


Java Testing, Design, and Automation 
 

by Frank Cohen 
coming soon from Prentice Hall Publishing 

 
ISBN 0131421891 
 
Abstract 
In Java Testing, Design, and Automation, Frank Cohen describes the architectural choices to build 
Web-enabled applications in Java and how each choice affects scalability and reliability. Cohen 
shows how to test and optimize these systems in the reader's own environment. Cohen goes 
further to describe the need for intelligent test agents in Web-enabled environments, describes a 
test agent framework with a tutorial on the latest Web test techniques, and presents TestMaker, a 
free open-source framework for building intelligent test agents to check Java-based Web software 
for performance, scalability and reliability. Cohen presents case studies and immediately useful 
code of how Elsevier Science, 2Wire, Sun Microsystems and BEA successfully use intelligent test 
agent technology to build scalable Java applications and assure confidence in their Web-enabled 
Java projects. 
 
Inside you will find in-depth discussion of powerful, proven Web-enabled Java architectures, 
construction techniques, immediately useful code and intelligent test agents to check Java 
applications in Web environments for scalability, functionality and reliability. 
 
Java and J2EE-based dynamic database-driven Web-enabled architectures 
Integrated applications using SOAP, XML-RPC, .NET, HTTP, HTTPS protocols 
J2EE and .NET Interoperability Problems Solved 
Performance Kits for developers in BEA WebLogic, IBM WebSphere, SunONE 
eCommerce Site Architecture and Optimization 
Secure Internet services using Public Key Infrastructure (PKI,) HTTPS, SSL 
Building with the next generation security technologies: WS-I, SAML, Liberty 
Avoiding and Solving Concurrency Problems 
Architecture, code, and test agents for J2EE, Java Web Services, P2P, .NET 
Easy to understand test scripts using Python/Jython and Java 
Extended architectures include email protocols (IMAP, SMTP, POP3) applications 
 
Java Testing, Design, and Automation, is going through copy edits and production and will be in 
stores in January 2004. 



2 The Forces at Work Affecting Your Web-enabled Software Chap. 1

C H A P T E R  1

The Forces at Work Affecting
Your Web-enabled Software

In my experience, more than just the way you write code impacts Web-enabled ap-
plication functionality, scalability and performance. Here are three forces working against
your software development efforts:

•  Working within the software development, quality and information technology
efforts at your company impacts functionality, scalability and performance.
High quality interoperable Java code is developed in processes among groups of
individuals. The first part of this book describes the organizational and social is-
sues that impact functionality, scalability and performance. You will also learn
immediately useful new processes and techniques to measure and improve scal-
ability and performance.

•  The design and architecture choices (server software, protocols, schemas, plat-
forms, hardware, routing) you make impacts functionality, scalability and per-
formance. The second part of this book describes the technology behind
interoperating and scalable Web-enabled applications from a Java developers
perspective.

•  The way you test and monitor to system and software modules/components im-
pacts functionality, scalability and reliability. The third part of this book pre-
sents case studies and immediately useful intelligent test agent code to check
Web-enabled applications for functionality, scalability, performance and reli-
ability.

This chapter begins with a practical definition of Web-enabled applications and the
Web infrastructure they run on. This chapter then tackles the difficult and thorny behavioral



The Forces at Work Affecting Your Web-enabled Software 3

problems found in many companies that make delivering interoperable, high quality Web-
enabled applications in Java truly difficult. This chapter then gives a brief history of soft-
ware development practices over the years to show you how many of the software develop-
ment, QA and IT practices in place today came to be. The chapter then describes the
architectural and software development practices that impact scalability, performance and
reliability in Java software. Finally, this chapter sets the stage for the rest of the book by
introducing a new way of testing your application using intelligent test agents, a new con-
cept presented throughout this book.

THE FIRST THREE AXIOMS

I remember sitting in front of my first microcomputer. It was 1977 and I was in high
school. I typed on the keyboard:

print "I hope Maggie Movius likes me."

Sure enough, the BASIC language interpreter took my one line program and displayed
on the terminal:

>I hope Maggie Movius likes me.

What a marvel! It seemed so simple, so understandable, so... hard to explain to anyone
that had not tried it. I wondered how much I could accomplish with a microcomputer.

The years rolled-by. I watched and participated-in forming the software development
community. With the community came an emphasis on software development practices.
Software moved up from being an optional feature in a computing box to a necessary ena-
bling component of the US economy.

The software development community developed a means to rapidly share good ideas
on how to build software, and how to dispute and put down ideas that were bad. For exam-
ple, threads and streams = good and proprietary communication protocols = bad.

Not long after, I noticed that more complicated software, such as a Web server soft-
ware package, consists of the contributions of many software developers. In the commercial
software space, teams of software developers meant: paychecks. And with paychecks came
management, software product lifecycles, quality assurance, version control, product launch
schedules and code reviews.

In an effort to return to a simple development example, while working in a develop-
ment team of a commercial software company I typed out this simple example program:

printf ("I hope Maggie Movius likes me.");

I compiled the code and checked-it in to a source code control system. About an hour
later a QA technician sent me an email:
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Hi Frank: Nice to have you on-board. I saw your first
check-in. You should know that your code is missing the
copyright notice for the company and it does not meet with
our coding standards since you used printf instead of
printing to an output window in our standard library. -
Norman

The experience taught me these axioms of software development:

•  Even though a program contains only a single line of code, it needs to be main-
tained.

•  Every piece of software interoperates with other software.

•  There is more to delivering high quality software than writing code.
Zoom forward to present. As the principal architect of the TestMaker, a popular free

open-source test automation utility, I find these axioms help me to deliver interoperable,
Web-enabled, production-ready Java software, quickly and on a budget. In this book, I will
show you more axioms, present practical ready-to-use techniques to build, code and test
high quality software applications, and provide test code that you can use in your own envi-
ronment today.

WEB-ENABLED APPLICATIONS, THE NEW FRONTIER

Software development goes through phases of development and digestion. In the de-
velopment phase everything is up for grabs. Software developers experiment with software
architectures, especially with the location of application business logic and presentation
code. Presentation code handles windows, mice, keyboard and other user interactions. Busi-
ness logic is the instructions that define the behavior and operation of an application. In the
digestion phase, software developers try to conform to the current widely accepted best
practices.

Figure 1-1 shows three cycles of the phases of development and digestion. The first
generation software architecture built the presentation and business logic on a single system.
In the second generation, Client/Server architecture brought back the large and centrally
controlled datacenter so familiar in the 1960s when mainframe’s ruled the information
world. In Client/Server architecture the desktop system is a “dumb” terminal that only needs
to display the data provided by the server. The early Web was modeled after client/server
architecture; The browser makes requests to a server and renders the received HTML codes
to the screen.
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Figure 1-1 The first three generations of software development
brought us from desktop-bound application, to client/server, and then to
the early Web.

As browser’s improved in functionality - applets, JavaScript, ActiveX components,
DHMTL were introduced - some systems included business logic on the desktop side. How-
ever, the majority of function remained on the server.

Figure 1-2 shows what I expect to come next. The "grid" generation enables an appli-
cation to host business logic modules on the desktop or server. The modules discover each
other using Web Service and Peer To Peer (P2P) technologies. In this generation, multiple
copies of the business logic modules may run in a grid of datacenters to allow failover, dy-
namic routing and functional specialization. These architectures run on the Web infrastruc-
ture already in-place at most enterprises. On the way to the "grid" generation we will watch
our Web infrastructure grow to support Web-enabled applications.

Figure 1-2 The coming generation uses Web Service and Peer-To-
Peer (P2P) technologies running on existing Web infrastructures.
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Web-enabled applications are interoperating systems of software implementations that
use open-standard protocols to communicate over a Web infrastructure. They started in very
simple terms. A browser makes a request to a server for a document. Rapidly everyone re-
alized how inexpensive it was to operate a network and Web server. Consequently, today it
may seem like everyone does. By 2003, the NetCraft survey of Web servers received re-
sponses from 40,936,076 sites - and that number is just Web sites. Enterprising software
developers use the same Web infrastructure for hundreds of other types of applications.

Consider the typical enterprise infrastructure today. Many of the applications an enter-
prise infrastructure supports are shown in  1-3.

Figure 1-3 Modern Web infrastructures support a wide variety of Web-enabled appli-
cations and functions.

The functions shown in Figure 1-3 are typical of the services provided using a Web in-
frastructure at a typical company today. The following describes these services in detail:

• Sign-in function enables an individual employee or customers to identify them-
selves to gain access to private information or privileged operations. The func-
tion uses a browser over an open HTTP connection. The server response is
simple HTML codes indicating success or failure. (Most, but certainly not all,
Web applications now use the secure HTTPS connection when dealing with
sign-in functions.)



The Forces at Work Affecting Your Web-enabled Software 7

• Click over from partner site enables a user that already identified them self
while using a partner's Web site to view private information or access privileged
operations without needing to sign-in a second time. The partner Web site acts
as the authentication service to accept or deny the user. The enterprise infra-
structure accepts the authentication credential from the partner Web site. The
server response is an HTTP browser redirect command to point the user's
browser to a URL within your site, or redirect the user back to the partner Web
site.

• Send pager message enables email forwarding to an employee's pager. In this
function, the enterprise infrastructure receives standard Internet email messages.
The function operates as an SMTP email service. When it receives an email
message, it looks-up the employee's pager number from a directory and forwards
the email message to the pager gateway. The service responds with an email
message confirming the page is sent.

• Partner confirms order enables a partner's automated order entry system to
confirm the details of an order that is in your fulfillment system. The request
comes as a SOAP-encoded Web Service request. The response contains delivery
information for the order in XML format.

• Team discussions are facilitated using the infrastructure's Internet Relay Chat
(IRC) service. The function uses IRC client software to marshal and distribute
requests and responses. Communication between team members contains valu-
able knowledge, so the IRC message traffic is recorded, indexed by a search en-
gine service, and displayed through a Web browser interface.

• Need more stock enables non-browser based applications to communicate out-
of-stock conditions to an order entry service. Imagine a store like Wal-Mart with
sensors built into the store shelves that sense when more socks are needed. The
function requests more socks by using XML-RPC protocols to make an XML-
encoded request over an HTTP protocol to the order and inventory service. The
response contains an acknowledgement and confirmation number.

This book shows how to build and test systems that provide all of these services. Ad-
ditionally, this book prepares you for the coming wave of services and protocols that run on
the same Web-enabled infrastructure. Before we go on, look at Figure 1-4 to see what hap-
pens in a back-end system that handles all of these functions.
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Figure 1-4 The back-end systems use the same Web infrastructure to connect many
individual systems to service the variety of applications making requests.

The back-end systems that enable the enterprise infrastructure to provide all of the
services in Figure 1-3 also use standard Web technology, including:

•  Authentication Authority is a service that maps users to resources. For exam-
ple, an authentication authority determines if a user may write a document to a
printer device.

•  Application is a service that implements the unique business processes and
workflows for a company. Applications are usually implemented in two parts: A
set of Java servlets to handle the HTTP communication protocol with the
browser and to initiate a workflow. The second part is a set of Java or Java En-
terprise Bean in J2EE objects that implements the workflow. For example, the
sign-in request from Figure 1-3 comes to the application as an HTTP request
from a browser that triggers a servlet to start the sign-in process in a Java bean.
The bean makes an authorization assertion to the Authentication Authority using
the Security Assertion Markup Language (SAML) protocol to ask if the user is
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authorized to sign-in. (Of course, application service is not limited to Java. De-
velopers have many choices of operating system and platform to implement the
business logic of an application, including Java, .NET, C, and C++.)

•  Network Operating System (NOS) controls the network layer access to devices
and services. The NOS is usually Windows, Unix, Linux, Macintosh or other
operating system that provides a software interface to network resources, hard-
ware resources and a simple directory service.

•  Instant Message Server (IM) provides protocol-level support for Internet Relay
Chat (IRC) service. In the team discussion example from Figure 1-3, a group of
developers use IRC to communicate and coordinate development of a new soft-
ware module. The conversation includes information private to the company.
Requests to join an IRC chat room initiate a workflow that uses the Lightweight
Directory Access Protocol (LDAP) to make sure the user is in the Network Op-
erating System directory.

The systems and protocols described in Figure 1-4 are by no means thorough. In fact,
looking at the average enterprise back-end system will show you dozens of other systems
and protocols. The glue that binds all these systems together and deliver the widest audience
of users is a Web infrastructure.

What is driving all this development on top of Web infrastructures? From my per-
spective, we are living at a time of "firsts." Consider the following:

•  This is the first time in the information technology (IT) industry that software
developers, QA technicians and IT managers agree on interoperability architec-
ture. We can expect Web infrastructures to be already installed at every com-
pany.

• This is the first time that developers, QA technicians and IT managers agree that
security needs to be federated. The company we work for, or the group we par-
ticipate in, now exists in partnership with other companies and groups. Conse-
quently, our systems need to share authorization, identity management and
directory services. We need to provide federations of Web sites where a sign-in
to any one Web site signs-us-in to all Web sites within the federation.

• This is the first time that developers, QA technicians and IT managers agree that
scalability in every application is critical to achieving our goals. From a single
function in a company to the entire world economy, everything relies on Web-
enabled applications. When they don't work, or work slowly, everything grinds
to a halt.

• This is the first time that government regulation is part of our software applica-
tion requirements. For example, the US Congress passed the Health Insurance



10 The Forces at Work Affecting Your Web-enabled Software Chap. 1

Portability and Accountability Act (HIPAA) in 1996. HIPAA is expected to
have a major impact on every healthcare organization in the country. HIPAA re-
quires strict controls on access to patient data and requires that patient data be
moveable when patients move to different healthcare providers. HIPAA is a pre-
cursor for the future of information system’s best practices crammed into a gov-
ernment regulation.

• This is the first time that interoperability tools and technology is delivered with
integrated development environment (IDE) tools. In the past, engineers wanting
to work with CORBA would turn to an external CORBA toolset to define inter-
face definitions. Now the most popular IDEs come with CORBA, Web Service,
RMI, COM+, Message Queue, and Database/Dataset Access tools built-in.

•  Finally, this is the first time that Java and other interoperable development envi-
ronments and open source projects have reduced operating system and platform
dependencies to a point where, in many cases, it really does not matter any
more. In a Web-enabled application environment, all the OS and platforms have
reached near feature parity. Software developers are being courted by OS and
platform providers to recommend products, tools and technologies - this used to
be limited to system administrators and IT managers.

We've lurched the computer software industry forward with these "firsts." The fear
that used to inhibit software developers from working on distributed, interoperating systems
is gone. A flood of new protocols, tools and techniques is upon us. For example, the Secu-
rity Assertion Markup Language (SAML) defines a protocol to facilitate single-sign-on, the
Liberty Alliance enables developers to build federated security models into Web applica-
tions, WS-I standardizes a common set of Web Services programming interfaces and proto-
cols, and BPEL4WS defines a way to express and implement business workflows in Web
Service applications. And there are many more on the way. Part II of this book presents
many of these new protocols and gives you a way to approach good design and test strate-
gies for those protocols that will appear in the near future. All of these new protocols are
built to run on Web infrastructures and generally are easy to learn. The wild ride we are
about to have will lead the world to higher productivity and efficiency.

The next section tackles the difficult and thorny behavioral problems found in many
companies that makes delivering interoperable, high quality Web-enabled applications in
Java truly difficult.

WHY WRITING HIGH QUALITY SOFTWARE TODAY IS HARD

The computing world offers the largest-ever selection of software development tools,
techniques, hardware and knowledge to build interoperable, high quality Java software ap-
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plications. And yet, using the finished application is often an incredibly frustrating experi-
ence for users. While there is much that we, as Java software developers, can do to improve
the software code we write, our participation in the larger business effort has an equal im-
pact on users achieving their goals, and avoiding frustration. I would bet that you have seen
and experienced one or more of the following five problems impacting software develop-
ment efforts:

•  The Myth of Version 2.0 Solidity

•  Management's Quest for Grail

•  Trying For Homogeneity, When Heterogeneity Rules

•  The Language of Bugs

•  The Evil Twin Vice Presidents Problem
Each one of these problems has its impact on your software development effort, but is

apart from actually designing or writing coding. Lets take each one of these individually.

The Myth of Version 2.0 Solidity

Has this happened to you? You rush towards a big new software release. You pin all
your hopes that the next major version will be rock-solid, perform well, fix all of the exist-
ing problems, and give users a successful experience. Additionally, you anticipate the new
software will prove  itself to your management, which in-turn will get you a raise and let
you go on vacation. Back to reality... Writing code is hard. In a modern Java development
shop, your code modules make up a larger system and at anytime the other modules may
change. Yours is a world where everything is a moving target. Add to the mix that there is
always something new to learn and that you may not like the way the developer sitting next
to you smells, but your module depends on theirs!

In software development, there is always the big question of making lots of little
changes versus making a few big changes. Agile programming techniques favor many small
implementations over a major overhaul. Management that believes in Version 2.0 Solidity
chooses the major overhaul. In my experience, choosing the major overhaul is a terrible
choice unless you have really thought through the implications. More often than not good
development teams implode from the stress of accomplishing the "big release." It is just not
worth it. The finished software is bound to have bugs and problems that need fixing imme-
diately but software developers are weeks away from rebuilding their energy to handle a
maintenence release. If they don't get that "decompression time" then they quit or do some-
thing stupid - which gets them fired.

In my experience, the best software development comes in waves. Inspiration over-
takes an individual software developer, the developer codes fast-and-furiously until the in-
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spired vision appears in a block of code. The rest of the development team agrees with the
design, the developer integrates the new code into the existing code-base, and users appreci-
ate the new or reworked functions. From there, the code is refined until it is later replaced by
a redesign from another inspired developer.

Agile programming techniques embrace this idea that inspired software development
comes in waves. At the end of the day, you will need to decide if agile programming works
for you. I have spoken to software developers that like the inspired wave technique, but not
the rest of agile programming. I recommend you do what works best for yourself.

In the continuum of software development - from making minor changes to maintain
existing code, to development of a major new release that replaces an existing code-base -
the "inspired wave" works well for the middle efforts: more than maintenance but not an
entire rewrite.

Management's Quest for Grail

In the eco-system of software development, engineering management participates by
directing resources and measuring progress against milestones and checkpoints. Many man-
agers believe their mandate includes choosing how software is developed. A manager may
look at a new development technique and insist on its adoption. This poses a problem to the
software developer whose problem solving style and development strengths run counter to
management's mandated development techniques.

In my experience, agile programming (also known as Extreme or XP programming,
and its supporters such as SCRUM, see http://www.controlchaos.com/) often looks like a
"silver bullet" to management. Management's thinking goes: Delivering the 2.0 project was
a giant mess; we should have instead used agile programming techniques to issue a bunch of
little releases. In reality, there is no linkage between agile programming and the "Version
2.0 Solidity" myth, though it looks like a solution to management.

There are parts of agile programming that greatly benefit a software development or-
ganization. For example, agile programmers believe in taking lots of little bites and then
testing the bites of new code as they are written. That might come in handy when dealing
with "Version 2.0 Solidity" problems. The problem is that management may mandate agile
programming for all developers.

Software developers have different problem solving styles and some styles work
against agile programming techniques. Understanding your own strengths and problem
solving style is important to delivering successful software. From my experience, program-
mers can be categorized by problem solving style and software development strengths. Fig-
ure 1-5 illustrates of the types of programmers and their relative sizes.
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Figure 1-5: This shows the relative sizes of the different types of problem solving styles
among programmers.

From the start, you might wonder why users and super-users are included in Figure 1-
5. In my opinion, every computer user is a programmer. How often have you seen PostIt
notes with a user's favorite tip or technique to use an application stuck to the side of a
monitor. The PostIt note is programming.

Figure 1-5 shows that each type of programmer has a different problem solving style.
Users, the largest group, use procedural programming styles to solve problems. They work
within the application's existing structure to accomplish tasks. Super-users are procedural
problem solvers too, however, they typically use more than one application and so if a
problem is unsolvable in one application they will seek a solution in a second application.
Administrators are also procedural problem solvers, however, they have access to more
functions than users and super-users and may even be in contact with the writers of the code.
That access gives them more insight to solve problems.

Procedural programmers and script writers are entrepreneurial problem solvers. It is
fine with a script writer to have multiple solutions existing at once. The more solutions they
are involved with, the happier they are. Code reuse, efficiency and maintenance are secon-
dary concerns to solving problems immediately. Script writers work within an environment
where the overall software architecture is implemented by the software development tool or
framework they are using. For example, Visual Basic users visually lay-out an application
and the development environment asks the developer fill-in the execution code for each vis-
ual button - the development environment writes all the other code to initiate, run, and close-
down the application. Procedural programmers also work in environments where someone
else does much of the architecture and they seek to simply code a function now.

Object programmers have got the reuse religion: Software code should only be written
if it completes a missing function within the overall system. What's more, the choices one
makes during software design must make it easy for anyone else on the team to use the
software's functions, in whatever context happens. Object programming is the high opera of
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software development. Everything object design choice is elevated to a hugely dramatic
level because even the smallest object counts towards the overall system's functionality and
performance.

Interoperability programmers bring back that entrepreneurial spirit. They view all
systems from the perimeters. They design application software that occasionally makes
functional calls through the application programming interfaces (APIs) offered by a Web-
enabled application, especially an XML Web Service. However, they are different from ob-
ject programmers as the APIs will normally offer flat and non-object oriented method calls.

Finally, orchestration programmers solve programming problems by designing the
functionality they need first and then defining the business workflow to achieve the goal.
The code an orchestration programmer writes has no graphical user interface, instead all the
application's decisions are programmed into a set of preferences that tells the application
how walk through a workflow to achieve a desired response. For example, the loan applica-
tion process at a bank is a workflow and an orchestration programmer implements software
that steps the loan through its many approval steps.

Imagine what happens when management implements an object-oriented design proc-
ess among a group of procedural programmers. Imagine what happens when management
decides to use a business orchestration system for their development team of script pro-
grammers. Understanding the problem solving style of the software developers is key to
delivering successful software applications.

Another way of looking at the types of software programmer problem solving styles is
shown in Figure 1-6.

Figure 1-6: For the different types of problem solving techniques in computer pro-
grammers from Figure 1-5, it turns out that the smaller the group the
more need there is for architectural design of the software under devel-
opment.
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Figure 1-6 shows the relative sizes of the subgroups of software programmers by
problem solving type. For example, in general, there are many more procedural program-
mers than object-oriented programmers. This has an impact on the way we design successful
software development tools, platforms and operating systems. For example, if our intention
is to attract a large audience of system administrators who will develop or maintain applica-
tion software, then our design must match their problem solving style by making it easy to
understand the major modules, communication between modules, external access protocols,
naming methodologies for objects and variables, and resources to be used in a software ap-
plication. On the other hand, if our intention is to attract orchestration programmers, then
our design must focus on how to connect a set of available Web Services.

Understanding your own strengths and problem solving style is key to understanding
how management's decisions impact your Java software development efforts.

Trying For Homogeneity, When Heterogeneity Rules

My high school chemistry teacher enjoyed teasing his students with paradoxes. For
example, he would ask, "If there was a universal solvent, then what would you keep it in?" I
think of him when I meet software developers, QA technicians and IT managers that tell me
their company is trying to standardize their infrastructure on a single platform. Ah, the quest
for homogeneity. It's clearly a paradox of the first order.

The paradox is that to have a homogenous infrastructure means you need to remove
anything foreign. That never happens. So instead heterogeneity rules the day! Everything is
built on top of whatever preceded it. It is messy. It is difficult to maintain. It is brittle - any
one break causes multiple breaks elsewhere. Lastly, eventually the oldest systems become
archaic when no one is left around that knows how to do maintenance.

That is not to say that efforts for homogeneity in the world are on the retreat. Hardly.
Instead this is a battle we must fight frequently. Because - as readers of this book - we are
Java developers, QA technicians and IT managers, we regularly have to solve functionality,
performance and scalability problems in heterogeneous systems. So I offer these points to
keep in mind when dealing with an effort to make your heterogeneous infrastructure ho-
mogenous:

•  Plan for patches to your system, to system components and to legacy systems
that no one has looked at for years. In a heterogeneous environment, patches are
more likely the only possibility unless the company will consider replacing a
system.

•  Design for brittleness in the systems providing supporting service to your appli-
cation. At every point in your application when resources are touched, handled
or managed, make sure your code can handle the scenario where the resource is
not available.
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•  Accept the moving-target nature of the datacenter. Your application needs to
play with other applications well. This is especially true when new applications
appear in the datacenter without much coordination among the teams in your
company.

•  Provide client-side system-level tests for your more complicated applications. In
addition to building a unit test, also provide a client-side test that drives the en-
tire solution, rather than just the individual functions you delivered. The system-
level tests will show future engineers when they have broken something and the
QA technicians and IT managers will have a tool to diagnose when your module
or application fails. Later in this chapter I introduce a new technique for building
client-side system-level tests.

By now you probably understand how these problems are linked together. As a col-
lection, all five problems conspire to make software development messy, politically chal-
lenging and unpredictable. The following are the remaining two problems that impact
successful software development.

The Language of Bugs

In my experience, most companies, by default, choose a bug list as the common lan-
guage spoken between the software developers, QA technicians and IT managers. Rather
than asking if the financial advisors using a stock trading application are meeting their goals,
the question comes out like this: Is Bug 38283 fixed?

When writing or maintaining a software application, the language you choose will im-
pact your ability to deliver successful software. This is covered later in this chapter in a dis-
cussion of user archetypes and intelligent test agents. For now, consider an example case
where you write a new module for a software application, which of the following test strate-
gies would you choose?

1. Test the code by sending it a single sample value. If it passes the test then you
can check-in the code, and hand it off to QA and IT groups.

2. Test the code by trying to operate it in the widest possible way to emulate the
many varied ways all the different users will use the module.

3. Test the module by sending it invalid data. If it fails, then it's ready for a
hand-off to QA.

Have you noticed that something is missing? What happened to the single user? You
know... the single user that uses the application to achieve their goals. They walk through
the application, operating many functions in succession, each function operates a group of
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modules, until they hit the right combination of functions and... BOOM! The application
falls to its knees.

Most developer I meet believe the three choices above are the only choices. They think
they must either test for the fringe cases of invalid data or test widely to try to test for every
possible case. I have even seen developers try to split the difference by testing right down
the middle.

Testing to the middle makes large assumptions of how the aggregate group of users
will use the Web-enabled application and the steps they will take as a group to accomplish
their common goal. In reality, the form and function of modern software applications makes
it possible for users to choose their own path through the functions in an application. Each
user has a personal goal and method of using the application. But how do you describe such
a user and communicate to the others in your team that you want to test for success in this
one user?

I recommend building software by first building a test agent modeled after a single
user. Choose just one user, understand their goals, and learn what steps they expect to use.
Then model a test against the single user. The better understood that individual user’s needs
are, the more valuable will be your test agent.

Some developers have taken the archetypal user method to heart. They name their ar-
chetypes; describe their background and habits. They give depth to the archetype so the rest
of the development team can understand the test agent better. Goal-driven user archetypal
testing provides a hugely effective way to communicate between developers, QA and IT.

Next, we discuss the last of the top five problems that impact your ability to deliver
successful software applications.

The Evil Twin Vice-Presidents Problem

The final problem on our top five list of problems that impact your ability to deliver
successful software, consider the company where management responsibility for software
development and quality assurance is in one group and responsibility for running the data-
center is in the other group. This situation seems to happen all the time. Yet, it sets the sce-
nario for sniping between the software developers, QA technicians and IT managers.

If there was ever a need for another telethon it would to stamp out this problem. And
in our time. When it exists, everything slows down, schedules go un-met, and feelings get
hurt enough for people to quit.

One solution I have helped implement in this kind of situation provides a framework
for software developers to conduct unit tests that may then be leveraged by QA technicians
for scalability and performance tests. IT managers, to prove Quality-Of-Service reports, can
then leverage the same unit tests. (You will find me coming back to this theme many times
throughout this book. As you will see in Chapter 2, I call the solution The Troika.)

In summary, this section presented a list of the top five problems that impact your
ability to deliver successful software applications. The problems are mostly behavioral and
do not involve actually writing the code of an application. While it may appear that these
problems should not concern you, this book tackles these problems head-on with a new
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testing methodology, new set of test tools and framework, and a rich history of software
development to draw-from to help you succeed, even if your company is suffering through
any or all of these top five problems.

A CONCISE HISTORY OF SOFTWARE DEVELOPMENT

Modern Web-enabled applications are built differently than software developed in the
past. As we found earlier in this chapter, even a single line program will interoperate with
libraries of code developed by people you will never meet. If you visited International Tele-
phone and Telegraph (ITT) in the 1970's, you would have found that an ITT engineer wrote
every piece of software they ran in their mainframe datacenter. Zoom forward to the present
and you will find that applications are woven together of libraries from diverse and often
unconnected code. So how did we get here?

In early days, computer software was easier to develop, because it did less. Computer
software was easier to test, because the company owned every part of the infrastructure.
Computer software was easier to design for scalability, because the end users were the
known and finite group of company employees. Computer software may have been easy to
develop, but it was often hard to use. Some projects may have improved business efficiency,
but they were nightmares to use, and worse to test.

The modern software development age was borne when users, developers, testers, and
management adopted Web environments. In a Web-enabled environment, an application is
computer software that offers interoperability and connectivity features to other systems.
Even a pocket calculator, like a personal digital assistant (PDA), is expected to connect to
the Internet. This book refers to these interoperating and connected software applications as
Web-enabled applications. The devices used may be pagers, mobile phones, laptops, game
consoles, dedicated devices, desktop computers, and servers. If the software inside uses Hy-
pertext Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP), Simple Mail
Transfer Protocol (SMTP), or any other Internet protocol, the software may be considered a
Web-enabled application.

Developers have reached entirely new levels of productivity by building Web-enabled
applications. Business managers see new software initiatives as the quickest and most effi-
cient way to increase productivity, and users love all the new access and function available
to them for the first time. With the right choice of software testing tools, techniques, and
methods, Web-enabled application testers and system managers deliver the highest quality,
most reliable, and most available computer software ever developed.

This book shows the experiences of developers, Quality Assurance (QA) technicians,
and Information Technology (IT) managers who have found that delivering high-quality
Web-enabled applications requires intelligent test agents, new methods for analyzing scal-
ability and performance, and a good understanding of how the behavioral issues and person-
alities in a development team effect Web-enabled application testing and monitoring. The
appropriate techniques identify a Web-enabled application’s scalability and performance
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index, which are used to plan an appropriately sized data center and monitor Web-enabled
applications to achieve a service-level agreement.

A major portion of this book then shows what happens when traditional, last genera-
tion software testing and monitoring tools and techniques are used with Web-enabled appli-
cations. Sometimes the results are meaningless—or worse, the results are misleading. The
new software test techniques presented here help developers prioritize their efforts to maxi-
mize the user’s ability to achieve important goals. The book presents new test tools and
easy-to-follow criteria for determining a Web-enabled application’s health. Finally, this
book presents new data center frameworks and an open-source test automation tool that pro-
vides easy and efficient ways to build Web-enabled applications that scale and perform in
real-world production environments today.

Web-enabled Applications

Decades ago, software developers were concerned with writing software applications
only after the electronics, bandwidth, connectivity, and other hardware devices were imple-
mented. A 14.4KB modem connection might fail midstream. The system you were con-
necting to might have only partially implemented the Kermit protocol. The 10-megabyte
hard disk drive on the server may have filled up and crashed the operating system. (Do these
archaic technologies take you back?) These early rickety systems had constant failures that
the software application had to handle.

We learned that when the underlying platform is rickety, so is a software developer’s
concentration. Instead of concentrating on the form, flow, and logic of an application, the
developer worries about writing lots of error-handling code. In the early days, a well-written
program may have contained 300 lines of code, but only 50 lines would have performed the
actual business logic of the application. The rest handled errors. Today the underlying plat-
form is well defined and deployed. Software projects have an Internet connectivity strategy,
an object-oriented programming language, a programmatic interface, and a set of user inter-
action expectations. And while new protocols and application programming interfaces
(APIs) might add back in new complexity, it is common in today's applications to see 300
lines of business logic implementing code, and only 50 lines of error handling code.

Web-enabled applications benefit network and IT managers by providing more flexi-
bility to deploy and manage a system. Scalability is achieved by using many small, inter-
connected servers over large-scale monolithic mainframes. Deployment, vendor
management, and upgrade maintenance are much easier in a Web-enabled application envi-
ronment.

Web-enabled applications have also enabled improvements in the tools software de-
velopers use to write and maintain applications. Today, rather than using individual tools to
develop specific applications, developers employ the Integrated Development Environment
(IDE). IDEs battle for market dominance by incorporating many individual tools and func-
tions. At a minimum, an IDE today must offer a code editor with contextual help, a com-
piler, a debugger, a client to a source code revision system, a deployment packager, and
templates to allow the programmer to write new applications, modules, and classes instantly.
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IDEs provide a place to write your code with the editor, compile it into runnable code,
and then use the application in a debugger environment. Debuggers execute the program
line-by-line or up to a certain condition or breakpoint is reached and then show the variables
and data structures in the live code. Compared to the old days, IDEs are a godsend.

Unfortunately, IDEs and debuggers have not yet caught-up with Web-enabled appli-
cation running on a remote server. To test these systems often requires the business logic in
the application to reach certain states before the software shows meaningful debugging in-
formation to the developer. To solve these problems, test paradigms have appeared over the
years, including the Brute Force Testing Method, Mainframe Software Development Life-
cycle, Desktop Software Development Lifecycle, and Internet Software Development Life-
cycle.

Test Paradigms and Lifecycle Processes

Modern software is developed in lifecycle processes. Software is written, tested, and
deployed. Then the cycle begins again for maintenance. Software development lifecycle
processes brought about many changing test methods and paradigms.

By the time desktop computers emerged as a standard, the Brute Force Testing
Method was firmly entrenched. The Brute Force method employs many engineers sitting in
front of desktop computer systems performing the following tasks:

1. Operate the keyboard and mouse.

2. Use a program like UNIX tail to view a log file.

3. Write debugging code to save the application’s internal values and states to
the log file.

4. Examine the logs.

5. Repeat 1000 times a day.
Eventually, the testers run out of patience, friends and family will no longer test the

application (even as a favor,) and that one giant bug that happens only once every 3 hours
won’t go away. The Brute Force Testing Method rapidly reaches a point of diminishing re-
turns. After a few years of this, the software community realized the existing software de-
velopment lifecycle needed to change.

To see how software development lifecycles changed over the past three decades, lets
consider what happened as new hardware, development tools, and connectivity improve-
ments came on the scene. Back in the days of mainframes, software tests were accomplished
on the actual production mainframe using simulations and test data. I coin the software de-
velopment lifecycle that emerged as the Mainframe Software Development Lifecycle. The
steps in this lifecycle look like this:
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1. Specify the program, subsystems, and terminal interface menus.

2. Write the initial documentation.

3. Write the major modules.

4. Simulate modules running on a system.

5. Analyze the simulation results for anomalies.

6. Code the minor modules.

7. Run the system on the production system with test data.

8. Analyze the results.

9. Fix any problems with the implementation.

10. Finish the documentation.

11. Declare the final candidate, and then ship software to the customer.
Unfortunately, it turns out that the tests were only as good as the simulations. Main-

taining the software was equally unsure because new maintenance versions were also tested
using simulations. These tests also brought about the need for the systems analyst—it turned
out that the systems analyst became yet another person to get between the user goal and the
engineer implementing a solution.

The systems analyst looked at software systematically and often missed or ignored the
usability and performance problems baked into the software. As an example, in the early
1980s, airport airline reservation computer systems could not look up frequent-flier mileage
information while agents were looking at a passenger’s reservation. The reservation appli-
cation correctly displayed the itinerary, but the agent had to exit the application and start the
frequent-flier application to access this information. The reservation application and fre-
quent-flier application passed the systems analyst criteria for quality and performance; how-
ever, the airline customer did not achieve his goal of moving through the airport quickly.

By the late 1980s, the burgeoning PC industry made possible a software publishing
market for desktop application software. These were the heady days of Norton Utilities,
dBase II, and WordStar. The Desktop Software Development Lifecycle emerged to build
personal computer software:

1. Specify the program from a feature list.
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2. Write the software application.

3. Unit test the application.

4. Fix the problems found in the unit test.

5. Quality assurance engineers test the application (alpha testing).

6. Fix the problems found.

7. External beta testers test the application.

8. Fix the problems found.

9. Ship the application to customers.

10. Collect bug reports for the maintenance cycle.
By the 1990s, software QA professionals became part of the landscape and managed

the Desktop lifecycle.
When the Desktop lifecycle works well, customers are treated to new software re-

leases no sooner than every six months. During that release time, the software publisher
chooses which bugs will be fixed and works toward the next lifecycle. Many users encounter
bugs serious enough to ask the software publisher for a more rapid maintenance release. The
Desktop lifecycle is too rigid to accommodate shortened release lifecycles. Even small
maintenance releases would shave only a few weeks from a six-month lifecycle. Addition-
ally, maintenance releases take the development teams resources away from working on new
features.

When software publishers began to be more efficient at managing Desktop lifecycles,
the distribution and sales channels pushed back. Apple Computer was able to develop
maintenance and new feature releases in less than six months; however, Apple’s major
product distributors asked the company for new product releases only every nine months.
The market delivery system needs a rythim to develop to efficiently deliver and consume
innovations and improvements. In the case of Apple, the extra time was needed to prepare
retailers, warehouses, and IT managers working in enterprises that used the software to pre-
pare for the next release.

The nature of desktop software was causing longer lifecycles. The computer industry
shipped a physical box containing manuals and floppy disks to the owner of the desktop
computer. Advances in connecting desktop computers to the Internet had a profound effect
on software development lifecycles. The Internet Software Development Lifecycle emerged
to build browser-based software:
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1. Specify the program from a mock-up of a Web site.

2. Write the software.

3. Unit test the application.

4. Fix the problems found in the unit test.

5. Internal employees test the application.

6. Fix the problems found.

7. Publish the software to the Internet.

8. Rapidly add minor bug fixes to the live servers.

In the above lifecycle, agile programming techniques swap steps 2 and 3. Agile pro-
gramming recommends developing the test first, and then developing the code of the appli-
cation.

The Internet spawned a new way of computing: Many little servers were connected
together. Internet software is developed the same way, with many little modules connected
together. Businesses hosting Internet applications are more comfortable introducing many
minor bug fixes in succession than desktop system managers.

With so many desktop and server computers connected to the Internet, software devel-
opment costs lowered to a level at which individual developers are able to write, publish,
and support software. These developers are now experimenting with new ways to write
software, including the following:

•  Open source development and distribution. The software comes with the
source code. Users finding bugs can either fix the problem themselves or par-
ticipate in a community of developers to make the bugs known and fix them. If
an open-source project is vital, the changes needed by the user are accom-
plished.

•  Extreme (Agile or XP) programming. Nodes of developers implement com-
plex large systems, each working on a different facet of the overall software. A
contract is made between individual developers and the team to deliver needed
software modules with a predefined and mutually agreed upon API.

Starting in the late 1990's, the computer industry witnessed a stampede of software
development projects. Supported by new software development tools, new software devel-
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opment lifecycles, and new ways to write software, the one area of development that re-
mains firmly stuck in the 1990s are software testing tools, techniques, and methods.

TESTING METHODS

Software testing is as new as the computer industry itself—less than 40 years old. So it
should be no surprise that new software testing methods appear every year. In the age of
Internet software development, modern testing methods fall into these categories:

•  Click-stream testing

•  Unit testing (state, boundary, error, privilege)

•  Functional system testing (transactions, end-to-end tests)

•  Scalability and performance testing (load tests)

•  Monitoring
Each of these techniques fills a void in a segment of the software development space.

However, they all try to address every software developer's goal to deliver highly usable,
productive, and quality applications. The following sections delve into definitions for these
testing methods.

Click-Stream Testing

In 1996, a popular Web search engine company—Excite—won praise from computer
magazines by adding a personalization feature: Excite users could log in and set their prefer-
ence to see weather information for their hometowns. This was a first ever design. Soon
after the other search engine Web sites let you personalization features. This opened the age
of the portal, or gateway, a Web site that enables users to personalize the site and to access
deeper levels of content than is available to the general public. Prior to Excite’s innovation,
Web pages were updated manually by Web site editors—the Web functioned more like net-
work television, where viewers changed channels to view single shows. Today, everyone
expects Web-enabled applications to offer personalization, and Web sites that do not operate
like desktop applications appear to be inconsequential.

In the early days, testing Web sites meant checking that the personalization worked
and then checking the infrastructure to make sure the site continued to work. Infrastructure
includes everything that exists between the user’s browser and the database driving the
Web-enabled application, and it includes network routers, switches, load balancers, server
hardware, Web server software, and Common Gateway Interface (CGI) programs. CGI is
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the original definition for software that runs on a Web server to provide dynamic content to
a user.

Early Web-enabled application developers were interested in click-stream testing sta-
tistics. In a click-stream, the user clicks to move from one page to another on a Web site.
The more clicks, the more money a Web site publisher earned in advertising or sponsorship
of pages. The click-stream tools showed which URLs the users clicked, the Web site’s user
activity by time period during the day, and other data otherwise found in the Web server
logs. Popular choices for click-stream testing statistics include KeyNote Systems Internet
weather report, WebTrends log analysis utility, and the NetMechanic monitoring service.

Unfortunately, click-stream testing statistics reveal almost nothing about the user’s
ability to achieve their goals using the Web site. For example, a Web site may show a mil-
lion page views, but 33 percent of the page views may simply be pages with a message
"Found no search results." With click-stream testing, there’s no way to tell when users reach
their goals.

Unit Testing

Today, a single developer’s personal choice of development tool is becoming less im-
portant as team-based software development using object-oriented technology has become
the norm. Beginning in the 1990s, computer programming languages and operating system
platforms have an object-oriented programming strategy. Consequently, the languages and
platforms used to create these platforms look very similar to developers. Teams of develop-
ers can now work on software projects, with each developer using his or her own tools to
produce object-oriented code.

In a team, individual engineers work on code modules and guarantee the modules’
function. The team is bound together through a series of verbal and email contracts that de-
fine each module’s functions and interfaces. The internal workings of each module are the
responsibility of the software engineer. It is common sense, then, to expect that the engi-
neer’s primary concern will be making certain that a module is providing valid data when
called, but the engineer doesn’t care how the module is constructed internally. The engi-
neer’s job in assuring that the module’s responses are valid is called unit testing.

Unit testing finds problems and errors at the module level before the software leaves
development. Unit testing is accomplished by adding a small amount of the code to the
module that validates the module’s responses. For example, a module may check the tem-
perature of an air conditioner. Such a module written in Java may look like this:

class checktemperature {
private int temperature = 0;

public int gettemp()
{

return temperature;
}

public boolean validate( int temperature )
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{
 if ( temperature > 40 && temperature < 110 )

return true;
else

return false;
}

}
The checktemperature object has a method (gettemp) that returns the temperature

found in the air conditioner. The developer of checktemperature also includes the validate
method. The air conditioner temperature sensor is able to operate only within a range of 40
to 110 degrees Fahrenheit. If the temperature is actually 20 degrees, the returned value is
invalid.

Validation methods provide a means for each code module to check itself for valid
data when being compiled into a Web-enabled application. This is accomplished by running
a unit test utility that operates at compile time. In addition to seeing compiler errors for syn-
tax and construction problems, the unit test will validate the newly compiled object. Here is
the output of a make utility that performs unit testing as it compiles the software modules:

Compiling bigproject.
Compiling checktemperature.
Running unit test on checktemperature, input value is 55.
Unit test successful.
Building bigproject file.

While unit testing is a huge win for developers, some developers can be lulled into a
false sense of security. For example, a developer may think: "it passed the unit tests, so the
software quality should be high." Unfortunately, however, unit tests can be meaningless if
they’re used as the sole measure to determine the health of a Web-enabled application.

Testing a Web-enabled application must also include intelligent end-to-end system
tests. A system test checks the whole Web-enabled application, from the user operating a
keyboard and mouse, to the Web-enabled application logic, to the database and communica-
tion systems underneath. If everything is not working, the user will not be able to accom-
plish his or her goals.

Functional System Testing

While unit testing is a fine technique used by developers, users will never operate only
an individual module. Instead, users access collections of modules that make up the overall
system. System tests check that the software functions properly from end-to-end. Figure 1-7
shows the components found in a production Web-enabled application data center.
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Figure 1-7: Components of a Web-enabled application

Functional system tests check the entire application, from the client - which is de-
picted in Figure 1-7 as a Web browser, but could be any application that speaks an open-
protocol over a network connection - to the database and everything in-between. Web-
enabled application frameworks deploy Web browser software, TCP/IP networking routers,
bridges and switches, load-balancing routers, Web servers, Web-enabled application soft-
ware modules, and a database. Additional systems may be deployed to provide directory
service, media servers to stream audio and video, and messaging services for e-mail.

A common mistake of test professionals is to believe that they are conducting system
tests while they are actually testing a single component of the system. For example, check-
ing that the Web server returns a page is not a system test if the page contains only a static
HTML page. Instead, such a test checks the Web server only—not all the components of the
system.

Scalability and Performance Testing

Scalability and performance testing is the way to understand how the system will han-
dle the load caused by many concurrent users. In a Web environment concurrent use is
measure as simply the number of users making requests at the same time. One of the central
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points of this book is that the work to perform a functional system test can and should be
leveraged to conduct a scalability and performance test. The test tool you choose should be
able to take the functional system test and run it multiple times and concurrently to put load
on the server. This approach means the server will see load from the tests that is closer to the
real production environment than ever before.

Quality Of Service Testing

Understanding the system's ability to handle load from users is key to provisioning a
datacenter correctly, however, scalability and performance testing does not show how the
actual datacenter performs while in production. The same functional system test from earlier
in this chapter can, and should, be re-used to monitor a Web-enabled application. By run-
ning the functional system test over long periods of time the resulting logs are your proof of
the quality of service (QOS) delivered to your users. (They also make a good basis for a
recommendation of a raise when service levels stay high.)

This section showed definitions for the major types of testing. This section also started
making the case for developers, QA technicians and IT managers to work leverage each
other's work when testing a system for functionality, scalability and performance.

Next we will see how the typical behavior of a user may be modeled into an intelligent
test agent. Test agents are key to automating unit tests, functional system tests, scalability
and performance tests and quality-of-service tests. The following sections delve into defini-
tions for these testing methods.

DEFINING TEST AGENTS

In my experience, functional system tests and quality of service tests are the most dif-
ficult of all tests, because they require that the test know something of the user’s goals.
Translating user goals into a test agent can be challenging.

A Web-enabled application increases in value as the software enables a user to achieve
important goals, which will be different for each user. While it may be possible to identify
groups of users by their goals, experience shows us that understanding a single user’s goals
and determining how well the Web-enabled application helped the user achieve those goals
is the best way build a test. Such a test will better determine a Web-enabled application’s
ability to perform and to scale than a general test. This technique also helps the test profes-
sional to translate user goals into a test agent.

The formal way to perform system tests is to define a test agent that models an indi-
vidual user’s operation of the Web-enabled application to achieve particular goals. A test
agent is composed of a checklist, a test process, and a reporting method, as described in the
following table:
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Table 1-1 Components of an Intelligent Test Agent

Component Description

Checklist Defines conditions and states
Test process Defines transactions needed to perform the

checklist
Reporting method Records results after the process and

checklist are completed

Suppose a Web-enabled application provides travel agents with an online order-
entry service to order travel brochures from a tour operator. The order-entry service adds
new brochures every spring and removes the prior season’s brochures. A test agent for the
order-entry service simulates a travel agent ordering a current brochure and an outdated bro-
chure. The test agent’s job is to guarantee that the operation either succeeds or fails.

The following method will implement the example travel agent test by identifying the
checklist, the test process, and the reporting method. The checklist defines the conditions
and states the Web-enabled application will achieve. For example, the checklist for a shop-
ping basket application to order travel brochures might look like this:

1. View list of current brochures. How many brochures appear?

2. Order a current brochure. Does the service provide a confirmation number?

3. Order an out-of-date brochure. Does the service indicate an error?
Checklists determine the desired Web-enabled application state. For example, while

testing the Web-enabled application to order a current brochure, the Web-enabled applica-
tion state is set to hold the current brochure; otherwise the application is in an error state
when an out-of-date brochure order appears.

A test agent process defines the steps needed to initialize the Web-enabled application
and then to run the Web-enabled application through its paces, including going through the
checklist. The test agent process deals with transactions. In the travel agent brochure order-
entry system, the test agent needs these transactions:

1. Initialize the order entry service.

2. Look up a brochure number.

3. Order a brochure.
The transactions require a number of individual steps. For example, transaction 2 re-

quires that the test agent sign in to the order-entry service, post a request to show the desired
brochure number, confirm that the brochure exists, post a request to order the brochure, and
then sign-out.
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Finally, a test agent must include a reporting method that defines where and in what
format the results of the process will be saved. The brochure order-entry system test agent
reports the number of brochures successfully ordered and the outdated brochures ordered.

Test agents can be represented in a number of forms. A test agent may be defined on
paper and run by a person. Or a test agent may be a program that drives a Web-enabled ap-
plication. The test agent must define a repeatable means to have a Web-enabled application
produce a result. The more automated a test agent becomes, the better position a develop-
ment manager will be in to certify that a Web-enabled application is ready for users.

The test agent definition deliver these benefits:

•  Regression tests become easier. For each new update or maintenance change to
the Web-enabled application software, the test agent shows which functions still
work and which functions fail.

•  Regression tests also indicate how close a Web-enabled application is ready to
be accessed by users. The less regression, the faster the development pace.

•  Developing test agents also provides a faster path to scalability and performance
testing. Since a test agent models an individual user’s use of a Web-enabled ap-
plication, running multiple copies of the same test agent concurrently makes
scalability and performance testing much more simple.

Scalability and Performance Testing with Test Agents

Testing Web-enabled applications is different than testing desktop software. At any
time, a medium-scale Web-enabled application handles 1 to 5000 concurrent users. Learning
the scalability and performance characteristics of a Web-enabled application under the load
of hundreds of users is important to manage software development projects, to build suffi-
cient data centers, and to guarantee a good user experience. The interoperating modules of a
Web-enabled application often do not show their true nature until they’re loaded with user
activity.

You can analyze a Web-enabled application in two ways: by scalability and perform-
ance. I have found that analyzing one without the other will often result in meaningless an-
swers. What good is it to learn that a Web-enabled application’s ability to serve 5000 users
quickly if 500 of those users receive error pages?

Scalability describes a Web-enabled application’s ability to serve users under varying
levels of load. To measure scalability, run a test agent and measure its time. Then run the
same test agent with 1, 50, 500, and 5000 concurrent users. Scalability is the function of the
measurements. Scalability measures a Web-enabled application’s ability to complete a test
agent under conditions of load. Experience shows that a test agent should test 10 data points
to deliver meaningful results, but the number of tests ultimately depends on the cost of run-
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ning the test agent. Summarizing the measurements enables a development manager to pre-
dict the Web-enabled application’s ability to serve users under load conditions.

Table 2 shows example scalability results from a test Web-enabled application. The
top line shows the results of running a test agent by one user. In the table, 85 percent of the
time the Web-enabled application completed the test agent in less than one second; 10 per-
cent of the time the test agent completed in less than 6 seconds; and 5 percent of the time the
test agent took 6 or more seconds to finish.

Table 2  Example Results Showing Scalability of a Web Service

<1 second 2-5 seconds >5 seconds

1 85% 10% 5%
50 75% 15% 10%
500 70% 20% 10%
5000 60% 25% 15%
Table footnote

Notice in the table what happens when the Web-enabled application is put under load.
When 50 users concurrently run the same test agent, the Web-enabled application does not
perform as well as it does with a single user. With 50 users, the same test agent is completed
in less than 1 second only 75 percent of the time. The Web-enabled application begins to
suffer when 5000 users begin running the test agent. At 5000 users, only 60 percent will
complete the test agent in less than 1 second.

One can extrapolate the scalability results for a Web-enabled application after a mini-
mum of data points exists. If the scalability results contained tests at only 1 and 50 users, for
example, the scalability extrapolation for 5000 users would be meaningless. Running the
scalability tests with at least four levels of load, however, provides meaningful data points
from which extrapolations will be valid.

Next we look at performance indexes. Performance is the other side of the coin of
scalability. Scalability measures a Web-enabled application’s ability to serve users under
conditions of increasing load, and testing assumes that valid test agents all completed cor-
rectly. Scalability can be blind to the user experience. On the other hand, performance test-
ing measures failures.

Performance testing evaluates a Web-enabled application’s ability to deliver functions
accurately. A performance test agent looks at the results of a test agent to determine whether
the Web-enabled application produced an exceptional result. For example, in the scalability
test example shown in Table 3, a performance test shows the count of error pages returned
under the various conditions of load.
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Table 3  Example Performance Test Agent Results

Performance <1 second 2 - 5 seconds >6 seconds Total

1 1% 5% 7% 13%
50 2% 4% 10% 16%
500 4% 9% 14% 27%
5000 15% 25% 40% 80%
Table footnote

Table 3 shows the performance results of the sample example Web-enabled applica-
tion whose scalability was profiled in Table 2. The performance results show a different
picture of the same Web-enabled application. At the 500 and 5000 concurrent-user levels, a
development manager looking solely at the scalability results might still decide to release a
Web-enabled application to users, even though Table 1 showed that at 500 concurrent users
that 10 of the pages delivered had very slow response times —slow test agents in this case
are considered to take 6 or more seconds to complete. Would the development manager still
release the Web-enabled application looking only at the performance test results?

These results show the Web-enabled application failed the test 15 percent of the time,
when the test agent completed the test in less than 1 second while serving at the 5000 con-
current user level. Add the 25 percent value for test agents that complete in 5 seconds or less
and the 40 percent for test agents that complete in 6 or more seconds, and the development
manager has a good basis for expecting that 80 percent of the users will encounter errors
when 5000 users concurrently load the Web-enabled application.

As you can see, both scalability and performance measures are needed to determine
how well a Web-enabled application will serve users in production environments. Taken
individually, the results of these two tests may not show the true nature of the Web-enabled
application. Or even worse, they may show misleading results!

Taken together, scalability and performance testing shows the true nature of a Web-
enabled application.

TESTING FOR THE SINGLE USER

Many developers think testing is not complete until the tests cover a general cross
section of the user community. Other developers believe high-quality software is tested
against the original design goals of a Web-enabled application as defined by a product man-
ager, project marketer, or lead developer. These approaches are all insufficient, however,
because they test toward the middle only.

Testing toward the middle makes large assumptions of how the aggregate group of us-
ers will use the Web-enabled application and the steps they will take as a group to accom-
plish common goals. But Web-enabled applications simply are not used this way. In reality,
each user has their own personal goal and method for using a Web-enabled application.
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Intuit, publishers of the popular Quicken personal finance management software, rec-
ognized the distinctiveness of each user’s experience early on. Intuit developed the "Follow
me home" software testing method. Intuit developers and product managers visited local
software retail stores, waiting in the aisles near the Intuit products and watching for a cus-
tomer to pick up a copy of Quicken. When the customer appeared ready to buy Quicken, the
Intuit managers introduced themselves and asked for permission to follow the customer
home to learn the user’s experience installing and using the Quicken software.

Intuit testers could have stayed in their offices and made grand speculations about the
general types of Quicken users. Instead, they developed user archetypes—prototypical Web-
enabled application users based on the real people they met and the experience these users
had. The same power can be applied to developing test agents. Using archetypes to describe
a user is more efficient and more accurate than making broad generalizations about the na-
ture of a Web-enabled application’s users. Archetypes make it easier to develop test agents
modeled after each user’s individual goals and methods of using a Web-enabled application.

The best way to build an archetype test agent is to start with a single user. Choose just
one user, watch the user in front of the Web-enabled application, and learn what steps the
user expects to use. Then take this information and model the archetype against the single
user. The better an individual user’s needs are understood, the more valuable your archetype
will be.

Some developers have taken the archetypal user method to heart. They name their ar-
chetypes and describe their background and habits. They give depth to the archetype so the
rest of the development team can better understand the test agent.

For example, consider the archetypal users defined for the Inclusion Technologies, one
of the start-up companies I helped to start-up, Web-enabled application software. In 1997,
Inclusion developed a Web-enabled application to provide collaborative messaging services
to geographically disbursed teams in global corporations. Companies like BP, the combined
British Petroleum and Amoco energy companies, used the Web-enabled application to build
a secure private extranet, where BP employees and contractors in the financial auditing
groups could exchange ideas and best practices while performing their normal work.

Test agents for the BP extranet were designed around these archetypal users:

• Jack Field auditor, 22 years old, recently joined BP from Northwestern Univer-
sity, unmarried but has a steady girlfriend, has been using spreadsheet software
since high school, open to using new technology if it gets his job done faster,
loves motocross and snow skiing.

• Madeline Central office manager, 42 years old, married 15 years with two chil-
dren, came up through the ranks at BP, worked in IT group for three years be-
fore moving into management, respects established process but will work the
system to bring in technology that improves team productivity.

• Harris IT support, 27 years old, wears two pagers and one mobile phone, works
long hours maintaining systems, does system training for new employees, loves
to go on training seminars in exotic locations.
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The test agents that modeled Jack’s goals concentrate on accessing and manipulating
data. Jack often needs to find previously stored spreadsheets. In this case, a test agent signs
in to the Web-enabled application and uses the search functions to locate a document. The
test agent modifies the document and checks to make sure the modifications are stored cor-
rectly.

The test agent developed for Madeline concentrate on usage data. The first test agent
signs in to the Web-enabled application using Madeline’s high-level security clearance. This
gives permission to run usage reports to see which of her team members is making the most
use of the Web-enabled application. That will be important to Madeline when performance
reviews are needed. The test agent will also try to sign in as Jack and access the same re-
ports. If the Web-enabled application performs correctly, only Madeline has access to the
reports.

Test agents modeled after Harris concentrates on accessing data. When Harris is away
from the office on a training seminar, he still needs access to the Web-enabled application as
though he were in the office. The test agent uses a remote login capability to access the
needed data.

Understanding the archetypes is your key to making the test agents intelligent. For ex-
ample, a test agent for Harris may behave more persistently than a test agent for Madeline. If
a test agent tries to make a remote connection that fails, the test agent for Harris would try
again and then switch to a difference access number.

CREATING INTELLIGENT TEST AGENTS

Developing test agents and archetypes is a fast, predictable way to build good test
data. The better the data, the more you know about a Web-enabled application’s scalability
and performance under load. Analyzing the data shows scalability and performance indexes.
Understanding scalability and performance shows the expenses a business will undertake to
develop and operate a high-quality Web-enabled application.

In many respects, testing Web-enabled applications is similar to a doctor’s treating
patients. For example, an oncologist for a cancer patient never indicates the number of days
a patient has left to live. That’s simply not the nature of oncology—the study and treatment
of cancer. Oncology studies cancer in terms of epidemiology, whereby individual patient
tests are meaningful only when considered in collection with a statistically sufficient number
of other patients. If the doctor determines an individual patient falls within a certain category
of overall patients, the oncologist will advise the patient what all the other patients in that
category are facing. In the same way, you can't test a Web-enabled application without using
the system, so there is no way to guarantee a system will behave one way or the other. In-
stead you can observe the results of a test agent and extrapolate the performance and scal-
ability to the production system.

Accountants and business managers often cite the law of diminishing returns, where
the effort to develop one more incremental addition to a project provides less and less re-
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turns against the cost of the addition. Sometimes this thinking creeps into software test pro-
jects.

You can ask yourself, at what point have enough test agents and archetypes been used
to make the results meaningful? In reality, you can never perform enough test agents and
user archetypes to guarantee a Web-enabled application’s health. While an individual test
agent yields usable information, many test agents are needed. Each test agent needs to pro-
file an individual user’s goals and methods for using a Web-enabled application. Taken to-
gether, the test agents show patterns of scalability and performance.

Data from many test agents develops predictability. Each new Web-enabled applica-
tion or maintenance release may be tested against the library of test agents in a predictable
time and with a predictable amount of resource.

Automated Testing

The overhead of developing and running test agents can become too much of a burden
when performed manually. After the first agent is developed, it is time for a second. There
may be no end to this cycle. As a result, choosing to build test agents modeled around indi-
vidual users requires an increasingly costly test effort—or it requires automation. Test auto-
mation enables your library of test agents to continue growing, and testing costs can remain
manageable.

Test automation enables a system to run the test agents concurrently and in bulk.
Many automated test agents will drive a Web-enabled application at levels reaching normal
for the real production environment. The amount of users depends on your expected Web-
enabled application users. Experience tells us to multiply the expected number of users by
10, and test against the result.

Each automated test agent embodies the behavior of an archetype. Multiple concurrent
running copies of the same test agent will produce interesting and useful test results. In real
life, many users will exhibit the same behavior but at different times. Intelligent test agents
bring us much closer to testing in a real-world production environment.

SUMMARY

In this chapter, we look at the current computing industry state. We found that soft-
ware developers, QA technicians and IT managers have the largest selection of tools, tech-
niques, hardware and knowledge to build integrated Web-enabled software applications
ever. We also found that choosing tools, techniques and methods impacts system scalability
and reliability.

We learned that building high quality Web-enabled applications requires tools, meth-
odologies, and a good understanding of the development team’s behavior. In Chapter 2, we
will see in detail how intelligent test agents provide useful and meaningful data and how to
determine how close the user gets to meeting his or her needs while using the Web-enabled
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application. We will also see how intelligent test agents automate running of test suites and
discuss the test environments and test tools necessary to understand the test suite results.

This chapter shows the forces at work that have made Web-enabled applications so
popular and shows how you can achieve entirely new levels of productivity by using new
software testing tools, new techniques, and new methods.
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C H A P T E R  2

When Application Performance
Becomes A Problem

Software development professionals have traditionally quantified good dis-
tributed system performance by using well establish quality methods and criteria.
This chapter shows how a new breed of methods and criteria is needed to test Web-
enabled applications.. The new software test techniques help developers, QA tech-
nicians and IT managers prioritize their efforts to maximize the user’s ability to
achieve their personal goals. New tools introduced in this chapter, for example, the
Web Rubric and Web Application Points System, provide easy to follow criteria to
determine the health of a Web-enabled application.

JUST WHAT ARE CRITERIA?

By now in the Internet revolution, it is common sense that Internet users expect Web-
enabled applications to perform at satisfactory levels, and therein lies the dilemma: one
user’s satisfaction is another’s definition of frustration. In addition, a single user’s satisfac-
tion criteria changes over time. Figure 2-1 shows how user criteria can change over time.
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Figure 2-1 A User’s Changing Needs.

Figure 2-1 shows that although it may be fine to launch a Web-enabled application ac-
cording to a set of goals deemed satisfactory today, the goals will change over time. In the
early days of the Web, simply receiving a Web page satisfied users. Later, users were satis-
fied only with fast performing Web sites. Recently, users commonly make choices of Web-
enabled applications based on the service’s ability to meet their personal needs immediately.
The pages that appear must have meaningful and useful data that is well organized. And, of
course, it must appear quickly.

With user expectations changing over time, the tests of a system conducted on one day
will show different results on a second day. In my experience, Web-enabled applications
need to be constantly tested, monitored, and watched. In a retail store-front analogy, the
Web-enabled application store is open 24 hours a day with 1 to 100,000 customers in the
store at any given time. Bring in the intelligent test agents!

Intelligent test agents, introduced in Chapter 1, are a fast and efficient way to test a
Web-enabled application everyday. At their heart, intelligent test agents automate the test
process so that testing everyday is possible. Building agents based on user archetypes pro-
duces meaningful data for determining a Web-enabled application’s ability to meet user
needs. As user satisfaction goals change, we can add new test agents based on new user ar-
chetypes.

To better understand user archetypes, I will present an example. Figure 2-2 shows a
typical user archetype description.
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Figure 2-2 An example user archetype: Ann is a sales representative for a manu-
facturing business. The more personable the user archetype definition,
the more your team will respond!

Defining user archetypes in this way is up to your imagination. The more time you
spend defining the archetype the easier it will be for all your team members to understand.
Using this archetype technique will achieve these results in your team:

•  Archetypes make an emotional connection between the goals of a prototypical
user of the application and the software developer, QA technician and IT man-
ager that will deliver the application. Your team members will have an easy-to-
understand example of a person that prototypically will use your Web-enabled
application. Rather than discussing individual features in the application, the
team will be able to refer to functions that the archetype will want to regularly
use to accomplish their personal goals.

•  Archetypes bring discussions of features, form and function in your Web-
enabled application from a vague general topic to a focused user goal-oriented
discussion. For example, instead of discussing the user registration page's indi-
vidual functions, the team discussion of the user registration page will cover
how the Ann uses the registration page.

•  Archetypes give the team an understanding of where new functions, bugs and
problems need to be prioritized in the overall schedule. That is because Ann
needs solutions - rather than some unknown user.

What's more, user archetypes make it much easier to know what to test and why. For
example, a test agent modeled after Ann will focus on the speed at which she accomplishes
her goals. A test agent might even go so far as to drive a Web-enabled application to deliver
a search result and then cancel the search if it takes longer than 2 seconds to complete - that
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is because Ann is goal oriented with a short attention span. The test agent modeled after Ann
is added to the library of other test agents, including test agents for Jack, Madeline, and Har-
ris, that were introduced in Chapter 1.

Ultimately, developing new user archetypes and test agents modeled after the arche-
type's behavior produces automated Web tests that get close to the real experience of a sys-
tem serving real users. What's more, user archetypes and test agents allow us to know when
Web-enabled application performance becomes a problem.

DEFINING CRITERIA FOR GOOD WEB PERFORMANCE

Before the Internet, client/server network systems operated on private networks and
were accessed at rather predictable times, with simple patterns, by a well-known and pre-
dictable group of people. Many times, the network usually ran in a single office with maybe
a few remote locations.

Advances in routers, gateways, bridges, and other network equipment introduced the
era where any device on the office Local Area Network (LAN) may receive requests from
people anywhere in the world and at any time. An office network may not be exposed to the
open Internet, but it is likely that employees will access the office network from home, re-
mote offices will access the network through a network bridge, and the LAN may also be
handling traffic for your phone system using voice over Internet Protocol (VoIP). Your
Web-enabled applications on the LAN are subjected to highly unpredictable load patterns
created by a widely heterogeneous and unpredictable group of users.

So what is there to lose if your company chooses to ignore load patterns? Few organi-
zations reward uptime achievements for Web-enabled application infrastructure. It’s the
downtime, stupid! Excessive loads cause serious harm to a company’s bottom line, market
value, and brand equity—not to mention the network manager’s reputation. For example,
you might recall when eBay went down for 22 hours in 1999 due to a load-related database
error. The company lost $2 million in revenues and eBay stock lost 10 percent of its value as
a result. (Details are at http://www.internetnews.com/ec-news/article.php/4_137251) Al-
though most businesses are not as large as eBay, they will suffer proportionally should load
patterns be ignored.

Paying attention to load patterns and choosing the appropriate test methodology is
critical to the validity of such testing. Dependable and robust test methodology for Web-
enabled applications deployed on the Internet or in extranets is mandatory today. With poor
methodology, the results are at best useless, and in the worst case, misleading.

Defining criteria for good Web-enabled application performance has changed over the
years. With so much information available, it’s relatively easy to use current knowledge to
identify and update outdated criteria. Common “old” testing techniques include ping tests,
click-stream measurement tools and services, and HTML content checking.

• Ping tests use the Internet Control Message Protocol (ICMP) to send a ping re-
quest to a server. If the ping returns, the server is assumed to be alive and well.



6 The Java Design and Test Automation Guide Chap. 2

The downside is that usually a Web server will continue to return ping requests
even when the Web-enabled application has crashed.

• Click-stream measurement tests makes a request Web pages and records sta-
tistics about the response, including total page views per hour, total hits per
week, total user sessions per week, and derivatives of these numbers. The down-
side is that if your Web-enabled application takes twice as many pages as it
should for a user to complete his or her goal, the click-stream test makes it look
as though your Web site is popular, while to the user your Web site is frustrat-
ing.

• HTML content-checking tests makes a request to a Web page, parses the re-
sponse for HTTP hyperlinks, requests hyperlinks from their associated host, and
if the links returned successful or exceptional conditions. The downside is that
the hyperlinks in a Web-enabled application are dynamic and can change, de-
pending on the user’s actions. There is little way to know the context of the
hyperlinks in a Web-enabled application. Just checking the links’ validity is
meaningless, if not misleading.

Understanding and developing the criteria for good Web-enabled application perform-
ance is based on the users’ everyday experiences. Companies with Web-enabled applica-
tions that have relied solely on ping tests, click-stream measurements, or HTML content
develop useless and sometimes misleading results. These tools were meant to test static Web
sites, not Web-enabled applications.

In a world where users choose between several competing Web-enabled applications,
your choice of criteria for good Web-enabled application performance should be based on
three key questions:

• Are the features working?

• Is performance acceptable?

• How often does it fail?

Are the Features Working?

Assemble a short list of basic features. Often this list may be taken from a feature re-
quirements document that was used by the software developers that created the Web-
enabled application. While writing down the features list, consider the user who just arrived,
for the first-time, at your Web-enabled application, and is ready to use it.

Here’s an example showing the basic features list for the on-line support service at my
company PushToTest:
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1. Sign in and sign out.

2. Navigate to a discussion message.

3. Download a document.

4. Post a message.

5. Search for a message using key words.
While the PushToTest Web site has more than 480 server objects, 13,000 lines of

code, and a versatile user interface, it comes down to the five features listed above to guar-
antee that the application was working at all.

Is Performance Acceptable?

Check with three to five users to determine how long they will wait for your Web-
enabled application to perform one of the features before they abandon the feature and move
on to another. Take some time and watch the user directly, and time the seconds it takes to
perform a basic feature.

How Often Does It Fail?

Web-enabled application logs, if formatted with valuable data, can show the time be-
tween failures. At first, developing a percentage of failures acceptable to users may be ap-
petizing. In reality, however, such a percentage is meaningless. The time between failures is
an absolute number. Better to estimate the acceptable number first, and then look into the
real logs for a real answer. The Web Rubric described in the next section is a good method
to help you understand failure factors and statistics.

WEB-ENABLED APPLICATION MEASUREMENT TOOLS

In my experience, the best measurements for a Web-enabled application include the
following:

1. Meantime between failures in seconds

2. Amount of time in seconds for each user session, sometimes known as a
transaction
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3. Application availability and peak usage periods

4. Which media elements are most used (for example, HTML vs. Flash,
JavaScript vs. HTML forms, Real vs. Windows Media Player vs. QuickTime)

Developing criteria for good Web-enabled application performance can be an esoteric
and difficult task. At this time, a more down-to-earth example of a method to define good
performance criteria is in order.

THE WEB RUBRIC

In developing criteria for Web-enabled application performance, testing methods often
include too much subjectivity. Many times, a criteria assessment grades a Web-enabled ap-
plication well, but then when the grade is examined, the assessment criteria is vague and the
performance behavior is overly subjective. That puts every tester into an oddly defensive
position trying to justify the test results. A Web rubric is an authentic assessment tool that is
particularly useful in assessing Web performance criteria where the Web-enabled applica-
tion results are complex and subjective.

Authentic assessment is a scientific term that might be better stated as “based in real-
ity.” Years ago, apprenticeship systems assessed people based on performance. In authentic
assessment, an instructor looks at a student in the process of working on something real,
provides feedback, looks at the student’s use of the feedback, and adjusts the instruction and
evaluation accordingly.

A Web rubric is designed to simulate real-life activity to accommodate an authentic
assessment tool. It is a formative type of assessment because it becomes a part of the soft-
ware development lifecycle. And it includes the developers themselves, who assess how the
Web-enabled application is performing for users. Over time, the developers can assist in
designing subsequent versions of the Web rubric. Authentic assessment blurs the lines be-
tween developer, tester, and user.

Table 2-1 is an example of a Web rubric for email collaboration Web service:

Table 2-1 A Rubric for an Email-enabled Web Application

Criteria
assessed
through
system use

Level 1
Beginning

Level 2
Developing

Level 3
Standard

Level 5
Above
Standard

Basic features
are functioning

Few features
work correctly
the first time
used.

Many features
do not operate.
Some missing
features re-
quired to com-
plete the work.

Most features
operate. Work-
arounds avail-
able to complete
work.

All features
work correctly
every time they
are used.
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Criteria
assessed
through
system use

Level 1
Beginning

Level 2
Developing

Level 3
Standard

Level 5
Above
Standard

plete the work.
Speed of opera-
tion.

Many features
never com-
pleted.

Most features
completed be-
fore user lost
interest.

Most features
completed in 3
seconds or less.

All features
complete in less
than 3 seconds.

Correct opera-
tion

Few features
result success-
fully with an
error condition.

Some features
end in an error
condition.

Most features
complete suc-
cessfully.

All features
complete suc-
cessfully.

The approval criteria from this rubric is as follows:
The highest, most consistent score on the criteria must be at level 3, with no score at a level 1.
For Web-enabled applications with three criteria, two must be at a level 3. The remaining criteria
must be higher than level 1.

The advantages of using rubrics in assessment are as follows:

•  Assessment is more objective and consistent.

•  The rubric can help the tester focus on clarifying criteria into specific terms.

•  The rubric clearly describes to the developer how his or her work will be evalu-
ated and what is expected.

•  The rubric provide benchmarks against which the developer can measure and
document progress.

Rubrics can be created in a variety of forms and levels of complexity; however, they
all contain common features that perform the following functions:

•  Focus on measuring a stated objective (performance, behavior, or quality)

•  Use a range to rate performance

•  Contain specific performance characteristics arranged in levels indicating the
degree to which a standard has been met
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While the Web rubric does a good job of removing subjectivity from good Web-
enabled application performance criteria, good Web-enabled application performance can be
defined in other important ways.

THE FOUR TESTS OF GOOD PERFORMANCE

Web-enabled application performance can be measured in four areas:

•  Concurrency A measurement taken when more than one user operates a Web-
enabled application. You can say a Web-enabled application’s concurrency is
good when the Web-enabled application can handle large numbers of concurrent
users using functions and making requests. Employing load-balancing equip-
ment often solves concurrency problems.

•  Latency A measurement of the time it takes a Web-enabled application to finish
processing a request. Latency comes in two forms: the latency of the Internet
network to move the bits from a browser to server, and software latency of the
Web-enabled application to finish processing the request.

•  Availability A measurement of the time a Web-enabled application is available
to take a request. Many "high availability" computer industry software publish-
ers and hardware manufacturers will claim 99.9999 percent availability. As an
example of availability, imagine a Web-enabled application running on a server
that requires 2 hours of downtime for maintenance each week. The formula to
calculate availability is (Total  hours – downtime hours ) / total hours. As each
week consists of 168 total hours (7 days times 24 hours per day), a weekly 2-
hour downtime results in 98.8095 percent availability ( ( 168 - 2 ) / 168 ).

•  Performance This is a simple average of the amount of time that passes be-
tween failures. For example, an application that threw errors at 10:30 A.M.,
11:00 A.M., and 11:30 A.M. has a performance measurement of 30 minutes.

Over the years I found that many times these terms are confused and used inter-
changeably. I am not immune from such foibles too! A handy technique to remember these
four tests of good performance is to think of someone CLAP-ing their hands. C.L.A.P. is a
handy acronym for concurrency, latency, availability and performance that helps me re-
member the test area’s names.



When Application Performance Becomes A Problem 11

COMPONENTS OF A GOOD TEST AGENT

The Web rubric provides a systematic way of testing a Web-enabled application.
Complexity and subjectivity are avoided by using a Web rubric to define the testing criteria.
With a Web rubric in hand, special care must be taken to implement criteria correctly. Sub-
jectivity and laxness can creep into a test.

As the old expression goes
Garbage in, garbage out.
The modern expression for testing Web-enabled applications might go like this:
Who’s watching for garbage?
That is because there still is not much of a defined profession for software testing. Few

people in the world are software test professionals. And few text professionals expect to
remain in software testing throughout their careers. Experience shows that many software
test professionals view their jobs as stepping-stones into software development.

When developing criteria for Web-enabled application performance, the testers and
the test software need to show many unique qualities, including a nature to be rigorous, sys-
tematic, and repeatable. These traits do not guarantee success. However, recognizing the
traits of good software test people and good software test agents can be an important factor
to ensure that the Web-enabled application test criteria are tested correctly. Table 2-2 shows
the major traits to look for in a senior software test person and how the same traits are found
in intelligent test agents.

Table 2-2 Traits to look for in test agents and test people

Intelligent Software Test Agents Software Test People

Rigorous - intelligent software test agents
are “multi-pathed.” While driving a Web-
enabled application, if one path stops in an
error condition, a rigorous test agent will
try a second or third path before giving
up.

Rigorous - test people’s nature drives
them to try to make a broken piece of
software work in any way they can.
They are multi-pathed and creative.

Systematic - test agents run autono-
mously. Once installed and instructed on
what to do, they do not need reminding to
follow test criteria.

Systematic - test people always start
and end with the same process while
following a test criteria; however, they
concentrate on finding problems the
system was not defined to find.

Repeatable - test agents follow detailed
instructions describing the state a system
must be in to run a test criteria.

Repeatable - test people find something
new each time they run a test criteria,
even though the test is exactly the same
each time.
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Recognizing the traits of good software test people and good software test agents are
important to ensuring the Web service test criteria is tested correctly.

WEB-ENABLED APPLICATION TYPES

In the early days of the Internet and the Web, it appeared that Web-enabled applica-
tions would just be another form of software development. It should be apparent today,
however, that all software will include a Web connectivity strategy. Even PC video games
include features to receive automatic software updates and allow players to play against us-
ers across a network connection.

No longer does a software category of Web-enabled application exist, since all soft-
ware includes Web-enabled application qualities! This fact has had a profound effect on
developing criteria for software performance. For example, no single criteria exist for con-
nection speed performance. The Web-enabled application that powers a Tivo video hard-
drive recorder appliance connects to a central server every day early in the morning to
download a program guide of TV shows. If its connection speeds drops down to 50 percent
of normal transfer speed but still completes the download process, who really cares? The
connection speed performance criteria apply to that video hard-drive recorder only. No one
has developed criteria that would work for both the video recorder and a PC video game, as
both are in distinctly different categories of software, with their own performance criteria.

Does this mean that every new software program will require its own criterion? As
major categories of Web-enabled application software emerge, each category will include
resources to use for determining performance criteria and test tools to use for evaluating
performance according to the criteria. I have lost count of the number of times when a tech-
nology industry leader announced convergence, only to find divergence and more datacen-
ters filled with heterogeneous systems.

The major categories of Web-enabled application software today are

•  Desktop productivity software

•  Utility software

•  E-commerce software

•  Network connectivity software

•  Collaboration software

•  Database software
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•  Directory and registry software

•  Middleware

•  Drivers, firmware, and utilities

•  Storage software

•  Graphic and human user interface software
Each of these types has its own Web-enabled application strategy and criterion for

good performance. This may include a strategy and criterion for the application to not di-
rectly connect to other resources over the Internet.

When evaluating a new software category, look for tools that help determine the crite-
ria for performance:

•  As the system grows, so does the risk of problems such as performance degra-
dation, broken functions, and unauthorized content. Determine the test tool’s
ability to continue functioning while the system grows.

•  Individual tool features may overlap, but each type of tool is optimized to solve
a different type of problem. Determine the best mix of test tools to cover the
criteria.

•  Diagnostic software locates broken functions, protecting users from error mes-
sages and malfunctioning code. Find a test tool that handles error conditions
well.

•  Look for a product that checks the integrity of Web-enabled applications. Integ-
rity in a testing context means security and functionality checks. For example,
can you sign in and access unprivileged controls?

•  A Web-enabled application’s functions and content normally require separate
test software. For example, although a button may function correctly, the but-
ton’s label is misspelled. Additionally, the application publisher may be legally
obliged to check the accessibility of the application by users with special needs.
For example, US government Section 508 rules are just one of many govern-
ment regulations that require full accessibility for people with special needs

•  Complex systems manage user access to data and functions. A test tool needs to
check authorization while conducting a Web performance criteria test.
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•  Performance monitoring tools need to measure Web-enabled application per-
formance.

•  A tool that tracks viewer behavior can help you optimize your Web-enabled ap-
plication’s content, structure, and functionality.

Eventually, major Web-enabled application categories emerge to become part of our
common language. Web-enabled applications showing this kind of maturity are written to
assume that no printed manual for the services will ever exist. Instead, the services’ func-
tions and usage will achieve a certain set of expectations of users in such a way that instruc-
tion will be unnecessary.

Software testing is a matter of modeling user expectations and ensuring that the soft-
ware meets these expectations 24-hours-a-day, seven days a week. Developing criteria for
good Web-enabled application performance is key to reaching this goal.

THE WEB-ENABLED APPLICATION POINTS SYSTEM
(WAPS)

Testing Web-enabled applications can lead a development team in several different di-
rections at once. For example, unit tests may show three out of ten software modules failing
and response times lagging into the 10-plus second range, and the Web-enabled application
may be returning system failure messages to users seven times in a day. A Web-enabled
application that exhibits any of these problems is already a failure. Experience tells us that
users find unacceptable Web-enabled applications that display any of these characteristics.

At the same time, such results can pull development managers in many directions at
once. With limited resources, which problem should take highest priority? The Web-enabled
applications Points System (WAPS, for short) is a good solution that helps development
managers understand a Web-enabled application’s health and prioritize a development
team’s efforts to solve problems and maintain the code. WAPS is an ideal measure when
used as a measurement in a rubric for good system performance.

WAPS is a quick, easy way to profile the performance and scalability of any Web-
enabled application. By reducing the number of points, the team increases a Web-enabled
application’s ability to serve users well. The Points System combines three measurements,
described in Table 2-3.

Table 2-3  The Web-enabled applications Points System

Criteria Description Points
(Reset Every 24 Hours)

Functions Number of wrong states,
boundary errors, and
privilege problems.

1 point for every log entry
showing functional errors.
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Criteria Description Points
(Reset Every 24 Hours)

Performance Number of seconds to
deliver dynamic Web
pages.

2 points for every page
that took more than 10
seconds to compile.

Failures Number of failure occur-
rences in which a user
sees an error message:
e.g., "Sorry the informa-
tion center encountered a
database error".

3 points where the Web-
enabled applications
failed.

