perceive the meaning of equals(); we call it by value equality.

 When we say all properties, we don’t mean to include collections. Collection state
is associated with a different table, so it seems wrong to include it. More important,
you don’t want to force the entire object graph to be retrieved just to perform
equals(). In the case of User, this means you shouldn’t include the boughtItems
collection in the comparison. This is the implementation you can write:

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 if (!this.getUsername().equals(that.getUsername()))
 return false;
 if (!this.getPassword().equals(that.getPassword()))
 return false;
 return true;
 }

 public int hashCode() {
 int result = 14;
 result = 29 * result + getUsername().hashCode();
 result = 29 * result + getPassword().hashCode();
 return result;
 }

}

398 CHAPTER 9

Working with objects
However, there are again two problems with this approach. First, instances from
different Sessions are no longer equal if one is modified (for example, if the user
changes the password). Second, instances with different database identity
(instances that represent different rows of the database table) can be considered
equal unless some combination of properties is guaranteed to be unique (the
database columns have a unique constraint). In the case of user, there is a unique
property: username.

 This leads us to the preferred (and semantically correct) implementation of an
equality check. You need a business key.

Implementing equality with a business key
To get to the solution that we recommend, you need to understand the notion of
a business key. A business key is a property, or some combination of properties, that
is unique for each instance with the same database identity. Essentially, it’s the nat-
ural key that you would use if you weren’t using a surrogate primary key instead.
Unlike a natural primary key, it isn’t an absolute requirement that the business
key never changes—as long as it changes rarely, that’s enough.

 We argue that essentially every entity class should have some business key, even
if it includes all properties of the class (this would be appropriate for some
immutable classes). The business key is what the user thinks of as uniquely identi-
fying a particular record, whereas the surrogate key is what the application and
database use.

 Business key equality means that the equals() method compares only the prop-
erties that form the business key. This is a perfect solution that avoids all the prob-
lems described earlier. The only downside is that it requires extra thought to
identify the correct business key in the first place. This effort is required anyway;
it’s important to identify any unique keys if your database must ensure data integ-
rity via constraint checking.

 For the User class, username is a great candidate business key. It’s never null,
it’s unique with a database constraint, and it changes rarely, if ever:

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 return this.username.equals(that.getUsername());
 }

 public int hashCode() {

Object identity and equality 399
 return username.hashCode();
 }

}

For some other classes, the business key may be more complex, consisting of a
combination of properties. Here are some hints that should help you identify a
business key in your classes:

■ Consider what attributes users of your application will refer to when they
have to identify an object (in the real world). How do users tell the differ-
ence between one object and another if they’re displayed on the screen?
This is probably the business key you’re looking for.

■ Every attribute that is immutable is probably a good candidate for the busi-
ness key. Mutable attributes may be good candidates, if they’re updated
rarely or if you can control the situation when they’re updated.

■ Every attribute that has a UNIQUE database constraint is a good candidate for
the business key. Remember that the precision of the business key has to be
good enough to avoid overlaps.

■ Any date or time-based attribute, such as the creation time of the record, is
usually a good component of a business key. However, the accuracy of Sys-
tem.currentTimeMillis() depends on the virtual machine and operating
system. Our recommended safety buffer is 50 milliseconds, which may not
be accurate enough if the time-based property is the single attribute of a
business key.

■ You can use database identifiers as part of the business key. This seems to
contradict our previous statements, but we aren’t talking about the database
identifier of the given class. You may be able to use the database identifier
of an associated object. For example, a candidate business key for the Bid
class is the identifier of the Item it was made for together with the bid
amount. You may even have a unique constraint that represents this com-
posite business key in the database schema. You can use the identifier value
of the associated Item because it never changes during the lifecycle of a
Bid—setting an already persistent Item is required by the Bid constructor.

If you follow our advice, you shouldn’t have much difficulty finding a good busi-
ness key for all your business classes. If you have a difficult case, try to solve it with-
out considering Hibernate—after all, it’s purely an object-oriented problem.
Notice that it’s almost never correct to override equals() on a subclass and
include another property in the comparison. It’s a little tricky to satisfy the

400 CHAPTER 9

Working with objects
requirements that equality be both symmetric and transitive in this case; and,
more important, the business key may not correspond to any well-defined candi-
date natural key in the database (subclass properties may be mapped to a differ-
ent table).

 You may have also noticed that the equals() and hashCode() methods always
access the properties of the “other” object via the getter methods. This is
extremely important, because the object instance passed as other may be a proxy
object, not the actual instance that holds the persistent state. To initialize this
proxy to get the property value, you need to access it with a getter method. This is
one point where Hibernate isn’t completely transparent. However, it’s a good prac-
tice to use getter methods instead of direct instance variable access anyway.

 Let’s switch perspective now and consider an implementation strategy for con-
versations that doesn’t require detached objects and doesn’t expose you to any of
the problems of detached object equality. If the identity scope issues you’ll possi-
bly be exposed to when you work with detached objects seem too much of a bur-
den, the second conversation-implementation strategy may be what you’re
looking for. Hibernate and Java Persistence support the implementation of con-
versations with an extended persistence context: the session-per-conversation strategy.

9.2.4 Extending a persistence context

A particular conversation reuses the same persistence context for all interactions.
All request processing during a conversation is managed by the same persistence
context. The persistence context isn’t closed after a request from the user has
been processed. It’s disconnected from the database and held in this state during
user think-time. When the user continues in the conversation, the persistence
context is reconnected to the database, and the next request can be processed.
At the end of the conversation, the persistence context is synchronized with the
database and closed. The next conversation starts with a fresh persistence context
and doesn’t reuse any entity instances from the previous conversation; the pat-
tern is repeated.

 Note that this eliminates the detached object state! All instances are either tran-
sient (not known to a persistence context) or persistent (attached to a particular
persistence context). This also eliminates the need for manual reattachment or
merging of object state between contexts, which is one of the advantages of this
strategy. (You still may have detached objects between conversations, but we con-
sider this a special case that you should try to avoid.)

 In Hibernate terms, this strategy uses a single Session for the duration of the
conversation. Java Persistence has built-in support for extended persistence

The Hibernate interfaces 401
contexts and can even automatically store the disconnected context for you (in a
stateful EJB session bean) between requests.

 We’ll get back to conversations later in the book and show you all the details
about the two implementation strategies. You don’t have to choose one right
now, but you should be aware of the consequences these strategies have on object
state and object identity, and you should understand the necessary transitions in
each case.

 We now explore the persistence manager APIs and how you make the theory
behind object states work in practice.

9.3 The Hibernate interfaces

Any transparent persistence tool includes a persistence manager API. This persis-
tence manager usually provides services for the following:

■ Basic CRUD (create, retrieve, update, delete) operations

■ Query execution

■ Control of transactions

■ Management of the persistence context

The persistence manager may be exposed by several different interfaces. In the
case of Hibernate, these are Session, Query, Criteria, and Transaction. Under
the covers, the implementations of these interfaces are coupled tightly together.

 In Java Persistence, the main interface you interact with is the EntityManager;
it has the same role as the Hibernate Session. Other Java Persistence interfaces
are Query and EntityTransaction (you can probably guess what their counter-
part in native Hibernate is).

 We’ll now show you how to load and store objects with Hibernate and Java Per-
sistence. Sometimes both have exactly the same semantics and API, and even the
method names are the same. It’s therefore much more important to keep your
eyes open for little differences. To make this part of the book easier to under-
stand, we decided to use a different strategy than usual and explain Hibernate
first and then Java Persistence.

 Let’s start with Hibernate, assuming that you write an application that relies on
the native API.

402 CHAPTER 9

Working with objects
9.3.1 Storing and loading objects

In a Hibernate application, you store and load objects by essentially changing
their state. You do this in units of work. A single unit of work is a set of operations
considered an atomic group. If you’re guessing now that this is closely related to
transactions, you’re right. But, it isn’t necessarily the same thing. We have to
approach this step by step; for now, consider a unit of work a particular sequence
of state changes to your objects that you’d group together.

 First you have to begin a unit of work.

Beginning a unit of work
At the beginning of a unit of work, an application obtains an instance of Session
from the application’s SessionFactory:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

At this point, a new persistence context is also initialized for you, and it will man-
age all the objects you work with in that Session. The application may have multi-
ple SessionFactorys if it accesses several databases. How the SessionFactory is
created and how you get access to it in your application code depends on your
deployment environment and configuration—you should have the simple Hiber-
nateUtil startup helper class ready if you followed the setup in “Handling the
SessionFactory” in chapter 2, section 2.1.3.

 You should never create a new SessionFactory just to service a particular
request. Creation of a SessionFactory is extremely expensive. On the other
hand, Session creation is extremely inexpensive. The Session doesn’t even obtain
a JDBC Connection until a connection is required.

 The second line in the previous code begins a Transaction on another
Hibernate interface. All operations you execute inside a unit of work occur
inside a transaction, no matter if you read or write data. However, the Hibernate
API is optional, and you may begin a transaction in any way you like—we’ll
explore these options in the next chapter. If you use the Hibernate Transaction
API, your code works in all environments, so you’ll do this for all examples in the
following sections.

 After opening a new Session and persistence context, you use it to load and
save objects.

Making an object persistent
The first thing you want to do with a Session is make a new transient object per-
sistent with the save() method (listing 9.2).

The Hibernate interfaces 403
Item item = new Item();
item.setName("Playstation3 incl. all accessories");
item.setEndDate(...);

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Serializable itemId = session.save(item);

tx.commit();
session.close();

A new transient object item is instantiated as usual B. Of course, you may also
instantiate it after opening a Session; they aren’t related yet. A new Session is
opened using the SessionFactory C. You start a new transaction.

 A call to save() D makes the transient instance of Item persistent. It’s now
associated with the current Session and its persistence context.

 The changes made to persistent objects have to be synchronized with the data-
base at some point. This happens when you commit() the Hibernate Transaction
E. We say a flush occurs (you can also call flush() manually; more about this
later). To synchronize the persistence context, Hibernate obtains a JDBC connec-
tion and issues a single SQL INSERT statement. Note that this isn’t always true for
insertion: Hibernate guarantees that the item object has an assigned database
identifier after it has been saved, so an earlier INSERT may be necessary, depend-
ing on the identifier generator you have enabled in your mapping. The save()
operation also returns the database identifier of the persistent instance.

 The Session can finally be closed F, and the persistence context ends. The
reference item is now a reference to an object in detached state.

 You can see the same unit of work and how the object changes state in
figure 9.4.

 It’s better (but not required) to fully initialize the Item instance before manag-
ing it with a Session. The SQL INSERT statement contains the values that were

Listing 9.2 Making a transient instance persistent

B

C

D

E
F

Figure 9.4
Making an object persistent in
a unit of work

404 CHAPTER 9

Working with objects
held by the object at the point when save() was called. You can modify the object
after calling save(), and your changes will be propagated to the database as an
(additional) SQL UPDATE.

 Everything between session.beginTransaction() and tx.commit() occurs
in one transaction. For now, keep in mind that all database operations in transac-
tion scope either completely succeed or completely fail. If one of the UPDATE or
INSERT statements made during flushing on tx.commit() fails, all changes made
to persistent objects in this transaction are rolled back at the database level. How-
ever, Hibernate doesn’t roll back in-memory changes to persistent objects. This is
reasonable because a failure of a transaction is normally nonrecoverable, and you
have to discard the failed Session immediately. We’ll discuss exception handling
later in the next chapter.

Retrieving a persistent object
The Session is also used to query the database and retrieve existing persistent
objects. Hibernate is especially powerful in this area, as you’ll see later in the
book. Two special methods are provided for the simplest kind of query: retrieval
by identifier. The get() and load() methods are demonstrated in listing 9.3.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item = (Item) session.load(Item.class, new Long(1234));
// Item item = (Item) session.get(Item.class, new Long(1234));

tx.commit();
session.close();

You can see the same unit of work in figure 9.5.
 The retrieved object item is in persistent state and as soon as the persistence

context is closed, in detached state.

Listing 9.3 Retrieval of a Item by identifier

Figure 9.5
Retrieving a persistent object by identifier

The Hibernate interfaces 405
 The one difference between get() and load() is how they indicate that the
instance could not be found. If no row with the given identifier value exists in the
database, get() returns null. The load() method throws an ObjectNotFound-
Exception. It’s your choice what error-handling you prefer.

 More important, the load() method may return a proxy, a placeholder, without
hitting the database. A consequence of this is that you may get an ObjectNotFoun-
dException later, as soon as you try to access the returned placeholder and force
its initialization (this is also called lazy loading; we discuss load optimization in later
chapters.) The load() method always tries to return a proxy, and only returns an
initialized object instance if it’s already managed by the current persistence con-
text. In the example shown earlier, no database hit occurs at all! The get()
method on the other hand never returns a proxy, it always hits the database.

 You may ask why this option is useful—after all, you retrieve an object to
access it. It’s common to obtain a persistent instance to assign it as a reference to
another instance. For example, imagine that you need the item only for a single
purpose: to set an association with a Comment: aComment.setForAuction(item).
If this is all you plan to do with the item, a proxy will do fine; there is no need to
hit the database. In other words, when the Comment is saved, you need the foreign
key value of an item inserted into the COMMENT table. The proxy of an Item pro-
vides just that: an identifier value wrapped in a placeholder that looks like the
real thing.

Modifying a persistent object
Any persistent object returned by get(), load(), or any entity queried is already
associated with the current Session and persistence context. It can be modified,
and its state is synchronized with the database (see listing 9.4).

 Figure 9.6 shows this unit of work and the object transitions.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item = (Item) session.get(Item.class, new Long(1234));

item.setDescription("This Playstation is as good as new!");

tx.commit();
session.close();

Listing 9.4 Modifying a persistent instance

406 CHAPTER 9

Working with objects
First, you retrieve the object from the database with the given identifier. You mod-
ify the object, and these modifications are propagated to the database during
flush when tx.commit() is called. This mechanism is called automatic dirty
checking—that means Hibernate tracks and saves the changes you make to an
object in persistent state. As soon as you close the Session, the instance is consid-
ered detached.

Making a persistent object transient
You can easily make a persistent object transient, removing its persistent state
from the database, with the delete() method (see listing 9.5).

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item = (Item) session.load(Item.class, new Long(1234));

session.delete(item);

tx.commit();
session.close();

Look at figure 9.7.
 The item object is in removed state after you call delete(); you shouldn’t con-

tinue working with it, and, in most cases, you should make sure any reference to it

Listing 9.5 Making a persistent object transient using delete()

Figure 9.6
Modifying a persistent instance

Figure 9.7
Making a persistent
object transient

The Hibernate interfaces 407
in your application is removed. The SQL DELETE is executed only when the Ses-
sion’s persistence context is synchronized with the database at the end of the unit
of work. After the Session is closed, the item object is considered an ordinary
transient instance. The transient instance is destroyed by the garbage collector if
it’s no longer referenced by any other object. Both the in-memory object instance
and the persistent database row will have been removed.

FAQ Do I have to load an object to delete it? Yes, an object has to be loaded into
the persistence context; an instance has to be in persistent state to be
removed (note that a proxy is good enough). The reason is simple: You
may have Hibernate interceptors enabled, and the object must be passed
through these interceptors to complete its lifecycle. If you delete rows in
the database directly, the interceptor won’t run. Having said that, Hiber-
nate (and Java Persistence) offer bulk operations that translate into
direct SQL DELETE statements; we’ll discuss these operations in chapter
12, section 12.2, “Bulk and batch operations.”

Hibernate can also roll back the identifier of any entity that has been deleted, if
you enable the hibernate.use_identifier_rollback configuration option. In
the previous example, Hibernate sets the database identifier property of the
deleted item to null after deletion and flushing, if the option is enabled. It’s then
a clean transient instance that you can reuse in a future unit of work.

Replicating objects
The operations on the Session we have shown you so far are all common; you
need them in every Hibernate application. But Hibernate can help you with some
special use cases—for example, when you need to retrieve objects from one data-
base and store them in another. This is called replication of objects.

 Replication takes detached objects loaded in one Session and makes them
persistent in another Session. These Sessions are usually opened from two dif-
ferent SessionFactorys that have been configured with a mapping for the same
persistent class. Here is an example:

Session session = sessionFactory1.openSession();
Transaction tx = session.beginTransaction();
Item item = (Item) session.get(Item.class, new Long(1234));
tx.commit();
session.close();

Session session2 = sessionFactory2.openSession();
Transaction tx2 = session2.beginTransaction();
session2.replicate(item, ReplicationMode.LATEST_VERSION);
tx2.commit();
session2.close();

408 CHAPTER 9

Working with objects
The ReplicationMode controls the details of the replication procedure:

■ ReplicationMode.IGNORE—Ignores the object when there is an existing
database row with the same identifier in the target database.

■ ReplicationMode.OVERWRITE—Overwrites any existing database row with
the same identifier in the target database.

■ ReplicationMode.EXCEPTION—Throws an exception if there is an existing
database row with the same identifier in the target database.

■ ReplicationMode.LATEST_VERSION—Overwrites the row in the target
database if its version is earlier than the version of the object, or ignores
the object otherwise. Requires enabled Hibernate optimistic concurrency
control.

You may need replication when you reconcile data entered into different data-
bases, when you’re upgrading system configuration information during product
upgrades (which often involves a migration to a new database instance), or when
you need to roll back changes made during non-ACID transactions.

 You now know the persistence lifecycle and the basic operations of the persis-
tence manager. Using these together with the persistent class mappings we dis-
cussed in earlier chapters, you may now create your own small Hibernate
application. Map some simple entity classes and components, and then store and
load objects in a stand-alone application. You don’t need a web container or appli-
cation server: Write a main() method, and call the Session as we discussed in the
previous section.

 In the next sections, we cover the detached object state and the methods to reat-
tach and merge detached objects between persistence contexts. This is the foun-
dation knowledge you need to implement long units of work—conversations. We
assume that you’re familiar with the scope of object identity as explained earlier
in this chapter.

9.3.2 Working with detached objects

Modifying the item after the Session is closed has no effect on its persistent rep-
resentation in the database. As soon as the persistence context is closed, item
becomes a detached instance.

 If you want to save modifications you made to a detached object, you have to
either reattach or merge it.

The Hibernate interfaces 409
Reattaching a modified detached instance
A detached instance may be reattached to a new Session (and managed by this
new persistence context) by calling update() on the detached object. In our
experience, it may be easier for you to understand the following code if you
rename the update() method in your mind to reattach()—however, there is a
good reason it’s called updating.

 The update() method forces an update to the persistent state of the object in
the database, always scheduling an SQL UPDATE. See listing 9.6 for an example of
detached object handling.

item.setDescription(...); // Loaded in previous Session

Session sessionTwo = sessionFactory.openSession();
Transaction tx = sessionTwo.beginTransaction();

sessionTwo.update(item);

item.setEndDate(...);

tx.commit();
sessionTwo.close();

It doesn’t matter if the item object is modified before or after it’s passed to
update(). The important thing here is that the call to update() is reattaching the
detached instance to the new Session (and persistence context). Hibernate
always treats the object as dirty and schedules an SQL UPDATE., which will be exe-
cuted during flush. You can see the same unit of work in figure 9.8.

 You may be surprised and probably hoped that Hibernate could know that you
modified the detached item’s description (or that Hibernate should know you did
not modify anything). However, the new Session and its fresh persistence context
don’t have this information. Neither does the detached object contain some inter-
nal list of all the modifications you’ve made. Hibernate has to assume that an

Listing 9.6 Updating a detached instance

Figure 9.8
Reattaching a detached object

410 CHAPTER 9

Working with objects
UDPATE in the database is needed. One way to avoid this UDPATE statement is to
configure the class mapping of Item with the select-before-update="true"
attribute. Hibernate then determines whether the object is dirty by executing a
SELECT statement and comparing the object’s current state to the current data-
base state.

 If you’re sure you haven’t modified the detached instance, you may prefer
another method of reattachment that doesn’t always schedule an update of the
database.

Reattaching an unmodified detached instance
A call to lock() associates the object with the Session and its persistence context
without forcing an update, as shown in listing 9.7.

Session sessionTwo = sessionFactory.openSession();
Transaction tx = sessionTwo.beginTransaction();

sessionTwo.lock(item, LockMode.NONE);

item.setDescription(...);
item.setEndDate(...);

tx.commit();
sessionTwo.close();

In this case, it does matter whether changes are made before or after the object has
been reattached. Changes made before the call to lock() aren’t propagated to
the database, you use it only if you’re sure the detached instance hasn’t been
modified. This method only guarantees that the object’s state changes from
detached to persistent and that Hibernate will manage the persistent object again.
Of course, any modifications you make to the object once it’s in managed persis-
tent state require updating of the database.

 We discuss Hibernate lock modes in the next chapter. By specifying Lock-
Mode.NONE here, you tell Hibernate not to perform a version check or obtain any
database-level locks when reassociating the object with the Session. If you speci-
fied LockMode.READ, or LockMode.UPGRADE, Hibernate would execute a SELECT
statement in order to perform a version check (and to lock the row(s) in the data-
base for updating).

Listing 9.7 Reattaching a detached instance with lock()

The Hibernate interfaces 411
Making a detached object transient
Finally, you can make a detached instance transient, deleting its persistent state
from the database, as in listing 9.8.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

session.delete(item);

tx.commit();
session.close();

This means you don’t have to reattach (with update() or lock()) a detached
instance to delete it from the database. In this case, the call to delete() does two
things: It reattaches the object to the Session and then schedules the object for
deletion, executed on tx.commit(). The state of the object after the delete()
call is removed.

 Reattachment of detached objects is only one possible way to transport data
between several Sessions. You can use another option to synchronize modifica-
tions to a detached instance with the database, through merging of its state.

Merging the state of a detached object
Merging of a detached object is an alternative approach. It can be complementary
to or can replace reattachment. Merging was first introduced in Hibernate to deal
with a particular case where reattachment was no longer sufficient (the old name
for the merge() method in Hibernate 2.x was saveOrUpdateCopy()). Look at the
following code, which tries to reattach a detached object:

item.getId(); // The database identity is "1234"
item.setDescription(...);

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item2 = (Item) session.get(Item.class, new Long(1234));

session.update(item); // Throws exception!

tx.commit();
session.close();

Given is a detached item object with the database identity 1234. After modifying
it, you try to reattach it to a new Session. However, before reattachment, another
instance that represents the same database row has already been loaded into the

Listing 9.8 Making a detached object transient using delete()

412 CHAPTER 9

Working with objects
persistence context of that Session. Obviously, the reattachment through
update() clashes with this already persistent instance, and a NonUniqueObjectEx-
ception is thrown. The error message of the exception is A persistent instance with
the same database identifier is already associated with the Session! Hibernate can’t decide
which object represents the current state.

 You can resolve this situation by reattaching the item first; then, because the
object is in persistent state, the retrieval of item2 is unnecessary. This is straight-
forward in a simple piece of code such as the example, but it may be impossible to
refactor in a more sophisticated application. After all, a client sent the detached
object to the persistence layer to have it managed, and the client may not (and
shouldn’t) be aware of the managed instances already in the persistence context.

 You can let Hibernate merge item and item2 automatically:

item.getId() // The database identity is "1234"
item.setDescription(...);

Session session= sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item2 = (Item) session.get(Item.class, new Long(1234));

Item item3 = (Item) session.merge(item);

(item == item2) // False
(item == item3) // False
(item2 == item3) // True

return item3;

tx.commit();
session.close();

Look at this unit of work in figure 9.9.

C

D

Figure 9.9
Merging a detached instance
into a persistent instance

The Hibernate interfaces 413
 The merge(item) call D results in several actions. First, Hibernate checks
whether a persistent instance in the persistence context has the same database
identifier as the detached instance you’re merging. In this case, this is true: item
and item2, which were loaded with get() C, have the same primary key value.

 If there is an equal persistent instance in the persistence context, Hibernate
copies the state of the detached instance onto the persistent instance E. In other
words, the new description that has been set on the detached item is also set on
the persistent item2.

 If there is no equal persistent instance in the persistence context, Hibernate
loads it from the database (effectively executing the same retrieval by identifier as
you did with get()) and then merges the detached state with the retrieved
object’s state. This is shown in figure 9.10.

If there is no equal persistent instance in the persistence context, and a lookup in
the database yields no result, a new persistent instance is created, and the state of
the merged instance is copied onto the new instance. This new object is then
scheduled for insertion into the database and returned by the merge() operation.

 An insertion also occurs if the instance you passed into merge() was a transient
instance, not a detached object.

 The following questions are likely on your mind:

■ What exactly is copied from item to item2? Merging includes all value-typed
properties and all additions and removals of elements to any collection.

■ What state is item in? Any detached object you merge with a persistent
instance stays detached. It doesn’t change state; it’s unaffected by the merge
operation. Therefore, item and the other two references aren’t the same in
Hibernate’s identity scope. (The first two identity checks in the last

Figure 9.10
Merging a detached instance
into an implicitly loaded
persistent instance

414 CHAPTER 9

Working with objects
example.) However, item2 and item3 are identical references to the same
persistent in-memory instance.

■ Why is item3 returned from the merge() operation? The merge() opera-
tion always returns a handle to the persistent instance it has merged the
state into. This is convenient for the client that called merge(), because it
can now either continue working with the detached item object and merge
it again when needed, or discard this reference and continue working with
item3. The difference is significant: If, before the Session completes, sub-
sequent modifications are made to item2 or item3 after merging, the client
is completely unaware of these modifications. The client has a handle only
to the detached item object, which is now getting stale. However, if the cli-
ent decides to throw away item after merging and continue with the
returned item3, it has a new handle on up-to-date state. Both item and
item2 should be considered obsolete after merging.

Merging of state is slightly more complex than reattachment. We consider it an
essential operation you’ll likely have to use at some point if you design your appli-
cation logic around detached objects. You can use this strategy as an alternative
for reattachment and merge every time instead of reattaching. You can also use it
to make any transient instance persistent. As you’ll see later in this chapter, this is
the standardized model of Java Persistence; reattachment isn’t supported.

 We haven’t paid much attention so far to the persistence context and how it
manages persistent objects.

9.3.3 Managing the persistence context

The persistence context does many things for you: automatic dirty checking, guar-
anteed scope of object identity, and so on. It’s equally important that you know
some of the details of its management, and that you sometimes influence what
goes on behind the scenes.

Controlling the persistence context cache
The persistence context is a cache of persistent objects. Every object in persistent
state is known to the persistence context, and a duplicate, a snapshot of each per-
sistent instance, is held in the cache. This snapshot is used internally for dirty
checking, to detect any modifications you made to your persistent objects.

 Many Hibernate users who ignore this simple fact run into an OutOfMemory-
Exception. This is typically the case when you load thousands of objects in a Ses-
sion but never intend to modify them. Hibernate still has to create a snapshot of

The Hibernate interfaces 415
each object in the persistence context cache and keep a reference to the managed
object, which can lead to memory exhaustion. (Obviously, you should execute a
bulk data operation if you modify thousands of objects—we’ll get back to this kind
of unit of work in chapter 12, section 12.2, “Bulk and batch operations.”)

 The persistence context cache never shrinks automatically. To reduce or
regain the memory consumed by the persistence context in a particular unit of
work, you have to do the following:

■ Keep the size of your persistence context to the necessary minimum.
Often, many persistent instances in your Session are there by accident—
for example, because you needed only a few but queried for many. Make
objects persistent only if you absolutely need them in this state; extremely
large graphs can have a serious performance impact and require signifi-
cant memory for state snapshots. Check that your queries return only
objects you need. As you’ll see later in the book, you can also execute a
query in Hibernate that returns objects in read-only state, without creating
a persistence context snapshot.

■ You can call session.evict(object) to detach a persistent instance manu-
ally from the persistence context cache. You can call session.clear() to
detach all persistent instances from the persistence context. Detached
objects aren’t checked for dirty state; they aren’t managed.

■ With session.setReadOnly(object, true), you can disable dirty checking
for a particular instance. The persistence context will no longer maintain
the snapshot if it’s read-only. With session.setReadOnly(object, false),
you can re-enable dirty checking for an instance and force the recreation of
a snapshot. Note that these operations don’t change the object’s state.

At the end of a unit of work, all the modifications you made have to be synchro-
nized with the database through SQL DML statements. This process is called flush-
ing of the persistence context.

Flushing the persistence context
The Hibernate Session implements write-behind. Changes to persistent objects
made in the scope of a persistence context aren’t immediately propagated to the
database. This allows Hibernate to coalesce many changes into a minimal number
of database requests, helping minimize the impact of network latency. Another
excellent side-effect of executing DML as late as possible, toward the end of the
transaction, is shorter lock durations inside the database.

416 CHAPTER 9

Working with objects
 For example, if a single property of an object is changed twice in the same
persistence context, Hibernate needs to execute only one SQL UPDATE. Another
example of the usefulness of write-behind is that Hibernate is able to take
advantage of the JDBC batch API when executing multiple UPDATE, INSERT, or
DELETE statements.

 The synchronization of a persistence context with the database is called flush-
ing. Hibernate flushes occur at the following times:

■ When a Transaction on the Hibernate API is committed
■ Before a query is executed
■ When the application calls session.flush() explicitly

Flushing the Session state to the database at the end of a unit of work is required
in order to make the changes durable and is the common case. Note that auto-
matic flushing when a transaction is committed is a feature of the Hibernate API!
Committing a transaction with the JDBC API doesn’t trigger a flush. Hibernate
doesn’t flush before every query. If changes are held in memory that would affect
the results of the query, Hibernate synchronizes first by default.

 You can control this behavior by explicitly setting the Hibernate FlushMode via
a call to session.setFlushMode(). The default flush mode is FlushMode.AUTO
and enables the behavior described previously. If you chose FlushMode.COMMIT,
the persistence context isn’t flushed before query execution (it’s flushed only
when you call Transaction.commit() or Session.flush() manually). This set-
ting may expose you to stale data: Modifications you make to managed objects
only in memory may conflict with the results of the query. By selecting Flush-
Mode.MANUAL, you may specify that only explicit calls to flush() result in synchro-
nization of managed state with the database.

 Controlling the FlushMode of a persistence context will be necessary later in
the book, when we extend the context to span a conversation.

 Repeated flushing of the persistence context is often a source for performance
issues, because all dirty objects in the persistence context have to be detected at
flush-time. A common cause is a particular unit-of-work pattern that repeats a
query-modify-query-modify sequence many times. Every modification leads to a
flush and a dirty check of all persistent objects, before each query. A Flush-
Mode.COMMIT may be appropriate in this situation.

 Always remember that the performance of the flush process depends in part
on the size of the persistence context—the number of persistent objects it man-
ages. Hence, the advice we gave for managing the persistence context, in the pre-
vious section, also applies here.

The Java Persistence API 417
 You’ve now seen the most important strategies and some optional ones for
interacting with objects in a Hibernate application and what methods and opera-
tions are available on a Hibernate Session. If you plan to work only with Hiber-
nate APIs, you can skip the next section and go directly to the next chapter and
read about transactions. If you want to work on your objects with Java Persistence
and/or EJB 3.0 components, read on.

9.4 The Java Persistence API

We now store and load objects with the Java Persistence API. This is the API you
use either in a Java SE application or with EJB 3.0 components, as a vendor-inde-
pendent alternative to the Hibernate native interfaces.

 You’ve read the first sections of this chapter and know the object states defined
by JPA and how they’re related to Hibernate’s. Because the two are similar, the
first part of this chapter applies no matter what API you’ll choose. It follows that
the way you interact with your objects, and how you manipulate the database, are
also similar. So, we also assume that you have learned the Hibernate interfaces in
the previous section (you also miss all the illustrations if you skip the previous sec-
tion; we won’t repeat them here). This is important for another reason: JPA pro-
vides a subset of functionality of the superset of Hibernate native APIs. In other
words, there are good reasons to fall back to native Hibernate interfaces whenever
you need to. You can expect that the majority of the functionality you’ll need in
an application is covered by the standard, and that this is rarely necessary.

 As in Hibernate, you store and load objects with JPA by manipulating the cur-
rent state of an object. And, just as in Hibernate, you do this in a unit of work, a
set of operations considered to be atomic. (We still haven’t covered enough
ground to explain all about transactions, but we will soon.)

 To begin a unit of work in a Java Persistence application, you need to get an
EntityManager (the equivalent to the Hibernate Session). However, where you
open a Session from a SessionFactory in a Hibernate application, a Java Persis-
tence application can be written with managed and unmanaged units of work. Let’s
keep this simple, and assume that you first want to write a JPA application that
doesn’t benefit from EJB 3.0 components in a managed environment.

9.4.1 Storing and loading objects

The term unmanaged refers to the possibility to create a persistence layer with Java
Persistence that runs and works without any special runtime environment. You
can use JPA without an application server, outside of any runtime container, in a

418 CHAPTER 9

Working with objects
plain Java SE application. This can be a servlet application (the web container
doesn’t provide anything you’d need for persistence) or a simple main() method.
Another common case is local persistence for desktop applications, or persistence
for two-tiered systems, where a desktop application accesses a remote database tier
(although there is no good reason why you can’t use a lightweight modular appli-
cation server with EJB 3.0 support in such a scenario).

Beginning a unit of work in Java SE
In any case, because you don’t have a container that could provide an EntityMan-
ager for you, you need to create one manually. The equivalent of the Hibernate
SessionFactory is the JPA EntityManagerFactory:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("caveatemptorDatabase");
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

The first line of code is part of your system configuration. You should create one
EntityManagerFactory for each persistence unit you deploy in a Java Persistence
application. We covered this already in chapter 2, section 2.2.2, “Using Hibernate
EntityManager,” so we won’t repeat it here. The next three lines are equivalent to
how you’d begin a unit of work in a stand-alone Hibernate application: First, an
EntityManager is created, and then a transaction is started. To familiarize yourself
with EJB 3.0 jargon, you can call this EntityManager application-managed. The trans-
action you started here also has a special description: It’s a resource-local transaction.
You’re controlling the resources involved (the database in this case) directly in
your application code; no runtime container takes care of this for you.

 The EntityManager has a fresh persistence context assigned when it’s created.
In this context, you store and load objects.

Making an entity instance persistent
An entity class is the same as one of your Hibernate persistent classes. Of course,
you’d usually prefer annotations to map your entity classes, as a replacement of
Hibernate XML mapping files. After all, the (primary) reason you’re using Java
Persistence is the benefit of standardized interfaces and mappings.

 Let’s create a new instance of an entity and bring it from transient into persis-
tent state:

Item item = new Item();
item.setName("Playstation3 incl. all accessories");
item.setEndDate(...);

The Java Persistence API 419
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

em.persist(item);

tx.commit();
em.close();

This code should look familiar if you’ve followed the earlier sections of this chap-
ter. The transient item entity instance becomes persistent as soon as you call per-
sist() on it; it’s now managed in the persistence context. Note that persist()
doesn’t return the database identifier value of the entity instance (this little differ-
ence, compared to Hibernate’s save() method, will be important again when you
implement conversations in “Delaying insertion until flush-time” in chapter 11,
section 11.2.3.

FAQ Should I use persist() on the Session? The Hibernate Session interface also
features a persist() method. It has the same semantics as the persist()
operation of JPA. However, there’s an important difference between the
two operations with regard to flushing. During synchronization, a Hiber-
nate Session doesn’t cascade the persist() operation to associated enti-
ties and collections, even if you mapped an association with this option.
It’s only cascaded to entities that are reachable when you call persist()!
Only save() (and update()) are cascaded at flush-time if you use the
Session API. In a JPA application, however, it’s the other way round:
Only persist() is cascaded at flush-time.

Managed entity instances are monitored. Every modification you make to an
instance in persistent state is at some point synchronized with the database
(unless you abort the unit of work). Because the EntityTransaction is managed
by the application, you need to do the commit() manually. The same rule applies
to the application-controlled EntityManager: You need to release all resources by
closing it.

Retrieving an entity instance
The EntityManager is also used to query the database and retrieve persistent
entity instances. Java Persistence supports sophisticated query features (which
we’ll cover later in the book). The most basic is as always the retrieval by identifier:

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.find(Item.class, new Long(1234));

420 CHAPTER 9

Working with objects
tx.commit();
em.close();

You don’t need to cast the returned value of the find() operation; it’s a generic
method. and its return type is set as a side effect of the first parameter. This is a
minor but convenient benefit of the Java Persistence API—Hibernate native meth-
ods have to work with older JDKs that don’t support generics.

 The retrieved entity instance is in a persistent state and can now be modified
inside the unit of work or be detached for use outside of the persistence context.
If no persistent instance with the given identifier can be found, find() returns
null. The find() operation always hits the database (or a vendor-specific trans-
parent cache), so the entity instance is always initialized during loading. You can
expect to have all of its values available later in detached state.

 If you don’t want to hit the database, because you aren’t sure you’ll need a fully
initialized instance, you can tell the EntityManager to attempt the retrieval of a
placeholder:

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.getReference(Item.class, new Long(1234));

tx.commit();
em.close();

This operation returns either the fully initialized item (for example, if the
instance was already available in the current persistence context) or a proxy (a hol-
low placeholder).

 As soon as you try to access any property of the item that isn’t the database
identifier property, an additional SELECT is executed to fully initialize the place-
holder. This also means you should expect an EntityNotFoundException at this
point (or even earlier, when getReference() is executed). A logical conclusion is
that if you decide to detach the item reference, no guarantees are made that it
will be fully initialized (unless, of course, you access one of its nonidentifier prop-
erties before detachment).

Modifying a persistent entity instance
An entity instance in persistent state is managed by the current persistence con-
text. You can modify it and expect that the persistence context flushes the neces-
sary SQL DML at synchronization time. This is the same automatic dirty checking
feature provided by the Hibernate Session:

The Java Persistence API 421
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.find(Item.class, new Long(1234));
item.setDescription(...);

tx.commit();
em.close();

A persistent entity instance is retrieved by its identifier value. Then, you modify
one of its mapped properties (a property that hasn’t been annotated with @Tran-
sient or the transient Java keyword). In this code example, the next synchroni-
zation with the database occurs when the resource-local transaction is committed.
The Java Persistence engine executes the necessary DML, in this case an UDPATE.

Making a persistent entity instance transient
If you want to remove the state of an entity instance from the database, you have
to make it transient. Use the remove() method on your EntityManager:

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.find(Item.class, new Long(1234));

em.remove(item);

tx.commit();
em.close();

The semantics of the remove() Java Persistence method are the same as the
delete() method’s on the Hibernate Session. The previously persistent object is
now in removed state, and you should discard any reference you’re holding to it in
the application. An SQL DELETE is executed during the next synchronization of
the persistence context. The JVM garbage collector detects that the item is no
longer referenced by anyone and finally deletes the last trace of the object. How-
ever, note that you can’t call remove() on an entity instance in detached state, or
an exception will be thrown. You have to merge the detached instance first and
then remove the merged object (or, alternatively, get a reference with the same
identifier, and remove that).

Flushing the persistence context
All modifications made to persistent entity instances are synchronized with the
database at some point, a process called flushing. This write-behind behavior is the

422 CHAPTER 9

Working with objects
same as Hibernate’s and guarantees the best scalability by executing SQL DML as
late as possible.

 The persistence context of an EntityManager is flushed whenever commit()
on an EntityTransaction is called. All the previous code examples in this section
of the chapter have been using that strategy. However, JPA implementations are
allowed to synchronize the persistence context at other times, if they wish.

 Hibernate, as a JPA implementation, synchronizes at the following times:

■ When an EntityTransaction is committed

■ Before a query is executed

■ When the application calls em.flush() explicitly

These are the same rules we explained for native Hibernate in the previous sec-
tion. And as in native Hibernate, you can control this behavior with a JPA inter-
face, the FlushModeType:

EntityManager em = emf.createEntityManager();
em.setFlushMode(FlushModeType.COMMIT);
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.find(Item.class, new Long(1234));
item.setDescription(...);

List result = em.createQuery(...).getResultList();

tx.commit();
em.close();

Switching the FlushModeType to COMMIT for an EntityManager disables automatic
synchronization before queries; it occurs only when the transaction is committed
or when you flush manually. The default FlushModeType is AUTO.

 Just as with native Hibernate, controlling the synchronization behavior of a
persistence context will be important functionality for the implementation of con-
versations, which we’ll attack later.

 You now know the basic operations of Java Persistence, and you can go ahead
and store and load some entity instances in your own application. Set up your sys-
tem as described in chapter 2, section 2.2, “Starting a Java Persistence project,”
and map some classes to your database schema with annotations. Write a main()
method that uses an EntityManager and an EntityTransaction; we think you’ll
soon see how easy it is to use Java Persistence even without EJB 3.0 managed com-
ponents or an application server.

 Let’s discuss how you work with detached entity instances.

The Java Persistence API 423
9.4.2 Working with detached entity instances

We assume you already know how a detached object is defined (if you don’t, read
the first section of this chapter again). You don’t necessarily have to know how
you’d work with detached objects in Hibernate, but we’ll refer you to earlier sec-
tions if a strategy with Java Persistence is the same as in native Hibernate.

 First, let’s see again how entity instances become detached in a Java Persistence
application.

JPA persistence context scope
You’ve used Java Persistence in a Java SE environment, with application-managed
persistence contexts and transactions. Every persistent and managed entity
instance becomes detached when the persistence context is closed. But wait—we
didn’t tell you when the persistence context is closed.

 If you’re familiar with native Hibernate, you already know the answer: The per-
sistence context ends when the Session is closed. The EntityManager is the
equivalent in JPA; and by default, if you created the EntityManager yourself, the
persistence context is scoped to the lifecycle of that EntityManager instance.

 Look at the following code:

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();

tx.begin();
Item item = em.find(Item.class, new Long(1234));
tx.commit();

Item.setDescription(...);

tx.begin();
User user = em.find(User.class, new Long(3456));
user.setPassword("secret");
tx.commit();

em.close();

In the first transaction, you retrieve an Item object. The transaction then com-
pletes, but the item is still in persistent state. Hence, in the second transaction,
you not only load a User object, but also update the modified persistent item
when the second transaction is committed (in addition to an update for the dirty
user instance).

 Just like in native Hibernate code with a Session, the persistence context
begins with createEntityManager() and ends with close().

 Closing the persistence context isn’t the only way to detach an entity instance.

424 CHAPTER 9

Working with objects
Manual detachment of entity instances
An entity instance becomes detached when it leaves the persistence context. A
method on the EntityManager allows you to clear the persistence context and
detach all persistent instances:

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();

tx.begin();
Item item = em.find(Item.class, new Long(1234));

em.clear();

item.setDescription(...); // Detached entity instance!

tx.commit();
em.close();

After the item is retrieved, you clear the persistence context of the EntityMan-
ager. All entity instances that have been managed by that persistence context are
now detached. The modification of the detached instance isn’t synchronized with
the database during commit.

FAQ Where is eviction of individual instances? The Hibernate Session API fea-
tures the evict(object) method. Java Persistence doesn’t have this capa-
bility. The reason is probably only known by some expert group
members—we can’t explain it. (Note that this is a nice way of saying that
experts couldn’t agree on the semantics of the operation.) You can only
clear the persistence context completely and detach all persistent objects.
You have to fall back to the Session API as described in chapter 2, sec-
tion 2.2.4, “Switching to Hibernate interfaces,” if you want to evict indi-
vidual instances from the persistence context.

Obviously you also want to save any modifications you made to a detached entity
instance at some point.

Merging detached entity instances
Whereas Hibernate offers two strategies, reattachment and merging, to synchronize
any changes of detached objects with the database, Java Persistence only offers the
latter. Let’s assume you’ve retrieved an item entity instance in a previous persis-
tence context, and now you want to modify it and save these modifications.

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

Item item = em.find(Item.class, new Long(1234));

The Java Persistence API 425
tx.commit();
em.close();

item.setDescription(...); // Detached entity instance!

EntityManager em2 = emf.createEntityManager();
EntityTransaction tx2 = em2.getTransaction();
tx2.begin();

Item mergedItem = (Item) em2.merge(item);

tx2.commit();
em2.close();

The item is retrieved in a first persistence context and merged, after modification
in detached state, into a new persistence context. The merge() operation does
several things:

 First, the Java Persistence engine checks whether a persistent instance in the
persistence context has the same database identifier as the detached instance
you’re merging. Because, in our code examples, there is no equal persistent
instance in the second persistence context, one is retrieved from the database
through lookup by identifier. Then, the detached entity instance is copied onto the
persistent instance. In other words, the new description that has been set on the
detached item is also set on the persistent mergedItem, which is returned from
the merge() operation.

 If there is no equal persistent instance in the persistence context, and a lookup
by identifier in the database is negative, the merged instance is copied onto a
fresh persistent instance, which is then inserted into the database when the sec-
ond persistence context is synchronized with the database.

 Merging of state is an alternative to reattachment (as provided by native Hiber-
nate). Refer to our earlier discussion of merging with Hibernate in section 9.3.2,
“Merging the state of a detached object”; both APIs offer the same semantics, and
the notes there apply for JPA mutatis mutandis.

 You’re now ready to expand your Java SE application and experiment with the
persistence context and detached objects in Java Persistence. Instead of only stor-
ing and loading entity instances in a single unit of work, try to use several and try
to merge modifications of detached objects. Don’t forget to watch your SQL log to
see what’s going on behind the scenes.

 Once you’ve mastered basic Java Persistence operations with Java SE, you’ll
probably want to do the same in a managed environment. The benefits you get
from JPA in a full EJB 3.0 container are substantial. No longer do you have to man-
age EntityManager and EntityTransaction yourself. You can focus on what
you’re supposed to do: load and store objects.

426 CHAPTER 9

Working with objects
9.5 Using Java Persistence in EJB components

A managed runtime environment implies some sort of container. Your application
components live inside this container. Most containers these days are imple-
mented using an interception technique, method calls on objects are intercepted
and any code that needs to be executed before (or after) the method is applied.
This is perfect for any cross-cutting concerns: Opening and closing an EntityMan-
ager, because you need it inside the method that is called, is certainly one. Your
business logic doesn’t need to be concerned with this aspect. Transaction demar-
cation is another concern a container can take care of for you. (You’ll likely find
other aspects in any application.)

 Unlike older application servers from the EJB 2.x era, containers that support
EJB 3.0 and other Java EE 5.0 services are easy to install and use—refer to our dis-
cussion in chapter 2, section 2.2.3, “Introducing EJB components,” to prepare
your system for the following section. Furthermore, the EJB 3.0 programming
model is based on plain Java classes. You shouldn’t be surprised if you see us writ-
ing many EJBs in this book; most of the time, the only difference from a plain Jav-
aBean is a simple annotation, a declaration that you wish to use a service provided
by the environment the component will run in. If you can’t modify the source
code and add an annotation, you can turn a class into an EJB with an XML deploy-
ment descriptor. Hence, (almost) every class can be a managed component in EJB
3.0, which makes it much easier for you to benefit from Java EE 5.0 services.

 The entity classes you’ve created so far aren’t enough to write an application.
You also want stateless or stateful session beans, components that you can use to
encapsulate your application logic. Inside these components, you need the ser-
vices of the container: for example, you usually want the container to inject an
EntityManager, so that you can load and store entity instances.

9.5.1 Injecting an EntityManager

Remember how you create an instance of an EntityManager in Java SE? You have
to open it from an EntityManagerFactory and close it manually. You also have to
begin and end a resource-local transaction with the EntityTransaction interface.

 In an EJB 3.0 server, a container-managed EntityManager is available through
dependency injection. Consider the following EJB session bean that implements a
particular action in the CaveatEmptor application:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 // Use field injection:

Using Java Persistence in EJB components 427
 @PersistenceContext
 private EntityManager em;

 // or setter injection:
 //
 // @PersistenceContext
 // public void setEntityManager(EntityManager em) {
 // this.em = em;
 // }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Item findAuctionByName(String name) {
 return (Item) em.createQuery()...
 ...
 }
}

It’s a stateless action, and it implements the ManageAuction interface. These
details of stateless EJBs aren’t our concern at this time, what is interesting is that
you can access the EntityManager in the findAuctionByName() method of the
action. The container automatically injects an instance of an EntityManager into
the em field of the bean, before the action method executes. The visibility of the
field isn’t important for the container, but you need to apply the @Persistence-
Context annotation to indicate that you want the container’s service. You could
also create a public setter method for this field and apply the annotation on this
method. This is the recommended approach if you also plan to set the Entity-
Manager manually—for example, during integration or functional testing.

 The injected EntityManager is maintained by the container. You don’t have to
flush or close it, nor do you have to start and end a transaction—in the previous
example you tell the container that the findAuctionByName() method of the ses-
sion bean requires a transaction. (This is the default for all EJB session bean meth-
ods.) A transaction must be active when the method is called by a client (or a
new transaction is started automatically). When the method returns, the transac-
tion either continues or is committed, depending on whether it was started for
this method.

 The persistence context of the injected container-managed EntityManager is
bound to the scope of the transaction, Hence, it’s flushed automatically and
closed when the transaction ends. This is an important difference, if you compare
it with earlier examples that showed JPA in Java SE! The persistence context there
wasn’t scoped to the transaction but to the EntityManager instance you closed
explicitly. The transaction-scoped persistence context is the natural default for a
stateless bean, as you’ll see when you focus on conversation implementation and
transactions later, in the following chapters.

428 CHAPTER 9

Working with objects
 A nice trick that obviously works only with JBoss EJB 3.0 is the automatic injec-
tion of a Session object, instead of an EntityManager:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext
 private Session session;
 ...

}

This is mostly useful if you have a managed component that would rely on the
Hibernate API.

 Here is a variation that works with two databases—that is, two persistence units:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext(unitName = "auctionDB")
 private EntityManager auctionEM;

 @PersistenceContext(unitName = "auditDB")
 private EntityManager auditEM;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void createAuction(String name, BigDecimal price) {
 Item newItem = new Item(name, price);
 auctionEM.persist(newItem);
 auditEM.persist(new CreateAuctionEvent(newItem));
 ...
 }

}

The unitName refers to the configured and deployed persistence unit. If you work
with one database (one EntityManagerFactory or one SessionFactory), you
don’t need to declare the name of the persistence unit for injection. Note that
EntityManager instances from two different persistence units aren’t sharing the
same persistence context. Naturally, both are independent caches of managed
entity objects, but that doesn’t mean they can’t participate in the same system
transaction.

 If you write EJBs with Java Persistence, the choice is clear: You want the
EntityManager with the right persistence context injected into your managed
components by the container. An alternative you’ll rarely use is the lookup of a
container-managed EntityManager.

Using Java Persistence in EJB components 429
9.5.2 Looking up an EntityManager

Instead of letting the container inject an EntityManager on your field or setter
method, you can look it up from JNDI when you need it:

@Stateless
@PersistenceContext(name = "em/auction", unitName = "auctionDB")
public class ManageAuctionBean implements ManageAuction {

 @Resource
 SessionContext ctx;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Item findAuctionByName(String name) {
 EntityManager em = (EntityManager) ctx.lookup("em/auction");

 return (Item) em.createQuery()...
 }

}

Several things are happening in this code snippet: First, you declare that you want
the component environment of the bean populated with an EntityManager and
that the name of the bound reference is supposed to be em/auction. The full
name in JNDI is java:comp/env/em/auction—the java:comp/env/ part is the so
called bean-naming context. Everything in that subcontext of JNDI is bean-depen-
dent. In other words, the EJB container reads this annotation and knows that it
has to bind an EntityManager for this bean only, at runtime when the bean exe-
cutes, under the namespace in JNDI that is reserved for this bean.

 You look up the EntityManager in your bean implementation with the help of
the SessionContext. The benefit of this context is that it automatically prefixes
the name you’re looking for with java:comp/env/; hence, it tries to find the refer-
ence in the bean’s naming context, and not the global JNDI namespace. The
@Resource annotation instructs the EJB container to inject the SessionContext
for you.

 A persistence context is created by the container when the first method on the
EntityManager is called, and it’s flushed and closed when the transaction ends—
when the method returns.

 Injection and lookup are also available if you need an EntityManagerFactory.

9.5.3 Accessing an EntityManagerFactory

An EJB container also allows you to access an EntityManagerFactory for a persis-
tence unit directly. Without a managed environment, you have to create the
EntityManagerFactory with the help of the Persistence bootstrap class. In a

430 CHAPTER 9

Working with objects
container, you can again utilize automatic dependency injection to get an
EntityManagerFactory:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @PersistenceUnit(unitName = "auctionDB")
 EntityManagerFactory auctionDB;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Item findAuctionByName(String name) {
 EntityManager em = auctionDB.createEntityManager();
 ...
 Item item = (Item) em.createQuery()...
 ...
 em.flush();
 em.close();
 return item;
 }

}

The unitName attribute is optional and only required if you have more than one
configured persistence unit (several databases). The EntityManager you created
from the injected factory is again application-managed—the container won’t
flush this persistence context, nor close it. It’s rare that you mix container-man-
aged factories with application-managed EntityManager instances, but doing so
is useful if you need more control over the lifecycle of an EntityManager in an
EJB component.

 You may create an EntityManager outside of any JTA transaction boundaries;
for example, in an EJB method that doesn’t require a transaction context. It’s
then your responsibility to notify the EntityManager that a JTA transaction is
active, when needed, with the joinTransaction() method. Note that this opera-
tion doesn’t bind or scope the persistence context to the JTA transaction; it’s only
a hint that switches the EntityManager to transactional behavior internally.

 The previous statements aren’t complete: If you close() the EntityManager, it
doesn’t immediately close its persistence context, if this persistence context has
been associated with a transaction. The persistence context is closed when the
transaction completes. However, any call of the closed EntityManager throws an
exception (except for the getTransaction() method in Java SE and the
isOpen() method). You can switch this behavior with the hibernate.

ejb.discard_ pc_on_close configuration setting. You don’t have to worry about
this if you never call the EntityManager outside of transaction boundaries.

Summary 431
 Another reason for accessing your EntityManagerFactory may be that you
want to access a particular vendor extension on this interface, like we discussed in
chapter 2, section 2.2.4, “Switching to Hibernate interfaces.”

 You can also look up an EntityManagerFactory if you bind it to the EJB’s nam-
ing context first:

@Stateless
@PersistenceUnit(name= "emf/auction", unitName = "auctionDB")
public class ManageAuctionBean implements ManageAuction {

 @Resource
 SessionContext ctx;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Item findAuctionByName(String name) {
 EntityManagerFactory auctionDB =
 (EntityManagerFactory) ctx.lookup("emf/auction");

 EntityManager em = auctionDB.createEntityManager();
 ...
 Item item = (Item) em.createQuery()...
 ...

 em.flush();
 em.close();
 return item;
 }
}

Again, there is no particular advantage if you compare the lookup technique with
automatic injection.

9.6 Summary

 We’ve covered a lot of ground in this chapter. You now know that the basic
interfaces in Java Persistence aren’t much different from those provided by Hiber-
nate. Loading and storing objects is almost the same. The scope of the persistence
context is slightly different, though; in Hibernate, it’s by default the same as the
Session scope. In Java Persistence, the scope of the persistence context varies,
depending on whether you create an EntityManager yourself, or you let the con-
tainer manage and bind it to the current transaction scope in an EJB component.

 Table 9.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

 We’ve already talked about conversations in an application and how you can
design them with detached objects or with an extended persistence context.
Although we haven’t had time to discuss every detail, you can probably already see

432 CHAPTER 9

Working with objects
that working with detached objects requires discipline (outside of the guaranteed
scope of object identity) and manual reattachment or merging. In practice, and
from our experience over the years, we recommend that you consider detached
objects a secondary option and that you first look at an implementation of conver-
sations with an extended persistence context.

 Unfortunately, we still don’t have all the pieces to write a really sophisticated
application with conversations. You may especially miss more information about
transactions. The next chapter covers transaction concepts and interfaces.

Table 9.1 Hibernate and JPA comparison chart for chapter 9

Hibernate Core Java Persistence and EJB 3.0

Hibernate defines and relies on four object
states: transient, persistent, removed, and
detached.

Equivalent object states are standardized and
defined in EJB 3.0.

Detached objects can be reattached to a new
persistence context or merged onto persistent
instances.

Only merging is supported with the Java Persistence
management interfaces.

At flush-time, the save() and update()
operations can be cascaded to all associated
and reachable instances. The persist()
operation can only be cascaded to reachable
instances at call-time.

At flush-time, the persist()operation can be cas-
caded to all associated and reachable instances. If
you fall back to the Session API, save() and
update() are only cascaded to reachable
instances at call-time.

A get() hits the database; a load() may
return a proxy.

A find() hits the database; a getReference()
may return a proxy.

Dependency injection of a Session in an EJB
works only in JBoss Application Server.

Dependency injection of an EntityManager
works in all EJB 3.0 components.

Transactions
and concurrency
This chapter covers
■ Database transactions
■ Transactions with Hibernate and Java

Persistence
■ Nontransactional data access
433

434 CHAPTER 10

Transactions and concurrency
In this chapter, we finally talk about transactions and how you create and control
units of work in a application. We’ll show you how transactions work at the low-
est level (the database) and how you work with transactions in an application
that is based on native Hibernate, on Java Persistence, and with or without
Enterprise JavaBeans.

 Transactions allow you to set the boundaries of a unit of work: an atomic
group of operations. They also help you isolate one unit of work from another
unit of work in a multiuser application. We talk about concurrency and how you
can control concurrent data access in your application with pessimistic and opti-
mistic strategies.

 Finally, we look at nontransactional data access and when you should work
with your database in autocommit mode.

10.1 Transaction essentials

Let’s start with some background information. Application functionality requires
that several things be done at the same time. For example, when an auction fin-
ishes, three different tasks have to be performed by the CaveatEmptor application:

1 Mark the winning (highest amount) bid.

2 Charge the seller the cost of the auction.

3 Notify the seller and successful bidder.

What happens if you can’t bill the auction costs because of a failure in the exter-
nal credit-card system? The business requirements may state that either all listed
actions must succeed or none must succeed. If so, you call these steps collectively
a transaction or unit of work. If only one step fails, the whole unit of work must fail.
This is known as atomicity, the notion that all operations are executed as an
atomic unit.

 Furthermore, transactions allow multiple users to work concurrently with the
same data without compromising the integrity and correctness of the data; a par-
ticular transaction should not be visible to other concurrently running transac-
tions. Several strategies are important to fully understand this isolation behavior,
and we’ll explore them in this chapter.

 Transactions have other important attributes, such as consistency and durability.
Consistency means that a transaction works on a consistent set of data: a set of
data that is hidden from other concurrently running transactions and that is left
in a clean and consistent state after the transactions completes. Your database
integrity rules guarantee consistency. You also want correctness of a transaction. For

Transaction essentials 435
example, the business rules dictate that the seller is charged once, not twice. This
is a reasonable assumption, but you may not be able to express it with database
constraints. Hence, the correctness of a transaction is the responsibility of the
application, whereas consistency is the responsibility of the database. Durability
means that once a transaction completes, all changes made during that transac-
tion become persistent and aren’t lost even if the system subsequently fails.

 Together, these transaction attributes are known as the ACID criteria.
 Database transactions have to be short. A single transaction usually involves

only a single batch of database operations. In practice, you also need a concept
that allows you to have long-running conversations, where an atomic group of data-
base operations occur in not one but several batches. Conversations allow the user
of your application to have think-time, while still guaranteeing atomic, isolated,
and consistent behavior.

 Now that we’ve defined our terms, we can talk about transaction demarcation
and how you can define the boundaries of a unit of work.

10.1.1 Database and system transactions

Databases implement the notion of a unit of work as a database transaction. A data-
base transaction groups data-access operations—that is, SQL operations. All SQL
statements execute inside a transaction; there is no way to send an SQL statement
to a database outside of a database transaction. A transaction is guaranteed to end
in one of two ways: It’s either completely committed or completely rolled back. Hence,
we say database transactions are atomic. In figure 10.1, you can see this graphically.

 To execute all your database operations inside a transaction, you have to mark
the boundaries of that unit of work. You must start the transaction and at some
point, commit the changes. If an error occurs (either while executing operations
or when committing the transaction), you have to roll back the transaction to
leave the data in a consistent state. This is known as transaction demarcation and,
depending on the technique you use, involves more or less manual intervention.

Figure 10.1
Lifecycle of an atomic unit of
work—a transaction

436 CHAPTER 10

Transactions and concurrency
 In general, transaction boundaries that begin and end a transaction can be set
either programmatically in application code or declaratively.

Programmatic transaction demarcation
In a nonmanaged environment, the JDBC API is used to mark transaction bound-
aries. You begin a transaction by calling setAutoCommit(false) on a JDBC Con-
nection and end it by calling commit(). You may, at any time, force an immediate
rollback by calling rollback().

 In a system that manipulates data in several databases, a particular unit of
work involves access to more than one resource. In this case, you can’t achieve
atomicity with JDBC alone. You need a transaction manager that can handle several
resources in one system transaction. Such transaction-processing systems expose
the Java Transaction API (JTA) for interaction with the developer. The main API in
JTA is the UserTransaction interface with methods to begin() and commit() a
system transaction.

 Furthermore, programmatic transaction management in a Hibernate applica-
tion is exposed to the application developer via the Hibernate Transaction inter-
face. You aren’t forced to use this API—Hibernate also lets you begin and end
JDBC transactions directly, but this usage is discouraged because it binds your
code to direct JDBC. In a Java EE environment (or if you installed it along with
your Java SE application), a JTA-compatible transaction manager is available, so
you should call the JTA UserTransaction interface to begin and end a transaction
programmatically. However, the Hibernate Transaction interface, as you may
have guessed, also works on top of JTA. We’ll show you all these options and dis-
cuss portability concerns in more detail.

 Programmatic transaction demarcation with Java Persistence also has to work
inside and outside of a Java EE application server. Outside of an application
server, with plain Java SE, you’re dealing with resource-local transactions; this is
what the EntityTransaction interface is good for—you’ve seen it in previous
chapters. Inside an application server, you call the JTA UserTransaction interface
to begin and end a transaction.

 Let’s summarize these interfaces and when they’re used:

■ java.sql.Connection—Plain JDBC transaction demarcation with set-
AutoCommit(false), commit(), and rollback(). It can but shouldn’t be
used in a Hibernate application, because it binds your application to a plain
JDBC environment.

Transaction essentials 437
■ org.hibernate.Transaction—Unified transaction demarcation in Hiber-
nate applications. It works in a nonmanaged plain JDBC environment and
also in an application server with JTA as the underlying system transaction
service. The main benefit, however, is tight integration with persistence con-
text management—for example, a Session is flushed automatically when
you commit. A persistence context can also have the scope of this transac-
tion (useful for conversations; see the next chapter). Use this API in Java SE
if you can’t have a JTA-compatible transaction service.

■ javax.transaction.UserTransaction—Standardized interface for pro-
grammatic transaction control in Java; part of JTA. This should be your pri-
mary choice whenever you have a JTA-compatible transaction service and
want to control transactions programmatically.

■ javax.persistence.EntityTransaction—Standardized interface for pro-
grammatic transaction control in Java SE applications that use Java Persis-
tence.

Declarative transaction demarcation, on the other hand, doesn’t require extra
coding; and by definition, it solves the problem of portability.

Declarative transaction demarcation
In your application, you declare (for example, with annotations on methods)
when you wish to work inside a transaction. It’s then the responsibility of the
application deployer and the runtime environment to handle this concern. The
standard container that provides declarative transaction services in Java is an EJB
container, and the service is also called container-managed transactions (CMT). We’ll
again write EJB session beans to show how both Hibernate and Java Persistence
can benefit from this service.

 Before you decide on a particular API, or for declarative transaction demarca-
tion, let’s explore these options step by step. First, we assume you’re going to use
native Hibernate in a plain Java SE application (a client/server web application,
desktop application, or any two-tier system). After that, you’ll refactor the code to
run in a managed Java EE environment (and see how to avoid that refactoring in
the first place). We also discuss Java Persistence along the way.

10.1.2 Transactions in a Hibernate application

Imagine that you’re writing a Hibernate application that has to run in plain Java;
no container and no managed database resources are available.

438 CHAPTER 10

Transactions and concurrency
Programmatic transactions in Java SE
You configure Hibernate to create a JDBC connection pool for you, as you did in
“The database connection pool” in chapter 2, section 2.1.3. In addition to the
connection pool, no additional configuration settings are necessary if you’re writ-
ing a Java SE Hibernate application with the Transaction API:

■ The hibernate.transaction.factory_class option defaults to org.hiber-
nate.transaction.JDBCTransactionFactory, which is the correct factory
for the Transaction API in Java SE and for direct JDBC.

■ You can extend and customize the Transaction interface with your own
implementation of a TransactionFactory. This is rarely necessary but has
some interesting use cases. For example, if you have to write an audit log
whenever a transaction is started, you can add this logging to a custom
Transaction implementation.

Hibernate obtains a JDBC connection for each Session you’re going to work with:

Session session = null;
Transaction tx = null;

try {
 session = sessionFactory.openSession();
 tx = session.beginTransaction();

 concludeAuction(session);

 tx.commit();
} catch (RuntimeException ex) {
 tx.rollback();
} finally {
 session.close();
}

A Hibernate Session is lazy. This is a good thing—it means it doesn’t consume
any resources unless they’re absolutely needed. A JDBC Connection from the con-
nection pool is obtained only when the database transaction begins. The call to
beginTransaction() translates into setAutoCommit(false) on the fresh JDBC
Connection. The Session is now bound to this database connection, and all SQL
statements (in this case, all SQL required to conclude the auction) are sent on this
connection. All database statements execute inside the same database transaction.
(We assume that the concludeAuction() method calls the given Session to
access the database.)

 We already talked about write-behind behavior, so you know that the bulk of SQL
statements are executed as late as possible, when the persistence context of the

Transaction essentials 439
Session is flushed. This happens when you call commit() on the Transaction, by
default. After you commit the transaction (or roll it back), the database connec-
tion is released and unbound from the Session. Beginning a new transaction with
the same Session obtains another connection from the pool.

 Closing the Session releases all other resources (for example, the persistence
context); all managed persistent instances are now considered detached.

FAQ Is it faster to roll back read-only transactions? If code in a transaction reads
data but doesn’t modify it, should you roll back the transaction instead of
committing it? Would this be faster? Apparently, some developers found
this to be faster in some special circumstances, and this belief has spread
through the community. We tested this with the more popular database
systems and found no difference. We also failed to discover any source of
real numbers showing a performance difference. There is also no reason
why a database system should have a suboptimal implementation—why it
should not use the fastest transaction cleanup algorithm internally.
Always commit your transaction and roll back if the commit fails. Having
said that, the SQL standard includes a SET TRANSACTION READ ONLY state-
ment. Hibernate doesn’t support an API that enables this setting,
although you could implement your own custom Transaction and
TransactionFactory to add this operation. We recommend you first
investigate if this is supported by your database and what the possible per-
formance benefits, if any, will be.

We need to discuss exception handling at this point.

Handling exceptions
If concludeAuction() as shown in the last example (or flushing of the persistence
context during commit) throws an exception, you must force the transaction to
roll back by calling tx.rollback(). This rolls back the transaction immediately,
so no SQL operation you sent to the database has any permanent effect.

 This seems straightforward, although you can probably already see that catch-
ing RuntimeException whenever you want to access the database won’t result in
nice code.

NOTE A history of exceptions—Exceptions and how they should be handled always
end in heated debates between Java developers. It isn’t surprising that
Hibernate has some noteworthy history as well. Until Hibernate 3.x, all
exceptions thrown by Hibernate were checked exceptions, so every Hiber-
nate API forced the developer to catch and handle exceptions. This strat-
egy was influenced by JDBC, which also throws only checked exceptions.
However, it soon became clear that this doesn’t make sense, because all

440 CHAPTER 10

Transactions and concurrency
exceptions thrown by Hibernate are fatal. In many cases, the best a
developer can do in this situation is to clean up, display an error message,
and exit the application. Therefore, starting with Hibernate 3.x, all
exceptions thrown by Hibernate are subtypes of the unchecked Runtime-
Exception, which is usually handled in a single location in an application.
This also makes any Hibernate template or wrapper API obsolete.

First, even though we admit that you wouldn’t write your application code with
dozens (or hundreds) of try/catch blocks, the example we showed isn’t com-
plete. This is an example of the standard idiom for a Hibernate unit of work with
a database transaction that contains real exception handling:

Session session = null;
Transaction tx = null;

try {
 session = sessionFactory.openSession();
 tx = session.beginTransaction();

 tx.setTimeout(5);

 concludeAuction(session);

 tx.commit();
} catch (RuntimeException ex) {
 try {
 tx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn’t roll back transaction", rbEx);
 }
 throw ex;
} finally {
 session.close();
}

Any Hibernate operation, including flushing the persistence context, can throw a
RuntimeException. Even rolling back a transaction can throw an exception! You
want to catch this exception and log it; otherwise, the original exception that led
to the rollback is swallowed.

 An optional method call in the example is setTimeout(), which takes the
number of seconds a transaction is allowed to run. However, real monitored trans-
actions aren’t available in a Java SE environment. The best Hibernate can do if
you run this code outside of an application server (that is, without a transaction
manager) is to set the number of seconds the driver will wait for a Prepared-
Statement to execute (Hibernate exclusively uses prepared statements). If the
limit is exceeded, an SQLException is thrown.

Transaction essentials 441
 You don’t want to use this example as a template in your own application,
because you should hide the exception handling with generic infrastructure code.
You can, for example, write a single error handler for RuntimeException that
knows when and how to roll back a transaction. The same can be said about open-
ing and closing a Session. We discuss this with more realistic examples later in
the next chapter and again in chapter 16, section 16.1.3, “The Open Session in
View pattern.”

 Hibernate throws typed exceptions, all subtypes of RuntimeException that help
you identify errors:

■ The most common HibernateException is a generic error. You have to
either check the exception message or find out more about the cause by
calling getCause() on the exception.

■ A JDBCException is any exception thrown by Hibernate’s internal JDBC
layer. This kind of exception is always caused by a particular SQL statement,
and you can get the offending statement with getSQL(). The internal
exception thrown by the JDBC connection (the JDBC driver, actually) is
available with getSQLException() or getCause(), and the database- and
vendor-specific error code is available with getErrorCode().

■ Hibernate includes subtypes of JDBCException and an internal converter
that tries to translate the vendor-specific error code thrown by the database
driver into something more meaningful. The built-in converter can pro-
duce JDBCConnectionException, SQLGrammarException, LockAquisition-
Exception, DataException, and ConstraintViolationException for the
most important database dialects supported by Hibernate. You can either
manipulate or enhance the dialect for your database, or plug in a SQLEx-
ceptionConverterFactory to customize this conversion.

■ Other RuntimeExceptions thrown by Hibernate should also abort a transac-
tion. You should always make sure you catch RuntimeException, no matter
what you plan to do with any fine-grained exception-handling strategy.

You now know what exceptions you should catch and when to expect them. How-
ever, one question is probably on your mind: What should you do after you’ve
caught an exception?

 All exceptions thrown by Hibernate are fatal. This means you have to roll back
the database transaction and close the current Session. You aren’t allowed to con-
tinue working with a Session that threw an exception.

442 CHAPTER 10

Transactions and concurrency
 Usually, you also have to exit the application after you close the Session fol-
lowing an exception, although there are some exceptions (for example, Stale-
ObjectStateException) that naturally lead to a new attempt (possibly after
interacting with the application user again) in a new Session. Because these are
closely related to conversations and concurrency control, we’ll cover them later.

FAQ Can I use exceptions for validation? Some developers get excited once they
see how many fine-grained exception types Hibernate can throw. This
can lead you down the wrong path. For example, you may be tempted to
catch the ConstraintViolationException for validation purposes. If a
particular operation throws this exception, why not display a (customized
depending on the error code and text) failure message to application
users and let them correct the mistake? This strategy has two significant
disadvantages. First, throwing unchecked values against the database to
see what sticks isn’t the right strategy for a scalable application. You want
to implement at least some data-integrity validation in the application
layer. Second, all exceptions are fatal for your current unit of work. How-
ever, this isn’t how application users will interpret a validation error—
they expect to still be inside a unit of work. Coding around this mismatch
is awkward and difficult. Our recommendation is that you use the
fine-grained exception types to display better looking (fatal) error mes-
sages. Doing so helps you during development (no fatal exceptions
should occur in production, ideally) and also helps any customer-support
engineer who has to decide quickly if it’s an application error (constraint
violated, wrong SQL executed) or if the database system is under load
(locks couldn’t be acquired).

Programmatic transaction demarcation in Java SE with the Hibernate Transac-
tion interface keeps your code portable. It can also run inside a managed envi-
ronment, when a transaction manager handles the database resources.

Programmatic transactions with JTA
A managed runtime environment compatible with Java EE can manage resources
for you. In most cases, the resources that are managed are database connections,
but any resource that has an adaptor can integrate with a Java EE system (messag-
ing or legacy systems, for example). Programmatic transaction demarcation on
those resources, if they’re transactional, is unified and exposed to the developer
with JTA; javax.transaction.UserTransaction is the primary interface to begin
and end transactions.

 The common managed runtime environment is a Java EE application server.
Of course, application servers provide many more services, not only management
of resources. Many Java EE services are modular—installing an application server

Transaction essentials 443
isn’t the only way to get them. You can obtain a stand-alone JTA provider if man-
aged resources are all you need. Open source stand-alone JTA providers include
JBoss Transactions (http://www.jboss.com/products/transactions), ObjectWeb JOTM
(http://jotm.objectweb.org), and others. You can install such a JTA service along
with your Hibernate application (in Tomcat, for example). It will manage a pool
of database connections for you, provide JTA interfaces for transaction demarca-
tion, and provide managed database connections through a JNDI registry.

 The following are benefits of managed resources with JTA and reasons to use
this Java EE service:

■ A transaction-management service can unify all resources, no matter of
what type, and expose transaction control to you with a single standardized
API. This means that you can replace the Hibernate Transaction API and use
JTA directly everywhere. It’s then the responsibility of the application
deployer to install the application on (or with) a JTA-compatible runtime
environment. This strategy moves portability concerns where they belong;
the application relies on standardized Java EE interfaces, and the runtime
environment has to provide an implementation.

■ A Java EE transaction manager can enlist multiple resources in a single
transaction. If you work with several databases (or more than one resource),
you probably want a two-phase commit protocol to guarantee atomicity of a
transaction across resource boundaries. In such a scenario, Hibernate is
configured with several SessionFactorys, one for each database, and their
Sessions obtain managed database connections that all participate in the
same system transaction.

■ The quality of JTA implementations is usually higher compared to simple
JDBC connection pools. Application servers and stand-alone JTA providers
that are modules of application servers usually have had more testing in
high-end systems with a large transaction volume.

■ JTA providers don’t add unnecessary overhead at runtime (a common mis-
conception). The simple case (a single JDBC database) is handled as effi-
ciently as with plain JDBC transactions. The connection pool managed
behind a JTA service is probably much better software than a random con-
nection pooling library you’d use with plain JDBC.

Let’s assume that you aren’t sold on JTA and that you want to continue using the
Hibernate Transaction API to keep your code runnable in Java SE and with man-
aged Java EE services, without any code changes. To deploy the previous code

444 CHAPTER 10

Transactions and concurrency
examples, which all call the Hibernate Transaction API, on a Java EE application
server, you need to switch the Hibernate configuration to JTA:

■ The hibernate.transaction.factory_class option must be set to org.
hibernate.transaction.JTATransactionFactory.

■ Hibernate needs to know the JTA implementation on which you’re deploy-
ing, for two reasons: First, different implementations may expose the JTA
UserTransaction, which Hibernate has to call internally now, under differ-
ent names. Second, Hibernate has to hook into the synchronization process
of the JTA transaction manager to handle its caches. You have to set the
hibernate.transaction.manager_lookup_class option to configure
both: for example, to org.hibernate.transaction.JBossTransaction-
ManagerLookup. Lookup classes for the most common JTA implementations
and application servers are packaged with Hibernate (and can be custom-
ized if needed). Check the Javadoc for the package.

■ Hibernate is no longer responsible for managing a JDBC connection pool;
it obtains managed database connections from the runtime container.
These connections are exposed by the JTA provider through JNDI, a global
registry. You must configure Hibernate with the right name for your data-
base resources on JNDI, as you did in chapter 2, section 2.4.1, “Integration
with JTA.”

Now the same piece of code you wrote earlier for Java SE directly on top of JDBC
will work in a JTA environment with managed datasources:

Session session = null;
Transaction tx = null;

try {
 session = sessionFactory.openSession();
 tx = session.beginTransaction();

 tx.setTimeout(5);

 concludeAuction(session);

 tx.commit();
} catch (RuntimeException ex) {
 try {
 tx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;

Transaction essentials 445
} finally {
 session.close();
}

However, the database connection-handling is slightly different. Hibernate
obtains a managed database connection for each Session you’re using and,
again, tries to be as lazy as possible. Without JTA, Hibernate would hold on to a
particular database connection from the beginning until the end of the transac-
tion. With a JTA configuration, Hibernate is even more aggressive: A connection is
obtained and used for only a single SQL statement and then is immediately
returned to the managed connection pool. The application server guarantees
that it will hand out the same connection during the same transaction, when it’s
needed again for another SQL statement. This aggressive connection-release
mode is Hibernate’s internal behavior, and it doesn’t make any difference for
your application and how you write code. (Hence, the code example is line-by-line
the same as the last one.)

 A JTA system supports global transaction timeouts; it can monitor transactions.
So, setTimeout() now controls the global JTA timeout setting—equivalent to call-
ing UserTransaction.setTransactionTimeout().

 The Hibernate Transaction API guarantees portability with a simple change
of Hibernate configuration. If you want to move this responsibility to the applica-
tion deployer, you should write your code against the standardized JTA interface,
instead. To make the following example a little more interesting, you’ll also work
with two databases (two SessionFactorys) inside the same system transaction:

UserTransaction utx = (UserTransaction) new InitialContext()
 .lookup("java:comp/UserTransaction");

Session session1 = null;
Session session2 = null;

try {
 utx.begin();

 session1 = auctionDatabase.openSession();
 session2 = billingDatabase.openSession();

 concludeAuction(session1);
 billAuction(session2);

 session1.flush();
 session2.flush();

 utx.commit();
} catch (RuntimeException ex) {
 try {

446 CHAPTER 10

Transactions and concurrency
 utx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;
} finally {
 session1.close();
 session2.close();
}

(Note that this code snippet can throw some other, checked exceptions, like a
NamingException from the JNDI lookup. You need to handle these accordingly.)

 First, a handle on a JTA UserTransaction must be obtained from the JNDI reg-
istry. Then, you begin and end a transaction, and the (container-provided) data-
base connections used by all Hibernate Sessions are enlisted in that transaction
automatically. Even if you aren’t using the Transaction API, you should still con-
figure hibernate.transaction.factory_class and hibernate.transaction.
manager_lookup_class for JTA and your environment, so that Hibernate can
interact with the transaction system internally.

 With default settings, it’s also your responsibility to flush() each Session
manually to synchronize it with the database (to execute all SQL DML). The
Hibernate Transaction API did this automatically for you. You also have to close
all Sessions manually. On the other hand, you can enable the hibernate.trans-
action.flush_before_completion and/or the hibernate.transaction.auto_
close_session configuration options and let Hibernate take care of this for you
again—flushing and closing is then part of the internal synchronization proce-
dure of the transaction manager and occurs before (and after, respectively) the
JTA transaction ends. With these two settings enabled the code can be simplified
to the following:

UserTransaction utx = (UserTransaction) new InitialContext()
 .lookup("java:comp/UserTransaction");

Session session1 = null;
Session session2 = null;

try {
 utx.begin();

 session1 = auctionDatabase.openSession();
 session2 = billingDatabase.openSession();

 concludeAuction(session1);
 billAuction(session2);

 utx.commit();
} catch (RuntimeException ex) {

Transaction essentials 447
 try {
 utx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;
}

The session1 and session2 persistence context is now flushed automatically dur-
ing commit of the UserTransaction, and both are closed after the transaction
completes.

 Our advice is to use JTA directly whenever possible. You should always try to
move the responsibility for portability outside of the application and, if you can,
require deployment in an environment that provides JTA.

 Programmatic transaction demarcation requires application code written
against a transaction demarcation interface. A much nicer approach that avoids
any nonportable code spread throughout your application is declarative transac-
tion demarcation.

Container-managed transactions
Declarative transaction demarcation implies that a container takes care of this
concern for you. You declare if and how you want your code to participate in a
transaction. The responsibility to provide a container that supports declarative
transaction demarcation is again where it belongs, with the application deployer.

 CMT is a standard feature of Java EE and, in particular, EJB. The code we’ll
show you next is based on EJB 3.0 session beans (Java EE only); you define trans-
action boundaries with annotations. Note that the actual data-access code doesn’t
change if you have to use the older EJB 2.1 session beans; however, you have to
write an EJB deployment descriptor in XML to create your transaction assembly—
this is optional in EJB 3.0.

 (A stand-alone JTA implementation doesn’t provide container-managed and
declarative transactions. However, JBoss Application Server is available as a modu-
lar server with a minimal footprint, and it can provide only JTA and an EJB 3.0
container, if needed.)

 Suppose that an EJB 3.0 session bean implements an action that ends an auc-
tion. The code you previously wrote with programmatic JTA transaction demarca-
tion is moved into a stateless session bean:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @TransactionAttribute(TransactionAttributeType.REQUIRED)

448 CHAPTER 10

Transactions and concurrency
 public void endAuction(Item item) {
 Session session1 = auctionDatabase.openSession();
 Session session2 = billingDatabase.openSession();

 concludeAuction(session1, item);
 billAuction(session2, item);
 }
 ...
}

The container notices your declaration of a TransactionAttribute and applies it
to the endAuction() method. If no system transaction is running when the
method is called, a new transaction is started (it’s REQUIRED). Once the method
returns, and if the transaction was started when the method was called (and not
by anyone else), the transaction commits. The system transaction is automatically
rolled back if the code inside the method throws a RuntimeException.

 We again show two SessionFactorys for two databases, for the sake of the
example. They could be assigned with a JNDI lookup (Hibernate can bind them
there at startup) or from an enhanced version of HibernateUtil. Both obtain
database connections that are enlisted with the same container-managed transac-
tion. And, if the container’s transaction system and the resources support it, you
again get a two-phase commit protocol that ensures atomicity of the transaction
across databases.

 You have to set some configuration options to enable CMT with Hibernate:

■ The hibernate.transaction.factory_class option must be set to org.
hibernate.transaction.CMTTransactionFactory.

■ You need to set hibernate.transaction.manager_lookup_class to the
right lookup class for your application server.

Also note that all EJB session beans default to CMT, so if you want to disable CMT
and call the JTA UserTransaction directly in any session bean method, annotate
the EJB class with @TransactionManagement(TransactionManagementType.

BEAN). You’re then working with bean-managed transactions (BMT). Even if it may
work in most application servers, mixing CMT and BMT in a single bean isn’t
allowed by the Java EE specification.

 The CMT code already looks much nicer than the programmatic transaction
demarcation. If you configure Hibernate to use CMT, it knows that it should flush
and close a Session that participates in a system transaction automatically. Fur-
thermore, you’ll soon improve this code and even remove the two lines that open
a Hibernate Session.

 Let’s look at transaction handling in a Java Persistence application.

Transaction essentials 449
10.1.3 Transactions with Java Persistence

With Java Persistence, you also have the design choice to make between program-
matic transaction demarcation in application code or declarative transaction
demarcation handled automatically by the runtime container. Let’s investigate
the first option with plain Java SE and then repeat the examples with JTA and EJB
components.

 The description resource-local transaction applies to all transactions that are con-
trolled by the application (programmatic) and that aren’t participating in a global
system transaction. They translate directly into the native transaction system of the
resource you’re dealing with. Because you’re working with JDBC databases, this
means a resource-local transaction translates into a JDBC database transaction.

 Resource-local transactions in JPA are controlled with the EntityTransaction
API. This interface exists not for portability reasons, but to enable particular fea-
tures of Java Persistence—for instance, flushing of the underlying persistence con-
text when you commit a transaction.

 You’ve seen the standard idiom of Java Persistence in Java SE many times. Here
it is again with exception handling:

EntityManager em = null;
EntityTransaction tx = null;

try {
 em = emf.createEntityManager();
 tx = em.getTransaction();
 tx.begin();

 concludeAuction(em);

 tx.commit();
} catch (RuntimeException ex) {
 try {
 tx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;
} finally {
 em.close();
}

This pattern is close to its Hibernate equivalent, with the same implications: You
have to manually begin and end a database transaction, and you must guarantee
that the application-managed EntityManager is closed in a finally block.
(Although we often show code examples that don’t handle exceptions or are
wrapped in a try/catch block, this isn’t optional.)

450 CHAPTER 10

Transactions and concurrency
 Exceptions thrown by JPA are subtypes of RuntimeException. Any exception
invalidates the current persistence context, and you aren’t allowed to continue
working with the EntityManager once an exception has been thrown. Therefore,
all the strategies we discussed for Hibernate exception handling also apply to Java
Persistence exception handling. In addition, the following rules apply:

■ Any exception thrown by any method of the EntityManager interfaces trig-
gers an automatic rollback of the current transaction.

■ Any exception thrown by any method of the javax.persistence.Query
interface triggers an automatic rollback of the current transaction, except
for NoResultException and NonUniqueResultException. So, the previous
code example that catches all exceptions also executes a rollback for these
exceptions.

Note that JPA doesn’t offer fine-grained SQL exception types. The most common
exception is javax.persistence.PersistenceException. All other exceptions
thrown are subtypes of PersistenceException, and you should consider them all
fatal except NoResultException and NonUniqueResultException. However, you
may call getCause() on any exception thrown by JPA and find a wrapped native
Hibernate exception, including the fine-grained SQL exception types.

 If you use Java Persistence inside an application server or in an environment
that at least provides JTA (see our earlier discussions for Hibernate), you call the
JTA interfaces for programmatic transaction demarcation. The EntityTransac-
tion interface is available only for resource-local transactions.

JTA transactions with Java Persistence
If your Java Persistence code is deployed in an environment where JTA is available,
and you want to use JTA system transactions, you need to call the JTA UserTrans-
action interface to control transaction boundaries programmatically:

UserTransaction utx = (UserTransaction) new InitialContext()
 .lookup("java:comp/UserTransaction");
EntityManager em = null;

try {
 utx.begin();

 em = emf.createEntityManager();

 concludeAuction(em);

 utx.commit();
} catch (RuntimeException ex) {
 try {

Transaction essentials 451
 utx.rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;
} finally {
 em.close();
}

The persistence context of the EntityManager is scoped to the JTA transaction.
All SQL statements flushed by this EntityManager are executed inside the JTA
transaction on a database connection that is enlisted with the transaction. The
persistence context is flushed and closed automatically when the JTA transac-
tion commits. You could use several EntityManagers to access several databases
in the same system transaction, just as you’d use several Sessions in a native
Hibernate application.

 Note that the scope of the persistence context changed! It’s now scoped to the
JTA transaction, and any object that was in persistent state during the transaction
is considered detached once the transaction is committed.

 The rules for exception handling are equivalent to those for resource-local
transactions. If you use JTA in EJBs, don’t forget to set @TransactionManage-
ment(TransactionManagementType.BEAN) on the class to enable BMT.

 You won’t often use Java Persistence with JTA and not also have an EJB con-
tainer available. If you don’t deploy a stand-alone JTA implementation, a Java EE
5.0 application server will provide both. Instead of programmatic transaction
demarcation, you’ll probably utilize the declarative features of EJBs.

Java Persistence and CMT
Let’s refactor the ManageAuction EJB session bean from the earlier Hiber-
nate-only examples to Java Persistence interfaces. You also let the container inject
an EntityManager:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext(unitName = "auctionDB")
 private EntityManager auctionEM;

 @PersistenceContext(unitName = "billingDB")
 private EntityManager billingEM;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void endAuction(Item item)
 throws AuctionNotValidException {

 concludeAuction(auctionEM, item);

452 CHAPTER 10

Transactions and concurrency
 billAuction(billingEM, item);
 }
 ...
}

Again, what happens inside the concludeAuction() and billAuction() methods
isn’t relevant for this example; assume that they need the EntityManagers to
access the database. The TransactionAttribute for the endAuction() method
requires that all database access occurs inside a transaction. If no system transac-
tion is active when endAuction() is called, a new transaction is started for this
method. If the method returns, and if the transaction was started for this method,
it’s committed. Each EntityManager has a persistence context that spans the
scope of the transaction and is flushed automatically when the transaction com-
mits. The persistence context has the same scope as the endAuction() method, if
no transaction is active when the method is called.

 Both persistence units are configured to deploy on JTA, so two managed data-
base connections, one for each database, are enlisted inside the same transaction,
and atomicity is guaranteed by the transaction manager of the application server.

 You declare that the endAuction() method may throw an AuctionNotValidEx-
ception. This is a custom exception you write; before ending the auction, you
check if everything is correct (the end time of the auction has been reached, there
is a bid, and so on). This is a checked exception that is a subtype of java.lang.
Exception. An EJB container treats this as an application exception and doesn’t trig-
ger any action if the EJB method throws this exception. However, the container
recognizes system exceptions, which by default are all unchecked RuntimeExceptions
that may be thrown by an EJB method. A system exception thrown by an EJB
method enforces an automatic rollback of the system transaction.

 In other words, you don’t need to catch and rethrow any system exception
from your Java Persistence operations—let the container handle them. You have
two choices how you can roll back a transaction if an application exception is
thrown: First, you can catch it and call the JTA UserTransaction manually, and set
it to roll back. Or you can add an @ApplicationException(rollback = true)
annotation to the class of AuctionNotValidException—the container will then
recognize that you wish an automatic rollback whenever an EJB method throws
this application exception.

 You’re now ready to use Java Persistence and Hibernate inside and outside of
an application server, with or without JTA, and in combination with EJBs and con-
tainer-managed transactions. We’ve discussed (almost) all aspects of transaction

Controlling concurrent access 453
atomicity. Naturally, you probably still have questions about the isolation between
concurrently running transactions.

10.2 Controlling concurrent access

Databases (and other transactional systems) attempt to ensure transaction isolation,
meaning that, from the point of view of each concurrent transaction, it appears
that no other transactions are in progress. Traditionally, this has been imple-
mented with locking. A transaction may place a lock on a particular item of data in
the database, temporarily preventing access to that item by other transactions.
Some modern databases such as Oracle and PostgreSQL implement transaction
isolation with multiversion concurrency control (MVCC) which is generally considered
more scalable. We’ll discuss isolation assuming a locking model; most of our
observations are also applicable to multiversion concurrency, however.

 How databases implement concurrency control is of the utmost importance in
your Hibernate or Java Persistence application. Applications inherit the isolation
guarantees provided by the database management system. For example, Hiber-
nate never locks anything in memory. If you consider the many years of experi-
ence that database vendors have with implementing concurrency control, you’ll
see the advantage of this approach. On the other hand, some features in Hiber-
nate and Java Persistence (either because you use them or by design) can improve
the isolation guarantee beyond what is provided by the database.

 We discuss concurrency control in several steps. We explore the lowest layer
and investigate the transaction isolation guarantees provided by the database.
Then, we look at Hibernate and Java Persistence features for pessimistic and opti-
mistic concurrency control at the application level, and what other isolation guar-
antees Hibernate can provide.

10.2.1 Understanding database-level concurrency

Your job as a Hibernate application developer is to understand the capabilities of
your database and how to change the database isolation behavior if needed in
your particular scenario (and by your data integrity requirements). Let’s take a
step back. If we’re talking about isolation, you may assume that two things are
either isolated or not isolated; there is no grey area in the real world. When we
talk about database transactions, complete isolation comes at a high price. Several
isolation levels are available, which, naturally, weaken full isolation but increase per-
formance and scalability of the system.

454 CHAPTER 10

Transactions and concurrency
Transaction isolation issues
First, let’s look at several phenomena that may occur when you weaken full trans-
action isolation. The ANSI SQL standard defines the standard transaction isolation
levels in terms of which of these phenomena are permissible in a database man-
agement system:

 A lost update occurs if two transactions both update a row and then the second
transaction aborts, causing both changes to be lost. This occurs in systems that
don’t implement locking. The concurrent transactions aren’t isolated. This is
shown in figure 10.2.

A dirty read occurs if a one transaction reads changes made by another transaction
that has not yet been committed. This is dangerous, because the changes made by
the other transaction may later be rolled back, and invalid data may be written by
the first transaction, see figure 10.3.

 An unrepeatable read occurs if a transaction reads a row twice and reads different
state each time. For example, another transaction may have written to the row
and committed between the two reads, as shown in figure 10.4.

 A special case of unrepeatable read is the second lost updates problem. Imagine
that two concurrent transactions both read a row: One writes to it and commits,
and then the second writes to it and commits. The changes made by the first
writer are lost. This issue is especially relevant if you think about application

Figure 10.2
Lost update: two transactions update the
same data without locking.

Figure 10.3
Dirty read: transaction A reads
uncommitted data.

Controlling concurrent access 455
conversations that need several database transactions to complete. We’ll explore
this case later in more detail.

 A phantom read is said to occur when a transaction executes a query twice, and
the second result set includes rows that weren’t visible in the first result set or rows
that have been deleted. (It need not necessarily be exactly the same query.) This
situation is caused by another transaction inserting or deleting rows between the
execution of the two queries, as shown in figure 10.5.

Now that you understand all the bad things that can occur, we can define the
transaction isolation levels and see what problems they prevent.

ANSI transaction isolation levels
The standard isolation levels are defined by the ANSI SQL standard, but they
aren’t peculiar to SQL databases. JTA defines exactly the same isolation levels, and
you’ll use these levels to declare your desired transaction isolation later. With
increased levels of isolation comes higher cost and serious degradation of perfor-
mance and scalability:

■ A system that permits dirty reads but not lost updates is said to operate in
read uncommitted isolation. One transaction may not write to a row if another
uncommitted transaction has already written to it. Any transaction may read
any row, however. This isolation level may be implemented in the data-
base-management system with exclusive write locks.

Figure 10.4
Unrepeatable read: transaction A executes two
nonrepeatable reads

Figure 10.5
Phantom read: transaction A reads new
data in the second select.

456 CHAPTER 10

Transactions and concurrency
■ A system that permits unrepeatable reads but not dirty reads is said to imple-
ment read committed transaction isolation. This may be achieved by using
shared read locks and exclusive write locks. Reading transactions don’t
block other transactions from accessing a row. However, an uncommitted
writing transaction blocks all other transactions from accessing the row.