Count the number of points for each 24-hour period. Check the Web-enabled applica-
tion’s health from the categories shown in Table 2-4.

Table 2-4 Points system analysis.

Points) Health What you should do

1-10 Excellent Enjoy the day and check the numbers
again tomorrow.

11-25 Fair Fix the problems that will get the
count into the Excellent category;
however, fix a mix of the functional,
performance, and failure problems.
Avoid concentrating on a single cate-
gory of problems.

26-100 Poor Your Web-enabled application is not
ready for users. If your Web-enabled
application is already in production,
take it out of production, fix the
problems, and explain these steps to
the users.

101 or more Horrid Don’t shoot yourself, there is a way to
deliver healthy Web services. Assess
your code writing skills, the project’s
complexity and the major problem
areas. Pick a date at least one week in
the future and see if you have moved
the Web service from the Horrid state
to the Poor state. Then check the
numbers again daily.
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Points) Health What you should do

WAPS provides a metric to help developers understand the relative health of a soft-
ware project—during initial development and then during maintenance. Effective communi-
cation to the development team is key to making WAPS an effective tool. You can automate
the WAPS report so that developers receive a report every day. The less manual collection
of WAPS data the better.

WAPS daily measurements already provide a lot of information to the developers; yet
charting points over time can be invaluable to maintaining the health of a software project.
PushToTest, a software test automation solutions company, uses WAPS and noted the data
shown in Figure 2-2 over time for one of its Web-enabled applications.

Figure 2-3 Mapping the WAPS system results for a site over time..

WAPS results are presented at the start of the weekly developers’ meeting. Push-
ToTest engineers noted that WAPS places the focus on fixing problems users encounter
every day, and because WAPS is composed of multiple weighted types of problems, the
developers could focus on targeted problems rather than just working down a list of prob-
lems sequentially.

So how does WAPS scale to large Web sites? Imagine applying WAPS to a public
Internet site that features free music downloads. 10 million users may visit such a site every
month. Would one still give a Web-enabled application a Horrid ranking if only 120 points
accrued for an installed base of 10 million users? Yes! You may choose to weight the points
table according to the size of the system being evaluated; however, counting points, as op-
posed to relying on percentages, is important.

Those users who ran into problems did not reach their personal goal because of the
horrid nature of the Web-enabled application. WAPS treats every single user as critical to
success. When a manager ignores the individual user and tries to play the numbers by fixing
only problems that are significant to the aggregate target audience, that is usually the time
that the one important magazine reviewer, venture capitalist, business development execu-
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tive, or key customer tries to access the site and encounters a problem, and the entire devel-
opment effort and company credentials suffer as a result.

WAPS should become part of the company language. Even outside the development
team, the company will grow to know how the Web-enabled application is performing by
looking at the daily WAPS report. Those workers who provide customer service and sup-
port, and even the marketing teams, will know when to apply more resources, maybe even
more overtime, depending on the points the software racked up.

Another clear win for WAPS is the effect it has on developers. Web-enabled applica-
tions are complicated, intricate, and cumbersome systems to build, deploy, and manage.
From the developers’ perspective, building a Web-enabled application can be as intimidat-
ing as climbing a wall of ice—one slip and it’s over. This causes many developers to be
overly cautious and almost too focused on finishing. (And, of course, draconian managers
could offer incentive pay based on WAPS!)

The developers’ perspectives direct their attention to these goals:

•  Design - How the software modules interact

•  Features - The code that performs a user driven function

•  Performance - The speed at which the software completes user driven com-
mands

•  Scalability - How the software would act at different levels of usage
The obvious missing goal is usability. Who is responsible for the user’s experience on

the Web-enabled application?
The developers’ best intentions are to deliver software that scales, performs well, and

is usable. But when a software project goes over budget, behind schedule, and appears
overly complex, many developers become conservative and defensive. Developers may even
fall back on an often-cited and overused bromide:

Quality, features, and schedule. Choose any two of these.
In this case, I recommend using WAPS. By agreeing to a scoring system, the devel-

opment team has a tool to get back to a rational schedule and reasonable management ex-
pectations. No matter the size or complexity of the project, the WAPS brings a measured
balance to solving problems and delivering the finished Web-enabled application with us-
ability intact.

THE WEB-ENABLED APPLICATIONS FRAMEWORK

Web-enabled applications succeed when the system can scale from 1 user to 10,000
users without changing the software implementation or design. Web-enabled applications
succeed when all users have good experiences, even though one user may use only a single
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function and other users use all the functions. Web-enabled applications succeed when the
Web-enabled application is available whenever a user shows up. Testing Web-enabled ap-
plications under real-life stresses and situations make it possible to predict a Web-enabled
application’s success and to monitor the Web-enabled application to know when mainte-
nance is needed. Choosing the appropriate components to a system that hosts a Web-enabled
application greatly determines how successful a Web-enabled application will be.

With that in mind, this section presents a framework for building and deploying Web-
enabled applications, instructions on how to apply intelligent test agents to Web-enabled
applications, and a free open-source set of tools and scripting language called TestMaker
that can help build automated intelligent test agents. The result is a system and methodology
that builds better software faster.

The Flapjacks Architecture

In my years as a designer and builder of Web systems, I’ve developed an analogy that
aptly describes Web application architectures that consist of deploying many small servers
that are accessed through a load balancer to provide a front end to a powerful database
server. The analogy goes like this:

Hungry patrons (Web users) show up for breakfast at your (the developer’s) diner. The
more patrons that come in for breakfast, the more flapjacks (servers) you have to toss on the
griddle. Some of the patrons want banana pancakes, some want blueberry, some want plain
cakes with just a hint of vanilla, and many will want to sample several flavors. In the Web-
enabled applications scenario, some users will require access to the servers running Java
servlets, some will need application servers, some will need .NET and SOAP Web-enabled
applications, and others will be looking for Common Gateway Interface (CGI) servers, but
most will favor a combination.

All the flapjacks are dished out from the same batter. In this analogy, the batter func-
tions as a single database for persistent storage, search, indexing, and so on.

The waitress takes orders (user requests) and passes them to the appropriate cook (say,
the blueberry pancake chef), much like a load balancer routes Web browsers to the appropri-
ate server (or an alternative, if necessary).

Figure 2-4 illustrates the “flapjacks architecture.”



When Application Performance Becomes A Problem 19

Figure 2-4 The flapjacks architecture.

This type of architecture is popular. The systems providing services on eBay, Yahoo!,
HotMail, and other high-volume public Web sites are based on the flapjacks architec-
ture—sometimes known as N-Tier architecture. Enterprise applications software providers,
including the Microsoft .NET Framework, IBM WebSphere, and BEA WebLogic, recom-
mend using the flapjacks architecture.

The flapjacks architecture has many benefits to offer Web-enabled applications, espe-
cially for private intranet systems. Users tend to get faster performance and less waiting
times from small, inexpensive servers. In an array of small servers, the load balancing sys-
tem is able to keep a group of servers in a state of readiness—threads loaded and running,
memory allocated, database connections prepared—so that when the next function request
comes, the small server is ready immediately.

Software engineers find debugging easier because fewer threads are running at any
time. Large-scale multiprocessor systems manage and coordinate threads among the in-
stalled processors. Small, inexpensive servers run only the threads needed for the local Web-
enabled application.

Company financial managers like the flapjacks architecture because they can buy lots
of small, inexpensive servers and avoid the giant system purchases. The small server cate-
gory has rapidly reached commodity status in the computer industry. The low-end server
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pricing gives financial managers power with server manufacturers to build and equip multi-
processor servers with large memory and hard-drive capacity at bargain prices.

Finally, network managers like flapjacks for the flexibility provided by all those small
servers. As one IT manager put it, "If a system fails on any given morning, I can always go
to the neighborhood giant computer supermarket and buy replacement parts." Additionally,
small servers are easy to swap in and out of a rack of other equipment should they fail.
During the swap, the load balancer directs traffic to other working servers.

Adopting Flapjacks and Intelligent Test Agents

While the flapjacks architecture and intelligent test agents are ideal for building scal-
able Web-enabled applications, that idealness may not be apparent to the various constitu-
ents at your business. Some selling may be required to get a new company to agree to a
flapjacks/intelligent test agent server infrastructure strategy.

Table 2-5 considers the audience and their goals:

Table 2-5 Understanding how the Flapjacks architecture impacts the major groups
at your company is key to successful adoption.

Audience Needs Issues

Developers Unit test new source code
modules

Does the module return
the correct values with the
right state and input?

Quality Assurance techni-
cians

Simulate real-world pro-
duction loaded environ-
ments.

What is the performance
and scalability profile of
the application? What
features have regressed so
previous fixed bugs are
now present again?

IT Managers Profile data center needs
of a new Web-enabled
application or an update to
a Web-enabled applica-
tion.

Does the data center still
meet the application’s
needs? Also, as a monitor
for when the Web-enabled
application fails.

Combining the flapjacks architecture and intelligent test agents is a good solution to
meet each audience’s needs. For example, the developer uses an intelligent test agent to
bring an application back to a known state. The Quality Assurance (QA) manager uses an
intelligent test agent to find fixed bugs that have regressed. And production managers use
intelligent test agents to secure enough servers in a data center to support user needs.
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Developers

The Internet software development lifecycle introduces a new concept in software
testing: rapid application testing. Desktop applications and pre-Web-enabled application
software insulated the software development team from direct responses from users. With
the disintermediation between developer and user removed by the Internet, Web-enabled
application publishers hear directly from users as errors happen. The users sound off with
their e-mail messages or with the mouse clicks that take them away from your Web-enabled
application. In the Internet software development lifecycle, catching errors before users find
them has a much higher priority to a business’s success than ever before.

Developers used to the pre-Internet software development lifecycle are in for a shock
when the first wave of user error reports arrives. Your company will expect near real-time
solutions to user error reports. The developer who uses intelligent test agents can look back
at simulations to determine the source, and often the location, of a problem in the code. The
developer who avoids intelligent test agents has only the Web-enabled application log files
to review for help.

Consider the difference between log files created by a Web-enabled application server
and an intelligent test agent:

127.0.0.1 - - [22/Jan/2002:00:12:41 -0600] "GET
/mailman/listinfo/oukids HTTP/1.1" 200 5358
127.0.0.1 - - [22/Jan/2002:00:12:41 -0600] "GET
/icons/mailman.jpg HTTP/1.1" 200 2022
127.0.0.1 - - [22/Jan/2002:00:12:41 -0600] "GET /icons/gnu-
head-tiny.jpg HTTP/1.1" 200 3049
127.0.0.1 - - [22/Jan/2002:00:12:41 -0600] "GET
/icons/PythonPowered.png HTTP/1.1" 200 945
127.0.0.1 - - [22/Jan/2002:00:14:27 -0600] "GET / HTTP/1.1"
200 1489

This is a standard Apache-style log file. The file includes an entry for each request
handled by the server. Imagine having only a log file to help you deduce and fix a server
problem!

Intelligent test agents are modeled after the needs of an archetypal user—like
Madeline from Chapter 1 or Ann from earlier in this chapter. The test agent log provides
much more information to find and fix a bug.

Agent name, Task, Results, Module, Date:Time

Madeline, Sign-in, Ok, com.p2t.signin, 10:21:22:10
Steps taken: chose random user, lookup user id/password,
sign-in, all modules ran within tolerances

Madeline, Find product 7, OK, com.p2t.findit, 10:21:22:31
Steps taken: chose product previously ordered, find product
module notes: At 80% of catalog capacity warning
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Madeline, Choose product 7, OK, com.p2t.formchk,
10:21:22:45
Steps taken: Check credit module warns of credit overrun

Madeline, Add quantity, OK, com.p2t2.quanchk, 10:21:23:15
Steps taken: Add product to shopping basket module. All
modules run successfully

Madeline, Sub quantity, Fail, com.p2t2.subchck, 10:21:23:25
Steps taken: Subtract product from shopping basket module.
Shopping basket module returned invalid integer value 871

The Apache Web Server log file is click-stream oriented and answers the question:
What requests did the Web-enabled application process? The intelligent test agent log is user
goal oriented and answers the question: Did the user reach his or her goal?

Looking at log files is important to prioritize your efforts to maintain Web-enabled
applications. With intelligent test agents at work, summarizing the log file data into an im-
mediately visible meter becomes possible. Figure 2-5 shows how such a meter may appear.

Figure 2-5 A live meter summarizes the results of running intelligent test agents to
show at-a-glance the relative healthy of a Web-enabled application..

While intelligent agents provide valuable and timely data for a developer who needs to
perform unit testing of new source code modules, intelligent test agents enable QA manag-
ers to simulate real-world production load environments, as you will see next.

Quality Assurance Managers

The best QA managers are a different kind of software developer. They keep the
user’s goals in mind and validate a Web-enabled application’s ability to achieve these goals.
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Much of a QA manager’s day may seem like tedium, but may QA managers enjoy finding a
problem and working with a developer to arrive at a solution. Many of the best QA manag-
ers will show the developer the code causing the problem, so QA managers must be expert
at code, errors, and usability at the same time.

While the Internet software development lifecycle features a much stronger emphasis
on code documentation than other non-Internet development lifecycles, the function of a
software module is frequently a place where bugs and problems get past the QA manager.
The developer makes changes to a module, writes change notes, and then releases the code
to the QA manager. The notes are often open to various interpretations, which can lead to
errors.

Imagine that a new module’s change notes come with an intelligent test agent written
by the developer. The test agent is much more powerful and accurate at describing the mod-
ule than mere change notes. Consequently, the test agent becomes a more effective commu-
nication medium between developer and QA manager.

Information Technology Managers

IT managers maintain the system after the initial development is completed. IT is con-
cerned with maintenance and monitoring.

Even if a Web-enabled application consisted of only a single line of code, the service
will need maintenance over time. The job climate for Web-enabled application developers is
driving many turnovers within businesses. Many times it’s up to an IT manager to try to
debug a problem in a Web-enabled application, even though the original developer has
moved on. Imagine which scenario seems better to the IT manager: looking through source
code comments to find a malfunctioning module or reading an intelligent test agent to see
how the module should be performing? Intelligent test agents are a powerful means for a
developer to show an IT manager the correct behavior of a Web-enabled application and
software module.

Monitoring Web-enabled applications requires intelligent test agents. In the early days
of the Internet, if a Web-enabled application returned a page, the Web-enabled application
could be assumed to be working. What happens when the returned page contains an error
message or invalid data? An intelligent test agent understands the context of a Web-enabled
application’s functions and can sound an alert—through e-mail, pagers, or in log files—to
catch the IT manager’s attention.

Intelligent test agents act as a communication medium between the developer, QA
manager, and IT manager and are a hugely efficient way to develop and roll out Web-
enabled applications. By focusing everyone's attention on intelligent test agents, all the
teammembers know to expect intelligent test agent deliver with new code - this support agile
(Extreme/XP) software development's practice of testing first. Once an organization adopts
test agents, all development projects will include test agents.

An organization’s choice of test tools determines the likelihood that the team will con-
sistently apply test agents. When a test tool is appreciated by QA managers but not appreci-
ated by developers, the consistent application of intelligent test agents will suffer.
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BUILDING INTELLIGENT TEST AGENTS IN A FLAPJACKS
ENVIRONMENT

Moving a Web-enabled application into a production environment requires assurances
of high availability and consistently good performance. Test agents build these assurances
from the data that they create. The choice of test tool, therefore, is important. Following is a
recommended checklist that developers, QA managers, and IT managers should keep in
mind when choosing tools with which to test a Web-enabled application:

•  Stateful testing - When you use a Web-enabled application to set a value, does
the server respond correctly later on?

•  Privilege testing - What happens when the everyday user tries to access a con-
trol that is authorized only for administrators?

•  Speed testing - Is the Web-enabled application taking too long to respond?

•  Boundary timing testing - What happens when your Web-enabled application
request times out or takes a really long time to respond?

•  Regression testing - Did a new build break an existing function?
These are fairly common tests for any software application. Because this is a Web-

enabled application, though, the testing arena expands into a matrix, as the following table
of a Web-enabled application test agent describes:

Table 2-5 A template for a test matrix to understand the performance characteris-
tics of a Web-enabled application at various levels of load.

Type of test 1 user 50 users 500 users

Stateful testing
Privilege testing
Speed testing
Boundary timing
testing
Regression testing
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Many developers are skeptical when evaluating commercial test tools. The thinking
goes: Why should the company pay all this money for a tool with a new set of instructions or
language to learn, when I could just write the test agent myself?

The problem with writing your own test tool comes down to one word: maintenance.
Just like every other software application, the test agent will need to be maintained. Who
will maintain the code when the test agent developer is no longer at the company?

A brief, unscientific survey of Silicon Valley developers who wrote their own test
agents found that maintaining the test agents grew from a minor irritation to a huge problem.
The typical developer’s first attempt at writing test agents resulted in a fairly robust set of
Java classes or Visual Basic methods that issue HTTP requests to a Web server and perform
some simple analysis of the results. Writing a test agent consisted of writing Java code that
sequentially called the correct test object.

For example, an agent that reads through an online discussion forum message-base
looks like this:

1. Read the first page of the site (which included URLs to the discussion mes-
sages).

2. Randomly read a discussion message.

3. If the message has a reply, read the reply message.

4. Repeat step 3 until there are no more reply messages.
The resulting test agent could be written as a small Java application. At some point,

the format for the URL to read the first page of the site will change. This requires main-
tenence on the Java test code.

As a matter of fact, every new change to the Web-enabled application required some
subtle change in the test agent. Each and every change brought the developer back to the test
agent code. While the test objects - getting Web pages, signing in, testing for the correct
return values - stayed the same from test agent to test agent, the calling sequence would be
different.

Unfortunately, neither Java nor Visual Basic defines a scripting model as part of its
design. In a scripting model groups of functions are called in a particular sequence with
branches occuring based on parameter evaluation. Using Java and Visual Basic leaves the
programmer with the responsibility to invent a way to call objects in a particular sequence.
As a result, many programmers invent a simple scripting language inside their code to im-
plement the business rules or logic of the agent. Some more advanced applications even
expose a scripting language to users. In the whole of computing, literally thousands of appli-
cations use their own scripting languages.

Looking at the test agent code, does it make sense to add a scripting language to as-
semble test agents from a library of test objects? The test objects perform the individual test
routines that rarely need to change. And a scripting language would be used to assemble and
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control the parameters of the objects—a scripting language that would be easier to alter for
different levels and types of Web-enabled application testing.

The benefit to all developers, QA managers, and IT managers: A programmer writes
the more labor-intensive test objects only once and adapts the scripting language as needed.
The scripting language enables the developers, QA technicians and IT managers that are
more comfortable with scripts than hard-core object oriented code to write their own test
agents. The scripts are readable by mere human beings and can easily be shared and
swapped with others.

Modern scripting languages, such as Jython (details at www.jython.org,) enable Web-
enabled application test agents of the form described in this book.. Scripting provides a
common reference for the way test agent scripts, variables, and program flow are noted.

Script Languages and Test Agents

Most software tools mature to a point at which a scripting language makes sense.
(Many times, a scripting language’s appearance is a sign of a mature tool.) However, the
downside to using scripting languages is that each one exists in its own little world. Conse-
quently you may find yourself in a company where each group uses a different scripting
language and tool. Table 2-6 illustrates just a very few of the popular choices:

Table 2-6 Examples of the diverse popularity of scripting languages and tools for
testing and monitoring Web-enabled applications.

Software developers QA technicians IT managers

Java objects Python Perl
jUnit - unit testing frame-
work

OpenSTA PHP

C# TestMaker HP OpenView manage-
ment console

VB.NET Ruby Intermapper

Table 2-6 is just a tiny sample the many scripting languages and tools in use today at
companies that use Web-enabled applications. So your odds of finding a single scripting
language and test tool that everyone will agree to use are small. However, there is a growing
trend towards delivering scripting language functionality that runs on a common run-time.
Jython is a good example of this trend.

Jython is an open-source project that implements the popular Python programming
language in Java. The Python script commands are compiled on-the-fly into Java byte-code.
Java byte-codes are the intermediary language that Java uses internally to process com-
mands on the local machine. The Java virtual machine executes the byte-codes on the local
machine's processor. Byte-codes make it possible for Java applications to run on any ma-



When Application Performance Becomes A Problem 27

chine where Java runs. As figure 2-6 shows, this approach to using a common run-time envi-
ronment is available to other scripting languages too.

Figure 2-6 A growing trend is to have scripting languages use a common runtime
environment. Jython is an example of what is possible. Jython scripts are
compiled on-to-fly to Java bytes-codes to be run on a Java virtual ma-
chine anywhere Java runs. With some work, Perl, PHP and any other
scripting language can use the same common run-time environment.

A powerful advantage to using a common run-time environment is that the script lan-
guage commands have access to the native script language objects as well as to any public
objects the run-time environment has available. In Jython's case, any Jython script can use
all of Python's objects plus the script can access any Java object. This is a natural bridge
between Jython scripters and Java object developers.

To see the power of Jython and Java objects at work, the following script is an exam-
ple of a test agent script that uses both.

While you read a the following script, keep in mind that if scripting or software code
is not your interest, that test utilities, such as TestMaker, provide graphical interfaces and
test agent recorder utilities to keep you from having to write script code. However, an under-
standing of the functions of a typical test agent script will provide you with a foundation to
know what to expect from the test utility graphical interface.

# Agent name: Example Form Test
#
# Purpose:
# Calculates a Transaction-Per-Second index for a
# Web-enabled HTTP application

from com.pushtotest.tool.protocolhandler import \
  ProtocolHandler, Header, Body, HTTPProtocol, \
  HTTPBody, HTTPHeader
from com.pushtotest.tool.response import Response, \
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  ResponseLinkConfig, SimpleSearchLink
from java.util import Date
from java.lang import Exception

# The test class implements the steps recorded while
# watching a user operate the application using a browser

class test:

    # Set-up
    def __init__(self):
        self.steps = 0        # Steps in transaction
        self.errors = 0       # Counter of errors
        self.passed = 0       # Value is 1 if no exceptions

    # Test
    def run(self):
        self.steps = 0;
        start_time = Date().time
        http = ProtocolHandler.getProtocol("http")

        # Request the welcome page with the html form

        http.setUrl( \
          '''http://examples.pushtotest.com/responder \
          /htmlresponder?file=file2.html''' )
        http.setType( HTTPProtocol.GET )
        response = http.connect( 0 )
        self.steps += 1
        code = response.getResponseCode()
        if code <> 200:
            print '''Error response code:''',self.code
            self.passed = 0
            self.errors += 1
        else:
            self.passed = 1

        # Submit the form values to the host

        http.setUrl( \
          '''http://examples.pushtotest.com/responder \
          /htmlresponder''')
        body = ProtocolHandler.getBody( 'http' )
        http.setBody( body )
        http.setType( HTTPProtocol.POST )
        body.addParameter('''firstname''', '''Frank''')
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        body.addParameter('''lastname''', '''Cohen''')
        body.addParameter('''phone''', '''408 374 7426''')
        body.addParameter('''account''', '''10381838''')
        body.addParameter('''amount''', '''1838.12''')
        body.addParameter('''Transfer''', \
          '''Transfer Funds''')
        response = http.connect( 0 )
        self.steps += 1
        code = response.getResponseCode()
        if code <> 200:
            print '''Error response code:''',self.code
            self.passed = 0
            self.errors += 1
        else:
            self.passed = 1

    # Getter methods for various timing values
    def getTotaltime(self):
        return self.totaltime

    def getSteps(self):
        return self.steps

    def getTransactions(self):
        return self.transactions

    def getErrors(self):
        return self.errors

    def getPass(self):
        return self.passed

    # Clean-up
    def cleanup(self):
        print "Done."

# Transactions-per-second Index Test
# Run the test 100 times and then print the results

print "---------------------------------------------------"
print "Transactions-per-second Index Test"
print "brought to you by TestMaker from PushToTest"
print
print "---------------------------------------------------"
print "Starting test"
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t = test()               # Create a test object
transactions = 0         # How many transactions completed
exCount = 0              # Count of exceptions thrown
count = 50               # Number of times to run the test

starttime = Date().time  # record the current time

print "Test running"
print

for i in range( count ):
    print "-",
print

for i in range( count ):
    try:
        t.run()
        transactions+=1
        print "-",
    except Exception, ex:
        print "Encountered an error:",ex
        exCount += 1

totaltime = Date().time - starttime

print
print
print "---------------------------------------------------"
print "Results"

tps = float( transactions ) / float( totaltime ) * 100
print "Transactions Per Second (TPS): %9.2f" % tps
print "Total transactions processed: ", transactions
print "Total time to process all transactions: ", totaltime
print "Each transaction had", t.getSteps(),"steps"
print "Exceptions thrown during the test: ", exCount
print "Errors encountered during the test: ", t.getErrors()
print

t.cleanup()

Scripting languages like Jython make test agent logic much more apparent because of
the straight-forward style of the script's formatting. The underlying test objects handle the
actual communication with the host service, while the scripting language worries about the
logic of the test agent.
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The example just given makes use of the scripting language and library of test objects
found in TestMaker, an open-source utility for testing Web-enabled applications for per-
formance and scalability. TestMaker  and all the examples in this book are available for free
download at http://www.pushtotest.com and licensed under an Apache-style free open-
source license..

To better understand the power of a scripting language when used to build test agents,
look at this test agent script in more detail:

from com.pushtotest.tool.protocolhandler import \
  ProtocolHandler, Header, Body, HTTPProtocol, \
  HTTPBody, HTTPHeader
from com.pushtotest.tool.response import Response, \
  ResponseLinkConfig, SimpleSearchLink
from java.util import Date
from java.lang import Exception

The import statement identifies the library of test objects to the script language com-
piler. The test object library will do the heavy lifting of communicating with the Web-
enabled application host. For example, HTTPProtocol is an object that handles communica-
tion to a Web host through the HTTP protocol. Additionally, this script will use Java's Date
object and report errors using Java's Exception object.

class test:

    # Set-up
    def __init__(self):
        self.steps = 0        # Steps in transaction
        self.errors = 0       # Counter of errors
        self.passed = 0       # Value is 1 if no exceptions

The script uses Jython's object-oriented methods to create a new class named test. The
test class initializes three new variables: steps, errors and passed. The steps variable keeps
track of how many HTTP requests are used in each transaction. In this example, a transac-
tion is made up of 2 steps: get a Web page containing a form, and then submit the form val-
ues to the host.

def run(self):
        self.steps = 0;
        start_time = Date().time
        http = ProtocolHandler.getProtocol("http")

The test class has a single method named run. This method tests the host by complet-
ing a single transaction. We will see further on how the test agent script calls the run method
multiple times to learn the system's average throughput.
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The run method begins by using the ProtocolHandler object provided in TestMaker to
get a new HTTP protocol handler. The script establishes a new variable named http that
points to a new HTTP protocol handler object. The protocol handler will communicate with
a Web server using HTTP to get a page with an HTML form. Use your browser to look at
the following URL to understand this Web-enabled application better:
http://examples.pushtotest.com/responder/htmlresponder?file=file2.html

        http.setUrl( \
          '''http://examples.pushtotest.com/responder \
          /htmlresponder?file=file2.html''' )
        http.setType( HTTPProtocol.GET )
        response = http.connect( 0 )
        self.steps += 1
        code = response.getResponseCode()
        if code <> 200:
            print '''Error response code:''',self.code
            self.passed = 0
            self.errors += 1
        else:
            self.passed = 1

The script tells the http object to use the provided URL and to use the HTTP Get pro-
tocol. The http object provides a connect method that returns a response object. The re-
sponse object contains the HTML codes received from the host, the HTTP header values,
and any cookie values. The response object provides many methods to validate the response
data, including a getResponseCode method to determine the results result code received
from the host. The HTTP protocol defines a response code of 200 as a normal response. In
the event of a response code over than 200 the script prints the response code to the output
panel.

        http.setUrl( \
          '''http://examples.pushtotest.com/responder \
          /htmlresponder''')
        body = ProtocolHandler.getBody( 'http' )
        http.setBody( body )
        http.setType( HTTPProtocol.POST )
        body.addParameter('''firstname''', '''Frank''')
        body.addParameter('''lastname''', '''Cohen''')
        body.addParameter('''phone''', '''408 374 7426''')
        body.addParameter('''account''', '''10381838''')
        body.addParameter('''amount''', '''1838.12''')
        body.addParameter('''Transfer''', \
          '''Transfer Funds''')
        response = http.connect( 0 )
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The next group of script commands performs a POST command to the Web-enabled
application host. This is equivalent to a user filling in the form elements on a Web page and
clicking Submit.

# Getter methods for various timing values
    def getTotaltime(self):
        return self.totaltime

    def getSteps(self):
        return self.steps

    def getTransactions(self):
        return self.transactions

    def getErrors(self):
        return self.errors

    def getPass(self):
        return self.passed

    # Clean-up
    def cleanup(self):
        print "Done."

These commands add several helper methods to the test class. Specifically, they pro-
vide methods for the test class to return the test results data to another class. We will see
these used in the next section of code. That concludes the script codes needed to create the
test class. Now we are ready to use the test class.

t = test()               # Create a test object

The test script instantiates a test object that will be referenced using the t variable.
That's how easy Jython is to create objects!

transactions = 0         # How many transactions completed
exCount = 0              # Count of exceptions thrown
count = 50               # Number of times to run the test
starttime = Date().time  # record the current time

The test script establishes a few variables that will be used later to report the transac-
tions-per-second throughput of the host.

for i in range( count ):
    try:
        t.run()
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        transactions+=1
        print "-",
    except Exception, ex:
        print "Encountered an error:",ex
        exCount += 1

The test script uses the for command to repeat the block of code that calls the run
method in the test object. Recall that the count variable was set to 50, so the test agent will
run the test class 50 times.

If you are wondering about the formatting of the test script, Jython uses spacing to de-
limit blocks of code. Spacing is important. If you want to jump into using this script now, I
recommend you download the script from the PushToTest Web site at
http://www.pushtotest.com/ptt to save yourself the time of having to type in the agent script
code.

tps = float( transactions ) / float( totaltime ) * 100
print "Transactions Per Second (TPS): %9.2f" % tps
print "Total transactions processed: ", transactions
print "Total time to process all transactions: ", totaltime
print "Each transaction had", t.getSteps(),"steps"
print "Exceptions thrown during the test: ", exCount
print "Errors encountered during the test: ", t.getErrors()

Finally, the agent script calculates and prints the throughput of the test in a transac-
tions-per-second report.

Generating Meaningful Data

Intelligent test agents test a Web-enabled application by operating the software just as
a user would. To the Web-enabled application, the requests from a test agent appear to be
legitimate users. The Web-enabled application works on the request and returns data. Multi-
ple concurrently running test agents simulate real-world production environments where
many users are accessing a system at the same time. All this activity creates raw data in
these forms:

•  The test agent creates a log to store details of the requests, including how long it
took to set up and process a request and how many errors were returned.

•  The Web-enabled application host creates a log showing how many requests
were processed and details on the results, including time outs and dropped con-
nections.
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•  The Web-enabled application server hardware includes an operating system
agent (usually using the Simple Node Monitor Protocol, or SNMP) to store us-
age information, including network bandwidth, hard-drive space, CPU usage,
and memory usage.

•  The network routers and other infrastructure create logs to track resource allo-
cation and services used.

Each of these sources of raw data may be turned into meaningful data using intelligent
test agent technology. The key to making a lot of raw data meaningful is to define the pa-
rameters of a well-performing system . The Web-enabled applications Points System is a
good methodology. Finally, meaningful data is generated when automation technology
completes the tasks necessary to monitor and observe good or poor performance in a Web-
enabled application.

SUMMARY

Improvements in Internet technology, bandwidth, and service levels have powered the
phenomenal growth in Web-enabled application development projects. The modern Web-
enabled application development team includes developers who have reached entirely new
levels of productivity by using new software development tools, new software development
lifecycles, and new methodologies to write software. Software testing tools, techniques, and
methods have evolved, too. Developers, QA analysts, and IT managers find software testing
must be intelligent, or the testing results will be meaningless, or worse, misleading. The new
software test techniques help developers prioritize their efforts to maximize the user’s ability
to achieve important goals.

New tools introduced in this chapter, for example, the Web Rubric and Web-enabled
applications Points System, provide easy-to-follow criteria to determine a Web-enabled ap-
plication’s health. New data center frameworks and an open-source test automation tool,
Load, provide easy and efficient ways to build Web-enabled applications that scale and per-
form in real-world production environments today.

The choice of tools, infrastructure, and methodologies makes a significant difference
on a test agent’s ability to locate problems and monitor Web-enabled applications for high
service levels. Experience shows us that when a modern Web-enabled application develop-
ment team has reached these goals for its test tools, the Web-enabled application will also
meet user goals:

•  Software developers, QA analysts, and IT managers need to have access to the
appropriate tools regardless of cost or corporate standards.

•  Test agents need to be intelligent.
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•  Testing Web-enabled application and SOAP-based Web-enabled applications
software requires a test to drive the application intelligently, as a normal every-
day user would.

•  Test agents need to test systems for scalability and performance under near-
production loads.

•  Test tools need to be used.

In this chapter, you learned how to quantify good system performance in systems that
integrate Web-enabled applications. In Chapter 3, you will see how tests for functionality,
scalability, and performance are linked to user success.
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Modeling Tests
"I don't test," a friend told me. It is not because she was against testing. She would

say same the same thing about software design and architecture. From her perspective, test-
ing is an obscure and difficult-to-learn process only practiced by test professionals. If you
could not tell already, this book takes an everyone tests philosphy. I believe that everyone -
users, administrators, software developers, architects, quality assurance technicians, network
managers and management - tests each time they use a Web-enabled application.

The trick is to find a way to turn these ad-hoc tests into useful and meaningful test data
in a distributed and interoperating Web-enabled application environment. Useful and mean-
ingful test data greatly improve how we prioritize which bugs and problems get solved first,
identifies where to spend our budgets on maintainence and improvements, and draws us
closer to delivering user success.

To produce meaningful test data, your tests must determine how close the user gets to
meeting their needs while using the software. This chapter shows how to model user behav-
ior and implement that behavior in an intelligent test agent. Intelligent test agents are the
most powerful way to automate test suites. Understanding the test environment and test tools
for building intelligent test agents is necessary to understand test suite results.

The previous chapters set the stage by describing the ingredients needed to perform
meaningful tests of Web-enabled applications; this chapter raises the curtain to reveal how
the players—servers, routers, data centers, Internet service providers (ISPs), and soft-
ware—fill their roles in delivering highly available and well-performing Web-enabled appli-
cations. Rather than describe a single method, this chapter describes methodologies that can
be applied to many testing scenarios and shows how human nature plays a significant role in
deciding infrastructure requirements and test methodology.
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MODELING USER BEHAVIOR FOR MEANINGFUL TEST
RESULTS

Businesses need answers to questions about building, deploying, and maintaining a
Web-enabled application and test methdology and strategy provides answers. For example, a
business may ask, “How many more servers should I buy to host the forecast of new users
and customers?” Spreadsheets and models can offer a head start on forecasting datacenter
needs; however, eventually models will need hard data to back up any assumptions. The
answers to the questions raised by a model usually depend on data that describes the oper-
ating environment—the data center, user interface, and technology deployed. Testing Web-
enabled applications provides meaningful answers to sizing, bandwidth, and functionality
questions.

Businesses developing and delivering Web-enabled applications run into the same set
of questions. Table 3-1 lists the questions I most often need to answer.

Table 3-1 

Question Asked Data Needed Test Solution to Apply

While the data center is
built and the usage fore-
cast is set, is your data
center really ready?

Testing to determine data
center readiness

Use intelligent test agents
to determine the Scalabil-
ity and Performance Index
(SPI) for the Web-enabled
application. The SPI (de-
scribed later in this chap-
ter) measures data center
readiness.

What components and
bandwidth will the data
center need?

Testing to estimate data
center needs

Web-enabled application
simulation using intelli-
gent test agents will give
early answers to aim for.
(Test agents are described
later in this chapter.)

When users put an item in
a shopping basket, is it
still there an hour later?
Did the item not appear in
your shopping baset, but
instead appear in another
user's shopping basket.
Did the system allow this
privilege error?

Testing to find state and
boundary problems

Unit testing with intelli-
gent agents is good at
probing a Web-enabled
application function with
both valid and invalid
data. The results show that
parts of a Web-enabled
application are not func-
tioning correctly. Intelli-
gent agents automate unit
tests to streamline testing
and reduce testing costs.
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Question Asked Data Needed Test Solution to Apply
tests to streamline testing
and reduce testing costs.

How will the Web-
enabled application oper-
ate when higher-than-
expected use is encoun-
tered?

Testing to be prepared for
higher-than-expected vol-
umes.

A network of intelligent
test agents running con-
currently will show how
the Web-enabled applica-
tion operates during peri-
ods of intense overuse.

As software is maintained,
old bugs may find new
life. What was once fixed
and is now broken again?

Testing to find software
regression

Intelligent test agent
monitor by stepping a
Web-enabled application
through its functions.
When new software is
available the monitor tests
that previously available
functions are still working.

Testing Web-enabled applications plays an important role in solving business issues
for a company. By recognizing how tests can solve business issues, the test professional
learns valuable answers to important questions.

Over the years I learned that the highest quality Web-enabled application systems
were designed to be tested and maintained. Good system design prepares for issues such as
these:

•  How frequently will components fail? Are replacement parts on hand? What
steps are needed to replace a component?

•  What are the expected steps needed to maintain the system? For example, a data
intensive Web-enabled application will need index and tables data to be re-
created to capture unused disk space and memory. Will the system be available
to users while an index is rebuilt?

•  Where will new components be added to the system? Will more physical space
be needed to accommodate new computer hardware? Where will new software
be installed?

•  What areas are expected to get better if occasionally reviewed for efficiency and
performance? We can expect improvements in memory, CPU, and storage tech-
nology. Should the system be planned to incorporate these improvements?
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Understanding the lifecycle for developing Web-enabled applications is integral to an-
swering business questions and preparing for maintenance.

LIFECYCLES, PROJECTS AND HUMAN NATURE

Human nature plays a significant role in deciding infrastructure requirements and test
methodology. As humans we base our decisions on past experience, credibility, an under-
standing of the facts, the style with which the data is presented, and many other factors. We
need to keep human nature in mind when designing a product lifecycle, new architecture,
and a test. For example, consider being a network manager at a transportation company. The
company decides to use a Web-enabled application to publish fare and schedule information
currently hosted on an established database-driven system and accessed by users through a
call center. The company needs to estimate the number of servers to buy and Internet band-
width for its data center. As the network manager, imagine presenting test result data that
was collected in a loose and ad-hoc way to a senior manager that has a rigid and hierarchical
style.

By understanding business management style, we can shape a test to be most effective
with management. Later in this section we define 4 types of management style and their
impact on design and testing.

In my experience, the most meaningful test data comes from test teams that use a well-
understood software development lifecycle. Web-enabled application software development
is managed as a project and developed in a lifecycle. Project requirements define the people,
tools, goals, and schedule. The lifecycle describes the milestones and checkpoints that are
common to all Web-enabled application projects.

Web-enabled applications have borrowed from traditional software development
methods to form an Internet software development lifecycle. The immediacy of the
user—they’re only an e-mail message away—adds special twists to traditional development
lifecycles. Here is a typical Internet software development lifecycle:

1. Specify the program from a mock-up of a Web site.

2. Write the software.

3. Unit test the application.

4. Fix the problems found in the unit test.

5. Internal employees test the application.

6. Fix the problems found.
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7. Publish the software to the Internet.

8. Rapidly add minor bug fixes to the live servers.
Little time elapses between publishing the software to the Internet in step 8 and re-

ceiving the first feedback from users. Usually the feedback compels the business to address
the user feedback in rapid fashion. Each change to the software sparks the start of a new
lifecycles.

The lifecycle incorporates tasks from everyone involved in developing a Web-enabled
application. Another way to look at the lifecycle is to understand the stages of development
shown here:

•  Write the requirements.

•  Validate the requirements.

•  Implement the project.

•  Unit test the application.

•  System test the application.

•  Pre-deploy the application.

•  Begin the production phase.
Defining phases and a lifecycle for a Web-enabled application project may give the

appearance that the project will run in logical, well conceived, and proper steps. If only the
senior management, users, vendors, service providers, sales and marketing, and financial
controllers would stay out of the way! Each of these pull and twist the project with their
special interests until the project looks like the one described in Figure 3.1.

The best laid plans usually assume that the development team members, both internal
and external, are cooperative. In reality, however, all these constituents have needs and re-
quirements for a Web-enabled application that must be addressed. Many software projects
start with well-defined Web-enabled application project phases, but when all the project
requirements are considered, the project can look like a tangled mess, as illustrated in Figure
3-1.
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Figure 3-1 Managing the complex and interrelated milestones for development of a
typical Web-enabled application has an impact on how software devel-
opment teams approach projects.

Confronted with this tangle of milestones and contingencies, software project manag-
ers typically separate into two camps concerning the best method to build, deploy, and
maintain high-quality Web-enabled applications. One camp focuses the project team's re-
sources on large-scale changes to a Web-enabled application. New software releases require
a huge effort leading to a single launch date. The other camp focuses its resources to “divide
and conquer” a long list of enhancements. Rather than making major changes, a series of
successive minor changes are developed.

Software project managers in enterprises hosting Web-enabled applications that prefer
to maintain their software by constantly adding many small improvements and bug fixes
over managing towards a single, comprehensive new version, put a lot of stress on the soft-
ware development team. The Micromax Lifecycle may help.

THE MICROMAX LIFECYCLE

Micromax is a method used to deploy many small improvements to an existing soft-
ware project. Micromax is used at major companies, such as Symantec and Sun Microsys-
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tems, with good results. Micromax defines three techniques: a method to categorize and
prioritize problems, a method to distribute assignments to a team of developers, and auto-
mation techniques to test and validate the changes. Project managers benefit from Micromax
by having predictable schedules and good resource allocation. Developers benefit from Mi-
cromax because the projects are self-contained and give the developer a chance to buy-in to
the project rather than being handed a huge multi-faceted goal. QA technicians benefit by
knowing the best order in which to test and solve problems.

Categorizing Problems

Micromax defines a method for categorizing and prioritizing problems. Users, devel-
opers, managers, and analysts may report the problems. The goal is to develop metrics by
which problems can be understood and solved. The more input the better.

Problems may also be known as bugs, changes, enhancement requests, wishes, and
even undocumented features. Choose the terminology that works best for your team, in-
cluding people outside the engineering group. A problem in Micromax is a statement of a
change that will benefit users or the company. However, a problem report is categorized
according to the effect on users. Table 3-2 describes the problem categories defined by Mi-
cromax.

Table 3-2 Micromax Problem Categories

Category Explanation

1 Data loss
2 Function loss
3 Intermittent function loss
4 Function loss with workaround
5 Speed loss
6 Usability friction
7 Cosmetic

Category 1 problem reports are usually the most serious. Everyone wants to make his
mark on life and seldom does a person want his marks removed. When an online banking
Web-enabled application loses your most recent deposits, when the remote file server erases
a file containing an important report, or even when a Web-enabled application erases all e-
mail messages when it was only supposed to delete a single message, that is a Category 1
problem.

Categories 2, 3, and 4 apply to features or functions in a Web-enabled application that
do not work. The Web-enabled application will not complete its task—Category 2—or the
task does not complete every time—Category 3—or the function does not work but there is
a defined set of other steps that may be taken to accomplish the same result—Category 4.
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Category 5 identifies problems in which a Web-enabled application function com-
pletes its task, but the time it takes is unacceptable to the user. Experience shows that every
Web-enabled application defines acceptable times differently. A Web-enabled application
providing sign-in function for live users likely has a 1-to-2 second acceptable speed rating.
The same sign-in that takes 12 to 15 seconds is likely unacceptable. However, a Web-
enabled application providing a chemical manufacturer with daily reports would accept a
response time measured in seconds or minutes, because report viewers don’t need up-to-the-
second updates. Category 5 earned its place in the category list mostly as a response to soft-
ware developers’ usual behavior of writing software functions first and then modifying the
software to perform quickly later.

Categories 6, 7, and 8 problems are the most challenging to identify. They border on
being subjective judgment calls. For every wrongly placed button, incomprehensible list of
instructions on the screen, and function that should be there but is strangely missing is a
developer who will explain, with all the reason in the world, why the software was built as it
is. Keep in mind the user goals when categorizing problems.

Category 6 identifies problems in which the Web-enabled application adequately
completes a task; however, the task requires multiple steps, requires too much user knowl-
edge of the context, stops the user cold from accomplishing a larger task, or is just the big-
gest bonehead user-interface design ever. Software users run into usability friction all the
time. Take, for example, the printer that runs out of paper and asks the user whether she
wants to “continue” or “finish.” The user goal is to finish, but she needs to continue after
adding more paper to the printer. Category 6 problems slow or prevent the user from reach-
ing her goals.

Category 7 identifies problems involving icons, color selections, and user interface
elements that appear out of place. Category 8 problems are observed when users complain
that they have not reached their goals or are uncertain how they would use the Web-enabled
application.

The Micromax system puts software problems into eight levels of inoperability, mis-
use, difficult interfaces, and slow performance—none of these is much fun, nor productive,
to the user.

Prioritizing Problems

While problem categories are a good way to help you understand the nature of the
Web-enabled application, and to direct efforts on resolutions, such categories by themselves
may be misleading. If a Web-enabled application loses data for a single user but all the users
are encountering slow response time, something in addition to categorization is needed. Pri-
oritizing problems is a solution. Table 3-3 describes the problem priority levels defined by
Micromax.
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Table 3-3  Micromax Problem Priority Ratings

Priority Level Description

1 Unacceptable business risk
2 Urgent action needed for the product's success
3 Problem needs solution
4 Problem needs solution as time permits
5 Low risk to business goals

A problem priority rating of 1 indicates that serious damange, business risk, and loss
may happen - I've heard it described as "someone’s hair is on fire right now." A solution
needs to be forthcoming, or the company risks a serious downturn. For example, a Web-
enabled application company that spent 40 percent of its annual marketing budget on a one-
time trade conference may encounter a cosmetic (category 7) problem but set its priority to
level 1 to avoid ridicule when the company logo does not display correctly in front of hun-
dreds of influential conference attendees.

The flip side is a problem with a priority level 5. These are the problems that usually
sit in a little box somewhere called “inconsequential.” As a result, they are held in place in
the problem tracking system but rarely go away—which is not necessarily a bad thing, be-
cause by their nature they pose little risk to the company, product, or user.

Reporting Problems

In Micromax, both user and project manager categorize problems. Project managers
often find themselves arguing with the internal teams over the priority assignments in a list
of bugs. “Is that problem really that important to solve now?” is usually the question of the
moment.

Micromax depends on the customer to understand the categories and to apply appro-
priate understanding of the problem. Depending on users to categorize the problems has a
side benefit in that the users’ effort reduces the time it takes for the team to internalize the
problem. Of course, you must give serious consideration to the ranking levels a user may
apply to make sure there is consistency across user rankings. The project manager sets the
category for the problem and has the users’ input as another data point for the internal team
to understand.

Criteria for Evaluating Problems

With the Micromax system in hand, the project manager has a means to categorize and
prioritize bugs. The criteria the manager uses are just as important. Successful criteria ac-
counts for the user goals, or archetype, on the Web-enabled application. For example, a
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Web-enabled application providing a secure, private extranet for document sharing used the
following criteria to determine when the system was ready for launch:

•  No category 1 or 2 problems with a priority of 1, 2, 3, or 4

•  No category 1, 2, 3, 4, or 5 problems with a priority of 1, 2, or 3

•  No category 6, 7, or 8 problems with a priority of 1 or 2
In this case, usability and cosmetic problems were acceptable for release; However,

data loss problems were not acceptable for release.
In another example, a TV talk show that began syndicating its content using Web-

enabled applications has more business equity to build in its brand than in accurate delivery
of content. The release criteria looked like this:

•  No category 7 problems with a priority of 1, 2, 3, or 4

•  No category 6 or 7 problems with a priority of 1 or 2

•  No category 1, 2, or 3 problems with a priority of 1 or 2

•  No category 5 problems with a priority of 1, 2, or 3
In this example, the TV talk show wanted the focus to be on solving the cosmetic and

speed problems. While it also wanted features to work, the focus was on making the Web-
enabled application appear beautiful and well designed.

The Micromax system is useful to project managers, QA technicians, and development
managers alike. The development manager determines criteria for assigning problems to
developers. For example, assigning low priority problems to a developer new to the team
reduces the risk of the developer making a less-than-adequate contribution to the Web-
enabled application project. The criteria also define an agreement the developer makes to
deliver a function against a specification. As we will see later in this chapter, this agreement
plays an important role in unit testing and agile (also know as, Extreme Programming, or
XP) development processes.

Micromax is a good tool to have when a business chooses to improve and maintain a
Web-enabled application in small increments and with many developers. Using Micromax,
schedules become more predictable, the development team works closer, and users will ap-
plaud the improvements in the Web-enabled applications they use.
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CONSIDERATIONS FOR WEB-ENABLED APPLICATION TESTS

As I pointed out in Chapter 2, often the things impacting the functionality, perform-
ance, and scalability of your Web-enabled application has little to do with the actual code
you write. The following sections of this chapter show what to look for, how to quantify
performance, and a method for designing and testing Web-enabled applications.

Functionality and Scalability Testing

Businesses invest in Web-enabled applications to deliver functions to users, custom-
ers, distributors, employees, and partners. In this section, I present an example of a company
that offers its employees an online bookstore to distribute company publications and a dis-
cussion of the goals of functionality and scalability test methods. I then show how the sys-
tem may be tested for functionality and then scalability.

Figure 3-2 shows the system design. The company provides a single integrated and
branded experience for users while the back-end system is composed of four Web-enabled
applications.

Figure 3-2 Individual services combined to make a system.

The online bookstore example uses a catalog service to look up a book by its title.
Once the user chooses a book, a sign-in service identifies and authorizes the user. Next, a
payment service posts a charge to the user's departmental budget in payment for a book.
Finally, a shipment service takes the user's delivery information and fulfills the order.



12 The Java Design and Test Automation Guide  Chap. 3

To the user, the system appears to be a single application. On the back-end, illustrated
in figure 3-3, the user is actually moving through four completely independent systems that
have been federated to appear as a single Web-enabled application. The federation happens
at the branding level (colors, logos, page layout,) at the security level to provide a single-
sign-on across the whole application, and at the data level where the system shares data re-
lated to the order. The result is a consistent user experience through the flow of this Web-
enabled application.

Figure 3-3 The bookstore example uses the Security Assertion Markup Language
(SAML,) the XML Remote Procedure language (XML-RPC,) Lightwieght
Directory Access Protocol (LDAP,) and other protocols to federate the in-
dependent systems into one consistent user experience.

Users begin at the catalog service. Using a Web browser the user accesses the search
and selection capabilities built into the catalog service. The user selects a book and then
clicks the "Order" button. The browser issues an HTTP Post command to the sign-in service.
The Post command includes form data containing the chosen book selection. The sign-in
service presents a Web page asking the user to type in their identity number and a password.
The sign-in service makes a request to a directory service using the Lightweight Directory
Access Protocol (LDAP.) LDAP is a popular authentication protocol based on the powerful
X509 security standard. The directory service responds with an employee identification
number. With a valid employee identification number, the sign-in service redirects the user's
browser to the payment service and concurrently makes a Security Assertion Markup Lan-
guage (SAML) assertion call to the payment server.

Up until now the user's browser has been getting redirect commands from the catalog
and sign-in service. The redirect commands put the transaction data (namely the book se-
lected) into the URL. Unfortunately, this technique is limited by the maximum size of a
URL the browser will handle. An alternative approach uses HTTP redirect commands and
asynchronous requests between the services. The book identity, user identity, accounting
information, and user shipping information move from service to service with these asyn-
chronous calls and the user's browser redirects from service to service using a session identi-
fier (like a browser cookie.)

Often services support only a limited number of protocols, so this example has the
sign-up and payment service using SAML and the shipping service using XML-RPC. Once
the user identifies their payment information, the payment service redirects the user's
browser to the shipment service and makes an XML-RPC call to the shipment service to
identify the books ordered.

Looking at this system makes me wonder: How do you test this system? An interop-
erating system, such as the bookstore example, needs to work seamlessly and every time.
Testing for functionality will provide us with meaningful test data on the ability of the sys-
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tem to provide a seamless experience. Testing for scalability will show us that the system
can handle groups of users of varying sizes every time.

Functional Testing

Functional tests are different than scalability and performance tests. Scalability tests
answer questions about how functionality is affected when increasing numbers of users are
on the system concurrently. Performance tests answer questions about how often the system
fails to meet user goals. Functional tests answer the question: “Is the entire system working
to deliver the user goals?”

Functional testing guarantees that the features of a Web-enabled application are oper-
ating as designed. The content the Web-enabled application returns is valid, and changes to
the Web-enabled application are in place. For example, consider a business that uses resel-
lers to sell its products. When a new reseller signs up, a company administrator uses a Web-
enabled application to enable the reseller account. This action initiates several processes,
including establishing an e-mail address for the reseller, setting up wholesale pricing plans
for the reseller, and establishing a sales quota/forecast for the reseller. Wouldn’t it be great if
there were one button the administrator could click to check that the reseller e-mail, pricing,
and quota are actually in place? Figure 3-4 shows just such a functional test.

Figure 3-4 Click one button to test the system set-up

In the bookstore example, a different type of functional testing is needed. Imagine that
four independent-outsourcing companies provided the bookstore backend services. The goal
of a functional test in that environment is to identify the source of a system problem as the
problem happens. Imagine what any IT manager must go through when a deployed system
uses services provided from multiple vendors. The test agent technology shown in Figure 3-
5 is an answer.
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Figure 3-5 Intelligent test agents provide functional tests of each service to show an
IT manager where problems exist.

Figure 3-5 shows how intelligent test agents may be deployed to conduct functional
tests of each service. Test agents monitor each of the services of the overall bookstore sys-
tem. A single console coordinates the activities of the test agents, and provides a common
location to hold and analyze the test agent data.

These test agents simulate the real use of each Web-enabled application in a system.
The agents log actions and results back to a common log server. They meter the operation of
the system at a component level. When a component fails, the system managers have test
agents monitor data to uncover the failing Web-enabled application. Test agent data works
double-duty because the data is also proof of meeting acceptable service levels.

Scalability Testing

Until now the bookstore test examples have checked the system for functionality by
emulating the steps of a single user walking through the functions provided by the underly-
ing services. Scalability testing tells us how the system will perform when many users walk
through the system at the same time. Intelligent test agent technology is ideal for testing a
system for scalability as shown in Figure 3-6.
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Figure 3-6 Using test agents to conduct scalability tests.

In this example, the test agents created to perform functionality tests are reused for a
scalability test. The test agents implement the behavior of a user by driving the functions of
the system. By running multiple copies of the test agents concurrently, we can observe how
the system handles the load by assigning resources and bandwidth.

Testing Modules for Functionality and Scalability

Another way to understand the a system's ability to serve users is to conduct function-
ality and scalability tests on the modules that provide services to a Web-enabled application.
Computers serving Web-enabled applications become nodes in a grid of interconnected
systems. These systems are efficiently designed around many small components. I am not
saying that the old-style large-scale mainframes are history, rather they just become one
more node in the grid. That leaves us with the need to determine the reliability of each part
of the overall system.
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The flapjacks architecture, introduced in Chapter 2, is a Web-enabled application
hosting model wherein a load balancer dispatches Web-enabled application requests to an
application server. There flapjacks architecture provides us with some interesting opportuni-
ties to test modules for functionality and scalability. In particular, rather than testing the
system by driving the test from the client side, we can drive tests at each of the modules in
the overall system as illustrated in Figure 3-7.

Figure 3-7 Functionality and scalability testing in a flapjacks environment enables us
to test the modules that make up a systems. The test agents use the na-
tive protocols of each module to make requests, and validate and meas-
ure the response to learn where bottlenecks and broken functions exist.

The flapjacks architecture uses standard modules to provide high quality of service
and low cost. The modules usually include an application server that sits in front of a data-
base server. The load balancer uses cookies to manage sessions and performs encryp-
tion/decrypting of Secure Sockets Layer (SSL) secured communication. Testing Web-
enabled application systems hosted in a flapjacks data center has these advantages:

• The load balancer enables the system to add more capacity dynamically, even
during a test. This flexibility makes it much easier to calculate the Scalability
and Performance Index (SPI), first introduced in Chapter 3, for the system at
various levels of load and available application servers. In addition, the applica-
tion servers may offer varied features, including an assortment of processor con-
figurations and speeds and various memory and storage configurations.
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• Web-enabled applications deployed on intranets—as opposed to the public In-
ternet—typically require authentication and encryption usually use digital cer-
tificates and sometimes public key infrastructure (PKI). Testing intranet appli-
cations in a flapjacks environment allows us to learn the scalability index of the
encryption system in isolation from the rest of the system.

• Using Load balancers and IP layer routing—often using the Border Gateway
Protocol (BGP)—enables the entire data center to become part of a network of
data centers by using the load balancer to offload traffic during peak load times
and to survive connectivity outages. Testing in this environment enables us to
compare network segment performance.

Taking a different perspective on a Web-enabled application yields even more oppor-
tunities to test and optimize the system. The calling stack to handle a Web-enabled applica-
tion request provides several natural locations to collect test data. The calling stack includes
the levels described in Figure 3-8.

Figure 3-8 The call path for a typical Web-enabled application shows us many
places where we may test and optimize for better scalability, func-tionality
and performance.

As a Web-enabled application request arrives, it passes through the firewall, load bal-
ancer, and Web server. If it is a SOAP-based Web Service request, then the request is addi-
tionally handled by a SOAP parser, XML parser, and various serializers that turn the request
into objects in the native platform and language. Business rules instruct the application to
build an appropriate response. The business objects connect to the database to find stored
data needed to answer the request. From the database, the request returns all the way up the
previous stack of systems to eventually send a response back to the requesting application.
Each stage of the Web-enabled application request stack is a place to collect test data, in-
cluding the following, including the following:

• Web server - Most Web servers keep several log files, including logs of page
requests, error/exception messages, and servlet/COM (component object model)
object messages. Log locations and contents are largely configurable to some
extent.

• XML parser - The SOAP parser handles communication to the Web-enabled
application host, while the XML parser does the heavy lifting of reading and
validating the XML document.
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• SOAP parser - Application servers such as BEA WebLogic and IBM Web-
Sphere include integrated SOAP parser libraries so the SOAP parser operating
data is found in the application server logs. On the other hand, many Web-
enabled application applications run as their own application server. In this case,
the SOAP parser they bundled—Apache Axis, for example—stores operating
data in a package log.

• Serializers - Create objects native to the local operating environment from the
XML codes in the request. Serializers log their operating data to a log file.

• Business rules - Normally implemented as a set of servlets or Distributed COM
(DCOM) objects and are run in servlet or DCOM containers such as Apache
Tomcat. Look into the application log of the application server.

• Database - Database servers maintain extensive logs on the local machine of
their operation, optimizations, and other tools.

The downside to collecting all this test data is the resulting sea of data. All that data
can make you feel like you are drowning! Systems that integrate several modules, such as
the bookstore example above, generate huge amounts of result data by default. The subsys-
tems used by Web-enabled applications include commercial and open-source software pack-
ages that create log files describing actions that occurred. For example, an application server
will log incoming requests, application-specific log data, and errors by default. Also, by
default, the log data is stored on the local file system. This can be especially problematic in a
Web-enabled application environment, where portions of the system are inaccessible from
the local network.

Many commercial software packages include built-in data-collecting tools. Tools for
collecting and analyzing simple Web applications (HTTP and HTTPS) are also widely
available. Using an Internet search engine will locate dozens of data collection and analysis
tools from which you can choose.

So far, you have seen intelligent test agents drive systems to check functionality, scal-
ability, and performance. It makes sense, then, to have agents record their actions to a cen-
tral log for later analysis. After all, agents have access to the Internet protocols needed to log
their activity to a log Web-enabled application.

In an intelligent agent environment, collecting results data requires the following con-
siderations.

What Data to Collect?

Data collection depends on the test criteria. Proofing the functional criteria will collect
data on success rates to perform a group of functions as a transaction. A test proofing scal-
ability criteria collects data on the individual steps taken to show which functions scale well.
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Proofing performance criteria collects data on the occurrences of errors and exceptional
states.

At a minimum, test agents should collect the time, location, and basic information on
the task undertaken for each transaction. For example, when proofing functionality of a
Web-enabled application, a test agent would log the following result data:

Agent       Task         Result  Module         Duration
Stefanie 1  Sign-in      Ok      com.ptt.signin 00:00:00:12
Stefanie 1  Run Report   OK      com.ptt.report 00:00:08:30
Stefanie 1  Send Results OK      com.ptt.send   00:00:00:48

For functional testing, the results need to show that each part of the overall test func-
tioned properly, and they also show how long each step took to complete. Some test proto-
cols describe thei overall test of a function as a use-case, where the set-up parameters, steps
to use the function, and expected results are defined. When proofing scalability the Stefanie
agent logs the following result data:

Agent    Task             Results Time        Duration
Chris 1  Sign,report,send Ok      14:20:05:08 00:00:09:10
Chris 2  Sign,report,send Ok      14:25:06:02 00:00:06:12
Chris 3  Sign,report,send Ok      14:28:13:01 00:00:08:53
Chris 4  Sign,report,send Ok      14:32:46:03 00:00:05:36

Scalability testing helps you learn how quickly the system handles users. The result
data shows when each agent began and how long it took to finish all the steps in the overall
use case.

Where to Store the Data?

By default, Web-enabled application software packages log results data to the local
file system. In many cases, this becomes dead data. Imagine tracking down a remote log file
from a Web-enabled application in a grid of networked servers! Retrieving useful data is
possible, but it requires much sleuthing. In addition, once the results data is located, analysis
of the data can prove to be time consuming.

In my experience, the best place for results data is in a centralized, relational database.
Databases—commercial and open-source—are widely available, feature inexpensive pricing
options, and come with built-in analysis tools. Database choices include fully featured rela-
tional systems with the Structured Query Language (SQL) to a flat file database manager
that runs on your desktop computer.

Understanding Transparent Failure

As a tester it is important to keep a bit of skepticism in your nature. I am not recom-
mending the X-Files, but instead it you should keep an eye on the test result for a flawed
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test. In this case, the test data may be meaningless, or worse misleading. In a Web-enabled
application environment. the following problems may be causing the test to fail.

Network Bandwidth Is Limited
Many tests assume that network bandwidth is unlimited. In reality, however, many

networks become saturated with modest levels of agent activity. Consider that if the con-
nection between an agent and the system is over a T1 network connection, the network will
handle only 16 concurrent requests if each request transfers 8Kb of data. Table 3-4 shows
how much traffic networks can really handle.

Table 3-4  Network Capacity to Handle Test Agent—Generated Data; Performance
Varies Greatly

Results Data Size T1 Requests Ethernet Requests T3 Requests

1 Kbytes 132 854 3845
2 Kbytes 66 427 1922
4 Kbytes 33 213 961
8 Kbytes 16 106 480

These numbers are calulated by multiplying the result data size by the maximum capacity of
bytes per second. A T1 line can transmit 1 million bits per second. A 100 Mbit Ethernet line
can transmit 7 millions bits persecond. A T3 line can transmit 30 million bits per second.

Not Enough Database Connections
Systems in a flapjacks environment use multiple Web application servers to provide a

front end to a powerful database server. Database connection pooling and advanced transac-
tional support mitigates the number of active database connections at any given moment.
Database connection pooling is defined in the Java Database Connectivity (JDBC) 2.0 speci-
fication and is widely supported, including support in Microsoft technologies such as
DCOM. However, some database default settings will not enable enough database connec-
tions to avoid running out after long periods of use.

Invalid Inputs and Responses
Web-enabled applications are methods in software objects that accept inputs and pro-

vide responses. The easiest way to break a software application is to provide invalid inputs
or to provide input data that causes invalid responses. Web-enabled applications are suscep-
tible to the same input and response problems. A good tester looks for invalid data as an
indication that the test is failing. A tester also ensure that the error handling works as ex-
pected.

Load Balancer Becomes a Single Point of Failure
Using a load balancer in a system that integrates Web-enabled applications introduces

a single point of failure to the system. When the load balancer goes down, so does the entire
system. Modern load balancer solutions offer failover to a simultaneously running load bal-
ancer.
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So far, I have shown technological considerations - checking for functionality and
scalability - for testing Web-enabled applications. Next I cover how management styles im-
pact your testing. Then I show how the test results you desire impact the way you test a
Web-enabled application.

Management Styles

The feeling I get when launching a new Web-enabled application must be similar to
what television executives feel when they launch a new program. It is a thrill to launch a
new program, but it is also scary to think of how many people will be impacted if it doesn't
work or meet their expectations.

Many business managers have a hard time with the ubiquity and reach of their Web-
enabled application. TCP/IP connections over Internets, intranets, and extranets are every-
where and reach everyone with a browser or Web-enabled application software. The stress
causes highly charged emotional reactions from management, testers, and developers alike.

I have seen management styles greatly impact how the design and testing of  Web-
enabled applications will deliver value to the business. Understanding a management style
and your style is important to crafting effective designs and tests. Table 3-5 describes man-
agement styles, characteristics, and the effect on design and testing for several management
types.

Table 3-5  Management Styles and Design and Testing Strategies

Style Characteristics Effect

Hierarchical Strategy is set above and
tactics below. Basic belief:
“Ours not to reason why,
but to do and die.”

The senior-most managers in a hier-
archy have already made decisions to
choose the servers, network equip-
ment, vendors, and location. The
design then becomes just a matter of
gluing together components pro-
vided by the vendor. Intelligent test
agent-based test solutions work well
as the management hierarchy defines
the parameters of the data sought and
an acceptable timeframe for delivery.
Developers, testers, and IT managers
should look for efficiencies by reus-
ing test agent automation previously
created or bought for past projects.

Systemic Take a problem off into a
separate place, develop a
solution on their own, and
return to the team to im-
plement the solution

Systemic managers can use design
tools and test automation tools them-
selves, and are happier when they
have command of the tools unaided.
Test tools enable systemic managers
to write test agents that deliver
needed data. Training on test auto-
mation tools is important before
systemic managers are assigned
projects. Providing an easy mecha-
nism to receive and archive their test
agents afterward is important to
develop the companies’ asset base.



22 The Java Design and Test Automation Guide  Chap. 3

Style Characteristics Effect
needed data. Training on test auto-
mation tools is important before
systemic managers are assigned
projects. Providing an easy mecha-
nism to receive and archive their test
agents afterward is important to
develop the companies’ asset base.

Entrepreneurial Want to keep as many
business opportunities
going at once as possible.
Frugal with the company
cash.

An entrepreneur finds opportunity by
integrating existing resources to
solve an unaddressed problem. De-
sign is often a weaving and patching
of existing systems. Testing provides
proof that a new business method or
technology can reach its potential.
Tests should focus on delivering
proof-points of how the system will
work.

Inexperienced Often fail, downplay, or
ignore the business effi-
ciencies possible using
technology in their com-
pany.

Design is dominated by
price/performance comparisons of
off-the-shelf solutions. Testing pro-
vides business benefits that must be
stated in terms of dollars saved or
incremental revenue earned. Speak
in a business benefits language that
is free from technical jargon and
grand visions.

The styles in table 3-5 are presented to encourage you to take a critical look at the
style of the manager that will consume your design and your test data and then to recognize
your own style. Taking advantage of the style differences can provide you with critical ad-
vancement in your position within the business. Ignoring management styles can be peril-
ous. For example, bringing an entrepreneurial list of design improvements and test strategies
to a hierarchical manager will likely result in your disappointment.

Consider this real-world example: A test manager at Symantec showed clear signs of
being entrepreneurial and was paired with a hierarchical product manager. The test manager
recognized his own entrepreneurial style and changed his approach to working with the hier-
archical manager. Rather than focusing on upcoming software projects, the test manager
showed how existing test automation tools and agents could be reused to save the company
money and deliver answers to sales forecasting questions.

Some styles have a tendency to crash into one another. Imagine the entrepreneurial
executive working with a systemic test manager. When the executive needs test data, the
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systemic test manager may not be around—instead working apart from the team on another
problem. Understanding management styles and how they mix provides a much better
working environment and much more effective tests.

SERVICE LEVEL AGREEMENTS

Outsourcing Web-enabled application needs is an everyday occurrence in business to-
day. Businesses buy Internet connectivity and bandwidth from ISPs, server hosting facilities
from collocation providers, and application hosting from application service providers
(ASPs.) Advanced ASPs host Web-enabled applications. Every business depends on out-
source firms to provide acceptable levels of service. A common part of a company’s security
policy is requiring outsource firms to commit to a service level agreement (SLA) that guar-
antees performance at predefined levels. The SLA asks the service provider to make com-
mitments to respond to problems in a timely manner and to pay a penalty for failures. Table
3-6 shows the usual suspects found in an SLA.

Table 3-6  Service Level Agreement Terms

Goal Description How to Measure

Uptime Time the Web-enabled
application was able to
receive and respond to
requests

Hours of uptime for any week’s period
divided by the number of hours in a
week (168 hours.) The result is a per-
centage nearing 100%. For example, if
the system is down for 2 hours in a
given week, the service achieves
98.80952% uptime ((168-2)/168).
Higher is better.

Response time Time it takes to begin
work on a solution

Average time in minutes it takes from
when a problem is reported to when a
technician begins to work on a solu-
tion. The technician must not be a call
center person but someone trained to
solve a problem.

Restoration Time it takes to solve
a problem

Maximum time in minutes it takes from
when a problem is reported to when the
problem is solved.

Latency Time it takes for net-
work traffic to reach
its destination on the
provider’s network

The measurement of the slowed net-
work connection from the Inter-
net/intranet to the server device; the
average time taken for a packet to reach
the destination server.

Maintenance Frequency of mainte-
nance cycles

Total number of service-provider
maintenance cycles in a one-month
period.
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Goal Description How to Measure
period.

Transactions Index of whole request
and response times

Total number of request/response pairs
handled by the system. The higher the
better.

Reports Statistics about moni-
toring, conditions, and
results

Total number of reports generated
during a 30-day cycle.

SLAs actually give a business two guarantees:

•  The service provider agrees to criteria for providing good service. Often in real-
world environments, problem reports go unresolved because of a disagreement
on the terms of service. The SLA describes all the necessary facets of delivering
good service.

•  The SLA becomes part of the service provider’s everyday risk mitigation strat-
egy. Failing to provide good service results in an immediate effect to the service
provider’s financial results. Most SLAs provide that when the service provider
fails to meet the SLA terms, the provider will refund portions of the service fees
to the business. Depending on the SLA, even greater infractions from the SLA
will typically cause the provider to pay real cash money for outages to the cus-
tomer.

At this point in the Internet revolution, it should be common sense to have SLAs in
place; however, Web-enabled applications add additional requirements to SLAs. Enterprises
delivering systems today are integrating several Web-enabled applications into an overall
system. For example, consider a corporate portal for employees that integrate company
shipping reports from one Web-enabled application and a directory of vendors from a sec-
ond Web-enabled application. If different providers host the Web-enabled, how do SLAs
apply to the overall system? What’s needed is a Web-enabled application Level Agreement
(WSLA).

The WSLA’s goal is to learn which Web-enabled application in an overall system is
performing poorly. The WSLA asks each service provider to deliver a means to test the
Web-enabled application and a standardized means to retrieve logged data. The test must
speak the native protocols to make a request to the Web-enabled application. For example,
the company shipping reports to the Web-enabled application may use SOAP to respond
with the reports. Testing the Web-enabled application requires the service provider to make
a SOAP request with real data to the live Web-enabled application. The response data is
checked for validity and the results are logged.

The WSLA defines a standard way to retrieve the logged data remotely and the
amount of logged data available at any given time. Depending on the activity levels and ac-
tual amounts of logged data stored, the WSLA should require the service provider to store at
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least the most recent 24 hours of logged data. The business and service provider agree to the
format and retrieval mechanism for the logged data. Popular methods of retrieving logged
data are to use FTP services, e-mail attachments, and SOAP-based Web-enabled applica-
tions.

A WSLA in place means a business has a centralized, easily accessible means to de-
termine what happened at each Web-enabled application when a user encountered a problem
using the Web-enabled application–based system.

Of course, live in the shoes of a service provider for just one day and the realities of
Web-enabled application technology begin to set in. A service provider has physical facili-
ties, employees, equipment, bandwidth, and billing to contend with every day. Add to that
an intelligent test agent mechanism—which is required to deliver WSLAs—and the service
provider may not be up to the task. As today’s Internet technologies moves forward, we will
begin to see Internet computing begin to look more like a grid of interconnected computers.
Intelligent test agent technology is perfectly suited for service providers playing in the grid
computing space.

GRID COMPUTING AND INTELLIGENT AGENTS

Twenty-five years into the microcomputer revolution and the computer industry too-
often relies on computer operators hitting the Reset button to solve system problems. While
there is nothing quite as perfect as the Reset button for functionality—it always
works—there is something wrong with expecting a system operator to know when to press
the Reset button. Short of hiring a bunch of expensive systems analysts, how can we be sure
a system is operating at peak efficiency? Letting the system itself know how it is functioning
and not depending on functional bottlenecks goes a long way.

Wouldn’t it be great if we could build and manage a computer infrastructure offering
easy setup, good usability, and low-effort maintenance? This is the new infrastructure envi-
sioned by advocates of grid computing technology and self-healing techniques. Internet us-
ers have already benefited from the beginnings of grid computing.

Grid computing takes today’s Internet environment and makes it modular. Grids ex-
pect every data center to have the same basic components: storage, processors, switches, and
memory. Grids use standard open protocols to enable data centers to communicate. With
standardized communication, data centers become commodities and are easily replaced and
interchanged. If the New York data center isn’t working well, for example, traffic is handled
by the San Jose data center. Offloading from a node on a grid of data centers also lets a data
center activate systems to perform self-diagnostics and, in many cases, self healing. Self-
healing can mean as little as pressing the Reset button on a server. Advanced self-healing
systems understand how the system is being used and take proactive steps to improve sys-
tem performance and uptime. The protocols to enable grid computing are in their infancy
today, and much work must be done.

Much of the work on grid computing has centered around making the pieces of infra-
structure—routers, devices, and servers—interoperate with new technologies such as Peer-
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to-Peer (P2P) technology, like Sun’s JXTA (http://www.jxta.org/,) and adaptive network
technology, like Sun’s Jini (http://www.jini.org/.) JXTA enables peer systems to create a
virtual network where any peer can interact with other peers and resources directly, even
when some of the peers and resources are behind firewalls or are on different network trans-
ports. Jini network technology is an open architecture that enables developers to create net-
work-centric services—whether implemented in hardware or software—that are highly
adaptive to change. Now here comes Web-enabled applications, which take existing server
functions and enable them to be pushed outward and interoperate in loosely coupled, fine-
grained systems. Web-enabled applications are a great advancement to take us to grid com-
puting.

The Road to Easy Setup, Use, and Maintenance

It used to be fashionable to criticize Microsoft as a key factor in the computer indus-
try’s inability to deliver systems that were easy to set up, use, and maintain. The argument
went that Microsoft, as a single company was unable to meet the world’s computer users’
needs because those needs are infinitely varied. Microsoft’s monopoly control of desktop
operating systems and its use of a closed development methodology prevents software engi-
neers with the ability to make positive changes to DOS and Windows from having access to
the code and distributing the changes.

Even with public scrutiny in the Federal courts and recent moves to open the Windows
source code, Microsoft has assumed the role of pariah among the software development
community. The best engineers who volunteer their time to improve open-source software
are not working on Microsoft software.

The most egregious problems in DOS and Windows brought rise to an entire industry
of utility software products from third-party software publishers like Network Associates.
The everyday user, upon finding a problem in DOS or Windows, could search retail shops
for utility software offering a fix. Delivering software through retail distribution systems has
its own problems due to the amount of time it takes for products to hit the shelves. The end
user waits for utility software publishers to deliver solutions to problems that should never
have appeared in the operating system in the first place. And with retail distribution, comes
product indecision and extra time to market.

Microsoft and other platform providers have grown to depend on utility software pub-
lishers to solve problems in operating systems. They described missing parts of the operat-
ing system as “third-party opportunities.” The computer industry baked this into the process
of releasing new operating system technology. Consequently, users were stuck with buggy,
less-than-full-featured operating systems, that are available weeks or months after the launch
of the operating system.

Then something surprising happened: The major platform providers adopted Web-
enabled applications to build their next-generation platforms. Most operating systems and
software applications have grown to be so large that they are managed like small universes
unto themselves. Within Microsoft Windows are thousands of libraries, utility programs,
storage formats, and interfaces. Empires of control formed within the platform providers,
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where one team may or may not cooperate with other teams. For example, the Microsoft
Internet Explorer team depends on deliverables from the Multimedia team. So even within a
single operating system, there may be “third-party opportunities” where needed functionality
is missing to make the operating system complete. The platform providers—Microsoft, Ora-
cle, IBM, and many others—internally chose to adopt Web-enabled application protocols,
including Extensible Markup Language (XML), Remote Procedure Call (RPC), SOAP,
WSDL, and Universal Description, Discovery, and Integration (UDDI), to increase interop-
erability among the internal teams.

It is only a coincidence that by adopting Web-enabled application protocols, it be-
comes much easier for platform providers to open their systems. Exposing APIs required a
huge effort to deliver a complete software development kit (SDK). Web-enabled applica-
tions describe themselves by using the power of XML. Once an internal API has been cre-
ated using Web-enabled application protocols, the platform provider needs only choose
which APIs to expose to a developer wanting to plug in new features.

With developers widely adopting Web-enabled application protocols to build their
software products, it is now possible to create the protocols needed to enabled grid comput-
ing and self-healing techniques.

Self-Healing Systems

Imagine what a self-healing system might be like. For an enterprise running a human
resources portal for its employees, one might find an integrated system that features man-
agement services for an employees pension plan, controls for tax withholding, and a vaca-
tion time manager. Figure 3-9 shows how the portal might look from an employee’s
browser.
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Figure 3-9 Employee’s perspective of a human resources portal.

Like most enterprise applications, the portal shows data collected from many services.
The pension plan features are provided from a PeopleSoft Web-enabled application, the tax
withholding comes from Bank of America’s payroll Web-enabled application, and the vaca-
tion time manager comes from an internal database. An application server coordinates the
Web-enabled application requests needed to present a single, unified Web interface for an
employee.

In this scenario, imagine what happens when the vacation time database fails. Modern
software driving a portal will detect the error and still try to present as much valid data as
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possible. Figure 3-10 shows what the employee experiences when one of the Web-enabled
applications fails.

Figure 3-10 Human resources portal in error condition

The employee has a choice: accept that the function is not working or call someone re-
sponsible for the system and ask her to solve the problem. We all have experiences working
with service desks to solve problems. At best, the experience is not painful.

Self-healing systems understand the content of the portal page. The system under-
stands when data is missing, inappropriate, or wrong. The key to self-healing grid comput-
ing environments is enabling the system to know the difference between good operation and
problem operations.

Software developers, IT managers, and QA technicians agree that self-healing systems
give better user experiences, provide higher availability, and require less effort to maintain.
However, there is usually a debate on responsibility for self-healing technology for a given
system. The developer considers self-healing technology to be an extension of unit testing,
the IT manager thinks it’s part of service-level monitoring, and the QA technician considers
it part of an ongoing software regression test.

While self-healing technology may be implemented at the software, test, or operations
level, experience shows that the software, such as the application driving the HR portal,
should feature controls to manage the application; but the smarts to know when an applica-
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tion is not performing correctly should be built into an external system—a system using in-
telligent agents to continuously proof a system against a performance and scalability criteria.
Since intelligent agents have an ability to programmatically respond to the environment they
are testing, it makes sense that agents may also be programmed to solve the problems they
find.

UNDERSTANDING PERFORMANCE AND SCALABILITY
CRITERIA

Testing and monitoring a system is an effective technique for building the right-size
data center, building better Web-enabled applications, and hosting happy users. For a test
and monitoring system to be meaningful, we need to understand the criteria for good per-
formance and scalability. The Scalability and Performance Criteria (SPC) defines the needed
tests to observe good or bad operation. The Scalability and Performance Index (SPI) is an
effective technique to test a system against the SPC criteria. The SPC defines how we know
a system is performing well, and the SPI proofs the system against the criteria.

Defining SPC

Criteria puts into words what many of us know in our gut. Experienced Internet users
can tell in less than a second when a Web-enabled application is performing badly. Com-
puter use is so widespread today that every computer user has reached minimum criteria for
good functionality, scalability, and performance. I find that, on average, Web-enabled appli-
cation performance comes down to these three points:

1. Are the basic features functioning?

2. How fast is the Web-enabled application performing?

3. How often do requests fail?
By themselves, these three questions are subjective. Imagine a Web-enabled applica-

tion with basic features that function correctly 95 percent of the time in an e-commerce ap-
plication. Would the criteria equally weight the basic features if a movie listing Web-
enabled application functioned 95 percent of the time? Miss an e-commerce function and the
business loses a sale. Miss a movie listing and it’s no big deal.

Defining criteria for good Web-enabled application operation depends on many sub-
jective parameters; however, experience shows us that all criteria may be normalized to al-
low any Web-enabled application to be judged for functionality, scalability, and
performance. Following are the ways the Scalability and Performance Criteria (SPC) nor-
malizes the criteria.
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Reward Success

While the systems tested using SPC are a complicated, multi-faceted integration of
multiple Web-enabled applications, at the end of the day the test is still a measure of how
closely the system help users achieve their goals. SPC rewards the successful achievements
of users. The more user goals achieved, the better the operation of the system.

Reward Time-Savings and Discourage Slowness

Harkening back to the jingoistic days of phrases like “Time is money,” it is evident by
now that fast-operating Web-enabled applications are beneficial to users. All user goals are
stated with an implication that the users will reach his or her goal in a reasonable amount of
time.

Alan Cooper, the father of Visual Basic and a Microsoft fellow, described the term
taction as to characterize the friction that poorly constructed software interfaces cause to
slow the user from reaching goals. Web-enabled applications have taction, too. When an
online banking application takes more than 10 seconds to respond to a checking account
balance inquiry, the user is slowed in reaching his or her goal. When the same balance in-
quiry requires that the user access several Web page forms just to get an account balance
that is an example of taction, too.

In an unscientific survey of Web-enabled application users in California and New
York, the majority of Web-enabled application users indicated that they would wait 5 sec-
onds or less before clicking the Stop button on their browser. Experience shows that users
value Web-enabled applications that perform functions in less than 5 seconds and discount
Web-enabled applications that take longer. More than 10 seconds is sufficient cause for the
user to cancel the operation. SPC rewards fast operation and discourages slow operation.

Discourage Failure

Angry, upset, and unnerved users should be represented proportionally greater than
satisfied users. Users get into those states when systems built on Web-enabled applications
fail. The failure can come at a protocol level—where the system is unable to handle the re-
quest—or at a content level—where the returned data is wrong. For example, a content fail-
ure in an employee portal may show another employee’s retirement plan information. SPC
counts negative points in geometric proportion for operations that fail, compared to opera-
tions that succeed.

SPC also discourages failure in proportion to the amount of time the operation took to
fail. A content failure that takes less than 1 second to complete is less serious than a content
failure that takes 10 seconds. While both end in failure, the faster response wastes less of the
user’s time. Nothing incenses users more than an application that takes a long time to fail.



32 The Java Design and Test Automation Guide  Chap. 3

Reward Increased Price/Performance

While the cost to buy equipment, bandwidth, and hosting services has dramatically
decreased over the past 10 years, these costs become a significant part of the capital budget
for a business over time. Systems that handle more users on a given set of equipment are
described in a ratio of system costs to the number of users handled. Computer manufacturers
coined the term price/performance to describe this ratio. SPC rewards higher
price/performance by looking at the number of concurrent users handled at any given time.

Understanding the Jargon

The computer industry is awash with jargon and idioms. In the Web-enabled applica-
tion–testing world, the terms concurrent, simultaneous, synchronous, coincident, and con-
comitant have taken on new lives and specific meanings. Understanding the contrast
between concurrent and the other terms is helpful to construct SPC.

•  Concurrent - Implies parallelism in character or length of time: The system was
able to handle 1000 concurrent users in 1 hour’s time.

•  Simultaneous - Narrowly specifies occurrence of events at the same time: Users
organized simultaneous tests of Amazon.com and Barnes&Noble.com.

•  Synchronous - Refers to correspondence of events in time over a short period:
The test agents executed a series of synchronous small requests.

•  Coincident - Applies to events occurring at the same time without implying a
relationship: The inventory control system slowing greatly is pretty nearly coin-
cident with the credit card validator slowing.

•  Concomitant - Refers to coincidence in time of events so clearly related that
one seems attendant on the other: The test agents found problems in the database
so close in time to the inventory control problem that the problems are con-
comitant.

While each of these is valid for defining test criteria, SPC emphasizes concurrent
testing. Concurrent tests measure the throughput of many requests during a given time pe-
riod, as opposed to simultaneous or synchronous tests. In a Web-enabled application envi-
ronment, a request may happen at any moment and take a variable length of time to
complete.
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SPC in Action

Putting the SPC into action results in a SPI, a metric with many uses, including the
following:

•  Encourages software developers to optimize code for better user experiences

•  Helps IT managers design and deploy the right sized data center

•  Provides management metrics to judge user satisfaction

•  Assists QA technicians to learn whether new software has regressed to include
previously solved problems

While the SPC is a fine criterion that is well balanced to test Web-enabled applica-
tions, the SPC requires specific inputs depending on the Web-enabled application being
tested. Let’s look at an example application to see SPC in action. This example features a
policy quotation system from a large insurance company in the United States. The insurance
company has offices in the western and eastern parts of the United States. They are man-
dated through regulations to keep records showing the quotes they make to win new busi-
ness accounts.

The system provides a Web browser front end to the policy quotation system. Insur-
ance agents use a Web browser from their desks to build proposals for business customers.
The system also provides market data on the business that the agent many use in the pro-
posal.

The system is run from two geographically distributed data centers for reasons of re-
dundancy and access speed. The system stores price quotes in a replicate database system
accessible from either data center. The system uses a Web-enabled application provided by a
major research firm to research market data on the business.

In daily operation, the agent signs in to the system, and starts a new price quote ses-
sion or retrieves an existing quote. In the case of new quotes, the system uses the prospec-
tive customer’s business name and SICS code to retrieve relevant market data on the
business. The insurance agent chooses which market data to be included in the price quote
file. The agent may optionally attach the market data to the quote as evidence to backup the
agent’s quote. Figure 3-11 shows the system architecture.
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Figure 3-11 Insurance policy quotation system

A research firm through a SOAP-based Web-enabled application to the data center
provides the market data. The agent enters a business SIC code and the name of the pro-
spective customer using a Web browser. The local office system makes a SOAP-based Web-
enabled application request to the data center, which in turn makes a request to the research
system. The response contains the research available and the prices available.

The system architecture is typical of modern Web systems, where systems are an inte-
gration of various Web-enabled applications. While these systems are prevalent, they are
also challenging to IT managers who must answer issues of uptime, data center sizing, and
problem resolution. Applying SPC shows the nature of this complicated system before roll-
out and is a metric to measure system performance while in production.

First we will look at the SPI results for this system, and then we will explore how the
SPI was found. Figure 3-12 shows the SPI for the insurance policy quotation system.
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Figure 3-12 The Scalability and Performance Index (SPI) for the insurance example
application.

The SPI calculation for the policy quotation system breaks down into two parts: Part 1
shows the performance and error measurements recorded when 50 concurrent users are on
the system for 15 minutes. Part 2 shows an analysis of the results to determine the SPI. The
SPI is expressed as a number in two parts. Figure 3-13 shows how to interpret the SPI.

Figure 3-13 Looking closer at the SPI.

The SPI for the policy quotation system is read as “at 50 concurrent users, the system
performed to an index value of .23485.” A near-perfect rating would be 50.99999, at which
level every user is being served in less than 1 second and with no errors. Every response
time longer than 1 second and every error eat away at a perfect .99999 index value. In our
example, 50.23485 is a poor SPI rating. This low an SPI indicates that many users will find
slow performance and many error results.

What can be done to improve the SPI rating for this system? The biggest improve-
ments will be to increase the speed at which requests receive responses. Eliminating the re-
sponses that took more than 5 seconds will more than double the SPI to .47855. Eliminate
the errors and the SPI jumps up to .79337.

The full SPI is noted as 50.23485 to indicate the class of system being tested. For ex-
ample, if the system is hosted on equipment capable of handling a public Internet site, we
may want to test the system at 5000 concurrent users. In that case, the SPI would appear as
5000.23485. On the other hand, a small departmental server may need to support only 7
concurrent users, in which case testing the system may result in a 7.23485 SPI rating. In
general, the perfection index increases with bigger, faster performing equipment.
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SPI is an effective solution in identifying how well a Web-enabled application–based
system is able to handle concurrent users at specific levels of load. The SPI is designed to let
the IT manager, software developer, and QA technician make what-if decisions to assure
user goals may be met by addressing these questions:

•  Do we have the right number of servers to satisfy the expected number of users?

•  Are fast response times acceptable while users get error responses?

•  Should we spend more money on servers and bandwidth or on software devel-
opers?

These questions are the toughest to answer in real-world Web-enabled application en-
vironments. They beg for decisions that focus on data center sizes, software performance,
and user experience. SPI is an effective tool for making decisions to achieve user goals and
for managing development, testing, and maintenance of Web-enabled application–based
systems.

Now that you have seen the policy quotation system examined against a SPC and
learned the SPI, let’s explorer how SPC and SPI is crafted for every Web-enabled applica-
tion–based system.

MODELING A USER’S GOALS

Part 1 of the SPI in Figure 3-10 measures responses by time. For example, in Figure 3-
10 the system handled 4050 requests by responding between 2 and 3 seconds. But what did
the system actually respond to? Is a response a transaction, a session, an individual request,
or something else? And how does a response translate into a user achieving his or her goals?

SPI measures system performance while an intelligent agent uses the system. The
agent performs tasks modeled after a user’s goals. To the system, the agent looks like a real
user driving a keyboard and mouse to use a browser or software application. To get close to
real-world production environments, agents are modeled after several users. The modeling
process defines user archetypes, modeling techniques, and agent technology.

User archetypes are prototypical users of a system. In the policy quotation system,
these user archetypes might exist:

•  Brigitte - Branch manager, 36 and high energy. She usually drinks 4 to 5 cof-
fees a day, which draws comments from her coworkers about her jitteriness.
Brigitte needs to retrieve policy quotations from other agents that work in her
branch. She reviews the quotations for completeness. She rarely, if ever, writes a
new policy herself.



Modeling Tests 37

•  Stefanie - Claims manager. Stefanie and Brigitte seem to encourage each other’s
coffee-drinking obsession. Stefanie needs to report aggregate policy quotation
summaries back to the corporate headquarters. While Brigitte is interested in the
content of the policies, Stefanie monitors the deal flow. Stefanie is less orga-
nized than Ed or Brigitte. She normally waits until things pile up before acting.

•  Ed - Insurance agent. Ed has been writing policies for 30 years and is just 5
years short of retirement age. Ed works slowly with computers. He hardly ever
enters incorrect data, but it takes 10 minutes or more to write a new quotation.

User archetypes give insight into the background, work habits, and goals for a proto-
typical system user. The archetype method is a strong antidote to the usual pitfall in which
developers, QA technicians, and IT managers try to solve problems that happen to a broad
cross section of users. Trying to solve problems encountered by the biggest group of users
has been shown to have a defocusing effect in which small problems are fixed but the most
significant user problems are left unaddressed.

Implementing intelligent test agents becomes much more straightforward with defined
archetypes. For example, an agent based on the Brigitte archetype would constantly check
the system for new policy quotations. The agent requests multiple policy quotation at the
same time and would bunch the requests into many short bursts. The number of requests
would increase every 90 minutes due to Brigitte’s many trips to the coffee pot.

Just as they would in a real insurance agency, the archetype users keep business hours
and operate concurrently when they are at work. While the Brigitte intelligent test agent is
rapidly retrieving policies, other agents based on Stefanie and Ed are on the system, too. The
Stefanie agent runs batch-reporting scripts every 90–180 minutes. The Ed agent retrieves
market data on new prospective customers and slowly writes a new policy quotation every
45–60 minutes. Ed takes a 5–minute break to smoke a cigarette before starting to write the
next quotation.

Agents help to establish near real-world environments to conduct tests. A defined
agent is started and allowed to run. Running multiple agents concurrently loads the system.
Effective tests develop three or more user archetypes and run multiple copies of each ar-
chetypal agent concurrently. For example, the results from Figure 3-10 used 30 Ed agents,
15 Stefanie agents, and 5 Brigitte agents concurrently for a total of 50 concurrent agents.

Archetypes model a user’s goals by declaring the destination states a user will achieve
through use of the system. This may be tricky, as some goals are actually just partial steps
taken to achieve a final goal. For example, in the insurance company example, the Ed agent
may have a goal of signing in to the system, but this is just a single step to achieving the
larger goal of sending a new policy quotation or following up on a prospective customer to
accept a proposal. Understanding normal agent states is important to building a valid test.

Test States

Intelligent test agents model the expected use of a system by prototypical users, so it
should come as no surprise that a test agent would step through multiple functions to ac-
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complish the archetypal user’s goals. The agent is “stateful.” While each agent is as varied
as the archetypes, all test agents achieve the following states:

•  Setup - In this state, the agent has assembled a set of initial values and objects
needed to communicate with a Web-enabled application. The setup state may
also include the agent actually signing in or performing an initialization or iden-
tification action on the system.

•  Establishment - The agent now takes steps to put the host service into a needed
state prior to accomplishing an action. The Ed agent signed in and retrieved
market research on a new business. These steps were enough to establish the
system for the action test state.

•  Action - The agent requests that the Web-enabled application create new ob-
jects, create new data, or modify existing objects. The Web-enabled application
executives a complete transaction in the action state—as opposed to the previous
steps, which could be rolled back.

•  Analysis - Time for the agent to learn the results of the request. The agent ex-
amines the response data to make sure the response is appropriate for the re-
quest.

•  Conditional recurrence - The agent looks at the response data and chooses a
course of action. The agent may go back and achieve the Establishment-Action-
Analysis states.

Software test professionals are often eager to understand the test states and build test
scripts. While understanding the test states is important, understanding how the test agents
flow from one state to another is equally important. The Unified Markup Language (UML)
has long been used by developers and is ideal to identify test agent states.

Using UML and Code Comments to Model Tests

UML began as a way for software developers to describe the actions and states in a
software application. UML is ideal for showing the states in a test agent. UML describes a
small set of standard notations to indicate flow and state through a system. For example, the
UML for the Stefanie agent is shown in Figure 3-14.
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Figure 3-14 UML offers a very simple way to notate a work flow. In this example, the
UML diagram shows the Stefanie test agent signing-in, running a report
and sending the results.

UML defines several simple notations to illustrate a program’s state, transitions, uses,
and functions. Figure 3-12 shows a simple UML diagram describing a use case. The box
surrounding the ovals indicates the boundaries of the Stefanie agent. The actor symbol rep-
resents the actions the user archetype as a UML actor would take to reach the goal. The lines
with solid arrows indicate the dependencies between the use cases. The solid arrow means
that one use case depends on the previous use case. For example, the agent may not run the
report until after signing in to the system.

UML is easy to learn and handy to use, and many tutorials a books are available to
help you learn. In a Web-enabled application testing environment, UML is well worth the
effort to learn and use.

Now that the behavior of the agent and the agent states are known, we have enough to
set up the system, build sample data, code the intelligent test agents, and determine the SPI.

Putting the Test Together

The agents are written, the server software is installed and configured, the test states
are defined, and the user archetypes are written. The test is ready to go! The test begins
when the first agent starts. The exact duration and extent of the test depends on the details of
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the criteria. To get the test results shown in Figure 3-9 for the insurance policy quotation
system example, these steps were necessary:

1. Run 50 concurrent agents: 30 Ed agents, 15 Stefanie agents, and 5 Brigitte
agents.

2. Run the agents for 60 minutes.

3. Measure the system activity by agent for the last 15 minutes.

4. Run the agents on a mid-range server connected by a 100Mb Ethernet net-
work to the system host.

The test results in Figure 3-10 show the SPI for this system. Analyzing the results
sheds important light on the system. These results also show where to direct the develop-
ment team to improve the system software.

While the test ran for 60 minutes, only the last 15 minutes of results are significant to
this test. In those 15 minutes, the system handled 28,390 agent operations: The Ed agents
created new policy quotations and took long breaks in between; the Brigitte agents checked
quotations for validity; and the Stefanie agents ran reports for headquarters. SPI is a
weighted system that tests the system against the SPC. If all 28,390 agent operations were
completed in less than 1 second, the weighted response measurement would have been
113,560 operations. The system missed the performance mark by coming in long. On the
average, the system responded in less than 1 second to 48.5 percent of the requests.

The SPI example data in Figure 2.6 also weights the system for errors. Of the 28,390
agent operations, the system responded with 1765 errors. SPI discourages error responses in
which the error takes longer than 5 seconds. In our case, all the errors took longer than 5
seconds to complete. Each error is rated according to how long it took to achieve a result.
The weighted errors counted for 7105 error responses, which is 25.0 percent of the overall
unweighted responses.

Subtracting 25.0 percent from the error response index from the 48.52 percent
weighted response index gives an SPI of 50.23485. SPI is particularly aimed at the slow
moving, poorly performing intranet or Internet systems. It may even appear draconian by
nature. However, the 50.23485 SPI is deserved in the Insurance Quotation System since a
third (30.715 percent) of the system’s responses to the agent requests took 5 seconds or
longer. Adding up the 5 seconds or greater unweighted response times, one can see the poor
system performance.

SUMMARY

I hope you agree that our over-arching goal is to develop meaningful test result data
that will help us direct our software developers to create better software, help our IT manag-
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ers build better data centers, and make for happier users that reach their personal goals. A
deeper understanding of software, data center, and test agents will benefit any testing and
monitoring project and team.

This chapter presented a way to model user goals in a Web-enabled application. We
used the user goals to define a Stability and Performance Criteria (SPC.) The SPC defines
acceptable system performance in our Web-enabled application. From the SPC we devel-
oped a metric, called a Scalability and Performance Index (SPI) to measure system perform-
ance against the criteria. This method may be applied to any Web-enabled application.

Chapter 4 introduces the components of a data center needed to test and measure Web-
enabled applications. The SPI from this chapter is applied new datacenter design methods to
determine the SPI of an example system.
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C H A P T E R  4

Java Development and Test Automation Tools

The earlier chapters in this part of the book discussed the modern reality of devel-
oping and testing Web-enabled applications: it's really, really hard. Building and running
Web-enabled applications reliably requires the hard work and cooperation of software de-
velopers, QA technicians and IT managers. Businesses serving every sector of industry,
government, and in our personal lives have an incredible opportunity to save money and
create new profits by increasing the speed of software development and the reliability of
Web-enabled applications.

Over the past 15 years, the computer industry responded to this opportunity with a
huge effort to automate software development and testing. We have already gone through
three major waves of automation. This leaves the average software developer, QA techni-
cian and IT manager with the daunting challenge to understand, and then choose from sev-
eral competing methodologies and tools.

This chapter describes the three waves of software automation efforts, how to evaluate
an automation methodology, and how to assemble a set of software development and test
automation tools to deliver improved reliability in Web-enabled applications. Then, Chapter
5 shows a free open-source test tool, TestMaker, that I wrote as a test automation framework
and utility.

THE THREE WAVES

Since the invention of microcomputers in the 1970's, the computer industry went
through three major waves of software development and test automation. These automation
efforts parallel the move from desktop applications, to client/server applications, and to to-
day's Web-enabled applications. Table 4-1 describes the three waves.
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Table 4-1 The three phases of software development and test automation in the era
of personal computers.

Wave Type of Application Development Style Test style

1 Desktop Event-driven framework
surrounds individual proce-
dural functions. The com-
mon style is to have
hierarchical set of menus
presenting a set of com-
mands.

Test each function against a
written functional specifica-
tion.

2 Client/Server Structured programming,
commands organized into
hierarchical menu lists with
each client function having
its own code. The common
style is to combine a com-
mon-drop-down menu bar
with graphical windows
contain controls.

Test each function against a
written functional specifica-
tion and test the server for its
throughput to serve clients.

3 Web-enabled Visual integrated develop-
ment tools facilitate object-
oriented design patterns.
The common style is to
provide multiple paths to
accomplishing tasks. (The
net effect is that you can't
just walk through a set of
hierarchical menus and
arrive as the same test re-
sult any more.)

Capture/record/playable
watches how an application is
used and then provides reports
comparing how the playback
differed from the original
recording.

Desktop Application Development and Test Automation

Desktop software development began in the 1980's with the invention of the micro-
processor. The early devices were essentially dedicated systems that were able to run a small
library of application software that was distributed on floppy disks through retail software
stores and mail-order catalogs. The true geeks among us could event download software
from the emerging network of bulliten board systems (BBS.) The software was written to
provide a friendly interface for information workers: Spreadsheet jockeys, business people
needing written reports, and games players. The full spectrum of desktop software could
pretty well be categorized into spreadsheet, word processor, database, and entertainment
categories since desktop computers were rarely networked to other information resources.



4 The Java Design and Test Automation Guide  Chap. 4

When a network existed, such as using a slow modem to connect to an information resource
like a bulletin board system, there was rarely a link from the desktop application software to
the networked information resource. A very few had something approaching ethernet.

Desktop applications used the keyboard, and then later a mouse, to navigate through
windows and a drop-down menu. Inside a desktop application software package one would
find an event-driven framework surrounding individual procedural functions. The applica-
tion managed windows and menu events separately from the application logic. The applica-
tion commands the operating system to open a window, initialize a drop-down menu, and
then waits for the operating system to tell the application that the user chose a menu com-
mand or moved a window. In the vernacular of the time the application software responded
when the operating system "fired-off an event." The desktop application software that re-
sponded to events was procedural in nature.

Procedural software follows a simple one-shot path that goes from initialization to
completion in pursuit of a single goal: to answer the user's command. For example, when the
user chooses the Print drop-down menu the operating system launches the event handler
code in the application to print the current document. The event handler code looks up the
current document, formats the document and sends the formatted data to the printer. The
operating system may provide multitasking - for example, to allow the user to create a new
document while an existing document is printing - but the event handler for printing only
cares about printing the document.

Building desktop application software using an event-driven framework was incredi-
bly easy compared to the object-oriented nightmares a software developer may encounter
today. For example, Java Server Pages offers up three object models for software developers
to use in a single application: the object model that binds data from the Java application, the
object model to dynamically create HTML tag elements that reference action objects on the
server, and a third set of objects to model data stored in a relational database. Ugh! In event-
driven frameworks, rarely does an event handler need to call a function outside of its own
little code base. The event driven design pattern had a great impact on software development
and testing automation efforts.

Software development automation for desktop applications focused around improving
the time it took to code and build software. Desktop application frameworks give software
developers a quick way to start coding. The frameworks provide the library calls to initialize
the operating system, construct the application's initial windows and menus, and handle
functions common to many applications (for example, file management, printing, and mem-
ory management.) Test automation focused on improving the time it took to test a desktop
application for functionality. The test utilities linked into desktop applications and drop each
command as though a user were accessing the menu and window commands.

Aside from the name of the drop-down menu command and the text elements appear-
ing in a window, there is little to explain to a test tool what the context is of a command. So
most QA technicians testing a desktop application compare the function of all the menus and
windows to a written functional specification document. The variation from the document to
the performance shows the relative health of a desktop application.

Desktop application frameworks and functional test tools are very popular today. Most
integrated development environments come with a New Application Wizard - or similarly
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named utility - to build the skeleton of a desktop application from its own internally known
framework. For example, popular development tools of the time - for example, Microsoft
Visual Studio and Sun ONE Studio - ask developers a few questions about the application
they intend to build and then write hundreds of lines of code to implement the skeleton of
the application. Popular tests tools of the time - for example, Mercury Interactive WinRun-
ner, and WinPerl Guido (http://www.winperl.com/) - captures, verifies and replays user in-
teractions in a desktop application automatically. These test tools automate the way a QA
technician identifies defects and ensures that business processes work flawlessly for the user
the first time and remain reliable.

Client/Server Development and Test Automation

The original intent for client/server applications was to separate presentation logic
from business logic. In an ideal system design, the client was responsible for presenting the
user interface, command elements (drop-down menus, buttons, controls,) and displayed re-
sults information in a set of windows, charts, and dials. The client connected to a server to
process functions and the server responded with data. In reality it rarely worked that cleanly.
Client/server designs have put functionality in the server and in the client. Client/server to-
day is marked by a common desktop application that communicates to a central server. As a
result, the client code can be just as complex as the server code.

Client/server applications are very popular with businesses because their centralized
nature enables huge efficiencies in system maintenance, deployment and development. Cli-
ent/server application development offers new possibilities for software development and
test automation that drove the second wave of tools and methodologies.

In a client/server environment the protocols are cleanly defined so that all the clients
use the sample protocols to communicate with the server. This facilitates code reuse, infor-
mation providing from remote data sources, and intelligent client functions became possible.
In response, software development automation tools vendors extended their frameworks to
provide client-side and server-side frameworks. The client-side frameworks provide the
same functionality of desktop application frameworks plus most of the needed communica-
tion code to issue commands to the server and the code needed to automatically update a
client with new functions received from the server. The server-side frameworks provide
code needed to receive and handle requests from multiple clients, and code to connect to
databases for data persistence and remote information providers. Additionally, these frame-
works need to handle stateful transactions and intermittent network connections. Stateful
transactions require multiple steps to accomplish a task. For example, signing-in to a Web
application so you avoid having to do so on each subsequent task.

Client/server applications are normally transactional in nature and usually several in-
teractions with the user are needed to finish a single request. For example, in a stock trading
application the user begins a transaction by identifying themselves to the server, looking-up
an order code, and then submitting a request to buy a stock. The client-side application
communicates the request to the server, and receives and presents the results to the user. The
client-side application normally knows something about the transaction - for example, the
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client-side application will normally store the user identification and a session code such as
a cookie value across the user's interaction with the server-based application. Users like it
better when the client-side application knows about the transaction because each step in a
request can be optimized in the client-application. For example, in the previous stock trading
example the client application could calculate a stock trade commission locally without
having to communicate with the server.

Client/server application test automation provides the functionality of desktop appli-
cation test automation plus these:

•  Client/server applications operate in a network environment. The tests need to
not only check for the function of an application, they need to  tests how the ap-
plication handles slow or intermittent network performance.

•  Automated tests are ideal to determine the number of client applications a server
is able to efficiently handle at any given time.

•  The server is usually a middle tier between the client-application and several
data sources. Automated tests need to check the server for correct functionality
while it communicates with the data sources.

Client/server applications provide the same challenge to test automation that we first
saw in desktop application test automation: there is rarely anything about the communica-
tion between the client and server to indicate to a test automation tool the context of the re-
quest. It still looks like bits and bytes moving across a network and not stock trading
transactions, requests to buy an airline ticket, and research on home mortgages. This be-
comes a bigger problem for the QA technician testing a client/server application because
testing needs to answer these issues:

•  Compare the function of the all the menu and window commands displayed to
the user in the client-application to a written functional specification document.

•  Determine the impact of increasing numbers of concurrent client requests on
server performance.

•  Determine when a request from one client impacts the functionality of another
client.

Test automation in a client/server application environment is ideal because it greatly
extends the productivity of the QA technicians. However, test automation is more of a ne-
cessity because client/server applications raise the bar so high.

Client/server application frameworks and functional test tools are hugely popular to-
day. Most enterprise integrated development tools come with rudimentary client/server
frameworks built-in. Popular tools of the time - for example, Borland JBuilder, IBM Ra-
tional Rose and Compuware OptimalJ - provide frameworks that write the code for client
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and server components. Popular tests tools of the time - for example, Segue SilkTest, Em-
pirix e-Test, Mercury Interactive LoadRunner and RadView Web FT - provide tool sets to
teach the test automation tool about the protocol between client and server, verifies interac-
tions, load tests the server, and then monitors the system for quality of service.

Web-enabled Development and Test Automation

Web-enabled applications provided the opportunity for the third wave of software de-
velopment and test automation. Web-enabled applications build on the experiences of de-
veloping, deploying and maintaining desktop and client/server applications. Web-enabled
applications go further in these areas:

•  Web-enabled applications are meant to be stateless. HTTP was designed to be
stateless. Each request from a Web-enabled application is meant to be atomic
and not rely on any previous requests. This has huge advantages for system ar-
chitecture and data center provisioning. When requests are stateless, then any
server can respond to the request and any request handler on any server may
service the request. (Of course, we will see in the next part of this book that no
application is entirely stateless.)

•  Web-enabled applications are platform independent. The client-application may
be written for Windows, Macintosh, Linux and any other platform that is capa-
ble of implementing the command protocol and network connection to the
server.

•  Web-enabled applications expect the client application to provide presentation
rendering and simple scripting capabilities. The client application is usually a
browser, however, it may also be a dedicated client application such as a retail
cash register, a Windows-based data analysis tool, or an electronic address book
in your mobile phone.

Web-enabled applications are very popular with businesses because they offer the ad-
vantages of client/server applications - efficient system maintenance, deployment and devel-
opment - plus they reduce the burden of client-side software maintenance, increase the
flexibility of datacenter architecture to favor multiple, smaller server boxes, and are ripe to
use object oriented programming techniques.

Object oriented programming is attractive to software developers because it makes it
easy to deliver individual software objects without forcing the developer to worry about the
entire system. Each object is responsible for managing and encapsulating its own data. Plus,
the application programming interfaces to a software object offer some context for a call to
an object. For example, an object named StockTransactions with a method named BuyStock
that takes an integer value named Shares and returns a long value named TransactionNum-
ber gives the software developer a good idea of what the object is for and how to call it.
Sadly, no equivalent exists to explain to a test automation tool the context of such an object.

The missing context in a Web-enabled application test automation means that software
developers and QA technicians must manually script tests for each Web-enabled application.
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Plus, they need to maintain the test scripts as the application changes. Web-enabled applica-
tion test automation tools focus on making the script writing and maintenance tasks easier.
The popular test automation tools offer these features:

•  A friendly, graphical user interface to integrate the record, edit and run-time
script functions.

•  A recorder that watches how an application is used and writes a test script for
you.

•  A playback utility that drives a Web-enabled application by processing the test
script and logging. The playback utility also provides the facility to playback
several concurrently running copies of the same script to check the system for
scalability and load testing.

•  A report utility to show how the playback differed from the original recording.
The differences may be slower or faster performance times, errors, and incom-
plete transactions.

Web-enabled application frameworks and functional test tools are a billion dollar in-
dustry. Yet, all the popular tools of the time - for example in the commercial tools space,
Wily Introscope, Mercury Interactive LoadRunner, Segue SilkPerformer, RadView We-
bLoad, and Empirix eLoad, and the open-source tools space, PushToTest TestMaker, The
Grinder, and Apache JMeter - offer the same basic 4 features: graphical interface, recorder,
playback, and report utility. They all expect you to do the work of writing and maintaining
test scripts.

Two significant efforts are underway to solve the test script maintenance problem:
application modeling tools that generate tests automatically, and the second generation of
Web Service standards that define ways to model the workflows of a Web-enabled applica-
tion in XML.

From Models To Tests

Many software development and test automation tools companies publish modeling
languages that enable a software architect and developer to describe a finished software ap-
plication. For example, Compuware OptimalJ implements the Object Management Group
(OMG) Model Driven Architecture (MDA.) MDA enables you to visually describe an appli-
cation and OptimalJ writes Java code for you that implement the application. The MDA
description tells OptimalJ all about the context of each function in the application. Since
they are translating the model to code already, it is natural that the product is also able to
translate the model into a test suite that checks the application for functionality, scalability
and performance.

Another example, of a model driven system is IBM Rational Rose. It implements the
Unified Modeling Language (UML), also from the OMG. UML is the industry-standard
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language for specifying, visualizing, constructing, and documenting the artifacts of software
systems. UML lets a software developer note a "blueprint" for construction. IBM Rational's
products can then write a test suite from the same blueprint.

The downside to using a commercial software development and modeling tool is the
vendor lock-in that a business suffers over time. If IBM Rational is not able to keep up with
your changing needs for its modeling tool, then there no other tool to adopt without causing
a rewrite - and reinvestment - into the new tool.

From Workflows to Tests

Several concurrent efforts are underway to improve software developer productivity of
Web-enabled applications on the Java platform. Consider these technologies and tools listed
in table 4-2.

Table 4-2 Efforts to make Web-enabled application development more efficient

Project Description

Java Server Faces Defines an architecture and APIs that simplify the creation and
maintenance of Java Server application GUIs. Makes Web pages
essentially macros that may be glued together into a Web-enabled
application.
The specification is at: http://web1.jcp.org/en/jsr/detail?id=127

Java Page Flow A tool set built upon a Struts-based Web application-programming
model to leverage the power and extensibility of Struts while also
eliminating the difficulties and challenges of building Struts-based
applications. Java Page Flow includes runtime support for the Web
application programming model and tools that enable developers to
quickly and easily build applications based upon the model.
The central concept and construct of Java Page Flow is called page
flow. Basically, a page flow is a directory of Web app files that work
together to implement a UI feature.
Details are at:
http://developer.bea.com/articles/Dew.jsp

BPEL4WS Business Process Execution Language for Web Services
(BPEL4WS) is an open standard from the OASIS group that defines
common concepts for an XML-based business process execution
language which form the necessary technical foundation for multiple
usage patterns including both the process interface descriptions re-
quired for business protocols and executable process models.
Details are at:
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel
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Project Description
open.org/committees/tc_home.php?wg_abbrev=wsbpel

Table 4-2 lists just three of the dozens of efforts underway to improve software devel-
oper productivity by introducing modeling languages and notation to the software develop-
ment process. This bodes really well for test automation. With workflow notation delivered
from a server comes automatic creation of test scripts to test these Web-enabled applica-
tions. Even without these new workflow notation technologies, I believe the time is right for
a fourth wave of software development and test automation tools and techniques.

ACHIEVING THE TROIKA - THE FOURTH WAVE

I am in a unique position from most people in that I regularly get to work with soft-
ware developers, QA technicians, and IT managers in my day job. In my experience, these
three groups rarely work as a single unit. Imagine the troika they would form when they
work together! A troika is a Russian word describing a group of three horses that pull a
wagon while standing side-by-side. It is much easier to shoulder a heavy load if one has
help. Imagine having three times the effort devoted to building, deploying and maintaining a
Web-enabled application. Chapter 1 discussed some of the common problems in businesses
today that keep a troika of software developers, QA technicians, and IT managers from
forming. With the techniques, methodology, and tools presented in this book we can pre-
cipitate a fourth wave of innovation and productivity in development and test automation.
We can achieve a troika!

Figure 4-1 The most efficient and productive way to test Web-enabled applications is
to put software developers, QA technicians and IT managers to work to
increase functionality, scalability and reliability. These three groups
working together form the Troika!

From my perspective, we live in a unique time. This is the first time that software de-
velopers, QA technicians and IT managers agree on a framework and infrastructure to build
distributed applications: Object oriented applications, running on a routed global network,
using a Web infrastructure. But, just consider the complexity built-into today's application
software!
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On the server-side, J2EE, .NET and open-API technology (for example, the Apache
Tomcat engine, Struts library, and JBoss application server) gives us a huge range of APIs:
from Web pages, database access, and Web Service interoperability, to asynchronous mes-
sage queues and email messaging, and literally dozens more. Consequently, we can build
sophisticated and powerful applications that leverage the many parts of an enterprise infra-
structure. With all these APIs and protocols we ask the questions in Table 4-2:

Table 4-2 The most basic questions

Role Question

Software Developer How will I test this new module in the newly
architected system?

QA Technician How will I test this system for scalability and
functionality?

IT Manager How will I test this system for reliability and
availability?

Each person in the engineering effort asks: How will I test this application? Consider
that there is no single client-side API to test everything that J2EE can do on the server side.

As a software developer, I find that unit testing is very good to ensure that the server-
side software components I write do what I say they will. But I also find that some of my
components require the correct state before they may be unit tested. For example, a Java
Bean that fires-off an announcement email message when 100 new orders have been placed
needs to have 100 orders entered to be tested! My need is immediate for the following to be
able to automate such a test:

1. A framework to write a test

2. Support for the open-standards environment I use

3. Multiple-protocol support to match the server's capabilities, including at a
minimum Web protocols (HTTP, HTTPS,) Web Service Protocols (SOAP,
XML-RPC,) and email protocols (SMTP, POP3, and IMAP.)

4. A utility that makes testing automatic every time I change my modules
Imagine that I cobble together the technology, code libraries and utility software to ac-

complish these four goals. The resulting test automation framework and utility would enable
me to rapidly build test scripts to automate the actions needed to get my Java Bean into the
correct state. Plus, these test automation scripts naturally extend what I am already doing
with a unit test framework like JUnit.
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Using this approach, I find that the QA technicians I work with take my test scripts
that check for functionality, and run them in the same test environment concurrently to
check the system for scalability, concurrency and regression problems. When a QA techni-
cian finds a problem in my code, we get together and look at the test script logs to locate the
problem and learn its cause. All I need is a way to construct, run and analyze these tests to
bring together two of the three parts of the Troika: software developers and QA technicians!

In addition, IT managers will regularly take my functional test scripts and them run
them for long periods of time. The scripts drive the service using the same native protocols
that my real end-users would use. The scripts log the proof that the system is working. And
the reports make a fine Quality-of-Service report to management and customers. Ha! We
have all three pieces of the Troika: software developers, QA technicians, and IT managers
all working together!

From these experiences I found that this Troika-building approach is within our reach
today. We can build an excellent framework and utility for testing J2EE, .NET and open-
API applications from the client-side. The next section shows an institution using a Web-
enabled application to gain more customers and reduce the costs of doing business.

A TEST AUTOMATION LIFECYCLE

While the right test automation tools, techniques and methodologies will build the
Troika mentioned in the previous section of this chapter, automating a test includes many
steps. This section presents those steps as a repeatable lifecycle for test automation.

To present the lifecycle, consider a major university in Florida that intends to rollout a
new email communication system to its 15,000 students, teaching faculty and administrative
staff. (Chapter 15 presents a case study of this example.) One third of the students live on-
campus. The rest commute to the college or take classes from remote satellite campuses.
The email system provides access to email accounts through email client software, such as
Microsoft Outlook, Mac OS X Mail, and Eudora Mail, and through a browser-based Web
interface. The University has already chosen the Web-infrastructure components to serve the
email communication application, including use of a commercial email software package.
The University has also already chosen three Internet service providers for connectivity to
the email system. The University seeks to certify that its datacenter and bandwidth allot-
ments are ready to serve the students, faculty and administration.

Figure 4-2 shows the lifecycle of development to deployment for the University email
communication system. By studying the lifecycle I hope you will see that the lifecycle may
be applied to any Web-enabled application test.
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Figure 4-2 The steps to build an automated test of a Web-enabled application.

The test lifecycle is composed of several successive actions. Each action builds on the
previous action. The lifecycle tests the email system for scalability, functionality and per-
formance. By repeating the lifecycle, we additionally test for regression (bugs that were pre-
viously solved) as the University changes and upgrades the system. The following describes
each step in more detail. Then Chapter 5 shows how you may accomplish these actions us-
ing my free open-source test tool called TestMaker.

1. Identify the test goals, system components, and user archetypes. The Univer-
sity seeks to certify that its datacenter and network bandwidth are ready to
serve the entire student body, faculty, and administration. The system com-
ponents are a routed network, load balanced group of 3 servers to provide the
Web interface, and 4 servers running a commercial email package in its
cluster-mode. The system runs on 3 networks provided by ISPs, including
Florida Telephone, TimeWarner, and Verizon. The University identifies three
prototypical users, including: Marilyn, a student living on-campus, Muriel, a
student living off campus, and Betsy, an on-campus instructor. (Please note:
This test and the user archetypes are presented in much more depth in Chap-
ter 15.)



14 The Java Design and Test Automation Guide  Chap. 4

2. Use an Integrated Test Environment (ITE) to construct the test. An ITE inte-
grates the functions of a graphical environment, script editor, record and
playback utilities, and logging/live-charts capability into one easy-to-use pro-
gram. While you may certainly use your choice of tools to construct a test, I
find that an ITE provides a productivity boost that makes the investment of
time and energy to learn the ITE worthwhile. In this part of the lifecycle, the
ITE automatically creates a directory to hold the test scenario and test agents
that implement the archetype behavior.

3. Record a test script that drives the browser interface to the application. The
ITE comes with a Recorder function that watches you use a Web browser to
accomplish the tasks Betsy normally takes. The Recorder writes the test
script that will play back Betsy's activities using the Web interface to check
her email mailbox and send messages.

4. Write a test script that drives the SMTP and POP3 email interfaces to the
application. The ITE comes with script commands to implement the tasks
Muriel and Marilyn normally take. The test script plays back Muriel and
Marilyn's activities to check and send email messages as though Microsoft
Outlook were using SMTP and POP3 email protocols. These scripts are sim-
ple functional tests. When run, these tests simply check a single mailbox once
and randomly send a single email message.

5. Plug the test scripts into a test framework to implement an entire test suite.
The ITE provides a test framework to take your functional tests (from the
steps 3 and 4) and run them as scalability, performance, regression and func-
tionality tests. Using the framework you identify the number of virtual users
to create and the mix of different archetype behaviors. For example, the Uni-
versity wants to test the email system at 250, 500, and 1000 concurrent vir-
tual users. For each test, they want 60% of the virtual users to have Muriel's
behavior (checking their email mailbox from off-campus,) 30% to have
Marilyn's behavior (check their email mailbox on campus,) and 10% to have
Betsy's behavior (faculty sending and receiving large file attachments.) The
framework gathers your settings from a properties file and automatically
stages and executes a series of tests.

6. Run the tests using the native protocols of the application under test. The test
script drives the University email system using native HTTP, SMTP and
POP3 protocols. To the system it appears a real-user is driving the email
functions. In reality, the test script language makes special calls to an exten-
sible protocol handler library that implements a wide variety of protocols and
is easily extended to support more.
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7. Show the test activity in a set of live charts. As the test progresses, I find it
helpful to see a graphic representation of the live test results in a set of meters
and charts. Having a dashboard of tests result metrics can show immediate
improvements in scalability and performance from changes I make in the in-
frastructure as the test proceeds. For example, if throughput appears to run
slowly I can change router settings to add more bandwidth to the servers and
see the result of the change in the dashboard.

8. Tally the results into a statistical report. The test generates lots of logged
data that are then summarized into one or more reports. For scalability tests,
the report shows transactions-per-second, average throughput, an index of er-
rors, and a scalability index. For acceptance tests, the report shows if the ap-
plication under test passed or failed. For regression tests, the report shows
that previously solved bugs are once again in the application. Previous chap-
ters introduced statictical report methods, including Chapter 2 for the Web
Rubric and Chapter 3 for the Scalability and Performance Index.

9. Run a larger scalability test using multiple test machines. The test run in step
6 used a single machine to run the test framework. In my experience, an in-
expensive 1.4 GHz Intel-compatible system usually runs out of bandwidth
and resources at approximately 300 to 500 concurrently running test agents.
To achieve the 1000 concurrent virtual users the University needs to stage a
test on multiple machines. The test environment needs to synchronize the
start of the test across multiple machines, manage multiple machines as the
test runs, and consolidate and analyze the test results from multiple machines
into a single report.

10.  Remotely monitor the application over time. The University runs the test
framework from multiple locations and on multiple networks to understand
how well the system is serving users. The framework runs the test agent
scripts as though Muriel was connecting from her off-campus home, and as
though Betsy was on-campus and sending transcripts and faculty reports. Ad-
ditionally, these tests show how well the ISP's connections to the email serv-
ice are performing and prove to management the system's quality of service.

The test automation lifecycle defines a set of steps to conduct scalability, functional-
ity, performance, and regression tests on a Web-enabled application. The lifecycle begins
again as new builds of software are added to the infrastructure, and when the infrastructure
changes (such as when new bandwidth is added or server configurations change.) The steps
of the lifecycle may be taken using any commercial or open-source test tool. The lifecycle is
also your checklist against which you may consider which test tools are most appropriate to
your Web-enabled application.
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SUMMARY

This chapter describes the three major waves of automation since the 1980's. Each
wave brought a new set of development and test automation methodologies and tools to
market. They are all in use today. This leaves the average software developer, QA technician
and IT manager with the daunting challenge to understand, and then choose from several
competing methodologies and tools. This chapter described the three waves of software
automation efforts, how to evaluate an automation methodology, and how to assemble a set
of software development and test automation tools to deliver improved reliability in Web-
enabled applications. In Chapter 5 we learn about TestMaker. It is a free open-source test
tool that I wrote as a test automation framework and utility to meet your modern needs to
build and test scalable and reliable Java Web-enabled applications.



0131421891 Author: Frank Cohen Writer's Manuscript 2 Chapter 5 - Page 1

C H A P T E R  5

Bridging From Methodology To Design

Information systems have reached a level of complexity where almost all new infor-
mation systems are built, run, and monitored by interdependent groups of people. In re-
sponse to this, the first part of this book presents the reasons new methdologies for software
design, testing and monitoring are needed. I then presented methodologies and strategies
that are designed to leverage the efforts of software developers, QA technicians, and IT
managers in a Web-enabled environment. (Chapter 4 called this the Troika.) This chapter
bridges the discussion of methodologies and strategies, to the second part of this book in
which I present the technologies, protocols, and tools that are available to you - many times
for free - to design, implement, and monitor well-performing and scalable information sys-
tems.

In my life, I find it much easier to learn new technology by reading about the fundi-
mentals, learning where the technology may go wrong, and then getting hands-on by using
the technology. To get hands-on, I use a common set of tools, including an open-source tool
named TestMaker that I created and continue to maintain, in my everyday life. This chapter
gives you a set of tools that will enable you to rapidly proof scalability and peformance of an
information system for yourself.

SEARCHING FOR TOOLS TO ENABLE THE TROIKA

My search for tools to proof information systems for scalability, performance, and
functionality began in 1998. At the time, I was principal architect for the Sun Community
Server (SCS) at Sun Microsystems. SCS is a Web-enabled integration server. SCS was one
of Sun's first experiments in Web-enabling its messaging, ecommerce, and collaboration
server software. The SCS software provides integrated access to public and private content
through Web pages, email, on-line conference interfaces, chat, and smart devices. SCS inte-
grates into a corporate database and directory server for single-sign-on functions. For exam-
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ple, using SCS one could easily start a discussion group that enables users to participate
through an email or Web interface. When a message is posted to a discussion group, the
users that participate through email receive a standard Internet email message containing the
posted message. Replies to the email message are posted back to the discussion group, in the
correct thread order. Web participants would see the email reply messages in a browser-
based display of the discussion group. The initial implementations of SCS were well re-
ceived, with companies like BP, Baker Hughes, and even Sun's own global sales team using
SCS to provide a rich, multi-protocol collaboration experience for its employees.

When SCS was ready to be certified for scalability and performance under load, I
needed to find a test tool that would be able to check that messages posted by email would
appear in the Web interface and vice-versa. Here is a check-list of feathers I needed to find
in a test tool:

1. A framework to write unit and functional tests. The same tests need to be
easily reused for scalability, performance, and regression tests.

2. Support for the open-standards application development environments and a
variety of platforms.

3. Multiple-protocol support to match a server's capabilities that may be ex-
tended as new protocols are introduced and used. At first I needed HTTP and
HTTPS for Web page interfaces, and SMTP, POP3, IMAP for email func-
tions. Later, I needed SOAP, XML-RPC protocols. Finaly, I need a way to
add new protocol handlers as they arise.

4. A utility to make recording, editing and running tests automatically very
easy.

5. A way to rapidly understand the test results while the test is running and af-
terwards.

6. A framework to run the functional tests on groups of servers - both local in
my lab and remotely around the Internet - in a distributed manner that would
log the test results back to a common place.

If that wasn't enough, my budget was already being squeezed downwards. I had little,
if any, money to spend on a tool.

My search found dozens of possible test tools that would meet my needs. I keep an
update-to-date l ist  of commercial  and open-source test  tools at
http://www.pushtotest.com/ptt/wiki/TestToolsInfoBook. Compiling the list of test tools
showed me that a combination of test tools was necessary to effectively test Web-enabled
applications for scalability, performance and functionality. Unfortunately, I have not yet
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found a single tool that accomplishes all of these goals. Instead, I found that many of the
tools could be made to work with each other. Instead of finding a single tool, I assembled a
toolbox. Table 4-1 shows the test tools and libraries I added to my toolbox and why.

Table 4-1 The contents of Frank's toolbox.

Function Needed Tool/Library I Chose Why I Chose It What I Gave Up

SOAP requests and
responses over
HTTP transports.

Apache SOAP
http://ws.apache.org/
soap/

Very simple API to
learn and use. Sup-
ports SOAP RPC
and Document Lit-
eral encoding. Addi-
tionally, the
alternatives (Java
JAX, found at
http://java.sun.com/
webservices/, and
Apache Axis, found
at
http://ws.apache.org/
axis/, were not yet
available.)

Apache SOAP is
very slow compared
to other SOAP
stacks. It does not
support WSDL nor
SOAP over Java
Message Service
(JMS) data sources.

Scripting language Jython
http://www.jython.or
g

Full featured and
object-oriented. Runs
anywhere Java runs.
Full access to Python
objects and any Java
object.

By choosing one
language over the
others, I keep the
other language users
away.

Records browser
activity into a Jython
script.

MaxQ
http://maxq.tigris.org

Stable code base.
Regular main-
tenence. Easy to
customize to write
my own test agent
scripts.

The design prevents
MaxQ from record-
ing browser opera-
tions that use SSL
and HTTPS.

Bar and Line Charts
in SWING controls

JOpenChart
http://jopenchart.sour
ceforge.net

Unlike other charting
libraries I found,
jOpenChart imple-
ments an event
model to update
Swing controls as the
underlying data
changes.

None that I can think
of.

HTTP cookie han-
dling

jCookie
http://jcookie.sourcef
orge.net/

Handles IETF RFC
2965 and Netscape
style cookies. Nice,
light, robust, and
well documented.

None that I can think
of.
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Function Needed Tool/Library I Chose Why I Chose It What I Gave Up
well documented.

XML data handling JDOM,
http://www.jdom.org

Very easy and Java-
like API to work
with XML data.
Avoids the complex-
ity of the usual XML
parsing libraries.

XML parser libraries
are so fast moving
that choosing one
risks being eventu-
ally outdated.

High-performance
multidimensional
numeric arrays

JNumeric Good stuff for
working with statis-
tical analysis.

None that I can think
of.

Email protocol sup-
port for SMTP,
IMAP and POP3

Java Mail API
http://java.sun.com/p
roducts/javamail/

The standard library
for Java developers
to work with email
protocols.

Flexibility, the Java
Mail API is pretty
cumberson to use
and integrate.

XML-RPC protocol
handler library

Apache XML-RPC
http://ws.apache.org/
xmlrpc/

Simple and easy API
to work with hosts
using XML-RPC
protocols.

None that I can think
of.

All of the tools in Table 4-1 have something else in common: they are written entirely
in Java and are distributed under free open-source licenses. That made it very easy to create
a framework and utility application to integrate these libraries and tools. I named the result-
ing work TestMaker and publish it as a free open-source test tool for testing Web-enabled
applications. TestMaker is available for free download now at http://www.pushtotest.com.

By distributing TestMaker under an open-source license, many software developers
have provided their input, guidance and architectural advice over the years. Since its con-
ception, TestMaker has gone through three major revisions. The original software was a
simple framework for Java developers to plug-in their own test logic. For example, Test-
Maker 1.0 offered a framework of Java objects that provided a simple way to make HTTP
calls to a Web host. Java coders would write the business logic of their test agents as Java
objects. This approach proved too brittle. When the target Web host changed in the slightest
way, then the Java code in the test objects needed to change too.

Another problem is that the complexity of building tests in Java was a turn-off to
many QA technicians and IT managers because it required them to write and maintain ob-
ject-oriented test agent code in Java. Responding to that, TestMaker 2.0 introduced an
XML-based scripting language. Below is an example of the TestMaker 2.0 XML-based
scripting language:

<load>
   <script>



Bridging From Methodology To Design 5

      <url action=”new” name=”myurl”
           host=”http://www.pushtotest.com”/>
      <url name=”myurl” action=”get”
           document=”index.html”/>
   </script>
</load>

This script creates a URL test object that communicates with the host server to request
the index.html page. The TestMaker 2.0 scripting language includes conditionals, loops and
simple expression evaluation. Users were very happy with the introduction of the scripting
language but many wanted the language to be more full-featured.

Geoff Lane, a leading contributor to TestMaker (and a Technical Editor of this book,)
proposed that the XML scripting language in TestMaker 2.0 should be scrapped in favor of
using the popular Python scripting language. I already decided that I did not want to build
and maintain the TestMaker XML language as a first-class language. (Adding support for
regular expressions, full Boolean logic, and all the other trappings of a scripting language
gave me nightmares.) Python already had all of these language features.

Then Geoff found Jython, a version of Python written entirely in Java. (Details on
Jython are at http://www.jython.org.) Jython compiles scripts wirtten in the Python language
into Java byte codes that may be run on any Java Virtual Machine. Test scripts written in
Jython can be run on Windows, Unix, Macintosh and any other system that runs Java. Plus,
the test scripts have direct access to all of the Python objects and access to any Java object
on the Java classpath! With Jython, any of the libraries list in Table 4-1 may be called di-
rectly from a Jython script. Later in this chapter I provide a complete list of Jython's advan-
tages to people that need to design, code and test information systems. TestMaker 3.0
replaced the XML scripting language and the original test objects with Jython and the Test
Object Oriented Library (TOOL) of protocol handlers. TOOL provides a common and ex-
tensible programmatic interface to all the need protocols, tools and libraries.

HOW TO GET TESTMAKER

TestMaker is available for free download at the PushToTest Web site. Point your fa-
vorite browser to http://www.pushtotest.com to download TestMaker. The site features the
latest software, archives of previous versions, frequently asked questions about TestMaker
and various technical support services, including email support lists for users and develop-
ers.

TestMaker is distributed in a Zip archive file format. Extracting the file contents in-
stalls everything that is needed to run TestMaker. TestMaker is a Java application and runs
everywhere Java 1.4 or greater runs, including Windows, Linux, Solaris, and Macintosh OS
X. Other Java-enabled platforms are capable of running TestMaker but have not been tested.

TestMaker is distributed with both compiled binaries and Java source code. The bina-
ries are ready to run immediately. To build TestMaker from the source code requires the
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popular free open-source Ant build/make utility found at http://jakarta.apache.org/ant and a
Java 1.4 or greater compiler.

TestMaker updates appear generally once a month to offer bug fixes and new features.
The PushToTest Web site offers a free email announcement service to send email  alert mes-
sages when new versions become available. PushToTest does not publish or share email
addresses.

TestMaker and the Open-Source Process

TestMaker introduced me to the world of open-source product development. I feel
greatly rewarded from the experience. Open source projects are the result of many volunteer
software developers who benefit from forming an open-source community to solve a real-
world problem. When a feature is missing or a bug is found the user has more options than
with commercial software. Open-source projects ship with their source code enable any en-
gineer to solve the problem or add a feature. Depending on the type of open-source license,
the improvement is contributed back to the project's community for consideration to be in-
corporated in the project itself.

TestMaker is licensed under an open-source license that was modeled after the highly
successful Apache Group license. The Apache Group is famous for building and maintain-
ing the Apache Web server and many other open-source projects. These projects deliver
highly usable, production-ready code that may be used on their own or built into other prod-
ucts. The TestMaker license is found in the license.html file that comes with the TestMaker
download. The license allows anyone to download and use TestMaker for free. The license
even allows the TestMaker source code to be used to create new products, including com-
mercial software with no royalty due back to me.

I find that the TestMaker community divides into two groups: users and developers.
The PushToTest Web site hosts users@lists.pushtotest.com and dev@lists.pushtotest.com
for users and developers to pose questions, share improvements and generally support each
other. The users list is for people wanting to learn more about using TestMaker to test Web-
enabled applications.. The dev list is for people working on the TestMaker code to make
improvements.

Open-source projects typically need a principal maintainer to make decisions about the
project direction, to choose which improvements are appropriate to the project and to rally
the troops to solve problems and offer solutions. At this writing, I am the principal main-
tainer for TestMaker. Newcomers to TestMaker submit improvements to be considered for
inclusion into TestMaker’s code by sending the improvement to the
dev@lists.pushtotest.com mailing list. Decisions on submissions are based on the technical
proficiency of the code as well as discussion by other contributors. After several improve-
ments have been submitted and accepted the developer may be added to a list of people
privileged with making improvements directly to the TestMaker code. At the time this book
was written, 5 people have commit priviledges and 28 engineers actively contribute im-
provements.
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While the tested and released versions of TestMaker are available on the PushToTest
Web site, the working copies and interim TestMaker source code is stored in a Concurrent
Version System (CVS) server at cvs.pushtotest.com. Anyone with a CVS client may down-
load the latest TestMaker source code from the CVS server. The source code in the CVS
server may contain bugs, incomplete features and experiments however the code in CVS is
guaranteed to compile. Here are the parameters for downloading the TestMaker working
code from CVS:

CVSROOT = :pserver:anonymous@cvs.pushtotest.com/var/cvsroot
Log into CVS with no password and checkout one of these modules:

•  tool – retrieves the TOOL library of protocol handlers and test objects.

•  tm4 – the Swing-based TestMaker application.

SPENDING 5-MINUTES WITH TESTMAKER

TestMaker is an easy-to-use utility for building intelligent test agents. This next sec-
tion will show the steps needed to build a test agent, including:

•  Installing TestMaker on a Windows or Linux computer

•  Getting to know the TestMaker graphic environment

•  Recording a test agent

•  Understanding the Jython scripting language and TOOL objects

Installing TestMaker on a Windows or Linux computer

TestMaker comes as a set of files compressed into a ZIP archive. To install Test-
Maker, uncompress the archive into a directory. The TestMaker documentation will refer to
testmaker_home as the directory into which the TestMaker files are uncompressed.

When upgrading from a previous version of TestMaker we recommend you make a
backup copy of the previous version of the testmaker_home directory. The test-
maker_home/settings directory stores your settings, including open window sizes and loca-
tions, menu preferences and other TestMaker options. The testmaker_home/agents directory
by default stores the agents created while using TestMaker. Contents from either directory
may be copied from previous versions to an upgrade version of TestMaker.
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The testmaker_home directory contains several files and directories described in table
4-1.

Table 4-1 The TestMaker standard distribution

Name Purpose

agents Example agents to show how TestMaker works through practi-
cal examples.

doc Documentation and additional information on TestMaker, in-
cluding a reference guide to the TestMaker scripting language
and Javadoc documentation for developers wanting to change
and improve TestMaker.

source Source code to build TestMaker.
lib Compiled Java classes in Java Archive Resource (Jar) packages

for TestMaker and all supporting libraries.
util Utilities to run TestMaker test agents from the Windows, Unix,

Linux and Mac OS X command-line.
license.html The complete license for TestMaker and all the bundled open-

source projects distributed with TestMaker, including Apache
SOAP, Apache Xerces, Jython, Java Mail API and Java Acti-
vation Framework.

testmaker.bat A launcher script for Windows operating systems.
testmaker.sh A launcher script for Linux operating systems
readme.html Documentation of last minute changes and additions to Test-

Maker.

RUNNING TESTMAKER

TestMaker comes with simple launcher scripts to run on Windows, Linux, and Mac
OS X systems:

•  Windows users run the testmaker_home/testmaker.bat file. This file launches
Java and executes the TestMaker application.

•  Unix, Linux and Mac OS X users run the testmaker_home/testmaker.sh file.
This file executes a simple shell script that launches Java and executes the
TestMaker application.
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When TestMaker starts-up you will see set-up information describing the system envi-
ronment, classpath information, version numbers and other diagnostic information.  This
information is helpful to determine problems when using TestMaker. Depending on the
speed of the computer system the TestMaker environment should take 30 seconds or less to
finish loading.

In the event of a problem installing or starting TestMaker look at the support and fre-
quently asked questions (FAQ) pages on the PushToTest Web site at
http://www.pushtotest.com for help.

Getting To Know the TestMaker Graphic Environment

TestMaker 4 is a Swing-based Java application that offers many of the features a soft-
ware developer, QA technician and IT manager would expect to find in an integrated devel-
opment environment. TestMaker comes with a powerful screen editor, output panel, test
agent execution controls, visual file system navigator, online help, and a New Agent Wizard.

Figure 5-1 TestMaker features an integrated editor, file navigation explorer, output
window and workplace management features.

Figure 5-1 shows the TestMaker graphical environment and many of the elements
used commonly to create and run test agents, including the following:

•  Menu bar - Drop-down menus feature commands to create new agents, print
agent scripts, search and replace, and set options for the graphical environment
itself.

•  Explorer - The Explorer is a view into the file system of the local computer.
The small rotating twisty icons expose the files containing in directories. Dou-
ble-clicking on a file opens the file in the Script editor. The Explorer remembers
the directory view for the next time you run TestMaker.

•  Script editor - TestMaker comes with a powerful screen editor to write test
agent scripts, including clipboard operations to cut, copy and past agent code,
undo and redo changes, and syntax highlighting. When an agent script encoun-
ters a error, the environment highlights the line containing a syntax or other pro-
gramming error, or the line where the error was found.

•  Output - A running agent displays progress and statistics in the output window.
When more than one agent is executed the output window uses a tab icon system
to switch between agent output displays.
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•  Execution control - Below the Explorer is the Execution control panel that is
used to run, pause and stop test agents. Running tests agents appear in a list be-
low the Execution control buttons. The left-most Run button will start the cur-
rently selected test agent script in the Script Editor window. The Pause and Stop
buttons will pause and stop the selected test agent in the list of current running
test agents.

Opening and Running Test Agents

Building and running test agents in TestMaker is straightforward and easy. In this sec-
tion we will run a sample test agents and then show how to create a new agent using the
Recorder. The screen shots in this section were taken with a freshly installed TestMaker 4.

This tutorial uses the sample test agents in the testmaker_home/agents directory. The
agents are fully functional and most connect to the examples.pushtotest.com site, hosted by
PushToTest.

To begin, start TestMaker by running the TestMaker.bat or TestMaker.sh scripts found
in testmaker_home/. The TestMaker graphical environment includes features to edit agent
scripts, browse file systems for agent files, view output, and control execution of agents.
With TestMaker up and running you may immediately begin using any of the included sam-
ple test agents.

TestMaker uses the Explorer to open and manipulate agent scripts. Figure 5-2 shows
the first time TestMaker is run the Explorer shows the highest-level directories. On Win-
dows systems, Explorer shows a list of drive. On Linux systems, Explorer shows the root
directory.

Figure 5-2 The Explorer panel provides easy file navigation to find and open test
agent scripts.

Open a sample test agent by using the Explorer to navigate to the test-
maker_home/agents directory. Click a twisty icon to reveal the files and directories in a di-
rectory. With the agents directory open, double-click the HTTPS_Connect.a sample test
agent. Figure 5-3 shows TestMaker with this test agent open.

Figure 5-3 TestMaker with the HTTP_Connect.a test agent open.

HTTPS_Connect is a very simple script that makes a single secure HTTPS request to a
bank Web site. We will cover the script commands needed to accomplish this agent in the
Understanding Scripts section later in this tutorial. For now, please accept that these agents
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work and that the TestMaker graphical environment offers features to view and execute
agents.

Figure 5-4 The Execution panel is below the Explorer panel and controls running a
test agent on the local machine, running a test agent on a distributed set
of TestNetwork nodes, pausing a running agent, and stopping a test
agent.

To run the agent, click the Run button in the Execution panel in the lower-left portion
of the TestMaker window. You may alternatively choose Run from the Agent drop-down
menu, or type the Control-R.

TestMaker executes agents by creating a new thread for the agent. The running agent
appears in the running-agents list below the buttons. Output from the agent appears in the
output panel below the script editor window.!The output from the HTTPS_Connect agent
should look something like this:

Agent running: HTTPS_Connect.a

Description:
  Connect to a Web host using an SSL connection.

Received this response from the secure host:
<html><head><meta name="Author" content="gm"><meta
name="Program" content="BAbuscde.html"><meta
name="Description" content="starting frameset (normal)
"><meta name="Version" content="1.0"><meta name="Last Revi-
sion" content="July 12, 2002"><!-- (gm) 7/12/02 -- added
util1S.hs --><title>CitiBusiness Online</title><script lan-
guage="JavaScript" src="js/util1S.js"></script><script lan-
guage="JavaScript" src="js/UtilScreen.js"></script><script
language="JavaScript" src="js/referrer.js"></script><script
language="JavaScript"
src="js/BAbuscde.js"></script></head><frameset
rows="150,*,130" border="0" frameborder="no"> <frame
name="ltframe" src="BAbuscdT.htm" noresize scrolling="no"
marginheight="2">      <frame name="lmframe"
src="BAbuscdMI.html"><!-- <FRAME NAME="lmframe"
src="BAbuscdMI.html"> --> <!-- PORTAL version --><!--
<FRAME NAME="lmframe" src="BAbuscdM.htm"> --> <!-- non-
PORTAL version -->   <frame name="lbframe"
src="BAbuscdB.htm" noresize scroll-
ing="no"></frameset></html>
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Timing values for this request:

Total: 12568
Data : 6840
Setup: 5528

Agent complete.

The HTTPS_Connect agent receives an HTML page over an HTTPS connection se-
cured using Secure Sockets Layer (SSL) encryption - more about security in Chapter 10.
The output panel shows the total time it took to complete the request. The value shown in in
milliseconds where 1000 milliseconds equal 1 second. The Data time indicates how long the
request took before the Web Service began responding with data.

Of course TestMaker also handles more complex calls to Web Services using SOAP
and XML-RPC protocols. We will next open a second agent to see TestMaker's graphic en-
vironment handling more than one agent at once.

Building Agents with the New Agent Wizard

Next we will see how to create a new test agent using the helpful New Agent Wizard.
The Wizard provides four methods to help build test agent scripts. Each method is found in
the File -> New Agent drop-down menu.

Figure 5-5 The New Agent Wizard provides several helpful utilities to build test
agents for you.

The New Wizard is capable of building skeleton agents for testing HTML forms and
SOAP-based Web Services. Additionally, the HTML Agent Recorder records your opera-
tion of a Web-enabled application through a Web browser and creates a complete test agent
script automatically for you. Fist we look at how the HTML Form Agent command works.
Then we will use the HTML Agent Recorder to record a Web-enabled application.

The HTML Form Agent command writes a skeleton agent that performs an HTTP
Post command sending the parameters it finds in an HTML form. You give the New HTML
Form Agent a URL to an HTML Web page. The New Wizard retrieves the HTML page and
finds any <form> elements. The New Wizard then builds the TestMaker script that will per-
form an HTTP Post command to the servlet referenced by the form. To try the HTML For
Agent choose File -> New Agent -> HTML Form Wizard. The  dialog box in Figure 5-6
appears.
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Figure 5-6 Enter the URL to a page with an HTML Form.

Enter http://examples.pushtotest.com/responder/htmlresponder?file=file2.html into the
URL entry field. This is a special domain PushToTest hosts that provides several example
files and services in support of TestMaker and the sample test agents that come with Test-
Maker.

Next, click the Start button. In a few seconds the Editor window will display a test
agent script that can operate the HTML Forms on that Web page.  Since this may be your
first exposure to the Jython scripting language, I will spend some time explaining the script
in detail here. First I will show the entire script and then I will explain the script's individual
functions.

# Agent name: Try Examples Form
# Created on: July 4, 2003

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Header, Body, HTTPProtocol, \
HTTPBody, HTTPHeader

from com.pushtotest.tool.response import Response, \
ResponseLinkConfig, SimpleSearchLink

from java.lang import Exception

# The New Agent Wizard searched the page at
# the given URL for HTML forms.

# First, here is the TestMaker script to
# request the page at the given URL.

http = ProtocolHandler.getProtocol( "http" )
http.setType( HTTPProtocol.POST )
http.setUrl(
"http://examples.pushtotest.com/responder/htmlresponder \
   ?file=file2.html" )
response = http.connect()

print
print response
print

# Form 1

http = ProtocolHandler.getProtocol("http")
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http.setUrl( \
 "http://examples.pushtotest.com/responder/htmlresponder")
http.setType(HTTPProtocol.POST)
body = ProtocolHandler.getBody("http")
body.addParameter("firstname", "")
body.addParameter("lastname", "")
body.addParameter("phone", "")
body.addParameter("account", "")
body.addParameter("amount", "")
body.addParameter("firstname", "")
http.setBody(body)
response = http.connect()
print
print response
print

# Form 2

http = ProtocolHandler.getProtocol("http")
http.setUrl( \
 "http://examples.pushtotest.com/responder/htmlresponder")
http.setType(HTTPProtocol.POST)
body = ProtocolHandler.getBody("http")
body.addParameter("firstname", "")
body.addParameter("lastname", "")
body.addParameter("firstname", "")
body.addParameter("Submit", "Update")
body.addParameter("Submit", "Delete")
body.addParameter("firstname", "")
body.addParameter("radio", "value495749")
body.addParameter("comment", "")
body.addParameter("select", "null")
http.setBody(body)
response = http.connect()
print
print response
print

Note that the convention used in this book is to break long lines of code using a \
character. You must skip this character and type the code on a single line when entering
these example scripts into TestMaker.

Before we look at the details of the Jython script, please take a look at the Web page
by pointing your browser to:
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http://examples.pushtotest.com/responder/htmlresponder?file
=file2.html

On this Web page you will find the PushToTest logo, some introductory text and two
forms. Form 1 displays input fields for first and last name, phone number, account number,
and amount. The input fields are simple text entry fields. Clicking the Transfer Funds button
issues an HTTP Post command to the examples.pushtotest.com host. The responder servlet
answers the Post command by displaying a Web page that includes the Post form values
submitted.

This Web page includes a second form. Form 2 displays input fields for first and last
name, a text area field for comments, a radio button group for follow-up, and a multiple
choice list for color. Clicking the New, Update, and Delete buttons issues an HTTP Post
command to the examples.pushtotest.com host. The responder servlet answers the Post
command by displaying a Web page that includes the Post form values submitted.

Now we will look at the test script in detail to understand how Jython and the Test-
Maker TOOL work together to implement a simple test.

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Header, Body, HTTPProtocol, \
HTTPBody, HTTPHeader

This command, and the two commands that follow it, identifies to Jython the Java ob-
jects that the script will use to communicate with the examples.pushtotest.com host. This
script will use HTTP protocols to communicate with the host, so the script imports the
HTTPProtocol object and several others. HTTPProtocol provides all the methods necessary
to make GET and POST requests to the host.

For convenience the New Agent Wizard created script commands to get the Web
page.

http = ProtocolHandler.getProtocol( "http" )

This command uses the ProtocolHandler object to return a new HTTPProtocol object
that the script will later reference using the http variable.

http.setUrl( \
 "http://examples.pushtotest.com/responder/htmlresponder \
 ?file=file2.html" )

The first use of the http variable is to access the setUrl method of the HTTPProtocol
object. This tells the HTTPProtocol object which URL to use when it connects to the host.

response = http.connect()

The connect method instructs the HTTPProtocol object to issues a GET request to the
host. It returns a new HTTPResponse object. The response variable now points to the
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HTTPResponse object and may access many included methods to work with the response
data. For example, response.getTotalTime () returns the total time it took to connect to the
host, make the  request and get all of the data back. See the testmaker_home/docs directory
or the http://docs.pushtotest.com site for a complete listing of TOOL objects and methods.

print
print response
print

These commands print the contents of the HTTPResponse object to the output win-
dow.

The New Agent Wizard searched the page at the given URL for HTML forms. The
following code works with the first form.

http = ProtocolHandler.getProtocol("http")
http.setUrl( \
 "http://examples.pushtotest.com/responder/htmlresponder")

You have already seen these two commands used in the GET request in this script. So
I will skip explaining them again.

http.setType(HTTPProtocol.POST)

By default, the HTTPProtocol object will issues an HTTP Get command to the host.
Since this is a Form, we use the setType method to tell it to make an HTTP Post request to
the host.

body = ProtocolHandler.getBody("http")

HTTP Post commands tell the host to expect to find a payload of data immediately
after the HTTP header. TOOL uses an HTTPBody object to set the data payload for the POst
command. This command creates a new HTTPBody object that the body variable points to.

body.addParameter("firstname", "")
body.addParameter("lastname", "")
body.addParameter("phone", "")
body.addParameter("account", "")
body.addParameter("amount", "")
body.addParameter("firstname", "")

These commands tell the HTTPBody object the parameters to send to the host during
the HTTP request. There is one command for each name/value pair from the form in the
HTML page we found in the given URL.

http.setBody(body)
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The setBody method identifies the HTTPBody object for the HTTPProtocol object.
When the HTTPProtocol object connects to the host it will use the HTTPBody object de-
fined here.

response = http.connect()

The connect method tells the HTTPProtocol object to create the request, include the
HTTPBody parameters, and make a POST request to the host. The connect method returns a
new HTTPResponse object that encapsulates the hosts response.

print
print response
print

These commands print the contents of the HTTPResponse object to the output win-
dow.

The rest of this script repeats the Jython and TOOL commands to make a request for
the second form so I will not cover theses commands here. Chapter 6 provides many more
examples of using the HTTPProtocol object to work with Web hosts.

In this first example, we saw how TestMaker's New HTML Agent Wizard found two
HTML forms on a Web page and automatically wrote a Jython script that used TOOL com-
mands to drive the Web host using native HTTP protocols. To run this script simply click
the Run icon in the Execution pane, or choose Run from the Agent drop-down menu. The
results appear in the Output panel.

While this might be interesting to you already, the real power of TestMaker, Jython
and TOOL comes next. The next section of this chapter shows how to use the Recorder to
create a test agent that will show us the throughput of the Responder host we connected to in
the last example.

Recording A Test

The Agent Recorder watches you drive a Web-enabled application using your browser
and writes a test agent script for you. The resulting test script is fully functional and stages a
transactions-per-second test. The script may also be plugged into the XSTest framework -
discussed later in this chapter - to conduct scalability, performance and monitoring tests.

The Recorder is built around a smart proxy server that watches for HTTP traffic be-
tween your browser and server. The proxy decodes HTTP GET and POST commands from
the browser and the responses from the server. The proxy then writes the Jython and TOOL
script commands necessary to replay your use of the Web-enabled application. This design
supports HTTP 1.0 and 1.1 compliant browsers, including the use of JavaScript, plug-ins,
and ActiveX objects, and Java applets.
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The Agent Recorder does not support HTTPS connections. By the time the TestMaker
proxy receives the request from the browser, the request is encrypted and TestMaker is not
able to decode the body of the HTTP protocol. The only workaround I know at this time is
to temporarily host your application with SSL encryption turned-off while you test.

Before using the Recorder you will need to configure your browser to communicate
through the Recorder proxy. By default, TestMaker sets the proxy port to 8090. Your
browser preferences or options dialog box usually is the place to set the used proxy port to
be used. Each browser is different at controlling the proxy server. For example, in Microsoft
Internet Explorer 6.0 for Windows 2000, the proxy server settings are found by choosing the
Internet Options command in the Tools drop-down menu as illustrated in Figure 5-7. Choose
the Connections tab and click the LAN Settings... button. The lower portion of the dialog
that appears controls the Proxy server settings.

Figure 5-7 Configuring the Recorder proxy server settings in Microsoft Internet Ex-
plorer 6.0 for Windows 2000.

If port 8090 is already in use on your system then change the TestMaker proxy server
to use a different port number. Choose the Preferences command in the Help drop-down
menu and then choose the Recorder tab.

With the proxy settings configured, every request from the browser will go through
TestMaker's proxy server. This has a side effect in that TestMaker needs to be running for
you to use your browser.

Next we will Record a test of the Web-enabled application hosted at exam-
ples.pushtotest.com. The application is a simple responder servlet that serves-up pages con-
taining random content, responds to HTTP Post commands to work with HTML forms, and
provides a Web site with HTML links our test can follow.

To begin start TestMaker, start and configure your browser, then choose the File ->
New -> HTML Agent Recorder menu command. TestMaker displays a dialog asking for the
name of the new test agent as illustrated in Figure 5-8. Enter MyFirstTest.a as the name of
the test agent.

Figure 5-8 The New Agent Wizard asks for you to enter a test agent name. The Re-
corder then watches you use a browser and writes a test script for you
automatically.

The test we want to record uses three pages on the examples.pushtotest.com site as il-
lustrated in Figure 5-9. To begin, open your browser and go to this URL:

http://examples.pushtotest.com/responder/htmlresponder
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Figure 5-9 The Web-enabled application presents a page with HTML links, then an
HTML form, and finally a dynamically created page showing the form val-
ues we submit.

Continue to record the test by clicking on the file2.html link that is about halfway
down the page. The browser will display a new Web page that contains two forms. In the
first form, enter your first and last name, and your phone number. Then enter 1081 as the
account number and 75.36 in the amount field. Finally, click the Transfer Funds button.
Your browser will show a new Web page that echoes the HTML form information you sub-
mitted on the previous page.

Return to TestMaker and click the Stop button. TestMaker will display a standard file
selector dialog. Navigate to the directory you wish to store the new agent, enter a file name
for the agent, and click the Save button. The new test agent script will appear in the Editor
panel in TestMaker. To run the new script, click the run icon in the Execution panel. Alter-
natively you may choose the Run command in the Agent drop-down menu. The agent will
replay the steps you took while using the browser to drive the Web-enabled application on
the examples.pushtotest.com domain. However, instead of replaying your action once, the
test agent will replay your actions 50 times over. The test agent will then report to you the
average transactions-per-second rating for the Web-enabled application.

The Recorder leverages TestMaker's embedded Jython scripting language to effi-
ciently reused the recorded functional tests for scalability, performance and monitoring test
scenarios. This is possible because TestMaker's embedded Jython scripting language is a full
object-oriented language that is capable of building anything you could build with Java and
TestMaker's TOOL library provides a uniform and extensible API for protocol handling in
test agents. I really like Jython!

WHY I LIKE JYTHON

For years the Python scripting language has been a popular choice of software devel-
opers and QA technicians needing to write quick one-off scripts to perform tests and con-
duct maintenance tasks. Jython is the Python language implemented entirely in Java. While
that might appear to be a nice academic exercise for some computer science student, Jython
represents a major move forward for the Java platform. Jython does not just implement Py-
thon, it also enables Python scripts to use any Java object. For example, if you are not satis-
fied with the random number generator object in Python, Jython enables you to use the Java
random number generator instead. This flexibility is the cornerstone of TestMaker's ability
to build intelligent test agents that implement user archetype behavior and drive Web-
enabled applications using the application's native protocols. This flexibility means that
Jython can incorporate, drive and manipulate other test systems that are written in Java. I
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show a practical example of incorporating the popular JUnit test framework later in this
chapter.

Even outside of a test setting, I like Jython. The following is my list of 7 reasons why I
like Jython.

1. Jython is quick

In just a few lines of Jython code I have a fully working program. For example, here is
my first graphical "Hello World" application.

import javax.swing as swing
hello = swing.JFrame("Welcome to Jython")
hello.size = (200, 200)
hello.show()

I enter this in the TestMaker Editor panel and press the Run icon. Jython creates a
java.swing.JFrame object, sets a string value and displays it on the screen. Using the hello
variable I access any and all of the JFrame methods. If I want to see a list of the methods I
can use Jython too:

print dir( JFrame )

Running this one line script prints the JFrame object's methods to the TestMaker out-
put window. Jython did not require code compilation, JAR packaging, classpath configura-
tion, or any of the host of other typical Java operations. I find Jython's quickness to be
tremendously useful when I prototype and debug test scripts.

2. Data structures and list iteration come for free

Jython has powerful data structures built-in. Plus, I can use Java's collection classes
directly from within Jython scripts. For example, suppose I had a list of URLs that I needed
to store and later retrieve.

urls = { "pageone" : "http://images.pushtotest.com", \
"pagetwo" : "http://examples.pushtotest.com", \
"pagethree" : "http://www.jython.org" }

This defines a Jython dictionary object that holds three name/URL pairs. If I need to
print a list of the dictionary I use this command:

for i in urls.keys():
print "The key of ", i, "found the value of ", urls[i]
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The for command in Jython iterates through all the found keys in the urls dictionary. I
could do the same thing using a Java HashMap object but now I have the option: Use
Jython's dictionary and list objects or use the Java collections classes. And I can mix the
two. (By the way, Sun is working on an enhancement to a future version of Java where for
loops incorporate simple iterator creation.)

3. Dynamic variable with automatic typing

Java requires all variables to be created and for their data type to be set before they
may be used. In Jython variables and their types may be dynamically created at any time.

def myfunction( x, y ):
    z = x * y

return z

a = 5
b = 7
print "Result: ",myfunction( a, b )

Running this script in TestMaker I would see in the output window:

Result: 35

Jython creates local variables ( z, x, y) and global variables ( a, b ) dynamically.
Jython figures out from the assignment the type of the variables. That is not to say that
Jython is an untyped language. Actually, Jython is strongly typed. For example:

a = 5 + "1"

This command throws an exception because Jython interprets this as "add the integer
value 5 to the string value of '1' " and that is illegal in Jython's syntax.

4. Functions are first class

Jython functions, methods, modules, and classes are first class objects. They can be
passed and returned from a function call. While Java can do the same using anonymous in-
ner classes or reflection, in Jython function calls referencing other objects is easier.

def scramble( a ):
    return a = a + "ality"

def handleit( mystring, myFunction):
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print

in = "function"
print "Result: ", handleit ( in )

Running this script in TestMaker I would see in the output window:

Result: functionality

Jython's first class functions, methods, and classes make it easier to write elegant ob-
ject oriented code.

5. Java Integration

The above four things I like in Jython are features that come with the standard Python
language. Jython goes further by providing very easy access to existing Java code. Jython
imports Java packages as though they were Jython modules. When you create an object in
Jython, the interpreter creates a first-class Java object for you automatically. These objects
are available to your Jython script and also directly accessible from your Java objects.

Jython classes can even inherit from your Java classes. The typical Java inheritance
rules work as a Java developer would expect. Jython objects can override parent class meth-
ods and parent class methods may be overloaded. In either case Jython chooses the correct
version of a method based on the arguments of the call at runtime.

6. Bean property introspection

Jython fully supports Java object introspection. Jython automatically calls a Java ob-
ject's getAttribute() method to introspect a method from a Java Bean. This has huge advan-
tages for J2EE developers needing to test Enterprise Beans and Container Managed
Persistence. Jython will do the introspection to find the getter and setter methods of an En-
terprise Bean to determine what steps an intelligent test agent should take to test an Enter-
prise Bean for functionality. The same script plugged into XSTest shows how the Enterprise
Bean handles the load of multiple concurrent requests.

7. Sun is adopting scripting in Java

A current effort within the Java Community Process (JCP) will add standard support
for scripting languages to the Java platform. The JCP is a pseudo open-standards body that
works on new features that become part of Java itself. The JCP process identifies needed
functionality for Java in a Java Specification Request (JSR.) JSR number 223 describes how
to write portable Java classes that can be invoked from a page written in an scripting lan-
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guage, including details on security, resources and class loader contexts. Details are at
http://www.jcp.org/en/jsr/detail?id=223.  In my opinion, JSR 223 is a poorly considered
approach to adding scripting language support to Java. Read my opinion on JSR 223 at:
http://www.pushtotest.com/ptt/wiki/JavaScripting. However, this effort means good things
for Jython's longevity and adoption from the larger Java community. That makes Jython
even cooler.

I hope these 7 reasons why I like Jython encourages you to use Jython and try it on
your Java-based projects, even outside of TestMaker. Jython can be downloaded from
Jython.org.

USING JYTHON TO INCORPORATE JUNIT

JUnit is a framework for building unit tests of Java classes. It is very popular among
software developers and QA technicians because of its simple design and powerful use of
objects. Plus, it fits nicely into the "test first" methodology of agile (also know as extreme
and XP) programming techniques. Since JUnit is written in Java, it serves as a good example
of Jython's ability to integrate test tools and frameworks. In this section, I will introduce
JUnit and show how JUnit and any other Java test tool may be used within the TestMaker
framework.