■ A system operating in repeatable read isolation mode permits neither unre-
peatable reads nor dirty reads. Phantom reads may occur. Reading transac-
tions block writing transactions (but not other reading transactions), and
writing transactions block all other transactions.

■ Serializable provides the strictest transaction isolation. This isolation level
emulates serial transaction execution, as if transactions were executed one
after another, serially, rather than concurrently. Serializability may not be
implemented using only row-level locks. There must instead be some other
mechanism that prevents a newly inserted row from becoming visible to a
transaction that has already executed a query that would return the row.

How exactly the locking system is implemented in a DBMS varies significantly;
each vendor has a different strategy. You should study the documentation of your
DBMS to find out more about the locking system, how locks are escalated (from
row-level, to pages, to whole tables, for example), and what impact each isolation
level has on the performance and scalability of your system.

 It’s nice to know how all these technical terms are defined, but how does that
help you choose an isolation level for your application?

Choosing an isolation level
Developers (ourselves included) are often unsure what transaction isolation level
to use in a production application. Too great a degree of isolation harms scalabil-
ity of a highly concurrent application. Insufficient isolation may cause subtle,
unreproduceable bugs in an application that you’ll never discover until the system
is working under heavy load.

 Note that we refer to optimistic locking (with versioning) in the following expla-
nation, a concept explained later in this chapter. You may want to skip this section
and come back when it’s time to make the decision for an isolation level in your
application. Picking the correct isolation level is, after all, highly dependent on
your particular scenario. Read the following discussion as recommendations, not
carved in stone.

 Hibernate tries hard to be as transparent as possible regarding transactional
semantics of the database. Nevertheless, caching and optimistic locking affect

Controlling concurrent access 457
these semantics. What is a sensible database isolation level to choose in a Hiber-
nate application?

 First, eliminate the read uncommitted isolation level. It’s extremely dangerous to
use one transaction’s uncommitted changes in a different transaction. The roll-
back or failure of one transaction will affect other concurrent transactions. Roll-
back of the first transaction could bring other transactions down with it, or
perhaps even cause them to leave the database in an incorrect state. It’s even pos-
sible that changes made by a transaction that ends up being rolled back could be
committed anyway, because they could be read and then propagated by another
transaction that is successful!

 Secondly, most applications don’t need serializable isolation (phantom reads
aren’t usually problematic), and this isolation level tends to scale poorly. Few
existing applications use serializable isolation in production, but rather rely on
pessimistic locks (see next sections) that effectively force a serialized execution of
operations in certain situations.

 This leaves you a choice between read committed and repeatable read. Let’s first
consider repeatable read. This isolation level eliminates the possibility that one
transaction can overwrite changes made by another concurrent transaction (the
second lost updates problem) if all data access is performed in a single atomic
database transaction. A read lock held by a transaction prevents any write lock a
concurrent transaction may wish to obtain. This is an important issue, but
enabling repeatable read isn’t the only way to resolve it.

 Let’s assume you’re using versioned data, something that Hibernate can do for
you automatically. The combination of the (mandatory) persistence context
cache and versioning already gives you most of the nice features of repeatable
read isolation. In particular, versioning prevents the second lost updates problem,
and the persistence context cache also ensures that the state of the persistent
instances loaded by one transaction is isolated from changes made by other trans-
actions. So, read-committed isolation for all database transactions is acceptable if
you use versioned data.

 Repeatable read provides more reproducibility for query result sets (only for
the duration of the database transaction); but because phantom reads are still
possible, that doesn’t appear to have much value. You can obtain a repeat-
able-read guarantee explicitly in Hibernate for a particular transaction and piece
of data (with a pessimistic lock).

 Setting the transaction isolation level allows you to choose a good default lock-
ing strategy for all your database transactions. How do you set the isolation level?

458 CHAPTER 10

Transactions and concurrency
Setting an isolation level
Every JDBC connection to a database is in the default isolation level of the DBMS—
usually read committed or repeatable read. You can change this default in the
DBMS configuration. You may also set the transaction isolation for JDBC connec-
tions on the application side, with a Hibernate configuration option:

hibernate.connection.isolation = 4

 Hibernate sets this isolation level on every JDBC connection obtained from a
connection pool before starting a transaction. The sensible values for this option
are as follows (you may also find them as constants in java.sql.Connection):

■ 1—Read uncommitted isolation

■ 2—Read committed isolation

■ 4—Repeatable read isolation

■ 8—Serializable isolation

Note that Hibernate never changes the isolation level of connections obtained
from an application server-provided database connection in a managed environ-
ment! You can change the default isolation using the configuration of your appli-
cation server. (The same is true if you use a stand-alone JTA implementation.)

 As you can see, setting the isolation level is a global option that affects all con-
nections and transactions. From time to time, it’s useful to specify a more restric-
tive lock for a particular transaction. Hibernate and Java Persistence rely on
optimistic concurrency control, and both allow you to obtain additional locking
guarantees with version checking and pessimistic locking.

10.2.2 Optimistic concurrency control

An optimistic approach always assumes that everything will be OK and that con-
flicting data modifications are rare. Optimistic concurrency control raises an
error only at the end of a unit of work, when data is written. Multiuser applica-
tions usually default to optimistic concurrency control and database connections
with a read-committed isolation level. Additional isolation guarantees are
obtained only when appropriate; for example, when a repeatable read is required.
This approach guarantees the best performance and scalability.

Understanding the optimistic strategy
To understand optimistic concurrency control, imagine that two transactions read
a particular object from the database, and both modify it. Thanks to the read-com-
mitted isolation level of the database connection, neither transaction will run into

Controlling concurrent access 459
any dirty reads. However, reads are still nonrepeatable, and updates may also be
lost. This is a problem you’ll face when you think about conversations, which are
atomic transactions from the point of view of your users. Look at figure 10.6.

 Let’s assume that two users select the same piece of data at the same time. The
user in conversation A submits changes first, and the conversation ends with a suc-
cessful commit of the second transaction. Some time later (maybe only a second),
the user in conversation B submits changes. This second transaction also commits
successfully. The changes made in conversation A have been lost, and (potentially
worse) modifications of data committed in conversation B may have been based
on stale information.

 You have three choices for how to deal with lost updates in these second trans-
actions in the conversations:

■ Last commit wins—Both transactions commit successfully, and the second
commit overwrites the changes of the first. No error message is shown.

■ First commit wins—The transaction of conversation A is committed, and the
user committing the transaction in conversation B gets an error message.
The user must restart the conversation by retrieving fresh data and go
through all steps of the conversation again with nonstale data.

■ Merge conflicting updates—The first modification is committed, and the trans-
action in conversation B aborts with an error message when it’s committed.
The user of the failed conversation B may however apply changes selec-
tively, instead of going through all the work in the conversation again.

If you don’t enable optimistic concurrency control, and by default it isn’t enabled,
your application runs with a last commit wins strategy. In practice, this issue of lost
updates is frustrating for application users, because they may see all their work
lost without an error message.

Figure 10.6
Conversation B overwrites
changes made by conversation A.

460 CHAPTER 10

Transactions and concurrency
 Obviously, first commit wins is much more attractive. If the application user of
conversation B commits, he gets an error message that reads, Somebody already com-
mitted modifications to the data you’re about to commit. You’ve been working with stale
data. Please restart the conversation with fresh data. It’s your responsibility to design
and write the application to produce this error message and to direct the user to
the beginning of the conversation. Hibernate and Java Persistence help you with
automatic optimistic locking, so that you get an exception whenever a transaction
tries to commit an object that has a conflicting updated state in the database.

 Merge conflicting changes, is a variation of first commit wins. Instead of displaying
an error message that forces the user to go back all the way, you offer a dialog that
allows the user to merge conflicting changes manually. This is the best strategy
because no work is lost and application users are less frustrated by optimistic con-
currency failures. However, providing a dialog to merge changes is much more
time-consuming for you as a developer than showing an error message and forc-
ing the user to repeat all the work. We’ll leave it up to you whether you want to use
this strategy.

 Optimistic concurrency control can be implemented many ways. Hibernate
works with automatic versioning.

Enabling versioning in Hibernate
Hibernate provides automatic versioning. Each entity instance has a version,
which can be a number or a timestamp. Hibernate increments an object’s version
when it’s modified, compares versions automatically, and throws an exception if a
conflict is detected. Consequently, you add this version property to all your persis-
tent entity classes to enable optimistic locking:

public class Item {
 ...
 private int version;
 ...
}

You can also add a getter method; however, version numbers must not be modi-
fied by the application. The <version> property mapping in XML must be placed
immediately after the identifier property mapping:

<class name="Item" table="ITEM">
 <id .../>

 <version name="version" access="field" column="OBJ_VERSION"/>

 ...
</class>

Controlling concurrent access 461
The version number is just a counter value—it doesn’t have any useful semantic
value. The additional column on the entity table is used by your Hibernate appli-
cation. Keep in mind that all other applications that access the same database can
(and probably should) also implement optimistic versioning and utilize the same
version column. Sometimes a timestamp is preferred (or exists):

public class Item {
 ...
 private Date lastUpdated;
 ...
}

<class name="Item" table="ITEM">

 <id .../>

 <timestamp name="lastUpdated"
 access="field"
 column="LAST_UPDATED"/>
...
</class>

In theory, a timestamp is slightly less safe, because two concurrent transactions
may both load and update the same item in the same millisecond; in practice,
this won’t occur because a JVM usually doesn’t have millisecond accuracy (you
should check your JVM and operating system documentation for the guaran-
teed precision).

 Furthermore, retrieving the current time from the JVM isn’t necessarily safe in
a clustered environment, where nodes may not be time synchronized. You can
switch to retrieval of the current time from the database machine with the
source="db" attribute on the <timestamp> mapping. Not all Hibernate SQL dia-
lects support this (check the source of your configured dialect), and there is
always the overhead of hitting the database for every increment.

 We recommend that new projects rely on versioning with version numbers, not
timestamps.

 Optimistic locking with versioning is enabled as soon as you add a <version>
or a <timestamp> property to a persistent class mapping. There is no other switch.

 How does Hibernate use the version to detect a conflict?

Automatic management of versions
Every DML operation that involves the now versioned Item objects includes a ver-
sion check. For example, assume that in a unit of work you load an Item from the
database with version 1. You then modify one of its value-typed properties, such as
the price of the Item. When the persistence context is flushed, Hibernate detects

462 CHAPTER 10

Transactions and concurrency
that modification and increments the version of the Item to 2. It then executes
the SQL UPDATE to make this modification permanent in the database:

update ITEM set INITIAL_PRICE='12.99', OBJ_VERSION=2
 where ITEM_ID=123 and OBJ_VERSION=1

If another concurrent unit of work updated and committed the same row, the
OBJ_VERSION column no longer contains the value 1, and the row isn’t updated.
Hibernate checks the row count for this statement as returned by the JDBC
driver—which in this case is the number of rows updated, zero—and throws a
StaleObjectStateException. The state that was present when you loaded the
Item is no longer present in the database at flush-time; hence, you’re working
with stale data and have to notify the application user. You can catch this excep-
tion and display an error message or a dialog that helps the user restart a conver-
sation with the application.

 What modifications trigger the increment of an entity’s version? Hibernate
increments the version number (or the timestamp) whenever an entity instance is
dirty. This includes all dirty value-typed properties of the entity, no matter if
they’re single-valued, components, or collections. Think about the relationship
between User and BillingDetails, a one-to-many entity association: If a Credit-
Card is modified, the version of the related User isn’t incremented. If you add or
remove a CreditCard (or BankAccount) from the collection of billing details, the
version of the User is incremented.

 If you want to disable automatic increment for a particular value-typed prop-
erty or collection, map it with the optimistic-lock="false" attribute. The
inverse attribute makes no difference here. Even the version of an owner of an
inverse collection is updated if an element is added or removed from the
inverse collection.

 As you can see, Hibernate makes it incredibly easy to manage versions for opti-
mistic concurrency control. If you’re working with a legacy database schema or
existing Java classes, it may be impossible to introduce a version or timestamp
property and column. Hibernate has an alternative strategy for you.

Versioning without version numbers or timestamps
If you don’t have version or timestamp columns, Hibernate can still perform auto-
matic versioning, but only for objects that are retrieved and modified in the same
persistence context (that is, the same Session). If you need optimistic locking for
conversations implemented with detached objects, you must use a version number
or timestamp that is transported with the detached object.

Controlling concurrent access 463
 This alternative implementation of versioning checks the current database
state against the unmodified values of persistent properties at the time the object
was retrieved (or the last time the persistence context was flushed). You may
enable this functionality by setting the optimistic-lock attribute on the class
mapping:

<class name="Item" table="ITEM" optimistic-lock="all">
 <id .../>
 ...
</class>

The following SQL is now executed to flush a modification of an Item instance:

update ITEM set ITEM_PRICE='12.99'
where ITEM_ID=123
 and ITEM_PRICE='9.99'
 and ITEM_DESCRIPTION="An Item"
 and ...
 and SELLER_ID=45

Hibernate lists all columns and their last known nonstale values in the WHERE
clause of the SQL statement. If any concurrent transaction has modified any of
these values, or even deleted the row, this statement again returns with zero
updated rows. Hibernate then throws a StaleObjectStateException.

 Alternatively, Hibernate includes only the modified properties in the restric-
tion (only ITEM_PRICE, in this example) if you set optimistic-lock="dirty".
This means two units of work may modify the same object concurrently, and a
conflict is detected only if they both modify the same value-typed property (or a
foreign key value). In most cases, this isn’t a good strategy for business entities.
Imagine that two people modify an auction item concurrently: One changes the
price, the other the description. Even if these modifications don’t conflict at the
lowest level (the database row), they may conflict from a business logic perspec-
tive. Is it OK to change the price of an item if the description changed completely?
You also need to enable dynamic-update="true" on the class mapping of the
entity if you want to use this strategy, Hibernate can’t generate the SQL for these
dynamic UPDATE statements at startup.

 We don’t recommend versioning without a version or timestamp column in a
new application; it’s a little slower, it’s more complex, and it doesn’t work if you’re
using detached objects.

 Optimistic concurrency control in a Java Persistence application is pretty much
the same as in Hibernate.

464 CHAPTER 10

Transactions and concurrency
Versioning with Java Persistence
The Java Persistence specification assumes that concurrent data access is handled
optimistically, with versioning. To enable automatic versioning for a particular
entity, you need to add a version property or field:

@Entity
public class Item {
 ...
 @Version
 @Column(name = "OBJ_VERSION")
 private int version;
 ...
}

Again, you can expose a getter method but can’t allow modification of a version
value by the application. In Hibernate, a version property of an entity can be of
any numeric type, including primitives, or a Date or Calendar type. The JPA speci-
fication considers only int, Integer, short, Short, long, Long, and java.sql.
Timestamp as portable version types.

 Because the JPA standard doesn’t cover optimistic versioning without a version
attribute, a Hibernate extension is needed to enable versioning by comparing the
old and new state:

@Entity
@org.hibernate.annotations.Entity(
 optimisticLock = org.hibernate.annotations.OptimisticLockType.ALL
)
public class Item {
 ...
}

You can also switch to OptimisticLockType.DIRTY if you only wish to compare
modified properties during version checking. You then also need to set the
dynamicUpdate attribute to true.

 Java Persistence doesn’t standardize which entity instance modifications
should trigger an increment of the version. If you use Hibernate as a JPA provider,
the defaults are the same—every value-typed property modification, including
additions and removals of collection elements, triggers a version increment. At
the time of writing, no Hibernate annotation for disabling of version increments
on particular properties and collections is available, but a feature request for
@OptimisticLock(excluded=true) exists. Your version of Hibernate Annotations
probably includes this option.

 Hibernate EntityManager, like any other Java Persistence provider, throws a
javax.persistence.OptimisticLockException when a conflicting version is

Controlling concurrent access 465
detected. This is the equivalent of the native StaleObjectStateException in
Hibernate and should be treated accordingly.

 We’ve now covered the basic isolation levels of a database connection, with the
conclusion that you should almost always rely on read-committed guarantees from
your database. Automatic versioning in Hibernate and Java Persistence prevents
lost updates when two concurrent transactions try to commit modifications on the
same piece of data. To deal with nonrepeatable reads, you need additional isola-
tion guarantees.

10.2.3 Obtaining additional isolation guarantees

There are several ways to prevent nonrepeatable reads and upgrade to a higher
isolation level.

Explicit pessimistic locking
We already discussed switching all database connections to a higher isolation level
than read committed, but our conclusion was that this is a bad default when scal-
ability of the application is a concern. You need better isolation guarantees only
for a particular unit of work. Also remember that the persistence context cache
provides repeatable reads for entity instances in persistent state. However, this
isn’t always sufficient.

 For example, you may need repeatable read for scalar queries:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item i = (Item) session.get(Item.class, 123);

String description = (String)
 session.createQuery("select i.description from Item i" +
 " where i.id = :itemid")
 .setParameter("itemid", i.getId())
 .uniqueResult();

tx.commit();
session.close();

This unit of work executes two reads. The first retrieves an entity instance by
identifier. The second read is a scalar query, loading the description of the
already loaded Item instance again. There is a small window in this unit of work
in which a concurrently running transaction may commit an updated item
description between the two reads. The second read then returns this committed
data, and the variable description has a different value than the property i.
getDescription().

466 CHAPTER 10

Transactions and concurrency
 This example is simplified, but it’s enough to illustrate how a unit of work that
mixes entity and scalar reads is vulnerable to nonrepeatable reads, if the database
transaction isolation level is read committed.

 Instead of switching all database transactions into a higher and nonscalable
isolation level, you obtain stronger isolation guarantees when necessary with the
lock() method on the Hibernate Session:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item i = (Item) session.get(Item.class, 123);

session.lock(i, LockMode.UPGRADE);

String description = (String)
 session.createQuery("select i.description from Item i" +
 " where i.id = :itemid")
 .setParameter("itemid", i.getId())
 .uniqueResult();

tx.commit();
session.close();

Using LockMode.UPGRADE results in a pessimistic lock held on the database for the
row(s) that represent the Item instance. Now no concurrent transaction can
obtain a lock on the same data—that is, no concurrent transaction can modify the
data between your two reads. This can be shortened as follows:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item i = (Item) session.get(Item.class, 123, LockMode.UPGRADE);
...

A LockMode.UPGRADE results in an SQL SELECT ... FOR UPDATE or similar,
depending on the database dialect. A variation, LockMode.UPGRADE_NOWAIT, adds
a clause that allows an immediate failure of the query. Without this clause, the
database usually waits when the lock can’t be obtained (perhaps because a concur-
rent transaction already holds a lock). The duration of the wait is database-depen-
dent, as is the actual SQL clause.

FAQ Can I use long pessimistic locks? The duration of a pessimistic lock in
Hibernate is a single database transaction. This means you can’t use an
exclusive lock to block concurrent access for longer than a single data-
base transaction. We consider this a good thing, because the only solu-
tion would be an extremely expensive lock held in memory (or a
so-called lock table in the database) for the duration of, for example, a
whole conversation. These kinds of locks are sometimes called offline

Controlling concurrent access 467
locks. This is almost always a performance bottleneck; every data access
involves additional lock checks to a synchronized lock manager. Optimis-
tic locking, however, is the perfect concurrency control strategy and per-
forms well in long-running conversations. Depending on your
conflict-resolution options (that is, if you had enough time to implement
merge changes), your application users are as happy with it as with blocked
concurrent access. They may also appreciate not being locked out of par-
ticular screens while others look at the same data.

Java Persistence defines LockModeType.READ for the same purpose, and the
EntityManager also has a lock() method. The specification doesn’t require that
this lock mode is supported on nonversioned entities; however, Hibernate sup-
ports it on all entities, because it defaults to a pessimistic lock in the database.

The Hibernate lock modes
Hibernate supports the following additional LockModes:

■ LockMode.NONE—Don’t go to the database unless the object isn’t in any
cache.

■ LockMode.READ—Bypass all caches, and perform a version check to verify
that the object in memory is the same version that currently exists in the
database.

■ LockMode.UPDGRADE—Bypass all caches, do a version check (if applicable),
and obtain a database-level pessimistic upgrade lock, if that is supported.
Equivalent to LockModeType.READ in Java Persistence. This mode transpar-
ently falls back to LockMode.READ if the database SQL dialect doesn’t sup-
port a SELECT ... FOR UPDATE option.

■ LockMode.UPDGRADE_NOWAIT—The same as UPGRADE, but use a SELECT ...
FOR UPDATE NOWAIT, if supported. This disables waiting for concurrent lock
releases, thus throwing a locking exception immediately if the lock can’t be
obtained. This mode transparently falls back to LockMode.UPGRADE if the
database SQL dialect doesn’t support the NOWAIT option.

■ LockMode.FORCE—Force an increment of the objects version in the data-
base, to indicate that it has been modified by the current transaction. Equiv-
alent to LockModeType.WRITE in Java Persistence.

■ LockMode.WRITE—Obtained automatically when Hibernate has written to a
row in the current transaction. (This is an internal mode; you may not spec-
ify it in your application.)

468 CHAPTER 10

Transactions and concurrency
 By default, load() and get() use LockMode.NONE. A LockMode.READ is most
useful with session.lock() and a detached object. Here’s an example:

Item item = ... ;
Bid bid = new Bid();
item.addBid(bid);
...
Transaction tx = session.beginTransaction();
session.lock(item, LockMode.READ);
tx.commit();

This code performs a version check on the detached Item instance to verify that
the database row wasn’t updated by another transaction since it was retrieved,
before saving the new Bid by cascade (assuming the association from Item to Bid
has cascading enabled).

 (Note that EntityManager.lock() doesn’t reattach the given entity instance—
it only works on instances that are already in managed persistent state.)

 Hibernate LockMode.FORCE and LockModeType.WRITE in Java Persistence have
a different purpose. You use them to force a version update if by default no ver-
sion would be incremented.

Forcing a version increment
If optimistic locking is enabled through versioning, Hibernate increments the
version of a modified entity instance automatically. However, sometimes you want
to increment the version of an entity instance manually, because Hibernate
doesn’t consider your changes to be a modification that should trigger a version
increment.

 Imagine that you modify the owner name of a CreditCard:

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

User u = (User) session.get(User.class, 123);

u.getDefaultBillingDetails().setOwner("John Doe");

tx.commit();
session.close();

When this Session is flushed, the version of the BillingDetail’s instance (let’s
assume it’s a credit card) that was modified is incremented automatically by
Hibernate. This may not be what you want—you may want to increment the ver-
sion of the owner, too (the User instance).

 Call lock() with LockMode.FORCE to increment the version of an entity
instance:

Nontransactional data access 469
Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

User u = (User) session.get(User.class, 123);

session.lock(u, LockMode.FORCE);

u.getDefaultBillingDetails().setOwner("John Doe");

tx.commit();
session.close();

Any concurrent unit of work that works with the same User row now knows that
this data was modified, even if only one of the values that you’d consider part of
the whole aggregate was modified. This technique is useful in many situations
where you modify an object and want the version of a root object of an aggregate
to be incremented. Another example is a modification of a bid amount for an
auction item (if these amounts aren’t immutable): With an explicit version incre-
ment, you can indicate that the item has been modified, even if none of its
value-typed properties or collections have changed. The equivalent call with Java
Persistence is em.lock(o, LockModeType.WRITE).

 You now have all the pieces to write more sophisticated units of work and cre-
ate conversations. We need to mention one final aspect of transactions, however,
because it becomes essential in more complex conversations with JPA. You must
understand how autocommit works and what nontransactional data access means
in practice.

10.3 Nontransactional data access

Many DBMSs enable the so called autocommit mode on every new database connec-
tion by default. The autocommit mode is useful for ad hoc execution of SQL.

 Imagine that you connect to your database with an SQL console and that you
run a few queries, and maybe even update and delete rows. This interactive data
access is ad hoc; most of the time you don’t have a plan or a sequence of state-
ments that you consider a unit of work. The default autocommit mode on the
database connection is perfect for this kind of data access—after all, you don’t
want to type begin a transaction and end a transaction for every SQL state-
ment you write and execute. In autocommit mode, a (short) database transaction
begins and ends for each SQL statement you send to the database. You’re working
effectively nontransactionally, because there are no atomicity or isolation guaran-
tees for your session with the SQL console. (The only guarantee is that a single
SQL statement is atomic.)

470 CHAPTER 10

Transactions and concurrency
 An application, by definition, always executes a planned sequence of state-
ments. It seems reasonable that you therefore always create transaction bound-
aries to group your statements into units that are atomic. Therefore, the
autocommit mode has no place in an application.

10.3.1 Debunking autocommit myths

Many developers still like to work with an autocommit mode, often for reasons
that are vague and not well defined. Let’s first debunk a few of these reasons
before we show you how to access data nontransactionally if you want (or have) to:

■ Many application developers think they can talk to a database outside of a
transaction. This obviously isn’t possible; no SQL statement can be send to a
database outside of a database transaction. The term nontransactional data
access means there are no explicit transaction boundaries, no system trans-
action, and that the behavior of data access is that of the autocommit mode.
It doesn’t mean no physical database transactions are involved.

■ If your goal is to improve performance of your application by using the
autocommit mode, you should think again about the implications of many
small transactions. Significant overhead is involved in starting and ending a
database transaction for every SQL statement, and it may decrease the per-
formance of your application.

■ If your goal is to improve the scalability of your application with the auto-
commit mode, think again: A longer-running database transaction, instead
of many small transactions for every SQL statement, may hold database
locks for a longer time and probably won’t scale as well. However, thanks to
the Hibernate persistence context and write-behind of DML, all write locks
in the database are already held for a short time. Depending on the isola-
tion level you enable, the cost of read locks is likely negligible. Or, you may
use a DBMS with multiversion concurrency that doesn’t require read locks
(Oracle, PostgreSQL, Informix, Firebird), because readers are never
blocked by default.

■ Because you’re working nontransactionally, not only do you give up any
transactional atomicity of a group of SQL statements, but you also have
weaker isolation guarantees if data is modified concurrently. Repeatable
reads based on read locks are impossible with autocommit mode. (The per-
sistence context cache helps here, naturally.)

Nontransactional data access 471
Many more issues must be considered when you introduce nontransactional data
access in your application. We’ve already noted that introducing a new type of
transaction, namely read-only transactions, can significantly complicate any future
modification of your application. The same is true if you introduce nontransac-
tional operations.

 You would then have three different kinds of data access in your application: in
regular transactions, in read-only transactions, and now also nontransactional,
with no guarantees. Imagine that you have to introduce an operation that writes
data into a unit of work that was supposed to only read data. Imagine that you
have to reorganize operations that were nontransactional to be transactional.

 Our recommendation is to not use the autocommit mode in an application,
and to apply read-only transactions only when there is an obvious performance
benefit or when future code changes are highly unlikely. Always prefer regular
ACID transactions to group your data-access operations, regardless of whether you
read or write data.

 Having said that, Hibernate and Java Persistence allow nontransactional data
access. In fact, the EJB 3.0 specification forces you to access data nontransaction-
ally if you want to implement atomic long-running conversations. We’ll approach
this subject in the next chapter. Now we want to dig a little deeper into the conse-
quences of the autocommit mode in a plain Hibernate application. (Note that,
despite our negative remarks, there are some good use cases for the autocommit
mode. In our experience autocommit is often enabled for the wrong reasons and
we wanted to wipe the slate clean first.)

10.3.2 Working nontransactionally with Hibernate

Look at the following code, which accesses the database without transaction
boundaries:

Session session = sessionFactory.openSession();

session.get(Item.class, 123l);

session.close();

By default, in a Java SE environment with a JDBC configuration, this is what hap-
pens if you execute this snippet:

1 A new Session is opened. It doesn’t obtain a database connection at this
point.

2 The call to get() triggers an SQL SELECT. The Session now obtains a JDBC
Connection from the connection pool. Hibernate, by default, immediately

472 CHAPTER 10

Transactions and concurrency
turns off the autocommit mode on this connection with setAutoCom-
mit(false). This effectively starts a JDBC transaction!

3 The SELECT is executed inside this JDBC transaction. The Session is closed,
and the connection is returned to the pool and released by Hibernate—
Hibernate calls close() on the JDBC Connection. What happens to the
uncommitted transaction?

The answer to that question is, “It depends!” The JDBC specification doesn’t say
anything about pending transactions when close() is called on a connection.
What happens depends on how the vendors implement the specification. With
Oracle JDBC drivers, for example, the call to close() commits the transaction!
Most other JDBC vendors take the sane route and roll back any pending transac-
tion when the JDBC Connection object is closed and the resource is returned to
the pool.

 Obviously, this won’t be a problem for the SELECT you’ve executed, but look at
this variation:

Session session = getSessionFactory().openSession();

Long generatedId = session.save(item);

session.close();

This code results in an INSERT statement, executed inside a transaction that is
never committed or rolled back. On Oracle, this piece of code inserts data perma-
nently; in other databases, it may not. (This situation is slightly more complicated:
The INSERT is executed only if the identifier generator requires it. For example,
an identifier value can be obtained from a sequence without an INSERT. The per-
sistent entity is then queued until flush-time insertion—which never happens in
this code. An identity strategy requires an immediate INSERT for the value to be
generated.)

 We haven’t even touched on autocommit mode yet but have only highlighted a
problem that can appear if you try to work without setting explicit transaction
boundaries. Let’s assume that you still think working without transaction demar-
cation is a good idea and that you want the regular autocommit behavior. First,
you have to tell Hibernate to allow autocommitted JDBC connections in the
Hibernate configuration:

<property name="connection.autocommit">true</property>

With this setting, Hibernate no longer turns off autocommit when a JDBC connec-
tion is obtained from the connection pool—it enables autocommit if the connec-

Nontransactional data access 473
tion isn’t already in that mode. The previous code examples now work
predictably, and the JDBC driver wraps a short transaction around every SQL state-
ment that is send to the database—with the implications we listed earlier.

 In which scenarios would you enable the autocommit mode in Hibernate, so
that you can use a Session without beginning and ending a transaction manually?
Systems that benefit from autocommit mode are systems that require on-demand
(lazy) loading of data, in a particular Session and persistence context, but in
which it is difficult to wrap transaction boundaries around all code that might trig-
ger on-demand data retrieval. This is usually not the case in web applications that
follow the design patterns we discuss in chapter 16. On the other hand, desktop
applications that access the database tier through Hibernate often require
on-demand loading without explicit transaction boundaries. For example, if you
double-click on a node in a Java Swing tree view, all children of that node have to
be loaded from the database. You'd have to wrap a transaction around this event
manually; the autocommit mode is a more convenient solution. (Note that we are
not proposing to open and close Sessions on demand!)

10.3.3 Optional transactions with JTA

The previous discussion focused on autocommit mode and nontransactional data
access in an application that utilizes unmanaged JDBC connections, where Hiber-
nate manages the connection pool. Now imagine that you want to use Hibernate
in a Java EE environment, with JTA and probably also CMT. The connection.
autocommit configuration option has no effect in this environment. Whether
autocommit is used depends on your transaction assembly.

 Imagine that you have an EJB session bean that marks a particular method as
nontransactional:

@Stateless
public class ItemFinder {

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
 public Item findItemById(Long id) {
 Session s = getSessionFactory().openSession();
 Item item = (Item) s.get(Item.class, id);
 s.close();
 return item;
 }
}

The findItemById() method produces an immediate SQL SELECT that returns
the Item instance. Because the method is marked as not supporting a transaction
context, no transaction is started for this operation, and any existing transaction

474 CHAPTER 10

Transactions and concurrency
context is suspended for the duration of this method. The SELECT is effectively
executed in autocommit mode. (Internally, an autocommitted JDBC connection is
assigned to serve this Session.)

 Finally, you need to know that the default FlushMode of a Session changes
when no transaction is in progress. The default behavior, FlushMode.AUTO, results
in a synchronization before every HQL, SQL, or Criteria query. This is bad, of
course, because DML UPDATE, INSERT, and DELETE operations execute in addition
to a SELECT for the query. Because you’re working in autocommit mode, these
modifications are permanent. Hibernate prevents this by disabling automatic
flushing when you use a Session outside of transaction boundaries. You then
have to expect that queries may return stale data or data that is conflicting with
the state of data in your current Session—effectively the same issue you have to
deal with when FlushMode.MANUAL is selected.

 We’ll get back to nontransactional data access in the next chapter, in our dis-
cussion of conversations. You should consider autocommit behavior a feature that
you'd possibly use in conversations with Java Persistence or EJBs, and when wrap-
ping programmatic transaction boundaries around all data access events would be
difficult (in a desktop application, for example). In most other cases, autocommit
results in systems that are difficult to maintain, with now performance or scalabil-
ity benefit. (In our opinion, RDBMS vendors should not enable autocommit by
default. SQL query consoles and tools should enable autocommit mode on a con-
nection, when necessary.)

10.4 Summary

In this chapter, you learned about transactions, concurrency, isolation, and lock-
ing. You now know that Hibernate relies on the database concurrency control
mechanism but provides better isolation guarantees in a transaction, thanks to
automatic versioning and the persistence context cache. You learned how to set
transaction boundaries programmatically with the Hibernate API, JTA UserTrans-
action, and the JPA EntityTransaction interface. We also looked at transaction
assembly with EJB 3.0 components and how you can work nontransactionally with
autocommit mode.

Summary 475
 Table 10.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

We’ve now finished our discussion and exploration of the fundamentals involved
in storing and loading objects in a transactional fashion. Next, we’ll bring all the
pieces together by creating more realistic conversations between the user and the
application.

Table 10.1 Hibernate and JPA comparison chart for chapter 10

Hibernate Core Java Persistence and EJB 3.0

The Transaction API can be configured for
JDBC and JTA.

The EntityTransaction API is only useful
with resource-local transactions.

Hibernate can be configured to integrate with
JTA and container-managed transactions in
EJBs.

With Java Persistence, no extra configuration
besides the database connection name changes
between Java SE and Java EE.

Hibernate defaults to optimistic concurrency
control for best scalability, with automatic ver-
sioning.

Java Persistence standardizes optimistic concur-
rency control with automatic versioning.

Implementing
conversations
This chapter covers
■ Implementation of conversations with Hibernate
■ Implementation of conversations with JPA
■ Conversations with EJB 3.0 components
476

Propagating the Hibernate Session 477
You’ve tried the examples in previous chapters and stored and loaded objects
inside transactions. Very likely you’ve noticed that code examples of five lines are
excellent to help you understand a particular issue and learn an API and how
objects change their state. If you take the next step and try to apply what you’ve
learned in your own application, you’ll probably soon realize that you’re missing
two important concepts.

 The first concept we’ll show you in this chapter—persistence context propaga-
tion—is useful when you have to call several classes to complete a particular action
in your application and they all need database access. So far, we had only a single
method that opened and closed a persistence context (a Session or an Entity-
Manager) internally. Instead of passing the persistence context between classes
and methods manually, we’ll show you the mechanisms in Hibernate and Java Per-
sistence that can take care of propagation automatically. Hibernate can help you
to create more complex units of work.

 The next design problem you’ll run into is that of application flow when your
application user has to be guided through several screens to complete a unit of
work. You must create code that controls the navigation from screen to screen—
however, this is outside of the scope of persistence, and we won’t have much to say
about it in this chapter. What is partly the responsibility of the persistence mecha-
nism is the atomicity and isolation of data access for a unit of work that spans pos-
sible user think-time. We call a unit of work that completes in several client/server
request and response cycles a conversation. Hibernate and Java Persistence offer
several strategies for the implementation of conversations, and in this chapter we
show you how the pieces fit together with realistic examples.

 We start with Hibernate and then, in the second half of the chapter, discuss
JPA conversations. Let’s create more complex data access examples first, to see
how several classes can reuse the same persistence context through automatic
propagation.

11.1 Propagating the Hibernate Session

Recall the use case we introduced in the previous chapter: An event that triggers
the end of an auction has to be processed (chapter 10, section 10.1, “Transaction
essentials”). For the following examples, it doesn’t matter who triggered this
event; probably an automatic timer ends auctions when their end date and time is
reached. It could also be a human operator who triggers the event.

478 CHAPTER 11

Implementing conversations
 To process the event, you need to execute a sequence of operations: check the
winning bid for the auction, charge the cost of the auction, notify the seller and
winner, and so on. You could write a single class that has one big procedure. A bet-
ter design is to move the responsibility for each of these steps into reusable
smaller components and to separate them by concern. We’ll have much more to
say about this in chapter 16. For now, assume that you followed our advice and
that several classes need to be called inside the same unit of work to process the
closing of an auction.

11.1.1 The use case for Session propagation

Look at the code example in Listing 11.1, which controls the processing of the
event.

public class ManageAuction {

 ItemDAO itemDAO = new ItemDAO();
 PaymentDAO paymentDAO = new PaymentDAO();

 public void endAuction(Item item) {

 // Reattach item
 itemDAO.makePersistent(item);

 // Set winning bid
 Bid winningBid = itemDAO.getMaxBid(item.getId());
 item.setSuccessfulBid(winningBid);
 item.setBuyer(winningBid.getBidder());

 // Charge seller
 Payment payment = new Payment(item);
 paymentDAO.makePersistent(payment);

 // Notify seller and winner
 ...
 }
 ...
}

The ManageAuction class is called a controller. Its responsibility is to coordinate all
the steps necessary to process a particular event. The method endAuction() is
called by the timer (or user interface) when the event is triggered. The controller
doesn’t contain all the code necessary to complete and close the auction; it dele-
gates as much as possible to other classes. First, it needs two stateless service

Listing 11.1 Controller code that closes and ends an auction

Propagating the Hibernate Session 479
objects called data access objects (DAOs) to complete its work—they’re instantiated
directly for each instance of the controller. The endAuction() method uses the
DAOs when it needs to access the database. For example, the ItemDAO is used to
reattach the detached item and to query the database for the highest bid. The
PaymentDAO is used to make a transient new payment persistent. You don’t even
need to see how the seller and winner of the auction are notified—you have
enough code to demonstrate that context propagation is required.

 The code in listing 11.1 doesn’t work. First, there is no transaction demarca-
tion. All the code in endAuction() is to be considered an atomic unit of work: It
either all fails or all completes successfully. So, you need to wrap a transaction
around all these operations. You’ll do that with different APIs next.

 A more difficult problem is the persistence context. Imagine that ItemDAO and
PaymentDAO use a different persistence context in every method (they’re state-
less). In other words, itemDAO.getMaxBid() and paymentDAO.makePersistent()
both open, flush, and close their own persistence context (a Session or an Enti-
tyManager). This is an anti-pattern that should be avoided at all times! In the
Hibernate world, it’s known as session-per-operation, and it’s the first thing a good
Hibernate developer should take care of when examining an application design
for performance bottlenecks. A single persistence context shouldn’t be used to
process a particular operation, but the whole event (which, naturally, may require
several operations). The scope of the persistence context is often the same scope
as the database transaction. This is also known as session-per-request; see figure 11.1.

 Let’s add transaction demarcation to the ManageAuction controller and propa-
gate the persistence context between data access classes.

Figure 11.1
A particular event is served with a
single persistence context.

480 CHAPTER 11

Implementing conversations
11.1.2 Propagation through thread-local

Hibernate offers automatic persistence-context propagation for stand-alone Java
applications with plain Java SE and for any application that uses JTA with or with-
out EJBs. We strongly encourage you to consider this feature in your own applica-
tion, because all the alternatives are less sophisticated.

 In Hibernate, you can access the current Session to access the database. For
example, consider the ItemDAO implementation with Hibernate:

public class ItemDAO {

 public Bid getMaxBid(Long itemId) {
 Session s = getSessionFactory().getCurrentSession();
 return (Bid) s.createQuery("...").uniqueResult();
 }
 ...

}

The method getSessionFactory() returns the global SessionFactory. How it
does that is entirely up to you and how you configure and deploy your applica-
tion—it could come from a static variable (HibernateUtil), be looked up from
the JNDI registry, or be injected manually when the ItemDAO is instantiated.
This kind of dependency management is trivial; the SessionFactory is a
thread-safe object.

 The getCurrentSession() method on the SessionFactory is what we want
to discuss. (The PaymentDAO implementation also uses the current Session in all
methods.) What is the current Session, what does current refer to? Let’s add
transaction demarcation to the controller that calls ItemDAO and PaymentDAO, see
listing 11.2.

public class ManageAuction {

 ItemDAO itemDAO = new ItemDAO();
 PaymentDAO paymentDAO = new PaymentDAO();

 public void endAuction(Item item) {
 try {
 // Begin unit of work
 sf.getCurrentSession().beginTransaction();

 // Reattach item
 itemDAO.makePersistent(item);

 // Set winning bid
 Bid winningBid = itemDAO.getMaxBid(item.getId());

Listing 11.2 Adding transaction demarcation to the controller

Propagating the Hibernate Session 481
 item.setWinningBid(winningBid);
 item.setBuyer(winningBid.getBidder());

 // Charge seller
 Payment payment = new Payment(item);
 paymentDAO.makePersistent(payment);

 // Notify seller and winner
 ...

 // End unit of work
 sf.getCurrentSession().getTransaction().commit();

 } catch (RuntimeException ex) {
 try {
 sf.getCurrentSession().getTransaction().rollback();
 } catch (RuntimeException rbEx) {
 log.error("Couldn't roll back transaction," rbEx);
 }
 throw ex;
 }
 }
 ...
}

The unit of work starts when the endAuction() method is called. If sessionFac-
tory.getCurrentSession() is called for the first time in the current Java
thread, a new Session is opened and returned—you get a fresh persistence con-
text. You immediately begin a database transaction on this new Session, with
the Hibernate Transaction interface (which translates to JDBC transactions in a
Java SE application).

 All the data-access code that calls getCurrentSession() on the global shared
SessionFactory gets access to the same current Session—if it’s called in the
same thread. The unit of work completes when the Transaction is committed (or
rolled back). Hibernate also flushes and closes the current Session and its persis-
tence context if you commit or roll back the transaction. The implication here is
that a call to getCurrentSession() after commit or rollback produces a new Ses-
sion and a fresh persistence context.

 You effectively apply the same scope to the database transaction and the persis-
tence context. Usually, you’ll want to improve this code by moving the transaction
and exception handling outside of the method implementation. A straightfor-
ward solution is a transaction interceptor; you’ll write one in chapter 16.

 Internally, Hibernate binds the current Session to the currently running Java
thread. (In the Hibernate community, this is also known as the ThreadLocal Session

482 CHAPTER 11

Implementing conversations
pattern.) You have to enable this binding in your Hibernate configuration by set-
ting the hibernate.current_session_context_class property to thread.

 If you deploy your application with JTA, you can enable a slightly different strat-
egy that scopes and binds the persistence context directly to the system transaction.

11.1.3 Propagation with JTA

In previous sections, we always recommended the JTA service to handle transac-
tions, and we now repeat this recommendation. JTA offers, among many other
things, a standardized transaction demarcation interface that avoids the pollution
of code with Hibernate interfaces. Listing 11.3 shows the ManageAuction control-
ler refactored with JTA.

public class ManageAuction {

 UserTransaction utx = null;
 ItemDAO itemDAO = new ItemDAO();
 PaymentDAO paymentDAO = new PaymentDAO();

 public ManageAuction() throws NamingException {
 utx = (UserTransaction) new InitialContext()
 .lookup("UserTransaction");
 }

 public void endAuction(Item item) throws Exception {
 try {
 // Begin unit of work
 utx.begin();

 // Reattach item
 itemDAO.makePersistent(item);

 // Set winning bid
 Bid winningBid = itemDAO.getMaxBid(item.getId());
 item.setWinningBid(winningBid);
 item.setBuyer(winningBid.getBidder());

 // Charge seller
 Payment payment = new Payment(item);
 paymentDAO.makePersistent(payment);

 // Notify seller and winner
 ...

 // End unit of work
 utx.commit();

 } catch (Exception ex) {
 try {

Listing 11.3 Transaction demarcation with JTA in the controller

Propagating the Hibernate Session 483
 utx.rollback();
 } catch (Exception rbEx) {
 log.error("Couldn't roll back transaction", rbEx);
 }
 throw ex;
 }
 }
 ...
}

This code is free from any Hibernate imports. And, more important, the ItemDAO
and PaymentDAO classes, which internally use getCurrentSession(), are
unchanged. A new persistence context begins when getCurrentSession() is
called for the first time in one of the DAO classes. The current Session is bound
automatically to the current JTA system transaction. When the transaction com-
pletes, either through commit or rollback, the persistence context is flushed and
the internally bound current Session is closed.

 The exception handling in this code is slightly different compared to the previ-
ous example without JTA, because the UserTransaction API may throw checked
exceptions (and the JNDI lookup in the constructor may also fail).

 You don’t have to enable this JTA-bound persistence context if you configure
your Hibernate application for JTA; getCurrentSession() always returns a Ses-
sion scoped and bound to the current JTA system transaction.

 (Note that you can’t use the Hibernate Transaction interface together with
the getCurrentSession() feature and JTA. You need a Session to call begin-
Transaction(), but a Session must be bound to the current JTA transaction—a
chicken and egg problem. This again emphasizes that you should always use JTA
when possible and Hibernate Transaction only if you can’t use JTA.)

11.1.4 Propagation with EJBs

If you write your controller as an EJB and apply container-managed transactions,
the code (in listing 11.4) is even cleaner.

@Stateless
public class ManageAuctionBean implements ManageAuction {

 ItemDAO itemDAO = new ItemDAO();
 PaymentDAO paymentDAO = new PaymentDAO();

 @TransactionAttribute(TransactionAttributeType.REQUIRED)

Listing 11.4 Transaction demarcation with CMT in the controller

484 CHAPTER 11

Implementing conversations
 public void endAuction(Item item) {

 // Reattach item
 itemDAO.makePersistent(item);

 // Set winning bid
 Bid winningBid = itemDAO.getMaxBid(item.getId());
 item.setWinningBid(winningBid);
 item.setBuyer(winningBid.getBidder());

 // Charge seller
 Payment payment = new Payment(item);
 paymentDAO.makePersistent(payment);

 // Notify seller and winner
 ...
 }
 ...
}

The current Session is bound to the transaction that is started for the endAuc-
tion() method, and it’s flushed and closed when this method returns. All code
that runs inside this method and calls sessionFactory.getCurrentSession()
gets the same persistence context.

 If you compare this example with the first nonworking example, listing 11.1,
you’ll see that you had to add only some annotations to make it work. The
@TransactionAttribute is even optional—it defaults to REQUIRED. This is why
EJB 3.0 offers a simplified programming model. Note that you haven’t used a JPA
interface so far; the data access classes still rely on the current Hibernate Session.
You can refactor this easily later—concerns are cleanly separated.

 You now know how the persistence context is scoped to transactions to serve a
particular event and how you can create more complex data-access operations
that require propagation and sharing of a persistence context between several
objects. Hibernate internally uses the current thread or the current JTA system
transaction to bind the current Session and persistence context. The scope of the
Session and persistence context is the same as the scope of the Hibernate Trans-
action or JTA system transaction.

 We now focus on the second design concept that can significantly improve how
you design and create database applications. We’ll implement long-running con-
versations, a sequence of interactions with the application user that spans user
think-time.

Conversations with Hibernate 485
11.2 Conversations with Hibernate

You’ve been introduced to the concept of conversations several times throughout
the previous chapters. The first time, we said that conversations are units of work
that span user think-time. We then explored the basic building blocks you have to
put together to create conversational applications: detached objects, reattach-
ment, merging, and the alternative strategy with an extended persistence context.

 It’s now time to see all these options in action. We build on the previous exam-
ple, the closing and completion of an auction, and turn it into a conversation.

11.2.1 Providing conversational guarantees

You already implemented a conversation—it just wasn’t long. You implemented
the shortest possible conversation: a conversation that spanned a single request
from the application user: The user (let’s assume we’re talking about a human
operator) clicks the Complete Auction button in the CaveatEmptor administra-
tion interface. This requested event is then processed, and a response showing
that the action was successful is presented to the operator.

 In practice, short conversations are common. Almost all applications have
more complex conversations—more sophisticated sequences of actions that have
to be grouped together as one unit. For example, the human operator who clicks
the Complete Auction button does so because they’re convinced this auction
should be completed. They make this decision by looking at the data presented
on the screen—how did the information get there? An earlier request was sent to
the application and triggered the loading of an auction for display. From the
application user’s point of view, this loading of data is part of the same unit of
work. It seems reasonable that the application also should know that both
events—the loading of an auction item for display and the completion of an auc-
tion—are supposed to be in the same unit of work. We’re expanding our concept
of a unit of work and adopting the point of view of the application user. You group
both events into the same conversation.

 The application user expects some guarantees while going through this con-
versation with the application:

■ The auction the user is about to close and end isn’t modified while they look
at it. Completion of the auction requires that the data on which this deci-
sion is based is still unchanged when the completion occurs. Otherwise, the
operator is working with stale data and probably will make a wrong decision.

486 CHAPTER 11

Implementing conversations
■ The conversation is atomic: At any time the user can abort the conversation,
and all changes they made are rolled back. This isn’t a big issue in our cur-
rent scenario, because only the last event would make any permanent
changes; the first request only loads data for display. However, more com-
plex conversations are possible and common.

You as the application developer wish to implement these guarantees with as little
work as possible.

 We now show you how to implement long conversations with Hibernate, with
and without EJBs. The first decision you’ll have to make, in any environment, is
between a strategy that utilizes detached objects and a strategy that extends the persis-
tence context.

11.2.2 Conversations with detached objects

Let’s create the conversation with native Hibernate interfaces and a detached
object strategy. The conversation has two steps: The first step loads an object, and
the second step makes changes to the loaded object persistent. The two steps are
shown in figure 11.2.

reattach

load automatic flush

Figure 11.2 A two-step conversation implemented with detached objects

Conversations with Hibernate 487
The first step requires a Hibernate Session to retrieve an instance by its identifier
(assume this is a given parameter). You’ll write another ManageAuction controller
that can handle this event:

public class ManageAuction {

 public Item getAuction(Long itemId) {
 Session s = sf.getCurrentSession();

 s.beginTransaction();

 Item item = (Item) s.get(Item.class, itemId);

 s.getTransaction().commit();

 return item;
 }
 ...
}

We simplified the code a little to avoid cluttering the example—you know excep-
tion handling isn’t really optional. Note that this is a much simpler version than
the one we showed previously; we want to show you the minimum code needed to
understand conversations. You can also write this controller with DAOs, if you like.

 A new Session, persistence context, and database transaction begin when the
getAuction() method is called. An object is loaded from the databases, the trans-
action commits, and the persistence context is closed. The item object is now in a
detached state and is returned to the client that called this method. The client
works with the detached object, displays it, and possibly even allows the user to
modify it.

 The second step in the conversation is the completion of the auction. That is
the purpose of another method on the ManageAuction controller. Compared to
previous examples, you again simplify the endAuction() method to avoid any
unnecessary complication:

public class ManageAuction {

 public Item getAuction(Long itemId) ...
 ...

 public void endAuction(Item item) {
 Session s = sf.getCurrentSession();

 s.beginTransaction();

 // Reattach item
 s.update(item);

 // Set winning bid
 // Charge seller

488 CHAPTER 11

Implementing conversations
 // Notify seller and winner
 ...

 s.getTransaction().commit();
 }

}

The client calls the endAuction() method and passes back the detached item
instance—this is the same instance returned in the first step. The update() opera-
tion on the Session reattaches the detached object to the persistence context and
schedules an SQL UDPATE. Hibernate must assume that the client modified the
object while it was detached. (Otherwise, if you’re certain that it hasn’t been mod-
ified, a lock() would be sufficient.) The persistence context is flushed automati-
cally when the second transaction in the conversation commits, and any
modifications to the once detached and now persistent object are synchronized
with the database.

 The saveOrUpdate() method is in practice more useful than upate(),
save(), or lock(): In complex conversations, you don’t know if the item is in
detached state or if it’s new and transient and must be saved. The automatic
state-detection provided by saveOrUpdate() becomes even more useful when you
not only work with single instances, but also want to reattach or persist a network
of connected objects and apply cascading options. Also reread the definition of
the merge() operation and when to use merging instead of reattachment: “Merg-
ing the state of a detached object” in chapter 9, section 9.3.2.

 So far, you’ve solved only one of the conversation implementation problems:
little code was required to implement the conversation. However, the application
user still expects that the unit of work is not only isolated from concurrent modifi-
cations, but also atomic.

 You isolate concurrent conversations with optimistic locking. As a rule, you
shouldn’t apply a pessimistic concurrency-control strategy that spans a long-run-
ning conversation—this implies expensive and nonscalable locking. In other
words, you don’t prevent two operators from seeing the same auction item. You
hope that this happens rarely: You’re optimistic. But if it happens, you have a con-
flict resolution strategy in place. You need to enable Hibernate’s automatic ver-
sioning for the Item persistent class, as you did in “Enabling versioning in
Hibernate” in chapter 10, section 10.2.2. Then, every SQL UPDATE or DELETE at any
time during the conversation will include a version check against the state present
in the database. You get a StaleObjectStateException if this check fails and
then have to take appropriate action. In this case, you present an error message to

Conversations with Hibernate 489
the user (“Sorry, somebody modified the same auction!”) and force a restart of
the conversation from step one.

 How can you make the conversation atomic? The conversation spans several
persistence contexts and several database transactions. But this isn’t the scope of a
unit of work from the point of view of the application user; she considers the con-
versation to be an atomic group of operations that either all fail or all succeed. In
the current conversation this isn’t a problem, because you modify and persist data
only in the last (second) step. Any conversation that only reads data and delays all
reattachment of modified objects until the last step is automatically atomic and
can be aborted at any time. If a conversation reattaches and commits modifica-
tions to the database in an intermediate step, it’s no longer atomic.

 One solution is to not flush the persistence contexts on commit—that is, to set
a FlushMode.MANUAL on a Session that isn’t supposed to persist modifications (of
course, not for the last step of the conversation). Another option is to use compen-
sation actions that undo any step that made permanent changes, and to call the
appropriate compensation actions when the user aborts the conversation. We
won’t have much to say about writing compensation actions; they depend on the
conversation you’re implementing.

 Next, you implement the same conversation with a different strategy, eliminat-
ing the detached object state. You extend the persistence context to span the
whole conversation.

11.2.3 Extending a Session for a conversation

The Hibernate Session has an internal persistence context. You can implement a
conversation that doesn’t involve detached objects by extending the persistence
context to span the whole conversation. This is known as the session-per-conversation
strategy, as shown in figure 11.3.

 A new Session and persistence context are opened at the beginning of a con-
versation. The first step, loading of the Item object, is implemented in a first data-
base transaction. The Session is automatically disconnected from the underlying
JDBC Connection as soon as you commit the database transaction. You can now
hold on to this disconnected Session and its internal persistence context during
user think-time. As soon as the user continues in the conversation and executes
the next step, you reconnect the Session to a fresh JDBC Connection by begin-
ning a second database transaction. Any object that has been loaded in this con-
versation is in persistent state: It’s never detached. Hence, all modifications you
made to any persistent object are flushed to the database as soon as you call
flush() on the Session. You have to disable automatic flushing of the Session by

490 CHAPTER 11

Implementing conversations
setting a FlushMode.MANUAL—you should do this when the conversation begins
and the Session is opened.

 Modifications made in concurrent conversations are isolated, thanks to opti-
mistic locking and Hibernate’s automatic version-checking during flushing. Atom-
icity of the conversation is guaranteed if you don’t flush the Session until the last
step, the end of the conversation—if you close the unflushed Session, you effec-
tively abort the conversation.

 We need to elaborate on one exception to this behavior: the time of insertion
of new entity instances. Note that this isn’t a problem in this example, but it’s
something you’ll have to deal with in more complex conversations.

Delaying insertion until flush-time
To understand the problem, think about the way objects are saved and how their
identifier value is assigned. Because you don’t save any new objects in the Com-
plete Auction conversation, you haven’t seen this issue. But any conversation in
which you save objects in an intermediate step may not be atomic.

 The save() method on the Session requires that the new database identifier
of the saved instance must be returned. So, the identifier value has to be gener-
ated when the save() method is called. This is no problem with most identifier
generator strategies; for example, Hibernate can call a sequence, do the in-mem-
ory increment, or ask the hilo generator for a new value. Hibernate doesn’t have

load manual flush

Figure 11.3 A disconnected persistence context extended to span a conversation

Conversations with Hibernate 491
to execute an SQL INSERT to return the identifier value on save() and assign it to
the now-persistent instance.

 The exceptions are identifier-generation strategies that are triggered after the
INSERT occurs. One of them is identity, the other is select; both require that a
row is inserted first. If you map a persistent class with these identifier generators,
an immediate INSERT is executed when you call save()! Because you’re
committing database transactions during the conversation, this insertion may
have permanent effects.

 Look at the following slightly different conversation code that demonstrates
this effect:

Session session = getSessionFactory().openSession();
session.setFlushMode(FlushMode.MANUAL);

// First step in the conversation
session.beginTransaction();
Item item = (Item) session.get(Item.class, new Long(123));
session.getTransaction().commit();

// Second step in the conversation
session.beginTransaction();
Item newItem = new Item();
Long newId = (Long) session.save(newItem); // Triggers INSERT!
session.getTransaction().commit();

// Roll back the conversation!
session.close();

You may expect that the whole conversation, the two steps, can be rolled back by
closing the unflushed persistence context. The insertion of the newItem is sup-
posed to be delayed until you call flush() on the Session, which never happens
in this code. This is the case only if you don’t pick identity or select as your
identifier generator. With these generators, an INSERT must be executed in the
second step of the conversation, and the INSERT is committed to the database.

 One solution uses compensation actions that you execute to undo any possible
insertions made during a conversation that is aborted, in addition to closing the
unflushed persistence context. You’d have to manually delete the row that was
inserted. Another solution is a different identifier generator, such as a sequence,
that supports generation of new identifier values without insertion.

 The persist() operation exposes you to the same problem. However, it also
provides an alternative (and better) solution. It can delay insertions, even with
post-insert identifier generation, if you call it outside of a transaction:

492 CHAPTER 11

Implementing conversations
Session session = getSessionFactory().openSession();
session.setFlushMode(FlushMode.MANUAL);

// First step in the conversation
session.beginTransaction();
Item item = (Item) session.get(Item.class, new Long(1));
session.getTransaction().commit();

// Second step in the conversation
Item newItem = new Item();
session.persist(newItem);

// Roll back the conversation!
session.close();

The persist() method can delay inserts because it doesn’t have to return an
identifier value. Note that the newItem entity is in persistent state after you call
persist(), but it has no identifier value assigned if you map the persistent class
with an identity or select generator strategy. The identifier value is assigned to
the instance when the INSERT occurs, at flush-time. No SQL statement is executed
when you call persist() outside of a transaction. The newItem object has only
been queued for insertion.

 Keep in mind that the problem we’ve discussed depends on the selected iden-
tifier generator strategy—you may not run into it, or you may be able to avoid it.
The nontransactional behavior of persist() will be important again later in this
chapter, when you write conversations with JPA and not Hibernate interfaces.

 Let’s first complete the implementation of a conversation with an extended
Session. With a session-per-conversation strategy, you no longer have to detach
and reattach (or merge) objects manually in your code. You must implement
infrastructure code that can reuse the same Session for a whole conversation.

Managing the current Session
The current Session support we discussed earlier is a switchable mechanism.
You’ve already seen two possible internal strategies: One was thread-bound, and
the other bound the current Session to the JTA transaction. Both, however,
closed the Session at the end of the transaction. You need a different scope of
the Session for the session-per-conversation pattern, but you still want to be able
to access the current Session in your application code.

 A third built-in option does exactly what you want for the session-per-conversa-
tion strategy. You have to enable it by setting the hibernate.current_session_
context_class configuration option to managed. The other built-in options we’ve
discussed are thread and jta, the latter being enabled implicitly if you configure
Hibernate for JTA deployment. Note that all these built-in options are implemen-
tations of the org.hibernate.context.CurrentSessionContext interface; you

Conversations with Hibernate 493
could write your own implementation and name the class in the configuration.
This usually isn’t necessary, because the built-in options cover most cases.

 The Hibernate built-in implementation you just enabled is called managed
because it delegates the responsibility for managing the scope, the start and end
of the current Session, to you. You manage the scope of the Session with three
static methods:

public class ManagedSessionContext implements CurrentSessionContext {
 public static Session bind(Session session) { ... }
 public static Session unbind(SessionFactory factory) { ... }
 public static boolean hasBind(SessionFactory factory) { ... }
}

You can probably already guess what the implementation of a session-per-conver-
sation strategy has to do:

■ When a conversation starts, a new Session must be opened and bound with
ManagedSessionContext.bind() to serve the first request in the conversa-
tion. You also have to set FlushMode.MANUAL on that new Session, because
you don’t want any persistence context synchronization to occur behind
your back.

■ All data-access code that now calls sessionFactory.getCurrentSession()
receives the Session you bound.

■ When a request in the conversation completes, you need to call Managed-
SessionContext.unbind() and store the now disconnected Session some-
where until the next request in the conversation is made. Or, if this was the
last request in the conversation, you need to flush and close the Session.

All these steps can be implemented in an interceptor.

Creating a conversation interceptor
You need an interceptor that is triggered automatically for each request event in a
conversation. If you use EJBs, as you’ll do soon, you get much of this infrastructure
code for free. If you write a non- Java EE application, you have to write your own
interceptor. There are many ways how to do this; we show you an abstract inter-
ceptor that only demonstrates the concept. You can find working and tested inter-
ceptor implementations for web applications in the CaveatEmptor download in
the org.hibernate.ce.auction.web.filter package.

 Let’s assume that the interceptor runs whenever an event in a conversation has
to be processed. We also assume that each event must go through a front door
controller and its execute() action method—the easiest scenario. You can now
wrap an interceptor around this method; that is, you write an interceptor that is

494 CHAPTER 11

Implementing conversations
called before and after this method executes. This is shown in figure 11.4; read
the numbered items from left to right.

 When the first request in a conversation hits the server, the interceptor runs
and opens a new Session B; automatic flushing of this Session is immediately
disabled. This Session is then bound into Hibernate’s ManagedSessionContext.
A transaction is started C before the interceptor lets the controller handle the
event. All code that runs inside this controller (or any DAO called by the control-
ler) can now call sessionFactory.getCurrentSession() and work with the Ses-
sion. When the controller finishes its work, the interceptor runs again and
unbinds the current Session D. After the transaction is committed E, the Ses-
sion is disconnected automatically and can be stored during user think-time.

 Now the server waits for the second request in the conversation.
 As soon as the second request hits the server, the interceptor runs, detects that

there is a disconnected stored Session, and binds it into the ManagedSession-
Context F. The controller handles the event after a transaction was started by the
interceptor G. When the controller finishes its work, the interceptor runs again
and unbinds the current Session from Hibernate. However, instead of discon-
necting and storing it, the interceptor now detects that this is the end of the
conversation and that the Session needs to be flushed H, before the transaction
is committed I. Finally, the conversation is complete and the interceptor closes
the Session J.

s.beginTransaction()

s = sf.openSession()
s.setFlushMode(MANUAL)

MSC.bind(s)

commit()

s = MSC.unbind()

1.

2.

3.

4.
s.beginTransaction() commit()

6. 8.

MSC.bind(s)
5. 7.

s = MSC.unbind()

9.
s.close()

s.flush()

Figure 11.4 Interception of events to manage the lifecycle of a Session

Conversations with Hibernate 495
 This sounds more complex than it is in code. Listing 11.5 is a pseudoimple-
mentation of such an interceptor:

public class ConversationInterceptor {

 public Object invoke(Method method) {

 // Which Session to use?
 Session currentSession = null;

 if (disconnectedSession == null) {
 // Start of a new conversation
 currentSession = sessionFactory.openSession();
 currentSession.setFlushMode(FlushMode.MANUAL);
 } else {
 // In the middle of a conversation
 currentSession = disconnectedSession;
 }

 // Bind before processing event
 ManagedSessionContext.bind(currentSession);

 // Begin a database transaction, reconnects Session
 currentSession.beginTransaction();

 // Process the event by invoking the wrapped execute()
 Object returnValue = method.invoke();

 // Unbind after processing the event
 currentSession =
 ManagedSessionContext.unbind(sessionFactory);

 // Decide if this was the last event in the conversation
 if (returnValue.containsEndOfConversationToken()) {

 // The event was the last event: flush, commit, close
 currentSession.flush();
 currentSession.getTransaction().commit();
 currentSession.close();

 disconnectedSession = null; // Clean up

 } else {

 // Event was not the last event, continue conversation
 currentSession.getTransaction().commit(); // Disconnects
 disconnectedSession = currentSession;
 }

 return returnValue;
 }
}

Listing 11.5 An interceptor implements the session-per-conversation strategy

496 CHAPTER 11

Implementing conversations
The invoke(Method) interceptor wraps around the execute() operation of the
controller. This interception code runs every time a request from the application
user has to be processed. When it returns, you check whether the return value
contains a special token or marker. This token signals that this was the last event
that has to be processed in a particular conversation. You now flush the Session,
commit all changes, and close the Session. If this wasn’t the last event of the con-
versation, you commit the database transaction, store the disconnected Session,
and continue to wait for the next event in the conversation.

 This interceptor is transparent for any client code that calls execute(). It’s
also transparent to any code that runs inside execute (): Any data access opera-
tion uses the current Session; concerns are separated properly. We don’t even
have to show you the data-access code, because it’s free from any database transac-
tion demarcation or Session handling. Just load and store objects with getCur-
rentSession().

 The following questions are probably on your mind:

■ Where is the disconnectedSession stored while the application waits for the user
to send the next request in a conversation? It can be stored in the HttpSession
or even in a stateful EJB. If you don’t use EJBs, this responsibility is delegated
to your application code. If you use EJB 3.0 and JPA, you can bind the scope
of the persistence context, the equivalent of a Session, to a stateful EJB—
another advantage of the simplified programming model.

■ Where does the special token that marks the end of the conversation come from? In
our abstract example, this token is present in the return value of the exe-
cute() method. There are many ways to implement such a special signal to
the interceptor, as long as you find a way to transport it there. Putting it in
the result of the event processing is a pragmatic solution.

This completes our discussion of persistence-context propagation and conversa-
tion implementation with Hibernate. We shortened and simplified quite a few
examples in the past sections to make it easier for you to understand the con-
cepts. If you want to go ahead and implement more sophisticated units of work
with Hibernate, we suggest that you first also read chapter 16.

 On the other hand, if you aren’t using Hibernate APIs but want to work with
Java Persistence and EJB 3.0 components, read on.

Conversations with JPA 497
11.3 Conversations with JPA

We now look at persistence context propagation and conversation implementa-
tion with JPA and EJB 3.0. Just as with native Hibernate, you must consider three
points when you want to implement conversations with Java Persistence:

■ You want to propagate the persistence context so that one persistence con-
text is used for all data access in a particular request. In Hibernate, this
functionality is built in with the getCurrentSession() feature. JPA doesn’t
have this feature if it’s deployed stand-alone in Java SE. On the other hand,
thanks to the EJB 3.0 programming model and the well-defined scope and
lifecycle of transactions and managed components, JPA in combination with
EJBs is much more powerful than native Hibernate.

■ If you decide to use a detached objects approach as your conversation
implementation strategy, you need to make changes to detached objects
persistent. Hibernate offers reattachment and merging; JPA only supports
merging. We discussed the differences in the previous chapter in detail, but
we want to revisit it briefly with more realistic conversation examples.

■ If you decide to use the session-per-conversation approach as your conversa-
tion implementation strategy, you need to extend the persistence context to
span a whole conversation. We look at the JPA persistence context scopes
and explore how you can implement extended persistence contexts with
JPA in Java SE and with EJB components.

Note that we again have to deal with JPA in two different environments: in plain
Java SE and with EJBs in a Java EE environment. You may be more interested in
one or the other when you read this section. We previously approached the sub-
ject of conversations with Hibernate by first talking about context propagation
and then discussing long conversations. With JPA and EJB 3.0, we’ll explore both
at the same time, but in separate sections for Java SE and Java EE.

 We first implement conversations with JPA in a Java SE application without any
managed components or container. We’re often going to refer to the differences
between native Hibernate conversations, so make sure you understood the previ-
ous sections of this chapter. Let’s discuss the three issues we identified earlier: per-
sistence context propagation, merging of detached instances, and extended
persistence contexts.

498 CHAPTER 11

Implementing conversations
11.3.1 Persistence context propagation in Java SE

Consider again the controller from listing 11.1. This code relies on DAOs that exe-
cute the persistence operations. Here is again the implementation of such a data
access object with Hibernate APIs:

public class ItemDAO {

 public Bid getMaxBid(Long itemId) {
 Session s = getSessionFactory().getCurrentSession();
 return (Bid) s.createQuery("...").uniqueResult();
 }
 ...

}

If you try to refactor this with JPA, your only choice seems to be this:

public class ItemDAO {

 public Bid getMaxBid(Long itemId) {
 Bid maxBid;
 EntityManager em = null;
 EntityTransaction tx = null;
 try {
 em = getEntityManagerFactory().createEntityManager();
 tx = em.getTransaction();
 tx.begin();

 maxBid = (Bid) em.createQuery("...")
 .getSingleResult();
 tx.commit();
 } finally {
 em.close();
 }
 return maxBid;
 }
 ...

}

No persistence-context propagation is defined in JPA, if the application handles
the EntityManager on its own in Java SE. There is no equivalent to the getCur-
rentSession() method on the Hibernate SessionFactory.

 The only way to get an EntityManager in Java SE is through instantiation with
the createEntityManager() method on the factory. In other words, all your data
access methods use their own EntityManager instance—this is the session-per-
operation antipattern we identified earlier! Worse, there is no sensible location for
transaction demarcation that spans several data access operations.

 There are three possible solutions for this issue:

Conversations with JPA 499
■ You can instantiate an EntityManager for the whole DAO when the DAO is
created. This doesn’t get you the persistence-context-per-request scope, but it’s
slightly better than one persistence context per operation. However, trans-
action demarcation is still an issue with this strategy; all DAO operations on
all DAOs still can’t be grouped as one atomic and isolated unit of work.

■ You can instantiate a single EntityManager in your controller and pass it
into all DAOs when you create the DAOs (constructor injection). This solves
the problem. The code that handles an EntityManager can be paired with
transaction demarcation code in a single location, the controller.

■ You can instantiate a single EntityManager in an interceptor and bind it to
a ThreadLocal variable in a helper class. The DAOs retrieve the current
EntityManager from the ThreadLocal. This strategy simulates the getCur-
rentSession() functionality in Hibernate. The interceptor can also
include transaction demarcation, and you can wrap the interceptor around
your controller methods. Instead of writing this infrastructure yourself, con-
sider EJBs first.

We leave it to you which strategy you prefer for persistence-context propagation in
Java SE. Our recommendation is to consider Java EE components, EJBs, and the
powerful context propagation that is then available to you. You can easily deploy a
lightweight EJB container with your application, as you did in chapter 2,
section 2.2.3, “Introducing EJB components.”

 Let’s move on to the second item on the list: the modification of detached
instances in long conversations.

11.3.2 Merging detached objects in conversations

We already elaborated on the detached object concept and how you can reattach
modified instances to a new persistence context or, alternatively, merge them into
the new persistence context. Because JPA offers persistence operations only for
merging, review the examples and notes about merging with native Hibernate
code (in “Merging the state of a detached object” in chapter 9, section 9.3.2.) and
the discussion of detached objects in JPA, chapter 9, section 9.4.2, “Working with
detached entity instances.”

 Here we want to focus on a question we brought up earlier and look at it from
a slightly different perspective. The question is, “Why is a persistent instance
returned from the merge() operation?”

 The long conversation you previously implemented with Hibernate has two
steps, two events. In the first event, an auction item is retrieved for display. In the

500 CHAPTER 11

Implementing conversations
second event, the (probably modified) item is reattached to a new persistence
context and the auction is closed.

 Listing 11.6 shows the same controller, which can serve both events, with JPA
and merging:

public class ManageAuction {

 public Item getAuction(Long itemId) {
 EntityManager em = emf.createEntityManager();
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 Item item = em.find(Item.class, itemId);

 tx.commit();
 em.close();

 return item;
 }

 public Item endAuction(Item item) {
 EntityManager em = emf.createEntityManager();
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 // Merge item
 Item mergedItem = em.merge(item);

 // Set winning bid
 // Charge seller
 // Notify seller and winner
 // ... this code uses mergedItem!

 tx.commit();
 em.close();

 return mergedItem;
 }

}

There should be no code here that surprises you—you’ve seen all these opera-
tions many times. Consider the client that calls this controller, which is usually
some kind of presentation code. First, the getAuction() method is called to
retrieve an Item instance for display. Some time later, the second event is trig-
gered, and the endAuction() method is called. The detached Item instance is
passed into this method; however, the method also returns an Item instance. The

Listing 11.6 A controller that uses JPA to merge a detached object

Conversations with JPA 501
returned Item, mergedItem, is a different instance! The client now has two Item
objects: the old one and the new one.

 As we pointed out in “Merging the state of a detached object” in section 9.3.2,
the reference to the old instance should be considered obsolete by the client: It
doesn’t represent the latest state. Only the mergedItem is a reference to the up-to-
date state. With merging instead of reattachment, it becomes the client’s responsi-
bility to discard obsolete references to stale objects. This usually isn’t an issue, if
you consider the following client code:

ManageAuction controller = new ManageAuction();

// First event
Item item = controller.getAuction(1234l);

// Item is displayed on screen and modified...
item.setDescription("[SOLD] An item for sale");

// Second event
item = controller.endAuction(item);

The last line of code sets the merged result as the item variable value, so you effec-
tively update this variable with a new reference. Keep in mind that this line
updates only this variable. Any other code in the presentation layer that still has a
reference to the old instance must also refresh variables—be careful. This effec-
tively means that your presentation code has to be aware of the differences
between reattachment and merge strategies.

 We’ve observed that applications that have been constructed with an extended
persistence context strategy are often easier to understand than applications that rely
heavily on detached objects.

11.3.3 Extending the persistence context in Java SE

We already discussed the scope of a persistence context with JPA in Java SE in
chapter 10, section 10.1.3, “Transactions with Java Persistence.” Now we elaborate
on these basics and focus on examples that show an extended persistence context
with a conversation implementation.

The default persistence context scope
In JPA without EJBs, the persistence context is bound to the lifecycle and scope
of an EntityManager instance. To reuse the same persistence context for all
events in a conversation, you only have to reuse the same EntityManager to pro-
cess all events.

 An unsophisticated approach delegates this responsibility to the client of the
conversation controller:

502 CHAPTER 11

Implementing conversations
public static class ManageAuctionExtended {

 EntityManager em;

 public ManageAuctionExtended(EntityManager em) {
 this.em = em;
 }

 public Item getAuction(Long itemId) {
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 Item item = em.find(Item.class, itemId);

 tx.commit();

 return item;
 }

 public Item endAuction(Item item) {
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 // Merge item
 Item mergedItem = em.merge(item);

 // Set winning bid
 // Charge seller
 // Notify seller and winner
 // ... this code uses mergedItem!

 tx.commit();

 return mergedItem;
 }
}

The controller expects that the persistence context for the whole conversation is
set in its constructor. The client now creates and closes the EntityManager:

// Begin persistence context and conversation
EntityManager em = emf.createEntityManager();

ManageAuctionExtended controller = new ManageAuctionExtended(em);

// First event
Item item = controller.getAuction(1234l);

// Item is displayed on screen and modified...
item.setDescription("[SOLD] An item for sale");

// Second event
controller.endAuction(item);

// End persistence context and conversation
em.close();

Conversations with JPA 503
Naturally, an interceptor that wraps the getAuction() and endAuction() meth-
ods and supplies the correct EntityManager instance can be more convenient. It
also avoids the concern leaking upward to the presentation layer. You’d get this
interceptor for free if you wrote your controller as a stateful EJB session bean.

 When you try to apply this strategy with an extended persistence context that
spans the whole conversation, you’ll probably run into an issue that can break ato-
micity of the conversation—automatic flushing.

Preventing automatic flushing
Consider the following conversation, which adds an event as an intermediate step:

// Begin persistence context and conversation
EntityManager em = emf.createEntityManager();

ManageAuctionExtended controller = new ManageAuctionExtended(em);

// First event
Item item = controller.getAuction(1234l);

// Item is displayed on screen and modified...
item.setDescription("[SOLD] An item for sale");

// Second event
if (!controller.sellerHasEnoughMoney(seller))
 throw new RuntimeException("Seller can't afford it!");

// Third event
controller.endAuction(item);

// End persistence context and conversation
em.close();

From looking at this new conversation client code, when do you think the
updated item description is saved in the database? It depends on the flushing of
the persistence context. You know that the default FlushMode in JPA is AUTO, which
enables synchronization before a query is executed, and when a transaction is
committed. The atomicity of the conversation depends on the implementation of
the sellerHasEnoughMoney() method and whether it executes a query or com-
mits a transaction.

 Let’s assume you wrap the operations that execute inside that method with a
regular transaction block:

public class ManageAuctionExtended {
 ...

 public boolean sellerHasEnoughMoney(User seller) {
 EntityTransaction tx = em.getTransaction();
 tx.begin();

504 CHAPTER 11

Implementing conversations
 boolean sellerCanAffordIt = (Boolean)
 em.createQuery("select...").getSingleResult();

 tx.commit();

 return sellerCanAffordIt;
 }

 ...
}

The code snippet even includes two calls that trigger the flushing of the Entity-
Manager’s persistence context. First, FlushMode.AUTO means that the execution of
the query triggers a flush. Second, the transaction commit triggers another flush.
This obviously isn’t what you want—you want to make the whole conversation
atomic and prevent any flushing before the last event is completed.

 Hibernate offers org.hibernate.FlushMode.MANUAL, which decouples trans-
action demarcation from the synchronization. Unfortunately, due to disagree-
ments among the members of the JSR-220 expert group, javax.persis-

tence.FlushMode only offers AUTO and COMMIT. Before we show you the “official”
solution, here is how you can get FlushMode.MANUAL by falling back to a Hiber-
nate API:

// Prepare Hibernate-specific EntityManager parameters
Map params = new HashMap();
params.put("org.hibernate.flushMode," "MANUAL");

// Begin persistence context with custom parameters
EntityManager em = emf.createEntityManager(params);

// Alternative: Fall back and disable automatic flushing
((org.hibernate.Session)em.getDelegate())
 .setFlushMode(org.hibernate.FlushMode.MANUAL);

// Begin conversation
ManageAuction controller = new ManageAuction(em);

// First event
Item item = controller.getAuction(1234l);

// Item is displayed on screen and modified...
item.setDescription("[SOLD] An item for sale");

// Second event
if (!controller.sellerHasEnoughMoney(seller))
 throw new RuntimeException("Seller can't afford it!");

// Third event
controller.endAuction(item);

// End persistence context and conversation
em.close();

Conversations with JPA 505
Don’t forget that em.flush() must be called manually, in the last transaction in
the third event—otherwise no modifications are made persistent:

public static class ManageAuctionExtended {
 ...
 public Item endAuction(Item item) {
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 // Merge item
 ...
 // Set winning bid
 ...

 em.flush(); // Commit the conversation

 tx.commit();

 return mergedItem;
 }
}

The official architectural solution relies on nontransactional behavior. Instead of
a simple FlushMode setting, you need to code your data-access operations without
transaction boundaries. One of the reasons given by expert group members about
the missing FlushMode is that “a transaction commit should make all modifica-
tions permanent.” So, you can only disable flushing for the second step in the
conversation by removing transaction demarcation:

public class ManageAuction {
 ...

 public boolean sellerHasEnoughMoney(User seller) {
 boolean sellerCanAffordIt = (Boolean)
 em.createQuery("select ...").getSingleResult();
 return sellerCanAffordIt;
 }

 ...
}

This code doesn’t trigger a flush of the persistence context, because the Entity-
Manager is used outside of any transaction boundaries. The EntityManager that
executes this query is now working in autocommit mode, with all the interesting
consequences we covered earlier in section 10.3, “Nontransactional data access.”
Even worse, you lose the ability to have repeatable reads: If the same query is exe-
cuted twice, the two queries each execute on their own database connection in
autocommit mode. They can return different results, so the database transaction
isolation levels repeatable read and serializable have no effect. In other words, with

506 CHAPTER 11

Implementing conversations
the official solution, you can’t get repeatable-read database transaction isolation
and at the same time disable automatic flushing. The persistence-context cache
can provide repeatable read only for entity queries, not for scalar queries.

 We highly recommend that you consider Hibernate’s FlushMode.MANUAL set-
ting if you implement conversations with JPA. We also expect that this problem
will be fixed in a future release of the specification; (almost) all JPA vendors
already include a proprietary flush mode setting with the same effect as
org.hibernate.FlushMode.MANUAL.

 You now know how to write JPA conversations with detached entity instances
and extended persistence contexts. We laid the foundation in the previous sec-
tions for the next step: the implementation of conversations with JPA and EJBs. If
you now have the impression that JPA is more cumbersome than Hibernate, we
think you may be surprised at how easy conversations are to implement once you
introduce EJBs.

11.4 Conversations with EJB 3.0

We have to go through our list again: persistence context propagation, handling
of detached objects, and extended persistence contexts that span the whole con-
versation. This time, you’ll add EJBs to the mix.

 We don’t have much more to say about detached entity instances and how you
can merge modifications between persistence contexts in a conversation—the
concept and the API to use are exactly the same in Java SE and with EJBs.

 On the other hand, persistence-context propagation and extended persis-
tence-context management with JPA become much easier when you introduce
EJBs and then rely on the standardized context propagation rules and the integra-
tion of JPA with the EJB 3.0 programming model.

 Let’s first focus on the persistence-context propagation in EJB invocations.

11.4.1 Context propagation with EJBs

JPA and EJB 3.0 define how the persistence context is handled in an application
and the rules that apply if several classes (or EJB components) use an EntityMan-
ager. The most common case in an application with EJBs is a container-managed
and injected EntityManager. You turn the ItemDAO class into a managed stateless
EJB component with an annotation, and rewrite the code to use EntityManager:

@Stateless
public class ItemDAOBean implements ItemDAO {

 @PersistenceContext

Conversations with EJB 3.0 507
 private EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Bid getMaxBid(Long itemId) {
 return (Bid) em.createQuery("...").getSingleResult();
 }
 ...

}

The EJB container injects an EntityManager when a client of this bean calls get-
MaxBid(). The persistence context for that EntityManager is the current persis-
tence context (more about this soon). If no transaction is in progress when
getMaxBid() is called, a new transaction is started and committed when getMax-
Bid() returns.

NOTE Many developers didn’t use EJB session beans for DAO classes with EJB
2.1. In EJB 3.0, all components are plain Java objects and there is no rea-
son you shouldn’t get the container’s services with a few simple annota-
tions (or an XML deployment descriptor, if you don’t like annotations).

Wiring EJB components
Now that ItemDAO is an EJB component (don’t forget to also refactor PaymentDAO
if you follow the examples from earlier conversation implementations with Hiber-
nate), you can wire it into the also refactored ManageAuction component through
dependency injection and wrap the whole operation in a single transaction:

@Stateless
public class ManageAuctionBean implements ManageAuction {

 @EJB
 ItemDAO itemDAO;

 @EJB
 PaymentDAO paymentDAO;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Item endAuction(Item item) {

 // Merge item
 itemDAO.makePersistent(item);

 // Set winning bid
 Bid winningBid = itemDAO.getMaxBid(item.getId());
 item.setWinningBid(winningBid);
 item.setBuyer(winningBid.getBidder());

 // Charge seller
 Payment payment = new Payment(item);
 paymentDAO.makePersistent(payment);

508 CHAPTER 11

Implementing conversations
 // Notify seller and winner
 ...
 return item;
 }
 ...
}

The EJB container injects the desired components based on your declaration of
fields with @EJB—the interface names ItemDAO and PaymentDAO are enough infor-
mation for the container to find the required components.

 Let’s focus on the transaction and persistence-context propagation rules that
apply to this component assembly.

Propagation rules
First, a system transaction is required and is started if a client calls ManageAuc-
tion.endAuction(). The transaction is therefore committed by the container
when this method returns. This is the scope of the system transaction. Any other
stateless component methods that are called and that either require or support
transactions (like the DAO methods) inherit the same transaction context. If you
use an EntityManager in any of these stateless components, the persistence con-
text you’re working with is automatically the same, scoped to the system transac-
tion. Note that this isn’t the case if you use JPA in a Java SE application: The
EntityManager instance defines the scope of the persistence context (we elabo-
rated on this earlier).

 When ItemDAO and PaymentDAO, both stateless components, are invoked inside
the system transaction, both inherit the persistence context scoped to the transac-
tion. The container injects an EntityManager instance into itemDAO and pay-
mentDAO with the current persistence context behind the scenes.

 (Internally, if a client obtains a ManageAuction controller, the container grabs
an idle ManageAuctionBean instance from its pool of stateless beans, injects an
idle stateless ItemDAOBean and PaymentDAOBean, sets the persistence context on
all the components that need it, and returns the ManageAuction bean handle to
the client for invocation. This is of course somewhat simplified.)

 These are the formalized rules for persistence-context scoping and propagation:

■ If a container-provided (through injection or obtained through lookup)
EntityManager is invoked for the first time, a persistence context begins.
By default, it’s transaction-scoped and closes when the system transaction
is committed or rolled back. It’s automatically flushed when the transac-
tion is committed.

Conversations with EJB 3.0 509
■ If a container-provided (through injection or obtained through lookup)
EntityManager is invoked for the first time, a persistence context begins. If
no system transaction is active at that time, the persistence context is short
and serves only the single method call. Any SQL triggered by any such
method call executes on a database connection in autocommit mode. All
entity instances that are (possibly) retrieved in that EntityManager call
become detached immediately.

■ If a stateless component (such as ItemDAO) is invoked, and the caller has
an active transaction and the transaction is propagated into the called
component (because ItemDAO methods require or support transactions),
any persistence context bound to the JTA transaction is propagated with
the transaction.

■ If a stateless component (such as ItemDAO) is invoked, and the caller
doesn’t have an active transaction (for example, ManageAuction.endAuc-
tion() doesn’t start a transaction), or the transaction isn’t propagated into
the called component (because ItemDAO methods don’t require or support
a transaction), a new persistence context is created when the EntityMan-
ager is called inside the stateless component. In other words, no propaga-
tion of a persistence context occurs if no transaction is propagated.

These rules look complex if you read only the formal definition; however, in prac-
tice they translate into a natural behavior. The persistence context is automatically
scoped and bound to the JTA system transaction, if there is one—you only have to
learn the rules for transaction propagation to know how the persistence context is
propagated. If there is no JTA system transaction, the persistence context serves a
single EntityManager call.

 You used TransactionAttributeType.REQUIRED in almost all the examples so
far. This is the most common attribute applied in transaction assemblies; after all,
EJB is a programming model for transactional processing. Only once did we show
TransactionAttributeType.NOT_SUPPORTED, when we discussed nontransac-
tional data access with a Hibernate Session in chapter 10 section 10.3.3,
“Optional transactions with JTA”.

 Also remember that you need nontransactional data access in JPA, to disable
automatic flushing of the persistence context in a long conversation—the prob-
lem of the missing FlushMode.MANUAL again.

 We now take a closer look at the transaction attribute types and how you can
implement a conversation with EJBs and manual flushing of an extended persis-
tence context.

510 CHAPTER 11

Implementing conversations
11.4.2 Extended persistence contexts with EJBs

In the previous section, you only worked with persistence contexts that were
scoped to the JTA system transaction. The container injected an EntityMan-
ager automatically, and it transparently handled the persistence context flush-
ing and closing.

 If you want to implement a conversation with EJBs and an extended persistence
context, you have two choices:

■ You can write a stateful session bean as a conversation controller. The persis-
tence context can be automatically scoped to the lifecycle of the stateful
bean, which is a convenient approach. The persistence context is closed
automatically when the stateful EJB is removed.

■ You can create an EntityManager yourself with the EntityManagerFactory.
The persistence context of this EntityManager is application-managed—
you must flush and close it manually. You also have to use the joinTransac-
tion() operation to notify the EntityManager if you call it inside JTA trans-
action boundaries. You’ll almost always prefer the first strategy with stateful
session beans.

You implement the same conversation as before in Java SE: three steps that must
be completed as one atomic unit of work: Retrieval of an auction item for display
and modification, a liquidity check of the seller account, and finally the closing of
the auction.

 You again have to decide how you want to disable automatic flushing of the
extended persistence context during the conversation, to preserve atomicity. You
can choose between the Hibernate vendor extension with FlushMode.MANUAL and
the official approach with nontransactional operations.

Disabling flushing with a Hibernate extension
Let’s first write a stateful EJB, the conversation controller, with the easier Hiber-
nate extension:

@Stateful
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext(
 type = PersistenceContextType.EXTENDED,
 properties = @PersistenceProperty(
 name="org.hibernate.flushMode",
 value="MANUAL")
)

Conversations with EJB 3.0 511
 EntityManager em;

 public Item getAuction(Long itemId) {
 return em.find(Item.class, itemId);
 }

 public boolean sellerHasEnoughMoney(User seller) {
 boolean sellerCanAffordIt = (Boolean)
 em.createQuery("select...").getSingleResult();
 return sellerCanAffordIt;
 }

 @Remove
 public void endAuction(Item item, User buyer) {
 // Set winning bid
 // Charge seller
 // Notify seller and winner
 item.setBuyer(...);

 em.flush();
 }

}

This bean implements the three methods of the ManageAuction interface (we
don’t have to show you this interface). First, it’s a stateful EJB; the container cre-
ates and reserves an instance for a particular client. When a client obtains a han-
dle to this EJB for the first time, a new instance is created and a new extended
persistence context is injected by the container. The persistence context is now
bound to the lifecycle of the EJB instance and is closed when the method marked
as @Remove returns. Notice how you can read the methods of the EJB like a story of
your conversation, one step after another. You can annotate several methods with
@Remove; for example, you can add a cancel() method to undo all conversation
steps. This is a strong and convenient programming model for conversations, all
built-in for free with EJB 3.0.

 Next is the problem of automatic flushing. All methods of the ManageAuction-
Bean require a transaction; you declare this on the class level. The sellerHasE-
noughMoney() method, step two in the conversation, flushes the persistence
context before executing the query and again when the transaction of that
method returns. To prevent that, you declare that the injected persistence context
should be in FlushMode.MANUAL, a Hibernate extension. It’s now your responsibil-
ity to flush the persistence context whenever you want to write the queued SQL
DML to the database—you do this only once at the end of the conversation.

 Your transaction assembly is now decoupled from the flush behavior of the
persistence engine.

512 CHAPTER 11

Implementing conversations
Disabling flushing by disabling transactions
The official solution, according to the EJB 3.0 specification, mixes these two con-
cerns. You prevent automatic flushing by making all steps of the conversation
(except the last one) nontransactional:

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext(type = PersistenceContextType.EXTENDED)
 EntityManager em;

 public Item getAuction(Long itemId) {
 return em.find(Item.class, itemId);
 }

 public boolean sellerHasEnoughMoney(User seller) {
 boolean sellerCanAffordIt = (Boolean)
 em.createQuery("select...").getSingleResult();
 return sellerCanAffordIt;
 }

 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void endAuction(Item item, User buyer) {
 // Set winning bid
 // Charge seller
 // Notify seller and winner
 item.setBuyer(...);
 }

}

In this implementation, you switch to a different default for all methods, Trans-
actionAttributeType.NOT_SUPPORTED, and require a transaction only for the
endAuction() method. This last transaction also flushes the persistence context at
commit time.

 All methods that now call the EntityManager without transactions are effec-
tively running in autocommit mode, which we discussed in the previous chapter.

Complex transaction assemblies
You’ve now used a few different TransactionAttributeType annotations; see the
complete list of available options in Table 11.1.

 The most commonly used transaction attribute type is REQUIRED, which is the
default for all stateless and stateful EJB methods. To disable automatic flushing of
the extended persistence context for a method in a stateful session bean, switch to
NOT_SUPPORTED or even NEVER.

Conversations with EJB 3.0 513
You have to be aware of the transaction- and persistence-context propagation
rules when you design your conversations with stateful EJBs, or if you want to mix
stateless and stateful components:

■ If a stateful session bean that has an extended persistence context calls
(effectively instantiates) another stateful session bean that also has a persis-
tence context, the second stateful session bean inherits the persistence con-
text from the caller. The lifecycle of the persistence context is bound to the
first stateful session bean; it’s closed when both session beans have been
removed. This behavior is recursive if more stateful session beans are
involved. This behavior is also independent of any transaction rules and
transaction propagation.

Table 11.1 EJB 3.0 declarative transaction attribute types

Attribute name Description

REQUIRED A method must be invoked with a transaction context. If the client doesn’t
have a transaction context, the container starts a transaction and enlists all
resources (datasources, and so on) used with that transaction. If this
method calls other transactional components, the transaction is propa-
gated. The container commits the transaction when the method returns,
before the result is send to the client.

NOT_SUPPORTED If a method is invoked within the transaction context propagated from the cli-
ent, the caller’s transaction is suspended and reactivated when the method
returns. If the caller has no transaction context, no transaction is started for
the method. All used resources aren’t enlisted with a transaction (autocom-
mit occurs).

SUPPORTS If a method is invoked within the transaction context propagated from the cli-
ent, it joins that transaction context with the same result as REQUIRED. If
the caller has no transaction context, no transaction is started, with the
same result as NOT_SUPPORTED. This transaction attribute type should be
used only for methods that can handle both cases correctly.

REQUIRES_NEW A method is always executed inside a new transaction context, with the
same consequences and behavior as with REQUIRED. Any propagated cli-
ent transaction is suspended and resumes when the method returns and
the new transaction is completed.

MANDATORY A method must be called with an active transaction context. It then joins this
transaction context and propagates it further, if needed. If no transaction
context is present at call time, an exception is thrown.

NEVER This is the opposite of MANDATORY. An exception is thrown if a method is
called with an active transaction context.

514 CHAPTER 11

Implementing conversations
■ If an EntityManager is used in a method of stateful session bean that has a
bound extended persistence context, and this method requires/supports
the client’s JTA transaction, then an exception is raised if the caller of the
method also propagates a different persistence context with its transaction.
(This is a rare design issue.)