JUnit For Repeatable Tests

One of the precepts to agile programming is to test first. Literally, a piece of code is
not accepted into a source tree unless it includes a test to verify that a function, interface,
and implementation does what it is expected to do. This is important because complex inter-
operating information systems are composed of a myrid of software components and mod-
ules. Without a test, changes in one module may break another. JUnit implements a
framework for building tests that are automatically run each time the code in a system
changes.

Prior to JUnit there were several attempts to create a well understood and widely used
framework for testing software modules. Kent Beck's early work to build a unit test frame-
work in Smalltalk led the way to unit test frameworks in Java (http://www.junit.org,) Python
(http://pyunit.sourceforge.net/pyunit.html,) and .NET (http://sourceforge.net/projects/nunit/.)
For Kent's original proposal see http://www.xprogramming.com/testfram.htm.

A unit test framework has a concise set of of goals:

1. Make it familiar to use. Software developers are going to be writing unit
tests in additional to all their other responsibilities. So, the unit test frame-
work has to offer familiar tools that require the absolute minimum amount of
work to write unit tests.
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2. Make the tests last a long time. Testing a new build of software tells us that
the software works at this moment in time. But, it does not guarantee that the
same module is still working tomorrow, next week, or five years from now.
Unit tests need to continue to working over time. It is more than likely that
someone other than the original developer will use the unit tests in the future.
So, the unit test framework must assure that the unit tests retain their value
over time.

3. Make it easy to leverage existing tests. Writing new tests is costly in time
and effort. The unit test framework must make it easy to reuse existing unit
tests in new tests.

JUnit may be run at any time in the software development lifecycle, but many times
JUnit is run by a Java compiler to unit test a newly compiled application. When combined
with the popular Ant (http://ant.apache.org/) make utility, unit tests built in the JUnit frame-
work are automatically called by the Ant make script right after the code is compiled. In this
environment, unit testing is automatic and transparent. In the software developers mind, unit
tests are just part of the compiler operation. The compiler checks the source code for errors
and the unit tests then run the compiled code looking for errors and correct operation.

A JUnit Example

JUnit accomplishes these goals by implementing a basic concept, the TestCase. It
matches what most software developers do in their everyday lives when building tests. The
TestCase object implements three methods: setUp is where a system is configured prior to a
test, runTest is a method to run the test, and tearDown performs any needed clean-up tasks.
The TestCase implements methods to run an software module and check its response for
valid data. Finally, the TestCase implements methods to handle exceptions thrown by the
object being tested and to record the test results for later analysis.

To put this into context, consider an object that takes two numbers, multiples them,
and returns the result.

public class Utilities
{
    public int multi( int valueone, int valuetwo )
    {
        return valueone * valuetwo;
    }
}

The JUnit test to check the multi method in the Utilities class looks like this:

public class TestUtilities extends TestCase
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{

    public void testMulti()
    {
        int valueone = 24;
        int valuetwo = 2;
        int expectedresult = 48;

        Utilities util = new Utilities();

        int result = util.multi( valueone, valuetwo );

        assertTrue( expectedresult == result );
    }
}

Once the test is defined you can run the test by creating an instance of it and calling
the testMulti method.

TestCase test = new TestUtilities ("testMulti");
test.run();

If all goes well the test will run and the testMulti method will return the correct result.
If it does not return the expected result then JUnit will throw an exception and show you
which test failed.

The JUnit framework provides a group of test runners that enable you to run a suite of
tests and collect the results. Here is an example of running two tests in a suite:

public static Test suite()
{
    suite.addTest(new TestUtilities("testMulti"));
    suite.addTest(new TestUtilities("testAdd"));
    return suite;
}

JUnit and TestMaker

The Jython script language in TestMaker works with any Java object, including JUnit.
Working with JUnit in TestMaker means we can leverage the JUnit framework to test Web-
enabled applications, EJBs, and Web Services. To add JUnit to TestMaker follow these
steps:

1. Add the JUnit Java Archive Resource (JAR) file to the TestMaker classpath.
Do so by editing the TestMaker_home/TestMaker.sh file for Unix and Mac
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OS X systems and the TestMaker_home/TestMaker.bat file for Windows
systems. For example, for Windows systems add this command:
set LOCALCP=%LOCALCP%;%tmlib%\JUnit.jar

2. Add an import statement to the TestMaker test script that identifies the JUnit
classes. For example:
from junit.textui import TestRunner

3. Use the JUnit classes and methods in the test script.

As a practical example of using JUnit in a TestMaker test agent script, consider an ex-
ample Web-enabled application that transfers money from one bank account to another. The
example will use TestMaker's HTTP protocol handler to POST the transfer details and JUnit
to validate the HTTP response value. Here is the test script in its entirety, followed by a de-
tailed explanation. This example code and all the others in this book are available at
http://www.pushtotest.com for immediate download.

from junit.framework import TestCase

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Body, HTTPProtocol, HTTPBody

from com.pushtotest.tool.response import Response

class TestTransfer( TestCase ):

    def runTest(self):
        self.http = ProtocolHandler.getProtocol("http")
        self.http.setUrl( \
         '''http://examples.pushtotest.com/ \
         responder/htmlresponder''' )
        self.http.setType( HTTPProtocol.POST )

        self.body = ProtocolHandler.getBody( 'http' )
        self.http.setBody( self.body )
        self.body.addParameter('firstname', 'Frank')
        self.body.addParameter('lastname', 'Cohen')
        self.body.addParameter('phone', '374 7426')
        self.body.addParameter('account', '10382')
        self.body.addParameter('amount', '300.00')
        self.body.addParameter('Transfer','Transfer Funds')
        self.response = self.http.connect( 0 )
        self.code = self.response.getResponseCode()

        self.assertEquals(220, \
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         self.response.getResponseCode() )

mytest = TestTransfer( "test_transfer" )
mytest.runTest()
print "done"

The beauty of this script is that it never leaves the Jython environment. In this one test
script we are using Jython objects, TestMaker TOOL protocol handler objects, and JUnit test
objects. Here is an explanation of the test script in depth.

from junit.framework import TestCase

The import command identifies the JUnit object that the test agent script will use. Re-
call that we modified the TestMaker classpath in the TestMaker_home/TestMaker.bat script
to include the junit.jar package.

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Body, HTTPProtocol, HTTPBody

from com.pushtotest.tool.response import Response

These import commands identify the TOOL protocol handler objects that the test
agent script will use to communicate with the host and receive the response.

class TestTransfer( TestCase ):

The test identifies a new object titled TestTransfer that will inherit the methods pro-
vided in JUnit's TestCase class.

    def runTest(self):

The TestTransfer object has a single method runTest that performs the actual test. It
makes an HTTP Post to the host and receives a response.

        self.http = ProtocolHandler.getProtocol("http")

The script creates a new HTTPProtocol handler object to communicate with the host.
The http variable will be the script's reference to the protocol handler.

        self.http.setUrl( \
         '''http://examples.pushtotest.com/ \
         responder/htmlresponder''' )
        self.http.setType( HTTPProtocol.POST )
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The script identifies the URL of the host and a POST request to the protocol handler.
Now the protocol handler needs the parameters of the transfer function and then it is ready
to make the request to the host.

        self.body = ProtocolHandler.getBody( 'http' )
        self.http.setBody( self.body )
        self.body.addParameter('firstname', 'Frank')
        self.body.addParameter('lastname', 'Cohen')
        self.body.addParameter('phone', '374 7426')
        self.body.addParameter('account', '10382')
        self.body.addParameter('amount', '300.00')
        self.body.addParameter('Transfer','Transfer Funds')

The script creates a new HTTPBody object and adds the parameters needed to perform
the funds transfer function. In most cases, you would likely use the TestMaker Recorder to
create this script. The Recorder automatically determines the parameters by watching you
use a browser. See the Recorder section of this chapter for details.

        self.response = self.http.connect( 0 )

The protocol handler is all ready to make the request to the host. The connect method
commands the protocol handler to make the request and return a new response object. The
response object returns the response code and provides several handy methods to work with
the response data.

        self.code = self.response.getResponseCode()

        self.assertEquals(200, \
         self.response.getResponseCode() )

With the response code in hand, the script uses JUnit's assertEquals method to check
that the HTTP response code is actually 200. If the response code is 200 then the script con-
tinues to process. If the response code was some other value, JUnit will throw this excep-
tion:

junit.framework.AssertionFailedError:
expected:<200> but was:<500>

In this example, I showed how Jython is easily extended to work with other Java-
based test frameworks, including JUnit. Additionally, the combined frameworks of JUnit
and TOOL's protocol handlers let JUnit work with Web-enabled applications, something
that JUnit offers no specific features on its own. This is a win-win-win situation!
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SUMMARY

This chapter presented a toolbox of test tools and libraries to build intelligent test
agents. The practical examples presented in the upcoming chapters in Section II include
TestMaker agents to implement real tests for you to get hands-on with the technology pre-
sented. While this chapter showed how to install and use TestMaker, including a tutorial on
the TestMaker scripting language and a few example test agents, additional details on Test-
Maker are coming up in subsequent chapters, plus additional information and help from
other TestMaker users is available on the PushToTest Web site at
http://www.pushtotest.com.
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C H A P T E R  6

Design and Test in HTTP/HTML Environments
By the end of the 1990s the term The Web joined the global lexicon, sitting next to

other global terms like Coke, Taxi, and Visa. The world's population now knows that when
something is "on the Web," they can get it by sitting in front of a browser on their personal
computer. Behind the browser is a host of software protocols, routed network connections
and information systems. Those of us who build, test and maintain things on the Web need
to understand the technology that puts things on the Web and a strategy and toolset to test
that our resources are really on the Web for our users.

Putting something on the Web requires a combination of technologies. While the Hy-
pertext Transport Protocol (HTTP) is the protocol of the Web, the Hypertext Markup Lan-
guage (HTML) and Extensible Markup Language (XML) are the formatting languages.
Technologies, such as Java Server Pages (JSP), Servlets, Microsoft ActiveX, Visual Basic,
Pearl, Python, Ruby, Macromedia Flash, Graphical Interchange Format (GIF) images, and
JavaScript all play their part in enabling software developers to offer a Web resource that is
personalized to user needs and preferences. These systems provide desktop-application-like
features while leveraging the resources of the servers creating Web pages. This chapter
shows how to effectively test Web-enabled applications in HTTP/HTML environments.

The applications we test in this chapter expect that the browser will be fairly “thin”
and the server rather “thick” – that is, the browser is only expected to display what the
server sends and the server is expected to provide business logic, computational power,
interoperability with other systems, and storage. Subsequent chapters present new architec-
tures and test methodologies where the balance between the browser and server blurs.

To start, this chapter demonstrates the basics. We will explore the HTTP/HTML envi-
ronment, including additional content languages like XML and XHTML. Then, we explain
how to work with HTML Forms and Cookies. Then we present several strategies for vali-
dating a Web-enabled application's responses, including checking a response that is encoded
in XML.
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THE HTTP/HTML ENVIRONMENT

Let us explore the technologies a customer uses in a bank service to transfer funds
from one account to another. Most banks today offer Web interfaces. The bank typically
exposes a small subset of the functions available to tellers to its customers through a Web
browser interface. Behind the scenes, the browser is usually receiving HTML codes over an
HTTP connection from a mainframe computer. The mainframe provides the business logic
to recognize (or sign-in) a customer and a function to transfer funds from one account to
another. The mainframe is likely programmed in COBOL or some other antique program-
ming language. So it should be no wonder that the architecture looks, feels and operates like
an old Client/Server system – the server commands and the browser obeys.

That is not to say that a Web developer at a bank cannot design and build an elegant
Web application. They can and often do; however, the underlying process always works the
same. In basic HTTP/HTML architecture the browser has the following four tasks:

1. It displays HTML codes to the screen.

2. It submits GET requests to the server.

3. It submits Form POST requests to the server.

4. It encrypts and decrypts the communication between the browser and server.

Figure 6-1 shows a customer transferring funds from one bank account to another..
First, the customer points his or her browser to request the Sign-in page from the bank. The
Sign-in page holds a simple form asking for the customer id and password to be entered. The
customer clicks a sign-in button and the Transfer page appears in the browser. The Transfer
page displays a simple form asking for the source account number, the amount to transfer
and the destination account number. The customer enters the values and clicks a transfer
button. The customer sees the Confirmation page in the browser.

Figure 6-1 The customer sees three pages in the browser when transferring funds.
However, behind the scenes actually six HTTP transactions take place.

While the customer only sees three formatted pages during the transaction, twice as
many HTTP transactions are actually taking place. Behind the scenes, the browser and
server use HTTP protocols to send instructions and/or HTML codes. The browser either gets
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an HTTP command to display HTML codes or the browser receives a redirection command
to make a subsequent call to another server call. In all cases the browser initiates the request
and receives a response from the server.

See Figure 6-2 to observe the browser and server communicating at the HTTP proto-
col level to better understand the funds transfer transaction. The browser makes requests and
the server responds. Each time the communication between browser and server happens this
way regardless of how complicated the Web page looks, even when the Web page includes
fancy presentation effects, such as animating GIF images, Flash animations, and JavaScript
roll-over effects.

Figure 6-2 In the transfer transaction steps, the browser sends a series of HTTP
GET and POST commands and the server responds with a new Web
page each time.

Figure 6-2 shows each of the GET and POST commands sent to the server. Each
command receives a response, including a response code. For example, the standard re-
sponse code is 200 to indicate the command was processed successfully and without errors.
Table 6-1 describes the steps in the transfer transaction:

Table 6-1 The sequence of GET and POST commands to process a bank transfer

Step Browser
sends
command
to server

Parameters
sent to
server

Server’s HTTP Header
response to browser

Server’s HTML response
to browser

1 GET signin.html 200 OK HTML containing a
sign-in form.

2 POST handle_signin
servlet

302 Redirect to trans-
fer.html page, also sends
cookie identifying this user
and session.

HTML containing link
to the transfer.html
page.

3 GET transfer.html 200 OK HTML containing a
 transfer form.

4 POST trans-
fer_funds
servlet

302 Redirect to confirma-
tion.html page

HTML containing link to
confirmation.html page.

5 GET confirma-
tion.html

200 OK HTML containing the
confirmation page.
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tion.html confirmation page.

The browser issues GET and POST commands to the server and receives responses.
At a minimum, each GET specifies the destination server and the desired Web page, docu-
ment or servlet. Generally, the GET also sends optional HTTP parameters and HTTP head-
ers to help the server better understand the request. For example, a GET may also include a
header parameter that passes the current server session information in a parameter called a
Cookie. Other usual suspects in a GET request are an HTTP parameter named Accept that
gives the server a list of media types the browser can display. For example, Accept:
text/html, flash/image tells the server that the browser can display HTML Web pages that
contain Flash animations.

A browser's POST command looks similar to a GET command except for the data
being transmitted. GET requests send the server a command plus a list HTTP parameters in
the HTTP header. In Step 2 above, the browser makes a POST request to the handle_signin
servlet and passes the form data containing the user id and password. The POST request
looks like a GET request, however the user id and password are sent in an HTTP body that
is a block of data after the request header. This enables POST requests to contain an unlim-
ited amount of data.

WHAT USUALLY GOES WRONG

The HTTP/HTML architecture is so simple! Why should we need to test it at all?
What could fail or go wrong? It turns out plenty can and often does go wrong. Here are the
most frequent problems found in HTTP/HTML environments:

• Browser non-compliance with standards

• Invalid data

• Session problems

We begin with the biggest problem software developers, QA analysts and IT managers
encounter in HTTP/HTML environments.

Compliance, as in non, and Browser Caching

A significant reason for the Web’s popularity is the absence of a standards body to
control the HTTP and HTML specifications. Standards organizations such as the World
Wide Web Consortium (http://www.w3c.org) and the Internet Engineering Task Force
(http://www.ietf.org) attempt to organize specifications and coordinate efforts from many
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groups. However, these organizations do not have the power to stop an innovation, or even a
poor implementation. To better understand the problem, take a look at WebMonkey's com-
p a r i s o n  c h a r t  o f  b r o w s e r  c o m p l i a n c e  f o u n d  a t
http://hotwired.lycos.com/webmonkey/reference/browser_chart/index.html. The free-
wheeling nature of HTTP and HTML enables enthusiastic engineers to freely build and dis-
tribute new Web technologies. While this situation benefits the mass of Web users, it causes
problems when testing Web-enabled applications.

For example, in the early days of the Web, Internet connections were slow and often
failed. Software engineers writing browser software tried to help users by caching portions
of the Web page. Clicking the Back button on the browser could then immediately jump to
the previously cached Web page instead of having to make the time consuming request over
the slow Internet to the server. This worked well when the majority of Web pages displayed
unchanging content that was uniform for all users.

As the Web grew in popularity caching solutions became important to get documents,
movies, graphics and sound from the server to the browser. By placing caching servers at the
edges of the Internet, the delivery speeds increase and bandwidth needs decrease. While
caching has its place on the Internet browser caching is the most significant problem facing
Web application developers today. Even though the HTTP 1.1 specification includes cach-
ing methods the most common browsers do not comply with the standard.

Let us examine the caching problem in more depth to see how non-compliance hurts
Web applications. Most Web applications dynamically create every Web page to include
personalized content for each user. While the HTTP 1.1 specifies caching methods to indi-
cate that a browser should not cache a page’s element, these techniques are seldom fol-
lowed. Microsoft Internet Explorer (MSIE) is the worst offender for showing old data.
Clicking the Refresh/Reload button in MSIE does not guarantee your browser connects to
the server and actually requests a page.

Imagine the customer using the Sign-in Web page in the previous banking Web appli-
cation but the browser displays a cached version of the Transfer Web page. The user may
not notice the cached version comes up with the previous account number already typed into
the form. The server may have stored information into the cached version of the page that
makes no sense the second time that it is used. In many cases, browser caching contributes
to users not achieving their goals.

Successful strategies to test for and eliminate browser caching focus on defeating the
browser’s caching mechanism. For example, every response from the server should be tested
to see that the HTTP header values contain: Pragma: NoCache. (Other HTTP headers in-
clude Expires and Last-Modified to help the server know when caching is not wanted.) Al-
though many browsers ignore the No Cache header, using it often helps reduce the cached
pages a user encounters. Additionally, the Web page HTML content should include this
cache defeating tag in the <head> section:

<html>
<head>
  <meta http-equiv=”Pragma” content=”no-cache”>
</head>
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<body>
…
</body>
</html>

If the browser ignores cache-defeating tags, then your best strategy is to create dy-
namic Web content that users can use to tell they are viewing cached pages. For example, if
every page contains an incrementing simple integer number, then refreshing a page should
increment the serial number. A page with the same number indicates the user is viewing a
cached page. Additionally, the test can check the date/time values in the HTTP response
header.

Invalid Data

Browsers make GET and POST requests to the server using HTTP protocols. The
GET request includes a URL, HTTP header information and a series of name/value pairs.
For example, imagine a Web page that offers a list of movies. Each movie name appears as a
hyperlink for the user to click. When the user clicks a link, the browser sends a GET request
to the server:

GET /signin_handler?name=frank&movie=Star%20Wars HTTP/1.0
User-Agent: Mozilla 5.28
Host: examples.pushtotest.com
Accept: text/html, image/gif, image/jpeg, *;
Connection: keep-alive

While the HTTP GET command is very lightweight and universally used, it does little
to tell the server about the identity of the data. How does the server know that there will be
both a name and movie value? How does it know a valid movie value from an invalid one?
Or that the movie value is URL encoded? The browser may construct what it thinks is a per-
fectly valid GET request, but the server may disagree. Software test strategies for validating
data are essential to deploying high-quality HTTP/HTML Web applications.

To catch most problems, you should search for each of the following types of invalid
each time you test a Web-enabled application:

• Too few or too many parameters - HTTP/HTML environments have no de-
fined specification of the parameters that will be sent or received. It is up to the
developer and HTML designer to agree prior to building the application. Testing
a Web-enabled application by sending less than the expected number of pa-
rameters will usually turn up broken server logic and security holes.

• Wrongly ordered data - Ordering tests for the proper order of the occurrence
of data. For example, an ordering test would send a bank account transfer com-
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mand to a server without first issuing a GET command that identifies the back
account number in the server session. The test learns how the server handles an
out-of-order situation.

• Boundary data errors - Range tests the validity of the values. If a name may be
no longer than 15 characters a test determines how the server handles a 17 char-
acter long name.

• Wrongly formatted data - There is no schema to define the contents of data in
HTTP/HTML environments. Every piece of data is a string of characters. There
is also no definition of a character. The HTTP header values in the call may op-
tionally contain a definition of the encoding type (UTF-8) for example.

Let’s look at an example of wrongly formatted data in more depth. HTTP/HTML Web
applications are particularly vulnerable to invalid data problems because of the nature of
HTML. HTML mixes the instructions to layout a page with the content that appears in the
page. Even today popular tools for HTML editing can easily create invalid HTML codes.
Special tests must be created to see how the server responds when it receives an invalid
HTML form. For example, the following HTML is missing a closing double-quote character
in the first input tag:

<html>
<body>
<form action="signin_handler">
<input name="signin_name value="Default user">
<input name="password" type="password" value="pass">
</form>
</body>
</html>

The server receives a POST command that looks like this:
POST /signin_handler HTTP/1.1
Referrer: http://examples.pushtotest.com/...
Content-length: 178

signin_name%2Fvalue=&password=pass

Note the signin_name%2Fvalue= parameter, which is caused by the missing double
quote character. Seeing how the server responds to this kind of invalid data is mandatory for
a successful test strategy, especially in HTTP/HTML Web applications.
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Session problems

The original design for HTTP/HTML environments was stateless. Each request and
response stood alone. Dynamic and personalized Web applications implement state using
Cookies, Applets, ActiveX controls, and specially coded URLs. Each time stateful informa-
tion is introduced the server needs to record the state data in a session. Intelligent test agents
are particularly well suited to test a Web-enabled application for session problems.

Intelligent test agents implement these session tests with ease:

• Invalid session identities - Each Web-enabled application formats session
identifiers according to its own scheme. For example, the Cookie value for the
PushToTest Web site looks like this: 38849198981. Each new user at a unique
IP address bumps up the number by 1. A test agent should try valid numbers
such as those received from the server. But it should also invent session identifi-
ers to see how the server handles the invalid data.

• Long sessions - Each session requires the server to use resources to store ses-
sion data. The Web-enabled application recycles its resources as sessions end.
Test agents may easily push the server resources to maximum by continuing to
use the same session information for a long period of time.

As we have seen, many things can and do go wrong in an HTTP/HTML Web applica-
tion. Constructing and running HTTP test agents is a good technique to find and solve these
problems.

Constructing HTTP Test Agents

In this section, we explore constructing HTTP test agent scripts. To get hands-on I will
present a complete test script that you can run in TestMaker. Chapter 5 first introduced
TestMaker First I describe the outline of an intelligent test agent and shows how the agent
script makes requests to the server, validates cookies, sessions and redirection and validates
the server responses.

The central theme in intelligent test agent technology is to learn a system's scalability,
performance and functional characteristics before customers are exposed to bugs, failures
and scalability problems. Intelligent test agents emulate a user archetype, as in the case of
the plodding, slow and easily distracted Wanderer agent described in the next section. Figure
6-3 shows how the Wanderer is typical of an intelligent test agent that runs concurrently
with other agents to simulate a near real world environment where a server handles many
users concurrently. The other concurrently running agents emulate their own user arche-
types: The Validator randomly reads and checks the content of Web pages and the Sign-In
Agent tries to sign-in to a Web-enabled application using a variety of user names and pass-
words.
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Figure 6-3 Shows an HTTP/HTML Web-enabled application being tested by multiple
concurrently running intelligent test agents.

The Wanderer is an intelligent test agent that randomly reads pages on a test server
hosted by PushToTest, the principal maintainers of TestMaker. The Wanderer initially uses
an HTTPProtocol object to get a Web page. It then finds hyperlinks on that page and follows
a random hyperlink. The Wanderer also keeps track of the time it takes to receive each page.
Just for fun the Wanderer pauses after every tenth loaded Web page and gives an award to
the Web page that took the longest time to load.

TestMaker comes with everything needed to create and run the Wanderer, Sign-In and
Validator intelligent test agents. While TestMaker's New Agent Wizard automatically cre-
ates intelligent test agents using an easy-to-use graphical user interface, understanding
TestMaker's components is important to successfully writing and running your own intelli-
gent test agents.

While Chapter 5 introduced TestMaker, it is important at this point to show how
TestMaker's components fit into one another. TestMaker defines the Test Object Oriented
Libary (TOOL) to provide a common interface to an extensible set of protocol handlers to
communicate with servers using HTTP, HTTPS, SOAP, and XML-RPC protocols. Test-
Maker comes with JDOM, a utility for working with XML data that we will see used by the
Validator agent later in this chapter.
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Figure 6-4 An architectural view of the TestMaker environment showing all the com-
ponents provided to build intelligent test agents.

The Jython scripting language is the glue between your test agent and the TOOL ob-
jects. To assist you, TestMaker comes with a New Agent Wizard that looks at HTML pages
and writes the Jython scripts needed to test an HTTP/HTML Web-enabled application.

TOOL implements an HTTPProtocol object you can use for HTTP and HTTPS (se-
cure) protocols, to issue GET and POST requests, to handle HTTP header parameters (in-
cluding Cookies) and to search the server response. Figure 6-5 shows an overview of the
HTTPProtocol object.
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Figure 6-5 TOOL's HTTPProtocol object may contain three objects that provide it
with the power to connect to an identified host over HTTP and HTTPS
protocols, to pass parameters and to search the results.

The next section demonstrates how the Wanderer agent uses the Jython scripting lan-
guage to construct an HTTPProtocol object that will connect with the server and return a
response. While the scripting language is a fully object-oriented language with no test agent
specific limitations it is common practice to separate an intelligent test agent into several
parts, including the following:

• Introduction and author credits. This also explains the purpose of the agent.

• Import statements to locate and use TOOL, Java and Python objects

• Variable definitions

• Function definitions

• Main code

• Post completion analysis and reporting
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• Clean-up and finalizers

HANDS-ON HTTP COMMUNICATION

Figure 6-3 describes three intelligent test agents concurrently making requests of a
HTTP/HTML Web-enabled application. The Wanderer's role is to create load on the Web-
enabled application by making requests that cause the Web-enabled application to respond
with relatively large blocks of data. The Sign-in and Validator agents' role is to test and vali-
date the Web-enabled application's core functions by requesting functions that require ad-
vanced business logic, such as signing-in a customer.

The Wanderer uses the scripting language to create and manage  HTTP/HTML objects
in TOOL. In this section we examine the Wanderer agent to see how Python and TOOL
work together. Following is the Wanderer agent in its entirety, followed by a detailed expla-
nation of the Wanderer's components. All of the code presented in this book is also available
for download at http://www.pushtotest.com/ptt/thebook.html.

# Agent name: wanderer_agent.a
# Created on: May 15, 2002
# Author: fcohen@pushtotest.com

print "Agent running: wanderer_agent.a"
print "Description:"
print "  This agent wanders the exam-
ples.pushtotest.com/responder"
print "  Web site"
print "  Web site finding hyperlinks and following them."
print "  Wanderer also keeps track of the time it takes"
print "  to receive pages."
print "  Every 10 pages wanderer awards the slowest page."
print

# Import tells TestMaker where to find Tool objects

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Header, Body, HTTPProtocol, \
HTTPBody, HTTPHeader

from com.pushtotest.tool.response import Response, \
ResponseLinkConfig, SimpleSearchLink

# Import useful Python and Java libraries
from urlparse import urlparse
from java.util import Random
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# Global variable definitions

next_url = "http://examples.pushtotest.com/responder"

host = ""       # Holds the decoded host name from a URL
doc = ""        # and the document name from the URL
params = ""     # and the parameters of the call

f1 = '<a href="http://' # Used to search for hyperlinks
f2 = '">'

worsttime = 0   # Tracks of the page the took the longest
worstcount = 0
worstname = ""

r = Random()    # A basic random number generator

# hostdoc_decoder: Decodes a URL into the host name

def hostdoc_decoder( theurl ):

    global host, doc, params, next_url, last_good_url

    # urlparse is a handy library function that
    # returns a tupple containing
    # the various parts of a URL, including host,
    # document, parameters, etc.

    parsed_tup = urlparse( next_url )

    # Validate the parsed URL, if it is invalid
    # return with host = null
    # which will signal that another URL is needed

    if ( len( parsed_tup[1] ) == 0 ) :
        host=""
        return

    host = parsed_tup[1]
    doc = parsed_tup[2]
    params = parsed_tup[4]

#    print "host=",host," doc=",doc," params=",params

# Main body of agent
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print "Setting-up to make first request."

# Create the needed objects to communicate with the host

httphandler = HTTPProtocol()

# Define a ResponseLink object to search for an <a href> tag

responselink = ResponseLinkConfig()
responselink.setParameter( 'beginsearch', f1 )
responselink.setParameter( 'endsearch', f2 )

# In the TOOL object hierarchy the search parameter
# definition is in a separate object so that a
# single response may have multiple search patterns

search = SimpleSearchLink()
search.init( responselink )

# Find n documents

print "Requesting document: ", doc

while 1:
    hostdoc_decoder( next_url )

    if host=="":

        # The host we picked isn't valid so
        # raise an exception and end

        raise Spider_Error( "Giving up!" )

    httphandler.setHost( host )
    if params == "":
        httphandler.setPath( doc )
    else:
        httphandler.setPath( doc + "?" + params )

    # Request the document from the host
    response = httphandler.connect()

    # Find the next document URL in the body of the response
    found = search.handle( response )
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    # How many found items in the list
    foundcount = found.getParameterValue \
    ("simplesearch.foundcount")

    if ( foundcount == 0 ):
        raise Spider_Error( "No document URLs found." )

    # Pick a URL to load the next document
    foundlist = found.getParameterValues \
    ("simplesearch.founditems")
    doc = foundlist.get( r.nextInt( foundcount ) )

    # Remember the previous host just in case we need to
    # do some backtracking
    last_good_url = next_url

    # Next trim the <a href= and > tags to find the hyperlink

    next_url = "http://" + doc[ len(f1) : ( len(doc) \
    - len(f2) ) ]

    print "links: ",foundcount.toString()," \
    choosing:",next_url

    print "doc =",doc
    print

    # Time for an award to the page that had the worst time?
    if response.getTotalTime() > worsttime:
        worsttime = response.getTotalTime()
        worstname = last_good_url

    worstcount = worstcount + 1

    if worstcount > 10:
        print "================Award time================="
        print "The award goes to: ", worstname
        print "which took ",worsttime," in milliseconds \
        to complete."
        print
        worstcount=0

print "Agent finished."
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The Wanderer makes requests directly to the examples.pushtotest.com server. Push-
ToTest hosts this server, the principal maintainers of TestMaker. Next, we explore the indi-
vidual parts that makeup the Wanderer.

TestMaker bundles Jython that is the Python language implemented entirely in Java.
While it is not necessary to learn Python to use TestMaker, a basic understanding of the lan-
guage is helpful. TestMaker includes a New Agent Wizard to write and manipulate test
agents to help you with the Python language. For help in learning Python, Jython, and
TestMaker, see the Resources guide at the end of this book for a list of books and Web re-
sources. .

In Jython every Python object is a first-class Java object that may be instantiated, ma-
nipulated, called and destroyed just like any Java object. Jython has the added advantage of
being able to work with any Java object directly from the scripting language. The import
command tells Jython where to find the Python and Java classes that will be used in the
agent's script. The format to use a Java object in Jython is:

from package import object
The format to use a Python object in Jython is:
import object

The import statement makes the ProtocolHandler, HTTPPRotocol, HTTPBody and
HTTPHeader objects accessible from within a Jython script.

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import Protocol-
Handler, Header, Body, HTTPProtocol, HTTPBody, HTTPHeader
from com.pushtotest.tool.response import Response, Respon-
seLinkConfig, SimpleSearchLink

# Import useful Python and Java libraries
from urlparse import urlparse
from java.util import Random

These import statements tell Jython where to find protocol handling objects in Tool
and Java objects, such as the urlparse and Random objects. urlparse is a utility object that
takes a URL and breaks it down into host, port number and document parameters. Random
is a simple random number generator built into Java. Next we create variables for use later
in the agent.

next_url = "http://examples.pushtotest.com/responder"

host = ""       # Holds the decoded host name from a URL
doc = ""        # and the document name from the URL
params = ""     # and the parameters of the call

f1 = '<a href="http://' # Used to search for hyperlinks
f2 = '">'
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worsttime = 0   # Keeps track of the page the took the
longest
worstcount = 0
worstname = ""

These script commands create variables used in the agent's script. Java developers will
notice that Python is a dynamically typed language - in Java every variable is defined by its
type before it is used while Python establishes variable types by the type of data being as-
signed. In Python it is not necessary to identify next_url as a String object. Python sees the
assignment of "http://examples.pushtotest.com/responder" as a String and automatically
identifies next_url as a String object variable.

r = Random()    # A basic random number generator

In the previous code listing we found how simple String objects were created. Here we
see our first complex object created. The r variable will now point to a new instance of the
Java Random class.

def hostdoc_decoder( theurl ):

    global host, doc, params, next_url, last_good_url
    parsed_tup = urlparse( next_url )

    # Validate the parsed URL, if it is invalid return
    # with host = null
    # which will signal that another URL is needed

    if ( len( parsed_tup[1] ) == 0 ) :
        host=""
        return

    host = parsed_tup[1]
    doc = parsed_tup[2]
    params = parsed_tup[4]

Functions and groups of commands are denoted using space characters in Python.
Java, and C use a combination of braces { }, commas and semi-colons to denote groups of
commands. In Python, the number of spaces before a command defines a group of com-
mands. For example, the above hostdoc_decoder() function is defined using the def com-
mand and the function's commands are grouped by indenting each command with space
characters. At first this spacing system may appear unusual, but its simplicity offers great
benefits.

hostdoc_decoder() is a function that takes a URL and decodes it into the host name,
document name and parameters. For example, hostdoc_decoder would decode  this URL:
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http://examples.pushtotest.com/htmlresponder/responder?file=file1.html

into these components:

• host: http://examples.pushtotest.com

• doc: /htmlresponder/responder

• params: file=file1.html

In the event that urlparse() finds an invalid URL then hostdoc_decoder() sets the host
variable to an empty string and returns.

httphandler = HTTPProtocol()

The httphandler variable now points to a new HTTPProtocol object. This object han-
dles all communication with the HTTP/HTML Web-enabled application.

responselink = ResponseLinkConfig()
responselink.setParameter( 'beginsearch', f1 )
responselink.setParameter( 'endsearch', f2 )

These commands define a ResponseLink object to search for an <a href> hyperlink tag
and will be used by the HTTPProtocol object when TOOL requests a Web page from the
server. In this script, the responselink variable points to a new ResponseLinkConfig object.
TOOL implements the ResponseLink object to handle search functions that parse through
the responses received from the server.

The Wanderer agent wants to request a Web page, find a hyperlink to the next page
and continue reading pages. The agent accomplishes this by using a ResponseLink object to
search for hyperlink tags in the HTML received from the server. Recall that previously the
script defined variable f1 and f2 to contain the markers for a hyperlink. The setParameter
method of the ResponseLink object tells the object to look for hyperlinks.

search = SimpleSearchLink()
search.init( responselink )

One last step is needed to create the search objects to actually find the hyperlinks in
the server's response. While the ResponseLink object is used for searches of all protocols,
the search variable now points to a SimpleSearchLink object that specifically searches
HTML data.

To recap, the script creates several variables, search objects and defines the host-
doc_decoder() function. The agent is ready to make HTTP requests to the server.
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while 1:
    hostdoc_decoder( next_url )

    if host=="":

        # The host we picked isn't valid so
        # raise an exception

        raise Spider_Error( "Giving up!" )

The while causes the Wanderer to loop forever over a group of commands – which is
because the value of 1 always evaluates to true. Other types of loops are possible. For exam-
ple, instead the script could search through 1000 Web pages using the for i in range(1000):
syntax instead of a while command. But for the Wanderer life is eternal. (Of course, the
handy Stop button will end the Wanderer's wanderings.)

    httphandler.setHost( host )
    if params == "":
        httphandler.setPath( doc )
    else:
        httphandler.setPath( doc + "?" + params )

We previously created an HTTPProtocol object that is referenced through the
httphandler variable. Now, we need to tell it a few things before it can make a request to the
server. First we must tell the object where to find the server. If the URL to the Web page
includes parameters, we need to tell the HTTPProtocol object this using the setPath method.

    response = httphandler.connect()

The connect method tells the HTTPProtocol object to actually make the request to the
server. The server's response is put into a new object that is referenced through the response
variable. The response object provides us with many functions to learn about the server's
response to the HTTP request.

    found = search.handle( response )
    foundcount =
found.getParameterValue("simplesearch.foundcount")

The response object returns an object that holds the results of the search object, in-
cluding a couple of the hyperlink tags found on the page.

    foundlist =
found.getParameterValues("simplesearch.founditems")
    doc = foundlist.get( r.nextInt( foundcount ) )
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The found object helps pick out the next Web page the Wanderer will request.

    next_url = "http://" + doc[ len(f1) : \
    ( len(doc) - len(f2) ) ]

The doc variable holds the HTML hyperlink tag. For example, the tag may look like
this: <a href="http://examples.pushtotest.com/responder?file=file2.html">. While the
HTML tag is useful in displaying hyperlinks in a browser, the hostdoc_decoder() function
only needs the URL. The next_url variable is set to the URL value by using a few of Py-
thon's String functions, including len() that returns the length of a String and String slicing
functions that use the bracket and colon characters.

    if response.getTotalTime() > worsttime:
        worsttime = response.getTotalTime()
        worstname = last_good_url

The response object also provides values indicating the time it took to communicate
with the server. The Wanderer script keeps track of the request that took the longest to com-
plete.

    worstcount = worstcount + 1
    if worstcount > 10:
        print "================Award time================="
        print "The award goes to: ", worstname
        print "which took ",worsttime," in milliseconds \
        to complete."
        print
        worstcount=0

For every ten server responses the Wanderer cruelly announces the results in an
Award ceremony. Not to worry though. All is forgiven until another ten server responses are
complete.

As we have just seen, the Wanderer test agent uses an HTTPProtocol object to get a
Web page. It then finds hyperlinks on that page and follows a random hyperlink. The Wan-
derer also keeps track of the time it takes to receive each page. Just for fun the Wanderer
pauses after every tenth loaded Web page and gives an award to the Web page that took the
longest to load. To the server, the Wanderer is a real user sitting in front of a browser mak-
ing requests. When you run the Wanderer multiple times concurrently, the server responds
to what it thinks are many concurrent users. The Wanderer is the first step at understanding
how an HTTP/HTML Web-enabled application handles the load of many concurrent users
to determine how that Web-enabled application will scale and perform under real production
environments.
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Understanding Cookies, Sessions and Redirection

The Wanderer agent script is good at its role of creating load on the server by testing
the relatively simple GET function of the Web-enabled application. However, dynamic
HTTP/HTML Web-enabled applications provide personalized user experiences that also
must be tested for functionality, scalability and performance. Personalization usually re-
quires session information so users only need to identify themselves once and subsequent
Web pages display content that is personalized to them. These services require the user to
sign-in using an HTML Form and then track the user with a session cookie. The Sign-in
Agent shows how to work with sign-in forms and cookie-managed sessions.

Much writing and discussion has appeared in the popular media about cookies. Skep-
tics link cookies to water fluoridation, government cover-ups of alien landings and collusion
in the Military-Industrial-Entertainment complex. In reality cookies are a value sent back to
the browser in a server response to link a group of requests together. By design requests
made using the HTTP protocol are independent of each other. Cookies provide a mechanism
to link together HTTP requests. Figure 6 shows a series of requests using cookies to main-
tain a session.

Figure 6-6 After the user signs-in, subsequent requests and responses pass a
cookie value to identify requests as part of an overall user session.

While early attempts at using cookies to monitor user activity on a Web site were
made by a few public Internet sites, cookies today are mostly used to manage user sessions.
The typical cookie may look like this:

Cookie: sessionid=38828x348v91
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The cookie value will have meaning only to the server that created the cookie value.
The value is often an index into a table maintained on the server to track the signed-in status
of a group of users.

In this section we explore the Sign-in agent to see how Python and TOOL are used to
work with HTML forms, sessions and cookies. Below is the Sign-in agent in its entirety,
followed by a detailed explanation of the Sign-in agent’s components.

# Agent name: signin_agent.a
# Created on: May 15, 2002
# Author: fcohen@pushtotest.com

print "Agent running: signin_agent.a"
print "Description:"
print "  Web-enabled applications with HTML front-ends "
print "usually require session information"
print "  to know which features to offer to users. These"
print " services require the"
print "  user to sign-in using an HTML Form and then the"
print " service tracks the"
print "  user with a session cookie. This agent shows"
print " how to work with sign-in"
print "  and cookie-managed sessions."
print

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Header, Body, HTTPProtocol, \
HTTPBody, HTTPHeader

from com.pushtotest.tool.response import Response, \
ResponseLinkConfig, SimpleSearchLink

# Import useful Python and Java libraries
import sys
import java
from urlparse import urlparse

# hostdoc_decoder: Decodes a URL into the host name
# and document name

host = ""       # Holds the decoded host name from a URL
doc = ""        # and the document name from the URL
params = ""     # and the parameters of the call

def hostdoc_decoder( theurl ):
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    global host, doc, params, http_ph

    # urlparse is a handy library function that returns
    # a tupple containing
    # the various parts of a URL, including host, document,
    # parameters, etc.

    parsed_tup = urlparse( theurl )

    # Validate the parsed URL, if it is invalid return
    # with host = null
    # which will signal that another URL is needed

    if ( len( parsed_tup[1] ) == 0 ) :
        host=""
        return

    host = parsed_tup[1]
    doc = parsed_tup[2]
    params = parsed_tup[4]

    http_ph.setHost( host )
    if params == "":
        http_ph.setPath( doc )
    else:
        http_ph.setPath( doc + "?" + params )

#    print "host=",host," doc=",doc," params=",params

# Main body of agent

print
"======================================================="
print "Step 1: Get the sign-in form"
print

# This URL returns an HTML page that contains a
# sign-in form

urlone = "http://examples.pushtotest.com/responder \
/htmlresponder?file=file2.html"

http_ph = ProtocolHandler.getProtocol("http")

hostdoc_decoder( urlone )
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print "Sending request."

response = http_ph.connect()

# get an Iterator of all the keys

k = response.getParameterKeys();

for i in k:
    kv = k.next()
    print kv,":",response.getParameterValue( kv )
    print

print
"======================================================="
print "Step 2: Do a form submit to sign-in"
print

urltwo = "http://examples.pushtotest.com/responder \
/htmlresponder"
urlthree = "http://examples.pushtotest.com/responder \
/htmlresponder?file=file3.html"

hostdoc_decoder( urltwo )

http_ph.setType( HTTPProtocol.POST )

body = ProtocolHandler.getBody( "http" )

# send the sign-in values
body.addParameter( "login", "myname" )
body.addParameter( "passwd", "secret" )

# Next we use some of the responder servlets custom
# commands. Details of these commands are found
# on http://examples.pushtotest.com/responder/htmlresponder
# Tell the responder to return a redirect response
# code to urlthree
body.addParameter( "redirect", urlthree )

# Tell the responder servlet to set a cookie
body.addParameter( "cookie", "sessionid" )
body.addParameter( "cookievalue", "388281v90981" )

# Tell the responder to return the contents of file2.html
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body.addParameter( "file", "file2.html" )

http_ph.setBody( body )

# We use a special form of connect() which tells the
# http protocol handler not to follow any redirect
# commands received from the host

print "Sending request."

response = http_ph.connect( 0 )

print
print "Here is what we got back from the host:"
print "response code =",response.getResponseCode()
print
print "Response parameters from the host:"

# get an Iterator of all the parameter keys

meb = response.getParameterKeys()

for i in meb:
    print i, "=", response.getParameterValue( i )

# Display the cookie name/value pairs
# received from the host

# Display the cookie name/value pairs received from the
host
print
print "jCookie values:"
for i in http_ph.getCookies():
    print "bop=",i

print
print
print "============================================"
print "Step 3: Manually handle a redirect command "
print "from the server"
print

urlfour = response.getParameterValue( "Location" )

print "The host told us to redirect to:"
print urlfour
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print

hostdoc_decoder( urlfour )

# In Step 2 we added a parameter that told the
# examples/responder servlet to send back a redirect
# command. Since we're using the same http_ph object
# that we used in Step 2 we need to tell the
# object to not send us the redirect this time.
# This situation is unlikely in a normal test but
# the following command is needed for this example agent.
body.removeParameter( "redirect" )

# Since we are reusing the http_ph object we used in Step 2
# this object already has the received cookie values from
# last host response and will play them back to the host

print "Sending request."

response = http_ph.connect()

print
print "Here is what we got back from the host:"
print "response code =",response.getResponseCode()
print
print "Response parameters from the host:"

# get an Iterator of all the parameter keys

meb = response.getParameterKeys()

for i in meb:
    print i, "=", response.getParameterValue( i )

print
print "Agent finished."

The Sign-in agent makes requests directly to the examples.pushtotest.com server.
PushToTest, the principal maintainers of TestMaker, hosts this server. The Sign-in agent
shows a typical group of commands that together provide a user sign-in function using
HTTP/HTML protocols. The agent breaks these commands down into the following three
steps:

1. Get the Sign-in form
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2. Do the POST command to sign-in

3. Receive a cookie and handle the redirect response from the server

Let investigate the individual parts that makeup the Sign-in agent. The agent script be-
gins as all good agents do by importing the TOOL, Python and Java objects the agent will
use, declaring a set of variables useful throughout the agent and declaring functions to be
used by the agent.

def hostdoc_decoder( theurl ):

    global host, doc, params, http_ph

    # urlparse is a handy library function that
    # returns a tupple containing
    # the various parts of a URL, including
    # host, document, parameters, etc.

    parsed_tup = urlparse( theurl )

    # Validate the parsed URL, if it is invalid
    # return with host = null
    # which will signal that another URL is needed

    if ( len( parsed_tup[1] ) == 0 ) :
        host=""
        return

    host = parsed_tup[1]
    doc = parsed_tup[2]
    params = parsed_tup[4]

    http_ph.setHost( host )
    if params == "":
        http_ph.setPath( doc )
    else:
        http_ph.setPath( doc + "?" + params )

The Sign-in agent uses a modified version of the hostdoc_decoder() function that was
first introduced in the Wanderer agent. This form of hostdoc_decoder() not only decodes the
host, document and parameters in a URL but also puts those values into a globally used
HTTPProtocol object that is accessed through the http_ph variable.

urlone = "http://examples.pushtotest.com/responder \
/htmlresponder?file=file2.html"
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http_ph = ProtocolHandler.getProtocol("http")

hostdoc_decoder( urlone )

response = http_ph.connect()

Step 1 of the Sign-in agent uses an HTTPProtocol object to get a Web page that con-
tains the HTML sign-in form. In a browser this appears to the user as a place to enter their id
and password and to click a sign-in button. The response object holds the response from the
server, including a list of HTTP header parameters that will be of interest to us after we
sign-in.

k = response.getParameterKeys();

for i in k:
    kv = k.next()
    print kv,":",response.getParameterValue( kv )
    print

The k variable points to a list of the HTTP header parameters in the server response.
Jython's for command makes it easy to go through the list and print out each header pa-
rameter value. The list contains the keys or titles of each parameter and the getParameter-
Value() function returns the value for a given key.

Next,the Sign-in agent makes a POST request to the server to sign-in.

http_ph.setType( HTTPProtocol.POST )

body = ProtocolHandler.getBody( "http" )

# send the sign-in values
body.addParameter( "login", "myname" )
body.addParameter( "passwd", "secret" )

This part of the agent script reuses the http_ph HTTPProtocol object previously cre-
ated. The setType method tells the HTTPProtcol object to issue a POST request to the server
and the agent uses addParameter to add the sign-in login and passwd parameters to the body
of the request.

Unlike most servers the htmlresponder servlet on examples.pushtotest.com provides
several features that are useful for illustrating what a real-world test agent might encounter.
In particular, by sending a parameter named redirect, the server response will include a 302
Redirect command to the defined URL.

body.addParameter( "redirect", urlthree )
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By sending the htmlresponder, a parameter named cookie the server response will in-
clude a cookie parameter and value.

body.addParameter( "cookie", "sessionid" )
body.addParameter( "cookievalue", "388281v90981" )

And finally, by sending a parameter named file the server will return the contents of a
file found on the server.

body.addParameter( "file", "file2.html" )

The htmlresponder servlet includes additional commands not described. For a full list
of htmlresponder commands see http://examples.pushtotest.com/responder/htmlresponder.

response = http_ph.connect( 0 )

In normal operation when the HTTPProtocol object in TOOL receives a 302 Redirect
response, it would automatically request the redirect page. To illustrate a 302 Redirect re-
sponse, the Sign-in agent uses a special form of the connect() method that will not automati-
cally request the redirect page.

# Display the cookie name/value pairs received from the
host
print
print "jCookie values:"
for i in http_ph.getCookies():
    print "bop=",i
print response.getParameterValue("Cookie")

The agent script then uses the getCookies() method to find a list of Cookies being
managed by the protocol handler. In the real world it is likely that an HTTP/HTML Web-
enabled application would use more than one cookie at a time. TestMaker uses the jCookie
library from Sonal Bansal to handle cookies and to provide you with several convenience
methods to work with cookies. Details on jCookie are at http://docs.pushtotest.com. In gen-
eral you will likely not need to do anything with cookies as the HTTPProtocol object han-
dles them for you.

The final step in the Sign-in agent uses the same http_ph object to request the redirect
page. TOOL’s HTTPProtocol object automatically sends the cookie values it received in the
previous server response back to the server.

In this section we explored the Sign-in agent to see how Jython scripts and TOOL ob-
jects are used to work with HTML forms, sessions and cookies. In the next section we will
look at the Validator agent to see how server response data may be searched, parsed and
validated.
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Validating Response Data

The previous two sections focused on building test agents that generate server load
and conduct groups of commands in a cookie-based session. The Validator is an intelligent
test agent that tests the server responses for valid data. The Validator shows four different
techniques to search through server responses, including:

• Search and find response values using ResponseLink methods

• Searching through response data using the scripting language commands

• Parsing HTML forms using Tool commands

• Finding XML data using JDOM commands

Below is the Validator agent in its entirety, followed by a detailed explanation of the
Validator's components.

# Agent name: checker_agent.a
# Created on: May 17, 2002
# Author: fcohen@pushtotest.com

print "Agent running: checker_agent.a"
print "Description:"
print "  This agent shows how to find useful
print "information in the response"
print "  received from host that returns HTTP/HTML
print "content. Three ways"
print "  of searching through the response are
print "presented, including:"
print "  1) Search & find using ResponseLink methods"
print "  2) Searching through response data using
print "the scripting language commands"
print "  3) Parsing HTML forms using Tool commands"
print "  4) Finding XML data using JDOM commands"

# Import tells TestMaker where to find Tool objects

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, Header, Body, HTTPProtocol, \
HTTPBody, HTTPHeader

from com.pushtotest.tool.response import Response, \
ResponseLinkConfig, SimpleSearchLink
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# Import useful Python and Java libraries
import sys
import java
from urlparse import urlparse
from java.util import Random

# hostdoc_decoder: Decodes a URL into the host name and
document name

host = ""       # Holds the decoded host name from a URL
doc = ""        # and the document name from the URL
params = ""     # and the parameters of the call

def hostdoc_decoder( theurl ):

    global host, doc, params, http_ph

    # urlparse is a handy library function that
    # returns a tupple containing
    # the various parts of a URL, including host, \
    # document, parameters, etc.

    parsed_tup = urlparse( theurl )

    # Validate the parsed URL, if it is invalid return
    # with host = null
    # which will signal that another URL is needed

    if ( len( parsed_tup[1] ) == 0 ) :
        host=""
        return

    host = parsed_tup[1]
    doc = parsed_tup[2]
    params = parsed_tup[4]

    http_ph.setHost( host )
    if params == "":
        http_ph.setPath( doc )
    else:
        http_ph.setPath( doc + "?" + params )

#    print "host=",host," doc=",doc," params=",params
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# Main body of agent

print
"======================================================="
print "Technique 1: Search & find using ResponseLink"
print

# This URL returns an HTML page that contains several
# <img> tags
urlone = "http://examples.pushtotest.com/responder \
/htmlresponder?file=file4.html"

http_ph = ProtocolHandler.getProtocol("http")

hostdoc_decoder( urlone )

# Establish search criteria

# Tool implements a simple system for searching
# and transforming an HTTP response. We begin by creating
# a ResponseLinkConfig object that defines the search
# parameters. In this case we're looking for <img> tags.

responselink = ResponseLinkConfig()
responselink.setParameter( "beginsearch", "<img" )
responselink.setParameter( "endsearch", '>' )

# Create a search object to handle the actual search.
# And we tell search to use the responselink.
# For example one uses the same
# ResponseLinkConf object to search through XML data when
# making SOAP calls.

search = SimpleSearchLink()
search.init( responselink )

print "Sending request."

# Connect to the host, get the document and return
# a response object
response = http_ph.connect()

# Find the next document URL in the body of the response
found = search.handle( response )
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print "Here is what we learned from the SimpleSearchLink"
print

foundcount =
found.getParameterValue("simplesearch.foundcount")
print "Count of <img> tags:",foundcount
print

if foundcount > 0 :

    # This gets a list of the found items
    foundlist = found.getParameterValues \
    ("simplesearch.founditems");

    print "Here is a list of the <img> tags we found:"

    for i in foundlist:
        print i

    print
    print "We choose at random this <img> tag:"

    r = Random()    # A basic random number generator

    print foundlist.get( r.nextInt( foundcount ) )
    print

print "============================================="
print "Technique 2) Searching through response data"
print "using the scripting language commands"
print

# We will use the <img> tags we already received
# in Technique 1 (above) to find the <img> tag that
# has the longest width value

if foundcount > 0 :

    # This gets a list of the found items
    foundlist = found.getParameterValues \
    ("simplesearch.founditems");

    # this keeps track of the widest <img> tag
    widest = 0
    widestkey = 0
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    for i in foundlist:
        # There are 3 different conditions for finding
        # the width value in an <img> tag:
        # width=42   is the simplest, the value begins
        # after = and ends with a space
        # width="42" the value begins after the first
        # quote and ends with the second quote
        # width=42>  the value begins after the = and
        # ends with the >

        # first we get rid of those pesky " quote
        # characters
        widstr = i.replace( '"', '')

        # then we look for width=
        lexerr = "width="

        lexlen = len( lexerr )

        mark = widstr.find( lexerr )

        rest = widstr[ lexlen+mark : ]

        theend = rest.find( " " )
        if theend == -1:
            theend = rest.find( ">" )

        widthstr = rest[ 0 : theend ]

        if int( widthstr ) > widest:
            widest = int( widthstr )
            widestkey = i

    print "widest <img> tag = ", widestkey
    print

else:
    print "Didn't get any <img> tags in Technique 1,"
    print " so skipping Technique 2."
    print

print "============================================="
print "Technique 3) Parsing HTML forms using Tool commands"
print
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# Technique 3 is going to use special Tool objects to
# handle HTML parsing
# and may possibly thrown some Java exceptions

from com.pushtotest.tool.parser.html import \
HTMLParser
from java.net import URISyntaxException, \
MalformedURLException, URI
from java.io import IOException

urltwo="http://examples.pushtotest.com/responder \
/htmlresponder?file=file2.html"

try:
    uri = URI( urltwo )
    parser = HTMLParser( uri )
except URISyntaxException, ue:
    print "URLSyntaxException =",ue
    sys.exit()
except MalformedURLException, mfe:
    print "MalformedURLException =", mfe
    sys.exit()
except IOException, ioe:
    print "IOException =",ioe
    sys.exit()

forms = parser.parse();

print "This URL contains", len( forms ),"forms."
print

formnum = 0

for i in forms:
    formnum = formnum + 1

    print "Form",formnum,":"
    print
    print "This is an HTML form that uses a", \
    i.getMethod(),"command"
    print "to the host at:",i.getAction()
    print

    print "Here are all the <input> tags in the form:"
    print i
    print
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    print "Here are the individual <input> tags:"

    for j in i.getElements():
        print "  name=",j.getName()," default"
        print " value=",j.getValueAsString()
    print

print
print

print "=============================================="
print "Technique 4) Finding XML data using JDOM commands"
print

# Technique 4 uses JDOM and Java StringReader objects to
# parse through XML data
from org.jdom.input import SAXBuilder
from java.io import StringReader

urlfour = "http://examples.pushtotest.com \
/responder/marketingfiles.xml"

hostdoc_decoder( urlfour )

print "Requesting XML document from host."
print

# Connect to the host, get the document and
# return a response object
response = http_ph.connect()

print "Here is the raw response document:"
print response
print

# Use the JDOM SAXBuilder object to create a new
# DOM object that
# will parse through the XML data we received
# from the host.

builder = SAXBuilder()
doc = builder.build( StringReader(response.toString()))

rootElement = doc.getRootElement()
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print "The root element for this XML document is named:",
print rootElement.getName()
print

print "Here are the children of "
print " the",rootElement.getName(),"element:"

for i in rootElement.getChildren():
    print "  ",i.getName()

    # now let's show the children element
    # for each employee element
    for j in i.getChildren():
        print "    ",j.getName(),"=",j.getText()
    print

print
print "Agent finished."

The Validator agent makes requests directly to the examples.pushtotest.com server.
This agent shows four different techniques that validate, parse, and analyze the server re-
sponse. Now specifically examine the Validator agent script commands used.

The first technique uses the TOOL ResponseLink object and methods to search
through the server response. Much of this code has already been explained in the previous
section on the Wanderer so we will focus on the other techniques in this agent.

The Validator agent looks for <img> tags in the HTML response from the server.
These tags begin with <img and end with a closing > character.

responselink = ResponseLinkConfig()
responselink.setParameter( "beginsearch", "<img" )
responselink.setParameter( "endsearch", '>' )

The ResponseLink object defines the parameters of the search and a SimpleSearch-
Link object does the actual searching through the results.

search = SimpleSearchLink()
search.init( responselink )

The HTTPProtocol object returns the response object when it receives a response from
the server.

response = http_ph.connect()
found = search.handle( response )
foundcount =
found.getParameterValue("simplesearch.foundcount")
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From the response object, the agent accesses the found items from the Respon-
seLink/SimpleSearchLink duo. The simplesearch.foundcount value returns the number of
items found in the server response.

r = Random()    # A basic random number generator
print foundlist.get( r.nextInt( foundcount ) )

Using the Java Random object in conjunction with the foundcount method, the agent
can pick a found item at random. ResponseLink and SimpleSearchLink objects may be re-
used from response to response.

In the first technique the Validator made a request to the server and searched the re-
sponse for <img> tags. This generated a list of <img> tags that appears as:

• <img src=”images.pushtotest.com/logo.gif” width=401 height=58 border=0>

• <img src=”images.pushtotest.com/empty.gif” width=10 height=1 border=0>

• <img src=”images.pushtotest.com/man.gif” width=10 height=8 border=0>

Given this list of <img> tags how would an agent find the widest image? The <img>
tags are themselves simply strings of textual characters. Solving this problem requires the
agent to parse through the results to find the width attributes in each <img> tag. Parsing
HTML results data is a common problem when testing HTTP/HTML Web-enabled applica-
tions.

The Validator agent solves this parsing problem using the built-in Jython commands
to work with Strings.

    foundlist =
found.getParameterValues("simplesearch.founditems");

The agent begins by getting a list of the found items, these are the <img> tags in their
entirety.

    widest = 0
    widestkey = 0

The agent establishes a variable named widest to hold the width of the widest <img>
tag and a variable named widestkey to hold a pointer to the widest <img> tag as it scans
through the list of tags. The agent script uses the powerful for command to loop through all
the tags in the list. Each time through the loop the script finds the width attribute in the tag
and determines the numeric value of its width attribute.

HTML is a wonderfully flexible markup language. At times this flexibility can drive
one to frustration. Consider that each of the following width attributes is valid in HTML
notation:
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width=42
width=’42’
width=”42”
width=42>

The Python language comes with a powerful String object to work with textual data.
The String object implements dozens of methods for finding, replacing and changing textual
data. The agent script finds width attributes by first removing any quote and double quote
characters using the String object’s replace method. Then, the agent looks for the beginning
of the width attribute using the find method. Finally, the agent uses a combination of String
object methods to determine the starting and ending location of the width value. Using the
int() operator, the agent converts the String of the width value into an Integer data type and
compares it to the value in the variable named widest. At the end of the loop, the widest
variable contains the width of the widest <img> tag and the widestkey variable holds a
pointer to the widest <img> tag.

All this parsing of HTML content may appear to be quite error prone and it is! Each
new advance that adds new forms of HTML tags makes it that much more difficult to parse
through HTML to find the values an agent needs. And the same problem is true for any
Web-enabled application that handles HTML content. Much of the fuel driving development
of XML technology comes from the frustration software developers feel when they work
with HTML content. For more information about the software communities’ response to
HTTP/HTML Web-enabled applications, see the next chapter.

TOOL provides a simple HTMLParser object to find <form> tags in HTML pages.
Technique 3 in the Validator agent uses the HTMLParser function to find <form> tags.

from com.pushtotest.tool.parser.html import HTMLParser
from java.net import URISyntaxException, \
MalformedURLException, URI
from java.io import IOException

The import commands show where to find the HTMLParser object in TOOL. Addi-
tionally we import several Java objects to handle error conditions that may result when we
use HTMLParser. The script language provides a try/except mechanism to handle error con-
ditions that may arise from using objects and methods. Code executes in a try block until an
exception is encountered, at which time the program control switches to an except: block.

try:
    uri = URI( urltwo )
    parser = HTMLParser( uri )
except URISyntaxException, ue:
    print "URLSyntaxException =",ue
    sys.exit()
except MalformedURLException, mfe:
    print "MalformedURLException =", mfe
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    sys.exit()
except IOException, ioe:
    print "IOException =",ioe
    sys.exit()

For example,  when the URI( urltwo ) function is used if urltwo contained an invalid
URL, for example httx://blah.com, then the script execution would continue in the except
MalformedURLException: block. As a result, the exception message is printed to the output
window and the agent exits.

forms = parser.parse();

The parser.parse() method returns a list of <form> tags found in the parsed Web page.
The Validator agent uses the for command to loop through each form. The contents of each
form appear on the output window.

The last technique for validating server response data looks at parsing XML data in a
server response. This should whet your appetite for SOAP-based Web-enabled applications
that are covered in subsequent chapters.

from org.jdom.input import SAXBuilder
from java.io import StringReader

Technique 4 uses a Java object library called JDOM (http://www.jdom.org) which is a
very Java-centric way of working with XML data and the Java StringReader object to parse
through XML data. JDOM is a Java specific object-oriented interface to parsing XML
documents. JDOM will appear in a future version of Java itself.

builder = SAXBuilder()
doc = builder.build( StringReader( response.toString() ) )

We begin by creating a new JDOM SAXBuilder object that will be referenced through
the builder variable. SAXBuilder reads the XML document the agent receives in the server
response into an internal Document Object Model (DOM) representation. In DOM format
the agent can use several XML search and manipulation methods to find the desired data.

The XML document looks like this:

<marketing>
  <employee>
    <id>582293</id>
    <firstname>Frank</firstname>
    <lastname>Cohen</lastname>
    <phone>408 374 7426</phone>
  </employee>
  <employee>
    <id>582343</id>
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    <firstname>Betsy</firstname>
    <lastname>Hilbert</lastname>
    <phone>408 374 0000</phone>
  </employee>
</marketing>

The JDOM commands make it easy to find each of the elements, attributes, and values
in an XML tree. For example,

rootElement = doc.getRootElement()
The doc.getRootElement() returns an object representing the <marketing> tag and all

its children. Subsequent functions then find the children of the <marketing> tag and so on.
Given the choice of working with HTML or XML data, which would you choose?

SUMMARY

This chapter covered the basics of HTTP and HTML technologies. We learned how
TestMaker provides scripting language commands and a library of test objects to work with
HTML forms, cookies, sessions and complex response data. Finally this chapter covered
several strategies for validating a Web-enabled application's responses, including checking a
response that is encoded in XML.

In a subtle way we charted the normal growth course of a software developer working
on interoperating systems. The lure of HTTP/HTML Web-enabled applications is that you
can develop powerful systems using this simple request-and-response protocol. It doesn’t
take long after the mastery of HTTP/HTML before the developer wonders why he or she
cannot also move more complex requests and responses over the same network connection?
In fact they can. And this realization ushered in the age of SOAP, WSDL, and UDDI-based
Web-enabled applications that is the subject of the next chapter.
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C H A P T E R  7

Tuning SOAP and XML Web Services
In the previous chapter, we began to see the natural progression that many software

developers make when working on Web-enabled applications. Systems built on
HTTP/HTML protocols and technology make use of HTTP's simple request-and-response
protocol to move data from the desktop computer to a server and back again. The developer
that masters building HTTP/HTML-based systems often wonders why the same network
connection cannot move more complex requests and responses.

For example, when an HTTP/HTML-based application sends a credit card number
from a browser to a server, the server needs special business logic to ensure the number
contains the right number of digits. HTTP and HTML have nothing to define the type of
data being sent and received. Unless the developer writes custom code, the server does not
even know the entered value is a credit card number! Using HTTP, a credit card number and
a phone number are the same – they are just a string of characters being sent to the server.
What tells the server the difference between a credit card number and a phone number? This
kind of developer thinking precipitated the Extensible Markup Language (XML) and Web
Services.

Enterprises around the world had spent billions of dollars building systems that en-
abled their operations to be more efficient and streamlined. Now integration appeared to be
the next great opportunity to increase the efficiency and productivity of businesses. In XML,
not only does one send the data, but also a description that explains the type of the data. So a
function already deployed within an enterprise could be identified through XML and made
accessible to using existing HTTP/HTML Web Service infrastructures.

Exchanging data using XML-based protocols enables businesses to push their existing
Web functionality outward to partners, vendors, suppliers and customers. With XML, devel-
opers build systems by integrating functionality from several systems to deploy the next
generation in information systems applications. XML is also recognized by developers as a
means to integrate legacy and other non-Web-enabled applications into the Web Service
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model. As a result, software developers began to look for programming models that use
XML in their existing Web infrastructures.

The early attempts at providing XML interoperability programming models concen-
trated on client/server-style architectures. The client software knew how to contact the
server and made a Remote Procedure Call (RPC) passing data encoded in an XML docu-
ment. Thus was born XML-RPC. Details on XML-RPC are at http://www.xmlrpc.com/. A
more generalized architecture was needed to reduce brittleness and improve maintainability
between systems. The Simple Object Access Protocol (SOAP) and Web Service Description
Language (WSDL) quickly followed. Details are at http://www.w3.org/TR/ws-desc-reqs/
and SOAP http://www.w3.org/TR/soap12-part0/.

XML-RPC and SOAP join a crowded field of software technologies that enable
interoperability between services in an overall system. Consequently, a good understanding
of the technologies and architectures is needed to deliver solutions that scale, perform, and
function well under varied circumstances and environments. This chapter presents an en-
tirely new set of software testing techniques and tools to find and solve XML-RPC and
SOAP/WSDL-based Web Service problems, bugs, and scalability issues before users en-
counter them.

THE WEB SERVICES VISION

Visit Web sites today and you are likely using more than one server software applica-
tion package. This is especially true for dynamic Web sites offering personalized content.
For example, when you buy a book on an Internet Web site, chances are the sign-in system
will be hosted by one service, the order selection pages served by another service, and ship-
ping and order tracking provided by a third system. If done well, the user encounters con-
sistent branding and few or no seams between systems.

Behind the scenes, teams of engineers are doing their best to keep the backend systems
interoperating. New hardware (routers, servers, storage) and revisions to server software
(WebLogic, WebSphere, SAP, Oracle) appear with alarming frequency. Software engineers
constantly write expensive and difficult-to-maintain custom software to keep the systems
sharing data.

The invention of the Simple Object Access Protocol (SOAP) and its younger brother,
the Web Services Description Language (WSDL,) is our best hope yet to develop a common
language for application-to-application communication. The benefits of being able to write
applications that freely communicate with other applications, platforms and hardware are
many. Less time is spent on maintaining the code and the software developer gets to con-
centrate on solving bigger problems. The operations manager has a wider choice of plat-
forms and hardware. Users benefit by having more advanced applications available. Overall,
SOAP and WSDL deliver a language independent, standards-based interoperability technol-
ogy that runs on many different operating systems and application servers.

Software used to be something you bought at the local software store. It came in a
plastic wrapped glossy oversized box containing a paper manual and a compact disc with a
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hundred megabytes of program code. Sometimes I feel nostalgic about these times since I
had a lot of fun leading the teams that brought one packaged product after another to a soft-
ware store near you - including the Norton Utilities, Stacker, SoftWindows, and TuneUp.
We wrote software to be delivered through a distributor or middleman, sold to users by a
reseller and installed on a single desktop computer. What could be simpler?

The software industry liked this for a while. Three or four word processors competed
for your attention - same with spreadsheets and databases. These were products that engi-
neers liked to write since they were self-contained software packages with very clearly de-
fined boundaries. Unfortunately for software developers Microsoft's monopoly stranglehold
on desktop software meant engineers rarely found investors willing to build companies
around new word processors, spreadsheets and databases – at least not for desktop comput-
ers.

Undaunted by the monopoly control of desktop application software, the next ten
years of technology innovations were primarily concerned with identifying the best location
for the business logic and presentation libraries of a software application to run. Figure 7-1
shows how the first three generations of interoperable software architectures addressed this
issue.

Figure 7-1: Software architectures have grown over time by changing the location of
an application's business logic and presentation software.

Telecommunications industry deregulation of the late 1980s opened up the possibility
of cheap modem connections between desktop computers. Over the next 10 years, publicly
accessible networks became widely available and inexpensive. The engineers of the world
rejoiced. They could write word processors, spreadsheets and databases for servers and have
the desktop computer act as a thin, dumb client for their code on the server.

By 2001, Microsoft reinvigorated the software development community by rennovat-
ing its tools, server software, and operating system products with a renewed component
model, pervasive support for XML, and a virtual machine technology that would be the core
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of their middleware technologies. Microsoft named the wide-ranging effort .NET. (Chapter
9 provides testing strategies and methodologies specifically for .NET.) Microsoft envisioned
the component model to enable existing Microsoft word processor, spreadsheet and database
software on the desktop computers to interoperate with other word processor, spreadsheet
and database software on other desktops using XML Web Services, sometimes without the
need for a server. This confused and emboldened engineers to try something new as shown
in Figure 7-2. Engineers could build and deploy solutions where the computing power is on
the desktop, in a smart appliance and in the server. Software developers, QA analysts, and
IT managers need techniques and strategies to deal with these changing architectures.

Figure 7-2: With the world supporting HTTP/HTML Web infrastructure, SOAP be-
comes the common language for a world of interoperating Web Services
running on a desktop and communicating with several content sources.

Microsoft went further in its vision for .NET when it adopted support for Universal
Description, Discovery and Integration (UDDI.) UDDI services enable software components
to discover business logic in other software components. The UDDI specification allows
software modules to be categorized by function. Combining SOAP, WSDL and UDDI en-
ables software components to find, bind-to and remotely call the functions a component
needs to complete its work. At the time of writing few if any lexicographers and taxonomy
experts were working on UDDI systems so the basic function of categorizing and finding
functions is not yet realized.

Competing with Microsoft, the providers of Java platforms, application servers and
tools were ready to incorporate XML too. SOAP and WSDL rapidly gained acceptance.
Each company benefited from SOAP/WSDL in their own way. IBM used SOAP to XML
enable its customer’s legacy software, including COBOL and FORTRAN applications. BEA
was the first to use the Java Web Service (JWS) standard to make it easy for Java developers
to expose existing classes and methods as SOAP interfaces. SOAP gained broad platform-
neutral industry support rapidly. Details on Microsoft's latest moves in Web Services may be
found at: http://msdn.microsoft.com/Webservices/.
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You need a good understanding of XML-RPC and SOAP/WSDL-enabled systems to
understand how to test Web Service-based systems. Let us begin with the XML-RPC proto-
col.

XML-RPC FOR WEB INTEROPERABILITY

XML-RPC is an open standards specification that describes how to write software that
will make remote procedure calls using HTTP as the transport and XML as the encoding. A
Web-enabled application decodes the XML and makes a call to a method that exists on the
server. XML-RPC (http://www.xmlrpc.com/spec) was designed to be as simple as possible
while still enabling complex data structures to be transmitted, processed and returned. The
specification’s simplicity makes it possible for XML-RPC libraries to be implemented on a
huge array of operating systems and programming languages, including Perl, Python, Java,
Frontier, C/C++, Lisp, PHP, Microsoft .NET, Rebol, Real Basic, Tcl, Delphi, WebObjects
and Zope. Lest anyone forget the first implementation of XML-RPC was on Userland Soft-
ware (http://www.userland.com/) Frontier scripting-based application framework, which we
will see later in this chapter as important to XML-RPC’s evolution into SOAP.

An XML-RPC request to a Web Service is formed much like an HTTP/HTML POST
command is crafted. Instead of using HTML form elements the body of the request contains
the XML encoded data to be sent as shown in Figure 7-3.

Figure 7-3: Using the sample infrastructure as an HTTP/HTML request, XML-RPC
sends XML encoded data to the service.
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A simple XML-RPC service is set up on the public Internet at exam-
ples.pushtotest.com. This service takes two parameters encoded in an XML document and
echoes the parameter values back in an XML response document. Using a computer network
monitoring utility illuminates the data that is transmitted and received in an XML-RPC call.
(Later in this section I provide URLs to popular network monitors.) Here is the request go-
ing to the service:

POST./.HTTP/1.1
Content-Length:.240
Content-Type:.text/xml
User-Agent:.Java1.4.0
Host: mayo.pushtotest.com:91
Accept: text/html,.image/gif,.image/jpeg,.*;.q=.2,.*/*;q=.2
Connection:.keep-alive

<?xml.version="1.0".encoding="ISO-8859-1"?>
  <methodCall>
    <methodName>echo</methodName>
    <params>
      <param>
        <value>Tell.me.what.I.would.like.to.hear.</value>
      </param>
    <param>
      <value>Wisper.sweet.nothings.in.my.ear.</value>
    </param>
  </params>
</methodCall>

To make the request data more legible, I changed the spacing of the request data. In
the real request, only carriage return characters separate all the XML and HTTP header data.
Otherwise this is the entire request. It should look similar to an HTTP/HTML request since
XML-RPC is operating over the same Web infrastructure of transport protocols and routed
networks. XML-RPC requires business logic to exist in the software that runs on both ends
of the connection. The business logic can be implemented in a browser using JavaScript,
Applets or ActiveX objects or in a desktop application using one of the XML-RPC libraries.

XML-RPC responses also look similar to an HTTP/HTML response but contain XML
data as shown below.

HTTP/1.1.200.OK
Server:.Apache.XML-RPC.1.0
Connection:.Keep-Alive
Content-Type:.text/xml
Content-Length:.247

<?xml.version="1.0".encoding="ISO-8859-1"?>
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<methodResponse>
    <params>
      <param>
        <value>
          <array>
            <data>
              <value>Tell.me.what.I.would.like.to. \
              hear.</value>
              <value>Wisper.sweet.nothings.in. \
              my.ear.</value>
            </data>
          </array>
        </value>
      </param>
    </params>
</methodResponse>

This response uses standard ISO-8859-1 encoding that handles Unicode characters
among other things. In the response is an array containing the two parameters we transmitted
in the request. Since this is XML, the response data can contain simple as well as complex
data types. A very nice tutorial on ISO-8859-1 encoding is found at
http://www.cs.tut.fi/~jkorpela/chars.html.

Viewing the HTTP encoded protocol data as it moves across the network connection
between the browser and the server may help you build and debug intelligent test agents.
Windows NT, 2000 and XP users may view network traffic with the Microsoft Network
Monitor utility. This utility captures the packets of data and displays them to show the GET
and POST commands and their associated data values. Linux users may view network traffic
with the popular tcpdump (http://www.tcpdump.org,) ethereal (http://www.ethereal.com/,)
and NetWatch (http://www.slctech.org/~mackay/netwatch.html) utilities.

Writing a TestMaker test agent script to request a function over an XML-RPCprotocol
is straightforward. Here is the script in its entirety and then followed by an explanation of
how it works. All of the code presented in this book is also available for download at
http://www.pushtotest.com/ptt/thebook.html.

# Agent name: XMLRPC_Connect.a
# Author: fcohen@pushtotest.com

thehost = "examples.pushtotest.com"
theport = 91
request1 = "Tell me what I would like to hear."
request2 = "Wisper sweet nothings in my ear."

print "Agent running: XMLRPC_Connect"
print "Description: This agent will connect to a demonstra-
tion XML-RPC host"
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print "on the PushToTest server. The host will echo back
whatever the agent sends."
print
print "Sending these values to the XML-RPC host on: ", the-
host, " port: ", theport
print "request1 = ", request1
print "request2 = ", request2
print

# Import needed TestMaker, TOOL and Jython libraries
from org.apache.xmlrpc import XmlRpcClient
from com.pushtotest.tool.protocolhandler import Protocol-
Handler, Header, Body, XMLRPCProtocol, XMLRPCBody,
XMLRPCHeader
from com.pushtotest.tool.response import Response

# First we get an XMLRPC protocol handler object
protocol = ProtocolHandler.getProtocol("xmlrpc")

# Then we put together the request document
body = XMLRPCBody()

body.setTarget( thehost )
body.setTransport("http")
body.setMethod("echo")
body.addParameter( request1 )
body.addParameter( request2 )
protocol.setBody( body )

protocol.setHost( thehost )
protocol.setPath( "" )
protocol.setPort( theport )

print "Connecting..."

response = protocol.connect()

print "Here is the response from the host:"
print response

print
print "That request took ", response.getTotalTime(), " mil-
liseconds to complete."
print
print "Agent ended."
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If you followed the example agents in Chapter 5 then testing XML-RPC services
should look just like testing HTTP/HTML applications. Next I will describe this test agent
script in detail.

from org.apache.xmlrpc import XmlRpcClient
from com.pushtotest.tool.protocolhandler import Protocol-
Handler, Header, Body, XMLRPCProtocol, XMLRPCBody, \
XMLRPCHeader
from com.pushtotest.tool.response import Response

The test agent begins by importing the needed TestMaker objects to communicate
with a Web Service using XML-RPC protocols.

protocol = ProtocolHandler.getProtocol("xmlrpc")

The test agent uses an XML-RPC protocol handler and body object. These objects will
handle the actual conversation with the Web Service using HTTP protocols and transmitting
and receiving encoded XML data.

body.setTarget( thehost )
body.setTransport("http")
body.setMethod("echo")
body.addParameter( request1 )
body.addParameter( request2 )

The body object determines the URL to the Web Service and the name of the method
to be called. Adding the parameters to the body enables the TestMaker protocol handler to
encode the request1 and request2 Strings into an XML request document that are sent to the
Web Service for processing.

response = protocol.connect()

The response object contains the XML response from the Web Service. Printing the
response object to the output window shows the XML data. TestMaker includes XML han-
dling libraries to make it easy to parse through the XML response document to validate the
Web Service response. Details on validating the response come later in this chapter. For an
example of how to construct the Web Service on the server, see
http://www.pushtotest.com/ptt/kits/index.html.

WHERE XML-RPC FALLS SHORT

The simplicity in XML-RPC belies a bigger architectural problem: interoperability in
XML-RPC systems is extremely brittle. Consider the following issues.
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• XML-RPC defines no clean mechanism to pass XML documents themselves in
an XML-RPC request or response. Since the request and response is itself an
XML document what happens when you need to send XML encoded data to a
service for processing?

• There is no way to programmatically change the format of a request or response
document type. Parameters and methods normally change when software is
maintained. Any change to the client or the service requires a change in the
method on the client and server side to recognize the change. This makes XML-
RPC brittle.

• How will XML-RPC be extended to support security, encryption, data compres-
sion and a host of other special needs for vertical industries? XML-RPC covers
only the basic HTTP/XML protocol today.

• XML-RPC does not support namespaces. Every field name needs to be totally
unique from the others or else the XML-RPC client or server will get confused.
This is not usually a problem for a request that has a few parameters, but imag-
ine each of 1000 response elements needing unique fields names.

• XML-RPC operates exclusively over HTTP. Several innovative Web Service-
based system designs have passed RPC calls through message queues, databases
queries and even email.

The ever-vigilant software industry has topped XML-RPC with a new invention: the
Simple Object Access Protocol (SOAP.)

UNIVERSAL INTEROPERABILITY WITH SOAP

Userland Software was an early and vocal proponent of XML-RPC and led its creation
as a standard. XML-RPC is wonderfully simple to learn and use, and inexpensively operates
over existing Web infrastructures. However, XML-RPC becomes brittle when Web-enabled
applications change and need maintenance. Userland was in the unique position to convince
Microsoft, IBM, and later Sun to build a new interoperability standard that began with
XML-RPC and solved the expandability and brittleness problems. The resulting work is the
Simple Object Access Protocol (SOAP.)

The SOAP protocol uses a multistep process to complete a transaction as shown in
Figure 7-4. In a SOAP transaction the business rules of a software application make a re-
quest to a SOAP method on a remote server. The request contains parameters that are con-
verted from the native language (For example, Java, C, C++, andVisual Basic) into a string
of characters by a set of serializers. The serialized parameters become part of an XML
document that conforms to the SOAP Envelope specification. A SOAP Envelope contains a
header and body. The body holds the XML encoded serialized parameters. The SOAP En-
velope is transmitted to the Web Service using HTTP or SMTP protocols. Additional trans-
ports are available such as RMI and IIOP but those are rarely used today.
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Figure 7-4: SOAP requests begin in the Business Rules of a Web-enabled applica-
tion and use a combination of technologies to encode requests into XML
data to be transmitted through a Web infrastructure.

Soon after SOAP's invention, Microsoft and IBM became the leading proponents of
WSDL as the standard metalanguage to describe SOAP-based Web Services. WSDL does
an adequate job of describing the methods, parameters and data types used to make a SOAP
request and receive a response. WSDL is machine parsable and enables development tools
and application servers to generate program source code.

SOAP provides better extensibility and reduces brittleness over XML-RPC by intro-
ducing the many extra layers of the SOAP stack described in Figure 7-4. However with
greater flexibility comes a greater possibility of incompatibility and scalability problems.
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WEB SERVICE SCALABILITY TECHNIQUES

SOAP and WSDL-based Web Services use a multistep process to complete a transac-
tion. Many techniques and system architectures attempt to improve Web Service scalability
and performance. Understanding these techniques is important to validate the results in a
test.

The Web Service request often begins with business logic of your application learning
the method and parameter to call from a Web Services Definition Language (WSDL) docu-
ment. As an example, here is part of the WSDL for a publicly available Web Service that
returns the current weather for a US Postal Zip Code.

<message name = "getTempRequest">
 <part name = "zipcode" type = "xsd:string"/>
</message>
<message name = "getTempResponse">
 <part name = "return" type = "xsd:float"/>
</message>

The weather service requires you to call the getTempRequest method by passing in a
zipcode value as a string and receiving the temperature as a floating-point value in the re-
sponse.

Since the WSDL rarely changes, many developers embed the WSDL definition into
their code to avoid the overhead of getting the WSDL every time. While this will improve
performance it also becomes a works against solving brittleness and becomes a maintenance
headache when the WSDL eventually changes. The better way to avoid maintenance prob-
lems is to cache the WSDL in the centralized database and then periodically check the time-
stamp/version number of the WSDL to see if a newer one is available.

Another way to software developers try to improve performance is to turn XML vali-
dation off. For systems that do no use validation, test suites should use light validation of the
response results. For example this WSDL defines the schema for the response:

<element name="zipcode" type="int"/>
<element name="temperature" type="float"/>
<element name="remarks" type="string"/>

The result of a call to this service looks like this:

<zipcode>95008</zipcode>
<temperature>65 F</temperature>
<remarks>Storm warning</remarks>

This response should throw an exception because the temperature value is not a float
type. It is actually a string. Validating the response in an intelligent test agent will normally
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be much faster than depending on the DTD or XML Schema code to validate the SOAP re-
sponse.

Parameter types in SOAP present a possible scalability problem too. SOAP defines
simple data types: String, Int, Float, and NegativeInteger. The simple data type such as a
String appears in WSDL using XML Schema like this:

<message name = "getTempRequest">
 <part name = "zipcode" type = "xsd:string"/>
</message>

As we will see later in this chapter the SOAP request and response may include non-
trivial new data types. For example, imagine the temperature Web Service also retrieved
maps. The schema for the call may look like this:

<message name = "getTempRequest">
 <part name = "zipcode" type = "xsd:string"/>
</message>
<message name = "getTempResponse">
 <part name = "return" type = "xsd:float"/>
 <part name = "map" type =
"xsd:http://www.pushtotest.com/wsdl/mapformat"/>
</message>

While reading the response, a validating XML parser will contact the pushtotest.com
host to get the XML Schema definition for the mapformat. The overhead of this request can
cause scalability problems when the validating parser does not cache the schema definitions.

A general performance rule is to stay with the simple SOAP data types unless there is
a compelling need to use another data type. Each new data type introduces a serializer to
convert from the XML value into the local programming language (Java, C, C++, and Vis-
ual Basic) value and back again. The serializer may cause performance problems or just be
buggy. For example, the Apache and Microsoft SOAP implementations both include a
BigDecimal data type. However, they are not compatible.

While SOAP was designed to work within existing Web application environments, the
protocol may introduce firewall and routing problems. Unlike the normal Web server using
HTTP, SOAP messages using HTTP as a transport are the equivalent of HTTP Form Sub-
mits. The calls move much more data than the average HTTP GET or POST. This is bound
to impact network performance. Special testing of the firewall and routing equipment should
be undertaken. For example, it is prudent to check your firewall’s security policy to make
certain it does not monitor SOAP-requests as Web traffic. If it does you may find the
firewall shunting away traffic that looks like a Denial Of Service (DOS) attack.

The early Web Services are very straightforward – you make a SOAP call and get a
response. More advanced SOAP applications make a series of get and response calls until a
transaction is finished. Transactional SOAP calls need to identify sessions and cache the
state of the sessions. Caching mechanisms for SOAP transactions are potential problem
spots for scalability.
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WEB SERVICE INTEROPERABILITY PROBLEMS

Stepping onto the new Web Services island one might think your problems are behind
you. Then the reality of Web Services sets-in. Dozens of platform providers, independent
software vendors, and utility software developers have implemented SOAP and WSDL in
their products. Many times developers have had to interpret the meaning in parts of the
specifications. Interpretation allows interoperability problems to seep into SOAP-based Web
Services.

Web Service interoperability goals are to provide seamless and automatic connections
from one software application to another. SOAP, WSDL, and UDDI protocols define a self-
describing way to discover and call a method in a software application – regardless of loca-
tion or platform. Data is marshaled into XML request and response documents and moved
between software packages using HTTP or message-based protocols. Interoperability prob-
lems, such as platform specific differences in BigDecimal, creep-in at the discovery, defini-
tion and request/response mechanisms.

Discovery

In the dreamy world of Web Service Utopia every software application is coded with a
self-discovery and self-categorization method. Software that lacks a needed function looks
into a UDDI-based registry of services and automatically makes a contract with a found
Web Service to handle the task. WSDL and SOAP enable communication once a Web
Service function is found. The problem then is to categorize what the function does so it
may be found. UDDI defines TModels that are taxonomies to describe the location, path and
character of the function.

UDDI enables businesses to host on-line registries of available Web Services. On the
public Internet Microsoft, HP and IBM offer UDDI registries to businesses. A business uses
the UDDI TModel system to categorize the hosted Web Service. And therein lies the prob-
lem: UDDI allows multiple taxonomy and expects self-policing for mistaken entries in the
registry. For example, suppose a Web Service that prints and sends invoices lists itself in a
UDDI registry using an SIC code but does not list geographic information. Using such a
Web Service from the other side of the planet would work; however, it may easier to lick the
stamp yourself.

In time UDDI will be well used and understood by the traditional taxonomy providers,
including LCSH (Library of Congress Subject Heading), FAST (Faceted LCSH), DDC
(Dewey Decimal Classification), and LCC (Library of Congress Classification.) Until the
taxonomy experts add their practical knowledge of developing and maintaining public di-
rectory structures in UDDI, you should plan for interoperability problems.

On the other hand, private UDDI directories are already viable. Enterprises have spent
billions of dollars renovating their supply-side systems. With these renovations comes stan-
dardization of product definitions and businesses processes. These processes can be easily
moved into a UDDI registry and accessed from UDDI-enabled Web Services.
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Definition

Web Services uses WSDL to define how to make a request to a SOAP-based method.
WSDL assumes cooperation from companies that define custom data types. Such coopera-
tion is put to the test by collaborative organizations that are establishing interoperability test
suites. SOAPBuilders is a loose affiliation of Web Service vendors whose goal is to proof
interoperability. SOAPBuilders also publishes an interoperability test suite for checking
SOAP implementations that is available at http://www.xmethods.com/ilab/ and
http://www.whitemesa.com/interop.htm. The test suites emerging today begin with the
WSDL definition of a SOAP interface. They test the contents of the request and response
documents for valid data.

This has put renewed energy behind WSDL efforts. New technologies, such as Cape
Clear CapeStudio and BEA WebLogic Workshop, automatically develop WSDL documents
for SOAP-based Web services. Tools like these eliminate poorly constructed WSDL that
appears when developers hand-code WSDL documents. Plus, Java itself is getting much
better at handling WSDL in the Java Web Services Developer Package. Details are at
http://java.sun.com/webservices/.

<?xml version="1.0" ?>
<definitions name="PushToTestService" targetName-
space="http://www.pushtotest.com/pushtotestservice.wsdl">
<message name="testRequest">
  <part name="userName" type="xsd:string" />
  <part name="authenticationToken" type="xsd:string" />
  <part name="goodUnitl" type="xsd:Date" />
  </message>
. . .

WSDL documents have been known to cause interoperability problems. For example,
consider the above snippet of WSDL for a software test Web Service. The WSDL defines
how to send a testRequest command; However, the <definitions> element fails to define the
name space. The correct <definition> element should look like this:

<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s0="http://tempuri.org/" targetName-
space="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

The developer likely thought the Web Service would default to the standard W3
SOAP name space. While this may work for primitive data types like String, there are
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known interoperability problems with Date data types that appear later in this chapter. With-
out specifying the namespace, the Web Service will likely fail to handle the data type cor-
rectly.

Request/Response

SOAP defines a standard way for software applications to call each other’s methods
and to pass data. SOAP requests are XML documents containing a description of the name-
space, method called and data. XML tries to be fairly flexible to allow developers to write
XML elements and definitions. The flexibility can be a problem for SOAP interoperability.

For example, a typical SOAP response document might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:echoStringResponse
xmlns:ns1="http://soapinterop.org/">
<result xsi:type="xsd:string">Hello!</result>
</ns1:echoStringResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This response document sends back a String containing the text "Hello!" The <result>
element also includes the xsi:type="xsd:string" parameter that gets deserialized into a native
language object (for example, a Java String object). Many SOAP tools add explicit typing
information into the request and response document. On the other hand, some SOAP librar-
ies return responses with no type information.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<ns1:echoStringResponse
xmlns:ns1="http://soapinterop.org/"> <result>Hello, I'm a
string!</result>
</ns1:echoStringResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
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The <result> element in the above response document includes no type information. In
this case, the SOAP library that deserializes the <result> value must look into the WSDL
description of the service to find the description of the return type. If the WSDL does not
define a response type, then it should throw an exception. However, in my experience, more
times than not the SOAP library will default to a String object and that may be incorrect.

Data types are where the rubber meets the road in Web Services. SOAP uses serializer
and deserializer objects to translate from the native language of a software application to the
SOAP protocols that move the request over the wire. It is here where native languages intro-
duce dependencies on the data. For example, the way Java defines date objects is different
than Microsoft .NET C++ date objects. This has the unfortunate effect of allowing SOAP
data types with the same name to have different implementations; thus, interoperability
problems lie ahead.

The most common data types to fail interoperability tests are Floating Point numbers
and Dates.

Floating-Point and Decimal Data Types

Floating-point numbers in SOAP are represented as strings of decimal digits. The
SOAP definition for floating point numbers also enables scientific notation, for example
7.53E+10, to handle exponential numbers using notation in use by engineers for decades. In
general this works as expected; however, when pushed floating-point numbers have prob-
lems.

For example, the original IBM SOAP4J implementation (now the Apache SOAP and
Apache AXIS libraries) used the Java toString method and constructor to convert floating-
point values found in SOAP documents into Java objects. When it came to serializing the
floating point number "infinity" Java outputs the string as "Infinity". On the other hand,
XML Schema serializes infinity as "INF". This caused SOAP4J to have interoperability
problems with other SOAP toolkits.

Just as the Internet was born from the cooperation of network administrators, today we
see SOAP implementers cooperating to solve interoperability problems. Apache SOAP, the
successor to SOAP4J, was changed to accept "INF" as a valid way to serialize infinity.

Decimal data types suffer from language dependencies when pushed too. Decimal data
types may represent large numbers up to 40 digits of precision. Relying on all 40 digits in a
SOAP request or response is problematic unless both server and client are implemented on
the same language. This is also true for fractional seconds with dates and trailing zeros on
decimals.

BigDecimal is a good example of interoperability pitfalls introduced by language de-
pendencies. Decimal numbers are a necessary part of financial calculations in banking appli-
cations where huge numbers are required. The XML Schema specification for decimal data
types allows an arbitrary precision. Decimal data types could represent 1000 digits of preci-
sion – that is a decimal number represented as a string of 1000 one-digit numbers. Apache
SOAP is based on the Java implementation of the BigDecimal data type. Java’s BigDecimal
has an upper limit to precision of a number depending on the underlying operating system
(Solaris, Windows, etc.)
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XML Schema responded to these kinds of interoperability problems by defining a
minimally conforming implementation specification. In the case of decimal data types, XML
Schema requires at least 18 digits of precision. Apache and Java meet the requirement. But,
that does not mean a SOAP-based Web Service will receive the minimum precision.

Microsoft .NET implementations handle BigDecimal data types up to 29 digits of pre-
cision. So, what happens to the extra digits of precision when an Apache SOAP request with
a BigDecimal data type receives a .NET response? Unfortunately it rests with the local
SOAP serializer and deserializer implementation to know. And there is the rub: The SOAP
transaction is valid but the data is wrong. Developers need to be vigilant enough to code data
tests and protections into their software applications to consider invalid data from a SOAP
exchange.

Given enough time and energy, these kinds of interoperability problems are solved by
the Web Service platform providers. For example, Sun updated Java to provide BigDecimal
interoperability with the .NET platform. From the very nature of what we do at work, we
software developers, QA technicians, and IT managers are on the front-line to encounter
these kinds of problems first. Being vigilant counts.

Date Data Types

Date data types suffer from interoperability problems to a greater extent that floating
point decimal data types. The XML Schema defines the dateTime data type to contain centu-
ries, years, months, days, hours, minutes and seconds. But what about milliseconds, micro-
seconds and even smaller measurements of time? We live in a world where 2 GHz Intel
CPUs sell for less than $150 and users require Web Services to perform in 2-3 seconds at
most. In just about every measurement of Web Service performance, milliseconds are going
to count.

XML Schema specifies that any number of digits after seconds may be coded into a
dateTime data type but there is no minimum number of digits that an application must sup-
port. Apache SOAP uses the Java Date class (java.util.Date) to serialize and deserialize
dateTime data types. Java Date supports precision up to the nearest millisecond. .NET’s
Date data type uses sub-second values up to four digits of precision – so a nanosecond may
be represented in a .NET Date data type.

On The Horizon

Today, Web Services are provided by the core UDDI, WSDL, and SOAP protocols.
On the immediate horizon are a second layer of protocols that define workflow automation,
Web Service management services, and vertical market protocols. Web Services greatly help
developers build highly integrated solutions. So it should be no surprise to see interoperabil-
ity problems arrive when workflow automation Web services are mixed with vertical market
Web services.

If Web Service toolkits are continually improved to solve interoperability problems
then customers, users, and businesses will solve system integration problems more effi-
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ciently than when using the existing standards (CORBA, DCOM, and RMI.) The more seri-
ous Web Service toolkits vendors have been diligent at solving interoperability problems. If
interoperability problems linger or get worse, then we are in for slower adoption and much
larger professional services costs to implement integrated systems. In the meantime, Web
Services is off to a great start.

USING TESTMAKER TO UNDERSTAND WSDL

The Web Services Description Language (WSDL) is a specification that describes the
parameters, methods, data types, and accessors to a SOAP-based Web Service. While it is
possible to write SOAP-based Web Services without WSDL, the benefits of having a meta-
language to describe the SOAP interface to a method are worth the extra effort.

Many times a test strategy is facilitated by having a utility to retrieve and understand
the WSDL document that describes a SOAP-based Web Service. Now, let us see how Test-
Maker works with WSDL documents. Following is an agent that reads and parses a WSDL
definition for a SOAP-based Web Service running on the public Internet at exam-
ples.pushtotest.com. The agent is shown in its entirety and then followed by an explanation
of how it works.

# Agent name: explore_wsdl.a
# Author: fcohen@pushtotest.com

# ------------------------------------------------
# Set parameters and variables for this agent

# Location of the WSDL for the responder Web Service
target_wsdl = \
"http://examples.pushtotest.com:92/axis/servlet/ \
AxisServlet/responder_rpc?wsdl"

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.parser.wsdl import WSDLParser
from javax.wsdl import WSDLException

# Import useful Python and Java libraries
import sys
import java
from urlparse import urlparse
from java.util import Random
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# Main body of agent

try:
    parser = WSDLParser( target_wsdl )
definition = parser.getDefinition()
except WSDLException, ex:
    print "Something went wrong trying at:"
    print target_wsdl
    print
    print "The complete exception is:"
    print ex
    sys.exit(1)

print
print "Web Service Description"
print
print "At this location:"
print target_wsdl

services = definition.getServices()

for keys in services.keySet().iterator():

    current = services.get( keys )
    print "there is a Web Service named", \
    curent.getQName().getLocalPart(), "offering \
    these services:"
    print

    ports = current.getPorts()
    for pkeys in ports.keySet().iterator():
        pcurrent = ports.get( pkeys )
        bind = pcurrent.getBinding()
        print "Service:", pcurrent.getName()
        print "Binding:", bind.getQName()
        for extenelem in \
        pcurent.getExtensibilityElements():
            print "Target URI:", extenelem.getLocationURI()

        print
        print "The",pcurrent.getName(),"service offers \
        these methods:"
        print

        for ops in bind.getBindingOperations():



22 The Java Design and Test Automation Guide  Chap. 7

            if ops.getName()!="class$":
                print ops.getName(), "which needs these \
                parameters:"
                print

                mcur = \
                ops.getOperation().getInput().getMessage()
                if mcur != None:

                    parts = mcur.getParts()
                    for partkeys in \
                    parts.keySet().iterator():
                        part = parts.get( partkeys )
                        print "  ",part.getName(), "that \
                        is of type", part.getTypeName()
                        print

    print

print
print "Agent finished."

Running this agent produces a nicely formatted report of the information offered in the
WSDL document for the SOAP-based Web Service. Following is a portion of the agent’s
output:

Web Service Description
At this location:
http://examples.pushtotest.com:92/axis/servlet/AxisServlet/
responder_rpc?wsdl
there is a Web Service named responder_rpcService offering
these services:
Service: responder_rpc
Binding:
http://examples.pushtotest.com:92/axis/servlet/AxisServlet/
responder_rpc:responder_rpcSoapBinding
Target URI:
http://examples.pushtotest.com:92/axis/servlet/AxisServlet/
responder_rpc
The responder_rpc service offers these methods:
Callback which needs these parameters:
   host that is of type
http://www.w3.org/2001/XMLSchema:string
   times that is of type
http://www.w3.org/2001/XMLSchema:long
   path that is of type



Tuning SOAP and XML Web Services 23

http://www.w3.org/2001/XMLSchema:string
   method that is of type
http://www.w3.org/2001/XMLSchema:string
   target that is of type
http://www.w3.org/2001/XMLSchema:string
   port that is of type
http://www.w3.org/2001/XMLSchema:int
Bomb which needs these parameters:
   delay that is of type
http://www.w3.org/2001/XMLSchema:long
Respond which needs these parameters:
   wordcount that is of type
http://www.w3.org/2001/XMLSchema:long
   delay that is of type
http://www.w3.org/2001/XMLSchema:long
snooze which needs these parameters:
   thesecs that is of type
http://www.w3.org/2001/XMLSchema:long
Agent finished.

Using the information learned from the WSDL document, we can build a subsequent
test agent that calls one of the SOAP methods. For example, we can call the Respond
method by passing a wordcount and delay value.

To understand WSDL, use a browser to retrieve the WSDL for the example Web
Service at: http://examples.pushtotest.com:92/axis/servlet/AxisServlet/responder_rpc?wsdl.
This is a publicly available SOAP-based Web Service hosted by PushToTest.com. Let us see
how the test agent learned from the WSDL definition.

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.parser.wsdl import WSDLParser
from javax.wsdl import WSDLException

The agent begins by using import statements to identify the WSDLParser object in
TestMaker's Test Object Oriented Library (TOOL.) Details on TOOL are at
http://docs.pushtotest.com. WSDLParser provides several methods to discover the contents
of the WSDL document.

services = definition.getServices()
for keys in services.keySet().iterator():
    current = services.get( keys )
    print "there is a Web Service named", cur-
rent.getQName().getLocalPart(), "offering these services:"
    print

The definition.getServices() method returns a services object containing the defined
SOAP-based Web Services described in the WSDL document. Most WSDL documents de-
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fine a single Web Service however the WSDL specification allows for more than one serv-
ice to be described. The agent uses a for loop to iterate through the services.

ports = current.getPorts()
    for pkeys in ports.keySet().iterator():
        pcurrent = ports.get( pkeys )
        bind = pcurrent.getBinding()
        print "Service:", pcurrent.getName()
        print "Binding:", bind.getQName()

Then, the agent finds the defined ports for each service. A WSDL port describes the
transport layer information for the Web Service. In this case, the getBinding() method re-
turns a URL to methods needed to bind the agent to the Web Service. The Responder is a
simple Remote Procedure Call (RPC)-style service so the binding is simply a URL to call.
You can also use the binding information to expose an Applet, client software or even a se-
curity certificate used to call the Web Service.

        for ops in bind.getBindingOperations():
            if ops.getName()!="class$":
                print ops.getName(), "which needs these \
                parameters:"

                mcur = \
                ops.getOperation().getInput().getMessage()
                if mcur != None:
                    parts = mcur.getParts()
                    for partkeys in \
                    parts.keySet().iterator():
                        part = parts.get( partkeys )
                        print "  ",part.getName(), " \
                        type", part.getTypeName()

Next, we use a for loop to iterate through the methods and parameters in the Web
Service.

TestMaker comes with a New Agent Wizard that automatically writes a skeleton of a
test agent script. For agents testing SOAP/WSDL-based Web Services, the New Agent Wiz-
ard reads a WSDL document from a given URL and creates the Jython script that calls
TOOL commands necessary to work with the SOAP service. The skeleton is functional and
can then be filled out with additional test logic by the user. For details, see the TestMaker
documentation.

As we found in the example, TestMaker provides tools to understand the contents of a
published WSDL document. From WSDL we learned the available services and methods
available to call. Next, we discover how to make requests and receive responses using
SOAP.
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 Constructing SOAP Calls

SOAP is a specification for building interoperating systems. The SOAP specification
is broad enough to cover many different types of requests and responses, different styles of
parameter encoding, and a variety of service architectures. You need a good knowledge of
these SOAP styles to effectively test SOAP-based Web Services for scalability, functional-
ity, and performance. The remainder of this chapter shows many SOAP styles in depth and
provides a TestMaker test agent as a tangible example.

 Different Types of SOAP Parameter Encoding

SOAP is designed to interoperate across platforms, languages, and systems. SOAP
implementations deliver interfaces to send a request to a service and pass it parameters that
contain characters, numbers, dates, and complex data types. Earlier in this chapter, we
delved into interoperability problems that can be introduced by the underlying platform. In
this section, we see the different data types that SOAP supports and how software develop-
ers can expand on the primitive types to move complex data types in SOAP call.

SOAP defines a set of primitive data types that all implementations must support.
These include String, boolean, decimal, float, double, dates and time, binary, and URIs.
Each SOAP implementation is responsible for implementing the primitive data types. For
example, ASP .NET provides the following SOAP data types that are mapped to XML data
types.

Table 7-1 Mapping SOAP Parameter Encoding

ASP.NET data type Java data type XML data type

string String string
boolean Boolean boolean
float(single) Float Float
double Double double
decimal Decimal decimal
long Long Long
int Int Int
short Short short
byte Byte unsignedByte
ulong Ulong unsignedLong
uint Uint unsignedInt
ushort String unsignedShort
sbyte Boolean byte
DateTime Float date
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DateTime Double Time
DateTime/Date Decimal TimeInstant
String[] Long ArrayOfString
boolean[] Int ArrayOfBoolean
float[] Short ArrayOfFloat
double[] Byte ArrayOfDouble
decimal[] Ulong ArrayOfDecimal
long[] Uint ArrayOfLong
int[] String ArrayOfInt
short[] Boolean ArrayOfShort

In TestMaker, you can pass a primitive data type using the following format:

body.addparameter( "wordcount", java.lang.Long, 1839, None)

The addparameter method uses the built-in serializer to convert the long data value
1839 into an XML representation and sends it to the service. This is easy because of all the
underlying Web Services code that supports marshalling, encoding and transmitting primi-
tive data types.

Many times, a transaction needs to communicate complex data types not covered in
the primitive data types. Figure 7-5 describes complex data types. In this book, I refer to
structured and compound data as complex data types.

Figure 7-5: SOAP enables complex data types to be used in requests or responses.

SOAP and TestMaker allow custom data types in requests and responses.
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ef = employeeFile.getFile( 38183 )
body.addparameter( "EmployeeFile",
com.pushtotest.employeeFile, ef, None)

In this case, the request to a SOAP service contains the serialized version of an em-
ployeeFile object that is reference by the variable ef. TestMaker searches for a registered
serializer object that can convert a com.pushtotest.employeeFile object into an XML repre-
sentation. To register new serializers with TestMaker, you must write JavaBeans objects that
respond to serialize and deserialize commands for the specific data type.

The more complex the data the more serializers are used to handle SOAP requests and
responses. For details on using complex data types see http://docs.pushtotest.com.

 Different Types of SOAP Calls

SOAP leverages the XML specification for data types and uses serializer and deseri-
alizer objects to marshal and unmarshall data from platform to platform. SOAP also enables
several different styles of requests and responses to provide even more flexibility. SOAP
enables remote procedure call (RPC) requests, and document-style requests.

Remote Procedure Call (RPC) SOAP

RPC-style SOAP calls make a single request to a specific method in an object on a
remote server. The request is transported with a list of individual parameters. RPC requests
are the closest model to Java and C++ programming models. For example, consider the fol-
lowing object.

public class responder_msg
{
    public String Respond( long wordcount, long delay )
    {
       . . .
    }
}

responder_msg is a Java object running on a remote server with a single method
named Respond that always expects two parameters: both of a long data type. The re-
sponder_msg object is running now on examples.pushtotest.com, a Web Service on the pub-
lic Internet hosted by PushToTest.com. Next, we will examine a TestMaker test agent that
interoperates with the responder_msg object using a SOAP request.

# test_rpc.a
# Author: fcohen@pushtotest.com
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# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPProtocol, SOAPBody, SOAPHeader
from com.pushtotest.tool.response import Response
from java.lang import Long

# First we set-up the basic information describing
# the name, location and path to the Web Service host.

host = "examples.pushtotest.com"
port = 92
path = "axis/servlet/AxisServlet"
endpoint = host + ":" + str( port ) + "/" + path

print "SOAP service is at ",endpoint

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

# Set the endpoint values

protocol.setHost( host )
protocol.setPath( path )
protocol.setPort( port )

body.setTarget( "responder_rpc" )
body.setMethod( "Respond" )

# Responder takes these parameters:
# wordcount = the number of jibberish words to return
# in the response XML document. Each word is approximately
# 5-8 characters long and each response is randomly
# unique.
# delay = (optional) the number of milliseconds
#         the Responder service will wait before
#         responding to the request.
# bomb = (optional) the number of milliseconds the
#        Responder service will wait until throwing
#        an exception, which is returned as a 500 Servlet
#        Error and XML fault.
# callback = (optional) see the test_callback.a agent
#            for details

# For this test agent we want 150 jibberish words with
# a 100 millisecond delay
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body.addParameter( "wordcount", Long, 150, None )
body.addParameter( "delay", Long, 100, None )

print "Sending request to server..."

response = protocol.connect()

print
print "Here is the response:"
print response

print
print "Agent done."

When you run this agent, TestMaker sends a RPC-style SOAP request to the service.
The TestMaker output window displays the response document. Let us look into the agent to
see how the RPC-style request is constructed.

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import Protocol-
Handler, SOAPProtocol, SOAPBody, SOAPHeader
from com.pushtotest.tool.response import Response
from java.lang import Long

The import commands tell TestMaker to use the SOAPProtocol objects in the Test-
Maker's Test Object Oriented Library (TOOL.) Normally, we would not have to import a
primitive data type such as java.lang.Long since the TestMaker scripting language provides
its own long data type. In this case, we need to send a long data type in the parameters of the
request.

host = "examples.pushtotest.com"
port = 92
path = "axis/servlet/AxisServlet"

These variables define the destination server and location of the Web Service. To learn
more, take a look at the WSDL document for the responder_rpc service at:
http://examples.pushtotest.com:92/axis/servlet/AxisServlet/responder_rpc?wsdl

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

We ask TOOL for a SOAPProtocol handler object and SOAPBody object to construct
the request. SOAPBody holds the parameters and destination of the request.
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body.setTarget( "responder_rpc" )
body.setMethod( "Respond" )

The target value defines the Web Service that holds the object and method we will ac-
cess. We can get these values from the WSDL document for this Web Service too.

body.addParameter( "wordcount", Long, 150, None )
body.addParameter( "delay", Long, 100, None )

The Responder method takes parameters: wordcount is the number of gibberish words
to return in the response XML document. Each word is approximately 5-8 characters long
and each response is randomly unique. delay is an optional parameter containing the number
of milliseconds the Responder service will wait before responding to the request. bomb is an
optional parameter of the number of milliseconds the Responder service will wait until
throwing an exception, which is returned as a 500 Servlet Error and XML fault.

response = protocol.connect()
print response

Finally, the request is ready to be sent. The connect() method sends the request and
returns a response object.

This simple agent makes a single SOAP request and returns a SOAP response. From
this simple agent we could write an agent that does the following.

• Makes multiple requests of various sizes and delays

• Operates multiple concurrent threads of the request script in #1 to increase the
load on the server

• Runs multiple copies of the multi-threaded agent on multiple machines.

• Adds simple logging functions to the agents so we can determine TPS and SPI
values

Document-style SOAP Messages

Document-style SOAP requests works well when an application already has XML
data in an object format and does not want or need to convert the object data back into indi-
vidual parameters, as in the SOAP RPC example in the previous section.

A Document-style SOAP-based Web Service is running on examples.pushtotest.com,
a service hosted on the public Internet by PushToTest.com. This service takes the same pa-
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rameters as the example RPC-style SOAP request. Instead of taking individual parameters,
the document-style SOAP request takes the parameters as elements in a DOM tree.

As an example, let us build a test agent that wants 75 gibberish words with a 25-
millisecond delay from the Web Service. To do so requires us to build an XML Request
document that is  sent to the server. The finished document looks like the following:

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
  <Respond xmlns="urn:responder_msg">
    <delay xmlns="urn:responder_msg">25</delay>
    <length xmlns="urn:responder_msg">75</length>
  </Respond>
 </s:Body>
</s:Envelope>

Below is the test agent in its entirety, followed by a discussion of the steps needed to
construct the request and receive a response.

# test_rpc.a
# Author: fcohen@pushtotest.com

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPProtocol, SOAPBody, SOAPHeader
from com.pushtotest.tool.response import Response
from java.lang import Long

# This agent also uses JDOM APIs to handle XML data
from org.jdom import Document, Element, JDOMException, \
Namespace, DocType
from org.jdom.output import DOMOutputter, XMLOutputter

# First we set-up the basic information describing
# the name, location and path to the Web Service host.

host = "examples.pushtotest.com"
port = 92
path = "axis/services/responder_msg"
endpoint = host + ":" + str( port ) + "/" + path

print "SOAP service is at ",endpoint

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)
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# Set the endpoint values

protocol.setHost( host )
protocol.setPath( path )
protocol.setPort( port )

body.setMethod( "Respond" )

xmlns1 = "urn:responder_msg"

# Create the request document by first creating the Respond
element.
elOne = Element( "Responder", xmlns1 )

# Add child elements for <delay>...
elDelay = Element( "delay", xmlns1 )
elDelay.addContent( "12" )
elOne.addContent( elDelay )

# ... and <length>
elLength = Element( "length", xmlns1 )
elLength.addContent( "25" )
elOne.addContent( elLength )

# then tell the SOAPProtocol handler about the request
document.
doc = Document( elOne )
body.setDocument( doc )

print "Here is the finished XML request document:"
xo = XMLOutputter()
print xo.outputString( doc )
print

print "Sending request to server..."

response = protocol.connect()
print response
print "Agent done."

Following is an example of what we might get back from the response_msg service:

<?xml version="1.0" encoding="UTF-8"?>
  <responder>
    <duration>103</duration>
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    <message>lingo-text</message>
  </responder>

The steps to construct a document-style SOAP request are the same as the RPC-style
request agent with one big exception: the script needs to construct a DOM tree representing
the XML request data to make the SOAP request. Here is how it works:

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPProtocol, SOAPBody, SOAPHeader
from com.pushtotest.tool.response import Response
from java.lang import Long

First, we import the SOAPProtocol handling objects from the TestMaker Test Object
Oriented Library (TOOL.)

# This agent also uses JDOM APIs to handle XML data
from org.jdom import Document, Element, JDOMException, \
Namespace, DocType
from org.jdom.output import DOMOutputter, XMLOutputter

We also import the JDOM objects to handle construction and parsing of the XML
data.

host = "examples.pushtotest.com"
port = 92
path = "axis/services/responder_msg"
endpoint = host + ":" + str( port ) + "/" + path

These variables define the destination server and location of the Web Service. To learn
more, take a look at the WSDL document for the responder_msg service at:
http://examples.pushtotest.com:92/axis/servlet/AxisServlet/responder_msg?wsdl

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

We ask TOOL for a SOAPProtocol handler object and SOAPBody object to construct
the request. SOAPBody holds the parameters and destination of the request.

• Responder takes these parameters in an XML request document:
wordcount is a long data type that holds the number of gibberish words to return
in the response XML document. Each word is approximately 5-8 characters long
and each response is pseudo-randomly unique.
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• Delay is a long data type that holds the number of milliseconds the Responder
service will wait before responding to the request.

xmlns1 = "urn:responder_msg"

This references the Namespace of the parameters in the request. In document-style
SOAP requests TestMaker uses the Namespace of the first element <Respond> to determine
the destination service name. The endpoint gets the request to the right server, the Name-
space of the first element gets us to the right Web Service.

We use the JDOM APIs to build the XML request in a DOM object.

# Create the request document by first creating the Respond
element.
elOne = Element( "Responder", xmlns1 )

# Add child elements for <delay>...
elDelay = Element( "delay", xmlns1 )
elDelay.addContent( "12" )
elOne.addContent( elDelay )

# ... and <length>
elLength = Element( "length", xmlns1 )
elLength.addContent( "25" )
elOne.addContent( elLength )

# then tell the SOAPProtocol handler about the request
document.
doc = Document( elOne )
body.setDocument( doc )

Then, we pass the DOM object doc to the SOAPBody object to make the SOAP call to
the server.

response = protocol.connect()
print response

Finally, the request is ready to be sent. The connect() method sends the request and
returns a response object. The import commands tell TestMaker to use the SOAPProtocol
objects in the TestMaker's Test Object Oriented Library (TOOL.) Normally, we would not
have to import a primitive data type such as java.lang.Long since the TestMaker scripting
language provides its own long data type. In this case, we need to send a long data type in
the parameters of the request.

For those who do not wish to use the JDOM APIs, TOOL provides a convenience
method to set the XML document from a string value.
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myXMLDocument = ‘<s:Envelope ‘
myXMLDocument = \
‘xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">’
myXMLDocument += ‘<s:Body>’
myXMLDocument += ‘<Respond xmlns="urn:responder_msg">’
myXMLDocument += ‘<delay
xmlns="urn:responder_msg">25</delay>’
myXMLDocument += ‘<length
xmlns="urn:responder_msg">75</length>’
myXMLDocument += ‘</Respond>’
myXMLDocument += ‘</s:Body>’
myXMLDocument += ‘</s:Envelope>’
body.setDocument( myXMLDocument )

In this example the myXMLDocument string contains the XML request to be sent to
the host. This can be handy when debugging a SOAP-based Web Service. However, this
method is also prone to errors since all of the burden on forming a valid XML tree is now in
your hands.

This agent is just a start. An expanded agent makes multiple requests of various sizes
and delays, operates multiple concurrent threads of the request script to increase the load on
the server, runs multiple copies of the multi-threaded agent on multiple machines and adds
simple logging functions to the agents so we can determine transactions-per-second (TPS)
and scalability-and-performance-index (SPI) values.

Using Formatted XML Data

Consider the times when you already have a formatted XML document. The following
agent shows how to send the contents of a file encoded in XML format to a SOAP-based
Web Service.

from com.pushtotest.tool.protocolhandler import Protocol-
Handler, SOAPProtocol, SOAPBody, SOAPHeader
from com.pushtotest.tool.response import Response
from java.lang import Long
from org.jdom.input import SAXBuilder
from org.jdom import Namespace, Document

builder = SAXBuilder()
doc = builder.build( 'c:/fileexchange/billing2.xml' )
elEnvelope = doc.getRootElement()
ns=Namespace.getNamespace("env", \
"http://schemas.xmlsoap.org/soap/envelope/")
elBody = elEnvelope.getChild( "Body", ns )
nsm = Namespace.getNamespace("m", \



36 The Java Design and Test Automation Guide  Chap. 7

 "http://www.xerox.com/dcs/billing" )
elSend = elBody.getChild( "send", nsm )
doc2 = Document( elSend.detach() )
print doc2

In this unpretentious test agent, we see the import commands being used to access the
TestMaker TOOL objects.

builder = SAXBuilder()
doc = builder.build( 'c:/fileexchange/billing2.xml' )
elEnvelope = doc.getRootElement()

The SAXBuilder object has a special method that takes a file name as a parameter.
The builder method reads the contents of the file and returns an XML object containing a
DOM tree of the contents of the directory.

elBody = elEnvelope.getChild( "Body", ns )
nsm = Namespace.getNamespace("m", \
"http://www.xerox.com/dcs/billing" )
elSend = elBody.getChild( "send", nsm )
doc2 = Document( elSend.detach() )

Next, we attach the found XML data in the file to the SOAPBody object. Now we are
ready to send the request and receive the response.

VALIDATING RESPONSE DATA

Validating the response from a SOAP-based Web Service highlights the efficiency
software developers find when working with XML data. Recall that validating response data
requires us to write a script to parse through the HTML codes contained in the response.
That parsing is highly error prone and laborious to write and maintain. Here is the equivalent
XML validation code to check the response from a SOAP Web Service.

builder = SAXBuilder()
doc = builder.build( StringReader( resp.toString() ) )
rootElement = doc.getRootElement()
bodyElement = rootElement.getChild( "Body", ns )
for i in bodyElement.getChildren():
    print "Child = ", i
    print "Child name = ", i.getName()
    print "Child content = ", i.getContent()
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MAKING IT EASIER TO WRITE AGENTS

TestMaker comes with a New Agent Wizard that automatically writes a skeleton of a
test agent script. For agents testing SOAP-based Web Services the New Agent Wizard reads
a WSDL document from a given URL and creates a TestMaker script that calls TOOL
commands necessary to request the Web Service functions. The skeleton is functional and
may then be filled-out with additional test logic by the user. For details, see the TestMaker
documentation.

In addition to the New Agent Wizard, a set of example test agents come with Test-
Maker. These agents show how to make calls to SOAP-based Web Services. The example
agents may also serve as an outline for your own test agents. Feel free to start with one of
the example agents as a template.

Lastly, while testing a SOAP-based Web Service seeing the HTTP protocol data as it
moves across the network connection between the browser and the server can be useful to
build and debug intelligent test agents. Windows NT, 2000 and XP users may view network
traffic with the Microsoft Network Monitor utility. This utility captures the packets of data
and displays them to show the GET and POST commands and their associated data values.
Linux users may view network traffic with the popular tcpdump (http://www.tcpdump.org,)
e t h e r e a l  ( h t t p : / / w w w . e t h e r e a l . c o m / , )  a n d  N e t W a t c h
(http://www.slctech.org/~mackay/netwatch.html) utilities.

RESOURCES

For further information about the SOAP and WSDL standards go to:

• WSDL http://www.w3.org/TR/ws-desc-reqs/
• SOAP http://www.w3.org/TR/soap12-part0/
• XML-RPC http://www.xmlrpc.com/
• Web Services in general http://www.w3.org/2002/ws/

SUMMARY

This chapter covered the basics of SOAP and WSDL technologies. We learned how
TestMaker provides scripting language commands and a library of test objects to work with
WSDL documents and many styles and forms of SOAP requests. Finally, this chapter
showed how much simpler it is to parse through an XML response than parsing through raw
HTML.
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In the next chapter, we will see how intelligent test agents are used to set-up tests, in-
cluding how a TestMaker agent reads directly from a database.
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C H A P T E R  8

State, Design, and Testing

The examples in past chapters assume that each request to a Web-enabled applica-
tion is stateless. In a stateless system, each request is separate from the others. Of course, we
now know from using Web-enabled applications that many times stateful requests are im-
portant, if not outright necessary. This chapter explores why state is important to Web-
enabled applications, discusses a methodology for testing stateful systems, and shows a
practical example of how to configure a stateful system to be tested.

A QUESTION OF STATE

Web technology introduces a collection of protocols, providers and languages. Per-
haps the greatest feature of these is the stateless nature of Web protocols. In a stateless sys-
tem each request and response is atomic – none depend on previous or subsequent requests
or responses. The request comes in to a service and a response goes out and that is all there
is to a transaction. The benefits to stateful systems include:

•  Easy capacity planning is easy. For example, measuring performance at 100 and
500 concurrent users tells how many servers will be needed when 1,000 and
10,000 users show up.

•  Content caching is more plausible. In my experience, stateless systems work
well for publishing content that seldom changes. The more static content, the
more efficient distributing cache servers may deliver content to users.
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•  Distributed data centers more equally share the load of a population of users
since it does not matter which data center handles a request. This has the added
advantage of providing greater stability to the overall system.

With the maturation of Web technology, today we find many places where stateful
technology is necessary to build Web-enabled applications. Consider a system that requires
a user to sign-in to receive a personalized or confidential response from the server. In a
stateless Web-enabled application, the user would fill in their id and password on each and
every Web page! Many times that is just not practical - and it is contrary to the way the ma-
jority of Web users think the Web works.

By adding a little statefulness – for example, a cookie value to track a sign-in session –
the user experience is made easier and the underlying protocols are still scalable. Unfortu-
nately, the situation is like Pandora's box. Now that the statefull box is open, software de-
velopers, QA technicians and IT managers are having to work their way through a huge
volume of issues, problems, and challenges related to stateful systems. Here are a few of my
favorites:

•  Cookies - Provide a simple way to identify sessions among a group of
HTTP/HTML requests. The cookie value is often an index into a table stored in
the memory of a Web server that points to an in-memory object holding the
user's records. This has many potential problems: If the user's request is routed
to a different server in a subsequent request, the session information is unkown
to the server. If the user is routed to a different server and the server is part of an
application cluster, then all the servers that could receive the user's request must
be have a way to synchroniz the session data. Storing cookies and synchronizing
sessions among clusters of servers usually requires configuration, storage space
and memory.

•  URL rewriting - Instead of storing a cookie value in the HTTP header of a re-
quest, the URL is rewritten to include a session paramter. URL rewriting might
avoid cookies but it shares the same set of potential problems just mentioned
above. Plus, with URL rewriting there are no static URLs in your Web-enabled
application which often makes caching and indexing more difficult. Finally,
every Web page needs to be dynamically generated so all hyperlinks include the
session parameter.

•  SAML Artifacts - The Security Asserition Markup Language (SAML) is a secu-
rity protocol that enables Web-enabled applications to authenticate users and
data. SAML was largely designed for Web-enabled applications where browser
interfaces over HTTPS/HTML provide an interface to security functions, but it
also has good use in Web Services. SAML uses an Artifact when it needs to
share data that is too large to fit into the parameters of a URL. By design, the
Artifact needs to be stored so that it may be later retrieved and used. This re-
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quires software configuration for Artifacts, memory and storage. See my article
about SAML at:  http://www-106.ibm.com/developerworks/xml/library/x-
samlmyth.html

The more state we design into Web-enabled applications, the more workarounds we
will need to develop to use the stateless nature of Web technology. These workarounds often
look like chaos embodied to software developers, QA technicians and IT managers. When
testing a stateful system, we need to look in two dimensions at system performance under
increasing loads of use.

• Vertical scalability enables the system able to handle individual transactions in
a timely manner.

• Horizontal scalability is the ability of the system to handle all the requests con-
currently.

Figure 8-1 Systems scale in two directions: Vertically to improve the ability of the
service to respond to each request and horizontally to improve the ability
of the service to handle increasing quantities of requests. This figure
shows a vertical scalability test where two runs of the same transaction
result in different response times.
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For this discussion, imagine a transaction that spans several steps. For example, in a
transaction a user signs-in to a Web-enabled application, reads the first waiting message,
deletes the message, and checks the rest of waiting messages. Figure 8-1 illustrates this ex-
ample. We run the same transaction two t imes. When I compare the two transaction times, I
ask these questions:

•  Is the overall performance time acceptible to the user's goals?

•  Which parts of the transaction varied in performance?

•  How much did they vary from test to test?

•  Was I expecting a variation? If so, was it the variation I expected?

•  Does the variation appear to impact the performance of other parts of the trans-
action?

In my experience, the same set of questions apply to all of the Web-enabled applica-
tions I design and test. By instrumenting the software and observing the system performance
through a test agent log, I can see where the system needs optimization. Later, once system
changes are in place, the same test proofs the improvements.

Look at a group of individual request and response transactions like those in Figure 8-
1 show that some transactions are handled rapidly and others take longer. The ideal verti-
cally scalable system has a constant proportion of fast responses to slow responses. Vertical
scalability problems appear when more requests result in transactions that on average take
increasing amounts of time to process.

Horizontal scalability is the ability of the system to handle all requests concurrently.
Figure 8-2 shows an example of horizontal scalability being tested. Servers need resources
to respond to requests. Eventually the resources are exhausted and the server has to refuse
additional connections and requests. Load balancers, cluster technology and multicasting
services are proven solutions enable groups of servers to act as one system to provide hori-
zontal scalability.
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Figure 8-2 Horizontal scalability tests a system's ability to handle increasing levels of
load. Notice that the parts of a transaction perform differently under dif-
ferent levels of load.

In my view, stretching Web technology so far towards statefulness is a leading cause
for poor performance and scalability problems. And the more state a system incorporates,
the more complex becomes system configuration in advance of a test. For example, consider
the stateful system that only exhibits performance problems after a certain amount of usage.
This is the example I look into closely in the next section.

LIFECYCLE FOR TESTING STATEFUL SYSTEMS

Developing intelligent test agents very much resembles developing software applica-
tions, including the need for a repeatable lifecycle process. Testing systems requires a cer-
tain amount of preparation, set-up, execution and analysis. The better-designed tests are
designed around a lifecycle that automates these steps from configuration all the way to re-
porting results. Figure 8-3 shows a summary of the test lifecycle.
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Figure 8-3 The lifecycle for testing stateful systems goes from configuration of the
system through a lifecycle of steps to reporting results.

In the preparation stage of a test the test designer collects a list of steps needed to con-
figure the system to a known state prior to testing. The goal here is not to configure the sys-
tem, that is coming in the set-up stage next, but to understand at an abstract level the steps
needed to make the system ready to test. For example, when testing an ecommerce system
that shows business telephone customers discount phone service plans the system may need
to retrieve a list of current service plans to emulate the actions of a customer. The prepara-
tion stage would identify the commands needed to get the list of current service plans.

The advantage of having a preparation stage is that tests become more dynamic and
automatic. By abstracting the actions that will be taken during subsequent set-up and execu-
tion phases, should different preparation be needed the set-up, execution and analysis por-
tions of the test agent do not need to be changed. Additionally, the abstracted actions during
preparation mean that any agent, script or program can follow the actions to configure a
system for a test automatically.

The next two steps – set-up and execution – do the laborious tasks of performing the
test. Set-up performs all the tasks defined in the preparation stage, including communicating
with Web-enabled applications, databases, files and message delivery systems to configure
the target test system. Set-up also performs validation to check that the actual preparation of
the system succeeded. The set-up step may even veto the overall test if the defined test pa-
rameters for configuration are not achieved.

The execution stage is responsible for performing the test steps in the order and fre-
quency defined by the test designer. The execution stage receives run-time parameters for
the test from the user through a console or from the set-up stage through configuration files.
The execution stage's output is data in a format defined for the analysis stage. For simple
tests the output may appear in a window on the computer console. More advanced test
agents may create delimited data files or store the results data in a relational database for the
analysis stage's consumption.
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In the analysis stage the information derived from the execution of a test is turned to
actionable knowledge. The analysis stage begins with a collection of raw results data. The
data becomes valuable when management learns the quantitative metrics of the system’s
quality and performance. The results also benefit engineers by giving them insight into their
code that was not available when the same code was run on a development system. As one
manager on the SunONE Application Server team said: “We need a taste of the latest build’s
performance.” The analysis stage ends with the raw data compiled into a concise report that
can then be used to present the results for action to management.

In the next section, we learn how to apply the lifecycle to an example scalability and
performance study.

TECHNIQUES TO ESTABLISH STATE

Consider the case of a content publishing system that features threaded discussions.
On a daily basis many messages are read, several new discussions are started and subscrib-
ers post many reply messages. The company hosting the publishing system needs to plan for
an expansion in usage that is anticipated as the result of new marketing projects. Manage-
ment needs to know the existing datacenter's capacity and plan the budget to buy the incre-
mental equipment needed to handle the new users. Figure 8-4 shows the nature of the
discussion system. Discussions are grouped by topic with each discussion containing a top
message and threaded reply messages. The Server Side, a popular Web site for J2EE devel-
opers, hosts a discussion system of this nature at http://www.theserverside.com.

Figure 8-4: An example discussion system hosts multiple threaded discussions.
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If a scale of stateless to stateful systems exists we would fine this example system
much towards the stateful side of the scale. Consider these state issues needed to operate a
scalability and performance test:

• Users must be identified to have posting privileges to create a new discussion,
top message or reply message.

• To create a reply message the user must be first browse either a top message or
reply message. Browsing these messages sets the context for the reply message.

• Messages appear showing its immediate reply messages. The user needs to walk
through a list of messages to see all the replies.

Testing the discussion system raises several classical problems with testing in general.
The preface to this test is that an existing system needs to be evaluated for performance un-
der increasing levels of load. Tests of stateful system, by their nature, change the system
being tested. So throwing a few thousand concurrently running intelligent test agents at the
existing system may cause the entire system to go down. While this would be helpful for the
company to know such a flaw exists it is also highly disruptive to the existing users. Lets
consider some of the possible environments in testing existing stateful systems:

• Take a snapshot of the current discussion software state and install the snapshot
on a duplicate datacenter. Here the test would start with a baseline that matches
the current system state. By testing on a duplicate datacenter the existing users
are not impacted. There are two drawbacks to such a test.First, duplicating a
datacenter for a test may not be practical because of the expense and time it
takes to undertake such an effort. Second, conducting the test on the real data-
center may uncover problems that do not appear on a duplicate system – creat-
ing an exact duplicate can become a lifelong quest.

• Test with the production system off-line. Instruct the existing users that tests
will be conducted during certain off-peak usage hours. During those hours, after
making a system backup conduct tests on freshly installed application software.
After the tests the system is restored from the backup. The downside to this test
is that the test environment may not be the same as the real production environ-
ment. Backing-up and restoring the environment may mask problems. For ex-
ample, the effects of a system with memory effects would not be tested because
the back-up and restore operation removes memory leaks.

• Continuous testing - Test while the system is up and running but partition the
system so that test data is not available to existing users. In the discussion sys-
tem example the test creates a new discussion group that is visible only to the
test agent and not to the existing users. The test agent posts messages to the lim-
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ited visibility discussion group and measurements of the effects of the test activ-
ity are shown as the incremental activity over the normal activity from the ex-
isting users.

Regardless of the test scenario chosen the tests will be run several times and require
configuration to the same state each time. Using a repeatable preparation and set-up tech-
nique improves the speed at which a test may be conducted and minimizes the risk that the
initial state during each test run varies, which usually creates a variance in the results. Figure
8-5 shows a technique for establishing state in a system to be tested.

Figure 8-5: A command protocol is shared between the preparation and set-up
stages to establish state prior to testing a stateful system.

In the discussion system example the set-up stage to configure the system for a test has
these possible commands:

• Reset the entire system
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• Delete a discussion group

• Start a new discussion group

• Create a top message

• Reply to a message

These form the basis of a simple command protocol that the set-up stage of the test
can process to prepare the system for a test.

In the discussion system example we assign command codes to each configuration
command:

Command Task

1 Reset the entire system
2 Delete a discussion group
3 Start a new discussion group
4 Create a top message
5 Reply to a message

With this command protocol we could configure a new discussion group by process-
ing the following instructions.

1, 3, 4, 5

These commands when processed one after the next configure the state of the system
to be tested.

The preparation and set-up technique offers a lot of flexibility in the source of the con-
figuration information. Figure 8-6 shows the technique reading from a file, database and
even a Web-enabled application as the source of the configuration instructions to establish
state in a system to be tested.
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Figure 8-6: The preparation stage of a test takes input from several sources, includ-
ing preparation instructions stored in file systems, database and even
Web-enabled applications and produces a command file that the set-up
stage uses.

In the next section we put the preparation and set-up technique into practice using in-
telligent test agents.

 PREPARATION AND SETUP AGENTS

 Next, we examine a TestMaker test agent that performs the preparation stage of co n-
figuring the example discussion system for a test. Following is the agent in its entirety and
an explanation of how it works. All of the code presented in this book is also available for
download at http://www.pushtotest.com/ptt/thebook.html.

# Prepare_setup_agent.a
# Author: fcohen@pushtotest.com
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print "Agent running: Prepare_Setup_agent.a"
print "Description:"
print " This is the first of two agents that"
print " demonstration how to automate a Web-enabled"
print "application test:"
print
print "  1) Prepare_setup_agent.a - creates a "
print "     delimited data file containing"
print "     instructions for the setup_agent.a "
print "     agent to follow."
print "  2) Setup_agent.a - issues commands to an"
print "     example ecollaboration"
print "     Web-enabled application to create the"
print "     needed state to run the test."
print

# Parameter settings

# The file to store the commands

filename = "d://agents//experimental//commands"

# The host to set-up

dest_url = "examples.pushtotest.com"
dest_params = "responder"

# Import tells TestMaker where to find TOOL objects

from com.pushtotest.tool.util import Lingo
import random
import sys

# A mini-function that writes the command to the file and
# handles exceptions. The file contains instructions for
# the setup_agent to follow. Setup_commands uses the
# following format:
# command-type, url, parameters, message_size

def write_a_command( file, command ):

    # The global command makes tells the function to use
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    # variables defined outside of this function. Otherwise
    # this function would define it's own dest_url variable
    # locally

    global dest_url, dest_params, tick

    thecommand = str( command ) + "," + dest_url + "," + \
    dest_params + "," + str( random.randrange(100,150) ) \
    + "\n"
    print "writing this command:",thecommand

    try:
        file.write( thecommand )
    except Exception, ex:
        print "Uh, oh:",ex
        print "Closing file and exiting."
        file.close()
        sys.exit

    tick += 1

# Main:
# Start by first creating a data file for the commands

fn = filename + ".db"
print "Building:", fn

# The w means write, which creates a new file, deleting
# any existing file with the same name. One could also
# use a for append, which appends entries to the end of
# an existing file. r opens an existing file to be read.

f1 = open( fn, "w")

tick = 0    # This will keep a count of the commands we
write
print

# Define the constants used to create the command file.
# A copy of these constants will be found in
# Setup_agent.a too.

new_thread = 0
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new_node = 1
pop = 2
reply = 3

# Write the configuration commands to initialize a new
# discussion group to a known state.

write_a_command( f1, new_thread )
write_a_command( f1, new_node )
write_a_command( f1, reply )
write_a_command( f1, pop )
write_a_command( f1, new_node )
write_a_command( f1, new_node )
write_a_command( f1, reply )
write_a_command( f1, reply )
write_a_command( f1, pop )
write_a_command( f1, pop )
write_a_command( f1, new_node )

print
print "Wrote", tick, "commands in total."
# Close the file

print
print "Closing the file."
f1.close()

# Run the Setup_agent.a and then return back to this agent

print
print "Running the Setup_agent.a agent."

execfile( "d://agents//thebook//chapter5-
setup//Setup_agent.a" )

print
print "Agent done."

The Prepare_Setup_Agent is the first of two agents that demonstrate how to automati-
cally configure a stateful system for a test. This agent creates a delimited format data file
containing instructions for Setup_agent to use to configure the discussion system.

Prepare_Setup_Agent begins by establishing a variable to define the path and file
name for the set-up agent's command file. This is the file where the Prepare_Setup_Agent
agent stores configuration commands.
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filename = "d://agents//experimental//commands"

Note in this example a Windows-style path and file is used. The agent could just as
easily used a Unix-style path such as:

filename = "/home/fcohen/commands"

The agent then imports the sys object that it will use later to exit the agent in case of
an error or exceptional state arises.

import sys

The write_a_command() function is a small utility function that writes a configuration
command to the file and handles file-related exceptions. The file contains instructions for
Setup_agent to follow and uses the following format: command-type, URL, parameters,
message_size. Comma characters separate the individual fields and each record ends with a
carriage return character.

def write_a_command( file, command ):

The global command tells the write_a_command() function to use the variables de-
fined outside of this function. Otherwise this function would define and use its own dest_url,
dest_params and tick variables locally.

    global dest_url, dest_params, tick

The write_a_command() function accepts a reference to an already open file handler
(file.) The next command builds a command and then writes it to the file.

    thecommand = str( command ) + "," + dest_url + "," +
dest_params + "," + str( random.randrange(100,150) ) + "\n"

The tick variable keeps track of a count of commands written to the file. Here we use
the shorthandle += to indicate the value of tick is replaced with the current value plus one.

    tick += 1

Next comes the main body of the agent. The agent opens the file using the 'w' option
to create a new file, including deleting any existing file with the same name. The agent
could also use the 'a' option for append, which appends entries to the end of an existing file.
The 'r' option opens an existing file to be read.

f1 = open( fn, "w")
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The Prepare_Setup_Agent agent defines a simple command protocol that the
Setup_agent will use to configure the discussion system. The agent defines constants to
identify commands that are added to the command file. A copy of these constants is in the
Setup_agent too. The constants implement test commands:

•  new_thread - Starts a new thread of discussion and posts the top-most message

•  new_node - Reply to the last message posted, this remembers the current mes-
sage location for a subsequent pop command

•  pop - replies to the message created with previous new_node command

•  reply - Replies to the last node posted

The Prepare_Setup_Agent creates a discussion group illustrated in Figure 8-7 by using
a combination of these commands.

Figure 8-7: The desired final state of a new discussion group is defined in the prepa-
ration configuration file.

The agent writes commands to the configuration command file to create the discussion
illustrated in Figure 8-7:

•  new_thread - creates 1

•  new_node - creates 2

•  reply - creates 3
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•  pop - moves back to 1

•  new_node - creates 4

•  new_node - creates 5

•  reply - creates 6

•  reply - creates 7

•  pop - moves back to 4

•  pop - moves back to 1

•  new_node - creates 8

The agent then closes the command file. Without closing the file the Setup_agent
would encounter a file input/output error when trying to open the command file.

f1.close()

Lastly the agent runs Setup_agent using the execfile command. execfile runs an agent
and returns back once Setup_agent finishes. execfile simplifies the task of writing a master
agent that runs agents.

execfile( "d://agents//thebook//chapter5- \
-setup//Setup_agent.a" )

Setup_agent

The previous section showed how the Prepare_Setup_Agent creates the commands file
that contains configuration commands to establish the correct state in the example discus-
sion system. Following is the Setup_agent in its entirety withan explanation of how it works.

# Setup_agent.a
# Created on: June 30, 2002
# Author: fcohen@pushtotest.com

print "Agent running: Setup_agent.a"
print "Description:"
print "  This the second of two agents that "
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print "  demonstration how to"
print "  automate a Web-enabled application test:"
print
print "  1) Prepare_setup_agent.a - creates a delimited"
print "     data file containing"
print "     instructions for the setup_agent.a agent"
print "     to follow."
print "  2) Setup_agent.a - issues commands to an"
print "     example ecollaboration Web-enabled application"
print "     to create the needed state to run the test."
print

# Parameter settings

# The file to store the commands

commandfilename = "d://agents//experimental//commands"

# The host to set-up

dest_url = "examples.pushtotest.com"
dest_params = "responder"

host = "examples.pushtotest.com"
port = 92
path = "axis/servlet/AxisServlet"
endpoint = host + ":" + str( port ) + "/" + path

# Import the sys object to use the exit() method for errors
import sys

# Post a message function
# input the parent_message number
#
# Note: This is just a simulation of a Web-enabled applica-
tion request.
#       Someday I may get around to coding a real service.

def post_message( msg_num, theindent, type, url, params ):
    print indent*'   ', type, msg_num, ":", url, params
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# Simple Stack implementation
# Used to keep track of nodes in the message hierarchy

def push( value ):
    global stack
    stack += [ value ]

def popone():
    global stack
    return stack.pop()

# Main:

# Let's start by first open the command data file

try:
    target =  commandfilename + ".db"
    print "Opening file: ", target
    print

    dbfile = open( target )

except IOError, e:
    print "Error while opening the file:"
    print e
    print
    sys.exit

# Define the constants used to create the command file.
# Prepare_setup.a uses the same constants when it builds
# the command file.

# Starts a new thread of discussion and posts
# the top-most message
new_thread = 0

# Reply to the last message posted, this remembers the
# current message location for a subseqnet pop command
new_node = 1

# pop replies to the message created with previous
# new_node command
pop = 2
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# Replies to the last node posted
reply = 3

# So if we wanted to create a message tree like this:
# top-message 1
#   reply 2
#     reply 3
#   reply 4
#     reply 5
#       reply 6
#       reply 7
#   reply 8

# we could use the following commands:
# new_thread - creates 1
# new_node - creates 2
# reply - creates 3
# pop - moves back to 1
# new_node - creates 4
# new_node - creates 5
# reply - creates 6
# reply - creates 7
# pop - moves back to 4
# pop - moves back to 1
# new_node - creates 8

# And that's just what Prepare_setup.a did to build the
# command.db file. So we will now loop through each record
# in the command.db file and process each command.

# Create the variables

tick = 0            # Counter for the number of commands
processed
next_message = 0    # Identifier for the next new message
indent = 0          # Used to figure out the indentation of
a reply
stack = []          # used to build the tree

# Process the commands

for line in dbfile.readlines():
    commands = line.split(",")
    command = commands[0]
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    handled = 0

    if int( command ) == new_thread:
        handled=1
        tick += 1
        node=post_message(next_message,indent, \

          "top-message",commands[1],commands[2])
        push( indent )
        next_message += 1
        indent += 1

    if int( command ) == new_node:
        handled=1
        tick += 1
        node=post_message(next_message,indent, \
       "node-reply",commands[1],commands[2])
        push( indent )
        next_message += 1
        indent += 1

    if int( command ) == reply:
        handled=1
        tick += 1
        node = post_message(next_message, indent, \
        "reply", commands[1], commands[2] )
        next_message += 1

    if int( command ) == pop:
        handled=1
        tick += 1
        indent = popone()

    if handled==0:
        print "Unknown command!"
        print line

# Cleaning up

print
print "Processed", tick, "commands in total."

print
print "Closing the file."
dbfile.close()



State, Design, and Testing 23

print
print "The collaborative Web-enabled application is correctly
set-up"
print "and ready to test."
print
print "Agent done."

The Setup_agent reads from the commands file and executes the commands one-at-a-
time. Setup_agent issues Web-enabled application requests to the example discussion sys-
tem to build a new discussion group that is populated with a tree of reply messages.

def post_message( msg_num, theindent, type, url, params ):

While the post_message() function does not actually send a request to a Web-enabled
application, it does print the message to the TestMaker output window, including printing
the correct indentation. The indent*'   ' command multiplies the string of four space charac-
ters by the indent variable value. If indent equals 2, then 8 space characters are output.

    print indent*'   ', type, msg_num, ":", url, params

The commands file created by the Prepare_Setup_Agent in the previous section con-
tains a list of commands. The commands file uses the push and pop commands to keep track
of when to conclude adding reply messages to a "branch" of replies. Figure 8-8 illustrates
the branch locations. For example, after writing Reply 7 the commands file issues pop
commands until we are back at the Top Message 1 and then it commands Setup_agent to
write Reply 8.

Figure 8-8: Reply messages 2, 4 and 8 are branches off the Top Message. While the
discussion group is being created the agent must remember the branch
locations to know how to handle commands to create new branches.
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The Setup_agent implements a simple push/pop stack to keep track of the branches in
the hierarchy of a discussion group. push() puts the current branch number onto a stack of
values, one value for each branch.

def push( value ):
    global stack
    stack += [ value ]

The popone() function pulls the most recently pushed branch number off of the top of
the stack.

def popone():
    global stack
    return stack.pop()

The push/pop stack may be applied to your other agents. To see the stack in operation
one could add the following commands to print the contents of the stack as items are pushed
and popped:

for stack_item in stack:
    print stack_item

The agent begins the main body of the commands by opening the commands file.

dbfile = open( target )

The default open command opens a file for read access.
The agent then duplicates the command constants originally defined in Pre-

pare_Setup_Agent. The agent loops through each record in the command.db file and proc-
esses each command. While the post_message() function does not actually send a request to
a Web-enabled application it does print the reply message with the correct indentation to the
screen.

The agent then creates variables used during command processing, including a counter
for the number of commands processed, an identifier for the next new message, and an inte-
ger value to track the indentation of the next reply message in the tree of reply messages.

Setup_agent processes each command in the commands file. The for command loops
through every line in the commands file.

for line in dbfile.readlines():

The agent creates a list variable called commands by reading a line from the com-
mands file and splitting it into a list of individual values by delimiting each value by a
comma character using the split function.

    commands = line.split(",")
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commands is a list so commands[0] refers to the first value found in the current line of
the commands file. In the discussion system example the first time through this loop com-
mands[0] contains a new_thread command.

The agent handles commands and takes action accordingly. When handling a
new_thread command, the agent indicates the command has been handled, bumps up the
number of handled commands, posts the message using the post_message() function, pushes
the indentation value onto the stack using the push() function, then bumps up the number of
messages and the indentation value.

    if int( command ) == new_thread:
        handled=1
        tick += 1
        node=post_message(next_message,indent, \
        "top-message",commands[1],commands[2])
        push( indent )
        next_message += 1
        indent += 1

The handled variable is a simple flag that the agent uses to make sure every command
is recognized and executed. If handled is still 0 at the end of the next block of code then an
error is thrown.

    if handled==0:
        print "Unknown command!"
        print line

The Preapare_Setup_Agent automatically runs the Setup_agent using the execfile
command. When execfile is used Setup_agent exits back to Prepare_Setup_Agent then exe-
cution continues after the execfile command.

USING DATABASES TO CONFIGURE TESTS

Earlier in this chapter we learned how the preparation stage of a test formats configu-
ration instructions into a command file. The configuration instructions may be manually
coded into a preparation test agent, retrieved from a file or database. This section shows how
an intelligent test agent that was built in TestMaker interacts with relational database sys-
tems.

TestMaker provides a rich environment for building intelligent test agents but at its
heart TestMaker is just another application written in Java. The Java language provides da-
tabase connectivity through the Java DataBase Connectivity (JDBC) application program-
ming interface (API.) JDBC drivers are available for most commercial and open source
database, including Oracle, Microsoft SQL Server, and PostgreSQL.
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Following is a test agent that demonstrates how to use JDBC functions from within a
test agent environment.

# DB_meister.a
# Created on: July 3, 2002
# Author: fcohen@pushtotest.com

print "Agent running: DB_meister.a"
print "Description:"
print "  Shows how an agent may use a relational "
print "  database to receive or record data."
print
print "  NOTE: THIS AGENT DOES NOT ACTUALLY RUN since "
print "  there is no relational database source"
print "  available and this agent print depends on "
print "  a JDBC driver that you must supply."
print

# Please configure this agent and then remove the
# sys.exit command

print
print "Stopping agent: Please configure this agent to your"
print "own JDBC driver and relational database source."
print
sys.exit

# Import tells TestMaker where to find TOOL, JDBC objects
import sys
from java.sql import DriverManager

# JDBC Driver information

# Note: You must provide these parameters to
# use your provided JDBC driver. You must also add the JDBC
# driver code to the TestMaker classpath. Set the classpath
# by changing the testmaker/testmaker/bin/ide.cfg file.

JDBCDriverClassName = "com.ashna.jturbo.driver.Driver"
jdbcURL = "jdbc:JTurbo://myrelationaldatabase:1410:MSSQL"
jdbcUserID = "myuserid"
jdbcPassword = "thepassword"
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# Load the JDBC driver

try:
    java.lang.Class.forName( JDBCDriverClassName )
    myConn = DriverManager.getConnection( jdbcURL,
jdbcUserID, jdbcPassword )
except:
    print
    print "Could not load JDBC driver: ", \
    JDBCDriverClassName
    sys.exit

# Show example of reading from a relational database

print
print "==================================================="
print "Information from the Customers table:"

# Customer count

query1 = "select count(*) from Customers"

try:
statement = myConn.createStatement()
results = statement.executeQuery( query1 )
results.next()

except Exception, ex:
print "Exception while counting customers: ",ex
sys.exit

print
print "  Customer count: ", results.int

# Customer list

query2 = "select customer_number, last_name, "
query2 += "salutation, city, year"
query2 += " from table"
query2 += " order by last_name"

try:
statement2 = myConn.createStatement()
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r2 = statement.executeQuery( query2 )
except Exception, ex:

print "Exception while getting customer list: ",ex
sys.exit

print
print "  Complete customer list (sorted by last name):"

while results2.next():
print " ",r2.getString,r2.getString,r2.getString, \

    r2.getString(4),r2.getString(5)

#---------------------------------------------------
# Inserting data into a table

insert1 = "insert into customers files (id, name,"
insert1 += "manager, phone) "
insert1 += "VALUES (1001, 'Simpson', 'Mr.', "
insert1 += "'Springfield', 2001)"

try:
i1 = myConn.createStatement();
ir1 = s2.executeQuery( insert1 );

except Exception, ex:
print "Exception while inserting a record: ",ex

print
print "Agent ended."

Let us look at the agent script’s individual sections to learn what the script does to
communicate with a relational database. Unlike most of the other test agents presented in
this book, the DB_meister agent does not actually run since at the time of writing this book
there is no publicly available relational database source for the agent to connect. Check the
http://examples.pushtotest.com Web site to see if an example database source is now avail-
able.

sys.exit

By default then this agent starts and then exits. To run this agent, please configure the
agent to connect to an available database and then remove the sys.exit command.

The import command tells TestMaker where to find the standard Java libraries that
implement an interface to the JDBC driver.

from java.sql import DriverManager
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A JDBC driver implements all the code needed to communicate with a specific type of
database and an interface that conforms to the JDBC specification published by Sun for the
Java platform. Database providers and third-party driver manufacturers provide JDBC driv-
ers. A driver is packaged as a Java Archive Resource (JAR) file. Adding the driver JAR file
to the TestMaker classpath is required to give test agents access to the driver's functions. For
instructions on adding resources to the classpath, see the TestMaker documentation for.

The test agent sets four basic parameters to tell the JDBC driver where and how to
connect to the database. JDBCDriverClassName points to the driver object in a Java name-
space defined by the driver manufacturer. The jdbcURL parameter describes which JDBC
driver to use (JTurbo), the URL to the database and the database name (ORCL.)

JDBCDriverClassName = "com.ashna.jturbo.driver.Driver"
jdbcURL = "jdbc:JTurbo://myrelationaldatabase:1527:ORCL"

Driver and database manufacturers define the format to the JDBCDriverClassName
and jdbcURL parameters. Here is a short list of common JDBC drivers and their parameters:

For IBM DB2 (http://www.ibm.com) the agents use:

JDBCDriverClassName = "COM.ibm.db2.jdbc.net.DB2Driver"
jdbcURL = "jdbc:db2://myrelationaldatabase.com/test"

For Oracle (http://www.oracle.com) agents use:

JDBCDriverClassName = "oracle.jdbc.driver.OracleDriver"
jdbcURL =
"jdbc:oracle:thin:@myrelationaldatabase.com:1527:ORCL

JTurbo is a JDBC driver for MS SQL server (http://www.newatlanta.com/index.jsp)

JDBCDriverClassName = "com.ashna.jturbo.driver.Driver"
jdbcURL = "jdbc:JTurbo://myrelationaldatabase.com:1433/ \
dbhost/sql70=true"

JDBC drivers use Java's class loader functions to find and access a driver's functions.
Note that the agent code uses the try/except format so as to trap an error that may happen
when the driver loads. Possible errors include Java not finding the driver, the driver not be-
ing able to connect to the database or the wrong configuration information.

try:
    java.lang.Class.forName( JDBCDriverClassName )
    myConn = DriverManager.getConnection( jdbcURL, \
    jdbcUserID, jdbcPassword )
except:
    print
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    print "Could not load driver: ", JDBCDriverClassName
    sys.exit

Now that the driver is loaded the agent shows a few Structured Query Language
(SQL) functions to retrieve data from the Customers table in the database. The Customers
table has these fields and descriptions.

•  customer_number long

•  last_name char(50)

•  salutation char(10)

•  city char(50)

•  year char(10)

The first query counts the number of customers in the Customers table using a SQL
select statement.

query1 = "select count(*) from Customers"

Executing the query requires a connection object and statement object. The agent uses
the try/except format to catch errors the happen while processing the database function.

try:
statement = myConn.createStatement()
results = statement.executeQuery( query1 )
results.next()

except Exception, ex:
print "Exception while counting customers: ",ex
sys.exit

The query result is returned in the results object. Using the next() method retrieves the
first row of the database results. In this case there is only a single row which is formatted
and printed to the TestMaker output window.

print "  Customer count: ", results.int

The second query demonstrates a more complex database command
that returns more than one row of results. The query2 += "" format
builds the query statement from multiple parts.
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query2 = "select customer_number, last_name, "
query2 += "salutation, city, year"
query2 += " from table"
query2 += " order by last_name"

The agent makes a connection to the database and returns the results2 object that holds
the response from the database. The while command loops through all the rows in the re-
sponse.

while results2.next():
print " ",r2.getString,r2.getString,r2.getString, \

    r2.getString(4),r2.getString(5)

The third example shows how the agent inserts new rows into the Customers table.
The set-up for the database command is the same as the previous two queries.

insert1 = "insert into customers files (id, name, "
insert1 += "manager, phone) "
insert1 += "VALUES (1001, 'Simpson', 'Mr.', "
insert1 += "'Springfield', 2001)"

To make the query the agent builds a new connection object and uses the execute-
Query command to process the insert command.

try:
i1 = myConn.createStatement();
ir1 = s2.executeQuery( insert1 );

except Exception, ex:
print "Exception while inserting a record: ",ex

The TestMaker script language provides access to all of JDBC's many methods. Con-
sult your driver documentation for examples of additional JDBC functions.

USING LINGO TO MAKE TEST CONTENT CLOSE TO REAL

In the discussion system example presented earlier in this chapter the Setup_agent cre-
ates a new discussion group by posting messages and reply messages. Experience shows us
that when the message content is uniform the underlying systems (Web-enabled application
servers, database servers, network routers and load balancers) try to use optimization tech-
nology to enhance the performance of the system. Rarely, if every, in the real world would
we find a discussion where every message contained the same content. Therefore, Test-
Maker includes a handy Lingo utility to automatically generate pseudo-English-like content
for message subject lines and message bodies.
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For example, suppose the test agent needed to create a new message. The Lingo utility
object creates this paragraph:

Lipsem it quantos surbatton ditchek surbatton deplorem ven-
tes so surbatton quantos infreteres ipsem aqua sit ventes.
Campus ad surbatton ad infreteres ad novus surbatton de-
plorem it delorum novus. Campus quantos ditchek quantos.
Via surbatton novus surbatton. Novato quantos ditchek de-
plorem novus ditchek ventes.

The important thing is that Lingo creates a different paragraph each time it is called
which defeats the system's attempt to optimize performance while running tests where the
message content is always the same.

Following is a test agent in its entirety that demonstrates Lingo's many uses. An ex-
planation of the Lingo functions follows the agent.

# Lingo_meister.a
# Author: fcohen@pushtotest.com

 # Import tells TestMaker where to find TOOL objects
from com.pushtotest.tool.util import Lingo

print
print "==================================================="
print "Technique 1: A simple message example"

myLingo = Lingo()

print "Subject:",myLingo.getSubject( 4 )
print "Message:"
print myLingo.getMessage()
print "-end of message-"

print
print "==================================================="
print "Technique 2: URL encoded message example"
print
print "If we needed to include a message in an HTTP POST"
print "command the message would need to be URL encoded."
print "Here is a Lingo message that is URL encoded:"
print
print myLingo.getMessageEncoded( 100 )

print
print "==================================================="
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print "Technique 3: A complete Lingo letter"
print
print "Here is an example business memo using several"
print "Lingo methods."
print

print "Dear Mr.",myLingo.getSingleCap(),":"
print
print "We have found the manuscript you were searching"
print "for and it includes the following excerpt:"
print

# Next we use a special version of getMessage
# to include a starting capital letter, ending period
# and encoding. The format is:
# getMessage(int size, boolean startCap,
# boolean endPeriod, boolean encoded)

print myLingo.getMessage(15, 1, 1, 0)

print
print "As you can see we are not certain what dialect the"
print "text is written in. Please do your best to let us"
print "know what it means."
print
print "Sincerely,"
print
print myLingo.getSingleCap()

print
print "==================================================="
print "Technique 4: Making your own Lingo language"
print
print "Here is an the same example business memo from"
print "technique 3 but using French words to form the"
print "Lingo gibberish."
print

caps = [ "Francois", "Sanjournais", "Berjerack", "Mon", \
"La", "Le", "Incroyable! " ]
tokens = [ "devrait","ouvrir","le","cortËge,","entourÈ", \
"d'une","bonne","partie","de","ses","adjoints","et","des",\
"dÈputÈs","parisiens","de","gauche.","les","Ècologistes", \
"seront","fortement","reprÈsentÈs","la","droite","elle,\
","ne","dÈpÍchera","que","les","quelques","membres",\
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"d'on","est" ]

frenchLingo = Lingo( caps, tokens )

print "Dear Mr.",frenchLingo.getSingleCap(),":"
print
print "We have found the manuscript you were searching"
print "for and it includes the following excerpt:"
print

# Next we use a special version of getMessage which
# has options to include a starting capital letter,
# ending period and encoding. The format is:
# getMessage(int size, boolean startCap,
# boolean endPeriod, boolean encoded)

print frenchLingo.getMessage(15, 1, 1, 0)

print
print "As you can see we are not certain what dialect the"
print "text is written in. Please do your best to let us"
print "know what it means."
print
print "Sincerely,"
print
print frenchLingo.getSingleCap()

print
print "Agent done."

Lingo_meister is a simple agent to show the capabilities of the Lingo object provided
in TestMaker's Test Object Oriented Library (TOOL.) Lingo provides an English-like gib-
berish that is well suited to be the content of a posted message. Lingo objects are created by
using an import command to identify the Lingo object to the Jython script language.

from com.pushtotest.tool.util import Lingo

The Lingo object is instantiated and then used by accessing its many methods.

myLingo = Lingo()

The getSubject() function returns a string of gibberish words with a carriage return
character terminating the string. The optional value in getSubject() identifies how many gib-
berish words to include in the result.

print "Subject:",myLingo.getSubject( 4 )
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The getMessage() function returns a random amount of paragraphs of gibberish words.
Each paragraph is terminated with two carriage return characters.

print myLingo.getMessage()

When working in HTTP/HTML environments a request to a host must often be URL
encoded. In URL encoding characters such a < and > would invalidate the HTML code so
they are encoded into &lt; and &gt; codes that the host will decode. The getMessageEn-
coded() function returns a URL encoded group of paragraphs of gibberish.

 print myLingo.getMessageEncoded( 100 )

The third example in Lingo_meister shows how a Lingo object may be used within
print commands to generate a sample memorandum letter.

print "Dear Mr.",myLingo.getSingleCap(),":"

The getSingleCap() method returns a single gibberish word that is capitalized. The
body of the memo uses a special version of the getMessage() function that features  options
to include a starting capital letter, ending period and encoding. The format for the special
method is:

 getMessage(int size, boolean startCap, boolean endPeriod,\
 boolean encoded)

The last technique in Lingo_meister shows how an agent can define its own dictionary
of gibberish words. Lingo requires a list of capitalized words and lower-case words. These
are passed to Lingo when the agent instantiates a new Lingo object.

frenchLingo = Lingo( caps, tokens )

Now, Lingo chooses gibberish words from the new list of capital and lower-case
words.

 SUMMARY

This chapter discussed system state, including the repeatable lifecycle that defines the
preparation, set-up, execution and analysis stages of a test. This chapter showed TestMaker
test agent script examples that use the resources of a database system to initialize the state of
a system prior to testing.

The next chapter shows how to use intelligent test agents in Microsoft .NET environ-
ments and in secure environments.
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C H A P T E R  9

Integrating with .NET Web Services

M icrosoft delivers a broad and comprehensive solution for enterprises needing to
build, deploy and run Internet-based Web services. Microsoft’s support of many popular
open Internet protocols even lets them offer technology to interoperate with non-Windows
systems. Microsoft built its enterprise solution on Windows NT and XP technologies over
time. Before the arrival of .NET the Microsoft acronym for all its enterprise solutions tech-
nologies was DNA, which stands for Distributed iNternet Architecture. So what is .NET?

.NET is a product strategy that overhauls and elevates the Microsoft development en-
vironment and tools to a new level of sophistication, ease-of-use and interoperability over
previous Microsoft development tools. .NET is Microsoft’s way to add a new Common
Language Runtime (CLR) to its object-oriented development tools and to add XML tech-
nology to everything Microsoft does.

Microsoft is working with the European Computer Manufacturers Association to put
forward open standards for CLR (TG3) and the C# language (TG2.) The ECMA Web site
hosts working documents on these efforts: http://www.ecma-international.org/. Additional
information is at http://www.dotnetexperts.com/ecma/index.html and at
http://msdn.microsoft.com/net/ecma/.

.NET defines the Microsoft Intermediate Language (IL) code and CLR is the IL run-
time virtual machine environment that provides memory management, automatic garbage
collection, security and threading. CLR enables Microsoft development tools to support a
variety of object-oriented languages, including C, C++, VB.NET, C#, and J#. The single
CLR runtime can run components built in any of these languages that can output IL. So the
Microsoft development tools work with all those languages. Following is an example C#
and C++ program written in Microsoft Visual Studio .NET that features a mixture of pro-
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gramming languages. Visual Studio .NET compiles this program into a single unit that CLR
runs1.