One gotcha is hidden in these rules: Imagine that the stateful ManageAuction con-
troller doesn’t call the EntityManager directly, but that it delegates to other com-
ponents (data access objects, for example). It still has and is responsible for the
extended persistence context, although the EntityManager is never used directly.
This persistence context has to be propagated to all other components that are
called: i.e., into ItemDAO and PaymentDAO.

 If you implement your DAOs as stateless session beans, as you did before, they
won’t inherit the extended persistence context if they are called from a nontrans-
actional method in a stateful controller. This is the stateful controller again, call-
ing a DAO:

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class ManageAuctionBean implements ManageAuction {

 @PersistenceContext(type = PersistenceContextType.EXTENDED)
 EntityManager em;

 @EJB
 PaymentDAO paymentDAO;

 public boolean sellerHasEnoughMoney(User seller) {
 return paymentDAO.checkLiquidity(seller);
 }

 ...
}

The sellerHashEnoughMoney() method doesn’t start a transaction, to avoid auto-
matic flushing of the persistence context on commit in the middle of the conver-
sation. The problem is the call to the DAO, which is a stateless EJB. To get the
persistence context propagated into the stateless EJB call, you need to propagate a
transaction context. If paymentDAO.checkLiquidity() uses an EntityManager, it
gets new persistence context!

 The second problem lies in the PaymentDAO stateless session bean:

@Stateless
public class PaymentDAO {

 @PersistenceContext
 EntityManager em;

Summary 515
 public boolean checkLiquidity(User u) {
 boolean hasMoney = (Boolean)
 em.createQuery("select...").getSingleResult();
 return hasMoney;
 }
 ...
}

Because no persistence context is propagated into the checkLiquidity() method
when it’s called, a new persistence context is created to server this single opera-
tion. This is the session-per-operation antipattern! Worse, you now have two (or
more) persistence contexts in one request and in the conversation, and you’ll run
into data aliasing problems (no identity scope guarantee).

 If you implement your DAOs as stateful session beans, they inherit the persis-
tence context from the calling stateful session bean controller. In this case, the
persistence context is propagated through instantiation, not through transaction
propagation.

 Write your DAOs as stateful EJBs if you write your controller as a stateful session
bean. This issue is another nasty side effect of the missing FlushMode.MANUAL that
can seriously impact how you design and layer applications. We recommend you
rely on the Hibernate extension until the EJB 3.0 (or 3.1?) specification is fixed.
With FlushMode.MANUAL, your controllers don’t have to use TransactionAt-
tributeType.NOT_SUPPORTED, and the persistence context is always propagated
along with your transaction (and you can mix stateless and stateful EJB calls easily).

 We’ll get back to this issue in chapter 16, when we write more complex applica-
tion code and DAOs.

11.5 Summary

In this chapter, you implemented conversations with Hibernate, JPA, and EJB 3.0
components. You learned how to propagate the current Hibernate Session and
the persistence context to create more complex layered applications without leak-
ing concerns. You’ve also seen that persistence-context propagation is a deeply
integrated feature of EJB 3.0 and that a persistence context can be easily bound to
the JTA (or CMT) transaction scope. You’ve seen how FlushMode.MANUAL, a Hiber-
nate feature, can disable flushing of your persistence context independently from
your transaction assembly.

 Table 11.2 shows a summary you can use to compare native Hibernate features
and Java Persistence.

516 CHAPTER 11

Implementing conversations
In the next chapter, we’ll look at various options you should rely on whenever you
need to work with more complex and larger datasets. You’ll see how transitive per-
sistence works with Hibernate’s cascading model, how to execute batch and bulk
operations efficiently, and how to hook into and manipulate the Hibernate
default behavior when objects are loaded and stored.

Table 11.2 Hibernate and JPA comparison chart for chapter 11

Hibernate Core Java Persistence and EJB 3.0

Persistence context propagation is available
with thread or JTA transaction binding in Java SE
and Java EE. Persistence contexts are either
scoped to the transaction, or managed by the
application.

Java Persistence standardizes a persistence context
propagation model for Java EE only, deeply integrated
with EJB 3.0 components. Persistence context scop-
ing, to transactions or to stateful session beans, is
well defined.

Hibernate supports a conversation implementa-
tion with detached objects, these objects can
be reattached or merged during a conversation.

Java Persistence standardizes merging of detached
objects, but has no support for reattachment.

Hibernate supports disabling automatic flushing
of persistence contexts for long conversations
with the FlushMode.MANUAL option.

Disabling automatic flushing of an extended persis-
tence context requires nontransactional event pro-
cessing (with serious restrictions on application
design and layering) or a Hibernate fallback to
FlushMode.MANUAL.

Modifying objects
efficiently
This chapter covers
■ Transitive state changes
■ Batch and bulk processing
■ Interception of the persistence lifecycle
517

518 CHAPTER 12

Modifying objects efficiently
This chapter shows you how to make data manipulations more efficient. We opti-
mize and reduce the amount of code that is necessary to store objects and discuss
the most efficient processing options. You should be familiar with the basic object
states and the persistence interfaces; the previous chapters are required reading
to understand this chapter.

 First we’ll show you how transitive persistence can make your work with com-
plex object networks easier. The cascading options you can enable in Hibernate
and Java Persistence applications significantly reduce the amount of code that’s
otherwise needed to insert, update, or delete several objects at the same time.

 We then discuss how large datasets are best handled, with batch operations in
your application or with bulk operations that execute directly in the database.

 Finally, we show you data filtering and interception, both of which offer trans-
parent hooks into the loading and storing process inside Hibernate’s engine.
These features let you influence or participate in the lifecycle of your objects with-
out writing complex application code and without binding your domain model to
the persistence mechanism.

 Let’s start with transitive persistence and store more than one object at a time.

12.1 Transitive persistence

Real, nontrivial applications work not only with single objects, but rather with net-
works of objects. When the application manipulates a network of persistent
objects, the result may be an object graph consisting of persistent, detached, and
transient instances. Transitive persistence is a technique that allows you to propagate
persistence to transient and detached subgraphs automatically.

 For example, if you add a newly instantiated Category to the already persistent
hierarchy of categories, it should become automatically persistent without a call to
save() or persist(). We gave a slightly different example in chapter 6, section 6.
4, “Mapping a parent/children relationship,” when you mapped a parent/child
relationship between Bid and Item. In this case, bids were not only automatically
made persistent when they were added to an item, but they were also automati-
cally deleted when the owning item was deleted. You effectively made Bid an
entity that was completely dependent on another entity, Item (the Bid entity isn’t
a value type, it still supports shared reference).

 There is more than one model for transitive persistence. The best known is per-
sistence by reachability; we discuss it first. Although some basic principles are the
same, Hibernate uses its own, more powerful model, as you’ll see later. The same

Transitive persistence 519
is true for Java Persistence, which also has the concept of transitive persistence
and almost all the options Hibernate natively provides.

12.1.1 Persistence by reachability

An object persistence layer is said to implement persistence by reachability if any
instance becomes persistent whenever the application creates an object reference
to the instance from another instance that is already persistent. This behavior is
illustrated by the object diagram (note that this isn’t a class diagram) in
figure 12.1.

 In this example, Computer is a persistent object. The objects Desktop PCs and
Monitors are also persistent: They’re reachable from the Computer Category
instance. Electronics and Cellphones are transient. Note that we assume naviga-
tion is possible only to child categories, but not to the parent—for example, you
can call computer.getChildCategories(). Persistence by reachability is a recur-
sive algorithm. All objects reachable from a persistent instance become persistent
either when the original instance is made persistent or just before in-memory
state is synchronized with the datastore.

 Persistence by reachability guarantees referential integrity; any object graph
can be completely re-created by loading the persistent root object. An application
may walk the object network from association to association without ever having
to worry about the persistent state of the instances. (SQL databases have a differ-
ent approach to referential integrity, relying on declarative and procedural con-
straints to detect a misbehaving application.)

 In the purest form of persistence by reachability, the database has some
top-level or root object, from which all persistent objects are reachable. Ideally, an
instance should become transient and be deleted from the database if it isn’t
reachable via references from the root persistent object.

Figure 12.1 Persistence by reachability with a root persistent object

520 CHAPTER 12

Modifying objects efficiently
 Neither Hibernate nor other ORM solutions implement this—in fact, there is
no analog of the root persistent object in an SQL database and no persistent gar-
bage collector that can detect unreferenced instances. Object-oriented data stores
may implement a garbage-collection algorithm, similar to the one implemented
for in-memory objects by the JVM. But this option is not available in the ORM
world; scanning all tables for unreferenced rows won’t perform acceptably.

 So, persistence by reachability is at best a halfway solution. It helps you make
transient objects persistent and propagate their state to the database without
many calls to the persistence manager. However, at least in the context of SQL
databases and ORM, it isn’t a full solution to the problem of making persistent
objects transient (removing their state from the database). This turns out to be a
much more difficult problem. You can’t remove all reachable instances when you
remove an object—other persistent instances may still hold references to them
(remember that entities can be shared). You can’t even safely remove instances
that aren’t referenced by any persistent object in memory; the instances in mem-
ory are only a small subset of all objects represented in the database.

 Let’s look at Hibernate’s more flexible transitive persistence model.

12.1.2 Applying cascading to associations

Hibernate’s transitive persistence model uses the same basic concept as persis-
tence by reachability: Object associations are examined to determine transitive
state. Furthermore, Hibernate allows you to specify a cascade style for each associa-
tion mapping, which offers much more flexibility and fine-grained control for all
state transitions. Hibernate reads the declared style and cascades operations to
associated objects automatically.

 By default, Hibernate doesn’t navigate an association when searching for tran-
sient or detached objects, so saving, deleting, reattaching, merging, and so on, a
Category has no effect on any child category referenced by the childCategories
collection of the parent. This is the opposite of the persistence by reachability
default behavior. If, for a particular association, you wish to enable transitive per-
sistence, you must override this default in the mapping metadata.

 These settings are called cascading options. They’re available for every entity
association mapping (one-to-one, one-to-many, many-to-many), in XML and
annotation syntax. See table 12.1 for a list of all settings and a description of
each option.

 In XML mapping metadata, you put the cascade="..." attribute on
<one-to-one> or <many-to-one> mapping element to enable transitive state
changes. All collections mappings (<set>, <bag>, <list>, and <map>) support the

Transitive persistence 521
Table 12.1 Hibernate and Java Persistence entity association cascading options

XML attribute
Annotation
 Description

None (Default)

Hibernate ignores the association.

save-update org.hibernate.annotations.CascadeType.SAVE_UPDATE

Hibernate navigates the association when the Session is flushed and when
an object is passed to save() or update(), and saves newly instantiated
transient instances and persist changes to detached instances.

persist javax.persistence.CascadeType.PERSIST

Hibernate makes any associated transient instance persistent when an object
is passed to persist(). If you use native Hibernate, cascading occurs only
at call-time. If you use the EntityManager module, this operation is cas-
caded when the persistence context is flushed.

merge Javax.persistence.CascadeType.MERGE

Hibernate navigates the association and merges the associated detached
instances with equivalent persistent instances when an object is passed to
merge(). Reachable transient instances are made persistent.

delete org.hibernate.annotations.CascadeType.DELETE

Hibernate navigates the association and deletes associated persistent
instances when an object is passed to delete() or remove().

remove javax.persistence.CascadeType.REMOVE

This option enables cascading deletion to associated persistent instances
when an object is passed to remove()or delete().

lock org.hibernate.annotations.CascadeType.LOCK

This option cascades the lock() operation to associated instances, reattach-
ing them to the persistence context if the objects are detached. Note that the
LockMode isn’t cascaded; Hibernate assumes that you don’t want pessimistic
locks on associated objects—for example, because a pessimistic lock on the
root object is good enough to avoid concurrent modification.

replicate org.hibernate.annotations.CascadeType.REPLICATE

Hibernate navigates the association and cascades the replicate() opera-
tion to associated objects.

evict org.hibernate.annotations.CascadeType.EVICT

Hibernate evicts associated objects from the persistence context when an
object is passed to evict() on the Hibernate Session.

refresh javax.persistence.CascadeType.REFRESH

Hibernate rereads the state of associated objects from the database when an
object is passed to refresh().

522 CHAPTER 12

Modifying objects efficiently
cascade attribute. The delete-orphan setting, however, is applicable only to col-
lections. Obviously, you never have to enable transitive persistence for a collection
that references value-typed classes—here the lifecycle of the associated objects is
dependent and implicit. Fine-grained control of dependent lifecycle is relevant
and available only for associations between entities.

FAQ What is the relationship between cascade and inverse? There is no rela-
tionship; both are different notions. The noninverse end of an association
is used to generate the SQL statements that manage the association in the
database (insertion and update of the foreign key column(s)). Cascading
enables transitive object state changes across entity class associations.

Here are a few examples of cascading options in XML mapping files. Note that
this code isn’t from a single entity mapping or a single class, but only illustrative:

<many-to-one name="parent"
 column="PARENT_CATEGORY_ID"
 class="Category"
 cascade="save-update, persist, merge"/>

...

<one-to-one name="shippingAddress"
 class="Address"
 cascade="save-update, lock"/>

...

<set name="bids" cascade="all, delete-orphan"
 inverse="true">
 <key column ="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

all javax.persistence.CascadeType.ALL

This setting includes and enables all cascading options listed previously.

delete-
orphan

org.hibernate.annotations.CascadeType.DELETE_ORPHAN

This extra and special setting enables deletion of associated objects when
they’re removed from the association, that is, from a collection. If you enable
this setting on an entity collection, you’re telling Hibernate that the associated
objects don’t have shared references and can be safely deleted when a refer-
ence is removed from the collection.

Table 12.1 Hibernate and Java Persistence entity association cascading options (continued)

XML attribute
Annotation
 Description

Transitive persistence 523
As you can see, several cascading options can be combined and applied to a par-
ticular association as a comma-separated list. Further note that delete-orphan
isn’t included in all.

 Cascading options are declared with annotations in two possible ways. First, all
the association mapping annotations, @ManyToOne, @OneToOne, @OneToMany, and
@ManyToMany, support a cascade attribute. The value of this attribute is a single or
a list of javax.persistence.CascadeType values. For example, the XML illustra-
tive mapping done with annotations looks like this:

@ManyToOne(cascade = { CascadeType.PERSIST, CascadeType.MERGE })
@JoinColumn(name = "PARENT_CATEGORY_ID", nullable = true)
private Category parent;

...

@OneToMany(cascade = CascadeType.ALL)
private Set<Bid> bids = new HashSet<Bid>();

Obviously, not all cascading types are available in the standard javax.persis-
tence package. Only cascading options relevant for EntityManager operations,
such as persist() and merge(), are standardized. You have to use a Hibernate
extension annotation to apply any Hibernate-only cascading option:

@ManyToOne(cascade = { CascadeType.PERSIST, CascadeType.MERGE })
@org.hibernate.annotations.Cascade(
 org.hibernate.annotations.CascadeType.SAVE_UPDATE
)
@JoinColumn(name = "PARENT_CATEGORY_ID", nullable = true)
private Category parent;

...

@OneToOne
@org.hibernate.annotations.Cascade({
 org.hibernate.annotations.CascadeType.SAVE_UPDATE,
 org.hibernate.annotations.CascadeType.LOCK
})
@PrimaryKeyJoinColumn
private Address shippingAddress;

...

@OneToMany(cascade = CascadeType.ALL)
@org.hibernate.annotations.Cascade(
 org.hibernate.annotations.CascadeType.DELETE_ORPHAN
)
private Set<Bid> bids = new HashSet<Bid>();

524 CHAPTER 12

Modifying objects efficiently
A Hibernate extension cascading option can be used either as an addition to the
options already set on the association annotation (first and last example) or as a
stand-alone setting if no standardized option applies (second example).

 Hibernate’s association-level cascade style model is both richer and less safe
than persistence by reachability. Hibernate doesn’t make the same strong guaran-
tees of referential integrity that persistence by reachability provides. Instead,
Hibernate partially delegates referential integrity concerns to the foreign key con-
straints of the underlying SQL database.

 There is a good reason for this design decision: It allows Hibernate applica-
tions to use detached objects efficiently, because you can control reattachment and
merging of a detached object graph at the association level. But cascading options
aren’t available only to avoid unnecessary reattachment or merging: They’re use-
ful whenever you need to handle more than one object at a time.

 Let’s elaborate on the transitive state concept with some example association
mappings. We recommend that you read the next section in one turn, because
each example builds on the previous one.

12.1.3 Working with transitive state

CaveatEmptor administrators are able to create new catego-
ries, rename categories, and move subcategories around in the
category hierarchy. This structure can be seen in figure 12.2.

 Now, you map this class and the association, using XML:

<class name="Category" table="CATEGORY">
 ...
 <property name="name" column="CATEGORY_NAME"/>

 <many-to-one name="parentCategory"
 class="Category"
 column="PARENT_CATEGORY_ID"
 cascade="none"/>

 <set name="childCategories"
 table="CATEGORY"
 cascade="save-update"
 inverse="true">
 <key column="PARENT_CATEGORY_ID"/>
 <one-to-many class="Category"/>
 </set>
 ...
</class>

This is a recursive bidirectional one-to-many association. The one-valued end is
mapped with the <many-to-one> element and the Set typed property with the

Figure 12.2
Category class with
associations to itself

Transitive persistence 525
<set>. Both refer to the same foreign key column PARENT_CATEGORY_ID. All col-
umns are in the same table, CATEGORY.

Creating a new category
Suppose you create a new Category, as a child category of Computer; see fig-
ure 12.3.

 You have several ways to create this new Laptops object and save it in the data-
base. You can go back to the database and retrieve the Computer category to
which the new Laptops category will belong, add the new category, and commit
the transaction:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Category computer =
 (Category) session.load(Category.class, computerId);

Category laptops = new Category("Laptops");

computer.getChildCategories().add(laptops);
laptops.setParentCategory(computer);

tx.commit();
session.close();

The computer instance is persistent (note how you use load() to work with a
proxy and avoid the database hit), and the childCategories association has cas-
cade-save enabled. Hence, this code results in the new laptops category becom-
ing persistent when tx.commit() is called, as Hibernate cascades the persistent
state to the childCategories collection elements of computer. Hibernate exam-
ines the state of the objects and their relationships when the persistence context is
flushed and queues an INSERT statement.

Figure 12.3
Adding a new Category to the
object graph

526 CHAPTER 12

Modifying objects efficiently
Creating a new category in a detached fashion
Let’s do the same thing again, but this time create the link between Computer
and Laptops outside of the persistence context scope:

Category computer =
 (Category) session.get() // Loaded in previous Session

Category laptops = new Category("Laptops");

computer.getChildCategories().add(laptops);
laptops.setParentCategory(computer);

You now have the detached fully initialized (no proxy) computer object, loaded in
a previous Session, associated with the new transient laptops object (and vice
versa). You make this change to the objects persistent by saving the new object in a
second Hibernate Session, a new persistence context:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

// Persist one new category and the link to its parent category
session.save(laptops);

tx.commit();
session.close();

Hibernate inspects the database identifier property of the laptops.parentCate-
gory object and correctly creates the reference to the Computer category in the
database. Hibernate inserts the identifier value of the parent into the foreign key
field of the new Laptops row in CATEGORY.

 You can’t obtain a detached proxy for computer in this example, because com-
puter.getChildCategories() would trigger initialization of the proxy and you’d
see a LazyInitializationException: The Session is already closed. You can’t
walk the object graph across uninitialized boundaries in detached state.

 Because you have cascade="none" defined for the parentCategory associa-
tion, Hibernate ignores changes to any of the other categories in the hierarchy
(Computer, Electronics)! It doesn’t cascade the call to save() to entities referred
by this association. If you enabled cascade="save-update" on the <many-to-one>
mapping of parentCategory, Hibernate would navigate the whole graph of
objects in memory, synchronizing all instances with the database. This is an obvi-
ous overhead you’d prefer to avoid.

 In this case, you neither need nor want transitive persistence for the parent-
Category association.

Transitive persistence 527
Saving several new instances with transitive persistence
Why do we have cascading operations? You could save the laptop object, as shown
in the previous example, without using any cascade mapping. Well, consider the
following case:

Category computer = ... // Loaded in a previous Session

Category laptops = new Category("Laptops");
Category laptopUltraPortable = new Category("Ultra-Portable");
Category laptopTabletPCs = new Category("Tablet PCs");

laptops.addChildCategory(laptopUltraPortable);
laptops.addChildCategory(laptopTabletPCs);

computer.addChildCategory(laptops);

(Notice that the convenience method addChildCategory() sets both ends of the
association link in one call, as described earlier in the book.)

 It would be undesirable to have to save each of the three new categories indi-
vidually in a new Session. Fortunately, because you mapped the childCatego-
ries association (the collection) with cascade="save-update", you don’t need
to. The same code shown earlier, which saved the single Laptops category, will
save all three new categories in a new Session:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

// Persist all three new Category instances
session.save(laptops);

tx.commit();
session.close();

You’re probably wondering why the cascade style is called cas-

cade="save-update" rather then merely cascade="save". Having just made all
three categories persistent previously, suppose you make the following changes to
the category hierarchy in a subsequent event, outside of a Session (you’re work-
ing on detached objects again):

laptops.setName("Laptop Computers"); // Modify
laptopUltraPortable.setName("Ultra-Portable Notebooks"); // Modify
laptopTabletPCs.setName("Tablet Computers"); // Modify

Category laptopBags = new Category("Laptop Bags");
laptops.addChildCategory(laptopBags); // Add

You add a new category (laptopBags) as a child of the Laptops category, and
modify all three existing categories. The following code propagates all these
changes to the database:

528 CHAPTER 12

Modifying objects efficiently
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

// Update three old Category instances and insert the new one
session.saveOrUpdate(laptops);

tx.commit();
session.close();

Because you specify cascade="save-update" on the childCategories collec-
tion, Hibernate determines what is needed to persist the objects to the database.
In this case, it queues three SQL UPDATE statements (for laptops, laptop-
UltraPortable, laptopTablePCs) and one INSERT (for laptopBags). The save-
OrUpdate() method tells Hibernate to propagate the state of an instance to the
database by creating a new database row if the instance is a new transient instance
or updating the existing row if the instance is a detached instance.

 More experienced Hibernate users use saveOrUpdate() exclusively; it’s much
easier to let Hibernate decide what is new and what is old, especially in a more
complex network of objects with mixed state. The only (not really serious) disad-
vantage of exclusive saveOrUpdate() is that it sometimes can’t guess whether an
instance is old or new without firing a SELECT at the database—for example,
when a class is mapped with a natural composite key and no version or time-
stamp property.

 How does Hibernate detect which instances are old and which are new? A
range of options is available. Hibernate assumes that an instance is an unsaved
transient instance if:

■ The identifier property is null.

■ The version or timestamp property (if it exists) is null.

■ A new instance of the same persistent class, created by Hibernate internally,
has the same database identifier value as the given instance.

■ You supply an unsaved-value in the mapping document for the class, and
the value of the identifier property matches. The unsaved-value attribute
is also available for version and timestamp mapping elements.

■ Entity data with the same identifier value isn’t in the second-level cache.

■ You supply an implementation of org.hibernate.Interceptor and return
Boolean.TRUE from Interceptor.isUnsaved() after checking the instance
in your own code.

In the CaveatEmptor domain model, you use the nullable type java.lang.Long as
your identifier property type everywhere. Because you’re using generated,

Transitive persistence 529
synthetic identifiers, this solves the problem. New instances have a null identifier
property value, so Hibernate treats them as transient. Detached instances have a
nonnull identifier value, so Hibernate treats them accordingly.

 It’s rarely necessary to customize the automatic detection routines built into
Hibernate. The saveOrUpdate() method always knows what to do with the given
object (or any reachable objects, if cascading of save-update is enabled for an
association). However, if you use a natural composite key and there is no version
or timestamp property on your entity, Hibernate has to hit the database with a
SELECT to find out if a row with the same composite identifier already exists. In
other words, we recommend that you almost always use saveOrUpdate() instead
of the individual save() or update() methods, Hibernate is smart enough to do
the right thing and it makes transitive “all of this should be in persistent state, no
matter if new or old” much easier to handle.

 We’ve now discussed the basic transitive persistence options in Hibernate, for
saving new instances and reattaching detached instances with as few lines of code
as possible. Most of the other cascading options are equally easy to understand:
persist, lock, replicate, and evict do what you would expect—they make a
particular Session operation transitive. The merge cascading option has effec-
tively the same consequences as save-update.

 It turns out that object deletion is a more difficult thing to grasp; the
delete-orphan setting in particular causes confusion for new Hibernate users.
This isn’t because it’s complex, but because many Java developers tend to forget
that they’re working with a network of pointers.

Considering transitive deletion
Imagine that you want to delete a Category object. You have to pass this object to
the delete() method on a Session; it’s now in removed state and will be gone
from the database when the persistence context is flushed and committed. How-
ever, you’ll get a foreign key constraint violation if any other Category holds a refer-
ence to the deleted row at that time (maybe because it was still referenced as the
parent of others).

 It’s your responsibility to delete all links to a Category before you delete the
instance. This is the normal behavior of entities that support shared references.
Any value-typed property (or component) value of an entity instance is deleted
automatically when the owning entity instance is deleted. Value-typed collection
elements (for example, the collection of Image objects for an Item) are deleted if
you remove the references from the owning collection.

530 CHAPTER 12

Modifying objects efficiently
 In certain situations, you want to delete an entity instance by removing a refer-
ence from a collection. In other words, you can guarantee that once you remove
the reference to this entity from the collection, no other reference will exist.
Therefore, Hibernate can delete the entity safely after you’ve removed that single
last reference. Hibernate assumes that an orphaned entity with no references
should be deleted. In the example domain model, you enable this special cascad-
ing style for the collection (it’s only available for collections) of bids, in the map-
ping of Item:

<set name="bids"
 cascade="all, delete-orphan"
 inverse="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

You can now delete Bid objects by removing them from this collection—for exam-
ple, in detached state:

Item anItem = ... // Loaded in previous Session

anItem.getBids().remove(aBid);
anItem.getBids().remove(anotherBid);

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

session.saveOrUpdate(anItem);

tx.commit();
session.close();

If you don’t enable the delete-orphan option, you have to explicitly delete the
Bid instances after removing the last reference to them from the collection:

Item anItem = ... // Loaded in previous Session

anItem.getBids().remove(aBid);
anItem.getBids().remove(anotherBid);

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

session.delete(aBid);
session.delete(anotherBid);

session.saveOrUpdate(anItem);

tx.commit();
session.close();

Automatic deletion of orphans saves you two lines of code—two lines of code that
are inconvenient. Without orphan deletion, you’d have to remember all the Bid

Transitive persistence 531
objects you wish to delete—the code that removes an element from the collection
is often in a different layer than the code that executes the delete() operation.
With orphan deletion enabled, you can remove orphans from the collection, and
Hibernate will assume that they’re no longer referenced by any other entity. Note
again that orphan deletion is implicit if you map a collection of components; the
extra option is relevant only for a collection of entity references (almost always a
<one-to-many>).

 Java Persistence and EJB 3.0 also support transitive state changes across entity
associations. The standardized cascading options are similar to Hibernate’s, so
you can learn them easily.

12.1.4 Transitive associations with JPA

The Java Persistence specification supports annotations for entity associations that
enable cascading object manipulation. Just as in native Hibernate, each Entity-
Manager operation has an equivalent cascading style. For example, consider the
Category tree (parent and children associations) mapped with annotations:

@Entity
public class Category {

 private String name;

 @ManyToOne
 public Category parentCategory;

 @OneToMany(mappedBy = "parentCategory",
 cascade = { CascadeType.PERSIST,
 CascadeType.MERGE }
)
 public Set<Category> childCategories = new HashSet<Category>();
 ...
}

You enable standard cascading options for the persist() and merge() opera-
tions. You can now create and modify Category instances in persistent or
detached state, just as you did earlier with native Hibernate:

Category computer = ... // Loaded in a previous persistence context

Category laptops = new Category("Laptops");
Category laptopUltraPortable = new Category("Ultra-Portable");
Category laptopTabletPCs = new Category("Tablet PCs");

laptops.addChildCategory(laptopUltraPortable);
laptops.addChildCategory(laptopTabletPCs);

computer.setName("Desktops and Laptops");
computer.addChildCategory(laptops);

532 CHAPTER 12

Modifying objects efficiently
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();

computer = em.merge(computer);

tx.commit();
em.close();

A single call to merge() makes any modification and addition persistent. Remem-
ber that merge() isn’t the same as reattachment: It returns a new value that you
should bind to the current variable as a handle to current state after merging.

 Some cascading options aren’t standardized, but Hibernate specific. You map
these annotations (they’re all in the org.hibernate.annotations package) if
you’re working with the Session API or if you want an extra setting for Entity-
Manager (for example, org.hibernate.annotations.CascadeType.DELETE_

ORPHAN). Be careful, though—custom cascading options in an otherwise pure JPA
application introduce implicit object state changes that may be difficult to com-
municate to someone who doesn’t expect them.

 In the previous sections, we’ve explored the entity association cascading
options with Hibernate XML mapping files and Java Persistence annotations. With
transitive state changes, you save lines of code by letting Hibernate navigate and
cascade modifications to associated objects. We recommend that you consider
which associations in your domain model are candidates for transitive state
changes and then implement this with cascading options. In practice, it’s
extremely helpful if you also write down the cascading option in the UML diagram
of your domain model (with stereotypes) or any other similar documentation that
is shared between developers. Doing so improves communication in your devel-
opment team, because everybody knows which operations and associations imply
cascading state changes.

 Transitive persistence isn’t the only way you can manipulate many objects with
a single operation. Many applications have to modify large object sets: For exam-
ple, imagine that you have to set a flag on 50,000 Item objects. This is a bulk oper-
ation that is best executed directly in the database.

12.2 Bulk and batch operations

You use object/relational mapping to move data into the application tier so that
you can use an object-oriented programming language to process that data. This
is a good strategy if you’re implementing a multiuser online transaction process-
ing application, with small to medium size data sets involved in each unit of work.

Bulk and batch operations 533
 On the other hand, operations that require massive amounts of data are best
not executed in the application tier. You should move the operation closer to the
location of the data, rather than the other way round. In an SQL system, the DML
statements UPDATE and DELETE execute directly in the database and are often suf-
ficient if you have to implement an operation that involves thousands of rows.
More complex operations may require more complex procedures to run inside
the database; hence, you should consider stored procedures as one possible strategy.

 You can fall back to JDBC and SQL at all times in Hibernate or Java Persistence
applications. In this section, we’ll show you how to avoid this and how to execute
bulk and batch operations with Hibernate and JPA.

12.2.1 Bulk statements with HQL and JPA QL

The Hibernate Query Language (HQL) is similar to SQL. The main difference
between the two is that HQL uses class names instead of table names, and property
names instead of column names. It also understands inheritance—that is,
whether you’re querying with a superclass or an interface.

 The JPA query language, as defined by JPA and EJB 3.0, is a subset of HQL.
Hence, all queries and statements that are valid JPA QL are also valid HQL. The
statements we’ll show you now, for bulk operations that execute directly in the
database, are available in JPA QL and HQL. (Hibernate adopted the standardized
bulk operations from JPA.)

 The available statements support updating and deleting objects directly in the
database without the need to retrieve the objects into memory. A statement that
can select data and insert it as new entity objects is also provided.

Updating objects directly in the database
In the previous chapters, we’ve repeated that you should think about state manage-
ment of objects, not how SQL statements are managed. This strategy assumes that
the objects you’re referring to are available in memory. If you execute an SQL
statement that operates directly on the rows in the database, any change you make
doesn’t affect the in-memory objects (in whatever state they may be). In other
words, any direct DML statement bypasses the Hibernate persistence context (and
all caches).

 A pragmatic solution that avoids this issue is a simple convention: Execute any
direct DML operations first in a fresh persistence context. Then, use the
Hibernate Session or EntityManager to load and store objects. This convention
guarantees that the persistence context is unaffected by any statements executed
earlier. Alternatively, you can selectively use the refresh() operation to reload

534 CHAPTER 12

Modifying objects efficiently
the state of a persistent object from the database, if you know it’s been modified
behind the back of the persistence context.

 Hibernate and JPA offer DML operations that are a little more powerful than
plain SQL. Let’s look at the first operation in HQL and JPA QL, an UPDATE:

Query q =
 session.createQuery("update Item i set i.isActive = :isActive");
q.setBoolean("isActive", true);
int updatedItems = q.executeUpdate();

This HQL statement (or JPA QL statement, if executed with the EntityManager)
looks like an SQL statement. However, it uses an entity name (class name) and a
property name. It’s also integrated into Hibernate’s parameter binding API. The
number of updated entity objects is returned—not the number of updated rows.
Another benefit is that the HQL (JPA QL) UPDATE statement works for inheritance
hierarchies:

Query q = session.createQuery(
 "update CreditCard set stolenOn <= :now where type = 'Visa'"
);
q.setTimestamp("now", new Date());
int updatedCreditCards = q.executeUpdate();

The persistence engine knows how to execute this update, even if several SQL
statements have to be generated; it updates several base tables (because Credit-
Card is mapped to several superclass and subclass tables). This example also
doesn’t contain an alias for the entity class—it’s optional. However, if you use an
alias, all properties must be prefixed with an alias. Also note that HQL (and JPA
QL) UPDATE statements can reference only a single entity class; you can’t write a
single statement to update Item and CreditCard objects simultaneously, for
example. Subqueries are allowed in the WHERE clause; any joins are allowed only in
these subqueries.

 Direct DML operations, by default, don’t affect any version or timestamp values
of the affected entities (this is standardized in Java Persistence). With HQL, how-
ever, you can increment the version number of directly modified entity instances:

Query q =
 session.createQuery(
 "update versioned Item i set i.isActive = :isActive"
);
q.setBoolean("isActive", true);
int updatedItems = q.executeUpdate();

(The versioned keyword is not allowed if your version or timestamp property
relies on a custom org.hibernate.usertype.UserVersionType.)

Bulk and batch operations 535
 The second HQL (JPA QL) bulk operation we introduce is the DELETE:

Query q = session.createQuery(
 "delete CreditCard c where c.stolenOn is not null"
);
int updatedCreditCards = q.executeUpdate();

The same rules as for UPDATE statements apply: no joins, single entity class only,
optional aliases, subqueries allowed in the WHERE clause.

 Just like SQL bulk operations, HQL (and JPA QL) bulk operations don’t affect
the persistence context, they bypass any cache. Credit cards or items in memory
aren’t updated if you execute one of these examples.

 The last HQL bulk operation can create objects directly in the database.

Creating new objects directly in the database
Let’s assume that all your customers’ Visa cards have been stolen. You write two
bulk operations to mark the day they were stolen (well, the day you discovered the
theft) and to remove the compromised credit-card data from your records.
Because you work for a responsible company, you have to report the stolen credit
cards to the authorities and affected customers. So, before you delete the records,
you extract everything that was stolen and create a few hundred (or thousand)
StolenCreditCard objects. This is a new class you write just for that purpose:

public class StolenCreditCard {

 private Long id;

 private String type;
 private String number;
 private String expMonth;
 private String expYear;
 private String ownerFirstname;
 private String ownerLastname;
 private String ownerLogin;
 private String ownerEmailAddress;
 private Address ownerHomeAddress;

 ... // Constructors, getter and setter methods
}

You now map this class to its own STOLEN_CREDIT_CARD table, either with an XML
file or JPA annotations (you shouldn’t have any problem doing this on your own).
Next, you need a statement that executes directly in the database, retrieves all
compromised credit cards, and creates new StolenCreditCard objects:

Query q = session.createQuery(
 "insert into StolenCreditCard
 (type, number, expMonth, expYear,

536 CHAPTER 12

Modifying objects efficiently
 ownerFirstname, onwerLastname, ownerLogin,
 ownerEmailAddress, ownerHomeAddress)
 select
 c.type, c.number, c.expMonth, c.expYear,
 u.firstname, u.lastname, u.username,
 u.email, u.homeAddress
 from CreditCard c join c.user u
 where c.stolenOn is not null"
);

int createdObjects = q.executeUpdate();

This operation does two things: First, the details of CreditCard records and the
respective owner (a User) are selected. The result is then directly inserted into
the table to which the StolenCreditCard class is mapped.

 Note the following:

■ The properties that are the target of an INSERT ... SELECT (in this case,
the StolenCreditCard properties you list) have to be for a particular sub-
class, not an (abstract) superclass. Because StolenCreditCard isn’t part of
an inheritance hierarchy, this isn’t an issue.

■ The types returned by the SELECT must match the types required for the
INSERT—in this case, lots of string types and a component (the same type
of component for selection and insertion).

■ The database identifier for each StolenCreditCard object will be gener-
ated automatically by the identifier generator you map it with. Alternatively,
you can add the identifier property to the list of inserted properties and
supply a value through selection. Note that automatic generation of identi-
fier values works only for identifier generators that operate directly inside
the database, such as sequences or identity fields.

■ If the generated objects are of a versioned class (with a version or time-
stamp property), a fresh version (zero, or timestamp of today) will also be
generated. Alternatively, you can select a version (or timestamp) value and
add the version (or timestamp) property to the list of inserted properties.

Finally, note that INSERT ... SELECT is available only with HQL; JPA QL doesn’t
standardize this kind of statement—hence, your statement may not be portable.

 HQL and JPA QL bulk operations cover many situations in which you’d usually
resort to plain SQL. On the other hand, sometimes you can’t exclude the applica-
tion tier in a mass data operation.

Bulk and batch operations 537
12.2.2 Processing with batches

Imagine that you have to manipulate all Item objects, and that the changes you
have to make aren’t as trivial as setting a flag (which you’ve done with a single
statement previously). Let’s also assume that you can’t create an SQL stored proce-
dure, for whatever reason (maybe because your application has to work on data-
base-management systems that don’t support stored procedures). Your only
choice is to write the procedure in Java and to retrieve a massive amount of data
into memory to run it through the procedure.

 You should execute this procedure by batching the work. That means you cre-
ate many smaller datasets instead of a single dataset that wouldn’t even fit into
memory.

Writing a procedure with batch updates
The following code loads 100 Item objects at a time for processing:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

ScrollableResults itemCursor =
 session.createQuery("from Item").scroll();

int count=0;
while (itemCursor.next()) {
 Item item = (Item) itemCursor.get(0);
 modifyItem(item);
 if (++count % 100 == 0) {
 session.flush();
 session.clear();
 }
}

tx.commit();
session.close();

You use an HQL query (a simple one) to load all Item objects from the database.
But instead of retrieving the result of the query completely into memory, you
open an online cursor. A cursor is a pointer to a result set that stays in the database.
You can control the cursor with the ScrollableResults object and move it along
the result. The get(int i) call retrieves a single object into memory, the object
the cursor is currently pointing to. Each call to next() forwards the cursor to the
next object. To avoid memory exhaustion, you flush() and clear() the persis-
tence context before loading the next 100 objects into it.

538 CHAPTER 12

Modifying objects efficiently
 A flush of the persistence context writes the changes you made to the last 100
Item objects to the database. For best performance, you should set the size of the
Hibernate (and JDBC) configuration property hibernate.jdbc.batch_size to
the same size as your procedure batch: 100. All UDPATE statements that are exe-
cuted during flushing are then also batched at the JDBC level.

 (Note that you should disable the second-level cache for any batch opera-
tions; otherwise, each modification of an object during the batch procedure
must be propagated to the second-level cache for that persistent class. This is an
unnecessary overhead. You’ll learn how to control the second-level cache in the
next chapter.)

 The Java Persistence API unfortunately doesn’t support cursor-based query
results. You have to call org.hibernate.Session and org.hibernate.Query to
access this feature.

 The same technique can be used to create and persist a large number of
objects.

Inserting many objects in batches
If you have to create a few hundred or thousand objects in a unit of work, you may
run into memory exhaustion. Every object that is passed to insert() or per-
sist() is added to the persistence context cache.

 A straightforward solution is to flush and clear the persistence context after a
certain number of objects. You effectively batch the inserts:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
 Item item = new Item(...);
 session.save(item);
 if (i % 100 == 0) {
 session.flush();
 session.clear();
 }
}

tx.commit();
session.close();

Here you create and persist 100,000 objects, 100 at a time. Again, remember to set
the hibernate.jdbc.batch_size configuration property to an equivalent value
and disable the second-level cache for the persistent class. Caveat: Hibernate
silently disables JDBC batch inserts if your entity is mapped with an identity iden-
tifier generator; many JDBC drivers don’t support batching in that case.

Bulk and batch operations 539
 Another option that completely avoids memory consumption of the persis-
tence context (by effectively disabling it) is the StatelessSession interface.

12.2.3 Using a stateless Session

The persistence context is an essential feature of the Hibernate and Java Persis-
tence engine. Without a persistence context, you wouldn’t be able to manipulate
object state and have Hibernate detect your changes automatically. Many other
things also wouldn’t be possible.

 However, Hibernate offers you an alternative interface, if you prefer to work
with your database by executing statements. This statement-oriented interface,
org.hibernate.StatelessSession, feels and works like plain JDBC, except that
you get the benefit from mapped persistent classes and Hibernate’s database
portability.

 Imagine that you want to execute the same “update all item objects” procedure
you wrote in an earlier example with this interface:

Session session = sessionFactory.openStatelessSession();
Transaction tx = session.beginTransaction();

ScrollableResults itemCursor =
 session.createQuery("from Item").scroll();

while (itemCursor.next()) {
 Item item = (Item) itemCursor.get(0);
 modifyItem(item);
 session.update(item);
}

tx.commit();
session.close();

The batching is gone in this example—you open a StatelessSession. You no
longer work with objects in persistent state; everything that is returned from the
database is in detached state. Hence, after modifying an Item object, you need to
call update() to make your changes permanent. Note that this call no longer reat-
taches the detached and modified item. It executes an immediate SQL UPDATE;
the item is again in detached state after the command.

 Disabling the persistence context and working with the StatelessSession
interface has some other serious consequences and conceptual limitations (at
least, if you compare it to a regular Session):

■ A StatelessSession doesn’t have a persistence context cache and doesn’t
interact with any other second-level or query cache. Everything you do
results in immediate SQL operations.

540 CHAPTER 12

Modifying objects efficiently
■ Modifications to objects aren’t automatically detected (no dirty checking),
and SQL operations aren’t executed as late as possible (no write-behind).

■ No modification of an object and no operation you call are cascaded to any
associated instance. You’re working with instances of a single entity class.

■ Any modifications to a collection that is mapped as an entity association
(one-to-many, many-to-many) are ignored. Only collections of value types
are considered. You therefore shouldn’t map entity associations with collec-
tions, but only the noninverse side with foreign keys to many-to-one; handle
the relationship through one side only. Write a query to obtain data you’d
otherwise retrieve by iterating through a mapped collection.

■ The StatelessSession bypasses any enabled org.hibernate.Interceptor
and can’t be intercepted through the event system (both features are dis-
cussed later in this chapter).

■ You have no guaranteed scope of object identity. The same query produces
two different in-memory detached instances. This can lead to data-aliasing
effects if you don’t carefully implement the equals() method of your per-
sistent classes.

Good use cases for a StatelessSession are rare; you may prefer it if manual
batching with a regular Session becomes cumbersome. Remember that the
insert(), update(), and delete() operations have naturally different semantics
than the equivalent save(), update(), and delete() operations on a regular Ses-
sion. (They probably should have different names, too; the StatelessSession
API was added to Hibernate ad hoc, without much planning. The Hibernate devel-
oper team discussed renaming this interface in a future version of Hibernate; you
may find it under a different name in the Hibernate version you’re using.)

 So far in this chapter, we’ve shown how you can store and manipulate many
objects with the most efficient strategy through cascading, bulk, and batch opera-
tions. We’ll now consider interception and data filtering, and how you can hook
into Hibernate’s processing in a transparent fashion.

12.3 Data filtering and interception

Imagine that you don’t want to see all the data in your database. For example, the
currently logged-in application user may not have the rights to see everything.
Usually, you add a condition to your queries and restrict the result dynamically.
This becomes difficult if you have to handle a concern such as security or tempo-
ral data (“Show me only data from last week,” for example). Even more difficult is

Data filtering and interception 541
a restriction on collections; if you iterate through the Item objects in a Category,
you’ll see all of them.

 One possible solution for this problem uses database views. SQL doesn’t stan-
dardize dynamic views—views that can be restricted and moved at runtime with
some parameter (the currently logged-in user, a time period, and so on). Few
databases offer more flexible view options, and if they’re available, they’re pricey
and/or complex (Oracle offers a Virtual Private Database addition, for example).

 Hibernate provides an alternative to dynamic database views: data filters with
dynamic parameterization at runtime. We’ll look at the use cases and application
of data filters in the following sections.

 Another common issue in database applications is crosscutting concerns that
require knowledge of the data that is stored or loaded. For example, imagine that
you have to write an audit log of every data modification in your application.
Hibernate offers an org.hibernate.Interceptor interface that allows you to
hook into the internal processing of Hibernate and execute side effects such as
audit logging. You can do much more with interception, and we’ll show you a few
tricks after we’ve completed our discussion of data filters.

 The Hibernate core is based on an event/listener model, a result of the last
refactoring of the internals. If an object must be loaded, for example, a Load-
Event is fired. The Hibernate core is implemented as default listeners for such
events, and this system has public interfaces that let you plug in your own listeners
if you like. The event system offers complete customization of any imaginable
operation that happens inside Hibernate, and should be considered a more pow-
erful alternative to interception—we’ll show you how to write a custom listener
and handle events yourself.

 Let’s first apply dynamic data filtering in a unit of work.

12.3.1 Dynamic data filters

The first use case for dynamic data filtering is related to data security. A User in
CaveatEmptor has a ranking property. Now assume that users can only bid on
items that are offered by other users with an equal or lower rank. In business
terms, you have several groups of users that are defined by an arbitrary rank (a
number), and users can trade only within their group.

 You can implement this with complex queries. For example, let’s say you want
to show all the Item objects in a Category, but only those items that are sold by
users in the same group (with an equal or lower rank than the logged-in user).
You’d write an HQL or Criteria query to retrieve these items. However, if you

542 CHAPTER 12

Modifying objects efficiently
use aCategory.getItems() and navigate to these objects, all Item instances
would be visible.

 You solve this problem with a dynamic filter.

Defining a data filter
A dynamic data filter is defined with a global unique name, in mapping metadata.
You can add this global filter definition in any XML mapping file you like, as long
as it’s inside a <hibernate-mapping> element:

<filter-def name="limitItemsByUserRank">
 <filter-param name="currentUserRank" type="int"/>
</filter-def>

This filter is named limitItemsByUserRank and accepts one runtime argument of
type int. You can put the equivalent @org.hibernate.annotations.FilterDef
annotation on any class you like (or into package metadata); it has no effect on
the behavior of that class:

@org.hibernate.annotations.FilterDef(
 name="limitItemsByUserRank",
 parameters = {
 @org.hibernate.annotations.ParamDef(
 name = "currentUserRank", type = "int"
)
 }
)

The filter is inactive now; nothing (except maybe the name) indicates that it’s sup-
posed to apply to Item objects. You have to apply and implement the filter on the
classes or collections you want to filter.

Applying and implementing the filter
You want to apply the defined filter on the Item class so that no items are visible if
the logged-in user doesn’t have the necessary rank:

<class name="Item" table="ITEM">
 ...

 <filter name="limitItemsByUserRank"
 condition=":currentUserRank >=
 (select u.RANK from USER u
 where u.USER_ID = SELLER_ID)"/>

</class>

The <filter> element can be set for a class mapping. It applies a named filter to
instances of that class. The condition is an SQL expression that’s passed through

Data filtering and interception 543
directly to the database system, so you can use any SQL operator or function. It
must evaluate to true if a record should pass the filter. In this example, you use a
subquery to obtain the rank of the seller of the item. Unqualified columns, such
as SELLER_ID, refer to the table to which the entity class is mapped. If the cur-
rently logged-in user’s rank isn’t greater than or equal than the rank returned by
the subquery, the Item instance is filtered out.

 Here is the same in annotations on the Item entity:

@Entity
@Table(name = "ITEM")
@org.hibernate.annotations.Filter(
 name = "limitItemsByUserRank",
 condition=":currentUserRank >= " +
 "(select u.RANK from USER u" +
 " where u.USER_ID = SELLER_ID)"
)
public class Item implements { ... }

You can apply several filters by grouping them within a @org.hibernate.annota-
tions.Filters annotation. A defined and applied filter, if enabled for a particu-
lar unit of work, filters out any Item instance that doesn’t pass the condition. Let’s
enable it.

Enabling the filter
You’ve defined a data filter and applied it to a persistent class. It’s still not filtering
anything; it must be enabled and parameterized in the application for a particular
Session (the EntityManager doesn’t support this API—you have to fall back to
Hibernate interfaces for this functionality):

Filter filter = session.enableFilter("limitItemsByUserRank");
filter.setParameter("currentUserRank", loggedInUser.getRanking());

You enable the filter by name; this method returns a Filter instance. This
object accepts the runtime arguments. You must set the parameters you have
defined. Other useful methods of the Filter are getFilterDefinition()
(which allows you to iterate through the parameter names and types) and vali-
date() (which throws a HibernateException if you forgot to set a parameter).
You can also set a list of arguments with setParameterList(), this is mostly use-
ful if your SQL condition contains an expression with a quantifier operator (the
IN operator, for example).

 Now every HQL or Criteria query that is executed on the filtered Session
restricts the returned Item instances:

544 CHAPTER 12

Modifying objects efficiently
List<Item> filteredItems =
 session.createQuery("from Item").list();
List<Item> filteredItems =
 session.createCriteria(Item.class).list();

Two object-retrieval methods are not filtered: retrieval by identifier and naviga-
tional access to Item instances (such as from a Category with aCategory.get-
Items()).

 Retrieval by identifier can’t be restricted with a dynamic data filter. It’s also
conceptually wrong: If you know the identifier of an Item, why shouldn’t you be
allowed to see it? The solution is to filter the identifiers—that is, not expose iden-
tifiers that are restricted in the first place. Similar reasoning applies to filtering of
many-to-one or one-to-one associations. If a many-to-one association was filtered
(for example, by returning null if you call anItem.getSeller()), the multiplicity
of the association would change! This is also conceptually wrong and not the
intent of filters.

 You can solve the second issue, navigational access, by applying the same filter
on a collection.

Filtering collections
So far, calling aCategory.getItems() returns all Item instances that are refer-
enced by that Category. This can be restricted with a filter applied to a collection:

<class name="Category" table="CATEGORY">

 ...

 <set name="items" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID">

 <filter name="limitItemsByUserRank"
 condition=":currentUserRank >=
 (select u.RANK from USERS u where

➥ u.USER_ID = SELLER_ID)"/>
 </many-to-many>
 </set>

</class>

In this example, you don’t apply the filter to the collection element but to the
<many-to-many>. Now the unqualified SELLER_ID column in the subquery refer-
ences the target of the association, the ITEM table, not the CATEGORY_ITEM join
table of the association. With annotations, you can apply a filter on a
many-to-many association with @org.hibernate.annotations.FilterJoin-

Table(s) on the @ManyToMany field or getter method.

Data filtering and interception 545
 If the association between Category and Item was one-to-many, you’d created
the following mapping:

<class name="Category" table="CATEGORY">

 ...

 <set name="items">
 <key column="CATEGORY_ID"/>
 <one-to-many class="Item"/>

 <filter name="limitItemsByUserRank"
 condition=":currentUserRank >=
 (select u.RANK from USERS u

➥ where u.USER_ID = SELLER_ID)"/>
 </set>

</class>

With annotations, you just place the @org.hibernate.annotations.Filter(s)
on the right field or getter method, next to the @OneToMany or @ManyToMany
annotation.

 If you now enable the filter in a Session, all iteration through a collection of
items of a Category is filtered.

 If you have a default filter condition that applies to many entities, declare it
with your filter definition:

<filter-def name="limitByRegion"
 condition="REGION >= :showRegion">
 <filter-param name="showRegion" type="int"/>
</filter-def>

If applied to an entity or collection with or without an additional condition and
enabled in a Session, this filter always compares the REGION column of the entity
table with the runtime showRegion argument.

 There are many other excellent use cases for dynamic data filters.

Use cases for dynamic data filters
Hibernate’s dynamic filters are useful in many situations. The only limitation is
your imagination and your skill with SQL expressions. Typical use cases are as
follows:

■ Security limits—A common problem is the restriction of data access given
some arbitrary security-related condition. This can be the rank of a user, a
particular group the user must belong to, or a role the user has been
assigned.

546 CHAPTER 12

Modifying objects efficiently
■ Regional data—Often, data is stored with a regional code (for example, all
business contacts of a sales team). Each salesperson works only on a dataset
that covers their region.

■ Temporal data—Many enterprise applications need to apply time-based views
on data (for example, to see a dataset as it was last week). Hibernate’s data
filters can provide basic temporal restrictions that help you implement this
kind of functionality.

Another useful concept is the interception of Hibernate internals, to implement
orthogonal concerns.

12.3.2 Intercepting Hibernate events

Let’s assume that you want to write an audit log of all object modifications. This
audit log is kept in a database table that contains information about changes made
to other data—specifically, about the event that results in the change. For example,
you may record information about creation and update events for auction Items.
The information that is recorded usually includes the user, the date and time of
the event, what type of event occurred, and the item that was changed.

 Audit logs are often handled using database triggers. On the other hand, it’s
sometimes better for the application to take responsibility, especially if portability
between different databases is required.

 You need several elements to implement audit logging. First, you have to mark
the persistent classes for which you want to enable audit logging. Next, you define
what information should be logged, such as the user, date, time, and type of mod-
ification. Finally, you tie it all together with an org.hibernate.Interceptor that
automatically creates the audit trail.

Creating the marker interface
First, create a marker interface, Auditable. You use this interface to mark all per-
sistent classes that should be automatically audited:

package auction.model;

public interface Auditable {
 public Long getId();
}

This interface requires that a persistent entity class exposes its identifier with a
getter method; you need this property to log the audit trail. Enabling audit log-
ging for a particular persistent class is then trivial. You add it to the class declara-
tion—for example, for Item:

Data filtering and interception 547
public class Item implements Auditable { ... }

Of course, if the Item class didn’t expose a public getId() method, you’d need to
add it.

Creating and mapping the log record
Now create a new persistent class, AuditLogRecord. This class represents the
information you want to log in your audit database table:

public class AuditLogRecord {

 public String message;
 public Long entityId;
 public Class entityClass;
 public Long userId;
 public Date created;

 AuditLogRecord() {}

 public AuditLogRecord(String message,
 Long entityId,
 Class entityClass,
 Long userId) {
 this.message = message;
 this.entityId = entityId;
 this.entityClass = entityClass;
 this.userId = userId;
 this.created = new Date();
 }
}

You shouldn’t consider this class part of your domain model! Hence you expose
all attributes as public; it’s unlikely you’ll have to refactor that part of the applica-
tion. The AuditLogRecord is part of your persistence layer and possibly shares the
same package with other persistence related classes, such as HibernateUtil or
your custom UserType extensions.

 Next, map this class to the AUDIT_LOG database table:

<hibernate-mapping default-access="field">

<class name="persistence.audit.AuditLogRecord"
 table="AUDIT_LOG" mutable="false">

 <id type="long" column="AUDIT_LOG_ID">
 <generator class="native"/>
 </id>

 <property name="message"
 type="string"
 column="MESSAGE"
 length="255"

548 CHAPTER 12

Modifying objects efficiently
 not-null="true"/>

 <property name="entityId"
 type="long"
 column="ENTITY_ID"
 not-null="true"/>

 <property name="entityClass"
 type="class"
 column="ENTITY_CLASS"
 not-null="true"/>

 <property name="userId"
 type="long"
 column="USER_ID"
 not-null="true"/>

 <property name="created"
 column="CREATED"
 type="java.util.Date"
 update="false"
 not-null="true"/>

</class>

</hibernate-mapping>

You map the default access to a field strategy (no getter methods in the class)
and, because AuditLogRecord objects are never updated, map the class as muta-
ble="false". Note that you don’t declare an identifier property name (the class
has no such property); Hibernate therefore manages the surrogate key of an
AuditLogRecord internally. You aren’t planning to use the AuditLogRecord in a
detached fashion, so it doesn’t need to contain an identifier property. However, if
you mapped this class with annotation as a Java Persistence entity, an identifier
property would be required. We think that you won’t have any problems creating
this entity mapping on your own.

 Audit logging is a somewhat orthogonal concern to the business logic that
causes the loggable event. It’s possible to mix logic for audit logging with the busi-
ness logic, but in many applications it’s preferable that audit logging be handled
in a central piece of code, transparently to the business logic (and especially when
you rely on cascading options). Creating a new AuditLogRecord and saving it
whenever an Item is modified is certainly something you wouldn’t do manually.
Hibernate offers an Interceptor extension interface.

Data filtering and interception 549
Writing an interceptor
A logEvent() method should be called automatically when you call save(). The
best way to do this with Hibernate is to implement the Interceptor interface.
Listing 12.1 shows an interceptor for audit logging.

public class AuditLogInterceptor extends EmptyInterceptor {

 private Session session;
 private Long userId;

 private Set inserts = new HashSet();
 private Set updates = new HashSet();

 public void setSession(Session session) {
 this.session=session;
 }

 public void setUserId(Long userId) {
 this.userId=userId;
 }

 public boolean onSave(Object entity,
 Serializable id,
 Object[] state,
 String[] propertyNames,
 Type[] types)
 throws CallbackException {

 if (entity instanceof Auditable)
 inserts.add(entity);

 return false;
 }

 public boolean onFlushDirty(Object entity,
 Serializable id,
 Object[] currentState,
 Object[] previousState,
 String[] propertyNames,
 Type[] types)
 throws CallbackException {
 if (entity instanceof Auditable)
 updates.add(entity);

 return false;
 }

 public void postFlush(Iterator iterator)
 throws CallbackException {
 try {
 for (Iterator it = inserts.iterator(); it.hasNext();) {

Listing 12.1 Implementation of an interceptor for audit logging

550 CHAPTER 12

Modifying objects efficiently
 Auditable entity = (Auditable) it.next();
 AuditLog.logEvent("create",
 entity,
 userId,
 session.connection());
 }
 for (Iterator it = updates.iterator(); it.hasNext();) {
 Auditable entity = (Auditable) it.next();
 AuditLog.logEvent("update",
 entity,
 userId,
 session.connection());
 }
 } finally {
 inserts.clear();
 updates.clear();
 }
 }

}

The Hibernate Interceptor API has many more methods than shown in this
example. Because you’re extending the EmptyInterceptor, instead of imple-
menting the interface directly, you can rely on default semantics of all methods
you don’t override. The interceptor has two interesting aspects.

 This interceptor needs the session and userId attributes to do its work; a cli-
ent using this interceptor must set both properties. The other interesting aspect is
the audit-log routine in onSave() and onFlushDirty(): You add new and
updated entities to the inserts and updates collections. The onSave() intercep-
tor method is called whenever an entity is saved by Hibernate; the onFlush-
Dirty() method is called whenever Hibernate detects a dirty object.

 The actual logging of the audit trail is done in the postFlush() method,
which Hibernate calls after executing the SQL that synchronizes the persistence
context with the database. You use the static call AuditLog.logEvent() (a class
and method we discuss next) to log the event. Note that you can’t log events in
onSave(), because the identifier value of a transient entity may not be known at
this point. Hibernate guarantees to set entity identifiers during flush, so post-
Flush() is the correct place to log this information.

 Also note how you use the session: You pass the JDBC connection of a given
Session to the static call to AuditLog.logEvent(). There is a good reason for
this, as we’ll discuss in more detail.

 Let’s first tie it all together and see how you enable the new interceptor.

Data filtering and interception 551
Enabling the interceptor
You need to assign the Interceptor to a Hibernate Session when you first open
the session:

AuditLogInterceptor interceptor = new AuditLogInterceptor();
Session session = getSessionFactory().openSession(interceptor);
Transaction tx = session.beginTransaction();

interceptor.setSession(session);
interceptor.setUserId(currentUser.getId());

session.save(newItem); // Triggers onSave() of the Interceptor

tx.commit();
session.close();

The interceptor is active for the Session you open it with.
 If you work with sessionFactory.getCurrentSession(), you don’t control

the opening of a Session; it’s handled transparently by one of Hibernate’s built-in
implementations of CurrentSessionContext. You can write your own (or extend
an existing) CurrentSessionContext implementation and supply your own rou-
tine for opening the current Session and assigning an interceptor to it.

 Another way to enable an interceptor is to set it globally on the Configuration
with setInterceptor() before building the SessionFactory. However, any inter-
ceptor that is set on a Configuration and active for all Sessions must be imple-
mented thread-safe! The single Interceptor instance is shared by concurrently
running Sessions. The AuditLogInterceptor implementation isn’t thread-safe:
It uses member variables (the inserts and updates queues).

 You can also set a shared thread-safe interceptor that has a no-argument con-
structor for all EntityManager instances in JPA with the following configuration
option in persistence.xml:

<persistence-unit name="...">
 <properties>
 <property name="hibernate.ejb.interceptor"
 value="my.ThreadSafeInterceptorImpl"/>
 ...
 </properties>
</persistence-unit>

Let’s get back to that interesting Session-handling code in the interceptor and
find out why you pass the connection() of the current Session to AuditLog.
logEvent().

552 CHAPTER 12

Modifying objects efficiently
Using a temporary Session
It should be clear why you require a Session inside the AuditLogInterceptor.
The interceptor has to create and persist AuditLogRecord objects, so a first
attempt for the onSave() method could be the following routine:

if (entity instanceof Auditable) {

 AuditLogRecord logRecord = new AuditLogRecord(...);
 // set the log information

 session.save(logRecord);
}

This seems straightforward: Create a new AuditLogRecord instance and save it,
using the currently running Session. This doesn’t work.

 It’s illegal to invoke the original Hibernate Session from an Interceptor call-
back. The Session is in a fragile state during interceptor calls. You can’t save() a
new object during the saving of other objects! A nice trick that avoids this issue is
opening a new Session only for the purpose of saving a single AuditLogRecord
object. You reuse the JDBC connection from the original Session.

 This temporary Session handling is encapsulated in the AuditLog class, shown
in listing 12.2.

public class AuditLog {

 public static void logEvent(
 String message,
 Auditable entity,
 Long userId,
 Connection connection) {

 Session tempSession =
 getSessionFactory().openSession(connection);

 try {
 AuditLogRecord record =
 new AuditLogRecord(message,
 entity.getId(),
 entity.getClass(),
 userId);

 tempSession.save(record);
 tempSession.flush();

 } finally {
 tempSession.close();

Listing 12.2 The AuditLog helper class uses a temporary Session

Data filtering and interception 553
 }
 }
}

The logEvent() method uses a new Session on the same JDBC connection, but it
never starts or commits any database transaction. All it does is execute a single
SQL statement during flushing.

 This trick with a temporary Session for some operations on the same JDBC
connection and transaction is sometimes useful in other situations. All you have
to remember is that a Session is nothing more than a cache of persistent objects
(the persistence context) and a queue of SQL operations that synchronize this
cache with the database.

 We encourage you to experiment and try different interceptor design patterns.
For example, you could redesign the auditing mechanism to log any entity, not
only Auditable. The Hibernate website also has examples using nested intercep-
tors or even for logging a complete history (including updated property and col-
lection information) for an entity.

 The org.hibernate.Interceptor interface also has many more methods that
you can use to hook into Hibernate’s processing. Most of them let you influence
the outcome of the intercepted operation; for example, you can veto the saving of
an object. We think that interception is almost always sufficient to implement any
orthogonal concern.

 Having said that, Hibernate allows you to hook deeper into its core with the
extendable event system it’s based on.

12.3.3 The core event system

Hibernate 3.x was a major redesign of the implementation of the core persistence
engine compared to Hibernate 2.x. The new core engine is based on a model of
events and listeners. For example, if Hibernate needs to save an object, an event is
triggered. Whoever listens to this kind of event can catch it and handle the saving
of the object. All Hibernate core functionalities are therefore implemented as a
set of default listeners, which can handle all Hibernate events.

 This has been designed as an open system: You can write and enable your own
listeners for Hibernate events. You can either replace the existing default listeners
or extend them and execute a side effect or additional procedure. Replacing the
event listeners is rare; doing so implies that your own listener implementation can
take care of a piece of Hibernate core functionality.

554 CHAPTER 12

Modifying objects efficiently
 Essentially, all the methods of the Session interface correlate to an event. The
load() method triggers a LoadEvent, and by default this event is processed with
the DefaultLoadEventListener.

 A custom listener should implement the appropriate interface for the event it
wants to process and/or extend one of the convenience base classes provided by
Hibernate, or any of the default event listeners. Here’s an example of a custom
load event listener:

public class SecurityLoadListener extends DefaultLoadEventListener {

 public void onLoad(LoadEvent event,
 LoadEventListener.LoadType loadType)
 throws HibernateException {

 if (!MySecurity.isAuthorized(
 event.getEntityClassName(), event.getEntityId()
)
) {
 throw MySecurityException("Unauthorized access");
 }

 super.onLoad(event, loadType);

 }
}

This listener calls the static method isAuthorized() with the entity name of
the instance that has to be loaded and the database identifier of that instance.
A custom runtime exception is thrown if access to that instance is denied. If no
exception is thrown, the processing is passed on to the default implementation
in the superclass.

 Listeners should be considered effectively singletons, meaning they’re shared
between requests and thus shouldn’t save any transaction related state as instance
variables. For a list of all events and listener interfaces in native Hibernate, see the
API Javadoc of the org.hibernate.event package. A listener implementation can
also implement multiple event-listener interfaces.

 Custom listeners can either be registered programmatically through a Hiber-
nate Configuration object or specified in the Hibernate configuration XML
(declarative configuration through the properties file isn’t supported). You also
need a configuration entry telling Hibernate to use the listener in addition to the
default listener:

<session-factory>
 ...
 <event type="load">

Data filtering and interception 555
 <listener class="auction.persistence.MyLoadListener"/>
 </event>

</session-factory>

Listeners are registered in the same order they’re listed in your configuration file.
You can create a stack of listeners. In this example, because you’re extending the
built-in DefaultLoadEventListener, there is only one. If you didn’t extend the
DefaultLoadEventListener, you’d have to name the built-in DefaultLoad-
EventListener as the first listener in your stack—otherwise you’d disable loading
in Hibernate!

 Alternatively you may register your listener stack programmatically:

Configuration cfg = new Configuration();

LoadEventListener[] listenerStack =
 { new MyLoadListener(), … };

cfg.getEventListeners().setLoadEventListeners(listenerStack);

Listeners registered declaratively can’t share instances. If the same class name is
used in multiple <listener/> elements, each reference results in a separate
instance of that class. If you need the capability to share listener instances
between listener types, you must use the programmatic registration approach.

 Hibernate EntityManager also supports customization of listeners. You can con-
figure shared event listeners in your persistence.xml configuration as follows:

<persistence-unit name="...">
 <properties>
 <property name="hibernate.ejb.event.load"
 value="auction.persistence.MyLoadListener, …"/>
 ...
 </properties>
</persistence-unit>

The property name of the configuration option changes for each event type you
want to listen to (load in the previous example).

 If you replace the built-in listeners, as MyLoadListener does, you need to
extend the correct default listeners. At the time of writing, Hibernate EntityMan-
ager doesn’t bundle its own LoadEventListener, so the listener that extends org.
hibernate.event.DefaultLoadEventListener still works fine. You can find a
complete and up-to-date list of Hibernate EntityManager default listeners in the
reference documentation and the Javadoc of the org.hibernate.ejb.event
package. Extend any of these listeners if you want to keep the basic behavior of
the Hibernate EntityManager engine.

556 CHAPTER 12

Modifying objects efficiently
 You rarely have to extend the Hibernate core event system with your own func-
tionality. Most of the time, an org.hibernate.Interceptor is flexible enough. It
helps to have more options and to be able to replace any piece of the Hibernate
core engine in a modular fashion.

 The EJB 3.0 standard includes several interception options, for session beans
and entities. You can wrap any custom interceptor around a session bean method
call, intercept any modification to an entity instance, or let the Java Persistence
service call methods on your bean on particular lifecycle events.

12.3.4 Entity listeners and callbacks

EJB 3.0 entity listeners are classes that intercept entity callback events, such as the
loading and storing of an entity instance. This is similar to native Hibernate inter-
ceptors. You can write custom listeners, and attach them to entities through anno-
tations or a binding in your XML deployment descriptor.

 Look at the following trivial entity listener:

import javax.persistence.*;

public class MailNotifyListener {

 @PostPersist
 @PostLoad
 public void notifyAdmin(Object entity) {
 mail.send("Somebody saved or loaded: " + entity);
 }

}

An entity listener doesn’t implement any particular interface; it needs a no-argu-
ment constructor (in the previous example, this is the default constructor). You
apply callback annotations to any methods that need to be notified of a particular
event; you can combine several callbacks on a single method. You aren’t allowed
to duplicate the same callback on several methods.

 The listener class is bound to a particular entity class through an annotation:

import javax.persistence.*;

@Entity
@EntityListeners(MailNotifyListener.class)
public class Item {
 ...

 @PreRemove
 private void cleanup() {
 ...
 }
}

Data filtering and interception 557
The @EntityListeners annotation takes an array of classes, if you need to bind
several listeners. You can also place callback annotations on the entity class itself,
but again, you can’t duplicate callbacks on methods in a single class. However, you
can implement the same callback in several listener classes or in the listener and
entity class.

 You can also apply listeners to superclasses for the whole hierarchy and define
default listeners in your persistence.xml configuration file. Finally, you can
exclude superclass listeners or default listeners for a particular entity with the
@ExcludeSuperclassListeners and @ExcludeDefaultListeners annotations.

 All callback methods can have any visibility, must return void, and aren’t
allowed to throw any checked exceptions. If an unchecked exception is thrown,
and a JTA transaction is in progress, this transaction is rolled back.

 A list of available JPA callbacks is shown in Table 12.2.

Unlike Hibernate interceptors, entity listeners are stateless classes. You therefore
can’t rewrite the previous Hibernate audit-logging example with entity listeners,
because you’d need to hold the state of modified objects in local queues. Another
problem is that an entity listener class isn’t allowed to use the EntityManager. Cer-
tain JPA implementations, such as Hibernate, let you again apply the trick with a
temporary second persistence context, but you should look at EJB 3.0 interceptors
for session beans and probably code this audit-logging at a higher layer in your
application stack.

Table 12.2 JPA event callbacks and annotations

Callback annotation Description

@PostLoad Triggered after an entity instance has been loaded with
find() or getReference(), or when a Java Persistence
query is executed. Also called after the refresh() method is
invoked.

@PrePersist, @PostPersist Occurs immediately when persist() is called on an entity,
and after the database insert.

@PreUpdate, @PostUpdate Executed before and after the persistence context is synchro-
nized with the database—that is, before and after flushing. Trig-
gered only when the state of the entity requires synchronization
(for example, because it’s considered dirty).

@PreRemove, @PostRemove Triggered when remove() is called or the entity instance is
removed by cascading, and after the database delete.

558 CHAPTER 12

Modifying objects efficiently
12.4 Summary

In this chapter, you learned how to work with large and complex datasets effi-
ciently. We first looked at Hibernate’s cascading options and how transitive persis-
tence can be enabled with Java Persitence and annotations. Then we covered the
bulk operations in HQL and JPA QL and how you write batch procedures that work
on a subset of data to avoid memory exhaustion.

 In the last section, you learned how to enable Hibernate data filtering and how
you can create dynamic data views at the application level. Finally, we introduced
the Hibernate Interceptor extension point, the Hibernate core event system,
and the standard Java Persistence entity callback mechanism.

 Table 12.3 shows a summary you can use to compare native Hibernate features
and Java Persistence.

 In the next chapter, we switch perspective and discuss how you retrieve objects
from the database with the best-performing fetching and caching strategy.

Table 12.3 Hibernate and JPA comparison chart for chapter 12

Hibernate Core Java Persistence and EJB 3.0

Hibernate supports transitive persistence with
cascading options for all operations.

Transitive persistence model with cascading
options equivalent to Hibernate. Use Hibernate
annotations for special cases.

Hibernate supports bulk UPDATE, DELETE, and
INSERT ... SELECT operations in polymor-
phic HQL, which are executed directly in the
database.

JPA QL supports direct bulk UPDATE and DELETE.

Hibernate supports query result cursors for
batch updates.

Java Persistence does not standardize querying
with cursors, fall back to the Hibernate API.

Powerful data filtering is available for the cre-
ation of dynamic data views.

Use Hibernate extension annotations for the map-
ping of data filters.

Extension points are available for interception
and event listeners.

Provides standardized entity lifecycle callback han-
dlers.

Optimizing fetching
and caching
This chapter covers
■ Global fetching strategies
■ Caching in theory
■ Caching in practice
559

560 CHAPTER 13

Optimizing fetching and caching
In this chapter, we’ll show you how to retrieve objects from the database and how
you can optimize the loading of object networks when you navigate from object to
object in your application.

 We then enable caching; you’ll learn how to speed up data retrieval in local
and distributed applications.

13.1 Defining the global fetch plan

Retrieving persistent objects from the database is one of the most interesting parts
of working with Hibernate.

13.1.1 The object-retrieval options

Hibernate provides the following ways to get objects out of the database:

■ Navigating the object graph, starting from an already loaded object, by
accessing the associated objects through property accessor methods such as
aUser.getAddress().getCity(), and so on. Hibernate automatically loads
(and preloads) nodes of the graph while you call accessor methods, if the
persistence context is still open.

■ Retrieval by identifier, the most convenient method when the unique iden-
tifier value of an object is known.

■ The Hibernate Query Language (HQL), which is a full object-oriented
query language. The Java Persistence query language (JPA QL) is a standard-
ized subset of the Hibernate query language.

■ The Hibernate Criteria interface, which provides a type-safe and
object-oriented way to perform queries without the need for string manipu-
lation. This facility includes queries based on example objects.

■ Native SQL queries, including stored procedure calls, where Hibernate still
takes care of mapping the JDBC result sets to graphs of persistent objects.

In your Hibernate or JPA application, you use a combination of these techniques.
 We won’t discuss each retrieval method in much detail in this chapter. We’re

more interested in the so-called default fetch plan and fetching strategies. The default
fetch plan and fetching strategy is the plan and strategy that applies to a particular
entity association or collection. In other words, it defines if and how an associated
object or a collection should be loaded, when the owning entity object is loaded,
and when you access an associated object or collection. Each retrieval method
may use a different plan and strategy—that is, a plan that defines what part of the

Defining the global fetch plan 561
persistent object network should be retrieved and how it should be retrieved. Your
goal is to find the best retrieval method and fetching strategy for every use case in
your application; at the same time, you also want to minimize the number of SQL
queries for best performance.

 Before we look at the fetch plan options and fetching strategies, we’ll give you
an overview of the retrieval methods. (We also mention the Hibernate caching sys-
tem sometimes, but we fully explore it later in this chapter.)

 You saw how objects are retrieved by identifier earlier in the previous chap-
ter, so we won’t repeat it here. Let’s go straight to the more flexible query
options, HQL (equivalent to JPA QL) and Criteria. Both allow you to create
arbitrary queries.

The Hibernate Query Language and JPA QL
The Hibernate Query Language is an object-oriented dialect of the familiar data-
base query language SQL. HQL bears some close resemblance to ODMG OQL, but
unlike OQL, it’s adapted for use with SQL databases and is easier to learn (thanks
to its close resemblance to SQL) and fully implemented (we don’t know of any
OQL implementation that is complete).

 The EJB 3.0 standard defines the Java Persistence query language. This new JPA
QL and the HQL have been aligned so that JPA QL is a subset of HQL. A valid JPA
QL query is always also a valid HQL query; HQL has more options that should be
considered vendor extensions of the standardized subset.

 HQL is commonly used for object retrieval, not for updating, inserting, or
deleting data. Object state synchronization is the job of the persistence manager,
not the developer. But, as we’ve shown in the previous chapter, HQL and JPA QL
support direct bulk operations for updating, deleting, and inserting, if required
by the use case (mass data operations).

 Most of the time, you only need to retrieve objects of a particular class and
restrict by the properties of that class. For example, the following query retrieves a
user by first name.

Query q = session.createQuery(
 "from User as u where u.firstname = :fname"
);
q.setString("fname", "John");
List result = q.list();

After preparing query q, you bind a value to the named parameter :fname. The
result is returned as a List of User objects.

562 CHAPTER 13

Optimizing fetching and caching
 HQL is powerful, and even though you may not use the more advanced fea-
tures all the time, they’re needed for more difficult problems. For example,
HQL supports

■ The ability to apply restrictions to properties of associated objects related
by reference or held in collections (to navigate the object graph using
query language).

■ The ability to retrieve only properties of an entity or entities, without the
overhead of loading the entity itself into the persistence context. This is
sometimes called a report query; it is more correctly called projection.

■ The ability to order the results of the query.

■ The ability to paginate the results.

■ Aggregation with group by, having, and aggregate functions like sum, min,
and max/min.

■ Outer joins when retrieving multiple objects per row.

■ The ability to call standard and user-defined SQL functions.

■ Subqueries (nested queries).

We discuss all these features in chapters 14 and 15, together with the optional
native SQL query mechanism.

Querying with a criteria
The Hibernate query by criteria (QBC) API allows a query to be built by manipula-
tion of criteria objects at runtime. This lets you specify constraints dynamically
without direct string manipulations, but you don’t lose much of the flexibility or
power of HQL. On the other hand, queries expressed as criteria are often much
less readable than queries expressed in HQL.

 Retrieving a user by first name is easy with a Criteria object:

Criteria criteria = session.createCriteria(User.class);
criteria.add(Restrictions.like("firstname", "John"));
List result = criteria.list();

A Criteria is a tree of Criterion instances. The Restrictions class provides
static factory methods that return Criterion instances. Once the desired criteria
tree is build, it’s executed against the database.

 Many developers prefer query by criteria, considering it a more
object-oriented approach. They also like the fact that the query syntax may be

Defining the global fetch plan 563
parsed and validated at compile time, whereas HQL expressions aren’t parsed
until runtime (or startup, if externalized named queries are used).

 The nice thing about the Hibernate Criteria API is the Criterion framework.
This framework allows extension by the user, which is more difficult in the case of
a query language like HQL.

 Note that the Criteria API is native to Hibernate; it isn’t part of the Java Per-
sistence standard. In practice, Criteria will be the most common Hibernate
extension you utilize in your JPA application. We expect that a future version of
the JPA or EJB standard will include a similar programmatic query interface.

Querying by example
As part of the Criteria facility, Hibernate supports query by example (QBE). The
idea behind query by example is that the application supplies an instance of the
queried class, with certain property values set (to nondefault values). The query
returns all persistent instances with matching property values. Query by example
isn’t a particularly powerful approach. However, it can be convenient for some
applications, especially if it’s used in combination with Criteria:

Criteria criteria = session.createCriteria(User.class);

User exampleUser = new User();
exampleUser.setFirstname("John");
criteria.add(Example.create(exampleUser));

criteria.add(Restrictions.isNotNull("homeAddress.city"));

List result = criteria.list();

This example first creates a new Criteria that queries for User objects. Then you
add an Example object, a User instance with only the firstname property set.
Finally, a Restriction criterion is added before executing the query.

 A typical use case for query by example is a search screen that allows users to
specify a range of different property values to be matched by the returned result
set. This kind of functionality can be difficult to express cleanly in a query lan-
guage; string manipulations are required to specify a dynamic set of constraints.

 The Criteria API and the example query mechanism are discussed in more
detail in chapter 15.

 You now know the basic retrieval options in Hibernate. We focus on the
object-fetching plans and strategies for the rest of this section.

 Let’s start with the definition of what should be loaded into memory.

564 CHAPTER 13

Optimizing fetching and caching
13.1.2 The lazy default fetch plan

Hibernate defaults to a lazy fetching strategy for all entities and collections. This
means that Hibernate by default loads only the objects you’re querying for. Let’s
explore this with a few examples.

 If you query for an Item object (let’s say you load it by its identifier), exactly
this Item and nothing else is loaded into memory:

Item item = (Item) session.load(Item.class, new Long(123));

 This retrieval by identifier results in a single (or possibly several, if inheritance
or secondary tables are mapped) SQL statement that retrieves an Item instance. In
the persistence context, in memory, you now have this item object available in
persistent state, as shown in figure 13.1.

We’ve lied to you. What is available in memory after the load() operation isn’t a
persistent item object. Even the SQL that loads an Item isn’t executed. Hibernate
created a proxy that looks like the real thing.

13.1.3 Understanding proxies

Proxies are placeholders that are generated at runtime. Whenever Hibernate
returns an instance of an entity class, it checks whether it can return a proxy
instead and avoid a database hit. A proxy is a placeholder that triggers the loading
of the real object when it’s accessed for the first time:

Item item = (Item) session.load(Item.class, new Long(123));
item.getId();
item.getDescription(); // Initialize the proxy

The third line in this example triggers the execution of the SQL that retrieves an
Item into memory. As long as you access only the database identifier property, no
initialization of the proxy is necessary. (Note that this isn’t true if you map the
identifier property with direct field access; Hibernate then doesn’t even know that
the getId() method exists. If you call it, the proxy has to be initialized.)

Figure 13.1
An uninitialized placeholder for an Item instance

Defining the global fetch plan 565
 A proxy is useful if you need the Item only to create a reference, for example:

Item item = (Item) session.load(Item.class, new Long(123));
User user = (User) session.load(User.class, new Long(1234));

Bid newBid = new Bid("99.99");
newBid.setItem(item);
newBid.setBidder(user);

session.save(newBid);

You first load two objects, an Item and a User. Hibernate doesn’t hit the database
to do this: It returns two proxies. This is all you need, because you only require
the Item and User to create a new Bid. The save(newBid) call executes an INSERT
statement to save the row in the BID table with the foreign key value of an Item
and a User—this is all the proxies can and have to provide. The previous code
snippet doesn’t execute any SELECT!

 If you call get() instead of load() you trigger a database hit and no proxy is
returned. The get() operation always hits the database (if the instance isn’t
already in the persistence context and if no transparent second-level cache is
active) and returns null if the object can’t be found.

 A JPA provider can implement lazy loading with proxies. The method names of
the operations that are equivalent to load() and get() on the EntityManager API
are find() and getReference():

Item item = em.find(Item.class, new Long(123));

Item itemRef = em.getReference(Item.class, new Long(1234));

The first call, find(), has to hit the database to initialize an Item instance. No
proxies are allowed—it’s the equivalent of the Hibernate get() operation. The
second call, getReference(), may return a proxy, but it doesn’t have to—which
translates to load() in Hibernate.

 Because Hibernate proxies are instances of runtime generated subclasses of
your entity classes, you can’t get the class of an object with the usual operators.
This is where the helper method HibernateProxyHelper.getClassWithoutIni-
tializingProxy(o) is useful.

 Let’s assume you have an Item instance into memory, either by getting it explic-
itly or by calling one of its properties and forcing initialization of a proxy. Your
persistence context now contains a fully loaded object, as shown in figure 13.2.

 Again, you can see proxies in the picture. This time, these are proxies that
have been generated for all *-to-one associations. Associated entity objects are not
loaded right away; the proxies carry the identifier values only. From a different

566 CHAPTER 13

Optimizing fetching and caching
perspective: the identifier values are all foreign key columns in the item’s row.
Collections also aren’t loaded right away, but we use the term collection wrapper to
describe this kind of placeholder. Internally, Hibernate has a set of smart collec-
tions that can initialize themselves on demand. Hibernate replaces your collec-
tions with these; that is why you should use collection interfaces only in your
domain model. By default, Hibernate creates placeholders for all associations and
collections, and only retrieves value-typed properties and components right away.
(This is unfortunately not the default fetch plan standardized by Java Persistence;
we’ll get back to the differences later.)

FAQ Does lazy loading of one-to-one associations work? Lazy loading for
one-to-one associations is sometimes confusing for new Hibernate users.
If you consider one-to-one associations based on shared primary keys
(chapter 7, section 7.1.1, “Shared primary key associations”), an associa-
tion can be proxied only if it’s constrained="true". For example, an
Address always has a reference to a User. If this association is nullable
and optional, Hibernate first would have to hit the database to find out
whether a proxy or a null should be applied—the purpose of lazy load-
ing is to not hit the database at all. You can enable lazy loading through
bytecode instrumentation and interception, which we’ll discuss later.

A proxy is initialized if you call any method that is not the identifier getter
method, a collection is initialized if you start iterating through its elements or if
you call any of the collection-management operations, such as size() and con-
tains(). Hibernate provides an additional setting that is mostly useful for large

Figure 13.2
Proxies and collection wrappers represent the
boundary of the loaded graph.

Defining the global fetch plan 567
collections; they can be mapped as extra lazy. For example, consider the collection
of bids of an Item:

<class name="Item" table="ITEM">
 ...

 <set name="bids"
 lazy="extra"
 inverse="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

</class>

The collection wrapper is now smarter than before. The collection is no longer
initialized if you call size(), contains(), or isEmpty()—the database is queried
to retrieve the necessary information. If it’s a Map or a List, the operations con-
tainsKey() and get() also query the database directly. A Hibernate extension
annotation enables the same optimization:

@OneToMany
@org.hibernate.annotations.LazyCollection(
 org.hibernate.annotations.LazyCollectionOption.EXTRA
)
private Set<Bid> bids = new HashSet<Bid>();

Let’s define a fetch plan that isn’t completely lazy. First, you can disable proxy
generation for entity classes.

13.1.4 Disabling proxy generation

Proxies are a good thing: They allow you to load only the data that is really
needed. They even let you create associations between objects without hitting the
database unnecessarily. Sometimes you need a different plan—for example, you
want to express that a User object should always be loaded into memory and no
placeholder should be returned instead.

 You can disable proxy generation for a particular entity class with the
lazy="false" attribute in XML mapping metadata:

<class name="User"
 table="USERS"
 lazy="false">
 ...
</class>

568 CHAPTER 13

Optimizing fetching and caching
The JPA standard doesn’t require an implementation with proxies; the word proxy
doesn’t even appear in the specification. Hibernate is a JPA provider that relies on
proxies by default, so the switch that disables Hibernate proxies is available as a
vendor extension:

@Entity
@Table(name = "USERS")
@org.hibernate.annotations.Proxy(lazy = false)
public class User { ... }

Disabling proxy generation for an entity has serious consequences. All of these
operations require a database hit:

User user = (User) session.load(User.class, new Long(123));
User user = em.getReference(User.class, new Long(123));

A load() of a User object can’t return a proxy. The JPA operation getRefer-
ence() can no longer return a proxy reference. This may be what you desired to
achieve. However, disabling proxies also has consequences for all associations that
reference the entity. For example, the Item entity has a seller association to a
User. Consider the following operations that retrieve an Item:

Item item = (Item) session.get(Item.class, new Long(123));
Item item = em.find(Item.class, new Long(123));

In addition to retrieving the Item instance, the get() operation now also loads
the linked seller of the Item; no User proxy is returned for this association. The
same is true for JPA: The Item that has been loaded with find() doesn’t reference
a seller proxy. The User who is selling the Item must be loaded right away. (We
answer the question how this is fetched later.)

 Disabling proxy generation on a global level is often too coarse-grained. Usu-
ally, you only want to disable the lazy loading behavior of a particular entity associ-
ation or collection to define a fine-grained fetch plan. You want the opposite:
eager loading of a particular association or collection.

13.1.5 Eager loading of associations and collections

You’ve seen that Hibernate is lazy by default. All associated entities and collections
aren’t initialized if you load an entity object. Naturally, you often want the oppo-
site: to specify that a particular entity association or collection should always be
loaded. You want the guarantee that this data is available in memory without an
additional database hit. More important, you want a guarantee that, for example,
you can access the seller of an Item if the Item instance is in detached state. You

Defining the global fetch plan 569
have to define this fetch plan, the part of your object network that you want to
always load into memory.

 Let’s assume that you always require the seller of an Item. In Hibernate XML
mapping metadata you’d map the association from Item to User as lazy="false":

 <class name="Item" table="ITEM">
 ...

 <many-to-one name="seller"
 class="User"
 column="SELLER_ID"
 update="false"
 not-null="true"
 lazy="false"/>
 ...
</class>

The same “always load” guarantee can be applied to collections—for example, all
bids of an Item:

<class name="Item" table="ITEM">
 ...

 <many-to-one name="seller" lazy="false" .../>

 <set name="bids"
 lazy="false"
 inverse="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

 ...
</class>

If you now get() an Item (or force the initialization of a proxied Item), both the
seller object and all the bids are loaded as persistent instances into your persis-
tence context:

Item item = (Item) session.get(Item.class, new Long(123));

The persistence context after this call is shown graphically in figure 13.3.
 Other lazy mapped associations and collections (the bidder of each Bid

instance, for example) are again uninitialized and are loaded as soon as you
access them. Imagine that you close the persistence context after loading an Item.
You can now navigate, in detached state, to the seller of the Item and iterate
through all the bids for that Item. If you navigate to the categories this Item is
assigned to, you get a LazyInitializationException! Obviously, this collection

570 CHAPTER 13

Optimizing fetching and caching
wasn’t part of your fetch plan and wasn’t initialized before the persistence context
was closed. This also happens if you try to access a proxy—for example, the User
that approved the item. (Note that you can access this proxy two ways: through
the approvedBy and bidder references.)

 With annotations, you switch the FetchType of an entity association or a collec-
tion to get the same result:

@Entity
public class Item {

 ...

 @ManyToOne(fetch = FetchType.EAGER)
 private User seller;

 @OneToMany(fetch = FetchType.EAGER)
 private Set<Bid> bids = new HashSet<Bid>();

 ...
}

The FetchType.EAGER provides the same guarantees as lazy="false" in Hiber-
nate: the associated entity instance must be fetched eagerly, not lazily. We already
mentioned that Java Persistence has a different default fetch plan than Hibernate.
Although all associations in Hibernate are completely lazy, all @ManyToOne and

Figure 13.3 A larger graph fetched eagerly through disabled lazy associations and collections

Defining the global fetch plan 571
@OneToOne associations default to FetchType.EAGER! This default was standard-
ized to allow Java Persistence provider implementations without lazy loading (in
practice, such a persistence provider wouldn’t be very useful). We recommend
that you default to the Hibernate lazy loading fetch plan by setting FetchType.
LAZY in your to-one association mappings and only override it when necessary:

@Entity
public class Item {

 ...

 @ManyToOne(fetch = FetchType.LAZY)
 private User seller;

 ...
}

You now know how to create a fetch plan; that is, how you define what part of the
persistent object network should be retrieved into memory. Before we show you
how to define how these objects should be loaded and how you can optimize the
SQL that will be executed, we’d like to demonstrate an alternative lazy loading
strategy that doesn’t rely on proxies.

13.1.6 Lazy loading with interception

Runtime proxy generation as provided by Hibernate is an excellent choice for
transparent lazy loading. The only requirement that this implementation exposes
is a package or public visible no-argument constructor in classes that must be
proxied and nonfinal methods and class declarations. At runtime, Hibernate gen-
erates a subclass that acts as the proxy class; this isn’t possible with a private con-
structor or a final entity class.

 On the other hand, many other persistence tools don’t use runtime proxies:
They use interception. We don’t know of many good reasons why you’d use inter-
ception instead of runtime proxy generation in Hibernate. The nonprivate con-
structor requirement certainly isn’t a big deal. However, in two cases, you may not
want to work with proxies:

■ The only cases where runtime proxies aren’t completely transparent are
polymorphic associations that are tested with instanceof. Or, you may
want to typecast an object but can’t, because the proxy is an instance of a
runtime-generated subclass. We show how to avoid this issue and how to
work around the problem in chapter 7, section 7.3.1, “Polymorphic
many-to-one associations.” Interception instead of proxies also makes these
issues disappear.

572 CHAPTER 13

Optimizing fetching and caching
■ Proxies and collection wrappers can only be used to lazy load entity associa-
tions and collections. They can’t be used to lazy load individual scalar prop-
erties or components. We consider this kind of optimization to be rarely
useful. For example, you usually don’t want to lazy load the initialPrice
of an Item. Optimizing at the level of individual columns that are selected
in SQL is unnecessary if you aren’t working with (a) a significant number of
optional columns or (b) with optional columns containing large values that
have to be retrieved on-demand. Large values are best represented with loca-
tor objects (LOBs); they provide lazy loading by definition without the need
for interception. However, interception (in addition to proxies, usually) can
help you to optimize column reads.

Let’s discuss interception for lazy loading with a few examples.
 Imagine that you don’t want to utilize a proxy of User entity class, but you still

want the benefit of lazy loading an association to User—for example, as seller of
an Item. You map the association with no-proxy:

<class name="Item" table="ITEM">
 ...

 <many-to-one name="seller"
 class="User"
 column="SELLER_ID"
 update="false"
 not-null="true"
 lazy="no-proxy"/>
 ...
</class>

The default of the lazy attribute is proxy. By setting no-proxy, you’re telling
Hibernate to apply interception to this association:

Item item = (Item) session.get(Item.class, new Long(123));
User seller = item.getSeller();

The first line retrieves an Item object into persistent state. The second line
accesses the seller of that Item. This call to getSeller() is intercepted by Hiber-
nate and triggers the loading of the User in question. Note how proxies are more
lazy than interception: You can call item.getSeller().getId() without forcing
initialization of the proxy. This makes interception less useful if you only want to
set references, as we discussed earlier.

 You can also lazy load properties that are mapped with <property> or <compo-
nent>; here the attribute that enables interception is lazy="true", in Hibernate
XML mappings. With annotations, @Basic(fetch = FetchType.LAZY) is a hint

Selecting a fetch strategy 573
for Hibernate that a property or component should be lazy loaded through inter-
ception.

 To disable proxies and enable interception for associations with annotations,
you have to rely on a Hibernate extension:

@ManyToOne
@JoinColumn(name="SELLER_ID", nullable = false, updatable = false)
@org.hibernate.annotations.LazyToOne(
 org.hibernate.annotations.LazyToOneOption.NO_PROXY

)
private User seller;

To enable interception, the bytecode of your classes must be instrumented after
compilation, before runtime. Hibernate provides an Ant task for that purpose:

<target name="instrument" depends="compile">

 <taskdef name="instrument"
 classname=

➥ "org.hibernate.tool.instrument.cglib.InstrumentTask"
 classpathref="project.classpath"/>

 <instrument verbose="true">
 <fileset dir="${build.dir}/my/entity/package/">
 <include name="*.class"/>
 </fileset>
 </instrument>

</target>

We leave it up to you if you want to utilize interception for lazy loading—in our
experience, good use cases are rare.

 Naturally, you not only want to define what part of your persistent object net-
work must be loaded, but also how these objects are retrieved. In addition to creat-
ing a fetch plan, you want to optimize it with the right fetching strategies.

13.2 Selecting a fetch strategy

Hibernate executes SQL SELECT statements to load objects into memory. If you
load an object, a single or several SELECTs are executed, depending on the num-
ber of tables which are involved and the fetching strategy you’ve applied.

 Your goal is to minimize the number of SQL statements and to simplify the SQL
statements, so that querying can be as efficient as possible. You do this by applying
the best fetching strategy for each collection or association. Let’s walk through
the different options step by step.

574 CHAPTER 13

Optimizing fetching and caching
 By default, Hibernate fetches associated objects and collections lazily whenever
you access them (we assume that you map all to-one associations as FetchType.
LAZY if you use Java Persistence). Look at the following trivial code example:

Item item = (Item) session.get(Item.class, new Long(123));

You didn’t configure any association or collection to be nonlazy, and that proxies
can be generated for all associations. Hence, this operation results in the follow-
ing SQL SELECT:

select item.* from ITEM item where item.ITEM_ID = ?

(Note that the real SQL Hibernate produces contains automatically generated
aliases; we’ve removed them for readability reasons in all the following examples.)
You can see that the SELECT queries only the ITEM table and retrieves a particular
row. All entity associations and collections aren’t retrieved. If you access any prox-
ied association or uninitialized collection, a second SELECT is executed to retrieve
the data on demand.

 Your first optimization step is to reduce the number of additional on-demand
SELECTs you necessarily see with the default lazy behavior—for example, by
prefetching data.

13.2.1 Prefetching data in batches

If every entity association and collection is fetched only on demand, many addi-
tional SQL SELECT statements may be necessary to complete a particular proce-
dure. For example, consider the following query that retrieves all Item objects
and accesses the data of each items seller:

List allItems = session.createQuery("from Item").list();

processSeller((Item)allItems.get(0));
processSeller((Item)allItems.get(1));
processSeller((Item)allItems.get(2));

Naturally, you use a loop here and iterate through the results, but the problem
this code exposes is the same. You see one SQL SELECT to retrieve all the Item
objects, and an additional SELECT for every seller of an Item as soon as you pro-
cess it. All associated User objects are proxies. This is one of the worst-case scenar-
ios we’ll describe later in more detail: the n+1 selects problem. This is what the SQL
looks like:

select items...

select u.* from USERS u where u.USER_ID = ?
select u.* from USERS u where u.USER_ID = ?

Selecting a fetch strategy 575
select u.* from USERS u where u.USER_ID = ?
...

Hibernate offers some algorithms that can prefetch User objects. The first optimi-
zation we now discuss is called batch fetching, and it works as follows: If one proxy
of a User must be initialized, go ahead and initialize several in the same SELECT. In
other words, if you already know that there are three Item instances in the persis-
tence context, and that they all have a proxy applied to their seller association,
you may as well initialize all the proxies instead of just one.

 Batch fetching is often called a blind-guess optimization, because you don’t know
how many uninitialized User proxies may be in a particular persistence context.
In the previous example, this number depends on the number of Item objects
returned. You make a guess and apply a batch-size fetching strategy to your User
class mapping:

<class name="User"
 table="USERS"
 batch-size="10">
...
</class>

You’re telling Hibernate to prefetch up to 10 uninitialized proxies in a single SQL
SELECT, if one proxy must be initialized. The resulting SQL for the earlier query
and procedure may now look as follows:

select items...

select u.* from USERS u where u.USER_ID in (?, ?, ?)

The first statement that retrieves all Item objects is executed when you list() the
query. The next statement, retrieving three User objects, is triggered as soon as
you initialize the first proxy returned by allItems.get(0).getSeller(). This
query loads three sellers at once—because this is how many items the initial query
returned and how many proxies are uninitialized in the current persistence con-
text. You defined the batch size as “up to 10.” If more than 10 items are returned,
you see how the second query retrieves 10 sellers in one batch. If the application
hits another proxy that hasn’t been initialized, a batch of another 10 is retrieved—
and so on, until no more uninitialized proxies are left in the persistence context
or the application stops accessing proxied objects.

FAQ What is the real batch-fetching algorithm? You can think about batch
fetching as explained earlier, but you may see a slightly different algo-
rithm if you experiment with it in practice. It’s up to you if you want to
know and understand this algorithm, or if you trust Hibernate to do the

576 CHAPTER 13

Optimizing fetching and caching
right thing. As an example, imagine a batch size of 20 and a total number
of 119 uninitialized proxies that have to be loaded in batches. At startup
time, Hibernate reads the mapping metadata and creates 11 batch load-
ers internally. Each loader knows how many proxies it can initialize: 20,
10, 9, 8, 7, 6, 5, 4, 3, 2, 1. The goal is to minimize the memory consump-
tion for loader creation and to create enough loaders that every possible
batch fetch can be produced. Another goal is to minimize the number of
SQL SELECTs, obviously. To initialize 119 proxies Hibernate executes
seven batches (you probably expected six, because 6 x 20 > 119). The
batch loaders that are applied are five times 20, one time 10, and one
time 9, automatically selected by Hibernate.

Batch fetching is also available for collections:

<class name="Item" table="ITEM">
 ...
 <set name="bids"
 inverse="true"
 batch-size="10">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

</class>

If you now force the initialization of one bids collection, up to 10 more collec-
tions of the same type, if they’re uninitialized in the current persistence context,
are loaded right away:

select items...

select b.* from BID b where b.ITEM_ID in (?, ?, ?)

In this case, you again have three Item objects in persistent state, and touching
one of the unloaded bids collections. Now all three Item objects have their bids
loaded in a single SELECT.

 Batch-size settings for entity proxies and collections are also available with
annotations, but only as Hibernate extensions:

@Entity
@Table(name = "USERS")
@org.hibernate.annotations.BatchSize(size = 10)
public class User { ... }

@Entity
public class Item {

 ...
 @OneToMany

Selecting a fetch strategy 577
 @org.hibernate.annotations.BatchSize(size = 10)
 private Set<Bid> bids = new HashSet<Bid>();

 ...
}

Prefetching proxies and collections with a batch strategy is really a blind guess. It’s
a smart optimization that can significantly reduce the number of SQL statements
that are otherwise necessary to initialize all the objects you’re working with. The
only downside of prefetching is, of course, that you may prefetch data you won’t
need in the end. The trade-off is possibly higher memory consumption, with
fewer SQL statements. The latter is often much more important: Memory is
cheap, but scaling database servers isn’t.

 Another prefetching algorithm that isn’t a blind guess uses subselects to initial-
ize many collections with a single statement.

13.2.2 Prefetching collections with subselects

Let’s take the last example and apply a (probably) better prefetch optimization:

List allItems = session.createQuery("from Item").list();

processBids((Item)allItems.get(0));
processBids((Item)allItems.get(1));
processBids((Item)allItems.get(2));

You get one initial SQL SELECT to retrieve all Item objects, and one additional
SELECT for each bids collection, when it’s accessed. One possibility to improve
this would be batch fetching; however, you’d need to figure out an optimum
batch size by trial. A much better optimization is subselect fetching for this collec-
tion mapping:

<class name="Item" table="ITEM">
 ...
 <set name="bids"
 inverse="true"
 fetch="subselect">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

</class>

Hibernate now initializes all bids collections for all loaded Item objects, as soon
as you force the initialization of one bids collection. It does that by rerunning the
first initial query (slightly modified) in a subselect:

578 CHAPTER 13

Optimizing fetching and caching
select i.* from ITEM i

select b.* from BID b
 where b.ITEM_ID in (select i.ITEM_ID from ITEM i)

In annotations, you again have to use a Hibernate extension to enable this optimi-
zation:

@OneToMany
@org.hibernate.annotations.Fetch(
 org.hibernate.annotations.FetchMode.SUBSELECT
)
private Set<Bid> bids = new HashSet<Bid>();}

Prefetching using a subselect is a powerful optimization; we’ll show you a few
more details about it later, when we walk through a typical scenario. Subselect
fetching is, at the time of writing, available only for collections, not for entity
proxies. Also note that the original query that is rerun as a subselect is only
remembered by Hibernate for a particular Session. If you detach an Item
instance without initializing the collection of bids, and then reattach it and start
iterating through the collection, no prefetching of other collections occurs.

 All the previous fetching strategies are helpful if you try to reduce the number
of additional SELECTs that are natural if you work with lazy loading and retrieve
objects and collections on demand. The final fetching strategy is the opposite of
on-demand retrieval. Often you want to retrieve associated objects or collections
in the same initial SELECT with a JOIN.

13.2.3 Eager fetching with joins

Lazy loading is an excellent default strategy. On other hand, you can often look at
your domain and data model and say, “Every time I need an Item, I also need the
seller of that Item.” If you can make that statement, you should go into your
mapping metadata, enable eager fetching for the seller association, and utilize
SQL joins:

<class name="Item" table="ITEM">
 ...
 <many-to-one name="seller"
 class="User"
 column="SELLER_ID"
 update="false"
 fetch="join"/>

</class>

Hibernate now loads both an Item and its seller in a single SQL statement. For
example:

Selecting a fetch strategy 579
Item item = (Item) session.get(Item.class, new Long(123));

This operation triggers the following SQL SELECT:

select i.*, u.*
from ITEM i
 left outer join USERS u on i.SELLER_ID = u.USER_ID
where i.ITEM_ID = ?

Obviously, the seller is no longer lazily loaded on demand, but immediately.
Hence, a fetch="join" disables lazy loading. If you only enable eager fetching
with lazy="false", you see an immediate second SELECT. With fetch="join",
you get the seller loaded in the same single SELECT. Look at the resultset from this
query shown in figure 13.4.

Hibernate reads this row and marshals two objects from the result. It connects
them with a reference from Item to User, the seller association. If an Item
doesn’t have a seller all u.* columns are filled with NULL. This is why Hibernate
uses an outer join, so it can retrieve not only Item objects with sellers, but all of
them. But you know that an Item has to have a seller in CaveatEmptor. If you
enable <many-to-one not-null="true"/>, Hibernate executes an inner join
instead of an outer join.

 You can also set the eager join fetching strategy on a collection:

<class name="Item" table="ITEM">
 ...
 <set name="bids"
 inverse="true"
 fetch="join">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

</class>

If you now load many Item objects, for example with createCriteria(Item.
class).list(), this is how the resulting SQL statement looks:

Figure 13.4 Two tables are joined to eagerly fetch associated rows.

580 CHAPTER 13

Optimizing fetching and caching
select i.*, b.*
from ITEM i
 left outer join BID b on i.ITEM_ID = b.ITEM_ID

The resultset now contains many rows, with duplicate data for each Item that has
many bids, and NULL fillers for all Item objects that don’t have bids. Look at the
resultset in figure 13.5.

 Hibernate creates three persistent Item instances, as well as four Bid
instances, and links them all together in the persistence context so that you can
navigate this graph and iterate through collections—even when the persistence
context is closed and all objects are detached.

 Eager-fetching collections using inner joins is conceptually possible, and we’ll
do this later in HQL queries. However, it wouldn’t make sense to cut off all the
Item objects without bids in a global fetching strategy in mapping metadata, so
there is no option for global inner join eager fetching of collections.

 With Java Persistence annotations, you enable eager fetching with a FetchType
annotation attribute:

@Entity
public class Item {

 ...

 @ManyToOne(fetch = FetchType.EAGER)
 private User seller;

 @OneToMany(fetch = FetchType.EAGER)
 private Set<Bid> bids = new HashSet<Bid>();

 ...
}

This mapping example should look familiar: You used it to disable lazy loading of
an association and a collection earlier. Hibernate by default interprets this as an

Figure 13.5
Outer join fetching of associated
collection elements

Selecting a fetch strategy 581
eager fetch that shouldn’t be executed with an immediate second SELECT, but
with a JOIN in the initial query.

 You can keep the FetchType.EAGER Java Persistence annotation but switch
from join fetching to an immediate second select explicitly by adding a Hibernate
extension annotation:

@Entity
public class Item {

 ...

 @ManyToOne(fetch = FetchType.EAGER)
 @org.hibernate.annotations.Fetch(
 org.hibernate.annotations.FetchMode.SELECT
)
 private User seller;

}

If an Item instance is loaded, Hibernate will eagerly load the seller of this item
with an immediate second SELECT.

 Finally, we have to introduce a global Hibernate configuration setting that you
can use to control the maximum number of joined entity associations (not collec-
tions). Consider all many-to-one and one-to-one association mappings you’ve
set to fetch="join" (or FetchType.EAGER) in your mapping metadata. Let’s
assume that Item has a successfulBid association, that Bid has a bidder, and
that User has a shippingAddress. If all these associations are mapped with
fetch="join", how many tables are joined and how much data is retrieved when
you load an Item?

 The number of tables joined in this case depends on the global hibernate.
max_fetch_depth configuration property. By default, no limit is set, so loading an
Item also retrieves a Bid, a User, and an Address in a single select. Reasonable set-
tings are small, usually between 1 and 5. You may even disable join fetching for
many-to-one and one-to-one associations by setting the property to 0! (Note that
some database dialects may preset this property: For example, MySQLDialect sets
it to 2.)

 SQL queries also get more complex if inheritance or joined mappings are
involved. You need to consider a few extra optimization options whenever second-
ary tables are mapped for a particular entity class.

13.2.4 Optimizing fetching for secondary tables

If you query for objects that are of a class which is part of an inheritance hierar-
chy, the SQL statements get more complex:

582 CHAPTER 13

Optimizing fetching and caching
List result = session.createQuery("from BillingDetails").list();

 This operation retrieves all BillingDetails instances. The SQL SELECT now
depends on the inheritance mapping strategy you’ve chosen for BillingDetails
and its subclasses CreditCard and BankAccount. Assuming that you’ve mapped
them all to one table (a table-per-hierarchy), the query isn’t any different than the
one shown in the previous section. However, if you’ve mapped them with implicit
polymorphism, this single HQL operation may result in several SQL SELECTs against
each table of each subclass.

Outer joins for a table-per-subclass hierarchy
If you map the hierarchy in a normalized fashion (see the tables and mapping in
chapter 5, section 5.1.4, “Table per subclass”), all subclass tables are OUTER
JOINed in the initial statement:

select
 b1.BILLING_DETAILS_ID,
 b1.OWNER,
 b1.USER_ID,
 b2.NUMBER,
 b2.EXP_MONTH,
 b2.EXP_YEAR,
 b3.ACCOUNT,
 b3.BANKNAME,
 b3.SWIFT,
 case
 when b2.CREDIT_CARD_ID is not null then 1
 when b3.BANK_ACCOUNT_ID is not null then 2
 when b1.BILLING_DETAILS_ID is not null then 0
 end as clazz
from
 BILLING_DETAILS b1
 left outer join
 CREDIT_CARD b2
 on b1.BILLING_DETAILS_ID = b2.CREDIT_CARD_ID
 left outer join
 BANK_ACCOUNT b3
 on b1.BILLING_DETAILS_ID = b3.BANK_ACCOUNT_ID

This is already a interesting query. It joins three tables and utilizes a CASE ...
WHEN ... END expression to fill in the clazz column with a number between 0
and 2. Hibernate can then read the resultset and decide on the basis of this num-
ber what class each of the returned rows represents an instance of.

 Many database-management systems limit the maximum number of tables that
can be combined with an OUTER JOIN. You’ll possibly hit that limit if you have a
wide and deep inheritance hierarchy mapped with a normalized strategy (we’re

Selecting a fetch strategy 583
talking about inheritance hierarchies that should be reconsidered to accommo-
date the fact that after all, you’re working with an SQL database).

Switching to additional selects
In mapping metadata, you can then tell Hibernate to switch to a different fetch-
ing strategy. You want some parts of your inheritance hierarchy to be fetched
with immediate additional SELECT statements, not with an OUTER JOIN in the ini-
tial query.

 The only way to enable this fetching strategy is to refactor the mapping slightly,
as a mix of table-per-hierarchy (with a discriminator column) and table-per-subclass
with the <join> mapping:

<class name="BillingDetails"
 table="BILLING_DETAILS"
 abstract="true">

 <id name="id"
 column="BILLING_DETAILS_ID"
 .../>

 <discriminator
 column="BILLING_DETAILS_TYPE"
 type="string"/>

 ...
 <subclass name="CreditCard" discriminator-value="CC">
 <join table="CREDIT_CARD" fetch="select">
 <key column="CREDIT_CARD_ID"/>
 ...
 </join>
 </subclass>

 <subclass name="BankAccount" discriminator-value="BA">
 <join table="BANK_ACCOUNT" fetch="join">
 <key column="BANK_ACCOUNT_ID"/>
 ...

 </join>
 </subclass>

</class>

This mapping breaks out the CreditCard and BankAccount classes each into its
own table but preserves the discriminator column in the superclass table. The
fetching strategy for CreditCard objects is select, whereas the strategy for
BankAccount is the default, join. Now, if you query for all BillingDetails, the
following SQL is produced:

584 CHAPTER 13

Optimizing fetching and caching
select
 b1.BILLING_DETAILS_ID,
 b1.OWNER,
 b1.USER_ID,
 b2.ACCOUNT,
 b2.BANKNAME,
 b2.SWIFT,
 b1.BILLING_DETAILS_TYPE as clazz
from
 BILLING_DETAILS b1
 left outer join
 BANK_ACCOUNT b2
 on b1.BILLING_DETAILS_ID = b2.BANK_ACCOUNT_ID

select cc.NUMBER, cc.EXP_MONTH, cc.EXP_YEAR
from CREDIT_CARD cc where cc.CREDIT_CARD_ID = ?

select cc.NUMBER, cc.EXP_MONTH, cc.EXP_YEAR
from CREDIT_CARD cc where cc.CREDIT_CARD_ID = ?

The first SQL SELECT retrieves all rows from the superclass table and all rows from
the BANK_ACCOUNT table. It also returns discriminator values for each row as the
clazz column. Hibernate now executes an additional select against the CREDIT_
CARD table for each row of the first result that had the right discriminator for a
CreditCard. In other words, two queries mean that two rows in the BILLING_
DETAILS superclass table represent (part of) a CreditCard object.

 This kind of optimization is rarely necessary, but you now also know that you
can switch from a default join fetching strategy to an additional immediate
select whenever you deal with a <join> mapping.

 We’ve now completed our journey through all options you can set in mapping
metadata to influence the default fetch plan and fetching strategy. You learned
how to define what should be loaded by manipulating the lazy attribute, and how
it should be loaded by setting the fetch attribute. In annotations, you use
FetchType.LAZY and FetchType.EAGER, and you use Hibernate extensions for
more fine-grained control of the fetch plan and strategy.

 Knowing all the available options is only one step toward an optimized and
efficient Hibernate or Java Persistence application. You also need to know when
and when not to apply a particular strategy.

13.2.5 Optimization guidelines

By default, Hibernate never loads data that you didn’t ask for, which reduces
the memory consumption of your persistence context. However, it also exposes
you to the so-called n+1 selects problem. If every association and collection is

Selecting a fetch strategy 585
initialized only on demand, and you have no other strategy configured, a partic-
ular procedure may well execute dozens or even hundreds of queries to get all
the data you require. You need the right strategy to avoid executing too many
SQL statements.

 If you switch from the default strategy to queries that eagerly fetch data with
joins, you may run into another problem, the Cartesian product issue. Instead of
executing too many SQL statements, you may now (often as a side effect) create
statements that retrieve too much data.

 You need to find the middle ground between the two extremes: the correct
fetching strategy for each procedure and use case in your application. You need to
know which global fetch plan and strategy you should set in your mapping meta-
data, and which fetching strategy you apply only for a particular query (with HQL
or Criteria).

 We now introduce the basic problems of too many selects and Cartesian prod-
ucts and then walk you through optimization step by step.

The n+1 selects problem
The n+1 selects problem is easy to understand with some example code. Let’s
assume that you don’t configure any fetch plan or fetching strategy in your map-
ping metadata: Everything is lazy and loaded on demand. The following example
code tries to find the highest Bids for all Items (there are many other ways to do
this more easily, of course):

List<Item> allItems = session.createQuery("from Item").list();
// List<Item> allItems = session.createCriteria(Item.class).list();

Map<Item, Bid> highestBids = new HashMap<Item, Bid>();

for (Item item : allItems) {
 Bid highestBid = null;
 for (Bid bid : item.getBids()) { // Initialize the collection
 if (highestBid == null)
 highestBid = bid;
 if (bid.getAmount() > highestBid.getAmount())
 highestBid = bid;
 }
 highestBids.put(item, highestBid);
}

First you retrieve all Item instances; there is no difference between HQL and Cri-
teria queries. This query triggers one SQL SELECT that retrieves all rows of the
ITEM table and returns n persistent objects. Next, you iterate through this result
and access each Item object.

586 CHAPTER 13

Optimizing fetching and caching
 What you access is the bids collection of each Item. This collection isn’t initial-
ized so far, the Bid objects for each item have to be loaded with an additional
query. This whole code snippet therefore produces n+1 selects.

 You always want to avoid n+1 selects.
 A first solution could be a change of your global mapping metadata for the col-

lection, enabling prefetching in batches:

<set name="bids"
 inverse="true"
 batch-size="10">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

Instead of n+1 selects, you now see n/10+1 selects to retrieve the required collec-
tions into memory. This optimization seems reasonable for an auction applica-
tion: “Only load the bids for an item when they’re needed, on demand. But if
one collection of bids must be loaded for a particular item, assume that other
item objects in the persistence context also need their bids collections initialized.
Do this in batches, because it’s somewhat likely that not all item objects need
their bids.”

 With a subselect-based prefetch, you can reduce the number of selects to
exactly two:

<set name="bids"
 inverse="true"
 fetch="subselect">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

The first query in the procedure now executes a single SQL SELECT to retrieve all
Item instances. Hibernate remembers this statement and applies it again when
you hit the first uninitialized collection. All collections are initialized with the sec-
ond query. The reasoning for this optimization is slightly different: “Only load the
bids for an item when they’re needed, on demand. But if one collection of bids
must be loaded, for a particular item, assume that all other item objects in the per-
sistence context also need their bids collection initialized.”

 Finally, you can effectively turn off lazy loading of the bids collection and
switch to an eager fetching strategy that results in only a single SQL SELECT:

<set name="bids"
 inverse="true"
 fetch="join">

Selecting a fetch strategy 587
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

This seems to be an optimization you shouldn’t make. Can you really say that
“whenever an item is needed, all its bids are needed as well”? Fetching strategies
in mapping metadata work on a global level. We don’t consider fetch="join" a
common optimization for collection mappings; you rarely need a fully initialized
collection all the time. In addition to resulting in higher memory consumption,
every OUTER JOINed collection is a step toward a more serious Cartesian product
problem, which we’ll explore in more detail soon.

 In practice, you’ll most likely enable a batch or subselect strategy in your map-
ping metadata for the bids collection. If a particular procedure, such as this,
requires all the bids for each Item in-memory, you modify the initial HQL or
Criteria query and apply a dynamic fetching strategy:

List<Item> allItems =
 session.createQuery("from Item i left join fetch i.bids")
 .list();

List<Item> allItems =
 session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .list();

// Iterate through the collections...

Both queries result in a single SELECT that retrieves the bids for all Item instances
with an OUTER JOIN (as it would if you have mapped the collection with
join="fetch").

 This is likely the first time you’ve seen how to define a fetching strategy that
isn’t global. The global fetch plan and fetching strategy settings you put in your
mapping metadata are just that: global defaults that always apply. Any optimiza-
tion process also needs more fine-grained rules, fetching strategies and fetch
plans that are applicable for only a particular procedure or use case. We’ll have
much more to say about fetching with HQL and Criteria in the next chapter. All
you need to know now is that these options exist.

 The n+1 selects problem appears in more situations than just when you work
with lazy collections. Uninitialized proxies expose the same behavior: You may
need many SELECTs to initialize all the objects you’re working with in a particular
procedure. The optimization guidelines we’ve shown are the same, but there is one
exception: The fetch="join" setting on <many-to-one> or <one-to-one> associa-
tions is a common optimization, as is a @ManyToOne(fetch = FetchType.EAGER)

588 CHAPTER 13

Optimizing fetching and caching
annotation (which is the default in Java Persistence). Eager join fetching of sin-
gle-ended associations, unlike eager outer-join fetching of collections, doesn’t cre-
ate a Cartesian product problem.

The Cartesian product problem
The opposite of the n+1 selects problem are SELECT statements that fetch too much
data. This Cartesian product problem always appears if you try to fetch several
“parallel” collections.

 Let’s assume you’ve made the decision to apply a global fetch="join" setting
to the bids collection of an Item (despite our recommendation to use global
prefetching and a dynamic join-fetching strategy only when necessary). The Item
class has other collections: for example, the images. Let’s also assume that you
decide that all images for each item have to be loaded all the time, eagerly with a
fetch="join" strategy:

<class name="Item">
 ...

 <set name="bids"
 inverse="true"
 fetch="join">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>

 <set name="images"
 fetch="join">
 <key column="ITEM_ID"/>
 <composite-element class="Image">...
 </set>

</class>

If you map two parallel collections (their owning entity is the same) with an eager
outer-join fetching strategy, and load all Item objects, Hibernate executes an SQL
SELECT that creates a product of the two collections:

select item.*, bid.*, image.*
 from ITEM item
 left outer join BID bid on item.ITEM_ID = bid.ITEM_ID
 left outer join ITEM_IMAGE image on item.ITEM_ID = image.ITEM_ID

Look at the resultset of that query, shown in figure 13.6.
 This resultset contains lots of redundant data. Item 1 has three bids and two

images, item 2 has one bid and one image, and item 3 has no bids and no images.
The size of the product depends on the size of the collections you’re retrieving: 3
times 2, 1 times 1, plus 1, total 8 result rows. Now imagine that you have 1,000

Selecting a fetch strategy 589
items in the database, and each item has 20 bids and 5 images—you’ll see a result-
set with possibly 100,000 rows! The size of this result may well be several mega-
bytes. Considerable processing time and memory are required on the database
server to create this resultset. All the data must be transferred across the network.
Hibernate immediately removes all the duplicates when it marshals the resultset
into persistent objects and collections—redundant information is skipped. Three
queries are certainly faster!

 You get three queries if you map the parallel collections with fetch="subse-
lect"; this is the recommended optimization for parallel collections. However,
for every rule there is an exception. As long as the collections are small, a prod-
uct may be an acceptable fetching strategy. Note that parallel single-valued asso-
ciations that are eagerly fetched with outer-join SELECTs don’t create a product,
by nature.

 Finally, although Hibernate lets you create Cartesian products with
fetch="join" on two (or even more) parallel collections, it throws an excep-
tion if you try to enable fetch="join" on parallel <bag> collections. The result-
set of a product can’t be converted into bag collections, because Hibernate
can’t know which rows contain duplicates that are valid (bags allow duplicates)
and which aren’t. If you use bag collections (they are the default @OneToMany
collection in Java Persistence), don’t enable a fetching strategy that results in
products. Use subselects or immediate secondary-select fetching for parallel
eager fetching of bag collections.

Figure 13.6 A product is the result of two outer joins with many rows.

590 CHAPTER 13

Optimizing fetching and caching
 Global and dynamic fetching strategies help you to solve the n+1 selects and
Cartesian product problems. Hibernate offers another option to initialize a proxy
or a collection that is sometimes useful.

Forcing proxy and collection initialization
A proxy or collection wrapper is automatically initialized whenever any of its
methods are invoked (except for the identifier property getter, which may
return the identifier value without fetching the underlying persistent object).
Prefetching and eager join fetching are possible solutions to retrieve all the data
you’d need.

 You sometimes want to work with a network of objects in detached state. You
retrieve all objects and collections that should be detached and then close the
persistence context.

 In this scenario, it’s sometimes useful to explicitly initialize an object before
closing the persistence context, without resorting to a change in the global fetch-
ing strategy or a different query (which we consider the solution you should
always prefer).

 You can use the static method Hibernate.initialize() for manual initializa-
tion of a proxy:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

Item item = (Item) session.get(Item.class, new Long(1234));

Hibernate.initialize(item.getSeller());

tx.commit();
session.close();

processDetached(item.getSeller());
...

Hibernate.initialize() may be passed a collection wrapper or a proxy. Note
that if you pass a collection wrapper to initialize(), it doesn’t initialize the tar-
get entity objects that are referenced by this collection. In the previous example,
Hibernate.initalize(item.getBids()) wouldn’t load all the Bid objects
inside that collection. It initializes the collection with proxies of Bid objects!

 Explicit initialization with this static helper method is rarely necessary; you
should always prefer a dynamic fetch with HQL or Criteria.

 Now that you know all the options, problems, and possibilities, let’s walk
through a typical application optimization procedure.

Selecting a fetch strategy 591
Optimization step by step
First, enable the Hibernate SQL log. You should also be prepared to read, under-
stand, and evaluate SQL queries and their performance characteristics for your
specific database schema: Will a single outer-join operation be faster than two
selects? Are all the indexes used properly, and what is the cache hit-ratio inside
the database? Get your DBA to help you with that performance evaluation; only he
has the knowledge to decide what SQL execution plan is the best. (If you want to
become an expert in this area, we recommend the book SQL Tuning by Dan Tow,
[Tow, 2003].)

 The two configuration properties hibernate.format_sql and hibernate.
use_sql_comments make it a lot easier to read and categorize SQL statements in
your log files. Enable both during optimization.

 Next, execute use case by use case of your application and note how many and
what SQL statements are executed by Hibernate. A use case can be a single screen
in your web application or a sequence of user dialogs. This step also involves col-
lecting the object retrieval methods you use in each use case: walking the object
links, retrieval by identifier, HQL, and Criteria queries. Your goal is to bring
down the number (and complexity) of SQL statements for each use case by tuning
the default fetch plan and fetching strategy in metadata.

 It’s time to define your fetch plan. Everything is lazy loaded by default. Con-
sider switching to lazy="false" (or FetchType.EAGER) on many-to-one,
one-to-one, and (sometimes) collection mappings. The global fetch plan defines
the objects that are always eagerly loaded. Optimize your queries and enable
eager fetching if you need eagerly loaded objects not globally, but in a particular
procedure—a use case only.

 Once the fetch plan is defined and the amount of data required by a particular
use case is known, optimize how this data is retrieved. You may encounter two
common issues:

■ The SQL statements use join operations that are too complex and slow. First opti-
mize the SQL execution plan with your DBA. If this doesn’t solve the prob-
lem, remove fetch="join" on collection mappings (or don’t set it in the
first place). Optimize all your many-to-one and one-to-one associations by
considering if they really need a fetch="join" strategy or if the associated
object should be loaded with a secondary select. Also try to tune with the
global hibernate.max_fetch_depth configuration option, but keep in
mind that this is best left at a value between 1 and 5.

592 CHAPTER 13

Optimizing fetching and caching
■ Too many SQL statements may be executed. Set fetch="join" on many-to-one
and one-to-one association mappings. In rare cases, if you’re absolutely
sure, enable fetch="join" to disable lazy loading for particular collections.
Keep in mind that more than one eagerly fetched collection per persistent
class creates a product. Evaluate whether your use case can benefit from
prefetching of collections, with batches or subselects. Use batch sizes
between 3 and 15.

After setting a new fetching strategy, rerun the use case and check the generated
SQL again. Note the SQL statements and go to the next use case. After optimizing
all use cases, check every one again and see whether any global optimization had
side effects for others. With some experience, you’ll easily be able to avoid any
negative effects and get it right the first time.

 This optimization technique is practical for more than the default fetching
strategies; you may also use it to tune HQL and Criteria queries, which can
define the fetch plan and the fetching strategy dynamically. You often can replace
a global fetch setting with a new dynamic query or a change of an existing query—
we’ll have much more to say about these options in the next chapter.

 In the next section, we introduce the Hibernate caching system. Caching data
on the application tier is a complementary optimization that you can utilize in any
sophisticated multiuser application.

13.3 Caching fundamentals

A major justification for our claim that applications using an object/relational
persistence layer are expected to outperform applications built using direct JDBC
is the potential for caching. Although we’ll argue passionately that most applica-
tions should be designed so that it’s possible to achieve acceptable performance
without the use of a cache, there is no doubt that for some kinds of applications,
especially read-mostly applications or applications that keep significant metadata
in the database, caching can have an enormous impact on performance. Further-
more, scaling a highly concurrent application to thousands of online transactions
usually requires some caching to reduce the load on the database server(s).

 We start our exploration of caching with some background information. This
includes an explanation of the different caching and identity scopes and the
impact of caching on transaction isolation. This information and these rules can
be applied to caching in general and are valid for more than just Hibernate
applications. This discussion gives you the background to understand why the

Caching fundamentals 593
Hibernate caching system is the way it is. We then introduce the Hibernate cach-
ing system and show you how to enable, tune, and manage the first- and sec-
ond-level Hibernate cache. We recommend that you carefully study the
fundamentals laid out in this section before you start using the cache. Without
the basics, you may quickly run into hard to debug concurrency problems and
risk the integrity of your data.

 Caching is all about performance optimization, so naturally it isn’t part of the
Java Persistence or EJB 3.0 specification. Every vendor provides different solutions
for optimization, in particular any second-level caching. All strategies and options
we present in this section work for a native Hibernate application or an applica-
tion that depends on Java Persistence interfaces and uses Hibernate as a persis-
tence provider.

 A cache keeps a representation of current database state close to the applica-
tion, either in memory or on disk of the application server machine. The cache is
a local copy of the data. The cache sits between your application and the database.
The cache may be used to avoid a database hit whenever

■ The application performs a lookup by identifier (primary key).

■ The persistence layer resolves an association or collection lazily.

It’s also possible to cache the results of queries. As you’ll see in the chapter 15, the
performance gain of caching query results is minimal in many cases, so this func-
tionality is used much less often.

 Before we look at how Hibernate’s cache works, let’s walk through the differ-
ent caching options and see how they’re related to identity and concurrency.

13.3.1 Caching strategies and scopes

Caching is such a fundamental concept in object/relational persistence that you
can’t understand the performance, scalability, or transactional semantics of an
ORM implementation without first knowing what kind of caching strategy (or
strategies) it uses. There are three main types of cache:

■ Transaction scope cache—Attached to the current unit of work, which may be
a database transaction or even a conversation. It’s valid and used only as
long as the unit of work runs. Every unit of work has its own cache. Data in
this cache isn’t accessed concurrently.

■ Process scope cache—Shared between many (possibly concurrent) units of
work or transactions. This means that data in the process scope cache is

594 CHAPTER 13

Optimizing fetching and caching
accessed by concurrently running threads, obviously with implications on
transaction isolation.

■ Cluster scope cache—Shared between multiple processes on the same
machine or between multiple machines in a cluster. Here, network commu-
nication is an important point worth consideration.

A process scope cache may store the persistent instances themselves in the cache,
or it may store just their persistent state in a disassembled format. Every unit of
work that accesses the shared cache then reassembles a persistent instance from
the cached data.

 A cluster scope cache requires some kind of remote process communication to
maintain consistency. Caching information must be replicated to all nodes in the
cluster. For many (not all) applications, cluster scope caching is of dubious value,
because reading and updating the cache may be only marginally faster than going
straight to the database.

 Persistence layers may provide multiple levels of caching. For example, a cache
miss (a cache lookup for an item that isn’t contained in the cache) at the transac-
tion scope may be followed by a lookup at the process scope. A database request is
the last resort.

 The type of cache used by a persistence layer affects the scope of object iden-
tity (the relationship between Java object identity and database identity).

Caching and object identity
Consider a transaction-scoped cache. It seems natural that this cache is also used
as the identity scope of objects. This means the cache implements identity han-
dling: Two lookups for objects using the same database identifier return the same
actual Java instance. A transaction scope cache is therefore ideal if a persistence
mechanism also provides unit of work-scoped object identity.

 Persistence mechanisms with a process scope cache may choose to implement
process-scoped identity. In this case, object identity is equivalent to database iden-
tity for the whole process. Two lookups using the same database identifier in two
concurrently running units of work result in the same Java instance. Alternatively,
objects retrieved from the process scope cache may be returned by value. In this
case, each unit of work retrieves its own copy of the state (think about raw data),
and resulting persistent instances aren’t identical. The scope of the cache and the
scope of object identity are no longer the same.

 A cluster scope cache always needs remote communication, and in the case of
POJO-oriented persistence solutions like Hibernate, objects are always passed

Caching fundamentals 595
remotely by value. A cluster scope cache therefore can’t guarantee identity across
a cluster.

 For typical web or enterprise application architectures, it’s most convenient
that the scope of object identity be limited to a single unit of work. In other words,
it’s neither necessary nor desirable to have identical objects in two concurrent
threads. In other kinds of applications (including some desktop or fat-client archi-
tectures), it may be appropriate to use process scoped object identity. This is par-
ticularly true where memory is extremely limited—the memory consumption of a
unit of work scoped cache is proportional to the number of concurrent threads.

 However, the real downside to process-scoped identity is the need to synchro-
nize access to persistent instances in the cache, which results in a high likelihood
of deadlocks and reduced scalability due to lock contention.

Caching and concurrency
Any ORM implementation that allows multiple units of work to share the same
persistent instances must provide some form of object-level locking to ensure syn-
chronization of concurrent access. Usually this is implemented using read and
write locks (held in memory) together with deadlock detection. Implementations
like Hibernate that maintain a distinct set of instances for each unit of work (unit
of work-scoped identity) avoid these issues to a great extent.

 It’s our opinion that locks held in memory should be avoided, at least for web
and enterprise applications where multiuser scalability is an overriding concern.
In these applications, it usually isn’t required to compare object identity across
concurrent units of work; each user should be completely isolated from other users.

 There is a particularly strong case for this view when the underlying relational
database implements a multiversion concurrency model (Oracle or PostgreSQL,
for example). It’s somewhat undesirable for the object/relational persistence
cache to redefine the transactional semantics or concurrency model of the under-
lying database.

 Let’s consider the options again. A transaction/unit of work-scoped cache is
preferred if you also use unit of work-scoped object identity and if it’s the best
strategy for highly concurrent multiuser systems. This first-level cache is manda-
tory, because it also guarantees identical objects. However, this isn’t the only cache
you can use. For some data, a second-level cache scoped to the process (or clus-
ter) that returns data by value can be a useful. This scenario therefore has two
cache layers; you’ll later see that Hibernate uses this approach.

596 CHAPTER 13

Optimizing fetching and caching
 Let’s discuss which data benefits from second-level caching—in other words,
when to turn on the process (or cluster) scope second-level cache in addition to
the mandatory first-level transaction scope cache.

Caching and transaction isolation
A process or cluster scope cache makes data retrieved from the database in one
unit of work visible to another unit of work. This may have some nasty side effects
on transaction isolation.

 First, if an application has nonexclusive access to the database, process scope
caching shouldn’t be used, except for data which changes rarely and may be safely
refreshed by a cache expiry. This type of data occurs frequently in content man-
agement-type applications but rarely in EIS or financial applications.

 There are two main scenarios for nonexclusive access to look out for:

■ Clustered applications

■ Shared legacy data

Any application that is designed to scale must support clustered operation. A pro-
cess scope cache doesn’t maintain consistency between the different caches on
different machines in the cluster. In this case, a cluster scope (distributed) sec-
ond-level cache should be used instead of the process scope cache.

 Many Java applications share access to their database with other applications.
In this case, you shouldn’t use any kind of cache beyond a unit of work scoped
first-level cache. There is no way for a cache system to know when the legacy appli-
cation updated the shared data. Actually, it’s possible to implement applica-
tion-level functionality to trigger an invalidation of the process (or cluster) scope
cache when changes are made to the database, but we don’t know of any standard
or best way to achieve this. Certainly, it will never be a built-in feature of Hiber-
nate. If you implement such a solution, you’ll most likely be on your own, because
it’s specific to the environment and products used.

 After considering nonexclusive data access, you should establish what isolation
level is required for the application data. Not every cache implementation
respects all transaction isolation levels and it’s critical to find out what is required.
Let’s look at data that benefits most from a process- (or cluster-) scoped cache. In
practice, we find it useful to rely on a data model diagram (or class diagram)
when we make this evaluation. Take notes on the diagram that express whether a
particular entity (or class) is a good or bad candidate for second-level caching.

 A full ORM solution lets you configure second-level caching separately for each
class. Good candidate classes for caching are classes that represent

Caching fundamentals 597
■ Data that changes rarely

■ Noncritical data (for example, content-management data)

■ Data that is local to the application and not shared

Bad candidates for second-level caching are

■ Data that is updated often

■ Financial data

■ Data that is shared with a legacy application

These aren’t the only rules we usually apply. Many applications have a number of
classes with the following properties:

■ A small number of instances

■ Each instance referenced by many instances of another class or classes

■ Instances that are rarely (or never) updated

This kind of data is sometimes called reference data. Examples of reference data are
ZIP codes, reference addresses, office locations, static text messages, and so on.
Reference data is an excellent candidate for caching with a process or cluster
scope, and any application that uses reference data heavily will benefit greatly if
that data is cached. You allow the data to be refreshed when the cache timeout
period expires.

 We shaped a picture of a dual layer caching system in the previous sections,
with a unit of work-scoped first-level and an optional second-level process or clus-
ter scope cache. This is close to the Hibernate caching system.

13.3.2 The Hibernate cache architecture

As we hinted earlier, Hibernate has a two-level cache architecture. The various ele-
ments of this system can be seen in figure 13.7:

■ The first-level cache is the persistence context cache. A Hibernate Ses-
sion lifespan corresponds to either a single request (usually implemented
with one database transaction) or a conversation. This is a mandatory
first-level cache that also guarantees the scope of object and database iden-
tity (the exception being the StatelessSession, which doesn’t have a per-
sistence context).

■ The second-level cache in Hibernate is pluggable and may be scoped to the
process or cluster. This is a cache of state (returned by value), not of actual

598 CHAPTER 13

Optimizing fetching and caching
persistent instances. A cache concurrency strategy defines the transaction
isolation details for a particular item of data, whereas the cache provider
represents the physical cache implementation. Use of the second-level
cache is optional and can be configured on a per-class and per-collection
basis—each such cache utilizes its own physical cache region.

■ Hibernate also implements a cache for query resultsets that integrates
closely with the second-level cache. This is an optional feature; it requires
two additional physical cache regions that hold the cached query results
and the timestamps when a table was last updated. We discuss the query
cache in the next chapters because its usage is closely tied to the query
being executed.

We’ve already discussed the first-level cache, the persistence context, in detail.
Let’s go straight to the optional second-level cache

The Hibernate second-level cache
The Hibernate second-level cache has process or cluster scope: All persistence
contexts that have been started from a particular SessionFactory (or are associ-

Figure 13.7 Hibernate’s two-level cache architecture

Caching fundamentals 599
ated with EntityManagers of a particular persistence unit) share the same sec-
ond-level cache.

 Persistent instances are stored in the second-level cache in a disassembled
form. Think of disassembly as a process a bit like serialization (the algorithm is
much, much faster than Java serialization, however).

 The internal implementation of this process/cluster scope cache isn’t of much
interest. More important is the correct usage of the cache policies—caching strate-
gies and physical cache providers.

 Different kinds of data require different cache policies: The ratio of reads to
writes varies, the size of the database tables varies, and some tables are shared with
other external applications. The second-level cache is configurable at the granu-
larity of an individual class or collection role. This lets you, for example, enable
the second-level cache for reference data classes and disable it for classes that rep-
resent financial records. The cache policy involves setting the following:

■ Whether the second-level cache is enabled

■ The Hibernate concurrency strategy

■ The cache expiration policies (such as timeout, LRU, and memory-sensi-
tive)

■ The physical format of the cache (memory, indexed files, cluster-replicated)

Not all classes benefit from caching, so it’s important to be able to disable the sec-
ond-level cache. To repeat, the cache is usually useful only for read-mostly classes.
If you have data that is updated much more often than it’s read, don’t enable the
second-level cache, even if all other conditions for caching are true! The price of
maintaining the cache during updates can possibly outweigh the performance
benefit of faster reads. Furthermore, the second-level cache can be dangerous in
systems that share the database with other writing applications. As explained in
earlier sections, you must exercise careful judgment here for each class and col-
lection you want to enable caching for.

 The Hibernate second-level cache is set up in two steps. First, you have to
decide which concurrency strategy to use. After that, you configure cache expiration
and physical cache attributes using the cache provider.

Built-in concurrency strategies
A concurrency strategy is a mediator: It’s responsible for storing items of data in
the cache and retrieving them from the cache. This is an important role, because
it also defines the transaction isolation semantics for that particular item. You’ll

600 CHAPTER 13

Optimizing fetching and caching
have to decide, for each persistent class and collection, which cache concurrency
strategy to use if you want to enable the second-level cache.

 The four built-in concurrency strategies represent decreasing levels of strict-
ness in terms of transaction isolation:

■ Transactional—Available in a managed environment only, it guarantees full
transactional isolation up to repeatable read, if required. Use this strategy for
read-mostly data where it’s critical to prevent stale data in concurrent trans-
actions, in the rare case of an update.

■ Read-write—This strategy maintains read committed isolation, using a time-
stamping mechanism and is available only in nonclustered environments.
Again, use this strategy for read-mostly data where it’s critical to prevent
stale data in concurrent transactions, in the rare case of an update.

■ Nonstrict-read-write—Makes no guarantee of consistency between the cache
and the database. If there is a possibility of concurrent access to the same
entity, you should configure a sufficiently short expiry timeout. Otherwise,
you may read stale data from the cache. Use this strategy if data hardly ever
changes (many hours, days, or even a week) and a small likelihood of stale
data isn’t of critical concern.

■ Read-only—A concurrency strategy suitable for data which never changes.
Use it for reference data only.

Note that with decreasing strictness comes increasing performance. You have to
carefully evaluate the performance of a clustered cache with full transaction isola-
tion before using it in production. In many cases, you may be better off disabling
the second-level cache for a particular class if stale data isn’t an option! First
benchmark your application with the second-level cache disabled. Enable it for
good candidate classes, one at a time, while continuously testing the scalability of
your system and evaluating concurrency strategies.

 It’s possible to define your own concurrency strategy by implementing org.
hibernate.cache.CacheConcurrencyStrategy, but this is a relatively difficult
task and appropriate only for rare cases of optimization.

 Your next step after considering the concurrency strategies you’ll use for your
cache candidate classes is to pick a cache provider. The provider is a plug-in, the
physical implementation of a cache system.

Caching fundamentals 601
Choosing a cache provider
For now, Hibernate forces you to choose a single cache provider for the whole
application. Providers for the following open source products are built into
Hibernate:

■ EHCache is a cache provider intended for a simple process scope cache in a
single JVM. It can cache in memory or on disk, and it supports the optional
Hibernate query result cache. (The latest version of EHCache now supports
clustered caching, but we haven’t tested this yet.)

■ OpenSymphony OSCache is a service that supports caching to memory and
disk in a single JVM, with a rich set of expiration policies and query cache
support.

■ SwarmCache is a cluster cache based on JGroups. It uses clustered invalida-
tion but doesn’t support the Hibernate query cache.

■ JBoss Cache is a fully transactional replicated clustered cache also based on
the JGroups multicast library. It supports replication or invalidation, syn-
chronous or asynchronous communication, and optimistic and pessimistic
locking. The Hibernate query cache is supported, assuming that clocks are
synchronized in the cluster.

It’s easy to write an adaptor for other products by implementing org.hibernate.
cache.CacheProvider. Many commercial caching systems are pluggable into
Hibernate with this interface.

 Not every cache provider is compatible with every concurrency strategy!
The compatibility matrix in table 13.1 will help you choose an appropriate
combination.

 Setting up caching involves two steps: First, you look at the mapping metadata
for your persistent classes and collections and decide which cache concurrency

Table 13.1 Cache concurrency strategy support

Concurrency strategy
cache provider

Read-only
Nonstrict-
read-write

Read-write Transactional

EHCache X X X

OSCache X X X

SwarmCache X X

JBoss Cache X X

602 CHAPTER 13

Optimizing fetching and caching
strategy you’d like to use for each class and each collection. In the second step,
you enable your preferred cache provider in the global Hibernate configuration
and customize the provider-specific settings and physical cache regions. For exam-
ple, if you’re using OSCache, you edit oscache.properties, or for EHCache,
ehcache.xml in your classpath.

 Let’s enable caching for the CaveatEmptor Category, Item, and Bid classes.

13.4 Caching in practice

First we’ll consider each entity class and collection and find out what cache con-
currency strategy may be appropriate. After we select a cache provider for local
and clustered caching, we’ll write their configuration file(s).

13.4.1 Selecting a concurrency control strategy

The Category has a small number of instances and is updated rarely, and
instances are shared between many users. It’s a great candidate for use of the sec-
ond-level cache.

 Start by adding the mapping element required to tell Hibernate to cache Cat-
egory instances.

<class name="auction.model.Category"
 table="CATEGORY">

 <cache usage="read-write"/>

 <id ...

</class>

The usage="read-write" attribute tells Hibernate to use a read-write concur-
rency strategy for the auction.model.Category cache. Hibernate now hits the
second-level cache whenever you navigate to a Category or when you load a Cat-
egory by identifier.

 If you use annotations, you need a Hibernate extension:

@Entity
@Table(name = "CATEGORY")
@org.hibernate.annotations.Cache(usage =
 org.hibernate.annotations.CacheConcurrencyStrategy.READ_WRITE
)
public class Category { ... }

You use read-write instead of nonstrict-read-write because Category is a
highly concurrent class, shared between many concurrent transactions. (It’s clear
that a read committed isolation level is good enough.) A nonstrict-read-write

Caching in practice 603
would rely only on cache expiration (timeout), but you prefer changes to catego-
ries to be visible immediately.

 The class caches are always enabled for a whole hierarchy of persistent classes.
You can't only cache instances of a particular subclass.

 This mapping is enough to tell Hibernate to cache all simple Category prop-
erty values, but not the state of associated entities or collections. Collections
require their own <cache> region. For the items collection you use a read-write
concurrency strategy:

<class name="auction.model.Category"
 table="CATEGORY">

 <cache usage="read-write"/>

 <id ...

 <set name="items">
 <cache usage="read-write"/>
 <key ...
 </set>

</class>

The region name of the collection cache is the fully qualified class name plus the
collection property name, auction.model.Category.items. The @org.hiber-
nate.annotations.Cache annotation can also be declared on a collection field or
getter method.

 This cache setting is effective when you call aCategory.getItems()—in other
words, a collection cache is a region that contains “which items are in which cate-
gory.” It’s a cache of identifiers only; there is no actual Category or Item data in
that region.

 If you require the Item instances themselves to be cached, you must enable
caching of the Item class. A read-write strategy is especially appropriate. Your users
don’t want to make decisions (placing a bid, for example) based on possibly stale
Item data. Let’s go a step further and consider the collection of bids: A particular
Bid in the bids collection is immutable, but the collection of bids is mutable, and
concurrent units of work need to see any addition or removal of a collection ele-
ment without delay:

<class name="Item"
 table="ITEM">

 <cache usage="read-write"/>

 <id ...

 <set name="bids">

604 CHAPTER 13

Optimizing fetching and caching
 <cache usage="read-write"/>
 <key ...
 </set>

</class>

You apply a read-only strategy for the Bid class:

<class name="Bid"
 table="BID" mutable="false">

 <cache usage="read-only"/>

 <id ...

</class>

Bid data is therefore never expired from the cache, because it can only be created
and never updated. (Bids may of course be expired by the cache provider—for
example, if the maximum number of objects in the cache is reached.) Hibernate
also removes the data from the cache if a Bid instance is deleted, but it doesn’t
provide any transactional guarantees in doing so.

 User is an example of a class that could be cached with the nonstrict-read-write
strategy, but we aren’t certain that it makes sense to cache users.

 Let’s set the cache provider, its expiration policies, and the physical regions
of your cache. You use cache regions to configure class and collection caching
individually.

13.4.2 Understanding cache regions

Hibernate keeps different classes/collections in different cache regions. A region is
a named cache: a handle by which you may reference classes and collections in
the cache provider configuration and set the expiration policies applicable to that
region. A more graphical description is that regions are buckets of data, of which
there are two types: One type of region contains the disassembled data of entity
instances, and the other type contains only identifiers of entities that are linked
through a collection.

 The name of the region is the class name in the case of a class cache, or the
class name together with the property name in the case of a collection cache.
Category instances are cached in a region named auction.model.Category,
whereas the items collection is cached in a region named auction.model.Cate-
gory.items.

 The Hibernate configuration property named hibernate.cache.region_pre-
fix may be used to specify a region name prefix for a particular SessionFactory
or persistence unit. For example, if the prefix is set to db1, Category is cached in

Caching in practice 605
a region named db1.auction.model.Category. This setting is necessary if your
application works with multiple SessionFactory instances or persistence units.
Without it, cache region names of different persistence units may conflict.

 Now that you know about cache regions, you can configure the physical prop-
erties of the auction.model.Category cache. First let’s choose a cache provider.
Suppose you’re running your auction application in a single JVM, so you don’t
need a cluster-aware provider.

13.4.3 Setting up a local cache provider

You need to set the configuration property that selects a cache provider:

hibernate.cache.provider_class = org.hibernate.cache.EhCacheProvider

You choose EHCache as your second-level cache in this case.
 Now, you need to specify the properties of the cache regions. EHCache has its

own configuration file, ehcache.xml, in the classpath of the application. The
Hibernate distribution comes bundled with example configuration files for all
bundled cache providers, so we recommend that you read the usage comments in
those files for detailed configuration and assume the defaults for all options we
don’t mention explicitly.

 A cache configuration in ehcache.xml for the Category class may look like
this:

<cache name="auction.model.Category"
 maxElementsInMemory="500"
 eternal="true"
 timeToIdleSeconds="0"
 timeToLiveSeconds="0"
 overflowToDisk="false"
/>

There are a small number of Category instances. You therefore disable eviction
by choosing a cache size limit greater than the number of categories in the sys-
tem and setting eternal="true", disabling eviction by timeout. There is no need
to expire cached data by timeout because the Category cache concurrency strat-
egy is read-write and because there are no other applications changing category
data directly in the database. You also disable disk-based cache overflow, because
you know there are few instances of Category and so memory consumption
won’t be a problem.

 Bids, on the other hand, are small and immutable, but there are many of
them, so you must configure EHCache to carefully manage the cache memory
consumption. You use both an expiry timeout and a maximum cache size limit:

606 CHAPTER 13

Optimizing fetching and caching
<cache name="auction.model.Bid"
 maxElementsInMemory="50000"
 eternal="false"
 timeToIdleSeconds="1800"
 timeToLiveSeconds="100000"
 overflowToDisk="false"
/>

The timeToIdleSeconds attribute defines the expiry time in seconds since an ele-
ment was last accessed in the cache. You must set a sensible value here, because
you don’t want unused bids to consume memory. The timeToLiveSeconds
attribute defines the maximum expiry time in seconds since the element was
added to the cache. Because bids are immutable, you don’t need them to be
removed from the cache if they’re being accessed regularly. Hence, timeToLive-
Seconds is set to a high number.

 The result is that cached bids are removed from the cache if they haven’t been
used in the past 30 minutes or if they’re the least recently used item when the
total size of the cache has reached its maximum limit of 50,000 elements.

 You disable the disk-based cache in this example because you anticipate that
the application server will be deployed to the same machine as the database. If the
expected physical architecture was different, you might enable the disk-based
cache to reduce network traffic. Accessing data on the local disk is faster than
accessing the database across a network.

 Optimal cache eviction policies are, as you can see, specific to the data and
application. You must consider many external factors, including available memory
on the application server machine, expected load on the database machine, net-
work latency, existence of legacy applications, and so on. Some of these factors
can’t be known at development time, so you often need to iteratively test the per-
formance impact of different settings in the production environment or a simula-
tion. We consider optimization with the second-level cache something you won’t
do during development, because testing without real datasets and concurrency
doesn’t show the final performance and scalability of the system. This is especially
true in a more complex scenario, with a replicated cache in a cluster of machines.

13.4.4 Setting up a replicated cache

EHCache is an excellent cache provider if your application is deployed on a single
virtual machine. However, enterprise applications supporting thousands of con-
current users may require more computing power, and scaling your application
may be critical to the success of your project. Hibernate applications are naturally

Caching in practice 607
scalable: No Hibernate aspect limits the nodes on which your application is
deployed. With a few changes to your cache setup, you may even use a clustered
caching system.

 We recommend JBoss Cache, a cluster-safe caching system based on TreeCache
and the JGroups multicast library. JBoss Cache is extremely scalable and cluster
communication can be tuned in any way imaginable.

 We now step through a setup of JBoss Cache for CaveatEmptor for a small clus-
ter of two nodes, called node A and node B. However, we only scratch the surface
of the topic, cluster configurations are by nature complex and many settings
depend on the particular scenario.

 First, you have to check that all the mapping files use read-only or transactional
as a cache concurrency strategy. These are the only strategies supported by the
JBoss Cache provider. There is a nice trick that helps avoiding this search and
replace problem in the future. Instead of placing <cache> elements in your map-
ping files, you can centralize cache configuration in your hibernate.cfg.xml:

<hibernate-configuration>
<session-factory>

 <property .../>
 <mapping .../>

 <class-cache
 class="org.hibernate.auction.model.Item"
 usage="transactional"/>

 <collection-cache
 collection="org.hibernate.auction.model.Item.bids"
 usage="transactional"/>

</session-factory>

</hibernate-configuration>

You enabled transactional caching for Item and the bids collection in this exam-
ple. However, there is one important caveat: At the time of writing, Hibernate
runs into a conflict if you also have <cache> elements in the mapping file for
Item. You therefore can’t use the global configuration to override the mapping
file settings. We recommend using the centralized cache configuration right from
the start, especially if you aren’t sure how your application may be deployed. It’s
also easier to tune cache settings with a single configuration location.

 The next step to the cluster setup is the configuration of the JBoss Cache pro-
vider. First, you enable it in the Hibernate configuration—for example, if you
aren’t using properties, in hibernate.cfg.xml:

608 CHAPTER 13

Optimizing fetching and caching
<property name="cache.provider_class">
 org.hibernate.cache.TreeCacheProvider
</property>

JBoss Cache has its own configuration file, treecache.xml, expected in the class-
path of your application. In some scenarios, you need a different configuration
for each node in your cluster, and you must make sure the correct file is copied to
the classpath on deployment. Let’s look at a typical configuration file. In the
two-node cluster (named MyCluster), this file is used on node A:

<server>

 <classpath codebase="./lib"
 archives="jboss-cache.jar, jgroups.jar"/>

 <mbean code="org.jboss.cache.TreeCache"
 name="jboss.cache:service=TreeCache">

 <depends>jboss:service=Naming</depends>
 <depends>jboss:service=TransactionManager</depends>

 <attribute name="TransactionManagerLookupClass">
 org.jboss.cache.GenericTransactionManagerLookup
 </attribute>

 <attribute name="ClusterName">MyCluster</attribute>

 <attribute name="NodeLockingScheme">PESSIMISTIC</attribute>
 <attribute name="CacheMode">REPL_SYNC</attribute>
 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="FetchInMemoryState">false</attribute>
 <attribute name="InitialStateRetrievalTimeout">20000</attribute>
 <attribute name="SyncReplTimeout">20000</attribute>
 <attribute name="LockAcquisitionTimeout">15000</attribute>

 <attribute name="ClusterConfig">
 <config>
 <UDP loopback="false"/>

 <PING timeout="2000"
 num_initial_members="3"
 up_thread="false"
 down_thread="false"/>

 <FD_SOCK/>

 <pbcast.NAKACK gc_lag="50"
 retransmit_timeout="600,1200,2400,4800"
 max_xmit_size="8192"
 up_thread="false" down_thread="false"/>

 <UNICAST timeout="600,1200,2400"
 window_size="100"
 min_threshold="10"

Caching in practice 609
 down_thread="false"/>

 <pbcast.STABLE desired_avg_gossip="20000"
 up_thread="false"
 down_thread="false"/>

 <FRAG frag_size="8192"
 down_thread="false"
 up_thread="false"/>

 <pbcast.GMS join_timeout="5000"
 join_retry_timeout="2000"
 shun="true" print_local_addr="true"/>

 <pbcast.STATE_TRANSFER up_thread="true"
 down_thread="true"/>
 </config>
 </attribute>

 </mbean>
</server>

Granted, this configuration file may look scary at first, but it’s easy to understand.
You have to know that it’s not only a configuration file for JBoss Cache, it’s many
things in one: a JMX service configuration for JBoss AS deployment, a configura-
tion file for TreeCache, and a fine-grained configuration of JGroups, the commu-
nication library.

 Ignore the JBoss-deployment related first lines and look at the first attribute,
TransactionManagerLookupClass. The GenericTransactionManagerLookup tries
to find the transaction manager in most popular application servers, but it also
works in a stand-alone environment without JTA (clustered caching without a
transaction manager is a rare scenario). If JBoss Cache throws an exception on
startup, telling you that it can’t find the transaction manager, you’ll have to create
such a lookup class yourself for your JTA provider/application server.

 Next are the configuration attributes for a replicated cache that uses synchro-
nized communication. This means that a node sending a synchronization message
waits until all nodes in the group acknowledge the message. This is a good choice
for a real replicated cache; asynchronous nonblocking communication would be
more appropriate if the node B was a hot standby (a node that immediately takes
over if node A fails) instead of a live partner. This is a question of failover versus
computing capacity, both good reasons to set up a cluster. Most of the configura-
tion attributes should be self-explanatory, such as timeouts and the fetching of
state when a node comes into a cluster.

 JBoss Cache can also evict elements, to prevent memory exhaustion. In this
example, you don’t set up an eviction policy, so the cache slowly starts to fill all

610 CHAPTER 13

Optimizing fetching and caching
available memory. You’ll have to consult the JBoss Cache documentation for evic-
tion policy configuration; the usage of Hibernate region names and eviction set-
tings is similar to EHCache.

 JBoss Cache also supports invalidation instead of replication of modified data
in a cluster, a potentially better performing choice. The Hibernate query cache,
however, requires replication. You can also switch to OPTIMISTIC locking instead
of pessimistic, again boosting scalability of the clustered cache. Doing so requires
a different Hibernate cache provider plug-in, org.hibernte.cache.Optimis-
ticTreeCacheProvider.

 Finally, let’s look at the JGroups cluster communication configuration. The
order of communication protocols is extremely important, so don’t change or
add lines randomly. Most interesting is the first protocol, <UDP>. The loopback
attribute must be set to true if node A is a Microsoft Windows machine (it isn’t in
this case).

 The other JGroups attributes are more complex and can be found in the
JGroups documentation. They deal with the discovery algorithms used to detect
new nodes in a group, failure detection, and, in general, the management of the
group communication.

 After changing the cache concurrency strategy of your persistent classes to
transactional (or read-only) and creating a treecache.xml file for node A, you can
start up your application and look at the log output. We recommend enabling
DEBUG logging for the org.jboss.cache package; you’ll then see how JBoss Cache
reads the configuration and reports node A as the first node in the cluster. To
deploy node B, deploy the application on that node; no configuration file needs
to be changed (if the second node also isn’t a Microsoft Windows machine). If
you start this second node, you should see join messages on both nodes. Your
Hibernate application now uses fully transactional caching in a cluster.

 There is one final optional setting to consider. For cluster cache providers, it
may be better to set the Hibernate configuration option hibernate.cache.use_
minimal_puts to true. When this setting is enabled, Hibernate adds an item to
the cache only after checking to ensure that the item isn’t already cached. This
strategy performs better if cache writes (puts) are much more expensive than
cache reads (gets). This is the case for a replicated cache in a cluster, but not for a
local cache or a cache provider that relies on invalidation instead of replication.

 No matter if you’re using a cluster or a local cache, you sometimes need to
control it programmatically, either for testing or tuning purposes.

Caching in practice 611
13.4.5 Controlling the second-level cache

Hibernate has some useful methods that can help you test and tune your cache.
Consider the global configuration switch for the second-level cache, hibernate.
cache.use_second_level_cache. By default, any <cache> element in your map-
ping files (or in hibernate.cfg.xml, or an annotation) triggers the second-level
cache and loads the cache provider at startup. If you want to disable the sec-
ond-level cache globally without removing the cache mapping elements or anno-
tations, set this configuration property to false.

 Just as the Session and EntityManager provide methods for controlling the
persistence context first-level cache programmatically, so does the SessionFac-
tory for the second-level cache. In a JPA application, you have to get access to the
underlying internal SessionFactory, as described in chapter 2, section 2.2.4,
“Switching to Hibernate interfaces.”

 You can call evict() to remove an element from the second-level cache by
specifying the class and the object identifier value:

SessionFactory.evict(Category.class, new Long(123));

You may also evict all elements of a certain class or only evict a particular collec-
tion role by specifying a region name:

SessionFactory.evict("auction.model.Category");

 You’ll rarely need these control mechanisms. Also note that eviction of the sec-
ond-level cache is nontransactional, that is, the cache region isn’t locked during
eviction.

 Hibernate also offers CacheMode options that can be activated for a particular
Session. Imagine that you want to insert many objects into the database in one
Session. You need to do this in batches, to avoid memory exhaustion—every
object is added to the first-level cache. However, it’s also added to the second-level
cache, if enabled for the entity class. A CacheMode controls the interaction of
Hibernate with the second-level cache:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

session.setCacheMode(CacheMode.IGNORE);

for (int i=0; i<100000; i++) {
 Item item = new Item(...);
 session.save(item);
 if (i % 100 == 0) {
 session.flush();
 session.clear();

612 CHAPTER 13

Optimizing fetching and caching
 }
}

tx.commit();
session.close();

Setting CacheMode.IGNORE tells Hibernate not to interact with the second-level
cache, in this particular Session. The available options are as follows:

■ CacheMode.NORMAL—The default behavior.

■ CacheMode.IGNORE—Hibernate never interacts with the second-level cache
except to invalidate cached items when updates occur.

■ CacheMode.GET—Hibernate may read items from the second-level cache,
but it won’t add items except to invalidate items when updates occur.

■ CacheMode.PUT—Hibernate never reads items from the second-level cache,
but it adds items to the cache as it reads them from the database.

■ CacheMode.REFRESH—Hibernate never reads items from the second-level
cache, but it adds items to the cache as it reads them from the database. In
this mode, the effect of hibernate.cache.use_minimal_puts is bypassed,
in order to force a cache refresh in a replicated cluster cache.

Good use cases for any cache modes except NORMAL and IGNORE are rare.
 This completes our discussion of the first- and second-level caches in a Hiber-

nate application. We’d like to repeat a statement we made at the beginning of this
section: Your application should perform satisfactorily without the second-level
cache. You’ve only cured the symptoms, not the actual problem if a particular pro-
cedure in your application is running in 2 instead of 50 seconds with the sec-
ond-level cache enabled. Customization of the fetch plan and fetching strategy is
always your first optimization step; then, use the second-level cache to make your
application snappier and to scale it to the concurrent transaction load it will have
to handle in production.

13.5 Summary

In this chapter, you created a global fetch plan and defined which objects and col-
lections should be loaded into memory at all times. You defined the fetch plan
based on your use cases and how you want to access associated entities and iterate
through collections in your application.

 Next, you selected the right fetching strategy for your fetch plan. Your goal is
to minimize the number of SQL statements and the complexity of each SQL state-

Summary 613
ment that must be executed. You especially want to avoid the n+1 selects and Car-
tesian product issues we examined in detail, using various optimization strategies.

 The second half of this chapter introduced caching with the theory behind
caching and a checklist you can apply to find out which classes and collections are
good candidates for Hibernate’s optional second-level cache. You then config-
ured and enabled second-level caching for a few classes and collections with the
local EHCache provider, and a cluster-enabled JBoss Cache.

 Table 13.2 shows a summary you can use to compare native Hibernate features
and Java Persistence.

The next chapters deal exclusively with querying and how to write and execute
HQL, JPA QL, SQL, and Criteria queries with all Hibernate and Java Persis-
tence interfaces.

Table 13.2 Hibernate and JPA comparison chart for chapter 13

Hibernate Core Java Persistence and EJB 3.0

Hibernate supports fetch-plan definition with lazy
loading through proxies or based on interception.

Hibernate implements a Java Persistence provider
with proxy or interception-based lazy loading.

Hibernate allows fine-grained control over
fetch-plan and fetching strategies.

Java Persistence standardizes annotations for fetch
plan declaration, Hibernate extensions are used for
fine-grained fetching strategy optimization.

Hibernate provides an optional second-level class
and collection data cache, configured in a Hiber-
nate configuration file or XML mapping files.

Use Hibernate annotations for declaration of the
cache concurrency strategy on entities and collec-
tions.

Querying with HQL
and JPA QL
This chapter covers
■ Understanding the various query options
■ Writing HQL and JPA QL queries
■ Joins, reporting queries, subselects
614

Creating and running queries 615
Queries are the most interesting part of writing good data access code. A complex
query may require a long time to get right, and its impact on the performance of
the application can be tremendous. On the other hand, writing queries becomes
much easier with more experience, and what seemed difficult at first is only a mat-
ter of knowing some of the more advanced features.

 If you’ve been using handwritten SQL for a number of years, you may be con-
cerned that ORM will take away some of the expressiveness and flexibility that
you’re used to. This isn’t the case with Hibernate and Java Persistence.

 Hibernate’s powerful query facilities allow you to express almost everything
you commonly (or even uncommonly) need to express in SQL, but in object-ori-
ented terms—using classes and properties of classes.

 We’ll show you the differences between native Hibernate queries and the stan-
dardized subset in Java Persistence. You may also use this chapter as a reference;
hence some sections are written in a less verbose style but show many small code
examples for different use cases. We also sometimes skip optimizations in the
CaveatEmptor application for better readability. For example, instead of referring
to the MonetaryAmount value type, we use a BigDecimal amount in comparisons.

 First, we show you how queries are executed. Don’t let yourself be distracted by
the queries; we discuss them soon.

14.1 Creating and running queries

Let’s start with a few examples so you understand the basic usage. In earlier chap-
ters, we mentioned that there are three ways to express queries in Hibernate:

■ Hibernate Query Language (HQL), and the subset standardized as JPA QL:
session.createQuery("from Category c where c.name like 'Laptop%'");
entityManager.createQuery(
 "select c from Category c where c.name like 'Laptop%'"
);

■ Criteria API for query by criteria (QBC) and query by example (QBE):
session.createCriteria(Category.class)
 .add(Restrictions.like("name", "Laptop%"));

■ Direct SQL with or without automatic mapping of resultsets to objects:
session.createSQLQuery(

 "select {c.*} from CATEGORY {c} where NAME like 'Laptop%'"
).addEntity("c", Category.class);

A query must be prepared in application code before execution. So, querying
involves several distinct steps:

616 CHAPTER 14

Querying with HQL and JPA QL
1 Create the query, with any arbitrary restriction or projection of data that
you want to retrieve.

2 Bind runtime arguments to query parameters; the query can be reused with
changing settings.

3 Execute the prepared query against the database and retrieval of data. You
can control how the query is executed and how data should be retrieved
into memory (all at once or piecemeal, for example).

Hibernate and Java Persistence offer query interfaces and methods on these inter-
faces to prepare and execute arbitrary data retrieval operations.

14.1.1 Preparing a query

The org.hibernate.Query and org.hibernate.Criteria interfaces both define
several methods for controlling execution of a query. In addition, Query provides
methods for binding concrete values to query parameters. To execute a query in
your application, you need to obtain an instance of one of these interfaces, using
the Session.

 Java Persistence specifies the javax.persistence.Query interface. The stan-
dardized interface isn’t as rich as the native Hibernate API, but offers all necessary
methods to execute a query in different ways and to bind arguments to query
parameters. Unfortunately, the useful Hibernate Criteria API has no equivalent
in Java Persistence, although it’s highly likely that a similar query interface will be
added in a future version of the standard.

Creating a query object
To create a new Hibernate Query instance, call either createQuery() or create-
SQLQuery() on a Session. The createQuery() method prepares an HQL query:

Query hqlQuery = session.createQuery("from User");

createSQLQuery() is used to create an SQL query using the native syntax of the
underlying database:

Query sqlQuery =
 session.createSQLQuery(
 "select {user.*} from USERS {user}"
).addEntity("user", User.class);

In both cases, Hibernate returns a newly instantiated Query object that may be
used to specify exactly how a particular query should be executed and to allow
execution of the query. So far, no SQL has been sent to the database.

Creating and running queries 617
 To obtain a Criteria instance, call createCriteria(), passing the class of the
objects you want the query to return. This is also called the root entity of the criteria
query, the User in this example:

Criteria crit = session.createCriteria(User.class);

The Criteria instance may be used in the same way as a Query object—but it’s
also used to construct the object-oriented representation of the query, by adding
Criterion instances and navigating associations to new Criterias.

 With the Java Persistence API, your starting point for queries is the EntityMan-
ager. To create a javax.persistence.Query instance for JPA QL, call create-
Query():

Query ejbQuery = em.createQuery("select u from User u");

To create a native SQL query, use createNativeQuery():

Query sqlQuery =
 session.createNativeQuery(
 "select u.USER_ID, u.FIRSTNAME, u.LASTNAME from USERS u",
 User.class
);

The way you define the returned objects from a native query is slightly different
than in Hibernate (there are no placeholders in the query here).

 After you’ve created the query, you prepare it for execution by setting various
options.

Paging the result
A commonly used technique is pagination. Users may see the result of their search
request (for example, for specific Items) as a page. This page shows a limited sub-
set (say, 10 Items) at a time, and users can navigate to the next and previous pages
manually. In Hibernate, Query and Criteria interfaces support this pagination of
the query result:

Query query =
 session.createQuery("from User u order by u.name asc");
query.setMaxResults(10);

The call to setMaxResults(10) limits the query resultset to the first 10 objects
(rows) returned by the database. In this Criteria query, the requested page starts
in the middle of the resultset:

Criteria crit = session.createCriteria(User.class);
crit.addOrder(Order.asc("name"));
crit.setFirstResult(40);
crit.setMaxResults(20);

618 CHAPTER 14

Querying with HQL and JPA QL
Starting from the fortieth object, you retrieve the next 20 objects. Note that
there is no standard way to express pagination in SQL—Hibernate knows the
tricks to make this work efficiently on your particular database. You can even add
this flexible pagination option to an SQL query. Hibernate will rewrite your SQL
for pagination:

Query sqlQuery =
 session.createSQLQuery("select {u.*} from USERS {u}")
 .addEntity("u", User.class);
sqlQuery.setFirstResult(40);
sqlQuery.setMaxResults(20);

You may use the method-chaining coding style (methods return the receiving
object instead of void) with the Query and Criteria interfaces, rewriting the two
previous examples as follows:

Query query =
 session.createQuery("from User u order by u.name asc")
 .setMaxResults(10);
Criteria crit =
 session.createCriteria(User.class)
 .addOrder(Order.asc("name"))
 .setFirstResult(40)
 .setMaxResults(20);

Chaining method calls is less verbose and is supported by many Hibernate APIs.
The Java Persistence query interfaces also support pagination and method
chaining for JPA QL and native SQL queries with the javax.persistence.Query
interface:

Query query =
 em.createQuery("select u from User u order by u.name asc")
 .setFirstResult(40)
 .setMaxResults(20);

Next in preparing your query is the setting of any runtime parameters.

Considering parameter binding
Without runtime parameter binding, you have to write bad code:

String queryString =
 "from Item i where i.description like '" + search + "'";
List result = session.createQuery(queryString).list();

You should never write this code because a malicious user could search for the fol-
lowing item description—that is, by entering the value of search in a search dia-
log box as

foo' and callSomeStoredProcedure() and 'bar' = 'bar

Creating and running queries 619
As you can see, the original queryString is no longer a simple search for a string
but also executes a stored procedure in the database! The quote characters aren’t
escaped; hence the call to the stored procedure is another valid expression in the
query. If you write a query like this, you open up a major security hole in your
application by allowing the execution of arbitrary code on your database. This is
known as an SQL injection security issue. Never pass unchecked values from user
input to the database! Fortunately, a simple mechanism prevents this mistake.

 The JDBC driver includes functionality for safely binding values to SQL param-
eters. It knows exactly what characters in the parameter value to escape, so that
the previous vulnerability doesn’t exist. For example, the quote characters in the
given search are escaped and are no longer treated as control characters but as a
part of the search string value. Furthermore, when you use parameters, the data-
base is able to efficiently cache precompiled prepared statements, improving per-
formance significantly.

 There are two approaches to parameter binding: using positional or using
named parameters. Hibernate and Java Persistence support both options, but you
can’t use both at the same time for a particular query.

 With named parameters, you can rewrite the query as

String queryString =
 "from Item item where item.description like :search";

The colon followed by a parameter name indicates a named parameter. Then,
bind a value to the search parameter:

Query q = session.createQuery(queryString)
 .setString("search", searchString);

Because searchString is a user-supplied string variable, you call the setString()
method of the Query interface to bind it to the named parameter (:search). This
code is cleaner, much safer, and performs better, because a single compiled SQL
statement can be reused if only bind parameters change.

 Often, you’ll need multiple parameters:

String queryString = "from Item item"
 + " where item.description like :search"
 + " and item.date > :minDate";

Query q = session.createQuery(queryString)
 .setString("search", searchString)
 .setDate("minDate", mDate);

The same query and code looks slightly different in Java Persistence:

620 CHAPTER 14

Querying with HQL and JPA QL
Query q = em.createQuery(queryString)
 .setParameter("search", searchString)
 .setParameter("minDate", mDate, TemporalType.DATE);

The setParameter() method is a generic operation that can bind all types of
arguments, it only needs a little help for temporal types (the engine needs to
know if you want only the date, time, or a full timestamp bound). Java Persistence
supports only this method for binding of parameters (Hibernate, by the way, has
it too).

 Hibernate, on the other hand, offers many other methods, some of them for
completeness, others for convenience, that you can use to bind arguments to
query parameters.

Using Hibernate parameter binding
You’ve called setString() and setDate() to bind arguments to query parame-
ters. The native Hibernate Query interface provides similar convenience methods
for binding arguments of most of the Hibernate built-in types: everything from
setInteger() to setTimestamp() and setLocale(). They’re mostly optional; you
can rely on the setParameter() method to figure out the right type automatically
(except for temporal types).

 A particularly useful method is setEntity(), which lets you bind a persistent
entity (note that setParameter() is smart enough to understand even that auto-
matically):

session.createQuery("from Item item where item.seller = :seller")
 .setEntity("seller", theSeller);

However, there is also a generic method that allows you to bind an argument of
any Hibernate type:

String queryString = "from Item item"
 + " where item.seller = :seller and"
 + " item.description like :desc";

session.createQuery(queryString)
 .setParameter("seller",
 theSeller,
 Hibernate.entity(User.class))
 .setParameter("desc", description, Hibernate.STRING);

This works even for custom user-defined types, like MonetaryAmount:

Query q = session.createQuery("from Bid where amount > :amount");
q.setParameter("amount", givenAmount,
 Hibernate.custom(MonetaryAmountUserType.class));

Creating and running queries 621
If you have a JavaBean with seller and description properties, you can call the
setProperties() method to bind the query parameters. For example, you can
pass query parameters in an instance of the Item class itself:

Item item = new Item();
item.setSeller(seller);
item.setDescription(description);

String queryString = "from Item item"
 + " where item.seller = :seller and"
 + " item.description like :desccription";

session.createQuery(queryString).setProperties(item);

The setProperties() binding matches names of JavaBean properties to named
parameters in the query string, internally calling setParameter() to guess the
Hibernate type and bind the value. In practice, this turns out to be less useful
than it sounds, because some common Hibernate types aren’t guessable (tempo-
ral types, in particular).

 The parameter binding methods of Query are null-safe. So the following code
is legal:

session.createQuery("from User as u where u.username = :name")
 .setString("name", null);

However, the result of this code is almost certainly not what you intended! The
resulting SQL will contain a comparison like USERNAME = null, which always eval-
uates to null in SQL ternary logic. Instead, you must use the is null operator:

session.createQuery("from User as u where u.username is null");

Using positional parameters
If you prefer, you can use positional parameters instead in Hibernate and Java
Persistence:

String queryString = "from Item item"
 + " where item.description like ?"
 + " and item.date > ?";

Query q = session.createQuery(queryString)
 .setString(0, searchString)
 .setDate(1, minDate);

Java Persistence also supports positional parameters:

String queryString = "from Item item"
 + " where item.description like ?1"
 + " and item.date > ?2";

Query q = em.createQuery(queryString)

622 CHAPTER 14

Querying with HQL and JPA QL
 .setParameter(1, searchString)
 .setParameter(2, minDate, TemporalType.DATE);

Not only is this code much less self-documenting than the alternative with named
parameters, it’s also much more vulnerable to easy breakage if you change the
query string slightly:

String queryString = "from Item item"
 + " where item.date > ?"
 + " and item.description like ?";

Every change of the position of the bind parameters requires a change to the
parameter binding code. This leads to fragile and maintenance-intensive code.
Our recommendation is to avoid positional parameters. They may be more conve-
nient if you build complex queries programmatically, but the Criteria API is a
much better alternative for that purpose.

 If you have to use positional parameters, remember that Hibernate starts
counting at 0, but Java Persistence starts at 1, and that you have to add a number
to each question mark in a JPA QL query string. They have different legacy roots:
Hibernate in JDBC, Java Persistence in older versions of EJB QL.

 In addition to bind parameters, you often want to apply other hints that influ-
ence how a query is executed.

Setting query hints
Let’s assume that you make modifications to persistent objects before executing
a query. These modifications are only present in memory, so Hibernate (and Java
Persistence providers) flushes the persistence context and all changes to the data-
base before executing your query. This guarantees that the query runs on cur-
rent data and that no conflict between the query result and the in-memory
objects can occur.

 This is sometimes impractical: for example, if you execute a sequence that con-
sists of many query-modify-query-modify operations, and each query is retrieving a
different dataset than the one before. In other words, you don’t need to flush
your modifications to the database before executing a query, because conflicting
results aren’t a problem. Note that the persistence context provides repeatable
read for entity objects, so only scalar results of a query are a problem anyway.

 You can disable flushing of the persistence context with setFlushMode() on a
Session or EntityManager. Or, if you want to disable flushing only before a par-
ticular query, you can set a FlushMode on the Query (Hibernate and JPA) object:

Query q = session.createQuery(queryString)
 .setFlushMode(FlushMode.COMMIT);

Creating and running queries 623
Criteria criteria = session.createCriteria(Item.class)
 .setFlushMode(FlushMode.COMMIT);

Query q = em.createQuery(queryString)
 .setFlushMode(FlushModeType.COMMIT);

Hibernate won’t flush the persistence context before executing any of these
queries.

 Another optimization is a fine-grained org.hibernate.CacheMode for a partic-
ular query result. You used a cache mode in chapter 13, section 13.4.5, “Control-
ling the second-level cache,” to control how Hibernate interacts with the second-
level cache. If Hibernate retrieves an object by identifier, it looks it up in the first-
level persistence context cache and, if enabled, the second-level cache region for
this entity. The same happens when you execute a query that returns entity
instances: During marshaling of the query result, Hibernate tries to resolve all
entity instances by looking them up from the persistence context cache first—it
ignores the entity data of the query result if the entity instance is in the persis-
tence context cache. And, if the retrieved entity instance wasn’t in any cache,
Hibernate puts it there after the query completes. You can control this behavior
with a CacheMode on a query:

Query q = session.createQuery("from Item")
 .setCacheMode(CacheMode.IGNORE);

Criteria criteria = session.createCriteria(Item.class)
 .setCacheMode(CacheMode.IGNORE);

Query q = em.createQuery(queryString)
 .setHint("org.hibernate.cacheMode",
 org.hibernate.CacheMode.IGNORE);

A CacheMode.IGNORE, for example, tells Hibernate not to interact with the sec-
ond-level cache for any entity returned by this query. In other words, any Item
retrieved by this query isn’t put in the second-level cache. Setting this cache mode
is useful if you execute a query that shouldn’t update the second-level cache,
maybe because the data you’re retrieving is only relevant for a particular situation,
and shouldn’t exhaust the available space in the cache region.

 In “Controlling the persistence context cache” in chapter 9, section 9.3.3, we
talked about the control of the persistence context and how you can reduce mem-
ory consumption and prevent long dirty checking cycles. One way to disable dirty
checking for a particular persistent object is to set session.setRead-

Only(object, true) (the EntityManager doesn’t support this API).
 You can tell Hibernate that all entity objects returned by a query should be

considered read-only (although not detached):

624 CHAPTER 14

Querying with HQL and JPA QL
Query q = session.createQuery("from Item")
 .setReadOnly(true);

Criteria criteria = session.createCriteria(Item.class)
 .setReadOnly(true);

Query q = em.createQuery("select i from Item i")
 .setHint("org.hibernate.readOnly", true);

All Item objects returned by this query are in persistent state, but no snapshot for
automatic dirty checking is enabled in the persistence context. Hibernate doesn’t
persist any modifications automatically, unless you disable read-only mode with
session.setReadOnly(object, false).

 You can control how long a query is allowed to run by setting a timeout:

Query q = session.createQuery("from Item")
 .setTimeout(60); // 1 minute

Criteria criteria = session.createCriteria(Item.class)
 .setTimeout(60);
Query q = em.createQuery("select i from Item i")
 .setHint("org.hibernate.timeout", 60);

This method has the same semantics and consequences as the setQueryTime-
out() method on a JDBC Statement. Also related to the underlying JDBC is the
fetch size:

Query q = session.createQuery("from Item")
 .setFetchSize(50);

Criteria criteria = session.createCriteria(Item.class)
 .setFetchSize(50);

Query q = em.createQuery("select i from Item i")
 .setHint("org.hibernate.fetchSize", 50);

The JDBC fetch size is an optimization hint for the database driver; it may not
result in any performance improvement if the driver doesn’t implement this func-
tionality. If it does, it can improve the communication between the JDBC client
and the database, by retrieving many rows in one batch when the client operates
on a query result (that is, on a ResultSet). Because Hibernate is working with the
ResultSet behind the scenes, this hint can improve data retrieval if you execute a
query with list()—which you’ll do soon.

 When you optimize an application you often have to read complex SQL logs.
We highly recommend that you enable hibernate.use_sql_comments; Hibernate
will then add a comment to each SQL statement it writes to the logs. You can set a
custom comment for a particular query with setComment():

Creating and running queries 625
Query q = session.createQuery("from Item")
 .setComment("My Comment...");

Criteria criteria = session.createCriteria(Item.class)
 .setComment("My Comment...");

Query q = em.createQuery("select i from Item i")
 .setHint("org.hibernate.comment", "My Comment...");

The hints you’ve been setting so far are all related to Hibernate or JDBC handling.
Many developers (and DBAs) consider a query hint to be something completely
different. In SQL, a query hint is a comment in the SQL statement that contains an
instruction for the SQL optimizer of the database management system. For exam-
ple, if the developer or DBA thinks that the execution plan selected by the data-
base optimizer for a particular SQL statement isn’t the fastest, they use a hint to
force a different execution plan. Hibernate and Java Persistence don’t support
arbitrary SQL hints with an API; you’ll have to fall back to native SQL and write
your own SQL statement—you can of course execute that statement with the pro-
vided APIs.

 (With some database-management systems you can control the optimizer with
an SQL comment at the beginning of an SQL statement; in that case, use
Query.setComment() to add the hint. In other scenarios, you may be able to write
an org.hibernate.Interceptor and manipulate an SQL statement in the
onPrepareStatement(sql) method before it’s sent to the database.)

 Finally, you can control whether a query should force a pessimistic lock in the
database management system—a lock that is held until the end of the database
transaction:

Query q = session.createQuery("from Item item")
 .setLockMode("item", LockMode.UPGRADE);

Criteria criteria = session.createCriteria(Item.class)
 .setLockMode(LockMode.UPGRADE);

Both queries, if supported by your database dialect, result in an SQL statement
that includes a ... FOR UPDATE operation (or the equivalent, if supported by the
database system and dialect). Currently, pessimistic locking isn’t available (but it’s
planned as a Hibernate extension hint) on the Java Persistence query interface.

 Let’s assume that queries are now prepared, so you can run them.

14.1.2 Executing a query

Once you’ve created and prepared a Query or Criteria object, you’re ready to
execute it and retrieve the result into memory. Retrieving the whole result into

626 CHAPTER 14

Querying with HQL and JPA QL
memory in one turn is the most common way to execute a query; we call this list-
ing. Some other options are available that we also discuss next:, iterating and
scrolling. Scrolling is about as useful as iteration: You rarely need one of these
options. We’d guess that more than 90 percent of all query execution relies on the
list() and getResultList() methods in a regular application.

 First, the most common case.

Listing all results
In Hibernate, the list() method executes the query and returns the results as a
java.util.List:

List result = myQuery.list();

The Criteria interface also supports this operation:

List result = myCriteria.list();

In both cases, one or several SELECTs statements are executing immediately,
depending on your fetch plan. If you map any associations or collections as non-
lazy, they must be fetched in addition to the data you want retrieved with your
query. All these objects are loaded into memory, and any entity objects that are
retrieved are in persistent state and added to the persistence context.

 Java Persistence offers a method with the same semantics, but a different
name:

List result = myJPAQuery.getResultList();

With some queries you know that the result is only a single instance—for exam-
ple, if you want only the highest bid. In this case, you can read it from the result
list by index, result.get(0). Or, you can limit the number of returned rows with
setMaxResult(1). Then you may execute the query with the uniqueResult()
method, because you know only one object will be returned:

Bid maxBid =
 (Bid) session.createQuery("from Bid b order by b.amount desc")
 .setMaxResults(1)
 .uniqueResult();
Bid bid = (Bid) session.createCriteria(Bid.class)
 .add(Restrictions.eq("id", id))
 .uniqueResult();

If the query returns more than one object, an exception is thrown. If the query
result is empty, a null is returned. This also works in Java Persistence, again with
a different method name (and, unfortunately, an exception is thrown if the
result is empty):

Creating and running queries 627
Bid maxBid = (Bid) em.createQuery(
 "select b from Bid b order by b.amount desc"
).setMaxResults(1)
 .getSingleResult();

Retrieving all results into memory is the most common way to execute a query.
Hibernate supports some other methods that you may find interesting if you want
to optimize the memory consumption and execution behavior of a query.

Iterating through the results
The Hibernate Query interface also provides the iterate() method to execute a
query. It returns the same data as list(), but relies on a different strategy for
retrieving the results.

 When you call iterate() to execute a query, Hibernate retrieves only the pri-
mary key (identifier) values of entity objects in a first SQL SELECT, and then tries
to find the rest of the state of the objects in the persistence context cache, and (if
enabled) the second-level cache.

 Consider the following code:

Query categoryByName =
 session.createQuery("from Category c where c.name like :name");
categoryByName.setString("name", categoryNamePattern);
List categories = categoryByName.list();

This query results in execution of at least one SQL SELECT, with all columns of the
CATEGORY table included in the SELECT clause:

select CATEGORY_ID, NAME, PARENT_ID from CATEGORY where NAME like ?

If you expect that categories are already cached in the persistence context or the
second-level cache, then you need only the identifier value (the key to the cache).
This therefore reduces the amount of data fetched from the database. The follow-
ing SQL is slightly more efficient:

select CATEGORY_ID from CATEGORY where NAME like ?

You can use the iterate() method for this:

Query categoryByName =
 session.createQuery("from Category c where c.name like :name");
categoryByName.setString("name", categoryNamePattern);
Iterator categories = categoryByName.iterate();

The initial query retrieves only Category primary key values. You then iterate
through the result; Hibernate looks up each Category object in the current per-
sistence context and, if enabled, in the second-level cache. If a cache miss occurs,

628 CHAPTER 14

Querying with HQL and JPA QL
Hibernate executes an additional SELECT for each turn, retrieving the full Cate-
gory object by its primary key from the database.

 In most cases, this is a minor optimization. It’s usually much more important
to minimize row reads than to minimize column reads. Still, if your object has large
string fields, this technique may be useful to minimize data packets on the net-
work and therefore latency. It should be clear that it’s really effective only if the
second-level cache region for the iterated entity is enabled. Otherwise it produces
n+1 selects!

 Hibernate keeps the iterator open until you finish iteration through all results
or until the Session is closed. You can also close it explicitly with org.hiber-
nate.Hibernate.close(iterator).

 Also note that Hibernate Criteria and Java Persistence, at the time of writing,
don’t support this optimization.

 Another optimized way to execute a query is scrolling through the result.

Scrolling with database cursors
Plain JDBC provides a feature called scrollable resultsets. This technique uses a cur-
sor that is held on the database management system. The cursor points to a partic-
ular row in the result of a query, and the application can move the cursor forward
and backward. You can even jump to a particular row with the cursor.

 One of the situations where you should scroll through the results of a query
instead of loading them all into memory involves resultsets that are too large to fit
into memory. Usually you try to further restrict the result by tightening the condi-
tions in the query. Sometimes this isn’t possible, maybe because you need all of
the data, but want to retrieve it in several steps.

 You’ve already seen scrolling in “Writing a procedure with batch updates”
chapter 12, section 12.2.2 and how to implement procedures that work on batches
of data, because this is where it’s most useful. The following example shows an
overview of other interesting options on the ScrollableResults interface:

ScrollableResults itemCursor =
 session.createQuery("from Item").scroll();

itemCursor.first();
itemCursor.last();
itemCursor.get();

itemCursor.next();
itemCursor.scroll(3);
itemCursor.getRowNumber();
itemCursor.setRowNumber(5);
itemCursor.previous();

Creating and running queries 629
itemCursor.scroll(-3);

itemCursor.close();

This code doesn’t make much sense; it displays the most interesting methods on
the ScrollableResults interface. You can set the cursor to the first and last Item
object in the result, or get the Item the cursor is currently pointing to with get().
You can go to a particular Item by jumping to a position with setRowNumber() or
scroll backward and forward with next() and previous(). Another option is
scrolling forward and backward by an offset, with scroll().