# We begin with a method defined using C# . . .
class Vector
{
   /// <summary>
   /// Compute the length of the vector
   /// </summary>
   public double Length
   {
      get
      {
         return(Math.Sqrt(x * x + y * y));
      }
   }
}
# . . . then add some C++ code to the mix . . .
unsafe static int AddArrayUnsafe(int[] numbers)
{
   int result = 0;
   for (int it = 0; it < Iterations; it++)
   {
      fixed (int* pNumber = numbers)
      {
         int* pCurrent = pNumber;
         int* pLimit = pNumber + numbers.Length;
         while (pCurrent < pLimit)
         {
            result += *pCurrent;
            pCurrent++;
         }
      }
   }
return result;
}

The example code shows NET's mechanism to manage C++ pointers in the otherwise
memory-managed safe environment of C#. The same mechanism works in other CLR com-
patible languages.

In many ways .NET is Microsoft's best effort yet to use XML. XML enables Microsoft
development tools to offer standardized configuration, description and deployment defini-
tions. For example, while Microsoft BizTalk Server, SQL Server, and Exchange Server still
                                                            
1 A pretty good introduction to .NET is on the Microsoft Web site at
http://www.microsoft.com/net/basics/whatis.asp.
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use the Windows Registry, they also now use XML for configuration and management fea-
tures. Microsoft product strategies build XML into all its technology by coding configura-
tion information in XML formats stored in files and databases. XML becomes the Microsoft
common language for all its application programming interfaces (APIs) too. In effect, it is
not unreasonable for software developers to expect any Microsoft API to be available as a
SOAP-based XML interface that adheres to a WSDL description.

.NET benefits IT managers, software developers and QA analysts:

•  With the emphasis on XML, configuration and management files become more
open and more standardized. Third-party system management solutions such as
HP’s OpenView and IBM Tivoli should more easily and rapidly support Micro-
soft servers.

•  QA analysts will find testing .NET applications easier than prior Microsoft built
applications since the APIs to these applications self-describe valid data.

Microsoft's adoption of XML and delivery of a single runtime engine enables in-
creased productivity and efficiency as developers, IT managers and QA analysts deliver
products built with Microsoft development tools. Of course, like all new technologies, the
.NET products come with problems and issues that need to be understood and tested.

INTEROPERABILITY AND INTEGRATION

The good news for Java developers working with systems built with .NET is that there
have been no major train wrecks. For the most part, systems built with .NET offer good
interoperability with Java-based systems. The bigger problem for Java developers is usually
integration.

Consider an example where a product supply company offers a Web Service to take
purchase orders. The service receives SOAP encoded orders.

<order_request>
  <name>DemandLine Purchasing, Inc.</name>
  <product>123456</product>
  <price>$59.95</price>
</order_request>

Figure 9-1 shows how a Java application uses the purchase service written with .NET.
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Figure 9-1 The Java placeOrder function makes a SOAP request to the TakeOrder
method of the published Web Service.

Visual Studio .NET makes it easy to write and expose this service. The popular Java
development tools available make it easy to write the placeOrder method to make the Web
Service call. Consider that this example has 3 integration problems:

1. The Java client function uses a floating-point double variable to hold the
price. while the .NET function uses a String.

2. Neither the Java client, nor the .NET service, explicitly know the currency
expressed in the price element. For example, the Java client may send a price
expressed in US Dollars while the .NET Web Service expects Euros.

3. Java uses a naming convention where method names that begin with a capital
letter normally are usually reserved for operating system calls. On the other
hand, .NET's convention is to use capital letters to define all method names.
This isn't a show-stopper like the other 2 problems, but it may raise some
eyebrows between Java and .NET developers.

These are not really interoperability issues as much as they are the systems integration
issues that we typically have to deal with everyday.

NET's support of XML and SOAP offers a solution to problems 1 and 2. By using
XML schemas the .NET Web Service provides data typing for the request method. The
XML Schema below defines the price element to be a String type.

<xs:schema xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="order_request">
     <xs:complexType>
        <xs:sequence>
           <xs:element name="name" type="xs:string"/>
           <xs:element name="product" type="xs:int"/>
           <xs:element name="price" type="xs:string"/>
        </xs:sequence>
     </xs:complexType>
  </xs:element>
</xs:schema>
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.NET languages use a common set of tools to publish Web Services so you can expect
to find a WSDL document that accompanies the service. In this example, the Java developer
need to implement a request that conforms to the schema. This likely means modifing the
client-side code to express prices as Strings in the request and to decode back into a floating-
point double value the response.

See Chapter 7 for additional SOAP related problems you will likely encounter, in-
cluding data type interoperability, adherance to standards, and underlying platform differ-
ences. More discussion of .NET's use of WSDL comes later in this chapter.

HOW IS .NET DIFFERENT?

By their nature, the development tools we use enforce a certain thinking that winds up
in the software applications. For example, Visual Studio .NET automatically generates C#
code to access a given Web Service using document-style SOAP requests by default. Devel-
opers that rely solely on automated development tools risk building interoperability prob-
lems into their systems without knowing where to look when problems happen.

Document-style SOAP turns out to be a shrewd architectural decision as we will see
later. However, from a testing perspective, if your .NET web service uses document-style
SOAP encoding (the default in ASP.NET,) there may be interoperability problems with
other SOAP clients who only speak RPC-encoded SOAP.

Chapter 7 shows the various styles of SOAP requests and responses. The two most
popular styles are Remote Procedure Call (RPC) and Document. Most development envi-
ronments include utilities that examine method declarations in source code files that define
an object. Then they automatically build the needed code to offer the object’s methods as
Web Services. The local object makes a call to a specific method and object running on a
remote server and passes parameters defined in the method declaration. For example, the
following C# code is automatically deployed as a SOAP-based Web Service:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace myService
{
        public class myService: Sys-
tem.Web.Services.WebService
        {
                public HelloService()
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                {
                  //CODEGEN: This call is required by
                  //the ASP.NET Web Services Designer
                        InitializeComponent();
                }

                [WebMethod]
                public string greetingService
                (String strMyName)
                {
                   return “Hello, “ + name +”, \
                   and welcome to my service.”;
                }

                [WebMethod]
                public string SayGoodBye()
                {
                        return "Goodbye!";
                }
        }
}

This code is exposed as a Web Service that has a single greetingService request inter-
face. The SOAP call receives a String as a parameter and responds with a String in its return
value.

RPC-style SOAP requests are very attractive to developers because the Web Service
tools that generate SOAP interfaces and WSDL descriptions do a lot of heavy lifting for the
developer. For example, the following method returns a complex data type.

public class myComplexService{
  public Hashmap greetingService( firstname name ) {
        Hashmap ht = new Hashmap();
        ht.put( "Event", name );
        ht.put( "Keycode", keycode );
        ht.put( "PcAssemblyNumber", pcassembly );
        ht.put( "SoftwareDottedString", dottedsw );
        ht.put( "CurrentTime", new Date() );
        ht.put( "CommandKey", "7" );
        return ht;

In an RPC-style SOAP request, the developer may depend on a development tool to
build the SOAP request code to handle marshalling a Hashmap object into XML that is sent
in a SOAP request to the server. This code would also make use of custom serializers that
would convert objects like the Hashmap into XML.

Document-style SOAP requests begin with the XML document already defined. In-
stead of depending on the development tool, document-style SOAP requests are built by
populating an XML tree in the application code itself.
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public class myComplexService{
  public void callGreetingService( firstname name ) {
        body = new SOAPBody();
        body.addElement ( "Event", name );
        body.addElement ( "Keycode", keycode );
        body.addElement ( "PcAssemblyNumber", pcassembly );
        body.addElement ( "SoftwareDottedString",dottedsw);
        body.addElement ( "CurrentTime", new Date() );
        body.addElement ( "CommandKey", "" );
        . . .
        SOAPRequest.send( body );

.NET is a document-style environment. By default .NET development tools create
document-style SOAP requests. While .NET tools provide a switch to use SOAP RPC calls
there is very little support in .NET for RPC. If an application makes a SOAP RPC call to a
.NET Web Service that expects a document-style request, then .NET returns a fault - the
Web Service equivalent of throwing an exception.

Microsoft’s choice for document-style SOAP puts a bend in the direction most devel-
opers were headed. Many Web Services developers come from the component software
worlds that are dominated by Corba, RMI, and COM. SOAP RPC is a natural bridge from
component software architectures to Web Services. On the other hand, business-to-business
(B2B) exchange infrastructure has been XML based from the start so document-style SOAP
is a natural there.

To see a vivid example of the divergence between Web Service developers in the
J2EE and .NET camps take a look at the list of publicly available Web Services published
on XMethods.net. This list cleaves in two: SOAP RPC Web Services are written in Java and
document-style Web Services are written in .NET.

One last thing to consider in both RPC and document-style SOAP calls is that the
SOAP standard does not cover more complicated data elements than arrays and structures.
In the previous example we would find that Microsoft has its own encoding for Hashmaps
that do not interoperate with the other Web Service platforms. The developer is left to en-
code arrays of arrays as well.

We have seen the stylistic differences between SOAP RPC and document-style SOAP.
Under the covers and in the implementations of SOAP lie scalability and performance issues
that come with decisions to use RPC and document-style SOAP.

 Document-style Scalability

Regardless of the SOAP call style, each SOAP message goes through the same stages
of creation. The creation process begins with a value stored in an object. When the value is
passed to a Web Service, the object is translated into a Document Object Model element and
stored in memory. When the request is marshaled to be sent to the Web Service host, the
Elements are rounded up and serialized into strings in XML format. The final step then
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gathers the XML formatted strings and sends the combined group over a transport to the
Web Service host. Figure 9-2 illustrates this process.

Figure 9-2: SOAP requests start with data in an object, converts the object into a
DOM Element, and serializes the Element into an XML string. Then, they
combine the strings and send them across a transport to the Web Service
host.

The steps depicted in Figure 9-1 show four possible places where scalability and per-
formance problems can be introduced. The Object to Element transformation might run into
problems inherent in the way that CLR represents data. The Object->Element transition
could introduce problems since the performance of many XML parsers is not sufficient. The
serializers for the XML to UTF-8 transition can be susceptible to bugs and performance is-
sues. Many other problems lower system scalability and performance.

In tests of Web Service application servers the early systems turned out to have sig-
nificant scalability and performance problems, especially when comparing SOAP RPC to
document-style SOAP. The results of these tests conclude the following:

• Document-style SOAP operations outperform SOAP RPC.

• SOAP RPC displays significant scalability problems as the payload size of a re-
quest and response increases

Compare the transactions-per-second (TPS) results from one popular application
server:

Payload size in
bytes

RPC Document

600 168 410
3000 145 399
9000 100 404
2400 49 411
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Payload size in
bytes

RPC Document

57000 18 401
96000 10 406

The test measured the round-trip time it took to make a request and receive a response
as measured at the client side. To run this test in your environment this test code and many
others are available for free download at http://www.pushtotest.com/ptt/kits/index.html..

Note that in every case the TPS values for SOAP RPC transactions were slower than
document-style calls. Additionally, while the document-style TPS values remained steady
even under the weight of increasing payload sizes, the SOAP RPC TPS values declined sig-
nificantly.

These tests do not conclude that architecturally document-style SOAP is any better
than SOAP RPC, or vice versa. However, they do show that the SOAP implementations
tested have serious limitations and flaws. As new and better implementations become avail-
able a scalability and performance test of the new SOAP stacks is needed to understand how
the performance characteristics change.

SOAP Headers in .NET

In the formative time of Web Services Microsoft was the first to strongly support
XML Schema, WSDL and SOAP Headers. Other Web Service platforms were less con-
vinced. So to a developer on WebSphere, Apache SOAP and BEA WebLogic the XML
Schema in WSDL documents and the contents of SOAP headers in Microsoft built Web
Services may appear odd.  SOAP was originally introduced in Chapter 4 with an explanation
of common SOAP values and formats. This section shows how Microsoft puts its own touch
on SOAP headers.

Before we explore how .NET uses the SOAP header, you may want to review the spe-
cifics of the SOAP Header element. The SOAP 1.1 Specification (found at
http://www.w3.org/2000/xp/Group/) and the SOAP 1.2 Working Draft indicate that a SOAP
message has three possible elements: the top level Envelope element and two child elements
(Header and Body.) Following is an example of a SOAP message with all three elements:

<soap:Envelope
  xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <soap:Header>
    <PriorityHeader
      xmlns="http://msdn.microsoft.com/AYS/6/2002/">
      <Priority>HighPriority</Priority>
    </PriorityHeader>
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  </soap:Header>
  <soap:Body>
    <PlaceOrder
      xmlns="http://msdn.microsoft.com/AYS/6/2002/">
      <quantity>100</quantity>
    </PlaceOrder>
  </soap:Body>
</soap:Envelope>

The Body element holds the main data of the request and the Header holds any meta-
data about the Body element. The Header is optional but it is well used in .NET applications.
As time progresses new standards for Web Services will make significant use of the Header,
including upcoming standards for security, credentials, routing and referrals. .NET just hap-
pens to be a little ahead of the Header usage curve.

The SOAP specification defines three optional attributes that can apply to header
blocks: the encodingStyle attribute, the actor attribute, and the mustUnderstand attribute.
While encodingStyle is meant to be optional .NET servers and the SunONE Application
Server expect the encodingStyle attribute to be present.

SOAP is going through the same evoluationary transformation as servlets and other
middleware have. While a single stand-alone object would respond to Web Service requests,
the new architecture implements several smaller objects that each handle a single facet of a
Web Service request and are strung together in a string of handlers. The SOAP header ele-
ments are processed by individual .NET programs as the SOAP message moves through a
chain of handlers.

The SOAP message is already defined to be in well-formed XML format so unlike the
headers in an HTTP request the SOAP headers do not need to describe the data in the SOAP
message. SOAP headers, especially in .NET, help process the data in the body. For example,
in a banking environment a SOAP header transmits authentication and transaction informa-
tion that identifies the person who sent the SOAP message and the context it will be proc-
essed. Another example is an airline reservation service where the SOAP header defines a
timelimit on the validity of airfares sent in the SOAP message.

While the SOAP specification provides for any valid XML data to be included as a
SOAP header Microsoft really levers SOAP header values. So it would be safe to assume
that in .NET Web Services that SOAP headers will play a role at improving or eroding scal-
ability and performance.

 Many times the SOAP headers in an application are particular to that single applic a-
tion. However, in .NET there are cases where headers will need to be processed for all Web
Services. For example, consider a sign-in service that is common to all Web Service re-
quests handled by a single server. For this reason .NET provides a common library called
Soap Extensions. The objects you register get called before and after the serialization of a
SOAP message going in and out. While this is a convenient method for .NET developers to
register handlers it also tends to introduce performance bottlenecks and scalability problems.
In other platforms, you need to look at serializers for performance problems; in addition, in
.NET you also needs to look at the Soap Extensions that are handling Web Service requests
and responses.
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A side effect of the .NET Soap Extensions mechanism occurs when .NET uses WSDL
to define the SOAP headers. .NET developers likely do not want to make the Soap Exten-
sions deployment information available through the published WSDL for security reasons.
So, some .NET developers will omit the header definition from the WSDL and manually
add the header to their requests. Others turn off WSDL generation and manually edit a static
WSDL file to include the header information. These techniques are a good place to check
configuration problems and should be tested and monitored routinely.

SOAP headers could turn out to be a nightmare for testing Web Services. In the worst
case, SOAP headers could be the dumping grounds for anything and everything related to a
Web Service. Building intelligent test agents that understand and validate SOAP headers is
an important part of testing and monitoring Web Services.

WSDL .NET Style

Chapter 7 described the Web Services Description Language (WSDL) as an XML-
based document format that describes the services a Web Service provides so tools can ac-
cess and use them.. The WSDL for a service describes the location of the service; the names
of the available services; their method names, parameters, and types; and return values. Mi-
crosoft’s ringing endorsement of WSDL as the standard comes through loud and strong in
the .NET development tools - they all use WSDL to describe a SOAP interface to XML
data.

Microsoft has two additional efforts underway to describe SOAP interfaces: the Web
Services Meta Language (WSML) and the Web Services Discovery Tool (Disco.) WSML is
another XML-based document format used by some Web Service tools—Microsoft SOAP
Toolkit for one—which provides mappings between the Web Service methods and their
parameters and the underlying code object, such as a COM component, that provides the
service.

Disco is an XML document format that contains entries pointing to WSDL resources
describing available Web Services. Disco gives IT managers a way to centralize the listing
of multiple Web Service providers. With Disco everything goes into a single document that
tools can use to select the desired Web Service and obtain a reference to it.

As testers we need to be recognize when platform vendors try to stretch, strain or even
bully a standard through their implementation. WSML and Disco are examples of this kind
of behavior at work. Even if their effort does not become part of the standard, Microsoft
extensions to the standard will become part of a your test plan for .NET-based Web Serv-
ices. Consider how Microsoft made its mark in the style it uses to write WSDL descriptions
of .NET services.

To illustrate the differences found in a .NET WSDL description of a Web Service,
consider a real-world live hosted .NET Web Service from Service Objects Inc, found on the
Web at http://www.serviceobjects.com. Service Objects provides several services used by
Web sites and portals to provided personalization and content of interest to a site’s readers.
The example below focuses on the GeoCash service. GeoCash takes a US Postal Zip code



Integrating with .NET Web Services 13

and returns a list of Automatic Teller Machines (ATMs) near the Zip code. Service Objects
sells this service to people with Web Sites, corporate portals and application vendors.

The WSDL full  definition for the GeoCash service, go to
http://ws.serviceobjects.net/gc/GeoCash.asmx?WSDL. The first time I looked at a WSDL
document my eyes went buggy, my brain filled with confusion and I found myself trying to
make sense of it all. It took about 6 months to be able to look through WSDL and see a Web
Service. Let us look at various pieces of this WSDL document to find the GeoCash service.

Our first clear indication that this is a .NET Web Services comes in the last section.

  <binding name="GeoCashSoap" type="s0:GeoCashSoap">
    <soap:binding transport =
   "http://schemas.xmlsoap.org/soap/http"
   style="document" />
    <operation name="GetATMLocations">
      <soap:operation soapAction =
      "http://www.serviceobjects.com/GetATMLocations"
      style="document" />
      <input>
        <soap:body use="literal" />
      </input>
      <output>
        <soap:body use="literal" />
      </output>
    </operation>
  </binding>

Here we see that the GeoCashSoap binding defines a document-style SOAP request
and response that use literal encoding. Literal encoding tells the SOAP stack to take the
body of the SOAP request and response as an already formatted document object model
(DOM) tree and serialize it all at once into XML.

Another indication that .NET created this WSDL document is the <types> branch.

  <types>
    <s:schema elementFormDefault="qualified"
    targetNamespace="http://www.serviceobjects.com/">
      <s:element name="GetATMLocations">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="0" maxOccurs="1"
            name="strInput" type="s:string" />
            <s:element minOccurs="0" maxOccurs="1"
            name="strLicenseKey" type="s:string" />
          </s:sequence>
        </s:complexType>
      </s:element>
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. .NET uses XMLSchema to define type information for the parameters of a request
and response. The types element show the valid parameters allowed to make requests of the
service. In this example, the request takes two String values for the Zip Code and a License
Key. We get the License Key from Service Objects directly.

The next group of type definitions defines a hierarchy of complex data types that
comes in the response document. The response document contains a single GetATMLoca-
tionsResult element . . .

      <s:element name="GetATMLocationsResponse">
        <s:complexType>
          <s:sequence>
            <s:element minOccurs="0" maxOccurs="1"
            name="GetATMLocationsResult"
            type="s0:ATMLocations" />
          </s:sequence>
        </s:complexType>
      </s:element>

. . . that has a single ATMLocations element . . .

      <s:complexType name="ATMLocations">
        <s:sequence>
          <s:element minOccurs="0" maxOccurs="unbounded"
          name="ATM" type="s0:ATM" />
          <s:element minOccurs="0" maxOccurs="1"
          name="Error" type="s:string" />
        </s:sequence>
      </s:complexType>

. . . that contains a series of ATM elements. Each ATM element contains information
about a single bank, including the address, location, and notes about the ATM machine.

One very handy feature of .NET created Web Services is a friendly HTML front end
to describe and access a Web Service. Even with the WSDL description to the GeoCash
service, many times it is handy to have an HTML description of the service. For an example
of the GeoCash HTML description, go to:

http://ws.serviceobjects.net/gc/GeoCash.asmx?op=GetATMLocations

A TEST AGENT FOR .NET ENVIRONMENTS

Next we will see a TestMaker test agent that makes a document-style .NET Web
Service request to the GeoCash service. Many of the values in this agent were found in the
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WSDL document for the GeoCash service that was presented in the previous section of this
chapter. Following is the agent in its entirety, and an explanation of how it works.

# GeoCash_agent.a
# Author: fcohen@pushtotest.com

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPHeader, SOAPBody, SOAPProtocol
from com.pushtotest.tool.response import Response

# This agent also uses JDOM APIs to handle XML data
from org.jdom import Document, Element, JDOMException,\
Namespace, DocType
from org.jdom.output import DOMOutputter, XMLOutputter
from org.jdom.input import SAXBuilder
from java.io import StringReader

# Variables definitions

zipcode = "95008"

license = "0"

host = "ws.serviceobjects.net"
port = 80
path = "gc/GeoCash.asmx"

# Helper function to build a request XML document

def addElement( top, name, content, ns ):
    newelement = Element( name, ns )
    newelement.addContent( content )
    top.addContent( newelement )

# Main body of agent

print "Processing..."
print

# Set-up a SOAPProtocol object and populate it with the
# info to make a request to the GeoCash service
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soap = ProtocolHandler.getProtocol("soap")

soap.setHost( host )
soap.setPath( path )
soap.setPort( port )

body = ProtocolHandler.getBody("soap")

body.setMethod("GetATMLocations")

soap.setActionURI(
"http://www.serviceobjects.com/GetATMLocations" )

# Build the request XML document

xmlns1 = "http://www.serviceobjects.com/"

# Create the request document by first creating
# the Respond element ...
elOne = Element( "GetATMLocations", xmlns1 )

# ... add the input elements ...
addElement( elOne, "strInput", zipcode, xmlns1 )
addElement( elOne, "strLicenseKey", license, xmlns1 )

# ... then tell the SOAPProtocol handler about the request
document.
doc = Document( elOne )
body.setDocument( doc )

# Finally, attach the body object to the soap protocol han-
dler object
soap.setBody(body)

print "Here is the XML request document:"
xo = XMLOutputter()
print xo.outputString( doc )
print

# Send the request to the .NET host and receive the re-
sponse

response = soap.connect()



Integrating with .NET Web Services 17

# Parse through the responses

print "Here is the raw response:"
print response
print

builder = SAXBuilder()
doc = builder.build( StringReader( response.toString() ) )

print "Here are the elements in the response:"
print

envelopeElement = doc.getRootElement()

# Document-style SOAP responses will use the
# document-literal type of namespace for the Body element
soap_ns = Namespace.getNamespace \
("soap", "http://schemas.xmlsoap.org/soap/envelope/")

bodyElement = envelopeElement.getChild("Body", soap_ns)

# The entries in the body use the Service Objects namespace
# which also tells us which .NET service responded
so_ns = Namespace.getNamespace( "",
"http://www.serviceobjects.com/")

atmlocrespElement = bodyElement.getChild( \
"GetATMLocationsResponse", so_ns )
print "atmlocrespElement=",atmlocrespElement

atmlocresultElement = atmlocrespElement.getChild( \
"GetATMLocationsResult", so_ns )
print "atmlocresultElement=",atmlocresultElement

# Notice that GetATM
atmlist = atmlocresultElement.getChildren( "ATM", so_ns )
print "atmlist=",atmlist
print

for i in atmlist:
    print "  ",i.getName()
    print "  ",i.getChildText("Bank", so_ns)
    print "  ",i.getChildText("Address", so_ns)
    print "  ",i.getChildText("Location", so_ns)
    print "  ",i.getChildText("City", so_ns), \
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    i.getChildText("State", so_ns), i.getChildText("Zip",\
    so_ns)
    print "   Longitude:",i.getChildText("Longitude", \
    so_ns)," Latitude:",i.getChildText("Latitude", so_ns)
    print "  ",i.getChildText("Notes", so_ns)
    print

# All done

print
print "Agent ended."

TestMaker runs this agent. The agent connects to the Service Objects host and re-
quests the ATM locations for Campbell, California. The response should contain 10 ATM
machines in various locations in Campbell. Lets look at the following to see how this agent
works:

from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPHeader, SOAPBody, SOAPProtocol
from com.pushtotest.tool.response import Response

First we import the SOAPProtocol handling objects from the TestMaker Test Object
Oriented Library (TOOL.)

from org.jdom import Document, Element, JDOMException,\
Namespace, DocType
from org.jdom.output import DOMOutputter, XMLOutputter
from org.jdom.input import SAXBuilder
from java.io import StringReader

We also import the JDOM objects to construct and parse the XML data. JDOM is a
simple interface to manipulate XML data.

zipcode = "95008"
license = "0"

These variables define the US postal zipcode and license number to send to the Web
Service host. Service Objects provides licenses to control services to paying customers. In
support of this book, Service Objects was nice enough to provide a special license number
for the test agent presented in this chapter. Please do not abuse this privilege by reusing the
license number or creating excessive requests to the Service Objects host.
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host = "ws.serviceobjects.net"
port = 80
path = "gc/GeoCash.asmx"

These variables define the destination server and location of the Web Service. We
learned these values from the WSDL definition in the previous section of this chapter.

def addElement( top, name, content, ns ):
    newelement = Element( name, ns )
    newelement.addContent( content )
    top.addContent( newelement )

addElement is a helper function that takes the Document Object Model (DOM) ele-
ment and appends a new child element. This is just a convenience function to make the sub-
sequent addElement() commands more legible.

soap = ProtocolHandler.getProtocol("soap")
body = ProtocolHandler.getBody("soap")

The Test Object Oriented Library (TOOL) in TestMaker provides a SOAPProtocol
handler object and SOAPBody object. We use these to construct the request document and
to communicate with the host.

body.setMethod("GetATMLocations")
soap.setActionURI( \
"http://www.serviceobjects.com/GetATMLocations" )

The WSDL document tells us to use the GetATMLocations method to request a list of
10 ATM locations for a given Zip code.

xmlns1 = http://www.serviceobjects.com/

This references the Namespace of the parameters in the request. In document-style
SOAP requests TestMaker uses the Namespace of the first element <Respond> to determine
the destination service name. The endpoint gets the request to the right server. The Name-
space of the first element gets us to the right Web Service.

The WSDL told us that GeoCash wants a zipcode and license element. The agent uses
the JDOM APIs to build the XML request in a DOM object.

elOne = Element( "GetATMLocations", xmlns1 )
addElement( elOne, "strInput", zipcode, xmlns1 )
addElement( elOne, "strLicenseKey", license, xmlns1 )

Here the agent adds the two request elements using the addElement convenience
method.
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doc = Document( elOne )
body.setDocument( doc )
soap.setBody(body)

The agent then passes the DOM object doc to the SOAPBody object to make the
SOAP call to the server.

response = soap.connect()

"Houston, this agent is ready for lift-off." The connect() method sends the request to
the Service Objects host and returns a response object. The response object is in XML for-
mat. The agent uses JDOM APIs to look into the response document to find and validate the
ATM location data.

builder = SAXBuilder()
doc = builder.build( StringReader( response.toString() ) )

Use the JDOM SAXBuilder object to create a new DOM object that parses through
the XML data we received from the .NET host. Recall that the WSDL
(http://ws.serviceobjects.net/gc/GeoCash.asmx?WSDL") for the response document tells us
to expect the response XML to look like this:

Envelope
   Body
     GetATMLocationsResponse
       GetAMTLocationsResult
         ATM
         ATM
         ...

Look at how the agent uses JDOM APIs to parse through the response document con-
tents.

envelopeElement = doc.getRootElement()

First, we find the root element. By convention every SOAP response document names
the root element to Envelope.

soap_ns = Namespace.getNamespace("soap", \
"http://schemas.xmlsoap.org/soap/envelope/")

The agent creates a Namespace object that is used to retrieve the Body element. The
Body of the SOAP response is encoded in document-literal style as defined by the XML
schema definition at http://schemas.xmlsoap.org/soap/envelope/.
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bodyElement = envelopeElement.getChild("Body", soap_ns)

Here we get the Body element using the document-literal style namespace.

so_ns = Namespace.getNamespace( "", \
"http://www.serviceobjects.com/")

The agent creates a second Namespace object to retrieve response elements emitted by
the Service Objects host.

atmlocrespElement = bodyElement.getChild( "GetATMLocations-
Response", so_ns )
atmlocresultElement = atmlocrespElement.getChild( \
"GetATMLocationsResult", so_ns )

The agent jumps down two nested children elements for GetATMLocationsResponse
and GetATMLocationsResult.

atmlist = atmlocresultElement.getChildren( "ATM", so_ns )

We are now down to the GetATMLocationsResult element whose children elements
are a list of ATM elements, one ATM element holds the information on one teller machine.

for i in atmlist:
    print "  ",i.getName()
    print "  ",i.getChildText("Bank", so_ns)

The agent uses a convenient for / in statement to loop through all the children ele-
ments. Each time through the loop the i variable points to the next ATM element.

This agent is just a start, a skeleton and it is paper-thin. An expanded agent makes
multiple requests of various sizes and delays, operates multiple concurrent threads of the
request script to increase the load on the server, runs multiple copies of the multi-threaded
agent on multiple machines and adds simple logging functions to the agents so we may de-
termine transactions-per-second (TPS) and scalability-and-performance-index (SPI) values.
Chapters 11 and 12 provide detailed examples of building a complete testing system using
intelligent test agents.

NEAR TERM CONSIDERATIONS

For a long time to come, .NET will be the new kid on the block. As such, there are a
few near term considerations to keep in mind when designing and testing Web-enabled ap-
plications that work with .NET.
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First, consider that solving interoperability problems is different from platform to plat-
form. When a developer faces interoperability problems in Java platforms, the underlying
code is usually available to find and solve the problem. Microsoft development tools, appli-
cations, and operating systems are closed to such public scrutiny.

Considering the closed-source origins of Microsoft, I find it impressive to see Micro-
soft taking its first steps towards an open code review. Microsoft now offers a "shared
source" concept where the source code to their tools is available under a special license.
Details on this are found at http://www.microsoft.com/licensing/sharedsource/default.asp
a n d  h t t p : / / m s d n . m i c r o s o f t . c o m / l i b r a r y / d e f a u l t . a s p ? u r l = / l i b r a r y / e n -
us/Dndotnet/html/mssharsourcecli.asp. Some Microsoft libraries even offer a public view of
their source code. For example, the native C++ ATL implementation of SOAP – this one
does not run on the CLR – is available on the Microsoft Web site.

Interoperability between computer systems, software applications, and operating sys-
tems is more art than science. Interoperability gets better the more it is practiced. So, it fol-
lows that .NET interoperability will improve over time provided Microsoft continues to
improve .NET. Microsoft regularly participates in SOAPBuilders, a loose affiliation of Web
Service vendors whose goal is to proof interoperability. SOAPBuilders also publishes an
interoperability test suite for checking SOAP implementations. You can access this suite at
http://www.xmethods.com/ilab/ and http://www.whitemesa.com/interop.htm.

Lastly, consider that the Windows development community is undergoing a significant
change. Visual Basic developers are moving from a script oriented language to an object
oriented programming language like C#. Learning object programming is usually a difficult
and long task and will have an impact on testing Web-enabled applications. As an example,
I participated in one of Microsoft’s early day long conferences to show .NET development
tools to a group of Visual Basic developers. One presentation showed how .NET develop-
ment tools allow programs written in C# to include the script-oriented Visual Basic com-
mands to be inserted into a block of code wrapped with unsafe tags. One VB developer
remarked to me afterwards that the only thing about C# that he understood was the Visual
Basic code between the unsafe tags.

Microsoft is betting that it can convince script-oriented developers to learn object-
oriented programming by showing how .NET development tools will make them more pro-
ductive. Visual Basic developers who make the jump to VB.NET will benefit from the
world of Web Services now available to their code. For example, instead of writing a secu-
rity manager the VB.NET developer can use Passport.

VB.NET software written by newbie object oriented developers often includes the
following problems that may be detected in a test:

•  Functions that spawn many threads. Script languages usually handle thread-
ing for the developer. So thread deadlocks, concurrency problems and race con-
ditions are easily accomplished with object oriented programming.

•  Method declareations with complex data types. Method declarations in object
oriented programs have the advantage of using complex data types – for exam-
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ple, a customer record containing numbers, dates and purchase history – that
may cause overly complicated SOAP requests.

•  Exception handling in boundary conditions. Object-oriented programs follow
a stack of calls from one object to another. Unwinding a stack when an excep-
tion is thrown  is often problematic for the novice.

SUMMARY

In this chapter we learned how Microsoft's adoption of XML and delivery of a single
runtime engine has elevated Microsoft development tools to new levels of flexibility, pro-
ductivity, and efficiency. The chapter covered several issues specific to testing Web Serv-
ices built in .NET.

Over time it will be exciting to see how Microsoft’s Command Language Reference
(CLR) engine handles production environments. Really large .NET scalability is full of un-
knowns today. Consider that .NET sits on top of Windows XP - itself new technology - and
on top of hardware with little history of high volume situations.

Additionally it will be exciting to see how the open-source community helps .NET to
become a cross-platform platform. Efforts like Go-Mono are building an open-source im-
plementation of the .NET development framework. Details are at: http://www.go-
mono.com.
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C H A P T E R  1 0

Building and Testing Intranets
and Secure Environments

Previous chapters showed techniques to test Web-enabled applications using a vari-
ety of connection protocols. The techniques assumed open and free connectivity from the
test machine to the host. Prior to the terrorist attacks of September 11, 2001 the computer
industry was doing well delivering inexpensive routing and firewall devices that both pro-
tected network resources and provided network managers with load balancing and fail over
functions. Additionally, digial certificates, public key encryption, Public Key Infrastructure
(PKI) and application security were generally improving and gradually being adopted. The
terrorist attacks, Anthrax scares, suspicions of world-wide conspiracies and a new global
activism give security a whole new level of priority among software developers, QA techni-
cians, IT managers, and users. Testing Web-enabled applications in secure environments
requires an understanding of security infrastructure’s effect on tests and techniques for test-
ing secure Web-enabled applications.

GETTING A HEAD START

This chapter is not an all-encompassing treatise on security in Web-enabled applica-
tions. It cannot be so because security technology is too fast moving in today's environmnet.
Rather, this chapter intends to give the developer, QA technician, and IT manager a head
start on testing in secure environments by presenting practical tips and techniques for testing
Web-enabled applications in secure environments.
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In my experience security infrastructure least impacts system scalability, performance,
and functionality. Few tests really push the limits of firewalls and routing devices because
the tests often find other scalability and performance bottlenecks first. While conducting
functional testing most security infrastructure technology will work again and again once it
works the first time. And in general the network-level security devices (firewalls and
routers) have the most bandwidth and capacity of all the components that serve the system.

Unfortunately while security infrastructure protects us from hackers and terrorists, se-
curity infrastructure has a dark and brooding side too. While a tester’s motto is “trust after
verification,” the security expert’s motto is “trust no one.” This permeates into the security
software and devices themselves. Friendly graphical interfaces are anathema in the security
world.

In my experience configuration and set-up of secure infrastructures prior to conducting
a test becomes the single most time consuming part of the overall test. With rare exception
the devices and software found in security infrastructure offers complicated, elaborate and
non-standard configuration protocols. It is enough to make one gray and bald – which in my
case came early in my career.

This chapter presents testing issues where network routing, virtual private networks
and network segmentation must be navigated to achieve meaningful test results. Then, we
explore transport-level security that uses Secure Sockets Layer (SSL) and HTTP basic
authentication protocols. This book provides pointers to emerging security standards, in-
cluding SAML, WS-Security and XML Signature. For additional reading materials on how
TestMaker supports these higher-level security standards, see the PushToTest Web site.

 Security By Routing

To understand network-layer security, I show how a network manager’s choices for
TCP/IP connectivity and routing have changed over the years. Figure 10-1 shows the most
basic Web environment where a Web client connects over a public TCP/IP network directly
to a computer running Web Server software. In this configuration any device on the Internet
may open a socket to the host. The Internet began with this as the dominant configuration
but it didn’t take long before this configuration proved problematic.

Fig. 10-1: Basic network connections for open Web sites put the client in direct con-
nection to the server.

In the mid-1990’s most Internet network traffic was concentrated in the hands of a few
backbone providers. When a backbone provider made a router configuration mistake the
story became headline news. Broken routing tables could misdirect all the traffic on a net-
work to a single open server and make the Web applications hosted on the server inaccessi-
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ble. Very quickly network operators and Internet service providers began using routers that
offered flexible policies to control access. For example, one popular router policy prevents
multiple incoming ping requests from a single source to protect from denial of service at-
tacks. Today network managers implement hundreds of routing policies as part of an overall
plan to secure network traffic. When beginning to test a Web-enabled application system
experience shows that a conversation with the network manager is a wise choice to avoid
problems later on.

Another big change from the early days of the Internet involves using Network Ad-
dress Translation (NAT) and Dynamic Host Control Protocol (DHCP.) Figure 10-2 shows a
network environment where the client connects to the Internet through a NAT/DHCP router.
The DHCP service assigns the client machine a valid TCP/IP address. When the client
makes a request using the TCP/IP address the router translates the IP address into a publicly
accessible Internet address and makes the request as a proxy to the client.

Fig. 10-2: Routers that provide Network Address Translation and firewall functions
also provide a form of security that protects the client machine from being
hacked.

NAT was highly controversial in the early days of the Internet because it made net-
work management more difficult. For example, if a network manager tried to ping the client
from the server the response to the ping came from the NAT router and not the client. To-
day, NAT is hugely wide spread. For example, 2Wire manufacturers is a popular home DSL
modem/router that includes a NAT and DHCP server that is sold by the major ISPs.

Firewalls, NAT service and router devices are oriented to solve routing problems at
the network layer; However, they have a direct impact on security because they make IP
address-based security very difficult. As a consequence, many efforts to implemente security
in Web-enabled applications has moved up to the application layer.

Virtual Private Networks

A Virtual Private Network (VPN) is a way of tunneling traffic from one network
(typically a company internal network) over another network (often the Internet) so that it
appears that you are connected to the company network directly. To protect the content of
the data that moves through the VPN, most VPNs use digial certificates for authentication
and encryption technology to protect the tunneled data.

Figure 10-3 shows an example of the communication from client to server using VPN
technology.
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Fig 10-3: Software at the client and server devices to encrypt data communicated
over a Web infrastructure forms a Virtual Private Network (VPN.)

Initially VPNs were built by running security software on the client machine and
server. Later VPN appliances – small router like devices – began to appear that provided the
VPN encryption and authentication functions but did not sap the client or server machine's
bandwidth. Today VPN software comes in many flavors and varieties, including VPN soft-
ware that runs on the client machine, in a dedicated VPN device, and as part of a firewall
and router.

Unfortunately each type of VPN system usually does not have a programmatic inter-
face for a test agent to configure the VPN for its own use. For example, I ran into problems
while testing an XML-RPC single-sign-on service that connected an intelligent test agent to
a server running on a private secure corporate network. In this setting an XML-RPC request
originated from outside of the network and required a VPN authorization key stored in the
corporate database. In this example, the solution was to retrieve a small cache of key codes
using a batch script that creates a delimited data file. The test agent looked into the data file
to get the needed key as the test progressed.

VPNs scalability and performance is often overlooked with the expectation that the
application server or database server will be the largest performance and scalability bottle-
neck. While that may be the case, using intelligent test agents help you to learn just how
much performance overhead is built into the VPN devices, software, and implementations.
Experience shows us the surprising value of testing a system with and without a VPN to
learn the VPN's performance overhead and scalability limitations.

Network Segments & Subnets

Network managers seeking an additional level of security have put parts of a system
onto separate networks that are unreachable from one another. Figure 4 shows a popular
server-side architecture that uses a Web server, application server and database server to
meet user demands. Each server is put onto a physically isolated network by installing mul-
tiple network interface cards (NICs) into each machine. Even if someone were to hack into
the Web Server the Application Server is on a different physical network and would prove to
be another equally difficult challenge to hack into.
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Fig. 10-4: Focusing on the server side of a secure Web environment the Web, Ap-
plication and Database servers are often put on separate network seg-
ments to disable direct access from outside the local area network.

Of course the network segments introduced in Figure 10-4 create problems for con-
ducting tests. Imagine running a functionality test that results in faults at the Application
Server stage of a request. The intelligent test agent does not have direct connectivity to the
Application server since they are on separate networks. One possible solution is to put intel-
ligent test agents on each network segment to act as service monitors. In such a system the
intelligent agent sits on the Application Server network segment. Another solution is to run
the test agents on a single machine that contains multiple NICs – one network interface per
network segment – for multihoming.

The following describes a network design for scalability that uses a load balancer and
several identical hosts to handle incoming requests as the Flapjacks architecture. Figure 10-5
shows the Flapjacks architecture in a secure environment where VPN technology is used
upstream of the load balancer.

Fig. 10-5: Load balancers are dynamic routers that assign and manage affinity from
user machines to a host for the duration of a user session.

Several load balancers also support VPN and SSL technology to make it possible to
offload VPN demands on CPU bandwidth to the dedicated load balancer device. Being able
to multihome is important in a Flapjacks architecture. Without multihoming all the traffic
generated from an intelligent test agent would be routed by the load balancer to a single
Web host. Unfortunately, this may not provide meaningful test results.

Load balancing often deserves its own handlers. For example, I provided testing serv-
ices to a customer using a load balancer to share the load among a dozen application servers
for an XML-RPC based system. Their application software was only moderately reliable.
Consequently the network manager would cycle each application server every night. The
network manager would wait for all current sessions on an application server to end before
cycling the server. A healthy proportion of users were making requests from behind a NAT
router. The load balancer mistakenly considered all requests from the users behind the NAT
router as sharing the same session. To the network manager the server appeared to never
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finish serving the session. Switching the load balancer to use cookie-based session manage-
ment provided accurate session management even with traffic coming from a NAT router.

So far this chapter has concentrated on network and user-level security in local and
wide area networks. Next we look at transport-level security.

Transport Security

As businesses rushed to integrate Web-based applications into their information sys-
tems, they made transport layer security a requirement for Web infrastructure. The Secure
Sockets Layer (SSL) protocol is the most widely used and unofficial standard for securing
the information exchange between applications and end users.

The specifications for SOAP and HTTP purposefully do not describe mechanisms for
securing requests and responses. Into the SOAP security vacuum several security technolo-
gies and strategies emerge, including HTTP over SSL connections, SOAP over SSL con-
nections, .NET Passport authentication and HTTP basic authentication. In the Web Services,
security needs are met WS-Security and SAML.

HTTP over SSL Connections

SSL is the cornerstone of information security technology for most of the businesses
in the world today. SSL provides these features when used in business applications:

• Authenticates that the server is who it says it is.

• Keep private any communication between applications and users.

Additionally, with a little more effort the digial certificates SSL use may also be used
to prove that transmitted data has not been tampered with and prove the identity of the user
to the server.

SSL uses digital keys to accomplish these goals. The keys are often based on very
large prime numbers - as in the case of RSA and Verisign. SSL uses two keys:

•  Private key that only you have access to

•  Public key, which can be accessed by anyone

The private and public keys work together. For example, with RSA keys a message
encrypted with a private key can only be unscrambled with the public key. The longer the
key the more difficult it becomes for someone to hack into the key.

In the real world we prove our identity by carrying credentials – driver’s license, credit
cards, and passports – and have fairly unique handwritten signatures. Our own personal keys
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act as a signature in the digital world of SSL. To digitally sign a document, a hash is made
of the document and then signed with the user's private key. To verify the signature of the
document later, you run a second hash on the document and make sure it matches the origi-
nal hash.

In the 1990s the computer industry supported the X.509 recommendation to define a
standard for digital certificates. X.509 is actually an International Telecommunication Union
(ITU) recommendation, which means that has not yet been officially defined or approved.
As a result, companies have implemented the standard in different ways. For example, both
Netscape and Microsoft use X.509 certificates to implement SSL in their Web servers and
browsers. But an X.509 Certificate generated by Netscape might not be readable by Micro-
soft products,  and vice versa. For details on the ITU, go to
http://www.itu.int/home/index.html. Using X.509 certificates in the TestMaker framework is
further described later in this chapter.

So who verifies the keys? That is up to a digital certificate authority. A user generates
a private key, and after verifying the user's identity, the certificate authority signs the user's
public key with its own private key. The combination of the user's public key and the signa-
ture of the certificate authority completes the digital certificate.

Imagine that the user wants to send a confidential email. The user encrypts the mes-
sage with the help of the recipient's public key, which is stored in the recipient's certificate.
The recipient uses his or her own private key to decrypt the message. Since the recipient is
the only one with access to the private key, only he or she can decrypt the message.

The same SSL system works in Web Service environments. When using a browser to
buy products on-line public key digital signing technology provides security and authentica-
tion services in an HTTP/HTML environment. Figure 10-6 describes the SSL interaction
between client and server.
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Fig. 10-6: Making an HTTP request over a SSL connection begins a process by
which the client and server exchange digital certificates to authenticate each other.
Then, they use the same certificates to encrypt the data.

In an example of SSL in an ecommerce scenario, consider a user that needs to order a
product securely over an Internet connection. The browser opens a connection to the Web
host and requests the server's digital identity. The server responds with a copy of the public
key of its server certificate that contains its public key. The browser verifies the key and
sends a session key that is valid only during the current session. The server stores the key
and uses the key to decode subsequent requests.

TestMaker supports  SSL authentication and encryption in its protocol handler objects
for HTTP, HTTPS and SOAP protocols. Here is an agent showing how to make a request to
a Web host using the HTTPS protocol – which uses SSL encryption:

# HTTPS_Connect.a
# Author: fcohen@pushtotest.com

print "Agent running: HTTPS_Connect.a"
print "Description:"
print "  Connect to a Web host using an SSL connection."
print

from com.pushtotest.tool.protocolhandler import \
HTTPProtocol
from com.pushtotest.tool.response import Response

# Create an HTTP object to communicate with the host
# over an SSL encrypted connection
protocol = HTTPProtocol()
protocol.setScheme( "https" )

# Tell it where the host and document are located
protocol.setHost("citibusinessonline.da-us.citibank.com")
protocol.setPath("basprod/citiiwt/BAbuscde.html")

# Get the document
response = protocol.connect()

print "Received this response from the secure host:"
print response.toString()

print "Timing values for this request:"
print "Total: " + Long(response.getTotalTime()).toString()
print "Data : " + Long(response.getDataTime()).toString()
print "Setup: " + Long(response.getSetupTime()).toString()



10 The Java Design and Test Automation Guide  Chap. 10

print "Agent complete."

The HTTPS_Connect agent connects to the sign-in screen of Citibank's online portal.
The agent makes a simple HTTP GET request for the sign-in page, displays, and response,
and the time it took to perform the GET operation and then exits.

from com.pushtotest.tool.protocolhandler \
import HTTPProtocol

The import statement tells TestMaker that the agent will be using the basic HTTPPro-
tocol object.  For details on the HTTPProtocol object and its many functions, see Chapter 3.

protocol = HTTPProtocol()
protocol.setScheme( "https" )

The httphandler variable now points to a new HTTPProtocol object. This object han-
dles all communication with the HTTP/HTML Web-enabled application.  The proto-
col.setScheme() method tells the HTTPProtocol object to secure the request to the host using
the HTTPS protocol that uses SSL digital certificates. TestMaker uses the Java Secure
Sockets Extension (JSEE) library in Java 1.4 to provide the HTTPS protocol. Details on
JSSE are at http://java.sun.com/products/jsse/index-14.html.

protocol.setHost("citibusinessonline.da-us.citibank.com")
protocol.setPath("basprod/citiiwt/BAbuscde.html")

The setHost() and setPath() methods tell the HTTPProtocol where to find the host and
document.

response = protocol.connect()

The connect() method tells the HTTPProtocol object to make the request to the host.
The HTTPProtocol object returns a new response object containing the HTTP response from
the host.

Since this connection is being made over a connection secured using SSL you may
notice that it takes quite a bit longer than the non-secure HTTP request.

print response.toString()

This prints the response object to the TestMaker output window.
The HTTPS_Connect agent gives a very simple example of interacting with a Web

host over a SSL connection. We will see later that SOAP-based Web-enabled application
requests and responses may be made using SSL too. First, we investigate the problems SSL
potentially adds to a Web-enabled application environment.
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What Usually Goes Wrong in SSL Systems

SSL is widely implemented as a software-based solution. In this implementation, the
server negotiates the SSL connections with clients and performs encryption and decryption
at the software level. The SSL handshake, in which the client and the secure server negotiate
the choice of algorithm and keys, is an extremely processor-intensive operation. Running the
HTTP_connect test agent in the previous section demonstrates the overhead of a secure con-
nection. At some point the server runs out of resources (CPU bandwidth, memory or net-
work bandwidth) when performing the handshake to run the secure application. Network
managers often overcome this limitation by adding more powerful servers.

Another way of going is to add an individual SSL accelerator card to the server. Expe-
rience shows that while SSL traffic does not significantly affect overall network traffic it
does tax the servers that process network traffic. Adding an SSL accelerator card to each
server offloads the SSL work to the coprocessor on the card and enables the Web application
on the server to respond in normal time.

In a Flapjacks environment, network managers find that the extra expense of adding
SSL accelerator cards to every server can become overwhelming. Each server handling en-
crypted content requires an SSL accelerator card and a digital certificate. To obtain a digital
certificate for each server from a certificate authority (CA), administrators must create a
public key-private key pair and a Certificate Signing Request (CSR), and then submit these
items to a CA. This process must be repeated for every server in production. Digital certifi-
cates are valid for a limited time only, and administrators must renew each certificate each
time it expires.

Not only is the management of these SSL-enabled servers time-intensive, it is also
costly. Technological advances have reduced the cost of SSL accelerator cards, but they are
still expensive. And each time a certificate expires, it must be repurchased from the certifi-
cate authority. These expenses significantly increase the total cost of procuring and manag-
ing the SSL-enabled servers. As a result, while testing Web-enabled applications, especially
Web-enabled applications, in secure environments the test will usually turn up one or two
expired certificates. While it is possible to continue testing using temporary certificates, the
results may not be meaningful.

Like any security technology, digital signatures used in the SSL model are fallible. If
the certificate authority's root key is stolen, then anyone can create digital certificates, which
compromises the trust level of the certificate authority and makes all the certificates from
that certificate authority null and void. Certificate authorities go to great lengths to keep
their keys secure, including armored bunkers. Additionally, if the user loses his private key
or if its stolen, then anyone possessing the private key can assume the user’s identity.

Unfortunately in today’s business environment SSL is not universally used. But, it is
becoming more accepted. Languages, platforms and certificate authorities now all support
SSL and work hard at reducing the all the complexity behind keys, hashes and digital cer-
tificates.



12 The Java Design and Test Automation Guide  Chap. 10

SOAP Over SSL

The SOAP specification purposefully avoids describing mechanisms for securing re-
quests and responses. The early SOAP-based Web-enabled applications use SSL to encrypt
the SOAP request and response documents. Later in this chapter we will see why SSL is not
very well suited to secure SOAP-based Web-enabled applications. But for now we will
show how to use SSL in a SOAP environment.

SOAP implementations run on top of application server and Web server technology. It
should be no surprise then that the SOAP requests may be made over SSL encrypted con-
nections. The TestMaker framework builds intelligent test agents that can communicate with
Web-enabled application hosts using SOAP protocols over SSL using the techniques shown
in the following test agent script:

# Import tells TestMaker where to find Tool objects
from com.pushtotest.tool.protocolhandler import \
ProtocolHandler, SOAPProtocol, SOAPBody, SOAPHeader

from com.pushtotest.tool.response import Response
from java.lang import Long

# Set the default values defining the location of the host
host = "examples.pushtotest.com"
port = 92
path = "axis/servlet/AxisServlet"
endpoint = host + ":" + str( port ) + "/" + path

# Create a SOAP object to communicate with the host
protocol = ProtocolHandler.getProtocol("soap")

# over an SSL encrypted connection
protocol.setScheme( "https" )

body = SOAPBody()
protocol.setBody(body)

# Set the endpoint values
protocol.setHost( host )
protocol.setPath( path )
protocol.setPort( port )

body.setTarget( "responder_rpc" )
body.setMethod( "Respond" )

body.addParameter( "wordcount", Long, 150, None )
body.addParameter( "delay", Long, 100, None )
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print "Sending request to server..."
response = protocol.connect()

print "Here is the response:"
print response

print
print "Agent done."

With the exception of the setScheme() method this is the same agent presented in ear-
lier chapters. The setScheme() method tells the SOAPProtocol object referenced by the
protocol variable to use an SSL connection to communicate with the host.

.NET Passport Authentication

Microsoft .NET Passport is a single-sign-in system that enables developers to defer
their user authentication to .NET Passport servers. (Chapter 9 introduces the Microsoft .NET
framework for building Web-enabled applications.) To provide this service Microsoft uses a
combination of keys and configuration files that ensure user identity.

Early .NET applications used SSL encryption to secure SOAP requests and responses
between the application and Passport servers. Later in this chapter we will see why SSL is
not very well suited to secure .NET-based Web-enabled applications. For now we will give
a brief overview of the security technology Passport provides.

From the standpoint of a Web site implementing .NET Passport single sign-in, .NET
Passport Manager is the main service interface. Passport Manager has traditionally been a
Microsoft COM server that could be used from Active Server Pages (ASP.) However, the
.NET Framework implements most of the same functionality in managed code via the Pass-
portIdentity class.

During authentication, .NET Passport Manager is responsible for providing a link to
the .NET Passport servers with all appropriate data in the query string so that the .NET
Passport servers can perform the appropriate validation and return the user to the suggested
site. .NET Passport Manager uses a combination of input parameters, registry settings, and
data stored on the .NET Passport servers about your site to give the .NET Passport servers
the information they need to perform the authentication with the requirements of the site.
When authentication is established, the user browser redirects to the site and cookies are set
to hold the user's .NET Passport ticket and profile information for subsequent requests. For
details on Passport, go to: http://msdn.microsoft.com/webservices/ and
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/MSDN-
FILES/027/001/644/msdncompositedoc.xml&frame=true.
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HTTP Basic Authentication

The HTTP protocol defines a basic authentication method that provides very simple
security to protect the results of an HTTP request. In an HTTP/HTML environment – as
described in Chapter 3 – a Web host optionally requires the HTTP header to contain user id
and password entries to submit the request.

If the HTTP headers are missing, then the server responds with a 401 Unauthorized er-
ror code. Rather than display the 401 Unauthorized error code, most browsers display an
alert that asks the users to type in their id and password. The browser then submits the same
request plus the additional HTTP headers containing the id and password.

TestMaker supports HTTP basic authentication in its HTTPProtocolHandler object. In
the following excerpt of an intelligent test agent implemented in TestMaker, the
http.setUsername() and http.setPassword() methods define the id and password to be sent to
the host in the HTTP header.

from com.pushtotest.tool.protocolhandler import Protocol-
Handler, Body
http = ProtocolHandler.getProtocol("http")
http.setUsername("MyName")
http.setPassword("MyPassword")
...
http.connect()

HTTP Basic Authentication should be used only for the least security risks. HTTP Ba-
sic Authentication expects to find a user id and password in the HTTP header of a request.
The header information moves across the Internet in clear-text so anyone with a network
monitor can see the unencrypted id and password information.

SOAP AND SECURITY

Most first-generation Web-enabled applications were deployed in internal integration
projects behind a company's firewall. However, some companies are now deploying Web-
enabled applications to expose internal systems over the Internet to business partners, ven-
dors and customers. Early adopters of Web-enabled applications technology can be found in
the financial, government, and healthcare sectors, where risk of attack is greater as the data
exchanged is often sensitive or high-value in nature.

SSL is effective to encrypt and authenticate SOAP-based Web-enabled application
communication in first-generation Web-enabled applications. These early services typically
move messages only between two points. SSL does fine in this environment. The SOAP
client obtains a copy of the server certificate, authenticates the server, and establishes an
encrypted channel.
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The problem with SSL appears in business-to-business (B2B) transactions. SOAP in-
terfaces of Web-enabled applications access advanced functionality that business-to-
consumer Web-enabled applications would not be able to access. For example, a Web site in
a B2C application does not need the client certificate to carry out a sale of a low-priced item
like a videotape or a pillowcase. In a B2B environment where the risk of making a mistake
is higher, the SOAP host is more concerned about authenticating the client.

Client-side SSL certificates is used when Web-enabled applications requires two-way
authentication. The clients authenticate the servers and vice versa. The downside comes in
the form of a management nightmare: every client and every server needs a digital certifi-
cate.

Extranets using client-side SSL are widely deployed to provide authorization but the
localized user management demanded by client-side SSL is anathema to the hands-off and
loose integration solution offered by SOAP-based Web-enabled applications. Even worse is
the broken promise that Web-enabled applications enable organizations to communicate
with each other without having to agree on common packages or carry out extensive inte-
gration. SOAP and WSDL were meant to be deployed quickly to enable loosely coupled
systems. Then, SSL comes along demanding client-side SSL certificates distributed to every
SOAP-based Web-enabled application that will make a request of our Web-enabled applica-
tion. Without a solution there is going to be a hanging in town soon!

An old boss of mine used to remark: “What we don’t know we really don’t know.” He
meant that when one begins working with new technology one rarely knows even the right
questions to ask. This saying applies to securing SOAP-based Web-enabled applications.
Future hacks, attacks and the mistakes with Web-enabled applications are guaranteed. Our
job today as developers, QA technicians and IT managers is to look inwards and outwards in
the following areas:

•  Look inwards at the weakness in our systems. Then apply monitors and tests to
verify when those weaknesses are being exploited.

•  Look outwards to see which technologies will be applied over the coming year
that will solve security weaknesses.

For example, looking inwards we can see that SSL does not protect Web-enabled ap-
plications from more traditional forms of attack. Web servers around the world are attacked
daily with buffer overflow attacks. A hacker could stage a buffer overflow attack by sending
through parameters that are longer than the Web-enabled application expects. Validating the
content of messages before routing to the Web-enabled application counteracts this type of
attack.

Looking outwards several new message-level security technologies can improve
SOAP-based Web-enabled application security in addition to SSL. These XML security
technologies play in the application or message layer of the OSI stack.

•  XML Schema describes the allowed content and structure of an XML docu-
ment. In a security light, XML Schema ensures that SOAP documents contain
no malicious data. For details, go to: http://www.w3.org/XML/Schema
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•  XML Signature verifies an XML document was not changed between the client
and service provider. An XML Signature includes an X.509 certificate, which
links the requester with the request. An XML Signature uses the X.509 certifi-
cate within the signature to authenticate the requester. This involves validating
the status of the certificate, which can be achieved using XKMS. For details, go
to: http://www.w3.org/Signature/

•  The XML Key Management Specification (XKMS) provides an XML inter-
face to PKI services, including key distribution, validation and revocation.
XKMS enables a security checking service where one Web-enabled application
can authenticate another’s X.509 certificate. For details, go to:
http://www.w3.org/2001/XKMS/

•  SAML enables authentication and authorization information to be shared by
multiple parties across security domains. With SAML a SOAP-based Web-
enabled applications makes XML requests for authentication and authorization
information. A request may contain an assertion signed by a trusted SAML
Authority that can be used by the service provider to authorize usage of the
Web-enabled application. The access management products industry appears to
be getting behind SAML to ensure that they can share authorization information.
For details, go tot: http://www.oasis-open.org/committees/security/. My article
on SAML Myths and Misunderstandings i s  avai lable  a t
http://docs.pushtotest.com.

•  Liberty Alliance is a standards body with Microsoft’s strong support that is
working on a single-sign-in standard for groups of service providers that wish to
federate their sign-in process. Details are at http://www.projectliberty.org/.

•  Web-enabled application Interoperability (WS-I) is a standards-body work-
ing on definition of a second generation Web-enabled applications-based plat-
form, including Web-enabled application security. Details are at:
http://www.ws-i.org/

The excellent thing about these technologies is that they are designed to be used in
combination to protect Web-enabled applications from unauthorized access.

The second wave of Web-enabled applications is shaping up now and looks to be even
more needing of message level security than ever. Chapter 4 on SOAP predicts a future
where groups of Web-enabled applications provided functions for a much larger application.
This “federated application architecture” expands the need for security technology and in-
telligent test agents to verify Web-enabled application scalability and performance in secure
environments. See http://docs.pushtotest.com for articles on second generation Web-enabled
application security technologies, including an aritlce on the Myths and Misunderstandings
Surrounding SAML.
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GENERATING CERTIFICATES AND KEYSTORES

While public key security technology exists and is well proven, most people I know do
not want to even think about certificates in their everyday life. This behavior has let to the
browser publishers including an arbitrary set of root certificates that they trust. When you
browse a Web site that does not have a matching certificate, then the browser pops-up a
dialog message asking if you want to accept the unkown certificate.

The TestMaker framework for building intelligent test agents is a Java application that
uses the Java Secure Sockets Extension (JSSE) library to provide SSL services. JSSE comes
with Verisign and Thawte X.509 certificates installed. When JSSE connects to a server that
has no matching certificate, it throws an exception.

URL exception. javax.net.ssl.SSLException: untrusted server
cert chain

This section presents the experiences of the U.S. Navy working TestMaker test agents
and secure hosts. Then, we finish this chapter with instructions on using the Java keytool
utility to use your own digital certificates.

Navy Supply Information Systems Activity (NAVSISA) Experiences
We were requested to assist in stress testing a Web server belonging to
one of the Navy activities here at our base. They suggested using Test-
Maker. The site was not secure, i.e. the URL scheme is "http". The page
we had to drive was a simple one consisting of only one text field. It was
an easy thing to do using TestMaker and we were very successful.
Others heard of our success and asked us to help them also. However,
this new request was for a secure site, i.e. the URL scheme is "https".
Our first attempt yielded this message:
"ElementURL: URL exception. javax.net.ssl.SSLException: untrusted
server cert chain"
Our problem was that the server was using Department of Defense (DoD)
Certificates that did not come with TestMaker.
We asked the TestMaker support team for help and they suggested some
sources of information relating to how to put our DoD certificate chain
into the keystore used by the Java VM, using "keytool".
We downloaded our CA certificates (dodroot.cac) file and tried to import
it into the "cacerts" file used by our Java VM and it wouldn't work. I think
the keytool doesn't like the format the DoD uses (PKCS#12). So, we im-
ported "dodroot.cac" into our browser (Microsoft Internet Explorer 5.5)
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and then exported it into an X.509 format file, which keytool would ac-
cept.
We then imported the X.509 format "dodroot.cac" certificates into our
"cacerts" keystore using the keytool -import command.
At this point, we were free of the “untrusted server certificate” error
message mentioned above -- but we had other problems.
The web site we were currently testing required authentication by the
application itself. The first page that was presented to the user had 2 text
fields that the user had to fill in with their user-name and password. We
didn't know what to put into the URL that we construct within our Test-
Maker script to do the authentication. We used a tool from HP (HP Open-
View Internet Services) to discover that the keywords we needed were
"USERID" and "PASSWORD". So, once again we succeeded.
Next came a request to test a web site that was also secure but used the
server for authentication instead of the application. i.e. the server was
configured to tell the browser to pop-up a dialog to request the user cre-
dentials instead of the application asking for them.
This method of authentication makes use of the HTTP protocol directly
instead of some part of the URL as was the case before. In order to do
this kind of authentication, we needed some way to influence how Test-
Maker would construct the HTTP headers. In the documentation, we
found the answer -- the setUsername() and setPassword() methods for
the HTTPProtocol object would supply the key/value for the HTTP header
we were trying to get TestMaker to construct. The actual TestMaker
statement was:
from com.pushtotest.tool.protocolhandler import ProtocolHandler, Body
http = ProtocolHandler.getProtocol("http")
http.setHeader("Authorization",  "Basic dHQwMDAwMDAw-
MDE6c3dtMTIzNDU=")
...
http.connect()

Part of the way we figured this out was to consult the RFC for HTTP 1.1
(RFC2068 section 11.1, Basic Authentication Scheme) that is found on
http://www.w3c.org. We also used a network analyzer/Sniffer to see what
the client actually sent out when communicating with the server.
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The "funny stuff" following the word "Basic" is the userid:password en-
coded using the so-called base64-encoding scheme. Naturally, we had
no such capability so we had to go to the web for a base64 encoder pro-
gram.
If we may be of service to others, we'll try to help.
Ray Leiter
Raymond_R_Leiter@fmso.navy.mil

The Java keytool

The TestMaker framework for building intelligent test agents is a Java application that
uses the Java Secure Sockets Extension (JSSE) library to provide Secure Sockets Layer
(SSL) services. JSSE comes with Verisign and Thawte X.509 certificates installed. So test
agents may directly connect to servers that use Verisign and Thawte certificates. When a test
agent establishes a secure connection to a server with another type of certificate, an excep-
tion is thrown:

URL exception. javax.net.ssl.SSLException: untrusted server
cert chain

In this section I show how to use the built-in Java keytool utility to use new digital
certificates, generate keys, keystores and trustores. For details on keytool, go to
http://java.sun.com/docs/books/tutorial/security1.2/index.html.

In the following text, we step through several commands to create a self-signed cer-
tificate for the server and the client and stores them in keystores server.keystore and cli-
ent.keystore. The commands also export the server certificate to a file named server.cer that
is then imported to the client keystore named client.keystore. The client's certificate is ex-
ported to file client.cer and imported to server's keystore server.keystore.

By taking these steps, the keystore client.keystore can also be used by the client as the
truststore to verify the certificate supplied by the server and vice-versa.

Note that the character \ used in the following commands indicates continuation of the
same line. The \ character is not be in the actual commands.

Begin by generating the Server KeyStore in file server.keystore with the following
command.

java_home\bin\keytool -genkey -alias tomcat-sv \
-dname "CN=localhost, OU=X, O=Y, L=Z, S=XY, C=YZ" \
-keyalg RSA -keypass changeit -storepass changeit \
-keystore server.keystore
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To export the certificate from keystore to an external file server.cer use the following
keytool command:

java_home\bin\keytool -export -alias tomcat-sv \
-storepass changeit -file server.cer \
-keystore server.keystore

To generate the Client KeyStore in the file client.keystore, use the following keytool
command:

java_home\bin\keytool -genkey -alias tomcat-cl \
-dname "CN=Client, OU=X, O=Y, L=Z, S=XY, C=YZ" \
-keyalg RSA -keypass changeit -storepass changeit \
-keystore client.keystore

To export the certificate from the keystore to an external file named client.cer, use the
following keytool command:

java_home\bin\keytool -export -alias tomcat-cl \
-storepass changeit -file client.cer \
-keystore client.keystore

To import the client’s certificate into the Server’s keystore, use the following keytool
command:

java_home\bin\keytool -import -v -trustcacerts \
-alias tomcat -file server.cer -keystore client.keystore \
-keypass changeit -storepass changeit

Lastly, to import the server’s certificate into the client’s keystore use this keytool
command:

java_home\bin\keytool -import -v -trustcacerts \
-alias tomcat -file client.cer -keystore server.keystore \
-keypass changeit -storepass changeit

These steps accomplish a number of keytool functions. Keep the following in mind
when using keytool commands:

•  The server name specified in the server's certificate is localhost. If you plan to
access the server with its symbolic name or IP address on the network, you must
specify that string while generating the key. You can also have multiple certifi-
cates for the same physical machine.
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•  Though this script is sufficient for running the example, a real production de-
ployment must use a proper distinguished name value, getting certificates signed
by an authorized Certificate Authority (CA.)

•  I highly recommend using a production grade tool to manage client certificates,
especially if the server wants to authenticate the client based on the supplied
certificate.

This chapter did not presume an understanding of the underlying concepts of Public
Key Infrastructure or SSL. We recommend Java Security by Scott Oaks published by
O'Reilly & Associates. For details, go to: http://security.oreilly.com/.

 SUMMARY

This chapter provided tips and techniques to test Web-enabled applications in secure
environments. The use of Secure Sockets Layer (SSL) technology enables businesses and
organizations to secure the communication between Web-enabled application client and
host. While businesses have largely adopted PKI as the unofficial standard for securing
Web-enabled applications this chapter also pointed out the needed new XML technologies
to manage certificates, access and authorization that SSL does not provide.

In the next chapter we observe what happens after intelligent test agents are written
and used to test a system, including answering questions about the needed equipment, net-
work bandwidth, and resource requirements to make a test produce meaningful results.
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C H A P T E R  1 1

A Web Application Framework
from Construction To Test

The previous chapters show the techniques an intelligent test agent needs to use to
communicate and command a Web-enabled application. This chapter takes the next step.
The techniques and examples in this chapter show how to configure and run a concurrency
and scalability test. Then, the next chapter shows how to analyze the results.

THE TRADING DESK AND INTELLIGENT TEST AGENTS

Television, films, and newspapers often feature pictures of stock and bond traders
working in front of computer and telephone systems. This image looks similar to other high-
volume, rapid-fire settings, such as airline flight controllers, emergency dispatchers, and
computer network operators. A large panel gives the trader information about the market,
traders use a keyboard to order stocks to be bought or sold, and the phone barks out instruc-
tions from nervous investors. When it works well everyone makes money. When the system
slows or stops, careers are endangered. Bring in the intelligent test agents!

Intelligent test agents are an ideal tool to check scalability and performance and to
monitor the service for uptime in high volume, high capacity near real-time systems. These
systems have become increasing complex of late. For example, on-line stock brokers often
feature services to tie buy and sell instructions to market conditions. One order to sell shares
in an energy company may be triggered when the price of oil falls below a certain amount.
To accomplish such functions the broker's system must autonomously gather oil prices from
one system and instruct a buy/sell system to sell shares. How do you test this system?
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The complexity built into modern interoperable Web Service-based systems requires
new test methodologies and techniques. For example, the trading system would use a test
agent to simulate the complex market conditions that trigger a Web Service action. This
chapter shows how intelligent test agents that use multiple protocols and datasources pro-
duce meaningful test results.

SCALABILITY TEST GOALS

Businesses today that rely on complex interoperating systems need test methodologies
and techniques to answer basic operating questions. In a stock trading business, the system
operator’s goals are achieved as a measurement of system up-time and speed to conduct
transactions. While there are many aspects to the stock trader's system that may be tested, in
this example the most important tests answer the following questions:

Table 11-1 Establishing the method and measurement for a test

Issue Method Measurement

Do I have the right
number of servers?

Each part of the system contributes overhead to
processing transactions. In a trading system
firewalls, routers, load balancers, web servers,
application servers, database servers, and stor-
age systems each add overhead to process a
transaction. A system test uncovers the largest
bottleneck to process transactions. Resolving
system bottlenecks to the anticipated number of
users answers the issue of equipment purchases
to forecasted demand.

Measure round-trip transactions-
per-second timing from the client
machine. Then, measure overhead
from each major system compo-
nent while processing a transac-
tion.

How does the system
perform under in-
creasing loads of
use?

System users have a built-in capacity to tolerate
some slow system performance. However, there
quickly comes a point where slow system per-
formance is counterproductive to the busi-
nesses’ goals. User productivity should be
measured by interviewing users regularly to
determine improvements to system perform-
ance and by learning management's productiv-
ity goals per user.

Measure the time it takes to ac-
complish tasks on the system – also
measure the subtasks needed to
accomplish each larger task.

Will enough activity
eventually cripple
the system?

Complex interoperating systems often run out
of system resources over time. Memory leaks,
unreleased file handles, too little hard drive
space, and the random hardware problem can
grind system performance into the ground.
Simulating large concurrent usage over a period
of days uncovers system resource problems
during the test.

Measure system resources (cpu
time used, memory allocations,
disk usage) during an extended test
of 1-2 days.
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Issue Method Measurement
during the test.

The test agents presented in this chapter aim to answer these issues for a fictitious
stock trading company. We construct the test by first looking at the existing system infra-
structure and identifying the user archetypes.

SYSTEM INFRASTRUCTURE

For our fictitious stock trading company we define good system performance as the
following:

• The service works just as well under the stress of 1 user as 100 concurrent users
– assuming the users are a mix of the users, including traders, managers, ana-
lysts, and network managers.

• All users have good experiences even though some users operate a single func-
tion while other groups use all the functions.

• The Web service is available whenever a user shows-up.

Choosing the right components to a system that hosts a Web service greatly deter-
mines how likely the service will achieve its goals. Earlier chapters presented a framework
for building and deploying Web-enabled applications called the Flapjacks Architecture. As
Figure 11-1 shows, the Flapjacks architecture that I introduced in Chapter 2 in a stock trad-
ing company deploys many small servers that are accessed through a load balancer, provid-
ing a front-end to a powerful database server.
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Fig. 11-1: The Flapjacks system architecture implemented by a fictitious stock trad-
ing company. The layer of Web Servers acts as intermediaries to handle
simple page requests. The application server handles the complex pro-
cedures needed to dynamically assemble requested information.

The stock trading company system puts the core of the business logic into a tier of ap-
plication servers. User requests are served through a load balancer and Web Server. The
trading application software accesses user accounts and trading history from the database
server. The system accesses current market conditions through a SOAP connection to an
external MarketFacts service.

The stock trading company uses the Flapjacks architecture to minimize down-time and
provide flexibility in changing the number of Web and application servers over time. Addi-
tionally, the Flapjacks architecture is testable.

Figure 11-2 shows intelligent test agents added to the system infrastructure to record,
measure and in some cases drive the system components. In the stock trading company ex-
ample, the business goals for the test require the agents to monitor the major components,
simulate user requests and check performance and availability of remote resources, such as
the MarketFacts service.
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Fig. 11-2: Intelligent test agents added to the Flapjacks infrastructure equip the
system to determine bottlenecks and component-level performance and
scalability.

Each test agent monitors a different component, as follows:

• The test agent monitoring the data server records CPU and hard disk utilization
of a database server application.

• The test agent monitoring the application server records the time it takes to
process transactions.

• The test agent checking the MarketFacts service determines network latency
overhead, Web Service availability, and transaction duration.

• Lastly, the bottom-most test agent simulates the actions of a set of user arche-
types.

Next, we learn how to identify the typical user activities on the system by identifying a
few user archetypes.

USER ARCHETYPES

The stock trading company is a good case to apply user archetypes. User archetypes
are a powerful technique to model users in a multifaceted system that require multiple steps
to accomplish a goal. See Chapter 1 for details on user archetypes.

User archetypes are a good technique to overcome the paralyzing fear many develop-
ers go through when they consider how their software will be used. Many developers think
testing must cover a general cross-section of the user community. Other developers believe
high quality software is tested against the original design goals of a Web-enabled application
as defined by a product manager, project marketer, or lead developer. These generalized
testing approaches usually miss the target by a long shot.

General testing makes large assumptions of how the aggregate group of users will use
the Web-enabled application and the steps they take as a group to accomplish their common
goal. Systems simply are not used this way. In reality, each user has his or her own goal and
method of using the system to achieve this goal.

The antidote to general testing is to develop and apply user archetypes. Archetypes are
prototypical users based on the real people that will use the system. The best way to build a
user archetype is to start with a single user. Choose just one user, watch them use the Web-
enabled application, learn their goals, and watch the steps they take to achieve their goals.
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The better you understood an individual user’s needs, the more valuable your test agent will
be.

Many developers have taken the archetypal user method to heart. They name their ar-
chetypes and describe their backgrounds and habits. They give depth to the archetype so the
rest of the development team can understand the archetype better. Consequently the team
understands the test better because they can relate to the user archetype. They can also use
archetypes when describing problems in the Web-enabled application. Consider these user
archetypes for the stock trading company:

• Mira – stock trader, works the trading desk by taking orders by phone and buy-
ing or selling stocks through the system terminals. Mira is a compulsive person:
After learning to play golf she took a three week unpaid vacation to follow Tiger
Woods around golf courses in 6 states. Mira was married, now divorced, with no
children. A dark circle from her daily Starbucks coffee has developed in one
spot on her desk. She explodes with anger and sarcasm when things don’t go her
way.

• Simon – trainee stock trader, just graduated from business school at a prestig-
ious university; this is his first job out of school. Simon was on the rowing team,
got decent grades despite much partying, and has a new girlfriend. Simon works
the regular shift at the trading desk and is studying for a state-sponsored stock
analysis certificate that he may earn in two years.

• Doree – trading operations manager, started as a trader ten years ago when she
started at the firm. She outperformed all other traders while still finding time to
train the new traders. Doree got married two years ago. Her husband is a sales
executive in a competing firm. Doree is an indoor person during Summer and
loves skiing, sledding, and show shoe trekking during the Winter.

• Vicki – systems manager, friend of the CEO’s son. Started at the firm by fixing
the CEO’s desktop computer system two years ago. Since then Vicki has taking
on increasingly complex systems management roles. Vicki is soft spoken and at
times timid, a trace she gets from her parents who are also Buddhist and anti-
war pacifists. Vicki’s worst nightmare is to arrive at the office to face Doree and
Mira’s fury.

These four user archetypes do not cover 100% of the uses of the system. Instead they
identify 100% of these four user archetypes goals. As time goes on, additional user arche-
types will be defined to model more user goals and more test agents.

Developers who use Universal Markup Language (UML) techniques may find user ar-
chetype similar to UML actors. User archetypes are an in-depth idea of a UML actor. In this
case, you are able to “role play” the actor into a real person.

User archetypes facilitate developing intelligent test agents. For example, modeling a
test agent against Mira’s archetype concentrates on the speed of transactions. Mira needs to
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retrieve stock information quickly, read a few facts and then place an order. To accomplish
these goals, the test agent signs-in to the system, uses the search function to find a stock and
then places an order. The agent takes no delay time between steps as it tries to complete as
many transactions as fast as possible. The test agent takes several steps to accomplish its
goals and highlights when the system does not perform to Mira’s speed goals.

A test agent modeled to achieve Vicki’s goals concentrates on accessing and moni-
toring the system. Vicki needs to know when the system is not performing well. She wants
to know before Mira and Doree find the system is sluggish or slow. The test agent needs to
query the system’s performance logs to learn which transactions are taking the longest time.

Understanding the archetypes is the key to making the test agents intelligent. For ex-
ample, a test agent for Vicki may behave more persistently than a test agent for Simon. If a
test agent tries to execute a trade that fails the test agent for Vicki would try again. Arche-
type behavior makes a test agent intelligent.

Using archetypes to describe a user is more efficient and more accurate than making
broad generalizations about the nature of a Web-enabled application’s users. Archetypes
make it easier to develop test agents modeled after each user’s individual goals.

Next, we investigate the requirements to conduct a test of the stock trading example.
Then we will construct the intelligent test agents to run the test.

UNDERSTANDING THE TEST REQUIREMENTS

At one time in the history of software development, testing efforts were organized and
conducted by a single person. Since then we have found that testing complex interoperable
information systems, especially Web-enabled applications, demands the efforts and coop-
eration of a number of teams. It is no longer a one person task. For example, in the stock
trading company example, just imagine the effect of 1,000 concurrently running test agents
modeled after Simon. Simon conducts research before most stock trades. The research
causes network traffic and load on the local datacenter and to the external MarketFacts
service. Without enough planning and coordination, such a test might cause the real Vicki –
who manages the stock trading company network –  to suspect that the network is under
attack from a hacker. Also, the MarketFacts sales manager may expect that the stock trading
company’s next monthly bill will be huge because the number of requests for market data is
skyrocketing, when in fact the data is in response to requests from a test agent.

Coordinating the efforts of many people during a test requires an understanding of
their needs. We can state the needs as a list of requirements. In the example stock trading
company’s case the requirements are stated in Table 11-2.

Table 11-2 - Requires to test the Stock Trading System

Requirement Why is this important? Solution

Tests Must Be Con-
figurable

Developers, QA analysts, and IT managers each
want to run the tests on their own. The test
agents must be configurable without requiring
the original test agent author’s intervention.

Test agents use configuration files
to define test parameters.



A Web Application Framework from Construction To Test 9

Requirement Why is this important? Solution
agents must be configurable without requiring
the original test agent author’s intervention.

Tests Must Be Reus-
able

Any developer, QA analyst, or IT manager may
build a Test Agent. Once built the test agent is
an asset to the company that anyone can use.

The test agents are all developed in
the same framework, which in-
cludes an easy-to-use scripting
language, protocol handler object
library and programmatic launcher.
The agents are packaged into
shareable software applications that
may be checked-in to a source code
control system for distribution.

Tests Must Be
Maintainable

Even if a test agent only contains a single
line of code, it will eventually require
changes, updates, and modifications to
remain useful.

The agents are packaged into
shareable software applications
that may be checked-in to a
source code version control
system for distribution.

Tests Must Be
Modular

Test agents implement functions that will
be useful in a larger scope of software de-
velopment automation. For example, an
automatic build-and-deploy system would
benefit from having a test agent plug-in to
perform build-deploy-test functions.

Test agents are callable from
external applications. Addition-
ally, test agent results may be
shared with the external

The requirements are only asking for the test agents to be configurable, reusable, and
maintainable and module. What is so hard about that? Well, plenty as we will see when we
construct the stock trading company test in the next section.

CONSTRUCTING THE TEST

The test agents presented in this chapter  answer basic questions about the reliability,
scalability, and functionality of a fictitious stock trading company. Earlier, we learned how
to define the goals of the test, how to use user archetypes to model test agent behavior after
the goals of the users, and how to define the requirements for the test environment. Now, we
will construct the test.

First, lets understand the flow of the test agent environment. Figure 3 shows the major
components of the test and how they relate to each other. We construct the test in three suc-
cessive parts: set-up, run, and analysis. In practice separating these parts provides an easy
way to manage and maintain tests over time. Each part factors into a base function that con-
tributes to the overall success of the test.
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Fig. 11-3: The overall test is divided into three parts. The Set-up part describes the
test environment, number of concurrently running test agents, and be-
havior of each agent based on a user archetype. The second part actually
runs the agents and records the results to a log file. The third part ana-
lyzes the recorded results and presents the findings.

While Figure 11-3 shows the flow from one part of the test to the next, an under-
standing of how the component parts are designed is important to understanding the test
components. The stock trading company test is implemented with the following steps:

•  A master agent calls agent modules to do the actual work of driving the system
under test.

•  The agent modules implement a behavior defined in the user archetype descrip-
tions. For example, doree.a is a TestMaker script that implements the behavior
of the Doree user archetype. Test results are stored in a special delimited data
file.

•  A tally module that analyzes the contents of the delimited results data file and
present findings to users.