 Hibernate Criteria queries can also be executed with scrolling instead of
list(); the returned ScrollableResults cursor works the same. Note that you
absolutely must close the cursor when you’re done working with it, before you
end the database transaction. Here is a Criteria example that shows the opening
of a cursor:

ScrollableResults itemCursor =
 session.createCriteria(Item.class)
 .scroll(ScrollMode.FORWARD_ONLY);

... // Scroll only forward

itemCursor.close()

The ScrollMode constants of the Hibernate API are equivalent to the constants in
plain JDBC. In this case, the constant ensures that your cursor can only move for-
ward. This may be required as a precaution; some JDBC drivers don’t support
scrolling backward. Other available modes are ScrollMode.SCROLL_INSENSITIVE
and ScrollMode.SCROLL_SENSITIVE. An insensitive cursor won’t expose you to
modified data while the cursor is open (effectively guaranteeing that no dirty
reads, unrepeatable reads, or phantom reads can slip into your resultset). On the
other hand, a sensitive cursor exposes newly committed data and committed mod-
ifications to you while you work on your resultset. Note that the Hibernate
persistence context cache still provides repeatable read for entity instances, so only
modified scalar values you project in the resultset can be affected by this setting.

 So far, the code examples we’ve shown all embed query string literals in Java
code. This isn’t unreasonable for simple queries, but once you begin considering
complex queries that must be split over multiple lines, this gets a bit unwieldy.

14.1.3 Using named queries

We don’t like to see HQL or JPA QL string literals scattered all over the Java code,
unless really necessary. Hibernate lets you externalize query strings to the map-
ping metadata, a technique that is called named queries. This lets you store all que-

630 CHAPTER 14

Querying with HQL and JPA QL
ries related to a particular persistent class (or a set of classes) encapsulated with
the other metadata of that class in an XML mapping file. Or, if you use annota-
tions, you can create named queries as metadata of a particular entity class or put
them into an XML deployment descriptor. The name of the query is used to call it
from application code.

Calling a named query
In Hibernate, the getNamedQuery() method obtains a Query instance for a named
query:

session.getNamedQuery("findItemsByDescription")
 .setString("desc", description);

In this example, you call the named query findItemsByDescription and bind a
string argument to the named parameter desc.

 Java Persistence also supports named queries:

em.createNamedQuery("findItemsByDescription")
 .setParameter("desc", description);

Named queries are global—that is, the name of a query is considered to be a
unique identifier for a particular SessionFactory or persistence unit. How and
where they’re defined, in XML mapping files or annotations, is no concern of
your application code. Even the query language doesn’t matter.

Defining a named query in XML metadata
You can place a named query inside any <hibernate-mapping> element in your
XML metadata. In larger applications, we recommend isolating and separating all
named queries into their own file. Or, you may want some queries to be defined in
the same XML mapping file as a particular class.

 The <query> defines a named HQL or JPA QL query:

<query name="findItemsByDescription"><![CDATA[
 from Item item where item.description like :desc
]]></query>

You should wrap the query text into a CDATA instruction so the XML parser doesn’t
get confused by any characters in your query string that may accidentally be con-
sidered XML (such as the less than operator).

 If you place a named query definition inside a <class> element, instead of the
root, it’s prefixed with the name of the entity class; for example, findItemsByDe-
scription is then callable as auction.model.Item.findItemsByDescription.
Otherwise, you need to make sure the name of the query is globally unique.

Creating and running queries 631
 All query hints that you set earlier with an API can also be set declaratively:

<query name="findItemsByDescription"
 cache-mode="ignore"
 comment="My Comment..."
 fetch-size="50"
 read-only="true"
 timeout="60"><![CDATA[
 from Item item where item.description like :desc
]]></query>

Named queries don’t have to be HQL or JPA QL strings; they may even be native
SQL queries—and your Java code doesn’t need to know the difference:

<sql-query name="findItemsByDescription">
 <return alias="item" class="Item"/>
 <![CDATA[
 select {item.*} from item where description like :desc
]]>
</sql-query>

This is useful if you think you may want to optimize your queries later by fine-tun-
ing the SQL. It’s also a good solution if you have to port a legacy application to
Hibernate, where SQL code was isolated from the hand-coded JDBC routines.
With named queries, you can easily port the queries one-by-one to mapping files.
We’ll have much more to say about native SQL queries in the next chapter.

Defining a named query with annotations
The Java Persistence standard specifies the @NamedQuery and @NamedNativeQuery
annotations. You can either place these annotations into the metadata of a partic-
ular class or into JPA XML descriptor file. Note that the query name must be glo-
bally unique in all cases; no class or package name is automatically prefixed.

 Let’s assume you consider a particular named query to belong to a particular
entity class:

package auction.model;

import ...;

@NamedQueries({
 @NamedQuery(
 name = "findItemsByDescription",
 query = "select i from Item i where i.description like :desc"
),
 ...
})
@Entity
@Table(name = "ITEM")
public class Item { ... }

632 CHAPTER 14

Querying with HQL and JPA QL
A much more common solution is the encapsulation of queries in the orm.xml
deployment descriptor:

<entity-mappings ...>
 ...
 <named-query name="findAllItems">
 <query>select i from Item i</query>
 </named-query>

 <entity class="Item">
 ...
 <named-query name="findItemsByDescription">
 <query>
 select i from Item i where i.description like :desc
 </query>
 <hint name="org.hibernate.comment" value="My Comment"/>
 <hint name="org.hibernate.fetchSize" value="50"/>
 <hint name="org.hibernate.readOnly" value="true"/>
 <hint name="org.hibernate.timeout" value="60"/>
 </named-query>

 </entity>

</entity-mappings>

You can see that the Java Persistence descriptor supports an extension point: the
hints element of a named-query definition. You can use it to set Hibernate-spe-
cific hints, as you did earlier programmatically with the Query interface.

 Native SQL queries have their own element and can also be either defined
inside or outside an entity mapping:

<named-native-query name="findItemsByDescription"
 result-set-mapping="myItemResult">
 <query>select i.NAME from ITEM i where i.DESC = :desc</query>
 <hint name="org.hibernate.timeout" value="200"/>
</named-native-query>

Embedding native SQL is much more powerful than we’ve shown so far (you can
define arbitrary resultset mappings). We’ll get back to other SQL emedding
options in the next chapter.

 We leave it up to you if you want to utilize the named query feature. However,
we consider query strings in the application code (except if they’re in annota-
tions) to be the second choice; you should always externalize query strings if
possible.

 You now know how to create, prepare, and execute a query with the Hibernate
and Java Persistence APIs and metadata. It’s time to learn the query languages and
options in more detail. We start with HQL and JPA QL.

Basic HQL and JPA QL queries 633
14.2 Basic HQL and JPA QL queries

Let’s start with some simple queries to get familiar with the HQL syntax and
semantics. We apply selection to name the data source, restriction to match records
to the criteria, and projection to select the data you want returned from a query.

TRY IT Testing Hibernate queries—The Hibernate Tools for the Eclipse IDE support
a Hibernate Console view. You can test your queries in the console win-
dow, and see the generated SQL and the result immediately.

You’ll also learn JPA QL in this section, because it’s a subset of the functionality of
HQL—we’ll mention the differences when necessary.

 When we talk about queries in this section, we usually mean SELECT state-
ments, operations that retrieve data from the database. HQL also supports UPDATE,
DELETE, and even INSERT .. SELECT statements, as we discussed in chapter 12, sec-
tion 12.2.1, “Bulk statements with HQL and JPA QL.” JPA QL includes UPDATE and
DELETE. We won’t repeat these bulk operations here and will focus on SELECT
statements. However, keep in mind that some differences between HQL and JPA
QL may also apply to bulk operations—for example, whether a particular function
is portable.

 SELECT statements in HQL work even without a SELECT clause; only FROM is
required. This isn’t the case in JPA QL, where the SELECT clause isn’t optional.
This isn’t a big difference in practice; almost all queries require a SELECT clause,
whether you write JPA QL or HQL. However, we start our exploration of queries
with the FROM clause, because in our experience it’s easier to understand. Keep in
mind that to translate these queries to JPA QL, you must theoretically add a
SELECT clause to complete the statement, but Hibernate lets you execute the
query anyway if you forget it (assuming SELECT *).

14.2.1 Selection

The simplest query in HQL is a selection (note that we don’t mean SELECT clause
or statement here, but from where data is selected) of a single persistent class:

from Item

This query generates the following SQL:

select i.ITEM_ID, i.NAME, i.DESCRIPTION, ... from ITEM i

Using aliases
Usually, when you select a class to query from using HQL or JPA QL, you need to
assign an alias to the queried class to use as a reference in other parts of the query:

634 CHAPTER 14

Querying with HQL and JPA QL
from Item as item

The as keyword is always optional. The following is equivalent:

from Item item

Think of this as being a bit like the temporary variable declaration in the follow-
ing Java code:

for (Iterator i = allQueriedItems.iterator(); i.hasNext();) {
 Item item = (Item) i.next();
 ...
}

You assign the alias item to queried instances of the Item class, allowing you to
refer to their property values later in the code (or query). To remind yourself of
the similarity, we recommend that you use the same naming convention for aliases
that you use for temporary variables (camelCase, usually). However, we may use
shorter aliases in some of the examples in this book, such as i instead of item, to
keep the printed code readable.

FAQ Are HQL and JPA QL case sensitive? We never write HQL and JPA QL key-
words in uppercase; we never write SQL keywords in uppercase either. It
looks ugly and antiquated—most modern terminals can display both
uppercase and lowercase characters. However, HQL and JPA QL aren’t
case-sensitive for keywords, so you can write FROM Item AS item if you
like shouting.

Polymorphic queries
HQL and JPA QL, as object-oriented query languages, support polymorphic queries—
queries for instances of a class and all instances of its subclasses, respectively. You
already know enough HQL and JPA QL to be able to demonstrate this. Consider
the following query:

from BillingDetails

This returns objects of the type BillingDetails, which is an abstract class. In this
case, the concrete objects are of the subtypes of BillingDetails: CreditCard and
BankAccount. If you want only instances of a particular subclass, you may use

from CreditCard

The class named in the from clause doesn’t even need to be a mapped persistent
class; any class will do! The following query returns all persistent objects:

from java.lang.Object

Basic HQL and JPA QL queries 635
Of course, this also works for interfaces—this query returns all serializable persis-
tent objects:

from java.io.Serializable

Likewise, the following criteria query returns all persistent objects (yes, you can
select all the tables of your database with such a query):

from java.lang.Object

Note that Java Persistence doesn’t standardize polymorphic queries that use non-
mapped interfaces. However, this works with Hibernate EntityManager.

 Polymorphism applies not only to classes named explicitly in the FROM clause,
but also to polymorphic associations, as you’ll see later in this chapter.

 We’ve discussed the FROM clause, now let’s move on to the other parts of HQL
and JPA QL.

14.2.2 Restriction

Usually, you don’t want to retrieve all instances of a class. You must be able
express constraints on the property values of objects returned by the query. This
is called restriction. The WHERE clause is used to express a restriction in SQL, HQL,
and JPA QL. These expressions may be as complex as you need to narrow down
the piece of data you’re looking for. Note that restriction doesn’t only apply to
SELECT statements; you also use a restriction to limit the scope of an UPDATE or
DELETE operation.

 This is a typical WHERE clause that restricts the results to all User objects with
the given email address:

from User u where u.email = 'foo@hibernate.org'

Notice that the constraint is expressed in terms of a property, email, of the User
class, and that you use an object-oriented notion for this.

 The SQL generated by this query is

select u.USER_ID, u.FIRSTNAME, u.LASTNAME, u.USERNAME, u.EMAIL
 from USER u
 where u.EMAIL = 'foo@hibernate.org'

You can include literals in your statements and conditions, with single quotes.
Other commonly used literals in HQL and JPA QL are TRUE and FALSE:

from Item i where i.isActive = true

A restriction is expressed using ternary logic. The WHERE clause is a logical expres-
sion that evaluates to true, false, or null for each tuple of objects. You construct

636 CHAPTER 14

Querying with HQL and JPA QL
logical expressions by comparing properties of objects to other properties or lit-
eral values using the built-in comparison operators.

FAQ What is ternary logic? A row is included in an SQL resultset if and only if
the WHERE clause evaluates to true. In Java, notNullObject==null evalu-
ates to false and null==null evaluates to true. In SQL, NOT_NULL_COL-
UMN=null and null=null both evaluate to null, not true. Thus, SQL
needs a special operator, IS NULL, to test whether a value is null. This ter-
nary logic is a way of handling expressions that may be applied to null col-
umn values. Treating null not as a special marker but as a regular value is
an SQL extension to the familiar binary logic of the relational model.
HQL and JPA QL have to support this ternary logic with ternary operators.

Let’s walk through the most common comparison operators.

Comparison expressions
HQL and JPA QL support the same basic comparison operators as SQL. Here are a
few examples that should look familiar if you know SQL:

from Bid bid where bid.amount between 1 and 10
from Bid bid where bid.amount > 100
from User u where u.email in ('foo@bar', 'bar@foo')

Because the underlying database implements ternary logic, testing for null values
requires some care. Remember that null = null doesn’t evaluate to true in SQL,
but to null. All comparisons that use a null operand evaluate to null. (That’s
why you usually don’t see the null literal in queries.) HQL and JPA QL provide an
SQL-style IS [NOT] NULL operator:

from User u where u.email is null
from Item i where i.successfulBid is not null

This query returns all users with no email address and items which are sold.
 The LIKE operator allows wildcard searches, where the wildcard symbols are %

and _, as in SQL:

from User u where u.firstname like 'G%'

This expression restricts the result to users with a firstname starting with a capital
G. You may also negate the LIKE operator, for example, in a substring match
expression:

from User u where u.firstname not like '%Foo B%'

Basic HQL and JPA QL queries 637
The percentage symbol stands for any sequence of characters; the underscore can
be used to wildcard a single character. You can define an escape character if you
want a literal percentage or underscore:

from User u where u.firstname not like '\%Foo%' escape='\'

This query returns all users with a firstname that starts with %Foo.
 HQL and JPA QL support arithmetic expressions:

from Bid bid where (bid.amount / 0.71) - 100.0 > 0.0

Logical operators (and parentheses for grouping) are used to combine
expressions:

from User user
 where user.firstname like 'G%' and user.lastname like 'K%'
from User u
 where (u.firstname like 'G%' and u.lastname like 'K%')
 or u.email in ('foo@hibernate.org', 'bar@hibernate.org')

You can see the precedence of operators in table 14.1, from top to bottom.
 The listed operators and their precedence are the same in HQL and JPA QL.

The arithmetic operators, for example multiplication and addition, are self-
explanatory. You’ve already seen how binary comparison expressions have the
same semantics as their SQL counterpart and how to group and combine them
with logical operators. Let’s discuss collection handling.

Table 14.1 HQL and JPA QL operator precedence

Operator Description

. Navigation path expression operator

+, - Unary positive or negative signing (all unsigned
numeric values are considered positive)

*, / Regular multiplication and division of numeric values

+, - Regular addition and subtraction of numeric values

=, <>, <, >, >=, <=, [NOT] BETWEEN,
[NOT] LIKE, [NOT] IN, IS [NOT] NULL,

Binary comparison operators with SQL semantics

IS [NOT] EMPTY, [NOT] MEMBER [OF] Binary operators for collections in HQL and JPA QL

NOT, AND, OR Logical operators for ordering of expression
evaluation

638 CHAPTER 14

Querying with HQL and JPA QL
Expressions with collections
All expressions in the previous sections included only single-valued path expres-
sions: user.email, bid.amount, and so on. You can also use path expressions that
end in collections in the WHERE clause of a query, with the right operators.

 For example, let’s assume you want to restrict your query result by the size of a
collection:

from Item i where i.bids is not empty

This query returns all Item instances that have an element in their bids collec-
tion. You can also express that you require a particular element to be present in a
collection:

from Item i, Category c where i.id = '123' and i member of c.items

This query returns Item and Category instances—usually you add a SELECT clause
and project only one of the two entity types. It returns an Item instance with the
primary key '123' (a literal in single quotes) and all Category instances this Item
instance is associated with. (Another trick you use here is the special .id path; this
field always refers to the database identifier of an entity, no matter what the name
of the identifier property is.)

 There are many other ways to work with collections in HQL and JPA QL. For
example, you can use them in function calls.

Calling functions
An extremely powerful feature of HQL is the ability to call SQL functions in the
WHERE clause. If your database supports user-defined functions (most do), you can
put this to all sorts of uses, good or evil. For the moment, let’s consider the useful-
ness of the standard ANSI SQL functions UPPER() and LOWER(). These can be used
for case-insensitive searching:

from User u where lower(u.email) = 'foo@hibernate.org'

 Another common expression is concatenation—although SQL dialects are dif-
ferent here, HQL and JPA QL support a portable concat() function:

from User user
 where concat(user.firstname, user.lastname) like 'G% K%'

Also typical is an expression that requires the size of a collection:

from Item i where size(i.bids) > 3

JPA QL standardizes the most common functions, as summarized in table 14.2.

Basic HQL and JPA QL queries 639
All the standardized JPA QL functions may be used in the WHERE and HAVING
clauses of a query (the latter you’ll see soon). The native HQL is a bit more flexi-
ble. First, it offers additional portable functions, as shown in table 14.3.

Table 14.2 Standardized JPA QL functions

Function Applicability

UPPER(s), LOWER(s) String values; returns a string value

CONCAT(s1, s2) String values; returns a string value

SUBSTRING(s, offset, length) String values (offset starts at 1); returns a string
value

TRIM([[BOTH|LEADING|TRAILING]
char [FROM]] s)

Trims spaces on BOTH sides of s if no char or
other specification is given; returns a string value

LENGTH(s) String value; returns a numeric value

LOCATE(search, s, offset) Searches for position of ss in s starting at
offset; returns a numeric value

ABS(n), SQRT(n), MOD(dividend,
divisor)

Numeric values; returns an absolute of same type
as input, square root as double, and the remain-
der of a division as an integer

SIZE(c) Collection expressions; returns an integer, or 0
if empty

Table 14.3 Additional HQL functions

Function Applicability

BIT_LENGTH(s) Returns the number of bits in s

CURRENT_DATE(), CURRENT_TIME(),
CURRENT_TIMESTAMP()

Returns the date and/or time of the database manage-
ment system machine

SECOND(d), MINUTE(d), HOUR(d),
DAY(d), MONTH(d), YEAR(d)

Extracts the time and date from a temporal argument

CAST(t as Type) Casts a given type t to a Hibernate Type

INDEX(joinedCollection) Returns the index of joined collection element

MINELEMENT(c), MAXELEMENT(c),
MININDEX(c), MAXINDEX(c),
ELEMENTS(c), INDICES(c)

Returns an element or index of indexed collections
(maps, lists, arrays)

Registered in org.hibernate.Dialect Extends HQL with other functions in a dialect

640 CHAPTER 14

Querying with HQL and JPA QL
Most of these HQL functions translate into a counterpart in SQL you’ve probably
used before. This translation table is customizable and extendable with an
org.hibernate.Dialect. Check the source code of the dialect you’re using for
your database; you’ll probably find many other SQL functions already registered
there for immediate use in HQL. Keep in mind that every function that isn’t
included in the org.hibernate.Dialect superclass may not be portable to other
database management systems!

 Another recent addition to the Hibernate API is the addSqlFunction()
method on the Hibernate Configuration API:

Configuration cfg = new Configuration();
cfg.addSqlFunction(
 "lpad",
 new StandardSQLFunction("lpad", Hibernate.STRING)
);
... cfg.buildSessionFactory();

This operation adds the SQL function lpad to HQL. See the Javadoc of Standard-
SQLFunction and its subclasses for more information.

 HQL even tries to be smart when you call a function that wasn’t registered for
your SQL dialect: Any function that is called in the WHERE clause of an HQL state-
ment, and that isn’t known to Hibernate, is passed directly to the database, as an
SQL function call. This works great if you don’t care about database portability, but
it requires that you keep your eyes open for nonportable functions if you do care.

 Finally, before we move on to the SELECT clause in HQL and JPA QL, let’s see
how results can be ordered.

Ordering query results
All query languages provide some mechanism for ordering query results. HQL
and JPA QL provide an ORDER BY clause, similar to SQL.

 This query returns all users, ordered by username:

from User u order by u.username

You specify ascending and descending order using asc or desc:

from User u order by u.username desc

You may order by multiple properties:

from User u order by u.lastname asc, u.firstname asc

You now know how to write a FROM, WHERE, and ORDER BY clause. You know how to
select the entities you want to retrieve instances of and the necessary expressions

Basic HQL and JPA QL queries 641
and operations to restrict and order the result. All you need now is the ability to
project the data of this result to what you need in your application.

14.2.3 Projection

The SELECT clause performs projection in HQL and JPA QL. It allows you to spec-
ify exactly which objects or properties of objects you need in the query result.

Simple projection of entities and scalar values
For example, consider the following HQL query:

from Item i, Bid b

This is a valid HQL query, but it’s invalid in JPA QL—the standard requires that
you use a SELECT clause. Still, the same result that is implicit from this product of
Item and Bid can also be produced with an explicit SELECT clause. This query
returns ordered pairs of Item and Bid instances:

Query q = session.createQuery("from Item i, Bid b");
// Query q = em.createQuery("select i, b from Item i, Bid b");

Iterator pairs = q.list().iterator();
// Iterator pairs = q.getResultList().iterator();

while (pairs.hasNext()) {
 Object[] pair = (Object[]) pairs.next();
 Item item = (Item) pair[0];
 Bid bid = (Bid) pair[1];
}

This query returns a List of Object[]. At index 0 is the Item, and at index 1 is the
Bid. Because this is a product, the result contains every possible combination of
Item and Bid rows found in the two underlying tables. Obviously, this query isn’t
useful, but you shouldn’t be surprised to receive a collection of Object[] as a
query result.

 The following explicit SELECT clause also returns a collection of Object[]s:

select i.id, i.description, i.initialPrice
 from Item i where i.endDate > current_date()

The Object[]s returned by this query contain a Long at index 0, a String at index
1, and a BigDecimal or MonetaryAmount at index 2. These are scalar values, not
entity instances. Therefore, they aren’t in any persistent state, like an entity
instance would be. They aren’t transactional and obviously aren’t checked auto-
matically for dirty state. We call this kind of query a scalar query.

642 CHAPTER 14

Querying with HQL and JPA QL
Getting distinct results
When you use a SELECT clause, the elements of the result are no longer guaran-
teed to be unique. For example, item descriptions aren’t unique, so the following
query may return the same description more than once:

select item.description from Item item

It’s difficult to see how it could be meaningful to have two identical rows in a
query result, so if you think duplicates are likely, you normally use the DISTINCT
keyword:

select distinct item.description from Item item

This eliminates duplicates from the returned list of Item descriptions.

Calling functions
It’s also (for some Hibernate SQL dialects) possible to call database specific SQL
functions from the SELECT clause. For example, the following query retrieves the
current date and time from the database server (Oracle syntax), together with a
property of Item:

select item.startDate, current_date() from Item item

The technique of database functions in the SELECT clause isn’t limited to data-
base-dependent functions. it works with other more generic (or standardized)
SQL functions as well:

select item.startDate, item.endDate, upper(item.name)
 from Item item

This query returns Object[]s with the starting and ending date of an item auc-
tion, and the name of the item all in uppercase.

 In particular, it’s possible to call SQL aggregate functions, which we’ll cover later
in this chapter. Note, however, that the Java Persistence standard and JPA QL don’t
guarantee that any function that isn’t an aggregation function can be called in the
SELECT clause. Hibernate and HQL allow more flexibility, and we think other
products that support JPA QL will provide the same freedom to a certain extent.
Also note that functions that are unknown to Hibernate aren’t passed on to the
database as an SQL function call, as they are in the WHERE clause. You have to regis-
ter a function in your org.hibernate.Dialect to enable it for the SELECT clause
in HQL.

 The previous sections should get you started with basic HQL and JPA QL. It’s
time to look at the more complex query options, such as joins, dynamic fetching,
subselects, and reporting queries.

Joins, reporting queries, and subselects 643
14.3 Joins, reporting queries, and subselects

It’s difficult to categorize some queries as advanced and others as basic. Clearly,
the queries we’ve shown you in the previous sections of this chapter aren’t going
to get you far.

 At the least you also need to know how joins work. The ability to arbitrarily join
data is one of the fundamental strengths of relational data access. Joining data is
also the basic operation that enables you to fetch several associated objects and
collections in a single query. We now show you how basic join operations work and
how you use them to write a dynamic fetching strategy.

 Other techniques we’d consider advanced include nesting of statements with
subselects and report queries that aggregate and group results efficiently.

 Let’s start with joins and how they can be used for dynamic fetching.

14.3.1 Joining relations and associations

You use a join to combine data in two (or more) relations. For example, you may
join the data in the ITEM and BID tables, as shown in figure 14.1. (Note that not all
columns and possible rows are shown; hence the dotted lines.)

 What most people think of when they hear the word join in the context of SQL
databases is an inner join. An inner join is the most important of several types of
joins and the easiest to understand. Consider the SQL statement and result in fig-
ure 14.2. This SQL statement is an ANSI-style inner join in the FROM clause.

 If you join tables ITEM and BID with an inner join, using their common
attributes (the ITEM_ID column), you get all items and their bids in a new result
table. Note that the result of this operation contains only items that have bids. If
you want all items, and NULL values instead of bid data when there is no corre-
sponding bid, you use a (left) outer join, as shown in figure 14.3.

 You can think of a table join as working as follows. First, you take a product of
the two tables, by taking all possible combinations of ITEM rows with BID rows.

Figure 14.1 The ITEM and BID tables are obvious candidates for a join operation.

644 CHAPTER 14

Querying with HQL and JPA QL
Second, you filter these joined rows using a join condition. (Any good database
engine has much more sophisticated algorithms to evaluate a join; it usually
doesn’t build a memory-consuming product and then filters all rows.) The join
condition is a boolean expression that evaluates to true if the joined row is to be
included in the result. In case of the left outer join, each row in the (left) ITEM
table that never satisfies the join condition is also included in the result, with NULL
values returned for all columns of BID.

 A right outer join retrieves all bids and null if a bid has no item—not a sensible
query in this situation. Right outer joins are rarely used; developers always think
from left to right and put the driving table first.

 In SQL, the join condition is usually specified explicitly. (Unfortunately, it isn’t
possible to use the name of a foreign key constraint to specify how two tables are
to be joined.) You specify the join condition in the ON clause for an ANSI-style join
or in the WHERE clause for a so-called theta-style join, where I.ITEM_ID = B.ITEM_ID.

 We now discuss the HQL and JPA QL join options. Remember that both are
based on and translated into SQL, so even if the syntax is slightly different you
should always refer to the two examples shown earlier and verify that you under-
stood what the resulting SQL and resultset looks like.

Figure 14.2
The result table of an ANSI-style
inner join of two tables

Figure 14.3
The result of an ANSI-style
left outer join of two tables

Joins, reporting queries, and subselects 645
HQL and JPA QL join options
In Hibernate queries, you don’t usually specify a join condition explicitly. Rather,
you specify the name of a mapped Java class association. This is basically the
same feature we’d prefer to have in SQL, a join condition expressed with a for-
eign key constraint name. Because you’ve mapped most, if not all, foreign key
relationships of your database schema in Hibernate, you can use the names of
these mapped associations in the query language. This is really syntactical sugar,
but it’s convenient.

 For example, the Item class has an association named bids with the Bid class.
If you name this association in a query, Hibernate has enough information in the
mapping document to then deduce the table join expression. This helps make
queries less verbose and more readable.

 In fact, HQL and JPA QL provide four ways of expressing (inner and outer)
joins:

■ An implicit association join

■ An ordinary join in the FROM clause

■ A fetch join in the FROM clause

■ A theta-style join in the WHERE clause

Later we show you how to write a join between two classes that don’t have an asso-
ciation defined (a theta-style join) and how to write ordinary and fetch joins in
the FROM clause of a query.

 Implicit association joins are common abbreviations. (Note that we decided to
make the following examples easier to read and understand by often omitting the
SELECT clause—valid in HQL, invalid in JPA QL.)

Implicit association joins
So far, you’ve used simple qualified property names like bid.amount and
item.description in queries. HQL and JPA QL support multipart property path
expressions with a dot notation for two different purposes:

■ Querying components

■ Expressing implicit association joins

The first use is straightforward:

from User u where u.homeAddress.city = 'Bangkok'

You reference parts of the mapped component Address with a dot notation. No
tables are joined in this query; the properties of the homeAddress component are

646 CHAPTER 14

Querying with HQL and JPA QL
all mapped to the same table together with the User data. You can also write a
path expression in the SELECT clause:

select distinct u.homeAddress.city from User u

This query returns a List of Strings. Because duplicates don’t make much sense,
you eliminate them with DISTINCT.

 The second usage of multipart path expressions is implicit association joining:

from Bid bid where bid.item.description like '%Foo%'

This results in an implicit join on the many-to-one associations from Bid to Item—
the name of this association is item. Hibernate knows that you mapped this associ-
ation with the ITEM_ID foreign key in the BID table and generates the SQL join
condition accordingly. Implicit joins are always directed along many-to-one or
one-to-one associations, never through a collection-valued association (you can’t
write item.bids.amount).

 Multiple joins are possible in a single path expression. If the association
from Item to Category is many-to-one (instead of the current many-to-many),
you can write

from Bid bid where bid.item.category.name like 'Laptop%'

We frown on the use of this syntactic sugar for more complex queries. SQL joins
are important, and especially when optimizing queries, you need to be able to see
at a glance exactly how many of them there are. Consider the following query
(again, using a many-to-one from Item to Category):

from Bid bid
 where bid.item.category.name like 'Laptop%'
 and bid.item.successfulBid.amount > 100

How many joins are required to express this in SQL? Even if you get the answer
right, it takes more than a few seconds to figure out. The answer is three; the gen-
erated SQL looks something like this:

select ...
from BID B
inner join ITEM I on B.ITEM_ID = I.ITEM_ID
inner join CATEGORY C on I.CATEGORY_ID = C.CATEGORY_ID
inner join BID SB on I.SUCCESSFUL_BID_ID = SB.BID_ID
where C.NAME like 'Laptop%'
and SB.AMOUNT > 100

It’s more obvious if you express this query with explicit HQL and JPA QL joins in
the FROM clause.

Joins, reporting queries, and subselects 647
Joins expressed in the FROM clause
Hibernate differentiates between the purposes for joining. Suppose you’re query-
ing Items. There are two possible reasons why you may be interested in joining
them with Bids.

 You may want to limit the item returned by the query on the basis of some cri-
terion that should be applied to their Bids. For example, you may want all Items
that have a bid of more than $100; hence this requires an inner join. You aren’t
interested in items that have no bids so far.

 On the other hand, you may be primarily interested in the Items, but you may
want to execute an outer join just because you want to retrieve all the Bids for the
queried Items in the same single SQL statement, something we called eager join
fetching earlier. Remember that you prefer to map all associations lazy by default,
so an eager, outer-join fetch query is used to override the default fetching strategy
at runtime for a particular use case.

 Let’s first write some queries that use inner joins for the purpose of restriction.
If you want to retrieve Item instances and restrict the result to items that have bids
with a certain amount, you have to assign an alias to a joined association:

from Item i
 join i.bids b
 where i.description like '%Foo%'
 and b.amount > 100

This query assigns the alias i to the entity Item and the alias b to the joined Items
bids. You then use both aliases to express restriction criteria in the WHERE clause.

 The resulting SQL is:

select i.DESCRIPTION, i.INITIAL_PRICE, ...
 b.BID_ID, b.AMOUNT, b.ITEM_ID, b.CREATED_ON
from ITEM i
inner join BID b on i.ITEM_ID = b.ITEM_ID
where i.DESCRIPTION like '%Foo%'
and b.AMOUNT > 100

The query returns all combinations of associated Bids and Items as ordered pairs:

Query q = session.createQuery("from Item i join i.bids b");
Iterator pairs = q.list().iterator();
while (pairs.hasNext()) {
 Object[] pair = (Object[]) pairs.next();
 Item item = (Item) pair[0];
 Bid bid = (Bid) pair[1];
}

648 CHAPTER 14

Querying with HQL and JPA QL
Instead of a List of Items, this query returns a List of Object[] arrays. At index
0 is the Item, and at index 1 is the Bid. A particular Item may appear multiple
times, once for each associated Bid. These duplicate items are duplicate in-mem-
ory references, not duplicate instances!

 If you don’t want the Bids in the query result, you may specify a SELECT clause
in HQL (it’s mandatory anyway for JPA QL). You use the alias in a SELECT clause to
project only the objects you want:

select i
from Item i join i.bids b
where i.description like '%Foo%'
and b.amount > 100

Now the generated SQL looks like this:

select i.DESCRIPTION, i.INITIAL_PRICE, ...
from ITEM i
inner join BID b on i.ITEM_ID = b.ITEM_ID
where i.DESCRIPTION like '%Foo%'
and b.AMOUNT > 100

The query result contains just Items, and because it’s an inner join, only Items that
have Bids:

Query q = session.createQuery("select i from Item i join i.bids b");
Iterator items = q.list().iterator();
while (items.hasNext()) {
 Item item = (Item) items.next();
}

As you can see, using aliases in HQL and JPA QL is the same for both direct classes
and joined associations. You used a collection in the previous examples, but the
syntax and semantics are the same for single-valued associations, such as many-to-
one and one-to-one. You assign aliases in the FROM clause by naming the associa-
tion and then use the aliases in the WHERE and possibly SELECT clause.

 HQL and JPA QL offer an alternative syntax for joining a collection in the FROM
clause and to assign it an alias. This IN() operator has its history in an older
version of EJB QL. It’s semantics are the same as those of a regular collection join.
You can rewrite the last query as follows:

select i
from Item i in(i.bids) b
where i.description like '%Foo%'
and b.amount > 100

The from Item i in(i.bids) b results in the same inner join as the earlier exam-
ple with from Item i join i.bids b.

Joins, reporting queries, and subselects 649
 So far, you’ve only written inner joins. Outer joins are mostly used for dynamic
fetching, which we’ll discuss soon. Sometimes you want to write a simple query
with an outer join without applying a dynamic fetching strategy. For example, the
following query is a variation of the first query and retrieves items and bids with a
minimum amount:

from Item i
 left join i.bids b
 with b.amount > 100
 where i.description like '%Foo%'

The first thing that is new in this statement is the LEFT keyword. Optionally you
can write LEFT OUTER JOIN and RIGHT OUTER JOIN, but we usually prefer the
short form. The second change is the additional join condition following the WITH
keyword. If you place the b.amount > 100 expression into the WHERE clause you’d
restrict the result to Item instances that have bids. This isn’t what you want here:
You want to retrieve items and bids, and even items that don’t have bids. By add-
ing an additional join condition in the FROM clause, you can restrict the Bid
instances and still retrieve all Item objects. This query again returns ordered pairs
of Item and Bid objects. Finally, note that additional join conditions with the WITH
keyword are available only in HQL; JPA QL supports only the basic outer join con-
dition represented by the mapped foreign key association.

 A much more common scenario in which outer joins play an important role is
eager dynamic fetching.

Dynamic fetching strategies with joins
All queries you saw in the previous section have one thing in common: The
returned Item instances have a collection named bids. This collection, if mapped
as lazy="true" (default), isn’t initialized, and an additional SQL statement is trig-
gered as soon as you access it. The same is true for all single-ended associations,
like the seller of each Item. By default, Hibernate generates a proxy and loads
the associated User instance lazily and only on-demand.

 What options do you have to change this behavior? First, you can change the
fetch plan in your mapping metadata and declare a collection or single-valued
association as lazy="false". Hibernate then executes the necessary SQL to guar-
antee that the desired network of objects is loaded at all times. This also means
that a single HQL or JPA QL statement may result in several SQL operations!

 On the other hand, you usually don’t modify the fetch plan in mapping meta-
data unless you’re absolutely sure that it should apply globally. You usually write a
new fetch plan for a particular use case. This is what you already did by writing
HQL and JPA QL statements; you defined a fetch plan with selection, restriction,

650 CHAPTER 14

Querying with HQL and JPA QL
and projection. The only thing that will make it more efficient is the right dynamic
fetching strategy. For example, there is no reason why you need several SQL state-
ments to fetch all Item instances and to initialize their bids collections, or to
retrieve the seller for each Item. This can be done at the same time, with a join
operation.

 In HQL and JPA QL you can specify that an associated entity instance or a col-
lection should be eagerly fetched with the FETCH keyword in the FROM clause:

from Item i
 left join fetch i.bids
 where i.description like '%Foo%'

This query returns all items with a description that contains the string "Foo" and
all their bids collections in a single SQL operation. When executed, it returns a
list of Item instances, with their bids collections fully initialized. This is quite dif-
ferent if you compare it to the ordered pairs returned by the queries in the previ-
ous section!

 The purpose of a fetch join is performance optimization: You use this syntax
only because you want eager initialization of the bids collections in a single SQL
operation:

select i.DESCRIPTION, i.INITIAL_PRICE, ...
 b.BID_ID, b.AMOUNT, b.ITEM_ID, b.CREATED_ON
from ITEM i
left outer join BID b on i.ITEM_ID = b.ITEM_ID
where i.DESCRIPTION like '%Foo%'

An additional WITH clause wouldn’t make sense here. You can’t restrict the Bid
instances: All the collections must be fully initialized.

 You can also prefetch many-to-one or one-to-one associations, using the same
syntax:

from Bid bid
 left join fetch bid.item
 left join fetch bid.bidder
 where bid.amount > 100

This query executes the following SQL:

select b.BID_ID, b.AMOUNT, b.ITEM_ID, b.CREATED_ON
 i.DESCRIPTION, i.INITIAL_PRICE, ...
 u.USERNAME, u.FIRSTNAME, u.LASTNAME, ...
from BID b
left outer join ITEM i on i.ITEM_ID = b.ITEM_ID
left outer join USER u on u.USER_ID = b.BIDDER_ID
where b.AMOUNT > 100

Joins, reporting queries, and subselects 651
If you write JOIN FETCH. without LEFT, you get eager loading with an inner join
(also if you use INNER JOIN FETCH); a prefetch with an inner join, for example,
returns Item objects with their bids collection fully initialized, but no Item
objects that don’t have bids. Such a query is rarely useful for collections but can
be used for a many-to-one association that isn’t nullable; for example, join fetch
item.seller works fine.

 Dynamic fetching in HQL and JPA QL is straightforward; however, you should
remember the following caveats:

■ You never assign an alias to any fetch-joined association or collection for
further restriction or projection. So left join fetch i.bids b where b =
... is invalid, whereas left join fetch i.bids b join fetch b.bidder
is valid.

■ You shouldn’t fetch more than one collection in parallel; otherwise you
create a Cartesian product. You can fetch as many single-valued associated
objects as you like without creating a product. This is basically the same
problem we discussed in chapter 13, section 13.2.5, “The Cartesian prod-
uct problem.”

■ HQL and JPA QL ignore any fetching strategy you’ve defined in mapping
metadata. For example, mapping the bids collection in XML with
fetch="join", has no effect on any HQL or JPA QL statement. A dynamic
fetching strategy ignores the global fetching strategy (on the other hand,
the global fetch plan isn’t ignored—every nonlazy association or collection
is guaranteed to be loaded, even if several SQL queries are needed).

■ If you eager-fetch a collection, duplicates may be returned. Look at
figure 14.3: This is exactly the SQL operation that is executed for a select
i from Item i join fetch i.bids HQL or JPA QL query. Each Item is
duplicated on the left side of the result table as many times as related Bid
data is present. The List returned by the HQL or JPA QL query preserves
these duplicates as references. If you prefer to filter out these duplicates you
need to either wrap the List in a Set (for example, with Set noDupes =
new LinkedHashSet(resultList)) or use the DISTINCT keyword: select
distinct i from Item i join fetch i.bids —note that in this case the DIS-
TINCT doesn’t operate at the SQL level, but forces Hibernate to filter out
duplicates in memory when marshaling the result into objects. Clearly,
duplicates can’t be avoided in the SQL result.

652 CHAPTER 14

Querying with HQL and JPA QL
■ Query execution options that are based on the SQL result rows, such as pag-
ination with setMaxResults()/setFirstResult(), are semantically incor-
rect if a collection is eagerly fetched. If you have an eager fetched collection
in your query, at the time of writing, Hibernate falls back to limiting the
result in-memory, instead of using SQL. This may be less efficient, so we
don’t recommend the use of JOIN FETCH with setMaxResults()/set-
FirstResult(). Future versions of Hibernate may fall back to a different
SQL query strategy (such as two queries and subselect fetching) if setMaxRe-
sults()/setFirstResult() is used in combination with a JOIN FETCH.

This is how Hibernate implements dynamic association fetching, a powerful fea-
ture that is essential for achieving high performance in any application. As
explained in chapter 13, section 13.2.5, “Optimization step by step,” tuning the
fetch plan and fetching strategy with queries is your first optimization, followed by
global settings in mapping metadata when it becomes obvious that more and
more queries have equal requirements.
The last join option on the list is the theta-style join.

Theta-style joins
A product lets you retrieve all possible combinations of instances of two or more
classes. This query returns all ordered pairs of Users and Category objects:

from User, Category

Obviously, this isn’t usually useful. There is one case where it’s commonly used:
theta-style joins.

 In traditional SQL, a theta-style join is a Cartesian product together with a
join condition in the WHERE clause, which is applied on the product to restrict
the result.

 In HQL and JPA QL, the theta-style syntax is useful when your join condition
isn’t a foreign key relationship mapped to a class association. For example,
suppose you store the User’s name in log records, instead of mapping an associa-
tion from LogRecord to User. The classes don’t know anything about each other,
because they aren’t associated. You can then find all the Users and their
LogRecords with the following theta-style join:

from User user, LogRecord log where user.username = log.username

The join condition here is a comparison of username, present as an attribute in
both classes. If both rows have the same username, they’re joined (with an inner
join) in the result. The query result consists of ordered pairs:

Joins, reporting queries, and subselects 653
Iterator i =
 session.createQuery("from User user, LogRecord log" +
 " where user.username = log.username")
 .list().iterator ();

while (i.hasNext()) {
 Object[] pair = (Object[]) i.next();
 User user = (User) pair[0];
 LogRecord log = (LogRecord) pair[1];
}

You can of course apply a SELECT clause to project only the data you’re inter-
ested in.

 You probably won’t need to use the theta-style joins often. Note that it’s cur-
rently not possible in HQL or JPA QL to outer join two tables that don’t have a
mapped association—theta-style joins are inner joins.

 Finally, it’s extremely common to perform queries that compare primary key
or foreign key values to either query parameters or other primary or foreign
key values.

Comparing identifiers
If you think about identifier comparison in more object-oriented terms, what
you’re really doing is comparing object references. HQL and JPA QL support the
following:

from Item i, User u
 where i.seller = u and u.username = 'steve'

In this query, i.seller refers to the foreign key to the USER table in the ITEM table
(on the SELLER_ID column), and user refers to the primary key of the USER table
(on the USER_ID column). This query uses a theta-style join and is equivalent to
the much preferred

from Item i join i.seller u
 where u.username = 'steve'

On the other hand, the following theta-style join can’t be re-expressed as a FROM
clause join:

from Item i, Bid b
 where i.seller = b.bidder

In this case, i.seller and b.bidder are both foreign keys of the USER table. Note
that this is an important query in the application; you use it to identify people bid-
ding for their own items.

654 CHAPTER 14

Querying with HQL and JPA QL
 You may also want to compare a foreign key value to a query parameter, per-
haps to find all Comments from a User:

User givenUser = ...
Query q = session.createQuery(
 "from Comment c where c.fromUser = :user"
);
q.setEntity("user", givenUser);
List result = q.list();

Alternatively, sometimes you prefer to express these kinds of queries in terms of
identifier values rather than object references. An identifier value may be referred
to by either the name of the identifier property (if there is one) or the special
property name id. (Note that only HQL guarantees that id always refers to any
arbitrarily named identifier property; JPA QL doesn’t.)

 These queries are equivalent to the earlier queries:

from Item i, User u
 where i.seller.id = u.id and u.username = 'steve'

from Item i, Bid b
 where i.seller.id = b.bidder.id

However, you may now use the identifier value as a query parameter:

Long userId = ...
Query q = session.createQuery(
 "from Comment c where c.fromUser.id = :userId"
);
q.setLong("userId", userId);
List result = q.list();

Considering identifier attributes, there is a world of difference between the fol-
lowing queries:

from Bid b where b.item.id = 1

from Bid b where b.item.description like '%Foo%'

The second query uses an implicit table join; the first has no joins at all!
 This completes our discussion of queries that involve joins. You learned how to

write a simple implicit inner join with dot notation and how to write an explicit
inner or outer join with aliases in the FROM clause. We also looked at dynamic
fetching strategies with outer and inner join SQL operations.

 Our next topic is advanced queries that we consider to be mostly useful for
reporting.

Joins, reporting queries, and subselects 655
14.3.2 Reporting queries

Reporting queries take advantage of the database’s ability to perform efficient
grouping and aggregation of data. They’re more relational in nature; they don’t
always return entities. For example, instead of retrieving Item entities that are in
persistent state (and automatically dirty checked), a report query may only
retrieve the Item names and initial auction prices. If this is the only information
you need (maybe even aggregated, the highest initial price in a category, and so
on.) for a report screen, you don’t need transactional entity instances and can save
the overhead of automatic dirty checking and caching in the persistence context.

 HQL and JPA QL allow you to use several features of SQL that are most com-
monly used for reporting—although they’re also used for other things. In report-
ing queries, you use the SELECT clause for projection and the GROUP BY and
HAVING clauses for aggregation.

 Because we’ve already discussed the basic SELECT clause, we’ll go straight to
aggregation and grouping.

Projection with aggregation functions
The aggregate functions that are recognized by HQL and standardized in JPA QL
are count(), min(), max(), sum() and avg().

 This query counts all the Items:

select count(i) from Item i

The result is returned as a Long:

Long count =
 (Long) session.createQuery("select count(i) from Item i")
 .uniqueResult();

The next variation of the query counts all Items which have a successfulBid
(null values are eliminated):

select count(i.successfulBid) from Item i

This query calculates the total of all the successful Bids:

select sum(i.successfulBid.amount) from Item i

The query returns a BigDecimal, because the amount property is of type BigDeci-
mal. The SUM() function also recognizes BigInteger property types and returns
Long for all other numeric property types. Notice the use of an implicit join in the
SELECT clause: You navigate the association (successfulBid) from Item to Bid by
referencing it with a dot.

656 CHAPTER 14

Querying with HQL and JPA QL
 The next query returns the minimum and maximum bid amounts for a partic-
ular Item:

select min(bid.amount), max(bid.amount)
 from Bid bid where bid.item.id = 1

The result is an ordered pair of BigDecimals (two instances of BigDecimals, in an
Object[] array).

 The special COUNT(DISTINCT) function ignores duplicates:

select count(distinct i.description) from Item i

When you call an aggregate function in the SELECT clause, without specifying any
grouping in a GROUP BY clause, you collapse the result down to a single row, con-
taining the aggregated value(s). This means that (in the absence of a GROUP BY
clause) any SELECT clause that contains an aggregate function must contain only
aggregate functions.

 For more advanced statistics and reporting, you need to be able to perform
grouping.

Grouping aggregated results
Just like in SQL, any property or alias that appears in HQL or JPA QL outside of an
aggregate function in the SELECT clause must also appear in the GROUP BY clause.
Consider the next query, which counts the number of users with each last name:

select u.lastname, count(u) from User u
group by u.lastname

Look at the generated SQL:

select u.LAST_NAME, count(u.USER_ID)
from USER u
group by u.LAST_NAME

In this example, the u.lastname isn’t inside an aggregate function; you use it to
group the result. You also don’t need to specify the property you like to count.
The generated SQL automatically uses the primary key, if you use an alias that has
been set in the FROM clause.

 The next query finds the average bid amount for each item:

select bid.item.id, avg(bid.amount) from Bid bid
group by bid.item.id

This query returns ordered pairs of Item identifier and average bid amount val-
ues. Notice how you use the id special property to refer to the identifier of a

Joins, reporting queries, and subselects 657
persistent class, no matter what the real property name of the identifier is. (Again,
this special property isn’t standardized in JPA QL.)

 The next query counts the number of bids and calculates the average bid per
unsold item:

select bid.item.id, count(bid), avg(bid.amount)
from Bid bid
where bid.item.successfulBid is null
group by bid.item.id

That query uses an implicit association join. For an explicit ordinary join in the
FROM clause (not a fetch join), you can re-express it as follows:

select bidItem.id, count(bid), avg(bid.amount)
from Bid bid
 join bid.item bidItem
where bidItem.successfulBid is null
group by bidItem.id

Sometimes, you want to further restrict the result by selecting only particular val-
ues of a group.

Restricting groups with having
The WHERE clause is used to perform the relational operation of restriction upon
rows. The HAVING clause performs restriction upon groups.

 For example, the next query counts users with each last name that begins
with “A”:

select user.lastname, count(user)
from User user
group by user.lastname
 having user.lastname like 'A%'

The same rules govern the SELECT and HAVING clauses: Only grouped properties
may appear outside of an aggregate function. The next query counts the number
of bids per unsold item, returning results for only those items that have more
than 10 bids:

select item.id, count(bid), avg(bid.amount)
from Item item
 join item.bids bid
where item.successfulBid is null
group by item.id
 having count(bid) > 10

Most report queries use a SELECT clause to choose a list of projected or aggre-
gated properties. You’ve seen that when there is more than one property or alias

658 CHAPTER 14

Querying with HQL and JPA QL
listed in the SELECT clause, Hibernate returns the query results as tuples—each
row of the query result list is an instance of Object[].

Utilizing dynamic instantiation
Tuples, especially common with report queries, are inconvenient, so HQL and JPA
QL provide a SELECT NEW constructor call. In addition to creating new objects
dynamically with this technique, you can also use it in combination with aggrega-
tion and grouping.

 If you define a class called ItemBidSummary with a constructor that takes a
Long, a Long, and a BigDecimal, the following query may be used:

select new ItemBidSummary(
 bid.item.id, count(bid), avg(bid.amount)
)
from Bid bid
where bid.item.successfulBid is null
group by bid.item.id

In the result of this query, each element is an instance of ItemBidSummary, which
is a summary of an Item, the number of bids for that item, and the average bid
amount. Note that you have to write a fully qualified classname here, with a pack-
age name. unless the class has been imported into the HQL namespace (see chap-
ter 4, section 4.3.3, "Naming entities for querying"). This approach is type-safe,
and a data transfer class such as ItemBidSummary can easily be extended for spe-
cial formatted printing of values in reports.

 The ItemBidSummary class is a Java bean, it doesn’t have to be a mapped persis-
tent entity class. On the other hand, if you use the SELECT NEW technique with a
mapped entity class, all instances returned by your query are in transient state—so
you can use this feature to populate several new objects and then save them.

 Report queries can have an impact on the performance of your application.
Let’s explore this issue some more.

Improving performance with report queries
The only time we have ever seen any significant overhead in Hibernate code com-
pared to direct JDBC queries—and then only for unrealistically simple toy test
cases—is in the special case of read-only queries against a local database. In this
case, it’s possible for a database to completely cache query results in memory and
respond quickly, so benchmarks are generally useless if the dataset is small: Plain
SQL and JDBC are always the fastest option.

 Hibernate, on the other hand, even with a small dataset, must still do the
work of adding the resulting objects of a query to the persistence context cache

Joins, reporting queries, and subselects 659
(perhaps also the second-level cache) and manage uniqueness, and so on. If you
ever wish to avoid the overhead of managing the persistence context cache,
report queries give you a way to do this. The overhead of a Hibernate report
query compared to direct SQL/JDBC isn’t usually measurable, even in unrealistic
extreme cases, like loading one million objects from a local database without net-
work latency.

 Report queries using projection in HQL and JPA QL let you specify which prop-
erties you wish to retrieve. For report queries, you aren’t selecting entities in man-
aged state, but only properties or aggregated values:

select user.lastname, count(user) from User user
group by user.lastname

This query doesn’t return persistent entity instances, so Hibernate doesn’t add
any persistent object to the persistence context cache. This means that no object
must be watched for dirty state either.

 Therefore, reporting queries result in faster release of allocated memory,
because objects aren’t kept in the persistence context cache until the context is
closed—they may be garbage collected as soon as they’re dereferenced by the
application, after executing the report.

 Almost always, these considerations are extremely minor, so don’t go out and
rewrite all your read-only transactions to use report queries instead of transac-
tional, cached, and managed objects. Report queries are more verbose and
(arguably) less object-oriented. They also make less efficient use of Hibernate’s
caches, which is much more important once you consider the overhead of
remote communication with the database in production systems. You should wait
until you find a case where you have a real performance problem before using
this optimization.

 You can already create really complex HQL and JPA QL queries with what
you’ve seen so far. Even more advanced queries may include nested statements,
known as subselects.

14.3.3 Using subselects

An important and powerful feature of SQL is subselects. A subselect is a select query
embedded in another query, usually in the SELECT, FROM, or WHERE clauses.

 HQL and JPA QL support subqueries in the WHERE clause. Subselects in the FROM
clause aren’t supported by HQL and JPA QL (although the specification lists them
as a possible future extension) because both languages have no transitive closure.
The result of a query may not be tabular, so it can’t be reused for selection in a

660 CHAPTER 14

Querying with HQL and JPA QL
FROM clause. Subselects in the SELECT clause are also not supported in the query
language, but can be mapped to properties with a formula, as shown in “Inverse
joined properties” in chapter 8, section 8.1.3.

 (Some platforms supported by Hibernate don’t implement SQL subselects.
Hibernate supports subselects only if the SQL database management system pro-
vides this feature.)

Correlated and uncorrelated nesting
The result of a subquery may contain either a single row or multiple rows. Typi-
cally, subqueries that return single rows perform aggregation. The following sub-
query returns the total number of items sold by a user; the outer query returns all
users who have sold more than 10 items:

from User u where 10 < (
 select count(i) from u.items i where i.successfulBid is not null
)

This is a correlated subquery—it refers to an alias (u) from the outer query The next
subquery is an uncorrelated subquery:

from Bid bid where bid.amount + 1 >= (
 select max(b.amount) from Bid b
)

The subquery in this example returns the maximum bid amount in the entire sys-
tem; the outer query returns all bids whose amount is within one (dollar) of that
amount.

 Note that in both cases, the subquery is enclosed in parentheses. This is always
required.

 Uncorrelated subqueries are harmless, and there is no reason to not use them
when convenient, although they can always be rewritten as two queries (they don’t
reference each other). You should think more carefully about the performance
impact of correlated subqueries. On a mature database, the performance cost of a
simple correlated subquery is similar to the cost of a join. However, it isn’t neces-
sarily possible to rewrite a correlated subquery using several separate queries.

Quantification
If a subquery returns multiple rows, it’s combined with quantification. ANSI SQL,
HQL, and JPA QL define the following quantifiers:

■ ALL—The expression evaluates to true if the comparison is true for all val-
ues in the result of the subquery. It evaluates to false if a single value of the
subquery result fails the comparison test.

Joins, reporting queries, and subselects 661
■ ANY—The expression evaluates to true if the comparison is true for some
(any) value in the result of the subquery. If the subquery result is empty or
no value satisfies the comparison, it evaluates to false. The keyword SOME is
a synonym for ANY.

■ IN—This binary comparison operator can compare a list of values against
the result of a subquery and evaluates to true if all values are found in
the result.

For example, this query returns items where all bids are less than 100:

from Item i where 100 > all (select b.amount from i.bids b)

The next query returns all the others, items with bids greater than 100:

from Item i where 100 <= any (select b.amount from i.bids b)

This query returns items with a bid of exactly 100:

from Item i where 100 = some (select b.amount from i.bids b)

So does this one:

from Item i where 100 in (select b.amount from i.bids b)

HQL supports a shortcut syntax for subqueries that operate on elements or indices
of a collection. The following query uses the special HQL elements() function:

List result =
 session.createQuery("from Category c" +
 " where :givenItem in elements(c.items)")
 .setEntity("givenItem", item)
 .list()

The query returns all categories to which the item belongs and is equivalent to
the following HQL (and valid JPA QL), where the subquery is more explicit:

List result =
 session.createQuery(
"from Category c where :givenItem in (select i from c.items i)"
)
.setEntity("item", item)
.list();

Along with elements(), HQL provides indices(), maxelement(), minelement(),
maxindex(), minindex(), and size(), each of which is equivalent to a certain cor-
related subquery against the passed collection. Refer to the Hibernate documen-
tation for more information about these special functions; they’re rarely used.

662 CHAPTER 14

Querying with HQL and JPA QL
 Subqueries are an advanced technique; you should question frequent use of
subqueries because queries with subqueries can often be rewritten using only
joins and aggregation. However, they’re powerful and useful from time to time.

14.4 Summary

You’re now able to write a wide variety of queries in HQL and JPA QL. You learned
in this chapter how to prepare and execute queries, and how to bind parameters.
We’ve shown you restriction, projection, joins, subselects, and many other options
that you probably already know from SQL.

 Table 14.4 shows a summary you can use to compare native Hibernate features
and Java Persistence.

In the next chapter we focus on more advanced query techniques, such as pro-
grammatic generation of complex queries with the Criteria API and embedding
of native SQL queries. We’ll also talk about the query cache and when you should
enable it.

Table 14.4 Hibernate and JPA comparison chart for chapter 14

Hibernate Core Java Persistence and EJB 3.0

Hibernate APIs support query execution with
listing, iteration, and scrolling.

Java Persistence standardizes query execution with
listing.

Hibernate supports named and positional
query bind parameters.

Java Persistence standardizes named and posi-
tional bind parameter options.

Hibernate query APIs support application-level
query hints.

Java Persistence allows developers to supply arbi-
trary vendor-specific (Hibernate) query hints.

HQL supports SQL-like restriction, projection,
joins, subselects, and function calls.

JPA QL supports SQL-like restriction, projection,
joins, subselects, and function calls—subset of
HQL.

Advanced query options

This chapter covers
■ Querying with Criteria and Example APIs
■ Embedding native SQL queries
■ Collection filters
■ The optional query result cache
663

664 CHAPTER 15

Advanced query options
This chapter explains all query options that you may consider optional or
advanced. You’ll need the first subject of this chapter, the Criteria query
interface, whenever you create more complex queries programmatically. This
API is much more convenient and elegant than programmatic generation of
query strings for HQL and JPA QL. Unfortunately, it’s also only available as a
native Hibernate API; Java Persistence doesn’t (yet) standardize a program-
matic query interface.

 Both Hibernate and Java Persistence support queries written in native SQL.
You can embed SQL and stored procedure calls in your Java source code or exter-
nalize them to mapping metadata. Hibernate can execute your SQL and convert
the resultset into more convenient objects, depending on your mapping.

 Filtering of collections is a simple convenience feature of Hibernate—you
won’t use it often. It helps you to replace a more elaborate query with a simple API
call and a query fragment, for example, if you want to obtain a subset of the
objects in a collection.

 Finally, we’ll discuss the optional query result cache—we’ve already mentioned
that it’s not useful in all situations, so we’ll take a closer look at the benefits of
caching results of a query and when you’d ideally enable this feature.

 Let’s start with query by criteria and query by example.

15.1 Querying with criteria and example

The Criteria and Example APIs are available in Hibernate only; Java Persistence
doesn’t standardize these interfaces. As mentioned earlier, it seems likely that
other vendors, not only Hibernate, support a similar extension interface and that
a future version of the standard will include this functionality.

 Querying with programmatically generated criteria and example objects is
often the preferred solution when queries get more complex. This is especially
true if you have to create a query at runtime. Imagine that you have to imple-
ment a search mask in your application, with many check boxes, input fields, and
switches the user can enable. You must create a database query from the user’s
selection. The traditional way to do this is to create a query string through con-
catenation, or maybe to write a query builder that can construct the SQL query
string for you. You’d run into the same problem if you’d try to use HQL or JPA QL
in this scenario.

 The Criteria and Example interfaces allow you to build queries programmati-
cally by creating and combining objects in the right order. We now show you how

Querying with criteria and example 665
to work with these APIs, and how to express selection, restriction, joins, and
projection. We assume that you’ve read the previous chapter and that you know
how these operations are translated into SQL. Even if you decide to use the Cri-
teria and Example APIs as your primary way to write queries, keep in mind that
HQL and JPA QL are always more flexible due to their string-based nature.

 Let’s start with some basic selection and restriction examples.

15.1.1 Basic criteria queries

The simplest criteria query looks like this:

session.createCriteria(Item.class);

It retrieves all persistent instances of the Item class. This is also called the root entity
of the criteria query.

 Criteria queries also support polymorphism:

session.createCriteria(BillingDetails.class);

This query returns instances of BillingDetails and its subclasses. Likewise, the
following criteria query returns all persistent objects:

session.createCriteria(java.lang.Object.class);

The Criteria interface also supports ordering of results with the addOrder()
method and the Order criterion:

session.createCriteria(User.class)
 .addOrder(Order.asc("lastname"))
 .addOrder(Order.asc("firstname"));

You don’t need to have an open Session to create a criteria object; a Detached-
Criteria can be instantiated and later attached to a Session for execution (or to
another Criteria as a subquery):

DetachedCriteria crit =
 DetachedCriteria.forClass(User.class)
 .addOrder(Order.asc("lastname"))
 .addOrder(Order.asc("firstname"));

List result = crit.getExecutableCriteria(session).list();

Usually you want to restrict the result and don’t retrieve all instances of a class.

Applying restrictions
For a criteria query, you must construct a Criterion object to express a con-
straint. The Restrictions class provides factory methods for built-in Criterion
types. Let’s search for User objects with a particular email address:

666 CHAPTER 15

Advanced query options
Criterion emailEq = Restrictions.eq("email", "foo@hibernate.org");
Criteria crit = session.createCriteria(User.class);
crit.add(emailEq);
User user = (User) crit.uniqueResult();

You create a Criterion that represents the restriction for an equality comparison
and add it to the Criteria. This eq() method has two arguments: first the name
of the property, and then the value that should be compared. The property name
is always given as a string; keep in mind that this name may change during a
refactoring of your domain model and that you must update any predefined cri-
teria queries manually. Also note that the criteria interfaces don’t support
explicit parameter binding, because it’s not needed. In the previous example you
bound the string "foo@hibernate.org" to the query; you can bind any java.
lang.Object and let Hibernate figure out what to do with it. The unique-
Result() method executes the query and returns exactly one object as a result—
you have to cast it correctly.

 Usually, you write this a bit less verbosely, using method chaining:

User user =
 (User) session.createCriteria(User.class)
 .add(Restrictions.eq("email", "foo@hibernate.org"))
 .uniqueResult();

Obviously, criteria queries are more difficult to read if they get more complex—a
good reason to prefer them for dynamic and programmatic query generation, but
to use externalized HQL and JPA QL for predefined queries. A new feature of JDK
5.0 is static imports; it helps making criteria queries more readable. For example,
by adding

import static org.hibernate.criterion.Restrictions.*;

you’re able to abbreviate the criteria query restriction code to

User user =
 (User) session.createCriteria(User.class)
 .add(eq("email", "foo@hibernate.org"))
 .uniqueResult();

An alternative to obtaining a Criterion is a Property object—this will be more
useful later in this section when we discuss projection:

session.createCriteria(User.class)
 .add(Property.forName("email").eq("foo@hibernate.org"));

You can also name a property of a component with the usual dot notation:

session.createCriteria(User.class)
 .add(Restrictions.eq("homeAddress.street", "Foo"));

Querying with criteria and example 667
 The Criteria API and the org.hibernate.criterion package offer many
other operators besides eq() you can use to construct more complex expressions.

Creating comparison expressions
All regular SQL (and HQL, JPA QL) comparison operators are also available via the
Restrictions class:

Criterion restriction =
 Restrictions.between("amount",
 new BigDecimal(100),
 new BigDecimal(200));
session.createCriteria(Bid.class).add(restriction);

session.createCriteria(Bid.class)
 .add(Restrictions.gt("amount", new BigDecimal(100)));

String[] emails = { "foo@hibernate.org", "bar@hibernate.org" };
session.createCriteria(User.class)
 .add(Restrictions.in("email", emails));

A ternary logic operator is also available; this query returns all users with no email
address:

session.createCriteria(User.class)
 .add(Restrictions.isNull("email"));

 You also need to be able to find users who do have an email address:
session.createCriteria(User.class)
 .add(Restrictions.isNotNull("email"));

You can also test a collection with isEmpty(), isNotEmpty(), or its actual size:

session.createCriteria(Item.class)
 .add(Restrictions.isEmpty("bids"));

session.createCriteria(Item.class)
 .add(Restrictions.sizeGt("bids", 3));

Or you can compare two properties:

session.createCriteria(User.class)
 .add(Restrictions.eqProperty("firstname", "username"));

The criteria query interfaces also have special support for string matching.

String matching
For criteria queries, wildcarded searches may use either the same wildcard sym-
bols as HQL and JPA QL (percentage sign and underscore) or specify a MatchMode.
The MatchMode is a convenient way to express a substring match without string
manipulation. These two queries are equivalent:

668 CHAPTER 15

Advanced query options
session.createCriteria(User.class)
 .add(Restrictions.like("username", "G%"));

session.createCriteria(User.class)
 .add(Restrictions.like("username", "G", MatchMode.START));

The allowed MatchModes are START, END, ANYWHERE, and EXACT.
 You often also want to perform case-insensitive string matching. Where you’d

resort to a function such as LOWER() in HQL or JPA QL, you can rely on a method
of the Criteria API:

session.createCriteria(User.class)
 .add(Restrictions.eq("username", "foo").ignoreCase());

You can combine expressions with logical operators.

Combining expressions with logical operators
If you add multiple Criterion instances to the one Criteria instance, they’re
applied conjunctively (using and):

session.createCriteria(User.class)
 .add(Restrictions.like("firstname", "G%"))
 .add(Restrictions.like("lastname", "K%"));

If you need disjunction (or), there are two options. The first is to use Restric-
tions.or() together with Restrictions.and():

session.createCriteria(User.class)
 .add(
 Restrictions.or(
 Restrictions.and(
 Restrictions.like("firstname", "G%"),
 Restrictions.like("lastname", "K%")
),
 Restrictions.in("email", emails)
)
);

The second option is to use Restrictions.disjunction() together with
Restrictions.conjunction():

session.createCriteria(User.class)
 .add(Restrictions.disjunction()
 .add(Restrictions.conjunction()
 .add(Restrictions.like("firstname", "G%"))
 .add(Restrictions.like("lastname", "K%"))
)
 .add(Restrictions.in("email", emails))
);

Querying with criteria and example 669
We think both these options are ugly, even after spending five minutes trying to
format them for maximum readability. JDK 5.0 static imports can help improve
readability considerably, but even so, unless you’re constructing a query on the fly,
the HQL or JPA QL string is much easier to understand.

 You may have noticed that many standard comparison operators (less than,
greater than, equals, and so on) are built into the Criteria API, but certain oper-
ators are missing. For example, any arithmetic operators such as addition and
division aren’t supported directly.

 Another issue is function calls. Criteria has built-in functions only for the
most common cases such as string case-insensitive matching. HQL, on the other
hand, allows you to call arbitrary SQL functions in the WHERE clause.

 The Criteria API has a similar facility: You can add an arbitrary SQL expres-
sion as a Criterion.

Adding arbitrary SQL expressions
Let’s assume you want to test a string for its length and restrict your query result
accordingly. The Criteria API has no equivalent to the LENGTH() function in
SQL, HQL, or JPA QL.

 You can, however, add a plain SQL function expression to your Criteria:

session.createCriteria(User.class)
 .add(Restrictions.sqlRestriction(
 "length({alias}.PASSWORD) < ?",
 5,
 Hibernate.INTEGER
)
);

This query returns all User objects that have a password with less than 5 charac-
ters. The {alias} placeholder is needed to prefix any table alias in the final SQL;
it always refers to the table the root entity is mapped to (USERS in this case). You
also use a position parameter (named parameters aren’t supported by this API)
and specify its type as Hibernate.INTEGER. Instead of a single bind argument and
type, you can also use an overloaded version of the sqlRestriction() method
that supports arrays of arguments and types.

 This facility is powerful—for example, you can add an SQL WHERE clause subse-
lect with quantification:

session.createCriteria(Item.class)
 .add(Restrictions.sqlRestriction(
 "'100' > all" +
 " (select b.AMOUNT from BID b" +

670 CHAPTER 15

Advanced query options
 " where b.ITEM_ID = {alias}.ITEM_ID)"
)
);

 This query returns all Item objects which have no bids greater than 100.
(The Hibernate criteria query system is extensible: You could also wrap the
LENGTH() SQL function in your own implementation of the Criterion interface.)

 Finally, you can write criteria queries that include subqueries.

Writing subqueries
A subquery in a criteria query is a WHERE clause subselect. Just like in HQL, JPA QL,
and SQL, the result of a subquery may contain either a single row or multiple
rows. Typically, subqueries that return single rows perform aggregation.

 The following subquery returns the total number of items sold by a user; the
outer query returns all users who have sold more than 10 items:

DetachedCriteria subquery =
 DetachedCriteria.forClass(Item.class, "i");

subquery.add(Restrictions.eqProperty("i.seller.id", "u.id"))
 .add(Restrictions.isNotNull("i.successfulBid"))
 .setProjection(Property.forName("i.id").count());

Criteria criteria = session.createCriteria(User.class, "u")
 .add(Subqueries.lt(10, subquery));

This is a correlated subquery. The DetachedCriteria refers to the u alias; this
alias is declared in the outer query. Note that the outer query uses a less than oper-
ator because the subquery is the right operand. Also note that i.seller.id does
not result in a join, because SELLER_ID is a column in the ITEM table, which is the
root entity for that detached criteria.

 Let’s move on to the next topic about criteria queries: joins and dynamic
fetching.

15.1.2 Joins and dynamic fetching

Just like in HQL and JPA QL, you may have different reasons why you want to
express a join. First, you may want to use a join to restrict the result by some prop-
erty of a joined class. For example, you may want to retrieve all Item instances that
are sold by a particular User.

 Of course, you also want to use joins to dynamically fetch associated objects or
collections, as you’d do with the fetch keyword in HQL and JPA QL. In criteria
queries you have the same options available, with a FetchMode.

Querying with criteria and example 671
 We first look at regular joins and how you can express restrictions that involve
associated classes.

Joining associations for restriction
There are two ways to express a join in the Criteria API; hence there are two ways
in which you can use aliases for restriction. The first is the createCriteria()
method of the Criteria interface. This basically means you can nest calls to cre-
ateCriteria():

Criteria itemCriteria = session.createCriteria(Item.class);
itemCriteria.add(
 Restrictions.like("description",
 "Foo",
 MatchMode.ANYWHERE)
);

Criteria bidCriteria = itemCriteria.createCriteria("bids");
bidCriteria.add(Restrictions.gt("amount", new BigDecimal(99)));

List result = itemCriteria.list();

You usually write the query as follows (method chaining):

List result =
 session.createCriteria(Item.class)
 .add(Restrictions.like("description",
 "Foo",
 MatchMode.ANYWHERE)
)
 .createCriteria("bids")
 .add(Restrictions.gt("amount", new BigDecimal(99)))
 .list();

The creation of a Criteria for the bids of the Item results in an inner join
between the tables of the two classes. Note that you may call list() on either
Criteria instance without changing the query result. Nesting criteria works not
only for collections (such as bids), but also for single-valued associations (such
as seller):

List result =
 session.createCriteria(Item.class)
 .createCriteria("seller")
 .add(Restrictions.like("email", "%@hibernate.org"))
 .list();

This query returns all items that are sold by users with a particular email address
pattern.

672 CHAPTER 15

Advanced query options
 The second way to express inner joins with the Criteria API is to assign an
alias to the joined entity:

session.createCriteria(Item.class)
 .createAlias("bids", "b")
 .add(Restrictions.like("description", "%Foo%"))
 .add(Restrictions.gt("b.amount", new BigDecimal(99)));

And the same for a restriction on a single-valued association, the seller:

session.createCriteria(Item.class)
 .createAlias("seller", "s")
 .add(Restrictions.like("s.email", "%hibernate.org"));

This approach doesn’t use a second instance of Criteria; it’s basically the same
alias assignment mechanism you’d write in the FROM clause of an HQL/JPA QL
statement. Properties of the joined entity must then be qualified by the alias
assigned in createAlias() method, such as s.email. Properties of the root entity
of the criteria query (Item) may be referred to without the qualifying alias, or with
the alias "this":

session.createCriteria(Item.class)
 .createAlias("bids", "b")
 .add(Restrictions.like("this.description", "%Foo%"))
 .add(Restrictions.gt("b.amount", new BigDecimal(99)));

Finally, note that at the time of writing only joining of associated entities or collec-
tions that contain references to entities (one-to-many and many-to-many) is sup-
ported in Hibernate with the Criteria API. The following example tries to join a
collection of components:

session.createCriteria(Item.class)
 .createAlias("images", "img")
 .add(Restrictions.gt("img.sizeX", 320));

Hibernate fails with an exception and tells you that the property you want to alias
doesn’t represent an entity association. We think this feature will likely be imple-
mented by the time you read this book.

 Another syntax that is also invalid, but that you may be tempted to try, is an
implicit join of a single-valued association with the dot notation:

session.createCriteria(Item.class)
 .add(Restrictions.like("seller.email", "%hibernate.org"));

The "seller.email" string isn’t a property or a component’s property path. Cre-
ate an alias or a nested Criteria object to join this entity association.

 Let’s discuss dynamic fetching of associated objects and collections.

Querying with criteria and example 673
Dynamic fetching with criteria queries
In HQL and JPA QL, you use the join fetch operation to eagerly fill a collection
or to initialize an object that is mapped as lazy and would otherwise be proxied.
You can do the same using the Criteria API:

session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .add(Restrictions.like("description", "%Foo%"));

This query returns all Item instance with a particular collection and eagerly loads
the bids collection for each Item.

 A FetchMode.JOIN enables eager fetching through an SQL outer join. If you
want to use an inner join instead (rare, because it wouldn’t return items that don’t
have bids), you can force it:

session.createCriteria(Item.class)
 .createAlias("bids", "b", CriteriaSpecification.INNER_JOIN)
 .setFetchMode("b", FetchMode.JOIN)
 .add(Restrictions.like("description", "%Foo%"));

You can also prefetch many-to-one and one-to-one associations:

session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .setFetchMode("seller", FetchMode.JOIN)
 .add(Restrictions.like("description", "%Foo%"));

Be careful, though. The same caveats as in HQL and JPA QL apply here: Eager
fetching more than one collection in parallel (such as bids and images) results in
an SQL Cartesian product that is probably slower than two separate queries. Limit-
ing the resultset for pagination, if you use eager fetching for collections, is also
done in-memory.

 However, dynamic fetching with Criteria and FetchMode is slightly different
than in HQL and JPA QL: A Criteria query doesn’t ignore the global fetching
strategies as defined in the mapping metadata. For example, if the bids collection
is mapped with fetch="join" or FetchType.EAGER, the following query results in
an outer join of the ITEM and BID table:

session.createCriteria(Item.class)
 .add(Restrictions.like("description", "%Foo%"));

The returned Item instances have their bids collections initialized and fully
loaded. This doesn’t happen with HQL or JPA QL unless you manually query with
LEFT JOIN FETCH (or, of course, map the collection as lazy="false", which results
in a second SQL query).

674 CHAPTER 15

Advanced query options
 As a consequence, criteria queries may return duplicate references to distinct
instances of the root entity, even if you don’t apply FetchMode.JOIN for a collec-
tion in your query. The last query example may return hundreds of Item refer-
ences, even if you have only a dozen in the database. Remember our discussion in
“Dynamic fetching strategies with joins,” in chapter 14, section 14.3.1 and look
again at the SQL statement and resultset in figure 14.3.

 You can remove the duplicate references in the result List by wrapping it in a
LinkedHashSet (a regular HashSet wouldn’t keep the order or the query result).
In HQL and JPA QL, you can also use the DISTINCT keyword; however, there is no
direct equivalent of this in Criteria. This is where the ResultTransformer
becomes useful.

Applying a result transformer
A result transformer can be applied to a query result so that you can filter or mar-
shal the result with your own procedure instead of the Hibernate default behav-
ior. Hibernate’s default behavior is a set of default transformers that you can
replace and/or customize.

 All criteria queries return only instances of the root entity, by default:

List result = session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .setResultTransformer(Criteria.ROOT_ENTITY)
 .list();

Set distinctResult = new LinkedHashSet(result);

The Criteria.ROOT_ENTITY is the default implementation of the org.hiber-
nate.transform.ResultTransformer interface. The previous query produces the
same result, with or without this transformer set. It returns all Item instances and
initializes their bids collections. The List probably (depending on the number
of Bids for each Item) contains duplicate Item references.

 Alternatively, you can apply a different transformer:

List distinctResult =
 session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.JOIN)
 .setResultTransformer(Criteria.DISTINCT_ROOT_ENTITY)
 .list();

Hibernate now filters out duplicate root entity references before returning the
result—this is effectively the same filtering that occurs in HQL or JPA QL if you use
the DISTINCT keyword.

Querying with criteria and example 675
 Result transformers are also useful if you want to retrieve aliased entities in a
join query:

Criteria crit =
 session.createCriteria(Item.class)
 .createAlias("bids", "b")
 .createAlias("seller", "s")
 .setResultTransformer(Criteria.ALIAS_TO_ENTITY_MAP);

List result = crit.list();
for (Object aResult : result) {
 Map map = (Map) aResult;
 Item item = (Item) map.get(Criteria.ROOT_ALIAS);
 Bid bid = (Bid) map.get("b");
 User seller = (User) map.get("s");
 ...
}

First, a criteria query is created that joins Item with its bids and seller associa-
tions. This is an SQL inner join across three tables. The result of this query, in
SQL, is a table where each result row contains item, bid, and user data—almost
the same as shown in figure 14.2. With the default transformer, Hibernate returns
only Item instances. And, with the DISTINCT_ROOT_ENTITY transformer, it filters
out the duplicate Item references. Neither option seems sensible—what you really
want is to return all information in a map. The ALIAS_TO_ENTITY_MAP trans-
former can marshal the SQL result into a collection of Map instances. Each Map has
three entries: an Item, a Bid, and a User. All result data is preserved and can be
accessed in the application. (The Criteria.ROOT_ALIAS is a shortcut for "this".)

 Good use cases for this last transformer are rare. Note that you can also imple-
ment your own org.hibernate.transform.ResultTransformer. Furthermore,
HQL and native SQL queries also support a ResultTransformer:

Query q = session.createQuery(
 "select i.id as itemId," +
 " i.description as desc," +
 " i.initialPrice as price from Item i");
q.setResultTransformer(Transformers.aliasToBean(ItemDTO.class));

This query now returns a collection of ItemDTO instances, and the attributes of
this bean are populated through the setter methods setItemId(), setDesc(),
and setPrice().

 A much more common way to define what data is to be returned from a query
is projection. The Hibernate criteria supports the equivalent of a SELECT clause
for simple projection, aggregation, and grouping.

676 CHAPTER 15

Advanced query options
15.1.3 Projection and report queries

In HQL, JPA QL, and SQL, you write a SELECT clause to define the projection for
a particular query. The Criteria API also supports projection, of course
programmatically and not string-based. You can select exactly which objects or
properties of objects you need in the query result and how you possibly want to
aggregate and group results for a report.

Simple projection lists
The following criteria query returns only the identifier values of Item instances
which are still on auction:

session.createCriteria(Item.class)
 .add(Restrictions.gt("endDate", new Date()))
 .setProjection(Projections.id());

The setProjection() method on a Criteria accepts either a single projected
attribute, as in the previous example, or a list of several properties that are to be
included in the result:

session.createCriteria(Item.class)
 .setProjection(Projections.projectionList()
 .add(Projections.id())
 .add(Projections.property("description"))
 .add(Projections.property("initialPrice"))
);

This query returns a List of Object[], just like HQL or JPA QL would with an
equivalent SELECT clause. An alternative way to specify a property for projection is
the Property class:

session.createCriteria(Item.class)
 .setProjection(Projections.projectionList()
 .add(Property.forName("id"))
 .add(Property.forName("description"))
 .add(Property.forName("initialPrice"))
);

In HQL and JPA QL, you can use dynamic instantiation with the SELECT NEW oper-
ation and return a collection of custom objects instead of Object[]. Hibernate
bundles a ResultTransformer for criteria queries that can do almost the same (in
fact, it’s more flexible). The following query returns the same result as the previ-
ous one, but wrapped in data transfer objects:

session.createCriteria(Item.class)
 .setProjection(Projections.projectionList()
 .add(Projections.id()

Querying with criteria and example 677
 .as("itemId"))
 .add(Projections.property("description")
 .as("itemDescription"))
 .add(Projections.property("initialPrice")
 .as("itemInitialPrice"))
).setResultTransformer(
 new AliasToBeanResultTransformer(ItemPriceSummary.class)
);

The ItemPriceSummary is a simple Java bean with setter methods or public fields
named itemId, itemDescription, and itemInitialPrice. It doesn’t have to be a
mapped persistent class; only the property/field names must match with the
aliases assigned to the projected properties in the criteria query. Aliases are
assigned with the as() method (which you can think of as the equivalent of the AS
keyword in an SQL SELECT). The result transformer calls the setter methods or
populates the fields directly and returns a collection of ItemPriceSummary
objects.

 Let’s do more complex projection with criteria, involving aggregation and
grouping.

Aggregation and grouping
The usual aggregation functions and grouping options are also available in crite-
ria queries. A straightforward method counts the number of rows in the result:

session.createCriteria(Item.class)
 .setProjection(Projections.rowCount());

TIP Getting the total count for pagination—In real applications, you often must
allow users to page through lists and at the same time inform them how
many total items are in the list. One way to get the total number is a Cri-
teria query that executes a rowCount(). Instead of writing this addi-
tional query, you can execute the same Criteria that retrieves the data
for the list with scroll(). Then call last() and getRowNumber() to
jump and get the number of the last row. This plus one is the total num-
ber of objects you list. Don’t forget to close the cursor. This technique is
especially useful if you’re working with an existing DetachedCriteria
object and you don’t want to duplicate and manipulate its projection to
execute a rowCount(). It also works with HQL or SQL queries.

More complex aggregations use aggregation functions. The following query finds
the number of bids and average bid amount each user made:

session.createCriteria(Bid.class)
 .createAlias("bidder", "u")
 .setProjection(Projections.projectionList()

678 CHAPTER 15

Advanced query options
 .add(Property.forName("u.id").group())
 .add(Property.forName("u.username").group())
 .add(Property.forName("id").count())
 .add(Property.forName("amount").avg())
);

This query returns a collection of Object[]s with four fields: the user’s identifier,
login name, number of bids, and the average bid amount. Remember that you
can again use a result transformer for dynamic instantiation and have data trans-
fer objects returned, instead of Object[]s. An alternative version that produces
the same result is as follows:

session.createCriteria(Bid.class)
 .createAlias("bidder", "u")
 .setProjection(Projections.projectionList()
 .add(Projections.groupProperty("u.id"))
 .add(Projections.groupProperty("u.username"))
 .add(Projections.count("id"))
 .add(Projections.avg("amount"))
);

The syntax you prefer is mostly a matter of taste. A more complex example
applies aliases to the aggregated and grouped properties, for ordering of the
result:

session.createCriteria(Bid.class)
 .createAlias("bidder", "u")
 .setProjection(Projections.projectionList()
 .add(Projections.groupProperty("u.id"))
 .add(Projections.groupProperty("u.username").as("uname"))
 .add(Projections.count("id"))
 .add(Projections.avg("amount"))
)
 .addOrder(Order.asc("uname"));

At the time of writing, support for HAVING and restriction on aggregated results
isn’t available in Hibernate criteria queries. This will probably be added in the
near future.

 You can add native SQL expressions to restrictions in a criteria query; the same
feature is available for projection.

Using SQL projections
An SQL projection is an arbitrary fragment that is added to the generated SQL
SELECT clause. The following query produces the aggregation and grouping as in
the previous examples but also adds an additional value to the result (the number
of items):

Querying with criteria and example 679
String sqlFragment =
 "(select count(*) from ITEM i where i.ITEM_ID = ITEM_ID)" +
 " as numOfItems";

session.createCriteria(Bid.class)
 .createAlias("bidder", "u")
 .setProjection(Projections.projectionList()
 .add(Projections.groupProperty("u.id"))
 .add(Projections.groupProperty("u.username"))
 .add(Projections.count("id"))
 .add(Projections.avg("amount))
 .add(Projections.sqlProjection(
 sqlFragment,
 new String[] { "numOfItems" },
 new Type[] { Hibernate.LONG }
)
)
);

The generated SQL is as follows:

select
 u.USER_ID,
 u.USERNAME,
 count(BID_ID),
 avg(BID_AMOUNT),
 (select
 count(*)
 from
 ITEM i
 where
 i.ITEM_ID = ITEM_ID) as numOfItems
 from
 BID
 inner join
 USERS u
 on BIDDER_ID = u.USER_ID
 group by
 u.USER_ID,
 u.USERNAME

The SQL fragment is embedded in the SELECT clause. It can contain any arbitrary
expression and function call supported by the database management system. Any
unqualified column name (such as ITEM_ID) refers to the table of the criteria root
entity (BID). You must tell Hibernate the returned alias of the SQL projection,
numOfItems, and its Hibernate value mapping type, Hibernate.LONG.

 The real power of the Criteria API is the possibility to combine arbitrary Cri-
terions with example objects. This feature is known as query by example.

680 CHAPTER 15

Advanced query options
15.1.4 Query by example

It’s common for criteria queries to be built programmatically by combining several
optional criterions depending on user input. For example, a system administrator
may wish to search for users by any combination of first name or last name and
retrieve the result ordered by username.

 Using HQL or JPA QL, you can build the query using string manipulations:

public List findUsers(String firstname,
 String lastname) {

 StringBuffer queryString = new StringBuffer();
 boolean conditionFound = false;

 if (firstname != null) {
 queryString.append("lower(u.firstname) like :firstname ");
 conditionFound=true;
 }
 if (lastname != null) {
 if (conditionFound) queryString.append("and ");
 queryString.append("lower(u.lastname) like :lastname ");
 conditionFound=true;
 }

 String fromClause = conditionFound ?
 "from User u where " :
 "from User u ";

 queryString.insert(0, fromClause).append("order by u.username");

 Query query = getSession()
 .createQuery(queryString.toString());

 if (firstname != null)
 query.setString("firstName",
 '%' + firstname.toLowerCase() + '%');
 if (lastname != null)
 query.setString("lastName",
 '%' + lastname.toLowerCase() + '%');

 return query.list();
}

This code is pretty tedious and noisy, so let’s try a different approach. The Crite-
ria API with what you’ve learned so far looks promising:

public List findUsers(String firstname,
 String lastname) {

 Criteria crit = getSession().createCriteria(User.class);

 if (firstname != null) {
 crit.add(Restrictions.ilike("firstname",

Querying with criteria and example 681
 firstname,
 MatchMode.ANYWHERE));
 }
 if (lastname != null) {
 crit.add(Restrictions.ilike("lastname",
 lastname,
 MatchMode.ANYWHERE));
 }

 crit.addOrder(Order.asc("username"));

 return crit.list();
}

This code is much shorter. Note that the ilike() operator performs a case-insen-
sitive match. There seems to be no doubt that this is a better approach. However,
for search screens with many optional search criteria, there is an even better way.

 As you add new search criteria, the parameter list of findUsers() grows. It
would be better to capture the searchable properties as an object. Because all the
search properties belong to the User class, why not use an instance of User for
that purpose?

 Query by example (QBE) relies on this idea. You provide an instance of the
queried class with some properties initialized, and the query returns all persistent
instances with matching property values. Hibernate implements QBE as part of
the Criteria query API:

public List findUsersByExample(User u) throws {

 Example exampleUser =
 Example.create(u)
 .ignoreCase()
 .enableLike(MatchMode.ANYWHERE)
 .excludeProperty("password");

 return getSession().createCriteria(User.class)
 .add(exampleUser)
 .list();
}

The call to create() returns a new instance of Example for the given instance of
User. The ignoreCase() method puts the example query into a case-insensitive
mode for all string-valued properties. The call to enableLike() specifies that the
SQL like operator should be used for all string-valued properties, and specifies a
MatchMode. Finally, you can exclude particular properties from the search with
excludeProperty(). By default, all value-typed properties, excluding the identi-
fier property, are used in the comparison.

682 CHAPTER 15

Advanced query options
 You’ve significantly simplified the code again. The nicest thing about Hiber-
nate Example queries is that an Example is just an ordinary Criterion. You can
freely mix and match query by example with query by criteria.

 Let’s see how this works by further restricting the search results to users with
unsold Items. For this purpose, you may add a Criteria to the example user, con-
straining the result using its items collection of Items:

public List findUsersByExample(User u){

 Example exampleUser =
 Example.create(u)
 .ignoreCase()
 .enableLike(MatchMode.ANYWHERE);

 return getSession().createCriteria(User.class)
 .add(exampleUser)
 .createCriteria("items")
 .add(Restrictions.isNull("successfulBid"))
 .list();
}

Even better, you can combine User properties and Item properties in the same
search:

public List findUsersByExample(User u, Item i) {

 Example exampleUser =
 Example.create(u).ignoreCase().enableLike(MatchMode.ANYWHERE);

 Example exampleItem =
 Example.create(i).ignoreCase().enableLike(MatchMode.ANYWHERE);

 return getSession().createCriteria(User.class)
 .add(exampleUser)
 .createCriteria("items")
 .add(exampleItem)
 .list();
}

At this point, we invite you to take a step back and consider how much code would
be required to implement this search screen using hand-coded SQL/JDBC. We
won’t reproduce it here; it would stretch for pages. Also note that the client of the
findUsersByExample() method doesn’t need to know anything about Hibernate,
and it can still create complex criteria for searching.

 If HQL, JPA QL, and even Criteria and Example aren’t powerful enough to
express a particular query, you must fall back to native SQL.

Using native SQL queries 683
15.2 Using native SQL queries

HQL, JPA QL, or criteria queries should be flexible enough to execute almost any
query you like. They refer to the mapped object schema; hence, if your mapping
works as expected, Hibernate’s queries should give you the power you need to
retrieve data any way you like. There are a few exceptions. If you want to include a
native SQL hint to instruct the database management systems query optimizer, for
example, you need to write the SQL yourself. HQL, JPA QL, and criteria queries
don’t have keywords for this.

 On the other hand, instead of falling back to a manual SQL query, you can
always try to extend the built-in query mechanisms and include support for your
special operation. This is more difficult to do with HQL and JPA QL, because you
have to modify the grammar of these string-based languages. It’s easy to extend
the Criteria API and add new methods or new Criterion classes. Look at the
Hibernate source code in the org.hibernate.criterion package; it’s well
designed and documented.

 When you can’t extend the built-in query facilities or prevent nonportable
manually written SQL, you should first consider using Hibernate’s native SQL
query options, which we now present. Keep in mind that you can always fall back
to a plain JDBC Connection and prepare any SQL statement yourself. Hibernate’s
SQL options allow you to embed SQL statements in a Hibernate API and to benefit
from extra services that make your life easier.

 Most important, Hibernate can handle the resultset of your SQL query.

15.2.1 Automatic resultset handling

The biggest advantage of executing an SQL statement with the Hibernate API is
automatic marshaling of the tabular resultset into business objects. The following
SQL query returns a collection of Category objects:

List result = session.createSQLQuery("select * from CATEGORY")
 .addEntity(Category.class)
 .list();

Hibernate reads the resultset of the SQL query and tries to discover the column
names and types as defined in your mapping metadata. If the column CATEGORY_
NAME is returned, and it’s mapped to the name property of the Category class,
Hibernate knows how to populate that property and finally returns fully loaded
business objects.

684 CHAPTER 15

Advanced query options
 The * in the SQL query projects all selected columns in the resultset. The auto-
matic discovery mechanism therefore works only for trivial queries; more com-
plex queries need an explicit projection. The next query returns a collection of
Item objects:

session.createSQLQuery("select {i.*} from ITEM i" +
 " join USERS u on i.SELLER_ID = u.USER_ID" +
 " where u.USERNAME = :uname")
 .addEntity("i", Item.class)
 .setParameter("uname", "johndoe");

The SQL SELECT clause includes a placeholder which names the table alias i and
projects all columns of this table into the result. Any other table alias, such as the
joined USERS table, which is only relevant for the restriction, isn’t included in the
resultset. You now tell Hibernate with addEntity() that the placeholder for alias
i refers to all columns that are needed to populate the Item entity class. The col-
umn names and types are again automatically guessed by Hibernate during query
execution and result marshaling.

 You can even eagerly fetch associated objects and collections in a native SQL
query:

session.createSQLQuery("select {i.*}, {u.*} from ITEM i" +
 " join USERS u on i.SELLER_ID = u.USER_ID" +
 " where u.USERNAME = :uname")
 .addEntity("i", Item.class)
 .addJoin("u", "i.seller")
 .setParameter("uname", "johndoe");

This SQL query projects two sets of columns from two table aliases, and you use
two placeholders. The i placeholder again refers to the columns that populate
the Item entity objects returned by this query. The addJoin() method tells Hiber-
nate that the u alias refers to columns that can be used to immediately populate
the associated seller of each Item.

 Automatic marshaling of resultsets into business objects isn’t the only benefit
of the native SQL query feature in Hibernate. You can even use it if all you want to
retrieve is a simple scalar value.

15.2.2 Retrieving scalar values

A scalar value may be any Hibernate value type. Most common are strings, num-
bers, or timestamps. The following SQL query returns item data:

List result = session.createSQLQuery("select * from ITEM").list();

Using native SQL queries 685
The result of this query is a List of Object[]s, effectively a table. Each field in
each array is of scalar type—that is, a string, a number, or a timestamp. Except for
the wrapping in an Object[], the result is exactly the same as that of a similar
plain JDBC query. This is obviously not too useful, but one benefit of the Hiber-
nate API is that it throws unchecked exceptions so you don’t have to wrap the
query in try/catch block as you have to if you call the JDBC API.