Figure 11-4 illustrates the master component. In the stock trading company system test
there is little set-up needed so this test implements the set-up functions in the master compo-
nent. That is because the test agents for this test expect that the user accounts for Doree,
Mira, Simon, and Vicki are already established and that the system can handle trading orders
and requests for information without doing pre-configuration prior to the test. The system’s
state is expected to be configured before the test agents run.

In other system tests, configuring the system for a test requires the system state to be
configured. That includes operations, such as establishing new user accounts, setting usage
parameters for each of the new accounts, and entering the market information that the test
agents will query. If the system depends on some sort of pre-configuration, then the test
agent is an ideal form to document and configure the set-up. This includes creating as much
of the initial state as possible.
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Fig. 11-4: The master agent encapsulates the entire test. Results are logged to a file
that are summarized and presented with the tally agent.

In addition to set-up, the master component instantiates the user archetype behavior in
a set of concurrently running threads. Each thread encapsulates the behavior of a user ar-
chetype and issues the commands needed to drive the stock trading system. The configura-
tion files for the test tell the master component how many threads to create and what type of
user archetype behavior to use in each thread. The actual user archetype behavior is imple-
mented in a set of files that the master component calls. For example, the mira.a file contains
the implementation of the Mira user archetype behavior. The same is true for Simon, Doree,
and Vicki.

Looking at a single user archetype implementation shows the basic function of the be-
havior. Figure 11-5 shows the Simon user archetype. The description of the Simon user ar-
chetype earlier in this chapter showed that he is a trainee stock trader that conducts stock
trades. Simon is also interested in trends in the market so he also makes several requests to
the MarketFacts service while he places stock trade orders. When Simon detects a trend un-
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derway, he alerts his fellow traders Mira and Doree. Simon sends email messages with the
trend he tracks.

Fig. 11-5: The test agent modeled after Simon follows market trends using SOAP
interfaces to the MarketFacts service and also sends email alerts via a
Web-based email service.

Later in this chapter we discover how the Simon agent is coded. For now, let us ex-
amine how to define the test behavior in terms of the steps the user archetypes take to ac-
complish their goals.

In the case of Mira, the user archetype describes user behavior that is both aggressive
and rapid in nature. To capture Mira’s behavior, the test agent performs the following ac-
tions:

•  It tries to process several stock trades at the same time.

•  It makes one request for a stock price after another. If any one request takes
more than two seconds the agent cancels the request and makes another.

•  The agent makes a burst of requests and then pauses for a few moment, as
though the agent is Mira taking a new phone call that requires her to listen for a
moment before acting.

•  It checks for email messages sent from the Simon test agent. If email messages
exist, then it reads them.
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The Simon user archetype describes behavior that is more evenly paced than Mira.
Simon makes many requests to the MarketFacts service to understand the market conditions.
The following are the actions the Simon test agent takes:

•  It makes a request for two to five reports from MarketFacts. It repeats this after
spending a moment to analyze the contents of the reports.

•  It occasionally makes a stock trade.

•  It sends an email message to Mira and Doree with the results of research.

The test agents that implement Doree’s behavior can be just as energetic as Mira’s.
However, Doree mostly has a polling job where she watches and makes sure the trades are
being handled efficiently, as follows:

•  A Doree test agent checks for new messages over and over again. This occurs
repeatedly from when the agent starts running until the test is done.

•  Once an hour the agent posts a new message to the traders indicating market
trends and stocks the firm wants to push.

•  Every ten minutes the agent requests a management report showing hour-to-date
sales for each broker.

The master component uses the configuration files to learn the total number of threads
to create and the relative amount of user archetypes to use. For example, suppose the con-
figuration file calls for 100 concurrently running threads. The configuration file defines that
35% of the threads use the Mira user archetype, 20% Simon, 30% Doree, and 15% Vicki.
Figure 6 graphically shows the split among user archetypes.
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Fig.11- 6: The master component uses the configuration files to determine the mix
of user archetype behaviors it will create in the overall group of threads.
The total number of agents may increase, but the percentage mix of user
archetypes remains constant.

Now that we understand the actions of the user archetypes and the overall construction
of the test suite we will learn to write the code to implement the test.

IMPLEMENTING USER ARCHETYPES IN CODE MODULES

Next, we look into how the Stock Trading Company test agents are crafted. To get
hands-on I will present a TestMaker test agent that implements the user behavior in a test.
TestMaker is described in Chapter 4. We begin by showing how the Doree user archetype is
implemented as an intelligent test agent.

Please consider two things when looking at the following code. First, the complete
code to the stock trading test suite is found in the Code Examples directory that comes with
this book. Second, the functions implemented for this test agent are merely simulations of
the actual calls an agent would make for a real test.

The Doree agent checks for new messages repeatedly. Every once in a while, the
Doree agent posts an announcement message to the rest of the traders. Following are script
functions that implement these two methods. The first function defines a method that checks
the company mail server for new messages. Here is the complete method, followed by a
detailed explanation. All of the code presented in this book is also available for download at
http://www.pushtotest.com/ptt/thebook.html.
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#-------------------------------------------------
# Read email messages

def read_emails():
    protocol2 = ProtocolHandler.getProtocol("mail")

    protocol2.setHost("mail.pushtotest.com")
    protocol2.setUsername("buddy")
    protocol2.setPassword( "email" )

    response = protocol2.connect()
    response.setPermission( Folder.READ_WRITE )
    response.setFolder( "INBOX" )

    messages = response.getMessages()

    for i in messages:
        print i.getFrom()[0], i.getSubject()
        i.setFlag( Flags.Flag.DELETED, 1 )

    response.close( 1 )

The read_emails method checks the mail server for new messages. When messages are
waiting, the method downloads and deletes the messages. Next, we examine the individual
commands in the read_emails method.

#-------------------------------------------------
# Read email messages

def read_emails():
    protocol2 = ProtocolHandler.getProtocol("mail")

First, we define a new method titled read_emails that we can call later in the same
agent script. Then, the script creates a new instance of the MailProtocol object that we refer-
ence in the protocol variable. See the testmaker_home/agents/Mail_agent.a for information
on the Mail protocol handler.

    protocol2.setHost("mail.pushtotest.com")
    protocol2.setUsername("buddy")
    protocol2.setPassword( "email" )

    response = protocol2.connect()

These commands tell the MailProtocol object where to find the email host and the ac-
count to use. PushToTest created the buddy email account on mail.pushtotest.com to enable
you to run the test agent. Please do not abuse this email account.
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response.setPermission( Folder.READ_WRITE )

The setPermission method instructs the mail host of our test agent's intentions. By de-
fault, Folder.READ_ONLY tells the mail host we will be reading email messages but not
deleting them from the host. Folder.READ_WRITE tells the mail host to expect message
delete commands.

response.setFolder( "INBOX" )

    messages = response.getMessages()

The POP3 protocol uses a single folder titled INBOX by default. The IMAP protocol
supports multiple folders.

Then, the code iterates through each message. The getFrom, getSubject and writeTo
methods return the from, subject, and message body.

    for i in messages:
        print i.getFrom()[0], i.getSubject()

The message body is also available from the writeTo method that takes an output-
Stream object as its input. The setFlag method enables the agent script to mark the email
message for deletion from the mail host. The flag is set in this loop but does not actually
happen until the close() method executes. The flag has no effect if the setPermission method
is not set to Folder.READ_WRITE.

        i.setFlag( Flags.Flag.DELETED, 1 )

After we iterate through all the messages, the script closes the connection to the host.
The close method takes a single boolean parameter. When the parameter is set to True or 1,
the close command instructs the mail host to delete any flagged messages. A False or 0 pa-
rameter tells the mail host to ignore the deleted messages.

    response.close( 1 )

Next, we see how the Doree agent posts an announcement message to the rest of the
traders. Here is the complete method, followed by a detailed explanation.

#-------------------------------------------------
# Post a news alert

def post_news_alert():
    http_ph = ProtocolHandler.getProtocol("http")

    http_ph.setHost( "examples.pushtotest.com" )
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    http_ph.setPath( "responder/htmlresponder" )

    http_ph.setType( HTTPProtocol.POST )

    body = ProtocolHandler.getBody( "http" )

    body.addParameter( "login", "myname" )
    body.addParameter( "passwd", "secret" )

    http_ph.setBody( body )

    response = http_ph.connect( 0 )

The post_news_alert method uses an HTTP form post to send a message. Next, we
look at the individual commands that make up the Doree agent.

def post_news_alert():

First, we define a new method titled post_news_alert that we can call later in the same
agent script. Next, the script creates a new instance of the HTTPProtocol object that we ref-
erence in the protocol variable. For information on the HTTP protocol handler, see the test-
maker_home/agents/signin_agent.a.

    http_ph = ProtocolHandler.getProtocol("http")

    http_ph.setHost( "examples.pushtotest.com" )
    http_ph.setPath( "responder/htmlresponder" )

The script instructs the HTTP protocol handler where to find the host and the servlet to
post the message.

    http_ph.setType( HTTPProtocol.POST )

Next, the script tells the HTTP protocol handler that the request to the host will be in
the form of an HTTP post command.

    body = ProtocolHandler.getBody( "http" )

    # send the sign-in values
    body.addParameter( "login", "myname" )
    body.addParameter( "passwd", "secret" )

The new body object holds the HTTP post parameters. We set the first parameter to
have Doree's login identity and the second parameter to have her password.

    http_ph.setBody( body )



18 The Java Design and Test Automation Guide  Chap. 11

Then, the script tells the HTTP protocol handler to use the new body object.

response = http_ph.connect( 0 )

Finally, the script uses a special form of connect() that tells the HTTP protocol handler
not to follow any redirect commands received from the host. Usually the response to a new
message post is to redirect the users browser to a "message posted" page. For the purpose of
this test, we do not need to load the redirected page.

Functionally the Doree agent is ready to go. The post_news_alert and read_emails
functions perform the test agent's actions. Next, we will see how the rest of the Doree agent
is scripted to put these functions to work.

Here is the main section of the Doree agent. The complete code is listed followed by a
detailed explanation.

#-------------------------------------------------
# Doree

def Doree( agent_num, local_name ):

    global running, log, up_count, record, tick, errortick

    random.seed( agent_num )

    up_count += 1

    pulse = Date().time     # record the start time

    sleeptime = 0

    news_end = Date().time + ( 10 * ( 60 * 1000 ) )

    while running:

        status = "ok"
        datapulse = Date().time

        try:
            read_emails()

            if Date().time > news_end:
                post_news_alert()
                news_end = Date().time + \
                ( 10 * ( 60 * 1000 ) )

        except java.lang.Exception, ex:
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            print "Error thrown:"
            print "  ",ex
            print
            status = "fail"
            errortick += 1
        except Exception, ex:
            print "Error thrown:"
            print "  ",ex
            print
            status = "fail"
            errortick += 1

        responsetime = Date().time - datapulse

        # Log the results to a comma-delimited file with
        # these fields:
        # response time, status, time index,
        # machine name, thread id number

        if record:
            totalresponsetime = Date().time - pulse
            tick += 1

            try:
                result = str( responsetime ) + "," + \
                status + "," + str( Date().time ) + "," \
                + local_name + "," + str( agent_num )
                print "result:",result
                log.log( result )
            except Exception, ex:
                print "Error while logging results: ",ex

        # This test agent thread sleeps after each request
        # to make the test more closely modeled to real
        # production environments where requests are
        # rarely uniform.

        time.sleep( random.randrange( 0, 5 ) )

    # We're done so reduce the thread count and exit
    up_count -= 1

#-------------------------------------------------
# Instantiate a thread

thread.start_new_thread( Doree, ( i, "Doree"+localname ) )
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The Doree method implements the main part of the Doree agent. Next, we look at the
individual commands in the post_news_alert method.

def Doree( agent_num, local_name ):

    global running, log, up_count, record, tick, errortick

The script defines the Doree method as the main part of the Doree agent. The Doree
method expects to receive an agent number identifier and a local_name to use when logging
test results. Additionally, the master.a script – that instantiates the Doree agent – sets up
several global variables that the Doree script needs. These include the following:

• running - A flag that is set to true while the master component wants the
Doree agent to run.

• log - The log object that Doree uses to log results data.

• up_count - A simple integer value that indicates how many copies of the
Doree agent are  running.

• tick - A temporary variable that tracks the number of successful transac-
tions.

• errortick - temporary variable that tracks the number of transactions
that ended in error conditions.

    random.seed( agent_num )

The agent  uses a random number generator to determine sleep durations after each
transaction. We use the agent_num value as a seed.

    up_count += 1

The master component uses threads to create multiple concurrently running copies of
the Doree agent. The up_count global variable keeps track of how many agent threads are
running. This is useful when shutting down a running test, as we will see later.

    pulse = Date().time
    sleeptime = 0
    news_end = Date().time + ( 10 * ( 60 * 1000 ) )
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Next, the script records the start-time. This information is used later when logging test
results. The news_end value is set to the current time plus 10 minutes ( 1000 milliseconds =
1 second.)

    while running:

The master.a component is at the control of the running variable. When the glogal
variable running is set to true, the agents continue making requests. When master determines
the test is over, it changes running to false and all the agents end their activity.

        status = "ok"
        datapulse = Date().time

The script uses the datapulse variable to record the time to process the transaction.

        try:
            read_emails()

            if Date().time > news_end:
                post_news_alert()
                news_end = Date().time + ( 10*(60*1000) )

The try command wraps around the calls to read_emails and post_news_alert and
catches errors in the except block shown below. The news_end variable indicates when ten
minutes have passed. When ten minutes are over, the script uses the post_news_alert method
to send a message to the other traders

.
        except java.lang.Exception, ex:
            print "Error thrown:"
            print "  ",ex
            print
            status = "fail"
            errortick += 1
        except Exception, ex:
            print "Error thrown:"
            print "  ",ex
            print
            status = "fail"
            errortick += 1

The except commands catch Python and Java errors that happen while processing a
transaction. In the test agent example, both error types are handled the same way. The error-
tick value is incremented by 1 and the agent continues.
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        responsetime = Date().time - datapulse

        if record:
            totalresponsetime = Date().time - pulse
            tick += 1

            try:
                result = str( responsetime ) + "," + \
                status + "," + str( Date().time ) + "," \
                + local_name + "," + str( agent_num )

                print "result:",result
                log.log( result )
            except Exception, ex:
                print "Error while logging results: ",ex

When a new test is started, the master component instantiates the user archetype
threads. To smooth the impact of creating the new threads on the underlying Java Virtual
Machine, the master component avoids instantiating all the threads at once. After all the
threads are instantiated, the master component sets the record global variable to true to in-
struct all the agents to begin logging the transaction results.

The script logs the results to a comma-delimited file with the following fields:

• response - time in milliseconds it takes to complete each transaction. In Doree's
case a transaction includes running the read_emails method and running the
post_news_alert method every ten minutes.

• Status - true indicates successful transaction, false indicates an error happened
while processing the transaction.

• time index - the current system time (in milliseconds from 1904) when the
transaction was started.

• machine name - the name of the local machine.

• thread id number - the assigned thread number for this agent

        time.sleep( random.randrange( 0, 5 ) )

The Doree test agent sleeps after each request as explained when we identified the
user archetype earlier in this chapter.

thread.start_new_thread( Doree, ( i, "Doree"+localname ) )
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The master.a component instantiates the Doree agent by using the exec() command to
run the doree.a script file. The script file creates the Doree() method and then instantiates a
new thread containing the Doree() method.

This section shows how  to implement the Doree user archetype as an intelligent test
agentFor details on how the Simon and Mira agents are constructed,  look in at the simon.a
and mira.a files in the Code Examples directory that comes with this book. .

Next, we see how the master component is constructed to state the tests and instantiate
the user archetype agents.

IMPLEMENTING THE MASTER COMPONENT

In the previous section, we covered the steps you need to follow  to implement user
archetype behavior in a script. Many references were made to the master component in the
script comments. The master component is the conductor that stages, runs, and shuts down
the test. You can find the master component of the Stock Trading Company test in the mas-
ter.a file in the Code Examples directory that comes with this book.

This section shows how the master component is constructed. The master component
is implemented in the following three parts:

• Set-up - runs the property.a script to initialize the global variables and creates
the log object.

• Run - instantiates the test agents

• Clean-up - stops the test agents and runs the tally.a script to tally the results.

Set-up

Following is a listing of the entire set-up section of the master component. After the
script is a detailed explanation.

# Stock Trading Test Suite

# Import TestMaker TOOL and Java objects

from java.lang import Thread
import java
import time
from java.util import Date
from com.pushtotest.tool.logger import simplelogger
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import sys
import thread

# Main body of agent

exec open( scriptpath + "properties.a" ).read()

running = 1
up_count = 0
record = 0
tick = 0
errortick = 0
first_time = Date().time

logtarget = resultspath + "results_" + localname + ".txt"

try:
    log = simplelogger.getInstance()
    log.setFileName( logtarget )
except java.lang.Exception, ex:
    print "Could not start logging. Shutting down agent."
    sys.exit()

The first part of the master component identifies the objects that are used in the script,
initializes several global variables, and instantiates a new log object used to report the agent
results. Following is the same code with a detailed explanation.

from java.lang import Thread
import java
import time
from java.util import Date
from com.pushtotest.tool.logger import simplelogger
import sys
import thread

The import command identifies the objects the script uses. TestMaker uses a version
of Python called Jython. Jython is the Python language implemented entirely in Java. This
approach’s advantage is that Jython scripts can use Python objects and Java objects. The
import commands that identify time, sys, and thread are pointing to Python objects. The
script also uses java.lang.Thread and java.util.Data objects.

exec open( scriptpath + "properties.a" ).read()

The exec command runs a script in another file. In this case, the exec command runs
the script commands in the properties.a script file. properties.a sets several user configured
parameters that define the scope of the test.
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running = 1
up_count = 0
record = 0
tick = 0
errortick = 0

The script commands establish global variables as follows:

• running - This flag tells agents to continue running

• up_count - Counts the number of test threads that are up and running

• record - This flag tells running agents when to start logging results data

• tick - Keeps track of total completed transactions

• errortick - Keeps track of errors

first_time = Date().time

The script records the current time to use later when analyzing the results.

logtarget = resultspath + "results_" + localname + ".txt"

try:
    log = simplelogger.getInstance()
    log.setFileName( logtarget )
except java.lang.Exception, ex:
    print "Could not start logging. Shutting down agent."
    sys.exit()

Finally, the script instantiates a new log object for the agents to use to record their re-
sults. The log object is provided by the TestMaker Test Object Oriented Library (TOOL)
package. The log object provides a simple common way for the test agents to log their re-
sults to a common log file.

Run

The set-up section of the master component establishes objects, global variables, and
instantiates the log object. The run section instantiates the test agents to begin the test proc-
ess. Next, we list the entire master component run section. Then, we explain this script. For
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the complete master.a script, look in the Code Examples directory that accompanies this
book.

# Calculate how many of each type of agent to run based on
the
# percentage value set in Properties.a

total = 0

for a in agents:
    total += a[1]

if total>100:
    print "Warning: The total number of agents specified"
    print "         in the Properties.a file is greater"
    print "         than 100%."

# Instantiate the agents as concurrently running threads
for at in agents:

    agenttype = at[0]
    agent_count = int ( ( float( at[1] ) / float( total ) )
* agentcount )
    for i in range( agent_count ):
        exec open( scriptpath + agenttype + ".a" ).read()
        time.sleep( startupdelay )

print "Threads started, we're testing!"

record = 1

start_time = Date().time
end_time = start_time + timetorun
while Date().time < end_time:
    time.sleep( 1 )

record = 0  # Tells running agents to stop logging results
recording_time = Date().time - start_time

The master component’s second part instantiates the test agent threads, waits for them
to test the system, and then records the start and end time. Following is the same code with a
detailed explanation.

total = 0
for a in agents:
    total += a[1]
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if total>100:
    print "Warning: The total number of agents specified"
    print "         in the Properties.a file is greater"
    print "         than 100%."

This first part calculates how many of each type of agent to run based on the percent-
age value set in properties.a. agents is a list object that contains a set of tuples. For example,
agents may be set to:

["doree", 50]
["mira", 20]
["simon", 30]

The first value of each tuple identifies by name the user archetype to use for a test
agent and the second value indicates the percentage mix of this type of test agent to use
when testing. For example, ["doree", 50] indicates that 50% of the total number of concur-
rently running agents will be using the doree user archetype behavior.

for at in agents:
    agenttype = at[0]
    agent_count = int ( ( float( at[1] ) \
    / float( total ) ) * agentcount )
    for i in range( agent_count ):
        exec open( scriptpath + agenttype + ".a" ).read()

The script then instantiates the mix of user agents. The code loops through the tuples
in the agents list. The exec function calls a function definition in the doree.a, mira.a, and
simon.a script files.

        time.sleep( startupdelay )

After each agent thread instantiation, the script uses the sleep method to give some
time for the thread to bring up a client connection before starting the next one. Without this
delay, a thread might timeout before it connects to the host.

record = 1

All the threads are instantiated so changing the value of the record global variable tells
the agents to begin logging results to the log object.

start_time = Date().time
end_time = start_time + timetorun
while Date().time < end_time:
    time.sleep( 1 )
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The master component then waits for the test period to complete. The timetorun value
is set in the properties.a file.

record = 0

The test period is over. Setting the record global variable tells the running agents to
stop logging results.

recording_time = Date().time - start_time

Finally, the record_time variable is set to the duration of this test in milliseconds.

Clean-up

The run section of the master component instantiates the correct mix of test agent
threads and then waits for the test period to complete. The clean-up section closes the log
object and runs the tally.a script to determine the test results. For the complete master.a
script, see the Code Examples directory that accompanies this book.

log.closeLogFile()

running = 0

duration = Date().time - start_time

exec open( scriptpath + "tally.a" ).read()

The master component is the conductor that stages, runs, and shuts down the test. The
master component uses the global variables set in the properties.a script. The next section
examines the properties.a script.

Property Files for Test Configuration

The stock trading system test has goals for reuse and maintenance. Using property
files to store configuration and set-up information makes it easier to achieve these goals.
Property files are simple text files that you can modify with any text editor. Property files
make it less important that the person operating the test knows the internals of the test agent
code.

The properties.a file establisihes these parameters:

• agentcount - The total number of concurrently running threads. The count value
can be any positive integer. However, larger settings may impact the test re-
sults., as described below.
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• agents - A list object that defines the user archetype for an agent thread to use
and a percentage of the agentcount value that uses this archetype. For example,
agents=[doree,25] tells the master component to use the Doree user archetype
in 25% of all the agent threads created. If agentcount equals 60 then 15 of the
agent threads will be Doree agent threads, (25% of 60 agents total is 15 agents)

• timetorun - Test period duration of the test period. The value is in milliseconds
(i.e.,1000 milliseconds equals 1 second).

• localname - Name used to identify the machine running the test.

• resultspath - The path to the location of the log file.

• startupdelay - Amount of time to sleep between instantiating agent threads. This
varies from machine to machine depending on the speed of the processors used.

The property file in the stock trading test suite is actually a runnable TestMaker script.
The master component runs the property file to establish variables used by the master and
test agent components. The master uses the exec command to run the property file.

IMPLEMENTING THE LOGGING COMPONENT

The master component performs three functions: setting-up, instantiating the agent
threads, and recording the results to a log file. Next, we look at the way the master compo-
nent creates log files. Every developer, QA analyst, or IT manager needs to consider what he
or she will log because the old axiom “Garbage in garbage out” still holds true even in a test
agent environment. In the stock trading test we sought to answer the following questions:

• Do I have the right number of servers?

• How does the system perform under increasing loads of use?

• Will enough activity eventually cripple the system?

With these questions in mind, it is fair to record the type of operation, a flag telling if
the transaction completed successfully or failed, and the duration of each transaction. This
way we can see the changes in throughput when the average transaction takes longer as
more agent threads run concurrently. We can also determine a rate of transactions-per-
second (TPS) and a rate of errors-per-transaction (EPT.)
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The next consideration is how the agent threads log the results. Several possibilities
exist, including:

• Keeping track of the statistics we wish to report as the test is in progress, but not
recording the individual transactions. This method is fast and requires few re-
sources (memory or disk space) but it does not allow us to go back later and re-
evaluate the results.

• Logging each transaction to a log-object that keeps the log entries in memory
until the test is complete. At the end of the test, the in-memory transaction data
is dumped to a log file. If a test runs for several days – as some tests will in-
variably do – then this approach is hugely memory resource intensive.

• Logging each transaction to a log service that consolidates log entries from mul-
tiple concurrently running agent threads on multiple machines into a single
common log. This approach makes best sense when multiple machines are used
to run the test agents.

• Logging each transaction to a file. This approach makes it easy to revisit the
transaction data at later times.

There are other strategies for logging results data. For example, since multiple agent
threads are running concurrently, each agent could log to its own file and all agent threads
could log to a single file.

For the stock trading system, logging each transaction to a file for later analysis makes
the most sense for simplicity and coding efficiency. To accomplish this we build the agent
threads to log their transaction results to a single synchronized log object that saves the
logged results to a single file. The TestMaker Test Object Oriented Library (TOOL) in-
cludes a simple logger object that provides such a synchronized logging function.

To create a new simple logger object, use the following code:

try:
    log = simplelogger.getInstance()
    log.setFileName( logtarget )
except java.lang.Exception, ex:
    print "Could not start logging. Stopping test."
    sys.exit()

Then to log a result the agent thread uses this code:

log.log( result )
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The result value used in the previous code is a simple String and can contain any
String value.

 AVOIDING TEST SCALABILITY PROBLEMS

The master component reads from a property file to determine the type and number of
agent threads to create. These threads leverage the host platform’s ability to run threaded
programs concurrently. If the underlying host platform has a single processor, then the oper-
ating system time-slices the threads to share the processor. Even with host platforms that
have multiple processors, eventually there are more threads than processors and the operat-
ing system has to divide-up the processing power to run the threads concurrently.

A concern to watch when using intelligent test agents to test a server for scalability is
that the test agents themselves may have scalability problems. Eventually the number of
concurrently running agent threads overwhelms the operating system’s ability to share a
processor. Each agent thread gets less and less time on the processor. From the agent’s per-
spective it appears that the server is responding slowly when it may be that the agent’s
thread is not getting enough time to handle the server's response.

Perhaps the most significant indication that agent threads are running into scalability
issues is to look at the minimum, maximum, and average time it takes agent threads to proc-
ess transactions. Consider the test results in Table 11-3.

Table 11-3 - Example test results

Agent type Transaction Duration (milliseconds)

Mira Sold shares 3275
Mira Sold shares 3890
Mira Sold shares 2501
Mira Sold shares 4289

These results were taken with 100 concurrently running agent threads. Looking at
these results the minimum time in milliseconds – there are 1000 milliseconds in 1 second –
it took to process one transaction was 2501. The maximum time is 4289. The average is
3488.

Next we will increase the number of concurrently running agent threads to 500. Table
11-4 shows the results recorded after each transaction.

Table 13-4 - Example test results show the test is hitting a wayll

Agent type Transaction Duration (milliseconds)

Mira Sold shares 37288
Mira Sold shares 56701
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Agent type Transaction Duration (milliseconds)

Mira Sold shares 18038
Mira Sold shares 48500

Notice that the average time to complete a transaction jumped to 40 seconds! By add-
ing five times the number of agent threads, the test agents turned in results that are 100 times
slower. That is not good.

When configuring a new test, you must pay careful attention to the scalability of the
test environment. Ignoring the test environment scalability, risks turning in numbers that are
meaningless or worse misleading.

One test scalability technique I have found successful is to build into the test agent
code the ability to run increasing numbers of test agents and plot the results on a simple
chart, such as presented in Figure 11-7.

Fig. 11-7: Charting the scalability of the test environment by showing the total num-
ber of agent threads in the X axis against the number of completed trans-
actions per second in the Y axis. This aids in estimating the number of
test agent hosts needed to run the test.

Charting the number of transactions processed against the number of concurrently
running agent threads shows the test environment scalability. These tests run in networked
environments where you can add additional test agent hosts  to the network to create the
desired levels of load. The chart helps you estimate how many test agent hosts are needed.

Another way to ease scalability problems in test agents is to incorporate the yield
command into the agent code. Yield tells the operating system that the agent thread is at a
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point where yielding control to another thread is acceptable. Yield is best used before and
after a large calculation needs to be made, or during a loop that exits when an external proc-
ess is finished. For example, when an agent is polling for a message from an email server,
the agent thread could yield between polling commands. This is reminiscent of your kinder-
garten days when the teacher instructed all the kids in a sandbox to share.

A First Look At The Results

While the next chapter shows how the tally.a script is constructed and how to analyze
the logs to determine actionable knowledge, the temptation to immediately look at the test
agent results is usually very great. So, let us take a peek at those results before we move into
the next chapter.

The stock trading test constructed in this chapter provides a configurable way to test
for scalability, performance, and functionality on the system level. The default settings run
the user archetypes concurrently. Right away the test agent results show system capacity,
successful operations, and problems:

What we tested What we found Conclusion

Do I have the
right number of
servers?

The average transaction was less
than five seconds. Transactions
for Mira took on average 20%
longer than the others. The long-
est response took more than 40
seconds.

The average transaction time is ac-
ceptable. However, when looking at
transactions with the longest re-
sponse times, we see why the real
Mira thinks the system is running
slow. In her case, it really is running
slow. We need to look into why
Mira’s transactions are performing
so slowly.

How does the
system perform
under increas-
ing loads of
use?

As additional test agents were
used, Simon’s transactions slowed
by 300% when we reached the
maximum load. However, at
maximum load Mira’s transac-
tions were only 20% slower.

Simon’s transactions uniquely
communicate to the external Mar-
ketFacts service using SOAP calls.
It appears that the MarketFacts
service cannot handle the additional
load.

Will enough
activity eventu-
ally cripple the
system?

Average transaction times
degraded by more than 150%
when 25 additional user agents
were added to the test. Doree’s
transactions slowed by 300%
when we reached the maxi-
mum load.

While the system is adequate to
handle the existing team, the
system is not ready for the com-
pany to hire additional traders.

I strongly caution you to be careful with the first look at the performance results. I
have been tempted to jot off an excited email message to the project team announcing the
test results. I caution you to avoid my past error!
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The problem with a first look at the performance results is that it is only a first look.
Usually much analysis and organizational effort is needed to ensure the results are accurate
and meaningful.

Please, please, please read the next chapter before you sit back satisfied with the first
look at  performance results.

SUMMARY

This chapter took the techniques presented in earlier chapters to command services
over a variety of protocols (HTTP, HTTPS, SOAP, XML-RPC) to build a test modeled after
a set of user archetypes. We went through all this trouble – defining user archetypes, mod-
eling user behavior, and understanding user goals – so that the test would get close to emu-
lating a real-world production environment. The extra effort makes certain the priority is to
test the system against prototypical user’s goals, rather than just test that the individual
functions work.

The test handled configuration, test agent instantiation, and results recording. The next
chapter will show you how to turn the recorded results into actionable knowledge.
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C H A P T E R  1 2

Turning Test Agent Results
into Actionable Knowledge

The stock trading information system, in Chapter 11, presents a methodology, infra-
structure, software design, and protocol design to implement a Web-enabled application
with great scalability, reliability, and functionality. We designed user archetypes, wrote
multi-protocol intelligent test agents, and made requests to an application host. First, we
checked for the correct functional results, then we checked the host's ability to serve in-
creasing numbers of concurrent users. All of this activity provides a near-production experi-
ence from which we can uncover scalability problems, concurrency problems, and reliability
problems. It also usually generates a huge amount of logged data.

Looking into the logged data allows us to see many immediate problems with the
Web-enabled application under test. The log file is one of many places you can observe
problems and find places to optimize the Web-enabled application. This chapter shows how
to understand and analyze a Web-enabled application while the test is running and how to
analyze the results data after the test is finished. With the method presented in this chapter,
you will be able to demonstrate the system’s ability to achieve scalability, reliability, and
functionality.

Chapter 11 took the techniques presented in earlier chapters to command services over
a variety of protocols (HTTP, HTTPS, SOAP, XML-RPC) and build a test modeled after a
set of user archetypes. It presented the test goals, user archetypes, and test agents for an ex-
ample stock-trading firm. The master component of the test handled configuration, test agent
thread creation, and recorded the results to a special log file. This chapter explains how to
turn the recorded results into actionable knowledge.
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WHAT TO EXPECT FROM RESULTS ANALYSIS

Chapter 11 ended with a strong word of caution. You may be tempted to conduct a
cursory review of test results for actionable knowledge. In this regard Alexander Pope had it
right when he wrote: “A little learning is a dangerous thing; Drink deep, or taste not the
Pierian spring.” Thoroughly analyzing test results produces actionable knowledge; whereas,
looking only at the surface of the test result data can lead to terrible problems for yourself,
your company and your project. So, before showing how to analyze the test result data gen-
erated from the intelligent test agents in the previous chapter, this section presents what we
can reasonably expect to uncover from conducting a test.

Results data provides actionable knowledge, but the meaning may be contingent on
your role in the software process. Consider the following tests and how the actionable
knowledge changes depending on who is running the test. Table 12-1 describes this in detail.

Table 12-1  Actionable knowledge changes depending on who is running the test

Activity Test Who Actionable knowl-
edge

A software devel-
oper writes a new
function.

Functional test Developer Determines that
the function works
and the new mod-
ule is ready for
testing.

Delivery of new
software build

Scalability and
concurrency test

QA Technician Identifies optimi-
zation possibilities
to improve per-
formance and re-
duce  resource
needs (CPU, disk,
memory, database)

Production servers
upgraded

Roll-out test IT Manager Determines when
the data center
infrastructure is
capable of serving
forecasted user
levels

In each case, the same intelligent test agents may stage a test, but the results log is
analyzed to find different actionable knowledge. For example, when a QA analyst looks at
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the log file on a server undergoing a scalability and concurrency test the analyst will be
looking for log entries that indicate when a thread becomes deadlocked because it is waiting
on resources from another thread. The developer looking at the same results log would be
satisfied that the module under test functioned. Therefore, a starting point in analyzing re-
sults is to understand the goals of the test and see how the goals can be translated to results.

Following are a few test goals and how the goals may be translated to actionable re-
sults.

Goal: Our new Web site needs to handle peak loads of 50
concurrent users.

Imagine a company Web site redesign that added several custom functions. Each
function is driven by a Java servlet. The goal identifies the forecasted total number of con-
current users. The definition for concurrency is covered later in this chapter. For the moment
concurrency means the state where two or more people request a function at the same time.

One technique to translate the goal into an actionable result is to look at the goal in re-
verse. For example, how we would know when the system is not able to handle 50 concur-
rent users? Imagine running multiple copies of an intelligent test agent concurrently for
multiple periods of time. Each test period increases the number of concurrently running
agents. As the test agents run, system resources (CPU-time, disk space, memory) are used
and the overall performance of the Web-enabled application slows. The logged results will
show that the total number of transactions decreases as more concurrent agents run.

Charting the results enables us to set criteria for acceptable performance under peak
loads. For example, at 100 concurrent test agents the total number of transactions completed
might be three times smaller than when 50 concurrent test agents are run. Charting the trans-
actions completed under increasing number of concurrent test agents enables us to pick a
number between 50 and 100 concurrent test agents where system throughput is still accept-
able.

Goal: The Web site registration page needs to work flaw-
lessly.

Imagine a company that promotes a new fiction book. The company Web site provides
a Web page for prospective customers to register to receive announcements when the book
is published. A simple HTML form enables prospective customers to enter their contact in-
formation, including their email address. A Microsoft ASP.NET object serves the HTML
form. When a user posts his or her contact information, the ASP.NET object needs to record
the information to a database and redirect the user to a download page.

This reminds me of a time I waited for a phone call from a woman I invited out to din-
ner on a date. The longer I waited, the more I thought the phone might not be working. To
my chagrin, I lift the phone receiver and find that the phone was indeed working. Doing so,
of course, prevented her call from getting through to me. The analog to this is testing an
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HTML form. Until you actually click the submit button on in a browser interface you don’t
really know that the server is working. Yet, clicking the button causes the server to do actual
work for you that takes resources away from real users.

One technique to translate the goal into an actionable result is to understand the dura-
tion of the goal. Consider that the only way to know that the HTML form and ASP.NET
object are working flawlessly is use them. And each time they are used and perform cor-
rectly we have met the goal. So how long do you keep testing to achieve the goal of “flaw-
less performance?” Understanding the goal of the test can be translated into a ratio of
successes to failures.

The service achieves the goal when the ratio of successful tests of the HTML form and
the ASP.NET object exceed by a set-among the tests that failed. For example, over a period
of 24 hours the goal is achieved if the ratio of successful tests to tests with failures always
exceeds 95%. Searching the logged results for the ratio is fairly straightforward then. All
righty then!

Goal: Customer requests for month-end reports must not
slow down the order-entry service.

A common system architecture practice puts a load-balanced group of application
servers in front of a single database server. Imagine the application server providing two
types of functions: one function uses many database queries to produce a month-end sales
report to sales people and the second uses database insert commands to enter new orders into
the database. In a Web environment both types of functions may be used at the same time.

One technique to translate the goal into an actionable result is to look at the nature of
the goal. When the goal speaks of multiple concurrent activities, then an actionable result
provides feedback to tune the application. The tuning shows system performance when the
ratio of activity types changes.

In this example, the goal betrays that the system slows down towards the end of the
month as customers increasingly request database query intensive reports. In this case the
goal can be translated into actionable results by using a combination of two test agents: one
agent requests month-end reports and the second places orders. Testing the system with 100
total agents and a changing mix of test agents shows a ratio of overall system performance
to the mix of agents. For example, with 60 agents requesting month-end reports and 40
agents placing orders, the system performed twice as fast as with 80 agents requesting
month-end reports and 20 agents placing orders. The changing mix of agent types and its
impact of overall performance makes it possible to take action by optimizing the database
and improving computing capacity with more equipment.

Goal Summary

The examples and goals presented here are meant to show you a way to think through
the goals to determine a course of action to get actionable knowledge from test results.
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Many times simple statistics from logged results are presented. While these statistics might
look pretty, the actionable knowledge from the test results is the true goal you are after.

THE BIG 5 PROBLEM PATTERNS

Looking through raw logged results data often gives a feeling of staring up at the stars
on a cold and clear winter night. The longer one looks into the stars, the more patterns
emerge. In testing Web-enabled applications for scalability, performance, and reliability five
patterns emerge to identify problems and point to solutions.

Resource problems

While there may be new software development techniques on the way, today’s Web-
enabled application software is built on a “just in time” architecture. An application re-
sponds to requests the moment it receives the request. Web-enabled applications written to
run on a host typically wait until a given resource (CPU bandwidth, disk space, memory,
network bandwidth) becomes available. This is a major cause for application latency.

At any moment the hosting server must be able to provide the needed resource to the
application, including resources from Web Service hosts. The log results record the latency
that occurs while the host and Web Services provide the needed resources to the application.

The host running a Web-enabled application provides resources in the form of mem-
ory, disk space, processor bandwidth, and network connectivity. Two strategies emerged
over the years to understand resource allocation in server-side applications. Remote agent
programs running separately monitor resources and provide you with a remote program-
matic interface for retrieving the resource information. The leader in this space is the System
Network Monitor Protocol (SNMP) standard. Java developers have access to SNMP agent
data through the Java Management Extensions (JMX) library. Details on both are found at
http://java.sun.com/jmx. Management consoles, such as HP OpenView, provide a dashboard
that collects, collates, and displays SNMP agent data.

The second strategy for understanding resource allocation is to build resource moni-
toring into the Web-enabled application. This is accomplished by providing the software
developer with a set of APIs that provide live data about the resources available on the host
machine and those used by the application. The developer writes the Web-enabled applica-
tion to write the resource usage to the results log as each transaction is being handled.

As we found in the test agent presented in Chapter 11, we chose the later strategy for
understanding resource allocation. The test agents logged the transaction data to a log file.
For example, the agents could also use the built-in resource reporting APIs to save current
memory size, time from the last Java Virtual Machine garbage collection, and amount of
free disk space. By the way, most test tools, including those introduced in Chapter 5, have
methods available to scripts to learn about current resource usage and availability.
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Experience shows that writing code in a test agent to check resource allocation is the
better strategy because the developer writing the test agent knows what resource information
is important. Generically recording system resources using a management console and
SNMP agents has a tendency to produce extraneous log results.

While any unexpected latency reported in a results log might appear to be caused by a
lack of resources, latency is often times caused by one of the other four big types of prob-
lems.

Concurrency Problems

The days when a computer’s video display froze for a few seconds when the floppy
disk drive started-up ended when multiple dedicated processors were added to the mother-
board. Even on a single-processor equipped desktop or server machine, the motherboard
contains separate processors for handling disk, sound, video, and network operations. The
modern computer is a multi-tasking machine by design. Event-driven applications, on the
server or client side, are built to handle multiple concurrent tasks.

Concurrency is a measurement taken when more than one user operates a Web-
enabled application. One can say a Web-enabled application’s concurrency is good when the
Web service can handle multiple users operating functions and making requests at the same
time with little speed degradation while handling each user’s operations.

Concurrency measurements are recorded in two ways. When an application runs on
multiple load-balanced machines, a simple analysis of the combined results log shows the
concurrency of the applications running on the machines behind the load balancer as a unit.
Secondly, as each machine handles concurrent requests for the application’s functions, the
results log shows how the operating system and application handle threads and context
switches.

In both ways, I measure concurrency by determining when a transaction’s start time is
after a second transaction’s start time, but before the second transaction’s end time. A test
agent script can parse through the log results and tally the number of concurrent transac-
tions.

In today’s world of data centers where so few people understand what is impacting
system performance but almost everyone is a user of Web-enabled applications, it has be-
come popular opinion that “concurrency” is the cause of bad things. Contrary to popular
opinion, concurrency is not a bad thing. Few applications require all of the host’s resources
all the time. Unfortunately for server applications, concurrency has gotten a bad reputation
as the root of increasingly slow application performance. In reality measuring concurrency is
a great way to measure how efficiently the system shares its resources.

The typical pattern that identifies concurrency problems is to measure concurrency
over a period of time. During this time period, the test increases the number of concurrently
running transactions. For an indicator of a concurrency problem, look at the ratio of transac-
tions per second (TPS) at the start and end of the test. If you observe that the number of
transactions completed decreases as the number of concurrent transactions increases, then
you can suspect a concurrency problem.
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Concurrency problems are usually caused when bottlenecks are built into a system.
Multiple requests stack-up waiting for a single synchronized method to complete its function
for the previously received requests. An analysis of the results log also shows a ratio of
transaction times for transactions that are not running concurrently to those that are running
concurrently.

Understanding the pattern for concurrency problems is a significant asset when solv-
ing scalability and performance problems. However, sometimes concurrency problems mask
a component problem.

Component Problems

The problem patterns identified so far appear because they reoccur in the results log.
The more activity the system processes, the more the problem occurs. On the other hand,
component problem patterns are non-recurring or occur seldom enough that there is no re-
peated pattern that becomes obvious from analyzing results logs. Additionally, component
problems appear in a results log as errors; whereas, the majority of results log entries are
successful transactions. When the component fails it fails rarely. For component problems
we need a different strategy for results log analysis.

The top priority for developers, QA analysts, and IT managers when solving compo-
nent problems is to determine which component fails and what scenario of actions, use and
load contributes to the failure. For example, consider a private collaborative extranet service
that offers a large enterprise sales organization the ability to share documents, chat, and par-
ticipate in bulletin-board-style threaded messages. The extranet service, hosted by Inclusion
Technologies, uses an XML single-sign-on mechanism described on IBM developerWorks
at http://www-106.ibm.com/developerworks/webservices/library/ws-single/. After signing
in, a salesperson reads briefing materials and posts questions to a group discussion list. The
salespeople may optionally subscribe to participate in the group discussion through their
email client. As messages are posted to the discussion list, the Web users see the messages
in a threaded list and the email subscribers receive a copy of the posted message in their
email account. Replies to the email messages are posted back to the discussion group.

Looking through the logs of the collaborative extranet system showed that approxi-
mately every three days a salesperson was not receiving a day’s worth of email messages.
The problem was intermittent and appeared to resolve on its own, only to fail later.

The solution was to build and run an intelligent test agent modeled after a salesper-
son’s behavior. The agent signs-in, posts messages, receives, and replies to email messages.
When the system fails, the agent marks the time and steps that caused the problem. Identi-
fying the scenario that causes the problem shows the software development team where a
thread is not handling exceptions thrown by the email server. The next day when the user
signs-in, a new thread is instantiated to replace the hung one and the email delivery problem
is magically solved. Understanding what part of the Web-enabled application failed leads
the developers to build and deploy a fix to the code.

The key to solving component problems is finding the malfunctioning component.
Test agents help to hit a component in just the right way and observe the failure.
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Contention problems

Competition between Web-enabled applications, and on a lesser scale the threads in a
single application, lead to the system making decisions on which thread gets the focus and
when. Contention problems happen when one type of thread predominantly gets the focus.
For example, in the Stock Trading Company example in Chapter 11, the system responded
to many requests concurrently. Imagine what would happen when the system gave prefer-
ence to database queries? More requests from workers doing stock market research would
cause the stock trader’s requests to slow down.

Running multiple concurrent intelligent test agents against an information system pro-
vides a unique view of the contention problems in the system. The test agents can change the
mix of concurrently running test agent types and analyze the impact on performance and
scalability. For example, consider the test results in Table 12-4.

Table 12-4 Test results from multiple concurrent test agents

Test agent Quantity running concur-
rently

Average transaction time

Mira 40 16 seconds
Simon 30 22 seconds
Doree 30 35 seconds

Now, imagine we adjust the mix of concurrently running test agents so that more
Simon agents run. Table 12-5 shows the test results.

Table 12-5 Notice the change from changing the test agent mix

Test agent Quantity running concur-
rently

Average transaction time

Mira 20 50 seconds
Simon 60 20 seconds
Doree 20 35 seconds

Note that we doubled the number of Simon agents from the previous test and the aver-
age transaction time for Simon decreased. At the same time we ran half the number of Mira
agents, but the average transaction for Mira slowed to 50 seconds. While many problems
might lead to these performance inconsistencies, experience tells us to look for contention
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problems: Look at the system memory usage, look at the database resource logs, and look at
the application server settings.

Crash Recovery Problems

When a desktop or laptop computer crashes, our first urge is to restart the computer to
solve any lingering problems brought on by the crash. Servers are meant to run for a long
time and handle even exceptional cases like application crashes. So restarting the server is
usually not an option. Instead, we must build high-quality crash handling code into Web-
enabled applications.

Intelligent test agents have a place to play in detecting faulty crash recovery code. Test
agents are in a unique position to be able to cause crashes and drive the system to handle
additional requests concurrently. For example, consider a test scenario where the Simon test
agent – from Chapter 11 – makes dozens of requests for research reports. The system makes
dozens of queries to the database. If one or more queries throws an exception, the server
must handle the exception and release any used resources. The test agent is in a unique posi-
tion to learn what happens if the exception handling code does not release the thread’s
memory, open file handles, and database connections.

In summary of the Big Five Problem Patterns, we found general patterns emerge when
analyzing results logs. The patterns provide a way to detect problems and produce action-
able knowledge that software developers, QA analysts, and IT managers can use to solve
problems in Web-enabled applications.

KEY FACTORS IN RESULTS ANALYSIS

The previous section showed the top patterns to identify actionable knowledge in re-
sults logs. While the patterns show what to look for, the next section shows how to measure
what you find. The measurements tend to fall into the following four groups.

•  Concurrency is a measurement taken when more than one user operates a Web-
enabled application. A Web service’s concurrency is good when the Web serv-
ice can handle large numbers of users using functions and making requests at the
same time. Many times concurrency problems are solved with load balancing
equipment.

•  Latency is a measurement taken of the time it takes a Web-enabled application
to finish processing a request. Latency comes in many forms, for example the
latency of the Internet network to move the bits from a browser to server, and
software latency of the Web service to finish processing the request.
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•  Availability is a measurement of the time a Web service is available to take a re-
quest. Many “high availability” computer industry software publishers and
hardware manufacturers claim 99.9999% availability. As an example of avail-
ability, imagine a Web service running on a server that requires two hours of
downtime for maintenance each week. The formula to calculate availability is:
1-(downtime hours / total hours.) Since there are 168 total hours each week, a
weekly 2-hour downtime results in 98.8095% availability.

•  Performance is the measurement of the time between failures. This is a simple
average of the time between failures. For example, an application that threw er-
rors at 10:30 am, 11:00 am, and 11:30 am has a performance measurement of 30
minutes.

These four types of metrics enable us to speak intelligently between software develop-
ers, QA analysts, and IT managers to quantify good system performance. The metrics be-
come part of an overall report on scalability, performance, and reliability. Experience shows
that that final report usually focuses on two areas: throughput and reliability. Throughput is
measured in terms of transactions per second and answers the question “Did I buy enough
servers?” Reliability is measured by a Scalability and Performance Index (SPI) and answers
the question “Does this system allow users to achieve their goals?”

Measurements of concurrency, latency, availability, and performance are normally
calculated in terms of system throughput. This measurement shows how many transactions
per second (TPS) the information system can handle.

TPS is meant to be a simple measurement. The TPS measurement counts the number
of successful transactions and divides by the total number of seconds the test took to com-
plete. Transactions are defined as the total time it takes for a group of related requests to
complete one business function. For example, in the Stock Trading Company example pre-
sented in Chapter 11, the Mira agent signs-in to the system, requests stock quotes, and
places an order. These steps combined are considered a transaction.

This book espouses a user-goal oriented testing methodology to look at testing from a
user perspective. It should be no surprise then that this book focuses TPS measurements
from the client side of a Web-enabled application. That does not mean TPS is measured ex-
clusively from the client side. When debugging sub-system scalability problems it may be
appropriate to measure a TPS at the database subsystem by having a test agent communicate
directly to the backend database. Comparing client-side TPS to the subsystem TPS would
show a source of latency in the system.

While TPS reports on throughput the next method addresses user goals. Quantifying
user achievement has been a difficult task made worse with the invention of Web-enabled
applications. What is needed is a new methodology for taking criteria for acceptable Web-
enabled application scalability and performance and describing the measured results in terms
of a Scalability and Performance Index (SPI). Chapter 2 first introduced SPI. It is a metric
with many uses, including the following:
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•  Encourages software developers to optimize code for better user experiences

•  Helps IT managers to design and deploy the right size datacenter

•  Provides management metrics to judge user satisfaction

•  Aids QA analysts to learn if new software has regressed to include previously
solved problems

The TPS and SPI methods for measuring concurrency, latency, availability, and per-
formance provide a set of metrics that software developers, QA analysts, and IT managers
use to manage system reliability. Next, we see how these measurements may provide mis-
leading results and how to avoid making such mistakes.

SCENARIOS WHERE RESULTS DATA MISLEADS

Over the years of pouring over results logs and implementing scalability and perform-
ance tests, I discovered the following scenarios, better to call them rabbit-holes and wild-
goose-chases, where the results data looked correct, but, the conclusions were incorrect and
misleading.

The Node Problem

The user-goal oriented test methodology presented in this book uses intelligent test
agents to drive a Web-enabled application. You might ask,  “Where do I run the test
agents?” TestMaker provides an easy environment to run test agents on the local machine.
Many times a test needs to be mounted that exceeds the local machine’s abilities to run the
needed number of concurrently running test agents. This book recommends the following
two strategies:

1. Configure multiple machines to run TestMaker. Use a remote control utility –
for example, ssh, the secure shell terminal on Linux – to control TestMaker
remotely. TestMaker comes with shell scripts for Linux and Windows sys-
tems to run test agents from a command-line shell. After the test agents com-
plete their test, then manually copy the results logs back to a single machine
for analysis.

2. Use PushToTest TestNetwork, a commercial product that compliments
TestMaker by providing the following capabilities:
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•  Run agents in greater scale than on a single machine. For example, on a single 1
GHz Pentium system, TestMaker runs up to 150 concurrent test agents. With
TestNetwork running 10,000 or more concurrent test agents is possible.

•  Run test agents on multiple remote machines. TestNetwork turns remote sys-
tems into TestNodes that remotely run test agents and report the results back to a
central TestMaker console.

•  Keep test agents running for a long duration. TestNetwork's console/TestNode
architecture turns test agents into mini-servers that are able to handle operations
autonomously.

In my experience, variations in the results data can be introduced when the operating
environment under which the test nodes – each machine is a node – is poor. In one Web-
enabled application test, I noticed that the performance results from one test node was 20%
slower overall than the other test nodes. It turned out that the test node had a backup utility
enabled that caused all applications – the test agents included – to run slower while the
backup was being completed. The solution to this problem was to dedicate a test node to
only run test agents. To avoid problems like this, PushToTest sells a completely configured
rack-mounted TestNetwork test node appliance. For details see the PushToTest Web site.

The Hidden Error

An experience at 2Wire, the leading DSL deployment technology provider to the
world's largest Internet service providers (ISPs) showed that test agents need to look deeply
into system responses. Chapter 15 presents a case study of a scalability test for 2Wire. For
example, 2Wire hired PushToTest to run a scalability test against 2Wire’s datacenter to de-
termine their readiness to handle customer requests. The 2Wire devices use a modified
XML-RPC protocol to communicate to the datacenter. While it looked like the datacenter
host was providing XML-RPC responses the majority of responses contained errors encoded
in the XML response.

The experience shows that test agents might not just accept a response as a successful
transaction. The test agents need to validate the response. Errors may appear in the follow-
ing three levels of a response:

•  Transport level errors. Typical of this level of error are connection problems
with the host (“connection unavailable”, “http fault”), wrong payload size ex-
ceptions, and unsupported protocol errors. Another problem may be a response
that simply says, “The server has no more available connections.”
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•  SOAP response exception – the SOAP header contains an exception. For exam-
ple, the response says the first element of the request does not conform to the
expected input where a long-value is received when an integer value is expected.

•  Message body exception – the body of the message indicates an exception. For
example, a response with a response element of the message body containing:
“MS SQL COM bridge exception: 82101”.

At least HTTP and SOAP protocols provide for error reporting. The hidden error is
even worse in testing email protocols (SMTP, POP3, IMAP) where no standards exist for
error reporting. For example, when receiving an email message from a POP3 or IMAP host,
how does a test agent know if the message is a “bounce” from a mail host because the re-
cipient is unknown to the system? POP3 and IMAP do not define an error protocol so it is
up to the test agent to look into the body of the message to try to detect a “bounce” status.

Dileep’s Dilemma

Elsevier Science was very interested to learn SOAP scalability and performance met-
rics of SOAP-based Web Services on several application servers, including IBM Web-
Sphere, SunONE Application Server, and BEA WebLogic Server. The SunONE team at Sun
Microsystems was nice enough to offer the use of their lab, equipment, and engineers to
conduct a study.

Dileep Kumar is a Sun software engineer who helped conduct the tests. Dileep  was
well trained at using Segue Silk, a commercial Web application test tool, to simulate a
SOAP request to a Web Service running on a multiple-CPU SPARC server with the
SunONE Application Server.

He wrote a Silk script that made a pseudo-SOAP request to the server. The Silk script
did not actually use a SOAP stack; instead, it formed and issued an HTTP Post command to
the running Web Service. He measured the time it took to issue the HTTP request and re-
ceive a response. To his surprise the transaction time was 40% faster than the results found
with TestMaker.

He missed that the TestMaker result metrics included the time it took to marshal the
request through a SOAP stack and XML parser on the client side. This experience is a good
lesson to teach us that when examining any results, first ensure you are comparing similar
items.

Diminishing Returns

Many times, results analysis often turns into an exercise of diminishing returns. Each
effort to look deeper into the logged results data yields smaller and smaller benefits to sys-
tem reliability and scalability. The best test analysts can easily get caught up in an effort to
continue sorting, filtering, and pivoting the results data because they suspect additional scal-
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ability and reliability knowledge can be found if they look just a little longer. To avoid this
problem I recommend you understand the goals of the test first, then analyze the data.

BACK TO THE STOCK TRADING EXAMPLE

With all of this talk about turning result logs into actionable knowledge you may be
wondering about the Stock Trading Company example that started in Chapter 11. Will Mira,
Simon, and Doree find happiness after all? Yes, it turns out. But, not until we tally the re-
sults log to learn the system capacity as measured in Transactions Per Second (TPS.)

Implementing the Tally Agent

In Chapter 11, the master.a agent script mounts a test of the Stock Trading Company
example by configuring several test agents, running the agents, and logging the results to a
file. The master.a agent script’s final operation is to run the tally.a script. Tally.a parses
through the results log and determines the Transaction Per Second (TPS) metric for the test.
This section shows how the tally component is constructed.

First, we examine the tally.a script in its entirety. Then, we will provide a detailed
script explanation. All of the code presented in this book is also available for download at
http://www.pushtotest.com/ptt/thebook.html.

# Script name: Tally.a
# Author: fcohen@pushtotest.com

# exec open( scriptpath + "Properties.a" ).read()

# Set-up variables

tallyman = "Come Mister tally man; tally me bananas."
logtarget = resultspath + "results_" + localname + ".txt"

# First pass through the data

print
print "Tally the results:"
print "Find the minimum, maximum, average transaction time,
error index"
print

mark1 = 1
response_total_time = 0
response_count = 0
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resp_min = 0
resp_max = 0
error_count = 0

start_index = 0
end_index = 0

try:
    print "Analyzing data in", logtarget
    rfile = open( logtarget, "r" )
except IOError, e:
    print "Error while opening the file:"
    print e
    print
    sys.exit()

result = rfile.readline()

while result != "":

    # The file is in comma delimited format
    params = result.split(",")

    response_time = int( params[0] )
    status = params[1]
    time_index = params[2]

    if status == "ok":
        response_total_time += response_time
        response_count += 1

        if mark1:
            mark1 = 0
            resp_min = response_time
            resp_max = response_time

            start_index = time_index
            end_index = time_index

        if response_time > resp_max:
            resp_max = response_time

        if response_time < resp_min:
            resp_min = response_time

        if time_index > end_index:
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            end_index = time_index

        if time_index < start_index:
            start_index = time_index

    else:
        error_count += 1

    result = rfile.readline()

rfile.close()

print
print "Agents: ", agentcount
print
print "Minimum transaction time: %d" % resp_min
print "Maximum transaction time: %d" % resp_max
print "Average transaction time: %.2f" % ( float( re-
sponse_total_time ) / float( response_count ) )
print "Error count:", error_count

# Calculates the duration in milliseconds that the test
took to run
test_duration = long( end_index ) - long( start_index )

print
print "Total test time: %d" % test_duration
print "Number of completed transactions: %d" % ( re-
sponse_count )
print "Transactions Per Second: %.2f" % ( float( re-
sponse_count )\
/ ( test_duration / 1000 ) )
print
print

The first part of the tally component identifies the objects that are used in the script
and initialize variables. Following is the same code with a detailed explanation.

tallyman = "Come Mister tally man; tally me bananas."
logtarget = resultspath + "results_" + localname + ".txt"
mark1 = 1
response_total_time = 0
response_count = 0
resp_min = 0
resp_max = 0
error_count = 0
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start_index = 0
end_index = 0

These variables assist the script to find the minimum, maximum, average transaction
time and an error index.

try:
    print "Analyzing data in", logtarget
    rfile = open( logtarget, "r" )
except IOError, e:
    print "Error while opening the file:"
    print e
    print
    sys.exit()

The script opens the log file which was created by the master component and popu-
lated with data from the individual test agent threads.

result = rfile.readline()
while result != "":

The script parses the contents of the results log file line-by-line. The readline() method
returns an empty value when the end of file is reached.

    params = result.split(",")

    response_time = int( params[0] )
    status = params[1]
    time_index = params[2]

The data in the results log file is delimited by commas. The handy split() method finds
each value and returns a list of the values in the params variable.

    if status == "ok":

The Transactions Per Second metric in this analysis counts only the successful trans-
actions.

        response_total_time += response_time
        response_count += 1

The response_total_time and response_count values keep track of the responses to cal-
culate the average response time later in the script.
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        if mark1:
            mark1 = 0
            resp_min = response_time
            resp_max = response_time

            start_index = time_index
            end_index = time_index

The first result in the log becomes both the minimum and maximum response time.

        if response_time > resp_max:
            resp_max = response_time

        if response_time < resp_min:

        if time_index > end_index:
            end_index = time_index

        if time_index < start_index:
            start_index = time_index

As the script parses through each line of the results log, the minimum and maximum
response time is stored for later use. The script also keeps track of the actual start and end
time.

    else:
        error_count += 1

Although the TPS value only includes successful transactions, the tally script also re-
ports the count of transactions ending in errors.

print
print "Agents: ", agentcount
print
print "Minimum transaction time: %d" % resp_min
print "Maximum transaction time: %d" % resp_max
print "Average transaction time: %.2f" % ( float( re-
sponse_total_time ) / float( response_count ) )
print "Error count:", error_count

# Calculates the duration in milliseconds that the test
took to run
test_duration = long( end_index ) - long( start_index )
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print
print "Total test time: %d" % test_duration
print "Number of completed transactions: %d" % ( re-
sponse_count )
print "Transactions Per Second: %.2f" % ( float( re-
sponse_count ) / ( test_duration / 1000 ) )

As we see tally.a is a simple script to calculate the Transaction Per Second (TPS) met-
ric from the results log. The tally script displays its results to the TestMaker output window.

SUMMARY

This chapter concluded the work we started in the previous chapter. In Chapter 11 we
created intelligent test agents to emulate prototypical users. The test agents drive near pro-
duction environment loads on a Web service and consequently the system generated a boat-
load full of raw logged data. We wrote agent code to analyze the results data into actionable
data. The Transactions Per Second (TPS) report shows us what to expect from the system
when it is in a production environment.
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C H A P T E R  1 3

Concurrency and Scalability in
a High Volume Datacenter

2Wire is a manufacturer of innovative DSL systems. The 2Wire HomePortal resi-
dential gateway and OfficePortal broadband router are the telecom industry's first truly in-
telligent, customer-installable, multi-service devices. 2Wire uses a modified XML-RPC
protocol to enable the HomePortal gateway device to communicate with a datacenter to re-
ceive its programming, updates and content. In this environment, 2Wire needs to answer an
important question:

"How do we service and scale CMS effectively for millions of HomePortals?"

This chapter describes how 2Wire went about answering this question. The chapter
begins by describing the Web-enabled application environment of the 2Wire Component
Management System (CMS) system, the goals for a concurrency and datacenter readiness
test, the test methodology used, and how the results are compiled and analyzed. The con-
cepts and methodologies presented earlier in this book are put to the test in this chapter.

INTRODUCTION

2Wire (http://www.2wire.com) provides technology to leading Internet Service Pro-
viders, including SBC and Verizon. The 2Wire HomePortal gateway devices provide self-
configuration of DSL network parameters in an end-customer’s home or business by com-
municating with a 2Wire Component Management System (CMS) datacenter. I have one of
these beautiful HomePortal boxes in my garage. My local phone company, SBC, charged all
of $50 for the 2Wire HomePortal gateway device. Inside is the device is a DSL modem,
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NAT and DHCP router, firewall, and an intelligent processor that offers value-added serv-
ices, including a content filtering service. My experience configuring this kind of device in
the past was not a fun one. I spent many hours changing configuration settings to get the
device up and running. When I received the 2Wire HomePortal device, I plugged it in,
launched it's configuration utility, typed in a simple key code – a series of 16 digits – and the
device configured itself. Nice!

2Wire manufactures this innovative DSL system. The 2Wire system operates over a
Web-enabled infrastructure - TCP/IP routed networks, HTTP protocols, Flapjacks-style load
balanced application servers - using a modified version of the XML-RPC protocol. The
HomePortal device includes a customized processor that implements the intelligent business
workflow behavior to automatically configure, update, and otherwise manage the device
functions. While 2Wire operates a central datacenter at the current time, their plan is to give
the blueprints to their customers, the major telecom companies, to build their own datacen-
ters.

2Wire learned about TestMaker through the open-source community and contacted
PushToTest (http://www.pushtotest.com) to see if TestMaker was appropriate for their test-
ing needs. 2Wire needed to prove to its customers that it was ready for larger deployments.
PushToTest tested the 2Wire datacenter for readiness, tested the 2Wire CMS system for
suspected concurrency problems, and delivered a customized test environment based on
TestMaker.

THE 2WIRE COMPONENT MANAGEMENT SYSTEM

Everyday Internet Service Providers (ISPs) seek new way to automate their service.
Service automation is the key to increasing revenue, reducing support costs and opening
new value-added opportunities to serve customer needs. 2Wire is the leading technology
company to provide ISPs with an end-to-end solution to automate deployment and support
of business and home Internet gateway solutions.

The 2Wire Component Management System (CMS) solution combines a hosted data-
center with intelligent customer premises equipment (CPE) Gateway devices. As a result the
2Wire system is the most advanced solution to automate a business and home user’s access
to the Internet.

For every ISP, automation is no longer an option. They require cost-effective solutions
to automate basic configuration and management tasks, including DHCP and NAT routing
configuration; DNS service configuration and security configuration. Plus, customer under-
standing of Internet network configuration and management has increased expectations of
ease-of-use and reduced their willingness to deal with maintenance issues, especially ones
that require phone calls to technical support.

2Wire delivers the following business benefits to ISPs.

•  Decreased costs - CMS solutions provide Gateway portal devices that are self-
configuring from information received from a CMS datacenter. Customers enter
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a single keycode and the system handles all configurations of NAT, DHCP, and
DNS settings. Configuration is fully automatic.

•  Increased revenue - The CMS Gateway portal devices are dynamically pro-
grammed to offer value-added services. For example, a value-added Content
Screening Service provides protection to keep inappropriate material from being
presented to computer users. CMS is a fully extensible platform to deliver value-
added solutions.

•  Increased customer satisfaction - The CMS solution presents friendly, easy to
use Web-based interfaces for end-customers to configure and change options.
These supplements existing telephone support options that typically feature
frustrating and long wait times. CMS solutions are user friendly

To accomplish these goals 2Wire engineered the CMS system and integrated proven
Internet technologies, established datacenter architecture, and technology that is available
from multiple sources. Figure 13-1 shows the CMS solution architecture.

Figure 13-1 The 2Wire CMS system provides a Web browser interface to the configu-
ration options in the 2Wire Home Portal device. The device then uses a
modified XML/RPC mechanism to make command and information re-
quests to the datacenter.

2Wire's CMS design implements a reliable, scalable and well-performing system. The
CMS infrastructure has friendly end-user interfaces and powerful administrative functions
for system operators. For example, CMS can push an upgrade to a selection of HomePortal
devices automatically or to the entire population of devices.

CMS provides a pluggable interface to add new value added services over time. The
design intends to leverage a Web-enabled infrastructure today that may be used to provide
new value-added features in the future.

CMS systems enable 2Wire customers to handle large deployments. Understanding
how CMS solutions perform in large deployments is the key to 2Wire's strategy to provide
scaleable solutions to ISPs. 2Wire's focus on reliability, scalability and extensibility de-
mands a deep understanding of the system.
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Understanding what happens over the wire

To get an understanding of the 2Wire system architecture, I will start from the Home-
Portal gateway device configuration. Figure 13-2 shows a user interface the gateway device
serves to the user's browser. The user enters a 20-digit keycode provided by the ISP. The
gateway device uses the keycode to identify the URL of the datacenter.

Figure 13-2 HomePortal configuration begins with a twenty-digit keycode. The gate-
way device provides this Web browser user interface to enter the key-
code value. The device then connects to the CMS datacenter to receive
its settings, including TCP/IP, DNS, NAT, and DHCP values.

Receiving a new keycode, the gateway device communicates with the 2Wire datacen-
ter over HTTPS and TCP/IP on the device's DSL connection to the 2Wire datacenter. The
gateway device executes a "bootstrap" command code. The CMS datacenter responds with
the devices IP address, DNS information, NAT and DHCP configuration information and a
number of other settings. All of this communication happens between the gateway device
and the CMS datacenter invisibly to the end-user.
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2Wire's protocol is both efficient and secure for its application. Efficiency is delivered
by using a multiplexed sockets manager (MUX.) Security is delivered at the network layer
by using SSL and at the application layer by using a token-based proprietary  authentication
technique. 2Wire chose these methods because it owned both the client and server side to
each communication. Where the world of Web-enabled applications usually worries about
interoperability and security in an open-environment, 2Wire knows the gateway devices
would always only communicate with a CMS datacenter. So it only needs to worry about its
own interoperability.

Each communication from a gateway device to the CMS datacenter takes 3 or more
steps to authenticate the gateway device, pass a command request and its supporting data,
and receive the response and data. This potentially requires many TCP connections for each
step. The Internet is already suffering the effects of the HTTP/1.0 protocol, where each step
opens a TCP connection for each URI retrieved, costs both transferred packets and round-
trip times, and then closes each connection. For small HTTP requests, these connections are
a potent source of poor performance because of TCP's slow start-up and the round trips re-
quired to open and close each TCP connection.

The World Wide Web Consortium (W3C) developed HTTP/1.1 persistent connections
and pipelining to reduce network traffic and the amount of TCP overhead caused by opening
and closing TCP connections. However, HTTP/1.1 has its own drawbacks for the 2Wire
architecture. Consider that HTTP/1.1 pipelining does not adequately support simultaneous
rendering of in lined objects or allow for graceful abortion of HTTP transactions without
closing the TCP connection. While the W3C was working on its own connection multiplexer
(MUX) the work never really took off with developers due to the complexity its APIs. De-
tails are at: http://www.w3.org/Protocols/MUX/.

2Wire engineers chose to use a connection multiplexer (MUX) modeled after
Caucho's HMux (details at http://www.caucho.com.) HMux uses a single socket connection
for multiple simultaneous conversations that are full duplex streams. Figure  13-3 illustrates
a typical MUX-based conversation across a single open socket connection - of course, the
whole point of using MUX is that several of these conversations may be happening simulta-
neously.
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Figure 13-3 To more efficiently use network sockets, the 2Wire CMS protocol uses a
MUX layer. The gateway box opens a socket and both the gateway and
the server make requests over the open socket.

The 2Wire protocol is a variation of the XML-RPC protocol that moves XML data
using TCP socket protocols to provide both efficiency to each network connection. The
gateway device opens a socket connection to the CMS datacenter. The socket connection
remains open while several request and response commands process. As opposed to the
normal client/host communication, the MUX connection enables the gateway device and the
CMS datacenter host to make several simultaneous requests to each other. An XML-
encoded payload of data accompanies each command. For example, in Figure 13-2, the first
part of the conversation authenticates the gateway device to the CMS datacenter. The XML-
encoded payload contains the device keycode. The CMS datacenter authenticates the gate-
way device, and returns an authenticated session identifier to the gateway device.

The 2Wire system uses a command protocol to enable the Gateway devices to request
updates, receive its initial settings, and provide registration information. The protocol is ex-
tensible so 2Wire may add additional commands without redeploying the Gateway devices.

Each of the commands between the gateway device and the CMS datacenter provide
the needed interaction to transparently configure, and maintain the HomePortal gateway
device. This greatly hides the complexity from end user. All the end-user sees is the
browser-based user interface shown in Figure 13-4. You might wonder, as a consumer of
technology devices yourself, why every high technology device does not 2Wire's level of
ease of use and configuration? In a word: complexity.
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Figure 13-4 The end-user perspective of the 2Wire system shows a friendly Web
browser interface to the HomePortal gateway device settings. .

Testing In A Complex Environment

Consider what it would take to test the 2Wire system for concurrency problems and to
determine the scalability of the system. The system has several potential problem points:
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•  The communication protocol between the HomePortal gateway device and the
CMS datacenter uses a custom authentication mechanism, over a MUX connec-
tion, using a modified XML-RPC protocol, and a custom command/response
protocol. Additionally, the system uses SSL to encrypt the communication be-
tween the HomePortal gateway device and the CMS datacenter. There is no off-
the-shelf test tool to check this system.

•  Since the gateway device should only have to support one user operating its
browser-based configuration interface, checking the gateway device for func-
tionality should suffice. However, there is no programmatic way to tell when
new functions are added to the device and the dynamically updateable nature of
the device means the functions may change without warning.

•  The 2Wire datacenter uses redundant load balanced routers to share support of a
population of gateway devices. Load balancers need to be tested to make sure
they are equally sharing the load among the available servers.

•  The CMS host provides the business workflow needed to support a population
of gateway devices. The workflow of any of the gateway device commands re-
quires a transient persistent session to be managed by the CMS host while the
MUX connection is open. Poorly implemented code and bugs could potentially
introduce concurrency problems into the CMS host that would only be found
with loads large enough for the host to run out of resources.

•  The CMS host uses a relational database to provide persistent storage of gate-
way device information. The database needs to be tested for efficiency and ca-
pability.

While off-the-shelf testing tools showed facets of CMS performance no single tool
showed the entire picture. And no single tool could answer the overall question of system
scalability and performance from end-to-end. 2Wire found in TestMaker the ability to emu-
late three parts of their system as illustrated in Figure 13-5.
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Figure 13-5 2Wire chose TestMaker because of its flexibility. TestMaker provides an
emulation of the HomePortal gateway device, the CMS Host, and even
the end user.

TestMaker is appropriate for three different tests in the 2Wire system. TestMaker
emulates the actions of an end-user behind a browser. TestMaker drives HomePortal gate-
way device using native HTTP protocols to test the functions of the gateway device. Sec-
ondly, TestMaker emulates the gateway device by interacting with a CMS host using the
native CMS host command protocols. Lastly, TestMaker emulates the CMS host by driving
the database system using native JDBC drivers.

Additionally, 2Wire saw benefits to how its software development, QA and IT groups
could be leveraged through the use of the TestMaker test environment. 2Wire envisioned
these roles.

•  Software Development Group - writes Java modules that plug into the Test-
Maker framework that implement 2Wire Gateway functions. Development
writes test agents that call Java modules to perform functional tests against new
2Wire CMS functions.

•  Quality Assurance Group - writes test agent scripts to run performance and
scalability tests of new 2Wire CMS functions. These tests isolate performance
bottlenecks and show where optimizations will lead to better throughput, better
resource usage and stability.

•  Operations Group – IT managers use the test agents from development and QA
as proof-of-delivery checks on new 2Wire CMS builds and also as a quality of
service monitor.

While 2Wire was concerned with the potential problem points listed above, their high-
est priority was to certify the CMS host as ready to serve a population of gateway devices.
So, 2Wire contracted with PushToTest to provide a custom test environment based on the
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TestMaker open-source project and to conduct an independent audit of CMS system per-
formance and scalability:

•  Wrote a scalability study proposal to define the criteria for good performance
and scalability of the backend HomePortal/CMS support system. We inter-
viewed the software developers, QA technicians and IT managers to understand
each group's goals and concerns. The resulting test criteria define four user ar-
chetypes – prototypical HomePortal users – from which we modeled intelligent
test agents. The criteria define a combination of agents to simulate user demands
on the system.

•  Built, deployed, and then analyzed an intelligent test agent system to determine
the maximum concurrent users and throughput measured in transactions per sec-
onds and how these relate to the number of HomePortal gateway devices sup-
ported by a server.

•  Wrote the XML-RPC protocol handlers needed to simulate a HomePortal unit.
PushToTest then used TestNetwork, the commercial version of TestMaker that
features a distributed test and analysis environment, to run thousands of agents
concurrently to simulate a real-world environment to determine system func-
tionality, scalability and performance. Details on TestNetwork are at
http://www.pushtotest.com/ptt/TestNetwork/index.html.

•  Trained 2Wire software developers and QA technicians on using the Push-
ToTest TestMaker and TestNetwork software so that 2wire engineers will be
able to build new tests and maintain existing tests.

The project resulted in test data that 2Wire takes to its customers, including SBC and
Verizon. Plus, the extended TestMaker and TestNetwork environment provides an extensi-
ble test platform for checking system scalability, performance and functionality as the infra-
structure, CMS software, and deployments change.

Next this chapter describes the test method, how the criteria for good performance
were developed, the test environment, and the test results.

THE TEST METHOD

2Wire designs CMS solutions to be reliable and scalable in increasingly large deploy-
ments. While the individual 2Wire system components are standard off-the-self proven Web
infrastructure, 2Wire needed to develop and use new test methodologies, techniques and
tools to understand the overall system performance. To address the advanced nature of the
2Wire CMS solution design, 2Wire developed two test methodologies:
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•  User goal oriented testing - Rather than testing individual system functions,
2Wire developed user archetypes for prototypical users. Intelligent test agents
were coded against the user archetypes. Test agents may run concurrently and
each logs its results for later analysis. The tests measure system performance
against user goals.

•  Real world device emulation - The test environment implements the native
protocols used by the CMS datacenter and HomePortal gateway devices. Conse-
quently, the tests drive the entire system as a real gateway device would. Addi-
tionally, the emulated devices may be run from within the datacenter or from
remote locations.

2Wire's test method measures system scalability and performance in two ways:

•  Vertical scalability - Measures the capacity of a CMS server to efficiently han-
dle each gateway device requests. A system scales well vertically when all re-
quests are handled within predetermined duration.

•  Horizontal scalability - Measures the capacity of the CMS host datacenter to
respond to increasingly large populations of gateway devices. A system scales
well horizontally when overall system performance is not impacted as additional
client devices are added.

By design, CMS solutions provide a polling-style system where CMS responds to re-
quests made by Gateway devices. The system uses Internet protocols (XML-RPC over
TCP/IP connections) for the gateway devices to interoperate with the CMS host. These pro-
tocols are used in three increasingly complex categories of transactions. These are outlined
in Table 13-1.

Table 13-1 Categorizing transactions by payload size

Category Description Average
payload size

Category 1 Services that require stateless simple responses to
requests. For example, updating DNS services.

1,200 bytes

Category 2 Services that require multi-protocol multi-step
stateful transactions with database access. For ex-
ample, the HomePortal gateway devices issue up-
date requests to the CMS host periodically.

4,500 bytes

Category 3 Services that require multi-step transactions that
require large amounts of data transfer. Examples:
CMS provides automatic upgrade capabilities to the
Gateway devices.

75,000 bytes
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Category Description Average
payload size

By design, the 2Wire Gateway devices have a normal behavior that includes periodic
communication with the CMS host, regular user requests for help, and occasional software
upgrades. For the purpose of the test project, we made the assumptions about number of
requests a 2Wire HomePortal gateway device generates requests for the operations listed in
Table 13-2.

Table 13-2 CMS Operations and Planned Frequency

Operation Planned Frequency

Operationg #1, the Homeportal device checks
with the CMS host for updates.

1 per day

Operation #2, the HomePortal device receives its
initial operational settings and updated pro-
gramming.

1 on start-up, then 1 per
year

Operation #3, the HomePortal user requests
information about settings.

1 per month

Operation #4, the HomePortal receives new
programming.

3 per year

Operation #5, the HomePortal registers itself
with the CMS host.

1 per year

2Wire scalability and performance tests emulate the real world CMS host datacenter
serving a population of HomePortal gateway devices by implementing each operation
(Heartbeat, Bootstrap, etc.) in an intelligent test agent. A mixture of test agents issues live
requests to a CMS test host datacenter concurrently. For example, when testing a CMS so-
lution with an emulated population of 5000 gateway devices the concurrently running test
agents issue the following mixture of operations listed in Table 13-3.

Table 13-3 Mixture of planned operations

Operations Percentage Mix Operations issued from
the test agents

Operation #1 96.960% 4,848
Operation #2 0.177% 9
Operation #3 2.155% 108
Operation #4 0.531% 27
Operation #5 0.177% 9
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Operations Percentage Mix Operations issued from
the test agents

The intelligent test agent method provides an easy technique to change the percentage
mixture of operations. Additionally, testing with larger populations of gateway devices is
accomplished by adding more concurrently running test agents.

While the TestMaker test agents create near real-world usage there are set-up opera-
tions that need to be run prior to a starting a test. Figure 13-4 shows the order in which the
steps are taken. During the set-up phase a special configuration test script creates a delimited
data file of unregistered gateway devices by connecting to the CMS database. During the
Live Test phase the agents speak native CMS protocols to drive transactions. The analysis
phase tallies the results recorded during the Live Test phase into statistical reports.

Figure 13-6 The steps to conduct a test.

Test results are stored in delimited log files and analyzed for transactional statistics,
including transactions per second (TPS) for successful operations and a weighted scalability
and performance index (SPI) that includes operations that resulted in errors. SPI, first intro-
duced in Chapter 2, is a weighted measurement that accounts for slow performance in indi-
vidual requests and errors during each test run.

Lets look at how a test is staged using this methodology.

TEST ENVIRONMENT CONSIDERATIONS

With the extended TestMaker enabled to speak native CMS protocols, 2Wire has a lot
of flexibility to staging scalability and performance tests. For example, test agents may be
run from within the datacenter to conduct functionality tests, and external to the datacenter
for scalability testing. Figure 13-7 shows a configuration where test agents are run outside of
the datacenter to test overall system scalability under increasing numbers of emulated
HomePortal gateway devices.
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Figure 13-7 A scalability testing configuration checks the CMS datacenter for
throughput by increasing the numbers of emulated HomePortal gateway
devices.

The TestNetwork environment enables 2Wire to develop system load in near real-
world conditions to make the results as meaningful as possible. The TestNetwork environ-
ment uses TestMaker as a central console to coordinate the launch of a test on a set of Test-
Nodes. Because of the overhead of the gateway device emulation, each TestNode emulates
up to 150 gateway devices. The TestNodes return their logged results data to TestMaker for
analysis. Table 13-4 explores the devices, tools, and settings for the test environment in
more depth.

Table 13-4  Test environment devices, tools and settings:

Component Description

Intelligent test agents Agents implement the behavior of prototypical users. For
example, by speaking native CMS protocols an agent may
emulate a HomePortal gateway device. Running multiple
concurrent agents simulates multiple gateway devices.

TestNetwork TestNodes Each TestNode is an inexpensive RedHat Linux-based
system with 1.4 MHz Intel processor, 256 Mbytes of
memory and IDE hard disk mechanisms. TestNodes run
Java Virtual Machine (JVM) version from Sun and the
TestNetwork software, including the HomePortal gateway
device native protocol emulation.



16 The Java Design and Test Automation Guide  Chap. 13

Component Description

2Wire Production Data-
center, Staging Server

2Wire operates a production datacenter that features stag-
ing servers that are used to test new CMS software prior to
installing the new software onto the live production serv-
ers. Staging servers are equal to the production servers in
terms of bandwidth and capacity.