 If you aren’t projecting everything with *, you need to tell Hibernate what sca-
lar values you want to return from your result:

session.createSQLQuery("select u.FIRSTNAME as fname from USERS u")
 .addScalar("fname");

The addScalar() method tells Hibernate that your fname SQL alias should be
returned as a scalar value and that the type should be automatically guessed. The
query returns a collection of strings. This automatic type discovery works fine in
most cases, but you may want to specify the type explicitly sometimes—for exam-
ple, when you want to convert a value with a UserType:

Properties params = new Properties();
params.put("enumClassname", "auction.model.Rating");

session.createSQLQuery(
 "select c.RATING as rating from COMMENTS c" +
 " where c.FROM_USER_ID = :uid"
)
 .addScalar("rating",
 Hibernate.custom(StringEnumUserType.class, params))
 .setParameter("uid", new Long(123));

First, look at the SQL query. It selects the RATING column of the COMMENTS table
and restricts the result to comments made by a particular user. Let’s assume that
this field in the database contains string values, such as EXCELLENT, OK, or BAD.
Hence, the result of the SQL query is string values.

 You’d naturally map this not as a simple string in Java but using an enumera-
tion and probably a custom Hibernate UserType. We did this in chapter 5,
section 5.3.7, “Mapping enumerations,” and created a StringEnumUserType that
can translate from strings in the SQL database to instances of any enumeration in
Java. It must be parameterized with the enumClassname you want it to convert val-
ues to—auction.model.Rating in this example. By setting the prepared custom
type with the addScalar() method on the query, you enable it as a converter that
handles the result, and you get back a collection of Rating objects instead of sim-
ple strings.

686 CHAPTER 15

Advanced query options
 Finally, you can mix scalar results and entity objects in the same native SQL
query:

session.createSQLQuery(
 "select {i.*}, u.FIRSTNAME as fname from ITEM i" +
 " join USERS u on i.SELLER_ID = u.USER_ID" +
 " where u.USERNAME = :uname"
)
 .addEntity("i", Item.class)
 .addScalar("fname")
 .setParameter("uname", "johndoe");

The result of this query is again a collection of Object[]s. Each array has two
fields: an Item instance and a string.

 You probably agree that native SQL queries are even harder to read than HQL
or JPA QL statements and that it seems much more attractive to isolate and exter-
nalize them into mapping metadata. You did this in chapter 8, section 8.2.2, “Inte-
grating stored procedures and functions,” for stored procedure queries. We won’t
repeat this here, because the only difference between stored procedure queries
and plain SQL queries is the syntax of the call or statement—the marshaling and
resultset mapping options are the same.

 Java Persistence standardizes JPA QL and also allows the fallback to native SQL.

15.2.3 Native SQL in Java Persistence

Java Persistence supports native SQL queries with the createNativeQuery()
method on an EntityManager. A native SQL query may return entity instances,
scalar values, or a mix of both. However, unlike Hibernate, the API in Java Persis-
tence utilizes mapping metadata to define the resultset handling. Let’s walk
through some examples.

 A simple SQL query doesn’t need an explicit resultset mapping:

em.createNativeQuery("select * from CATEGORY", Category.class);

The resultset is automatically marshaled into a collection of Category instances.
Note that the persistence engine expects all columns required to create an
instance of Category to be returned by the query, including all property, compo-
nent, and foreign key columns—otherwise an exception is thrown. Columns are
searched in the resultset by name. You may have to use aliases in SQL to return the
same column names as defined in your entity mapping metadata.

 If your native SQL query returns multiple entity types or scalar types, you need
to apply an explicit resultset mapping. For example, a query that returns a

Using native SQL queries 687
collection of Object[]s, where in each array index 0 is an Item instance and
index 1 is a User instance, can be written as follows:

em.createNativeQuery("select " +
 "i.ITEM_ID, i.ITEM_PRICE, u.USERNAME, u.EMAIL " +
 "from ITEM i join USERS u where i.SELLER_ID = u.USER_ID",
 "ItemSellerResult");

The last argument, ItemSellerResult, is the name of a result mapping you
define in metadata (at the class or global JPA XML level):

@SqlResultSetMappings({
 @SqlResultSetMapping(
 name = "ItemSellerResult",
 entities = {
 @EntityResult(entityClass = auction.model.Item.class),
 @EntityResult(entityClass = auction.model.User.class)
 }
)
})

This resultset mapping likely doesn’t work for the query we’ve shown—remember
that for automatic mapping, all columns that are required to instantiate Item and
User objects must be returned in the SQL query. It’s unlikely that the four col-
umns you return represent the only persistent properties. For the sake of the
example, let’s assume that they are and that your actual problem is the names of
the columns in the resultset, which don’t match the names of the mapped col-
umns. First, add aliases to the SQL statement:

em.createNativeQuery("select " +
 "i.ITEM_ID as ITEM_ID, i.ITEM_PRICE as ITEM_PRICE, " +
 "u.USERNAME as USER_NAME, u.EMAIL as USER_EMAIL " +
 "from ITEM i join USERS u on i.SELLER_ID = u.USER_ID",
 "ItemSellerResult");

Next, use @FieldResult in the resultset mapping to map aliases to fields of the
entity instances:

@SqlResultSetMapping(
name = "ItemSellerResult",
entities = {
 @EntityResult(
 entityClass = auction.model.Item.class,
 fields = {
 @FieldResult(name = "id", column = "ITEM_ID"),
 @FieldResult(name = "initialPrice", column = "ITEM_PRICE")
 }),
 @EntityResult(

688 CHAPTER 15

Advanced query options
 entityClass = auction.model.User.class,
 fields = {
 @FieldResult(name = "username", column = "USER_NAME"),
 @FieldResult(name = "email", column = "USER_EMAIL")
 })
})

You can also return scalar typed results. The following query returns auction item
identifiers and the number of bids for each item:

em.createNativeQuery("select " +
 "i.ITEM_ID as ITEM_ID, count(b.*) as NUM_OF_BIDS " +
 "from ITEM i join BIDS b on i.ITEM_ID = b.ITEM_ID " +
 "group by ITEM_ID",
 "ItemBidResult");

The resultset mapping doesn’t contain entity result mappings this time, only
columns:

@SqlResultSetMapping(
name = "ItemBidResult",
columns = {
 @ColumnResult(name = "ITEM_ID"),
 @ColumnResult(name = "NUM_OF_BIDS")
})

The result of this query is a collection of Object[]s, with two fields, both of
some numeric type (most likely long). If you want to mix entities and scalar
types as a query result, combine the entities and columns attributes in a @Sql-
ResultSetMapping.

 Finally, note that the JPA specification doesn’t require that named parameter
binding is supported for native SQL queries. Hibernate supports this.

 Next, we discuss another more exotic but convenient Hibernate feature (Java
Persistence doesn’t have an equivalent): collection filters.

15.3 Filtering collections

You may wish to execute a query against all elements of a collection. For instance,
you may have an Item and wish to retrieve all bids for that particular item,
ordered by the time that the bid was created. You can map a sorted or ordered
collection for that purpose, but there is an easier choice. You can write a query,
and you should already know how:

session.createQuery("from Bid b where b.item = :givenItem" +
 " order by b.created asc")
 .setEntity("givenItem", item);

Filtering collections 689
This query works because the association between bids and items is bidirec-
tional and each Bid knows its Item. There is no join in this query; b.item refers
to the ITEM_ID column in the BID table, and you set the value for the compari-
son directly. Imagine that this association is unidirectional—Item has a collec-
tion of Bids, but no inverse association exists from Bid to Item. You can try the
following query:

select b from Item i join i.bids b
 where i = :givenItem order by b.amount asc

This query is inefficient—it uses an entirely unnecessary join. A better, more ele-
gant solution is to use a collection filter—a special query that can be applied to a
persistent collection (or array). It’s commonly used to further restrict or order a
result. You apply it on an already loaded Item and its collection of bids:

List filteredCollection =
 session.createFilter(item.getBids(),
 "order by this.created asc").list();

This filter is equivalent to the first query of this section and results in identical
SQL. The createFilter() method on the Session takes two arguments: a persis-
tent collection (it doesn’t have to be initialized) and an HQL query string. Collec-
tion filter queries have an implicit FROM clause and an implicit WHERE condition.
The alias this refers implicitly to elements of the collection of bids.

 Hibernate collection filters aren’t executed in memory. The collection of bids
may be uninitialized when the filter is called and, if so, remains uninitialized. Fur-
thermore, filters don’t apply to transient collections or query results. They may be
applied only to a persistent collection currently referenced by an entity instance
attached to the Hibernate persistence context. The term filter is somewhat mis-
leading, because the result of filtering is a completely new and different collec-
tion; the original collection isn’t touched.

 The only required clause of a HQL query is the FROM clause. Because a collec-
tion filter has an implicit FROM clause, the following is a valid filter:

List filteredCollection =
 session.createFilter(item.getBids(), "").list();

To the great surprise of everyone, including the designer of this feature, this triv-
ial filter turns out to be useful. You may use it to paginate collection elements:

List filteredCollection =
 session.createFilter(item.getBids(), "")
 .setFirstResult(50)
 .setMaxResults(100)
 .list();

690 CHAPTER 15

Advanced query options
Usually, you use an ORDER BY with paginated queries, however.
 Even though you don’t need a FROM clause in a collection filter, you may have

one if you like. A collection filter doesn’t even need to return elements of the col-
lection being filtered. The next query returns any Category with the same name
as a category in the given collection:

String filterString =
 "select other from Category other where this.name = other.name";

List result =
 session.createFilter(cat.getChildCategories(), filterString)
 .list();

The following query returns a collection of Users who have bid on the item:

List result =
 session.createFilter(item.getBids(),
 "select this.bidder")
 .list();

The next query returns all these users’ bids (including those for other items):

List result =
 session.createFilter(
 item.getBids(),
 "select elements(this.bidder.bids)"
).list();

Note that the query uses the special HQL elements() function to project all ele-
ments of a collection.

 All this is a lot of fun, but the most important reason for the existence of col-
lection filters is to allow the application to retrieve some elements of a collection
without initializing the whole collection. In the case of large collections, this is
important to achieve acceptable performance. The following query retrieves all
bids made by a user in the past week:

List result =
 session.createFilter(user.getBids(),
 "where this.created > :oneWeekAgo")
 .setTimestamp("oneWeekAgo", oneWeekAgo)
 .list();

Again, this doesn’t initialize the bids collection of the User.
 Queries, no matter in what language and what API they’re written, should

always be tuned to perform as expected before you decide to speed them up with
the optional query cache.

Caching query results 691
15.4 Caching query results

We talked about the second-level cache and Hibernate’s general cache architec-
ture in chapter 13, section 13.3, “Caching fundamentals.” You know that the sec-
ond-level cache is a shared cache of data, and that Hibernate tries to resolve data
through a lookup in this cache whenever you access an unloaded proxy or collec-
tion or when you load an object by identifier (these are all identifier lookups,
from the point of view of the second-level cache). Query results, on the other
hand, are by default not cached.

 Some queries still use the second-level cache, depending on how you execute a
query. For example, if you decide to execute a query with iterate(), as we
showed in the previous chapter, only the primary keys of entities are retrieved
from the database, and entity data is looked up through the first-level and, if
enabled for a particular entity, second-level cache. We also concluded that this
option makes sense only if the second-level cache is enabled, because an optimiza-
tion of column reads usually doesn’t influence performance.

 Caching query results is a completely different issue. The query result cache is
by default disabled, and every HQL, JPA QL, SQL, and Criteria query always hits
the database first. We first show you how to enable the query result cache and
how it works. We then discuss why it’s disabled and why few queries benefit from
result caching.

15.4.1 Enabling the query result cache

The query cache must be enabled using a Hibernate configuration property:

hibernate.cache.use_query_cache = true

However, this setting alone isn’t enough for Hibernate to cache query results. By
default, all queries always ignore the cache. To enable query caching for a particu-
lar query (to allow its results to be added to the cache, and to allow it to draw its
results from the cache), you use the org.hibernate.Query interface.

Query categoryByName =
 session.createQuery("from Category c where c.name = :name");
categoryByName.setString("name", categoryName);
categoryByName.setCacheable(true);

The setCachable() method enables the result cache. It’s also available on the
Criteria API. If you want to enable result caching for a javax.persis-
tence.Query, use setHint("org.hibernate.cacheable", true).

692 CHAPTER 15

Advanced query options
15.4.2 Understanding the query cache

When a query is executed for the first time, its results are cached in a cache
region—this region is different from any other entity or collection cache region
you may already have configured. The name of the region is by default
org.hibernate.cache.QueryCache.

 You can change the cache region for a particular query with the setCache-
Region() method:

Query categoryByName =
 session.createQuery("from Category c where c.name = :name");
categoryByName.setString("name", categoryName);
categoryByName.setCacheable(true);
categoryByName.setCacheRegion("my.Region");

This is rarely necessary; you use a different cache region for some queries only if
you need a different region configuration—for example, to limit memory con-
sumption of the query cache on a more fine-grained level.

 The standard query result cache region holds the SQL statements (including
all bound parameters) and the resultset of each SQL statement. This isn’t the
complete SQL resultset, however. If the resultset contains entity instances (the
previous example queries return Category instances), only the identifier values
are held in the resultset cache. The data columns of each entity are discarded
from the resultset when it’s put into the cache region. So, hitting the query result
cache means that Hibernate will, for the previous queries, find some Category
identifier values.

 It’s the responsibility of the second-level cache region auction.model.Cate-
gory (in conjunction with the persistence context) to cache the state of entities.
This is similar to the lookup strategy of iterate(), as explained earlier. In other
words, if you query for entities and decide to enable caching, make sure you also
enabled regular second-level caching for these entities. If you don’t, you may end
up with more database hits after enabling the query cache.

 If you cache the result of a query that doesn’t return entity instances, but
returns only the same scalar values (e.g., item names and prices), these values are
held in the query result cache directly.

 If the query result cache is enabled in Hibernate, another always required
cache region is also present: org.hibernate.cache.UpdateTimestampsCache.
This is a cache region used by Hibernate internally.

 Hibernate uses the timestamp region to decide whether a cached query result-
set is stale. When you re-execute a query that has caching enabled, Hibernate
looks in the timestamp cache for the timestamp of the most recent insert, update,

Caching query results 693
or delete made to the queried table(s). If the found timestamp is later than the
timestamp of the cached query results, the cached results are discarded and a new
query is issued. This effectively guarantees that Hibernate won’t use the cached
query result if any table that may be involved in the query contains updated data;
hence, the cached result may be stale. For best results, you should configure the
timestamp region so that the update timestamp for a table doesn’t expire from
the cache while query results from these tables are still cached in one of the other
regions. The easiest way is to turn off expiry for the timestamp cache region in
your second-level cache provider’s configuration.

15.4.3 When to use the query cache

The majority of queries don’t benefit from result caching. This may come as a sur-
prise. After all, it sounds like avoiding a database hit is always a good thing. There
are two good reasons why this doesn’t always work for arbitrary queries, compared
to object navigation or retrieval by identifier.

 First, you must ask how often you’re going to execute the same query repeat-
edly. Granted, you may have a few queries in your application that are executed
over and over again, with exactly the same arguments bound to parameters, and
the same automatically generated SQL statement. We consider this a rare case, but
when you’re certain a query is executed repeatedly, it becomes a good candidate
for result caching.

 Second, for applications that perform many queries and few inserts, deletes, or
updates, caching queries can improve performance and scalability. On the other
hand if the application performs many writes, the query cache won’t be utilized
efficiently. Hibernate expires a cached query resultset when there is any insert,
update, or delete of any row of a table that appeared in the cached query result.
This means cached results may have a short lifetime, and even if a query is exe-
cuted repeatedly, no cached result can be used due to concurrent modifications
of the same data (same tables).

 For many queries, the benefit of the query result cache is nonexistent or, at
least, doesn’t have the impact you’d expect. But one special kind of query can
greatly benefit from result caching.

15.4.4 Natural identifier cache lookups

Let’s assume that you have an entity that has a natural key. We aren’t talking about
a natural primary key, but about a business key that applies to a single or compound
attributes of your entity. For example, the login name of a user can be a unique
business key, if it’s immutable. This is the key we already isolated as perfect for the

694 CHAPTER 15

Advanced query options
implementation of a good equals() object equality routine. You can find exam-
ples of such keys in “Implementing equality with a business key,” in chapter 9, sec-
tion 9.2.3.

 Usually, you map the attributes that form your natural key as regular proper-
ties in Hibernate. You may enable a unique constraint at the database level to rep-
resent this key. For example, if you consider the User class, you may decide that
username and emailAddress form the entity’s business key:

<class name="User">
 <id name="id".../>

 <property name="username" unique-key="UNQ_USERKEY"/>
 <property name="emailAddress" unique-key="UNQ_USERKEY"/>
 ...

</class>

This mapping enables a unique key constraint at the database level that spans two
columns. Let’s also assume that the business key properties are immutable. This is
unlikely, because you probably allow users to update their email addresses, but the
functionality we’re presenting now makes sense only if you’re dealing with an
immutable business key. You map immutability as follows:

<class name="User">
 <id name="id".../>

 <property name="username"
 unique-key="UNQ_USERKEY"
 update="false"/>

 <property name="emailAddress"
 unique-key="UNQ_USERKEY"
 update="false"/>
 ...

</class>

Or, to utilize cache lookups by business key, you can map it with <natural-id>:

<class name="User">
 <id name="id".../>

 <cache usage="read-write"/>

 <natural-id mutable="false">
 <property name="username"/>
 <property name="emailAddress"/>
 </natural-id>
 ...

</class>

Summary 695
This grouping automatically enables the generation of a unique key SQL con-
straint that spans all grouped properties. If the mutable attribute is set to false, it
also prevents updating of the mapped columns. You can now use this business key
for cache lookups:

Criteria crit = session.createCriteria(User.class);

crit.add(Restrictions.naturalId()
 .set("username", "johndoe")
 .set("emailAddress", "jd@hibernate.org")
);
crit.setCacheable(true);

User result = (User) crit.uniqueResult();

This criteria query finds a particular user object based on the business key. It
results in a second-level cache lookup by business key—remember that this is usu-
ally a lookup by primary key and is possible only for retrieval by primary identifier.
The business key mapping and Criteria API allow you to express this special sec-
ond-level cache lookup by business key.

 At the time of writing, no Hibernate extension annotation for a natural identi-
fier mapping is available, and HQL doesn’t support an equivalent keyword for
lookup by business key.

 From our point of view, caching at the second-level is an important feature, but
it’s not the first option when optimizing performance. Errors in the design of que-
ries or an unnecessarily complex part of your object model can’t be improved
with a “cache it all” approach. If an application performs at an acceptable level
only with a hot cache—that is, a full cache after several hours or days runtime—it
should be checked for serious design mistakes, unperformant queries, and n+1
select problems. Before you decide to enable any of the query cache options
explained here, first review and tune your application following the guidelines
presented in “Optimization step by step,” in chapter 13, section 13.2.5.

15.5 Summary

In this chapter, you’ve generated queries programmatically with the Hibernate
Criteria and Example APIs. We also looked at embedded and externalized SQL
queries and how you can map the resultset of an SQL query to more convenient
business objects automatically. Java Persistence also supports native SQL and stan-
dardizes how you can map the resultset of externalized SQL queries.

 Finally, we covered the query result cache and discussed why it’s useful only in
certain situations.

696 CHAPTER 15

Advanced query options
 Table 15.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

In the next chapter, we’ll bring all the pieces together and focus on the design
and architecture of applications with Hibernate, Java Persistence, and EJB 3.0
components. We’ll also unit test a Hibernate application.

Table 15.1 Hibernate and JPA comparison chart for chapter 15

Hibernate Core Java Persistence and EJB 3.0

Hibernate supports a powerful Criteria and
Example API for programmatic query generation.

Some QBC and QBE API is expected in an upcom-
ing version of the standard.

Hibernate has flexible mapping options for embed-
ded and externalized SQL queries, with automatic
marshaling of resultsets.

Java Persistence standardizes SQL embedding and
mapping and supports resultset marshaling.

Hibernate supports a collection filter API. Java Persistence doesn’t standardize a collection
filter API.

Hibernate can cache query results. A Hibernate-specific query hint can be used to
cache query results.

Creating and testing
layered applications
This chapter covers
■ Creating layered applications
■ Managed components and services
■ Strategies for integration testing
697

698 CHAPTER 16

Creating and testing layered applications
Hibernate is intended to be used in just about any architectural scenario imagin-
able. Hibernate may run inside a servlet container; you can use it with web appli-
cation framework like Struts, WebWork, or Tapestry, or inside an EJB container, or
to manage persistent data in a Java Swing application.

 Even—perhaps especially—with all these options, it’s often difficult to see
exactly how Hibernate should be integrated into a particular Java-based architec-
ture. Inevitably, you’ll need to write infrastructural code to support your own
application design. In this chapter, we describe common Java architectures and
show how Hibernate can be integrated into each scenario.

 We discuss how you design and create layers in a typical request/response
based web application, and how you separate code by functionality. After this, we
introduce Java EE services and EJBs and show how managed components can
make your life easier and reduce the infrastructure coding that would otherwise
be necessary.

 Finally, we assume that you’re also interested in testing your layered applica-
tion, with or without managed components. Today, testing is one of the most
important activities in a developer’s work, and applying the right tools and strate-
gies is essential for quick turnaround times and productivity (not to mention the
quality of the software). We’ll look at unit, functional, and integration testing with
our current favorite testing framework, TestNG.

 Let’s start with a typical web application example.

16.1 Hibernate in a web application

We emphasized the importance of disciplined application layering in chapter 1.
Layering helps achieve separation of concerns, making code more readable by
grouping code that does similar things. Layering, however, carries a price. Each
extra layer increases the amount of code it takes to implement a simple piece of
functionality—and more code makes the functionality more difficult to change.

 In this section, we show you how to integrate Hibernate in a typical layered
application. We assume that you want to write a simple web application with Java
servlets. We need a simple use case of the CaveatEmptor application to demon-
strate these ideas.

16.1.1 Introducing the use case

When a user places a bid on an item, CaveatEmptor must perform the following
tasks, all in a single request:

Hibernate in a web application 699
1 Check that the amount entered by the user is greater than the maximum
amount of existing bids for the item.

2 Check that the auction hasn’t yet ended.

3 Create a bid for the item.

4 Inform the user of the outcome of the tasks.

If either checks fail, the user should be informed of the reason; if both checks are
successful, the user should be informed that the bid has been placed. These
checks are the business rules. If a failure occurs while accessing the database,
users should be informed that the system is currently unavailable (an infrastruc-
ture concern).

 Let’s see how you can implement this in a web application.

16.1.2 Writing a controller

Most Java web applications use some kind of Model/View/Controller (MVC) applica-
tion framework; even many that use plain servlets follow the MVC pattern by using
templating to implement the presentation code, separating application control
logic into a servlet or multiple servlets.

 You’ll now write such a controller servlet that implements the previously intro-
duced use case. With an MVC approach, you write the code that implements the
“place bid” use case in an execute() method of an action named PlaceBidAc-
tion. Assuming some kind of web framework, we don’t show how to read request
parameters or how to forward to the next page. The code shown may even be the
implementation of a doPost() method of a plain servlet.

 The first attempt at writing such a controller, shown in listing 16.1, mixes all
concerns in one place—there are no layers.

public void execute() {

 Long itemId = ... // Get value from request
 Long userId = ... // Get value from request
 BigDecimal bidAmount = ... // Get value from request
 Transaction tx = null;

 try {

 Session session =
 HibernateUtil.getSessionFactory().getCurrentSession();

 tx = session.beginTransaction();

 // Load requested Item

Listing 16.1 Implementing a use case in one execute() method

B

700 CHAPTER 16

Creating and testing layered applications
 Item item = (Item) session.load(Item.class, itemId);

 // Check auction still valid
 if (item.getEndDate().before(new Date())) {
 ... // Forward to error page
 }

 // Check amount of Bid
 Query q =
 session.createQuery("select max(b.amount)" +
 " from Bid b where b.item = :item");
 q.setEntity("item", item);
 BigDecimal maxBidAmount = (BigDecimal) q.uniqueResult();
 if (maxBidAmount.compareTo(bidAmount) > 0) {
 ... // Forward to error page
 }

 // Add new Bid to Item
 User bidder = (User) session.load(User.class, userId);
 Bid newBid = new Bid(bidAmount, item, bidder);
 item.addBid(newBid);

 ... // Place new Bid into request context

 tx.commit();

 ... // Forward to success page

 } catch (RuntimeException ex) {
 if (tx != null) tx.rollback();
 throw ex;
 }
}

You get a Session using the current persistence context and then start a database
transaction. We introduced the HibernateUtil class in “Building a SessionFac-
tory” in chapter 2, section 2.1.3, and we discussed persistence context scoping in
chapter 11, section 11.1, “Propagating the Hibernate Session.” A new database
transaction is started on the current Session.

You load the Item from the database, using its identifier value.

If the ending date of the auction is before the current date, you forward to an
error page. Usually you want a more sophisticated error handling for this excep-
tion, with a qualified error message.

Using an HQL query, you check whether there is a higher bid for the current item
in the database. If there is one, you forward to an error message.

C

D

E

F

G

H

I

B

C

D

E

Hibernate in a web application 701
If all checks are successful, you place the new bid by adding it to the item. You
don’t have to save it manually—it’s saved using transitive persistence (cascading
from the Item to Bid).

The new Bid instance needs to be stored in some variable that is accessible by the
following page, so you can display it to the user. You can use an attribute in the
servlet request context for this.

Committing the database transaction flushes the current state of the Session to
the database and closes the current Session automatically.

If any RuntimeException is thrown, either by Hibernate or by other services, you
roll back the transaction and rethrow the exception to be handled appropriately
outside the controller.

The first thing wrong with this code is the clutter caused by all the transaction and
exception-handling code. Because this code is typically identical for all actions,
you would like to centralize it somewhere. One option is to place it in the exe-
cute() method of some abstract superclass of your actions. You also have a prob-
lem with lazy initialization, if you access the new bid on the success page, pulling
it out of the request context for rendering: The Hibernate persistence context is
closed and you can no longer load lazy collections or proxies.

 Let’s start cleaning up this design and introduce layers. The first step is to
enable lazy loading on the success page by implementing the Open Session in View
pattern.

16.1.3 The Open Session in View pattern

The motivation behind the Open Session in View (OSIV) pattern is that the view
pulls information from business objects by navigating the object network begin-
ning at some detached object—for example, the newly created Bid instance that
was placed in the request context by your action. The view—that is, the page that
must be rendered and displayed—accesses this detached object to get the content
data for the page.

 In a Hibernate application, there may be uninitialized associations (proxies or
collections) that must be traversed while rendering the view. In this example, the
view may list all items sold by the bidder (as part of an overview screen) by calling
newBid.getBidder().getItems().iterator(). This is a rare case but certainly a
valid access. Because the items collection of the User is loaded only on demand
(Hibernate’s lazy association and collection default behavior), it isn’t initialized at

F

G

H

I

702 CHAPTER 16

Creating and testing layered applications
this point. You can not load uninitialized proxies and collections of an entity
instance that is in detached state.

 If the Hibernate Session and therefore the persistence context is always
closed at the end of the action’s execute() method, Hibernate throws a LazyIni-
tializationException when this unloaded association (or collection) is
accessed. The persistence context is no longer available, so Hibernate can’t load
the lazy collection on access.

FAQ Why can’t Hibernate open a new Session if it has to lazy load objects? The
Hibernate Session is the persistence context, the scope of object iden-
tity. Hibernate guarantees that there is at most one in-memory represen-
tation of a particular database row, in one persistence context. Opening
a Session on-demand, behind the scenes, would also create a new persis-
tence context, and all objects loaded in this identity scope would poten-
tially conflict with objects loaded in the original persistence context. You
can’t load data on-demand when an object is out of the guaranteed
scope of object identity—when it’s detached. On the other hand, you
can load data as long as the objects are in persistent state, managed by a
Session, even when the original transaction has been committed. In
such a scenario, you have to enable the autocommit mode, as discussed
in chapter 10, section 10.3, “Nontransactional data access.” We recom-
mend that you don’t use the autocommit mode in a web application; it’s
much easier to extend the original Session and transaction to span the
whole request. In systems where you can’t easily begin and end a transac-
tion when objects have to be loaded on-demand inside a Session, such
as Swing desktop applications that use Hibernate, the autocommit mode
is useful.

A first solution would be to ensure that all needed associations and collections are
fully initialized before forwarding to the view (we discuss this later), but a more
convenient approach in a two-tiered architecture with a colocated presentation
and persistence layer is to leave the persistence context open until the view is
completely rendered.

 The OSIV pattern allows you to have a single Hibernate persistence context per
request, spanning the rendering of the view and potentially multiple action exe-
cute()s. It can also be implemented easily—for example, with a servlet filter:

public class HibernateSessionRequestFilter implements Filter {

 private SessionFactory sf;
 private static Log log = ...;

 public void doFilter(ServletRequest request,

Hibernate in a web application 703
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {

 try {
 // Starting a database transaction
 sf.getCurrentSession().beginTransaction();

 // Call the next filter (continue request processing)
 chain.doFilter(request, response);

 // Commit the database transaction
 sf.getCurrentSession().getTransaction().commit();

 } catch (Throwable ex) {
 // Rollback only
 try {
 if (sf.getCurrentSession().getTransaction().isActive())
 sf.getCurrentSession().getTransaction().rollback();
 } catch (Throwable rbEx) {
 log.error("Could not rollback after exception!", rbEx);
 rbEx.printStackTrace();
 }

 // Let others handle it...
 throw new ServletException(ex);
 }

 }

 public void init(FilterConfig filterConfig)
 throws ServletException {
 sf = HibernateUtil.getSessionFactory();
 }

 public void destroy() {}

}

This filter acts as an interceptor for servlet requests. It runs every time a request
hits the server and must be processed. It needs the SessionFactory on startup,
and it gets it from the HibernateUtil helper class. When the request arrives, you
start a database transaction and open a new persistence context. After the control-
ler has executed and the view has been rendered, you commit the database trans-
action. Thanks to Hibernate’s auomatic Session binding and propagation, this is
also automatically the scope of the persistence context.

 Exception handling has also been centralized and encapsulated in this inter-
ceptor. It’s up to you what exception you’d like to catch for a rollback of the data-
base transaction; Throwable is the catch-all variation, which means that even
thrown Errors, not only Exceptions and RuntimeExceptions, trigger a rollback.
Note that the actual rollback can also throw an error or exception—always make

704 CHAPTER 16

Creating and testing layered applications
sure (for example, by printing out the stack trace) that this secondary exception
doesn’t hide or swallow the original problem that led to the rollback.

 The controller code is now free from transaction and exception handling and
already looks much better:

public void execute() {

 // Get values from request

 Session session =
 HibernateUtil.getSessionFactory().getCurrentSession();

 // Load requested Item
 // Check auction still valid
 // Check amount of Bid
 // Add new Bid to Item
 // Place new Bid in scope for next page
 // Forward to success page

 }

The current Session returned by the SessionFactory is the same persistence
context that is now scoped to the interceptor wrapping this method (and the ren-
dering of the result page).

 Refer to your web container’s documentation to see how you can enable this
filter class as an interceptor for particular URLs; we recommend that you apply it
only to URLs that require database access during execution. Otherwise, a database
transaction and Hibernate Session is started for every HTTP request on your
server. This can potentially exhaust your database connection pool, even if no
SQL statements are sent to the database server.

 You can implement this pattern any way you like, as long as you have the ability
to intercept requests and to wrap code around your controller. Many web frame-
works offer native interceptors; you should use whatever you find most appealing.
The implementation shown here with a servlet filter isn’t free of problems.

 Changes made to objects in the Session are flushed to the database at irregu-
lar intervals and finally when the transaction is committed. The transaction com-
mit may occur after the view has been rendered. The problem is the buffer size of
the servlet engine: If the contents of the view exceed the buffer size, the buffer
may get flushed and the contents sent to the client. The buffer may be flushed
many times when the content is rendered, but the first flush also sends the HTTP
protocol status code. If the SQL statements on Hibernate flush/commit trigger a
constraint violation in the database, the user may already have seen a successful
output! You can’t change the status code (for example, use a 500 Internal

Server Error); it’s already been sent to the client (as 200 OK).

Hibernate in a web application 705
 There are several ways to prevent this rare exception: Adjust the buffer size of
your servlets, or flush the Session before forwarding/redirecting to the view.
Some web frameworks don’t immediately fill the response buffer with rendered
content—they use their own buffer and flush it only with the response after the
view has been completely rendered, so we consider this a problem with plain Java
servlet programming.

 Let’s continue with the cleanup of the controller and extract the business logic
into the business layer.

16.1.4 Designing smart domain models

The idea behind the MVC pattern is that control logic (in the example applica-
tion, this is pageflow logic), view definitions, and business logic should be cleanly
separated. Currently, the controller contains some business logic—code that you
may be able to reuse in the admittedly unlikely event that your application gains a
new user interface—and the domain model consists of dumb data-holding
objects. The persistent classes define state, but no behavior.

 We suggest you migrate the business logic into the domain model, creating a
business layer. The API of this layer is the domain model API. This adds a couple
of lines of code, but it also increases the potential for later reuse and is more
object-oriented and therefore offers various ways to extend the business logic (for
example, using a strategy pattern for different bid strategies if suddenly you need to
implement “lowest bid wins”). You can also test business logic independently from
pageflow or any other concern.

 First, add the new method placeBid() to the Item class:

public class Item {
 ...

 public Bid placeBid(User bidder, BigDecimal bidAmount,
 Bid currentMaxBid, Bid currentMinBid)
 throws BusinessException {

 // Check highest bid (TODO:Strategy pattern?)
 if (currentMaxBid != null &&
 currentMaxBid.getAmount().compareTo(bidAmount) > 0) {
 throw new BusinessException("Bid too low.");
 }

 // Auction still valid
 if (this.getEndDate().before(new Date()))
 throw new BusinessException("Auction already ended");

 // Create new Bid
 Bid newBid = new Bid(bidAmount, this, bidder);

706 CHAPTER 16

Creating and testing layered applications
 // Place bid for this Item
 this.addBid(newBid);

 return newBid;
 }

}

This code basically performs all checks that need the state of the business objects
but don’t execute data-access code. The motivation is to encapsulate business
logic in classes of the domain model without any dependency on persistent data
access or any other infrastructure. Keep in mind that these classes should know
nothing about persistence, because you may need them outside of the persistence
context (for example, in the presentation tier or in a logic unit test).

 You moved code from the controller to the domain model, with one notewor-
thy exception. This code from the old controller couldn’t be moved as is:

// Check amount of Bid
Query q = session.createQuery("select max(b.amount)" +
 " from Bid b where b.item = :item");
q.setEntity("item", item);
BigDecimal maxBidAmount = (BigDecimal) q.uniqueResult();

if (maxBidAmount.compareTo(bidAmount) > 0) {
 ... // Forward to error page
}

You’ll frequently face the same situation in real applications: Business logic is
mixed with data-access code and even pageflow logic. It’s sometimes difficult to
extract only the business logic without any dependencies. If you now look at the
solution, the introduction of currentMaxBid and currentMinBid parameters on
the Item.placeBid() method, you can see how to solve this kind of problem.
Pageflow and data-access code remains in the controller but supplies the required
data for the business logic:

public void execute() {

 Long itemId = ... // Get value from request
 Long userId = ... // Get value from request
 BigDecimal bidAmount = ... // Get value from request

 Session session =
 HibernateUtil.getSessionFactory().getCurrentSession();

 // Load requested Item
 Item item = (Item) session.load(Item.class, itemId);

 // Get maximum and minimum bids for this Item
 Query q = session.getNamedQuery(QUERY_MAXBID);
 q.setParameter("itemid", itemId);

Hibernate in a web application 707
 Bid currentMaxBid = (Bid) q.uniqueResult();

 q = session.getNamedQuery(QUERY_MINBID);
 q.setParameter("itemid", itemId);
 Bid currentMinBid = (Bid) q.uniqueResult();

 // Load bidder
 User bidder = (User) session.load(User.class, userId);

 try {

 Bid newBid = item.placeBid(bidder,
 bidAmount,
 currentMaxBid,
 currentMinBid);

 ... // Place new Bid into request context

 ... // Forward to success page

 } catch (BusinessException e) {
 ... // Forward to appropriate error page
 }

}

The controller is now completely unaware of any business logic—it doesn’t even
know whether the new bid must be higher or lower than the last one. You have
encapsulated all business logic in the domain model and can now test the business
logic as an isolated unit without any dependency on actions, pageflow, persistence,
or other infrastructure code (by calling the Item.placeBid() in a unit test).

 You can even design a different pageflow by catching and forwarding specific
exceptions. The BusinessException is a declared and checked exception, so you
have to handle it in the controller in some way. It’s up to you if you want to roll
back the transaction in this case, or if you have a chance to recover in some way.
However, always consider the state of your persistence context when handling
exceptions: There may be unflushed modifications from a previous attempt
present when you reuse the same Session after an application exception. (Of
course, you can never reuse a Session that has thrown a fatal runtime exception.)
The safe way is to always roll back the database transaction on any exception and
to retry with a fresh Session.

 The action code looks good already. You should try to keep your architecture
simple; isolating exception and transaction handling and extracting business
logic can make a significant difference. However, the action code is now bound to
Hibernate, because it uses the Session API to access the database. The MVC pat-
tern doesn’t say much about where the P for Persistence should go.

708 CHAPTER 16

Creating and testing layered applications
16.2 Creating a persistence layer

Mixing data-access code with application logic violates the emphasis on separa-
tion of concerns. There are several reasons why you should consider hiding the
Hibernate calls behind a facade, the so-called persistence layer:

■ The persistence layer can provide a higher level of abstraction for data-
access operations. Instead of basic CRUD and query operations, you can
expose higher-level operations, such as a getMaximumBid() method. This
abstraction is the primary reason why you want to create a persistence layer
in larger applications: to support reuse of the same non-CRUD operations.

■ The persistence layer can have a generic interface without exposing actual
implementation details. In other words, you can hide the fact that you’re
using Hibernate (or Java Persistence) to implement the data-access opera-
tions from any client of the persistence layer. We consider persistence layer
portability an unimportant concern, because full object/relational map-
ping solutions like Hibernate already provide database portability. It’s
highly unlikely that you’ll rewrite your persistence layer with different soft-
ware in the future and still not want to change any client code. Further-
more, consider Java Persistence as a standardized and fully portable API.

■ The persistence layer can unify data-access operations. This concern is
related to portability, but from a slightly different angle. Imagine that you
have to deal with mixed data-access code, such as Hibernate and JDBC oper-
ations. By unifying the facade that clients see and use, you can hide this
implementation detail from the client.

If you consider portability and unification to be side effects of creating a persis-
tence layer, your primary motivation is achieving a higher level of abstraction and
the improved maintainability and reuse of data-access code. These are good rea-
sons, and we encourage you to create a persistence layer with a generic facade in
all but the simplest applications. It’s again important that you don’t overengineer
your system and that you first consider using Hibernate (or Java Persistence APIs)
directly without any additional layering. Let’s assume you want to create a persis-
tence layer and design a facade that clients will call.

 There is more than one way to design a persistence layer facade—some small
applications may use a single PersistenceManager object; some may use some
kind of command-oriented design, and others mix data-access operations into
domain classes (active record)—but we prefer the DAO pattern.

Creating a persistence layer 709
16.2.1 A generic data-access object pattern

The DAO design pattern originated in Sun’s Java Blueprints. It’s even used in
the infamous Java Petstore demo application. A DAO defines an interface to
persistence operations (CRUD and finder methods) relating to a particular per-
sistent entity; it advises you to group together code that relates to persistence of
that entity.

 Using JDK 5.0 features such as generics and variable arguments, you can design
a nice DAO persistence layer easily. The basic structure of the pattern we’re pro-
posing here is shown in figure 16.1.

We designed the persistence layer with two parallel hierarchies: interfaces on one
side, implementations on the other side. The basic object-storage and -retrieval
operations are grouped in a generic superinterface and a superclass that imple-
ments these operations with a particular persistence solution (we’ll use Hiber-
nate). The generic interface is extended by interfaces for particular entities that
require additional business-related data-access operations. Again, you may have
one or several implementations of an entity DAO interface.

 Let’s first consider the basic CRUD operations that every entity shares and
needs; you group these in the generic superinterface:

public interface GenericDAO<T, ID extends Serializable> {

 T findById(ID id, boolean lock);

findById(ID id, boolean lock)
findAll()
findByExample(T example)
makePersistent(T entity)
makeTransient(T entity)
flush()
clear()

GenericDAO<T, ID>

getMaxBid(Long itemId)
getMinBid(Long ItemId)

ItemDAO<Item, Long>

CommentDAO<Comment, Long>

ShipmentDAO<Shipment, Long>

findAll(boolean rootOnly)
CategoryDAO<Category, Long>

Figure 16.1
Generic DAO interfaces
support arbitrary
implementations

710 CHAPTER 16

Creating and testing layered applications
 List<T> findAll();

 List<T> findByExample(T exampleInstance,
 String... excludeProperty);

 T makePersistent(T entity);

 void makeTransient(T entity);

 void flush();

 void clear();

}

The GenericDAO is an interface that requires type arguments if you want to imple-
ment it. The first parameter, T, is the entity instance for which you’re implement-
ing a DAO. Many of the DAO methods use this argument to return objects in a
type-safe manner. The second parameter defines the type of the database identi-
fier—not all entities may use the same type for their identifier property. The sec-
ond thing that is interesting here is the variable argument in the
findByExample() method; you’ll soon see how that improves the API for a client.

 Finally, this is clearly the foundation for a persistence layer that works state-
oriented. Methods such as makePersistent() and makeTransient() change an
object’s state (or many objects at once with cascading enabled). The flush() and
clear() operations can be used by a client to manage the persistence context.
You’d write a completely different DAO interface if your persistence layer were
statement-oriented; for example if you weren’t using Hibernate to implement it but
only plain JDBC.

 The persistence layer facade we introduced here doesn’t expose any Hiber-
nate or Java Persistence interface to the client, so theoretically you can imple-
ment it with any software without making any changes to client code. You may
not want or need persistence layer portability, as explained earlier. In that case,
you should consider exposing Hibernate or Java Peristence interfaces—for exam-
ple, a findByCriteria(DetachedCriteria) method that clients can use to exe-
cute arbitrary Hibernate Criteria queries. This decision is up to you; you may
decide that exposing Java Persistence interfaces is a safer choice than exposing
Hibernate interfaces. However, you should know that while it’s possible to
change the implementation of the persistence layer from Hibernate to Java Per-
sistence or to any other fully featured state-oriented object/relational mapping
software, it’s almost impossible to rewrite a persistence layer that is state-oriented
with plain JDBC statements.

 Next, you implement the DAO interfaces.

Creating a persistence layer 711
16.2.2 Implementing the generic CRUD interface

Let’s continue with a possible implementation of the generic interface, using
Hibernate APIs:

public abstract class
 GenericHibernateDAO<T, ID extends Serializable>
 implements GenericDAO<T, ID> {

 private Class<T> persistentClass;
 private Session session;

 public GenericHibernateDAO() {
 this.persistentClass = (Class<T>)
 ((ParameterizedType) getClass().getGenericSuperclass())
 .getActualTypeArguments()[0];
 }

 public void setSession(Session s) {
 this.session = s;
 }

 protected Session getSession() {
 if (session == null)
 session = HibernateUtil.getSessionFactory()
 .getCurrentSession();
 return session;
 }

 public Class<T> getPersistentClass() {
 return persistentClass;
 }

 ...

So far this is the internal plumbing of the implementation with Hibernate. In the
implementation, you need access to a Hibernate Session, so you require that the
client of the DAO injects the current Session it wants to use with a setter method.
This is mostly useful in integration testing. If the client didn’t set a Session
before using the DAO, you look up the current Session when it’s needed by the
DAO code.

 The DAO implementation must also know what persistent entity class it’s for;
you use Java Reflection in the constructor to find the class of the T generic argu-
ment and store it in a local member.

 If you write a generic DAO implementation with Java Persistence, the code
looks almost the same. The only change is that an EntityManager is required by
the DAO, not a Session.

 You can now implement the actual CRUD operations, again with Hibernate:

712 CHAPTER 16

Creating and testing layered applications
@SuppressWarnings("unchecked")
public T findById(ID id, boolean lock) {
 T entity;
 if (lock)
 entity = (T) getSession()
 .load(getPersistentClass(), id, LockMode.UPGRADE);
 else
 entity = (T) getSession()
 .load(getPersistentClass(), id);

 return entity;
}

@SuppressWarnings("unchecked")
public List<T> findAll() {
 return findByCriteria();
}

@SuppressWarnings("unchecked")
public List<T> findByExample(T exampleInstance,
 String... excludeProperty) {
 Criteria crit =
 getSession().createCriteria(getPersistentClass());
 Example example = Example.create(exampleInstance);
 for (String exclude : excludeProperty) {
 example.excludeProperty(exclude);
 }
 crit.add(example);
 return crit.list();
}

@SuppressWarnings("unchecked")
public T makePersistent(T entity) {
 getSession().saveOrUpdate(entity);
 return entity;
}

public void makeTransient(T entity) {
 getSession().delete(entity);
}

public void flush() {
 getSession().flush();
}

public void clear() {
 getSession().clear();
}

/**
 * Use this inside subclasses as a convenience method.
 */
@SuppressWarnings("unchecked")
protected List<T> findByCriteria(Criterion... criterion) {

Creating a persistence layer 713
 Criteria crit =
 getSession().createCriteria(getPersistentClass());
 for (Criterion c : criterion) {
 crit.add(c);
 }
 return crit.list();
 }

}

All the data-access operations use getSession() to get the Session that is
assigned to this DAO. Most of these methods are straightforward, and you
shouldn’t have any problem understanding them after reading the previous chap-
ters of this book. The @SurpressWarning annotations are optional—Hibernate
interfaces are written for JDKs before 5.0, so all casts are unchecked and the JDK
5.0 compiler generates a warning for each otherwise. Look at the protected find-
ByCriteria() method: We consider this a convenience method that makes the
implementation of other data-access operations easier. It takes zero or more Cri-
terion arguments and adds them to a Criteria that is then executed. This is an
example of JDK 5.0 variable arguments. Note that we decided not to expose this
method on the public generic DAO interface; it’s an implementation detail (you
may come to a different conclusion).

 An implementation with Java Persistence is straightforward, although it
doesn’t support a Criteria API. Instead of saveOrUpdate(), you use merge() to
make any transient or detached object persistent, and return the merged result.

 You’ve now completed the basic machinery of the persistence layer and the
generic interface it exposes to the upper layer of the system. In the next step, you
create entity-related DAO interfaces and implement them by extending the
generic interface and implementation.

16.2.3 Implementing entity DAOs

Let’s assume that you want to implement non-CRUD data-access operations for the
Item business entity. First, write an interface:

public interface ItemDAO extends GenericDAO<Item, Long> {

 Bid getMaxBid(Long itemId);
 Bid getMinBid(Long itemId);

}

The ItemDAO interface extends the generic super interface and parameterizes it
with an Item entity type and a Long as the database identifier type. Two data-access
operations are relevant for the Item entity: getMaxBid() and getMinBid().

714 CHAPTER 16

Creating and testing layered applications
 An implementation of this interface with Hibernate extends the generic CRUD
implementation:

public class ItemDAOHibernate
 extends GenericHibernateDAO<Item, Long>
 implements ItemDAO {

 public Bid getMaxBid(Long itemId) {
 Query q = getSession().getNamedQuery("getItemMaxBid");
 q.setParameter("itemid", itemId);
 return (Bid) q.uniqueResult();
 }

 public Bid getMinBid(Long itemId) {
 Query q = getSession().getNamedQuery("getItemMinBid");
 q.setParameter("itemid", itemId);
 return (Bid) q.uniqueResult();
 }

}

You can see how easy this implementation was, thanks to the functionality pro-
vided by the superclass. The queries have been externalized to mapping metadata
and are called by name, which avoids cluttering the code.

 We recommend that you create an interface even for entities that don’t have
any non-CRUD data-access operations:

public interface CommentDAO extends GenericDAO<Comment, Long> {
 // Empty
}

The implementation is equally straightforward:

public static class CommentDAOHibernate
 extends GenericHibernateDAO<Comment, Long>
 implements CommentDAO {}

We recommend this empty interface and implementation because you can’t
instantiate the generic abstract implementation. Furthermore, a client should rely
on an interface that is specific for a particular entity, thus avoiding costly refactor-
ing in the future if additional data-access operations are introduced. You might
not follow our recommendation, however, and make GenericHibernateDAO non-
abstract. This decision depends on the application you’re writing and what
changes you expect in the future.

 Let’s bring this all together and see how clients instantiate and use DAOs.

Creating a persistence layer 715
16.2.4 Using data-access objects

If a client wishes to utilize the persistence layer, it has to instantiate the DAOs it
needs and then call methods on these DAOs. In the previously introduced Hiber-
nate web application use case, the controller and action code look like this:

public void execute() {

 Long itemId = ... // Get value from request
 Long userId = ... // Get value from request
 BigDecimal bidAmount = ... // Get value from request

 // Prepare DAOs
 ItemDAO itemDAO = new ItemDAOHibernate();
 UserDAO userDAO = new UserDAOHibernate();

 // Load requested Item
 Item item = itemDAO.findById(itemId, true);

 // Get maximum and minimum bids for this Item
 Bid currentMaxBid = itemDAO.getMaxBid(itemId);
 Bid currentMinBid = itemDAO.getMinBid(itemId);

 // Load bidder
 User bidder = userDAO.findById(userId, false);

 try {

 Bid newBid = item.placeBid(bidder,
 bidAmount,
 currentMaxBid,
 currentMinBid);

 ... // Place new Bid into request context

 ... // Forward to success page

 } catch (BusinessException e) {
 ... // Forward to appropriate error page
 }

}

You almost manage to avoid any dependency of controller code on Hibernate,
except for one thing: You still need to instantiate a specific DAO implementation
in the controller. One (not very sophisticated) way to avoid this dependency is the
traditional abstract factory pattern.

 First, create an abstract factory for data-access objects:

public abstract class DAOFactory {

 /**
 * Factory method for instantiation of concrete factories.
 */

716 CHAPTER 16

Creating and testing layered applications
 public static DAOFactory instance(Class factory) {
 try {
 return (DAOFactory)factory.newInstance();
 } catch (Exception ex) {
 throw new RuntimeException(
 "Couldn't create DAOFactory: " + factory
);
 }
 }

 // Add your DAO interfaces here
 public abstract ItemDAO getItemDAO();
 public abstract CategoryDAO getCategoryDAO();
 public abstract CommentDAO getCommentDAO();
 public abstract UserDAO getUserDAO();
 public abstract BillingDetailsDAO getBillingDetailsDAO();
 public abstract ShipmentDAO getShipmentDAO();

}

This abstract factory can build and return any DAO. Now implement this factory
for your Hibernate DAOs:

public class HibernateDAOFactory extends DAOFactory {

 public ItemDAO getItemDAO() {
 return (ItemDAO) instantiateDAO(ItemDAOHibernate.class);
 }

 ...

 private GenericHibernateDAO instantiateDAO(Class daoClass) {
 try {
 GenericHibernateDAO dao = (GenericHibernateDAO)
 daoClass.newInstance();
 return dao;
 } catch (Exception ex) {
 throw new RuntimeException(
 "Can not instantiate DAO: " + daoClass, ex
);
 }
 }

 // Inline all empty DAO implementations

 public static class CommentDAOHibernate
 extends GenericHibernateDAO<Comment, Long>
 implements CommentDAO {}

 public static class ShipmentDAOHibernate
 extends GenericHibernateDAO<Shipment, Long>
 implements ShipmentDAO {}
 ...

}

Creating a persistence layer 717
Several interesting things happen here. First, the implementation of the factory
encapsulates how the DAO is instantiated. You can customize this method and set
a Session manually before returning the DAO instance.

 Second, you move the implementation of CommentDAOHibernate into the fac-
tory as a public static class. Remember that you need this implementation, even if
it’s empty, to let clients work with interfaces related to an entity. However, nobody
forces you to create dozens of empty implementation classes in separate files; you
can group all the empty implementations in the factory. If in the future you have
to introduce more data-access operations for the Comment entity, move the imple-
mentation from the factory to its own file. No other code needs to be changed—
clients rely only on the CommentDAO interface.

 With this factory pattern, you can further simplify how DAOs are used in the
web application controller:

public void execute() {

 Long itemId = ... // Get value from request
 Long userId = ... // Get value from request
 BigDecimal bidAmount = ... // Get value from request

 // Prepare DAOs
 DAOFactory factory = DAOFactory.instance(DAOFactory.HIBERNATE);
 ItemDAO itemDAO = factory.getItemDAO();
 UserDAO userDAO = factory.getUserDAO();

 // Load requested Item
 Item item = itemDAO.findById(itemId, true);

 // Get maximum and minimum bids for this Item
 Bid currentMaxBid = itemDAO.getMaxBid(itemId);
 Bid currentMinBid = itemDAO.getMinBid(itemId);

 // Load bidder
 User bidder = userDAO.findById(userId, false);

 try {
 ...
 }

}

The only dependency on Hibernate, and the only line of code that exposes the
true implementation of the persistence layer to client code, is the retrieval of the
DAOFactory. You may want to consider moving this parameter into your applica-
tion’s external configuration so that you can possibly switch DAOFactory imple-
mentations without changing any code.

718 CHAPTER 16

Creating and testing layered applications
TIP Mixing Hibernate and JDBC code in a DAO—Rarely do you have to use plain
JDBC when you have Hibernate available. Remember that if you need a
JDBC Connection to execute a statement that Hibernate can’t produce
automatically, you can always fall back with session.connection(). So,
we don’t think you need different and separate DAOs for a few JDBC calls.
The issue with mixing Hibernate and plain JDBC isn’t the fact that you
sometimes may have to do it (and you should definitely expect that
Hibernate won’t solve 100 percent of all your problems) but that devel-
opers often try to hide what they did. There is no problem with mixed
data-access code as long as it’s properly documented. Also remember
that Hibernate supports almost all SQL operations with native APIs, so
you don’t necessarily have to fall back to plain JDBC.

You’ve now created a clean, flexible, and powerful persistence layer that hides the
details of data access from any client code. The following questions are likely still
on your mind:

■ Do you have to write factories? The factory pattern is traditional and is used in
applications that mostly rely on lookup of stateless services. An alternative
(or sometimes complementary) strategy is dependency injection. The EJB 3.0
specification standardizes dependency injection for managed components,
so we’ll look at an alternative DAO wiring strategy later in this chapter.

■ Do you have to create one DAO interface per domain entity? Our proposal
doesn’t cover all possible situations. In larger applications, you may want to
group DAOs by domain package or create deeper hierarchies of DAOs that
provide more fine-grained specialization for particular subentities. There
are many variations of the DAO pattern, and you shouldn’t restrict your
options with our recommended generic solution. Feel free to experiment,
and consider this pattern a good starting point.

You now know how to integrate Hibernate in a traditional web application and
how to create a persistence layer following best practices patterns. If you have
to design and write a three-tier application, you need to consider a quite differ-
ent architecture.

16.3 Introducing the Command pattern

The patterns and strategies introduced in the previous sections are perfect if you
have to write a small to medium sized web application with Hibernate and Java Per-
sistence. The OSIV pattern works in any two-tiered architecture, where the presen-
tation, business, and persistence layers are colocated on the same virtual machine.

Introducing the Command pattern 719
 However, as soon as you introduce a third tier and move the presentation layer
to a separate virtual machine, the current persistence context can’t be held open
anymore until the view has been rendered. This is typically the case in three-tiered
EJB application, or in an architecture with a rich client in a separate process.

 If the presentation layer runs in a different process, you need to minimize the
requests between this process and the tier that runs the business and persistence
layers of the application. This means that you can’t use the previous lazy
approach, where the view is allowed to pull data from the domain model objects
as needed. Instead, the business tier must accept responsibility for fetching all
data that is needed subsequently for rendering the view.

 Although certain patterns that can minimize remote communication, such as
the session facade and data transfer object (DTO) patterns, have been widely used in
the Java developer community, we want to discuss a slightly different approach.
The Command pattern (often also called EJB Command) is a sophisticated solution
that combines the advantages of other strategies.

 Let’s write a three-tiered application that utilizes this pattern.

16.3.1 The basic interfaces

The Command pattern is based on the idea of a hierarchy of command classes, all
of which implement a simple Command interface. Look at this hierarchy in
figure 16.2.

 A particular Command is an implementation of an action, an event, or anything
that can fit a similar description. Client code creates command objects and pre-
pares them for execution. The CommandHandler is an interface that can execute
Command objects. The client passes a Command object to a handler on the server tier,
and the handler executes it. The Command object is then returned to the client.

Command

DataAccessCommand ReportCommand

CommandHandler

Figure 16.2
The interfaces of the Command pattern

720 CHAPTER 16

Creating and testing layered applications
 The Command interface has an execute() method; any concrete command
must implement this method. Any subinterface may add additional methods that
are called before (setters) or after (getter) the Command is executed. A Command is
therefore combining input, controller, and output for a particular event.

 Executing Command objects—that is, calling their execute() method—is the
job of a CommandHandler implementation. Execution of commands is dispatched
polymorphically.

 The implementation of these interfaces (and abstract classes) can look as
follows:

public interface Command {
 public void execute() throws CommandException;
}

Commands also encapsulate exception handling, so that any exception thrown
during execution is wrapped in a CommandException that can then be handled
accordingly by the client.

 The DataAccessCommand is an abstract class:

public abstract class DataAccessCommand implements Command {
 protected DAOFactory daoFactory;

 public void setDAOFactory(DAOFactory daoFactory) {
 this.daoFactory = daoFactory;
 }

}

Any Command that needs to access the database must use a data-access object, so a
DAOFactory must be set before a DataAccessCommand can be executed. This is
usually the job of the CommandHandler implementation, because the persistence
layer is on the server tier.

 The remote interface of the command handler is equally simple:

public interface CommandHandler {

 public Command executeCommand(Command c)
 throws CommandException;

 public DataAccessCommand executeCommand(DataAccessCommand c)
 throws CommandException;

 public Reportcommand executeCommand(ReportCommand c)
 throws CommandException;
}

Let’s write some concrete implementations and use commands.

Introducing the Command pattern 721
16.3.2 Executing command objects

A client that wishes to execute a command needs to instantiate and prepare a
Command object. For example, placing a bid for an auction requires a BidForAuc-
tionCommand on the client:

BidForItemCommand bidForItem =
 new BidForItemCommand(userId, itemId, bidAmount);

try {
 CommandHandler handler = getCommandHandler();

 bidForItem = (BidForItemCommand)handler.execute(bidForItem);

 // Extract new bid for rendering
 newBid = bidForItem.getNewBid();

 // Forward to success page

} catch (CommandException ex) {
 // Forward to error page
 // ex.getCause();

}

A BidForItemCommand needs all input values for this action as constructor argu-
ments. The client then looks up a command handler and passes the BidForItem-
Command object for execution. The handler returns the instance after execution,
and the client extracts any output values from the returned object. (If you work
with JDK 5.0, use generics to avoid unsafe typecasts.)

 How the command handler is looked up or instantiated depends on the imple-
mentation of the command handler and how remote communication occurs. You
don’t even have to call a remote command handler—it can be a local object.

 Let’s look at the implementation of the command and the command handler.

Implementing business commands
The BidForItemCommand extends the abstract class DataAccessCommand and
implements the execute() method:

public class BidForItemCommand extends DataAccessCommand
 implements Serializable {

 // Input
 private Long userId;
 private Long itemId;
 private BigDecimal bidAmount;

 // Output
 private Bid newBid;

 public BidForItemCommand(Long userId,

722 CHAPTER 16

Creating and testing layered applications
 Long itemId,
 BigDecimal bidAmount) {
 this.userId = userId;
 this.itemId = itemId;
 this.bidAmount = bidAmount;
 }

 public Bid getNewBid() {
 return newBid;
 }

 public void execute() throws CommandException {

 ItemDAO itemDAO = daoFactory.getItemDAO();
 UserDAO userDAO = daoFactory.getUserDAO();

 try {

 Bid currentMaxBid = itemDAO.getMaxBid(itemId);
 Bid currentMinBid = itemDAO.getMinBid(itemId);

 Item item = itemDAO.findById(itemId, false);
 newBid = item.placeBid(userDAO.findById(userId, false),
 bidAmount,
 currentMaxBid,
 currentMinBid);

 } catch (BusinessException ex) {
 throw new CommandException(ex);
 }
 }

}

This is basically the same code you wrote in the last stage of the web application
refinement earlier in this chapter. However, with this approach, you have a clear
contract for required input and returned output of an action.

 Because Command instances are sent across the wire, you need to implement
Serializable (this marker should be in the concrete class, not the superclasses
or interfaces).

 Let’s implement the command handler.

Implementing a command handler
The command handler can be implemented in any way you like; its responsibili-
ties are simple. Many systems need only a single command handler, such as the
following:

@Stateless
public class CommandHandlerBean implements CommandHandler {

 // The persistence layer we want to call

Introducing the Command pattern 723
 DAOFactory daoFactory =
 DAOFactory.instance(DAOFactory.HIBERNATE);

 @TransactionAttribute(TransactionAttributeType.NEVER)
 public Command executeCommand(Command c)
 throws CommandException {
 c.execute();
 return c;
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Command executeCommand(DataAccessCommand c)
 throws CommandException {
 c.setDAOFactory(daoFactory);
 c.execute();
 return c;
 }
}

This is a command handler implemented as a stateless EJB 3.0 session bean. You
use an EJB lookup on the client to get a reference to this (local or remote) bean
and then pass Command objects to it for execution. The handler knows how to pre-
pare a particular type of command—for example, by setting a reference to the
persistence layer before execution.

 Thanks to container-managed and declarative transactions, this command
handler contains no Hibernate code. Of course, you can also implement this com-
mand handler as a POJO without EJB 3.0 annotations and manage transaction
boundaries programmatically. One the other hand, because EJBs support remote
communication out of the box, they’re the best choice for command handlers in
three-tier architectures.

 There are many more variations of this basic Command pattern.

16.3.3 Variations of the Command pattern

First, not everything is perfect with the Command pattern. Probably the most
important issue with this pattern is the requirement for nonpresentation inter-
faces on the client classpath. Because the BidForItemCommand needs the DAOs,
you have to include the persistence layer interface on the client’s classpath (even
if the command is executed only on the middle tier). There is no real solution, so
the severity of this problem depends on your deployment scenario and how easily
you can package your application accordingly. Note that the client needs the DAO
interfaces only to instantiate a DataAccessCommand, so you may be able to stabilize
the interfaces before you work on the implementation of your persistence layer.

724 CHAPTER 16

Creating and testing layered applications
 Also, because you have just one command, the Command pattern seems like
more work then the traditional session facade pattern. However, as the system
grows, addition of new commands is made simpler because crosscutting concerns
like exception handling and authorization checking may be implemented in the
command handler. Commands are easy to implement and extremely reusable.
You shouldn’t feel restricted by our proposed command interface hierarchy; feel
free to design more complex and sophisticated command interfaces and abstract
commands. You can also group commands together using delegation—for exam-
ple, a DataAccessCommand can instantiate and call a ReportCommand.

 A command is a great assembler for data that is required for rendering of a par-
ticular view. Instead of having the view pull the information from lazy loaded busi-
ness objects (which requires colocation of the presentation and persistence layer,
so you can stay inside the same persistence context), a client can prepare and exe-
cute the commands that are needed to render a particular screen—each com-
mand transports data to the presentation layer in its output properties. In a way, a
command is a kind of data-transfer object with a built-in assembling routine.

 Furthermore, the Command pattern enables you to implement any Undo func-
tionality easily. Each command can have an undo() method that can negate any
permanent changes that have been made by the execute() method. Or, you can
queue several command objects on the client and send them to the command
handler only when a particular conversation completes.

 The Command pattern is also great if you have to implement a desktop appli-
cation. You can, for example, implement a command that fires events when data
is changed. All dialogs that need to be refreshed listen to this event, by registering
a listener on the command handler.

 You can wrap the commands with EJB 3.0 interceptors. For example, you can
write an interceptor for your command handler session bean that can transpar-
ently inject a particular service on command objects of a particular type. You can
combine and stack these interceptors on your command handler. You can even
implement a client-local command handler which, thanks to EJB interceptors, can
transparently decide whether a command needs to be routed to the server (to
another command handler) or if the command can be executed disconnected on
the client.

 The stateless session bean need not be the only command handler. It’s easy to
implement a JMS-based command handler that executes commands asynchro-
nously. You can even store a command in the database for scheduled execution.
Commands may be used outside of the server environment—in a batch process or
unit test case, for example.

Designing applications with EJB 3.0 725
 In practice, an architecture that relies on the Command pattern works nicely.
 In the next section, we discuss how EJB 3.0 components can further simplify a

layered application architecture.

16.4 Designing applications with EJB 3.0

We’ve focused on the Java Persistence standard in this book and discussed only a
few examples of other EJB 3.0 programming constructs. We wrote some EJB ses-
sion beans, enabled container-managed transactions, and used container injec-
tion to get an EntityManager.

 There is much more to be discovered in the EJB 3.0 programming model. In
the following sections, we show you how to simplify some of the previous patterns
with EJB 3.0 components. However, we again only look at features that are rele-
vant for a database application, so you need to refer to other documentation if
you want to know more about timers, EJB interceptors, or message-driven EJBs.

 First you’ll implement an action in a web application with a stateful session
bean, a conversational controller. Then you’ll simplify data-access objects by turn-
ing them into EJBs to get container-managed transactions and injection of depen-
dencies. You’ll also switch from any Hibernate interfaces to Java Persistence, to
stay fully compatible with EJB 3.0.

 You start by implementing a conversation with EJB 3.0 components in a web
application.

16.4.1 Implementing a conversation with stateful beans

A stateful session bean (SFSB) is the perfect controller for a potentially long-run-
ning conversation between the application and the user. You can write an SFSB that
implements all the steps in a conversation—for example, a PlaceItem conversation:

1 User enters item information

2 User can add images for an item

3 User submits the completed form

Step 2 of this conversation can be executed repeatedly, if more than one image
must be added. Let’s implement this with an SFSB that uses Java Persistence and
the EntityManager directly.

 A single SFSB instance is responsible for the whole conversation. First, here’s
the business interface:

726 CHAPTER 16

Creating and testing layered applications
public interface PlaceItem {

 public Item createItem(Long userId, Map itemData);

 public void addImage(String filename);

 public void submit();
}

In the first step of the conversation, the user enters the basic item details and sup-
plies a user identifier. From this, an Item instance is created and stored in the con-
versation. The user can then execute addImage() events several times. Finally, the
user completes the form, and the submit() method is called to end the conversa-
tion. Note how you can read the interface like a story of your conversation.

 This is a possible implementation:

@Stateful
@TransactionAttribute(TransactionAttributeType.NEVER)
public class PlaceItemBean implements PlaceItem {

 @PersistenceContext(type = PersistenceContextType.EXTENDED)
 private EntityManager em;

 private Item item;
 private User seller;

 public Item createItem(Long userId, Map itemData) {

 // Load seller into conversation
 seller = em.find(User.class, userId);

 // Create item for conversation
 item = new Item(itemData, seller);
 user.addItem(item);

 return item;
 }

 public void addImage(String filename) {
 item.getImages().add(filename);
 }

 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void submit() {
 em.persist(item);
 }
}

An instance of this stateful session bean is bound to a particular EJB client, so it
also acts as a cache during the conversation. You use an extended persistence con-
text that is flushed only when submit() returns, because this is the only method

Designing applications with EJB 3.0 727
that executes inside a transaction. All data access in other methods runs in auto-
commit mode. So em.find(User.class, userId) executes nontransactional,
whereas em.persist(item) is transactional. Because the submit() method is also
marked with @Remove, the persistence context is closed automatically when this
method returns, and the stateful session bean is destroyed.

 A variation of this implementation doesn’t call the EntityManager directly, but
data-access objects.

16.4.2 Writing DAOs with EJBs

A data-access object is the perfect stateless session bean. Each data-access method
doesn’t require any state; it only needs an EntityManager. So, when you imple-
ment a GenericDAO with Java Persistence, you require an EntityManager to be set:

public abstract class GenericEJB3DAO<T,ID extends Serializable>
 implements GenericDAO<T, ID> {

 private Class<T> entityBeanType;

 private EntityManager em;

 public GenericEJB3DAO() {
 this.entityBeanType = (Class<T>)
 ((ParameterizedType) getClass().getGenericSuperclass())
 .getActualTypeArguments()[0];
 }

 @PersistenceContext
 public void setEntityManager(EntityManager em) {
 this.em = em;
 }

 protected EntityManager getEntityManager() {
 return em;
 }

 public Class<T> getEntityBeanType() {
 return entityBeanType;
 }

 ...
}

This is really the same implementation you created earlier for Hibernate in sec-
tion 16.2.2, “Implementing the generic CRUD interface.” However, you mark the
setEntityManager() method with @PersistenceContext, so you get automatic
injection of the right EntityManager when this bean executes inside a container.
If it’s executed outside of an EJB 3.0 runtime container, you can set the Entity-
Manager manually.

728 CHAPTER 16

Creating and testing layered applications
 We won’t show you the implementation of all CRUD operations with JPA; you
should be able to implement findById(), and so on, on your own.

 Next, here’s the implementation of a concrete DAO with business data-access
methods:

@Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class ItemDAOBean extends GenericEJB3DAO<Item, Long>
 implements ItemDAO {

 public Bid getMaxBid(Long itemId) {
 Query q = getEntityManager()
 .createNamedQuery("getItemMaxBid");
 q.setParameter("itemid", itemId);
 return (Bid) q.getSingleResult();
 }

 public Bid getMinBid(Long itemId) {
 Query q = getEntityManager()
 .createNamedQuery("getItemMinBid");
 q.setParameter("itemid", itemId);
 return (Bid) q.getSingleResult();
 }
 ...
}

This concrete subclass is the stateless EJB session bean, and all methods that are
called, included those inherited from the GenericDAO superclass, require a trans-
action context. If a client of this DAO calls a method with no active transaction, a
transaction is started for this DAO method.

 You no longer need any DAO factories. The conversation controller you wrote
earlier is wired with the DAOs automatically through dependency injection.

16.4.3 Utilizing dependency injection

You now refactor the PlaceItem conversation controller and add a persistence
layer. Instead of accessing JPA directly, you call DAOs that are injected into the
conversation controller by the container at runtime:

@Stateful
public class PlaceItemWithDAOsBean implements PlaceItem {

 @PersistenceContext(
 type = PersistenceContextType.EXTENDED,
 properties =
 @PersistenceProperty(
 name="org.hibernate.flushMode",
 value="MANUAL"
)

Designing applications with EJB 3.0 729
)
 private EntityManager em;

 @EJB ItemDAO itemDAO;
 @EJB UserDAO userDAO;

 private Item item;
 private User seller;

 public Item createItem(Long userId, Map itemData) {

 // Load seller into conversation
 seller = userDAO.findById(userId);

 // Create item for conversation
 item = new Item(itemData, seller);

 return item;
 }

 public void addImage(String filename) {
 item.getImages().add(filename);
 }

 @Remove
 public void submit() {
 itemDAO.makePersistent(item);
 em.flush();
 }
}

The @EJB annotation marks the itemDAO and userDAO fields for automatic depen-
dency injection. The container looks up an implementation (which implementa-
tion is vendor-dependent, but in this case there is only one for each interface) of
the given interface and sets it on the field.

 You haven’t disabled transactions in this implementation, but only disabled
automatic flushing with the Hibernate org.hibernate.flushmode extension
property. You then flush the persistence context once, when the @Remove method
of the SFSB completes and before the transaction of this method commits.

 There are two reasons for this:

■ All DAO methods you’re calling require a transaction context. If you don’t
start a transaction for each method in the conversation controller, the trans-
action boundary is a call on one of the data-access objects. However, you
want the createItem(), addImages(), and submit() methods to be the
scope of the transaction, in case you execute several DAO operations.

■ You have an extended persistence context that is automatically scoped and
bound to the stateful session bean. Because the DAOs are stateless session
beans, this single persistence context can be propagated into all DAOs only

730 CHAPTER 16

Creating and testing layered applications
when a transaction context is active and propagated as well. If the DAOs are
stateful session beans, you can propagate the current persistence context
through instantiation even when there is no transaction context for a DAO
call, but that also means the conversation controller must destroy any state-
ful DAOs manually.

Without the Hibernate extension property, you’d have to make your DAOs stateful
session beans to allow propagation of the persistence context between nontransac-
tional method calls. It would then be the responsibility of the controller to call the
@Remove method of each DAO in its own @Remove method—you don’t want either.
You want to disable flushing without writing any nontransactional methods.

 EJB 3.0 includes many more injection features, and they extend to other Java
EE 5.0 specifications. For example, you can use @EJB injection in a Java servlet
container, or @Resource to get any named resource from JNDI injected automati-
cally. However, these features are outside the scope of this book.

 Now that you’ve created application layers, you need a way to test them for cor-
rectness.

16.5 Testing

Testing is probably the single most important activity in which a Java developer
engages during a day of work. Testing determines the correctness of the system
from a functional standpoint as well as from a performance and scalability per-
spective. Successfully executing tests means that all application components and
layers interact correctly and work together smoothly and as specified.

 You can test and proof a software system many different ways. In the context of
persistence and data management, you’re naturally most interested in automated
tests. In the following sections, you create many kinds of tests that you can run
repeatedly to check the correct behavior of your application.

 First we look at different categories of tests. Functional, integration, and stand-
alone unit testing all have a different goal and purpose, and you need to know
when each strategy is appropriate. We then write tests and introduce the TestNG
framework (http://www.testng.org). Finally, we consider stress and load testing
and how you can find out whether your system will scale to a high number of con-
current transactions.

Testing 731
16.5.1 Understanding different kinds of tests

We categorize software testing as follows:

■ Acceptance testing—This kind of test isn’t necessarily automated and usually
isn’t the job of the application developer and system designers. Acceptance
testing is the final stage of testing of a system, conducted by the customer
(or any other party) who is deciding whether the system meets the project
requirements. These tests can include any metric, from functionality, to per-
formance, to usability.

■ Performance testing—A stress or load test exercises the system with a high
number of concurrent users, ideally an equal or a higher load than is
expected once the software runs in production. Because this is such an
important facet of testing for any application with online transactional data
processing, we look at performance testing later in more detail.

■ Logic unit testing—These tests consider a single piece of functionality, often
only a business method (for example, whether the highest bid really wins in
the auction system). If a component is tested as a single unit, it’s tested
independently from any other component. Logic unit testing doesn’t
involve any subsystems like databases.

■ Integration unit testing—An integration test determines whether the interac-
tion between software components, services, and subsystems works as
expected. In the context of transaction processing and data management,
this can mean that you want to test whether the application works correctly
with the database (for example, whether a newly made bid for an auction
item is correctly saved in the database).

■ Functional unit testing—A functional test exercises a whole use case and the
public interface in all application components that are needed to complete
this particular use case. A functional test can include application workflow
and the user interface (for example, by simulating how a user must be
logged in before placing a new bid for an auction item).

In the following sections, we focus on integration unit testing because it’s the
most relevant kind of test when persistent data and transaction processing are
your primary concerns. That doesn’t mean other kinds of tests aren’t equally
important, and we’ll provide hints along the way. If you want to get the full pic-
ture, we recommend JUnit in Action ([Massol, 2003]).

732 CHAPTER 16

Creating and testing layered applications
 We don’t use JUnit, but TestNG. This shouldn’t bother you too much,
because the fundamentals we present are applicable with any testing framework.
We think TestNG makes integration and functional unit testing easier than JUnit,
and we especially like its JDK 5.0 features and annotation-based configuration of
test assemblies.

 Let’s write a simple isolated logic unit test first, so you can see how TestNG
works.

16.5.2 Introducing TestNG

TestNG is a testing framework that has some unique functionality, which makes it
especially useful for unit testing that involves complex test setups such as integra-
tion or functional testing. Some of TestNG’s features are JDK 5.0 annotations for
the declaration of test assemblies, support for configuration parameters and flexi-
ble grouping of tests into test suites, support for a variety of plug-ins for IDEs and
Ant, and the ability to execute tests in a specific order by following dependencies.

 We want to approach these features step by step, so you first write a simple
logic unit test without any integration of a subsystem.

A unit test in TestNG
A logic unit test validates a single piece of functionality and checks whether all
business rules are followed by a particular component or method. If you followed
our discussion earlier in this chapter about smart domain models (section 16.1.4,
“Designing ‘smart’ domain models”), you know that we prefer to encapsulate
unit-testable business logic in the domain model implementation. A logic unit test
executes a test of methods in the business layer and domain model:

public class AuctionLogic {

 @org.testng.annotations.Test(groups = "logic")
 public void highestBidWins() {

 // A user is needed
 User user = new User(...);

 // Create an Item instance
 Item auction = new Item(...);

 // Place a bid
 BigDecimal bidAmount = new BigDecimal("100.00");
 auction.placeBid(user, bidAmount,
 new BigDecimal(0), new BigDecimal(0));

 // Place another higher bid
 BigDecimal higherBidAmount = new BigDecimal("101.00");
 auction.placeBid(user, higherBidAmount,

Testing 733
 bidAmount, bidAmount);

 // Assert state
 assert auction.getBids().size() == 2;
 }

}

The class AuctionLogic is an arbitrary class with so-called test methods. A test
method is any method marked with the @Test annotation. Optionally, you can
assign group names to test methods so that you can assemble a test suite dynami-
cally by combining groups later on.

 The test method highestBidWins() executes part of the logic for the “Placing
a bid” use case. First, an instance of User is needed for placing bids—that this, is
the same user isn’t a concern for this test.

 This test can fail several ways, indicating that a business rule has been violated.
The first bid gets the auction started (the current maximum and minimum bids
are both zero), so you don’t expect any failure here. Placing a second bid is the
step that must succeed without throwing a BusinessException, because the new
bid amount is higher than the previous bid amount. Finally, you assert the state of
the auction with the Java assert keyword and a comparison operation.

 You often want to test business logic for failure and expect an exception.

Expecting failures in a test
The auction system has a pretty serious bug. If you look at the implementation
of Item.placeBid() in section 16.1.4, “Designing ‘smart’ domain models,” you
can see that you check whether the given new bid amount is higher than any
existing bid amount. However, you never check it against the initial starting
price of an auction. That means a user can place any bid, even if it’s lower than
the initial price.

 You test this by testing for failure. The following procedure expects an exception:

public class AuctionLogic {

 @Test(groups = "logic")
 public void highestBidWins() { ... }

 @Test(groups = "logic")
 @ExpectedExceptions(BusinessException.class)
 public void initialPriceConsidered() {

 // A user is needed
 User user = new User(...);

 // Create an Item instance
 Item auction = new Item(..., new BigDecimal("200.00"));

734 CHAPTER 16

Creating and testing layered applications
 // Place a bid
 BigDecimal bidAmount = new BigDecimal("100.00");
 auction.placeBid(user, bidAmount,
 new BigDecimal(0), new BigDecimal(0));
 }

}

Now, placing a bid with a value of 100 has to fail, because the initial starting price
of the auction is 200. TestNG requires that this method throws a BusinessExcep-
tion—otherwise the test fails. More fine-grained business exception types let you
test failures for core parts of the business logic more accurately.

 In the end, how many execution paths of your domain model are considered
defines your overall business logic test coverage. You can use tools such as cenqua
clover (http://www.cenqua.com/clover/), which can extract the code coverage
percentage of your test suite and provide many other interesting details about the
quality of your system.

 Let’s execute these previous test methods with TestNG and Ant.

Creating and running a test suite
You can create a test suite dozens of ways with TestNG and start the tests. You can
call test methods directly with a click of a button in your IDE (after installing the
TestNG plug-in), or you can integrate unit testing in your regular build with an
Ant task and an XML description of the test suite.

 An XML test suite description for the unit tests from the last sections looks as
follows:

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name="CaveatEmptor" verbose="2">

 <test name="BusinessLogic">
 <run><include name="logic.*"/></run>

 <packages>
 <package name="auction.test"/>
 </packages>

 <!-- Or just the class...
 <classes>
 <class name="auction.test.AuctionLogic"/>
 </classes>
 -->
 </test>

</suite>

Testing 735
A test suite is an assembly of several logical tests—don’t confuse this with test
methods. A logical test is determined at runtime by TestNG. For example, the log-
ical test with the name BusinessLogic includes all test methods (that is, methods
marked with @Test) in classes of the auction.test package. These test methods
must belong to a group that starts with the name logic; note that .* is a regular
expression meaning “any number of arbitrary characters.” Alternatively, you can
list the test classes you’d like to consider part of this logical test explicitly, instead
of the whole package (or several packages).

 You can write some test classes and methods, arrange them in any way that is
convenient, and then create arbitrary test assemblies by mixing and matching
classes, packages, and named groups. This assembly of logical tests from arbitrary
classes and packages and the separation into groups with wildcard matching make
TestNG more powerful than many other testing frameworks.

 Save the suite description XML file as test-logic.xml in the base directory of
your project. Now, run this test suite with Ant and the following target in your
build.xml:

<taskdef resource="testngtasks" classpathref="project.classpath"/>

<target name="unittest.logic" depends="compile, copymetafiles">
 description="Run logic unit tests with TestNG">

 <delete dir="${basedir}/test-output"/>
 <mkdir dir="${basedir}/test-output"/>

 <testng outputDir="${basedir}/test-output"
 classpathref="project.classpath">
 <xmlfileset dir="${basedir}">
 <include name="test-logic.xml"/>
 </xmlfileset>
 </testng>

</target>

First, the TestNG Ant tasks are imported into the build. Then, the unit-
test.logic target starts a TestNG run with the suite description file test-
logic.xml in the base directory of your project. TestNG creates an HTML report
in the outputDir, so you clean this directory every time before running a test.

 Call this Ant target and experiment with your first TestNG assembly. Next we
discuss integration testing, and how TestNG can support you with flexible configu-
ration of the runtime environment.

736 CHAPTER 16

Creating and testing layered applications
16.5.3 Testing the persistence layer

Testing the persistence layer means several components have to be exercised and
checked to see whether they interact correctly. This means:

■ Testing mappings—You want to test mappings for syntactical correctness
(whether all columns and tables that are mapped match the properties and
classes).

■ Testing object state transitions—You want to test whether an object transitions
correctly from transient to persistent to detached state. In other words, you
want to ensure that data is saved correctly in the database, that it can be
loaded correctly, and that all potential cascading rules for transitive state
changes work as expected.

■ Testing queries—Any nontrivial HQL, Criteria, and (possibly) SQL query
should be tested for correctness of the returned data.

All these tests require that the persistence layer isn’t tested stand-alone but is inte-
grated with a running database-management system. Furthermore, all other infra-
structure, such as a Hibernate SessionFactory or a JPA EntityManagerFactory,
must be available; you need a runtime environment that enables any services you
want to include in the integration test.

 Consider the database-management system on which you want to run these
tests. Ideally, this should be the same DBMS product you’ll deploy in production
for your application. On the other hand, in some cases you may run integration
tests on a different system in development—for example, the lightweight HSQL
DB. Note that object-state transitions can be tested transparently, thanks to Hiber-
nate’s database portability features. Any sophisticated application has mappings
and queries that are often tailored for a particular database-management system
(with formulas and native SQL statements), so any integration test with a nonpro-
duction database product won’t be meaningful. Many DBMS vendors offer free
licenses or even lightweight versions of their major database products for develop-
ment purposes. Consider these before switching to a different database-manage-
ment system during development.

 You must first prepare the test environment and enable the runtime infrastruc-
ture before you write any integration unit tests.

Writing a DBUnit superclass
An environment for integration testing of a persistence layer requires that the
database-management system is installed and active—we expect that this is taken

Testing 737
care of in your case. Next, you need to consider your integration test assembly and
how you can execute configuration and tests in the right order.

 First, to use your data-access objects you have to start Hibernate—building a
SessionFactory is the easiest part. More difficult is defining the sequence of con-
figuration operations that are required before and after you run a test. A common
sequence is this:

1 Reset the database content to a well-known state. The easiest way to do this
is through an automatic export of a database schema with the Hibernate
toolset. You then start testing with an empty, clean database.

2 Create any base data for the test by importing the data into the database.
This can be done in various ways, such as programmatically in Java code or
with tools such as DBUnit (http://www.dbunit.org).

3 Create objects, and execute whatever state transition you want to test, such
as saving or loading an object by calling your DAOs in a TestNG test method.

4 Assert the state after a transition by checking the objects in Java code and/
or by executing SQL statements and verifying the state of the database.

Consider several such integration tests. Should you always start from step 1 and
export a fresh database schema after every test method, and then import all base
data again? If you execute a large number of tests, this can be time consuming.
On the other hand, this approach is much easier than deleting and cleaning up
after every test method, which would be an additional step.

 A tool that can help you with these configuration and preparation steps for
each test is DBUnit. You can import and manage data sets easily—for example, a
data set that must be reset into a known state for each test run.

 Even though TestNG allows you to combine and assemble test suites in any way
imaginable, a superclass that encapsulates all configuration and DBUnit setup
operations is convenient. Look at a superclass appropriate for integration testing
of Hibernate data-access objects in listing 16.2.

public abstract class HibernateIntegrationTest {

 protected SessionFactory sessionFactory;

 protected String dataSetLocation;
 protected List<DatabaseOperation> beforeTestOperations
 = new ArrayList<DatabaseOperation>();
 protected List<DatabaseOperation> afterTestOperations
 = new ArrayList<DatabaseOperation>();

Listing 16.2 A superclass for Hibernate integration testing

B

C

738 CHAPTER 16

Creating and testing layered applications
 private ReplacementDataSet dataSet;

 @BeforeTest(groups = "integration-hibernate")
 void startHibernate() throws Exception {
 sessionFactory = HibernateUtil.getSessionFactory();
 }

 @BeforeClass(groups = "integration-hibernate")
 void prepareDataSet() throws Exception {

 // Check if subclass has prepared everything
 prepareSettings();
 if (dataSetLocation == null)
 throw new RuntimeException(
 "Test subclass needs to prepare a dataset location"
);

 // Load the base dataset file
 InputStream input =
 Thread.currentThread().getContextClassLoader()
 .getResourceAsStream(dataSetLocation);

 dataSet = new ReplacementDataSet(
 new FlatXmlDataSet(input)
);
 dataSet.addReplacementObject("[NULL]", null);
 }

 @BeforeMethod(groups = "integration-hibernate")
 void beforeTestMethod() throws Exception {
 for (DatabaseOperation op : beforeTestOperations) {
 op.execute(getConnection(), dataSet);
 }
 }

 @AfterMethod(groups = "integration-hibernate")
 void afterTestMethod() throws Exception {
 for (DatabaseOperation op : afterTestOperations) {
 op.execute(getConnection(), dataSet);
 }
 }

 // Subclasses can/have to override the following methods

 protected IDatabaseConnection getConnection() throws Exception {

 // Get a JDBC connection from Hibernate
 Connection con =
 ((SessionFactoryImpl)sessionFactory).getSettings()
 .getConnectionProvider().getConnection();

 // Disable foreign key constraint checking
 con.prepareStatement("set referential_integrity FALSE")
 .execute();

D

E

F

G

H

I

Testing 739
 return new DatabaseConnection(con);
 }

 protected abstract void prepareSettings();

}

All tests in a particular suite use the same Hibernate SessionFactory.

A subclass can customize the DBUnit database operations that are executed
before and after every test method.

A subclass can customize which DBUnit data set should be used for all its test
methods.

Hibernate is started before a logical test of the test assembly runs—again, note
that @BeforeTest doesn’t mean before each test method.

For each test (sub)class, a DBUnit data set must be loaded from an XML file, and
all null markers have to be replaced with real NULLs.

Before each test method, you execute the required database operations with
DBUnit.

After each test method, you execute the required database operations with
DBUnit.

By default, you obtain a plain JDBC connection from Hibernate's Connection-
Provider and wrap it in a DBUnit DatabaseConnection. You also disable foreign
key constraint checking for this connection.

A subclass must override this method and prepare the data-set file location and
operations that are supposed to run before and after each test method.

This superclass takes care of many things at once, and writing integration tests as
subclasses is easy. Each subclass can customize which DBUnit data set it wants to
work with (we’ll discuss these data sets soon) and what operations on that data set
(for example, INSERT and DELETE) have to run before and after a particular test
method executes.

 Note that this superclass assumes the database is active and a valid schema has
been created. If you want to re-create and automatically export the database
schema for each test suite, enable the hibernate.hbm2ddl.auto configuration
option by setting it to create. Hibernate then drops the old and exports a fresh
database schema when the SessionFactory is built.

 Next, let’s look at the DBUnit data sets.

J

B

C

D

E

F

G

H

I

J

740 CHAPTER 16

Creating and testing layered applications
Preparing the data sets
With the proposed testing strategy, each test (sub)class works with a particular
data set. This is merely a decision we made to simplify the superclass; you can use
a data set per test method or a single data set for the whole logical test, if you like.

 A data set is a collection of data that DBUnit can maintain for you. There are a
great many ways to create and work with data sets in DBUnit. We’d like to intro-
duce one of the easiest scenarios, which is often sufficient. First, write a data set
into an XML file, in the syntax as required by DBUnit:

<?xml version="1.0"?>

<dataset>
 <USERS USER_ID ="1"
 OBJ_VERSION ="0"
 FIRSTNAME ="John"
 LASTNAME ="Doe"
 USERNAME ="johndoe"
 PASSWORD ="secret"
 EMAIL ="jd@mail.tld"
 RANK ="0"
 IS_ADMIN ="false"
 CREATED ="2006-09-23 13:45:00"
 HOME_STREET ="[NULL]"
 HOME_ZIPCODE ="[NULL]"
 HOME_CITY ="[NULL]"
 DEFAULT_BILLING_DETAILS_ID ="[NULL]"
 />

 <ITEM />
</dataset>

You don’t need a DTD for this file, although specifying a DTD lets you verify the
syntactical correctness of the data set (it also means that you must convert part of
your database schema into a DTD). Each row of data has its own element with the
name of the table. For example, one <USERS> element declares the data for one
row in the USERS table. Note that you use [NULL] as the token that is replaced by
the integration testing superclass with a real SQL NULL. Also note that you can add
an empty row for each table that you’d like DBUnit to maintain. In the data set
shown here, the ITEM table is part of the data set, and DBUnit can delete any data
in that table (which comes in handy later).

 Let’s assume that this data set is saved in an XML file basedata.xml in the auc-
tion.test.dbunit package. Next you’ll write a test class that utilizes this data set.

Testing 741
Writing a test class
A test class groups test methods that rely on a particular data set. Look at the fol-
lowing example:

public class PersistentStateTransitions
 extends HibernateIntegrationTest {

 protected void prepareSettings() {
 dataSetLocation = "auction/test/dbunit/basedata.xml";
 beforeTestOperations.add(DatabaseOperation.CLEAN_INSERT);
 }

 ...

}

This is a subclass of HibernateIntegrationTest, and it prepares the location of
the data set it requires. It also requires that a CLEAN_INSERT operation runs before
any test method. This DBUnit database operation deletes all rows (effectively
cleans the USERS and ITEM tables) and then inserts the rows as defined in the data
set. You have a clean database state for each test method.

 DBUnit includes many built-in DatabaseOperations, such as INSERT, DELETE,
DELETE_ALL, and even REFRESH. Check the DBUnit reference documentation for
a complete list; we won’t repeat it here. Note that you can stack operations:

public class PersistentStateTransitions
 extends HibernateIntegrationTest {

 protected void prepareSettings() {
 dataSetLocation = "auction/test/dbunit/basedata.xml";
 beforeTestOperations.add(DatabaseOperation.DELETE_ALL);
 beforeTestOperations.add(DatabaseOperation.INSERT);
 afterTestOperations.add(DatabaseOperation.DELETE_ALL);
 }

 ...
}

Before each test method, all content in the data set tables is deleted and then
inserted. After each test method, all database content in the data set tables is
deleted again. This stack guarantees a clean database state before and after each
test method.

 You can now write the actual test methods in this test class. The name of the
class, PersistentStateTransition, hints at what you want to do:

@Test(groups = "integration-hibernate")
public void storeAndLoadItem() {

 // Start a unit of work

742 CHAPTER 16

Creating and testing layered applications
 sessionFactory.getCurrentSession().beginTransaction();

 // Prepare the DAOs
 ItemDAOHibernate itemDAO = new ItemDAOHibernate();
 itemDAO.setSession(sessionFactory.getCurrentSession());

 UserDAOHibernate userDAO = new UserDAOHibernate();
 userDAO.setSession(sessionFactory.getCurrentSession());

 // Prepare a user object
 User user = userDAO.findById(1l, false);

 // Make a new auction item persistent
 Calendar startDate = GregorianCalendar.getInstance();
 Calendar endDate = GregorianCalendar.getInstance();
 endDate.add(Calendar.DAY_OF_YEAR, 3);

 Item newItem =
 new Item("Testitem", "Test Description", user,
 new BigDecimal(123), new BigDecimal(333),
 startDate.getTime(), endDate.getTime());

 itemDAO.makePersistent(newItem);

 // End the unit of work
 sessionFactory.getCurrentSession()
 .getTransaction().commit();

 // Direct SQL query for database state in auto-commit mode
 StatelessSession s = sessionFactory.openStatelessSession();
 Object[] result = (Object[])
 s.createSQLQuery("select INITIAL_PRICE ip," +
 "SELLER_ID sid from ITEM")
 .addScalar("ip", Hibernate.BIG_DECIMAL)
 .addScalar("sid", Hibernate.LONG)
 .uniqueResult();
 s.close();

 // Assert correctness of state
 assert result[0].getClass() == BigDecimal.class;
 assert result[0].equals(newItem.getInitialPrice().getValue());
 assert result[1].equals(1l);

}

This test method makes an Item instance persistent. Although this looks like a lot
of code, there are only a few interesting parts.