Network connectivity Test agents interoperate with the datacenter over switched
100 Mbit Ethernet connections. TestNode devices operate
on the company network and are isolated to a small sub-
net.

Firewall TCP/IP connections between TestNodes and CMS hosts
pass through a firewall device.

With this configuration for the test environment 2Wire conducts scalability and per-
formance tests in a laboratory setting and extrapolates to near real-world results. The team
took the following steps to conduct a test.

Between individual tests the TestNetwork/Gateway emulation and the application
server/database will be restarted to reduce the risk that memory leaks and unreleased net-
work connections might affect the test results.

1. Generate gateway identification numbers for each TestNodes. A special pur-
pose test script queries the CMS database for available serial numbers. The
script divides the ID numbers into equal groups according to the number of
TestNodes to be used. The script copies the resulting ID number files to the
TestNodes.

2. Determine maximum throughput of an individual TestNode. A special test
script runs increasing levels of concurrent test agent threads on a local Test-
Node. The script determines the most efficient amount of concurrent test
agent threads by evaluating throughput against the number of threads. At the
time, this script determined that each TestNode could handle 75 concurrently
running test agent threads.

3. Determine maximum throughput of a single CMS host. Perform several runs
of concurrent test agents, starting with 50 agents running on each TestNode
and between runs increasing by 10 agents on each TestNode. Each run will
take 3 minutes, after the run-up time it takes to instantiate the agents.

4. Analyze the results to find the maximum transactions-per-second (TPS) level
with the least amount of exceptions. The agent script automatically outputs a



Concurrency and Scalability in a High Volume Datacenter 17

comma-delimited log of results. The tally_agent script then analyzes TPS
values from the logs.

5. Run steps 3 and 4 against, but this time run the test for 15 minutes. This was
done to find memory leaks, unreleased resources, and database resource us-
age (CPU, memory, disk.) Later we ran the same test for 8 hours. When then
analyzed the differences between the short-duration and longer-duration runs.

Using the test environment and these steps, 2Wire can change the nature of what is
tested by adding test agents and adjusting the duration and make-up of each test.

CONSTRAINTS IN THE TEST ENVIRONMENT

So far in this chapter, it may appear that the TestMaker test environment is all things
to 2Wire's effort to check its own technology for scalability, performance and functionality.
TestMaker is a good start, but it is not thorough. This section describes some of the things to
look out for when testing in your own environment.

All of the test results 2Wire provides to its customers include a general disclaimer that
your tests may vary. Changes in equipment, network connectivity, and software will greatly
impact test results. Because of this, 2Wire offers PushToTest services to its customers to
verify a customer's test goals, methodology, test configuration, and results. Additionally,
2Wire engineering constantly strives to improve its software performance and reliability
through regular maintenance and upgrades. Each new 2Wire software rollout is intended to
positively effect scalability and performance results.

Tests conducted in a laboratory setting may not be valid to extrapolate into real-world
production environments where network latency, TPC/IP connectivity and routing issues
may put demands onto the system that are not in the test environment.

2Wire's goal in testing CMS included measuring the maximum concurrent HomePor-
tal gateway device to CMS datacenter transactions. The tests did not include all of the gate-
way device commands. For example, the gateway device provides dynamic DNS service
and FTP service that was not tested. Additionally, the tests performed minor checks of the
response data for validity and integrity. If the response contained a succeeded response code
then that is all the test agents looked for in a successful response. A more in-depth test
would also check the response data for validity.

In addition to the end-to-end tests, 2Wire's IT managers wanted to do component iso-
lation tests of segments of the network infrastructure. For example, they wanted to bypass
the load balancer and run a battery of tests directly against a particular CMS host and data-
base server. They sought to get a more detailed statistical view of the components of their
infrastructure. Unfortunately, we just did not have enough time to do component isolation
tests.

I encountered another problem when moving the TestMaker environment from Win-
dows-based platforms to Linux, and also when moving from one Java Virtual Machine to
the next major version. It turns out that the default encoding styles for URL and string en-
coding changed between platforms.
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SUMMARY

Using the TestMaker tool and the methodology presented in this book, 2Wire better
understood its ability to serve customers. The knowledge gained through the experience
enabled 2Wire to save money by buying only the needed network and server infrastructure it
needed, and to certify their datacenter as ready to serve large populations of 2Wire Home-
Portal gateway devices. The resulting custom test and monitoring environment checks
2Wire systems for scalability, reliability and availability. The new test environment paid for
itself in its first month of operation by leveraging the development, QA and operations ef-
forts together.
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C H A P T E R  1 4

Making the Right Choices for SOAP Scalability
Software developers live in a time that offers software developers the greatest choice

of software development tools, application servers, and connectivity ever. Each choice that
you make affects the scalability and reliability of your finished application, especially if
you're building Web Services. For example, as you will learn later in this chapter, my study
of SOAP encoding styles found a 30-fold performance improvement by choosing one SOAP
encoding-style over the others. By understanding the performance impact of SOAP encod-
ing styles, Web service development tools, application servers, and platforms, our choices
greatly improve system performance.

This chapter presents results of an investigation that shows how each choice immedi-
ately impacts scalability and reliability. It discusses the impact of letting development tools
make choices for us on scalability and performance. Then it presents directions, tools, and
test agents to stage tests in your own environment.

WHY IS SOAP SO POPULAR?

I my experience, when independent technology innovations intersect, the world enjoys
life changing products, services and techniques.  For example, the light bulb required both
electricity generation and filament fiber technology. In the case of Web Services, enterprise
information technology managers had just come off a multi-year binge where they bought
huge numbers of computers, servers, routers, and other Web infrastructure. Left with a re-
cession, terrible stock market, uncertainty about the world economy, and having to content
with terrorism and SARS, these information managers returned to their existing Web infra-
structures increase productivity of their teams through new software projects.

At the same time, most software developers realized they really liked XML. For ex-
ample, XML was much better than using the Microsoft Windows Registry or text-based
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property files to store and describe application data. Software developers saw a good thing
in XML and wanted to find more ways to use XML in their applications.

As a software developer I began noticing application-programming interfaces (APIs)
that expected to receive a value that contained XML encoded data. For example, when
building a portal system for Sun Microsystems I found that the servlet to create a new user
account received the fields that made up the user contact information (email, address, and
telephone number) in an XML document. Rather than pass in one value at a time to a
method, instead the method took one XML value that contained several values. Using XML
to implement an application’s interfaces is a clear win to developers. Plus, these XML de-
scribed interfaces could work across platforms and programming languages. With XML
everything looks like an interface.

These intersecting technologies power the widespread enthusiasm for Web Services.
At the same time, software developers were again experimenting with software architec-
tures, especially with the location of application business logic and presentation code. Pres-
entation code handles windows, mice, keyboard and other user interactions. Business logic
is the instructions that define the behavior and operation of an application.

The first generation software architecture built the presentation and business logic on a
single system. In the second generation, Client/Server architecture brought back the large
centrally controlled datacenter so familiar in the 1960s when mainframe’s ruled the infor-
mation world. In client/server architecture the desktop system is a “dumb” terminal that only
needs to display the data provided by the server. The early Internet was modeled after cli-
ent/server architecture where the browser made simple request to a server. As browser’s
improved in functionality - applets, JavaScript, ActiveX, DHMTL were introduced - some
systems included business logic on the desktop side. However, the majority of function re-
mained on the server.

The age of "Grid Computing" is upon us where an application host business logic
modules on the desktop or server. The modules discover each other using UDDI and P2P
technologies. Also multiple copies of the business logic modules may run in a grid of data-
centers to allow failover, dynamic routing and functional specialization. All of these archi-
tectures run in a Web environment and can host Web Services.

So even if SOAP-based Web Services are replaced with some other type of Web
Service technology, remote procedure calls using XML encoded data will be around for a
very long time.

SOAP ENCODING STYLES

SOAP uses XML to marshal data that is transported to a software application. Most of
the time, SOAP moves data between software objects, but the SOAP specification was in-
tended to be useful for old legacy systems as well as modern object-oriented systems. Con-
sequently, SOAP defines more than one data encoding method to convert data from a
software program into XML format and back again. The SOAP-encoded data is packaged



4 The Java Design and Test Automation Guide  Chap. 14

into the body of a message and sent to a host. The host then decodes the XML-formatted
data back into a software object.

Since SOAP's introduction, three SOAP encoding styles have become popular and are
reliably implemented across software vendors and technology providers:

•  SOAP Remote Procedure Call (RPC) encoding, also known as Section 5 en-
coding, as defined by the SOAP 1.1 specification and later defined in SOAP 1.2
as RPC encodings and conventions

•  SOAP Remote Procedure Call Literal encoding (SOAP RPC-literal,) uses RPC
methods to make the call but uses an XML do-it-yourself method for mar-
shalling the data.

•  SOAP document-style encoding, also known as message-style or document-
literal encoding.

There are other encoding styles, but software developers have not widely adopted
them, mostly because their promoters disagree on a standard. For example, early on in the
invention of Web Services Microsoft promoted Direct Internet Message Exchange (DIME)
to encode binary file data, while the rest of the computer industry adopted SOAP with At-
tachments. SOAP RPC encoding, RPC-literal and document-style SOAP encoding have
emerged as the encoding styles that a software developer can count on.

Some developers do not realize that such encoding styles exist because the tools they
use to develop Web Services are doing the work of implementing the encoding styles for the
developer. For example, BEA WebLogic Workshop provides a fast and efficient implemen-
tation of the Java Web Service (JWS) interface. JWS implements a set of application pro-
gramming interfaces (API) and a standard description of the files the JWS engine needs to
automatically deploy the Web Service on the server. JWS builds the Web Service deploy-
ment descriptors for you automatically. So you need to only define the public Java methods
and JWS publishes the SOAP proxy to access the methods. This makes development appear
very easy, but there is a lot of work going on under the covers, so to speak. We'll see this in
more depth later in this chapter.

Before I discuss SOAP encoding style's impact on performance, you should under-
stand the differences between these styles of SOAP encoding. Figure 14-1 shows the entire
stack for a SOAP RPC encoded call.
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Figure 14-1 A Java method calls a Web Service by using the SOAP stack and SOAP
RPC encoding.

SOAP RPC is the encoding style that offers the most simplicity for developers. The
developer makes a call to a remote object, passing along any necessary parameters. The
SOAP stack serializes the parameters into XML, moves the data to the destination using
transports such as HTTP and SMTP, receives the response, deserializes the response back
into objects and returns the results to the calling method. Whew! SOAP RPC handles all the
encoding and decoding, even for very complex data types, and binds to the remote object
automatically.

Now, imagine you are a developer with some data already in XML format. SOAP
RPC also allows literal encoding of the XML data as a single field that is serialized and sent
to the Web service host. Since there is only a single parameter -- the XML tree -- the SOAP
stack only needs to serialize one value. The SOAP stack still deals with the transport issues
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to get the request to the remote object. The stack binds the request to the remote object and
handles the response.

Lastly, in a SOAP document-style call, the SOAP stack sends an entire XML docu-
ment to a server without even requiring a return value. The message can contain any sort of
XML data that is appropriate to the remote service. In SOAP document-style encoding, the
developer handles everything, including determining the transport (e.g., HTTP, MQ, SMTP)
marshaling and unmarshalling the body of the SOAP envelope, and parsing the XML in the
request and response to find the needed data.

The three encoding systems are compared in Figure 14-2.

Figure 14-2 SOAP encoding styles offer software developers greater productivity, but
it comes at a performance and system resource cost.

SOAP RPC encoding is easiest for the software developer; however, all that ease
comes with a scalability and performance penalty. SOAP RPC-literal encoding is more in-
volved for the software developer to handle XML parsing, but requires fewer overheads
from the SOAP stack. SOAP document-literal encoding is most difficult for the software
developer, but consequently requires little SOAP overhead.

Why is SOAP RPC easier for the developer? With this encoding style, you only need
to define the public object method in your code once; the SOAP stack unmarshals the re-
quest parameters into objects and passes them directly into the method call of your object.
Otherwise, you are stuck with the task of parsing through the XML tree to find the data ele-
ments you need, and then you get to make the call to the public method.

There is an argument for parsing the XML data yourself: since you know the data in
the XML tree best, your code will parse that data more efficiently than generalized SOAP
stack code. As we will see when we measure scalability and performance in SOAP encoding
styles, we will find this to be the case.

But before I go further into that, we look at how enterprise information systems man-
agers are coming to grips with SOAP encoding styles and scalability.
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SIMPLE OBJECT ACCESS NEEDS SIMPLE TESTING

Elsevier (www.elsevier.com) is the leading research content publisher for the science,
technology and medical industries. Elsevier now uses a content publishing platform that uses
SOAP to build application-programming interfaces. Elsevier's information managers need to
know if their choices of SOAP encoding style will scale and perform to handle millions of
transactions every day. Their decisions affect how Elsevier will invest capital in new infra-
structure. Over time, they need to know how new releases of their own software, new re-
leases of application server software, and platform changes will affect scalability and
performance.

Elsevier learned about TestMaker through the open-source community and contacted
PushToTest (details at www.pushtotest.com) to see if TestMaker was appropriate for their
testing needs. Elsevier asked PushToTest to conduct an independent audit of SOAP stacks
and encoding styles to answer their questions about system performance and scalability. The
resulting test environment is illustrated in Figure 14-3. PushToTest delivered a Test Web
Service (TWS) that handles RPC, RPC-literal and document-style SOAP messages and runs
on a variety of application servers. The environment is completed with a set of intelligent
test agents to check TWS for scalability and performance.

Figure 14-3 The test environment to check SOAP scalability uses test agents to make
requests to a SOAP-based Web service.

TestMaker checks Web services for scalability, performance, and reliability. Software
developers, QA analysts, and IT managers use TestMaker to build intelligent test agents that
implement archetypal user behavior. The agents drive a Web service using native protocols
(HTTP, HTTPS, SOAP, XML-RPC, SMTP, POP3, IMAP) just as a real user would. Run-
ning multiple intelligent test agents concurrently creates near production-level loads to
check the system for scalability and performance.

In addition to checking SOAP encoding scalability, the Elsevier test environment pro-
vides a benchmark specific to Elsevier's systems to show a performance comparison for a
variety of application servers and platforms. For example, TWS is currently implemented to
run on IBM WebSphere, BEA WebLogic Workshop, and the SunONE Application Server. I
am confident that ports to ElectricMinds Glue, Apache Axis, Systinet WASP, and other ap-
plication servers is straightforward.

I built the Elsevier test environment by customizing TestMaker to support SOAP
RPC, SOAP RPC-literal and SOAP document-style requests, and by implementing TWS to
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respond to requests in these encoding styles. The request to TWS contains two parameters:
the first defines the size of the response and the second defines a delay value before re-
sponding. TWS responds by creating a response document containing random gibberish
words that appeared in five response elements; each element has one child element. A
TestMaker test agent uses the Apache SOAP library to make requests to TWS. The test
agent varied the number of concurrent requests to TWS and the payload size of the response.
The test agent logged the results to a delimited log file, which was subsequently summarized
by a tally script. The tally script determined the number of transactions per second (TPS)
performed by the test by counting the duration of successful transactions. We defined suc-
cess as the absence of transport or SOAP faults.

With Sun Microsystems support, I ran the tests on Sun Solaris E4500 servers with 6
CPUs and 4 GB of RAM. The Test Web Service (TWS) used the SOAP stack provided by
the underlying application server. For example, WebSphere provides Apache SOAP, BEA
WebLogic provides their own implementation that uses the JAX-RPC APIs, and the
SunONE Application Server uses the Java 1.4 JAX-RPC library. On the client side Test-
Maker uses the Apache SOAP library.

In the Elsevier project, I found that a developer's choice of encoding style determines
to a large extent the scalability and performance of a Web service. The SOAP implementa-
tions universally showed scalability problems when using SOAP RPC encoding, especially
as payload sizes increased, as illustrated in Figure 14-4.

Figure 14-4 SOAP RPC encoding: Scalability problems become noticeable with in-
creased payload sizes.

As Figure 14-4 shows, the test agent recorded 294 transactions per second when
making requests where the response SOAP envelope measured 600 bytes of SOAP RPC-
encoded data. As the test agent increased the response size, the transactions per second
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plummeted. When making requests of 96,000 bytes of SOAP RPC-encoded data, the agent
measured only 9.5 transactions per second.

When the test environment uses SOAP document-style encoding the performance
fared much better, as you can see in Figure 14-5.

Figure 14-5 Document-style encoding: Performance stays relatively stable with in-
creased payload sizes.

With 600 bytes of document-encoded data, the test agent measured 469 TPS. Recall
that the SOAP RPC-encoded requests gave us 294 TPS for requests of the same size. Addi-
tionally, when the test agent increased the response size, the TPS values did not degrade
significantly when we used document-style encoded responses.

When the test environment uses SOAP RPC-literal encoding I found an efficient mid-
dle ground, as you can see in Figure 14-6.
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Figure 14-6 SOAP RPC-literal provides the performance benefits of SOAP document-
style encoding with a little more work required to parse through the XML
data.

SHOULD YOU LET THE TOOLS DO THE DRIVING?

While the SOAP encoding styles provide a good range of power and flexibility, they
also introduce interoperability problems. Most of the SOAP tools on the Java platform de-
fault to SOAP RPC encoding styles. For example, when using IBM WebSphere Application
Developer, the default encoding style is set to SOAP RPC. On the other side of the divide,
.NET development tools implement document-style SOAP calls by default. This is akin to
watching two boats pass in the night. Both can be made to interoperate, but developers need
to be wise to the different encoding styles to avoid problems.

In their attempt to make software developers' lives easier, these tools may be making
decisions for you that affect scalability. This was highlighted when Microsoft and Sun de-
bated the relative virtues of J2EE and .NET at an event hosted in Silicon Valley by the
Software Development Forum recently. Microsoft made the argument that it serves develop-
ers best by being the sole supplier of a complete solution. On the other end of the spectrum,
Sun posited that developers should have a choice of tools that they can assemble into a solu-
tion. This top-down versus bottom-up argument permeates into both companies' develop-
ment tools. For example, representatives from Sun and Microsoft were asked to explain why
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developers would choose SOAP RPC encoding over SOAP document-style encoding. Mi-
crosoft's reps gave a somewhat technical answer, but conceded that they thought the issue
was moot, since developers should rely on their development tools to make decisions of
encoding styles.

Software developers serve themselves best by making informed decisions of how
helpful their development tools and environments should be. Understanding each tool's han-
dling of SOAP encoding styles is an important factor to delivering well performing and reli-
able software projects.

May I Freak Out Now?

With 600 bytes of SOAP RPC-literal encoded data, the test agent measured 422 TPS.
That is nearly the performance recorded for SOAP document-style requests. SOAP RPC-
literal encoding did not show the plummeting TPS function of SOAP RPC encoding per-
formance.

At this point your mind might be racing with questions like:

•  Is this true? Can SOAP scalability be that bad?

•  What are the performance differences between the application servers? Will
IBM WebSphere perform better than BEA WebLogic?

•  What are the most important considerations to build reliable Web Services?

•  What equipment do I need?

•  What is the best way to deploy Web Services?

•  What is the best software platform to build my Web service?
In my experience every production environment is unique. So, rather than try to be

your answer guy for every application server and encoding style, I would like to give you a
performance kit that you can download and use in your own production environment. I have
made a generalized version of the Elsevier test environment available for free download for
your immediate use at: http://www.pushtotest.com/ptt/kits/encodingkit.html. Plus, in the
next section I present the kit and show how you may use it in your own environment.
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THE PERFORMANCE KIT

Enterprise information manager choices for Web Service infrastructure are critical to
deploying well performing, highly reliable and scalable systems for running Web Services. I
receive calls everyday from software developers, QA technicians and IT managers wanting
to know:

•  What are the most important considerations to build reliable Web Services?

•  What equipment do I need?

•  What is the best way to deploy Web Services?

•  What is the best software platform to build my Web service?
Several things prevent me from having an immediate answer to your questions. These

include the following:

•  The application servers you use are a moving-target. The popular commercial
and open-source software vendors work tirelessly to improve performance, add
functions, and improve techniques to use their products and technology. The
performance and scalability characteristics change with each new version of
their products.

•  The underlying code libraries in a SOAP stack are moving targets too. For ex-
ample, most of the Java-based Web Service applications use the popular Apache
Xerces library to parse XML data. Xerces is both complex and slow. Changing
to a newer version of Xerces or replacing it with another library greatly impacts
Web Service performance and scalability.

•  Your network infrastructure (load balancers, routers, server equipment, storage
devices) is unique from everyone else. This makes an apples-to-apples compari-
son very difficult.

•  Your own software development efforts will improve performance and scalabil-
ity as new builds of your software application are applied to your production en-
vironment.

So rather than try to answer your questions, this section will show how to understand
Web Service scalability and performance in your own environment.

The Web Services Performance Kit helps information managers with a reliable and
repeatable performance measurement tools for systems that drive Web Service-based busi-
ness. The kit may be applied to any Web Service-based system. However, the examples are
specific to the SunONE Application Server, BEA WebLogic Server and IBM WebSphere
Application Server. First I will give an overview of the kit's contents and then we will see
how the kit is applied to an application server environment.
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How Do I Get The Performance Kit?

The Web Services Performance Kit is available for free download at the PushToTest
Web site. Point your favorite browser to http://www.pushtotest.com/ptt/kits/index.html to
download the kit. The PushToTest site features the latest software, archives of previous ver-
sions, frequently asked questions about the kit and various technical support services, in-
cluding email support lists for users and developers.

The kit is distributed in a Zip archive file format. Extracting the file contents installs
everything in the kit. You will need to also download TestMaker from the PushToTest site.
TestMaker is fully described in Chapter 5. The kit contains test agents that run in the Test-
Maker environment and the Test Web Service that runs everywhere Java 1.4 or greater runs,
including Windows, Linux, Solaris, and Macintosh OS X. Other Java-enabled platforms are
capable of running the kit but have not been tested.

TestMaker updates appear generally once a month to offer bug fixes and new features.
The PushToTest Web site offers a free email announcement service to send email alert mes-
sages when new versions become available. PushToTest does not publish or share email
addresses.

Installing The Performance Kit

Installing the kit is very simple. Balancing that is the Test Web Service that is often
very difficult to install and configure. Inside The Performance Kit you will find the follow-
ing things.

•  Easy-to-read instructions describing how to build and test Web Services on the
SunONE Application Server, BEA WebLogic Server and IBM WebSphere
Server. In this chapter, due to space considerations I limit the examples to test-
ing on a BEA WebLogic Workshop.

•  Test Web Service (TWS) - a free open-source Web Service that simulates a da-
tabase-driven Web service. TWS responds to a variety of SOAP encoding styles
and on several application servers.

•  Performance_Agent - a free intelligent test agent that will determine the scal-
ability and performance of the TWS. Performance_Agent makes multiple con-
current requests to TWS and measures performance in a transactions-per-second
result.

•  TestMaker - a free open-source utility to run Performance_Agent and to create
agents for your own Web service testing. See Chapter 5 for details on Test-
Maker.
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The Performance Kit comes as a compressed archive in ZIP format of HTML docu-
ments, test agent script files, and Java source code files. Please us a decompression utility to
extract the files onto your local computer. The index.html document, among the decom-
pressed files, contains installation, configuration and "how-to" instructions for the kit.

The PushToTest Company provides a variety of support options to help you use the
kit. Support is offered for free from the PushToTest community. Additionally, for-pay sup-
p o r t  a g r e e m e n t s  a r e  o f f e r e d .  D e t a i l s  o n  b o t h  a r e  a t :
http://www.pushtotest.com/ptt/support.html.

Getting Started

After you unpack the kit, I recommend you spent a few minutes getting to know its
components. Take a look at the documentation and peruse the source code files. Most of the
code is self-documented. Then follow these steps to run the kit.

1. If you have not already done so download and install one of the supported
application servers. Sun, BEA and IBM feature free trial versions of their
software: SunONE Application Server, BEA WebLogic Server and IBM
WebSphere Application Server. This chapter will look specifically at BEA
WebLogic Workshop.

2. Install the Test Web Service

3. Download and install TestMaker.

4. Run the PerfCheck agent to test TWS for performance. PerfCheck is an intel-
ligent test agent written and run with TestMaker. PerfCheck includes a Tally
script that shows the Transactions Per Second and other performance metrics
for the TWS.

Next we will look at the components of the kit and see what steps you should take to
install, configure and run the kit.

The Test Web Service

The Test Web Service (TWS) is a Web Service that simulates a typical database-
driven Web Service. TWS takes SOAP RPC encoded requests and returns a response. The
response contains gibberish words of a length determined by a parameter of the request.
TWS is a simple and easy choice to test application server platforms for performance, reli-
ability and scalability.

The kit implements TWS on a variety of application servers. For BEA WebLogic I
used BEA's integrated development environment named Workshop. Workshop’s designers
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have figured out a clean way to present the myriad of options found in the SOAP and WSDL
specifications. To see this in action, look at Figure 14-7.

Figure 14-7 Workshop makes the many SOAP options visually easy to adjust, includ-
ing setting SOAP encoding styles between document-style and SOAP
RPC-style.

Public methods in a Java class are turned into SOAP-based Web Services automati-
cally. For example, Figure 14-7 shows the responder_rpc class’s single public method
named respond. The right-most Properties pane shows the SOAP options for respond. The
figure above shows how easy it is to change SOAP encoding styles for the respond method.
The choices are document, rpc and default. WebLogic's default value chooses SOAP docu-
ment-literal style encoding.

Choosing a SOAP encoding style in the Design View changes the JWS header in the
Java code that is viewable in the Source View. JWS does the work for you. For example the
respond method in the Source View is declared by default as:

import weblogic.jws.control.JwsContext;
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/**
* @jws:protocol form-get="false" soap-style="document"
*/

public String respond(int wordcount, int delay) { ...

This is enough for Workshop to package the deployment descriptors to tell the JWS
engine to deploy a Web Service that has a respond method that uses SOAP document-style
encoding.

When we change the encoding style in the Design view to rpc the Java code changes
to:

import weblogic.jws.control.JwsContext;

/**
* @jws:protocol form-get="false" soap-style="rpc"
*/

public String respond(int wordcount, int delay) { ...

This does not appear to make much difference in the code; however, behind the scenes
a lot is happening. And much of it impacts the scalability of the respond method. When this
Java code is run on a JWS compatible virtual machine - such as WebLogic Workshop - then
the virtual machine automatically adds a SOAP proxy to the method so it will respond and
reply to SOAP requests. The proxy handles all of the marshalling and unmarhsalling of pa-
rameters to make the method call and respond with a response value.

To install and run TWS in WebLogic Workshop, run Workshop, open the TWS pro-
ject, open the responder_rpc.jws file, and choose the Build and Debug command in the De-
bug drop-down menu. Workshop will compile the Java code into a WAR file, deploy the
application as a Web Service, and display a browser-based debug harness. Have some fun
with the debug harness. It will let you type in calling parameters for TWS and immediately
see the results.

As described in the Java code of TWS, the respond method has two parameters.
Wordcount is an integer value that tells TWS how to compose the result. TWS uses the
Lingo.java object to compose a String value containing a bunch of gibberish words. The
wordcount value determines the quantity of gibberish words. Consider this example where
Lingo returns a phrase with 50 gibberish words.

from com.pushtotest.tool.util import Lingo
myLingo = Lingo()
print myLingo.getMessage( 50 )

Ia quantos quantos delorum quantos. Delorum ditchek quantos
so quantos ad. Lipsem so novus surbatton deplorem deplorem.
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Delorum surbatton novus delorum. Lipsem ditchek so. Lipsem
quantos it infreteres ad deplorem ipsem surbatton.
Ca nmpus it ad ipsem novus it surbatton delorum. Campus ip-
sem quantos novus sit ditchek ventes aqua ad ad aqua
ditchek. Novato aqua deplorem it infreteres infreteres
quantos.

The respond method will return a response containing Lingo text of the size deter-
mined in the request. The delay parameter determines the number of milliseconds to sleep
before responding to the request.

Once you have accomplished this task, please move on to the next section, where you
will configure and run the PerfCheck test agent to drive the running Web Service.

PerfCheck

PerfCheck is an intelligent test agent written in TestMaker. Chapter 5 gives a thorough
explanation of TestMaker. PerfCheck identifies the throughput of the Test Web Service
(TWS) by making requests to TWS with increasing payload sizes and measuring the round-
trip request/response time. PerfCheck averages the request/response times and presents a
transactions-per-second result in the TestMaker output window.

PerfCheck issues requests to TWS for a predetermine amount of time, reports the TPS
results metric, and then runs the test another time using a larger payload size. You should
see the TPS value decrease as the payload size increases in accordance with the test results
we found at PushToTest Labs and presented earlier in this chapter.

PerfCheck is organized among several script files to make the agent easier to under-
stand. The following is a list and description of PerfCheck's contents.

•  Properties.a - Set-up, configuration, and other parameters for the test.

•  Master.a - This is the main agent script to run. This script configures the test,
stages the test and records the results. The script displays the Transactions Per
Second and other performance metrics in the Output window.

•  Tally.a - Tally the results from the log file into Transactions Per Second (TPS)
and other metrics.

•  agents - A directory holding the scripts that implement the behavior needed to
test the Web Service.

•  logs - A directory to hold the logged test result data.

Next, I will take an in-depth look at these scripts and provide an explanation of how
the test is constructed.
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Properties.a

The Properties.a file contains these parameters to control the payload size and duration
of the tests.

timetorun = 8 * 60 * 1000

PerfCheck runs in cycles. Each cycle increases the payload size of the TWS responses.
The duration of the cycle is set here. For example, 8 tells PerfCheck to run each payload size
for 8 minutes.

agentcount = 50

At the beginning of each cycle, PerfCheck instantiates a quantity of test agent threads
that run concurrently. Each thread makes a request to TWS, logs the response time and re-
sult code, and then makes another request. The agentcount parameter controls the total num-
ber of concurrent threads to run.

payloadstart = 500
payloadinc = 1000
paycount = 4

PerfCheck uses these parameters to determine the payload size to begin the test with.
The payloadinc value increases the payload size for each cycle. The paycount variable de-
termines the number of cycles PerfCheck will run.

tws_host = "http://examples.pushtotest.com"
tws_port = 7001
tws_path = "TWS/responder_doc.jws"

PerfCheck uses these parameters to identify the location of TWS. The BEA Weblogic
Workshop debug harness will show you the URL to TWS. The debug harness will also show
you the WSDL description of the TWS to identify the location of TWS.

Master.a

The master.a script stages the test by loading the property values, instantiating the test
threads, and then running the tally.a script. To run a test, run the master.a script. The results
will appear in the TestMaker output panel. A closer look at master.a shows how it accom-
plishes these tasks. Here is master.a in its entirety, followed by an in-depth explanation of
the master.a script.

# master.a
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from java.lang import Thread
import java
import time
from java.util import Date
from com.pushtotest.tool.logger import simplelogger
import sys
import thread

print "Configuring to run the test."

exec open( scriptpath + "Properties.a" ).read()

payloadsize = payloadstart

for c in range( paycount ):
    running = 1
    up_count = 0
    record = 0
    tick = 0
    errortick = 0

    first_time = Date().time

    logtarget = resultspath + "results_" + localname \
    + str(c) + ".txt"

    try:
        log = simplelogger.getInstance()
        log.setFileName( logtarget )
    except java.lang.Exception, ex:
        print "Could not start logging."
        sys.exit()

    total = 0
    for a in agents:
        total += a[1]

    if total>100:
        print "Warning: The total number of agents"
        print "         in the Properties.a file is"
        print "         more than 100%."

    for at in agents:

        agenttype = at[0]
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        agent_count = int ( ( float( at[1] ) / \
        float( total ) ) * agentcount )

        for i in range( agent_count ):
            exec open( scriptpath + "agents/" + \
            agenttype + ".a" ).read()

            time.sleep( startupdelay )

    print "Threads started, we're testing!"

    record = 1

    start_time = Date().time
    end_time = start_time + timetorun

    while Date().time < end_time:
        time.sleep( 1 )

    record = 0

    recording_time = Date().time - start_time

    running = 0     # Time to stop

    log.closeLogFile()

    close_time = Date().time
    close_end_time = close_time + maxwait

    while ( Date().time < close_end_time ) and \
    ( up_count > 0 ):
        time.sleep( 1 )

    duration = Date().time - start_time

    exec open( scriptpath + "Tally.a" ).read()

    payloadsize += payloadinc

The master.a script is fairly straight-forward and procedural. It starts the test, runs the
test threads, then runs the tally.a script and cleans-up the test. Next I will cover the master.a
script step-by-step. Chapters 5, 7 and 11 feature other test agents that follow a similar design
pattern as master.a
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from java.lang import Thread
import java
import time
from java.util import Date
from com.pushtotest.tool.logger import simplelogger
import sys
import thread

The master.a script begins with a few import statements. TestMaker provides the
Jython scripting language. Jython is the popular Python programming language imple-
mented 100% in Java. Details on Jython are in Chapter 5. The import statements identify the
Python and Java objects Jython will use to perform the test. For example, later in this agent
we will use the Thread object. This is Java's Thread object for running objects concurrently.

exec open( scriptpath + "Properties.a" ).read()

The exec command runs a the script commands found in the Properties.a script. The
scriptpath variable is a TestMaker system variable that contains the path to the currently
running script.

payloadsize = payloadstart

for c in range( paycount ):

Master.a will cycle through tests with increasing payload sizes. The payloadsize con-
trols the size of the payload. The payloadsize variable initializes to a value set from the
Properties.a script.

    running = 1
    up_count = 0
    record = 0
    tick = 0
    errortick = 0

These variables are used to control the concurrently running test threads we are about
to create.  Running is a flag used to tell the test agents when to run and when to stop.
Up_count counts the number of agent threads that are up and running. Record is a flag that
tesll the running test threads when to start logging results data. Tick is used to keep track of
the total number of completed transactions. Errortick keeps track of transactions that ended
in an error condition.

    first_time = Date().time

First_time keeps track of the time the test started. This will be used later when the
tally.a script reports the results.
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    logtarget = resultspath + "results_" + localname \
    + str(c) + ".txt"

    try:
        log = simplelogger.getInstance()
        log.setFileName( logtarget )
    except java.lang.Exception, ex:
        print "Could not start logging."
        sys.exit()

The master.a script uses TestMaker's log handler to output the test results to a log file.
The test threads will use this log handler.

    total = 0
    for a in agents:
        total += a[1]

    for at in agents:

        agenttype = at[0]

        agent_count = int ( ( float( at[1] ) / \
        float( total ) ) * agentcount )

        for i in range( agent_count ):
            exec open( scriptpath + "agents/" + \
            agenttype + ".a" ).read()

This code calculates how many of each type of thread to run based on the percentage
value set in properties.a. For the purposes of this test the properties.a script uses only a sin-
gle type of test thread. However, you may want to see if using a combination of SOAP en-
coding styles impacts scalability and performance in your environment.

The agents variable is a Jython list object that contains a set of tuples. A tuple here
holds two values, the test thread name and the percentage mix:

[ "wlw_agent_rpc_lit", 75 ]
[ "wlw_agent_docstyle", 25 ]

The first value of each tuple identifies by name the user archetype to use for a test
agent and the second value indicates the percentage mix of this type of test agent to use
when testing. For example, ["wlw_agent_rpc_lit", 75] indicates that 75% of the total number
of concurrently running agents will be using the wlw_agent_rpc_lit test thread behavior.

            time.sleep( startupdelay )
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After each agent thread instantiation, the script uses the sleep method to give some
time for the thread to bring up a client connection before starting the next one. Without this
delay, the threads would start simulatenously and may overrun the environment's resources
to handle instantiating all the threads. As a result one or more threads might timeout before
connecting to the host.

    record = 1

All the threads are instantiated so changing the value of the record global variable tells
the agents to begin logging results to the log object.

    start_time = Date().time
    end_time = start_time + timetorun

    while Date().time < end_time:
        time.sleep( 1 )

Wait around until the amount of time for the test elapses. While the master.a script
sleeps, the instantiated test threads communicate with the target host.

    record = 0

    recording_time = Date().time - start_time

    running = 0     # Time to stop

    log.closeLogFile()

    close_time = Date().time
    close_end_time = close_time + maxwait

The test period is over. Setting the record global variable tells the running agents to
stop logging results.

    while ( Date().time < close_end_time ) and \
    ( up_count > 0 ):
        time.sleep( 1 )

The master.a waits around while the test threads finish and exit. The master.a script
then calls the tally.a script and exits.

test threads
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The test threads are defined in the agents directory. All of the test threads follow the
same design pattern. Rather than showing the entire thread I will show how each thread uses
TestMaker to use the different SOAP encoding styles.

The wlw_agent_rpc.a script implements the code necessary to make SOAP RPC en-
coded requests to the TWS. Here is a snippet of the script showing how to make the SOAP
RPC request to the Web Service.

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

protocol.setUrl( endpoint )

body.setTarget( "http://www.openuri.org/" )
body.setMethod( "respond" )

body.addParameter("wordcount", Integer, payloadsize, None)
body.addParameter("delay", Integer, 0, None )

response = protocol.connect()

The body.addparameter() method provides a powerful way to send objects to the Web
Service. The format allows you to add any object type that is on the TestMaker Java
classpath. In this example we are sending two Integer data types. The first is the wordcount
value and the second is the delay value.

Compare the relatively easy SOAP RPC encoded request to the next snippet of code.
The following code is from the wlw_agent_docstyle.a script that implements the code neces-
sary to make a SOAP Document-Literal encoded request to the Web Service. As we saw
earlier in this chapter, document-literal encoding receives an XML data structure already
well formed and ready to send to the host.

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

protocol.setUrl( endpoint )

body.setMethod( "respond" )

ns = "http://www.openuri.org/"

elRespond = Element( "respond", ns )

ellen = Element( "wordcount", ns )
ellen.addContent( payloadsize + "" )
elRespond.addContent( ellen )
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eldel = Element( "delay", ns )
eldel.addContent( "0" )
elRespond.addContent( eldel )

doc = Document( elRespond )

body.setDocument( doc )

response = protocol.connect()

This snippet of test thread script creates an XML document using the JDOM API that
is fully described in Chapter 7. The request document looks like this when built.

<s:Envelope
   xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
  <s:Body>
    <respond xmlns="urn:responder_msg">
      <delay xmlns="urn:responder_msg">25</delay>
      <length xmlns="urn:responder_msg">75</length>
    </respond>
  </s:Body>
</s:Envelope>

We use the JDOM APIs to build the XML request in a DOM object and then pass the
DOM object to TOOL to make the SOAP call to the server. TestMaker uses the namespace
parameter to identify the designation Web Service name. The endpoint gets us to the right
server, the namespace of the first element gets us to the right Web Service.

Finally, the last snippet of code shows the wlw_agent_rpc_lit.a scripts use of SOAP
RPC-Literal encoding. In this snippet we will use the same JDOM APIs to construct the
XML document. However, we will use the SOAP RPC encoding commands to pass the
XML document as a single element.

protocol = ProtocolHandler.getProtocol("soap")
body = SOAPBody()
protocol.setBody(body)

protocol.setUrl( endpoint )

protocol.setEncoding( Constants.NS_URI_LITERAL_XML )

body.setTarget( "http://tempuri.org/responder_doc" )
body.setMethod( "respond" )

elOne = Element( "respond" )
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elDelay = Element( "delay" )
elDelay.addContent( "12" )
elOne.addContent( elDelay )

elLength = Element( "length" )
elLength.addContent( "25" )
elOne.addContent( elLength )

domo = DOMOutputter()

body.addParameter( "inDoc", w3c_element, \
domo.output( elOne ), Constants.NS_URI_LITERAL_XML )

This code snippet is similar to the previous snippet that used SOAP Document-literal
encoding. This code used the SOAP RPC encoding calls with the following differences.:
setEncoding( Constants.NS_URI_LITERAL_XML) tells TestMaker that the parameters of
the request and response will use Document-literal encoding. Additionally, the addParame-
ter method passed in a w3c_element type of object containing the XML data.

As you can see the kit provides a flexible and powerful way to test the popular SOAP
encoding styles for scalability and performance. To start a test, open TestMaker, navigate to
the kit test agent scripts, open and run the Master.a script. The script displays the Transac-
tions Per Second and other performance metrics in the Output window.

SOME OTHER THINGS WE FOUND

While building and running the test environment for Elsevier, I noticed a few things
worthy of mentioning here. First, each application server platform I worked with has its own
implementation of a SOAP stack. Some even shipped with more than one stack. For exam-
ple, BEA WebLogic Server comes with a SOAP stack that implement the JAX-RPC API
and one that implements the Java Web Services (JWS) APIs. IBM WebSphere comes with
the DOM-based Apache SOAP library, but also has the SAX-based Apache AXIS library. I
would love the opportunity to test the differences between all of these in some future pro-
ject.

I found that while WSDL did a fair job at describing the interface to a SOAP service,
that many times WSDL was not complete. I needed to use a network monitor to see actually
what values were moved over the HTTP transport.

I also noted that while building the test environment for Elsevier, BEA and IBM an-
nounced major new versions of their Web Service application servers. Each new version
changed their SOAP stack implementation with positive and negative impact on perform-
ance and scalability.

Reliability and performance of SOAP application servers is a moving target. This fur-
ther reinforced the lesson that a test environment is necessary to check reliability and per-
formance now and as new implementations become available.
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With the test environment complete Elsevier Science now has the means to understand
reliability, scalability and functionality of its systems. The test agent technology will be em-
ployed as new builds of the Elsevier software and the Web Service application servers be-
come available. The test environment is planned also to provide ongoing tests for regression,
functional tests, and as a proof-of-service monitor.

SUMMARY

In this chapter, we found that software developers have many choices for building
Web Service systems: SOAP encoding styles, Web Service development tools and applica-
tion servers. This chapter presented the results of an investigation that shows how each
choice immediately impacts scalability and reliability.

Elsevier adopted SOAP as their standard way to build their next generation content
aggregation system. We saw how Elsevier developed a new methodology and test environ-
ment to check various SOAP implementations, including application servers, SOAP stacks
and utilities, for scalability and performance.



2 The Java Design and Test Automation Guide  Chap. 15

C H A P T E R  1 5

Mutliprotocol Testing In
An Email Environment

Saint Leo University (http://www.saintleo.edu/) is the third largest provider of online
higher education in the world and the sixth leading provider of higher education to the U.S.
military. The IT staff found TestMaker by searching for open-source test tools that check
email systems for scalability and performance under load. In a few months their students,
faculty and administrators will return for a new session and begin using a new email system.
The question the are asking themselves is:

"Did we buy the right email software package, network bandwidth and servers?"

This chapter presents the results of an investigation to answer this question. It dis-
cusses the needs of the university to conduct a multiple protocol test in an email environ-
ment, the choices of test tools and methodologies, describes in-depth the test agent code
used to conduct the test, and shows how the university analyzed the results.

NEEDS AND BENEFITS

Modern universities depend on email for everything. The university information sys-
tem serves students when they are on campus, students living off campus, and students that
attend sessions at satellite campuses who will rarely be on campus. Plus, the faculty uses the
same email system to coordinate teaching assignments, provide assignments to students, and
communicate with administrators and staff.

IT managers are in a difficult balancing act. The goal of maintaining an email system
is to be efficient on bandwidth and server and router equipment, without pressing the system
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into boundary conditions. In a boundary condition, hard drives run out of space, users cannot
access the system because of overloaded network connections, and system administrators
have no insight into these problems because the system is too overburdened to even produce
administrative reports. It is up to the IT manager to balance the needs for efficiency with the
requirement for availability and system readiness to serve users.

Testing the email system provides two benefits to the university. It uncovers problems
in the current configuration before students, faculty and staff encounter the problems. And
by providing a better understanding of how the email system handles the load of its users,
the university will save money by avoiding unnecessary server and router purchases and by
negotiating better contracts with its Internet service providers.

Like any institution, budgets are driven by the need for efficiency at the university. So,
the IT staff was looking for an open-source tool simply to save their budget from commer-
cial software test tool licensing costs. They were attracted to TestMaker because of its mul-
tiprotocol support. A TestMaker test agent drives an email service, as a real user would use
the email service's native protocols. For example, a student using Microsoft Outlook Express
drives the email system using SMTP, POP3 and IMAP protocols. At the same time, a stu-
dent checks email messages with a browser using HTTP protocols. TestMaker test agents
use native HTTP, SMTP, POP3 and IMAP protocols just as students will.

The IT staff could have used TestMaker to build its own test agents; However, they
were time constrained to conduct the tests within a few weeks and some of its engineers
were enjoying the break between sessions. Saint Leo University asked the PushToTest
Company to provide it with consulting services to write the test and to conduct a scalability
investigation of the new email system.

SCOPING THE PROJECT

Saint Leo University provides on-line university courses, so renovations of its on-line
systems are a regular part of its operations. In its most extensive renovation yet, the univer-
sity changed its underlying infrastructure to provide more of its content to students and fac-
ulty through an enhanced Web portal. The university needs to integrate its multiple data
systems and technologies at its many locations into one seamless online system, to manage
its online applications and forms, and to develop online discussion groups for alumni and
students. The project included upgrading its email capability. For this, the university chose
Stalker Software's Communigate Pro messaging server.

Communigate Pro is an established messaging server among university campuses. The
software provides a Web interface and standard SMTP/POP3/IMAP interfaces for users to
check and send email messages. The software installs on inexpensive Intel-based servers and
provides low-maintenance administration to keep operating. While the software is well de-
signed and engineered, the needs for network bandwidth, server, and routing equipment to
run an efficient email system are less well known. The university provides 12,000 users with
email accounts each semester. With the rollout of their new email system immanent, the
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university needs to know if their system, datacenter, network bandwidth, and software con-
figuration are ready.

PushToTest began the project by taking a survey that is listed in Table 15-1.

Table 15-1 A survey on the scope of the email test project.

Question Answer from IT staff

What is the maximum number of concur-
rent users that will be on the email system
at any given time?

1000

When do you expect peak usage, and for
what reason?

Peak usage would happen between 8:00 a.m.
and 10:30 a.m. Mon - Fri. Reason: Stu-
dents/employees retrieving emails.

What is the speed and nature of the Internet
connections that your users will use to con-
nect to the email system?

We currently have a 3MB pipe to the internet
thru Sprint.  (This will be upgraded in the near
future.) Users will connect on-campus and off
campus to the email system using Outlook,
Netscape and a WEB > interface.

Will you provide IMAP, SMTP and POP3
service? Any others?

IMAP, POP3, SMTP as well as a WEB inter-
face using IMAP.  Also we will be using the
CommuniGate MAPI protocol to connect select
(100 - 200) staff and faculty to calendar serv-
ices on the server.

Are you using anti-spam software utilities
in your email system? If so, what are they?

We are using Real Time Blacklists.

Are you using anti-virus software utilities
in your email system? If so, what are they?

Yes.  Sophos.

If you were to describe 3 types of users
(archetypes or prototypical users) of the
email system, what would they be and how
would they use the email system?

User 1. Off site student.  Uses SLU mail for
communication sent to and from SLU staff.
User 2. On site student.  Uses SLU mail for all
communication to and from SLU staff and
family/friends.
User 3. Faculty/Staff member.  Uses SLU mail
for all communication to students and fellow
staff.  Large attachments from MS Office.

What administrative policies will govern
each email account? For example, maxi-
mum storage allotment, maximum number
of email messages.

Max storage of messages for a student is
20MB.  Staff/Faculty limits are at 40MB.  Of
course special exception is granted for many
users.  We plan on limiting the special excep-
tion cases to 200 MB of storage.  Our max
number of emails isn't set.  We have limits with
the Sophos plug-in on # of messages (5,000)
sent/received in one hour.

How will you provision new user accounts? Storage limited to 20MB for student and 30MB
for staff.  Student accounts are run into the
system in batch mode twice per week. Fac-
ulty/staff must get sign off from HR dept before
they are added.
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Question Answer from IT staff
for staff.  Student accounts are run into the
system in batch mode twice per week. Fac-
ulty/staff must get sign off from HR dept before
they are added.

How many technicians do you have to op-
erate the email system? What are their typi-
cal skills and experience?

We have 2 help desk techs to set up accounts.
We have one FTE position for maintenance and
administration of the server.

The survey and answers told me that testing the university email system is an appro-
priate use for TestMaker. I also spoke with Stalker Software to learn their input on the test.
They gave a positive opinion and also gave advice on the test scope of the project and the
test goals. As you will see in the next section, the survey also gave a good start at defining
the test itself.

TEST DESIGN AND METHODOLOGY

The survey presented in the previous section of this chapter gives a lot of insight into
how to design the test and test methodology. The test goal is to learn if their existing system
configuration, network bandwidth and server configuration satisfactorily serves the univer-
sity user community. PushToTest designed the test to emulate a group of virtual users to
load the system. The virtual users record the time it takes to complete each transaction. The
test then analyzes the results to determine the throughput of the system under load, measured
in transactions per second (TPS.) Additionally, while the test is running, the IT staff will see
first-hand the test's impact on system resources (disks, CPU bandwidth, network IO) and
network bandwidth.

The test design includes the resources illustrated in Figure 15-1.
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Figure 15-1 The email system test uses TestMaker as a central console to drive the
test agents running in several TestNodes. The TestNodes for this test are
inexpensive Intel-based Windows servers running the TestNetwork soft-
ware. The test agents emulate virtual users to drive load on the email
server.

In a distributed test environment test agents are run on multiple test server devices.
Each server, called a TestNode and running the PushToTest TestNetwork software, gener-
ates load on the email server by emulating the actions of archetypal users. To the email
server, it appears that the requests coming from the TestNodes are from real users. Details
on the user archetype design are found later in this section.

The distribute test environment provides a lot of flexibility to the university IT staff.
They may run the TestNodes in a lab setting to load test the email server. They may also
distribute the TestNodes across their network infrastructure to learn which parts of their
network are underperforming. They may also put the TestNodes on different Internet con-
nections to the email server. For example, the university provides connectivity to the email
server through connections provided by Time Warner, Verizon and others. By putting a
TestNode on each external network, the university learns the latency differential between the
provided networks.

TestMaker provides a single console to stage and synchronize a test of the email sys-
tem. TestMaker comes with client software to control TestNodes. The TestMaker command
protocol uses SOAP messages over HTTP connections to send instructions to the Test-
Nodes. This design means the university did not have to change its configuration, including
opening new ports on its firewall, to use the distributed test environment inside and outside
of the university network.

TestMaker provides a graphic user interface with which to start a test, monitor the
tests progress, and analyze and present the results. The university installed TestMaker onto
an IT team member's desktop computer and controlled the TestNodes from there. TestMaker
and TestNetwork are 100% Java applications and run wherever Java runs. So when the IT
staff roles, change the environment may easily be moved from Windows to Linux or Mac
OS X or anything else that runs Java.

The test methodology follows the steps listed in Table 15-2.
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Table 15-2 The Email System Test Methodology

Step Goal Action and Measurement

1 Configure the system for
a test.

Email system installed and ready to serve users.
500 test user accounts created. TestNetwork soft-
ware installed on TestNode machines. TestMaker
software installed on IT staff desktop computer.

2 Identify the capacity of
the TestNode machines
to run test agents.

Run a ramp-up test script that runs increasing levels
of intelligent test agents on the TestNode machine -
each agent emulates one virtual user. The script
analyzes the agent performance to determine the
highest number of concurrent test agents to run
before the local machine runs out of CPU, memory
and network bandwidth.

3 Write intelligent test
agents for each user ar-
chetype.

The survey uncovered three archetypal users of the
email system: on-campus students, off-campus
students, and faculty. Three test agents implement
the behavior of each three archetypal users. A de-
scription of the user archetypes comes later in this
chapter.

4 Conduct a trial run of the
test system.

Run a test for 5 minutes to determine that the steps
taken in 1-3 of the test methodology are configured
correctly.

5 Run the test. Run successively larger sets of virtual users against
the email system - 500, 1000, 1500, 2000, 2500,
and 3000 - across all the TestNodes. Run each test
for 10 minutes.

6 Run the Tally script. The Tally script analyzes the test result logs to
determine the transactions-per-second index and
other statistics.

7 Repeat steps 5 and 6, 3
times

A transactions-per-second index varies more than
10% from the tests run in 5 indicates an external
force is at work that impacts the test results.

8 Run the test. Run the test for 1 hour.
9 Run the Tally script. Contrast the results statistics from the short and

long test runs.
10 Search for anomalies in

the test and in the sys-
tem.

Construct a list of system properties that may im-
pact the test results.

11 Document the test and
findings.

Include the test methodology, test statistics, and
observations.



8 The Java Design and Test Automation Guide  Chap. 15

User Archetypes

Intelligent test agent technology is a powerful new way to test a system according to
the goals of archetypal users. Rather than testing raw functionality in the university email
system, a test that models itself on user archetypes shows how close the system brings users
to their goals. Chapter 2 provides detailed discussion on how to define a user archetype in
the context of a test for scalability, reliability and performance. In the case of the university
email system, the survey uncovered three user archetypes. With some further investigation,
PushToTest was able to construct the following user archetypes.

• Marilyn is an off-site student that uses the email system for communication sent
to and from the university faculty. Marilyn is an undergraduate student who has
a full-time job in legal office as a clerk. Marilyn uses the email Web interface to
check for messages. When new email is waiting she immediately reads and de-
letes the email messages. Marilyn sends an email message to a friend every time
she checks for messages.

• Muriel is an on-site student that uses the email system for communication sent
to and from faculty members advising her. Muriel is a senior and has a part-time
job as a teacher's aid. Muriel uses a Windows-based laptop with Microsoft Out-
look Express. Muriel is impatient and proactive by nature. When new mail is
waiting she immediately downloads and reads the email. Muriel sends reply
messages to any email she receives from the faculty right away.

• Betsy is a tenured Professor who uses SLU email for communication with stu-
dents and fellow staff. Muriel uses the SLU SMTP/POP3 interface to check for
email. Betsy likes to handle email messages in groups. She normally waits for 5
messages to appear before reading all of the messages in her mailbox. Betsy puts
her students into groups of 10 to support each other. From time to time she sends
messages with Microsoft Office attachments (Excel, Word, and Zip format) to
each of the groups to make sure they have the latest assignment.

These user archetypes demonstrate the behavior of three prototypical users of the uni-
versity email system. They cover students that are on campus, students that are off campus,
and students that attend sessions at satellite campuses who will rarely be on campus. Plus,
the Betsy archetype has the behavior of a faculty member using the email system to coordi-
nate teaching assignments, provide assignments to students, and communicate with admin-
istrators and staff. Of course, there is room for many more archetypes to test the system,
including archetypes for the IT staff, for example. Later this chapter presents the user agents
that are modeled after these user archetypes.
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INSTALLATION & CONFIGURATION

The test environment installation requires these steps to be taken by an IT staff member at
the university.

•  Install TestMaker onto a desktop computer system. TestMaker comes as a ZIP
archive file. Unzipping the files creates a TestMaker directory containing all of
the files, scripts, utilities, and libraries to run intelligent test agents. TestMaker
requires Java 1.4 and higher.

•  Install TestNetwork onto the TestNode machines. TestNetwork comes as a ZIP
archive file. Just like TestMaker, TestNetwork comes with all files, scripts,
utilities and libraries to operate a TestNode. By default, TestNetwork configures
itself as a SOAP-based Web Service that is accessed on port 8090. The Test-
Network installation instructions show how to configure for a different port
number. TestNetwork requires Java 1.4.

•  Install the test agent scripts onto the machine running TestMaker. The test
agent's scripts include files described in Table 15-3.

Table 15-3 Test Agent Files

File name Description

EmailTestScenario Contains all the files that will be send to the TestNodes
to stage the email test, including the following:
properties.a - Configuration and settings for the test.
For example, controls the relative mix of test agents
based on user archetypal behavior.
master.a - The main entries point to set-up, run and
take down the test.
archetypes - Directory containing scripts that imple-
ment the user archetype behaviors by using Test-
Maker's TOOL library to drive the email system using
native SMTP, POP3, IMAP and Web protocols..

nodes.conf A properties file that defines the TestNodes to be used
in a test.

testmail.a The main entry point for the entire test. This script
stages the test agents to the TestNodes, passes all
needed parameters, and returns the resulting logged
result data to the TestMaker machine.
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File name Description

• Configure the email system to have a set of email accounts for the test agents to
use.

•  Set the properties.a file to configure the intended mix of test agent archetypes,
the URLs to the POP3 and SMTP servers, the URL to the Web host, and the
quantity of virtual users.

With these installation and configuration steps, the test is ready to be implemented.
Before we delve into the results from the test, the next section of this chapter will show how
I went from the user archetype descriptions to the test agent scripts.

From Archetypes To Test Agent Scripts

User archetypes describe a prototypical user of a system. Each system will have many
archetypes, but each archetype is the full description of a certain type of behavior. For ex-
ample, my Uncle Norman is the archetype of a 1960's bachelor. He is an American that grew
up in New York City and moved to Rome, Italy to be an airline pilot. He has no children,
finally got married at age 64, and has an incredible talent to maintain friendships around the
world. His lifestyle, manners, sense of humor, and tastes are those of a 1960's bachelor.
While there are hundreds of thousands of people from a similar background, after describing
him to you, I do not need to describe anyone else from that era or social background. The
same is true about a user archetype. Once described, the archetype describes the unique be-
havior of a single person but represents a large group of people.

The survey presented earlier in this chapter identified three user archetypes that we
identified as Marilyn, Muriel and Betsy. Eventually we will add many more user archetypes
that will increase the breadth of the test to encompass more user goal oriented tests. For each
new archetype we will ask ourselves, is the new archetype really one of the existing ones?
For example, suppose we develop a new archetype named Simon that is a freshman student
living in the campus dorms who sends turns in his assignments as email attachments to his
teachers. Unless there is more to Simon, I would put it to you that Simon is really Muriel
with the ability to send email attachments. Rather than invent a new user archetype, we
could expand Muriel to include a behavior where Muriel sends files to her teachers. User
archetypes represent prototypical behavior that is far from me-to behavior.

Moving from user archetypes to test agents that implement the archetype's behavior
requires some effort in the TestMaker environment. Chapters 4 and 5 provide a good de-
scription of the lifecycle of an intelligent test agent, from creation to retirement. Applying
those techniques to the university email system test is fairly straightforward.
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Building Muriel

Earlier in this chapter we identified Muriel as student that uses the email system while
the university campus. Muriel uses the email system to communicate with her faculty advi-
sors. She is a senior and has shown herself to be a terrific asset to the teaching staff by being
a part-time teachers aid. She rapidly checks for new mail messages and immediately down-
loads and replies to email messages when they arrive. Muriel is especially vigilant to reply
to messages she receives from the teaching staff.

Translating the Muriel archetype into intelligent test agents needs to accomplish these
four behaviors:

•  Muriel uses an email client that checks for new email using SMTP and POP3
protocols.

•  When new mail is waiting she immediately downloads and reads the email.

•  Muriel sends reply messages to any email she receives from the SLU staff. For
the purpose of this test, Muriel considers mail received from the test1 to test50
accounts to be from a faculty member.

•  Muriel sends email messages with no attachments at random intervals from 30
seconds to 60 seconds to other students.

The following code implements the basic logic of an intelligent test agent modeled
after Muriel. Here is the relevant snippet of test agent script, then follows an explanation.

while running:

        status = "ok"
        datapulse = Date().time

        try:
            read_emails( agent_num )

            chattercount += 1
            if chattercount > random.randrange( 1, 3 ):
                chattercount = 0
                send_email( agent_num, \
                  random.randrange( 51, 100 ) )

This code snippet says that as long as the test is running, the test agent will read email
messages from the test account identified to this test agent. Randomly, the test agent will
compose and send an email message to one of the students.
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When the agent reads an email message, if the message comes from a faculty member
- meaning it comes from test1 to test50, and then the agent will send an immediate reply. To
implement this test agent logic, the test agent includes a function to read email messages.
Here is the function in its entirety, following by a detailed description of the moving parts of
this agent.

def read_emails( agentnum ):

    global mailhost

    replyaccount = 0
    fromadr = ""

    protocol2 = ProtocolHandler.getProtocol("mail")
    protocol2.setHost( mailhost )

    account = "test" + str( agentnum )
    protocol2.setUsername( account )
    protocol2.setPassword( "passw0rd" )

    response = protocol2.connect()

    response.setPermission( Folder.READ_WRITE )
    response.setFolder( "INBOX" )
    messages = response.getMessages()
    replyaccount = 0

    for i in messages:
        if ( i.getFrom() != None ):
            fromadr = str( i.getFrom()[0] )
            replyaccount = 0

            if fromadr.lower().find("test") == 0:
                pos = fromadr.lower().find("@")
                if pos != -1:
                    account = fromadr[ 4 : pos ]

                    if int( account ) < 50:
                        replyaccount = int( account )

        i.setFlag( Flags.Flag.DELETED, 1 )

    response.close( 1 )

    if replyaccount > 0:
        send_email( agentnum, replyaccount )
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The test agent implements Muriel's need to reply to email messages that come from
the faculty. Next I will show how this function works in detail.

def read_emails( agentnum ):

    global mailhost

    replyaccount = 0
    fromadr = ""

First we define the name of the function as read_emails that takes a single parameter.
The agentnum is an integer value of the agent thread number. The agent number forms the
email account name to check or send messages. For example, when agentnum equals 8 then
read_emails will check the test8@universitymail.com mail account.

    protocol2 = ProtocolHandler.getProtocol("mail")
    protocol2.setHost( mailhost )

    account = "test" + str( agentnum )
    protocol2.setUsername( account )
    protocol2.setPassword( "passw0rd" )

The test agent script creates a new instance of the MailProtocol object that we will ref-
erence in the protocol2 variable. Chapter 8 provides details on the MailProtocol. The addi-
tional commands here tell the MailProtocol object where to find the email host and which
account to use.

    response = protocol2.connect()

The connect() method opens a connection to the mail host, authenticates the test agent,
and returns a response object that is used for subsequent email operations.

    response.setPermission( Folder.READ_WRITE )

The setPermission method instructs the mail host on our test agent's intentions. By de-
fault, Folder.READ_ONLY tells the mail host we will be reading email messages but not
deleting them from the host. Folder.READ_WRITE tells the mail host to expect message
delete commands.

    response.setFolder( "INBOX" )

The POP3 protocol uses a single folder titled INBOX by default. The IMAP protocol
supports multiple folders.

    messages = response.getMessages()
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    for i in messages:
        if ( i.getFrom() != None ):
            fromadr = str( i.getFrom()[0] )

Iterate through each message. The getFrom, getSubject and writeTo methods return
the from, subject and message body.

            replyaccount = 0

            if fromadr.lower().find("test") == 0:
                pos = fromadr.lower().find("@")
                if pos != -1:
                    account = fromadr[ 4 : pos ]

This test agent script decodes the value of the to address for the email message. The
test agent users accounts follow the same format, test1@universitymail.com,
test2@universitymail.com, etc. This code fines the account number from the email from
address.

                    if int( account ) <= 50:
                        replyaccount = int( account )
                        send_email(agentnum,replyaccount)

Muriel replies to email messages she receives from the faculty immediately. For the
purpose of this test, email accounts less than test50 are considered to be faculty members.
When the email message is from a faculty member (account number <= 50) then Muriel
sends a reply message. Send_email is another defined function that takes two parameters,
the current agent number and a destination email account number, and sends an email mes-
sage.

On extra step we could take in this test would be for Muriel to read the contents of the
message to validate the communication. The body The body of the message is available
from the writeTo method of the response object. For example, print
i.writeTo(outputStream).

        i.setFlag( Flags.Flag.DELETED, 1 )

The setFlag method enables the agent script to mark the email message for deletion
from the mail host. The flag is set in this loop but does not actually happen until the close()
method executes. The flag has no effect if the setPermission method is not set to
Folder.READ_WRITE.

    response.close( 1 )
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Closes the connection to the host. The close method takes a single Boolean parameter.
When the parameter is set to true or 1, then the close command instructs the mail host to
delete any flagged messages. A False or 0 parameter tells the mail host to ignore the deleted
messages.

This test agent script implements Muriel's behavior. The Muriel test agent considers
mail received from the test1 to test50 accounts to be from faculty members. The test agent
replies to email messages received from these accounts. The test agent regularly sends email
messages to other students, those with accounts greater than test51. Lastly, the test agent
simulates using Microsoft Outlook Express by using native SMTP and POP3 protocols as
Outlook would to send and read email messages.

Next, we see how to build an intelligent test agent modeled after Marilyn.

Building Marilyn

As we saw earlier in this chapter, Marilyn is an off-site student that uses the email
system for communication sent to and from the university faculty. Marilyn uses a Web
browser to read and send email messages. This gives us the opportunity to use TestMaker's
Recorder wizard to help write the test agent script.

Using the Recorder

The Recorder is a useful and convenient utility function in TestMaker that watches
you use a browser and then it writes a test agent script for you automatically. Marilyn uses a
Web browser to send and receive email messages. We used the Recorder to record Marilyn's
actions reading and sending email messages. Then we modified the recorded script to be part
of the overall test. Figure 15-2 illustrates starting the Recorder in TestMaker.

Figure 15-2 Start the Recorder in TestMaker by choosing the New Agent command in
the File drop-down menu, then choosing HTML Agent Recorder.

Activating the Recorder displays a dialog shown in Figure 15-3. The dialog asks you
to name the recorded test agent script.
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Figure 15-3 The Recorder starts by asking for the name of the recorded test agent.

TestMaker implements the Recorder as a special type of proxy server. Your browser
makes requests through the Recorder proxy server. The proxy passes through the browser
requests to the Web host, plus is records the request as a series of test agent script com-
mands.

Muriel begins each session by identifying herself to the email system. Figure 15-4
shows the Web Mail sign-in page.

Figure 15-4 All sessions on the university web mail system starts with the sign-in
page. Here the user enters their login name and password. All subse-
quent pages identify the user with a session identifier in the URL of each
page.
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Behind the scenes, the Recorder watches the sign-in page and writes the following test
agent script. First I will show you the snippet of test agent script and then I will break it
down and provide a detailed explanation.

    loc = '''http://hera.saintleo.edu:8100/'''

    http = ProtocolHandler.getProtocol("http")
    http.setUrl( loc )
    http.setType( HTTPProtocol.POST )
    body = ProtocolHandler.getBody( 'http' )
    http.setBody( body )

    body.addParameter('''Username''', '''test''' + \
    str( agentnum) )
    body.addParameter('''Password''', '''apassword''')
    body.addParameter('''login''', '''Enter''')

    response = http.connect()
    if response.getResponseCode()<>301:
        raise Exception, "Sign-in response code: " + \
        str( response.getResponseCode() )

    # Follow redirect to mailbox menu page

    loc = response.getParameterValue( "Location" )
    pos = loc.find("Session")
    pos2 = loc.find( "/", pos + 9 )
    sessionid = loc[ pos + 8 : pos2 ]

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Follow response code: " + \
        str( response.getResponseCode() )

This snippet of test agent script performs the sign-in function that Marilyn operates
using a Web browser. Provided the user id and password are correct, the sign-in page servlet
responds with a redirect command to ask the browser to load the Hello.wssp page. The fol-
lowing is a detailed explanation of this test agent script snippet.

    loc = '''http://hera.saintleo.edu:8100/'''

The new loc variable will contains a String value of the URL to the sign-in page.

    http = ProtocolHandler.getProtocol("http")
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    http.setUrl( loc )
    http.setType( HTTPProtocol.POST )
    body = ProtocolHandler.getBody( 'http' )
    http.setBody( body )

The test agent uses HTTP protocols to command the email Web interface. These
commands create an HTTP protocol handler object that will issue a POST command to the
host.

    body.addParameter('''Username''', '''test''' + \
    str( agentnum) )
    body.addParameter('''Password''', '''apassword''')
    body.addParameter('''login''', '''Enter''')

The body of the HTTP protocol carries the user id and password for Marilyn.

    response = http.connect()
    if response.getResponseCode()<>301:
        raise Exception, "Sign-in response code: " + \
        str( response.getResponseCode() )

The connect method issues the POST command to the email host and creates a re-
sponse object. The script checks to make sure the email host returns a 301 Redirect com-
mand to the Hello.wssp page. If the sign-in function did not perform as expected, the script
raises an exception and returns.

Special note needs to be given to the response of the sign-in page. The response in-
cludes three pieces of data:

1. Response code - this is going to be a 301 Redirect code.

2. URL to the next page - this is either going to be the URL to the Hello.wssp
page, or to an error page.

3. Session identifier - the university email system is configured to use URL re-
writing to identify a user to the host. Every subsequent request to the Web
Mail host must contain the session identifier in the URL of the request. Oth-
erwise, the Web Mail host will redirect the request to the sign-in page. URL
rewriting is an alternative to browser cookies. Rather than keeping the ses-
sion identifier in a cookie, the Web Mail host keeps the session identifier in
the URL. For example, here is a Web Mail URL for a user that is signed-in:

      http://hera.saintleo.edu:8100/Session/14665-  \
      y9jgEy1H7IKcrDJxcoAo/Hello.wssp
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Unfortunately, the Recorder does not support dynamic URL rewriting during play-
back. If we used the recorded script, then the test agent would sign-in and then use the re-
corded session identifier. Usually systems are configured to expire a session identifier after a
certain amount of time. So, the recorded session identifier would be invalid. To avoid these
problems, I added the following script to the recorded test agent script.

    loc = response.getParameterValue( "Location" )
    pos = loc.find("Session")
    pos2 = loc.find( "/", pos + 9 )
    sessionid = loc[ pos + 8 : pos2 ]

This code dynamically finds the session identifier in the redirect URL. It stores and
uses the session identifier value for subsequent requests to the host.

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Follow response code: " + \
        str( response.getResponseCode() )

This test agent script uses the same HTTP protocol handler object to get the redirected
page - the mailbox menu page. A response code of 200 indicates success. In the browser, we
see the interface shown in Figure 15-5.

Figure 15-5 After the sign-in page, the web mail interface displays a page that lets the
user choose to view their mailbox, compose new mail, and choose a
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number of other options. Marilyn goes right to the mailbox to read any
waiting messages.

Marilyn wants to get to her mailbox so she clicks the Mailboxes link. The test agent
uses the following script commands to get the Mailboxes.wssp page.

    loc = "http://" + mailweb + "/Session/" + sessionid\
    + "/Mailboxes.wssp"

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Mailbox summary response code: "\
        + str( response.getResponseCode() )

Clicking on the Mailboxes link takes us to the Mailboxes.wssp page as shown in Fig-
ure 15-6. This page summarizes the contents of the mailboxes.

Figure 15-6 The web mail system displays a summary of the user mailbox on the
Mailboxes.wssp page. Choosing the InBox link displays the contents of
the mailbox.

Marilyn wants to start reading messages so she clicks the InBox link. Figure 15-7
shows the resulting page that lists the links for the waiting email messages.
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Figure 15-7 Figure Caption (style FC). Apply bold font formatting to the figure number.
Separate figure number from text of caption with a tab space.

The test agent script that takes the next step for Marilyn needs to do some extra work
to reflect the dynamic nature of this page. The email system displays a list of links that re-
flect the list of waiting email messages. The test agent script needs to parse the html to find
the set of links and then choose a link to read the corresponding email message. First I will
show you the snippet of test agent script and then I will break it down and provide a detailed
explanation.

    loc = "http://" + mailweb + "/Session/" + sessionid +\
    "/Mailbox.wssp?Mailbox=INBOX&"

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Email list response code: " +\
        str( response.getResponseCode() )

    f1 = "<A HREF=\"Message.wssp?Mailbox=INBOX&MSG="
    f2 = "\">"

    responselink = ResponseLinkConfig()
    responselink.setParameter( 'beginsearch', f1 )
    responselink.setParameter( 'endsearch', f2 )
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    search = SimpleSearchLink()
    search.init( responselink )

    found = search.handle( response )

 foundcount = \
 found.getParameterValue("simplesearch.foundcount")

    if ( foundcount == 0 ):
        return

    foundlist = \
    found.getParameterValues("simplesearch.founditems")
    doc = foundlist.get( random.randrange(0,foundcount) )

    # Next trim the <a href= and > tags to find the message
number
    msgnum = doc[ len(f1) : ( len(doc) - len(f2) ) ]

    # Get the message
    loc = "http://" + mailweb + "/Session/" + sessionid +
"/Message.wssp?Mailbox=INBOX&MSG=" + msgnum

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()

    if response.getResponseCode()<>200:
        raise Exception, "Get message response code: " +
str( response.getResponseCode() )

This snippet of test agent script loads the mailbox summary page and chooses a wait-
ing email message at random. The following is a detailed explanation of this test agent script
snippet.

    loc = "http://" + mailweb + "/Session/" + sessionid +\
    "/Mailbox.wssp?Mailbox=INBOX&"

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Email list response code: " +\
        str( response.getResponseCode() )
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This snippet of test agent script gets the contents of the Mailbox.wssp page for this
user. The response variable points to an object containing the html contents of the Mail-
box.wssp page. The page contains links to the email messages in the user's mailbox. Each
message is a link to the Message.wssp page with parameters indicating the message number.
For example,  the following URL is for message number 11.

http://hera.saintleo.edu:8100/Session/15091-
hoPMIzFZBueeyLo2zwSy/Message.wssp?Mailbox=INBOX&MSG=111

We can use TestMaker's parsing function to find the message number.

    f1 = "<A HREF=\"Message.wssp?Mailbox=INBOX&MSG="
    f2 = "\">"

The f1 and f2 variables define the search parameters. f1 is the start of the search
phrase and f2 is the termination.

    responselink = ResponseLinkConfig()
    responselink.setParameter( 'beginsearch', f1 )
    responselink.setParameter( 'endsearch', f2 )

The responselink variable will point to a ResponseLinkConfig object that will parse
the Mailbox.wssp page for URLs that begin with the contents of f1 and end in the contents
of f2. ResponseLinkConfig is an object provided in TestMaker's Tool object library.

    search = SimpleSearchLink()
    search.init( responselink )

The design allows you to search for more than one phrase at a time by using multiple
ResponseLinkConfig objects. For this test, only one is needed. These commands connect the
ResponseLinkConfig object to the response object created when we make the Get request to
the host.

    found = search.handle( response )

Applying the search.handle method to the response object parses the html for the
search strings. The found variable now holds a list of URLs that match the ResponseLink-
Config parameters. In other words, a list of message links from the Mailbox.wssp page.

 foundcount = \
 found.getParameterValue("simplesearch.foundcount")

    if ( foundcount == 0 ):
        return
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The found variable points to a search object. Among other methods, it provide the
simplesearch.foundcount  methods to tell us how many message links were found. If there
are no email messages in the mailbox the test agent simply waits for a while and then repeats
this function again.

    foundlist = \
    found.getParameterValues("simplesearch.founditems")
    doc = foundlist.get( random.randrange(0,foundcount) )

The test agent script randomly picks one of the message links from the list of found
values. The doc variable now holds the URL to the chosen email message. The URL looks
something like this:

http://hera.saintleo.edu:8100/Session/15091-
hoPMIzFZBueeyLo2zwSy/Message.wssp?Mailbox=INBOX&MSG=111

The test needs to dynamically build the URL to get the email message Web page since
the session identifier and the message identifier contain dynamic values.

    msgnum = doc[ len(f1) : ( len(doc) - len(f2) ) ]

The script uses a little bit of Python magic to find the message number in the chosen
link. This command uses Python's string manipulation function to trim the <a href= and >
tags to find the message number.

The test agent script is now ready to get the email message by issuing an HTTP GET
command to the web mail host.

    loc = "http://" + mailweb + "/Session/" + sessionid+\
    "/Message.wssp?Mailbox=INBOX&MSG=" + msgnum

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()

    if response.getResponseCode()<>200:
        raise Exception, "Get message response code: " +\
        str( response.getResponseCode() )

The snippet of test agent script above requests the Web page containing the chosen
email message. Figure 15-8 shows the browser view of the command.
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Figure 15-8 Figure Caption (style FC). Apply bold font formatting to the figure number.
Separate figure number from text of caption with a tab space.

When new email is waiting, Marilyn immediately reads and deletes the email mes-
sages. The next step in the test agent script deletes the message we just retrieved.

    loc = "http://" + mailweb + "/Session/" + sessionid +\
    "/Mailbox.wssp?Mailbox=INBOX&MSG=" + msgnum +\
    "&Delete=&"

    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Delete message response code:"+ \
        str( response.getResponseCode() )

The test agent script snippet issues an HTTP Get request to the Mailbox.wssp URL
with a delete command in one of the parameters. The script dynamically builds the URL to
include the session identifier and the message number. The Recorder automatically adds
script commands to check the response code from the request.

The final step in building Marilyn is to implement her behavior to write email mes-
sages to other students. The Recorder watches us use a browser to click the Compose button.
This action displays an HTML form for us to enter a new message.

loc = "http://" + mailweb + "/Session/" + sessionid +\
    "/Compose.wssp"
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    http.setUrl( loc )
    http.setType( HTTPProtocol.GET )
    response = http.connect()
    if response.getResponseCode()<>200:
        raise Exception, "Send message response code:" +\
        str( response.getResponseCode() )

This command dynamically builds the URL by including the session identifier and
gets the message composition page, Compose.wssp.

Next the test agent composes and sends a new message. Here is the code snippet to do
so, followed by a detailed explanation.

    http.setType( HTTPProtocol.POST )
    body = ProtocolHandler.getBody( 'http' )
    http.setBody( body )

    body.addParameter('''FormCharset''', '''ISO-8859-1''')
    body.addParameter('''Send''', '''Send''')
    body.addParameter('''Cc''', '''Send''')
    body.addParameter('''Bcc''', '''Send''')
    body.addParameter('''DSN''', '''Send''')
    body.addParameter('''MDN''', '''Send''')
    body.addParameter('''OpenBook''', '''Send''')
    body.addParameter('''desiredCharset''', \
    '''ISO-8859-1''')
    body.addParameter('''filled''', '''1''')
    body.addParameter('''To''', '''test''' + \
    str( random.randrange( 50, 300 ) ) + \
    '''@hera.saintleo.edu''')

    myLingo = Lingo()
    body.addParameter('''Subject''', \
    myLingo.getSubject( 4 ) )
    body.addParameter('''Body''', myLingo.getMessage() )

    response = http.connect( 0 )

    if response.getResponseCode()<>200:
        raise Exception, "Post response code: " + \
        str( response.getResponseCode() )

This snippet of test agent code assembles and then issues an HTTP Post command to
the Compose.wssp server function. The Recorder watches us receive the HTML form, type
in the address of the recipient, the subject line and body of the message, and then click Send.
The Recorder automatically writes the test agent script. We must modify the Recorders
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script to support the dynamic URLs needed to operate the email system for our test agent's
account and to choose a recipient.

    http.setType( HTTPProtocol.POST )
    body = ProtocolHandler.getBody( 'http' )
    http.setBody( body )

First the script sets the existing HTTPProtocol object to issue a POST command to the
host. Then it creates a new body that will contain the parameters of the message.

    body.addParameter('''FormCharset''', '''ISO-8859-1''')
    body.addParameter('''Send''', '''Send''')
    body.addParameter('''Cc''', '''Send''')
    body.addParameter('''Bcc''', '''Send''')
    body.addParameter('''DSN''', '''Send''')
    body.addParameter('''MDN''', '''Send''')
    body.addParameter('''OpenBook''', '''Send''')
    body.addParameter('''desiredCharset''', \
    '''ISO-8859-1''')
    body.addParameter('''filled''', '''1''')

    body.addParameter('''To''', '''test''' + \
    str( random.randrange( 50, 300 ) ) + \
    '''@hera.saintleo.edu''')

I modify the Recorder's version of the POST command to dynamically address the
email message to one of the test accounts. For the purpose of this test, Marilyn expects fac-
ulty members to use the email ccounts named test1 through test49. So the test agent script
randomly picks an email account from 50 to 300.

    myLingo = Lingo()
    body.addParameter('''Subject''', \
    myLingo.getSubject( 4 ) )
    body.addParameter('''Body''', myLingo.getMessage() )

One other change from the Recorder script is to dynamically create the message sub-
ject and body. For this, I use the Lingo object provided in TestMaker's Tool library. Lingo
returns gibberish Latin-like words. Using Lingo reduces the risk that a cache manager will
impact the test results because in this test every message contains unique content.

    response = http.connect( 0 )

    if response.getResponseCode()<>200:
        raise Exception, "Post response code: " + \
        str( response.getResponseCode() )
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Finally, the connect method issues the Post to the web mail host and we are done.
Marilyn then goes back and checks for more email messages.

This test agent script we just covered implements Marilyn's behavior. We used the Re-
corder to create a test agent script that uses the university Web Mail interface. The Marilyn
test agent uses the browser interface to check for email and to send messages. She immedi-
ately reads and deletes all email messages in her email account. And every time she checks
for messages, she sends at least one email message to one of her friends.

RESULT ANALYSIS

The university email test environment uses a distributed set of test machines to gener-
ate load on email system and its supporting infrastructure. Each of the test agent scripts is
run multiple times concurrently to generate increasing amounts of virtual users. Each test
concludes by analyzing the logged results data to determine the throughput of the email
system. Figure 15-9 shows how this process works.

Figure 15-9 While the test runs the test agent scripts logs results data to a log file on
the local TestNode machine. At the conclusion of the test the TestNodes
return their logged data to the central TestMaker console for analysis and
reporting.

The test agent scripts create a simple comma-delimited data file with these fields:

• Time to complete a transaction.

• Current system time.
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• Test agent archetype

• TestNode machine identifier

• Type of transaction

Once the result logs are returned to the TestMaker machine, the tally.a test script
analyses each of the log files and compiles a set of statistics.

• Average transactions-per-second

• Minimum duration of a transaction

• Maximum duration of a transaction

• Count of transactions completed by each user archetype

• Count of transactions that ended in an error condition

• Total time to run the test
The tally.a script runs automatically at the end of each test, so the test may be fully

automated.

SUMMARY

In this chapter, the needs of a major on-line university were met by implementing a
user goal oriented test of the capacity of the email system to meet their user's goals. This
chapter discussed the needs of the university to conduct a multiple protocol test in an email
environment, the choices of test tools and methodologies, describes in-depth the test agent
code used to conduct the test, and showed how the test provided valuable information to the
university so it may save time, energy and resources while well-serving its users.
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