 A User instance is required for this state transition, so the user data you define
in the data set is loaded through Hibernate. You have to provide the same identi-
fier value (1l in the example) you wrote into the data set as the primary key.

 When the unit of work commits, all state transitions are completed and the
state of the Session is synchronized with the database. The final step is the real
test, asserting that the database content is in the expected state.

Testing 743
 You can test the database state many ways. Obviously, you don’t use a Hiber-
nate query or Session operation for this purpose, because Hibernate is an addi-
tional layer between your test and the real database content. To ensure that you’re
really hitting the database and that you’re seeing the state as is, we recommend
that you use an SQL query.

 Hibernate makes it easy to execute an SQL query and to check the returned
values. In the example, you open a Hibernate StatelessSession to create this
SQL query. The database connection used in this query is in autocommit mode
(hibernate.connection.autocommit set to true), because you don’t start a trans-
action. This is the perfect use case for StatelessSession, because it deactivates
any cache, any cascading, any interceptors, or anything that could interfere with
your view on the database.

 Let’s bring this all together in a TestNG test suite and an Ant target.

Running the integration tests
This is the XML test suite descriptor:

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name="CaveatEmptor" verbose="2">

 <test name="PersistenceLayer">
 <groups>
 <run><include name="integration-hibernate.*"/></run>
 </groups>

 <packages>
 <package name="auction.test.dbunit"/>
 </packages>
 </test>

</suite>

The logical test PersistenceLayer includes all test classes and test methods
found in the package auction.test.dbunit, if their group name starts with
integration-hibernate. This is also true for any TestNG configuration methods
(those marked with @BeforeClass and so on), so you need to place any classes
(the superclass, too) with configuration methods in the same package and add
them to the same group.

 To run this test suite with Ant, replace the name of the XML suite descriptor in
the Ant target you wrote in section 16.5.2, “Creating and running a test suite.”

 We’ve only scratched the surface of TestNG and DBUnit in the previous exam-
ples. There are many more useful options; for example, you can parameterize test
methods in TestNG with arbitrary settings in your suite descriptor. You can create

744 CHAPTER 16

Creating and testing layered applications
a test assembly that starts an EJB 3.0 container server (see the code in chapter 2,
section 2.2.3, “Running the application” and the EJB3IntegrationTest super-
class in the CaveatEmptor download) and then test your EJB layers. We recom-
mend the documentation of TestNG and DBUnit, respectively, as you start
building out your testing environment from the base classes and with the strate-
gies we’ve shown.

 You may wonder how you can test mappings and queries, because we’ve
only discussed testing of object-state transitions. First, you can test mappings
easily by setting hibernate.hbm2ddl.auto to validate. Hibernate then verifies
the mappings by checking them against database catalog metadata when the
SessionFactory is built. Second, testing queries is the same as testing object
state transitions: Write integration test methods, and assert the state of the
returned data.

 Finally, we consider load and stress testing, and which aspects you have to focus
on if you want to test the performance of your system.

16.5.4 Considering performance benchmarks

One of the most difficult things in enterprise application development is guaran-
teeing performance and scalability of an application. Let’s define these terms
first.

 Performance is usually considered to be the reaction time of a request/response-
based application. If you click a button, you expect a response in half a second.
Or, depending on the use case, you expect that a particular event (or batch oper-
ation) can be executed in a reasonable time frame. Naturally, reasonable depends
on the case and usage patterns of some application functionality.

 Scalability is the ability of a system to perform reasonably under higher load.
Imagine that instead of 1 person clicking 1 button, 5,000 people click a lot of but-
tons. The better the scalability of a system, the more concurrent users you can
pack on it without performance degradation.

 We already had much to say about performance. Creating a system that per-
forms well is, in our opinion, synonymous to creating a Hibernate/database appli-
cation that has no obvious performance bottlenecks. A performance bottleneck
can be anything you consider a programming mistake or bad design—for exam-
ple, the wrong fetching strategy, a wrong query, or bad handling of the Session
and persistence context. Testing a system for reasonable performance is usually
part of the acceptance tests. In practice, performance testing is often done by a
dedicated group of end user testers in a lab environment, or with a closed user
group in real-world conditions. Pure automated performance tests are rare.

Testing 745
 You can also find performance bottlenecks with an automated scalability test;
this is the ultimate goal. However, we’ve seen many stress and load tests in our
careers, and most of them didn’t consider one or several of the following rules:

■ Test scalability with real-world data sets. Don’t test with a data set that can fit
completely into the cache of a hard disk on the database server. Use data
that already exists, or use a test data generator to produce test data (for
example, TurboData: http://www.turbodata.ca/). Make sure the test data is
as close as possible to the data the system will work on in production, with
the same amount, distribution, and selectivity.

■ Test scalability with concurrency. An automated performance test that mea-
sures the time it takes to do a single query with a single active user
doesn’t tell you anything about the scalability of the system in produc-
tion. Persistence services like Hibernate are designed for high concur-
rency, so a test without concurrency may even show an overhead you
don’t expect! As soon as you enable more concurrent units of work and
transactions, you’ll see how features such as the second-level cache help
you to keep up performance.

■ Test scalability with real use cases. If your application has to process com-
plex transactions (for example, calculating stock market values based on
sophisticated statistical models), you should test the scalability of the sys-
tem by executing these use cases. Analyze your use cases, and pick the sce-
narios that are prevalent—many applications have only a handful of use
cases that are most critical. Avoid writing microbenchmarks that randomly
store and load a few thousand objects; the numbers from these kinds of
tests are meaningless.

Creating a test environment for the automatic execution of scalability tests is an
involved effort. If you follow all our rules, you need to spend some time analyzing
your data, your use cases, and your expected system load first. Once you have this
information, it’s time to set up automated tests.

 Typically, a scalability test of a client/server application requires the simula-
tion of concurrently running clients and the collection of statistics for each exe-
cuted operation. You should consider existing testing solutions, either
commercial (such as LoadRunner, http://www.mercury.com/) or open source
(such as The Grinder [http://grinder.sourceforge.net/] or JMeter [http://
jakarta.apache.org/jmeter/]). Creating tests usually involves writing control
scripts for the simulated clients as well as configuring the agents that run on the

746 CHAPTER 16

Creating and testing layered applications
server processes (for example, for direct execution of particular transactions or
the collection of statistics).

 Finally, testing performance and (especially) scalability of a system is naturally
a separate stage in the lifecycle of a software application. You shouldn’t test the
scalability of system in the early stages of development. You shouldn’t enable the
second-level cache of Hibernate until you have a testing environment that was
built following the rules we’ve mentioned.

 At a later stage in your project, you may add automated scalability tests to the
nightly integration tests. You should test the scalability of your system before
going into production, as part of the regular test cycle. On the other hand, we
don’t recommend delaying any kind of performance and scalability testing until
the last minute. Don’t try to fix your performance bottlenecks one day before you
go into production by tweaking the Hibernate second-level cache. You probably
won’t succeed.

 Consider performance and load testing to be an essential part of your develop-
ment process, with well-defined stages, metrics, and requirements.

16.6 Summary

In this chapter, we looked at layered applications and some important patterns
and best practices. We discussed how you can design a web application with Hiber-
nate and implement the Open Session in View pattern. You now know how to cre-
ate smart domain models and how to separate business logic from controller
code. The flexible Command pattern is a major asset in your software design arse-
nal. We looked at EJB 3.0 components and how you can further simplify a POJO
application by adding a few annotations.

 Finally, we discussed the persistence layer extensively; you wrote data-access
objects and integration tests with TestNG that exercise the persistence layer.

Introducing JBoss Seam
This chapter covers
■ Web application development with JSF and EJB 3.0
■ Improving web applications with Seam
■ Integrating Seam with Hibernate Validator
■ Managing persistence contexts with Seam
747

748 CHAPTER 17

Introducing JBoss Seam
In this last chapter, we show you the JBoss Seam framework. Seam is an innovative
new framework for web application development with the Java EE 5.0 platform.
Seam brings two new standards, JavaServer Faces (JSF) and EJB 3.0, much closer
together, by unifying their component and programming models. Most attractive
for developers who rely on Hibernate (or any Java Persistence provider in EJB 3.0)
is Seam’s automatic persistence context management and the first-class constructs
it provides for the definition of conversations in the application flow. If you’ve
ever seen a LazyInitializationException in your Hibernate application, Seam
has the right solutions.

 There is much more to be said about Seam, and we encourage you to read this
chapter even if you already made a decision for a different framework or if you
aren’t writing a web application. Although Seam currently targets web applica-
tions and also relies on JSF as a presentation framework, other options should be
available in the future (you can already use Ajax calls to access Seam components,
for example). Furthermore, many central concepts of Seam are currently being
standardized and brought back into the Java EE 5.0 platform with the Web Beans
JSR 299 (http://www.jcp.org/en/jsr/detail?id=299).

 There are many ways to explain Seam and equally many ways to learn Seam. In
this chapter, we first look at the problems Seam promises to solve; then, we discuss
various solutions and highlight the features that are most appealing to you as a
Hibernate user.

17.1 The Java EE 5.0 programming model

Java EE 5.0 is significantly easier to use and much more powerful than its prede-
cessors. Two specifications of the Java EE 5.0 platform that are most relevant for
web application developers are JSF and EJB 3.0.

 What’s so great about JSF and EJB 3.0? We first highlight major concepts and
features in each specification. You’ll then write a small example with JSF and
EJB 3.0 and compare it to the old way of writing web applications in Java (think
Struts and EJB 2.x). After that, we’ll focus on the issues that are still present
and how Seam can make JSF and EJB 3.0 an even more powerful and
convenient combination.

 Note that it’s impossible to cover all of JSF and EJB 3.0 in this chapter. We rec-
ommend that you read this chapter together with the Sun Java EE 5.0 tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/) and browse through the
tutorial if you want to know more about a particular subject. On the other hand, if

The Java EE 5.0 programming model 749
you’ve already had some contact with JSF or EJB 3.0 (or even Hibernate), you’ll
likely find learning Seam easy.

17.1.1 Considering JavaServer Faces

JSF simplifies building web user interfaces in Java. As a presentation framework,
JSF provides the following high-level features:

■ JSF defines an extensible component model for visual components, often
called widgets.

■ JSF defines a component programming model for backing beans, or managed
beans, which contain the application logic.

■ JSF defines the interaction between the user interface and the application
logic and allows you to bind both together in a flexible fashion.

■ JSF allows you to define navigation rules declaratively in XML—that is,
which page is displayed for a particular outcome in your application logic.

Let’s spend a little more time on each of these features and what makes them
useful.

 JSF defines a set of built-in visual components that every JSF implementation
has to support (such as buttons and input text fields). These visual components
are rendered on pages as HTML (and Javascript). At the time of writing, several
high-quality open source and commercial JSF widget libraries are available. Ready-
made visual components are great for you as a developer; you don’t have to code
them by hand, and, most important, you don’t have to maintain them or make
them work on different browsers (which is especially painful if you need more
sophisticated visual components that use Javascript).

 Pages are created with any HTML templating engine that understands JSF
widgets. Although JSP seems like an obvious choice, in our experience it isn’t the
best. We found that JavaServer Facelets (https://facelets.dev.java.net/) is a perfect
fit for building JSF views and creating HTML templates that contain JSF widgets.
(Another nice bonus of using Facelets is that you get the new unified expression
language for free, even without a JSP 2.1-capable servlet container.) We’ll use
Facelets in all JSF examples in this chapter.

 JSF-managed application components, called backing beans, make your web
application interface work; they contain the application code. These are regular
POJOs, and they’re defined and wired together in JSF XML configuration files.
This wiring supports basic dependency injection, as well as lifecycle management

750 CHAPTER 17

Introducing JBoss Seam
of backing bean instances. The available scopes for a backing bean (where it lives)
are the current HTTP request context, the current HTTP session context, and the
global application context. You write application logic by creating beans and
letting JSF manage their lifecycle in one of these contexts.

 You can bind model values from a backing bean to a visual component with an
expression language. For example, you create a page with a text input field and
bind it to a named backing bean field or getter/setter method pair. This backing
bean name is then mapped in JSF configuration to an actual backing bean class,
along with a declaration of how an instance of that class should be handled by JSF
(in the request, in the HTTP session, or in the application context). The JSF
engine automatically keeps the backing bean field (or property) synchronized
with the state of the widget as seen (or manipulated) by the user.

 JSF is an event-driven presentation framework. If you click a button, a JSF
ActionEvent is fired and passed to registered listeners. A listener for an action
event is again a backing bean you name in your JSF configuration. The backing
bean can then react to this event—for example, by saving the current value of a
backing bean field (which is bound to a text input widget) into the database. This
is a simplified explanation of what JSF does. Internally, each request from the web
browser passes through several phases of processing.

 A typical request-processing sequence on the server, when you click a button
on a JSF page, is as follows (this process is illustrated in figure 17.7):

1 Restore View of all widgets (JSF can store the widget state on the server or on
the client).

2 Apply Request Parameters to update the state of widgets.

3 Process Validations that are necessary to validate user input.

4 Update Model Values that back the widget by calling the bound fields and
setter methods of a backing bean.

5 Invoke Application, and pass the action event to listeners.

6 Render Response page the user sees.

Obviously a request can take different routes; for example, Render Response may
occur after Process Validations, if a validation fails.

 A nice illustration of the JSF lifecycle and the processing phases can be found
in the already mentioned Sun Java EE 5 tutorial in chapter 9, “The Life Cycle of a
JavaServer Faces Page.” We’ll also get back to the JSF processing model later in
this chapter.

The Java EE 5.0 programming model 751
 Which response is rendered and what page is shown to the user depends on
the defined navigation rules and what the outcome of an action event is.
Outcomes in JSF are simple strings, like “success” or “failure.” These strings are
produced by your backing beans and then mapped in a JSF XML configuration file
to pages. This is also called free navigation flow; for example, you can click the Back
button in your browser or jump directly to a page by entering its URL.

 JSF, combined with Facelets, is a great solution if you’re looking for a web
framework. On the other hand, the backing beans of your web application—the
components that implement the application logic—usually need to access transac-
tional resources (databases, most of the time). This is where EJB 3.0 comes into
the picture.

17.1.2 Considering EJB 3.0

EJB 3.0 is a Java EE 5.0 standard that defines a programming model for transac-
tional components. For you, as a web application developer, the following features
of EJB 3.0 are most interesting:

■ EJB 3.0 defines a component programming model that is primarily based on
annotations on plain Java classes.

■ EJB 3.0 defines stateless, stateful, and message-driven components, and how
the runtime environment manages the lifecycle of component instances.

■ EJB 3.0 defines how components are wired together, how you can obtain ref-
erences to components, and how components can call each other.

■ EJB 3.0 defines how crosscutting concerns are handled, such as transactions
and security. You can also write custom interceptors and wrap them around
your components.

■ EJB 3.0 standardizes Java Persistence and how you can access an SQL data-
base with automatic and transparent object/relational mapping.

If you want to access an SQL database, you create your domain model entity
classes (such as Item, User, Category) and map them with annotations from the
Java Persistence specification to a database schema. The EJB 3.0 persistence
manager API, the EntityManager, is now your gateway for database operations.

 You execute database operations in EJB 3.0 components—for example, stateful
or stateless session beans. These beans are plain Java classes, which you enable as
EJBs with a few annotations. You then get the container’s services, such as
automatic dependency injection (you get the EntityManager when you need it)
and declarative transaction demarcation on component methods. Stateful session

752 CHAPTER 17

Introducing JBoss Seam
beans help you to keep state for a particular client, for example, if a user has to go
through several pages in a conversation with the application.

 Can you use EJB 3.0 components and entities as backing beans for JSF actions
and widgets? Can you bind a JSF text field widget to a field in your Item entity
class? Can a JSF button-click be directly routed to a session bean method?

 Let’s try this with an example.

17.1.3 Writing a web application with JSF and EJB 3.0

The web application you’ll create is simple; it has a search screen where users can
enter an identifier for a particular item, and a detail screen that appears when the
item is found in the database. On this detail screen, users can edit the item’s data
and save the changes to the database.

 (We don’t think you should necessarily code this application while reading the
examples; later, we make significant improvements by introducing Seam. That’s
the time to start coding.)

 Start with the data model for the entity: an Item.

Creating the entity class and mapping
The Item entity class comes from CaveatEmptor. It’s also already annotated and
mapped to the SQL database (listing 17.1).

package auction.model;
import ...;

@Entity
@Table(name = "ITEM")
public class Item implements Serializable {

 @Id @GeneratedValue
 @Column(name = "ITEM_ID")
 private Long id = null;

 @Column(name = "ITEM_NAME", length = 255,
 nullable = false, updatable = false)
 private String name;

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name="SELLER_ID",
 nullable = false, updatable = false)
 private User seller;

 @Column(name = "DESCRIPTION", length = 4000, nullable = false)
 private String description;

 @Column(name="INITIAL_PRICE", nullable = false)

Listing 17.1 An annotated and mapped entity class

The Java EE 5.0 programming model 753
 private BigDecimal initialPrice;

 Item() {}

 // Getter and setter methods...
}

This is a simplified version of the CaveatEmptor Item entity, without any
collections. Next is the search page that allows users to search for item objects.

Writing the search page with Facelets and JSF
The search page of the application is a page written with Facelets as the templat-
ing engine, and it’s valid XML. JSF widgets are embedded in that page to create
the search form with its input fields and buttons (listing 17.2).

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">

<head>
 <title>CaveatEmptor - Search items</title>
 <link href="screen.css" rel="stylesheet" type="text/css"/>
</head>

<body>

<ui:include src="header.xhtml"/>

<h:form>
 <h:message for="itemSearchField"/>

 <div class="entry">
 <div class="label">Enter item identifier:</div>

 <div class="input">
 <h:inputText id="itemSearchField"
 size="3" required="true"
 value="#{itemEditor.itemId}">

 <f:validateLongRange minimum="0"/>

 </h:inputText>
 </div>
 </div>

 <div class="entry">

Listing 17.2 The search.xhtml page in XHTML with Facelets

B

C

D

E

F G

H

I

J

754 CHAPTER 17

Introducing JBoss Seam
 <div class="label"> </div>

 <div class="input">
 <h:commandButton value="Search" styleClass="button"
 action="#{itemEditor.doSearch}"/>
 </div>
 </div>

</h:form>

</body>
</html>

Every valid XHTML file needs the right document type declaration.

In addition to the regular XHTML namespace, you import the Facelets and two
JSF namespaces for visual HTML components and core JSF components (for exam-
ple, for input validation).

The page layout is handled with cascading stylesheets (CSS) externalized to a sep-
arate file.

A common page header template is imported with <ui:import> from Facelets.

A JSF form (note the h namespace) is an HTML form that, if submitted, is pro-
cessed by the JSF servlet.

JSF can output messages, such as validation errors.

Each <div> is a label or a form field, styled with the CSS class label or input.

The JSF input text component that renders an HTML input field. The identifier is
useful to bind it to error-message output, the size defines the visual size of the
input field, and user input is required when this form is submitted. The most
interesting part is the value binding of the input field to a backing bean (named
itemEditor) and a getter/setter method pair (named getItemId()/set-
ItemId()) on that backing bean. This is the data model this input field is bound
to, and JSF synchronizes changes automatically.

JSF also supports input validation and comes with a range of built-in valida-
tors. Here you declare that user input can’t be negative (item identifiers are
positive integers).

The submit button of the form has an action binding to the method doSearch() of
the backing bean named itemEditor. What happens after the action executes
depends on the outcome of that method.

This is how the page looks rendered in the browser (figure 17.1).

1)

B

C

D

E

F

G

H

I

J

1)

The Java EE 5.0 programming model 755
If you look at the URL, you see that the page has been called with the suffix .jsf;
you probably expected to see search.xhtml. The .jsf suffix is a servlet mapping; the
JSF servlet runs whenever you call a URL that ends in .jsf, and after installation of
Facelets, you configured it in web.xml to use .xhtml internally. In other words, the
search.xhtml page is rendered by the JSF servlet.

 If you click the Search button without entering a search value, an error
message is shown on the page. This also happens if you try to enter a noninteger
or nonpositive integer value, and it’s all handled by JSF automatically.

 If you enter a valid item identifier value, and the backing bean finds the item
in the database, you’re forwarded to the item-editing screen. (Let’s finish the user
interface before focusing on the application logic in the backing bean.)

Writing the edit page
The edit page shows the details of the item that has been found in the search and
allows the user to edit these details. When the user decides to save his changes,
and after all validation is successful, the application shows the search page again.

 The source code for the edit page is shown in listing 17.3.

<!DOCTYPE html PUBLIC
...
<html xmlns=
...
<head>
...
<body>
...

<h2>Editing item: #{itemEditor.itemId}</h2>

<h:form>

 <h:messages/>

Listing 17.3 The edit.xhtml page with a detail form

Figure 17.1 The search page with JSF widgets

B

756 CHAPTER 17

Introducing JBoss Seam
 <div class="entry">
 <div class="label">Name:</div>
 <div class="input">
 <h:inputText required="true" size="25"
 value="#{itemEditor.itemName}">
 <f:validateLength minimum="5" maximum="255"/>
 </h:inputText>
 </div>
 </div>
 <div class="entry">
 <div class="label">Description:</div>
 <div class="input">
 <h:inputTextarea cols="40" rows="4" required="true"
 value="#{itemEditor.itemDescription}">
 <f:validateLength minimum="10" maximum="4000"/>
 </h:inputTextarea>
 </div>
 </div>
 <div class="entry">
 <div class="label">Initial price (USD):</div>
 <div class="input">
 <h:inputText size="6" required="true"
 value="#{itemEditor.itemInitialPrice}" >
 <f:converter converterId="javax.faces.BigDecimal"/>
 </h:inputText>
 </div>
 </div>
 <div class="entry">
 <div class="label"> </div>
 <div class="input">
 <h:commandButton value="Save" styleClass="button"
 action="#{itemEditor.doSave}"/>
 </div>
 </div>

</h:form>

</body>
</html>

You can place a value-binding expression outside of any component. In this case,
the getItemId() method on the itemEditor backing bean is called, and the
return value ends up in the HTML page.

Again, a value binding is used to bind the input text field to a getter/setter
method pair (or field) in the backing bean.

C

D

B

C

The Java EE 5.0 programming model 757
This action binding references the doSave() method in the itemEditor backing
bean. Depending on the outcome of that method, either the page is displayed
again (with error messages) or the user is forwarded to the search page.

Figure 17.2 shows the rendered page.

Why is the URL showing search.jsf? Shouldn’t it be edit.jsf? Consider the request
processing of the JSF servlet. If the user clicks the Search button on the search.jsf
page, the backing bean’s doSearch() method runs after input validation. If the
outcome of that method triggers a forward to the edit.xhtml page, this document
is rendered by the JSF servlet, and the HTML is sent to the browser. The URL
doesn’t change! Users can’t bookmark the edit page, which in this simple
application is desirable.

 Now that you’ve completed the top layer of the application, the view, consider
the layer that accesses the database (you might call this the business layer).
Because accessing an SQL database is a transactional operation, you write an EJB.

Accessing the database in an EJB
If you’ve worked with EJB 2.x (and Struts) before, the code that accesses the data-
base is most likely procedural code in a stateless session bean. Let’s do that in EJB
3.0 (listing 17.4).

D

Figure 17.2 The edit page with loaded item details

758 CHAPTER 17

Introducing JBoss Seam
package auction.beans;

import ...;

@Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class EditItemBean implements EditItem {

 @PersistenceContext
 EntityManager em;

 public Item findById(Long itemId) {
 return em.find(Item.class, itemId);
 }

 public Item save(Item item) {
 return em.merge(item);
 }

}

A @Stateless annotation turns this plain Java class into a stateless session bean.
At runtime, a pool of instances is prepared, and each client that requests a session
bean gets an instance from the pool to execute a method.

All methods that are called on this session bean are wrapped in a system transac-
tion, which enlists all transactional resources that may be used during that proce-
dure. This is also the default if you don’t annotate the bean.

A session bean needs an interface. Usually you implement this interface directly.
The EditItem interface has two methods.

When the runtime container hands out a session bean instance from the
pool, it injects an EntityManager with a (fresh) persistence context scoped to
the transaction.

If a client calls findById(), a system transaction starts. The EntityManager opera-
tion executes an SQL query in that transaction; the persistence context is flushed
and closed when the transaction commits (when the method returns). The
returned Item entity instance is in detached state.

If a client calls save(), a system transaction starts. The given detached instance is
merged into a (new) persistence context. Any changes made on the detached
Item instance are flushed and committed to the database. A new handle to the
now up-to-date Item instance is returned. This new Item instance is again in
detached state when the method returns, and the persistence context is closed.

Listing 17.4 A stateless session bean with a data access facade

B
C

D
E

F

G

B

C

D

E

F

G

The Java EE 5.0 programming model 759
You can call the session bean shown in listing 17.4 a data access object (DAO). It can
also be a session facade. The application isn’t complex enough to make a clear
distinction; if more nondata access methods were added to its interface, the
session bean would represent part of the business layer interface with a traditional
(mostly procedural) session facade.

 A piece is still missing from the puzzle: The JSF input widgets and buttons have
value and action bindings to a backing bean. Is the backing bean the same as the
session bean, or do you have to write another class?

Connecting the layers with a backing bean
Without Seam, you have to write a backing bean that connects your JSF widget
state and actions to the transactional stateless session bean. This backing bean has
the getter and setter methods that are referenced with expressions in the pages. It
can also talk to the session bean and execute transactional operations. The code
for the backing bean is shown in listing 17.5.

package auction.backingbeans;

import ...

public class ItemEditor {

 private Long itemId;
 private Item item;

 public Long getItemId() {
 return itemId;
 }

 public void setItemId(Long itemId) {
 this.itemId = itemId;
 }

 public String getItemName() {
 return item.getName();
 }

 public void setItemName(String itemName) {
 this.item.setName(itemName);
 }

 public String getItemDescription() {
 return item.getDescription();
 }

 public void setItemDescription(String itemDescription) {
 this.item.setDescription(itemDescription);
 }

Listing 17.5 A JSF backing bean component connects the layers.

B

C
D

E

760 CHAPTER 17

Introducing JBoss Seam
 public BigDecimal getItemInitialPrice() {
 return item.getInitialPrice();
 }

 public void setItemInitialPrice(BigDecimal itemInitialPrice) {
 this.item.setInitialPrice(itemInitialPrice);
 }

 public String doSearch() {
 item = getEditItemEJB().findById(itemId);
 return item != null ? "found" : null;
 }

 public String doSave() {
 item = getEditItemEJB().save(item);
 return "success";
 }

 private EditItem getEditItemEJB() {
 try {
 return (EditItem)
 new InitialContext()
 .lookup("caveatemptor/EditItemBean/local");
 } catch (NamingException ex) {
 throw new RuntimeException(ex);
 }
 }
}

You don’t implement any interfaces; this is a plain Java class.

The backing bean maintains an item identifier internally with a field.

The backing bean also holds the Item instance that is being edited by a user.

Getter and setter methods for all value bindings in search.xhtml and
edit.xhtml. These are the methods used by JSF to synchronize the backing beans
internal model state with the state of UI widgets.

The doSearch() method is bound to the action of a JSF button. It uses the EJB ses-
sion bean component to find the Item instance for the current itemId in the
backing bean. Its outcome is either the string found or null.

The doSave() method is bound to the action of a JSF button. It uses the EJB ses-
sion bean component to save the state of the item field. (Because this is a merge,
you have to update the item field with the returned value, the state after merg-
ing.) Its outcome is either the string success or an exception.

The helper method getEditItemEJB() obtains a handle on the EJB session
bean. This lookup in JNDI can be replaced with automatic dependency injection

E

F

G

H

B

C

D

E

F

G

H

The Java EE 5.0 programming model 761
if the runtime environment supports the Java Servlet 2.5 specification. (At the
time of writing, Tomcat 5.5 implements only Java Servlets 2.4, and Tomcat 6 is in
alpha stage.)

The backing bean is a component that is managed by the JSF runtime. The
expressions you use in the pages refer to a backing bean by name, itemEditor. In
the JSF XML configuration file (WEB-INF/faces-config.xml usually), you map this
name to the backing bean class (listing 17.6).

<?xml version="1.0"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd" >

<faces-config>

 <managed-bean>
 <managed-bean-name>itemEditor</managed-bean-name>
 <managed-bean-class>
 auction.backingbeans.ItemEditor
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/search.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>found</from-outcome>
 <to-view-id>/edit.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <from-view-id>/edit.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/search.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

This application has one backing bean and two navigation rules. The backing
bean is declared with the name itemEditor and implemented by auction.back-
ingBeans.ItemEditor. Expressions in JSF pages can now reference methods and

Listing 17.6 A JSF configuration describes the backing bean and navigation flow.

762 CHAPTER 17

Introducing JBoss Seam
fields of that backing bean in a loosely coupled fashion, by name. The JSF servlet
manages instances of the backing bean, one instance for each HTTP session.

 Let’s take this one step further: An expression in a JSF page is a string, such as
#{itemEditor.itemId}. This expression basically results in a search for a variable
named itemEditor. Searched, in that order, are the current request, the current
HTTP session, and the current application context. If a JSF page renders and this
expression has to be evaluated, then either a variable with that name is found in
the HTTP session context, or the JSF servlet creates a new backing bean instance
and binds it into the HTTP session context.

 The navigation rules declare which page is rendered after an action outcome.
This is a mapping from strings, returned by actions, to pages.

 Your application is now complete; it’s time to analyze it in more detail.

17.1.4 Analyzing the application

Possibly you look at the code in the previous sections and think, “This was a lot of
code to write to put four form fields onto web pages and connect them to four
columns in the database.” Or, if you’ve spent a lot of time with EJB 2.x and Struts,
you’ll probably say, ”This is great: I don’t have to manage the HTTP session myself
anymore, and all the EJB boilerplate code is gone.”

 You’re right either way. Java EE 5.0 and especially JSF and EJB 3.0 are a
significant step forward for Java web applications, but not everything is perfect.
We’ll now look at the advantages of Java EE 5.0 and compare it to J2EE 1.4 and
web frameworks before JSF. But we’ll also try to find things that can be improved,
code that can be avoided, and strategies that can be simplified. This is where
Seam comes in later.

Comparing the code to J2EE
If you have a J2EE 1.4/Struts background, this JSF and EJB 3.0 application already
looks much more appealing. There are fewer artifacts than in a traditional Java
web application—for example, you can detach an Item instance from the session
bean facade and transfer it into the JSF backing bean. With EJB 2.x entity beans,
you needed a data transfer object (DTO) to do this.

 The code is much more compact. With EJB 2.x, the session bean must
implement the SessionBean interface with all its maintenance methods. In EJB
3.0, this is resolved with a simple @Stateless annotation. There is also no Struts
ActionForm code that manually binds the state of an HTML form field to an
instance variable in the action listener.

The Java EE 5.0 programming model 763
 Overall, the application is transparent, with no obscure calls that maintain val-
ues in the HTTP session or in the HTTP request. JSF transparently puts and looks
up values in these contexts.

 If you consider the object/relational mapping of the Item class, you’ll probably
agree that a few annotations on a POJO are simpler than a deployment descriptor
for an EJB 2.x entity bean. Furthermore, object/relational mapping as defined by
Java Persistence is not only much more powerful and feature-rich than EJB 2.x.
entity beans, but also a lot easier to use (even compared to native Hibernate).

 What we couldn’t show in a simple application is the power behind JSF and EJB
3.0. JSF is amazingly flexible and extensible; you can write your own HTML wid-
gets, you can hook into the processing phases of a JSF request, and you can even
create your own view layer (if Facelets isn’t what you want) without much effort.
EJB 3.0 is much easier to tame than EJB 2.x, and it also has features (such as inter-
ceptors and dependency injection) that have never before been available in a
standardized Java programming model.

 The application can easily be tested with a testing framework like JUnit or
TestNG. All classes are plain Java classes; you can instantiate them, set (mock)
dependencies manually, and run a test procedure.

 However, there is room for improvement.

Improving the application
The first thing that stands out in this JSF/EJB 3.0 application is the JSF backing
bean. What’s the purpose of this class? It’s required by JSF, because you need to
bind values and actions to its fields and methods. But the code doesn’t do
anything useful: It passes any action to an EJB, one to one. Worse, it’s the artifact
with the most lines of code.

 You might argue that it decouples the view from the business layer. That
seems reasonable, if you use your EJB with a different view layer (say, a rich
client). Still, if the application is a simple web application, the backing bean
results in tighter coupling between the layers. Any change you make to either the
view or the business layer requires changes to the component with the most lines
of code. If you want to improve the code, get rid of the artificial layering and
remove the backing bean. There is no reason why an EJB shouldn’t be the
backing bean. A programming model shouldn’t force you to layer your
application (it shouldn’t restrict you, either). To improve the application, you
need to collapse artificial layers.

 The application doesn’t work in several browser windows. Imagine that you
open the search page in two browser windows. In the first, you search for item 1;

764 CHAPTER 17

Introducing JBoss Seam
in the second, you search for item 2. Both browser windows show you an edit
screen with the details of item 1 and item 2. What happens if you make changes to
item 1 and click Save? The changes are made on item 2! If you click Save in the
first browser window, you work on the state that is present in the HTTP session,
where the backing bean lives. However, the backing bean no longer holds item
1—the current state is now the state of the second browser window, editing item 2.
In other words, you started two conversations with the application, but the
conversations weren’t isolated from each other. The HTTP session isn’t the right
context for concurrent conversation state; it’s shared between browser windows.
You can’t fix this easily. Making this (trivial) application work in several browser
windows requires major architectural changes. Today, users expect web
applications to work in several browser windows.

 The application leaks memory. When a JSF page first tries to resolve the item-
Editor variable, a new instance of ItemEditor is bound to the variable in the
HTTP session context. This value is never cleaned up. Even if the user clicks Save
on the edit screen, the backing bean instance stays in the HTTP session until the
user logs out or the HTTP session times out. Imagine that a much more
sophisticated application has many forms and many backing beans. The HTTP
session grows as the user clicks through the application, and replicating the HTTP
session to other nodes in a cluster gets more expensive with every click. If a user
comes back to the item search screen, after working with another module of the
application, old data is shown in the forms. One solution for this problem would
be manual cleanup of the HTTP session at the end of a conversation, but there is
no easy way to do this. With JSF and EJB 3.0, you must code this manually. In our
experience, handling variables and values in the HTTP session manually is a
common source of issues that are incredibly difficult to track down.

 The flow of the application is difficult to visualize and control. How do you
know where clicking the Search button will take you? At a minimum, you have to
look into two files: the backing bean, which returns string outcomes, and the JSF
XML configuration file, which defines the page shown for a particular outcome.
There is also the ever-present problem of the Back button in the browser, a nasty
problem in any conversation that has more than two screens.

 Think also about the business process. How can you define that your flow of
pages is part of a larger business process? Imagine that searching and editing an
item is only one task in a business process that involves many more steps—for
example, as part of a review process. No tools or strategies help you integrate
business process management in your application. Today, you can no longer

Improving the application with Seam 765
afford to ignore the business processes of which your applications is a part; you
need a programming model that supports business-process management.

 Finally, this application includes too much XML. There is no way around meta-
data in the application, but not all of it has to be in an XML file. Metadata in XML
files is great if it changes independently from code. This may be true for naviga-
tion rules, but it probably isn’t true for the declaration of backing beans and the
context they live in. This kind of metadata grows linearly with the size of your
application—every backing bean must be declared in XML. Instead, you should
put an annotation on your class that says, “I’m a backing bean for JSF, and I live
inside the HTTP session (or any other) context.” It’s unlikely that your class will
suddenly change its role without any changes to the class code.

 If you agree with this analysis, you’ll like Seam.

17.2 Improving the application with Seam

The web application you’ve written to search and edit web items can be improved
if you add Seam into the mix. You start with basic Seam features:

■ Seam makes the JSF backing bean unnecessary. You can bind JSF widget
values and actions directly to EJB stateful and stateless session beans. Seam
introduces a unified component model: All your classes can be turned into
Seam components with annotations. Components are wired together in a
loosely coupled fashion, with string expressions.

■ Seam introduces new contexts and manages component scope automatically.
This rich context model includes logical contexts that are meaningful to the
application, such as a conversation or business-process context.

■ Seam introduces a stateful programming model, which is great for
conversations. A stateful application with Seam-managed conversations
works in multiple browser windows with no extra effort.

This is a short list of what Seam can do; there is much more that you’ll put to use
later. Let’s first create a basic conversational, stateful, simple Seam application.
Your first step is Seam setup and configuration.

 If you want to follow the examples with code, download the CaveatEmptor
package for Seam from http://caveatemptor.hibernate.org, and open it in your
IDE. This is also a good starting point if you want to code your own Seam
project later.

766 CHAPTER 17

Introducing JBoss Seam
17.2.1 Configuring Seam

Figure 17.3 shows the files before and after the changes you make to the web
application in the following sections.

Two major changes are made: The JSF backing bean is no longer necessary, and
the beans.jar archive has a new file, seam.properties. This file contains two Seam
configuration options for this simple application (listing 17.7).

org.jboss.seam.core.init.jndiPattern = caveatEmptor/#{ejbName}/local
org.jboss.seam.core.manager.conversationTimeout = 600000

The first setting is necessary for Seam to integrate with an EJB 3.0 container.
Because Seam is now responsible for wiring component instances at runtime, it

Listing 17.7 A simple seam.properties configuration file

Figure 17.3 The application archive before and after Seam was introduced

Improving the application with Seam 767
needs to know how to obtain EJBs through lookup. The JNDI pattern shown here
is for JBoss application server. (Seam runs on any Java EE 5.0 server and even with
and without EJB 3.0 in regular Tomcat. We think it’s most convenient if you start
with JBoss application server, because you don’t need to install any extra services.)

 To completely integrate Seam with EJB 3.0, Seam also needs to intercept all calls
to your EJBs. This is easy to do, thanks to EJB 3.0 support for custom interceptors.
You won’t see any interceptors in the code of your classes, because they’re usually
defined with a global wildcard that matches all EJBs in META-INF/ejb-jar.xml (not
shown here). If you download a Seam example, it will have this file.

 The second setting in seam.properties defines that Seam can destroy an
inactive user conversation after 600,000 milliseconds (10 minutes). This setting
frees up memory in the HTTP session when a user decides to go to lunch.

 The seam.properties file is not only a configuration file for Seam—it’s also a
marker. When Seam starts up, it scans the classpath and all archives for Seam com-
ponents (classes with the right annotation). However, scanning all JARs would be
too expensive, so Seam only scans JAR files and directories recursively that have a
seam.properties file in the root path. Even if you don’t have any configuration set-
tings, you need an empty seam.properties file in the archive with your Seam
component classes.

 You can find more Seam configuration options, and the integration with JSF
and the servlet container, in web.xml and faces-config.xml. We’ll get back to faces-
config.xml later; web.xml isn’t interesting (see the commented file in the
CaveatEmptor package).

 Seam can also be configured with a components.xml file in the WARs WEB-INF
directory. You’ll use that later when more complex configuration of components
is required. (Much of Seam is written as Seam components. The string
org.jboss.seam.core.manager is a component name, and conversationTime-
out is a property you can access like any other component property.)

 Your next step is replacing the JSF backing bean with a Seam component.

17.2.2 Binding pages to stateful Seam components

The search.xhtml page doesn’t change at all; review the code in listing 17.2. This
page has a value binding to itemEditor.itemId and an action binding to item-
Editor.doSearch. When the page is rendered by the JSF servlet, these expressions
are evaluated, and the widgets are bound to the respective methods in the item-
Editor bean.

768 CHAPTER 17

Introducing JBoss Seam
The EJB component interface
The itemEditor bean is now an EJB. The interface of this EJB is EditItem.java
(listing 17.8).

package auction.beans;

import ...

public interface EditItem {

 // Value binding methods
 public Long getItemId();
 public void setItemId(Long itemId);

 public Item getItem();

 // Action binding methods
 public String doSearch();
 public String doSave();

 // Cleanup routine
 public void destroy();

}

The first two methods are the getter and setter for the value binding of the search
input text field of the page. The getItem() method (you don’t need a setter
here) will be used later by the edit page. The doSearch() method is bound to the
Search button, doSave() will be bound to a button on the edit page.

 This is an interface for a stateful component. A stateful component is
instantiated when it’s first requested—for example, because a page is rendered
for the first time. Every stateful component needs a method that the runtime
environment can call when the component is destroyed. You could use the
doSave() method and say that the component’s lifecycle ends when this method
completes, but you’ll see in a minute why a separate method is cleaner.

 Next, let’s look at the implementation of this interface.

The EJB component implementation
The standard stateful component in EJB 3.0 is a stateful session bean. The
implementation in EditItemBean.java is a POJO class with a few extra
annotations. In listing 17.9, all Seam annotations are shown in bold.

Listing 17.8 The interface of a stateful component

Improving the application with Seam 769
package auction.beans;

import ...

@Name("itemEditor")
@Scope(ScopeType.CONVERSATION)

@Stateful
public class EditItemBean implements EditItem {

 @PersistenceContext
 EntityManager em;

 private Long itemId;
 public Long getItemId() { return itemId; }
 public void setItemId(Long itemId) { this.itemId = itemId; }

 private Item item;
 public Item getItem() { return item; }

 @Begin
 public String doSearch() {
 item = em.find(Item.class, itemId);

 if (item == null)
 FacesMessages.instance().add(
 "itemSearchField",
 new FacesMessage("No item found.")
);

 return item != null ? "found" : null;
 }

 @End
 public String doSave() {
 item = em.merge(item);
 return "success";
 }

 @Destroy
 @Remove
 public void destroy() {}

}

The Seam @Name annotation declares the name for this Seam component. It also
turns this EJB into a Seam component. You can now reference this component
anywhere under this name.

When an instance of this component is required, Seam instantiates it for you.
Seam puts the instance into a context under its name. Here’s a formal description:

Listing 17.9 The implementation of a stateful component

B
C

D

E

F

G

H

I

B

C

770 CHAPTER 17

Introducing JBoss Seam
An instance of EditItem is managed by Seam in the conversation context, as a
value of the contextual variable itemEditor.

A POJO needs the EJB 3.0 @Stateful annotation to become a stateful session bean.

The EJB 3.0 container injects an EntityManager with a fresh persistence context
into this bean, before a method is called by any client of the bean. The persistence
context is closed when the method returns (assuming this method call is also the
scope of a system transaction, which is the default here).

This stateful component holds state internally, in the fields itemId and item. The
state is exposed with property accessor methods.

A Seam @Begin annotation marks a method that begins a long-running conversa-
tion. If a JSF action triggers a call to this method, Seam maintains the state of this
component across HTTP requests. The doSearch() method returns a string out-
come (or null) and generates a JSF message that can be rendered on a page. The
Seam FacesMessages helper makes this message-passing easy.

A Seam @End annotation marks a method that ends a long-running conversation.
If a JSF action triggers a call to this method, and the method returns, Seam will
destroy the component’s state and no longer maintain it across HTTP requests.

The Seam @Destroy annotation marks the method that is called by Seam when
the component state has to be destroyed (when the end of the conversation has
been reached). This is useful for internal cleanup (there is nothing to do in this
case). The EJB 3.0 @Remove annotation marks the method that a client (Seam, in
this case) has to call to remove the stateful session bean instance. These two anno-
tations usually appear on the same method.

Why don’t you mark the doSave() method with @End, @Destroy, and @Remove?
The doSave() method might throw an exception, and this exception has to roll
back any system transaction. Seam, however, logs and swallows any exception
thrown by its @Destroy method, so you frequently see empty destroy methods in
stateful Seam components. Furthermore, the component instance is needed for a
little while after the saving of an item, to render a response.

 This EJB implementation encapsulates all application logic; there is no more
Java code anywhere else (well, there is the Item entity class). If you ignore trivial
code, the application logic is only four lines in the two action methods.

 Two more changes are necessary to make the application work. Some value
bindings in edit.xhtml need to be modified, and the block of XML that defined
the old JSF backing bean can be removed from faces-config.xml.

D

E

F

G

H

I

Improving the application with Seam 771
Binding values and actions
Open edit.xhtml, and change the value bindings of the JSF input widgets as
shown in listing 17.10.

...
<h2>Editing item: #{itemEditor.itemId}</h2>

<h:form>

 <h:messages/>

 <div class="entry">
 <div class="label">Name:</div>
 <div class="input">
 <h:inputText required="true" size="25"
 value="#{itemEditor.item.name}">
 <f:validateLength minimum="5" maximum="255"/>
 </h:inputText>
 </div>
 </div>
 <div class="entry">
 <div class="label">Description:</div>
 <div class="input">
 <h:inputTextarea cols="40" rows="4" required="true"
 value="#{itemEditor.item.description}">
 <f:validateLength minimum="10" maximum="4000"/>
 </h:inputTextarea>
 </div>
 </div>

 <div class="entry">
 <div class="label">Initial price (USD):</div>
 <div class="input">
 <h:inputText size="6" required="true"
 value="#{itemEditor.item.initialPrice}" >
 <f:converter converterId="javax.faces.BigDecimal"/>
 </h:inputText>
 </div>
 </div>

 <div class="entry">
 <div class="label"> </div>
 <div class="input">
 <h:commandButton value="Save" styleClass="button"
 action="#{itemEditor.doSave}"/>
 </div>
 </div>

</h:form>
...

Listing 17.10 The edit.xhtml page is bound to a Seam component.

772 CHAPTER 17

Introducing JBoss Seam
The bindings that changed are the expressions for the name, description, and
initial price input fields. They now reference itemEditor.item, which can be
resolved to the Seam component’s getItem() method. JSF calls getName() and
setName() on the returned Item entity to synchronize the state of the widget. The
same technique is used to bind and synchronize the description and initial price
of the item. When the user enters a new price, the initialPrice of the Item
instance that is held by the itemEditor component is automatically updated.

 The action binding for the Save button doesn’t change—the method
doSave() of the itemEditor component is still the right listener. You can see how
logical component names and the expression language allow you to couple the
view and the business layer easily and not too tightly.

 Finally, update faces-config.xml as shown in listing 17.11.

...

<faces-config>

 <navigation-rule>
 <from-view-id>/search.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>found</from-outcome>
 <to-view-id>/edit.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/edit.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/search.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

 <!-- Integrate Seam with the JSF request processing model -->
 <lifecycle>
 <phase-listener>
 org.jboss.seam.jsf.SeamPhaseListener
 </phase-listener>
 </lifecycle>

</faces-config>

Compare this to the previous JSF configuration in listing 17.6. The backing bean
declaration is gone (moved to two Seam annotations on the EJB). The phase

Listing 17.11 The JSF configuration file without backing beans

Improving the application with Seam 773
listener is new: Seam has to hook into the JSF servlet and listen to the processing
of every HTTP request. A custom JSF phase listener integrates Seam with JSF.

 We presented quite a few new concepts, which you probably have never seen if
this is your first contact with Seam. Let’s analyze the application in more detail
and find out whether the issues we identified earlier for the plain JSF and EJB 3.0
application have been resolved.

17.2.3 Analyzing the Seam application

The interface of the web application hasn’t changed; it looks the same. The only
thing your users will probably notice is that they can search and edit items in sev-
eral browser windows without overlapping state and data modifications.

 Seam promotes a strong and well-defined stateful application programming
model. Let’s follow the flow of the application (figure 17.4) and find out how this
works internally.

Opening the search page
When you open a browser window and enter the /search.jsf URL, an HTTP GET
request is sent to the JSF servlet. The JSF processing lifecycle begins (figure 17.5).

 Nothing really interesting happens until the JSF servlet enters the Render
Response phase of the request processing. There is no view to restore and no HTTP
request parameters that must be applied to the view components (the widgets).

 When the response, the search.xhtml file, is rendered, JSF uses a variable
resolver to evaluate the #{itemEditor.itemId} value binding. The Seam variable
resolver is smarter than the standard JSF variable resolver. It searches for item-
Editor not in the HTTP request, the HTTP session, and the global application
context, but in Seams logical contexts. You’re right if you think these logical
contexts are the same—we’ll have much more to say about this in a moment. For
now, think about Seam contexts as variable holders that are searched
hierarchically, from the context with the narrowest scope (the current event) to
the context with the widest scope (the current application).

Figure 17.4 The request/response flow of the application

774 CHAPTER 17

Introducing JBoss Seam
The variable itemEditor can’t be found. So, Seam’s component handler starts
looking for a Seam component with that name. It finds the stateful session bean
you’ve written and creates an instance. This EJB instance is then given to the JSF
page renderer, and the renderer puts the return value of getItemId() into the
search input text field. The method returns null, so the field is empty when you
open the page for the first time.

 The Seam component handler also realizes that the stateful session bean had
an @Scope(CONVERSATION) annotation. The instance is therefore put into the
conversation context, as a value of the contextual variable itemEditor, the name
of the component.

 When the page is rendered completely, Seam is invoked again (through the
Seam phase listener). The Seam event context has a small scope: It’s able to hold

Figure 17.5 Seam is active when JSF renders the response, the search page.

Improving the application with Seam 775
variables only during a single HTTP request. Seam destroys this context and
everything inside (nothing you currently need).

 Seam also destroys the current conversation context and with it the itemEdi-
tor variable that was just created. This may surprise you—you probably expected
the stateful session bean to be good for several requests. However, the scope of the
conversation context is a single HTTP request, if nobody promotes it to a long-
running conversation during that request. You promote a short single-request
conversation to a long-running conversation by calling a component method that
has been marked with @Begin. This didn’t happen in this request.

 The search page is now displayed by the browser, and the application waits for
user input and a click of the Search button.

Searching for an item
When a user clicks the Search button, an HTTP POST request is send to the server
and processed by JSF (figure 17.6). You have to look at the source code of
search.xhtml and EditItemBean to understand this illustration.

 Stored in the previous request (usually in the HTTP session on the server), JSF
now finds a widget tree that represents the view (search.xhtml) and re-creates it
internally. This widget tree is small: It has a form, an input text field and a submit
button. In Apply Request Parameters, all user input is taken from the HTTP request
and synchronized with the state of the widgets. The input text field widget now
holds the search string entered by the user.

TIP Debugging the JSF widget tree—Facelets can show you the JSF widget tree.
Put <ui:debug hotkey="D"/> anywhere in your page, and open the page
in your browser (as a JSF URL, of course). Now press Ctrl+Shift+d, and a
pop-up window with the JSF widget/component tree opens. If you click
Scoped Variables, you can see where Seam internally stores its contexts
and managers (this probably isn’t very interesting if you are not a Seam
developer).

During Process Validations, the JSF validator ensures that the search string
entered by the user is a nonnegative integer and that the input value is present. If
validation fails, the JSF servlet jumps to the Render Response phase and renders
the search.xhtml page again with error messages (the processing of this phase
looks like in figure 17.6).

 After validation, JSF synchronizes the values of the model objects that have
been bound to widgets. It calls itemEditor.setItemId(). This variable is resolved
by Seam, with a lookup in all Seam contexts. Because no itemEditor variable is
found in any context, a new instance of EditItemBean is created and placed into

776 CHAPTER 17

Introducing JBoss Seam
the conversation context. The setItemId() method is called on this stateful
session bean instance.

 JSF now executes the action of the request by calling the bound method item-
Editor.doSearch. Seam resolves the itemEditor variable and finds it in the con-
versation context. The doSearch() method is called on the EditItemBean
instance, and the EJB 3.0 container handles transaction and persistence context
during that call. Two things happen during the call: The item member variable of
the itemEditor now holds an Item instance found in the database (or null, if
nothing was found), and the @Begin annotation promotes the current

Figure 17.6 Seam participates in the processing of the search action.

Improving the application with Seam 777
conversation to a long-running conversation. The conversation context is held by
Seam until a method with an @End annotation is called.

 The doSearch() method returns the string found, or null. This outcome is
evaluated by JSF, and the navigation rules from faces-config.xml apply. If the
outcome is null, the search.xhtml page is rendered with the Item not found error
message. If the outcome is found, the navigation rules declare that the edit.xhtml
page is rendered.

 During rendering of the edit.xhtml page, the variable itemEditor must be
resolved again by JSF. Seam finds the itemEditor context variable in the conversa-
tion context, and JSF binds values of widgets on the page (text output, text input)
to the properties of the item instance returned by itemEditor.getItem().

TIP Browsing the Seam contexts—You can debug a Seam application more easily
if you use the Seam debugging screen. This screen must be enabled. To
do so, edit your seam.properties file and add org.jboss.
seam.core.init.debug = true. Now, access the URL /debug.jsf to
browse the Seam contexts for this browser window. You can see all the
variables and the values that are in the current conversation, session, pro-
cess, and application contexts.

At the end of the request, Seam destroys its event context. The conversation
context isn’t destroyed; the user of the application started a long-running
conversation by executing a search. The application waits for user input while
showing the edit page. If the user searches again in another browser window, a
second, concurrently running conversation is started and promoted to a long-
running conversation. The two conversations and their contexts are isolated
automatically by Seam.

Editing an item
When the user clicks Save, the edit form is submitted to the server with an HTTP
POST request (figure 17.7).

 The view that is restored in this request is edit.xhtml, JSF recreates an internal
widget tree of the form and all its fields and applies the HTTP request values. Vali-
dation is slightly more complex; you’ve defined a few more JSF validators on the
edit.xhtml page.

 After successful validation, JSF updates the bound model values by calling the
setter methods on the Item instance returned by itemEditor.getItem(). The
itemEditor binding resolves (through Seam) to a contextual variable in the
current conversation context. Seam extended the conversation context into the

778 CHAPTER 17

Introducing JBoss Seam
current request, because it was promoted to a long-running conversation in the
previous request.

 Next, itemEditor.doSave() is called; the variable is again resolved in the con-
versation context. The code in EditItemBean either throws an exception (if the
EJB 3.0 container or the EntityManager throw an exception) or returns the string
outcome success. The method is marked as @End, so the Seam manager marks
the current conversation for cleanup after the Render Response phase.

 The string outcome success is mapped to /search.xhtml in the JSF navigation
rules. During Render Response, the value bindings on the search.xhtml page
must be resolved. The only value binding is #{itemEditor.itemId}, so Seam

Figure 17.7 Seam participates in the processing of the edit action.

Understanding contextual components 779
again tries to find the itemEditor component in all contexts. The itemEditor
from the (demoted but still active) conversation context is used, and getItemId()
returns a value. The user therefore sees the input field not empty, but showing the
same search value that was entered at the beginning of the conversation.

 When Render Response completes, Seam removes the demoted conversation
context and destroys all stateful components instances that live in that context.
The destroy() method is called on the EditItemBean. Because it’s marked with
@Remove, the EJB 3.0 container also cleans up the stateful session bean internally.
The user now sees the search page and can begin another conversation.

 If you’ve never used JSF, this is a lot of new information to digest. On the other
hand, if you’re familiar with JSF, you can see that Seam is basically listening to the
processing phases of the JSF servlet and replacing the variable resolver for value
and action bindings with a more powerful variation.

 We’ve barely scratched the surface of Seam with this trivial application. Let’s
discuss some more interesting and advanced features of Seam that make creating
complex web applications with a database back end just as easy.

17.3 Understanding contextual components

In the previous sections, you’ve turned the basic JSF and EJB 3.0 web application
into a stateful, conversational Seam application. Doing so resulted in less code
and improved the application’s functionality. You shouldn’t stop there—Seam has
more to offer.

 You can wire Seam components together in a contextual fashion. This is a pow-
erful concept that can have a deep impact on how you design a stateful applica-
tion. In our experience, it’s one of the major reasons why Seam applications have
few lines of compact code. To demonstrate, we discuss how you can create new
application functionality.

 Almost all web application have a login/logout feature and the concept of a
logged-in user. We assume that a user must log in to CaveatEmptor as soon as the
first page of the application appears (which you’ll enforce to be the login screen).
A login screen and the application logic to support it are a perfect scenario to
learn how Seam components can be wired together contextually.

17.3.1 Writing the login page

The user sees the login screen as shown in figure 17.8.
 This is a JSF page called login.xhtml, written with Facelets (listing 17.12).

780 CHAPTER 17

Introducing JBoss Seam

...
<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 template="template.xhtml">

 <ui:define name="screen">Login</ui:define>

 <ui:define name="sidebar">

 <h1>Welcome to CaveatEmptor!</h1>

 </ui:define>

 <ui:define name="content">
 <div class="section">

 <h1>Please enter your username and password:</h1>

 <h:form>

 <h:messages/>

 <div class="entry">
 <div class="label">Username:</div>
 <div class="input">
 <h:inputText required="true" size="10"
 value="#{currentUser.username}">
 <f:validateLength minimum="3" maximum="255"/>
 </h:inputText>
 </div>
 </div>

Listing 17.12 The login.xhtml page source code

Figure 17.8 The login screen of CaveatEmptor

Understanding contextual components 781
 <div class="entry">
 <div class="label">Password:</div>
 <div class="input">
 <h:inputSecret required="true" size="10"
 value="#{currentUser.password}"/>
 </div>
 </div>

 <div class="entry">
 <div class="label"> </div>
 <div class="input">
 <h:commandButton value="Login" styleClass="button"
 action="#{login.doLogin}"/>
 </div>
 </div>

 </h:form>

 </div>
 </ui:define>

</ui:composition>

You can see a bit more of Facelets in this source: how a global page template is
referenced (in the <ui:composition> tag) and how snippets supported by this
template (screen, sidebar, content) are defined.

 The content of the page is a regular JSF form, with value and action bindings
to named components. The input fields of the login form are bound to attributes
of the currentUser, and the Login button is bound to the doLogin() method of
the login component.

 When the login page is rendered for the first time, JSF tries to resolve the value
and action bindings. It uses the Seam variable resolver to find the referenced
objects. The Seam variable resolver doesn’t find the objects in any Seam context,
so instances of currentUser and login are created.

 Let’s look at the source of these components.

17.3.2 Creating the components

The first component is currentUser. This is a class you already have in
CaveatEmptor: the User entity class. You can turn it into a component that can be
handled by Seam with annotations:

package auction.model;

import ...

@Name("user")

782 CHAPTER 17

Introducing JBoss Seam
@Role(name = "currentUser", scope = ScopeType.SESSION)

@Entity
public class User implements Serializable {

 @Id @GeneratedValue
 private Long id = null;

 private String firstname;
 private String lastname;
 private String username;
 private String password;

 ...

 public User() {}

}

The first Seam annotation, @Name, turns this POJO into a Seam component.
Whenever Seam now looks for a component with the name user, and no Seam
context holds a variable of that name, a new empty instance of User is created by
Seam and put into the event context under the variable name user. The event
context is the default context for entity Seam components (stateful and stateless
beans have a different default context).

 For the login functionality, you don’t need a User instance in the event context,
so you define an additional role for this component. Whenever Seam looks for a
component with the name currentUser, and no Seam context has a variable with
that name, Seam instantiates a User and puts it into the session context (the HTTP
session). You can easily refer to currentUser anywhere in your code and metadata
and get a reference to the current User object back from Seam.

 When login.xhtml is rendered, Seam creates a fresh User object and binds it
into the session context. This user isn’t logged in yet; you need to enter a
username and a password and click the Login button.

 Doing so executes, in another request, the doLogin() method on the login
component. An implementation of this component as a stateless session bean is
shown in listing 17.13.

package auction.beans;

import ...

@Name("login")

@Stateless
public class LoginBean implements Login {

Listing 17.13 A stateless Seam component implements login and logout procedures.

Understanding contextual components 783
 @In @Out
 private User currentUser;

 @PersistenceContext
 EntityManager em;

 @In
 private Context sessionContext;

 public String doLogin() {
 User validatedUser = null;

 Query loginQuery = em.createQuery(
 "select u from User u where" +
 " u.username = :uname" +
 " and u.password = :pword"
);
 loginQuery.setParameter("uname", currentUser.getUsername());
 loginQuery.setParameter("pword", currentUser.getPassword());

 List result = loginQuery.getResultList();
 if (result.size() == 1) validatedUser = (User) result.get(0);

 if (validatedUser == null) {
 FacesMessages.instance().add(
 new FacesMessage("Invalid username or password!")
);
 return null;
 } else {
 currentUser = validatedUser;

 sessionContext.set(LoggedIn.LOGIN_TOKEN, true);
 // or:
 Contexts.getSessionContext()
 .set(LoggedIn.LOGIN_TOKEN, true);

 return "start";
 }
 }

 public String doLogout() {
 Seam.invalidateSession();
 return "login";
 }

}

This code has two new Seam annotations: @In and @Out. These are variable
aliasing hints you use for component wiring. Let’s discuss the rest of the code first
before we focus on these tags.

 The doLogin() method takes the username and password of the member
variable currentUser and tries to find this user in the database. If no user is

784 CHAPTER 17

Introducing JBoss Seam
found, a JSF error message is queued, and a null outcome results in redisplay of
the login page. If a user is found, it’s assigned to the member variable current-
User, replacing the old value of that variable (nothing changes in the HTTP
session so far).

 You also put a token (a simple boolean) into the session context, to indicate
that the current User is logged in. This token will be useful later when you need
to test whether the current user is logged in. We also discuss the doLogout()
method later; it invalidates the current HTTP session.

 Let’s figure out what @In and @Out do.

17.3.3 Aliasing contextual variables

Aliasing a contextual variable sounds complex. However, it’s the formal
description of what’s going on when you use @In and @Out in the code of a Seam
component. Look at figure 17.9, which shows what happens in the Invoke Appli-
cation request-processing phase after the user clicks Login.

 The @In annotation tells Seam that you want a value assigned to a member
variable of this component. The value is assigned by Seam before a method of the
component is called (Seam intercepts every call).

 Where does the value come from? Seam reads the name of the member
variable, the field name currentUser in the previous example, and starts looking
for a contextual variable with the same name in all its contexts. At the time doLo-
gin() is called, Seam finds a currentUser variable in the session context. It takes

Figure 17.9 Seam synchronizes a member alias with a contextual variable.

Understanding contextual components 785
this value and assigns it to the member variable of the component. This is a
reference to the same User instance that is in the session context; you create an
alias in the scope of the component. You can then call methods on the current-
User member variable, like getUsername() and getPassword().

 The @Out annotation tells Seam that you want a value assigned to a contextual
variable when (any) method of the component returns. The name of the
contextual variable is currentUser, the same as the field name. The context of the
variable is the default context of the currentUser Seam component (in the
previous example, the session context). (Remember the role you assigned in the
User class?) Seam takes the value of the member variable and puts it into a
contextual variable.

 Read the doLogin() method again.
 Before the method executes, Seam injects the value of the contextual variable

currentUser (found in the session context) into the member variable with the
same name. The method then executes and works with the member variable.
After a successful login (database query), the value of the member variable is
replaced. This new value must be pushed back into the contextual variable. After
the method executes, Seam pushes the value of the member variable current-
User into the default context defined for this component, the session.

 Instead of fields, you can also use getter and setter method pairs for aliasing.
For example, @In can be on setCurrentUser() and @Out on getCurrentUser().
In both cases, the name of the aliased contextual variable will be currentUser.

 The @In and @Out annotations are extremely powerful. You’ll see a few more
examples later in this chapter, but we’d need many more pages to describe all the
things you can do with these annotations. Please also read the tutorials in the
Seam reference documentation.

 You can also work with contextual variables directly, without aliasing them as
member variables. In listing 17.13, the doLogin() method calls the Contexts
directly to set a variable value.

 Finally, Seam contexts form a hierarchy (except the pseudocontext stateless)
that is searched from narrowest to widest scope whenever a contextual variable
needs to be looked up (and when you don’t declare explicitly which context
should be searched). The Seam reference documentation has a list of contexts
and their scopes in chapter 2; we won’t repeat it here.

 Let’s finish the login/logout feature and add the missing pieces in configura-
tion and code.

786 CHAPTER 17

Introducing JBoss Seam
17.3.4 Completing the login/logout feature

The navigation rules for the login/logout feature are missing. These are in faces-
config.xml for JSF:

<navigation-rule>

 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/login.xhtml</to-view-id>
 <redirect/>
 </navigation-case>

 <navigation-case>
 <from-outcome>start</from-outcome>
 <to-view-id>/catalog.xhtml</to-view-id>
 </navigation-case>

</navigation-rule>

When a user successfully logs in, the start outcome of the action takes the
browser to the start page of the application, which in CaveatEmptor is the catalog
of auction items.

 When a user logs out (by clicking a button that is bound to the login.doLog-
out() method), the login outcome is returned, and /login.xhtml is rendered.
The rule you define here also says that this is done via browser redirect. This
approach has two consequences: First, the user sees /login.jsf as the URL in the
browser; and second, the redirect is done immediately after the Invoke Applica-
tion phase, after doLogout() executes. You need this redirect to start a fresh HTTP
session in the following Render Response phase. The old HTTP session is marked
invalid by doLogout() and is discarded after the Invoke Application phase.

 The application isn’t really secure. Although users end up on the login page
when they open the application, they can bookmark other pages (like the auction
item catalog) and jump directly to a URL. You need to protect the pages and redi-
rect the user to the login page, if no logged-in token is present.

 You also need to protect component bean methods directly, in case the user
finds a way to execute an action without rendering the page first. (This is possible
with Seam components that are exposed through JavaScript.) You protect
component methods with an EJB 3.0 interceptor (listing 17.14).

package auction.interceptors;

import ...

@Name("loginInterceptor")

Listing 17.14 An EJB 3.0 interceptor that checks the logged-in token

Understanding contextual components 787
@Interceptor(around={BijectionInterceptor.class,
 ValidationInterceptor.class,
 ConversationInterceptor.class,
 BusinessProcessInterceptor.class},
 within= RemoveInterceptor.class)
public class LoggedInInterceptor {

 @AroundInvoke
 public Object checkLoggedIn(InvocationContext invocation)
 throws Exception {

 String loggedInOutcome = checkLoggedIn();

 if (loggedInOutcome == null) {
 return invocation.proceed();
 } else {
 return loggedInOutcome;
 }
 }

 public String checkLoggedIn() {
 boolean isLoggedIn =
 Contexts.getSessionContext()
 .get(LoggedIn.LOGIN_TOKEN) != null;
 if (isLoggedIn) {
 return null;
 } else {
 return "login";
 }

 }
}

This interceptor has two uses. First, it’s an EJB 3.0 @Interceptor that is executed
in the middle of other EJB 3.0 interceptors. These other interceptors are all from
Seam, and you need to place your own interceptors in the right position of the
stack. The EJB 3.0 annotation @AroundInvoke marks the method that is called
before and after any method on your protected components is called. If the
checkLoggedIn() method doesn’t return anything (null outcome), the
invocation of the intercepted component call can proceed. If the outcome isn’t
null, this outcome is passed on to the JSF navigation handler, and the intercepted
component call doesn’t proceed.

 The interceptor class is also a Seam plain Java component (Seam components
don’t have to be EJBs) with the name loginInterceptor. The default context for
a JavaBean component is the event. You can now use this component name in
expressions—for example, with the expression #{loginInterceptor.check-
LoggedIn}—without going through EJB interception. This is useful to protect the

788 CHAPTER 17

Introducing JBoss Seam
pages from direct access. In Seam. you can define actions that run before a page is
rendered. These declarations are in WEB-INF/pages.xml:

<pages>

 <page view-id="/catalog.xhtml"
 action="#{loginInterceptor.checkLoggedIn}"/>

</pages>

When a user hits the /catalog.jsf URL directly, the loginInterceptor.check-
LoggedIn() action runs. If this action has a non-null outcome, Seam treats the
outcome as a regular JSF outcome and the navigation rules apply.

 Finally, you protect your component methods by applying the interceptor to
an EJB class. This can be done in XML (META-INF/ejb-jar.xml), which is great if
you want to use wildcards and protect all beans in a particular package. Or, you
can write a helper annotation that encapsulates the interceptor:

package auction.interceptors;

import ...

@Target(TYPE)
@Retention(RUNTIME)
@Documented
@Interceptors(LoggedInInterceptor.class)
public @interface LoggedIn {
 public static final String LOGIN_TOKEN = "loggedIn";
}

This annotation also contains the string constant to which all the other code
refers, which is convenient. Now, apply this annotation on an EJB class:

package auction.beans;

import ...

@Name("catalog")

@LoggedIn

@Stateful
public class CatalogBean implements Catalog { ... }

Whenever any method of this EJB is called, the LoggedInInterceptor runs and
validates that the user is logged in. If the user isn’t logged in, the interceptor
returns the login outcome to JSF.

 You can also check for the logged-in token on a page—for example, if you
have to decide whether the Logout button should be rendered:

Validating user input 789
<h:form>
 <h:panelGroup rendered="#{loggedIn}">
 Current user: #{currentUser.username}
 (<h:commandLink value="Logout" action="#{login.doLogout}"/>)
 </h:panelGroup>
</h:form>

The expression #{loggedIn} resolves to the boolean context variable loggedIn
that is either present in the session context or not.

 The login/logout functionality of the application is now complete. Pages and
component methods are secured; only a logged-in user can open and call them.

 How do people get user accounts? They have to fill out a registration form. You
must validate the form data and create the account in the database.

17.4 Validating user input

In the previous example, the login screen and login/logout code, you rely on
standard JSF validators and your own code in the doLogin() method to validate
user input. When a user submits the login form, JSF runs the declared validators
(in login.xhtml) in the Process Validations phase. If the user enters a username
and a password, validation is successful, and the login.doLogin() method
executes. The given username and password are bound to the database query.
User input is validated twice:

■ JSF validates the HTML form input before it synchronizes the value of each
input field with the bound model, the currentUser in the Seam session
context. If you access currentUser later in an action method, you have the
guarantee that the validation rules of your pages have been checked.

■ The JDBC driver validates the user input when you bind the username and
password to the JPA QL query. Internally, this is a binding to a regular JDBC
PreparedStatement, so the JDBC driver escapes any dangerous characters
that the user may have entered.

Validating user input in the presentation layer and ensuring that no SQL injection
attacks are possible is good enough for a simple login screen. But what if you need
to validate a User object before it’s saved in the database—for example, during an
account registration procedure?

 You need more complex validation: You have to check the length of the
entered username and see whether any illegal characters have been used, and you
also need to validate the quality of the password. All this can be solved with more

790 CHAPTER 17

Introducing JBoss Seam
and possibly custom validation in the JSF presentation layer, but the database
schema also must validate the integrity of stored data. For example, you create
database constraints that limit the length of the value stored in the USERNAME
column or require a successful string-pattern match.

 In any sophisticated application, input validation is a concern that needs to be
handled not only in the presentation layer, but in several layers and even in
different tiers. It’s a crosscutting concern that can affect all your code. With Hiber-
nate Validator, you can isolate and encapsulate validation and data integrity rules
easily, for all application layers.

17.4.1 Introducing Hibernate Validator

Hibernate Validator is a module of Hibernate Annotations. You can use
Hibernate Validator even without Hibernate and Seam, with only hibernate3.jar
and hibernate-annotations.jar on your classpath, in any Java application. (It’s
likely that Hibernate Validator will be forked into its own stand-alone module in
the future. This depends on the work done in JSR 303, “Bean Validation”; see
http://jcp.org/en/jsr/detail?id=303.)

 Hibernate Validator is a set of annotations you apply to your domain model to
define data validation and integrity rules declaratively. You can extend Hibernate
Validator with your own constraints, by writing your own annotations.

 These applied integrity and validation rules can be used with the following:

■ Plain Java—You can call the ClassValidator API anywhere in Java code
and supply objects that need to be checked. The validator either completes
validation or returns an array of InvalidValue objects. Each InvalidValue
contains the details about the validation failure, such as the property name
and error message.

■ Hibernate—In native Hibernate, you can register Hibernate Validator events
that hook into the internal processing of Hibernate persistence operations.
With these events, Hibernate can validate any object you’re inserting or
updating in the database automatically and transparently. An Invalid-
StateException that contains the details is thrown when validation fails.

■ Hibernate EntityManager—If you use the Java Persistence API with Hibernate
EntityManager, the Hibernate Validator events are activated by default, and
all entity instances are checked against the validation annotations when you
insert or update an object in the database.

■ SchemaExport—Hibernate’s database schema-generation feature can create
database constraints that reflect your integrity rules in SQL DDL. The

Validating user input 791
SchemaExport (hbm2ddl) tool reads the validation annotations on your
domain model and renders them in SQL DDL. Each annotation knows how
the SQL should look (or if no equivalent constraint exists in SQL). This is
especially powerful if you write your own validation annotations based on
custom procedural SQL constraints (triggers, and so on). You can
encapsulate a custom database-integrity rule in a single Java annotation and
use Hibernate Validator to check instances of an annotated class at runtime.

■ Seam—With Seam, you can integrate Hibernate Validator with the
presentation layer and logic of your application. Seam can automatically
call the validation API when a JSF form is submitted and decorate the form
with any validation error messages.

You’ve already used Seam and Hibernate EntityManager in the previous sections.
As soon as you add Hibernate Validator annotations to your entity classes, these
integrity rules are validated by Hibernate when the persistence context is flushed
to the database.

 Let’s tie Hibernate Validator into the JSF user interface and implement an
account registration feature for CaveatEmptor.

17.4.2 Creating the registration page

We’ll begin with the user interface. You need a new page, register.xhtml, with a JSF
form. To get to that page, you must provide a link on the login.xhtml page, so
users know they can register:

<ui:define name="sidebar">

 <h1>Welcome to CaveatEmptor!</h1>

 <div>
 <h:form>
 If you don't have an account, please
 <h:commandLink action="register" immediate="true">
 register...
 </h:commandLink>
 </h:form>
 </div>

</ui:define>

Submitting this form immediately jumps to the Render Response phase in the
request processing (no validation, model binding, or action execution is
necessary). The register string is a simple navigation outcome, defined in the
navigation rules in faces-config.xml:

792 CHAPTER 17

Introducing JBoss Seam
<navigation-rule>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/login.xhtml</to-view-id>
 <redirect/>
 </navigation-case>

 <navigation-case>
 <from-outcome>register</from-outcome>
 <to-view-id>/register.xhtml</to-view-id>
 <redirect/> <!-- Make this bookmark-able -->
 </navigation-case>
 ...
</navigation-rule>

See the screenshot of the registration page in figure 17.10.
 The code for the JSF form on register.xhtml uses some visual Seam compo-

nents for JSF (these can be found in the jboss-seam-ui.jar file).

Decorating the page with Seam tags
The Seam components you now use integrate the page with Hibernate Validator
(listing 17.15). We’ve left out the basic HTML of the page; the only interesting
part is the form and how validation of that form works. You also need to declare
the namespace for the Seam taglib to use the components in Facelets templates;
the prefix used in all the following examples is s.

Figure 17.10 The register.xhtml page

Validating user input 793
<ui:composition ...
 xmlns:s="http://jboss.com/products/seam/taglib"
 ...>
<h:form>

 <f:facet name="beforeInvalidField">
 <h:graphicImage value="/img/attention.gif"
 width="18" height="18"
 styleClass="attentionImage"/>
 </f:facet>
 <f:facet name="afterInvalidField">
 <s:message/>
 </f:facet>

 <div class="errors" align="center">
 <h:messages globalOnly="true"/>
 </div>

 <s:validateAll>

 <div class="entry">
 <div class="label">Username:</div>
 <div class="input"><s:decorate>
 <h:inputText size="16" required="true"
 value="#{currentUser.username}"/>
 </s:decorate></div>
 </div>

 <div class="entry">
 <div class="label">Password:</div>
 <div class="input"><s:decorate>
 <h:inputSecret size="16" required="true"
 value="#{currentUser.password}"/>
 </s:decorate></div>
 </div>

 <div class="entry">
 <div class="label">Repeat password:</div>
 <div class="input"><s:decorate>
 <h:inputSecret size="16" required="true"
 value="#{register.verifyPassword}"/>
 </s:decorate></div>
 </div>

 <div class="entry">
 <div class="label">Firstname:</div>
 <div class="input"><s:decorate>
 <h:inputText size="32" required="true"
 value="#{currentUser.firstname}"/>
 </s:decorate></div>
 </div>

Listing 17.15 The registration.xhtml source with validation

B

C

D

E

F
G

794 CHAPTER 17

Introducing JBoss Seam
 ...

 </s:validateAll>

 <div class="entry">
 <div class="label"> </div>

 <div class="input">
 <h:commandButton value="Register" styleClass="button"
 action="#{register.doRegister}"/>

 <h:commandButton value="Cancel" styleClass="button"
 action="login" immediate="true"/>
 </div>
 </div>

</h:form>

This component facet is used by the Seam decorator for error display. You’ll see it
before any input field that has an invalid value.

The Seam decorator places the error message after the invalid field.

Global error messages that aren’t assigned to any field are displayed at the top of
the form.

The <s:validateAll/> Seam tag enables Hibernate Validator for all child tags—
that is, all input fields that are encapsulated in this form. You can also enable
Hibernate Validator for only a single field by wrapping the input field with
<s:validate/>.

The <s:decorate> Seam tag handles the validation error messages. It wraps the
beforeInvalidField and afterInvalidField facets around the input field if an
error occurs.

The JSF input widget has a visible size of 16 characters. Note that JSF doesn’t limit
the string size the user can enter, but it requires that the user enters a value. This
“not null” validation is still the job of JSF, not Hibernate Validator.

The Register button has an action binding to register.doRegister, a Seam com-
ponent.

You need a Cancel button that redirects the user to the login page. You again skip
processing of the form with immediate="true".

When the registration form is submitted, Seam participates in the JSF Process Val-
idations phase and calls Hibernate Validator for every entity object to which you
bound an input field. In this case, only a single entity instance must be validated,
currentUser, which Seam looks up in its contexts.

H

I

B

C

D

E

F

G

H

I

Validating user input 795
 If the Process Validations phase completes, register.doRegister executes in
Invoke Application. This is a stateful session bean that lives in the event context.

The registration Seam component
The registration form has two bindings to the register Seam component. The
first binding is a value binding, with register.verifyPassword. JSF and Seam
now synchronize the user input from this field with the register.setVerify-
Password() and register.getVerifyPassword() methods.

 The second binding is an action binding of the Register button to the regis-
ter.doRegister() method. This method must implement additional checks after
JSF and Hibernate Validator input validation, before the currentUser can be
stored as a new account in the database. See the code in listing 17.16.

package auction.beans;

import ...

@Name("register")
@Scope(ScopeType.EVENT)

@Stateful
public class RegisterBean implements Register {

 @In
 private User currentUser;

 @PersistenceContext
 private EntityManager em;

 @In(create=true)
 private transient FacesMessages facesMessages;

 private String verifyPassword;
 public String getVerifyPassword() {
 return verifyPassword;
 }
 public void setVerifyPassword(String verifyPassword) {
 this.verifyPassword = verifyPassword;
 }

 public String doRegister() {

 if (!currentUser.getPassword().equals(verifyPassword)) {
 facesMessages.add("Passwords didn't match!")
 verifyPassword = null;
 return null;
 }

 List existing =

Listing 17.16 A stateful session bean implements the registration logic.

B

C

D

E

F

G

H

796 CHAPTER 17

Introducing JBoss Seam
 em.createQuery("select u.username from User u" +
 " where u.username = :uname")
 .setParameter("uname", currentUser.getUsername())
 .getResultList();

 if (existing.size() != 0) {
 facesMessages.add("User exists!");
 return null;
 } else {
 em.persist(currentUser);
 facesMessages.add("Registration complete.");
 return "login";
 }
 }

 @Remove @Destroy
 public void destroy() {}

}

The register Seam component is created by Seam and destroyed when the event
context is destroyed, which is the scope of a single JSF request.

Seam injects the currentUser, aliased from the contextual variable in the ses-
sion context.

Seam injects (or creates, if the variable can’t be found in any context) an instance
of FacesMessages. This is a convenient helper if you need to send messages to a
JSF page; you used it before without injection but through manual lookup.

The verifyPassword field of this component is synchronized with the JSF form.

This method implements the main logic for registration of a new account. It’s
called after Hibernate Validator checks the currentUser.

The two passwords entered by the user have to match; otherwise an error message
is shown above the form. The null outcome triggers a redisplay of the login form
with the error message.

Usernames are unique in the database. This multirow constraint can’t be checked
in-memory by Hibernate Validator. You need to execute a database query and vali-
date the username.

If all validations pass, you persist() the currentUser object; the persistence con-
text is flushed, and the transaction is committed when the doRegister() method
returns. The outcome login redirects the user back to the login page, where the
Registration complete message is rendered above the login form.

I

J

B

C

D

E

F

G

H

I

Validating user input 797
Seam calls the component’s destroy() method at the end of the JSF request,
when the event context is destroyed. The EJB 3.0 container removes the stateful
session bean because the method is marked with @Remove.

User input validation is often more complex than checking a single value on a
single object. Seam calls Hibernate Validator for all bound entity instance of the
registration form. However, a duplicate check of the entered username requires
database access. You could write your own Hibernate Validator extension for this
purpose, but it seems unreasonable to always check the database for a duplicate
username when a User object must be validated. On the other hand, it’s natural
that business logic is implemented with procedural code, not completely
declaratively.

 So far, Hibernate Validator does nothing. If you submit the registration form
without entering any values, only the built-in JSF validator for required="true"
runs. You get a built-in JSF error message on each input field that says that a value
is required.

Annotating the entity class
Hibernate Validator isn’t active because there are no integrity rules on the User
entity class, so all objects pass the validation test. You can add validation
annotations on the fields or on the getter methods of the entity class:

package auction.model;

import ...

@Name("user")
@Role(name = "currentUser", scope = ScopeType.SESSION)

@Entity
@Table(name = "USERS")
public class User implements Serializable {

 @Id @GeneratedValue
 @Column(name = "USER_ID")
 private Long id = null;

 @Column(name = "USERNAME", nullable = false, unique = true)
 @org.hibernate.validator.Length(
 min = 3, max = 16,
 message = "Minimum {min}, maximum {max} characters."
)
 @org.hibernate.validator.Pattern(
 regex="^\\w*$",
 message = "Invalid username!"
)
 private String username;

J

798 CHAPTER 17

Introducing JBoss Seam
 @Column(name = "`PASSWORD`", length = 12, nullable = false)
 private String password;

 @Column(name = "FIRSTNAME", length = 255, nullable = false)
 private String firstname;

 @Column(name = "LASTNAME", length = 255, nullable = false)
 private String lastname;

...}

You apply only two Hibernate Validator annotations: the @Length and @Pattern
validators. These validators have attributes such as the maximum and minimum
length, or a regular expression pattern (see java.util.regex.Pattern). A list of
all built-in validation annotations can be found in the Hibernate Validator
reference documentation in the Hibernate Annotations package. You can also
easily write your own annotations.

 All validation annotations have a message attribute. This message is displayed
next to the form field if a validation failure occurs.

 You can add more validation annotations that also check the password, the first
name, and the last name of the User. Note that the length attribute of the USER-
NAME @Column annotation has been removed. Thanks to the length validation
annotation, Hibernate’s schema export tool now knows that a VARCHAR(16) must
be created in the database schema. On the other hand, the nullable = false
attribute stays, for the generation of a NOT NULL database column constraint. (You
could use a @NotNull validation annotation from Hibernate Validator, but JSF
already checks that field for you: The form field is required="true".)

 After you add the validation annotations to User, submitting the registration
form with incomplete values displays error messages, as shown in figure 17.11.

 The registration feature is now complete; users can create new accounts. What
doesn’t seem to be perfect are the error messages. If you try the code, you’ll see
that the error messages aren’t as nice as the ones shown in figure 17.11. The fields
that require input have an ugly _id23: Field input is required message, instead. Also,
is it a good idea to put English error messages into your entity classes, even if
they’re in annotation metadata?

 Instead of replacing only the default JSF error messages (which include the
automatically generated widget identifiers), let’s isolate all user interface mes-
sages and also allow users to switch languages.

Validating user input 799
17.4.3 Internationalization with Seam

The first step toward a multilanguage application is a language switcher—let’s say,
a link the user can click in the top menu of the application. Seam has a locale-
Selector component (it lives in the session context) that makes this easy:

<h:form>
 <h:panelGroup>
 <h:outputText value="#{messages['SelectLanguage']}"/>:
 <h:commandLink
 value="EN"
 action="#{localeSelector.selectLanguage('en')}"/>
 |
 <h:commandLink
 value="DE"
 action="#{localeSelector.selectLanguage('de')}"/>
 </h:panelGroup>
</h:form>

This little form has two hyperlinks, EN and DE. Users can click the links to switch
the application’s interface between English and German. The link actions are
bound to the localeSelector.selectLanguage() method, with literal arguments.

Figure 17.11 Seam decorates the input fields with validation error messages.

800 CHAPTER 17

Introducing JBoss Seam
These arguments, en and de, are ISO language codes; see the Javadoc for
java.util.Locale.

 But that isn’t all that happens here. When the form is rendered, the #{mes-
sages['SelectLanguage']} expression is evaluated, and the output of that
expression is rendered as text, before the comand links. The output of this
expression is something like “Select your language:”. Where does it come from?

 Clearly, messages is a Seam component; it lives in the session context. It
represents a map of externalized messages; SelectLanguage is a key this map is
searched for. If the map contains a value for that key, the value is printed out.
Otherwise, SelectLanguage is printed verbatim.

 You can use the messages component anywhere you can write an expression
that resolves Seam components (which is almost anywhere). This component is a
convenient handle to a Java resource bundle, which is a complicated term that
means key/value pairs in a .properties file.

 Seam automatically reads messages.properties from the root of your classpath
into the messages component. However, the actual filename depends on the
currently selected locale. If a user clicks the DE link, the file that is searched in the
classpath is named messages_de.properties. If English is the active language
(which is the default, depending on the JSF configuration and browser), the file
that is loaded is messages_en.properties.

 Here is a snippet of messages_en.properties:

SelectLanguage = Select language:
PleaseRegisterHint = Create a new account...
SelectUsernameAndPassword = Select a username and password
PasswordVerify = Repeat password
PasswordVerifyField = Controlpassword
Firstname = First name
Lastname = Last name
Email = E-mail address
TooShortOrLongUsername = Minimum 3, maximum 16 characters.
NotValidUsername = Invalid name! {TooShortOrLongUsername}
PasswordVerifyFailed = Passwords didn't match, try again.
UserAlreadyExists = A user with this name already exists.
SuccessfulRegistration = Registration complete, please log in:
DoRegister = Register
Cancel = Cancel

Override JSF defaults
javax.faces.component.UIInput.REQUIRED = This field cannot be empty.

The last line overrides the default JSF validation error message for the input field
widget. The syntax {Key} is useful if you want to combine message; the TooShort-
OrLongUsername message is appended to the NotValidUsername message.

Validating user input 801
 You can now replace all the strings in your XHTML files with expressions that
look up keys in the messages Seam component. You can also use keys from
resource bundles in your RegistrationBean component, in Java code:

public String doRegister() {
 if (!currentUser.getPassword().equals(verifyPassword)) {
 facesMessages
 .addFromResourceBundle("PasswordVerifyFailed");
 verifyPassword = null;
 return null;
 }

 List existing =
 em.createQuery("select u.username from User u" +
 " where u.username = :uname")
 .setParameter("uname", currentUser.getUsername())
 .getResultList();

 if (existing.size() != 0) {
 facesMessages
 .addFromResourceBundle("UserAlreadyExists");
 return null;
 } else {
 em.persist(currentUser);
 facesMessages
 .addFromResourceBundle("SuccessfulRegistration");
 return "login";
 }
}

And finally, you can use resource bundle keys in the messages of Hibernate
Validator (this isn’t a Seam feature—it works without Seam as well):

@Entity
public class User implements Serializable {

...
 @Column(name = "USERNAME", nullable = false, unique = true)
 @org.hibernate.validator.Length(
 min = 3, max = 16,
 message = "{TooShortOrLongUsername}"
)
 @org.hibernate.validator.Pattern(
 regex="^\\w*$",
 message = "{NotValidUsername}"
)
 private String username;

...}

Let’s translate the resource bundle and save it as message_de.properties:

802 CHAPTER 17

Introducing JBoss Seam
SelectLanguage = Sprache:
PleaseRegisterHint = Neuen Account anlegen...
SelectUsernameAndPassword = Benutzername und Passwort w\u00e4hlen
PasswordVerify = Passwort (Wiederholung)
PasswordVerifyField = Kontrollpasswort
Firstname = Vorname
Lastname = Nachname
Email = E-mail Adresse
TooShortOrLongUsername = Minimum 3, maximal 16 Zeichen.
NotValidUsername = Ung\u00fcltiger name! {TooShortOrLongUsername}
PasswordVerifyFailed = Passworte nicht gleich, bitte wiederholen.
UserAlreadyExists = Ein Benutzer mit diesem Namen existiert bereits.
SuccessfulRegistration = Registrierung komplett, bitte einloggen:
DoRegister = Registrieren
Cancel = Abbrechen

Override JSF defaults
javax.faces.component.UIInput.REQUIRED = Eingabe erforderlich.

Note that you use UTF sequences to express characters which are not ASCII. If the
user selects German in the application and tries to register without completing
the form, all messages appear in German (figure 17.12).

Figure 17.12 The user interface has been translated to German.

Simplifying persistence with Seam 803
 The selected language is a session-scoped setting. It’s now active until the user
logs out (which invalidates the HTTP session). If you also set the localeSelec-
tor.cookieEnabled=true switch in seam.properties, the users language selection
will be stored as a cookie in the web browser.

 The last but not least important Seam feature we want to demonstrate is
automatic persistence context handling through Seam. If you’ve ever seen a
LazyInitializationException in a Hibernate application (and who hasn’t?),
this is the perfect solution.

17.5 Simplifying persistence with Seam

All the previous examples in this chapter use the EntityManager that was injected
by the EJB 3.0 container. A member field in an EJB is annotated with @Persis-
tenceContext, and the scope of the persistence context is always the transaction
started and committed for a particular action method. In Hibernate terms, a
Hibernate Session is opened, flushed, and closed for every method called on a
session bean.

 When a session bean method returns and the persistence context is closed, all
entity instances you loaded from the database in that bean method are in
detached state. You can render these instances on a JSF page by accessing their
initialized properties and collections, but you get a LazyInitializationExcep-
tion if you try to access an uninitialized association or collection. You also have to
reattach (or merge, with the Java Persistence API) a detached instance if you want
to have it in persistent state again. Furthermore, you have to carefully code the
equals() and hashCode() methods of your entity classes, because the guaranteed
identity scope is only the transaction, the same as the (relatively short) persistence
context scope.

 We’ve discussed the consequences of the detached object state several times
before in this book. Almost always, we’ve concluded that avoiding the detached
state by extending the persistence context and identity scope beyond a transaction
is a preferable solution. You’ve seen the Open Session in View pattern that
extends the persistence context to span a whole request. Although this pattern is a
pragmatic solution for applications that are built in a stateless fashion, where the
most important scope is the request, you need a more powerful variation if you
write a stateful Seam application with conversations.

804 CHAPTER 17

Introducing JBoss Seam
 If you let Seam inject an EntityManager into your session beans, and if you let
Seam manage the persistence context, you’ll get the following:

■ Automatic binding and scoping of an extended persistence context to the conversa-
tion—You have a guaranteed identity scope that spans your conversation. A
particular conversation has at most one in-memory representation of a
particular database row. There are no detached objects, and you can easily
compare entity instances with double equals (a==b). You don’t have to
implement equals() and hashCode() and compare entity instances by
business key.

■ No more LazyInitializationExceptions when you access an uninitalized
proxy or collection in a conversation—The persistence context is active for
the whole conversation, and the persistence engine can fetch data on
demand at all times. Seam provides a much more powerful and
convenient implementation of the Open Session in View pattern, which
avoids detached objects not only during a single request but also during a
whole conversation.

■ Automatic wrapping of the JSF request in several system transactions—Seam uses
several transactions to encapsulate the phases in the JSF request lifecycle.
We’ll discuss this transaction assembly later; one of its benefits is that you
have an optimized assembly that keeps database lock times as short as
possible, without any coding.

Let’s demonstrate this with an example by rewriting the registration procedure
from the previous section as a conversation with an extended persistence context.
The previous implementation was basically stateless: The RegisterBean was only
scoped to a single event.

17.5.1 Implementing a conversation

Go back and read the code shown in listing 17.16. This stateful session bean is the
backing bean for the account registration page in CaveatEmptor. When a user
opens or submits the registration page, an instance of that bean is created and
active while the event is being processed. JSF binds the form values into the bean
(through verifyPassword and the Seam-injected currentUser) and calls the
action listener methods when necessary.

 This is a stateless design. Although you use a stateful session bean, its scope is a
single request, the event context in Seam. This approach works fine because the
conversation the user goes through is trivial—only a single page with a single form

Simplifying persistence with Seam 805
has to be filled in and submitted. Figure 17.13 shows a more sophisticated regis-
tration procedure.

 The user opens register.xhtml and enters the desired username and password.
After the user clicks Next Page, a second form with the profile data (first name,
email address, and so on) is presented and must be filled out. The last page shows
all the account and profile data again, so the user can confirm it (or step back and
correct it).

 This registration procedure is a wizard-style conversation, with the usual Next
Page and Previous Page buttons that allow the user to step through the
conversation. Many applications need this kind of dialog. Without Seam,
implementing multipage conversations is still difficult for web application
developers. (Note that there are many other good use cases for conversations; the
wizard dialog is common.)

 Let’s write the pages and Seam components for this conversation.

The registration page
The register.xhtml page looks almost like the one shown in listing 17.15. You
remove the profile form fields (first name, last name, email address) and replace
the Register button with a Next Page button:

...

<s:validateAll>

 <div class="entry">
 <div class="label">Username:</div>
 <div class="input">
 <s:decorate>
 <h:inputText size="16" required="true"
 value="#{register.user.username}"/>
 </s:decorate>
 </div>

Figure 17.13 The CaveatEmptor registration wizard

806 CHAPTER 17

Introducing JBoss Seam
 </div>

 <div class="entry">
 <div class="label">Password:</div>

 <div class="input">
 <s:decorate>
 <h:inputSecret size="16" required="true"
 value="#{register.user.password}"/>
 </s:decorate>
 </div>
 </div>

 <div class="entry">
 <div class="label">Repeat password:</div>
 <div class="input">
 <s:decorate>
 <h:inputSecret size="16" required="true"
 value="#{register.verifyPassword}"/>
 </s:decorate>
 </div>
 </div>

</s:validateAll>

<div class="entry">
 <div class="label"> </div>
 <div class="input">
 <h:commandButton value="Next Page"
 styleClass="button"
 action="#{register.enterAccount}"/>
 </div>
</div>

You’re still referring to the register component to bind values and actions; you’ll
see that class in a moment. You bind the form values to the User object returned
by register.getUser(). The currentUser is gone. You now have a conversation
context and no longer need to use the HTTP session context (the previous
implementation didn’t work if the user tried to register two accounts in two
browser windows at the same time). The register component now holds the
state of the User that is bound to all form fields during the conversation.

 The outcome of the enterAccount() method forwards the user to the next
page, the profile form. Note that you still rely on Hibernate Validator for input
validation, called by Seam (<s:validateAll/>) in the Process Validations phase
of the request. If input validation fails, the page is redisplayed.

Simplifying persistence with Seam 807
The profile page
The profile.xhtml page is almost the same as the register.xhtml page. The profile
form includes the profile fields, and the buttons at the bottom of the page allow a
user to step back or forward in the conversation:

...

<div class="entry">
 <div class="label">E-mail address:</div>
 <div class="input">
 <s:decorate>
 <h:inputText size="32" required="true"
 value="#{register.user.email}"/>
 </s:decorate>
 </div>
</div>

<div class="entry">
 <div class="label"> </div>

 <div class="input">
 <h:commandButton value="Previous Page"
 styleClass="button"
 action="register"/>

 <h:commandButton value="Next Page"
 styleClass="button"
 action="#{register.enterProfile}"/>
 </div>
</div>

Any form field filled out by the user is applied to the register.user model when
the form is submitted. The Previous Page button skips the Invoke Application
phase and results in the register outcome—the previous page is displayed. Note
that there is no <s:validateAll/> around this form; you don’t want to Process
Validations when the user clicks the Previous Page button. Calling Hibernate
Validator is now delegated to the register.enterProfile action. You should
validate the form input only when the user clicks Next Page. However, you keep
the decoration on the form fields to display any validation error messages.

 The next page shows a summary of the account and profile.

The summary page
On confirm.xhtml, all input is presented in a summary, allowing the user to
review the account and profile details before finally submitting them for
registration:

808 CHAPTER 17

Introducing JBoss Seam
...

<div class="entry">
 <div class="label">Last name:</div>
 <div class="output">#{register.user.lastname}</div>
</div>

<div class="entry">
 <div class="label">E-mail address:</div>
 <div class="output">#{register.user.email}</div>
</div>

<div class="entry">
 <div class="label"> </div>

 <div class="input">
 <h:commandButton value="Previous Page"
 styleClass="button"
 action="profile"/>

 <h:commandButton value="Register"
 styleClass="button"
 action="#{register.confirm}"/>
 </div>
</div>

The Previous Page button renders the response defined by the profile outcome,
which is the previous page. The register.confirm method is called when the
user clicks Register. This action method ends the conversation.

 Finally, you write the Seam component that backs this conversation.

Writing a conversational Seam component
The RegisterBean shown in listing 17.16 must be scoped to the conversation.
First, here’s the interface:

public interface Register {

 // Value binding methods
 public User getUser();
 public void setUser(User user);

 public String getVerifyPassword();
 public void setVerifyPassword(String verifyPassword);

 // Action binding methods
 public String enterAccount();
 public String enterProfile();
 public String confirm();

 // Cleanup routine
 public void destroy();
}

Simplifying persistence with Seam 809
One of the advantages of the Seam conversation model is that you can read your
interface like a story of your conversation. The user enters account data and then
the profile data. Finally, the input is confirmed and stored.

 The implementation of the bean is shown in listing 17.17.

package auction.beans;

import ...

@Name("register")
@Scope(ScopeType.CONVERSATION)

@Stateful
public class RegisterBean implements Register {

 @PersistenceContext
 private EntityManager em;

 @In(create=true)
 private transient FacesMessages facesMessages;

 private User user;
 public User getUser() {
 if (user == null) user = new User();
 return user;
 }
 public void setUser(User user) {
 this.user = user;
 }

 private String verifyPassword;
 public String getVerifyPassword() {
 return verifyPassword;
 }
 public void setVerifyPassword(String verifyPassword) {
 this.verifyPassword = verifyPassword;
 }

 @Begin(join = true)
 public String enterAccount() {
 if (verifyPasswordMismatch() || usernameExists()) {
 return null; // Redisplay page
 } else {
 return "profile";
 }
 }

 @IfInvalid(outcome = Outcome.REDISPLAY)
 public String enterProfile() {
 return "confirm";
 }

Listing 17.17 A conversation-scoped Seam component

B

C

D

E

F

G

810 CHAPTER 17

Introducing JBoss Seam
 @End(ifOutcome = "login")
 public String confirm() {
 if (usernameExists()) return "register"; // Safety check
 em.persist(user);
 facesMessages.add("Registration successful!");
 return "login";
 }

 @Remove @Destroy
 public void destroy() {}

 private boolean usernameExists() {
 List existing =
 em.createQuery("select u.username from User u" +
 " where u.username = :uname")
 .setParameter("uname",
 user.getUsername())
 .getResultList();

 if (existing.size() != 0) {
 facesMessages.add("Username exists");
 return true;
 }
 return false;
 }

 private boolean verifyPasswordMismatch() {
 if (!user.getPassword().equals(verifyPassword)) {
 facesMessages.add("Passwords do not match");
 verifyPassword = null;
 return true;
 }
 return false;
 }
}

When Seam instantiates this component, an instance is bound into the conversa-
tion context under the variable name register.

The EJB 3.0 container injects a transaction-scoped persistence context. You’ll use
Seam here later to inject a conversation-scoped persistence context.

The user member variable is exposed with accessor methods so that JSF input wid-
gets can be bound to individual User properties. The state of the user is held dur-
ing the conversation by the register component.

The verifyPassword member variable is also exposed with accessor methods for
value binding in forms, and the state is held during the conversation.

H

B

C

D

E

Simplifying persistence with Seam 811
When the user clicks Next Page on the first screen, the enterAccount() method
is called. The current conversation is promoted to a long-running conversation
with @Begin, when this method returns, so it spans future requests until an @End
marked method returns. Because users may step back to the first page and resub-
mit the form, you need to join an existing conversation if it’s already in progress.

When the user clicks Next Page on the second screen, the enterProfile()
method is called. Because it’s marked with @IfInvalid, Seam executes Hiber-
nate Validator for input validation. If an error occurs, the page is redisplayed
(Outcome.REDISPLAY is a convenient constant shortcut) with error messages
from Hibernate Validator. If there are no errors, the outcome is the final page
of the conversation.

When the user clicks Register on the last screen, the confirm() method is called.
When the method returns the login outcome, Seam ends the long-running con-
versation and destroys the component by calling the method marked with
@Destroy. Meanwhile, if some other person picks the same username, you redi-
rect the user back to the first page of the conversation; the conversation context
stays intact and active.

You’ve seen most of the annotations earlier in this chapter. The only new
annotation is @IfInvalid, which triggers Hibernate Validator when the enter-
Profile() method is called. The registration conversation is now complete, and
everything works as expected. The persistence context is handled by the EJB
container, and a fresh persistence context is assigned to each action method when
the method is called.

 You haven’t run into any problems because the code and pages don’t load data
on demand by pulling data in the view from the detached domain objects.
However, almost any conversation more complex than the registration process
will trigger a LazyInitializationException.

17.5.2 Letting Seam manage the persistence context

Let’s provoke a LazyInitializationException. When the user enters the final
screen of the conversation, the confirmation dialog, you present a list of auction
categories. The user can select the default category for their account: the auction
category they want to browse and sell items in by default. The list of categories is
loaded from the database and exposed with a getter method.

F

G

H

812 CHAPTER 17

Introducing JBoss Seam
Triggering a LazyInitializationException
Edit the RegisterBean component and expose a list of auction categories, loaded
from the database:

public class RegisterBean implements Register {
 ...

 private List<Category> categories;
 public List<Category> getCategories() {
 return categories;
 }
 ...

 @IfInvalid(outcome = Outcome.REDISPLAY)
 public String enterProfile() {
 categories =
 em.createQuery("select c from Category c" +
 " where c.parentCategory is null")
 .getResultList();
 return "confirm";
 }

}

You also add the getCategories() method to the interface of the component. In
the confirm.xhtml view, you can now bind to this getter method to show the
categories:

...
<div class="entry">
 <div class="label">E-mail address:</div>
 <div class="output">#{register.user.email}</div>
</div>

<div class="entry">
 <div class="label">Default category:</div>
 <div class="input">
 <tr:tree var="cat"
 value="#{registrationCategoryAdapter.treeModel}">
 <f:facet name="nodeStamp">
 <h:outputText value="#{cat.name}"/>
 </f:facet>
 </tr:tree>
 </div>
</div>
...

To display categories, you use a different widget, which isn’t in the standard JSF

set. It’s a visual tree data component from the Apache MyFaces Trinidad project.
It also needs an adapter that converts the list of categories into a tree data model.

Simplifying persistence with Seam 813
But this isn’t important (you can find the libraries and configuration for this in
the CaveatEmptor download).

 What is important is that if the tree of categories is rendered, the persistence
context was closed already in the Render Response phase, after enterProfile()
was invoked. Which categories are now fully available in detached state? Only the
root categories, categories with no parent category, have been loaded from the
database. If the user clicks the tree display and wants to see whether a category has
any children, the application fails with a LazyInitializationException.

 With Seam, you can easily extend the persistence context to span the whole
conversation, not only a single method or a single event. On-demand loading of
data is then possible anywhere in the conversation and in any JSF processing phase.

Injecting a Seam persistence context
First, configure a Seam managed persistence context. Edit (or create) the file
components.xml in your WEB-INF directory:

<components>

 <component name="org.jboss.seam.core.init">

 <!-- Enable seam.debug page -->
 <property name="debug">false</property>

 <!-- How does Seam lookup EJBs in JNDI -->
 <property name="jndiPattern">
 caveatemptor/#{ejbName}/local
 </property>
 </component>

 <component name="org.jboss.seam.core.manager">

 <!-- 10 minute inactive conversation timeout -->
 <property name="conversationTimeout">600000</property>

 </component>

 <component
 name="caveatEmptorEM"
 class="org.jboss.seam.core.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/EntityManagerFactories/caveatEmptorEMF
 </property>
 </component>

</components>

You also move all other Seam configuration options into this file, so seam.proper-
ties is now empty (but still required as a marker for the component scanner).

814 CHAPTER 17

Introducing JBoss Seam
 When Seam starts up, it configures the class ManagedPersistenceContext as a
Seam component. This is like putting Seam annotations onto that class (there are
also annotations on this Seam-bundled class). The name of the component is
caveatEmptorEM, and it implements the EntityManager interface. Whenever you
now need an EntityManager, let Seam inject the caveatEmptorEM.

 (The ManagedPersistenceContext class needs to know how to get a real Enti-
tyManager, so you have to provide the name of the EntityManagerFactory in
JNDI. How you get the EntityManagerFactory into JDNI depends on your Java
Persistence provider. In Hibernate, you can configure this binding with
jboss.entity.manager.factory.jndi.name in persistence.xml.)

 Modify the RegisterBean again, and use the Seam persistence context:

@Name("register")
@Scope(ScopeType.CONVERSATION)

@Stateful
public class RegisterBean implements Register {

 @In(create = true, value = "caveatEmptorEM")
 private EntityManager em;

 ...

When a method on this component is called for the first time, Seam creates an
instance of ManagedPersistenceContext, binds it into the variable caveatEmp-
torEM in the conversation context, and injects it into the member field em right
before the method is executed. When the conversation context is destroyed,
Seam destroys the ManagedPersistenceContext instance, which closes the
persistence context.

 When is the persistence context flushed?

Integrating the persistence context lifecycle
The Seam-managed persistence context is flushed whenever a transaction
commits. Instead of wrapping transactions (with annotations) around your action
methods, let Seam also manage transactions. This is the job of a different Seam
phase listener for JSF, replacing the basic one in faces-config.xml:

<lifecycle>
 <phase-listener>
 org.jboss.seam.jsf.TransactionalSeamPhaseListener
 </phase-listener>
</lifecycle>

This listener uses two system transactions to handle one JSF request. One
transaction is started in the Restore View phase and committed after the Invoke

Simplifying persistence with Seam 815
Application phase. Any system exceptions in these phases trigger an automatic
rollback of the transaction. A different response can be prepared with an
exception handler (this is weak point in JSF—you have to use a servlet exception
handler in web.xml to do this). By committing the first transaction after the
action method execution is complete, you keep any database locks created by SQL
DML in the action methods as short as possible.

 A second transaction spans the Render Response phase of a JSF request. Any
view that pulls data on demand (and triggers initialization of lazy loaded
associations and collections) runs in this second transaction. This is a transaction
in which data is only read, so no database locks (if your database isn’t running in
repeatable read mode, or if it has a multiversion concurrency control system) are
created during that phase.

 Finally, note that the persistence context spans the conversation, but that
flushing and commits may occur during the conversation. Hence, the whole
conversation isn’t atomic. You can disable automatic flushing with @Begin(flush-
Mode = FlushModeType.MANUAL) when a conversation is promoted to be long-
running; you then have to call flush() manually when the conversation ends
(usually in the method marked with @End).

 The persistence context is now available through Seam injection in any com-
ponent, stateless or stateful. It’s always the same persistence context in a conversa-
tion; it acts as a cache and identity map for all entity objects that have been loaded
from the database.

 An extended persistence context that spans a whole conversation has other
benefits that may not be obvious at first. For example, the persistence context is
not only the identity map, but also the cache of all entity objects that have been
loaded from the database during a conversation.

 Imagine that you don’t hold conversational state between requests, but push
every piece of information either into the database or into the HTTP session (or
into hidden form fields, or cookies, or request parameters…) at the end of each
request. When the next request hits the server, you assemble state again by access-
ing the database, the HTTP session, and so on. Because you have no other useful
contexts and no conversational programming model, you must reassemble and
disassemble the application state for every request. This stateless application
design doesn’t scale—you can’t hit the database (the tier that is most expensive to
scale) for every client request!

 Developers try to solve this problem by enabling the Hibernate second-level
cache. However, scaling an application with a conversational cache is much more
interesting than scaling it with a dumb second-level data cache. Especially in a

816 CHAPTER 17

Introducing JBoss Seam
cluster, a second-level cache forces an update of the caches on all cluster nodes
whenever any piece of data is modified by any node. With the conversational
cache, only the nodes required for load balancing or failover of this particular
conversation have to participate in replication of the current conversation data
(which is in this case stateful session bean replication). Replication can be
significantly reduced, because no global shared cache needs to be synchronized.

 We’d like to talk about Seam much more and show you other examples, but
we’re running out of paper.

17.6 Summary

In this chapter, we looked at JSF, EJB 3.0, and how a web application that utilizes
these standards can be improved with the JBoss Seam framework. We discussed
Seam’s contexts and how components can be wired together in a contextual
fashion. We talked about integration of Seam with Hibernate Validator, and you
saw why a Seam-managed persistence context is the perfect solution for LazyIni-
tializationExceptions.

 If you found this excourse into the Seam world interesting, much more is wait-
ing to be discovered:

■ The Seam component model also supports an event/listener concept,
which allows components to call each other with a loosely coupled (wired
through expressions) observer/observable pattern.

■ You can enable a stateful navigation flow for a conversation with a pageflow
descriptor, replacing the stateless JSF navigation model. This solves any
problems you may have with the user clicking the Back button in the
browser during a conversation.

■ Seam has a sophisticated concurrency model for asynchronous processing
on the server (integrated with JMS), as well as concurrency handling in con-
versations (Seam protects conversations from double-submits).

■ Seam allows you to tie conversations and business process management
tasks together easily. It integrates the workflows and business process
context of JBoss jBPM (http://www.jboss.com/products/jbpm).

■ Seam integrates JBoss Rules (http://www.jboss.com/products/rules). You
can access policies in Seam components and Seam components from rules.

Summary 817
■ A JavaScript library is bundled with Seam. With this Remoting framework,
you can call Seam components from client-side code easily. Seam can han-
dle any Ajax requests to your server.

■ The Seam Application Framework provides out-of-the-box components that
enable you to write an easily extendable CRUD database application in
minutes.

■ Seam components are easily testable, with or without an (embeddable) con-
tainer. Seam makes integration and functional testing extremely easy with
the SeamTest superclass for TestNG; this class allows you to script interac-
tions that simulate a web browser.

If you want to continue with Seam and explore other features that didn’t make it
into this list, continue with the tutorials in the Seam reference documentation.

appendix A:
SQL fundamentals
818

APPENDIX A 819
A table, with its rows and columns, is a familiar sight to anyone who has worked
with an SQL database. Sometimes you’ll see tables referred to as relations, rows as
tuples, and columns as attributes. This is the language of the relational data model,
the mathematical model that SQL databases (imperfectly) implement.

 The relational model allows you to define data structures and constraints that
guarantee the integrity of your data (for example, by disallowing values that don’t
accord with your business rules). The relational model also defines the relational
operations of restriction, projection, Cartesian product, and relational join
[Codd, 1970]. These operations let you do useful things with your data, such as
summarizing or navigating it.

 Each of the operations produces a new table from a given table or combina-
tion of tables. SQL is a language for expressing these operations in your applica-
tion (therefore called a data language) and for defining the base tables on which
the operations are performed.

 You write SQL data definition language (DDL) statements to create and manage
the tables. We say that DDL defines the database schema. Statements such as CREATE
TABLE, ALTER TABLE, and CREATE SEQUENCE belong to DDL.

 You write SQL data manipulation language (DML) statements to work with your
data at runtime. Let’s describe these DML operations in the context of some tables
of the CaveatEmptor application.

 In CaveatEmptor, you naturally have entities like item, user, and bid. We assume
that the SQL database schema for this application includes an ITEM table and a
BID table, as shown in figure A.1. The datatypes, tables, and constraints for this
schema are created with SQL DDL (CREATE and ALTER operations).

 Insertion is the operation of creating a new table from an old table by adding a
row. SQL databases perform this operation in place, so the new row is added to
the existing table:

insert into ITEM values (4, 'Fum', 45.0)

Figure A.1
Example tables with
example data

820 APPENDIX A
An SQL update modifies an existing row:

update ITEM set PRICE = 47.0 where ITEM_ID = 4

 A deletion removes a row:

delete from ITEM where ITEM_ID = 4

 The real power of SQL lies in querying data. A single query may perform many
relational operations on several tables. Let’s look at the basic operations.

 Restriction is the operation of choosing rows of a table that match a particular
criterion. In SQL, this criterion is the expression that occurs in the where clause:

select * from ITEM where NAME like 'F%'

Projection is the operation of choosing columns of a table and eliminating dupli-
cate rows from the result. In SQL, the columns to be included are listed in the
select clause. You can eliminate duplicate rows by specifying the distinct key-
word:

select distinct NAME from ITEM

A Cartesian product (also called cross join) produces a new table consisting of all
possible combinations of rows of two existing tables. In SQL, you express a Carte-
sian product by listing tables in the from clause:

select * from ITEM i, BID b

 A relational join produces a new table by combining the rows of two tables. For
each pair of rows for which a join condition is true, the new table contains a row
with all field values from both joined rows. In ANSI SQL, the join clause specifies
a table join; the join condition follows the on keyword. For example, to retrieve all
items that have bids, you join the ITEM and the BID table on their common ITEM_
ID attribute:

select * from ITEM i inner join BID b on i.ITEM_ID = b.ITEM_ID

A join is equivalent to a Cartesian product followed by a restriction. So, joins are
often instead expressed in theta style, with a product in the from clause and the
join condition in the where clause. This SQL theta-style join is equivalent to the
previous ANSI-style join:

select * from ITEM i, BID b where i.ITEM_ID = b.ITEM_ID

Along with these basic operations, relational databases define operations for
aggregating rows (GROUP BY) and ordering rows (ORDER BY):

APPENDIX A 821
select b.ITEM_ID, max(b.AMOUNT)
from BID b
group by b.ITEM_ID
having max(b.AMOUNT) > 15
order by b.ITEM_ID asc

SQL was called a structured query language in reference to a feature called subse-
lects. Because each relational operation produces a new table from an existing
table or tables, an SQL query may operate on the result table of a previous query.
SQL lets you express this using a single query, by nesting the first query inside the
second:

select *
from (
 select b.ITEM_ID as ITEM, max(b.AMOUNT) as AMOUNT
 from BID b
 group by b.ITEM_ID
)
where AMOUNT > 15
order by ITEM asc

The result of this query is equivalent to the previous one.
 A subselect may appear anywhere in an SQL statement; the case of a subselect

in the where clause is the most interesting:

select * from BID b
 where b.AMOUNT >= (select max(c.AMOUNT) from BID c)

This query returns the largest bids in the database. Where clause subselects are
often combined with quantification. The following query is equivalent:

select * from BID b
 where b.AMOUNT >= all(select c.AMOUNT from BID c)

An SQL restriction criterion is expressed in a sophisticated expression language
that supports mathematical expressions, function calls, string matching, and per-
haps even more sophisticated features such as full-text search:

select * from ITEM i
 where lower(i.DESCRIPTION) like '%gc%'
 or lower(i.DESCRIPTION) like '%excellent%'

appendix B:
Mapping quick reference
822

APPENDIX B 823
Many Hibernate books list all possible XML mapping elements and mapping
annotations in an appendix. The usefulness of doing so is questionable. First, this
information is already available in a convenient form; you only need to know how
to get it. Second, any reference we might add here would be outdated in a matter
of months, maybe even weeks. The core Hibernate mapping strategies don’t
change that often, but little details, options, and attributes are always modified in
the process of improving Hibernate.

 And isn’t the main reason you want a mapping reference—so you have an up-
to-date list of all options?

■ You can get a list of all XML mapping elements and attributes bundled with
Hibernate in hibernate-mapping-3.0.dtd. Open this file in any text editor,
and you’ll see that it’s fully documented and very readable. You can print it
out as a quick reference if you work with XML mapping files. If the syntax of
the DTD bothers you, do a few quick search/replace operations on a copy of
this file to replace the DTD tags with something you prefer in your printed
output.

■ You can get a list of all mapping annotations by reading the Javadoc for the
javax.persistence and org.hibernate.annotations packages. The Java-
doc is bundled with the Hibernate Annotations package. For example, to
get a clickable, up-to-date reference for all Hibernate extension annota-
tions, open api/org/hibernate/annotations/package-summary.html.

824

references

 Ambler, Scott W. 2002. “Data Modeling 101.” http://www.agiledata.org/essays/
dataModeling101.html.

 Booch, Grady, James Rumbaugh, and Ivar Jacobson. 2005. The Unified Modeling
Language User Guide, second edition. Boston: Addison-Wesley Professional.

 Codd, E.F. 1970. “A Relational Model of Data for Large Shared Data Banks.” Communi-
cations of the ACM 13 (6): 377-87. http://www.acm.org/classics/nov95/toc.html.

 Date, C.J. 2003. An Introduction to Database Systems, eighth edition. Boston: Addison
Wesley.

 Evans, Eric. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston: Addison-Wesley Professional.

 Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Boston: Addison-
Wesley Professional.

 Fowler, Martin. 2003. Patterns of Enterprise Application Architecture. Boston: Addison-
Wesley Professional.

 Fussel, Mark L. 1997. Foundations of Object-Relational Mapping. http://www.chimu.com/
publications/objectRelational/.

 Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley Professional.

 Laddad, Ramnivas. 2003. AspectJ in Action: Practical Aspect-Oriented Programming. New
York: Manning Publications.

 Marinescu, Floyd. 2002. EJB Design Patterns: Advanced Patterns, Processes and Idioms. New
York: John Wiley and Sons.

 Massol, Vincent, and Ted Husted. 2003. JUnit in Action. New York: Manning
Publications.

 Pascal, Fabian. 2000. Practical Issues in Database Management: A Reference for the Thinking
Practitioner. Boston: Addison-Wesley Professional.

 Tow, Dan. 2003. SQL Tuning. Sebastopol, CA: O’Reilly and Associates.

 Walls, Craig, and Norman Richards. 2004. XDoclet in Action. New York: Manning
Publications.

index
Symbols
*-to-one 565
<any> associations 320
<bag> 290
<component> 278
<composite-id> 330
<dialect-scope> 377
<div> 754
<filter> 542
<hibernate-mapping> 542
<idbag> 299
<join> 342
<key-many-to-one> 329
<list> 292
<listener> 555
<list-index> 292
<load-collection> 353
<many-to-one> 283
<map-key-many-to-many> 312
<meta-value> 320
<natural-id> 694
<one-to-one> 279, 284, 340
<return-join> 354
<s:decorate> 794
<s:validate> 794
<s:validateAll> 806
<timestamp> 461
<UDP> 610
<ui:import> 754
<union-subclass> 317
<version> 461
@AccessType 173, 180–181
@ApplicationException 452
@AroundInvoke 787
@AttributeOverride 188, 194,

259, 331, 344

@Basic 179
@Begin 770
@Cascade 274, 523
@Check 370
@CollectionOfElements 256
@Column 69, 179
@Destroy 770
@DiscriminatorColumn 201
@DiscriminatorFormula 203
@DiscriminatorValue 201
@EJB 507, 729
@Embeddable 187, 309, 330
@Embedded 187
@EmbeddedId 303, 330
@End 770
@Entity 69, 126, 464
@Enumerated 237
@Fetch 578
@FieldResult 687
@Filter 543
@Generated 182
@GeneratedValue 69
@GenericGenerator 170
@Id 69, 164, 325
@IdClass 330
@IfInvalid 811
@In 783–784
@Index 376
@IndexColumn 256, 300
@Inheritance 197
@JoinColumn 69, 263, 284, 333
@JoinTable 256, 297
@LazyCollection 567
@LazyToOne 573
@Length 798
@Lob 217

@ManyToMany 298, 523
@ManyToOne 69, 263, 284, 523
@MapKey 257, 310
@MappedSuperclass 194
@Name 769, 782
@NamedNativeQueries 631
@NamedNativeQuery 631
@NamedQuery 631, 728
@OneToMany 523
@OneToOne 281, 284–285, 523
@OrderBy 258
@org.hibernate.annotations.

Cache 603
@org.hibernate.annotations.

Fetch(FetchMode.SELECT)
581

@org.hibernate.annotations.
Filter 543, 545

@Out 783–784
@Parent 188
@Pattern 798
@PersistenceContext 83, 426,

451, 506, 727, 803
@PrimaryKeyJoinColumn 206,

281, 343
@Remove 511, 770
@Resource 429
@Scope(CONVERSATION)

774
@SecondaryTable 288–289, 343
@SequenceGenerator 170
@Sort 257
@SqlResultSetMapping 688
@Stateful 510, 770
@Stateless 83
@SurpressWarning 713
825

826 INDEX
@Table 69, 126, 376
@TableGenerator 170
@Temporal 219
@Test 733
@TransactionAttribute 426, 447,

451, 484
@TransactionManagement 448,

451
@Transient 421
@Type 227
@TypeDef 232
@UniqueConstraint 373
@Version 464
{alias} placeholder 669

A
abstract class 210
acceptance testing 731
accessor methods 10, 115, 120,

180
adding logic 120

ACID 434
criteria 367, 435

action binding 754
active record 708
addEntity() 684
adding columns to join

tables 303
addOrder() 665
addScalar() 685
addSqlFunction() 640
aggregate functions 642, 655
aggregating rows 820
aggregation 184, 655, 677
ALIAS_TO_ENTITY_MAP

transformer 675
aliases 633, 785

naming convention 634
aliasing contextual variables 784
AnnotationConfiguration 71
annotations 125

creating 126
on fields 164
for a package 134
on getter methods 164
Hibernate extensions 128
immutability 182
override in XML 130
package metadata 71
transient property 177
using 126

ANSI transaction isolation
levels 455

ANSI-style join 643
Ant target

basics 60
for database console 67
for entity bean generation 94
for POJO generation 92
for reverse engineering 89
for schema export 65
for testing 735

Ant task, ejb3configuration 95
Apache MyFaces Trinidad

project 812
API Hibernate

AnnotationConfiguration 71
AuxiliaryDatabaseObject 377
CacheMode 611
CompositeUserType 222
configuration 49
ConnectionProvider 56
Criteria 616
criteria 665
CurrentSessionContext 492
Ejb3Configuration 87
EnhancedUserType 222
example 681
FlushMode 416, 474
Hibernate static class 220
HibernateEntityManager 87
HibernateEntityManager-

Factory 87
IdentifierGenerator 171
Interceptor 549
NamingStrategy 175
ParameterizedType 222
PropertyAccessor 181
Query 47, 401, 616
ResultTransformer 674
ScrollableResults 537, 629
ScrollMode 629
Session 47, 401
SessionFactory 49
SQLExceptionConverter-

Factory 441
SQLQuery 683
StatelessSession 539
Transaction 47, 401, 436, 438
TransactionFactory 438
UserCollectionType 222
UserType 222
UserVersionType 222

API Java Persistence
EntityManager 74, 418
EntityManagerFactory 74
EntityTransaction 74, 418,

436, 449
fallback to Hibernate 86
LockModeType 467
persistence 74
Query 74, 616

application handle 387
application layering 698
application server

configure 80
install 80
startup 84

applications, designing with
EJB 3.0 725

arithmetic operators 637
ArrayList 245
arrays 242

Hibernate support for 243
artificial layers, collapsing 763
as() 677
assert keyword 733
assigned identifier generator

strategy 324
associations

bidirectional 264
extra join condition 337
link table 17
many-to-many 17, 119
many-to-one 17
multiplicity 261
one-to-many 17, 290
one-to-one 17, 279
polymorphic unions 316
properties 116
recursive 109

asynchronous nonblocking
communication 609

atomicity 434
attributes 819
audit logging 546
Auditable 546
AuditLog.logEvent() 550
AuditLogInterceptor 552
AuditLogRecord 552
autoclose session 446
autocommit

debunking myths 470
disabling flushing 505, 512

INDEX 827
auatocommit (continued)
enabling 472
understanding 469, 473

automated persistence 112
automatic

dirty checking 389, 405
metadata detection 76
SQL handling 683
type discovery 685
versioning 460

automatic flushing
disabling 489
preventing 503

AuxiliaryDatabaseObject 377
avg() 655

B
backing beans 749

connecting layers 759
described in JSF

configuration 761
managing with JSF

servlets 762
problems 763
removing 763

bags 242, 244, 290
batch fetching 574–575
batch insertion 538
batch operations 532
batch updates 537
batch-size fetching strategy 575
bean-managed transactions

(BMT) 448, 451
beginTransaction() 438
benchmarks 744
bidirectional

lists 292
many-to-one association 120,

267
navigation 253
one-to-many association 267,

288
binary data 216
blind-guess optimization 575
BLOB 216
BMT. See bean-managed transac-

tions (BMT)
built-in mapping types 212
bulk insertion 535
bulk operations 532

with HQL and JPA QL 533
bulk update 533

business key 398, 693
choosing 399

business key equality 398
business layer 21
Business Logic, in domain

models 9
business methods 10, 114
business rules 367, 699
BusinessException 733–734
bytecode instrumentation 315,

571

C
cache

candidate data 596
clear 611
cluster setup 606
concurrency 595
concurrency strategy 598–599
control 611
evict 611
first-level 597
isolation 596
local setup 605
miss 594
natural key lookup 693
object identity 594
policies 599
provider 598, 601
of query results 691
reference data 597
regions 604, 692
second-level 597–598

cache provider 599–600
CacheMode 611
CacheMode options 611
CacheMode.GET 612
CacheMode.IGNORE 612
CacheMode.NORMAL 612
CacheMode.PUT 612
CacheMode.REFRESH 612
caching

fundamentals 592
in practice 602
strategies 593

callback events 556
camelCase 634
cancel() 511
candidate key 166
Cartesian product 588, 651, 673,

820
issue 585

CASCADE 375
cascade

attribute 522–523
delete 529
delete orphans 273, 529
saving 268, 525, 527
styles 520

cascade="none" 526
cascade="save-update" 527
CascadeStyle 531
cascading

applying to associations 520
deletion 270
orphan deletion 273

cascading options 269, 520, 522
combining 523
Hibernate-only 523

cascading stylesheets (CSS) 754
CascadingType 269
CASE 107
casting with proxies 314
Category

creating in detached
fashion 526

creating new 525
CaveatEmptor 106–109

category class 132
domain model 108
download package 767
enabling caching 602
mapping enumerations 233
persistence classes and

relationship 109
transaction essentials 434
use case 286

cenqua clover 734
chasing pointers 271
check constraints 370
check expression 373
check= 361–362
circular references 390
class, mapping several times 147
classes mapped as components

limitations 189
ClassValidator API 790
clear() 710
CLOB 216
cluster scope cache 593
clustered applications 596
CMP associations

bidirectional 260
CMR 118, 260

828 INDEX
CMT 437, 447–448
CMTTransactionFactory 98, 448
collection, filtering with

HQL 688
collection filters 688
collection wrapper 566
collections 241

with annotations 256
of components 251
implementation 241
interfaces 241
large 567
polymorphic 315
query expressions 638

CollectionStatistics 59
column constraints 368–369
command handler 722
Command pattern 718–719

command handler 722
executing commands 721
implementing commands 721
interfaces 719
variations 723

CommandException 720
CommandHandler 719
command-oriented API 539
CommentDAOHibernate 717
commit() 422, 436
comparator 249
comparison 636
compensation action 724
component methods

protecting with EJB 3.0
interceptor 786

components
back-pointer 186
collections of 251
unidirectional 185

components.xml 767, 813
composite keys 166, 171, 326

with annotations 330
with foreign keys 328
with key class 326

composite, foreign key to non-
primary key 335

CompositeUserType 222
implementation 228
in annotations 230
mapping 230

composition 184
bidirectional 186
unidirectional 186

concat() 638
concatenation 638
concurrency control strategy

choosing 602
concurrency strategy 599

nonstrict read-write 600
read-only 600
read-write 600
transactional 600

concurrent access,
controlling 453

Configuration
programmatic 50
all properties 55
with system properties 53

configuration 49
DTD 52
by exception 178
with properties file 55
with XML file 51

Configuration API 640
connection pool 53

C3P0 54
consistency 434
constraints 367

column 369
database 373
domain 369
table 370

ConstraintViolationException
442

container managed relation-
ships (CMRs). See CMR

container managed transactions
(CMTs). See CMT

contains() 566
containsKey() 567
context, propogation with

EJBs 506
contextual components 779
contextual variables

aliasing 784
working with directly 785

controller 478, 510, 699, 725
conversational cache

scaling applications with 815
conversational guarantees 485
conversations 435, 485

atomicity 489
context 774
with detached objects 391,

486

disabling flushing 504
with EJBs 506
with extended context 392,

489
implementing 804
interceptor 493
introduction 391
isolation 488
with JPA 497–498
long-running 775
merging detached

objects 499
with stateful bean 725
wizard style 805

core engine 553
correctness 434
correlated subquery 660, 670
correlated subselects 660
count() 655
createAlias() 672
createCriteria() 617, 671
createEntityManager() 498
createFilter() 689
createNativeQuery() 686
createQuery() 616–617
createSQLQuery() 616
Criteria 616

aggregation 677
create 615
dynamic fetching 673
FetchMode 673
grouping 677
introduction 562
joins 671
projection 676
ResultTransformer 674
root entity 616
SQL projection 678
with example objects 680

criteria
basic 665
comparison expressions 667
interface 616
logical operators 668
quantification 669
restriction 665, 667
SQL functions 669
string matching 667
subqueries 670

Criteria API
extending 683

INDEX 829
Criteria.ROOT_ALIAS 675
Criteria.ROOT_ENTITY 674
Criterion framework 563
cross join 820
crosscutting concerns 20, 110,

426, 541
CRUD 4, 350, 401
CRUD interface

implementing 711
CRUD statements

custom 351
overriding 351

CUD
custom SQL statements

353–354
mapping to procedure 356,

361
current Session 480

managing 492
CurrentSessionContext 492
cursor 537, 628
custom DDL

auxiliary objects 376
custom listeners 554
custom SQL

for CUD 354
for retrieval 351
stored procedures 356

custom types,
parameterizing 230

customizing SQL 350

D
DAO 759

as EJBs 727
for business entities 713
generic implementation 711
hand-coded SQL 22
interfaces 709
pattern 708
state-oriented 710
usage 478
using 715

DAOFactory 717
data, representing in XML 148
data access,

nontransactional 469
data access objects (DAO).

See DAO
data cache 594
data consistency 367

Data Definition Language.
See DDL

data filters 540–541
for collections 544
definition 542
dynamic 542
for dynamic views 541
enable 543
implementation 542
use cases 545

data interception 540
data language 819
data layer 21
Data Manipulation Language

(DML) 350, 819
data sets, preparing 740
Data Transfer Object

(DTO) 718, 762
pattern 709, 719

DataAccessCommand 721
database

accessing in an EJB 757
constraint 368
constraints 373
cursor 628
identity 161, 386
layer 21
object 376
schema 819
transactions 435

database-level concurrency 453
DatabaseOperation 741
datasource 80
datatypes 365
DBUnit 736–737

DatabaseOperations 741
DDL 350

auxiliary objects 376
customize schema 364
datatypes 365
schema naming 365
SQL 81, 350

declarative database
constraints 367

declarative transactions 436,
447

default fetching strategies 560
default property values 183
DefaultLoadEventListener 554
delaying insertion 490
delegate class 263

DELETE statement 535
delete() 406, 411
deleting

dependent objects 529
orphans 273, 522–523, 529

demarcation 435
dependency injection 507, 718,

728–729
dependent classes 158
deployment, automatic meta-

data detection 76
derived property 181
desktop applications 724
detached entity instances 423
detached object state 392, 803
detached objects 387, 391

in conversations 486
identity 394
making transient 411
merging in conversations 499
reattaching 409–410
working with 408

DetachedCriteria 665, 670, 677
development process

bottom up 40
meet in middle 40
middle out 40
top down 40

dialect 52
dialect scopes, adding 378
dirty checking 122, 389, 405

automatic 390
disabling 623

dirty reads 454
disassembly 599
disjunction 668
DISTINCT keyword 642
distinct keyword 820
distinct results 642
DISTINCT_ROOT_ENTITY

transformer 675
DML. See See Data Manipulation

Language
document type declaration. See

DTD
domain constraints 368–369
domain model 107

analysis 107
business methods 705
CaveatEmptor 108
dynamic 141

830 INDEX
domain model (continued)
fine-grained 158
Hello World 43
implementation 110
overview 9

doSearch() 754
DTD 52, 123, 740
duplicates in queries 651
durability 434
dynamic

domain model 141
fetching 642, 649, 670
insert 172, 389
instantiation 658
map 142
SQL 172
update 172
views 540

dynamic update 389, 463
dynamicUpdate attribute 464

E
eager fetching 568, 647
edit page, writing 755
edit.xhtml 770
EHCache 601, 605
EJB

@Stateless 83
Business interface 82
entity instance 113
propogating with 483
Session bean

implementation 83
EJB 3.0 748, 751

designing applications
with 725

interceptor 787
persistence manager API 751

EJB Command 719
EJB component

implementation 768
interface 768
wiring 507

EJB3
application servers 34
specification 31
XML descriptors 129

Ejb3Configuration 87
ejb3configuration Ant task 95
elements() 661, 690
embeddable classes 158, 184

embedded classes 187
embedded object, mapping

collection 258
embed-xml option 151
EmptyInterceptor 550
EnhancedUserType 222
Enterprise JavaBeans. See EJB
entities 158

naming for querying 173
entity

alternative
representation 140

associations 116
business methods 114
event callbacks 556
immutable 173
name mapping 141
properties 114
types 212

entity associations
many-valued 290
single-valued 278

entity class 418, 752
creating 752

entity instances 113
detached 423, 803
manually detaching 424
merging detached 424
persistent 420

entity listeners 556
entity mode 140

DOM4J 141
global switch 146
MAP 141
mixed 144
mixing dynamic and

static 144
POJO 140
temporary switch 146

entity name, mapping 141
EntityManager 418, 423, 498,

502, 506, 751, 803
container-managed 426
creating 418
exceptions 450
looking up 429
persistence context 451

EntityManagerFactory 418
accessing 429

EntityNotFoundException 420
EntityStatistics 59

EntityTransaction 418, 436, 449
API 449
interface 436

enumeration 233
in annotations 237
custom mapping type 234
implementation 234
mapping 236
in queries 238
usage 234

EnumType 237
eq() 666
equality 161

with business key 398
by value 397

equals() 396
error display 794
escaping SQL keywords 175
event listener 553
event system 553
evict() 611
evict(object) 424
example

objects 679
queries 681–682

exception handling 439
ExceptionInInitializerError 57
exceptions

history of 439
typed 441
using for validation 442

explicit pessimistic locking 465
extended persistence

context 392, 501
extension points 222, 243
externalized queries 629
extra lazy 567

F
Facelets 749, 753, 755

<ui:composition> 781
referencing global page

template 781
faces-config.xml 767, 772, 786,

814
FacesMessages 770, 796
factory pattern 715, 718
factory_class 444, 448
fallback API 86
fetch join 645
fetch keyword 670

INDEX 831
fetch plan 560
eager fetching 568
global 560
global default 564

fetch size 624
fetch strategies

Cartesian product 588
default 560
in HQL 649
in criteria queries 670
introduction 573
limit depth 581
N+1 Selects 585
outer-join fetching 578
prefetching with batches 574
prefetching with

subselects 577
secondary tables 581
switching 583

fetch= 579, 589
FetchMode 670, 673
FetchMode.JOIN 673
FetchType 570, 580
field access 180
Filter instance 543
find() 420, 565
first commit wins 459
first-level cache 390, 597
flush

before complete 446
explicit 183

flush() 416, 446, 710
flushing 415, 421, 622

disabling 510, 512
disabling automatic 489
preventing automatic 503

FlushMode 416, 422, 474, 489,
503–505, 622

FlushMode.AUTO 504
FlushMode.MANUAL 490, 493,

506, 511
FlushModeType 422
foreign identifier 280
foreign key associations

one-to-one 282
foreign keys

to composite primary key 329
in composite primary

keys 328
constraint 373
constraint violation 529

mapping with
annotations 284

referencing nonprimary
key 333

formulas
as discriminator 202
as join condition 338
joining tables 337
mapping 181

free navigation flow 751
function calls 638, 642
functional unit testing 731

G
garbage-collection,

algorithm 520
generated property values 182
GenerationTime 182
GenerationType

AUTO 167
IDENTITY 167
SEQUENCE 167
TABLE 167

GenericDAO 710
GenericTransactionManager-

Lookup 609
get() 404, 629
getCause() 450
getCurrentSession() 480, 497
getFilterDefinition() 543
getNamedQuery() 630
getReference() 565, 568
getResultList() 626
getRowNumber() 677
getSessionFactory() 480
getter 115
getter/setter methods 180
global fetch plan 560
global XML metadata 135
Grinder 745
GROUP BY 820
grouping 655–656, 677

H
handle 387
hashCode() 396
HashSet 674
HAVING clause 657
hbm2cfgxml 89
hbm2dao 95
hbm2ddl 63, 183
hbm2ddl.auto 63

hbm2doc 95
hbm2hbmxml 89
hbm2java 92
hbmtemplate 95
helper annotation, writing 788
helper classes 21
Hibernate

Annotations 33
cache architecture 597
compare to JPA 516, 558, 613,

662, 696
Console view 633
Core 32
enabling second-level

cache 815
EntityManager 33
and Hibernate Validator 790
parameter binding 620
and standards 31
startup 49
support for arrays 243
Tools 39

Hibernate Annotations 33, 68
Hibernate Validator

module 790
Hibernate EntityManager 33, 72

and Hibernate Validator 790
Hibernate Query Language

(HQL). See HQL
Hibernate Session

propogating 477
Hibernate Tools 633

for Ant 39
for Eclipse IDE 39

Hibernate Validator 790
@Length 798
@Pattern 798
built-in validation

annotations 798
enabling for a single field 794
enabling for all child tags 794
input validation 806
using resource bundle

keys 801
hibernate.archive.autodetection

77
hibernate.cache.region_

prefix 604
hibernate.cache.use_minimal_

puts 610
hibernate.cache.use_second_

level_cache 611

832 INDEX
hibernate.ejb.cfgfile 73
hibernate.format_sql 591
hibernate.hbm2ddl.auto 739,

744
Hibernate.initialize() 590
hibernate.jdbc.batch_size 538
hibernate.max_fetch_depth 581
hibernate.transaction.factory_

class 438
hibernate.use_sql_

comments 591, 624
HibernateEntityManager 87
HibernateEntityManagerFactory

87
HibernateException 441
HibernateProxyHelper.getClass

WithoutInitializingProxy(o)
565

HibernateService for JMX 103
HibernateUtil 56, 703

class 700
hints 622

attribute 632
history logging 546
hot standby 609
HQL 533

aggregate functions 655
aggregation 655
aliases 633
basics 633
bulk update 533
calling functions 642
collection expressions 638
comparing identifiers 653
comparison operators 636
distinct results 642
dynamic fetching 649
dynamic instantiation 658
explicit joins 647
function calls 638
functions 639
grouping 655–656
implicit join 645
inner join 647
insert from select 535
introduction 561
joins 643, 646–647
ordering results 640
outer join 648
polymorphic 634

projection 641
quantification 660
referencing component

properties 645
registering SQL functions 640
reporting 655
restriction 635
restriction on groups 657
ResultTransformer 675
scalar result 641
selection 633
subselects 659
theta-style joins 652
transitive closure 659
wildcards 636

HSQLDB 41, 62

I
idbag 244, 254
identifier property 48, 162, 305

adding to entities 163
identifiers, comparing 653
identity 161, 391

guaranteed scope 393
of detached objects 394
persistence context scope 393
process scope 393

identity scope, extending 803
id-type 319
ilike() 681
immutability, declaring for

annotations 182
immutable 173
implicit association join 657
implicit join 645
implicit polymorphism 192
independent lifecycle 260
index column 246
indexes 375
indices() 661
inheritance 192

mixing strategies 207
table per class hierarchy 199
table per concrete class 192
table per concrete class with

union 195
table per subclass 203

inheritance type
JOINED 206
SINGLE_TABLE 201
TABLE_PER_CLASS 197

injection
EntityManager 83
of EntityManager 426
of EntityManagerFactory 429
of a resource 429
of Session 427
with several persistence

units 428
inner join 643, 647
INNER JOIN FETCH 651
INSERT ... SELECT 536
INSERT trigger 346
inserting many objects 538
instances

saving with transitive
persistence 527

transition 387
integration

tests 743
unit testing 731

integrity rules 367
interception 571

entity events 556
for lazy loading 571

interceptor 389
for conversations 493
enabling 551
for events 546, 549
for servlets 702

Interceptor interface 549
interfaces 401
InvalidStateException 790
InvalidValue 790
inverse 265, 267

property reference 283
invoke(Method) 496
isAuthorized() 554
isEmpty() 667
isNotEmpty() 667
isolation guarantees

inherited 453
obtaining 465

isolation levels 434, 453
choosing 456
setting 458
upgrading 465

ItemDAO 506, 508
iterate() 627
iterating 626

through results 627

INDEX 833
J
Java

and Hibernate Validator 790
identity 161
resource bundle 800

Java Blueprints 709
Java EE

application servers 34
transaction manager 443

Java EE 5.0
advantages 762
compared to earlier web

frameworks 762
compared to J2EE 1.4 762
programming model 748

Java EE services
JMX 103
JNDI 101
JTA 97

Java Persistence 68
API 417
and CMT 451
query language 561
specification 31
using in EJB components 426

Java Persistence API. See JPA
Java Transaction API. See JTA
java.util.Collection 242, 245
java.util.List 242, 245, 626
java.util.Locale 800
java.util.Map 242
java.util.regex.Pattern 798
java.util.Set 242
java.util.SortedMap 243, 248
java.util.SortedSet 242
java.util.TreeMap 248
JavaBean 113

business methods 114
properties 114

JavaServer Facelets 749
JavaServer Faces (JSF) 748

ActionEvent 750
configuration file 761
features 749
managed application

components 749
outcomes 751
request-processing

sequence 750
visual components 749
widget libraries 749

javax.persistence.CascadeType.
ALL 522

javax.persistence.CascadeType.
PERSIST 521

javax.persistence.CascadeType.
REFRESH 521

javax.persistence.CascadeType.
REMOVE 521

javax.persistence.Query
interface 616

exceptions 450
JBoss Cache 601, 607–610, 613
JBoss jBPM 816
JBoss Rules 816
JBoss Transactions 443
jboss-seam-ui.jar 792
JDBC

batch size 538
connection pooling 53
getting a Connection 88
RowSet 9
statement interface 19

JDBC Connection object 351
jdbcconfiguration 89
JDBCException 441
JDBCTransactionFactory 98,

438
JGroups 601, 609

cluster communication
configuration 610

JMeter 745
JMX 103
JNDI 101

Configuration 85
lookup of EntityManager 429
lookup of

EntityManagerFactory 431
jndi.properties 85
JOIN FETCH 651
join table, adding columns

to 303
joined entity, assigning alias 672
joining a transaction 429
joining tables 298

for inheritance 207
for one-to-one 287
inverse property 345
mapping in XML 287
mapping to collection of

components 307
mapping to intermediate

entity 303

mapping with 285
one entity to two tables 342
with formulas 337

joins 642–643, 820
clause 820
condition 337, 644, 652, 820
explicit 647
fetch operation 673
implicit 645
queries 643
theta-style 652

JPA 32, 68
basic configuration 72
compare to Hibernate 516,

558, 613, 662, 696
conversations with 497
event callbacks and

annotations 557
persistence unit 72

JPA QL 533, 561
operator precedence 637
standardized functions 639

JPA query language.
See JPA QL

JSF configuration
describing backing bean 761
navigation rules 761

JSF widget tree, debugging 775
JTA 97

binding a Session 482
in Java Persistence 450
mixing CMT with BMT 448
UserTransaction 436, 442,

445
JTA provider, stand-alone 443
JTA service, handling

transactions 482
JTATransactionFactory 98, 444

K
key generators

additional parameters 167
foreign 280
guid 167
hilo 167
identity 167
increment 167
named generator 170
native 167
select 167
seqhilo 167

834 INDEX
key generators (continued)
sequence 167
uuid.hex 167

L
language switcher 799
large values 216
last commit wins 459
last() 677
layered application

implementing Hibernate 698
layered architecture 20
lazy fetching 564
lazy initialization 701
lazy loading 564, 701
lazy one-to-one 566
lazy property loading 571
lazy= 567, 572, 591, 649
LazyInitializationException 569,

702, 803, 811
triggering 812

LEFT keyword 649
left outer join 643, 649
legacy databases,

integrating 323
legacy schema 323
LENGTH() 669
libraries 42
lifecycle dependencies 161
link table 17, 298
LinkedHashMap 250–251
LinkedHashSet 250–251
linking maps 143
List, bidirectional one-to-

many 292
list() 626, 671
listeners

custom 554
registering 554

listing 626
literal join condition

mapping 337
load lesting 744
load() 404, 554, 568
LoadEvent 554
LoadRunner 745
localeSelector 799, 803
locator objects (LOBs) 571
lock modes

in Hibernate 467
lock table 466

lock() 410, 466
LockAquisitionException 441
locking 453
LockMode 466–467
LockMode.UPGRADE 466
LockModeType 467
LockModeType.READ 467
log records

creating 547
mapping 547

logEvent() 553
logging

SQL output 57
with Log4j 58

logic unit testing 731
logical operators 668
lookup in JNDI 429, 431
loopback attribute 610
lost updates 454
LOWER() 638
lpad 640

M
makePersistent() 710
makeTransient() 710
managed beans 749
managed environment 426
managed relationships 118
managed resources with JTA

benefits 443
ManagedSessionContext 492
ManagedSessionContext.bind()

493
ManagedSessionContext.

unbind() 493
manager_lookup_class 448
MANDATORY attribute 513
many-to-many

basic 297
bidirectional 300
extra columns on join

table 303
in Java 119
as map key and value 312
unidirectional 298
with components 307

many-to-one
bidirectional 265
in Java 116
mapping 261
polymorphic 313
with annotations 263

many-valued entity
associations 290

map 242
dynamic 142

mappedBy 266–267, 285
mapping

abstract class 210
any 319
at runtime 138
class 147
class-level options 171
collections with

annotations 256
column name 178
component 184
composite collection

element 252
embeddable class 184
entity to two tables 342
filename 125
formula 181
identifier bag 244
identifier property 164
immutable 173
immutable properties 182
inheritance 192
interface 210
join table 303
list 246
maps 247, 310
metadata 123
metadata in annotations 125
metadata in XML 123
metamodel 139
ordered collections 249
override 130
programmatic 138
Set 243
simple property 177
sorted collection 248
SortedMap 248
SortedSet 248
subclass 192
testing 736
types 214
with a join table 285

mapping types 212
basic 214
case for 223
class, locale, timezone,

currency 218

INDEX 835
mapping types (continued)
custom 220
date and time 215
large values and locators 216
querying with 238
using 219

maps
mapping 310
ternary associations 311
values as entity

associations 310
marker interface 546

creating 546
MatchMode 667
max() 655
max_fetch_depth 581
maxelement() 661
maxindex() 661
MBean 103
merge

changes 467
conflicting updates 459

merge() 411, 413, 425, 532
mergedItem 425
merging 388, 391, 424, 499

state 411
messages component 800

handle to a Java resource
bundle 800

messages_de.properties 800
messages_en.properties 800
meta elements 93
metadata 123

deployment dependent 70
global 133
override 130
package 134

META-INF/ejb-jar.xml 788
metamodel 139
meta-type 319
method chaining 671
min() 655
minelement() 661
minindex() 661
mixing inheritance

strategies 207
Model/View/Controller

(MVC) 699
models, fine-grained 177
monitoring

CollectionStatistics 59
EntityStatistics 59

Hibernate 59
QueryStatistics 59
SecondLevelCacheStatistics

59
multiplicity 260–261
multiversion concurrency con-

trol (MVCC) 453
mutable attribute 695

N
n+1 selects problem 18, 28, 574,

584–585
named parameters 619
named queries 629

calling 630
in annotations 631
in XML metadata 630
with hints 630

NamedQuery annotation 632
naming conventions 175
NamingStrategy 175
native SQL queries 683
natural keys 166, 324

composite 167
lookup 693

natural sorting 249
navigation, bidirectional 253
navigation rules, JSF

configuration 762
NEVER attribute 513
next() 629
no identity scope 393
node attribute 149
noncomposite natural primary

keys 324
nonexclusive data access 596
nonprimary keys, referenced by

foreign keys 333
nonrepeatable reads,

preventing 465
nonstrict read-write concurrency

strategy 600
nontransactional data,

access 469–470
NonUniqueObjectException

412
NonUniqueResultException

450
noop 181
no-proxy 572
NoResultException 450

IS 636
NOT NULL 178, 369
NOT_SUPPORTED,

attribute 513
not-null column, avoiding 254
NotValidUsername 800
null component 189
NULL operator 636

O
object

databases 23
deleting 411, 421
equality 161, 391
loading 404, 419
making persistent 402
modifying 405, 420
replicating 407
saving 402

object identity 391
definition 14
scope 393

object states 385
cascading 267
detached 387
persistent 386
removed 387
transient 386

object/relational mapping
(ORM) 24

Generic ORM problems 27
levels of ORM 26
maintainability 29
as middleware 25
overview 25
performance 29
productivity 29
vendor independence 30
why ORM? 28

ObjectNotFoundException 405
object-oriented database

systems 23
object-retrieval options 560
objects

creating in database 535
detached, in

conversations 486
inserting in batches 538
loading 402, 417
merging detached in

conversations 499

836 INDEX
objects (conti nued)
orphaned 529
state management 533
storing 402, 417
updating in database 533

ObjectWeb JOTM 443
offline locks 466–467
ON CASCADE DELETE 375
one-to-many 290

across a join table 294
bidirectional 265
in Java 116
as map values 310
polymorphic 315
using a bag 290

one-to-many associations 290
optional 294
with join table 294

one-to-one
across join table 287
inverse property-ref 283
shared primary key 279
with annotations 281, 284

one-to-one association
optional 285

onFlushDirty() 550
onSave() 550
OODBMS 23
Open Session in View 701
Open Session in View

pattern 701, 803–804
OpenSymphony 601
optimistic

concurrency control 458
locking 456
strategy 458

optimistic-lock attribute 463
optimistic-lock= 462–463
OptimisticLockException 464
OptimisticLockType.ALL 464
OptimisticLockType.DIRTY 464
optimization guidelines 584,

591
optional property value 178
ORDER BY 640, 820
Order criterion 665
ordered collections 248
ordering collections 249
ordering query results 640
ordering rows 820
ordinary join 645

org.hibernate.annotations.
CascadeType.DELETE 521

org.hibernate.annotations.
CascadeType.DELETE_
ORPHAN 522

org.hibernate.annotations.
CascadeType.EVICT 521

org.hibernate.annotations.
CascadeType.LOCK 521

org.hibernate.annotations.
CascadeType.REPLICATE
521

org.hibernate.annotations.
CascadeType.SAVE_
UPDATE 521

org.hibernate.cache.Cache-
ConcurrencyStrategy 600

org.hibernate.cache.Cache-
Provider 601

org.hibernate.cache.Query-
Cache 692

org.hibernate.cache.Update-
TimestampsCache 692

org.hibernate.CacheMode 623
org.hibernate.criterion

package 683
org.hibernate.Dialect 640, 642
org.hibernate.flushmode 729
org.hibernate.FlushMode.

MANUAL 504
org.hibernate.Interceptor 541,

546, 556
org.hibernate.transform.Result-

Transformer 674–675
org.jboss.cache 610
ORM. See object/relational map-

ping
orm.xml 129
orphan delete 273
orphaned objects, deleting 529
OSCache 601
outer-join fetching 568, 578
OutOfMemoryException 414

P
package

metadata 134
names 174

package-info.java 71, 134
pages

binding to stateful Seam
components 767

decorating with Seam
tags 792

pagination 617, 677
paradigm mismatch

cost 19
definition 9
entity associations 16
granularity 12
graph navigation 18
identity 14
inheritance 13
subtypes 13

parameter binding 618–619
in Hibernate 620

ParameterizedType 222
implementation 231
in annotations 232
mapping 232

parent/child relationship 241
mapping 260

path expressions 646
patterns

Command 718–719, 723
DAO 22, 95, 709
factory 715, 717–718
JNDI 767
Model/View/Controller

(MVC) 699, 705, 718
Open Session in View

(OSIV) 701–702, 803
Registry 101
session-per-conversation 392,

492
strategy 705

PaymentDAO 508
pbatches, with batches 537
performance 744

n+1 selects 18
testing 731

performance bottlenecks
detecting 744

persist() 419, 491
persistence 5

automated 112
object-oriented 8
transparent 112

Persistence bootstrap
class 429

persistence by reachability 519
recursive algorithm 519
referential integrity 519
root object 519

INDEX 837
persistence context 384, 387–
388

cache 390
clear 415, 424
disabling flushing 510
extended 392, 400, 501
extended with EJBs 510
extending 803
extending in JSE 501
flushing 415, 421, 814
managing 414
propagation 480
propagation rules 508
propagation with EJBs 506
rules for scoping and

propogation 508
scope in EJBs 427
scope in JPA 423

persistence context cache
controlling 414

persistence context lifecycle
integrating 814

persistence context
propagation 497

in JSE 498
persistence context-scoped

identity 393
persistence layer 20–21, 708

hand-coded SQL 22
object-relational databases 24
OODBMS 23
serialization 23
testing 736
XML persistence 24

persistence lifecycle 384
persistence manager 401, 520
persistence unit 72, 428

packaging 86
persistence.xml 72
PersistenceException 450
persistent entity instance

making transient 421
modifying 420

persistent instances 386
persistent objects 386

making transient 406
modifying 405
retrieving 404

PersistentBag 243, 245
PersistentCollection 243
PersistentList 243

PersistentSet 243
pessimistic locking 465

explicit 465
pessimistic locks 625

long 466
phantom reads 454
phase listener 773
Plain Old Java Objects. See POJO
pointers, chasing 271
POJO 113

accessor method 115
business methods 114
properties 114

POJO model, with dymanic
maps 144

polymorphic associations 313
to unions 316

polymorphic behavior 192
polymorphic collections 315
polymorphic many-to-one

associations 313
polymorphic queries 313, 634
polymorphic table per concrete

class 319
polymorphism 313, 665

any 319
associations 193
overview 14
and proxies 314
queries 193

portable functions 639
Portable JPA QL functions 639
position parameter 669
Positional parameters 621
postFlush() 550
prepared statement 30
presentation layer 21
primary key associations

mapping with XML 279
shared 279

primary keys 166
composite 326
generators 167
natural 324
selecting a key 166
shared 281
with annotations 281
working with 324

procedural database
constraints 367

process scope cache 593

process-scoped identity 393
programmatic transactions 436
projection 633, 641, 676

and report queries 676
projections 562
propagating Hibernate

Session 477
propagation

rules 513
with EJBs 483
with JTA 482

properties 114
enumerated type 233
moving to secondary

table 342
Property

class 676
object 666

property access strategies 180
property reference, inverse 283
property values

default 183
generated 182

PropertyAccessor 181
property-ref 283, 334, 340
Proxy, in JPA 420
proxy

as reference 565
disabling 567
in Hibernate 405
initialization 590
initializing 566
introduction 564
polymorphic associations 314

Q
quantification 660, 821
queries

cache modes 623
create 615
disable flushing 622
execute 625
externalized 629
for reports 658
hints 622
iterating through results 627
listing results 626
named 629
named parameters 619
pagination 617
parameter binding 618

838 INDEX
queries (continued)
read-only results 623
reporting 655
ResultTransformer 675
scrolling with cursor 628
testing 736
timeout 624

Query 616
positional parameters 621

query builder 664
query by criteria (QBC) 562,

615, 664
query by example (QBE) 563,

615, 664, 680
query cache 690

cache regions 692
enabling 691
when to use 693

query hints 615, 625
Query interface 616, 691
query object, creating 616
query results

caching 691
ordering 640

QueryStatistics 59
quoting SQL 175

R
read

committed 455
uncommitted 455, 457

read-only
concurrency strategy 600
objects 415, 623
transactions 439

read-write concurrency
strategy 600

reattachment 388, 391, 409,
424, 486

through locking 410
reference data 597
refresh() 533
refreshing objects 182
regional data 545
register.enterProfile 807
relational data model 819
relational database 5
relational model

definition 6
theory 19

relations 819

remote process,
communication 594

remove() 421
removed objects 387
removed state 529
repeatable read 390, 455
replication 407
ReplicationMode 408
report queries 562, 643, 658

and projection 676
reporting 655
reporting queries 642
REQUIRED attribute 513
required third-party libraries 42
REQUIRES_NEW attribute 513
reserved SQL keywords 175
RESOURCE_LOCAL 73
resource-local transaction 449
restriction 633, 635, 667
restriction criterion 821
Restrictions class 562, 665, 667
Restrictions.and() 668
Restrictions.conjunction() 668
Restrictions.disjunction() 668
Restrictions.or() 668
result transformer 674
ResultTransformer 674–676
retrieval by identifier 419
reveng.xml 90
reverse engineering

customization 90
from database 88
generating entity beans 94
generating Java code 92
meta customization 93
with Ant 89

rich client 718
RIGHT OUTER JOIN 649
right outer join 644, 649
RMI 23
rollback() 436
root entity 616, 665
rowCount() 677
rows ordering 820
runtime statistics 59
RuntimeException 439, 450

S
saveOrUpdate() 528–529
scaffolding code 116
scalability 744

tests 745

scalar query 641
scalar values 684

retrieving 684
schema generation

hbm2ddl in Ant 63
hbm2ddl.auto 63
programmatic 63
with Ant 65

SchemaExport 63
and Hibernate Validator 790

SchemaUpdate 64
SchemaValidate 64
scope of identity 393
scroll() 629, 677
scrollable resultsets 628
ScrollableResults 537, 629

cursor 629
interface 628

scrolling 626
results 628

ScrollMode 629
ScrollMode.SCROLL_

INSENSITIVE 629
ScrollMode.SCROLL_

SENSITIVE 629
Seam

@Begin 770
@Destroy 770
@End 770
@In 783–784
@Name 769, 782
@Out 783, 785
analyzing an application 773
automatic binding and scop-

ing of persistence
context 804

automatic persistence context
handling 803

automatic wrapping of JSF
request 804

binding pages to stateful
components 767

business-process context 765
components.xml 767
configuration 767
configuring 766
context hierarchy 785
conversation context 765
conversation model

advantages 809
decorating pages with

tags 792

INDEX 839
SEAM (continued)
decorator 794
defining actions 788
disabling automatic

flushing 815
eliminating LazyInitialization-

Exceptions 804
empty destroy methods 770
extending persistence

context 813
faces-config.xml 767
flushing persistence

context 814
and Hibernate Validator

791, 797
implementing a

conversation 804
implementing multipage

conversations 805
injecting an

EntityManager 804
injecting persistence

context 813
integrating with EJB 3.0 767
internationalization 799
localeSelector 799
managing component

scope 765
managing persistence

context 804, 811
messages component 800
namespace for taglib 792
new contexts 765
on-demand data

loading 813
phase listener 774, 814
protecting component

methods 786
register component 796
seam.properties file 767
simplifying persistence

with 803
stateful programming

model 765
unified component

model 765
variable resolver 773, 781
web.xml 767

Seam Application
Framework 817

seam.properties file 767

search page, writing with Face-
lets and JSF 753

search.xhtml 773
searchString 619
second lost updates,

problem 454
secondary tables 288

moving properties to 342
second-level cache 597–598

controlling 611
enabling 815

SecondLevelCacheStatistics 59
security restrictions 545
SELECT, FOR UPDATE 466
SELECT NEW 658, 676
SELECT statements 350
selectBeforeUpdate 349
select-before-update 409
selection 633
SelectLanguage 800
self-referencing,

relationship 282
Serializable

--hbm2java 93
isolation level 456, 458
not required in

Hibernate 115
storing value 179

serializable 455, 457, 505, 635
serialization 23
Servlet filter 493
Session

extended 489
long 489
managing current 492
opening 402
sharing connections 552
temporary 552

Session API 532
session beans

stateful 751
stateless 751

session facade 718, 759
pattern 719

Session propagation 480
use case 478

session.connection() 351
SessionContext in EJB 429
SessionFactory 49, 402, 480

binding to JNDI 101
metamodel 139

sessionFactory.getCurrent-
Session() 484, 493

session-per-conversation 392,
489

session-per-operation 498
session-per-request 391, 479,

702
session-per-request strategy 391
session-per-request-with-

detached-objects 391–392
set 242
setAutoCommit() 436
setCachable() 691
setCacheRegion() 692
setDesc() 675
setEntity() 620
setFlushMode() 416, 622
setInterceptor() 551
setParameter() 620
setPrice() 675
setProjection() 676
setProperties() 621
setString() 619
setter 115
setTimeout() 440, 445
setTransactionTimeout() 445
shared legacy systems 596
shared references 161, 189, 260
size() 566
snapshots 414
sorted collections 248
SortedMap 242, 249
SortedSet 242
SortType 257
spplication exception 452
SQL

aggregation 820
built-in types 12
Cartesian product 820
CHECK constraint 370
column name prefix/

suffix 175
comments 624
custom CUD 354
custom datatypes 365
custom DDL 364
custom SELECT 351
customizing 350
DDL 350, 819
deletion 820
dialect 52
distinct 820

840 INDEX
SQL (continued)
DML 350, 819
expressions 821
FOREIGN KEY constraint 373
functions 640
grouping 820
in Java 7
indexes 375
injection 619
injection attacks 789
inner join 643
insertion 819
and JDBC 7
join 820

ANSI 820
theta-style 820

named query 353
ordering 820
outer join 643
prepared statement 30
projections 678, 820
quantification 821
query hints 615
querying 683, 820
querying in JPA 686
quoting keywords 175
relational operations 6
restriction 820
schema evolution 64
schema generation 63
schema validation 64
SQLJ 12
stored functions 363
stored procedures 356
subselect 182
subselects 821
table name prefix/suffix 175
update 820
user-defined types (UDT) 12

SQL queries
native 683
testing database state

with 743
SQL statements, embedding in

Hibernate API 683
SQLExceptionConverterFactory

441
SQLGrammarException 441
SQLQuery 683
sqlRestriction() 669
StaleObjectStateException 441,

461–462, 465

stand-alone JTA provider 443
StandardSQLFunction 640
startup, with HibernateUtil 56
state management 533
stateful beans, conversation

with 725
stateful component

implementation 769
interface 768

stateful session bean, as
controller 510

stateful session beans 751
stateless pseudocontext 785
stateless session beans 751
StatelessSession 539
statement-oriented 710
state-oriented 710
static imports 666
statistics 59
stereotypes 160
sting 736
stored functions, mapping 363
stored procedures 9, 356

creating 357
for mass operations 532
mapping CUD 361
querying 359

storing an object 418
strategy pattern 705
stress testing 744
string matching 667
subselects 642–643, 659, 670

fetching 577
sum() 655
SUPPORTS attribute 513
surrogate keys 166

column 254
SwarmCache 601
synchronization 389, 415

times 422
synchronized,

communication 609
system exception 452
system transaction 436

T
table per concrete class 316
table-per-hierarchy 582–583
table-per-subclass 583
table-per-subclass hierarchy

outer joins 582

tables
constraints 368, 370
joining one entity to two

tables 342
moving properties to

secondary 342
per class hierarchy 199, 316
per concrete class 192, 316,

319
per concrete class with

union 195, 316–317
per subclass 203, 316

targetEntity 263
temporal data 545
TemporalType 219
temporary Session 552
ternary association

with components 307
with maps 311

ternary logic 636, 667
for restrictions 635

test class, writing 741
test method 733
test suite 733, 735

creating and running 734
testing 730

base data sets 740
business logic 732
creating suites 734
for failure 733
overview 731
persistence layer 736
preparing integration 736

TestNG 730, 732
introduction 732
logic unit test 732

theta-style joins 644–645, 652,
820

ThreadLocal Session 481
ThreadLocal Session

pattern 482
timeout 440, 445, 624
timestamp 461
Tomcat 98, 102
TooShortOrLongUsername 800
Transaction API 438, 445
transaction assemblies

complex 512
transaction demarcation 435

declarative 437
programmatic 435

INDEX 841
Transaction interface 436
transactional concurrency

strategy 600
transactional write-behind 389
TransactionAttributeType 512
TransactionAttributeType.NOT_

SUPPORTED 509, 512
TransactionAttributeType.

REQUIRED 509
TransactionFactory 438
TransactionManagerLookup 98
TransactionManagerLookup-

Class 609
transactions 434

ACID 434
attribute types 513
demarcation 435
in Hibernate

 applications 437
interceptor 481
isolation 453
isolation issues 454
isolation level 458
lifecycle 435
manager 436
optional with JTA 473
programmatic 438
programmatic, with JTA 442
resource-local 449
rollback 439
scope cache 593
timeout 440, 445
with Java Persistence 449

transient objects 386
transient property 177
transitive associations

with JPA 531
transitive closure 9, 659
transitive deletion 529
transitive persistence 268,

518–520
saving new instances with 527

transitive state 268
working with 524

transparent persistence 112
transparent transaction-level

write-behind 389
TreeCache 609
triggers 346

generating a value 182
implementing constraints 368

on INSERT 346
on UPDATE 348

tuples 658, 819
TurboData 745
two-phase commit 443
tx.rollback() 439
type converters 212
type system 212
typed exceptions 441
type-safe enumeration 233

U
UML 107

simple class diagram 10
simple model 107
stereotypes 160

uncorrelated subquery 660
uncorrelated subselects 660
Undo 724
undo() 724
unidirectional lists 292
Unified Modeling Language.

See UML
UNION for inheritance 195
Unique constraint 370
UNIQUE INDEX 376
unique-key 372
unit of work 384, 434

beginning 402
beginning in JSE 418

unit testing 111, 731
unmanaged 417
unrepeatable reads 454
UPDATE statement 534
UPDATE trigger 348
update() 409
UPPER() 638
use case, for Session

propagation 478
UserCollectionType 222
user-defined functions 638
UserTransaction 436, 442,

445, 450
UserTransaction interface 436
UserType 222, 685

in annotations 227
implementation 224
mapping 227

UserVersionType 222
utility classes 21

V
validate SQL schema 64
validate() 543
validation 121, 442
validation annotations 797

message attribute 798
value binding 754
value types 158, 212, 241
variable aliasing hints 783
variables, handling manually, as

source of issues 764
vendor extensions 128
version checks 461
version number 461
versioning

disable increments 462
enabling 460
forcing increment 468
with Java Persistence 464
without version column 462

versions
managing 461
using to detect conflicts 461

virtual private database 540

W
web application 698

writing with JSF and EJB
3.0 752

web.xml 767
WEB-INF/pages.xml 788
WHERE clause 635, 669
wildcard

searches 636
symbols 636, 667

wildcards 636
wizard-style conversation, 805
working nontransactionally 471
write-behind 389, 415

X
XDoclet 131
XML

entity declaration 136
entity placeholder 136
includes 135
overriding annotations 130
representing data 148

XML descriptors 129
XML metadata 123

	Java Persistence with Hibernate
	contents
	foreword to the revised edition
	foreword to the first edition
	preface to the revised edition
	preface to the first edition
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions
	Source code downloads
	About the authors
	Author Online

	Part 1 Getting started with Hibernate and EJB 3.0
	Chapter 1 Understanding object/relational persistence
	1.1 What is persistence?
	1.1.1 Relational databases
	1.1.2 Understanding SQL
	1.1.3 Using SQL in Java
	1.1.4 Persistence in object-oriented applications

	1.2 The paradigm mismatch
	1.2.1 The problem of granularity
	1.2.2 The problem of subtypes
	1.2.3 The problem of identity
	1.2.4 Problems relating to associations
	1.2.5 The problem of data navigation
	1.2.6 The cost of the mismatch

	1.3 Persistence layers and alternatives
	1.3.1 Layered architecture
	1.3.2 Hand-coding a persistence layer with SQL/JDBC
	1.3.3 Using serialization
	1.3.4 Object-oriented database systems
	1.3.5 Other options

	1.4 Object/relational mapping
	1.4.1 What is ORM?
	Pure relational
	Light object mapping
	Medium object mapping
	Full object mapping

	1.4.2 Generic ORM problems
	1.4.3 Why ORM?
	Productivity
	Maintainability
	Performance
	Vendor independence

	1.4.4 Introducing Hibernate, EJB3, and JPA
	Understanding the standards
	Hibernate Core
	Hibernate Annotations
	Hibernate EntityManager
	Java EE 5.0 application servers

	1.5 Summary

	Chapter 2 Starting a project
	2.1 Starting a Hibernate project
	2.1.1 Selecting a development process
	2.1.2 Setting up the project
	Creating the work directory
	Creating the domain model
	Mapping the class to a database schema
	Storing and loading objects

	2.1.3 Hibernate configuration and startup
	Building a SessionFactory
	Creating an XML configuration file
	The database connection pool
	Handling the SessionFactory
	Enabling logging and statistics

	2.1.4 Running and testing the application
	Compiling the project with Ant
	Starting the HSQL database system
	Exporting the database schema

	2.2 Starting a Java Persistence project
	2.2.1 Using Hibernate Annotations
	2.2.2 Using Hibernate EntityManager
	Basic JPA configuration
	“Hello World” with JPA
	Automatic detection of metadata

	2.2.3 Introducing EJB components
	Installing the EJB container
	Configuring the persistence unit
	Writing EJBs
	Running the application

	2.2.4 Switching to Hibernate interfaces

	2.3 Reverse engineering a legacy database
	2.3.1 Creating a database configuration
	2.3.2 Customizing reverse engineering
	2.3.3 Generating Java source code
	Customizing entity class generation
	Generating Java Persistence entity classes

	2.4 Integration with Java EE services
	2.4.1 Integration with JTA
	2.4.2 JNDI-bound SessionFactory
	2.4.3 JMX service deployment

	2.5 Summary

	Chapter 3 Domain models and metadata
	3.1 The CaveatEmptor application
	3.1.1 Analyzing the business domain
	3.1.2 The CaveatEmptor domain model

	3.2 Implementing the domain model
	3.2.1 Addressing leakage of concerns
	3.2.2 Transparent and automated persistence
	3.2.3 Writing POJOs and persistent entity classes
	3.2.4 Implementing POJO associations
	3.2.5 Adding logic to accessor methods

	3.3 Object/relational mapping metadata
	3.3.1 Metadata in XML
	3.3.2 Annotation-based metadata
	Defining and using annotations
	Considering standards
	Utilizing vendor extensions
	XML descriptors in JPA and EJB 3.0

	3.3.3 Using XDoclet
	3.3.4 Handling global metadata
	Global XML mapping metadata
	Global annotation metadata
	Using placeholders

	3.3.5 Manipulating metadata at runtime

	3.4 Alternative entity representation
	3.4.1 Creating dynamic applications
	Mapping entity names
	Working with dynamic maps
	Mixing dynamic and static entity modes
	Mapping a class several times

	3.4.2 Representing data in XML

	3.5 Summary

	Part 2 Mapping concepts and strategies
	Chapter 4 Mapping persistent classes
	4.1 Understanding entities and value types
	4.1.1 Fine-grained domain models
	4.1.2 Defining the concept
	4.1.3 Identifying entities and value types

	4.2 Mapping entities with identity
	4.2.1 Understanding Java identity and equality
	4.2.2 Handling database identity
	Adding an identifier property to entities
	Mapping the identifier property

	4.2.3 Database primary keys
	Selecting a primary key
	Selecting a key generator

	4.3 Class mapping options
	4.3.1 Dynamic SQL generation
	4.3.2 Making an entity immutable
	4.3.3 Naming entities for querying
	4.3.4 Declaring a package name
	4.3.5 Quoting SQL identifiers
	4.3.6 Implementing naming conventions

	4.4 Fine-grained models and mappings
	4.4.1 Mapping basic properties
	Customizing property access
	Using derived properties
	Generated and default property values

	4.4.2 Mapping components
	Component mapping in XML
	Annotating embedded classes

	4.5 Summary

	Chapter 5 Inheritance and custom types
	5.1 Mapping class inheritance
	5.1.1 Table per concrete class with implicit polymorphism
	5.1.2 Table per concrete class with unions
	5.1.3 Table per class hierarchy
	5.1.4 Table per subclass
	5.1.5 Mixing inheritance strategies
	5.1.6 Choosing a strategy

	5.2 The Hibernate type system
	5.2.1 Recapitulating entity and value types
	5.2.2 Built-in mapping types
	Java primitive mapping types
	Date and time mapping types
	Binary and large value mapping types
	JDK mapping types

	5.2.3 Using mapping types

	5.3 Creating custom mapping types
	5.3.1 Considering custom mapping types
	5.3.2 The extension points
	5.3.3 The case for custom mapping types
	5.3.4 Creating a UserType
	5.3.5 Creating a CompositeUserType
	5.3.6 Parameterizing custom types
	5.3.7 Mapping enumerations
	Using enumerations in JDK 5.0
	Writing a custom enumeration handler
	Mapping enumerations with XML and annotations
	Querying with custom mapping types

	5.4 Summary

	Chapter 6 Mapping collections and entity associations
	6.1 Sets, bags, lists, and maps of value types
	6.1.1 Selecting a collection interface
	6.1.2 Mapping a set
	6.1.3 Mapping an identifier bag
	6.1.4 Mapping a list
	6.1.5 Mapping a map
	6.1.6 Sorted and ordered collections

	6.2 Collections of components
	6.2.1 Writing the component class
	6.2.2 Mapping the collection
	6.2.3 Enabling bidirectional navigation
	6.2.4 Avoiding not-null columns

	6.3 Mapping collections with annotations
	6.3.1 Basic collection mapping
	6.3.2 Sorted and ordered collections
	6.3.3 Mapping a collection of embedded objects

	6.4 Mapping a parent/children relationship
	6.4.1 Multiplicity
	6.4.2 The simplest possible association
	6.4.3 Making the association bidirectional
	6.4.4 Cascading object state
	Transitive persistence
	Cascading deletion
	Enabling orphan deletion

	6.5 Summary

	Chapter 7 Advanced entity association mappings
	7.1 Single-valued entity associations
	7.1.1 Shared primary key associations
	Mapping a primary key association with XML
	The foreign identifier generator
	Shared primary key with annotations

	7.1.2 One-to-one foreign key associations
	Inverse property reference
	Mapping a foreign key with annotations

	7.1.3 Mapping with a join table
	The CaveatEmptor use case
	Mapping a join table in XML
	Mapping secondary join tables with annotations

	7.2 Many-valued entity associations
	7.2.1 One-to-many associations
	Considering bags
	Unidirectional and bidirectional lists
	Optional one-to-many association with a join table

	7.2.2 Many-to-many associations
	A simple unidirectional many-to-many association
	A bidirectional many-to-many association

	7.2.3 Adding columns to join tables
	Mapping the join table to an intermediate entity
	Mapping the join table to a collection of components

	7.2.4 Mapping maps
	Values as references to entities
	Ternary associations

	7.3 Polymorphic associations
	7.3.1 Polymorphic many-to-one associations
	7.3.2 Polymorphic collections
	7.3.3 Polymorphic associations to unions
	7.3.4 Polymorphic table per concrete class

	7.4 Summary

	Chapter 8 Legacy databases and custom SQL
	8.1 Integrating legacy databases
	8.1.1 Handling primary keys
	Mapping a natural key
	Mapping a composite natural key
	Foreign keys in composite primary keys
	Foreign keys to composite primary keys
	Composite keys with annotations
	Foreign key referencing nonprimary keys
	Composite foreign key referencing nonprimary keys

	8.1.2 Arbitrary join conditions with formulas
	Understanding the use case
	Mapping a formula join condition
	Working with the association

	8.1.3 Joining arbitrary tables
	Moving properties into a secondary table
	Inverse joined properties

	8.1.4 Working with triggers
	Triggers that run on INSERT
	Triggers that run on UPDATE

	8.2 Customizing SQL
	8.2.1 Writing custom CRUD statements
	Loading entities and collections with custom SQL
	Custom insert, update, and delete

	8.2.2 Integrating stored procedures and functions
	Writing a procedure
	Querying with a procedure
	Mapping CUD to a procedure
	Mapping stored functions

	8.3 Improving schema DDL
	8.3.1 Custom SQL names and datatypes
	8.3.2 Ensuring data consistency
	8.3.3 Adding domains and column constraints
	8.3.4 Table-level constraints
	8.3.5 Database constraints
	8.3.6 Creating indexes
	8.3.7 Adding auxiliary DDL

	8.4 Summary

	Part 3 Conversational object processing
	Chapter 9 Working with objects
	9.1 The persistence lifecycle
	9.1.1 Object states
	Transient objects
	Persistent objects
	Removed objects
	Detached objects

	9.1.2 The persistence context
	Automatic dirty checking
	The persistence context cache

	9.2 Object identity and equality
	9.2.1 Introducing conversations
	9.2.2 The scope of object identity
	9.2.3 The identity of detached objects
	Understanding equals() and hashCode()
	Implementing equality with a business key

	9.2.4 Extending a persistence context

	9.3 The Hibernate interfaces
	9.3.1 Storing and loading objects
	Beginning a unit of work
	Making an object persistent
	Retrieving a persistent object
	Modifying a persistent object
	Making a persistent object transient
	Replicating objects

	9.3.2 Working with detached objects
	Reattaching a modified detached instance
	Reattaching an unmodified detached instance
	Making a detached object transient
	Merging the state of a detached object

	9.3.3 Managing the persistence context
	Controlling the persistence context cache
	Flushing the persistence context

	9.4 The Java Persistence API
	9.4.1 Storing and loading objects
	Beginning a unit of work in Java SE
	Making an entity instance persistent
	Retrieving an entity instance
	Modifying a persistent entity instance
	Making a persistent entity instance transient
	Flushing the persistence context

	9.4.2 Working with detached entity instances
	JPA persistence context scope
	Manual detachment of entity instances
	Merging detached entity instances

	9.5 Using Java Persistence in EJB components
	9.5.1 Injecting an EntityManager
	9.5.2 Looking up an EntityManager
	9.5.3 Accessing an EntityManagerFactory

	9.6 Summary

	Chapter 10 Transactions and concurrency
	10.1 Transaction essentials
	10.1.1 Database and system transactions
	Programmatic transaction demarcation
	Declarative transaction demarcation

	10.1.2 Transactions in a Hibernate application
	Programmatic transactions in Java SE
	Handling exceptions
	Programmatic transactions with JTA
	Container-managed transactions

	10.1.3 Transactions with Java Persistence
	JTA transactions with Java Persistence
	Java Persistence and CMT

	10.2 Controlling concurrent access
	10.2.1 Understanding database-level concurrency
	Transaction isolation issues
	ANSI transaction isolation levels
	Choosing an isolation level
	Setting an isolation level

	10.2.2 Optimistic concurrency control
	Understanding the optimistic strategy
	Enabling versioning in Hibernate
	Automatic management of versions
	Versioning without version numbers or timestamps
	Versioning with Java Persistence

	10.2.3 Obtaining additional isolation guarantees
	Explicit pessimistic locking
	The Hibernate lock modes
	Forcing a version increment

	10.3 Nontransactional data access
	10.3.1 Debunking autocommit myths
	10.3.2 Working nontransactionally with Hibernate
	10.3.3 Optional transactions with JTA

	10.4 Summary

	Chapter 11 Implementing conversations
	11.1 Propagating the Hibernate Session
	11.1.1 The use case for Session propagation
	11.1.2 Propagation through thread-local
	11.1.3 Propagation with JTA
	11.1.4 Propagation with EJBs

	11.2 Conversations with Hibernate
	11.2.1 Providing conversational guarantees
	11.2.2 Conversations with detached objects
	11.2.3 Extending a Session for a conversation
	Delaying insertion until flush-time
	Managing the current Session
	Creating a conversation interceptor

	11.3 Conversations with JPA
	11.3.1 Persistence context propagation in Java SE
	11.3.2 Merging detached objects in conversations
	11.3.3 Extending the persistence context in Java SE
	The default persistence context scope
	Preventing automatic flushing

	11.4 Conversations with EJB 3.0
	11.4.1 Context propagation with EJBs
	Wiring EJB components
	Propagation rules

	11.4.2 Extended persistence contexts with EJBs
	Disabling flushing with a Hibernate extension
	Disabling flushing by disabling transactions
	Complex transaction assemblies

	11.5 Summary

	Chapter 12 Modifying objects efficiently
	12.1 Transitive persistence
	12.1.1 Persistence by reachability
	12.1.2 Applying cascading to associations
	12.1.3 Working with transitive state
	Creating a new category
	Creating a new category in a detached fashion
	Saving several new instances with transitive persistence
	Considering transitive deletion

	12.1.4 Transitive associations with JPA

	12.2 Bulk and batch operations
	12.2.1 Bulk statements with HQL and JPA QL
	Updating objects directly in the database
	Creating new objects directly in the database

	12.2.2 Processing with batches
	Writing a procedure with batch updates
	Inserting many objects in batches

	12.2.3 Using a stateless Session

	12.3 Data filtering and interception
	12.3.1 Dynamic data filters
	Defining a data filter
	Applying and implementing the filter
	Enabling the filter
	Filtering collections
	Use cases for dynamic data filters

	12.3.2 Intercepting Hibernate events
	Creating the marker interface
	Creating and mapping the log record
	Writing an interceptor
	Enabling the interceptor
	Using a temporary Session

	12.3.3 The core event system
	12.3.4 Entity listeners and callbacks

	12.4 Summary

	Chapter 13 Optimizing fetching and caching
	13.1 Defining the global fetch plan
	13.1.1 The object-retrieval options
	The Hibernate Query Language and JPA QL
	Querying with a criteria
	Querying by example

	13.1.2 The lazy default fetch plan
	13.1.3 Understanding proxies
	13.1.4 Disabling proxy generation
	13.1.5 Eager loading of associations and collections
	13.1.6 Lazy loading with interception

	13.2 Selecting a fetch strategy
	13.2.1 Prefetching data in batches
	13.2.2 Prefetching collections with subselects
	13.2.3 Eager fetching with joins
	13.2.4 Optimizing fetching for secondary tables
	Outer joins for a table-per-subclass hierarchy
	Switching to additional selects

	13.2.5 Optimization guidelines
	The n+1 selects problem
	The Cartesian product problem
	Forcing proxy and collection initialization
	Optimization step by step

	13.3 Caching fundamentals
	13.3.1 Caching strategies and scopes
	Caching and object identity
	Caching and concurrency
	Caching and transaction isolation

	13.3.2 The Hibernate cache architecture
	The Hibernate second-level cache
	Built-in concurrency strategies
	Choosing a cache provider

	13.4 Caching in practice
	13.4.1 Selecting a concurrency control strategy
	13.4.2 Understanding cache regions
	13.4.3 Setting up a local cache provider
	13.4.4 Setting up a replicated cache
	13.4.5 Controlling the second-level cache

	13.5 Summary

	Chapter 14 Querying with HQL and JPA QL
	14.1 Creating and running queries
	14.1.1 Preparing a query
	Creating a query object
	Paging the result
	Considering parameter binding
	Using Hibernate parameter binding
	Using positional parameters
	Setting query hints

	14.1.2 Executing a query
	Listing all results
	Iterating through the results
	Scrolling with database cursors

	14.1.3 Using named queries
	Calling a named query
	Defining a named query in XML metadata
	Defining a named query with annotations

	14.2 Basic HQL and JPA QL queries
	14.2.1 Selection
	Using aliases
	Polymorphic queries

	14.2.2 Restriction
	Comparison expressions
	Expressions with collections
	Calling functions
	Ordering query results

	14.2.3 Projection
	Simple projection of entities and scalar values
	Getting distinct results
	Calling functions

	14.3 Joins, reporting queries, and subselects
	14.3.1 Joining relations and associations
	HQL and JPA QL join options
	Implicit association joins
	Joins expressed in the FROM clause
	Dynamic fetching strategies with joins
	Theta-style joins
	Comparing identifiers

	14.3.2 Reporting queries
	Projection with aggregation functions
	Grouping aggregated results
	Restricting groups with having
	Utilizing dynamic instantiation
	Improving performance with report queries

	14.3.3 Using subselects
	Correlated and uncorrelated nesting
	Quantification

	14.4 Summary

	Chapter 15 Advanced query options
	15.1 Querying with criteria and example
	15.1.1 Basic criteria queries
	Applying restrictions
	Creating comparison expressions
	String matching
	Combining expressions with logical operators
	Adding arbitrary SQL expressions
	Writing subqueries

	15.1.2 Joins and dynamic fetching
	Joining associations for restriction
	Dynamic fetching with criteria queries
	Applying a result transformer

	15.1.3 Projection and report queries
	Simple projection lists
	Aggregation and grouping
	Using SQL projections

	15.1.4 Query by example

	15.2 Using native SQL queries
	15.2.1 Automatic resultset handling
	15.2.2 Retrieving scalar values
	15.2.3 Native SQL in Java Persistence

	15.3 Filtering collections
	15.4 Caching query results
	15.4.1 Enabling the query result cache
	15.4.2 Understanding the query cache
	15.4.3 When to use the query cache
	15.4.4 Natural identifier cache lookups

	15.5 Summary

	Chapter 16 Creating and testing layered applications
	16.1 Hibernate in a web application
	16.1.1 Introducing the use case
	16.1.2 Writing a controller
	16.1.3 The Open Session in View pattern
	16.1.4 Designing smart domain models

	16.2 Creating a persistence layer
	16.2.1 A generic data-access object pattern
	16.2.2 Implementing the generic CRUD interface
	16.2.3 Implementing entity DAOs
	16.2.4 Using data-access objects

	16.3 Introducing the Command pattern
	16.3.1 The basic interfaces
	16.3.2 Executing command objects
	Implementing business commands
	Implementing a command handler

	16.3.3 Variations of the Command pattern

	16.4 Designing applications with EJB 3.0
	16.4.1 Implementing a conversation with stateful beans
	16.4.2 Writing DAOs with EJBs
	16.4.3 Utilizing dependency injection

	16.5 Testing
	16.5.1 Understanding different kinds of tests
	16.5.2 Introducing TestNG
	A unit test in TestNG
	Expecting failures in a test
	Creating and running a test suite

	16.5.3 Testing the persistence layer
	Writing a DBUnit superclass
	Preparing the data sets
	Writing a test class
	Running the integration tests

	16.5.4 Considering performance benchmarks

	16.6 Summary

	Chapter 17 Introducing JBoss Seam
	17.1 The Java EE 5.0 programming model
	17.1.1 Considering JavaServer Faces
	17.1.2 Considering EJB 3.0
	17.1.3 Writing a web application with JSF and EJB 3.0
	Creating the entity class and mapping
	Writing the search page with Facelets and JSF
	Writing the edit page
	Accessing the database in an EJB
	Connecting the layers with a backing bean

	17.1.4 Analyzing the application
	Comparing the code to J2EE
	Improving the application

	17.2 Improving the application with Seam
	17.2.1 Configuring Seam
	17.2.2 Binding pages to stateful Seam components
	The EJB component interface
	The EJB component implementation
	Binding values and actions

	17.2.3 Analyzing the Seam application
	Opening the search page
	Searching for an item
	Editing an item

	17.3 Understanding contextual components
	17.3.1 Writing the login page
	17.3.2 Creating the components
	17.3.3 Aliasing contextual variables
	17.3.4 Completing the login/logout feature

	17.4 Validating user input
	17.4.1 Introducing Hibernate Validator
	17.4.2 Creating the registration page
	Decorating the page with Seam tags
	The registration Seam component
	Annotating the entity class

	17.4.3 Internationalization with Seam

	17.5 Simplifying persistence with Seam
	17.5.1 Implementing a conversation
	The registration page
	The profile page
	The summary page
	Writing a conversational Seam component

	17.5.2 Letting Seam manage the persistence context
	Triggering a LazyInitializationException
	Injecting a Seam persistence context
	Integrating the persistence context lifecycle

	17.6 Summary

	appendix A: SQL fundamentals
	appendix B: Mapping quick reference
	references
	index

